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Abstract

The Winograd Schema Challenge (WSC) was proposed as a measure of machine in-

telligence. It boils down to anaphora resolution, a task familiar from computational

linguistics. Research in linguistics and AI has coalesced around discourse coherence

as the critical factor in solving this task, and the process of establishing discourse

coherence relies fundamentally on world and commonsense knowledge.

In this thesis, we build on an approach to establishing coherence on the basis

of correlation. The utility of this approach lies in its conceptual clarity and abil-

ity to flexibly represent commonsense knowledge. We work to fill some conceptual

holes with the Correlation Calculus approach. First, understanding the calculus

in a vacuum is not straightfoward unless it has a precise semantics. Second, ex-

isting demonstrations of the Correlation Calculus on Winograd Schema Challenge

problems have not been linguistically credible.

We hope to ameliorate some—but by no means all—of the outstanding issues

with the Correlation Calculus. We do so first by providing a precise semantics of

the calculus, which relates our intuitive understanding of correlation with a precise

notion involving probabilities. Second, we formulate the establishment of discourse

coherence by correlation formulas within the framework of Discourse Representation

Theory. This provides a more complete and linguistically credible account of the

relationship between the Correlation Calculus, discourse coherence, and Winograd

Schema Challenge problems.
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Chapter 1

Introduction

The Winograd Schema Challenge was proposed by Levesque et al. [2012] as a mea-

sure of machine intelligence. It boils down to anaphora resolution, a task familiar

from computational linguistics. Research in linguistics and AI has coalesced around

discourse coherence as the critical factor in solving this task, and the process of

establishing discourse coherence relies fundamentally on world and commonsense

knowledge.

Bailey et al. [2015] proposed an approach to establishing coherence on the basis

of correlation. The utility of this approach lies in its conceptual clarity and ability

to flexibly represent commonsense knowledge. They exhibit a use of the calculus

in an application to the Winograd Schema Challenge. However, there are some

shortcomings to their approach. Understanding the calculus in a vacuum is not

straightfoward—for example, the calculus on its own does not give a test of non-

derivability; we cannot verify that our intuition of the calculus is accurate unless it

has a precise semantics.1 Another problem with the approach presented in Bailey

et al. [2015] was that the formulation of Winograd Schema Challenge problems was

not linguistically credible. It involves a translation from natural language clauses in

WSC problems to formulas of First-Order Logic, but the translation was not based

on rigorous principles, so there was not evidence that a necessary component of the

reasoning behind the WSC problem was not happening in that step.

In this thesis, we hope to ameliorate some—but by no means all—of the out-

standing issues with the Correlation Calculus. We do so first by providing a precise

1A semantics for the calculus was given in Bailey et al. [2015], but since it was primarily a
contribution of the author of this thesis, it is included here as a contribution.
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semantics of the calculus, which relates our intuitive understanding of correlation

with a precise notion involving probabilities. Second, we formulate the establishment

of discourse coherence by correlation formulas within the framework of Discourse

Representation Theory. This provides a more complete and linguistically credible

account of the relationship between the Correlation Calculus, discourse coherence,

and Winograd Schema Challenge problems.

There are still many outstanding issues when it comes to solving the Winograd

Schema Challenge. A paramount problem—which we do not address—is how to

obtain the knowledge required for deriving or explaining solutions to Winograd

Schema Challenge problems. This is an important direction for future work, but

clarity in the uses of the Correlation Calculus in discourse coherence does go towards

clarifying how to represent commonsense knowledge about correlation.

This thesis is organized as follows. We will first cover necessary background

information in Chapter 2, with discussions of the Winograd Schema Challenge, the

Correlation Calculus, and Discourse Representation Theory. Then, in Chapter 3,

we will discuss a probabilistic semantics for the Correlation Calculus. In Chapter 4

we develop how to relate the calculus with Discourse Representation Theory in the

process of establishing coherence, and we conclude with a discussion of possible

problems and future directions in Chapter 5.
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Chapter 2

Background

2.1 The Winograd Schema Challenge

The Winograd Schema Challenge (WSC) was proposed by Levesque et al. [2012] as a

measure of machine intelligence. It was designed to mitigate several cited problems

with the original Turing Test:

• Deception—the machine has to create a false identity in order to pose as a

human.

• Conversation—a lot of interactions may qualify as “legitimate conversation”

and yet not draw on intelligent reasoning.

• Evaluation—different judges may come to different verdicts, and often the real

result is inconclusive.

A better alternative, Levesque et al. argued, would be a test of comprehension of

a broad range of natural language sentences that could be administered and scored

by a machine.

The test they proposed boils down to anaphora resolution, a task familiar from

computational linguistics where the goal is to determine the antecedent of some

anaphoric element of a sentence—in this case, a pronoun. Winograd Schemas are

sentence schemas with two instances. They are named after Terry Winograd for his

example from Winograd [1972]:

(1) a. The city councilmen denied the protestors a permit because they advo-

cated violence.
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b. The city councilmen denied the protestors a permit because they feared

violence.

A Winograd Schema Challenge question continues:

Who [advocated/feared] violence?

In the case of (1a), the answer is the protestors, and in the case of (1b), it is the

city councilmen; either way the question is of the antecedent of they. It was noted

by Winograd [1972] that resolving this pronoun requires knowledge and reasoning

ability. The general structure of the sentences has a lot to do with this.

First, each sentence contains two independent clauses, neither of which is sub-

ordinate to the other. This means that grammatical binding restrictions—based on

clause-internal patterns such as subjectivity or nuclearity—may not constrain the

antecedent of the pronoun. Second, the grammatical structure of the sentence is

the same in either case, as just one word is switched out. This means that syntac-

tic patterns—which are used by state-of-the-art systems for coreference (Lee et al.

[2011], Lee et al. [2013])—are of no use in this problem, and statistics on words and

phrases may not be helpful in any obvious way. Together, these controls result in

the fact that in many sentences of this general form, it seems that commonsense

reasoning or world knowledge is required to resolve the anaphor. This is borne out

in examples such as Winograd’s: it seems that the reason for the resolvent of the

anaphor has to do with general knowledge about protestors, councilmen, and the

reasons for public demonstration.

So the Winograd Schema Challenge consists of a series of anaphora resolution

problems that have the same general form as Winograd’s example. Formally, a

Winograd Schema consists of

• A sentence or brief discourse in English.1 It must contain:

– two noun phrases of the same general semantic class (male, female, inan-

imate, or group of people/objects),

– a pronoun (possibly in possessive form) referring to one of the noun

phrases, and

– a “special word” and “alternate word” such that if the special word is

replaced with the alternate word, the referent of the pronoun changes.

1We use the term “discourse” simply to refer to a sequence of sentences.
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• A question echoing the condition on the pronoun in question.

• A pair of answers corresponding to the two noun phrases in the discourse, in

their order of appearance.

Here are two complete examples from Levesque et al. [2012]:

• The trophy doesn’t fit into the brown suitcase because it’s too [big/small].

What was too [big/small]?

Answer 0: The trophy

Answer 1: The suitcase

• Joan made sure to thank Susan for all the help she had [received/given]. Who

had [received/given] the help?

Answer 0: Joan

Answer 1: Susan

The schemas on the actual test may not correspond quite exactly to the defi-

nition, in the sense that instead of a special and alternate word, there may be a

short special and alternate phrase, which, when switched out for each other, do not

change the overall structure of the sentence.

The administration of the test would be as follows (as presented by Levesque

[2014]):

1. Select N Winograd Schema questions,

2. randomly use the special or alternate word in the question,

3. present the test to the subject, obtaining N replies, and

4. assign a final grade of
max(0, N − k ·Wrong)

N
,

where Wrong is the number of incorrect answers and k is a penalty coefficient (to

counteract guessing). The problems would be presented in a standard format that

is explicit about the answer choices, so each problem is simply a 2-option multiple

choice question. The bar for an intelligent AI would be performance comparable to

a human baseline.
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2.1.1 The Status of the WSC

Since its proposal, the WSC has seen some attention from the research community.

Nuance Communications, Inc. is sponsoring a competition in Fall 2015, with a grand

prize of $25, 000.

The test was designed with the idea of being “Google-proof,” in the sense that the

problems could not be solved using statistical information about the cooccurrence of

words. Ernest Davis, in his compilation of Winograd Schemas,2 occasionally justifies

this with examples by giving the number of results returned when the relevant

phrases are Google-searched.

This idea of “Googling” to find the answer is very much a simplification of the

statistical machine learning techniques already being used in the NLP community.

Many NLP researchers seem to believe that the WSC will not be a problem for

machine learning methods. For example, Rahman and Ng [2012] apply exactly the

sort of methods the test was designed to guard against and achieve accuracy of

about 73% on their set of twin sentences designed after Winograd Schemas. But

taking a look at their data reveals that it at times differs from Winograd Schemas in

significant ways. Many can be resolved without an understanding of the proposition

denoted by the sentence, for example:

NATO forces did precision predator strikes for the Libyan rebels since

they [had the predator vehicles/did not have the capabilities themselves].

This can be explained simply by very simple statistical data—NATO is likely to have

predator vehicles, while Libyan rebels are more likely to be incapable. The entire

proposition needs to be relevant to the solution in order to ensure that knowledge

and reasoning play their part. This problem is listed as “Pitfall 1” by Levesque

et al. [2012]—an answer too obvious. Others can even be solved by grammatical

binding constraints—for example, the following schema instance:

The mermaid swam toward Sue and made her gasp.

If “her” meant the mermaid it would have to have been “herself.” We will not be

undertaking a careful analysis of their data set, but these examples were found in

just a very small sample. So their results may not be applicable to the Winograd

Schema Challenge.

2See https://www.cs.nyu.edu/davise/papers/WS.html.
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As it stands, the jury still seems to be out on whether the WSC can be solved

using statistical or machine learning models that do not incorporate world knowl-

edge in any obvious way. However, this is a different question than that of whether

solving the WSC requires knowledge. The feeling in the logic-based KRR commu-

nity seems to be that a problem that requires world knowledge requires axioms in

the methodology of its solution. If we are to buy into Levesque’s arguments and

trust that the WSC is indeed a test of commonsense reasoning and world knowl-

edge, then we must be prepared to admit that if a statistical system solves the

Winograd Schema Challenge, then in a very clear sense, it has world knowledge and

is performing commonsense reasoning.

But the value of the WSC is not just in its evaluative power. We have plenty

of tasks in AI that encapsulate fragments of human reasoning abilities, which serve

as powerful evaluations for our AI systems. And yet when a new system breaks yet

another record, what have we learned about intelligence in the process? Levesque

[2014] argues that the “test-driven” approach to AI has a habit of producing idiot

savants. When we are focused just on passing a test, we may (indeed, we are incen-

tivized to) miss the forest for the trees and develop a skill that does not generalize.

So we should not view the WSC as a test to be passed. Instead, we should view

human behavior on the WSC as a phenomenon to be explained.

So how do we explain human behavior on the challenge? Levesque [2014] presents

a compelling argument that knowledge is crucial in how we come to the conclusions

we do on Winograd Schema questions. It takes the form of a thought experiment,

which we will abridge and repeat here. Consider the following hypothetical Wino-

grad Schema instance:

(2) The large ball crashed through the table because it was made of XYZZY.

What was made of XYZZY?

• the large ball

• the table

Here the answer is unclear. But what if we were told the following:

The material XYZZY is ninety-eight percent air, making it lightweight

and buoyant.

Now it’s reasonably clear that the table is the answer to this question. In fact, this

is a modification of a Winograd Schema with special and alternate words “steel”
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and “styrofoam.” The point here is that the above fact about styrofoam really may

be behind the justification of the answer to the Winograd Schema question.

So several critical questions arise about the knowledge we need for the WSC,

including:

1. How do we represent the knowledge?

2. How do we obtain the knowledge?

3. How do we use the knowledge?

Any complete account of how to intelligently solve or explain Winograd Schemas

would have to address all of these issues. Our goal is not focused so much on devel-

oping an end-to-end system for solving the Winograd Schema Challenge. Instead,

we aim to explain a small part of the phenomena of Winograd Schemas in a prin-

cipled way. In particular, we focus on issue 3: how to use relevant commonsense

knowledge to justify solutions to Winograd Schema questions. This will also have

implications for issue 1. But our main concern in this thesis will be the interaction

of commonsense knowledge and the coherence of a discourse.

2.2 Discourse Coherence

While our intuitions indicate that world knowledge is at play in the Winograd

Schema Challenge, as Levesque [2014] aptly illustrated (see Section 2.1.1), defining

how it factors into the decision in general is not straightforward. However, research

in linguistics and AI has coalesced around discourse coherence as the critical factor.

Coherence may be defined differently by different groups, but it always corre-

sponds roughly to the discourse “making sense.” More specifically, it has to do

with how the informational content of sentences in a discourse are bound together.

Hobbs [1979] suggested that coreference resolution was a byproduct of the process of

establishing discourse coherence, in the form of “petty implicatures”—assumptions

of identity of two entities—that would be made in order to support the existence of

“coherence relations” between sentences. Asher and Lascarides [2003] use a similar

approach in Segmented Discourse Representation Theory, where these bonds are

called rhetorical relations or discourse relations (though they are truly the same

beasts, some even with the same names as Hobbs’s relations). Alternatively, in the

interpretation as abduction approach of Hobbs et al. [1993] coherence is enforced
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by the “best explanation,” which is a proof of the discourse content (from existing

knowledge) that minimizes assumptions and redundancies.

Coherence has been implicated in a wide variety of disambiguation tasks, like

lexical (i.e., word sense) disambiguation (Asher and Lascarides [1995]) and temporal

anaphora resolution (Lascarides and Asher [1993]). But most notable is its role in

coreference (and anaphora) resolution. Kehler et al. [2008] found that discourse

coherence not only is the determining factor in coreference resolution, but it also

explains syntax-based biases previously suggested in the literature having to do with

subjecthood, grammatical roles, and thematic roles.

2.2.1 Determining Coherence

We will discuss a couple of established methods of determining coherence before

moving on to the approach that inspired this work.

Interpretation as abduction First is the “interpretation as abduction” ap-

proach of Hobbs et al. [1993]. Under this approach, the entire process of discourse

interpretation (which, roughly speaking, may be thought of as general language un-

derstanding) is modeled as an abductive reasoning problem. Abductive reasoning,

or inference to the best explanation, means that the interpreter constructs a proof of

the proposed content, using existing knowledge or making assumptions where nec-

essary. The “best” explanation will generally make few assumptions and minimize

redundancies where possible.

The theory has been implemented in weighted abduction systems, where the costs

of abductive proofs are the sum of the costs of all of their assumptions. Under this

framework, Inoue et al. [2012] have cast the abductive reasoning problem as an

Integer Linear Programming problem, facilitating the use of weighted abduction—

and knowledge—for coreference resolution. They report that they can improve the

results of the Stanford resolver in certain situations. Whether their approach could

be applied successfully to the WSC is not clear, but the method does provide a way

to bring knowledge into the picture.

Segmented DRT Another approach to establishing coherence is in the framework

of Segmented Discourse Representation Theory (SDRT), outlined by Asher and

Lascarides [2003]. SDRT characterizes coherence by a set of rhetorical relations,

and disambiguation prefers the interpretation that supports the greatest quality

12



and quantity of rhetorical relations. One of the most convincing arguments for the

primacy of rhetorical relations is the presence of explicit triggers for some of these

relations: for example, SDRT characterizes the difference between and and but by

the fact that but signifies the presence of a Contrast relation. The interpretation

process can then rule out any interpretation that does not support it.

Lascarides and Asher [2007] use the following example to illustrate the impor-

tance of rhetorical relations:

(3) (a) The judge asked where the defendant was.

(b) The barrister said he was in the pub drinking.

(c) The bailiff found him slumped beneath the bar.

(c′) But the bailiff found him slumped beneath the bar.

Just the presence of the word “but” completely changes the meaning of the the last

statement—in (c), the man is at the pub, and in (c′), he is in the courtroom. This

is because, they argue, “but” signifies a contrast in the information between the

rhetorically connected clauses—(b) and (c′) in particular—and so we interpret the

discourse in a way that supports the existence of a contrast.

All things considered, the SDRT approach may seem more linguistically complete

and nuanced than the approach by Hobbs. However, it is comparatively impractical

to use when attempting to decompose a problem like the Winograd Schema Chal-

lenge in a truly principled way. While Asher and Lascarides [2003] go to lengths

to ensure that the discourse interpretation process is decidable, that does not mean

it is computationally tractable. Furthermore, their combination of nonmonotonic

reasoning with Discourse Representation Theory and discourse parsing all together

make for a system that is truly complex, and for which the knowledge representa-

tion task may prove very difficult. Finally, the criteria of quality and quantity of

discourse relations is somewhat fuzzy and can be hard to evaluate.

Coherence by Correlation In light of the strengths and weaknesses of these

techniques, Bailey et al. [2015] proposed another method. It is also based on the idea

of rhetorical relations, but the picture is drawn much more coarsely. While SDRT

has about 14 relations, Bailey et al. [2015] recognize just two: positive and negative

correlation. This can be (though by no means must it be) viewed as a simplification

of the SDRT system: Relations such as Explanation, Narration, Elaboration and
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Parallel roughly all involve their relata being positively correlated, while Contrast

and perhaps Alternation involve their relata being negatively correlated.

They apply the framework of positive and negative correlation to the Winograd

Schema Challenge, finding not only that this can help us understand the WSC, but

that the WSC provides a fertile testing ground for the involvement of correlation in

coherence.

2.3 The Correlation Calculus

The Correlation Calculus is a formal system proposed in Bailey et al. [2015] in order

to facilitate the use of commonsense knowledge in justifying the answers to some

anaphora resolution problems of the kind in the Winograd Schema Challenge. In

particular, the correlation formulas of the calculus serve on one hand as the means

of justification of coherence, and on the other hand as a new language by which to

represent commonsense knowledge about correlation. The calculus and its use act

as a small—but necessary—piece of a full story of the puzzle of discourse coherence.

This section draws heavily from Bailey et al. [2015].

2.3.1 Syntax

The Correlation Calculus is built on top of First-Order Logic (FOL). As such, it is

defined over a first-order signature, which consists of symbols for object constants,

function constants, and predicates. The language of the Correlation Calculus over

a first-order signature σ consists of

(i) first-order sentences over σ, and

(ii) correlation formulas of the form F⊕G, where F and G are first-order formulas

over σ.

Intuitively, a correlation formula F ⊕G with no free variables means that

a hearer will believe G to be more plausible upon hearing F , and vice versa

or

at least one of F , G, ¬F , ¬G is known to be true.3

3The second component of this remark clarifies our treatment of the degenerate case of complete
information, when the truth or falsity of one of the statements is known to the hearer. In the case
that, say, the hearer knows F , it seems that the first component would be false. After all, the
hearer cannot be convinced any more or less of the plausibility of F . But we instead treat this case
in the opposite way, allowing us the implication rule (see Section 2.3.2).
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A correlation formula with free variables can be thought of as shorthand for all of

its ground instances. We may read the formula: “F is positively correlated with

G.” We also introduce the abbreviation

F 	G

which is short for

F ⊕ ¬G

and may be read “F and G are negatively correlated.”

2.3.2 Inference

Table 2.1 shows the rules of the calculus: implication, replacement, symmetry, nega-

tion, and substitution.4 Each rule has a correlation formula as its conclusion and

first-order sentences or correlation formulas as premises.

The symbol ∀̃ denotes universal closure. The expression Fθ stands for the result

of applying a substitution θ of terms for variables to all free variables in F , with

bound variables renamed if necessary to avoid quantifier capture.

A derivation from a set Γ consisting of first-order sentences and correlation

formulas is a list C1, . . . , Cn such that

• if Ci is a first-order sentence then it is entailed (in the sense of First-Order

Logic) by Γ, and

• if Ci is a correlation formula then it belongs to Γ or can be derived from one

or two of the formulas that precede it in the list by one of the rules of the

correlation calculus.

A correlation formula C is derivable from Γ if there exists a derivation from Γ with

C as the last formula.

The implication rule says that if a formula F implies a formula G then F and G

are correlated. This is useful especially because it allows us to conclude correlation

from causation. For example, a commonsense axiom like

∀x(anchored(x)→ ¬move(x))

4Note that one of the replacement rules is redundant in light of the symmetry rule.
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Implication Rule
∀̃(F→G)
F⊕G

Replacement Rule (1)
∀̃(F↔G) F⊕H

G⊕H

Replacement Rule (2)
∀̃(F↔G) H⊕F

H⊕G

Symmetry Rule
F⊕G
G⊕F

Negation Rule
F⊕G
¬F⊕¬G

Substitution Rule
F⊕G
Fθ⊕Gθ

Table 2.1: Inference rules of the Correlation Calculus.
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could be used to derive

anchored(x)⊕ ¬move(x).

A derivation like this is used in the example of the sculpture and the shelf:

The sculpture rolled off the shelf because it was not [anchored/level].

(See Bailey et al. [2015] for the initial development of this example.) This also en-

codes our intuition that positive correlation can be used where Asher and Lascarides

[2003] would justify coherence with an Explanation relation, which is defined based

on causation.

However, our approach is much coarser: not only does it use a coarser rhetorical

relation, but implication in FOL is material implication which does not necessarily

encode our intuitions about causation. We see this coarseness as an advantage in

that it simplifies our reasoning and our knowledge representation language, but it

comes at a price because of the semantics of material implication. On one hand, it

means that positive correlation is reflexive (which makes sense), but on the other

hand, it slightly complicates our intuition about correlation formulas (see Foot-

note 3).

2.3.3 Examples of Derivations

These derivations should give the flavor of the Correlation Calculus. They are drawn

directly from Bailey et al. [2015].

The formula F ⊕ F is derivable from the empty set of formulas:

1. ∀̃(F → F ) logically valid

2. F ⊕ F by implication rule.

This shows that positive correlation is reflexive.

The formula P (a)⊕ ∃xP (x) is derivable from the empty set of formulas:

1. P (a)→ ∃xP (x) logically valid

2. P (a)⊕ ∃xP (x) by implication rule.
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The formula P (a)⊕ ∀xP (x) is derivable from the empty set of formulas:

1. ∀xP (x)→ P (a) logically valid

2. ∀xP (x)⊕ P (a) by implication rule

3. P (a)⊕ ∀xP (x) by symmetry rule.

The formula G	 F is derivable from F 	G:

1. F ⊕ ¬G
2. ¬G⊕ F by symmetry rule

3. ¬¬G⊕ ¬F by negation rule

4. ∀̃(¬¬G↔ G) logically valid

5. G⊕ ¬F by replacement rule.

This derivation shows that negative correlation, like positive correlation, is symmet-

ric.

For any first-order formulas F and G, the correlation formula F ⊕G is derivable

from ∀̃F :
1. ∀̃F
2. ∀̃(G→ F ) entailed by 1

3. G⊕ F by implication rule

4. F ⊕G by symmetry rule.

It is derivable from ∀̃¬F as well:

1. ∀̃¬F
2. ∀̃(F → G) entailed by 1

3. F ⊕G by implication rule.

These last two derivations bear out the second component of the intuitive under-

standing of correlation formulas given in Section 2.3.1. Because of the implication

rule, any formula known to be true or false may appear on either side of a correlation

formula.

2.3.4 Application to the WSC

Consider the sentence from Schema 2 on Davis’s list:
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The trophy doesn’t fit into the brown suitcase because it’s too small. What

is too small?

We will justify the correctness of the answer the suitcase as follows. The phrase

the trophy doesn’t fit into the brown suitcase can be represented by the sentence

¬fit into(T, S), with the presuppositions

1. trophy(T )

2. suitcase(S)

3. brown(S).

The phrase the suitcase is too small can be represented by the sentence small(S).

We will show that the correlation formula

¬fit into(T, S)⊕ small(S) (2.1)

can be derived in the Correlation Calculus from the presuppositions 1–3 in combi-

nation with the following commonsense facts, which are assumed to be known to

the hearer:

4. ∀x(suitcase(x)→ physical object(x))

5. ∀x(physical object(x)→ (small(x)↔ ¬large(x)))

6. fit into(x, y)⊕ large(y).

The derivation continues as follows:

7. ¬large(S)↔ small(S) entailed by 2, 4, and 5

8. fit into(T, S)⊕ large(S) by substitution from 6

9. ¬fit into(T, S)⊕ ¬large(S) by negation rule

10. ¬fit into(T, S)⊕ small(S) by replacement rule.

In Axiom 6 above, x and y are, intuitively, physical objects, and moreover y is

a container. Our formulation may seem too strong because it does not incorporate

these assumptions about the values of x and y. Note, however, that when x and y

are not objects of appropriate types, the corresponding instance of Axiom 6 holds

because at least one of the conditions fit into(x, y), large(y) is known to be false.
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The derivability of (2.1) shows that

¬fit into(T, S) is correlated with small(S)

or

at least one of fit into(T, S), small(S)

is known to be true or false.

Since the formulas fit into(T, S) and small(S) are not known to be true or false, we

can conclude that the sentences ¬fit into(T, S) and small(S) are indeed correlated.

Consider now the same example with the special word small replaced by the

alternate word big:

The trophy doesn’t fit into the brown suitcase because it’s too big.

What is too big? The correctness of the answer the trophy can be justified in a

similar way, with Axiom 6 replaced by the axiom

fit into(x, y)⊕ small(x).

2.3.5 Obtaining Axioms

The Correlation Calculus is not itself a solution to the Winograd Schema Challenge.

It is only a small piece of a much larger story. We see the Winograd Schema

Challenge as involving three main problems:

(i) Determining the nature of the requisite knowledge,

(ii) Creating a database of this knowledge, and

(iii) Applying this knowledge to anaphora resolution problems.

The Correlation Calculus is an approach for the third. However, it has implications

for the first, in that it gives us a new representation language for certain kinds of

knowledge.

The questions that remain are how to obtain this knowledge and what it should

look like. One criticism of the approach in Bailey et al. [2015] is that the axioms

we use in each example are tailored to the problem at hand. This is unfortunately
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necessary when demonstrating a new approach to problem (iii) independently of an

approach to (ii), as we are doing, because databases of correlation formulas don’t

exist. (Another argument is that a project to gather this kind of knowledge is only

justified once a use for it has been established.) Regardless of this issue, in a real

system that uses the Correlation Calculus to solve WSC problems, we would not

expect such tailor-made axioms to be available. Rather, what we hope is that the

approach we outline can be used with axioms that are few or general enough to

write down by hand or extract from data—i.e., the proofs from these axioms might

be longer or more involved than in the examples we present. The only way to show

this conclusively would be to do it, and that would be a project in itself.

Various groups have suggested ways to obtain from data the knowledge necessary

for the WSC; it is possible that some of these approaches may be modified and

adapted to the Correlation Calculus. See Bailey et al. [2015], Levesque [2014],

Sharma [2014], Budukh [2013], and Sharma et al. [2015] for discussions.

2.4 Discourse Representation Theory

While First-Order Logic can express a great deal of truth-conditional meaning, it

falls short as a meaning representation language when it comes to the dynamics

of discourse. Phenomena like anaphora, presupposition, and tense and aspect are

difficult to account for using FOL. Discourse Representation Theory (DRT) was de-

veloped to ameliorate these difficulties (see Kamp and Reyle [1993]). It is also seen

as a representationalist language, that is, its basic units (called Discourse Represen-

tation Structures, or DRSs) in some sense represent the mental state of a participant

of the discourse.

Since DRT was originally developed as a treatment of anaphora, it is particularly

suited to our purposes in the Winograd Schema Challenge. Furthermore, if we wish

to approach the problem of anaphora resolution in the Winograd Schema Challenge

in a linguistically credible way—as the “explanation of a phenomenon” desired by

Levesque [2014]—we must develop our use of correlation in a framework that to the

best of our knowledge represents the phenomenon faithfully. This is the capacity in

which DRT will prove useful for our approach to the WSC.

DRT is an extensive system and a complete treatment is not possible even in a

large volume, let alone this document. For this reason we will gloss over most of

the details irrelevant to our use of the system. Furthermore, while we will be able
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to provide examples to illustrate some of the motivations behind the structure of

DRT, fully justifying the system is something we leave to the extensive literature on

the topic. On the whole, this section will follow the development of DRT in Kamp

and Reyle [1993].

2.4.1 Motivation for DRT

Discourse Representation Theory was originally motivated by two main problems

that remained difficult under traditional FOL-based models of linguistic meaning.

One is what is often called donkey anaphora, which is a phenomenon involving

anaphoric reference that seems to violate the scoping restrictions of First-Order

Logic. The other is a proper treatment of tense and aspect, particularly in light of

the French Passé Simple and Imparfait, two distinct past tenses. The first is easier

to explain, and we will illustrate it briefly here.

Donkey anaphora is the kind of reference that the word it makes in the following

sentence:

(4) If Pedro owns a donkey, then he beats it.

The problem is this: consider the following FOL representation of “Pedro owns a

donkey.”

∃a∃b(Pedro(a) ∧ donkey(b) ∧ own(a, b)).

By the “if–then” structure of 4, we would like this to be the antecedent of the

conditional being expressed. But there we run into a problem:

(5) ∃a∃b(Pedro(a) ∧ donkey(b) ∧ own(a, b))→ beat(a, b)

The result is not what we want: a and b are free in the consequent of (5), so they

don’t refer to Pedro or the donkey he owns in any meaningful way. A first-order

formula that better approximates the apparent truth conditions of this sentence

might look like:

(6) ∃a(Pedro(a) ∧ (∀b(donkey(b) ∧ own(a, b))→ beat(a, b))).5

5Under this interpretation, sentence (4) has the same truth conditions as Pedro beats every
donkey he owns. This interpretation is accepted in the literature, but in general a weaker reading
of every is possible, where for example

Every man who has a nice suit will wear it to church tomorrow.

means that every such man will wear some such suit. The felicity of examples like this is debatable,
but other examples involving generalized quantifiers like most seem to indicate that both the weak
and strong readings are possible (Kanazawa [1994]).
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But it’s not straightforward how we would derive such a formula from the syntactic

structure of (4). The takeaway from this example is that variable scoping in natural

language operates very differently from variable scoping in FOL, and that makes

it difficult to see how the meanings of natural language sentences would compose

together into a discourse. That’s also not to mention other subtleties about this

example: Why does Pedro appear under an existential but the donkey a universal?

In what range of time is Pedro supposed to own the donkeys, and at what points

of time is he supposed to be beating them? Discourse Representation Theory was

developed to answer these kinds of questions.

The core departure DRT makes from a FOL-based approach is that it recognizes

discourse as dynamic. As a discourse progresses, new entities and ideas are intro-

duced, and these may serve as anchors for anaphoric reference, whether it means

providing antecedents for pronouns or establishing the progression of time through

a narrative. How exactly it does this will be made clear in the following sections.

2.4.2 Formal Development

The language of DRT is the language of Discourse Representation Structures (DRSs)

and DRS-Conditions. It has a model-theoretic semantics and a sound and complete

calculus for its first-order fragment (see Kamp and Reyle [1996]). In this section

we will begin with overview of the basic syntax and semantics of DRT, as well as a

brief discussion of event semantics, each to the extent to which it will be important

in our application to establishing discourse coherence.

Syntax We begin with a vocabulary, which consists of:

• A set of names for individuals: John,Obama, . . . 6

• A set of predicate constants of various arities: donkey1, own2, beat2, . . . etc.

The syntax of DRSs is defined with respect to a vocabulary V and a set R of dis-

course referents, which form a second alphabet disjoint from V . The DRS language

is defined with respect to V and R, and its definition is co-recursive between DRSs

and DRS-conditions. A DRS K confined to V and R contains:

6Depending on the particular way proper names are formalized, these are used differently. In
our approach, they will appear in the same position as predicates—e.g., Obama(x)—whereas for
example, the Boxer system (Bos [2008]) will use them in DRS-conditions like named(x, obama). In
either case, the meaning is the same.
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• a subset of R, called the universe of the DRS, and

• a set of DRS-conditions confined to V and R.

DRS-conditions are of two types: simple and complex. A simple DRS-condition

confined to V and R is one of the following:

• x = y, where x, y ∈ R,

• π(x), where x ∈ R and π is a name from V ,

• P (x), where P is an n-ary predicate from V and x is an n-tuple of elements

of R.

Proper names are interpreted differently from predicates, in that they correspond to

exactly one individual. A complex DRS-condition is one of several constructions on

DRSs. Given two DRSs K1 and K2 confined to V and R, a complex DRS-condition

confined to V and R is

• ¬K1, the negation of K1,

• K1 ⇒ K2, the conditional construction, and

• Qx(K1,K2), where Q is some quantifier and x is in the universe of K1—called

a duplex condition.

In a duplex condition as above, K1 is called the restrictor and K2 is called the

nuclear scope. The first-order fragment of DRT can be fully expressed without the

use of this kind of condition. More generally, DRT often includes treatments of

generalized quantifiers like most, but that is not relevant to our current analysis.

For readability, DRSs are usually written in a “box notation.” For example, the

DRS with the right truth conditions for sentence (4) would look something like

a

Pedro(a)

b

donkey(b)

owns(a, b)

⇒
beats(a, b)
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Each box is a DRS. The section at the top of each box is its universe, and its

DRS-conditions are listed in its body.

The list of DRS-conditions is to be understood conjunctively, i.e., a DRS asserts

that all of its DRS-conditions hold. Intuitively, we may think of a discourse referent

as a bound variable, bound where it appears in the universe of its DRS. It further-

more is understood to be existentially quantified. But then it might seem strange

that a and b both appear in the consequent sub-DRS above, though they are not in

its universe. This is where the difference between DRT and FOL begins to show.

The scope of discourse referents is determined by the accessibility relation between

DRSs.

Accessibility is the smallest relation satisfying the following conditions:

• Accesibility is reflexive and transitive.

• If K2 is part of a DRS-condition of K1, K1 is accessible to K2.

• In K1 ⇒ K2, K1 is accessible to K2.

• In Qx(K1,K2), K1 is accessible to K2.

The use of a discourse referent in a simple DRS-condition of K is bound if it

appears in the universe of a DRS that is accessible to K. Otherwise, it is free. We

call K a proper DRS if no discourse referents are free in K. This is analogous to

being a closed formula, in that only a proper DRS has a semantics that assigns it a

truth value.

There are a few other nuances of accessibility, but this is the major picture.

Conditionals tell the main point of the story: if the antecedent of a conditional

supposes the existence of some individual, the consequent has license to assume the

existence of that individual and refer back to it.7 The accessibility relation provides

a way to explicitly discuss the scoping and binding of discourse referents in DRT,

and compare them to the constraints on anaphora and binding in natural language.

Take, for example, the discourse

(7) Pedro does not have a donkey. #He beats it.8

7This point may make it seem that in DRT, the conditional and universal quantifier may coincide.
By some analyses, including the semantics we will give, this is true. This fact and the reasoning
supporting it exhibit a parallel with the dependent product type (or Π-type) from dependent type
theory, indicating a connection to the seemingly very different approach of type-theoretic semantics
taken by Ranta [1995] and Cooper [2005].

8Here the # mark is used to mark the sentence as semantically infelicitous.
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We may try to translate it to the DRS

a

Pedro(a)

¬

b

donkey(b)

owns(a, b)

beats(a, b)

.

But here, b in beats(a, b) is free, in very much the same sense that it in he beats

it is meaningless. The accessibility relation, in some sense, is meant to model the

natural, logical constraints faced by binding and anaphoric reference in discourse.

The accessibility relation is not just a matter of syntax: discourse referents

appearing outside of the DRS in whose universe they appear also need a well-defined

semantics. In fact, this issue is where the formal model-theoretic semantics of DRT

differs most from that of FOL. It uses embedding functions, which assign discourse

referents to elements in the universe of the model, and pass them between DRSs

in a way that corresponds exactly to the accessibility relation to ensure that every

bound discourse referent will take a value when it is interpreted.

However, for a proper, finite DRS, there is another way to view their seman-

tics.9 It turns out that the finite first-order fragment of DRT is in a certain sense

isomorphic to FOL: There is a translation between proper DRSs and FOL sentences

that preserves validity and entailment both ways. The exact semantics of DRT is

not important in this work, but this translation is, and it also provides us an un-

derstanding of the semantics. So instead of fully developing the semantics of DRT,

we will continue here with the translation to FOL.

9A DRS is finite if its universe is finite, it has finitely many DRS-conditions, and all of its
subordinate DRSs are finite. This is not part of the standard definition of DRSs, but this is the
condition under which the correspondence to (finitary) FOL holds. For natural language discourse
there is little reason to think we would need infinite DRSs.
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2.4.3 Translating from DRT to FOL

Let K be a proper finite DRS over V and R, with universe {x1, . . . , xn} ⊆ R and

DRS-conditions {γ1, . . . , γm}. Then the translation [[K]] of K is a first-order formula

over a signature with the predicate constants from V , the names from V as object

constants, and no function constants. It reads

∃x1 . . . ∃xn
m∧
i=1

[[γi]].

For a DRS-condition γ, its translation [[γ]] is defined as follows.

• If γ is an instance of a linguistic predicate-argument structure, such as a hit

b, then [[γ]] will be its corresponding first-order formula under the assumed

correspondence between predicate-argument structures and predicates in the

signature, e.g., hit(a, b).

• If γ is π(a), where π is a name in V and a ∈ R, then [[γ]] will be the formula

a = π.10

• If γ is some other simple DRS-condition, then [[γ]] is simply the string γ,

which is a valid first-order formula.

• If γ is of the form ¬K ′, [[γ]] is the formula ¬[[K ′]].

• If γ is of the form K1 ⇒ K2, let {y1, . . . , yj} be the universe of K1 and

{δ1, . . . , δk} be its DRS-conditions. Then [[γ]] is

∀y1 . . . ∀yj((
k∧
i=1

[[δi]])→ [[K2]]).

2.4.4 The Syntax-Semantics Interface

An theory of the semantics of natural language would not be very useful without an

account of how logical forms may be derived from an utterance. There are multiple

ways to construct DRSs from discourse (Blackburn and Bos [1999]), but we will focus

on the top-down method outlined by Kamp and Reyle [1993], which constructs a

DRS from one or more syntax trees by the application of construction rules on

10In this formula, a will be a bound variable. It will have been bound by an existential quantifier
introduced in the translation of the DRS in whose universe a appeared.
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instances of triggering configurations in the trees. Their approach also makes use

of a certain form of Generalized Phrase Structure Grammar (Gazdar et al. [1985]),

and we will use parse trees from this grammar, but the particular choice of syntactic

formalism is immaterial. Kamp and Reyle [1993] said it best:

[W]e have stayed aloof from the question whether our rules capture the

deeper syntactic regularities which a self-respecting syntactician would

see it as his primary duty to discover. We believe, however, that such

expedience is fairly harmless. For all existing experience with the se-

mantic theory we present here suggests that it can be easily adapted to

fit a theory of syntactic form which does justice to the issues that make

syntax an important and fascinating subject in its own right.

To illustrate the process, we will use the discourse

(8) If Pedro owns a donkey, then he beats it.

The (greatly simplified) syntactic analysis we will use is as follows:

S

S

VP’

VP

NP

PRO

it

V

beats

NP

PRO

he

thenS

VP’

VP

NP

N

donkey

Det

a

V

owns

NP

PN

Pedro

if

The DRS Construction Algorithm incrementally converts a discourse like the above

into its DRS representation by the repeated application of construction rules to the

sentences in sequence.

Each construction rule consists of a set of triggering configurations and a pro-

cedure. The triggering configurations are schemas of parse tree fragments, and the

procedure is a series of operations that change the DRS and the tree, using infor-

mation from an instance of one of the triggering configurations.
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To analyze item 8, we will need several construction rules.

(9) Construction Rule CR.PN (Proper Names).

Triggering Configurations.

(i) (ii)

S

VP’NP

PN

VP

NP

PN

V

Procedure.

(i) Introduce a new discourse referent into the universe of the outermost

DRS. Call it u.

(ii) Let Name be the proper name referenced in the triggering configuration.

Add the condition Name(u) to the condition set of the outermost DRS.

(iii) In the tree with the triggering configuration, replace the subtree rooted

at the NP node in the triggering configuration with u.

(10) Construction Rule CR.PRO (Pronouns).

Triggering Configurations.

(i) (ii)

S

VP’NP

PRO

VP

NP

PRO

V

Procedure (non-deterministic).

(i) Introduce a new discourse referent into the universe. Call it u.

(ii) In the tree with the triggering configuration, replace the subtree rooted

at the NP node in the triggering configuration with u.

(iii) Add a new condition of the form u = α where α is some non-deterministically

chosen accessible discourse referent.

(11) Construction Rule CR.ID (Indefinites).

Triggering Configurations.
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(i) (ii)

S

VP’NP

NDET

a(n)

VP

NP

NDET

a(n)

V

Procedure.

(i) Introduce a new discourse referent into the universe. Call it u.

(ii) In the tree with the triggering configuration, substitute u for

NP

NDET

a(n)

(iii) Add a new condition of the form [N ](u),11 where [N ] is the noun ap-

pearing under the N node.

(12) Construction Rule CR.COND (Conditionals).

Triggering Configurations.

S

S2thenS1if

Procedure. Replace the condition containing the triggering configuration

by

S1

⇒
S2

.

In the intermediate stages of DRS construction, the object we are working with

may not strictly be a DRS, in the sense that it contains some reducible conditions

11This is slightly different from the rule in Kamp and Reyle [1993], which sets up a new condition
to be picked up later by the lexical insertion rule. This complication is used to deal with relative
clauses, which are not relevant to our analysis, so we will slightly simplify it.
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that do not have an exact semantics. We will gloss over this fact and call it a DRS

anyway.

Using these rules, we process the discourse (8) as follows. We begin by adding

the syntactic analysis to the DRS:

S

S

VP’

VP

NP

PRO

it

V

beats

NP

PRO

he

thenS

VP’

VP

NP

N

donkey

Det

a

V

owns

NP

PN

Pedro

if

.

First we apply CR.COND to get
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S

VP’

VP

NP

N

donkey

Det

a

V

owns

NP

PN

Pedro

⇒

S

VP’

VP

NP

PRO

it

V

beats

NP

PRO

he

which establishes the conditional structure of the proposition. Next, CR.PN gives

us
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a

Pedro(a)

S

VP’

VP

NP

N

donkey

Det

a

V

owns

NP

a ⇒

S

VP’

VP

NP

PRO

it

V

beats

NP

PRO

he

where the discourse referent for Pedro was put in the outer DRS because it is a

proper name. Next, an application of CR.ID yields
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a

Pedro(a)

b

donkey(b)

S

VP’

VP

NP

b

V

owns

NP

a

⇒

S

VP’

VP

NP

PRO

it

V

beats

NP

PRO

he

so the phrase a donkey is interpreted as introducing the existence of a donkey under

the scope of the original if.12

The last condition in the antecedent DRS—in the form of a syntactic tree—

is irreducible, and must be interpretable as something like an atomic formula in

the vocabulary underlying our DRS language. To facilitate this, in DRT, we as-

sume a faithful embedding from predicate-argument structures of verbs into the set

of predicates in the vocabulary. We then identify the irreducible syntactic trees

corresponding to instances of these predicate-argument structures with atomic for-

mulas according to that embedding. So it would be equivalent—and perhaps more

transparent—to write the condition as

own(a, b).

12DRT acknowledges that there may also be scope ambiguities with indefinites, i.e., in general,
an indefinite may be able to scope out of a negation or conditional. This may be modeled in the
syntactic analysis, as in the quantifier raising approach of Heim and Kratzer [1998]. Another way
this is modeled is in the singular interpretation of indefinites, where the indefinite is made to scope
to the outermost DRS (Kamp and Reyle [1993]).
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But for brevity (and clarity when we introduce event semantics in Section 2.4.5) we

will follow Kamp and Reyle [1993] and abbreviate the condition simply as a own b.

Finally, two applications of CR.PRO yield the final result (using the new short-

hand):

(13)

a

Pedro(a)

b

donkey(b)

a own b

⇒

c d

c = a

d = b

c beat d

.

In principle these steps are nondeterministic and the new referents c and d could

have been chosen to equate with different antecedents. It happens that, due to

binding and agreement constraints in English, this particular discourse is completely

unambigious—the antecedents can be decided on those grounds alone. But in gen-

eral, and particularly in the Winograd Schema Challenge, this information will not

be enough. The question of how to make this choice is left unanswered in the con-

struction algorithm. Indeed, the question of how to choose the antecedent is the

primary one of this work, and of the Winograd Schema Challenge. But since we are

just presenting the construction algorithm in this section, we’ve gone the route of

angelic nondeterminism.

There are many more construction rules, dealing with more complicated phe-

nomena like quantification, plurals, tense and aspect. More yet would be necessary

for a broad-coverage system. The system Boxer uses a different DRS construction

method (Bos [2008]). But the top-down system we present, which is used in Kamp

and Reyle [1993], is sufficient for our purposes with the Correlation Calculus and

the Winograd Schema Challenge.

To understand our results a little better: it’s easy to see from the translation to

FOL that the DRS (13) is equivalent to
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a

Pedro(a)

b

donkey(b)

a own b

⇒
a beat b

which translates to FOL as

∃a(Pedro(a) ∧ ∀b((donkey(b) ∧ own(a, b))→ beat(a, b))).

This is exactly the formula (6) given in the motivation for DRT.

We now present the construction algorithm in full.

(14) Algorithm (DRS Construction).

Input. Syntactic analyses for one or more sentences that, in sequence,

comprise a discourse.

Output. A proper Discourse Representation Structure serving as a logical

form of the input discourse’s syntactic analysis.

Procedure (nondeterministic).

(i) Begin with an empty DRS.

(ii) Place the syntactic analysis of the first unprocessed sentence into the

DRS.

(iii) Apply construction rules to reducible conditions in the DRS until all of

the conditions are irreducible.

– If there are multiple triggering configurations in a reducible con-

dition, apply the rule to the highest one first. If there is a tie,

nondeterministically break it.

– If there are multiple reducible conditions, nondeterministically choose

one to reduce.

Note that the application of construction rules also may have nondeter-

ministic results.
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(iv) Repeat from (ii) until there are no more sentences to be processed.

Note that the result of step (iii) will always strictly be a DRS in the sense that

all of its conditions are irreducible. So when this algorithm terminates, the result

will be a DRS, under the assumption that the set of construction rules can always

reduce the syntactic analyses of the discourse to DRS-conditions and (linguistic)

predicate-argument structures.

2.4.5 Event Semantics

The account above could answer the question of donkey anaphora, but it left tense

and aspect, and temporal reference generally, untouched. This side of DRT draws

on the notion of event semantics, which will play a role in relating the Correlation

Calculus to DRT.

At the core of our approach is acknowledging that positive and negative corre-

lation, as rhetorical relations, may be expected to hold between certain statements

in a coherent discourse. In order to extract correlation formulas from DRS repre-

sentations, we need some way of representing, on a very basic level, the rhetorical

structure of the discourse in question. The way we will manage to do that is by

acknowledging that clauses fundamentally refer to events and states. This will fa-

cilitate the use of correlation within DRT, but it may have beneficial side-effects in

resolving temporal reference as well (see Chapter 5).

Event semantics begins with Davidson [1967], who suggested that events should

be reified in FOL descriptions of natural language meaning. Instead of representing

a hit b as the proposition

hit(a, b),

it might be

∃e(hit(e, a, b)).

This has the advantage that other aspects of the event—such as the time at which

it occurred—may be included in the formula or not:

∃t∃e(hit(e, a, b) ∧ time(e, t) ∧midnight(t))

is a simple example of how temporal information may be added to the above formula.

In this case, Davidson argued, the deduction that a hit b from a hit b at midnight

can be done by the inference rules of predicate logic. How exactly one proceeds
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once this reification is done is a matter that different groups have taken in different

directions. The “ontological promiscuity” approach of Hobbs [1985] follows closely

along these lines, while the “neo-Davidsonian” approach uses semantic roles, as in:

∃e(hit(e) ∧ agent(e, a) ∧ patient(e, b)).

Of these options, we will adopt the simplest version, which is the approach taken

in Kamp and Reyle [1993], where a predication like a hit b will be represented by

hit(e, a, b),

where e, a, and b will be discourse referents in some accessible universe (determined

during the construction of the DRS). However, this (the 3-place hit predicate) will

only be its representation on the level of the model, i.e., the semantic interpretation.

The irreducible condition will actually look like

S(e)

VP’

VP

NP

b

V

hit

NP

a

which will be abbreviated as

e: a hit b

retaining (on a syntactic, though perhaps not semantic level) the special status of

the event-denoting discourse referent. Note also that in the irreducible condition

we have the annotation of e on the S-node. This is a result of changes made to

the construction algorithm upon the introduction of event semantics (which do not

affect our analysis). We refer the reader to Kamp and Reyle [1993] for details.
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Chapter 3

Semantics of the Correlation

Calculus

We can make our intuitions about correlation precise with a probabilistic semantics

of the Correlation Calculus. With it, we have a soundness result for the calculus as

well as a way to understand correlation formulas in terms of probabilistic correlation.

Recall that a correlation formula F ⊕ G is understood to mean that a hearer

will judge F more plausible upon hearing G, and vice versa—or the hearer already

knows that F or G is true or false. We make this notion precise by understanding

plausibility and knowledge in terms of probability, and the “upon hearing” stipu-

lation as conditionalizing. In this way, correlation formulas can be thought of as

something like statements about a probabilistic belief state over worlds, where the

analogy for first-order formulas would be statements about a world.

In this section, we assume that the underlying signature is finite and contains at

least one object constant but no function symbols of arity greater than zero. Under

these assumptions, the set I of Herbrand interpretations of the signature is finite.

3.1 Worldviews and Satisfaction

A worldview is a discrete probability distribution over I (a function assigning a value

in [0, 1] to each interpretation, so that the sum over I is 1). Every first-order sentence

defines an event—the set of its models—so we may talk about its probability with
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respect to a worldview D:

P (F ) =
∑

I∈I : I|=F

D(I).

Similarly, we can talk about the probability of a set Γ of first-order sentences with

respect to D:

P (Γ) =
∑

I∈I : I|=Γ

D(I).

A variable is free in F ⊕G if it is free in F or in G. A correlation sentence is a

correlation formula with no free variables. Satisfaction is defined as follows: for any

worldview D,

(i) D satisfies a first-order sentence F if

P (F ) = 1,

(ii) D satisfies a correlation sentence F ⊕G if the inequality

P (F ∧G) > P (F )P (G)

holds, or D satisfies at least one of the sentences

F,¬F,G,¬G,

(iii) D satisfies a correlation formula F⊕G with free variables if D satisfies Fθ⊕Gθ
for every substitution θ that maps the free variables to object constants,

(iv) D satisfies a set consisting of correlation formulas and first-order sentences if

it satisfies all elements of the set.

Case (i) of the definition above is a generalization of the usual definition of

satisfaction for first-order sentences: for any worldview D that assigns probability 1

to an interpretation I, D satisfies a formula F if and only if I satisfies F .

Furthermore, if a worldview satisfies a set Γ of first-order sentences then P (Γ) =

1. Indeed, the set of interpretations satisfying Γ is the intersection of the events

{I ∈ I : I |= F} for all F in Γ. The probability of each of these events is 1, and

there are finitely many of them.
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In the case when P (G) > 0, the inequality in clause (ii) of the definition of

satisfaction can be rewritten in terms of conditional probabilities; D satisfies F⊕G if

P (F |G) > P (F ).

Let C be a correlation formula or first-order sentence. A set Γ of first-order sen-

tences and correlation formulas entails C if every worldview that satisfies Γ satisfies

C. In the special case when C and all elements of Γ are first-order sentences, this

definition is equivalent to the usual definition in first-order logic. Indeed, it is clear

that if every worldview satisfying Γ satisfies C then every interpretation satisfying

Γ satisfies C. In the other direction, assume that every interpretation satisfying Γ

satisfies C. Then P (C) ≥ P (Γ). If a worldview D satisfies Γ then P (Γ) = 1, so that

P (C) = 1. Thus Γ entails C in the sense of the definition above.

3.2 Soundness

Consider an inference rule such that in its instances

C1 · · · Cn
Cn+1

(3.1)

C1, . . . , Cn+1 are either correlation formulas or first-order sentences. Such a rule is

sound if for each of its instances (3.1) Cn+1 is entailed by C1, . . . , Cn.

Soundness Theorem. All rules of the correlation calculus are sound.

Corollary. If C is derivable from Γ in the correlation calculus then Γ entails C.

Proof (Soundness).

The implication rule. Consider first the special case when F and G are sentences:

F → G

F ⊕G
.

If either P (F ) = 0 or P (G) = 1 then the fact that D satisfies the conclusion is

immediate. Otherwise, let D be a worldview that satisfies the premise. Then for

any interpretation I to which D assigns nonzero probability, I |= F → G. So for

any such interpretation, if I |= F then I |= G. Consequently

P (F ∧G) = P (F ).
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On the other hand, since P (F ) > 0 and P (G) < 1,

P (F ) > P (F )P (G).

Consequently P (F ∧G) > P (F )P (G), so D satisfies the conclusion.

Consider now an instance of the implication rule in which F and G may contain

free variables:
∀̃(F → G)

F ⊕G
. (3.2)

Let D be a worldview that satisfies the premise. We need to show that for any

substitution θ that maps the free variables to object constants, D satisfies Fθ⊕Gθ.
Given any such θ, consider the following instance of the implication rule:

Fθ → Gθ

Fθ ⊕Gθ
. (3.3)

Since D satisfies the premise of (3.2), it satisfies the premise of (3.3). Since (3.3) is

covered by the special case discussed earlier, it follows that D satisfies Fθ ⊕Gθ.

The replacement rule. Consider first an instance of the replacement rule where

F,G,H are sentences:
F ↔ G F ⊕H

G⊕H
.

Let D be a worldview that satisfies both premises. Since D satisfies the first premise,

it assigns probability 0 to interpretations satisfying F ∧ ¬G and to interpretations

satisfying ¬F ∧G. Consequently,

P (F ) = P (F ∧G) + P (F ∧ ¬G)

= P (F ∧G)

= P (F ∧G) + P (¬F ∧G)

= P (G),

so that

P (F ) = P (G). (3.4)

Similarly,

P (F ∧H) = P (G ∧H). (3.5)
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Since D satisfies the second premise, two cases are possible:

P (F ∧H) > P (F )P (H)

or one of the probabilities P (F ), P (H) is 0 or 1. In the first case, by (3.4) and (3.5),

P (G ∧H) = P (F ∧H) > P (F )P (H) = P (G)P (H).

In the second case, in view of (3.4), one of the probabilities P (G), P (H) is 0 or 1.

In either case, D satisfies the conclusion.

The general case follows as in the proof for the implication rule. The proof for

the other replacement rule is analogous.

The symmetry rule. Obvious.

The negation rule. Consider first an instance of the negation rule where F,G are

sentences:
F ⊕G
¬F ⊕ ¬G

.

Let D be a worldview satisfying the premise, so that either

P (F ∧G) > P (F )P (G)

or one of the probabilities P (F ), P (G) is 0 or 1. In the first case,

P (¬F ∧ ¬G) = P (¬(F ∨G))

= 1− P (F ∨G)

= 1− P (F )− P (G) + P (F ∧G)

> 1− P (F )− P (G) + P (F )P (G)

= (1− P (F ))(1− P (G))

= P (¬F )P (¬G),

so D satisfies the conclusion. In the second case, one of the probabilities P (¬F ),

P (¬G) is 0 or 1, and consequently D satisfies the conclusion.

The general case follows as above.
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The substitution rule. Consider an instance of the substitution rule

F ⊕G
Fθ ⊕Gθ

,

and let D be a worldview satisfying the premise. For any substitution θ′ that maps

the free variables of Fθ, Gθ to object constants, D satisfies

(Fθ)θ′ ⊕ (Gθ)θ′

because (Fθ)θ′ = F (θθ′), (Gθ)θ′ = G(θθ′). �

3.3 Uses of the Semantics

As an example of the use of the probabilistic semantics, consider a first-order signa-

ture allowing only two distinct ground atoms p, q. We will show that the correlation

formula p⊕ q is not derivable from the empty set. Consider the worldview that as-

signs the same value 1
4 to each of the 4 interpretations of this signature. This

worldview does not satisfy p⊕ q, because

P (p ∧ q) = P (p) · P (q).

Indeed, P (p ∧ q) = 1
4 and P (p) = P (q) = 1

2 .

Here is another use of the semantics: an inference rule that may look plausible

is the transitivity rule
F ⊕G G⊕H

F ⊕H
.

However, it is unsound. Indeed, consider a signature with two distinct ground atoms

p, q, and the following instance of the transitivity rule:

p⊕ p ∨ q p ∨ q ⊕ q
p⊕ q

.

The two premises are both entailed by the empty set, as they are derivable by

applying the implication rule and symmetry rule to the tautologies

p→ (p ∨ q),

q → (p ∨ q).
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However, we have already shown that p⊕ q is not entailed by the empty set, so the

premises do not entail the conclusion.
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Chapter 4

Establishing Coherence in DRT

The second contribution that we will outline is in bringing the Correlation Calculus

closer to our current understanding of language. The translations of the sentences

used for the examples in Bailey et al. [2015] were somewhat ad-hoc; instead we would

like to extract first-order and correlation formulas from Winograd Schema sentences

in a principled way. For that, we will make use of Discourse Representation Theory,

which is a well-established theory of meaning representation for discourses—i.e.,

bodies of text with more than one clause.

So far we have discussed principled ways of

(i) constructing logical forms from discourses (Section 2.4), and

(ii) using correlation formulas to answer WSC questions (Section 2.3).

What remains is to fill the gap between the DRS for a Winograd Schema sentence

and the correlation formula we use to find the answer. We will discuss a method

to do this for certain kinds of sentences: in particular, those where two affirmative

clauses are connected by “because.” Then in Chapter 5 we will discuss how the

approach may (or may not) generalize to other kinds of sentences.

4.1 DRSs for “Because” Sentences

The development of DRT in Kamp and Reyle [1993] has very little to say on words

like “because,” which connect clauses together. Part of this is because while “be-

cause” may have an interpretable truth-conditional meaning relating to causation,
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it is a member of a class of words—but, although, however, so, et cetera—whose

meanings aren’t so clear-cut.

These words, seen as indicating higher level rhetorical or discourse relations

(rather than the predicative relations denoted by verbs), are treated more fully by

the extension of DRT called Segmented Discourse Representation Theory (Asher

and Lascarides [2003]). This system is much more complex, and involves a gram-

mar of the whole discourse that connects clauses by rhetorical relations such as

Explanation, Elaboration, and Contrast, among others. In SDRT, “because” indi-

cates Explanation, which is then related semantically to a causes predicate. We

will instead translate directly to a because predicate, and show how to extract a

correlation formula from the resulting DRS. This approach is better suited to the

Winograd Schema Challenge because it does not introduce unnecessary complexity1

for the simple discourses in Winograd Schema sentences. But in light of the fol-

lowing analysis, it may turn out that the system could generalize to more complex

discourses (see Chapter 5).

We will first illustrate how to handle “because” sentences by an example:

(15) Jim yelled at Kevin because he was so upset.

Whatever the details of the syntactic analysis, any reasonable constituency parse

would label Jim yelled at Kevin and he was so upset as constituents. So we will

assume a simplified analysis with the understanding that it could be easily extended

to a more comprehensive account:

S

S

he was so upset

becauseS

Jim yelled at Kevin

In constructing a DRS from this sentence, we may first ask what the original con-

struction algorithm would give us. Since there is currently no rule for the word

because, we would simply apply all of the possible rules to the clauses in the subor-

dinate S nodes. The result looks as follows:

1While the SDRT system, in particular the problem of discourse parsing, is decidable, it may
not be tractable to compute in practice.

47



a b c e1 e2

Jim(a)

Kevin(b)

c = a

S

e2: c is upsetbecausee1: a yell at b

(in which we have already resolved the anaphoric c, and ignored adverbs and tense).

The last condition is irreducible—it represents an (annotated) tree structure to which

no more rules can be applied.

Recall that DRT assumes a direct correspondence between the argument struc-

ture of a verb and the predicate invoked in its meaning representation (see Sec-

tion 2.4.4). This is how irreducible conditions are normally handled, semantically

speaking. There isn’t such an obvious correspondence for these more complex con-

ditions, but a translation is nonetheless apparent. To show it by example, the

translation would result in the following:

(16)

a b c e1 e2

Jim(a)

Kevin(b)

c = a

e1: a yell at b

e2: c is upset

because(e1, e2)

This can be readily abstracted into a general rule.

(17) Construction Rule CR.Because.

Triggering Configuration.

S

S(e2)becauseS(e1)
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Procedure.

(i) Add the three following DRS-conditions to the DRS:

– the S(e1) subtree,

– the S(e2) subtree, and

– the condition because(e1, e2).

(ii) Delete the original tree containing the triggering configuration.

This rule works generally when “because” connects affirmative clauses. We will

delay a discussion of the problems of this approach to Chapter 5, and for now move

to how to extract the information we will use in the process of establishing discourse

coherence from a DRS constructed by such a rule.

4.2 Extracting Correlation Formulas from DRSs

From a formula with a because condition, we will extract a correlation formula, and

another formula we will call the background information. The process of extracting

a correlation formula is fairly straightforward. Consider for example the DRS (16).

We first locate the because condition: because(e1, e2). We take this to indicate

that the positive correlation relation should hold between the events denoted by its

arguments e1 and e2. We then find these events in the DRS, e1 : a yell at b and

e2 : c is upset. We have no need for the event-denoting discourse referents in the

resulting correlation formula, since we are trying to express a correlation between

the events denoted by these referents, rather than between statements about the

particular referents. So for a condition e : γ, we use the translation [[γ]] given in

Section 2.4.3. Thus the correlation derived from this DRS will be

yell-at(a, b)⊕ upset(c). (4.1)

The “dropping” (in some sense) of the event-denoting discourse referent facilitates

the use of commonsense knowledge about general relationships instead of knowledge

about particular events. The result looks very similar to the ad-hoc formulation

in Bailey et al. [2015]. However, the origins of the predicates in use have become

clear: they are event-denoting predicates with the event referent dropped. So they

are either:

(i) full predicate-argument structures of verbs (e.g., yell at), or
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(ii) full predicate-argument structures of adjectival descriptions that appear as the

complement in a copular statement (e.g., upset, proud of).

However, this does leave modal operators unexplained: should they be represented

explicitly in the FOL formulas, or should a modal logic be used underlying correla-

tion formulas? There are formulations of DRT acounting for modality (see Geurts

[1999]), but it changes the semantics and it is not clear what this would mean for

the correlation calculus. We leave the issue unresolved in this work.

One other nuance needs to be clarified at this point: in formula (4.1), a, b, and

c should not be free variables. If they are syntactically treated as variables, they

will be free in the correlation formula, and background information from the DRS

would either not apply to them or be incorrectly universally quantified. So in our

translation to FOL, we will need to treat a, b, c, and all other discourse referents

as object constants. This will be done explicitly by deleting the discourse referents

in the universe of the main DRS in the procedure for the extraction of correlation

formulas and background information. However, only the discourse referents from

the main (i.e., outermost) DRS should be treated as object constants. To retain

the proper meanings of all of the DRS-conditions, discourse referents introduced in

subordinate DRSs will be treated as bound variables as is normal in the translation

to FOL.

Finally, we will outline the procedure explicitly.

1. Let K be a proper DRS confined to the vocabulary V and the set R of discourse

referents, such that K contains the following three DRS-conditions:

because(e1, e2) e1 : γ1 e2 : γ2,

where e1 and e2 do not appear in γ1, in γ2, or anywhere else in the DRS, and

γ1 and γ2 are instances of predicate-argument structures.

2. Let δ1, . . . , δn be the DRS-conditions of K other than the because condition

and the two event descriptions.

3. Then the correlation formula extracted from K will be

[[γ1]]⊕ [[γ2]]
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and the background information will be

n∧
i=1

[[δi]].

The two formulas will be understood as being over a signature containing the predi-

cate symbols of V and object constants including the names in V and the discourse

referents in the universe of K. Thus neither formula will have free variables.

So the DRS (16) yields the correlation formula (4.1):

yell-at(a, b)⊕ upset(c)

and background information

a = Jim ∧ b = Kevin ∧ c = a.

Establishing coherence One last unanswered question is how we will use DRSs

and their correlation formulas to establish coherence and ultimately resolve anaphora.

Here is the crucial point: An interpretation of a because-sentence is coherent if its

corresponding correlation formula can be proven from its background information

and commonsense knowledge.

The background information in the DRS corresponds to what Bailey et al. [2015]

called presuppositions. In that case, the term was appropriate since the only in-

formation with that role in the derivations was originally the content of definite

descriptions (which, in DRT, are considered presuppositional). But in the DRSs we

constructed, we don’t define an a priori way to distinguish between accommodated

presuppositional content like that for proper names and not-at-issue propositional

content like the contents of a relative clause. That is the reason we have adopted the

broader term background information. But it is no coincidence that our approach

ends up looking very much the same as the approach in Bailey et al. [2015], because

their use of presuppositions was made with DRT in mind.

We view the solution of Winograd Schema Challenge questions as the byproduct

of the process of establishing coherence. So to define our proposed approach to

Winograd Schemas, we will first propose explicitly how to establish coherence in

because-sentences.

This process will not only require a database of commonsense knowledge, but
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also a system for doing automated theorem proving in the Correlation Calculus.

This is yet another issue that we have left to future work; the exact computational

properties of the correlation calculus are not yet established.

(18) Procedure (Establishing coherence in because-sentences).

Input.

– A non-negated statement consisting of two clauses connected by because,

with a single ambiguous pronoun.

– A knowledge base of first-order sentences and correlation formulas.

– An automated prover for the Correlation Calculus.

Output. A set of DRSs, deemed coherent interpretations of the discourse.

Steps.

1. Construct the possible DRSs for the statement, using the system out-

lined in Section 2.4.4 augmented with the new because rule (item 17).

2. For each DRS, use the automated prover to attempt to prove its corre-

lation formula from axioms in the knowledge base and its background

information.2 If the proof is successful, the DRS is deemed a coherent

interpretation.3

3. Return all DRSs deemed coherent interpretations.

We may now outline a way to use the set of coherent interpretations to answer

Winograd Schema questions of the because form:

1. First, apply procedure (18) to yield a set of coherent interpretations (DRSs)

of the discourse. In the process, take note of the discourse referent introduced

in the CR.PRO rule that was applied to the anaphor. Call it z.

2We leave open the question of how to implement the failure of a proof; a sensible option might
be limiting the prover by an empirically-determined timeout.

3There is one more step we might add in principle at this point. Recall that a correlation formula
F ⊕G is understood to mean that F and G are positively correlated or the truth or falsity of F or
G is known to the hearer. In the latter case, it may be reasonable to say the correlation formula
is no longer evidence of correlation, and thus is not fit to establish discourse coherence. How to
determine coherence in that case, however, is not clear. But the convenient fact is that this seems
like it will rarely be the case. Since the formulas on either side will include new object constants,
relevant knowledge about them would have to be deducible only from universally quantified axioms
and the background information. It seems that this will rarely be enough information to cause
problems, and will never be an issue in the tiny discourses of the Winograd Schema Challenge.
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2. Examine the two answers to the Winograd Schema question. They will take

the form of definite noun phrases. For each answer A, let the formula FA be

defined as follows:

• If A is a proper name π, FA is

z = π.

• If A is a definite noun phrase of the form the N, where N is a common

noun, FA is

N(z).

Other cases, such as more complex phrases including adjectives or relative

clauses, may be handled similarly if we take a look at their treatment in the

DRS Construction Algorithm.

3. For each coherent DRS K, ask the following question for each A:

Does the formula FA follow from the background information of K?

(This is essentially the question “does it follow that it is A?”) Attempt to

answer this with an automated prover for the Correlation Calculus.

4. If for all coherent DRSs, one proof succeeded and the other did not, and if this

proof corresponded to the same answer in all cases, then choose that answer

to the Winograd Schema Challenge question.

4.3 Examples of Coherence

In this section, we will give justifications for three Winograd Schema answers from

the list compiled by Ernest Davis. For these examples, we will not exactly follow

the procedure outlined in the previous section. Instead of constructing all possible

DRSs, we will only prove the coherence of the DRS that happens to be the correct

interpretation. Nevertheless, it is clear in each case that with the background infor-

mation and commonsense axioms provided, the coherence of the incorrect answer

cannot be proven. Unfortunately, in order to establish that concretely, we would

need to establish broad claims about what should not be entailed by the knowledge

base. This will be discussed briefly for each example.
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Yelling at Kevin Schema 18 on Davis’s list reads:

(19) Jim [yelled at/comforted] Kevin because he was so upset. Who was so upset?

We will justify the answer Jim for the first instance as follows. First, we construct

the DRS (for the correct interpretation):

a b c e1 e2

Jim(a)

Kevin(b)

c = a

e1: a yell at b

e2: c is upset

because(e1, e2)

.

Then we extract the correlation formula:

yell-at(a, b)⊕ upset(c).

We then list the background information

1. a = Jim

2. b = Kevin

3. c = a

and the relevant commonsense knowledge:

4. yell-at(x, y)⊕ upset(x).

The derivation continues as follows:

5. yell-at(a, b)⊕ upset(a). by substitution from 4

6. upset(a)↔ upset(c) entailed by 3

7. yell-at(a, b)⊕ upset(c) by replacement from 5 and 6.

Here we required the commonsense knowledge that x yelling at y is positively cor-

related with x being upset. The opposite answer would be provable if and only if the
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formula

yell-at(a, b)⊕ upset(b)

were provable from the knowledge base and background knowledge. This is actually

quite a reasonable axiom—which raises a problem. See Section 5.3 for details.

Envying Martin Schema 20 on Davis’s list reads:

(20) Pete envies Martin [because/although] he is very successful. Who is very

successful?

We will justify the answer Martin for the first instance. First, we construct the

DRS:

a b c e1 e2

Pete(a)

Martin(b)

c = b

e1: a envy b

e2: c is successful

because(e1, e2)

.

Then we extract the correlation formula:

envy(a, b)⊕ successful(c).

We then list the background information

1. a = Pete

2. b = Martin

3. c = b

and the relevant commonsense knowledge:

4. envy(x, y)⊕ successful(y).
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The derivation continues as follows:

5. envy(a, b)⊕ successful(b) by substitution from 4

6. successful(b)↔ successful(c) entailed by 3

7. envy(a, b)⊕ successful(c) by replacement from 5 and 6.

Here we required the commonsense knowledge that x envying y is positively corre-

lated with y being successful. The incorrect answer Pete would be provable if

envy(a, b)⊕ successful(a) (4.2)

were provable from the knowledge base. One way to ensure that this is not the case

is to ensure that

envy(a, b)	 successful(a)

is entailed by the knowledge base—this axiom seems reasonable, expressing that

successful people tend to be less envious. Given that the formulas on either side

are not entailed (which they definitely should not be, given that a and b are new

object constants) this formula is contradictory (by the probabilistic semantics) to

the correlation formula corresponding to the answer we would wish to avoid. Thus,

because the calculus is sound, as long as the knowledge base is consistent, the

undesirable formula (4.2) would not be derivable.

Ceding the Election Schema 139 on Davis’s list reads:

(21) Kirilov ceded the election to Shatov because he was [more/less] popular.

Who was [more/less] popular?

We will justify the answer Shatov for the first instance of this schema. First, we

construct the DRS:
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e1 a b c e2 d f

Kirilov(a)

Shatov(b)

election(c)

d = b

f = a

e1: a cede c to b

e2: d is more popular than f

because(e1, e2)

.

Here, we have assumed a slightly more complicated DRS that relies on the more

complicated syntactic analysis that would arise from the comparative more popular.

This is comparing against something, and whether the syntactic analysis resolves

the issue as one of anaphora or of ellipsis, the result must involve a referent to denote

that thing. We use f . Then this problem involves resolving what amounts to two

anaphors: d and f . Of all of the possible choices, we will jointly justify the choice

of d = b and f = a.

So the next step is to extract the correlation formula:

cede-to(a, c, b)⊕more-popular(d, f).

We then list the background information

1. a = Kirilov

2. b = Shatov

3. election(c)

4. d = b

5. f = a

and the relevant commonsense knowledge:

6. cede-to(x, y, z) ∧ election(y)⊕more-popular(z, x).
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The derivation continues as follows:

7. cede-to(a, c, b) ∧ election(c)⊕more-popular(b, a) by substitution from 6

8. (cede-to(a, c, b) ∧ election(c))↔ cede-to(a, c, b) entailed by 3

9. cede-to(a, c, b)⊕more-popular(b, a) by replacement from 7 and 8

10.more-popular(b, a)↔ more-popular(d, f) entailed by 4 and 5

11.cede-to(a, c, b)⊕more-popular(d, f) by replacement from 9 and 10.

Here we required the commonsense knowledge that x ceding an election z to y is

positively correlated with y being more popular than z. The knowledge that would

prevent the incorrect answer might as well be another axiom:

cede-to(x, y, z) ∧ election(y)	more-popular(x, z).

This in turn may even be justified by the simple facts

∀x∀y(more-popular(x, y)↔ less-popular(y, x))

and

∀x∀y(more-popular(x, y)↔ ¬less-popular(x, y))

(though the latter admittedly ignores the case that the two are equally popular).

In this example, the Correlation Calculus has solved a slightly more complex

decision than the WSC problem poses: it has resolved two anaphors instead of just

the one. This shows how the approach may have explanatory power for discourse

coherence more generally, rather than just in the Winograd Schema Challenge.

Nevertheless, the formulation of this last example (indeed, all of these exam-

ples) might raise some questions. For instance, is it correct to include the election

constraint on the z argument to cede-to? Or, should we instead say that cede is

polysemic, and has one specific meaning (and thus, predicate in the first-order sig-

nature) corresponding to ceding elections in particular (thus avoiding the need for

the election constraint altogether)? Or perhaps worse, the more-popular predicate

seems to miss out on the deeper common structure of gradable adjectives or com-

paratives. These are important questions for the knowledge-representation side of

a system to solve the Winograd Schema Challenge. But they are not as important

to the Correlation Calculus: the fact that these proofs can be done in a relatively
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simple system is a first step to showing that they may be doable in systems with

richer ontologies. We will discuss some of these issues in Chapter 5.
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Chapter 5

Discussion

5.1 Beyond “Because”

Though we developed the system with the word “because” in mind, not all of the

Winograd Schema problems take this form. However, there’s a fairly straightforward

way of generalizing the approach. In the first 100 Winograd Schemas of the collection

compiled by Ernest Davis,1

• 96 put the pronoun in a separate independent clause,

• 71.5 of the answers seem to be justifiable by positive correlation,2 and

• of those justifiable by positive correlation, the clause containing the pronoun

is connected to the discourse by one of the following: a full stop, a semicolon,

because, so, if, since, when, but, now, and, and then, until.

So it seems that generalizing the approach simply to apply to more connectives could

be a fruitful endeavor. The task would not be simple: for example but, which ap-

pears above, might be expected to indicate negative correlation. But examples with

but, 4.5 seemed justifiable by negative correlation, 1 seemed justifiable by positive

correlation, and 6 did not seem to be related to correlation—so it is clearly a difficult

case. The connectives though and although, though uncommon, seemed to indicate

negative correlation in their 2.5 occurrences. All of the other connectives mentioned

above appeared in no schemas that could be justified by negative correlation, and

1https://www.cs.nyu.edu/davise/papers/WS.html
2Since we are counting each schema once, a single schema instance counts as 0.5.
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mostly schemas that could be justified by positive correlation. For details, the an-

notations may be found at cs.utexas.edu/~julianjm/wsc-annotations.txt.

Even in cases where positive correlation seems to apply, the technique discussed

in this thesis may be difficult to generalize to cases where the observed correlation

is not between statements of eventuality, or the correlated statements appear far

apart in the discourse. But the most difficult test of the ability of this method

to generalize will be how it may be adapted to deal with richer and more general

systems of commonsense knowledge, or the kind of commonsense knowledge that

may be obtained from data. What these systems or this knowledge may look like is

an open question for future work.

However, the Correlation Calculus is not just a system for justifying WSC an-

swers. It is primarily a system for establishing discourse coherence on the basis of

commonsense knowledge. Especially because of the state of the rest of the technol-

ogy needed to actually apply the approach to the WSC, it is more useful to think

of the Correlation Calculus approach as a contribution to our thinking on discourse

coherence.

5.2 Negation

One issue that we have conveniently skirted is negation. This is especially impor-

tant for the Winograd Schema Challenge, since almost any WSC problem could be

phrased (and many of them are phrased) with negation. The problem with negation

arises very early in the process: incorporating the because predicate in a DRS.

The problem is that our use of the because predicate requires an event-denoting

discourse referent for each of the two clauses being related. However, take a look at

the DRS for the trophy doesn’t fit into the brown suitcase:
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a b

trophy(a)

brown(b)

suitcase(b)

¬

e

e: a fit into b

.

There is no accessible discourse referent representing the event denoted by the state-

ment. Rather, the DRS-condition with the negation signifies that no such referent

may exist.

Indeed, in a complex sentence with because and negation, our construction rule

CR.Because is not applicable. Its triggering configuration looks like

S

S(e2)becauseS(e1)

where e1 and e2 are event-denoting discourse referents. This configuration, in the

system developed by Kamp and Reyle [1993], will only occur when both clauses are

affirmative. In the presence of negation, the annotation on an S-node will instead

be a time-denoting discourse referent, denoting the interval of time during which no

event described by the sentence occurred. This leaves us stuck. It’s not entirely clear

how to proceed, either. Indeed, it seems that a condition like because, which relates

two statements to each other, simply can’t be expressed about negative statements

in this version of DRT.

A couple of alternatives arise at this point. First, there is an extension of DRT,

developed by de Swart and Molendijk [1999], which assigns state-denoting discourse

referents to negated statements. Adopting their system may make it possible to

recover correlation formulas. Second, we may decide to change from using event-

denoting referents as the anchor for correlation formulas to using time-denoting

referents. This may complicate the process of extracting a correlation formula, but

it might also have the advantage of allowing us to encode temporal information in

our correlation formulas and commonsense knowledge (see Section 5.3).
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We leave the exploration of these directions to future work.

5.3 Correlation, Causation, and Time

Solving a Winograd Schema question with the Correlation Calculus involves more

than just establishing the coherence of the correct interpretation; it requires estab-

lishing that the other interpretations are not coherent.

Therefore in our analysis of Winograd Schema questions, we need to show not

only that the solutions can be supported by reasonable commonsense knowledge,

but also that the incorrect choice should not be supportable from reasonable com-

monsense knowledge. This presents a problem with, for example, the yelling at

Kevin schema instance:

Jim yelled at Kevin because he was so upset.

We make use of the axiom

yell-at(x, y)⊕ upset(x)

to prove that the answer is Jim, but the axiom

yell-at(x, y)⊕ upset(y)

may seem just as reasonable: x yelling at y may be positively correlated with y

being upset.

But this axiom would license the choice of Kevin as the answer in this problem.

Thus perhaps the correlation calculus isn’t fit to solve this basic WSC question. The

factor that’s missing is exactly what we lose when we translate because to positive

correlation: the directionality of causation. What’s really going on is that upset(x)

causes yell-at(x, y), and yell-at(x, y) causes upset(y). Both manifest as a positive

correlation, but because the problem says “because he was so upset” only the first

is relevant.

This would seem to be a fundamental limitation of correlation—which, as any

scientist knows, does not imply causation—but not all is lost. There may be a way

to implicitly encode causality in correlation formulas, making use of the relationship

between causality and time.
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Suppose instead of the formula yell-at(x, y) to represent x yelling at y, we used

yell-at(x, y, t) to represent x yelling at y at time t. Then, the relevant information

for this problem could be encoded as follows:

yell-at(x, y, t2) ∧ (t1 < t2)⊕ upset(x, t1) ∧ (t1 < t2).

The knowledge that yelling at someone is positively correlated with making them

upset could be encoded by using the opposite order of the time-denoting discourse

referents. Finally, the connective “because” could involve a constraint that the cause

cannot come only after the result.

Three issues are worthy of noting with this approach. First, there already exists

a rich temporal ontology in DRT, and such an approach may benefit from making

use of it—for example, we might not want to say so much that x being upset precedes

x yelling at y, but that x yelling at y is temporally contained within x being upset.

DRT’s temporal ontology lets us express this.

Second, in many cases (including, arguably, the yelling example) there is am-

biguity about the temporal structure of the discourse. Our process of establishing

coherence, which relies on testing various antecedents of a pronoun, might possibly

be extended to also test possible temporal structures. This would mean the Corre-

lation Calculus might be fit for more complex discourse interpretation tasks, of the

kind that Segmented DRT was designed to address.

Third, the interaction of positive versus negative correlation with the relative

temporal structure of events may lead to a richer typology of rhetorical relations

that could relate in a meaningful way to the relations in the literature.

All of these are issues for future work.

5.4 Conclusion

In this thesis, we have presented several developments of the Correlation Calculus,

proposed by Bailey et al. [2015] as an approach to establishing discourse coherence

on the basis of commonsense knowledge. First, we have given it a precise semantics,

which is useful in establishing some of the properties of the calculus. Second, we

have systematically integrated the use of the Correlation Calculus with Discourse

Representation Theory to explain a general method of establishing coherence for

some very specific discourse structures. This has filled some of the conceptual holes
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with the approach of the Correlation Calculus to the Winograd Schema Challenge.

The main contribution of the calculus is to the theory of discourse coherence.

There are not many competing theories: they range from an implemented system

based purely on commonsense knowledge (Inoue et al. [2012]) to a system that is

highly sensitive to a nuanced, complex model of discourse structure (Asher and

Lascarides [2003]). Both of the approaches have merits, and we believe we have

taken the first steps in establishing a middle-of-the-road approach that has the

following favorable properties:

• The method is sensitive to discourse structure,

• the calculus has a simple and comprehensible monotonic semantics, and

• the problem of knowledge representation is well-defined.

Whether the approach would be able to be applied to the WSC in practice is

an open question. But we believe the Correlation Calculus is in the spirit of the

Challenge, and the science of AI as regarded by Levesque [2014]. That is, it is a

step towards explaining the phenomena of human behavior on Winograd Schemas.
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