


Abstract

The Pythagorean Expectation is widely used in the field of sabermetrics to estimate

a baseball team’s overall season winning percentage based on the number of runs

scored and allowed in its games thus far. Bill James devised the simplest version

of the formula through empirical observation as Winning Percentage “ pRSq2
pRSq2`pRAq2

where RS and RA are runs scored and allowed, respectively. Statisticians later found

1.83 to be a more accurate exponent, estimating overall season wins within 3-4 games

per season. Steven Miller provided a theoretical justification for the Pythagorean

Expectation by modeling runs scored and allowed as independent continuous random

variables drawn from Weibull distributions. This paper aims to first explain Miller’s

methodology using recent data and then build upon Miller’s work by incorporating

the e↵ects of designated hitters, specifically on the distribution of runs scored by

a team. Past studies have attempted to include other e↵ects on run production

such as ballpark factor, game state, and pitching power. The results indicate that

incorporating information on designated hitters does not improve the error of the

Pythagorean Expectation to better than 3-4 games per season.
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Background

The field of sabermetrics, baseball statistics, has grown rapidly since its populariza-

tion by Bill James in the late 1970’s and 1980s. One of James’ earliest formulas, the

Pythagorean Expectation, is still used today. The Pythagorean Expectation, also

known as the Pythagorean Won-Loss Formula, is used to estimate a team’s overall

winning percentage for a season based on the number of runs scored and allowed

in its games. The formula derives its name from its similarity to the well known

Pythagorean Theorem, namely a2 ` b2 “ c2. The original Pythagorean Expectation

formula is:

Winning % “ pRSq2
pRSq2 ` pRAq2 (1.1)

where RS is the number of runs scored by a team and RA is the number of runs

allowed by a team during the season. Multiplying the winning percentage by the

number of games gives an estimate for the number of games a team should win for

the season. In practice, the Pythagorean Expectation is often calculated mid-season

to predict a team’s performance for the remainder of its games.
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1.1 Empirical Derivation

Originally, the formula was derived by Bill James from empirical observation of the

relation between runs scored and allowed by a team and its season performance. In-

tuitively, the di↵erence between runs scored and allowed is an indicator of how well a

team is playing: Do they often win by just a single run, or are they consistently well

outplaying their opponents? As a result, a team’s actual winning percentage often

converges towards its Pythagorean Expectation. This pattern can be seen with the

2005 Washington Nationals, for example. In early July, the team had a mid-season

expected winning percentage of exactly .500 but actually had a record 19 games

better. For the remainder of the season, they went 30-49, finishing at exactly .500

(which was actually 4 games better than their final expected winning percentage)

(Baseball-Reference.com (2015)). As a result, a comparison of a team’s mid-season

expected and actual winning percentage can indicate if the team has been somewhat

lucky or unlucky thus far.

Shortly after the creation of the Pythaogrean Expectation, James and the statistics

community found 1.83 to be a more accurate exponent. Using this value typically

estimates a team’s winning percentage correctly within 3-4 games and is the value

used by Baseball-Reference.com.

1.2 Weibull Distribution

In 2006, Steven Miller supplied a theoretical justification for the Pythagorean Ex-

pectation using Weibull distributions to model runs scored and runs allowed as in-

dependent variables (Miller (2006)). Usually, runs scored and allowed are fairly low

in baseball with occasional higher scoring games. Therefore, Weibull distributions

provide a good fit with their typically right skewed shape and in particular, provide
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Figure 1.1: Example Weibull Distributions

a better fit than either an exponential or Rayleigh distribution (Miller (2006)). The

Weibull probability density function can be written as

fpx;↵, �, �q “
"

�
↵

px´�
↵

q�´1e´px´�
↵

q� x • �
0 otherwise

(1.2)

where ↵, �, and � are given parameters. Figure 1.1 illustrates how changing the

values of these parameters a↵ects the overall distribution (Tuerlinckx (2010)). In

graph (a), the location parameter � is increased; in graph (b), the scale parameter

↵ is increased; and in graph (c), the shape parameter � is decreased. Additional

properties of Weibull distributions are described in the following lemma (Forbes

et al. (2011)).
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Lemma 1.1. The mean and variance of a Weibull with parameters p↵, �, �q are

µ↵,�,� “ ↵�p1 ` �´1q ` � (1.3)

�2
↵,�,� “ ↵2�p1 ` 2�´1q ´ ↵2�p1 ` �´1q2 (1.4)

Miller’s work and resulting adjustment to the Pythagorean Expectation will be fur-

ther explained in the following section.

1.3 Application to Other Sports

Since its introduction, the Pythagorean Expectation has been applied to other sports

including basketball, football, and lacrosse with varying exponents for each sport.

For example, the NBA has been found to have an exponent of about 14 while the

NFL’s is around 2.50 (see Tymins (2014), Rosenfeld et al. (2010)). The size of the

exponent, �, can be interpreted as relating to the role of chance in the game: the

greater the value of �, the greater the probability that the better team will win (and

hence the smaller the role of luck). A � “ 0 implies that both teams have a 50%

of winning, regardless of skill level (i.e., dependent entirely on chance), since (1.1) is

identically 1{2.

Rosenfeld et al. conduct an interesting study on the di↵erence in the value of �

between regulation and overtime play in football, basketball, and baseball. Due to

the brevity of overtime play, the better team’s chances of winning are reduced, and

luck plays a greater role. Overtime is also subject to additional factors of random-

ness, such as who starts with the ball (in football). Across all three sports, they

find overtime � values to be smaller than regulation play � values (Rosenfeld et al.

(2010)).
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2

Miller’s Model

This section fully explains Miller’s theoretical approach to the Pythagorean Expec-

tation, referred to as “Miller’s Model” in this paper, where runs scored and runs

allowed are modelled as independent, continuous random variables from Weibull dis-

tributions. Using the notation for Weibull probability distributions in (1.2), the

resulting modified Pythagorean Won-Loss Formula is

Winning % “ pRS ´ �q�
pRS ´ �q� ` pRA ´ �q� (2.1)

where RS and RA are the average runs scored and allowed per game, respectively.

Runs scored and runs allowed are assumed to come from two separate distributions

with di↵erent values of ↵ but sharing the � and � parameters, with � “ ´0.5. This

choice for � is explained in the section addressing the continuity of the data.

2.1 Model Assumptions

Miller’s Model makes two main assumptions about the nature or runs scored and

allowed, namely, the continuity of the data and the independence of runs scored and

allowed in a game.
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2.1.1 Continuity of the Data

Clearly, runs scored and allowed are discrete, rather than continuous, data; how-

ever, the assumption of continuous variables simplifies the subsequent calculations

by allowing for integration over the distributions. This technique also produces a

closed-form result. The choice of � “ ´0.5 accounts for the discrete nature of the

actual data. When fitting the Weibull distributions, the data is binned into bins of

length 1; an obvious choice for these bins is

r0, 1q, r1, 2q, r2, 3q, . . . , r13, 14q, r14,8q (2.2)

Since baseball scores are always integers, the data would be at the left endpoint of

each bin, causing the means to be skewed. Miller illustrates this issue with a simple

example: suppose a team scores 0 runs in half its games and 1 run in the other half,

with the corresponding bins r0, 1q and r1, 2q. Finding the best fit constant probability
function, for simplicity, yields identically 1

2 over r0, 2q. The mean of this constant

approximation is 1:

ª 2

0

1

2
x dx “ 1

2
p1
2
x2q

ˇ̌
ˇ̌
2

0

“ 1

4
p4q “ 1

However, the observed mean runs per game is 1
2 ˚0` 1

2 ˚1 “ 1
2 . The choice of � “ ´0.5

allows the bins to be shifted so that the data is centered in each bin, i.e.,

r´0.5, 0.5s, r0.5, 1.5s, r1.5, 2.5s, . . . , r12.5, 13.5s, r13.5,8q (2.3)

Using these bins, the means align:

ª 1.5

´0.5

1

2
x dx “ 1

2
p1
2
x2q

ˇ̌
ˇ̌
1.5

´0.5

“ 1

4
p9
4

´ 1

4
q “ 1

2

Therefore, RS´� (RA´�) is an estimator for the observed average runs scored (al-

lowed) per game if the Weibull modelling runs scored (allowed) has a mean of RS

(RA).
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2.1.2 Independence of Runs Scored and Allowed

Another assumption under Miller’s Model is the independence of runs scored and

allowed. Intuitively, it seems as though these two variables would be at least some-

what dependent on each other: a team’s o↵ense and defense are comprised of mostly

the same players and thus never entirely independent. If a team is good on o↵ense

(scoring runs), they are likely good on defense as well (not allowing runs).

The independence of runs scored and allowed is tested by Miller through a mod-

ified �2 test for an incomplete contingency table. The table is incomplete because a

baseball game can never have a tie-score; therefore, the diagonal entries of a table

of runs scored and allowed will be zero. Using 2004 American League data, his tests

validate the assumption that, “given that runs scored and allowed cannot be equal,

the runs scored and allowed per game are statistically independent events” (Miller

(2006)).

Ciccolella also explores this issue more creatively (in the same issue of By the Num-

bers that Miller’s condensed paper appeared). His results are inconsistent with the

independence assumption, finding particular patterns in the relation between runs

scored and allowed. For example,“the most common number of runs to score when

losing [is] one less than the number allowed for all levels of runs scored” (Ciccolella

(2006)).

To further investigate the independence of runs scored and allowed, I use a dif-

ferent technique than either Miller or Ciccolella with 2013 American League data.

Although a baseball game cannot ultimately end in a tie, it is possible for the teams

to be tied at the end of the 9th inning. When testing for independence, it is unnatural
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to exclude this possible outcome and restrict runs scored and allowed to being non-

equal. Therefore, I look to the box-scores for all extra-inning games and record the

tie score at the end of the 9th inning. The resulting distribution of runs scored and

allowed can be seen in Table 2.1. Scores exceeding 12 are excluded from the table to

avoid excessive zero entries, since baseball scores rarely break 10 runs. Additionally,

only home games are included in the analysis to avoid duplicate recordings of runs,

since the majority of games are played intraleague: for example, a game where the

Boston Red Sox lose at Houston 2-4 would be recorded as a home game with RS =

4, RA = 2 (for Houston) and as an away game with RS = 2, RA = 4 (for Boston).

Runs Allowed

R
u
n
s
S
co
re
d

0 1 2 3 4 5 6 7 8 9 10 11 12
0 4 8 11 12 9 4 4 11 3 3 2 1 1
1 10 13 18 26 8 15 12 12 4 3 4 2 1
2 15 24 22 24 19 20 17 11 6 5 1 1 2
3 15 23 32 29 25 9 16 8 9 3 5 2 2
4 9 16 21 50 17 15 8 7 7 6 4 3 2
5 11 15 16 9 25 9 11 7 6 8 2 3 2
6 10 12 17 16 15 18 10 8 3 1 5 2 2
7 2 7 19 11 13 15 8 6 2 0 2 1 1
8 1 6 9 11 8 5 3 6 3 3 1 1 1
9 2 2 3 2 4 3 4 4 1 0 1 0 0
10 4 2 2 4 3 3 7 1 1 1 0 1 0
11 1 3 2 5 3 1 0 2 2 0 0 1 0
12 2 1 0 0 2 1 2 0 0 1 0 0 0

Table 2.1: 2-way Contingency Table of RS and RA

The counts of runs scored and allowed can then be tested with a �2 test for

independence. The resulting test has 144 degrees of freedom and gives a �2 statistic

of 154.94 and a p-value of 0.2521. Therefore, I fail to reject the assumption that runs

scored and runs allowed are independent.
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2.2 Pythagorean Won-Loss Formula

With the assumptions of the model met, Miller’s theoretical derivation of the Pythagorean

Won-Loss Formula is as follows.

Theorem 2.1 (Miller’s Model). Let the runs scored and runs allowed per game be

two independent random variables drawn from Weibull distributions with parameters

p↵RS, �, �q and p↵RA, �, �q respectively, where ↵RS and ↵RA are chosen so that the

means are RS and RA. If � ° 0, then

Won ´ Loss PercentagepRS,RA, �, �q “ pRS ´ �q�
pRS ´ �q� ` pRA ´ �q� .

Proof. By (1.3), the means of Weibull distributions with parameters p↵RS, �, �q and

p↵RA, �, �q are

RS “ ↵RS�p1 ` �´1q ` �

RA “ ↵RA�p1 ` �´1q ` �,

respectively. These equations can be rewritten as

↵RS “ RS ´ �

�p1 ` �´1q

↵RA “ RA ´ �

�p1 ` �´1q . (2.4)

Let X and Y be independent random variables drawn from the Weibull distributions

defined above, with X corresponding to runs scored and Y corresponding to runs

allowed. A winning percentage can be found by calculating the probability that

X is greater than Y . Recall the PDF of a Weibull distribution from (1.2) for the

integrations below.

P pX ° Y q “
ª 8

x“�

ª x

y“�

fpx;↵RS, �, �qfpy;↵RA, �, �q dy dx

9



“
ª 8

x“�

ª x

y“�

�

↵RS

px ´ �

↵RS

q�´1e
´p x´�

↵RS
q� �

↵RA

py ´ �

↵RA

q�´1e
´p y´�

↵RA
q�
dy dx

“
ª 8

x“�

�

↵RS

px ´ �

↵RS

q�´1e
´p x´�

↵RS
q�

„ ª x

y“�

�

↵RA

py ´ �

↵RA

q�´1e
´p y´�

↵RA
q�
dy

⇢
dx

“
ª 8

x“�

�

↵RS

px ´ �

↵RS

q�´1e
´p x´�

↵RS
q�

„
´e

´p y´�
↵RA

q�
ˇ̌
ˇ
x

�

⇢
dx

“
ª 8

x“�

�

↵RS

px ´ �

↵RS

q�´1e
´p x´�

↵RS
q�

„
1 ´ e

´p x´�
↵RA

q�
⇢
dx

“
ª 8

x“�

�

↵RS

px ´ �

↵RS

q�´1e
´p x´�

↵RS
q�
dx ´

ª 8

x“�

�

↵RS

px ´ �

↵RS

q�´1e
´p x´�

↵RS
q�
e

´p x´�
↵RA

q�
dx

The first integral in this expression reduces to 1, since the integral over the support

of a probability density is 1. Therefore,

“ 1 ´
ª 8

x“�

�

↵RS

px ´ �

↵RS

q�´1e
´p x´�

↵RS
q�
e

´p x´�
↵RA

q�
dx

“ 1 ´
ª 8

x“�

�

↵RS

px ´ �

↵RS

q�´1e
´p x´�

↵RS
` x´�

↵RA
q�
dx

Let 1
↵� “ 1

↵�
RS

“ 1
↵�
RA

“ ↵�
RS`↵�

RA

↵�
RS↵

�
RA

. Then,

“ 1 ´
ª 8

x“�

�

↵RS

px ´ �

↵RS

q�´1e´px´�
↵

q�dx

“ 1 ´ ↵�

↵�
RS

ª 8

x“�

�

↵
px ´ �

↵
q�´1e´px´�

↵
q�dx

Again, this integral reduces to 1. So,

“ 1 ´ ↵�

↵�
RS

“ 1 ´ 1

↵�
RS

↵�
RS↵

�
RA

↵�
RS ` ↵�

RA
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“ 1 ´ ↵�
RA

↵�
RS ` ↵�

RA

“ ↵�
RS

↵�
RS ` ↵�

RA

(2.5)

Using (2.4) and substituting into (2.5) results in

P pX ° Y q “ pRS ´ �q�
pRS ´ �q� ` pRA ´ �q� . (2.6)

Since X is the random variable representing runs scored and Y the random variable

representing runs allowed, (2.6) is the probability of winning a game, and can be

extended to estimate overall winning percentage for a season.
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3

Analysis

This section explains the results of applying Miller’s methodology to 2013 American

League data (Miller’s original analysis was conducted on 2004 American League

data). These results are used as a baseline for comparison to an original model

incorporating the e↵ects of designated hitters, introduced later in this section. All of

the data used in this section was analyzed in R Statistical Software and comes from

the historical stats section of www.baseball-reference.com. Furthermore, all team

data is restricted to the 162 regular-season games; data from postseason games is

eliminated.

3.1 Multiplicity Adjustments

Statistical hypothesis testing is based on controlling the probability of Type I errors

at some pre-determined level, ↵, such that P pType I errorq § ↵. A customary choice

is ↵ “ 0.05. Recall that a Type I error is falsely rejecting a true null hypothesis.

Multiplicity adjustments are a statistical adjustments used when multiple hypothesis

tests are conducted simultaneously to lower the probability of making Type I errors.

For example, when testing a hypothesis for each of the 15 teams in the American
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League, the probability of falsely rejecting one of the 15 null hypotheses is greatly

inflated. This problem can be avoided by lowering the significance level for each

of the multiple comparisons. In e↵ect, the adjustment lowers the per comparison

significance level to maintain a bound on the probability of falsely rejecting any of the

multiple true hypotheses. This adjustment is necessary for the analysis later in this

section, so two common methods of adjustment, Bonferroni and Holm-Bonferroni,

are first described briefly below.

3.1.1 Bonferroni

The Bonferroni procedure is one of the simplest methods of multiplicity adjustment.

Its name stems from the use of the Bonferroni inequality.

Lemma 3.1 (Bonferroni Inequality). Let Ai, i “ 1 to k, represent k events. Then,

P
` k£

i“1

Ai

˘
• 1 ´

kÿ

i“1

P
`
Āi

˘
,

where Āi is the complement of the event Ai.

Proof. Let Ai, i “ 1 to k, represent k events. Then,

P p
k£

i“1

Aiq “ 1 ´ P p
k§

i“1

Āiq • 1 ´
kÿ

i“1

P pĀiq

This inequality can be rewritten as

1 ´ P
` k£

i“1

Ai

˘
§

kÿ

i“1

P
`
Āi

˘
. (3.1)

In the context of statistical testing, let Āi be a Type I error in the ith test of k

hypothesis tests. Recall that a Type I error is the probability of falsely rejecting
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the null hypothesis. The probability that no Type I errors occur across the k tests

is P
` ìk

i“1 Ai

˘
, and 1 ´ P

` ìk
i“1 Ai

˘
is the probability of at least one Type I error

occurring. Since ↵ is typically used to denote the level of tolerance for Type I errors

in statistical tests, let ↵i “ P pĀiq. Therefore, by Lemma 3.1, the probability of at

least one Type I error in k hypothesis tests is § ∞k
i“1 ↵i.

Assuming the same ↵ level across all k tests, this result implies an ↵ level k times

larger than intended. For example, suppose 10 hypothesis tests are being conducted,

each with ↵ “ 0.05. Without multiplicity adjustment, the implied upper-bound for

probability of Type I error is 0.50! Bonferroni accounts for this issue by dividing

the ↵ level by the number of tests before assessing the significance of p-values (or

equivalently, multiplying the p-values by the number of tests being run and using

the original ↵).

3.1.2 Holm-Bonferroni

The Bonferroni procedure is often criticized as being overly conservative in its ad-

justments to avoid Type I errors. A similar procedure, the Holm-Bonferroni, adjusts

p-values in a “sequentially rejective” method (Holm (1979)). Compared to the clas-

sical Bonferroni, the probability of rejecting any set of false hypotheses is greater or

equal with the Holm-Bonferroni.

The sequentially rejective procedure is as follows: supppose n hypothesis tests are

being conducted. The n p-values are ordered such that pp1q § pp2q § . . . § ppnq,

and let Hp1q be the hypothesis test corresponding to pp1q. Recall that the classical

procedure compares all n p-values to the adjusted significance level ↵
n
. In the Holm

method, pp1q is compared to ↵
n
; if the p-value is not significant, i.e., pp1q ° ↵

n
, then the

procedure stops and all null hypotheses are accepted (fail to be rejected). However,
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if pp1q § ↵
n
, then Hp1q is rejected, and pp2q is compared to ↵

n´1 . The process con-

tinues with each rejected hypothesis until the first failure to reject, at which point

all remaining hypotheses are also accepted. The last p-value, ppnq, is compared to

↵ (if necessary). Similar to the classic Bonferroni, an equivalent technique involves

multiplying the p-values by progressively smaller integers, i.e. n, n ´ 1, n ´ 2, . . . , 1

and comparing to the original ↵.

3.2 Miller’s Model 2013 Results

Before applying Miller’s Model to 2013 season data, I first validated my program

by using 2004 American League data and comparing the results to those in Miller’s

paper. After confirming the accuracy of the code, I analyzed the 2013 data.

The first step requires creating the 15 bins in (2.3) and binning the runs scored

and allowed in each game. Next, the number of occurrences in each bin is tabulated,

e.g., a team scored 0 runs 15 times, 1 run 19 times, 2 runs 17 times, etc. Using

this information, the best fit Weibulls are then fitted to each team for runs scored

and runs allowed by minimizing the squared di↵erence between fitted and empiri-

cal frequencies. Figure 3.1 shows the fitted Weibull distributions for the New York

Yankees. Instances of 14 or more runs (scored or allowed) are grouped together in

the last bin of the histogram, r13.5,8q. The fitted distributions for every American

League team can be found in Appendix A.

With the � exponent value from each team’s fittedWeibull distributions, the Pythagorean

Expectation can be computed for each team. Table 3.1 illustrates these results. For

each team, the Pythagorean Expectation is computed mid-season (using data from

the first 81 games) for a prediction of the team’s final winning percentage, as well as

at the end of the season (using data from all 162 games) to evaluate the accuracy of
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Figure 3.1: Fitted Weibull Distributions for the New York Yankees

the model. The di↵erence in the observed and final estimate of the number of games

won is recorded under “Error” (these numbers are found by multiplying the percent-

ages in the 4th and 5th columns by 162). As previously mentioned, the Pythagorean

Expectation consistently has an error of about 3-4 games per season; the 2013 data

follow this pattern with a mean absolute error of 3.12. In terms of predictive value,

the mean absolute di↵erence in mid-season predicted number of wins and final wins

is 5.21. Additionally, the teams have an average � of 1.73 with a standard error of

0.13. Although this value is slightly less than the established best value of 1.83, it is

still within 1 standard error.
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Team
Obs. Mid-Season Obs. Final

Mid-Season Pred. of Final Estimate of Error
Win % Final Win % Win % Win %

Baltimore Orioles 55.56% 52.16% 52.47% 52.28% 0.31
Boston Red Sox 59.26% 58.49% 59.88% 60.28% -0.65
Chicago White Sox 40.74% 43.60% 38.89% 42.17% -5.31
Cleveland Indians 53.09% 52.24% 56.79% 54.15% 4.28
Detroit Tigers 53.09% 56.63% 57.41% 58.86% -2.35
Houston Astros 37.04% 38.78% 31.48% 37.90% -10.40
Kansas City Royals 48.15% 51.08% 53.09% 52.89% 0.32
Los Angeles Angels 46.91% 50.41% 48.15% 49.79% -2.66
Minnesota Twins 44.44% 45.65% 40.74% 40.19% 0.89
New York Yankees 51.85% 48.06% 52.47% 48.77% 6.00
Oakland Athletics 58.02% 55.98% 59.26% 57.23% 3.29
Seattle Mariners 43.21% 42.92% 43.83% 43.30% 0.85
Tampa Bay Rays 51.85% 51.59% 56.17% 52.76% 5.54
Texas Rangers 58.02% 53.62% 56.17% 55.43% 1.21
Toronto Blue Jays 49.38% 50.00% 45.68% 47.41% -2.81

Table 3.1: Pythagorean Expectations vs. Observed Winning Percentages at Mid-
Season and End-of-Season

After finding the distributions, the fit is tested with a �2 goodness of fit test for each

team. The �2 statistic is defined as

�2 “
14ÿ

i“0

pRSobspkq ´ Games ˚ ARSpkqq2
Games ˚ ARSpkq `

14ÿ

i“0

pRAobspkq ´ Games ˚ ARApkqq2
Games ˚ ARApkq

where RSobspkq is the occurrences in the kth bin, i.e., the number of games in which

k runs were scored (with the exception of k “ 14, where the bin is the number of

games in which at least 14 runs were scored), Games is the number of games played,

and ARSpkq is the area under the Weibull distribution for runs scored corresponding

to the kth bin (Miller (2006)). Each test has 24 degrees of freedom. Since 15 tests are

being run simultaneously, a multiplicity adjustment must be used on the resulting

p-values. Both the Bonferroni and Holm-Bonferroni techniques are included in Table

3.2. From these results, the Weibull distributions appear to be a good fit for all but
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the Baltimore Orioles and Detroit Tigers, both of which are significant at ↵ “ 0.05.

Team �2 P-value Bonferroni Holm-Bonferroni
Baltimore Orioles 64.15 †0.0001 0.0002 0.0002
Boston Red Sox 22.44 0.5532 1.0 1.0
Chicago White Sox 27.96 0.2617 1.0 1.0
Cleveland Indians 26.00 0.3533 1.0 1.0
Detroit Tigers 51.94 0.0008 0.0119 0.0112
Houston Astros 24.89 0.4119 1.0 1.0
Kansas City Royals 27.11 0.2992 1.0 1.0
Los Angeles Angels 20.27 0.6812 1.0 1.0
Minnesota Twins 24.70 0.4224 1.0 1.0
New York Yankees 21.88 0.5866 1.0 1.0
Oakland Athletics 14.91 0.9234 1.0 1.0
Seattle Mariners 25.89 0.3589 1.0 1.0
Tampa Bay Rays 42.49 0.0114 0.1704 0.1476
Texas Rangers 24.77 0.4184 1.0 1.0
Toronto Blue Jays 27.19 0.2958 1.0 1.0

Table 3.2: Results of �2 Goodness of Fit Tests

3.3 Designated Hitter Model

Two leagues exist in Major League Baseball (MLB), the American League (AL) and

the National League (NL). Each league consists of 15 teams, divided equally into

three divisions. Both leagues follow generally the same rules, with a major excep-

tion being the position of Designated Hitter (DH). In the AL, designated hitters are

players who bat in place of their team’s pitcher; the NL has no such position, and

pitchers bat for themselves. When interleague games are played, the rules of the

home team are respected with regards to designated hitters: if the game is played in

an AL park, a DH may be used. This di↵erence in a team’s o↵ense could potentially

a↵ect its run production and thus alter the probability distribution describing its

runs scored. In particular, for 2013, the average runs scored in games with a DH

is 4.36 while the average in games without a DH is 3.91. Therefore, I attempt to
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improve upon Miller’s Model by accounting for the use of designated hitters.

The use or non-use of designated hitters is likely only to a↵ect the runs scored by a

team, since DH is an o↵ensive position. Therefore, my model assumes runs scored

in games with a DH and runs scored in games without a DH are drawn from two

separate Weibull distributions. Teams in the AL play 142 intraleague games and 20

interleague games each season; interleague games are equally divided between home

and away parks. Therefore, each team plays 152 games with a DH and 10 games

without.

Theorem 3.2 (Designated Hitter Model). Let the runs scored using a DH, runs

scored without a DH, and runs allowed per game be three independent random vari-

ables drawn from Weibull distributions with parameters p↵RSDH
, �, �q, p↵RSNDH

, �, �q,
and p↵RA, �, �q respectively, where ↵RSDH

, ↵RSNDH
, and ↵RA are chosen so that the

means are RSDH , RSNDH , and RA. If � ° 0, then

Winning % “
ˆ
152

162

˙ pRSDH ´ �q�
pRSDH ´ �q� ` pRA ´ �q� `

ˆ
10

162

˙ pRSNDH ´ �q�
pRSNDH ´ �q� ` pRA ´ �q�

(3.2)

3.3.1 2013 Results

Using this method, Weibull distributions are fitted again for each team. Figure 3.2

shows the new fitted Weibull distributions for the New York Yankees; the fitted dis-

tribution for all teams can be found in Appendix A. These distributions also result

in an average � value of 1.73 with a standard error of 0.12. The mean absolute error

for number of games won is 3.19, almost identical to that of Miller’s Model; Figure

3.3 shows the end-of-season estimated number of wins for each model against actual

wins. Clearly, the two models yield highly similar estimations. Furthermore, the
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mean absolute error for mid-season predictions of games won is 5.39, also very sim-

ilar to the previous model; Figure 3.4 illustrates the mid-season predicted winning

percentage for each model and the observed winning percentage.

Figure 3.2: Fitted Weibull Distributions for the New York Yankees, Incorporating
Designated Hitters

Running �2 goodness of fit tests for the DH models, with 37 degrees of freedom,

shows that the Baltimore Orioles, Cleveland Indians, Detroit Tigers, and Kansas

City Royals do not appear to have a good fit and can be rejected at ↵ “ 0.05

(see Table 3.3) In particular, the Indians and Tigers have especially large �2 values.

These poor fits likely stem from the fact that the Weibull distributions for runs scored

without DH are fit based on only 10 observations per team. Overall, these results

combined with the mean absolute errors indicate that the new model incorporating
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the e↵ects of designated hitters does not o↵er much improvement in terms of fit or

predictive value.

Figure 3.3: End-of-Season Pythagorean Expectations vs. Observed End-of-Season
Wins

3.3.2 Divisional Analysis

Since the lack of improvement in the DH model is likely due to the fact that the

Weibull distributions are fit with only 10 observations per team, a larger sample size

is preferred. Therefore, I apply the models on a divisional basis: using the 3 divi-

sions of the AL (West, East, and Central), the total number of games increases to

810, 760 with DH and 50 without. Although calculating Pythagorean Expectations

for divisions may not be as practical as for individual teams, this analysis can still

be insightful as to whether the lack of improvement from incorporating DH is due

solely to the inadequate sample size. Since the proportion of games played with and

without DH remains the same at the team and division level, (3.2) can still be used

for the Pythagorean Expectations.
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Figure 3.4: Mid-Season Pythagorean Expectation Predictions vs. Observed End-
of-Season Winning Percentages

Team �2 P-value Bonferroni Holm-Bonferroni
Baltimore Orioles 72.75 0.0004 0.0061 0.0053
Boston Red Sox 32.22 0.6924 1.0 1.0
Chicago White Sox 30.79 0.7544 1.0 1.0
Cleveland Indians 329.00 †0.0001 †0.0001 †0.0001
Detroit Tigers 241.37 †0.0001 †0.0001 †0.0001
Houston Astros 46.46 0.1370 1.0 1.0
Kansas City Royals 72.57 0.0004 0.0064 0.0053
Los Angeles Angels 34.45 0.5891 1.0 1.0
Minnesota Twins 30.39 0.7706 1.0 1.0
New York Yankees 28.06 0.8551 1.0 1.0
Oakland Athletics 29.55 0.8032 1.0 1.0
Seattle Mariners 32.72 0.6701 1.0 1.0
Tampa Bay Rays 48.42 0.0991 1.0 0.9909
Texas Rangers 32.82 0.6652 1.0 1.0
Toronto Blue Jays 50.90 0.0637 0.9559 0.7010

Table 3.3: Results of �2 Goodness of Fit Tests for DH Model
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The fitted Weibull distributions for the 3 divisions using each model are shown in

Appendix B. Using Miller’s Model, the mean absolute error for number of games won

is 6.17, and the mean absolute error for mid-season predictions is 6.61. The same

values for the DH model are 6.20 and 7.43, respectively. Again, the DH model shows

little improvement over the original model in terms of fit or predictive value. With

�2 goodness of fit tests, the AL Central and East are rejected with Miller’s Model

at ↵ “ 0.05, using the less conservative Holm-Bonferroni values (see Table 3.4). Ad-

ditionally, the AL Central and East can be rejected at ↵ “ 0.05 significance for the

DH model, providing evidence that the increased sample size does not necessarily

lead to better fitting distributions under this model.

Division �2 P-value Bonferroni Holm-Bonferroni
Miller’s Model

AL Central 42.82 0.0104 0.0313 0.0313
AL East 39.72 0.0229 0.0688 0.0458
AL West 22.05 0.5766 1.0 0.5766

DH Model
AL Central 85.10 †0.0001 †0.0001 †0.0001
AL East 66.36 0.0021 0.0064 0.0043
AL West 32.28 0.6990 1.0 0.6898

Table 3.4: Results of �2 Goodness of Fit Tests for Divisional Models

3.4 Conclusion

Overall, the models incorporating designated hitters did not improve upon the ex-

isting Pythagorean Expectation. Both the DH model and Miller’s Model estimate

season wins within about 3 games per season at the team level, and within around

6 games at the divisional level. The lack of improvement likely stems from the fact

that American League teams play so few games each season without a DH, resulting
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in a small sample size with which to find the optimal Weibull distribution. These

results indicate that the di↵erence in run production between games with and with-

out designated hitters cannot be accounted for in the construction of the Weibull

distributions. However, future work could attempt to find a more nuanced way to

incorporate the e↵ects of designated hitters. For now, it appears as though James’

simpler formula for Pythagorean Expectation from the 1980’s still provides the best

estimator of a team’s winning percentage.

3.4.1 Predicting 2015 UT Baseball

As a fun exercise, I now apply the Pythagorean Expectation to UT baseball to

estimate the team’s performance for the remainder of the 2015 season. For these

estimations, the classic Pythagorean Expectation formula is used with the average

gamma found for the 2013 American League data, 1.73.

To explore whether the average gamma found for professional baseball is appro-

priate for college, the mid-season and end-of-season estimations are calculated for

the 2014 UT season and compared to the observed results. As Table 3.5 illustrates,

using � “ 1.73 yields nearly highly accurate estimations for the 2014 season; the

mid-season prediction is only 3% o↵ from the final winning percentage, and UT’s

record declined corresponding with this mid-season estimation from 78.79% to a final

68.66%. Therefore, predictions for the 2015 should be fairly accurate as well. Based

on data from the first 32 games of the 2015 season, the UT team currently has a

winning record of 53.15% and a predicted record of 62.11% for the season. This esti-

mation implies that UT is currently under-performing expectations and should win

a large proportion of its remaining games to approach the Pythagorean Expectation.
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Year
Obs. Mid-Season Obs. Final

Mid-Season Pred. of Final Estimate of
Win % Final Win % Win % Win %

2014 78.79% 71.53% 68.66% 67.05%
2015 53.13% 62.11% ? ?

Table 3.5: Pythagorean Expectations and Predictions for UT Baseball
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Appendix A

Fitted Weibull Distributions: Team Analysis
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Figure A.1: Fitted Weibull Distributions for the Baltimore Orioles

Figure A.2: Fitted Weibull Distributions for the Baltimore Orioles, Incorporating
Designated Hitters
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Figure A.3: Fitted Weibull Distributions for the Boston Red Sox

Figure A.4: Fitted Weibull Distributions for the Boston Red Sox, Incorporating
Designated Hitters
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Figure A.5: Fitted Weibull Distributions for the Chicago White Sox

Figure A.6: Fitted Weibull Distributions for the Chicago White Sox, Incorporating
Designated Hitters
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Figure A.7: Fitted Weibull Distributions for the Cleveland Indians

Figure A.8: Fitted Weibull Distributions for the Cleveland Indians, Incorporating
Designated Hitters
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Figure A.9: Fitted Weibull Distributions for the Detroit Tigers

Figure A.10: Fitted Weibull Distributions for the Detroit Tigers, Incorporating
Designated Hitters
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Figure A.11: Fitted Weibull Distributions for the Houston Astros

Figure A.12: Fitted Weibull Distributions for the Houston Astros, Incorporating
Designated Hitters
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Figure A.13: Fitted Weibull Distributions for the Kansas City Royals

Figure A.14: Fitted Weibull Distributions for the Kansas City Royals, Incorporat-
ing Designated Hitters
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Figure A.15: Fitted Weibull Distributions for the Los Angeles Angels

Figure A.16: Fitted Weibull Distributions for the Los Angeles Angels, Incorporat-
ing Designated Hitters
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Figure A.17: Fitted Weibull Distributions for the Minnesota Twins

Figure A.18: Fitted Weibull Distributions for the Minnesota Twins, Incorporating
Designated Hitters
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Figure A.19: Fitted Weibull Distributions for the New York Yankees

Figure A.20: FittedWeibull Distributions for the New York Yankees, Incorporating
Designated Hitters
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Figure A.21: Fitted Weibull Distributions for the New York Yankees

Figure A.22: FittedWeibull Distributions for the New York Yankees, Incorporating
Designated Hitters
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Figure A.23: Fitted Weibull Distributions for the Seattle Mariners

Figure A.24: Fitted Weibull Distributions for the Seattle Mariners, Incorporating
Designated Hitters
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Figure A.25: Fitted Weibull Distributions for the Tampa Bay Rays

Figure A.26: Fitted Weibull Distributions for the Tampa Bay Rays, Incorporating
Designated Hitters
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Figure A.27: Fitted Weibull Distributions for the Texas Rangers

Figure A.28: Fitted Weibull Distributions for the Texas Rangers, Incorporating
Designated Hitters
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Figure A.29: Fitted Weibull Distributions for the Toronto Blue Jays

Figure A.30: Fitted Weibull Distributions for the Toronto Blue Jays, Incorporating
Designated Hitters
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Appendix B

Fitted Weibull Distributions: Divisional Analysis
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Figure B.1: Fitted Weibull Distributions for the AL Central

Figure B.2: Fitted Weibull Distributions for the AL Central, Incorporating Desig-
nated Hitters
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Figure B.3: Fitted Weibull Distributions for the AL East

Figure B.4: Fitted Weibull Distributions for the AL East, Incorporating Desig-
nated Hitters
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Figure B.5: Fitted Weibull Distributions for the AL West

Figure B.6: Fitted Weibull Distributions for the AL West, Incorporating Desig-
nated Hitters
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