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This dissertation studies the adverse financial implications of "longevity risk" and 

"mortality risk", which have attracted the growing attention of insurance companies, 

annuity providers, pension funds, public policy decision-makers, and investment banks. 

Securitization of longevity/mortality risk provides insurers and pension funds an effective, 

low-cost approach to transferring the longevity/mortality risk from their balance sheets to 

capital markets. The modeling and forecasting of the mortality rate is the key point in 

pricing mortality-linked securities that facilitates the emergence of liquid markets. 

 

First, this dissertation introduces the discrete models proposed in previous literature. The 

models include: the Lee-Carter Model, the Renshaw Haberman Model, The Currie Model, 

the Cairns-Blake-Dowd (CBD) Model, the Cox-Lin-Wang (CLW) Model and the 

Chen-Cox Model. The different models have captured different features of the historical 

mortality time series and each one has their own advantages. 
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Second, this dissertation introduces a stochastic diffusion model with a double 

exponential jump diffusion (DEJD) process for mortality time-series and is the first to 

capture both asymmetric jump features and cohort effect as the underlying reasons for the 

mortality trends. The DEJD model has the advantage of easy calibration and 

mathematical tractability. The form of the DEJD model is neat, concise and practical. The 

DEJD model fits the actual data better than previous stochastic models with or without 

jumps. To apply the model, the implied risk premium is calculated based on the Swiss Re 

mortality bond price. The DEJD model is the first to provide a closed-form solution to 

price the q-forward, which is the standard financial derivative product contingent on the 

LifeMetrics index for hedging longevity or mortality risk. 

 

Finally, the DEJD model is applied in modeling and pricing of life settlement products. A 

life settlement is a financial transaction in which the owner of a life insurance policy sells 

an unneeded policy to a third party for more than its cash value and less than its face 

value. The value of the life settlement product is the expected discounted value of the 

benefit discounted from the time of death. Since the discount function is convex, it 

follows by Jensen’s Inequality that the expected value of the function of the discounted 

benefit till random time of death is always greater than the benefit discounted by the 

expected time of death. So, the pricing method based on only the life expectancy has the 

negative bias for pricing the life settlement products. I apply the DEJD mortality model 

using the Whole Life Time Distribution Dynamic Pricing (WLTDDP) method. The 

WLTDDP method generates a complete life table with the whole distribution of life times 

instead of using only the expected life time (life expectancy). When a life settlement 

underwriter’s gives an expected life time for the insured, information theory can be used 

to adjust the DEJD mortality table to obtain a distribution that is consistent with the 

underwriter projected life expectancy that is as close as possible to the DEJD mortality 

model. The WLTDDP method, incorporating the underwriter information, provides a 

more accurate projection and evaluation for the life settlement products. Another 

advantage of WLTDDP is that it incorporates the effect of dynamic longevity risk 

changes by using an original life table generated from the DEJD mortality model table. 
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Chapter 1 Introduction to Longevity Risk 

1.1 BACKGROUND 

The adverse financial implications of "longevity risk" and "mortality risk" have 

attracted the growing attention of insurance companies, annuity providers, pension funds, 

public policy decision-makers, and investment banks. Longevity risk denotes the adverse 

financial consequences that ensue when an individual or group live longer than expected 

(i.e., their mortality rate is lower than what was expected at the time that the financial 

balancing of assets, set aside for future consumption or future payments, was made). 

Similarly, mortality risk describes the adverse financial consequences that ensue when an 

individual or group live a shorter time than expected (their mortality rate is higher than 

expected in the premium/benefit balancing equation). The International Actuarial 

Association defines four components of longevity/mortality risk: level, trend, volatility, 

and catastrophe. The four components can be categorized into two groups, systematic risk 

and specific risk (Crawford, et al. 2008). Systematic risk is defined as the 

underestimation or overestimation of the base assumption of mortality rates, including the 

level component and the trend component. Specific risk is defined as the volatility around 

the base assumption, including the volatility component and the catastrophe component. 

According to the Law of Large Numbers specific risks can be reduced by diversifying 

with a large pool of lives; however, systematic risk cannot be reduced by diversification. 

Clearly life insurers are interested in mortality risk because they have to pay death 

claims earlier than expected, resulting in an unbalanced loss of capital. Annuity providers, 

defined benefit pension plans and social insurance programs such as Social Security are 
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interested in longevity risk because they have to make financial payments for longer than 

was originally reserved. In addition to having substantial pension obligations such as 

social security programs, governments act as residual risk bearers of last resort and are 

becoming increasingly concerned with the financial consequences of citizens outliving 

their resources. 

The life insurance industry, as well as the annuity and pension industries, 

functioned reasonably for many decades, according to actuarial estimated projections. 

These plain vanilla products used standard mortality tables and conservative interest rates. 

However, situations are changing, and insurers, reinsurers, pension funds, and 

governmental life security schemes (e.g., social insurance) are changing as well. 

Illustrative of this on the life (mortality) side is the quote by Richard M. Todd and Neil 

Wallace in the 1992 Federal Reserve Board-Minneapolis Quarterly Review, "In 1980 the 

life insurance industry was 150 years old. In 1990 ... [it] was 10 years old." Increased 

competition by capital markets, increasingly sophisticated financial life insurance 

products, mutual funds, and new derivative instruments are re-sculpturing the landscape 

related to the transfer of certain risks in life insurance. Risks can now be transferred using 

capital markets and are not restricted to just reinsurance market risk transfer. A similar 

statement could be made in today's environment concerning the status of the 

annuity/pension/longevity risk market.1 It is currently undergoing rapid changes caused 

                                                 
1 It is interesting to note that annuity market sophistication has progressed substantially since the 

government of William III of England (November 4, 1650 --March 8, 1702) offered annuities of 14% 

regardless of whether the annuitant was 30 or 70 years of age (Pearson 1978, p. 134). Indeed, the mindset 

behind this was that one's death was considered to be an "act of God" which occurred whenever the all 

powerful God dictated that one's time had come. There was no room for "chance" in this contract. Death 
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by regulatory pressures, financial innovations, medical advances, pandemic threats, and 

capital market pressures on firms and governments having substantial pension obligations. 

The pressure on Pay-As-You-Go social security systems is severe because of the 

imminent retirement of the baby boom generation, followed by a baby bust generation. 

The next generation is unable to pick up the needed financial costs associated with 

longevity. A misestimation of costs incurred by using a life table that does not incorporate 

longevity changes can also create financial pressure for defined benefit pension plans of 

private enterprises or annuity providers. 

Sources of pressure on longevity risk sensitive entities come from several arenas 

including advances in medicine, nutrition, and sanitation. In the last several decades, life 

expectancy in the developed countries has, on average, been increasing by approximately 

1.2 months every year. Globally, life expectancy at birth has increased by 4.5 months per 

year on average over the second half of the 20th century (Gutterman, England, Parikh, 

and Pokorski, 2002). 

Substantial improvements in longevity during the 20th century have posed 

longevity risk management challenges to pension funds and other entities that originally 

reserved for expected future costs using what would now be considered incorrectly 

diminished mortality rates (older mortality tables). A 2006 study of the companies in the 

U.K.'s FTSE100 index found that many companies had based their estimates of pension 

                                                                                                                                                 
was deterministic and only appeared random to humans because people were "ignorant of God's will"!The 

development of rigorous probability theory by Fermat and Pascal (1654) and its subsequent application in 

1693 by Edmund Halley (of Halley's comet fame) to create the first mortality table (including an annuity 

pricing example) revolutionized the annuity and life insurance market then, just as the developments in the 

studies of the capital markets have revolutionized the insurance industry in more modern times. 
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liabilities on mortality tables which underestimated expected lifetimes by not recognizing 

improving longevity, and by not recognizing this underestimation of expected lifetimes 

would cause the aggregate deficit in pension reserves to more than double from £46 

billion to £100 billion (Pension Capital Strategies and Jardine Lloyd Thompson, 2006). In 

2010 alone, improved life expectancy added £5 billion to corporate pension obligations in 

the U.K. (Reuters, 2010). In the U.S., the Internal Revenue Service (IRS) has recently 

established new mortality assumptions for pension contributions, which according to 

Watson Wyatt insurance consulting firm, will increase pension liabilities by 5-10%, 

(Halonen, 2007). Mercer Human Resource Consulting has calculated that the use of up-

to-date mortality tables would increase the cost of providing a pension to a male born in 

1950 by 8%, Mercer (2006). Additionally, U.S. insurance regulation ignores changes in 

longevity risk (or mortality risk) in the current Risk Based Capital (RBC) formula for 

calculation of insurance risk. An imbalanced approach to assets and liabilities can affect 

the capital structure of insurance or reinsurance companies and increase their default risk. 

The insurance or reinsurance companies that ignore longevity risk in designing and 

pricing their insurance products, including their annuity and life insurance products, run a 

substantial risk of underestimating their ultimate product costs which can cause a liability 

payment shortage for certain products. 

Interaction of the insurance industry with the capital markets (Cummins, 2005) 

provides a vehicle for mitigating the above mentioned mortality/longevity risk, namely, 

through financial securitization of life and pension products (c.f., MacMinn, Brockett, 

and Blake, 2006). Securitization provides an approach to transferring non-diversifiable 
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mortality/longevity risk from the insurer's or pension's balance sheet to the capital market. 

Moreover, this capital market transfer may provide an attractive alternative to reinsurance 

because of the size of the liabilities. According to Cummins and Trainer (2009, p.475), 

"… the traditional reinsurance model begins to break down when risks are correlated, add 

significantly to the reinsurer asymmetry risk, and are large relative to the reinsurer's 

equity capital. The cost of capital is also increased by informational asymmetries between 

reinsurers and capital market and by agency costs and other market frictional costs. 

Under these conditions, the price of reinsurance may be prohibitively high, and the 

supply of coverage may be restricted." Longevity risk for pension plans or annuity 

providers is an example of such correlated risk (mortality improvements or pandemics 

affect many individuals in the insurer's book of business). In these circumstances 

securitization can help address the inefficiencies in the reinsurance market such as 

correlation between risks and counterparty credit risk in the case of large or catastrophic 

risk (cf., Cummins and Trainer, 2009). Moreover, the capital markets are also 

significantly larger in capacity than are the reinsurance markets, so spreading the risk 

among the capital market participants can reduce insolvency risk. Additionally, since the 

securitized insurance products tend to be uncorrelated (or lowly correlated) with other 

assets in the economy, these securitized mortality/longevity risk transfer instruments can 

be attractive to investors wishing to diversify their own risks by putting an essentially 

zero beta asset into their portfolios. Securitization also enhances the risk capacity of the 

insurance industry, as illustrated by the catastrophe (CAT) mortality bond and other 

similar derivatives, whose payment depends on the underlying loss indices and the 
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catastrophic mortality event. On the insurance policy holder side, many investment banks 

have recently been involved in life-settlement securitization. Investment banks purchased 

hundreds of thousands of life insurance policies and repackaged them into bonds, then 

sold bonds to investors such as pension funds. The high return of the life settlement is 

attractive to the investors. The expected rate of return to an investor in such a bond 

depends on the projected life expectancy of the members in the pool of life insurance 

policies (Modu 2009). 

Capital market solutions to longevity risk problems have grown increasingly 

important in recent years, both in academic research and in the Life Markets, the capital 

markets that trade longevity-linked assets and liabilities. Capital markets can, in principle, 

provide vehicles to hedge longevity risk effectively. Many new investment products have 

been created both by the insurance/reinsurance industry and by the capital markets. 

Mortality catastrophe bonds are an example of a successful insurance-linked security. 

Some new innovative capital market solutions for transferring longevity risk include 

longevity (or survivor) bonds, longevity (or survivor) swaps and mortality (or q-) forward 

contracts. 

1.2 TREND AND OUTLOOK OF RETIREMENT MARKET 

A range of previous research has reached the same conclusion: people are living 

longer than they ever have in the past, or the life expectancy of people has obviously 

increased. Significant medical progress, improved living standards, healthier lifestyles 

that include organic food, the absence of global wars and pandemic influenza crises are 

some of the main environmental reasons for the increase in life expectancy. 
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In the United States, the number of centenarians (individuals over the age of 100) 

has increased from 15,000 in 1980 to roughly 72,000 in 2000. The Social Security 

Advisory Board using U.S. Census Bureau data, predicts the number of centenarians will 

increase to 4.2 million by 2050, which is approximately 1% of the projected total 

population (Scotti and Effenberger

The life expectancy at birth for people living in several countries that are the 

members of the Organization for Economic Cooperation and Development (OECD) is 

shown in Figure 1. In the study of UN World Population prospects, the projections of 

Japanese lives from 1950 through 2050 indicate that on average life expectancy at birth 

will increase at a rate of approximately 3.2 months per year for females and 2.7 months 

per year for males (Scotti and Effenberger, 2007).  

Figure1 Life Expectancy at Birth in Different Regions 

 
In the next few decades, most OECD countries are expected to experience what 
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has been called "the demographic time bomb." It is unambiguous that there is a higher 

life expectancy and a lower birth rate in these countries. The OECD includes Japan, 

South Korea, etc., which also exhibit very low birth rates and increasing longevity which 

implies an inversion of the standard age distributions. In 2050, 27% of the European 

population is expected to be older than 65 years (versus 16% in 2005), and about 10% is 

projected to be older than 85 (versus 3.5% in 2005) (Scotti and Effenberger, 2007). 

Figure 2 Old-Age Dependency Ratio in Selected Countries 

 

Figure 2 illustrates the old-age dependency ratio (the ratio of the population aged 

65 and older to that aged 15 to 64). While today the ratio is around 25% in a typical 

developed country, in 2050 it is estimated to rise to 70% in countries such as Japan and 

Italy (Scotti and Effenberger, 2007). Traditionally the over 65 population is considered to 

be the retired population who are supported by (dependent on) the "working" population 

aged 15-64. A ratio of 25% means there are four workers supporting (via taxes and other 
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manners) each person over 65. A ratio of 70% means each person over 65 will have to be 

supported by only approximately 1.4 workers, a burden almost three times as great as that 

today. 

While mortality improvement trends can be observed in the entire population, the 

specific amount of mortality improvement is different for different age groups and 

depends on when the individual was born. (See Figure 3) The term "cohort effect" 

describes anomalies in observed mortality improvement for individuals born during a 

specific period of time or having specific characteristics in common.  Figure 3 shows 

the longevity in women in various countries and shows that different countries exhibit 

different effects. 
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Figure 3 Female Life Expectancy 

 
In the next section, we shall review the capital market instruments that are 

proposed to transfer longevity and mortality risk. 
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Chapter 2 The Longevity Risk Models and Products 

2.1 MORTALITY RATE MODELS FOR USE IN CAPITAL MARKET HEDGING 

The capital market provides a new way to hedge the longevity risk or mortality 

risk for pension funds, annuity providers and insurance companies. The pricing of the 

mortality and longevity risk contingent financial instruments depends on the estimation 

and projection of the mortality rate in a cohort of lives. This can be cumulative (as in the 

Swiss Re Mortality Catastrophe Bond) or for a specified birth cohort at a specific age. 

For any of these there is a need to develop a theoretical model of mortality. We shall 

discuss several of the currently used mortality models and examine their strengths. 

2.2 DISCRETE TIME MODELS 

2.2.1 Lee-Carter Model. 

Lee and Carter (1992) proposed the first stochastic model for mortality rate. 

                      

                

Here x represents the age of the individual, t represents time (date), and      represents 

the mortality rate of a person aged x in year t.    represents the age group shift effect, 

exp(  ) is the general shape across the age of the mortality schedule, and    represents 

the age group's reaction effect to the mortality time-series   . The    profile tells us 

which group of mortality rates declines rapidly and which group declines slowly to 

changes in   , and      captures the age group's residual effect not reflected in the 

model. m is the drift, σ is the variance for the mortality time-series   , and      follows 

the standard normal distribution. 
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There is an identification problem in this parameterization. Lee and Carter 

introduce the normalizing conditions: 

     

 

 

          

 

 

To estimate the parameters in the model, these constraints resolve an identification 

problem that would occur in the general model if the constraints were not imposed. The 

values of age-specific parameters   ,   , and mortality time-series    can be generated 

througth the Singular Value Decomposition (SVD) method with the historic data of      . 

To implement the SVD procedure, first, we need to normalize the condition that sets 

   sums to 0 and    sums to 1. Since there are a series of combinations (  ,   ) to 

generate the same result of     , we choose one group as the standard benchmark with 

the normalization condition which distributes    equally around 0. With the 

normalization condition, then    must equal the average over time of           

                         
 

 
         
 
                         (1) 

Furthermore,    must (or almost) equal the sum over age of (           ), 

since the sum of    has been chosen to be unity. This is not an exact relation, however, 

since the error terms will not in general sum to 0 for a given age. Then, each    can be 

found by regressing, without a constant term, (           ) on    separately for each 

age group x. See Lee and Carter (1992) for details and further justification and statistical 

discussions. 
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Lee-Carter models mortality rate in two steps. First, the logs of the age-specific 

death rates are modeled as a linear function of an unobserved period-specific intensity 

index   , with parameters depending on    and   . The model accounts for almost all 

the variance over time in age-specific death rates as a group. Second, the index    is 

modeled as a time series of random walk with drift. Compared to the traditional hazard 

models, the Lee-Carter model accounts for the difference of mortality rate in age groups 

and describes the mortality time-series with a stochastic process. This is the benchmark 

for a series of extensions. 

2.2.2 Renshaw Haberman Model 

Renshaw and Haberman (2006) proposed a similar model to the Lee-Carter model 

but added a term to describe the cohort effect: 

                             

With the normalization condition: 

   
 

    

   
 

    

     
   

    

       
 

    

Here   ,   ,   ,      are defined as in to the Lee-Carter model. The variable      

captures the cohort effect and    is the parameter corresponding to it. The Lee-Carter 
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model is a special case where    and      are set to zero. The model captures the 

feature that individuals born in the same year have similar environments and healthcare, 

which affects the mortality rate and life expectancy. The cohort effect is described by 

    , for example, an individual aged 31 in year 2002 is in the same cohort with the 

individual aged 35 in year 2006, since they are born in the same year and t-x has the 

identical value of 1971. Figure 4 illustrates the cohort line. 

Figure 4 The Cohort Line 

  

There is also an identification problem in this parameterization. We need to 

introduce a normalization using a condition that the sum of      is equal to 0 and the 

sum of    is equal to 1 to reach the unique solution. In this way, the identification 

problem can be solved. 

2.2.3 Currie Model 

Currie (2006) introduced the simpler Age-Period-Cohort (APC) model which is a 

special case of the Renshaw-Haberman model with   =1 and   =1, namely 
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With the normalization condition: 

   
 

    

         
   

    

Currie (2006) applies P-splines to fit   ,    and       to ensure smoothness. 

2.2.4 Cairns-Blake-Dowd (CBD) Model 

Cairns, Blake and Dowd (2006) proposed the model for mortality rate: 

The forward survival probabilities              denotes the probability 

measured at   that an individual aged   at time 0 and still alive at    survives until 

time        

The model setup 

     
                     

                       
 

can be simplified in the format in accordance with the models above as: 

               
   

   
               

where      
       is the mean age in the sample range. This model has no 

identification problems. 

2.2.5 Cox-Lin-Wang (CLW) Model 

Cox, Lin and Wang (2006) proposed a model with permanent jump effects 

describing the evolution of the mortality factor    in the Lee Carter model as follows: 
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where μ and σ are constants, μ denotes the constant increment in the mortality factor   , 

σ denotes the volatility in the mortality factor   .      counts the number of the jumps, 

and      denotes the jump magnitude.    is a standard normal random variable that is 

independent of    and   . If a jump event occurs in year t+1, the magnitude of the 

jump,     , is included in the mortality factor     , and this jump effect persists forever. 

2.2.6 Chen-Cox Model 

Compared to the permanent jump in Cox, Lin and Wang (2006), Chen and Cox 

(2009) propose their model with transitory jump, that is described with the normal 

distribution. 

Let     describe the mortality factor when there is no jump event. They model 

    as a random walk with drift 

                   

where μ and σ are constants, μ denotes the constant increment in the mortality factor    , 

σ denotes the volatility in the mortality factor    . 

If a jump event occurs in year    , then,       . The jump      makes the 

actual mortality factor      change from       to      +    . Then 

                

If there is no jump in year    , then,        and 

           

Therefore, the dynamics of the mortality factor    can be completely expressed as 
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or 

                              

where μ and σ are constants, μ denotes the constant increment in the mortality factor   , 

σ denotes the volatility.      counts the number of the jumps, and    is a standard 

normal random variable that is independent of Y and N.  

Table 1 Model Comparison 

Model Description 

Lee-Carter 

Model 

The model is a function of age and time which is an improvement to the traditional 

hazard rate model which only depends on time. The projected value of the mortality 

rate captures the features that mortality rate increases with age and increases across 

the time. The model does not account for a cohort effect. 

 

Renshaw 

-Haberman 

Model 

The model is an extension/generalization of the Lee-Carter Model by adding a cohort 

effect term, which describes the year of birth. The model captures the feature that 

individuals born in the same year have similar environment, healthcare etc. 

experiences and so have similar affects on life expectancy.   

 

Currie 

Model 

The simpler Age-Period-Cohort (APC) model is a special case of the Renshaw-

Haberman Model. The P-spline method is applied to fit the data, which assumes that 

the mortality is a smooth surface.  

 

Cairns-Blake-

Dowd 

(CBD) Model 

The model is also a function of age and time, similar to the Lee-Carter Model. The 

difference is that this model applies the logit transform of mortality rates rather than 

the natural log of death rates as other models do. 

  

Cox-Lin-Wang 

(CLW) Model 

Extension of the Lee-Carter Model by adding a permanent jump effect term to the 

mortality factor kt. The severity of the jump follows a standard normal distribution 

 

Chen-Cox 

Model 

Similar to the CLW Model, this model entends the Lee-Carter Model by adding a 

transitory jump effect term to the mortality factor kt. The severity of the jump 

follows a standard normal distribution 

 

Brockett-Deng-

Macminn 

(BDM) Model 

This model extends the Lee-Carter Model by adding both longevity jump and 

mortality jump effect terms to the mortality factor kt. The arrival of the jump follows 

a Poisson process. The severity of the jump follows a double exponential 

distribution. 
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2.3 SUMMARY OF PRODUCTS FOR INDIVIDUAL LONGEVITY RISK TRANSFERRING 

Defined benefit plans are being changed to defined contribution plans in most 

countries' retirement markets. More and more individuals have to manage their own 

personal longevity risk. In the U.S., the baby boomers are entering their retirement age 

and need to address their own increasing longevity risk and the shortage of retirement 

plan payments. The retirees need to balance investment and consumption of their 

accumulated wealth. A key point that needs to be addressed is that extended lifespan may 

erode their accumulated wealth. Underestimation or overestimation of the personal life 

expectancy can negatively impact a retiree's life style. If the retiree overestimates his 

longevity, he will spend less than he could if he has purchased an annuity. If the retiree 

underestimates his longevity, he will spend aggressively and might outlive the 

accumulated wealth. 

In a survey (SOA, 2006), it was found that more than 40% of both pre-retirees 

and retirees underestimate average life expectancy by five or more years. Only 33% of 

retirees and 39% of pre-retirees have bought or plan to buy a product or choose a plan 

option that will provide them with guaranteed income for life. Similarly, a recent study 

(Scotti and Effenberger, 2007) in the UK retirement market suggests that individuals 

underestimate their own mortality by as much as five years on average. A defined benefit 

plan provides individuals with a guaranteed stream of payments, which decreases the 

chance of outliving the individuals' assets. The Scotti and Effenberger's study shows that 

individuals that retire without a pension plan have over an 80% chance of outliving their 
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assets, and individuals with a defined benefit pension plan have only an 18% chance of 

outliving their assets. 

Individuals without defined benefit pension plans choose to self-insure against 

longevity risk by making their own investment and consumption decisions or choose to 

do nothing because their income does not allow it. The investment decision is to select an 

asset allocation strategy among different investment instruments so as to diversify 

financial risk and minimize the chance of a portfolio shortfall. The consumption decision 

is to choose the level of withdrawal from the asset pool to reach a satisfactory life style. If 

individuals who try to self-insure are unsuccessful and run out of money, they will be 

forced to go through their remaining life without income. This would likely result in 

relying on children, relatives, or even federal programs to live out their remaining life, 

which is an undesirable situation for the self-insured individuals. So, a more reliable and 

scientific approach to manage the longevity risk for individuals is to transfer and 

diversify longevity risk with annuities and other financial instruments. 

Since a major trend in the retirement market is the declining number of defined 

benefit plans, there is an emerging opportunity for the expansion of the private market 

solution using financial instruments for individual longevity risk management. For 

individuals interested in insuring at least a portion of their longevity risk, there are 

several products that offer lifetime guarantees. These products include: 

 Immediate Annuities 

 (e.g., Single Premium Immediate Annuity, SPIA) 

 Impaired Life Annuities 
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 Deferred Annuities 

 Guaranteed Lifetime Withdrawal Benefits 

 Guaranteed Minimum Income Benefits 

 Advanced Life Delayed Annuities 

 Corporate Pensions 

 Reverse Mortgages 

 Structured Settlements 

 Life Settlements 

A brief description of each of the above is given below. 

2.3.1 Immediate Annuities 

An immediate annuity, or Single Premium Immediate Annuity (SPIA) is a 

classical type of annuity product that provides secured payment for life, usually paid for 

in a lump sum. The term of the contract varies in the frequency and amount of the income 

payment. They are structured to provide a fixed-level payment, a stream of payments that 

increase at a pre-specified rate, or a stream of payments that is tied to an underlying 

equity index (the latter being termed a variable immediate annuity, VIA). Some products 

provide that the period for the stream of payments continues until the death of the policy 

holder and some products provide for a certain period, irrespective of the death of the 

policy holder. Immediate annuities include several types of single-life policies, joint 

policies, and survivor policies. In the joint policies case, the annuity payments continue 

while two or more policy holders are alive. In the survivor policies case, the annuity 

payments continue while at least one of the policy holders is alive, although sometimes 
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with survivor policies the periodic income is reduced and only a percentage of the 

payment is received by the survivor after the first one dies. 

Some longevity risk products also embed options for hedging mortality risk, such 

as, the participating annuity (available in the U.K. market). Annuitants share in both the 

investment and longevity mortality gains while benefiting from risk pooling. Individuals 

can also benefit from other options in the form of minimum investment returns or from 

insurance benefits such as a minimum death benefit, minimum withdrawal benefit, 

minimum accumulation benefit, or a minimum income benefit. 

The quantification of longevity risk exposure is crucial to the pricing of 

immediate annuities. In the U.K., for example, regulators have recognized the effect of 

longevity risk and have adjusted the statutory reserving basis in accordance with this. The 

changes have been largely based on using revised projections for mortality improvements 

on a year-of-birth or cohort basis available from the Continuous Mortality Investigation 

Bureau, CMIB(2002). 

Longevity risk exposure can have a serious impact on the pricing of immediate 

annuities. Pricing risk is higher for companies who assume a larger mortality rate than the 

actual experience produces. Pricing risk is higher for the products issued to older 

individuals than to younger individuals. Because annuities for young people are for very 

long duration, they are more similar to perpetuity which pay forever (and which assumes 

the infinite lifetime and does not incorporate a mortality component). However, this 

observation does not mean that there is no exposure to longevity risk, only that the time 

value of money dominates for younger ages. There is still longevity risk. 



 22 

Historical mortality rate data corresponding to individual types of products can be 

used to provide mortality table estimates that can be used in pricing the product. 

Regardless of the size of the population pool of the product, there can exist large 

variability in the estimate. This indicates that not only does the central estimate of the 

mortality rate need to be considered in the pricing, but also a measure of the uncertainty 

in the mortality rate should be accommodated to produce appropriate pricing margins. 

In the U.S., the immediate annuity market is mainly driven by individual sales. 

However, individual sales can be a problem due to adverse selection, since the product 

price is identical for individuals with different life expectancies. The individual who 

knows their life expectancy is lower than average will be more reluctant to purchase the 

product. As a result, the actual life expectancy in the pool will be higher than insurer 

expected. This can cause an underestimation of the product price and could produce a 

loss for the insurer. Adverse selection risk will be lower in the case of mandatory 

annuitizations, since the individuals with less life expectancy are also required to 

purchase the annuity. Such mandatory annuitization of accumulated funds occurs in the 

U.K. and reduces adverse selection effects exhibited by free purchase as in the U.S. 

Although the annuities are appropriate products for individuals to transfer 

longevity risk, the individual annuity market has not developed as fully as researchers 

expected. One reason is the lack of knowledge of the benefits of annuities and the general 

lack of knowledge of severity of the longevity risk problem. Another reason is the 

adverse selection problem which causes the high price of the product and deteriorates the 

attraction of the product. 
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2.3.2 Enhanced and Impaired Life Annuities 

Enhanced and impaired life annuities offer higher annuity payments to individuals 

who can prove that they are in poor health or are terminally ill. Enhanced and impaired 

life annuities can be created to provide longevity risk protection at a reasonable price for 

individuals who have a life expectancy lower than average. The products also help to 

solve the adverse selection risk in individual immediate annuities.  

Pricing and evaluation of the enhanced and impaired life annuities places a higher 

weight on exposure to a handful of impairments, particularly cardiovascular disease and 

conditions related to smoking. Due to the documented worse health condition of the 

annuitant, higher expected mortality rates are assumed for these policies. Therefore, the 

effect of longevity risk can be more serious, as there is likely to be less data on the 

mortality experience of particular subgroups of the population. The relative infrequency 

of incidence and poor historical reporting of cause of death will cause the estimate of 

mortality to be biased. The significant deviation in the medical underwriting process is 

another reason for biased life expectancy (Drinkwater, et al., 2006). 

2.3.3 Deferred Annuities 

Deferred annuities accumulate tax-deferred savings to distribute later as either an 

immediate annuity or as a lump sum payment. Fixed deferred annuities, variable deferred 

annuities, and equity indexed deferred annuities are the three categories. 

More recent products, such as Guaranteed Minimum Income Benefit (GMIB) 

policies, provide the option to annuitize and receive at least a minimum annuity payment 

at a price dependent on mortality and interest factors.  For GMIB policies, the long-term 
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interest rate and longevity risk are the two key risks. If the GMIB policy is based on 

incorrectly large assumptions for mortality, the cost to the issuer of the guarantee is 

increased. Moreover, since the interest rate in the capital market has been relatively low 

recently, the impact of the miscalculation of the interest rate is minor, compared to that of 

miscalculating the mortality rate (Richards and Jones, 2006). Another similar type of 

product is the Guaranteed Minimum Withdrawal Benefits policy. The risk level in this 

policy depends on the form of the guarantee. 

2.3.4 Advanced Life Delayed Annuities 

Advanced Life Delayed Annuities (ALDAs) are inflation-linked annuities sold to 

individuals in the early years of their lives that begin paying at age 80, 85, or 90. The 

cash flow and mortality insurance benefits cannot be exchanged before maturity. ALDAs 

act as the replacement for the defined benefit pension plan for individuals of advanced 

age. ALDAs do not include the accumulation phase to the same extent that traditional 

deferred annuities do. Therefore, they could be considered to be more tailored toward 

protection against catastrophic longevity (Milevsky, 2004). 

Pricing ALDAs depends on the annuitization rate and mortality table. Again, a 

biased estimation of the mortality rate could result in significant loss for the insurer. 

Moreover, a long-term risk is involved in the ALDA product. Since the product 

accumulates the premium for a long period before paying the benefits, the asset liability 

matching administration systems of most insurers do not support ALDA products very 

well. Assets to back the lengthy duration are not generally available, which exposes the 

insurer to reinvestment risk. There is no death benefit offered in the ALDA product, so 
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the policy holder could make years of premium payments and receive no benefit. This 

potential uncertainty leads to reluctance on the part of insurers to offer this type of 

product and policyholders to buy it (Milevsky, 2001). 

There is a subclass of the ALDA product called "longevity insurance." A lump 

sum premium is paid today for a benefit payment in the future. The deferral periods are 

usually in excess of 20 years. The advantage of the product is that it allows individuals to 

purchase insurance against outliving their assets at a much lower cost than traditional 

SPIA products (Milevsky, 2001). 

2.3.5 Corporate Pensions 

Corporate pensions include two categories: defined benefit (DB) and defined 

contribution (DC) plans. The retirement plans have certain tax advantages, and employers 

provide for a portion of the employee's contribution. Funds usually cannot be withdrawn 

without penalty before retirement. With a DB plan, the employer sets up a trust and 

contributes money annually in amounts sufficient to pay a defined retirement benefit to 

each employee. The employee receives a fixed income stream after retirement contingent 

on his/her salary, years of employment, retirement age and other factors. The fund is set 

up and controlled by the employer and the individual employee accounts are not 

segregated. With a DC plan, contributions are paid into individual accounts by each 

employee and the employer may contribute an additional amount. At retirement, a lump 

sum amount equal to the current account value is available. Defined contribution plans 

are versatile. The retiree has the options of creating a wide variety of ways to draw down 
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the fund value including simple ad hoc withdrawals or more well-defined withdrawals of 

a certain percentage of the value per year. 

Since DB plans guarantee a fixed stream of cash flows until the death of the 

policy holder, DB plans have a significant exposure to longevity risk and this risk is born 

by the employer who has set up the DB plan and administers it. Additionally, the pool of 

people in the same DB plans usually have similar features, including age, industry, 

occupation and location. These same risk characteristics can exaggerate the longevity risk 

presented by DB plans. Additionally, life expectancy is different for different 

socioeconomic groups (Richards, et al., 2006).  

Besides longevity risk, DB plans expose the employer to investment risk. When 

the investment return does not reach the expected level, the DB pension plans must raise 

contributions to fund the gap. For new employees they may adjust the formula for 

determining the pension payments. DB plans are also exposed to inflation risk. If wage 

inflation outpaces investment returns, pension plans that have benefits linked to final 

salary will have to increase contributions to the pension fund to account for anticipated 

salary growth over the employees' work life.  

DC plans expose the employer to less longevity risk since the plan provides the 

lump sum to the employees upon retirement, and is not linked to the lifetime of the 

employees. DC plans also expose the employer to less investment risk, since the 

participants make their own choice of the funds for investment. The participants, not the 

employer have to manage longevity risk and investment risk by themselves. The risk is 

still there, the difference is who must manage it. 
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Longevity risk exists in DB and DC plans. In DB plans, the employer is at risk. In 

DC plans, the employee is at risk. Increased life expectancy increases the needed net 

present value of pension provisions. Because people are living longer, employers or 

employees have to increase contributions to pension funds, or postpone retirement. The 

life table and mortality assumptions need to be adjusted for actuarial evaluation and the 

setup of pension schemes. Future pension plans administration must consider the 

substantial increases in life expectancy. 

2.3.6 Reverse Mortgages 

A reverse mortgage or life mortgage is a loan available to seniors, and is used to 

release the home equity in a property as one lump sum or multiple payments. The 

homeowner's obligation to repay the loan is deferred until the owner dies, the home is 

sold. The benefits of the product include: The homeowner does not need to sell the house. 

The homeowner can use the product to hedge their longevity risk if they choose to 

receive the loan as a series of annuity payments. The homeowner can make the illiquid 

housing asset more accessible. From the provider's perspective, longevity risk, real estate 

price risk and interest rate are the major risks involved in the reverse mortgages. In the 

U.S. market, Home Equity Conversion Mortgage (HECM) program, Fannie Mae's Home 

Keeper program, and Financial Freedom's Cash Account Advantage are three major 

reverse mortgage programs. Collections (pools) of reverse mortgages can be bundled and 

securitized to produce assets. The structure of securitization for reverse mortgages is 

similar to that for a collateralized debt obligation (CDO). The valuation of the reverse 
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mortgage, its cash flows and timing, and its structured derivatives securitized asset all 

depend on using a quantitative model of the mortality rate and life expectancy. 

2.3.7 Life Settlements 

A life settlement is a financial transaction in which the owner of a life insurance 

policy sells an unneeded policy to a third party for more than its cash value and less than 

its face value. A life settlement is an alternative a policyholder has to either surrender or 

lapse this policy when the owner of the life insurance policy no longer needs or wants the 

policy. This is also an alternative when the policy is underperforming or the policy owner 

can no longer afford to pay the premiums. Investment banks have purchased hundreds of 

thousands of these life insurance policies and repackaged (securitized) them into bonds, 

then sold bonds to investors such as pension funds. The payment of the bond depends on 

the life expectancy of the members in the pool of the life insurance policies. "We 

estimate that life settlements, alone, generate surplus benefits in excess of $240 million 

annually for life insurance policyholders who have exercised their option to sell their 

policies at a competitive rate." (Doherty and Singer, 2002). Most purchasers of this type 

of contract are not in the primary business of trying to make profits from mortality. The 

cash flows from the life settlements clearly involve longevity risk while the insured lives. 

2.4 SUMMARY OF PRODUCTS FOR INSTITUTIONAL MORTALITY AND LONGEVITY RISK 

TRANSFERRING 

2.4.1 Mortality Bonds 

The Swiss Reinsurance company issued the first mortality risk contingent 

securitization in December 2003, the Swiss Re Mortality Catastrophe Bond. When the 
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bond covenants are triggered by a catastrophic evolution of death rates of a certain 

population, the investors incur a loss in principal and interest. The bond provides the 

investor higher yield than that in the usual bond market as a compensation for the 

additional mortality risk the bond purchaser takes. The bond was issued through a special 

purpose vehicle (SPV) called Vita Capital. This securitization enables the Swiss Re to 

take extreme catastrophe mortality risk off its balance sheet, such as the Japan tsunami 

disaster that killed thousands of policy holders. Then Swiss Reinsurance has capital freed 

up on that bond just when they needed it for claims. Similar products will be of interest to 

companies that self insure workers compensation. 

The bond had a maturity of three years, a principal of $400m, and a coupon rate 

of 135 basis points plus the LIBOR. The mortality index,   , that was the weighted 

average of mortality rates over five countries, males and females, and a range of ages. 

The principal would be repayable in full only if the mortality index does not exceed 1.3 

times the 2002 base level during any year of the bond's life, and is otherwise dependent 

on the realized values of the mortality index. The precise payment schedules are given by 

the following    functions: 
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Thus, if the mortality rate does not exceed 130% of the normal mortality defined 

at time 0 as   , then all coupons and principal are given. If mortality    does exceed 

130% of   , then principal repayment is lost; all is lost if the mortality is 150% above 

the declined level   . 

2.4.2 Longevity Bonds 

The European Investment Bank (EIB) announced a possible issue of the EIB/BNP 

Paribas Longevity Bond in November 2004, though the structurer/manager BNP Paribas. 

The bond was issued through a Bermuda-based reinsurer Partner Re. Partner Re 

contracted to make annual floating rate payments (equal to £50m ×    to the EIB based 

on the realized mortality experience of the population of English and Welsh males aged 

65 in 2003 (published by the U.K. Office for National Statistics). Partner Re would 

receive from the EIB annual fixed payments based on a set of mortality forecasts for this 

cohort. The mortality forecasts used for the first payments were based on the U.K. 

Government Actuary's Department 2002-based central projections of mortality, adjusted 

for Partner Re's own internal revisions to these forecasts. This arrangement was then 

supplemented by a cross currency swap (i.e., fixed-sterling-for-floating-euro) interest-rate 

swap between the EIB and BNP Paribas, since the EIB also wished to pay a floating rate 

in Euros. The bond had an initial value of £40 m, an initial coupon of £50 m, and a 

maturity of 25 years. The floating payment structure is         £50m ×    for 

                For lack of investor interest, the longevity bonds were not issued 

successfully. 
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2.4.3 Longevity Swaps 

There are two types of longevity swaps. Of interest here is a cash-flow swap that 

indemnifies one party and this type of swap is an over-the-counter transaction. An 

example of this is the q-forwards proposed by JP-Morgan. These were intended to be 

simple capital market instruments for transferring longevity risk and mortality risk. The 

q-forwards enable pension funds to hedge against increasing life expectancy of plan 

members and also enable life insurers to protect themselves against significant increases 

in the longevity of policyholders. Similar to other forward swaps, q-forwards are 

securities involving the exchange of a fixed rate payment for a floating or variable rate 

payment. In this case, the q-forward variable payment depends on the realized mortality 

of a population at some future date, whereas the fixed rate is dependent on a fixed 

mortality rate agreed at inception. The q-forwards form the basic building blocks from 

which many other complex securities can be constructed. The q-forwards provide a type 

of standardized contract which can help to create a liquid market. A set of q-forwards that 

settle based on the LifeMetrics Index could fulfill this role. Since the investors require a 

risk premium to take on longevity risk, the mortality forward rates at which q-forwards 

transact will be below the expected, or "best estimate" mortality rates. The other swap 

type is basis risk and may be over-the-counter or exchange based.  

A q-forward contract to hedge the mortality risk of a life insurer is that a life 

insurer pays fixed mortality rate to JP Morgan and JP Morgan pays realized mortality rate 

to the life insurer. A q-forward contract to hedge the mortality risk of a pension fund is 

that a pension fund pays realized mortality rate to JP Morgan and JP Morgan pays the 
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fixed rate to the pension fund. In this way, the pension fund who longs the longevity risk 

transfers the risk to the life insurer who shorts the longevity risk. 

Table 2 Comparison of Products 

Date Mortality Bonds Longevity Bonds Longevity Swap 

Example Swiss Re Mortality 

Catastrophe Bond 

 

EIB/BNP Paribas LB q-Forwards 

Purpose Hedge Mortality 

Risk for Issuers 

Hedge Longevity 

Risk for Holders 

Hedge Mortality Risk for Fixed 

Rate Payers 

Hedge Longevity Risk for Fixed 

Rate Receiver 

 

Participants Issuer:  

Life Insurance  

Reinsurance 

Holder: 

Pension 

Annuity Providers 

Fixed Rate Payers: 

Life Insurance or Reinsurance 

Fixed Rate Receivers: 

Pensions Annuity Providers 

 

Maturity Short Term 

 

Long Term Flexible Term 

Coupon High Yield 

 

Low Yield N/A 

Structure 

 

Complex Complex Simple 

Underwriting Fees High High Low 
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Table 3 Publicly Announced Longevity-Swap Transactions 

Date Hedger Size  

(m Pounds) 

Format Term Comments 

Jan 

2008 

Lucida 

(Insurer) 

Not disclosed Derivative 10 years Index-based longevity swap 

First capital markets longevity hedge 

 

July 

2008 

Canada Life 

(Insurer) 

500 Derivative 40 years Indemnity longevity swap 

Distributed to capital markets        

investors 

 

Feb 

2009 

Abbey Life 

(Insurer) 

1,500 Insurance Run-off Indemnity longevity swap 

Distributed to reinsurers 

 

Mar 

2009 

Aviva 

(Insurer) 

475 Derivative 10 years Collared indemnity swap 

Distributed to reinsurer and capital 

markets 

 

Jun  

2009 

Babcock  

International 

(Pension fund) 

1,200 Derivative 50 years Indemnity longevity swap 

First longevity hedge by a pension 

scheme 

 

July 

2009 

RSA 

(Pension fund) 

1,900 Insurance Run-off Indemnity longevity swap 

Distributed to reinsurers 

 

Dec 

2009 

Royal County of 

Berkshire 

(Pension fund) 

750 Insurance Run-off Indemnity longevity swap 

First longevity hedge by public 

sector 

 

Feb 

2010 

BMW UK 

(Pension fund) 

3,000 Insurance Run-off Indemnity longevity swap 

Distributed to reinsurers 

 

Jul 

2010 

British Airways 

(Pension fund) 

1,300 Insurance Run-off Indemnity longevity swap 

Distributed to reinsurers 

Source: McWilliam, Longevity Risk, 2011 
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Table 4 Comparison of customized and indexed longevity products 

 Customized 

(indemnity)hedge 

Index (parametric) hedge 

Longevity risk 

indemnification 

Perfect hedge 

No basis risk 

Customized for the 

portfolio of hedged lives 

 

Not perfect hedge 

With basis risk 

Expected to hedge around 85% of 

risk 

What is hedged Hedge of pension plan cash 

flow 

Hedge of liability value over life 

of swap 

 

Target For pensioner members  

 

For deferred members 

Data 

requirements 

Requires pension plan to 

provide data over the life of 

hedge 

Pension plan member data only 

required initially to structure 

hedge as payout of hedge is based 

on published index 

 

Other Bespoke contract tailored to 

structure of pension plan 

Standardized contract 

More attractive to capital markets 

investor base 

Promotes secondary liquidity 

Source: Revised from McWilliam, Longevity Risk, 2011 

 

The following section introduces the mortality models currently used for 

modeling mortality and longevity risk and how the anticipated mortality improvements 

are incorporated. The next section discusses the q-forward derivative instrument of J.P. 

Morgan and shows how to price the product in closed form by using a new double 

exponential jump diffusion model extension of the Lee-Carter mortality formula that 

allows for cohort and age effects. A final section discusses future research and further 

application to life settlement securities, reverse mortgages, and longevity sensitive 

products. 
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Chapter 3 Double Exponential Jump Diffusion Model 

Pricing of the CAT mortality bonds or life-settlement securities depends on the 

estimation and forecast of mortality rates or life expectancy, which are considerations 

involving mortality risk and longevity risk. The estimation and forecast of life expectancy 

or mortality rate also plays a crucial role in longevity/mortality risk management for 

pension funds or insurers. In this paper, we propose a stochastic model, based on the 

Brownian Motion process, plus an asymmetric jump diffusion process for the estimation 

and forecasting of mortality rates and life expectancy. 

Longevity jumps and mortality jumps should be incorporated in the modeling and 

securitization (Cox, Lin and Pedersen 2010), since the jumps are the critical sources of 

risk which pension funds and insurers should be more cognizant of (Zanjani, 2002). The 

mortality jumps (such as the 1918 flu) have a short-term intensified effect, while the 

longevity jumps (caused by the pharmaceutical or medical innovation) have long-term 

gentle effect. The different frequency and intensity of the mortality jumps and the 

longevity jumps explain the distribution skewness of the mortality time-series increment, 

which is important but not considered in previous mortality rate models. Considering the 

asymmetric jump phenomenon of the mortality time-series, our model adopts a 

compound Poisson-Double Exponential Jump Diffusion (DEJD) process to capture the 

longevity jumps and the mortality jumps, respectively. 

Very few studies address the modeling of mortality jumps for securitization. 

Biffis (2005), Bauer, Borger and Russ (2010) apply affine jump-diffusion process to 

model force of mortality in a continuous-time framework. Our model incorporates the 
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cohort effect, which captures the mortality time-series and adjusts it to fit different age 

groups. The model with cohort effect captures the feature of the historical mortality time-

series more accurately. Chen and Cox (2009) model the jump process with a compound 

Poisson normal jump diffusion process. Our model makes the contribution of applying 

the double exponential jump diffusion which differentiates the longevity jumps and the 

mortality jumps. This captures the distribution skewness of the mortality time-series 

increment and offers better fitness. Cox, Lin, and Pedersen (2010) propose a model to 

accommodate both longevity jumps and mortality jumps. Our model has fewer 

parameters, more concise specification, and can be easily parameterized and applied to 

securitization. 

Our model incorporates the advantages of the Lee-Carter mortality framework, 

which describes the mortality time-series and considers the cohort effect, making age-

specific adjustment for different age groups. This adjustment is critical for the model, 

since the mortality improvement and extreme positive or negative events (such as 

influenza pandemic) have different intensity levels in different age groups. In this way, 

the Lee-Carter model appropriately describes the three dimensional surface of the 

mortality rate with respect to time horizon and age group horizon. The Lee-Carter 

framework has been extended by Brouhns, Denuit and Vermunt (2002), Renshaw and 

Haberman (2003), Denuit, Devolder and Goderniaux (2007), Li and Chan (2007), Chen 

and Cox (2009), Lin and Cox (2005), Lin and Cox (2008). 

We test our model with historical data and make model fitness comparisons with 

previous models. The results clearly illustrate the advantage of our model in terms of fit. 
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In our application, we use the first CAT mortality bond, the Swiss Re Catastrophe 

Mortality Bond (2003) to calculate the implied risk premium, with two types of changing 

measure approaches. We implement our model to price the q-forward longevity risk 

derivative as an example, which illustrates the benefit of our model for providing a 

closed-form pricing solution for standard structure mortality linked securities. The q-

forward derivative, proposed by JP Morgan based on the LifeMetrics index, has the 

potential to be a future standardized contract which can help to create a liquid market. 

Beyond the q-forward, our model can provide closed-form pricing solutions to all the 

mortality-linked securities with cash flows that are linear functions of the mortality rate 

for each period. 

3.1 DATA DESCRIPTION 

The historical data come from HIST290 National Center for Health Statistics. We 

chose this because it is the same data used in Chen and Cox (2009). This allows us to 

compare results and model fit (which we do in section 4). We use the same data in order 

to facilitate the model fitness comparison in Section 4. The data lists death rates per 

100,000 populations for selected causes of death. Death rates are tabulated for age group 

(<1), (1-4), (5-14), (15-24), then every 10 years thereafter, to (75-84), and finally, the last 

group is (>85). The data includes both sexes and several race categories. Selected causes 

for death include major conditions such as heart disease, cancer, and stroke. Figure 5 

shows the mortality rate for different age groups and years. Figure 6 shows the 

comparison of the mortality rate for several sample age groups, including relatively older 

groups and younger groups. 
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Figure 5 1900-2004 Mortality Rates 

 

We can observe clearly two mortality rate trend properties from Figure 5 and 

Figure 6. In Figure 5, the downward trend indicates that the mortality rate follows a 

decreasing trend during 1900-2004, at all ages. For example, in the over 85 age group, 

the mortality rate decreases from 0.26 to 0.14, while in the younger age groups, such as 

15-24, the mortality rate decreases from 0.006 to 0.0008. The decreasing trend shows the 

improvement of the life times or longevity in all age groups. 

In Figure 6, the change in the mortality rate in the older-age groups is more 

significant than that in the younger-age groups with a steeper downward trend. For 

example, the mortality rate decreases 0.12 in the age group over 85. During the same time 

period, the mortality rate decreases only 0.0052 in the age group 15-24. The comparison 

of the steepness of the mortality surface shows that the improvement in longevity among 

the older-age group is more significant than that in the younger-age group. We can 
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observe that there is variability and dynamics in the mortality trends. Accordingly we 

shall use a stochastic model to capture the dynamics features. 

Figure 6 Comparison of the Age Group Mortality Rates   

    

3.2 MODEL FRAMEWORK AND REQUIREMENT 

The basic requirement of the mortality model is to capture the features described 

by the data. Various mortality rate models have been provided by previous research. The 

majority of models are based on the Lee-Carter one-factor model (Lee and Carter, 1992). 

These models extend the Lee-Carter model to a two-factor model (Blake, Cairns, and 

Dowd, 2006a), or incorporate a stochastic process in the model (Dahl 2004), or introduce 

the possibility of a jump process in the stochastic process to accommodate extreme 

outliers in the mortality time series (Cox, Lin, and Wang 2006; Chen and Cox 2008).  
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In the Lee-Carter framework, the mortality rate      denotes the mortality rate of the 

group whose age is x during the year t. It is decomposed into age-specific parameters   , 

   and mortality time-series   . 

                                                                                           (3) 

                                                                                       (4) 

 Here    represents the age group shift effect, and        ) is the general shape 

across the age of the mortality schedule, and    represents the age group's reaction 

effect to the mortality time-series   . In other words, the    profile tells us which group 

of mortality rates decline rapidly and which group of mortality rates decline slowly in 

response to temporal changes in mortality   , and      captures the age group's residual 

effect not reflected in the model. Lee and Carter (1992) suggest estimating the parameters 

in their model using a two-stage singular value decomposition (SVD) based on historical 

data for      to estimate the age-specific parameters   ,   , and to generate the 

mortality time-series   . 

To implement the SVD procedure, first, we need to normalize using a condition 

that the sum of    is equal to 0 and the sum of    is equal to 1. This enables the sum of 

   to be unity and distribute the    equally around 0. Then    must equal the average 

over time of          . 

                                                
 

 
         
 
                           (5) 

Furthermore, by equation (2),    must (or almost) equal the sum over age of 

(         -  ), since the sum of    has been chosen to be unity. This is not an exact 
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relation, however, since the error terms will not in general sum to 0 for a given age. Then, 

each    can be found by regressing, without a constant term, (         -  ) on    

separately for each age group x. 

In the second stage, we re-estimate the mortality time-series    iteratively, given 

the estimation of    and    in the first step. This enables the actual sum of death at 

time t (left-hand side) to equal the implied sum of deaths at time t (right-hand side). 

                                                                                   (6) 

where    is the actual sum of deaths at time t , and      is the number of members of 

population in age group x at time t. 

Implementing the SVD two-stage procedure with data on historical U.S. mortality 

rates during 1900-2004, we obtain the fitted   ,   , in Table 5, and the mortality time-

series    in Figure 7. The decreasing trend of mortality time-series    shows the 

improvement of mortality along the time as described previously. Figure 7 also shows the 

big jump in 1918 (which was caused by the flu pandemic) and other jumps around 1920, 

1943, etc. 
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Table 5 Fitted Value for Age-Specific Parameters     and    during 1900-2004 

Age Group       

<1 -3.4087 0.1455 

1-4 -6.2254 0.1960 

5-14 -7.1976 0.1492 

15-24 -6.2957 0.0994 

25-34 -5.9923 0.1044 

35-44 -5.4819 0.0855 

45-54 -4.7799 0.0608 

55-64 -4.0137 0.0468 

65-74 -3.2347 0.0426 

75-84 -2.4196 0.0409 

>85 -1.6119 0.0290 

Figure 7 The Mortality Time-Series    

    

Now, we need a model to capture the features of the shape, the trend and the jumps 

of the mortality time-series   . First, the model should incorporate a stochastic term in 

the description of the    time series, as this has proved to be better than using the model 

without the stochastic process, (Dahl 2004). Second, as shown in Figure 7,    includes 

both positive and negative values. Since geometric Brownian motion will not generate a 

negative value from the positive starting value, it does not fit the    process by itself. 
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However, Brownian motion can be selected to fit the    time series. Third, we can 

observe from Figure 7 that the jumps are transient, not permanent. For example, the 

sudden increase of mortality rate in 1918, caused by the flu, falls back to the normal 

condition after two years. 

Beyond the three points on the model specification listed above, we noted that, 

the jump phenomenon in mortality rates is two directional. In Figure 7, the positive jumps 

(the sudden increases in the mortality time-series) occur with higher-severity, while the 

negative jumps (the suddenly decreases in the mortality time-series) are of lower-severity 

and higher-frequency. Coughlan et al., 2007 also shows that there is a significant negative 

autocorrelation in mortality rates, so increase in mortality are often followed by increases 

in longevity. However, there is a definite downward trend in mortality with the jumps 

being asymmetric and of unequal frequency. Hence, the model that involves a jump 

process with a symmetric normal distribution for the size of the jump (Chen and Cox, 

2009) may not adequately capture the asymmetry of the mortality jump phenomenon. 

From biological and demographic perspectives, the positive jumps (mortality jumps) can 

be explained by sudden catastrophes (e.g., earthquake, tsunami, hurricane) or critical 

diseases, such as the extreme positive jump caused by flu in 1918. These positive jumps 

can be transitory (1918 flu) or more lasting (AIDS, antibiotic resistant strains of 

tuberculosis, etc.). The negative jumps (longevity jumps) are associated with multiple 

biological and health improvement causes. According to Johnson, Bengtson and Coleman 

(2005) increases in survival currently reflect a shift in the causes of death from infections 

to chronic degenerative diseases. Hence, the improvements in mortality due to health or 
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biological reasons affecting chronic diseases appear more frequently and are of a more 

moderate size over time. The health improvements due to improved medical treatment, 

for example, may be frequent in occurrence and small in impact, but they have gradually 

but significantly changed life expectancy. Illustrative of this, since 1960 longevity has 

increased 1-1.5 % per year due mainly to a 65% reduction in cardiovascular events in the 

age cohort over age 45 (Iacovino 2009). Again the survival jump effect could be lasting 

or transitory (e.g., a new drug which loses effectiveness). A large longevity jump could 

occur in the future if an effective treatment of coronary heart disease or cancer were 

found, as these two causes of death combined constitute more than half of all deaths 

among people over the age of 40 (Johnson, Bengtson and Coleman 2005 p. 109). 

Ultimately, once the jump (positive or negative) occurs, any lasting effect can be 

subsequently captured in the Gaussian process component of the model. Because the 

negative jumps are low severity and high frequency they are difficult to discern in the 

figure except possibly in a more negatively inclined series. 

The descriptive statistics of             show leptokurtic features. The 

skewness of      equals to -0.451. In other words, the      distribution is skewed to the 

left, and has a higher peak and two heavier tails than those of a normal distribution, 

which we can also observe in Figure 8. 
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Figure 8 Comparison of Actual      Distribution and Normal Distribution 

    

In Figure 8, the histogram represents the distribution of actual     , and, as can be 

seen,     cannot be fitted well by a normal distribution. Hence, the Brownian motion 

process alone cannot be used to describe the mortality time-series   . 

To incorporate the leptokurtic feature of the      distribution, the analysis here 

incorporates a double exponential jump diffusion (DEJD) model to capture both the 

positive jumps and negative jumps of the    process. Compared to Cox, Lin, Pedersen 

(2010), which also captures the positive jumps and negative jumps (the size of the jumps 

is normally distributed so there is symmetry in the distribution in Cox and Chen), our 

model has a concise specification and an easy approach for calibration. What is more, 

unlike Cox et al. (2008), our model has a closed-form solution for the forecast of the 

future mortality rate, which facilitates mortality securities pricing. 
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3.3 THE MODEL SPECIFICATION 

To capture the features of the mortality time-series   , and to account for the 

tractability and the calibration of the model, we set the model specification to 

describe      in the approximate continuous-time model of      as given below. 

The dynamics of the mortality time-series    is specified as 

                                                 
    
                        (7) 

where    is a standard Brownian motion,      is a Poisson process with rate λ, where 

λ describes the expected frequency of the jumps. The larger the λ, the more times jumps 

occur in the mortality time-series. Here    is a sequence of independent identically 

distributed (iid) nonnegative random variables,           has an double exponential 

distribution with the density 

                                     
               

                           (8) 

                              

The parameters   and   represent, respectively, the proportion of positive 

jumps and negative jumps among all jumps. Thus, pλ is the expected frequency of 

positive jumps and qλ is the expected frequency of negative jumps. The parameters    

and    describe the positive jump severity and the negative jump severity separately. 

Thus, Y|Y≥ 0 is exponentially distributed with mean   
  , while -Y|Y≤ 0 is 

exponentially distributed with mean   
  . The larger   , the smaller the positive jumps 

severity. Similarly, the larger    the smaller the negative jump in absolute value. In this 

way, the positive jumps and negative jumps are captured by similar distributions but with 
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different parameters, based on the asymmetry of jumps in the mortality time-series    

and the leptokurtic feature of    . 

The model specification with the double-exponential distribution has the 

advantage of mathematical tractability allowing a closed-form formula for the expected 

future mortality rate to be derived. Because of this closed-form solution, the DEJD model 

may provide a useful stochastic mortality model for internal company mortality 

simulation, as well as being useful in the capital market applications we discuss 

subsequently. The double-exponential distribution has also been widely implemented as a 

stock price jump-diffusion model, for which closed-form solutions for options and other 

securities are available (Kou, 2004). The closed-form solution of the expected future 

mortality rate is presented in equation (20). 

3.4 NUMERICAL SOLUTION 

3.4.1 Parameter Calibration 

The disentangling of jumps from the diffusion components is a serious difficulty 

in the calibration of the underlying processes. The increments of the underlying process 

are supposed to be captured by the diffusion process, with a few extreme increments 

captured by jumps. However, the addition of the jump process may yield the wrong 

calibrated parameters which leads to high frequency of jumps and small severity of 

jumps. The double-exponential jump diffusion model for     faces the same problem. A 

calibration method is needed to generate the right parameters of low frequency and large 

severity for jumps. Ait-Sahalia and Hansen (2004) demonstrate that maximum likelihood 

estimation (MLE) has advantages in disentangling jumps from diffusion. Meanwhile, the 
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double-exponential jump diffusion is a linear process with independent increments and an 

explicit transition density, which fortunately satisfies the requirement of a complete 

specification of the transition density for using MLE. Therefore, we choose the MLE 

method to calibrate parameters                 with the     time series. 

Let                denote the mortality time-series, at equally spaced times 

           By (6), the one period increments                is independent 

and identically distributed (iid). The unconditional density of one period increment f(r) is: 

                                         
 
        

                     
 
            

 
   

 
                      (9) 

where         
      

  
          

      

  
  and         is the conditional density for 

a one period increment, conditional on the given number of up and down jumps       

in the increment.  
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The log-likelihood given T equally spaced increment observations is 
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where        , and   
  

 
. Then we can calibrate the parameters 

               . 

After computation, we get                   ={0.029,0.035,0.71,0.75;-

0.20,0.31}, and                ={0.064,0.45;0.71,0.75;-0.20,0.31} and maximum 

likelihood value         . Here    and    describe the severity of positive jumps 

(mortality jumps) and negative jumps (longevity jumps), respectively. A larger   

represents a smaller severity. The fact that   = 0.71< 0.75=    verifies that the severity 

of positive jumps is larger than the severity of negative jumps, consistent with that 

observed in Figure 7. Here    and    describes the frequency of positive jumps and 

negative jumps, respectively. A larger λ represents a larger frequency. Since   = 

0.029<0.035=   , this verifies that the frequency of positive jumps is smaller than the 

frequency of negative jumps, consistent with that observed in Figure 7. 

3.4.2 Model Comparison 

Figure 9 shows how the DEJD model fits the actual increment of mortality 

rate     , by comparing the distribution generated by the DEJD model calibrated to 

historical data and the actual distribution of     . Comparing Figure 9 with Figure 8, we 

observe that the DEJD extension of the Lee-Carter model approximates the distribution 

of increment of mortality rate      much better than the commonly used Brownian 

motion extension. The mean of the distribution of DEJD and the Brownian motion is the 

same,                , however the standard deviation of the distribution of 
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DEJD (                   ) is much less than that for the Brownian Motion 

model. This is exactly the reason that the DEJD model is more appropriate to fit the 

actual distribution, which can be directly observed from the comparison of the two 

figures. The underlying reason is that the Lee-Carter model includes the outliers in the 

Brownian motion diffusion process, which causes the calibrated     to be larger. And 

the Brownian motion diffusion is appropriate to capture the normal distribution shape 

without a fat tail and a high peak, however this is not the case in this data. In our DEJD 

model, we include the outliers in the jump diffusion part, which enables the calibrated 

      to be smaller than     and improves the fit to the data. 

Figure 9 Comparison of Actual     Distribution and DEJD Distribution 

 

Next, the DEJD model is compared with both Lee-Carter Brownian motion model 

and the normal jump diffusion model (Chen and Cox, 2009). For model selection, we 

adopt the Bayesian Information Criterion (BIC) proposed by Schwarz (1978). Unlike the 
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significance test, BIC allows comparison of more than two models at the same time and 

does not require the alternatives to be nested. BIC is a "conservative" criterion since it 

heavily penalizes over parameterization (Ramezani and Zeng, 2007). 

Suppose the kth model   , has parameter vector   , where    consists of    

independent parameters to be estimated. Denote     as the MLE of   . Then, BIC for 

Model    is defined as: 

                                                                               (14) 

where m is the number of observations in data set C and             is the maximized 

likelihood function. With the BIC criterion, the best "fitting" model is the one with the 

smallest BIC value. Table 6 below gives the BIC model fit values for the three competing 

models. It uses the maximum likelihood function values provided in (Chen and Cox, 

2008). It can be observed that the DEJD model fits best2 

 

 

                                                 
2 The DEJD model fits the real series of 104 data points better than the other models in spite of being 

penalized by the BIC criterion for having more parameters. We do get the same ranking of the models by 

log likelihood fit as by BIC, even if we exclude the 1918 flu year from the data (which we do not think 

should be done). However, if the 1918 flu year is excluded and the series is made artificially smoother, then 

using the BIC criterion, the parameter penalty dominates and the ranking is simply according to the number 

of parameters in the model (Lee-Carter with two parameters, then Chen Cox with 5 parameters, then DEJD 

model with 6 parameters). 
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Table 6 Comparison of Model Fitness 

 Number of  

Parameters 

ln (likelihood) BIC 

Double Exponential Jump Diffusion Model (DEJD Model) 

 

6 -49.95 127.76 

Normal Jump Diffusion Model (Chen-Cox Model) 

 

5 -62.52 148.26 

No Jump Diffusion Model (Lee-Carter Model) 2 -94.27 197.82 

 

The underlying reasons that our DEJD model fits the data better are as follows. 

First, the outliers in the mortality time-series cause there to be fat tails and a high peak in 

the increment      distribution which rules out the normal distribution. The Lee-Carter 

model treats outliers the same as other points in the mortality time-series evolution 

process. As a result, the outliers enhance the variability of the process and cause 

overestimation of the standard deviation σ. Our DEJD model applies a compound Poisson 

double exponential jump diffusion process separately from the Brownian motion 

diffusion process. This avoids the problem of mismatching the fat tail and high peak with 

the normal distribution and hence provides a better fit. 

Second, the Chen-Cox model applies the normal jump diffusion model which is 

composed of a Brownian motion diffusion process and a normal jump diffusion process. 

This model also treats the outlier with a normal distribution. Actually, the positive outlier 

(or jump) and the negative outlier (or jump) are due to different biological and technical 

reasons. The positive outliers (for example, that caused by the 1918 flu pandemic) have 

short-term intensified effects, while the negative outliers (caused by pharmaceutical or 

medical innovation) have long-term gentle effects. The different frequency and intensity 

of the positive outliers and the negative outliers explain the skewness of the mortality 
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time-series increment, which is not appropriately described by the symmetric normal 

jump diffusion. 

The BIC comparison above shows the model with asymmetric jumps fits the 

mortality time-series     better than the Lee-Carter model or the Chen-Cox model. An 

important feature of the data is the 1918 flu epidemic. In our view, the flu is in the data, 

might recur, and should therefore be included in any model, especially one aimed toward 

financially hedging against such events in the future. In an alternative view, Lee Carter 

treated it as an outlier, essentially regarding it as a one of a kind event whose inclusion 

would result in misleading average forecasts. Additionally, Chen Cox (2010) and Li and 

Chan (2005, 2007), in order to reveal a smoother mortality trend, performed a systematic 

time-series outlier analysis for the mortality data in United States and Canada, and fit the 

adjusted outlier-free mortality series to the Lee--Carter model. In their data, U.S., 1900 to 

2000, they find seven outliers, which occurred in years 1916, 1918, 1921, 1928, 1936, 

1954, and 1975, respectively. Most of these outliers result from influenza epidemics 

according to their explanations, except for the data in 1954 and 1975. To explore the 

effect of such deletions on our model, we did another analysis where we deleted the 

outliers found by Li and Chan from the original mortality data, and re-estimated the 

mortality factor    . The parameters obtained were {0.01,0.05,0.92,0.85,-0.23,0.39}, and 

the ln(likelihood) value was {-47.62} with a BIC value of 123.1063. The maximum 

likelihood value is similar as the result treated by Chen Cox model and Lee Carter model. 

(Chen Cox 2010). When the jumps are treated as outliers and deleted from the trend, the 

parameters describing the arrival of the positive jump or negative jump converge to 0. 
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The parameters describing the Gaussian component (drift and volatility) converge to that 

in the Lee Carter model. 

However, almost surely catastrophic mortality event will occur again, the question 

is only when, and how can vulnerable entities (life insurers, pension funds, etc.) prepare 

for it and mitigate their financial exposure to this risk. For the purpose of this paper, the 

rationale for the interest in mortality and longevity risk is precisely to be able to handle 

such outliers as the 1918 flu pandemic. If, on the other hand, the purpose were to model 

mortality rates alone for aggregate smooth life table models, such as the goal of Lee- 

Carter, then their removal prior to parameter fitting might be justified. In our case if there 

were no possibility of jumps, especially large potentially bankrupting jumps in mortality 

or longevity rate, then there would be no interest in longevity or mortality derivatives to 

be introduced into the capital markets. It is precisely because of such jumps that the 

problem arises and hence we strongly feel that the inclusion of these outliers should be 

maintained. Having said that, without the 1918 outlier, as expected, the BIC improves 

since one is fitting a smoother series. Still, we feel that the outlier point needs to be 

included as a matter of principle. 

3.4.3 Implied Market Price of Risk 

Like other insurance products, such as annuities, the longevity risk contingent 

securities are priced in an incomplete capital market. Hence, the risk premium should be 

considered in pricing the issues, since it represents the price that pension funds or 

insurers are willing to pay to transfer longevity or mortality risk. In previous research 

papers, (Blake, Cairns, Dowd, MacMinn 2006), (Chen, Cox 2009), the Swiss Re 
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mortality catastrophe bond has been used to calculate the implied mortality risk premium, 

given its payment structure and issue price. 

    The Swiss Re Mortality Catastrophe Bond 

The Swiss Reinsurance company issued the first mortality risk contingent 

securitization in December 2003. If the bond is triggered by a catastrophic evolution of 

death rates of a certain population, the investors incur a loss in principal and interest. The 

bond provides the investors higher yield as compensation for the mortality risk they take. 

The bond was issued through a special purpose vehicle (SPV) called Vita Capital, which 

enabled Swiss Re to remove extreme catastrophic risk from its balance sheet. 

The bond had a maturity of three years, a principal of $400m, the coupon rate of 

135 basis points plus LIBOR rate. The mortality index,   , was a weighted average of 

mortality rates over five countries, males and females, and a range of ages. The principal 

was repayable in full only if the mortality index did not exceed 1.3 times the 2002 base 

level during any year of the bond's life. If mortality did exceed this threshold, the 

payment was dependent on the realized values of the mortality index. The precise 

payment schedules were given by the following   functions:     

    

                                                          

                           
 

         
  

where the function    specifies the amount of payment that is lost due to mortality 

experience, namely 
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      if  

        

                         
        

    (15)    

Risk-Neutral Pricing 

    Risk-neutral pricing was used by Milevsky and Promislow (2001) and by Blake, 

Cairns, and Dowd (2006a). The method is derived from financial economic theory that is 

applicable even in an incomplete market. If the overall market has no arbitrage, then there 

exists at least one risk-neutral measure Q which can be used for calculating fair prices. 

We apply the approach in Blake, Cairns, and Dowd (2006b), which assumes the market 

price of mortality risk is constant and estimates it from the Swiss Mortality Bond. As a 

more liquid mortality linked securities market develops, a more accurate market price of 

risk can be calculated based on the adequacy of deals and data. 

    The payoff of the longevity derivative instrument that we consider in this paper 

is dependent on the difference between the experienced and expected mortality (or 

equivalently, survival) rate. However, the mortality rate in our model for a fixed age is 

itself linearly dependent on the time series   , that we modeled using the DEJD. In an 

incomplete market, the risk neutral pricing will allow pricing of the derivative. Kou and 

Wang (2004) have discussed derivative pricing using the DEJD model for security prices, 

and they have derived the risk neutral measure for this stochastic process. Using their 

results, the DEJD model in the physical measure has a risk neutral DEJD model with 

parameters given below where the asterisk symbol * denotes that the parameter 

corresponds to the risk neutral measure: 
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    We may integrate (16) to obtain 

                                  
 

 
               

     
      

          (18) 

 According to Kou and Wang (2004) the characteristic function is 

                                                                        or  
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where 

               
 

 
          

 

 
         

    
 

  
   

 
    

 

  
   

       (20) 

Using    for θ in (19), the closed-form expression for the expected future 

mortality rate      is derived as  

                                               

                     
  

 

 
          

 

 
  
          

    
 

  
   

 
    

 

  
   

     (21) 

 Formula (20) can be used to calculate the expected future mortality rate directly 

with parameters {        
    

       }, which is much faster and more convenient than 

using simulation to project and average the paths of future mortality rates. This model is 

especially suitable for pricing the mortality linked securities whose cash flow each period 

is a linear function of the mortality rate (e.g., the q-forward). We will discuss the example 

of q-forward pricing in section 4.4. 
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We can derive the implied market price of risk   based on the actively traded 

mortality linked securities on the market whose fair price is already known, and then 

apply the same   to price the unknown mortality linked securities. In the previous 

research, the annuity price (Cox and Lin, 2006) or the mortality bond price (Chen and 

Cox, 2009), was used as the known traded price. In this paper, we use the Swiss Re 

mortality catastrophe bond to determine a known market price of mortality risk to enable 

us to calculate  , and then use this in our DEJD model to price the q-forward 

incorporating   as an implementation example of our DEJD model. For comparison 

purposes, we consider three possible models corresponding to the Brownian motion, the 

positive jump severity and the negative jump severity, along with       
    

  . Since the 

mortality linked securities are priced in an existing incomplete market, the value of   or 

the risk-neutral measure Q is not unique. Practically speaking we have only one mortality 

linked security to use (the Swiss Re Bond) but need to calculate three market prices of 

risk. Accordingly we use the process suggested by Blake, Cairns, and Dowd, (2006b), to 

estimate the set of   by sequentially changing one and fixing the rest. 

Consider the market prices of risk set              with        ; 

  
         and   

       . We can then estimate the components of   by 

changing only one and fixing the rest. The algorithm below is similar to the traditional 

procedure for calculating the market price of risk with Wang transform approach (Chen 

and Cox, 2009): 

Step 1. Based on the known 2003 mortality time-series, simulate 10,000 times the 

future mortality time-series      for 2004-2006, using the DEJD model (7) with the 
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calibrated parameter set                 ={0.064, 0.45; 0.71, 0.75; -0.20, 0.31}, and 

the initial assumed set                     , with the risk-neutral transform function. 

Step 2. Calculate the mortality rate      by the formula (4) and calculate the 

average    based on year 2000 standard population and corresponding weights. The year 

2000 standard population and corresponding weights is based on the technique notes of 

the NCHS report GMWK293R. The weights are 0.013818 for the (<1) age group, 

0.055317 for the (1--4) age group, 0.145565 for the (5--14) age group, 0.138646 for the 

(15--24) age group, 0.135573 for the (25--34) age group, 0.162613 for  the(35--44) age 

group, 0.134834 for the (45--54) age group, 0.087247 for the (55--64) age group, 

0.066037 for the (65--74) age group, 0.044842 for the (75--84) age group, and 0.015508 

for the (>85) age group. These are tabulated in Table 10. 

Step 3. Calculate the expected value of the principal payment in every period T  

by the formula,   
                                     

    
        , where    

is given by (15). The coupon payment in every period is calculated based on the par 

spread plus 135 basis points, the latter of which was obtained by reference to the risk 

premium of the Swiss Re Mortality Bond Contract. 

Step 4. Iteratively adjust the market price of risk set  , and repeat step.1-step.3 

until the discounted expected value of the coupon payment in 2004-2006 plus the 

principal payment in 2006 equals the face value of the mortality bond $400,000,000. 
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Table 7 Implied Market Prices of Risk by Risk-Neutral Approach 

 
 
  

 
  

 
 

6.15 0 0 

0 0.21 0 

0 0.18 0.18 

 

Wang Transform: 

We do not have efficiently traded underlying mortality index to create a 

replicating portfolio for pricing. In such an incomplete market situation, Wang (2002) 

develops a method for pricing risks which combines financial and insurance pricing 

theories. Wang's distorted method transforms the underlying distribution to enable the 

securities price to exactly equal the discounted expected values. Wang's transform is 

intuitive finance theory since it is in accordance with the capital asset pricing model 

(CAPM) for underlying assets and the Black-Scholes formula for options. Wang's 

transform is practical and can be easily applied in calculation. 

Given a random payment X and cumulative density function       under the 

measure P, then the Wang Transform is defined as that the "distorted" or transformed 

distribution   
     is determined by the market price of risk δ according to the equation 

                                           
                                       (22) 

where Φ(x) is the standard normal cdf, and δ is the implied market price of risk which 

reflects the level of market systematic unhedgeable risk. After the transform, the fair 

price of X, or the expectation of X under   
     should be the discounted expected value 

using the transformed distribution. 
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We can derive the implied market price of risk δ based on the actively traded 

mortality linked securities on the market whose fair price is already known, and then 

apply the same δ to price the unknown mortality linked securities. In the previous 

research, annuity (Cox and Lin, 2006) or the mortality bond (Chen and Cox, 2009), is 

applied as the known traded price. In this paper, we use Swiss Re mortality catastrophe 

bond as the known price to calculate δ, then to price the q-forward as an implementation 

example of our DEJD model. The set of implied market price of risk              is 

in correspondance to the Brownian motion, the positve jump scale and the negative jump 

scale,       
    

  . Since the mortality linked securities are priced in the incomplete 

market, the value of δ or the risk-neutral measure Q is not unique. We have only one 

mortality linked security but need to calculate four market prices of risk. Following 

(Cairns, Blake, and Dowd, 2006b), we can estimate set of δ by changing one and fixing 

the rest. 

Following is the traditional procedure for calculating the market price of risk 

(Chen and Cox, 2009): 

Step 1. Based on the known 2003 mortality indicator, simulate 10,000 times the 

future mortality indicator      for 2004-2006, using the DEJD model (7) with the 

calibrated parameter set                 ={0.064, 0.45; 0.71, 0.75; -0.20, 0.31}, and 

the initial assumed set             , with Wang Transform function. 

Step 2. Calculate the mortality rate      by the formula (4) and calculate the 

average    based on year 2000 standard population and corresponding weights. 
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Step 3. Calculate expected value of the principal payment in every period T by the 

formula,   
                                     

    
         ,    follows 

(15). The coupon payment in every period is calculated based on the par spread plus 

1.35% risk premium. 

Step 4. Adjust the market price of risk set δ, and repeat step.1-step.3 until the 

discounted expected value of the coupon payment in 2004-2006 plus the principal 

payment in 2006 equal the face value of the mortality bond $400,000,000. 

Table 8 Implied Market Prices of Risk by Wang Transform 

         

6.15 0 0 

0 1.82 0 

0 1.79 1.79 

 

The value of    and    are the same for the risk neutral approach and the wang 

transform, which are correspondance to the drift of the Brownian Motion. The value of 

(  ,   ) (  ,   ) are different since the approaches for the implied market price of risk 

are different. 

3.5 EXAMPLE: Q-FORWARD PRICING 

JP Morgan proposed q-forwards derivative contracts as simple capital markets 

instrument for transferring longevity and mortality risk. q-forwards enable pension funds 

to hedge against increasing life expectancy of plan members and life insurers to protect 

themselves against significant increases in the mortality of policyholders. Similar in 

structure to other forwards, q-forwards are securities involving the exchange of the 
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realized mortality of a population at some future date, in return for a fixed mortality rate 

agreed at inception. Theses q-forwards can provide the basic building blocks from which 

many other complex mortality/longevity risk securities can be constructed. A q-forward 

provides a type of standardized contract which could help to create a liquid longevity risk 

capital market. A set of q-forwards that settle based on the LifeMetrics Mortality Index 

(JP Morgan, 2007) could fulfill this role. Since the counterparty who is not exposed to the 

longevity risk requires a risk premium to take on longevity risk, the mortality forward 

rates at which q-forwards transact will be below the expected, or "best estimate" 

mortality rates The standard actuarial notation uses   for mortality rate, and this is how 

q-forward derivative is named. In our notation,   is denoted by  . 

 

Figure 10 Longevity Risk Hedge and Mortality Risk Hedge 

 

A q-forward type contract that can be used by a life insurer to hedge mortality risk 

occurs when the life insurer pays the fixed mortality rate to the investment bank and the 

investment bank pays the realized mortality rate to the life insurer. The life insurer 

receives the payment                                         , as shown in 

Table 9. When the realized mortality rate increases, the investment bank pays more (the 
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realized rate minus the fixed rate) to the life insurer which offsets the loss incurred by the 

life insurer due to the experienced increase in mortality. A q-forward type contract can 

also be used by a pension fund or by Social Security to hedge longevity risk. The pension 

fund pays the realized mortality rate to the investment bank and the investment bank pays 

the fixed rate to the pension fund. The pension fund receives the payment 

                                        . When the mortality decreases 

(longevity increases), the investment bank pays more (fixed rate minus realized rate) to 

the pension fund which can then use these funds to cover the loss incurred by the pension 

fund due to the experienced increase in longevity. In this way, pension funds that are long 

on longevity risk can transfer the risk to investors who are willing to take on this extra 

risk for the increased return they receive. Similarly, life insurers who are long on 

mortality risk can transfer the risk to investors who want to short the mortality risk3. Of 

course the pension fund and the life insurer are natural counterparties, and the investment 

bank can serve as a financial intermediary facilitating their mutual hedging as in Figure 

10. 

 

 

 

                                                 
3 Of course investors can take either side of the transaction, they do not need to go long or short as 

described above, only take the side they view as advantageous. 
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Table 9 Example of q-Forward Structure 

Notional Amount $ 50,000,000 

Trade Date 31 Dec. 2006 

Effective Date 31 Dec. 2006 

Maturity Date 31 Dec. 2016 

Reference Year 2015 

Fixed Rate        0.8765% (or 87.65 basis points) 

Fixed Rate Payer XYZ Investment Bank 

Fixed Amount Notional Amount × Fixed Rate × 100 

Reference Rate LifeMetrics Index 

Floating Amount Payer XYZ Pension or Annuity Provider 

Floating Amount Notional Amount × Reference Rate × 100 

Settlement Net settlement = Fixed amount - Floating amount 

Based on our DEJD model and the q-forwards product structure above, the fixed 

rate can be calculated with the closed-form formula (21) directly. 

           

 

                       

    

 

                    
  

 

 
          

   
 

 
  
          

    
 

  
   

 
    

 

  
   

      

In our context, the Fixed Rate        is represented as         , the expected 

future mortality rate in the risk neutral measure with    being a weight associated with 

the age category. These weights are given in Table 10. 
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 Table 10 Parameters for the Closed-Form Solution of the q-Forward4 

Age-specific 

Parameters 

          Other  

Parameters 

Parameters 

Value 

<1 0.013818 -3.4087 0.1455     -10.302 

1-4 0.055317 -6.2254 0.1960    10 

5-14 0.145565 -7.1976 0.1492     -0.20 

15-24 0.138646 -6.2957 0.0994     0.31 

25-34 0.135573 -5.9923 0.1044     0.029 

35-44 0.162613 -5.4819 0.0855     -1.25 

45-54 0.134834 -4.7799 0.0608     0.035 

55-64 0.087247 -4.0137 0.0468    
  0.89 

65-74 0.066037 -3.2347 0.0426     0.065 

75-84 0.044842 -2.4196 0.0409    
  0.93 

>85 0.015508 -1.6119 0.0290    

The fixed rate or equivalently the mortality forward rate quoted by an investment 

bank would be formed using a combination of (i). best estimate mortality projection, (ii). 

a risk premium, and (iii). mid-to-bid spread (half of the ask-bid spread). 

The best estimate of mortality will depend on the model used, e.g., the Lee-Carter 

model, and so may be biased if the model is not the most appropriate one. The risk 

premium must also be appropriate for the market and based on transactions there. 

Unfortunately to date, there are very few transactions involving mortality based 

derivatives and so the risk premium calculation in this market is currently problematic. 

The calculation presented here uses the well known risk neutral valuation 

approach with adjustments for mortality and longevity jumps. The jump processes play a 

role in fitting the data and in estimating the risk premium. The mortality forward rate 

                                                 
4 We apply the risk-neutral measure change on the positive jump severity   

  and negative jump 

severity   
 . 
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flows from the closed-form solution. For the U.S. data used here, the fixed rate 10 year q-

forward contract is priced at 0.8765% (or 87.65 basis points). This DEJD pricing may 

differ from that of the Lee-Carter or Chen-Cox models. 

The Lee-Carter model, the Chen-Cox model and our DEJD model will naturally 

yield different values for the best estimate mortality projection. Not incorporating the 

asymmetric jump effect will make a difference in the calculated expected mortality rate 

that enters into the determination of the fixed rate payment component of the swap in 

Figure 10. Using the same data, whole age groups, and both sexes in the reference year 

for the U.S. national population, the result for the best estimate mortality projection for q-

forward fixed rate is 0.8583% using the Lee-Carter model, 0.8594% using the Chen-Cox 

model, and 0.8765% using the DEJD model. Thus, the DEJD model will yield a larger 

expected fixed payment affecting the size of the experienced swap. 

The Lee-Carter model captures the significant positive jump (1918 flu) and 

moderate negative jump in the baseline Brownian motion process, which caused a larger 

standard deviation and a positively biased mean for the baseline Brownian motion 

process. If we set the Lee-Carter model as the benchmark and compare the Chen-Cox 

model and the DEJD models, we conclude the following. 

Compared to the Lee-Carter model, the Chen-Cox model considers the significant 

positive jump and moderate negative jump in the normal jump process, not in the 

baseline Brownian motion process. This reduces the standard deviation and the mean in 

the baseline Brownian motion process. However, in the projection of future mortality 

rates, the jumps are assumed to occur symmetrically in the jump diffusion model of the 
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Chen-Cox model, so the overall jump effects offset each other (positive and negative). 

The jump diffusion doesn't affect the mean of the Brownian motion process by very 

much, so the pricing of the fixed rate is not much different from that obtained with the 

Lee-Carter model. 

Compared to the Lee-Carter model, our DEJD model considers the possibility of 

both positive jumps and negative jumps in the jump diffusion process, not in the baseline 

Brownian motion process. This also reduces the standard deviation and the mean in 

comparison with the baseline Brownian motion process. The difference of the DEJD 

model from the Chen-Cox model is that, in the projection of the future mortality rate, the 

jumps in the DEJD model are assumed to occur asymmetrically following the historical 

rule of infrequent significant positive jumps and more frequent moderate negative jumps. 

In this way, the overall jump effect adds a positive increment to the mean of Brownian 

motion process, which causes the pricing of the fixed rate to be higher than that obtained 

with the Lee-Carter model. 

Some final comments about the q-forward prices developed in this paper are in 

order. A pricing difference in the q-forward also can arise from the use of a different 

implied market price of risk. Due to the lack of a sufficient number of mortality securities 

in the market, the implied market price of risk used in this article in conjunction with our 

model was estimated using only one product, i.e., the Swiss Re mortality catastrophe 

bond. Applying a different estimated implied market price of risk in the formula will 

cause a difference in the quoted q-forward fixed rate. Also, in realistic deals, the mid-bid 
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spread (defined as the half of the bid-ask spread), and other factors including judgment 

calls can also cause a difference in the quoted fixed rate of q-forward. 

3.6 CONCLUSION 

This paper proposed a quantitative model to price mortality-linked securities, and 

provided a possible approach to measuring and managing longevity/mortality risk. 

Marked improvement in life expectancy has attracted public attention to the financial 

consequences of longevity risk on pension plans, long term care insurance, and Social 

Security solvency. Longevity risk can also seriously affect the asset and liability balance 

of the pension fund and annuity providers. On the other side of the longevity/mortality 

market, life insurers have begun to show increased concern about increased mortality risk 

caused, for example, by sudden influenza or other natural or man-made catastrophic 

sources. A series of mortality linked securities, e.g. longevity bond, mortality bond, and 

other types of securities have been issued to manage and transfer the risk. Additionally, 

the recent market involving life settlement securitization whose pricing depends on 

modeling the life expectancy of insurance policy holders has boomed. Hence, modeling 

and pricing mortality linked securities is crucial to risk management, product innovation 

and formation of a liquid intermediate market. 

This paper proposed a stochastic mortality model to capture the observed feature 

of the historical mortality rate process, and used this model to price mortality linked 

securities. The baseline component of our model incorporates the advantages of the Lee-

Carter framework, which describes the main trend and regular dynamics of historical 

mortality rate and is able to adjust for the cohort effect. The jump diffusion component in 
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our model applies the compound Poisson-double exponential jump diffusion to extend 

the Lee Carter model so as to describe longevity jumps (negative jumps) and mortality 

jumps (positive jumps) separately. Our model accommodates the different features of 

longevity jumps and mortality jumps. Hence the model fits the mortality time-series 

increment distribution much better than the previous models and explains the distribution 

skewness effect. In addition, our proposed model has an advantage of mathematical 

tractability and the ability to obtain a closed-form solution for the standard securities, like 

the q-forward contract, whose price depends on the expected future mortality rate. Since 

the DEJD model has the concise specification and closed-form density function, the 

likelihood function for the parameters can be easily expressed. In this way, the small 

number of parameters and concise likelihood function facilitates the calibration and 

application of the model in practice. 

We calibrated our model with the historical mortality rate data 1900-2004 from 

National Center for Health Statistics and we compared the prices of the q-forward fixed 

rate, calculated by the Lee-Carter model, the Chen-Cox model and our DEJD model. We 

found that our mortality model fits this data better and that the q-forward fixed rate in the 

contracted swap used for hedging longevity risk is higher from our model. 

As a caveat, however, should note that we use only 104 years of recent data, and 

the last 104 years may not be the same as the next 104 year (technological innovations 

are occurring more rapidly now than in the past). Moreover, 104 years may not be 

adequate for modeling certain low frequency events. Can a 1918 flu epidemic scale event 

be expected once every 100 years or once every 200 years? Also, the fact that large 
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longevity jumps have not occurred within this data set does not mean they have not 

occurred in the past (the acceptance of the germ theory of disease prior to this data set, 

for example) or that they will not occur in the future. Cox, Lin and Pedersen (2010) note 

that some experts conjecture that we may experience extreme events of both types in the 

future. As with all actuarial modeling, have to accept that there is a real risk that the 

coefficients we estimate may prove to be incorrect if the past data is not reflective of the 

future. Model risk is always an actuarial issue, and our mortality model is no exception. 

For the creation of capital market financial instruments to hedge longevity risk such as in 

Figure 10, however, the model risk does not affect the hedger (the pension fund's hedge 

still works and the life insurer's hedge still works), and the investment bank intermediary 

is protected as long as they did not take a long or short position. Thus, while model risk is 

an important concern as far as mortality modeling is concerned, it is of less concern in the 

dual hedging context of this paper. 
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Chapter 4 Longevity Risk in Life Settlement Products Pricing 

4.1 INTRODUCTION 

While the effect of longevity risk is traditionally thought of in terms of its impact 

on pensions, social security systems and corporate defined benefit plan solvency, there is 

another market that is vulnerable to longevity risk, perhaps more than the above, namely 

the life settlement (and securitization) market. A life settlement is a financial arrangement 

whereby the third party (or investor) purchases a life insurance policy from the person 

who originally purchased the life insurance policy. This third party pays the insured an 

amount greater than the cash surrender value of the policy -- in effect, the trade-in value 

of the policy as determined by the originating insurance company5 -- but less than the 

face value (or the death benefit). They do this in exchange for the right to collect the 

death benefit upon the death of the insured. The investor also agrees to make the future 

life insurance premium payments until the death of the insured. It can be a win-win 

situation, as the investor can obtain a return on their initial investment and premium 

payments once the death benefit becomes payable (assuming the insured does not live too 

much longer than expected when setting the purchase price) and the owner of the policy 

obtains more money than they would if they had surrendered the policy for its cash value 

or allowed it to lapse. The win-win situation is for the contract participants (the insured 

and the life settlement investor). Other third parties may have losses due to this 

transaction, however. The insurer, for example, loses the ability to recapture the policy 

                                                 
5 The cash value of the policy is also known as the non-forfeiture value since this is the least amount the 

insurer can pay to a surrendering policy holder. Formula for calculating the cash value can be found in 

Bowers et al (1997), Actuarial Mathematics. 
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value upon lapse by the policy owner. The losses of recaptured lapse value by the insurer 

may also cause the insurer to have to raise premiums to future customers if the recaptured 

lapse value becomes significant due to a significant growth in life settlements (unless the 

insurer itself enters the life settlement market to capture the otherwise lost profit, or to 

use a life settlement portfolio as a natural hedge against longevity risk for their own life 

insurance book of business). This market has grown. According to Annin, DeMars, and 

Morrow (2010 p. 1); "It is estimated that in the past five years alone, more than $40 

billion of the face value has been sold in the life settlement market."  

In this market, there is a vulnerability to longevity risk as increased longevity 

implies longer periods of investors paying premiums prior to collecting their money, and 

hence the potential for losing money or going bankruptcy. The rise and fall of the viatical 

settlement market, where the life settlement market arose, illustrates these dangers and 

susceptibility to increases in longevity. 

The practice of buying and selling of "viatical settlements" began in the late 

1980s when the AIDS epidemic presented a devastating medical shock to thousands of 

previously healthy Americans (Stone and Zissu 2006). Due to the extremely high medical 

costs associated with treatments for this disease and the difficulty for too-ill-to-work HIV 

positive individuals to sustain an active income, many AIDS patients and their families 

became financially vulnerable. Thus, a market developed to relieve some of the monetary 

stress of AIDS victims. 

  Seen as a new opportunity, investors (predominately entrepreneurs) stepped in 

and offered to buy AIDS patients' life insurance policies for a price less than their face 
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value. The investors would take over the premium payments---also a burden the 

terminally ill found too heavy to carry with deteriorating health---and become the 

beneficiary of the policy when a certain "waiting period" had passed. Then, once the 

insured died, the investor would obtain the proceeds of the life insurance policy. Since 

these patients were given very little time left to live (typically two to three years), the 

investor would not have to pay many premiums, and after subtracting the initial payment 

to the insured and subsequent premiums from the final payout of the life insurance 

policy, the investor would theoretically end up with a large profit (Quinn 2008). 

  As the success of viatical settlement investments went public, the market for such 

investments grew and companies were created that specialized in fulfilling investors' 

desires for viatical settlements. It was not much later, however, that this new market 

collapsed due to a change in the longevity risk. At the 1996 International AIDS 

Conference in Vancouver, papers were presented that gave evidence of a new drug 

capable of substantially reducing, perhaps even to zero, the level of HIV in its infectees. 

This research had a twofold impact: On one hand, it offered new hope for increased life 

to the AIDS infected community but, on the other hand, this sudden increase in longevity 

pronounced a death sentence to firms that had been surviving off profits from the sale of 

viatical settlements. The second effect is evident in the collapsed value of the viatical 

settlement firm, Dignity Partner, and the significant decrease in prices being offered to 

AIDS victims for their insurance policies. As evidence grew that policies might take a 

substantially longer time to mature, their value plummeted (Stone and Zissu 2006). 
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As the viatical settlements market collapsed, investment companies, in order to 

keep the life settlement backed securities market alive, expanded their life insurance 

purchases to those belonging to the elderly. Companies selected elderly people with 

estimated low life expectancies because a low life expectancy meant a greater possibility 

of profiting sooner from the purchase of life insurance policies. Today, this life 

settlement market has a growing potential as the baby boomers are now entering old age. 

As the population ages, funding retirement over the last few years of life becomes an 

escalating concern. Life settlements for senior citizens have become popular, partly due 

to the extensive marketing pursued by life settlement companies. The senior market now 

comprises about 80% of the entire viatical and life settlements industry (ViaticalWeb 

2011). Moreover this market may continue to grow. Due to gradual increases in 

technology and beneficial medical treatment in the United States, the number of 

centenarians (individuals over the age of 100) has increased from 15,000 in 1980 to 

roughly 72,000 in 2000 and the number is predicted by the Social Security Advisory 

Board to reach to 4.2 million, (or approximately 1% of the projected total population) by 

2050 (Scotti and Effenberger, 2007). 

The life settlement market has developed at a rapid pace in its early years. Two 

recent surveys estimate that the available market size will grow from $13 billion in 2004 

to $161 billion over the next few decades through a combination of population aging, 

increasing life expectancy and increasing market penetration. Life settlement has 

attracted a broad range of attention, including dominant investment banks and major 

reinsurance companies as intermediaries, the Securities and Exchange Commission 
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(SEC), the National Association of Insurance Commissioners (NAIC) and National 

Conference of Insurance Legislators (NCOIL), as well as, state regulators and other 

rating agents and life expectancy underwriters. 

However, just as advancements in treating AIDS led the viatical settlement 

market to succumb to longevity risk, the substantial increases in longevity during the 20th 

and 21st centuries can pose substantial risks to the current life settlement market. A large 

longevity jump could occur in the future if an effective treatment of coronary heart 

disease or cancer is found, as these two causes of death combined constitute more than 

half of all deaths among people over the age of 40 (Johnson, Bengtson and Coleman 2005 

p. 109). Thus, the modeling of longevity risk is of potentially more important in the life 

settlements market than it is in the pension market because the life settlement market is 

based (and funded) on shorter horizons.  

Very little literature has discussed the issue of determining a pricing model for 

life settlement portfolios subject to jump discontinuities between mortality and longevity. 

The main factor in the life settlement securities pricing currently is the estimation of the 

life expectancy of the insured. Incorporating longevity risk into the pricing structure 

when evaluating life settlement securities turns out to be more complicated. 

In this paper, I propose a Whole Life Time Distribution Dynamic Pricing 

(WLTDDP) method to evaluate the life settlement products. The method determines the 

life expectancy and generates a life table for different birth year cohorts with potential 

jump discontinuities in both mortality and in longevity rates. The method incorporates the 

updated information on the individual insured’s life expectancy (obtained from an expert 
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medical underwriter), which is a critical factor that enters into the evaluation of the life 

settlement products.  

In past life settlement transactions, the life expectancy of the insured was 

considered as the most critical (often the only) variable used in determining the sales 

price of the policy as this represents the expected life length of the insured when he or 

she sells the life insurance policy to the third party as a life settlement (the time to 

payment for the investor). Essentially, if T represents the (random) future life of the 

insured, then the life expectancy is       .  This life expectancy is computed using 

an appropriate life table, or in the case of life settlements, is usually given by a medical 

expert based on their examination of the current medical record of the insured.  If the 

discount factor is           where   denotes the required rate of return, then the 

current value of the pay off of a life insurance policy with a benefit of $B is traditionally 

calculated as    . However, this is a systematically biased assessment of the value of 

the payoff and leads to a systematically inaccurate evaluation of the value of the life 

settlement product.  

According to Jensen’s inequality, if f is any convex function, and X is any random 

variable, then                . In the current situation we             )) 

with      to observe      , so   is convex. According to Jensen’s inequality, if 

     is convex, and     denotes the life length of the insured, then             

which means the expected value of the discounted benefit is always greater than the 

benefit discounted by the expected time to death. Thus the traditional evaluation of the 

present value of the life insurance payoff using the life expectation alone as in        
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systematically underestimates the true expected payoff of       . This results in a 

negatively biased price to the insured policyholder. Note that this bias may be 

intentionally used as a mechanism to increase profitability by the purchaser or to hedge 

against adverse selection or longevity risk. While this bias in always present regardless of 

the probability distribution used for  , the appropriate distribution is also necessary for a 

correct assessment of the actual expected net present value of the benefit payment in the 

life settlement, namely       . 

In the past, life expectancy was considered in the pricing as a solo variable 

representing the expected life time of the insured when he sells his life insurance policy 

to the third party as a life settlement. However, this is an inaccurate approach to evaluate 

the life settlement product. According to Jensen’s inequality, the value of life settlement 

products are contingent on the expected value of the functions of life time, which is 

always larger than the value of the function of the expected life time (or life expectancy). 

So, the previous pricing method based on life expectancy has a negative bias for pricing 

the life settlement products. In order to solve this problem, we need to generate the whole 

distribution for the life time.   

The advantage of Whole Life Time Distribution Dynamic Pricing (WLTDDP) 

method is that it generates a complete life table with the whole distribution of life time 

instead of the expected life time (life expectancy). In this way, the method provides a 

more accurate projection and evaluation for the life settlement products, through 

incorporating more statistical information of the insured’s future life time. The statistical 

methodology is based on information theory for adjusting mortality tables to obtain 
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exactly some known individual characteristics while obtaining a table that is as close as 

possible to a standard one.  

Another advantage of WLTDDP is that it incorporates the effect of the dynamic 

longevity risk through the original life table which is generated from the Double 

Exponential Jump Diffusion model (DEJD) (Deng, Brockett and MacMinn 2010). The 

DEJD model incorporates the longevity jump (caused by medical improvement, etc), 

mortality jump (caused by pandemic influenza, etc) and dynamic main trend of the 

mortality rate which provide a better explanation and fit to the historical mortality rate 

data. The longevity jump or mortality jump can seriously distort the features of the 

mortality rate trend and affect the evaluation of the life settlement products which is 

contingent on the mortality rate and life expectancy. This model is an extension of the 

Lee-Carter Mortality model which differentiates age and cohort effects. It incorporates a 

Brownian motion process for smooth mortality changes plus an asymmetric jump 

diffusion process allowing for jumps up or down in the mortality rate in the critical 

temporal mortality process. This model is used for the estimation and forecasting of 

mortality rates and life expectancy and ultimately the pricing of the individual life 

settlement. The life table projected by the DEJD model incorporates the features of the 

historical mortality trend and the longevity risk and it provides a more accurate base for 

pricing life settlement products. 

The life settlements literature does not allow jumps in longevity (such as those 

that destroyed the viatical settlements market), so this paper will be the first to allow for 

such jumps while still having uncertainty in the possibility of such jumps occurring. 
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Additionally, jumps in mortality (as opposed to longevity) may also occur (such as an 

infectious disease which differentially impacts vulnerable elderly populations) and this is 

allowed when using the DEJD model for pricing. Increased mortality would cause an 

increase in the value of the life settlement to the investor. Currently, jump changes that 

increase or decrease the expected mortality rate are not incorporated in previous models. 

Jumps are important sources of return uncertainty in life settlement investments, which is 

the reason they are used in my model. Finally, as population longevity increases, 

especially among the very old, the usefulness to individuals of using life settlements to 

obtain additional money in their old age could attract more individuals and proper pricing 

using the DEJD model may have a social benefit, as well as, the more rational pricing 

developed here. 

4.2 DESCRIPTION OF THE LIFE SETTLEMENT MARKET 

The life settlement market developed rapidly in its early years. The face amount 

of life insurance settled was estimated at $10 billion at 2005, and this continued to grow 

to $12 billion in 2007. Similar to other financial product markets, the life settlement 

market experienced a contraction during 2008 and the face amount was estimated at 

$11.7 billion in 2008. (Conning Research, Oct. 8, 2008, Life settlements: New challenges 

to growth.) Two recent surveys have estimated that the available market size will grow 

from $13 billion in 2004 to $161 billion over the next few decades, through a 

combination of population aging, increasing life expectancy and increasing market 

penetration of life settlement options available to policy holders (Bernstein Research 

2005, 2006). Life settlement as an investment asset class has attracted a broad range of 
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attention, including dominant investment banks and major reinsurance companies as 

intermediaries, the Securities and Exchange Commission (SEC), National Association of 

Insurance Commissioners (NAIC) and National Conference of Insurance Legislators 

(NCOIL) as regulators, and other rating agents and life expectancy underwriters as 

participant information suppliers. 

Before the life settlement market emerged, if a policy owner no longer wanted, 

needed, or could not afford to pay the premiums for a life insurance policy they had 

limited choices.  They could cash out a policy by surrendering the policy to the 

insurance company to receive the surrender value or they could simply stop making 

premium payments and allow the policy to lapse. In most cases, the policy would be 

worth considerably more than the surrender value making it an unattractive option. The 

surrender value is based on the commissioner’s standard ordinary (CSO) mortality tables, 

in force at the time the policy was issued and usually many years prior to the decision to 

surrender. These are smooth mortality tables used for conservative non-forfeiture value 

calculations and do not anticipate health changes in individuals but only in the aggregate 

group and are the basis for the table construction. Later on, after health changes, another 

mortality table may more accurately reflect the anticipated mortality probabilities of an 

individual insured. The cash value calculation is incorporated as part of the insurance 

contract and is not negotiable.  Lapsing the policy forfeits (or slowly runs out) the cash 

value in most cases.  Under either choice scenario, the extra value in an unwanted or 

unneeded policy was relinquished back to the life insurance company who issued the 

policy and not captured by the insured.  
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A life settlement provides a secondary financial market for this contingent claims 

contract producing an alternative option to the policy holder other than the surrender or 

lapse of a policy. In this way, the policy holder can gain the extra value inherent in the 

policy instead of giving it back to the insurer. When the owner of a life insurance policy 

no longer needs or wants the policy, the policy is underperforming or the he can no 

longer afford to pay the premiums, he should have the right to resell the policy to the 

third party for the highest payment. 

Several market intermediaries play a role in the accomplishment of the life 

settlement, including insured individuals (or policy owners), producers (financial 

advisors or insurance agents), settlement brokers (insurance agents), life expectancy 

underwriters (who evaluate the life expectancy of the underlying insured life at the time 

of sale), providers (parties acquiring the policy and paying the insured for the right to 

claim the life insurance benefits), and investors (who either bundle collections of life 

settlements and securitize them for resale, or keep them for investment purposes as a new 

asset class in their own portfolio). The majority of investors in today's life settlement 

market are large institutional investors seeking to acquire large pools of policies. Retail 

investors also participate in the life settlement market, generally by purchasing fractional 

interests in settled policies. To the investor, the life settlement portfolio provides an 

essentially zero-beta asset which can help diversify a larger portfolio of financial market 

sensitive assets6. 

                                                 
6 It can also be used as a zero beta asset for valuation of portfolios in a Black type Capital Asset Portfolio 

Model instead of the Market portfolio which has well known identifiably problems since Roll’s criticism of 

the CAPM. (Black, et al., 1972),(Roll, R., 1977). 
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Most insured policy holders participating in the life settlement market are seniors 

with a life expectancy of more than two years. The process or procedures involved in the 

life settlement transaction transpire as follows: 

1. Insured individuals or policy owners initiate the process to contact a producer (usually 

financial advisors or insurance agents). Sometimes the producer contacts the insured 

because they know the insured has a need for the sale of their life insurance policy. 

2. The producer contacts one (or usually more than one) life settlement broker with a 

license to do business in life settlements in the policy holders’ state of residence 

(insurance is a regulated industry). 

3. The settlement broker(s) collects the medical information concerning the current health 

status of the policy holder and “settles” the policy by contacting life expectancy 

underwriters. 

4. The contacted life expectancy underwriters are responsible for preparing a life 

expectancy assessment and evaluating the mortality risk of the insured based on the 

current health information provided by the settlement broker. 

5. Providers review the data on policy terms, life expectancy, premium amounts, and bid 

on the amount they would be willing to pay the insured policy owner to take over 

premium payments in return for collecting the ultimate life insurance benefit upon the 

death of the insured.  This bid is based on supplied information and settlement 

applications prepared by settlement brokers. 

6. The existing insured elects to either hold (not sell on the secondary market) or to sell 

their policy.  This can then be held in a portfolio or resold into a life settlement 
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securitization issue which expands the asset class to the broader class of investors with 

interests in life settlements. 

Pricing of the life settlement securities depends on the estimation and forecast of 

mortality rates or life expectancy, which are considerations involving mortality risk and 

longevity risk. In this paper, I apply the DEJD stochastic mortality model (Deng, et al, 

2010) to model mortality underlying the life settlement securities. The model is based on 

the Brownian motion process, plus an asymmetric jump diffusion process for the 

estimation and forecasting of mortality rates and life expectancy. 

4.3 THE STOCHASTIC MORTALITY MODEL SPECIFICATION 

To capture the features of the mortality time-series    and to account for the 

tractability and the calibration of the model, we set the model specification to describe  

    in the approximate continuous-time model of      as given below. 

The dynamics of the mortality time-series     is specified as: 

                       

    

   

 

where    is a standard Brownian motion,      is a Poisson process with rate  , where 

  describes the expected frequency of the jumps. The larger the  , the more times jumps 

occur in the mortality time-series. Here    is a sequence of independent identically 

distributed (   ) nonnegative random variables,           has a double exponential 

distribution with the density: 
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The parameters   and   represent respectively, the proportion of positive jumps 

and negative jumps among all jumps. Thus,    is the expected frequency of positive 

jumps and    is the expected frequency of negative jumps. The parameters    and    

describe the positive jump size or severity and the negative jump size or severity 

respectively. Thus,       is exponentially distributed with mean   
  , while -Y|Y≤

0 is exponentially distributed with mean   
  . The larger   , the smaller the positive 

jump severity. Similarly, the larger    the smaller the negative jump in absolute value. 

In this way, the positive jumps and negative jumps are captured by similar distributions 

but with different parameters based on the asymmetry of jumps in the mortality time-

series    and the leptokurtic feature of    . 

The model specification with the double-exponential distribution has the advantage 

of mathematical tractability allowing a closed-form formula for the expected future 

mortality rate to be derived. Because of this closed form solution, the DEJD model may 

provide a useful stochastic mortality model for internal company mortality simulation, as 

well as, being useful in the capital market applications I discuss subsequently. The 

double-exponential distribution also has been widely implemented as a stock price jump-

diffusion model, for which closed-form solutions for options and other securities are 

available (Kou, 2004) (Deng, Brockett and MacMinn 2010). In these papers, the closed-

form solution for the expected future mortality rate is presented in the equation below: 
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We can observe clearly the two properties of the mortality rate trend from Figure 

11. First, in Figure 11, the downward trend indicates that the mortality rate follows a 

decreasing trend during 1900-2004 at all ages. For example, in the over 85 age group, the 

mortality rate decreases from 0.26 to 0.14, while in the younger age groups, such as 15-

24, the mortality rate decreases from 0.006 to 0.0008. The decreasing trend shows the 

improvement of the life times or longevity in all age groups. Second, the change in the 

mortality rate in the older-age groups is more significant with a steeper downward trend 

than that in the younger-age groups.     

Figure 11 1900-2004 Historical Mortality Rates 
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In Figure 12, we apply the DEJD model to generate the mortality rate for all the 

age groups from 2010 to 2060 with the following equation and the parameters in Table 

10.  

Figure 12 2010-2060 Projected Mortality Rates 

 

 The projected mortality rate also presents the downward trend which indicates 

that the mortality rate follows a decreasing trend during 2010-2060, at all ages. The trend 

keeps the feature of longevity in all age groups. Similar to the historical trend, the 

improvement of the mortality rate in the older-age groups is more significant with a 

steeper downward trend than that in the younger age groups. 

A life settlement usually depends on the following characteristics of the policy 

being settled:  

1. The insurance carrier  

2. The face value (or benefit)  

3. The age of the insured person  
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4. The gender of the insured person  

5. The premium 

6. The issue date  

7. The estimated life expectancy of the insured 

8. The primary diagnosis of the insured’s illnesses if the insured is in impaired 

health 

9. The bidding or asking price of the policyholder. 

Among the attributes that affect the price of the life settlement, life expectancy is 

the key factor which is difficult to forecast and to measure. Valuation of the life insurance 

is initially based on a stable life table selected at the time of policy issue, usually a 

version of the Commission Standard Ordinary Mortality Table (CSO). These tables do 

not accommodate the improvement trends and dynamics of the mortality rate. That is, 

they are smoothed (graduated) to produce aggregate fits to data and smoothed 

progressions of premiums from age to age. The overestimation of the mortality rate and 

the underestimation of the life expectancy in stable historical life tables will cause the 

underestimation of the life insurance price at future points, and will have limited 

permissible variability across individuals due to jumps. To correctly estimate the price of 

the life insurance policies at future points in time, to effect a life settlement, I adopt the 

Double Exponential Jump Diffusion model in Deng, Brockett and MacMinn (2010) to 

project the future mortality rate and the life expectancy. Given the life expectancy, we 

can estimate the price of the life settlement incorporating both expected and unexpected 

mortality changes.  
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To explain the pricing method we use, an illustrative life insurance contract 

example is set up and a life settlement contract is derived from it. The illustrative contract 

is State Farm’s whole life policy as presented in Baranoff, Brockett and Kahane (2009).   

Assume a female purchased a whole life level premium insurance contract at the 

age of 50 in 1986. The schedule of benefits and the schedule of the premiums are shown 

in Table 11 and Table 12.  The face value (or the benefit payable at death) is $50,000. 

The annual premium is $565.50. Assume that a third party wants to acquire the life 

insurance policy when the person is 70 in 2006. In the following, we provide a model to 

price the life settlement when there is information from a doctor or an underwriting 

expert concerning the life expectancy of the individual at age 70.  

While the CSO table was used to calculate the cash value and reserves for the 

policy, the most appropriate mortality table for life settlement calculations may no longer 

be this table due to various changes in longevity and the current health state of the 

individual. 

4.4 APPLICATION OF INFORMATION THEORY 

Based on information theory, I will present a statistical methodology for adjusting 

mortality tables by incorporating known individual characteristics, and the adjusted table 

is as close as possible to the original one (Brockett and Cox, 1984). 

The use of known information about an individual to adjust a standard mortality 

table to reflect the individual's underwriting characteristics is a common problem in 

actuarial science concerns. The actuary can price life contingent financial instruments 

more accurately with the adjusted table. I present a statistical approach to mortality table 
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adjustment that simultaneously adjusts survival probabilities at all ages in a consistent, 

logical manner. I obtain a life table that includes the characteristics of the standard table 

and the add-in information for adjustment. One can start with the life table and then 

systematically adjust for the particular individual characteristics that reflect expected life 

length or a 50 percent confidence interval on the life length. 

The problem is summarized as follows: In testifying as an expert witness about 

the distribution of life time and mortality rate, an actuary is asked to adjust a standard 

mortality table to obtain a table appropriate for a particular individual given the updated 

information for the life expectancy. As an expert witness on the same side as the actuary, 

a physician testifies, that the expected remaining life of the decedent at the date of an 

untimely death was   years. The actuary needs to value a life settlement based on the 

distribution of the life time which depends on the life expectancy testified by the expert 

witness (medical report). In order to do so in a manner consistent with the physician's 

testimony, the actuary must construct a mortality table which has       , where   is 

the years remaining of the decedent under normal circumstances. If the standard table 

satisfies this condition, then there is no problem. However, since this is usually not the 

case, I suppose that for the standard table,       . 

Here we show explicitly how to obtain an adjusted table that is as 

indistinguishable as possible from the standard table and that satisfies the physician's 

constraint       . 

The method I use is based on the principle of minimum discrimination 

information explained in the next section. The prototype problem of life table adjustment 
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is carried to a numerical conclusion. Since our prototype example is discrete in character, 

I phrase all the formulas for the discrete case.  

4.4.1 Minimum Discrimination Information Estimation  

Consider the problem of distinguishing between two probability densities   and 

  after observing the value t of the random variable under study. In the application 

considered here,   and   will correspond to potential densities for the survival time of 

the individual. The technique presented here, however, is applicable to other problems of 

interest to the actuary (Brockett and Cox, 1984), (Brockett, 1991), (Brockett and Song, 

1995), (Brockett, Golden and Zimmer, 1990), (Brockett, Cooper, Learner and Phillips, 

1995). 

For distinguishing between two densities   and  , the statistic               

is a sufficient statistic and represents the log odds ratio in favor of the observation having 

come from  . It can be thought of as the amount of information contained in the 

particular observation   for discriminating in favor of   over   (Kullback, 1959). In a 

long sequence of observations from  , the long-run average log odds ratio is: 

                        
    

    
           

     

     
,               (23) 

The equation reflects the expected amount of information in an observation for 

discriminating between   and  . In the statistics and engineering literature this quantity 

is called the divergence between the densities   and   and is denoted by       . It is 

not difficult to show that         , with          if and only if    . Thus, the 
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size of        is a measure of the closeness of the densities   and  . Such a global 

measure of loss of densities will be very useful for adjusting mortality tables. 

Suppose that we are given a density function  , and we wish to find another 

density   that is as close as possible to  , and that satisfies certain moment constraints, 

such as: 

            , 

                                                         , 

... 

                          …                     (24) 

… 

                                                          , 

For example, if        , then the first constraint says that the mean for   is 

known to be   . Similarly, by taking       to be unity on a certain interval and zero off 

the interval, we arrive at a constraint on the probability for that interval. This would be 

useful, for example, if one wanted to use a medical study that gives decennial survival 

probabilities, however, yearly (or more frequent) survival probabilities are required. One 

would then find a survival density that was as close as possible to a standard mortality 

table and that reflected the decennial survival rates quoted by the medical study. 

To phrase the problem mathematically, I desire to find a vector of probabilities 

            that solves the problem: 

                                                                       (25) 
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subject to the constraints (24). Here             is the vector of probabilities 

corresponding to the standard probability distribution. Brockett, Charnes and Cooper 

(1980) show that the problem (25) has a unique solution, which is: 

                                                 ,         (26) 

where the   's are constant parameters selected in such a way that the constraints (24) are 

all satisfied. They further show that the parameters    can be obtained easily as the dual 

variables in an unconstrained convex programming problem: 

                                                              (27) 

The solution to (27) can be obtained easily by any number of efficient nonlinear 

programming codes. In the following section I use the Newton-Raphson technique. 

4.4.2 Information Theoretic Life Table Adjustments 

The study of life contingencies is intrinsically a study of biostatistics. For 

example, the life expectation is the expected value of a random variable   that equals 

the integral number of years a person now aged x will live. We have     with 

probability   ,     with probability       , etc. 

According to the standard mortality table, the distribution of the random variable 

  is given by the         dimensional probability vector 

                         , where             for                         . 

Consider now the problem of finding the mortality table that is as close as 

possible to the standard table and that satisfies certain given constraints. This translates 

into finding a probability distribution                              for the random variable   

that satisifies the desired constraints. If, for example, the desired constraints involve the 



 94 

expectation of functions such as those given above, then the density (26) is the least 

distinguishable density from   among the class of all densities satisfying the constraints. 

The physician has testified that the expectation of life for the decedent is   more 

years. Thus, the constraint set is: 

                                                                                               (28) 

 (all sums are over {0, 1, 2 . . . . .     }). Appealing to the principle of minimum 

discrimination information, we select the density   to satisfy:  

                            

subject to the constraints (28). 

We could now of course apply the result (26) directly; however, it is perhaps 

more instructive to show how to obtain the desired density directly by standard methods 

in this simple situation. Let      . The probability distributions that we are 

considering can be viewed as     vectors                        that satisfy 

          , and       . Letting    and    denote the Lagrangian 

multipliers for the equality constraints (28) allows us to replace the original problem and 

minimize the function: 

                                         

subject to                        The     first-order conditions found by 

differentiating with respect to                           and    are as follows: 
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The first     equation give                      for   = 

0, . . . ,    The last two equalities allow me to find the parameters      and   . 

Consider the function           
   . Since      , we have 

      
                     . Therefore,               Because 

            
   , we obtain: 

             
                  

           

                               

Thus, in order to find the precise numerical value for   , we solve: 

               

or equivalently: 

 

  
             

For       We then may obtain the other parameter    through the equation: 

              After we have the two parameters    and   , we easily calculate 

the desired density       
           . 

We used Newton's method to solve 
         

  
    for      Recall that to solve 

the equation        by Newton's method, one uses the recursion relation: 



 96 

                       

In my case      
         

  
     and this reduces to: 

        

     
    

  

                           
      

    
                  

 

                        
 

where          
   ,            

   , and             
    

For illustrative purposes, I shall do a numerical example that is a special case of 

the above. Assume an insured purchased the life insurance policy at age 40 in 1986 and is 

age 70 in year 2006. The medical report shows the remaining expected life time is 2 

years. The insurance policy for the insured is worth $50,000 face value (death benefit). 

Details of the policy are listed in Table 11 and Table 12.  

First, I project the standard table rate of mortality    with the Double Exponential 

Jump Diffusion model (Deng, Brockett and MacMinn 2010). Mortality rate    denotes 

the probability that a person who is alive at age   will die before age    , or for a 

pool of people,    = (the number of people die between age   and age    )/ (the 

number of people alive at age  ). We use the DEJD mortality table instead of the 

standard CSO table upon where the cash value was derived in 1986. This is more 

appropriate for this purpose since the DEJD model incorporates the dynamic and 

asymmetric longevity jump and mortality jump to describe the trend of mortality rate. In 
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this way, the DEJD model considers the longevity risk in generating the morality rate and 

life table which provides more accurate projection and better fit  

Second, the standard table probability    is deduced from   ..  For a pool of 

people,    = (the number of people die between the time   and     /(the total 

number of people at time 0).                 . 

Third, the standard table survival function is calculated by        . 

Fourth, the adjusted table rate    is deduced from    by information theory.  

Fifth, the adjusted table rate     is deduced from   .     has the same 

definition as    except that     is calculated based on the updated information.  

Sixth, the adjusted table survival function   
        .   

  has the same 

definition as    except that   
  is calculated based on the updated information.  

I simulate on each age group using the Double Exponential Jump Diffusion model 

for the life time. 

Table 11 Schedule of Benefits 

Form Description Initial 

Amount 

Benefit 

Period 

Ends 

Annual 

Premium 

Premiums 

Payable 

07000 Basic Plan $50,000 With Life $565.50 To 2047 

Table 12 Parts of Schedule of Insurance and Values 

Insurance Amount  Guaranteed Values 

End of Policy Year     Cash Value Dollars 

    
50,000 1996 Age 60 3,100.00 

50,000 1998 Age 62 4,038.50 

50,000 2001 Age 65 5,567.00 

50,000 2006 Age 70 8,438.50 
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Table 13 Adjusted and Standard Mortality Table for Age 70 with 2 Years Remaining Life 

Time 

Year 

 

 

 

 

  

Time 

 

 

 

 

   

Age 

 

 

 

 

  

Standard 

Table 

Rate 

 

 

   

Standard 

Table 

Probability 

 

 

   

Standard 

Table 

Survival 

Function 

 

   

Adjusted 

Table 

Rate 

 

 

  
 

 

Adjusted 

Table 

Probability 

 

 

   

Adjusted 

Table 

Survival 

Function 

 

  
  

2006 0 70 0.02539 0.02539 1.00000 0.30926 0.30926 1.00000 

2007 1 71 0.02664 0.02596 0.97461 0.30696 0.21203 0.69074 

2008 2 72 0.02796 0.02652 0.94865 0.30328 0.14518 0.47871 

2009 3 73 0.02934 0.02706 0.92213 0.29769 0.09929 0.33353 

2010 4 74 0.03084 0.02757 0.89507 0.28948 0.06781 0.23424 

2011 5 75 0.03233 0.02805 0.8675 0.27785 0.04624 0.16643 

2012 6 76 0.03394 0.02849 0.83945 0.26199 0.03149 0.12019 

2013 7 77 0.03563 0.0289 0.81096 0.24135 0.02141 0.08870 

2014 8 78 0.03741 0.02926 0.78206 0.21592 0.01453 0.06729 

2015 9 79 0.03928 0.02957 0.7528 0.18657 0.00984 0.05276 

2016 10 80 0.04125 0.02983 0.72323 0.15510 0.00666 0.04292 

2017 11 81 0.04385 0.03042 0.69343 0.12540 0.00455 0.03626 

2018 12 82 0.04663 0.03092 0.66299 0.09773 0.00310 0.03172 

2019 13 83 0.04962 0.03136 0.63208 0.07365 0.00211 0.02862 

2020 14 84 0.05282 0.03173 0.60072 0.05392 0.00143 0.02651 

2021 15 85 0.05625 0.03201 0.56899 0.03854 0.00097 0.02508 

2022 16 86 0.05995 0.03219 0.53698 0.02702 0.00065 0.02411 

2023 17 87 0.06391 0.03226 0.50479 0.01866 0.00044 0.02346 

2024 18 88 0.06817 0.03221 0.47253 0.01273 0.00029 0.02302 

2025 19 89 0.07275 0.03203 0.44032 0.00859 0.00020 0.02273 

2026 20 90 0.07768 0.03172 0.40828 0.00575 0.00013 0.02253 

2027 21 91 0.08298 0.03125 0.37657 0.00357 0.00008 0.02240 

2028 22 92 0.08869 0.03063 0.34532 0.00224 0.00005 0.02232 

2029 23 93 0.09485 0.02985 0.31469 0.00135 0.00003 0.02227 

2030 24 94 0.10147 0.02893 0.28484 0.00090 0.00002 0.02224 

2031 25 95 0.10862 0.02786 0.25594 0.00045 0.00001 0.02222 

2032 26 96 0.11633 0.02654 0.22814 0.00000 0.00000 0.00000 

2033 27 97 0.12465 0.02513 0.20162 0.00000 0.00000 0.00000 

2034 28 98 0.13363 0.02358 0.17647 0.00000 0.00000 0.00000 

2035 29 99 0.14333 0.02191 0.15289 0.00000 0.00000 0.00000 

2036 30 100 0.15381 0.02015 0.13097 0.00000 0.00000 0.00000 

2037 31 101 0.16515 0.01833 0.11083 0.00000 0.00000 0.00000 

2038 32 102 0.17746 0.01641 0.09253 0.00000 0.00000 0.00000 

2039 33 103 0.19067 0.01451 0.07611 0.00000 0.00000 0.00000 

2040 34 104 0.20503 0.01263 0.06169 0.00000 0.00000 0.00000 

2041 35 105 0.22058 0.01088 0.04897 0.00000 0.00000 0.00000 

2042 36 106 0.23743 0.00906 0.03817 0.00000 0.00000 0.00000 

2043 37 107 0.25571 0.00744 0.02911 0.00000 0.00000 0.00000 

2044 38 108 0.27552 0.00597 0.02166 0.00000 0.00000 0.00000 

2045 39 109 0.29703 0.00466 0.01569 0.00000 0.00000 0.00000 

2046 40 110 0.31926 0.00352 0.01103 0.00000 0.00000 0.00000 

2047 41 111 1.00000 0.00751 0.00751 0.00000 0.00000 0.00000 

Total    1.00000   1.00000  
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4.5 LIFE SETTLEMENT PRICING 

For life settlement pricing, we treat life settlements as zero-coupon bonds with 

random maturity whose Maturity is equal to the Life Expectancy ( ) of the individual 

whose policy is being settled. The Par Value is equal to the Net Death Benefit (NDB), 

whose Initial Price is equal to the Purchase Price (M), and where the Yield to Maturity is 

the same as that for a zero coupon bond of this character, as shown in Figure 13. 

Basic Definitions: 

     : Net death benefit (or face value) of the life policy 

      :  Premium for each year 

       :   Yield to maturity 

               :  Discount rate,   
 

   
   is the yield to maturity 

               :  Purchase Price for the life settlement 

           :  Random variable of life time 

Consider a hypothetical life settlement contract with a life expectancy of 4 years. 

Label this contract as contract  .  Assume that only 3 premium payments are made and 

the death benefit kicks in after the three premium payments, as shown in Figure 13. 

The relevant cash flows from buying this contract are: 
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Figure 13 The Cash Flow of the Life Settlement Contract 

                                                     B 

 

 

      M         P          P          P 

  

The formula for calculating the Purchase Pricing    is: 

          
    

  
   

          
 

      
 measures the present value of the net death benefit. This is the 

positive cash flow for the life settlement purchaser. 

         
    

  
   

 

      
   
    measures the present value of the premiums the purchaser 

has to continue to pay until the death of the policy holder. This is the negative cash flow 

for the life settlement purchaser. 

        is the purchase price at the date of purchasing.   
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Table 14 Life Settlement Prices for the Different Yield to Maturity 

Yield to Maturity 

  
Life Settlement Price 

  ($) 

5.00% 41190.75 
6.00% 40071.93 
7.00% 39010.62 
8.00% 38002.51 
9.00% 37043.73 
10.00% 36130.74 
11.00% 35260.35 
12.00% 34429.67 
13.00% 33636.03 
14.00% 32877.02 
15.00% 32150.44 
16.00% 31454.24 
17.00% 30786.58 
18.00% 30145.72 

Table 14 illustrates the third party purchase price for the different yields to maturity. The 

higher yield to maturity the third party requests, the lower the purchase price. But even 

the lowest purchase price $30,145.72 when the yield to maturity is 18% at the highest, is 

still higher than the cash value $8,438.50 in Table 12. This means the insured can gain 

more by selling the policy to the third party for the price of at least of $30,145.72 than to 

the insurance company at the surrender value $8,438.50. This is a win-win situation for 

both the insured and the third party (investor), which explains the potential huge profit 

and investment opportunity in the life settlement market. 
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Table 15 Life Settlement Price Sensitivity for different Yield to Maturity 

Yield to Maturity 

  
Life Settlement Price 

Sensitivity 

      

5.00% -111882 
6.00% -106131 
7.00% -100811 
8.00% -95878 
9.00% -91299 
10.00% -87039 
11.00% -83068 
12.00% -79364 
13.00% -75901 
14.00% -72658 
15.00% -69620 
16.00% -66766 
17.00% -64086 
18.00% N/A 

Table 15 illustrates the purchase price sensitivity for the different yield to 

maturity. There is a decreasing trend for the sensitivity. The sensitivity for the low yield 

is larger than that for the high yield.  

4.6 CONCLUSION 

In this paper, I investigate the methodology for pricing life settlement products. 

The life settlement products provide a way for a third party to purchase the life insurance 

policy for a price greater than the cash surrender value and less than the face value (or 

death benefit) in exchange for the right to collect the death benefit. Since the main 

element for pricing life settlement products is the estimation of the life expectancy of the 

insured, I adopt the Double Exponential Jump Diffusion (DEJD) model as the kernel for 

the projection of the mortality rate and the life expectancy. The DEJD model incorporates 

the longevity jump (caused by medical improvement,), the mortality jump (caused by 

pandemics) and the dynamic main trend of the mortality rate which provides better 

explanation and fit to the historical mortality rate data. Based on the DEJD model, I 
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propose a Whole Life Time Distribution Dynamic Pricing (WLTDDP) method to 

evaluate life settlement products. The method incorporates the updated information of life 

expectancy, a critical factor, into the evaluation of life settlement products. According to 

Jensen’s inequality, the value of the life settlement product is contingent on the expected 

value of the function of life time, which is always larger than the value of the function of 

the expected life time (or life expectancy). The WLTDDP method has the advantage of 

fixing the negative bias for pricing life settlement products in the previous method by 

generating the whole distribution for the life time instead of the solo life expectancy 

variable. The method incorporates more statistical information of the insured’s future life 

time. The statistical methodology is based upon information theory for adjusting 

mortality tables to obtain exactly some known individual characteristics while obtaining a 

table that is as close as possible to the standard one.  

I use an example of an insured who purchased a life insurance policy at age 40 in 

1986 and is age 70 in year 2006. The medical report shows the remaining expected life 

time is 2 years. The WLTDDP method generates the complete mortality table with the 

updated information of 2 years remaining life for the insured as illustrated in Table 13. 

Based on the complete life table, I can generate life settlement prices for different yields 

to maturity and the sensitivity. The results illustrate that the insured can gain more by 

selling the policy to a third party than to the insurance company at the surrender value. 

This is proof for the win-win situation for both the insured and the third party (investor) 

in the life settlement market. The results explain the potential huge profit and investment 

opportunity in the life settlement market. 
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