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“I know that you can do all things; no purpose of yours can be thwarted.

You asked, ‘Who is this that obscures my plans without knowledge?’

Surely I spoke of things I did not understand, things too wonderful for me to

know. You said, ‘Listen now, and I will speak; I will question you, and you

shall answer me.’ My ears had heard of you but now my eyes have seen you.

Therefore I despise myself and repent in dust and ashes” (Job 42:2-6).
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This work is motivated from error-correcting codes in the brain. To

counteract the effect of representation noise, a large number of neurons par-

ticipate in encoding even low-dimensional variables. In many brain areas,

the mean firing rates of neurons as a function of represented variable, called

the tuning curve, have unimodal shape centered at different values, defining

a unary code. This dissertation focuses on a new type of neural code where

neurons have periodic tuning curves, with a diversity of periods. Neurons that

exhibit this tuning are grid cells of the entorhinal cortex, which represent self-

location in two-dimensional space. First, we investigate mutual information

between such multi-scale codes and the coded variable as a function of tun-

ing curve width. For decoding, we consider maximum likelihood (ML) and

plausible neural network (NN) based models. For unary neural codes, Fisher

information increases with narrower tuning, regardless of the decoding method.
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By contrast, for the multi-scale neural code, the optimal tuning curve width

depends on the decoding method. While narrow tuning is optimal for ML de-

coding, a finite width, matched to statistics of the noise, is optimal with a NN

decoder. This finding may explain why actual neural tuning curves have rela-

tively wide tuning. Next, motivated by the observation that multi-scale codes

involve non-trivial decoding, we examine a decoding algorithm based on belief

propagation (BP) because BP promises certain gains in decoding efficiency.

The decoding problem is first formulated as a subset selection problem on a

graph and then approximately solved by BP. Even though the graph has many

cycles, BP converges to a fixed point after few iterations. The mean square

error of BP approaches to that of ML at high signal-to-noise ratios. Finally,

using the multi-scale code, we propose a joint source-channel coding scheme

that allows separate senders to transmit complementary information over ad-

ditive Gaussian noise channels without cooperation. The receiver decodes one

sender’s codeword using the other as side information and achieves a lower dis-

tortion using the same number of transmissions. The proposed scheme offers a

new framework to design distributed joint source-channel codes for continuous

variables.
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Chapter 1

Introduction

The introduction previews a connection between neuroscience and en-

gineering from coding perspective. We first review error-correcting codes in

communication systems. The same notion of error correction by redundancy

is observed in the brain, which motivates this work.

1.1 Error-correcting codes for reliable communication
over noisy channels

Researchers have investigated error-correcting codes to achieve reliable

communication over noisy channels. The sender wishes to communicate a

message to the receiver through a noisy channel. In order to reduce the effect

of the noise, the message is encoded to a codeword in a redundant manner

and this codeword is transmitted through the noisy channel. The redundancy

in the codeword enables the receiver to recover the message while minimizing

the effect of the noise.

Since Shannon’s celebrated work of proving the existence of random

codes that achieve an arbitrary small error probability with the minimum

amount of redundancy [80], there have been persistent efforts to find practical
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error-correcting codes. Among those, linear codes have enjoyed great success

due to their analytical tractability, easier design, and high data rate. Exam-

ples of widely used linear codes include Reed-Solomon (RS) [74] and Bose-

Chaudhuri-Hocquenghem (BCH) [14, 15, 51] codes. However, high decoding

complexity limits applications of linear codes. For example, Berlekamp et al.

show that decoding a linear code is NP-complete [11]. Readers are referred

to [58] for examples of decoding various linear codes. Gallager’s low-density

parity-check (LDPC) codes [41] greatly reduces decoding complexity. LDPC

codes are efficiently decoded with local computations on a graph using itera-

tive algorithms [75]. Low decoding complexity and high data rate of LDPC

codes have become integral parts of the research on linear codes. The idea of

iterative decoding is used in the second part of the dissertation to design a

decoding algorithm with low computational complexity.

Now, attention is increasingly focused on nonlinear codes. Unusual con-

structions of nonlinear codes and advantages over linear codes have gained a

lot of interests [5,47]. The dissertation is concerned with a family of nonlinear

codes called shift-map codes. With shift-map codes [25, 92, 94], a continu-

ous message is represented by the continuous codeword with a longer length.

Thus, redundancy is added by a mapping from lower dimensional to higher

dimensional spaces. The shift-map generates the codeword from a continu-

ous message by multiplications followed by modulo operations. Consequently,

the message is encoded into its residues with respect to distinct moduli. In

this sense, shift-map codes are closely related to their integer counterpart
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redundant-residual-number-system (RRNS) codes [84]. This research is mo-

tivated by an intriguing connection between shit-map codes and the brain’s

multi-scale code for representing self-location [66], discussed in the following

section.

1.2 Motivation from the brain’s error-correcting codes
for self-location

In the brain, networks of neurons collectively process information, but

individual neurons are noisy [22, 33, 35, 52, 85, 86]. Neurons interact with one

another via stochastic opening and closing of ion channels [50] and the release

of neurotransmitters [22, 33]. Consequently, a single neuron’s response, com-

monly measured by either membrane potential or firing rate, varies from trial

to trial even for the same input [52, 85, 86]. Then, how can the brain perform

any reliable information processing with such noisy components?

Representing one variable with a large number of neurons, hence re-

dundancy, reduces the effect of the inherent neural variability. In many brain

areas, the mean firing rates of neurons vary as a function of the represented

variable and are called tuning curves. Neurons in the sensory and the motor

cortices have uni-modal tuning curves with different centers and this redun-

dant and unary representation defines the population code [32, 44,70,104].

Figure 1.1 illustrates an example of population codes observed in mon-

key’s visual cortex. Figure 1.1A shows a visual stimulus, a bar with a orienta-

tion θ. Firing rates of neurons in the primary visual cortex are modulated by

3
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Figure 1.1: An example of population codes in the primary visual cortex. A
shows a visual stimulus with orientation θ. In B, dashed curves with different
colors represent individual neurons’ tuning curves as a function of θ and circles
noisy firing rates at a given time.

the orientation or the bar [53]. In Figure 1.1B, dashed curves with different

colors represent tuning curves of three neurons as function of the bar orienta-

tion θ. Circles indicate firing rates at a given time, which deviates from the

tuning curves according to the Poisson distribution.

Fisher information (FI) quantifies information about input variable

from a population code and the dependence of FI on tuning curve parame-

ters has been studied [10, 32, 65, 69, 72, 77, 105]. By Cramer-Rao bound, the

inverse of FI determines the minimum mean square error that any unbiased

estimator can achieve [31]. Thus, lager FI implies a lower estimation error

with an ideal estimator. One of the important parameters of population codes

is the number of neurons (N) participating in encoding, which determines the

amount of redundancy. Under the assumption of uniformly distributed tuning

curve centers over the input domain, FI linearly scales with N [32]. Thus, the

4



larger N is, the lower the estimation error is; increased redundancy leads to

lower sensitivity to errors.

The FI also depends on tuning curve shape. Increasing the maximum

firing rates (rmax in Figure 1.1B) of all neurons also increases FI [32]. This

could be understand as stronger noise reduction by increasing signal power.

The tuning curve width (σe in Figure 1.1B) controls the sparsity of the code. If

σe is large, more neurons are active at a given time. On the other hand, if σe is

small, only few neurons are active. FI depends on σe in a dimension dependent

manner. When the encoded variable is low-dimensional, narrower tuning in-

creases FI. By contrast, when the encoded variable is high-dimensional, wider

tuning increases FI. The intuition for this difference is that for low-dimensional

input, it is better to have only few neurons with high sensitivity. Increasing σe

sacrifices sensitivity but increases the number of active neurons from which in-

formation is extracted. The latter dominates the former in a high-dimensional

space.

It remains an active area of research understanding how information is

processed in higher level structures of the brain [49, 56, 57, 59, 73, 98]. Among

those structures, the hippocampus (HPC) and the entorhinal cortex (EC) have

attracted much attention due to their critical roles in learning and memory

[4]. The EC is an interface between the HPC and the neocortex and both

the EC and the HPC are involved in processing self-location [66]. The HPC

represents self-location in a way similar to classical population codes [67, 98].

Recently, multi-scale spatial representation has been discovered in the EC

5



[48,66]. The unique nature of such multi-scale representation in the EC offers

an opportunity to understand coding principles in deeper areas of the brain.

In the EC, multiple modules of grid cells (GCs) with different scales

represent self-location [48,90]. GCs in each module have periodic tuning curves

as a function of animal location. Thus, GCs in each module form a population

code encoding a phase of the location. There are multiple modules with distinct

periods [48,90]. Thus, GC modules encode the self-location as a set of phases

with different periodicities. This neural codes in the EC share the following

two principles with classical population codes. First, a large number of neurons

in each module encode phase; redundancy. Second, only a fraction of neurons

are active at a given time; sparsity. In addition, the additional structure across

modules improves error correcting capabilities [36, 60, 89]. However, this gain

comes at the cost of occasional large errors and difficulty in decoding. Thus,

we study the dependence of coding accuracy on tuning curve width in multi-

scale multi-population codes, and compare with results from single-population

codes with unimodal tuning curves.

1.3 Summary of contributions

The three main contributions are summarized as follows.

First, mutual information between multi-scale neural codes and a low-

dimensional input variable is quantified as a function of tuning curve width.

As reviewed in Section 1.2, the Fisher information of unary neural codes in-

creases with narrower tuning for a low-dimensional input variables. To under-
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stand multi-scale neural codes, we us mutual information, instead of Fisher

information, as information measure and consider maximum likelihood (ML)

and plausible neural network (NN) based models. In contrast to unary neural

codes, the optimal tuning curve width depends on decoding method for the

multi-scale neural code. While narrow tuning is optimal for ML decoding,

a finite width, which is matched to statistics of the noise in the problem, is

optimal with a NN decoder. This finding is discussed in relation to relatively

wide tuning in the brain.

Next, we explore a decoding algorithm for multi-scale codes based on

belief propagation (BP). The decoding problem is first formulated as a subset

selection problem on a graph and then solved by a BP algorithm. Even though

this graph has many cycles, the proposed algorithm converges to a fixed point

within few iterations. Convergence and accuracy of the proposed algorithm

are investigated in light of previous studies on BP on cyclic graphs. Numerical

simulations show that the mean square error of BP approaches to that of ML

for high signal-to-noise ratios.

Finally, the multi-scale code is applied to a distributed coding problem.

We propose a joint source-channel coding scheme which allows separate senders

to transmit complementary information over additive Gaussian noise channels

without cooperation. For this purpose, the shift-map code is generalized to a

new family of code similar to the multi-scale representation of the brain. The

receiver decodes one sender’s codeword using the other as side information

and achieves a lower distortion using the same number of transmissions. The

7



proposed scheme is interpreted as an extension of binning discrete codebook,

a widely used technique for multi-user channels. Thus, the proposed scheme

offers a new method to structure a continuous codebook for distributed joint

source-channel codes.

1.4 Organization

The rest of the dissertation is organized as follows. Chapter 2 addresses

the mutual information between GCs and self-location as a function of tuning

curve width. Chapter 3 covers a decoding algorithm for multi-scale codes

using belief propagation. In Chapter 4, the multi-scale neural code is applied

to design a joint source-channel code for distributed coding. Chapter 5 includes

conclusion and suggestions for future works.
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Chapter 2

Multi-scale error-correcting codes in the brain

2.1 Introduction

The inherent variability in neural activity – including stochastic ion

channel dynamics [50], stochastic vesicle release [91], and variable spike output

for repeated stimuli [78,85,86] – means that inferring the value of an encoded

variable from neuron responses carries with it a degree of uncertainty.

If the variable is encoded in the responses of a large number of neu-

rons, the estimation error can be reduced [44, 72, 77, 105]. In such population

codes, the resulting estimation error depends on many parameters, including

the number of neurons (N), the shape and width of the neural tuning curves,

the neural nonlinearity, and the model for neural variability. The paramet-

ric scaling of estimation error for several population codes has been derived

by computing the Fisher information, whose inverse specifies the minimum

variance of any unbiased estimator [10,32,65,69,72,77,105].

The population codes found in the sensory and motor peripheries,

and even some cognitive codes, typically consist of ramp-like or unimodal

(single) bump-like responses per neuron, as a function of the encoded vari-

able [23,24,44,53,55,93,98,104]. Different neurons in the population are often

9



described by simple shifts of a canonical tuning curve. Assuming that neural

spikes are generated by an inhomogeneous point process (e.g. Poisson process),

with spike rates given by the underlying neural tuning curves, the Cramer-Rao

asymptotic bound on estimation error, given by the inverse of the Fisher infor-

mation, can decrease with neuron number as ∼ 1/N [10, 32, 72, 105] (but the

actual squared error, which may be considerably larger than the bound, might

not decrease as fast as ∼ 1/N [10]). Common forms of correlations between

neurons can affect the estimation error, but do not generally improve the basic

scaling with N [2, 79,87].

Besides neuron number, estimation accuracy also depends on tuning

curve width. For unimodal (single-bump) codes for a non-periodic variable,

the scaling with tuning curve width is strongly dependent on the dimension

of the coded variable [72, 105]. For one dimension, the narrower the tuning

curves, the better; for two dimensions, the Fisher information is independent

of tuning curve width. For periodic neural codes, narrower tuning curves are

better, in both one and two dimensions [65]. If the represented quantity is a

latent variable that is never directly observed by the population, but drives

the population state through a noisy process (for instance, photon noise, noisy

sensors, etc.), then the information in the population code about the repre-

sented quantity saturates at the level of this noisy process. In the presence of

such “sensing” noise, narrower tuning curves are better up to the saturation

point, and then the gains level off: the Fisher information and mutual informa-

tion do not improve. These results hold both for ideal (maximum likelihood,

10



referred to as ML in the rest of this paper) decoders and for simpler decoders

including the population vector and neural network decoders [77].

Multi-scale population codes encode a non-periodic variable as a set

of phases, each computed with respect to a distinct periodic response. A

motivating example for the present work is the representation of 2D spatial

location in mammals by several populations of grid cells [36, 48, 90]. Neurons

in one population display a common periodic response with offset preferred

phases, and the set of populations supply a set of distinct periods. In this

work, we will consider the case where the largest period is significantly smaller

than the range of the non-periodic variable [36]. Thus, even in the absence of

noise, each population only represents partial information about the encoded

variable. The variable can only be estimated unambiguously over its range by

considering most or all of the populations.

Multi-scale population codes differ strikingly from unimodal or ramp-

like population codes commonly seen in the sensory and motor peripheries,

in at least one respect: the dynamic range of multi-scale population codes, or

equivalently the range divided by the resolution of the decoded variable, grows

exponentially with N [61,89], in contrast with the polynomial growth with N

seen in the unimodal or ramp-like population codes. This exponential scaling

of the decoded dynamic range is possible even when the spatial periods do not

exhibit an exponential range of scales ( [36,89], in contrast to the exponentially

large range of scales in the periods assumed in [61]). Here, we study the

dependence of coding accuracy on tuning curve width in multiperiodic multi-

11



population codes, and compare with results from single-population codes.

Throughout this work, we will consider the represented quantity to be

a latent variable. Because the populations are distinct, and possibly inde-

pendently sample or sense the latent variable, we will consider the effect of

independent “sensing” noise in each population’s representation of the latent

variable.

We show that with ideal observer decoding through maximum like-

lihood, the results for optimal multi-population tuning width closely match

those for classical population codes, even in the presence of independent sens-

ing noise. However, with neural network decoding, we show that a finite encod-

ing tuning curve width is optimal, in direct contrast with results in unimodal

or ramp-like population codes.

2.2 Background and Methods

2.2.1 Description of multi-period population coding

The motivation for considering a set of different populations codes char-

acterized by different periodic responses is the representation of spatial loca-

tion by grid cells [48]. As an animal explores the floor of a 2D enclosure, a

single grid cell fires at multiple locations, at the vertices of a virtual equi-

lateral triangular lattice that tiles the floor, Figure 2.1A. Nearby cells share

a common response period and orientation, and differ only in phase – i.e.,

through rigid spatial translations of the periodic spatial pattern. We define a

group of such cells as one population or module [90]. The networks appear to
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Figure 2.1: Multi-scale multipopulation codes: motivation from grid cells. (A)
A grid cell in the medial entorhinal cortex fires whenever the animal visits a
set of periodically arranged locations, that form the vertices of a (virtual)
equilateral triangular lattice. Top plot: gray line, trajectory of the animal
as it foraged on the floor of a square box; red dots, locations of the spikes
emitted by one grid cell (data from [1]). Bottom plot: smoothed spatial firing
rate obtained from the plot above. Brighter values correspond to higher firing
rates. Dashed blue line is a 1 dimensional slice that is considered in B. (B)
The firing rate response may be viewed as a periodic multi-peaked function of
space (B, left) or as a unimodal (single-bump) function of phase (B, right). The
tuning curve width σe is defined as the ratio of the standard deviation of the
activity bumps to the period of the spatial response. (C) The external variable
x (animal location) is a latent variable that drives the grid populations. The
populations, indexed by n = 1, 2, · · · , N , encode partial information about x
through their phases φn, with respect to their spatial response periods λn. Red
filled circles within an black open circle represent the instantaneous population
response of one group of cells; the population pattern phase is a function of
the variable x. The population periods increase systematically with the index
n, corresponding to the displacement of the population toward the ventral
border of the dorsoventral axis of the entorhinal cortex, along which grid cells
are found [48].
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be disjoint, with discrete jumps in period across networks [90], as predicted

in [19, 36, 39, 64]. The locations of the spatially periodic response peaks of all

cells in one population together encode location as only a spatial phase with

respect to their shared period and orientation [36].

Let n = 1, · · · , N be the population index, and let each population

contain M neurons. Let ~x be the latent represented variable. We assume that

the ith cell in the nth population emits spikes according to an inhomogeneous

point process, with a time-varying firing rate given by:

rni(~x, t) = f(|~φn(~x)− ~φi|). (2.1)

Here, ~φn(~x) is the population activity phase, which depends on the represented

variable ~x. Each coordinate of the phase is a circular variable, normalized to

lie in the circular interval [0, 1), where 0 is close to 1. The preferred phase

of the ith neuron in a populaton is designated ~φi. f is some unimodal bump

function in the periodic unit cell, for example, a circular Gaussian. If the

spiking process is Poisson, as we will assume here, then the n, ith cell emits

Kni spikes in a time interval [t, t+ dt) with probability

P (Kni|r(~x)) =
(rnidt)

Knie−rnidt

Kni!
, n = 1, 2, . . . , N, i = 1, 2, . . .M. (2.2)

The variability in spiking means that any estimate ~̂φn of the network

phase ~φn(~x) from the network spikes is inevitably noisy. The estimation noise

ξspkn is defined by:

φ̂n(~x) = φn(~x) + ξspkn . (2.3)
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Henceforth, we will refer to this noise as the spike sample error, Figure 1B,

because it refers to the error inherent in decoding the network phase ~φn(~x) from

a finite sample of noisy spikes (over an interval dt). With an unbiased optimal

estimator and a large number of neurons in each grid network (large M), the

spike sample error is Gaussian, with zero mean and variance lower-bounded

by the inverse Fisher information [69,77,105].

Next, any value of the represented variable ~x can be mapped to a vector

phase ~̄φn(~x) in a periodic grid, with respect to the period and geometry of the

grid. Thus, if the encoded population phases ~φn(~x) exactly represent ~x up to

a periodic transformation, we will have:

~φn(x) = ~̄φn(x). (2.4)

However, the populations likely do not have direct access to ~x. For instance,

in the example of grid cells, if each grid network integrates self-motion cues

to estimate its spatial phase and there is a very small noise in either the

self-motion cues or in the integration process [16,20,28,99], that population’s

phase will grow increasingly mismatched from the phase corresponding to the

true location over time [19]. Even if the grid cell system’s motion-derived

location estimate is corrected by a decoder that exploits the inherent error-

correcting properties of the grid code [89] or by the help of external sensory cues

[21,97], errors will accumulate in the periods between subsequent corrections.

Generally speaking, neurons can only obtain and encode an estimate of the

true value of an external variable in the world, with the estimate subject
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to errors from the sensory system and other sources. Therefore, we include

the possibility of error in the spatial phase encoded by each network. These

errors are assumed to be independent across networks and coherent within a

network; we model these errors ξsenn as uncorrelated Gaussians, with zero mean

and standard deviation σsen:

φn(~x, t) =
(
φ̄n(~x) + ξsen,kn (t)

)
mod 1. (2.5)

As above, the bar on the kth phase component φ̄kn refers to the error-free phase

for the variable ~x.

Henceforth, we refer to the phase noise ξsenn as the sensing error, because

it represents all errors that intervene between the actual value of the variable

in the external world and value that the network will represent, Figure 1B.

To summarize, relative to the actual value of the external variable ~x,

the final decoded estimate of ~x from the activity of neurons will include the

effects of sensory noise, ξsenn , as well as the effects of spike sample noise, ξspkn .

2.2.2 Tuning curve width

We will assume that across populations, the widths of the activity peaks

scale in proportion to the population response periods, so that the ratio of

activity peak width to period remains constant across populations. This as-

sumption is motivated by the grid cell data [48]. An interpretation of the

finding of equal tuning curve widths is that, if the number of neurons in each

grid network is the same, then the error in decoding the encoded phase in
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each population from its spikes is the same across populations. We refer to

the constant ratio of activity peak width to period across populations as the

tuning curve width, σe, of the multi-population code (Figure 1C-D).

2.2.3 Maximum likelihood and neural network decoders

We study the dependence of estimation error on tuning curve width for

two decoders, first, an ideal decoder that estimates the value of the encoded

variable that maximizes the likelihood of the data (ML decoding), and second,

a plausible neural network (NN) decoder. The NN decoder is constructed as a

set of weighted sums of all grid cell outputs, with a max operation performed

to select the biggest output (see Appendix A.1 for details). The sum and

max operations we consider may be envisioned as being performed by the

feedforward projections to a decoding layer of neurons, with winner-take-all

dynamics through global inhibition in the decoding layer, respectively.

2.3 Results

2.3.1 A geometric view of neural coding.

When a relatively low-dimensional variable is coded by a higher-dimensional

representation – for instance, in the activities of a large number of neurons –

we may view the code as a low-dimensional embedding of a set of points (if

the variable is continuous, then a manifold of points) in the high-dimensional

space. A schematic view of a 1D variable coded by embedding in a 2D repre-

sentational space is given in Figure 2.2.
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In general, the advantage of embedding a variable in a higher dimen-

sional space is the potential for error reduction. When the (high-dimensional)

representation is perturbed by (high-dimensional) noise, the system state is

bumped off the coding manifold; however, the perturbed representation may

be decoded by mapping it back to the coding manifold. The high-dimensional

noise is now largely erased, except for the projection of the noise along the

low-dimensional coding line. Thus, for a D-dimensional variable embedded

in an N -dimensional representational space, the residual squared error that

results from a unit-length high-dimensional perturbation scales as D/N – a

significant improvement when D � N .

However, such embeddings can also result in large, non-local errors.

When the perturbation is sufficiently large, a point on the coding manifold may

end up closer to a remote segment of the manifold. When decoded by mapping

onto the closest point on the manifold, the result will be a large non-local error

[10, 81, 89], also known as a threshold error [81]. The probability of threshold

error depends on the nature of the perturbation and on the separation of

segments of the coding line from one another.

If the dimensions (N and D, respectively) and ranges of the encoded

variable and the representational space are held fixed, then the stretch fac-

tor L of the coding manifold embedded in the representational space can be

independently varied, to be larger or smaller. The larger the stretch factor,

the smaller the residual local error for a given high-dimensional perturbation,

as a fraction of the total range of the coded variable. However, when a more
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A B

Figure 2.2: Geometric view of analog population codes: local versus thresh-
old errors. Neural population codes may be viewed as the embedding of a
low-dimensional coding manifold in the high-dimensional state space of neural
activity. (A) Consider a 1D variable in the unit interval, represented by a 1D
coding line in a higher-dimensional coding space. Suppose the length of the
coding line is L, and suppose the curve bends back toward itself, with a mini-
mum separation d between segments of the embedded curve (norm computed
in the full-dimensional coding space). If noise-driven perturbations are small
enough that projecting the perturbed state to the nearest segment (with near-
est corresponding to the maximum likelihood of the perturbed point across
points on the coding manifold based on the noise model, so we may view the
norm as the inverse likelihood) based on likelihood of the coding line restores
the system to the correct coding line segment, then the error is a local error.
For a given noise, the magnitude of local errors scales as 1/L: the longer the
coding line, the smaller the error. However, perturbations that exceed d/2 in
size, when mapped to the closest coding line, can fall on an adjacent segment
that corresponds to a remote value of the coded variable. These threshold
errors occur with higher frequency for a given noise when the coding line is
longer, because d (weakly) shrinks as L increases. They will also occur with
higher frequency if the coding line is poorly spaced relative to the noise model
(B) or if the decoder does not take into account the correct noise model.

stretched coding manifold is packed into the same representational space, the

segments are necessarily closer together (minimum spacing quantified by sep-

aration d), and can lead to an increase in threshold error. The increase in

19



threshold error probability typically grows weakly with L, if the coding man-

ifold is much lower dimensional than the representational space, and if the

structure of the embedding does not deteriorate with L – i.e., the embedding

is still well-spaced within the coding space. At the same time, the structure

and thus the separation properties of an embedding can also be varied, even for

fixed L. For example, concentrating the coding manifold in one small subre-

gion of the representational space and wasting the rest of the space can result

in lower separation between coding segments, and an increase in threshold

error probability, Figure 2.2B.

Because we are interested in neural population codes and their param-

eters, we seek to understand how the stretch factor L, the code structure,

the separation d and the decoding error vary as a function of tuning curve

width. A geometric view reveals global and qualitative properties of a code,

augmenting approaches rooted in Fisher information, which provides strictly

local information and because it ignores the probability of threshold error, is

a sometimes brittle estimator of expected error and information [10,13].

FI does not capture the effects of threshold errors, which can have a

large influence on squared error and Mutual information (MI). For this reason,

we will also compute MI in this work. In what follows, we study how the tuning

curve width in neural codes affects both the FI and MI. We will consider

information from an ideal observer perspective (ML decoding) and from the

perspective of more plausible neural network decoders.
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Figure 2.3: A review and geometric view of single-population codes. (A,C)
The circular normal tuning curves of three cells from a much larger population
encoding a circular variable. The tuning width is given by σe, and all curves
are translations of one another. (B,D) The firing rate vector traces out a curve
or coding line in the 3-dimensional space, which is itself a small subspace of
the full coding space of all neurons. Black dot: a noise-free response; gray
ball: schematic of the neighborhood of coding space around the black dot that
is visited when neural spiking is Poisson. (E) The length L of the coding line
increases as σe decreases. Colored dots indicated the specific values of σe from
(A-D). (F) Fisher information (FI) in the absence of sensing error (dashed,
σsen = 0), and when the sensing error is non-zero (solid; σsen = 0.05). Solid
and dashed lines show analytically calculated FI for single networks (A.52 in
Appendix A.3). Circles indicate numerically estimated FI, by measuring the
inverse of the variance of the central peak in the posterior. (G) Threshold
error varies very weakly with σe and is zero for most of the range. However,
when the number of active neurons in a bump decreases to order 1, it sharply
increases. (H) Mean square errors (circles) compared with the predictions from
FI (curves). Parameters: N = 256, rmax∆t = 1, and 107 samples.
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2.3.2 Single-population codes: a review and a geometric view

If N neurons with peak firing rate rm represent a scalar variable with

identical single-bump tuning (the tuning curves of different neurons are shifted

copies of one another, Figure 2.3A) the representational space isN -dimensional

and the coding manifold is a (1D) line, Figure 2.3A. For a circular variable,

the embedded line is a ring, Figure 2.3B.

Single-population codes have been extensively analyzed [10,72,77,105].

For a fixed number of neurons M , FI about an one-dimensional encoded vari-

able φ increases for narrower tuning.

J(φ) =
(
(2π)2Mrm∆t

)
κe

(
I1(κe)

eκe

)
, (2.6)

where rm is the maximum firing rate, κe = 1/(2πσe)
2, and I1(κe) is the first

order modified Bessel function of the first kind which scales as eκe for a large κe

(Appendix A.3). Thus, J(φ) increases with decreasing σe. From a geometric

viewpoint, this corresponds to the fact that as tuning curves become narrower,

the length or stretch factor L of the coding line increases, Figure 2.3A-D

(also see Appendix A.2). Thus, a unit of high-dimensional noise produces

diminishing local errors with narrower tuning curves, Figure 2.3E.

At very narrow tuning, when order 1 neurons are active at any given

time, it is possible for another set of neurons to become, by chance, more

active than the neurons in the active bump (if their baseline firing rates are

non-zero), or for neurons in the active bump to become inactive, leading to

threshold error ( [10] and D. Schawab and I. Fiete, unpublished work), Figure
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2.3G. For broad tuning, many active neurons signal the neighborhood of the

encoded variable, thus all errors are local.

Throughout this work, for single and multi-population codes, we will

remain within the population coding regime, away from the regime where only

one or a few neurons are active at a given time and, and therefore, away from

the regime of threshold error in single population codes. We will consider

regimes for the tuning curve width σe in which σeN , the number of active

neurons, is always much greater than 1, so that the probability of threshold

error in single populations is effectively zero. The smallest value of σe used

in the rest of the paper is 0.0125, which corresponds to a threshold error

probability of < 2× 10−7 in the single populations (See Appendix A.5).

2.3.3 Tuning curve widths for latent variable representation and
sensing noise

Suppose the variable does not directly drive the neural representation,

and instead drives a sensory system that then drives the representation. We

model this case by inserting a Gaussian noise term between the (now latent)

variable and the neural representation. We call this the sensing noise. When

the widths of the tuning curves in the population code are decreased to below

the standard deviation of the sensing noise, the growth in FI in the code about

the latent variable saturates, and there is no further increase for narrower tun-

ing, Figure 2.3F. This happens because the inverse FI cannot exceed (σsen)2,

regardless of tuning curve width.
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2.3.4 Multiperiodic multi-population codes: with ML decoding nar-
rower tuning curves are optimal until saturation due to sens-
ing noise.

When sensing noise is absent (σsen = 0), and a maximum likelihood

decoder is applied to a 1D multiperiodic code, the Fisher information increases

with narrower tuning widths, Figure 2.4A. This increase, as for the single-

population codes, can be directly attributed to the increase in the coding line

length with decreasing tuning width. With zero sensing noise, the probability

of threshold error (numerically estimated) for the multiperiodic code remains

extremely close to zero, Figure 2.4B, regardless of tuning curve width in the

regime we consider. Thus, in terms of both Mutual information and mean-

squared error, the error is fully specified by the FI, and the narrower the tuning

curves, the better, Figure 2.4D and E.

This result on multiperiodic multi-population codes is qualitatively the

same as the findings for unimodal bump codes both for unbounded variables

[105] and circular variables [17,65] in one dimension.

When the sensing noise σsen is non-zero (independent additive Gaussian

noise per phase, followed by the modulo operation to keep the phase variable

within [0,1)), the increase in FI with narrower tuning saturates when the tun-

ing curves become narrower than σsen, Figure 2.4A. Once again, this result is

similar to the single-population case. In contrast to the single-population case,

however, is the threshold error probability. For a fixed tuning curve width, as

the sensing noise is varied, the probability of threshold errors abruptly jumps to

24



a large non-zero value for sufficiently large sensing noise, Figure 2.4B (around

σsen = 0.2). For a fixed value of sensing noise, there is a weaker variation

in the threshold error probability with tuning curve width: threshold errors

become more probable as the tuning curve width increases. This result cannot

be attributed to any property of single-population coding; it is inherently due

to the multiperiodic nature of the multipopulation code.

The weak growth in the probability of threshold errors with tuning

curve width augments the effects of decline of FI with wider tuning, to result

in a slightly stronger overall decline in MI with wider tuning than in the single-

population case.

We may understand these effects through a geometric view of coding.

To do so, first note that the maximum likelihood estimate of x given the spike

counts K of all neurons equals the maximum likelihood estimate of x from

the maximum likelihood estimate ~̂φ of the phases in all populations. This is

because within each population, ~̂φ is a sufficient statistic for x given K. Given

this fact, the estimation of x becomes a two-step process, only one of which

depends on tuning curve widths: estimation of each phase, φ̂n, given the spikes

Kn from that population, followed by estimation of x given the phases. The

first problem is simply a single-bump code decoding problem for a circular

variable (spatial phase within a population), and the standard results on FI

as a function of tuning curve width apply [17,65].

The second type of errors are threshold errors [81]: a sufficiently large

perturbation can cause the decoder to map the perturbed codeword to the
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Figure 2.4: Ideal (ML) decoding and dependence on tuning curve width
(D = 1). In the presence of sensing noise, tuning curve width (σe) has lit-
tle effect on the performance of the ML decoder. (A) If σsen > 0, Fisher
information about the spatial location increases marginally as σe decreases
(solid curves). This contrasts the large increase in Fisher information for a
narrower σe when σsen = 0 (dashed curve). FI is numerically calculated (cir-
cles) by the inverse of variance of the center peak, which agrees with analytical
predictions (curves). The size of the sensing error determines the maximum FI
that can be achievable. (B) The probability of threshold error stays relatively
constant and marginally increases for too wide tuning curve width. When the
sensing noise is too large (σsen = 0.20), the probability of threshold error be-
comes large (top circles). Otherwise, the probability of threshold error stays
close to zero. (C) The mutual information (MI), calculated by numerically
calculating posterior probabilities, shows the same pattern as FI in (A). (D)
MI is shown for σsen > 0 with the x-axis normalized by σsen. When σe < σsen,
MI is flat. When σe > σsen, MI slightly decreases. (E) A larger σsen results
in a larger mean square error (MSE). For a fixed σsen, MSE increases with a
wider σe. Circles represent numerically calculated MSE while lines indicate
the inverse of the analytical FI. The former deviates from the latter when σsen

is large due to threshold errors. Parameters used for numerical simulations are
as follows: Rl = 300, H = 19200, N = 8, λn = {30, 34, 38, 42, 46, 50, 54, 58},
M = 256, and rm∆t = 1. σe and σsen are independently varied within ranges
[0.0125, 0.2828] and [0, 0.2], respectively. For each condition, 107 samples are
drawn independently.
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wrong segment of the embedding, resulting in a much larger error, out of

proportion to the size of the perturbation, Figure 2.2. These errors occur

occasionally.

Both local and threshold errors contribute to a finite mutual informa-

tion between the coded variable and its decoded estimate. The width of neural

tuning, because it affects the embedding of the coding line into neural activity

space, shapes the effects of noise on decoding precision.

First, we focus on 1-dimensional variables. As expected from previ-

ous studies of population coding [10,69,77,105] with unimodal tuning curves,

the Fisher information contained about network phase φn in a finite sample of

spikes from one network grows as the tuning curve width shrinks, Figure 2.4A.

In such codes, the embedding of the coding line in the M -dimensional neural

activity space is so sparse that the probability of threshold errors is nil, and

all errors are local errors that, for large numbers M of neurons, are Gaussian.

This error is then well-quantified by the inverse Fisher information through the

Cramer-Rao bound [69, 77]. Analytical calculations of the Fisher information

for single-population codes show that for 1-dimensional variables, the informa-

tion in a homogeneous neural population whose tuning curves are identical up

to simple shifts, grows with decreasing tuning curve width [10,105]. Previous

results, as well as the dashed curve in Figure 2.4A, are based on the existence

of spike sample errors, but in general do not include sensing errors. The solid

curves in Figure 2.4A incorporate the existence of increasing amounts of sens-

ing errors, and show the dependence of Fisher informationMutua in each of the
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networks about the network phase (See Appendix A.3 for detail calculation).

The probability of threshold errors with a maximum likelihood decoder is zero

when the sensory noise is small, but increases sharply for increasing amounts

of sensory noise (lighter gray curve with σsen = 0.20) beyond a threshold,

Figure 2.4B. Threshold error probability is only weakly dependent on tuning

curve width, with a slight decrease for wider tuning curves.

In Figure 2.4C, we may see the overall effect of tuning curve width

on mutual information, which is estimated numerically by applying maximum

likelihood decoding to samples of the noisy codewords. Without sensing errors,

there are continuing gains in information progressively narrower tuning curves

(assuming there are still enough neurons to cover the entire coding space).

With sensing errors, there is no real advantage to making the tuning curves

much narrower than the standard deviation of the sensing error. However, up

to that point, narrower tuning curves are better.

2.3.5 Finite tuning curve widths σe minimize errors with neural
network decoding with narrow σh

Next, we consider the effects of tuning curve width on the ability of

biologically plausible neural network decoders to estimate the value of the

encoded variable. The neural network decoder consists of a single-layer feed-

forward stage, followed by a max operation, to identity the maximally driven

output unit. This unit is then active, while the rest are inactive. Each out-

put unit represents a possible value of the coded variable, through its binary
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activation (if one output unit is active, then the inferred value of the coded

variable is the preferred value for that unit), and only one output unit can be

active at a time, selected by the max operation.

The weights from the inputs to each output unit reflect the template

input for the output’s preferred location: they are learned by clamping the

inputs in a state reflecting the accurate encoding of the external variable (no

sensing or spike sampling errors), and the appropriate output unit is clamped

on. The weights are set by simple associative learning, to be the product of the

activations of the pre- and post-synaptic units. The procedure is repeated so

all output units are clamped on once, and their weights trained (See Appendix

A.1).

How does the estimation error of the NN decoder scale with tuning

curve width, and how does the overall estimation error compare with the

optimal (ML) decoder? The neural network decoder displays a significantly

different behavior in the threshold error probability for narrow tuning curves.

Whereas the threshold error probability continues to modestly decline with

decreasing tuning curve width for the ML decoder, it decreases then sharply

increases for narrower tuning with the NN decoder, Figure 2.5B. That is, for

very narrow tuning curves, the probability of threshold error grows steeply (for

any curve that includes sensing errors). As a result, the mutual information

between the multi-period population responses and the encoded variable grows

smoothly then declines sharply as the tuning curves are narrowed, whenever

there is non-zero sensing error (gray squares), Figure 2.5C.
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Figure 2.5: Neural network decoding and dependence on tuning curve width
(D = 1). The NN decoder trained with a narrower tuning curve at the decoder
(σh ∼ 1

H
� 1) performs poorly when tuning curve width is narrow. The results

by the NN decoder is shown by squares. Solid or dashed curves show analytical
predictions (A,E) or results for ML in Figure 2.4 (B-D) for comparison. (A)
When σsen = 0, numerically calculated FI (squares) is close to analytical
prediction (dashed curve). However, when σsen > 0, numerically calculated FI
(squares) drops from the analytical prediction (solid curve) for narrower tuning
curve widths. This is in contrast to marginally increasing FI as σe decreases
with ML decoder. (B) In contrast to the ML decoder, the NN decoder produces
a large threshold error probability when turning curve width is narrow in the
presence of sensing error. (C) Consequently, when σsen > 0, the total mutual
information (MI) by the NN decoder (circles) drops precipitously for narrow
tuning curve widths, deviating from the ML decoder (solid curves). (D) MI
for σsen > 0 is replotted after normalizing the x-axis by σsen. When σe < σsen,
MI rapidly drops. When σe > σsen, MI slightly decreases. (E) For a fixed
σsen > 0, MSE rapidly increases for a narrower σe and gradually increases
for a wider σe. Parameters used for numerical simulations are as follows:
Rl = 300, H = 19200, N = 8, λn = {30, 34, 38, 42, 46, 50, 54, 58}, M = 256,
and rm∆t = 1. For each condition, 105 samples are drawn independently.
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2.3.6 Learning with noisy data improves NN decoding

Next, we modified the neural network decoder to incorporate the sens-

ing noise during weight training. The sensing noise in GC responses results

in smoothing in the trained weight wjni. This is equivalent to increasing the

decoding tuning curve width σh (See Appendix A.7). Thus, in numerical sim-

ulations, we increased σh and used analytical weight capturing the smoothing

effect.

We find that overall, the total information between decoded estimate

and the external variable increases when the feedforward (decoding) weights

are learned in this way, Figure 2.6C, relative to when they are learned with

no sensing noise, Figure 2.5C. This is mainly the result of decreased thresh-

old error probability. In Figure 2.6B, note that large threshold error when

σe � σsen is rescued by increasing σh. However, as σh increases marginal gain

decreases.

Indeed, the major gains in information occurred for narrow tuning

curves: performance with the NN decoder with weights learned in the presence

of sensing noise approaches the performance of the ML decoder from below,

showing that this NN decoder approximates ML decoding. In particular, the

penalty incurred for narrow tuning curves by a NN decoder trained without

sensing noise, is largely removed, so that beyond a certain sparseness, the

NN decoder performance saturates, rather than decreasing, but it also fails to

increase as tuning curves are further narrowed, Figure 2.6D and E.
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Figure 2.6: The catastrophic decoding failure of the NN decoder is alleviated
by increasing the tuning curve of the decoder σh (D = 1, σsen = 0.1). (A) As
σh increases, FI increases close to analytical prediction (solid curve). (B) As
σh increases, threshold error for a narrow σe decreases from the level of the NN
decoder (dashed curve at the top) to that of ML decoder (solid curve at the
bottom). (C) Consequently, with increased σh, the total mutual information
(MI) decreases slowly for a narrow tuning curve width (solid curve). (D) MI
is replotted after normalizing the x-axis by σsen. The NN decoder with a
large σh provides similar performance as the ML decoder. (E) MSE becomes
close to the MSE of ML (solid curve) compared to that of NN (dashed curve).
Still, there is a gap for a very narrow tuning curve. Parameters used for
numerical simulations are as follows: Rl = 300, H = 19200, N = 8, λn =
{30, 34, 38, 42, 46, 50, 54, 58}, λ = 44, M = 256, and rm∆t = 1. The number
of samples for each condition is 105.

2.3.7 Geometric underpinnings of results

Why does the neural network decoder fail for narrow tuning curves, by

giving large threshold errors? First, let us turn to a concrete picture of the

multi-scale code and its decoding, in the space of the coded variable, Figure
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A

B

Figure 2.7: Why NN decoding fails for narrow (encoder) tuning widths. (A)
The first three rows represent the probability of the spatial location given
neural responses of each network Kn without the sensing error. In individual
networks, any location that has the same phase as the true location (x+mλn, m
is an integer) is equally likely to produce the same neural response and cannot
be distinguished solely from the neural responses from a single network. This
ambiguity is resolved by observing all the grid networks. In the bottom, the
posterior has a unique maximum at the true location (gray dashed line in
the left). (B) In contrast, in the presence of the sensing error, the posteriors
in each network is shifted independently (red in the first three rows). The
combined posterior (red in the bottom) produces maximum in a complete
different location, which produces an estimate x̂narrow. This sensitivity to
sensing error is reduced by increasing the width of the posterior (blue). The
same noise that causes the complete failure of estimation for a narrow tuning
curve (dark) results in the estimate x̂wide with a negligible error for a broader
posterior (blue in the bottom).
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2.7. When there is no sensing noise, then the activity peaks of all the different

networks align at a specific value of the coded variable x, which corresponds

to the true value of the external variable, Figure 2.7A. It is easy to see that

the width of tuning then determines the local precision of the estimate: the

narrower the tuning in each network, the tighter the cumulative set of aligned

peaks, and the higher the precision of the estimate (as in Figure 2.5C above).

However, when sensing noise is introduced, the peaks of each population shift

relative to the true location, and relative to the peaks of the others. If the peaks

are narrow (narrow or red curves, Figure 2.7B), even small shifts cause a total

misalignment at the true location. Peaks of a subset of different networks may

come into close alignment, but typically do so at locations far from the true

location, Figure 2.7B. A decoder that simply computes the maximum of the

peaks summed across networks (as does a winner-take-all neural network) will

decode location as being at one of these remote locations of close alignment of a

fraction of networks. This corresponds to a threshold error, and is responsible

for the steep increase in error probability for neural network decoding when

sensing errors are introduced.

With broader tuning (broad or blue curves, Figure 2.7B), small shifts

in phase do not cause a total misalignment of peaks at the true location. On

the contrary, the peaks from all N networks continue to have some overlap

at the true location, and when summed, produce maximal activation in the

immediate neighborhood of the correct location, up to the uncertainty inherent

in the width of the cumulative activity peak. At the locations where a subset
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of networks have very well-aligned peaks, the summed activation is now lower

than at the true location, because some networks are entirely lacking a peak

there, and cannot contribute to the overall sum. Thus, NN estimates applied

to tuning widths that approach the size of sensing errors are less likely to

have threshold errors. However, broadening the tuning curves much beyond

the expected shifts in phase across networks will produce little further benefit

in reducing threshold errors, but will cause a decline in the precision of the

estimate of location in the neighborhood of the true location.

A maximum likelihood decoder does not simply compute the maximum

of the peaks, summed across networks. ML decoding incorporates the fact

that there is sensing noise with standard deviation σsen. The ML decoder

effectively convolves the peaks from individual networks with a Gaussian of

width σsen, before summing them together in (A.5). Therefore, a ML decoder

takes into account the shifts induced by sensing noise, effectively broadening

the tuning curves by that amount, in the decoding process. This effective

broadening exactly accounts for the effects of sensing noise, and minimizes the

probability of threshold errors in decoding. Thus, for an ML decoder there is

no reduction in threshold error from narrowing the tuning curves themselves;

and, as always, broadening contributes to a decline in estimation precision in

the neighborhood of the true location. Thus, with ML decoding, narrower

tuning is better.

Next, let us examine a different representation of the coding problem,

by considering the embedding of the multi-period population code into the
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high-dimensional activity space of neurons. The solid curves in Figure 2.8A-

C illustrates noise-free firing rates of three neurons for different tuning curve

width, defining the embedding of a low-dimensional input variable to a higher

dimensional state space. When tuning curve width is narrow (left), neurons

are active for a small range of inputs and, therefore, the embedding curves are

close to axes. As tuning curve width becomes wider (middle), the embedding

curves becomes better separated. However, a too wider tuning results in a

poor packing (right) because all the neurons are active for any input variable.

Next, let us compare estimated states by different decoders. Black

cross and red dots in Figure 2.8A-C shows true and noisy neural responses,

respectively. Circles in A,B, and C represent states estimated by ML, NN

with narrow σh, and NN with wide σh, respectively. Dashed lines connect a

noisy state to its estimate. In Figure 2.8A, with ML decoder, estimated states

are close to the true state along the embedding curve. However, in Figure

2.8B, NN with narrow σh decoder maps noisy states to a closest point on the

embedding curve, which fails to capture the actual noisy characteristics and

poor estimation with narrow tuning (left). Increasing σh overcomes this failure

and estimated states become closer to those of ML, Figure 2.8C.

Finally, to further understand the dependence on decoding method, let

us look at the state space of phase. Figure 2.9 illustrates the multi-scale code

with λ = {31, 33}, Rl = 495,M = 1024, σsen = 0.05, σe = 0.001, rmdt = 50.

Here, M , the number of neurons per a network, is chosen to be large to reduce

the effect of the Poisson variability compared to the sensing error. Solid curves
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Figure 2.8: The NN decoder becomes closer to the ML decoder by increasing
tuning curve width of the decoder (σh) for a narrower GC tuning curve (σe).
Solid curves represent noise-free neural representations of spatial location x ∈
[−500, 500] with λ = {31, 33, 37},M = 256, rm∆t = 50 with black crosses
corresponding to true spatial location x = 0. The number of neurons in the NN
decoder (H) is 20000. Red dots show 50 samples of noisy grid cell spike counts
due to sensing (σsen = 0.05) and spike sample (Poisson) noises. Green, blue,
cyan circles mark neural representations corresponding to decoded location
by the ML decoder (A), the NN decoder with narrow σh ∼ 1/H � σeλ (B),
and the NN decoder with a wider σh = 0.1λ (C), respectively. Dashed line
connects each noisy response to its estimate. The tuning curve widths are
σe = 0.01, 0.1, 0.4 from the left to the right. With the ML decoder, most of
estimates are close to the true value (A) regardless of σe. In contrast, the NN
decoder produces wrong estimates when σe and σh are both small (B left).
This catastrophic decoding failure is rescued by increasing σh (C left).
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show the embedding curve of the input range to the phase space. Black cross

and red dots represent true and noisy phases due to both sensing and spike

sample errors. The same noisy responses are decoded by ML (A), NN with

narrow σh (B), and NN with wide σh (C). Compared to the ML decoder

(A), the NN decoder with narrow σh (B) occasionally produces large errors in

estimating one of the phases, consistent with the higher threshold probability

of the NN decoder with narrow σe and σh. Increasing σh, corresponding to

noisy learning, fixes this problem (C).

2.4 Conclusion

Motivated by the unusual periodic responses of grid cells to animal lo-

cation, and the existence of multiple spatial periods within a single individual,

we analyze the mutual information between an encoded variable (location)

and a set of neural populations with periodic responses of diverse periodicity.

Beyond independent Poisson spiking noise, we also consider the role of latent

variables that contribute systemic, correlated errors within each population.

We show that with an ideal (maximum likelihood) decoder, the tuning

curves should be as narrow as possible to maximize mutual information, sim-

ilar to the result for homogeneous, single-bump population codes for periodic

variables. However, for plausible neural-network decoding, the optimal tuning

curve width is finite and independent of the dimension of the coded variable.

This result is in contrast to findings for single-bump population codes, and is

due to the existence of non-local errors in the posterior probability distribu-
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Figure 2.9: Decoding by ML (A), NN with narrow σh (B), and NN with
wide σh in the state space of phase. The right is the magnified plot of the
left. Gray lines represent noise-free phase, the codebook. Black cross and
red dots represent true and noisy phases, respectively. Green, blue, and cyan
represent estimated phases by different decoders. Dashed lines connect noisy
and estimated phases.
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tion of estimated location given the noisy neural code. We show that broad

tuning curves in the neural network decoder can significantly mitigate the

loss in performance from narrow tuning in the encoding population, and show

how appropriately broad decoder tuning can be adaptively acquired through

associative learning.
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Chapter 3

Decoding multi-scale error-correcting codes

using belief propagation

3.1 Introduction

This chapter focuses on recovering self-location from noisy phases of

grid cell modules. Grid cells in the entorhinal cortex encode self-location

as a set of phases using distinct moduli. The codewords of such multi-scale

codes range over the N -dimensional phase domain with complex structure.

Thus, decoding multi-scale codes is a challenging problem. To solve this, we

introduce an inference algorithm studied for graphical models.

Estimating sources from a given set of noisy measurements of its residues

is a mathematical formulation of a problem originating in multiple disci-

plines. For example, in coding theory, redundant residual number system

(RRNS) codes [84] are designed to encode an integer into residues modulo

relatively prime integers and find applications in storage and related domains.

Our work builds on the effort towards efficient decoding algorithms for such

codes [8,54,102]. Further applications for a similar problem setting are found

when performing decentralized compression in sensor networks [34], as well as

in mechanisms for distributed consensus in social networks [68].
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Whereas the integer version of the original RRNS code is easily decoded

by a closed form expression with appropriately designed moduli [8,54,102], esti-

mating continuous source from continuous residues is a much more challenging

problem, one that requires sophisticated tools such as belief propagation for

efficient (approximate) solutions.

In this chapter, we first demonstrate that this noisy source estimation

problem is indeed equivalent to a suitable integer program, and subsequently

develop an iterative inference algorithm over an appropriately defined graph.

Our approach is motivated by the clever use of graphical model framework to

solve systems of linear equations as studied in [82]. For a given system of linear

equations, a corresponding graphical model is first constructed and then the

Gaussian belief propagation algorithm is performed over the graph to find the

solution. Consequently, [82] shows that a large-scale linear optimization can be

solved by iteratively exchanging local messages between neighboring nodes in a

bipartite graph. This framework is extended to estimating noisy sources from

simultaneous continuous-valued congruences over a suitably defined layered

graph, and shows that such an algorithm is convergent and effective at high

SNRs.

Since its introduction by Pearl [71], belief propagation (BP) has enjoyed

great successes in efficiently calculating maximum a posteriori (MAP) estimate

of hidden variables given noisy or partial measurements. One of the most

important applications of BP is decoding modern channel codes, such as turbo

codes [12, 63] and low density parity check codes [27, 40]. (Refer to [75] and
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references therein for more details.) Theoretical studies on how and when

BP works are active research areas. If the graph over which BP is performed

is cycle-free, convergence and correctness of BP are guaranteed [71]. BP is

also found, on multiple occasions, to perform well on complex graphs with

cycles. Weiss and Freeman study BP on graphs with arbitrary topologies and

show that the fixed-point of the max-sum algorithm is the same as the MAP

estimate over a wide range of neighboring configurations (which is stronger

than local optimality but weaker than global optimality) [96]. Bayati et al.

apply the max-sum algorithm to maximum weigh matching in a bipartite

graph and show the convergence and correctness [9]. In our work, we present

a belief propagation algorithm that can be understood as an extension of the

framework in [9] in the sense that our algorithm operates on a graph with

more than two partitions.

3.2 Problem definition

A source S ∈ [0, 1) is encoded to an N -dimensional vector X which

contains residues of S with respect to distinct moduli:

X(S) = (X1(S), X2(S), . . . , XN(S)) (3.1)

Xn(S) = anS mod 1, n = 1, 2, . . . N, (3.2)

where an’s are relatively prime integers, gcd(an, am) = 1 if n 6= m. The

goal of the decoder is to estimate the source S from the noisy measurement
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Y = (Y1, Y2, . . . , YN) of the residue X:

Yn = Xn + Zn (3.3)

Zn ∼ N(0, σ2), (3.4)

where Zn’s are additive Gaussian noise with zero mean and variance σ2, inde-

pendent of one another. In other words, we would like to estimate the source

S given N simultaneous congruences with additive noise.

3.3 The maximum likelihood estimation of the source
from noisy residues

3.3.1 The maximum likelihood (ML) estimation involves maximiza-
tion of a non-convex function.

When the source is equally likely in [0, 1), the maximum a posteriori

(MAP) estimate coincides with the maximum likelihood (ML) estimate:

ŜML = arg max
S∈[0,1)

P (Y|S) = arg max
S∈[0,1)

N∏
n=1

P (Yn|S), (3.5)

where the product form in (3.5) follows from the independence of noise.

Each likelihood term P (Yn|S), n = 1, 2, . . . N , and total likelihood

P (Y|S) in (3.5) are expressed as mixtures of Gaussians (MoG) as follows. Due

to the modulo operation, the likelihood from the n’th congruence P (Yn|S) is

a periodic function and each period is the Gaussian with a different mean and

the identical variance (Figure 3.1A). Thus, P (Yn|S) is a mixture of Gaussians:

P (Yn|S) =
an−1∑
m=0

N

(
yn
an

+
m

an
mod 1,

σ2

a2n

)
, (3.6)
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where m indexes the period and N(µ, ν) denotes the probability distribution

function of Gaussian with mean µ and variance v:

N(µ, ν) =
1√
2πν

e−
(S−µ)2

2ν . (3.7)

Thus, the total likelihood P (Y|S) is the product of mixtures of Gaussians

(Figure 3.1B).

P (Y|S) =
N∏
n=1

(
an−1∑
m=0

N

(
yn
an

+
m

an
mod 1,

σ2

a2n

))
. (3.8)

Therefore, the maximum likelihood estimation in (3.5) is equivalent to

the maximization of the non-convex objective function in (3.8):

ŜML = arg max
S

N∏
n=1

(
an−1∑
m=0

N

(
yn
an

+
m

an
mod 1,

σ2

a2n

))
. (3.9)

Note that each P (Yn|S) produces an equally likely maxima (Figure 3.1A) and,

consequently, P (Y|S) has
∏N

n=1 an local minima (Figure 3.1B).

3.3.2 The maximum likelihood (ML) estimation is a combinatorial
problem.

A näıve way to implement the ML estimator in (3.9) would be to cal-

culate the likelihood of densely quantized bins in the source domain and then

to search for the bin with the maximum value. The accuracy and the speed of

this approach would be limited by the bin size. The denser the bins are, the

more accurate the estimate is. However, this performance increase comes at a

price of high computational complexity and large memory size.
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Figure 3.1: Likelihoods from individual measurements (A) and combined like-
lihood (B) for S = 0.5 and an = {9, 11, 13, 17, 23}. In A, each measurement
Yn (n = 1, 2, . . . , N) produces a periodic likelihood P (Yn|S) in (3.6) which is a
mixture of Gaussian. In B, the combined likelihood P (Y|S) in (3.8), which is
the product of the individual likelihoods in A, is a non-convex function with∏N

n=1 an local maxima.

Instead, the quantization of the entire source range can be avoided by

keeping track of mean and variances of MoGs. Each local maximum of the

total likelihood in (3.8) results from local maxima of individual likelihoods

(3.6). Let mn index the local maxima in P (Yn|S). Then, the local maxiam

in P (Y|S) is identified by (m1,m2, . . . ,mN), which forms the set of integer
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points:

M = {(m1,m2, . . . ,mN) | 0 ≤ mn < an, mn ∈ Z} . (3.10)

The likelihood corresponding to m ∈M is calculated by combining the mn’ th

Gaussian from congruence n. This calculation is done by recursively combining

two Gaussians at a time (See Appendix B.1 for combining a pair of Gaussians).

Therefore, the ML estimation is equivalent to the following integer pro-

gramming:

m∗ = arg max
(m1,m2,...,mN )∈M

N∏
n=1

N

(
yn
an

+
mn

an
(mod 1),

σ2

a2n

)
, (3.11)

where m∗ = (m∗1,m
∗
2, . . . ,m

∗
N) denotes the optimal combination of MoGs that

produces the maximum likelihood. After identifying the optimal index set m∗,

the estimate of the source is the mean of the product of Gaussians chosen by

m∗:

ŜMoG =

(
N∑
n=1

µ∗n
νn

)(
N∑
n=1

1

νn

)
(3.12)

µ∗n =
yn
an

+
m∗n
an

(mod 1) (3.13)

νn =
σ2

a2n
, (3.14)

where µ∗n and νn are mean and variance from m∗ found in (3.11).

The second approach of keeping only mean and variance is more efficient

than the näıve method based on dense quantization of the source domain. Still,

the optimization (3.11) involves a search over an exponentially increasing range
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(with respect to N) and the objective function is not convex. In what follows,

we approximate (3.11) with a simpler form and present a belief propagation

algorithm that makes use of local computations to efficiently estimate the

source.

3.4 Resolving simultaneous congruences by belief prop-
agation

3.4.1 From global to local computations

First, the integer programming in (3.11) is simplified by reducing the

number of congruences considered at a given time. In (3.11), the search do-

main M is a N -dimensional space and, therefore, the direct evaluation of the

likelihood for a given m ∈ M involves all the N congruences. Instead, we

derive local computations involving only a pair of congruences at a given time.

Specifically, let us introduce the following graphical model as shown in

Figure 3.2A. The an possible configurations ofmn is represented by an indicator

nodes; the mn’th node is 1 while the remaining nodes are 0. These an nodes,

corresponding congruence n, is called layer n and denoted as Ln. Each row

in Figure 3.2A is a layer and there are total N layers and
∑N

n=1 an nodes.

For notational simplicity, we use single index i = 1, 2, . . . ,
∑N

n=1 an for nodes.

Nodes i and j in two different layers are connected by an edge with weight

sij. Nodes within the same layer are not allowed to be connected. Potentially,

edges could be defined for
(
n
2

)
pairs of layers. However, this would increase

computational complexity. Instead, we allow edges between consecutive layers
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A B

Figure 3.2: (A) Graphical model representation of three simultaneous congru-
ences. Layer Ln corresponds to nth congruence relationship. Binary hidden
variable eij indicates whether a pair of Gaussians i and j are selected or not.
(B) Factor graph representation is shown for two variable nodes eij and ejk
with corresponding messages. Constraint Qn is imposed on all the edges from
layer n− 1 to n and constraint Rj check the consistency on node j.

only. The weight sij between node i and j reflects the similarity between the

two nodes, defined as follows:

sij = log κij =
1

2

{
µ2
i

νi

(
νij
νi
− 1

)
+
µ2
j

νj

(
νij
νj
− 1

)
+ 2

νij
νiνj

µiµj + log

(
νiνj
νij

)}
,(3.15)

where κij is the magnitude of the the product of two Gaussians corresponding

node i and j, N(µi, νi) and N(µj, νj) (See (B.4) in Appendix B.1).

Instead of considering nodes across all layers simultaneously, the opti-

mal set of nodes is inferred by locally evaluating for a pair of layers based on the

similarities defined in (3.15). For this purpose, we introduce a binary variable

eij ∈ {1, 0} to indicate whether both node i and j are selected (eij = 1) or not

(eij = 1). Let E denote the set of all possible configurations of edges. Then,

the goal is to find the optimal configuration E∗ ∈ E that maximizes the sum
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weight of chosen edges, namely
∑

i

∑
j sijeij. The parameterization of a con-

gruence by multiple binary variables expands the search space but introduces

constraints on the problem. Note that the size of the possible configurations E

is
∏N

n=1 2an , which is larger than the ways of choosing one node per each layer,∏N
n=1 an. This relaxation, which appears to be more costly, actually simplifies

local messages in belief propagation and offers better interpretations1.

Specifically, we have the following constraints:

Qn =

{
0 if

∑
i∈Ln−1,j∈Ln eij = 1

−∞ otherwise,
(3.16)

Rj =

{
0 if

∑
i∈Ln−1

eij = 1 and
∑

k∈Ln+1
ejk = 1

−∞ otherwise,
(3.17)

The first constraint Qn in (3.16) means that only one edge among edges be-

tween layers n− 1 and n is chosen. The second constraint Rj in (3.17) means

that if node j ∈ Ln is paired with a node i ∈ Ln−1 in the preceding layer

(eij = 1), node j must be pared with some k ∈ Ln+1 in the next layer (ejk = 1).

We refer to Qn and Rj as uniqueness and consistency constraints, respectively.

Thus, maximizing the likelihood under above constraints leads to the

following optimization problem:

E∗ = max
E

∑
i

∑
j

sijeij +
N∑
n=1

Qn +
N∑
n=1

∑
j∈Ln

Rj. (3.18)

Once the optimal configurations of edges E∗ is found, let I∗ denote the set of

chosen nodes:

I∗(E∗) =
{
i|e∗ij = 1, e∗ij ∈ E∗

}
. (3.19)

1The same is true for binary variable version [45] of the affinity propagation [38].
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Similarly to (3.12), the estimate of the source is the mean of the product of

Gaussians corresponding I∗:

Ŝ =

(∑
i∈I∗

µi
vi

)(∑
i∈I∗

1

vi

)−1
. (3.20)

3.4.2 Belief propagation on the layered graph

We propose a belief propagation (BP) algorithm to infer the optimal

configuration of binary variables in (3.18) given noisy measurements. Specif-

ically, we adopt a framework of affinity propagation (AP) [38, 45], which is a

variant of BP using pairwise similarities. Given a data set, AP provides as

solution a subset that maximizes the total similarity of the chosen configura-

tion. In contrast to original AP where any node can be connected to any other

nodes, we allow edge between consecutive layers only (Figure 3.2A). Thus, the

proposed algorithm can be understood as a variant of AP with additional

layer structure. Hence, we refer to the proposed algorithm as layered affinity

propagation (LAP). For our problem, the pairwise similarity in (3.15) is the

maximum likelihood of two chosen nodes. Constraints in (3.16) and (3.17) are

added so that only one node per layer is chosen as a valid configuration.

Figure 3.2B shows the factor representation of the graph in Figure

3.2A. An edge in Figure 3.2A generates a variable node, shown as a circle in

Figure 3.2B. Constraints in (3.16) and (3.17) correspond check nodes, shown

as rectangles in Figure 3.2B.

Belief and message on the factor graph are defined as follows. On
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each node, the (log) belief of the variable eij being one or zero are calculated,

difference of which defines the outgoing message from the node:

αij = αij(1)− αij(0) (3.21)

βij = βij(1)− βij(0) (3.22)

ηij = ηij(1)− ηij(0) (3.23)

ρij = ρij(1)− ρij(0) (3.24)

A positive message means that corresponding eij is more likely to be 1 than 0

given messages from neighbors. A negative message means the opposite.

The messages defined in (3.21-3.24) are updated according to the max-

sum rule [71] as follows.

βij = sij + αij (3.25)

ρij = sij + ηij (3.26)

ηij = − max
{(u,v):u∈Ln−1,v∈Ln,(u,v)6=(i,j)}

βuv (3.27)

αjk = max
i∈L(n−1)

ρij, (3.28)

where i ∈ Ln−1, j ∈ Ln, k ∈ Ln+1 index nodes in three consecutive layers.

Note that update rules (3.25)-(3.27) are calculated within a pair of layers

while (3.28) involves two pairs of layers (Ln−1, Ln) and (Ln, Ln+1). Messages

from variable to factor nodes in (3.25) and (3.26) directly follow from the
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max-sum rule [71] while messages from factor to variable nodes deserve more

explanation as follows.

The message αij from Qn to eij in (3.27) is given by the following

observation. If eij = 1, all the cuv’s connected to Qn other than eij must be

zero. Consequently, the message is:

ηij(1) =
∑

{(u,v):u∈Ln−1,l∈Ln,(u,v)6=(i,j)}

βuv(0). (3.29)

On the other hand, if eij = 0, only one among cuv’s connected to Qn other than
eij is one and all the remaining must be zero. Therefore, the corresponding
message contains the maximum operation as follows:

ηij(0) = max
{(u,v):u∈Ln−1,v∈Ln,(u,v)6=(i,j)}

βuv(1) +
∑

{(u′,v′):u′∈Ln−1,v
′∈Ln,(u′,v′) 6=(i,j),(u′,v′)6=(u,v)}

βu′v′ (0)

 . (3.30)

From (3.29) and (3.30), we have the combined message ηij = ηij(1)− ηij(0) in
(3.27).

Next, The message αjk from Rj to ejk is given as follows. Suppose
ejk = 1, meaning that node j in Ln is paired with node in the next layer
Ln+1. Then, the j must be paired by some node i in the previous layer Ln−1.
Therefore,

αjk(1) = max
i∈Ln−1

ρij(1) +
∑

l∈Ln−1,l 6=i

ρij(0)

 . (3.31)

On the other hand, if ejk = 0, j must not be paired with any of nodes in the
previous layer.

αjk(0) =
∑

i∈Ln−1

ρij(0). (3.32)

From (3.31) and (3.32), we have the combined message αjk = αjk(1)− αjk(0)
in (3.28).

To simplify the algorithm, messages corresponding to constraint Rj is
sent to only one direction (from layer n to n + 1) even though the constraint
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itself does not imply any directionality. Initial messages αij’s to layer 1 are set
to zero, corresponding to equal prior. These messages are combined in layer
1 and then new messages are generated and sent to layer 2. In this manner,
messages in a layer trigger messages to the next layer. This flow of information
is closed by connecting the last layer to the first layer. In other words, outgoing
messages from layer N is fed back to layer 1. The directionality and circular
boundary condition on layer allow us to simplify the convergence analysis in
the following section.

3.4.3 Simplified message updating rules of LAP

According to the max-sum algorithm [71], a node can send a message
to its neighboring node only after receiving messages from all the other neigh-
bors. Applying this rule to the structure shown in Figure 3.2B, node eij sends
message βij as soon as it receives sij (which is pre-calculated before the first it-
eration) and αij (which comes from the previous layer) using (3.25). Therefore,
given messages αij from the previous layer, all βij with i ∈ Ln−1 and j ∈ Ln
are calculated and transmitted to Qn. Then, Qn calculates ηij according to
(3.27). At this point, eij receives all the incoming messages and calculates ρij
using (3.26) and sends it to Rj. Finally, Rj uses ρij’s with j ∈ Ln to produce
αjk’s and transmit them to the next layer.

Therefore, massage passing rules involving four messages in (3.25)-
(3.28) are combined to those involving only two messages. Substituting (3.25)
to (3.27),

ηij = − max
{(u,v):u∈Ln−1,v∈Ln,(u,v)6=(i,j)}

(suv + αuv) (3.33)

Substituting (3.33) to (3.26),

ρij = sij − max
{(u,v):u∈Ln−1,v∈Ln,(u,v)6=(i,j)}

(suv + αuv) . (3.34)

Thus, the simplified update rules involve only αij and ρij according to (3.28)
and (3.34). Given αij’s from the previous layer, ρij’s are calculated. From
ρij’s, αjk’s for the next layer are generated and sent through factor node Rj.
This procedure is summarized in Algorithm 1.
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Algorithm 1 Layered affinity propagation (LAP)

calculate pairwise similarities sij
initialize αij ← 0
repeat

for layer n = 1, 2, . . . N do
ρij ← sij − max{(u,v):u∈Ln−1,v∈Ln,(u,v)6=(i,j)} (suv + αuv) for i ∈

Ln−1, j ∈ Ln
αjk ← maxi∈Ln−1 ρij for j ∈ Ln, k ∈ Ln+1

end for
until convergence

3.5 Optimality and computational complexity of LAP

3.5.1 Convergence and correctness of LAP

Now, we study theoretical guarantees of LAP. Specifically, LAP finds
the correct MAP solution of (3.18) which is an approximation of the ML
estimate in (3.11).

Proposition 1. The fixed point of LAP is the correct solution of the optimiza-
tion problem in (3.18).

In what follows, we use computation tree [75] to prove Proposition 1.
The computation tree G̃ of the original graph G is a tree that preserves the
local connectivity of G. Nodes ẽij and R̃j in G̃ are replica of eij and Rj in G,
respectively. Any node in G̃ has as children all the replica of nodes that are
neighbors in G except its parent. Figure 3.3 illustrates the computation tree
G̃ of G. The root of G̃, denoted as R̃o, is connected to all ẽij, i ∈ LN−1, j ∈ LN
in layer N . Each ẽij is connected to all the other nodes ẽuv, u ∈ LN−1, v ∈
LN , (u, v) 6= (i, j) through check nodes Q̃N . Each ẽuv is connected to the next
layer via check node R̃u, u ∈ LN−1. In this manner, the computation tree
expands from layer N to layer 1 in each iteration. Thus, after T iterations,
the depth of G̃ is 4NT .

Message passing rules for the computation tree is the same as the orig-
inal tree. By construction, messages on G̃ flow from child to parent. Initially,
all the α̃uv at the leaves of G̃ are set to zero. Once α̃uv and s̃uv are given
to layer n, messages ρ̃ij are calculated according to (3.34), which, in turn,
produce messages αjk to the next layer according to (3.28).
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Figure 3.3: The computation tree of the factor graph in Figure 3.2B.

LAP is guaranteed to converge to the correct MAP solution on the
computation tree G̃. Let Ẽ∗ denote a fixed point of LAP on G̃. Previous
studies show that a max-sum algorithm always converges to a fixed point,
which is the correct MAP configuration on a tree [71]. Because LAP is a
max-sum algorithm and G̃ is a tree, Ẽ∗ is the optimal on G̃. Still, we need
to show that optimal configuration Ẽ∗ on G̃ indeed corresponds to the correct
ML estimate in G, which is addressed as follows.

Before discussing optimality, mapping from configuration {ẽij} on G̃ to
{eij} on G is defined as the following. The value of ẽij on G̃ is determined by
the sign of corresponding ρ̃ij:

ẽij =

{
1 if ρ̃ij > 0

0 otherwise.
(3.35)

Given {ẽij} on G̃, corresponding {eij} on G is found by recursively tracing
from the root to a leaf. From the root R̃o, ẽij with the largest ρij is found
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and corresponding eij is set to 1 in layer N . Next candidate is searched for
among the children of the chosen ẽij. In other words, ẽuv with the largest β̃
is set to 1 and R̃u below it is used for next search in layer N − 1. In this
way, a sequence of eij with value 1 is found for the top N layers and the
configuration corresponding Ẽ∗ is denoted as E∗. This mapping naturally
satisfies the consistency constraint and we have the following lemma showing
that LAP provides a valid configuration on the original graph.

Lemma 1 (Consistency). Any configuration E on G generated from a fixed
point Ẽ∗ on G̃ contains one and only one node from each layer.

Next step is to confirm the optimality of E∗ on the original graph G. To
show this, we use results of the correctness of max-sum algorithm over a graph
with arbitrary structure in [96]. One of the key concepts we adopt from [96]
is the optimality of max-sum algorithm over a wide range of neighborhood,
called single loops and trees (SLT) neighborhood. For completeness, we briefly
summarize the definition of SLT and optimality as follows.

Definition 1 (SLT neighborhood [96]). A pair of configurations E1 and E2

of G are called SLT neighborhood if there exists set of disconnected trees and
single loops T such that E2 is obtained by changing values of E1 in T .

Lemma 2 (SLT-neighborhood optimality [96]). If E∗ is a fixed point of a
max-sum algorithm, the probability of E∗ is greater than any SLT neighbor ET
of E∗ in G:

P (E∗|Y) > P (ET |Y), (3.36)

where Y represents measurements.

Since LAP is a max-sum algorithm, Lemma 2 leads to the following
Corollary.

Corollary 1. Let E∗ denote the fixed point of LAP. Then, E∗ is SLT-neighborhood
optimal:

P (E∗|Y) > P (ET |Y), (3.37)

for any SLT neighbor ET of E∗ in G, where Y represents measurements.
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Figure 3.4: E1 and E2 are the same configurations except j1 and j2 in layer
n. By flipping the assignments along the cycle, E2 is transformed to E1. This
shows that E1 and E2 are SLT neighbors.

Finally, SLT-neighborhood optimality of LAP implies global optimality
because all the valid configurations are SLT neighborhood to each other. This
is shown in the following lemma.

Lemma 3. Suppose E1 and E2 are distinct configurations on G satisfying the
consistency. Then, E1 and E2 are SLT neighbors to each other.

Proof. Without loss of generality, one can assume E1 and E2 differ in Ln and
identical in other layers. Let j1 and j2 denote these differing nodes in E1 and
E2, respectively. Indices of connected nodes in Ln−1 and Ln+1 are called i and
k, respectively (Figure 3.4). By assigning eij1 = 0, ej1k = 0, eij2 = 1, and
ej2k = 1, E1 is transformed to E2, which forms a cycle shown in Figure 3.4.
Thus, E1 and E2 are SLT neighborhood.

Thus, Lemma 1, Corollary 1, and Lemma 3 prove Proposition 1.

3.5.2 Computational complexity

Now, we compare computational complexities of decoding methods.
First, the näıve ML estimation, based on evaluating likelihoods of quan-
tized bins, requires a large number of bins to represents a continuous source
and the computational complexity scales with the number of bins. Next,
the local-maxima-based approach in (3.11) needs O(aNmax log2N) operations,
where amax = maxn an and the term log2N is based on the assumption that
N Gaussians are recursively combined using a binary tree for each local max-
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imum. Note that above two methods assume a centralized decoder that has
access to all the measurements.

Compared to the complexities of these central schemes, LAP’s com-
putational complexities in individual nodes are much lower. The numbers
of messages sent to nodes Rj and Qn are less than amax and a2max, respec-
tively, where amax = maxn an. Thus, the computational complexity per node
is O(a2max) while the number of nodes scales as O(Na2max)

3.6 Numerical simulations

Numerical simulations are performed as follows. The number of congru-
ences N are either 5 or 8. The parameter of an is designed such that resulting
codewords are well separated and produce a low threshold error probability:
A5 = {9, 11, 13, 17, 23} and A8 = {11, 13, 15, 17, 23, 29, 37, 47}. Readers are re-
ferred to [103] for detail analysis and procedure to find such good codes. For

a given SNR = 1/12
σ2 , 104 set of noisy congruences are generated using (3.3)

and (3.4) for source S = 0.5. For each set, the proposed algorithm (LAP) and
the maximum likelihood (ML) estimation produce estimates SLAP and SML,
respectively. For LAP, the maximum number of iteration is 20. For ML, the
source range is quantized into 105 bins with equal size. The likelihood is calcu-
lated for each bin using Eq. (3.6) and the bin with the maximum likelihood is
found as an estimate. The mean square error (MSE) is used as a performance
measure.

LAP converges within a few iterations. Figure 3.5 shows an example
of LAP when true S = 0.5. Circles in Figure 3.5 A and B represent the center
of the mixture of Gaussians from each layer. Solid blue lines show the edges
assigned with value 1. Dashed red lines indicate local maxima ρij in each layer
(shown only when they differ from the blue lines). This discrepancy after the
first iteration (Figure 3.5A) is resolved as messages propagate over iterations
(Figure 3.5B). In Figure 3.5C, the log likelihood of the configuration increases
until 4 iterations and then saturates, indicating the convergence of LAP.

The mean square error (MSE) of LAP is essentially the same as the ML
estimation for high signal-to-noise ratios (SNRs). Figure 3.6 shows MSEs of
LAP (blue circle) and ML (red square) for a range of SNRs. Dashed line is a
lower bound of MSE when correct set of Gaussians is revealed to the decoder
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Figure 3.5: An example of layered affinity propagation with S = 0.5 and an =
{9, 11, 13, 17, 23}. In A and B, circles show the centers of Gaussians ordered
by the layer along the x-axis Solid blue lines show chosen edges after 1 and 2
iterations (A and B, respectively). Dashed red lines indicate maximum ρij in
each layer (shown only when it differs from the black lines). LAP converges to
the right solution after 2 iterations In C, the log likelihood continues increasing
until 4 iterations and then saturates.

(Appendix B.2). For high SNRs, MSEs of LAP and ML estimation are almost
identical. For low SNRs, MSE of LAP deviate from that of ML estimation.
Overall, LAP achieves high accuracy with much fewer computations.

3.7 Conclusion

In summary, we propose a belief propagation algorithm to estimate a
continuous source from its noisy residues, which is inherently a combinatorial
optimization. We first approximate the original estimation with a simplified
one involving only pairwise likelihoods and then solve the simplified problem
by a belief propagation on the graph with layered structure. The proposed
algorithm, called layered affinity propagation (LAP), is guaranteed to find the
MAP solution of the approximated problem. Numerical simulations demon-
strate excellent convergence within a few iterations and accuracy of the pro-
posed algorithm in estimating the source.

In high SNRs, the proposed algorithm achieves essentially the same
mean square error of maximum likelihood estimation. There is a gap for low
SNRs, which can be understood as follows. LAP is based on local computations
using two congruences while the ML estimation considers all the congruences
simultaneously. When noise is large and measurements are close to the decision
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Figure 3.6: The mean square error (MSE) of LAP is essentially the same as
that of ML for high SNRs and comparable for low SNRs. ForN = 5 (left) and 8
(right), an = {9, 11, 13, 17, 23} and {11, 13, 15, 17, 23, 29, 37, 47}, respectively.
104 set of noisy samples are generated for each SNR and estimated by LAP
(blue circle) and by ML estimation (red square). Mean square errors of LAP
(blue circle) and of ML estimation (red square) are plotted as function of

SNR=1/12
σ2 . Dashed line shows a lower bound without threshold error. (See

Appendix B.2.)

boundary, local information based on only few congruences may lead to an
incorrect solution. Understanding this behavior of LAP in low SNRs and
designing a way to avoid this limitation would be future research topics.

Finally, another interesting future research is to study plausible neural
implementations of the proposed algorithm. We focus only on algorithmic
aspect of reconstructing a continuous source from its noisy residues. How the
brain addresses this problem would be an intriguing question to be addressed.
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Chapter 4

Distributed joint source-channel coding

using the brain’s multi-scale code

4.1 Introduction

In previous chapters, we discuss on the amount of information in the

multi-scale code in the entorhinal cortex, which depends on decoding method,

(Chapter 2) and then propose an alternative decoding algorithm that recovers

the source based on local computations (Chapter 3). In this chapter, we

demonstrate an application of such multi-scale codes for distributed coding.

4.1.1 Analog codes as joint source-channel coding schemes

Analog codes, where both the input and output fields for the code cor-

respond to points on the real line, have gained particular attention in recent

years. Such codes differ from more conventional coding ensembles where typi-

cally one of the input or output sets is discrete-valued. The analog code maps

a continuous source to a continuous codeword without explicit quantization.

When this mapping is optimized to be a good source code and, at the same

time, a good channel code, this analog code results in a joint source-channel

(JSC) code.

Analog codes provide three advantages over conventional discrete coun-
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terpart. The first is small delay. Conventional codes, where continuous input

is first quantized to discrete codeword by a source code and then encoded by a

channel code, are designed to maximize spectral efficiency at the price of large

delay due to long codewords. In contrast, analog codes, as JSC codes, are

designed to minimize distortion for a fixed code length that are much smaller

than that of conventional codes. Thus, analog codes are ideally suited for

delay-limited applications as well as for channels with time-varying signal-to-

noise ratio (SNR). Second, analog codes are robust to SNR mismatch and offer

graceful degradation of the performance. Separate source and channel coding

is known to be optimal for a given SNR, but the performance of separation

is not robust to SNR mismatch [46]. Analog codes can render a degree of

robustness to the system, and hence they are analyzed in certain detail in

existing literature [25,92,94]. Third, the use of analog code is justified by the-

ories as well. In many cases, it is known that uncoded transmission (a trivial

analog code) of continuous source(s) over classes of additive Gaussian noise

(AGN) channels outperforms separate source and channel coding [30,43], and

is sometimes optimal [42,88].

Constructing “good” analog codes has been an intriguing research prob-

lem. One of the desired properties of analog code is that codewords are maxi-

mally separated from one another. To achieve this goal, various mappings from

continuous source to continuous codeword are investigated. Chen and Wornel

proposed to use chaotic dynamic systems to generate analog codewords [25].

Among such mappings, the shift-map has received particular attention [92,94].
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Space-filling curves are used to design efficient joint source-channel coding

schemes when bandwidths of the source and the channel do not match [26].

Another interesting approach is to derive an analog code from a discrete code

with maximum distance [76]. In previous studies, analog codes are studied for

point-to-point channels. In this paper, we generalize the notion of the shift-

map code and apply it to construct a joint source channel code for distributed

coding.

4.1.2 Joint source-channel coding for distributed coding

In distributed settings, multiple senders and receivers wish to exchange

informations and optimal coding schemes for distributed coding quite differ

from those for point-to-point communications. For example, in distributed

source coding, correlated sources are encoded by separate senders and trans-

mitted to a receiver. The celebrated result by Slepian and Wolf shows that

the separate encoders can be as efficient as the encoders with full coopera-

tion in terms of required data rate [83]. An asymmetric version of distributed

source coding is that the receiver is interested only one of the sources and

the other source is used as side information to improve estimation accuracy

of the desired one. This problem is first studied for lossless [100] and then

for lossy source coding [101], which is referred to as Wyner-Ziv source coding

problem. Distributed source coding has numerous applications including dis-

tributed compression, distributed video coding, multi-view video compression,

to name just a few [34].
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In order to achieve the best efficiency, two senders should provide com-

plementary informations to the receiver. However, how is this possible without

any cooperation between senders? This goal is achieved by a discrete codebook

with random binning structure [83]. Sender 1 transmits only the bin index of

the codeword to reduce data rate. The receiver first decode this bin index

and uses the signal from sender 2 to identify the codeword in the bin. The

correlation between the sources allows the receiver to use joint typical decoder

for the second step and guarantees small error probabilities [83].

We extend the binning strategy for a discrete codebook to design the

continuous codebook which dynamically scales with side information sepa-

rately provided to the decoder. We show that a generalized version of shift-

map codes enables robust joint source-channel coding by separate encoders.

To be specific, choosing relatively prime integers for code generation modifies

the shift-map code to interleave itself in the coding space. Since this use of

relatively prime integers shares a strong connection with redundant residue

number systems (RRNS) [54,84,95,102], we refer to our codes as RRNS-map

codes.

4.2 System model

Figure 4.1 presents the system model. The continuous source S is

uniformly distributed in the unit interval [0, 1). This source is encoded in

terms of N real-valued variables X = (X1, X2, . . . , XN). This codeword is

transmitted over additive Gaussian noise (AGN) channels with the constraint
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0 ≤ Xn < 1 for n = 1, 2, . . . , N1. The received signal Y = (Y1, Y2, . . . , YN) is

the sum of the transmitted codeword and noise Z = (Z1, Z2, . . . , ZN):

Yn = Xn + Zn, n = 1, 2, . . . , N (4.1)

Zn ∼ N(0, σ2), (4.2)

where the noise terms Zn’s are zero-mean Gaussian with variance σ2 and in-

dependent of one another.

The receiver has side information that the source S lies in a subinterval

W ⊂ [0, 1]. This side information is assumed to be known to the receiver

but not to the sender, in a setting analogous to Wyner-Ziv source coding

problem [100, 101]. The difference from [100, 101] is that we include AGN

channels in the consideration and seek for a joint source-channel coding scheme

with side information at the decoder.

For example, the side information may be provided in the following

manner. A separate encode observes S ′ which is correlated with S and trans-

mits S ′ to the receiver:

S ′ = S + Zc (4.3)

Zc ∼ N(0, σ2
c ). (4.4)

Then, the receiver estimates S ′ with distortion D2. Then, the overall uncer-

tainty of S is σ2
c+D2 in terms of variance. Thus, we define the side information

1With an appropriate offset, this constraint is equivalent to the power constraint

E
[
(Xn)

2
]
≤ 1

12 for i = 1, 2, . . . , N .
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ENC DEC+

Figure 4.1: The schematic diagram of the system model. The encoder gener-
ates codewords X for source S ∈ [0, 1), which are subsequently transmitted
over AGN channels. In addition to the noisy observation Y , the decoder has
additional knowledge, side information, that the source S lies in an interval
W ⊂ [0, 1].

W =
[
Ŝ ′ − |W |

2
, Ŝ ′ + |W |

2

]
, where Ŝ ′ is the estimate of Ŝ ′. The outage proba-

bility is

Po = 2

(
1− Φ

(
|W |

2(σc +
√
D2)

))
, (4.5)

where Φ(x) is the cumulative distribution of the standard normal distribu-

tion defined by 1√
2π

∫ x
−∞ e

− t
2

2 dt. For simplicity, we assume that this outage

probability is negligible with an appropriate choice of |W |.

The receiver uses this side information W and the channel output Y

to produce an estimate of S, denoted as Ŝ. The distortion D is defined as the

mean square error in the estimation of S:

D = E

[(
Ŝ − S

)2]
. (4.6)

The distortion generally has two distinct components. The first is due to

codewords that are mapped by noise to other codewords that represent nearby

points in the source (Figure 4.2 blue). These errors occur frequently but the
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Figure 4.2: The notion of threshold error in dimension-expansion mappings.
A source S of dimension 1 (e.g. the unit interval) is mapped to a codeword X
of higher dimension. This mapping may be viewed as an embedding of a curve
in a higher dimensional space. The length of the embedded curve is L and
distant segments of the embedded curve are separated by a minimum distance
d. A small noise (blue) is decoded as a point on the correct line segment,
and the resulting error is small (local error). In contrast, a large noise (red) is
decoded to the adjacent segment and is the estimation error is large (threshold
error).

magnitudes are small. The second is due to noise that maps a codeword to

another that represents a distant point in the source (Figure 4.2 red). These

errors, called threshold errors by Shannon [81], are rare if the noise variance is

small, but magnitudes are large. By considering the probability of each case

and the corresponding mean square error, the distortion D in (4.6) is:

D = P (Z /∈ T)E
[
(Ŝ − S)2|Z /∈ T

]
+ P (Z ∈ T)E

[
(Ŝ − S)2|Z ∈ T

]
, (4.7)

where T represents the set of noise vectors that produce threshold errors.
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4.3 The shift-map code and its generalization

We first start with the shift-map code which is studied in the context

of point-to-point communications and then generalize the shift-map code to a

new construction for distributed coding.

4.3.1 The shift-map code

Given a continuous source S, the shift-map codeword of length N is

defined as follows [25,92,94]:

Definition 2 (The shift-map code). For a source S ∈ [0, 1) and the design

parameter α, the shift-map codeword XSM(S) of length N is defined as

XSM(S) = [XSM
1 (S), XSM

2 (S), . . . , XSM
N (S)] (4.8)

XSM
n (S) = α(n−1)S mod 1, (n = 1, 2, . . . , N), (4.9)

where α ≥ 2 is a positive integer that controls scaling of the codeword. The set

of all the codewords is denoted as XSM and the set of codewords corresponding

to source in the interval W ⊂ [0, 1] XSM(W ):

XSM =
{
XSM(S)|S ∈ [0, 1)

}
(4.10)

XSM(W ) =
{
XSM(S)|S ∈ W

}
. (4.11)

The shift-map codebook XSM forms parallel line segments with direc-

tion (1, α, α2, . . . , αN−1) inside the unit hypercube (Figure 4.3A). The total arc-

lengh over all these segments is called the stretch factor, denoted as LSM(α),

and the minimum distance between them dSM(α).
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For a fixed N , there exists a trade-off between the stretch factor and

the minimum distance, controlled by α. Specifically, LSM(α) monotonically

increases while dSM(α) monotonically decreases with increasing α. To be spe-

cific, we have the following lemma.

Lemma 4. Given the shift-map code with α, the stretch factor LSM(α) and

the minimum distance dSM(α) are as follows:

LSM(α) =
√

1 + α2 + · · ·+ α2(N−1) (4.12)

dSM(α) =
1

α

√
(LSM(α))2 − 1

LSM(α)
. (4.13)

Proof. The stretch factor in (4.12) is because the message interval of length 1

is stretched by αn−1 in the n’th dimension for each n = 1, 2, . . . N . In order to

calculate the minimum distance in (4.13), let us first consider distances from

individual line segments to a reference line passing the origin. Finding inter-

cepts of individual line segments simplifies the calculation as follows. Consider

a non-zero codeword X with the no’th coordinate being zero for 1 < no ≤ N .

By construction, Xno = 0 implies Xn = 0 for n > no. These intercepts cor-

respond to the message S = i
α(no−1) for a positive integer 0 < i < an. Thus,

other coordinates have the form of Xn = α(n−1)i
α(no−1) for n < no. Among those

points, ( 1
α
, 0, . . . , 0) attains the minimum distance in (4.13).

For large α, the minimum distance scales inversely with α: d ≈ 1
α

. To

be specific, we have the following corollary.
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Corollary 2.

4

5

1

α2
≤ dSM(α)2 <

1

α2
. (4.14)

Proof. Equation (4.14) immediately follows from (4.13) by observing that

4

5
≤ (LSM(α))2 − 1

(LSM(α))2
= 1− 1

(LSM(α))2
< 1 (4.15)

since (LSM(α))2 ≥ 5 for α ≥ 2.

The tradeoff between the stretch factor and the minimum distance re-

sults in the trade-off between two terms in the distortion in (4.7). For a given

dimension N and a fixed σ, increasing LSM(α) by increasing α reduces the

size of distortions provided that there is no threshold error. Specifically, the

first term in (4.7), scales as:

E
[
(Ŝ − S)2|Z /∈ T

]
∝ 1

L2
(4.16)

However, increasing the stretching factor means that a longer curve is packed

into a fixed volume. Therefore, the minimum distance dSM(α) decreases and

the probability of threshold errors increases. As a result, the second term in

the distortion of (4.7) grows with increasing α.

4.3.2 A generalization of the shift-map code to use side information
at the decoder

The shift-map code is generalized by relaxing the conditions on the

scaling coefficients in (4.9). In the shift-map code, the source is multiplied by
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Figure 4.3: Examples of the shift map with (a1, a2) = (1, 5) on the left and the
RRNS-map with (a1, a2) = (3, 4) on the right. Both codes are chosen to have
similar stretch factors and minimum distances. Numbers next to individual
segments in blue indicate the order of the mapping as the source increases
from 0 to 1. A and B show codebooks without and with side information
W = [0.5, 0.75], respectively. Gray dashed lines correspond the codeword
inconsistent with W .

a geometric series followed by the modulo operation. In contrast, we propose

to use relatively prime numbers to encode the source with its residues modulo

using relatively prime numbers This representation is, in principle, closely

related to the redundant residue number system (RRNS) codes [84] in which

an integer is encoded by their residues with respect to a set of relatively prime

moduli. Due to this strong connection, we refer to the proposed code as the

RRNS-map code.
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Specifically, the RRNS-map code is defined as follows:

Definition 3 (The RRNS-map code). For a source S ∈ [0, 1) and the design

parameter a = (a1, a2, . . . , aN), the RRNS-map codeword XRRNS(S) is defined

as:

XRRNS(S) = [XRRNS
1 (S), XRRNS

2 (S), . . . , XRRNS
N (S)] (4.17)

XRRNS
n (S) = anS mod 1, (n = 1, 2, . . . , N) (4.18)

gcd(an, am) = 1 for n 6= m, (4.19)

where the scaling coefficients 1 < a1 < · · · < aN are positive integers and

gcd(·, ·) represents the greatest common divisor of the two numbers. The set

of all the codewords generated by the RRNS code is denoted as XRRNS and the

partial codebook for S ∈ W ⊂ [0, 1) XRRNS(W ):

XRRNS =
{
XRRNS(S)|S ∈ [0, 1)

}
(4.20)

XRRNS(W ) =
{
XRRNS(S)|S ∈ W

}
. (4.21)

The RRNS-map codebok XRRNS forms parallel line segments with di-

rection (a1, a2, . . . , aN) inside the unit hypercube (Figure 4.3B). The stretch

factor LRRNS(a) and the minimum distance dRRNS(a) are defined as the same

as for the shift-map code.

The key difference between the shift-map and RRNS-map codes is the

choice of the parameter, which leads to the following differences. In the shift-

map code, the n’th coordinate of the codeword is related to the source S by
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a scale factor α(n−1), which increases with n. Therefore, the coordinate with

larger n encodes local changes of the source with larger sensitivity. In contrast,

in RRNS-map codes, one can choose an’s within a small range so that all the

Xn’s have similar sensitivities to the source.

For instance, Figure 4.3A compares examples of shift-map (left) and

RRNS-map (right) codes. The parameters for those codes are (a1, a2) = (1, 5)

and (a1, a2) = (3, 4), respectively. Both codes have essentially the same stretch

factor (L2 = 1+52 ≈ 32+42) and minimum distance (0.20). Therefore, without

additional information about the source, decoders for both codes have the

same performance. The numbers in blue indicate the order of the encoding line

segments, as the source ranges from 0 to 1. In the conventional shift-map code,

each segment of codeword monotonically increases, and the resulting segments

are ordered sequentially. However, in the RRNS-map code, the order may be

interleaved. This interleaving structure is a key advantage of the RRNS-map

codes over conventional shift-map codes when combined with side information.

In Figure 4.3B, the effects of side information on the shift-map (left)

and RRNS-map (right) codes are demonstrated. Solid lines indicate codewords

consistent with side information W = [0.5, 0.75], corresponding to segments 3

and 4 for the shift-map code and segments 4 and 5 for the RRNS-map code.

Gray dashed lines shows codewords inconsistent with W . In the shift-map

codes, the distance between candidate segments remains the same because

they lie next to each other. In contrast, the distance between candidate seg-

ments is much larger in the RRNS-map code because they are non-consecutive,
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resulting in a larger minimum distance and, consequently, a lower threshold

error.

Thus, the design goal for the RRNS-map code is two-fold. The first

is to achieve well-spaced segments with the same or approximately the same

stretch factor and minimum distance as the corresponding shift-map code,

which guarantees the same distortion in the absence of side information. The

second is to interleave the order of the coding segments so that neighboring

segments encode distant subintervals of the source. When this interleaving

property is combined with side information, the effective minimum distance

between coding segments increases without a decrease in local stretch factor,

and the overall result is a smaller distortion without changing encoding scheme.

4.4 RRNS-map codes without side information

Before considering side information at the decoder, let us first study

the structure of the RRNS-map codebook in the absence of side information.

4.4.1 Geometric interpretation: “Cylinder packing” problem

Let us discuss on finding a good RRNS-map with maximum separation

in a geometrical perspective. A cylinder around the RRNS-map codebook

with radius r is defined as follows:

C(r) =
{
x ∈ [0, 1)N : |x− xRRNS| < r, ∀xRRNS ∈ XRRNS

}
, (4.22)
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where | · | is the Euclidean distance. Then, the problem is to find the direction

a = (a1, a2, . . . , aN) of the cylinder with the maximum radius r under the

constraint that C(r) does not intersect itself. We call this problem as cylinder

packing. Since a consists of relatively prime integers, the cylinder packing

problem is an integer programming with unusual search domain, denoted as

the following:

A = {(a1, a2, . . . , aN) | gcd(an, am) = 1 if n 6= m,

an < am if n < m} (4.23)

The requirement of relatively prime coordinates might appear to be too strin-

gent and one might think that the size of the search space A itself could be

small. By contrast, as the dimension N grows, the probability of finding points

with relatively prime coordinates among the N -dimensional rectangular lattice

quickly approaches to 1 [6], meaning that there are many candidate RRNS-

map codes. To simplify the problem, we restrict the search domain to those

vectors in A with coordinates that are not greater than a predetermined amax,

denoted as

Aamax = {(a1, a2, . . . , aN) | gcd(an, am) = 1 if n 6= m,

an < am if n < m, an ≤ amax} (4.24)

This restriction avoids too large stretch factors that produce severe threshold

errors and large distortions.

In order to find the tightest cylinder packing, let us consider the hyper-

plane that is orthogonal to the cylinder axis. The hyperplane that is orthogonal
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to a and passes through the center of the unit hypercube is denoted by H(a).

Algebraically, this hyperplane is

H(a) =
{
x ∈ [0, 1)N | a · (x− c) = 0

}
, (4.25)

where c =
(
1
2
, 1
2
, . . . , 1

2

)
is the center of the unit hypercube and · represents

the inner product. Then, each line segment in XRRNS intersects with H(a) at

a point. We call the set of such intersections X∗ discrete codebook, denoted as:

X∗ = H(a) ∩ XRRNS (4.26)

= {aS mod 1 | S ∈ [0, 1), a · (aS mod 1) = a · c} . (4.27)

Similarly, the discrete codebook corresponding source in the interval W is

defined as follows:

X∗(W ) = H(a) ∩ XRRNS(W ) (4.28)

= {aS mod 1 | S ∈ W, a · (aS mod 1) = a · c} . (4.29)

Maximizing the radius of the cylinder is equivalent to maximizing the

distance between points in the discrete codebook. The minimum distance of

the RRNS-map code is equal to the minimum distance between distinct points

in X∗:

dRRNS(a) = min
x 6=x′∈X∗

|x− x′| (4.30)

Unfortunately, the minimum distance depends on a in a non-trivial way and

the search domain A is not convex. In the following subsection, we provide a

way to identify all the points in X∗ for a given a and to calculate the minimum

distance dRRNS(a).
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4.4.2 Identifying the discrete codebook

For a given direction a, points in the discrete codebook X∗ are calcu-

lated as follows. We first consider the intersections of XRRNS and the faces

of the unit cube and then project those intercepts onto H. Let Hn be the

hyperplane that is orthogonal to the n’th axis and contains the origin:

Hn =
{
x ∈ RN | en · x = 0

}
, (4.31)

where en is the unit vector with zero in all the coordinates other than the n’th

coordinate. Then, XRRNS intersects with the face of the unit hypercube on

Hn at the origin and the other (an− 1) points, as summarized in the following

lemma.

Lemma 5. XRRNS intersects with Hn(a) at an number of points with corre-

sponding source S = i
an
, i = 0, 1, . . . , an − 1: Let

Xn(a) ≡ Hn ∩ XRRNS (4.32)

=

{
aS mod 1

∣∣∣∣ S =
i

an
, i = 0, 1, . . . , an − 1

}
. (4.33)

Then,

|Xn(a)| = an (4.34)

Proof. By the definition, Xn is the set of points in X with the n’th coordinate

being zero, which is equivalent to

anS = 0 (mod 1). (4.35)
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Since 0 ≤ S < 1, 0 ≤ anS < an. Thus, (4.35) has an solutions of S, namely

S = i
an
, i = 0, 1, . . . , an − 1.

Next, the primality of an’s in the construction of the RRNS-map code

implies that the projections of Xn \ 0 onto H are disjoint as stated in the

following lemma.

Lemma 6. If n 6= m,

Xn(a) ∩ Xm(a) = 0, (4.36)

where 0 represents the vector corresponding to the origin (0, 0, . . . , 0).

Proof. Trivially, 0 ∈ Xn for all n = 1, 2, . . . , N . Next, it is shown by contra-

diction that there is no other element in the intersection. Suppose that there

exists an element other than 0 in the intersection: x ∈ Xn ∩ Xj and x 6= 0.

This implies that there exists s ∈ (0, 1) satisfies (4.35) for both an and am.

In other words, anS = m and amS = n with integers 0 < m < an − 1 and

0 < n < am − 1. Since an and am are relatively prime, this can happen only

when S = 0, which contradicts the assumptions that x 6= 0.

Lemma 5 and 6 lead to the following theorem showing that the number

of points in X∗ is related to the sum of an’s.

Theorem 1. Given a RRNS-map code with a satisfying (4.19), the cardinality

of the discrete codebook X∗, the intersections between the codebook XRRNS and
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the orthogonal hyperplane H in (4.25), is as follows:

|X∗| = 1 +
N∑
n=1

(an − 1) , (4.37)

where |X∗| represents the cardinality of X∗.

Following the same procedure, one can identify all the points in X∗ by

first finding Xn(a) and then projecting those points and the origin onto H.

Let xni be an element in Xn(a) with corresponding source S = i
an

, i 6= 0 from

(4.33):

xni =

(
a1
an
i, . . . ,

an−1
an

i, 0,
an+1

an
i, . . . ,

aN
an
j

)
mod 1, (4.38)

where n = 1, 2, . . . , N and i = 1, . . . an − 1. In order to project this point

onto H, one needs to find the orthogonal basis of H by finding the null space

of a. Considering aT as a (1 × N) matrix and performing the singular value

decomposition,

aT =
[
a1 a2 . . . aN

]
= UΣVT . (4.39)

Σ contains only one non-zero singular value at the first row and all the other

singular values are zero. Thus, the first column of V corresponds to the non-

zero singular value and the remaining (N−1) columns of V are the orthogonal

basis of the null space of a, denoted as a N × (N − 1) matrix B. Therefore,

the projection of xni onto H is

x∗ni = BT (xni − c), n = 1, 2, . . . , N, i = 1, 2, . . . , an − 1 (4.40)
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where c =
(
1
2
, 1
2
, . . . , 1

2

)
is the center of the hypercube. From (4.40), we have

the full description of individual points in X∗, which allows us to numerically

calculate the minimum distance for a given a.

4.4.3 The trade-off between the minimum distance and the stretch
factor

Similarly to shift-map codes, there exists the fundamental trade-off

between the minimum distance dRRNS(a) and the stretch factor LRRNS(a) of

RRNS-map codes. This is because dRRNS(a) and LRRNS(a) are related to

the radius and the length along the axis of the cylinder, respectively, and the

volume of the cylinder is bounded from above by the volume of the unit hyper

cube. Thus, we have

dRRNS(a) = O(LRRNS(a)−
1

N−1 ). (4.41)

Figure 4.4 shows a concrete example of this trade-off. For each a in A50

with N = 5 and W = [0, 1] (no side information), the minimum distance of

the RRNS-map code dRRNS(a) is calculated and plotted as a function of the

stretch factor LRRNS(a) in log-scale (black and gray dots). The dashed line

provides the reference scaling, log d = − 1
N−1 logL, according to the prediction

in (4.41). Black and gray dots shows to the RRNS-map codes, where black

dots highlight candidate codes with large minimum distances that are greater

than 95% of the prediction. There are 1156 of such RRNS-map codes with

large minimum distances among 15279 a’s in A50. Those RRNS codes fill in

the gaps between the shift-map codes with different α’s (red diamonds). In
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Figure 4.4: The trade-off between stretch factor and minimum distance for
RRNS-map codes (black and gray dots), compared with shift-map codes (red
diamonds) for A50. The dashed line represents predicted scaling with slope
− 1
N−1 between stretch factor and minimum distance in (4.41). Black dots

highlight RRNS-map codes with large minimum distances that is close to the
predicted scaling.

this sense, we say that the RRNS-map code generalizes the shift-map code.

In sum, good RRNS-map codes without side information are found,

which are used as candidates for good RRNS-map codes with side information.

In the following section, we search for codes among these RRNS-map codes

found here that satisfy an additional requirement; the minimum distance scales

well as more side information is revealed to the decoder
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Figure 4.5: Histograms of number of neighbors of RRNS-map codes with a1 =
(5, 7, 9, 11, 17) (left), a2 = (5, 7, 13, 23, 27) (middle), and a3 = (5, 11, 19, 37, 47)
(right) in the projected codebook X∗. Red dashed lines show the densest
possible number of neighbors by a regular lattice in the same in a (N − 1) = 4
dimensional space.

4.4.4 Cylinder packing versus sphere packing

To further understand the cylinder packing problem, we compare the

local structures of the RRNS-map code and of lattice. Finding the lattice with

the largest density in a given dimension is equivalent to finding a way to pack

as many as spheres with the same radii so that they barely touch with one

another. The maximum number of spheres touching one at the center is called

the kissing number and finding the largest possible kissing number in a given

dimension is the kissing number problem [29]. The centers of spheres comprise

a lattice codebook and used to encode discrete source.

The cylinder packing and the sphere packing are compared in the N −

1 dimensional orthogonal hyperplane H. Note that the former controls the

direction of the cylinders in N dimensional torus such that their projections

are tightly packed in H while the latter concerns with the tightest sphere
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packing directly in H. Thus, in the (N − 1)-dimensional space, the sphere

packing puts an upper bound on the densest cylinder packing.

We report that good RRNS-map codes have well-spaced codewords

and close to lattice codes. Among the good RRNS codes with N = 5 found

in the previous subsection (black dots in Figure 4.4), three parameters that

satisfies additional constraints in the next section are: a1 = (5, 7, 9, 11, 17),

a2 = (5, 7, 13, 23, 27), and a3 = (5, 11, 19, 37, 47). For each parameter, Voronoi

regions of X∗ and corresponding numbers of neighbors are calculated by the

quickhull algorithm [7] ported into Matlab [62]. The Voronoi region of a point

x∗c ∈ X∗ is defined as follows:

Va(x∗c) = {x ∈ X∗ | |x− x∗c | < |x− x′|,

x′ ∈ X∗,x′ 6= x∗c} , (4.42)

where | · | is the Euclidean distance. The histograms of numbers of neighbors

for these RRNS-map codes are shown in Figure 4.5. In the four dimensional

space, the largest attainable kissing humber is 24 with lattice D4 [29], shown in

red dashed lines in Figure 4.5. The chosen RRNS-map codes have the number

of neighbors (15.2 ± 3.8, and 19.8 ± 4.6, and 18.5 ± 4) similar to the kissing

number of D4. This hints that good RRNS-map codes are indeed well-spaced

in the (N − 1) dimensional orthogonal hyperplane close to lattice codes.
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Figure 4.6: The RRNS-map codebook XRRNS (left) and its projection to the
orthogonal plane X∗ (right) either without (A) and with (B) side information
at decoder. Numbers in the right denote the order as the source increases from
0 and the green region is the Voronoi region of the center point.

4.5 Dynamic decoding of RRNS-map codes with side
information

4.5.1 The RRNS-map codebook shrinks with side information at
the decoder.

Now, let us design the RRNS-map codebook so that side information at

the decoder is efficiently combined and results in a lower distortion. With side

information W , the decoder only need to use the partial codebook XRRNS(W ).

The size of this partial codebook decreases as more side information is revealed
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to the receiver (equivalently, as |W | decreases). The property we require for

good RRNS-map codes is that this partial codebook is maximally separated

in the codeword space and the minimum distance of XRRNS(W ) increases as

|W | decreases.

For example, Figure 4.6 illustrates the RRNS-map code with a =

(3, 5, 7). In Figure 4.6A there is no additional information about S. Thus,

the decoder must search for entire codebook XRRNS in the left panel. Projec-

tions of the codebook, X∗([0, 1]) is shown in the right panel with green area

representing the Voronoi region of the center point. In Figure 4.6B, side in-

formation S ∈ W = [1/3, 2/3] is provided to the receiver. Thus, the receiver

needs to consider only a subset of the codebook, XRRNS([1/3, 2/3]), which

contains five segments shown in black in the left panel. The number of seg-

ments needed for decoding decreases from 12 to 5. The right panel shows the

projection of those five active segments in black while gray points do not need

to be considered. Because the partial codebook is well separated, the side

information results in increased distances between neighbors. Consequently,

the Voronoi region (in green) of the center point increases.

Next, this shrinkage of the code book is quantified as a function |W |.

Specifically, the cardinality of the the discrete codebook, |X∗(W )|, linearly

scales with |W |, as summarized in the following theorem.

Theorem 2. Given a RRNS-map code with a satisfying (4.19), the cardinality

of X∗(W ), the intersections between the partial codebook XRRNS(W ) and the
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orthogonal hyperplane H in (4.25), is:

1 +
N∑
i=1

(ban|W |c − 1) ≤ |X∗(|W |)| ≤ 1 +
N∑
i=1

(ban|W |c) (4.43)

Proof. The theorem follows from the same argument as in Lemma 5 with a

slight modification that the support of the source considered are reduced by a

factor of |W |. XRRNS(|W |) intersects with Hn(a) when corresponding source

is S = i
an
∈ W for some integer i. Thus, there are ban|W |c integers for i. If

i = 0 is included, it should not be included to avoid multiple count. Summing

up for all an’s and subtracting redundant counts for S = 0, we have (4.43).

For largeN , one can ignore the constant in (4.43) and have the following

corollary.

Corollary 3. The number of active points scales with the length of the side

information |W |.

|X∗(W )| ≈ |X∗||W |. (4.44)

4.5.2 The minimum distance of the RRNS-map codebook increases
with side information at the decoder.

With side information at the decoder, the minimum distance of the

RRNS-map code increases. For this purpose, we add a constraint that requires

the shrinking codebook X∗(W ) has large minimum distances for a range of

|W |. Starting from the candidates found in the previous subsection without

side information, we search for RRNS-map codes satisfying this additional

constraint.
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Next, an upper bound of the minimum distance d̃ is derived as a func-

tion of |W |. The radius of cylinder packing is bounded from above by that

of optimal sphere packing. Thus, the volume of a (N − 1)-dimensional ball

with radius d̃/2 multiplied by the number of points in X∗(W ) is bounded from

above by the the volume of H, which is a constant:

|X∗(W )| π
N−1

2(
N−1
2

)
!

(
d̃

2

)(N−1)

≤ Vol(H), (4.45)

where the formula for (N − 1)-dimensional ball is used when N is an odd and

Vol(H) represents the volume of H. Using the approximation in (4.44) for the

number of balls and applying Stirling’s formula
(
N−1
2

)
! ≈

(
N−1
2

)(N−1
2 )

e−(N−1
2 ),

we have

d̃ ≤ 2

√
N − 1

2πe

(
Vol(H)

|X∗||W |

)1/(N−1)

. (4.46)

Thus, for a fixed a, the exponent of d̃ scales with |W | as follows:

log d̃ = O

(
1

N − 1
log

1

|W |

)
. (4.47)

4.5.3 Examples of good RRNS-map codes with N = 5

Next, we report that there exists a family of RRNS-map code with

the desired properties; number of active points scaling linearly with |W | as

predicted in (4.44) and minimum distance close to the upper bound in (4.47).

LRRNS and dRRNSmin and are calculated for each a ∈ A50 with N = 5, amax = 50,

and varying W . For each a ∈ A50, W is varied such that its boundaries are

aligned to points among {0.1, 0.2, . . . 1}. The number of points in X∗(W ) and
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the minimum distance are averaged over intervals with the same length and,

therefore, are functions of |W |.

Among A50, a1 = (5, 7, 9, 11, 17), a2 = (5, 7, 13, 23, 27), and a3 =

(5, 11, 19, 37, 47) produce the three largest minimum distances in Figure 4.7.

The stretch factors of those codes are between those of shift-map codes with

α = 2 and 3 (shown in red diamonds). The left panel of Figure 4.8 shows

the size of the shrinking codebook X∗(W ) as a function of |W |. Circles in the

figure are numerical calculations and dashed lines are analytical predictions

from (4.44). The right panel of Figure 4.8 shows the minimum distance as a

function of |W |. Circles in the figure are numerical results and dashed lines are

least-mean-square fits of the numerical results. The slopes of the fits are -0.22,

-0.23, and -0.22, which are close to the analytical prediction − 1
N−1 = −0.25

from (4.47). Thus, the size of the shrinking codebook and resulting minimum

distance match the analytical predictions.

4.5.4 Probability of threshold error and distortion of RRNS-map
codes decrease with side information at the decoder.

The threshold error probability of RRNS-map codes decreases as more

side information is revealed to the decoder. For the RRNS-map codes with pa-

rameters a1 = (5, 7, 9, 11, 17), a2 = (5, 7, 13, 23, 27), and a3 = (5, 11, 19, 37, 47),

upper bounds of the probability of threshold errors (Pth) are calculated using

the minimum distances and numbers of neighbors (See Appendix C.1). In

Figure 4.9A, the probabilities of threshold errors for the RRNS-map codes
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Figure 4.7: The minimum distance of the RRNS-map code increases with
additional side information. For the good RRNS-map code identified in Figure
4.4, the amount of increase in the minimum distance compared to the minimum
distance of the whole codebook (da(W )/da([0, 1))) is plotted as a function
of stretch factor. Three parameters for the RRNS-map with three largest
increases in minimum distance are a1 = (5, 7, 9, 11, 17), a2 = (5, 7, 13, 23, 27),
and a3 = (5, 11, 19, 37, 47). For comparison, shift-map codes with α = 2, 3 are
shown in red diamonds.

(triangles) and the shift-map codes (red dashed lines) are compared when

σ = 0.05. As |W | decreases (more side information), upper bounds of Pth of

the RRNS-map codes decrease while lower bounds of Pth stay constant for the

shift-map codes.

Consequently, the distortion of the RRNS-map decreases with more

side information at the decoder. In Figure 4.9 right, the distortions of the

RRNS-map codes are compared to shift-map, tent-map, and repetition codes.

Upper bounds on the distortions of the RRNS-map codes (triangles) decreases
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Figure 4.8: Numbers of active points (right) and minimum distances (right)
and of good RRNS-map codes with a1 = (5, 7, 9, 11, 17), a2 = (5, 7, 13, 23, 27),
and a3 = (5, 11, 19, 37, 47) are plotted as as function of |W |. Circles indicate
numerically found values, which agrees well with analytical predictions (4.44)
and (4.47) shown in dashed lines.

as |W | decreases. However, lower bounds on the distortions of the shift-map

(red dashed lines) stay constant, so does the average distortion of the repetition

code (green): σ2

N
. Those lower bounds are derived similarly to [92] (Appendix

App:SM:LB). The black cross represents the distortion of the tent-map code

[25, Eq. (16a) and (16b)]. Without the side information (|W | = 1), the upper

bounds of the distortion of the RRNS-map codes with a1 = (5, 7, 9, 11, 17),

a2 = (5, 7, 13, 23, 27) (from bottom to up) are similar to the lower bounds

of the shift-map codes with α = 2 and 3, respectively. As |W | becomes

smaller, the distortions of the RRNS-map codes decreases while those of

the shift-map codes stays constant. Interestingly, the RRNS-map code with

a3 = (5, 11, 19, 37, 47) has larger distortion when |W | = 1, but the distor-

tion becomes smaller than those RRNS-map codes with a1 = (5, 7, 9, 11, 17),
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Figure 4.9: Probability of threshold error for the RRNS-map code decreases as
the decoder has access to more side information (decreasing |W |) (left). The
distortion of RRNS-map is compares to those of other analog codes (right).
The distortions of RRNS-map codes without any side information (|W | = 1)
are similar to those of shift-map codes with similar stretch factors (α = 2, 3).
But, as more side information is revealed to the decoder (as |W | decreases),
the distortion of the RRNS-code decreases without any change in encoding
scheme. This contrasts the other analog codes whose distortions remain con-
stant regardless of side information.

a2 = (5, 7, 13, 23, 27) when |W | approaches 0.

Different amount of decreases in distortions suggest that prior knowl-

edge about the distribution of |W | could results in a lower average distortion.

For instance, if |W | is uniformly distributed ∈ [0, 1], the RRNS-map code with

a1 and a2 produce lower average distortions than that with a3. On the other

hand, if |W | is concentrated to a smaller value and becomes larger occasionally,

the RRNS-map code with a3 achieves a lower average distortion than those

with a1 and a2.
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4.6 Conclusions

We generalize the shift-map code to a new family called RRNS-map

code so that the information from the sender and side information is effec-

tively combined to reduce distortion of the source. The key idea is to intro-

duce interleaving codebook by using relatively prime integers for generating

codewords. Without side information at the decoder, the RRNS-map code

produces the same distortion as the shift-map code with similar stretch factor

does. With side information at the decoder, the RRNS-map code outperforms

the shift-map code.

The dynamic scaling of the partial codebook of the RRNS-map code

can be understand as an extension of binning schemes used to design discrete

codebook for multi-user channels. Random binning is a widely used technique

to allow multiple senders to provide complementary information about the

source without cooperation [83, 100, 101]. We extend this idea to design a

continuous codebook whose subset is well separated.

Finally, designing the RRNS-map code is an integer programming over

relatively prime integers, which has a geometrical interpretation of cylinder

packing. We numerically solve this problem to find example RRNS-map codes

that have well-spaced partial codebooks. These codes result in excellent per-

formance when varying degrees of side information are made available to the

decoder.
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Chapter 5

Conclusion

This work explores error-correcting codes in the contexts both of neuro-

science and engineering. Specific forms of noises in the brain and communica-

tion systems are different. While the noise in a neuron’s response is described

by an inhomogeneous Poisson process, the noise in communication system

generally matches additive Gaussian noises. Albeit such different characteri-

zations, a general principle is found; redundancy reduces the effect of noise.

First, we study the mutual information between grid cells (GCs) in the

enthorhinal cortex and self-location in a low-dimensional space as a function

of tuning curve width. Multiple GC populations encodes the phase of the

location using different scales. With the maximum likelihood (ML) decoding,

narrower tuning increases the mutual information. With the neural network

(NN) decoding, finite tuning is optimal. This dependence of information on

tuning curve width is in contrast to classical population codes where a narrower

tuning increases Fisher information regardless decoding method. The optimal

tuning with the plausible NN decoding may explain relatively wide tuning

actually observed in the brain.

Next, we further investigate on decoding multi-scale codes and propose
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a decoding algorithm using belief propagation (BP). The gain of multi-scale

codes in the higher tolerance to errors comes at a price of increased decoding

complexity. Since the codewords of multi-scale codes interleave the entire code-

word space, the decoder must search for a wide range to produce an estimate.

Such a combinatorial problem is formulated as a subset selection problem on

a graph with many cycles. We derive a belief propagation algorithm using the

max-sum algorithm. Even though the underlying graph has many cycles, anal-

ysis and numerical simulations show the excellent convergence and accuracy

when signal-to-noise ratio is high.

Furthermore, we show that the multi-scale codes studied in the context

of neuroscience are useful for communication over a network. Using such

codes, we propose a joint source-channel coding scheme for distributed coding

where separate senders wish to transmit complimentary information without

cooperation. We show that, with appropriate chose of moduli, the minimum

distance of multi-scale code increases with side information. Thus, the receiver

is able to decode the source with a lower threshold error and, consequently, a

lower distortion. This scheme can be understood as an extension of binning

schemes widely used in designing discrete codebooks.

For future works, we propose to further investigate on decoding of neu-

ral codes which, we believe, would shed light on new understandings in neuro-

science. Previous studies on neural codes are mainly focused on encoding and

the maximum amount of information from noisy neural responses under the as-

sumption of ideal decoders. However, it remains obscure how the information
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from one group of neurons is retrieved and used by another group of realistic

neurons in the downstream. Along this direction, the proposed decoding based

on BP offers a potential framework for efficient decoding with realistic neuron

models and new understanding on how information is processed in the brain.
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Appendix A

Supplementary information for Chapter 2

A.1 Detailed Methods

A.1.1 Derivation of the maximum likelihood (ML) decoder

The ML decode’s estimate of the encoded variable is the value that is

maximally likely to give rise to the observed spike counts:

x̂ML = arg max
~x

logP (K|~x) (A.1)

The maximum of the log of the likelihood equals the maximum of the likelihood

because log is monotonic function. Under the assumption of independence in

the spike counts of individual neurons after conditioning on their tuning curves,

the likelihood P (K|~x) is the product of likelihoods of individual spike counts:

P (K|~x) =
N∏
n=1

M∏
i=1

P (Kni|~x), (A.2)

where Kni is the spike count of neuron i in network n (n = 1, 2, . . . , N, i =

1, 2, . . .M). Since the spatial location ~x produces a noisy phase ~φ which, in

turn, yields spike counts Kni, in network n,

P (K|~x) =
N∏
n=1

∫
~φ∈[0,1)D

M∏
i=1

P (Kni|~φ)P (~φ|~φn(~x))d~φ. (A.3)
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The first and the second terms in the integrand correspond to the Poisson
variability in spikes and the sensing error in phase, respectively. Thus, from
(2.1), (2.2), and (2.5), the likelihood has the following form:

P (K|~x) =
N∏
n=1

∫
~φ∈[0,1)D

e
∑M
i=1{Kni log(fni(~φ)dt)−fni(~φ)dt}∏M

i=1Kni!

e
κsen cos 2π

(
~φ− ~x

λn

)
Io(κsen)

d~φ

∝
N∏
n=1

∫
~φ∈[0,1)D

eκe
∑M
i=1(Kni cos 2π(~φ−~φ∗ni))e

κsen cos 2π
(
~φ− ~x

λn

)
d~φ. (A.4)

=
N∏
n=1

e
κe
∑M
i=1Kni cos 2π

(
~x
λn
−~φ∗ni

)
∗ eκsen cos 2π~x

λn , (A.5)

where κe = 1/(2πσe)
2, κsen = 1/(2πσsen)2, (A.4) follows from removing terms

not dependent on φ and x, and approximating
∑M

i=1 fni(
~φ) to a constant.

The ∗ stands for convolution. The two terms in (A.5) have the following
interpretations. The exponent of the first term is the “population average”
of spike counts while the second term corresponds to a broadening of the
population average peaks by the sensing noise.

By substituting (A.5) into (A.1), we have the maximum likelihood es-
timate as follows:

x̂ML = arg max
~x

N∑
n=1

log
(
e
∑M
i=1Kniκe cos 2π( ~x

λn
−~φ∗ni) ∗ eκsen cos 2π~x

λn

)
. (A.6)

When κe � κsen (σe � σsen), convolution by the second term in (A.5) makes
little contribution and therefore

P (K|~x) ≈
N∏
n=1

eκe
∑M
i=1 Kni cos 2π( ~x

λn
−~φ∗ni). (A.7)

Substituting (A.7) into (A.1), we have the ML decoder for the special case of
a wide tuning curve width:

x̂ML = arg max
~x

N∑
n=1

M∑
i=1

Kni cos 2π

(
~x

λn
− ~φ∗ni

)
if σe � σsen. (A.8)

In numerical simulations, (A.6) is used in the following way. First, the
range of spatial location [Rl/2 Rl/2]D is densely quantized into HD bins of
equal size. Next, the likelihood is calculated for each bin. Finally, the location
with maximum likelihood is chosen as the ML estimate.

99



A.1.2 Derivation of the neural network (NN) decoder by an asso-
ciative learning rule

The neural network (NN) decoder is a read-out network connected to
the MPC networks, that produces an estimate of the spatial location x̂ di-
rectly from the MPC spike counts [89]. Specifically, the neural network (NN)
decoder consists of H output neurons per dimension with preferred locations
xj, j = 1, 2, . . . , HD, that uniformly cover the coding range [−Rl/2 Rl/2]D.
Each output neuron is connected to neurons in all MPC networks with pre-
determined synaptic weights wjni, which are set up in advance by the training
algorithm described below (Equation (A.14)). Individual neurons in the de-
coder network are driven by the MPC networks as follows:

hj =
N∑
n=1

M∑
i=1

wjniKni, (A.9)

where j = 1, 2, . . . , H is the neuron index for output neurons in the NN
decoder, wjni is the synaptic weight between output neuron j and neuron i
(i = 1, 2, . . . ,M) from MPC network n (n = 1, 2, . . . N). Kni is the spike
count from this cell. The estimate by the NN decoder, denoted as x̂NN , is the
preferred spatial location of the maximally driven output neuron:

x̂NN = x∗j∗ (A.10)

j∗ = arg max
j
hj, (A.11)

x∗j is the preferred location of neuron j.

The synaptic weights between neurons in the MPC and in the decoder
are trained using an associative rule. Initially, all the weights wjni are set to
zero. During training, the MPC networks and the decoder neurons are driven
by a spatial location input ~x, which produces noise-free firing rates in in the
MPC neurons, according to their tuning curves (under the assumption that
sensing noise is relatively low due to abundant familiar visual cues during train-
ing and that spiking error is effectively removed by averaging for sufficiently
long time). During training, the output neurons’ activities are assumed to be
unimodal:

htrainj (~x) = fh(~x, ~x
∗
j) (A.12)

fh(~x, ~x
∗
j) = r′m

D∏
d=1

exp

(
−
(
~x(d)− ~x∗j(d)

)2
2σ2

h

)
, (A.13)
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where fh is a unimodal tuning curve of Gaussian shape with width σh and x∗j
is the preferred location of neuron j. Weight wjni is incremented by the amount
of co-activation:

∆wjni = rni(~x)htrainj (~x). (A.14)

Summing these increments once as x runs over all values of spatial location in
the coding range [−Rl/2 Rl/2]D produces the readout weights. These weights
may be viewed as templates of the appropriate GPC phases for a given output
neuron’s preferred location.

A.1.3 Simplified neural network (NN) decoders

Next, we provide a closed-from approximation of the trained synaptic
weight for the NN decoder. This analysis offers an efficient way for numerical
simulation and, more importantly, reveals the equivalence of the ML and NN
decoder under certain conditions, which is discussed in the following section.

First, the analytical form of the connectivity between the GC network
and NN decoder, wjni, is derived. The final weight, resulting from the rule A.14
applied to all locations ~x, is:

wjni =
1

H

∑
~x∈[−Rl/2 Rl/2]D

rni(~x)hj(~x) (A.15)

Given these weights, we may now derive the MPC-driven activation of the
output neurons, by substituting (A.15) into (A.9):

hj ∝
N∑
n=1

M∑
i=1

 ∑
~x∈[−Rl/2 Rl/2]D

rni(~x)hj(~x)

Kni

=
N∑
n=1

∑
~x∈[−Rl/2 Rl/2]D

(
M∑
i=1

rni(~x)Kni

)
hj(~x)

∝
N∑
n=1

∑
~x∈[−Rl/2 Rl/2]D

M∑
i=1

Knie
κe cos(2π( ~x

λn
−~φ∗ni))

e−(~x−~x∗j)
2

2σ2
h


=

N∑
n=1

M∑
i=1

∑
~x∈[x∗j−λn/2, x∗j+λn/2]D

Knie
κe cos(2π( ~x

λn
−~φ∗ni))

e−(~x−~x∗j)
2

2σ2
h

(A.16)
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where κe = 1/(2πσe)
2.

In what follows, we assume σh � λ = E[λn], to obtain: (A.16):

hj ∝
N∑
n=1

M∑
i=1

∑
~x∈[x∗

j
−λn/2, x∗j+λn/2]

D

Knie
κe cos

(
2π
(
~x
λn
−~φ∗ni

))
e
κh cos

(
2π

(
~x−~x∗j
λn

))

∝
N∑
n=1

M∑
i=1

∑
~x∈[x∗

j
−λn/2, x∗j+λn/2]

D

Knie

{
κe cos 2π~φ∗ni+κh cos 2π

~x∗j
λn

}
cos 2π ~x

λn
+

{
κe sin 2π~φ∗ni+κh sin 2π

~x∗j
λn

}
sin 2π ~x

λn

∝
N∑
n=1

M∑
i=1

KniIo(κdec(~x
∗
j )) (A.17)

where the concentrations κh and κdec are defined as follows:

κh =
λ2

(2πσh)2
(A.18)

κdec(~x) =

√
κ2e + κ2

h
+ 2κeκh cos 2π

(
~x

λn
− ~φ∗ni

)
(A.19)

Equation (A.17) follows from the fact that the Gaussian and circular normal
are close when the variance is low (the concentration is high). (A.17) is because
the summation of circular normal form is approximately equal to the integral
over a period, which is equal to the zeroth order Bessel function with argument
κdec.

Therefore, substituting (A.17) into (A.10), we have a simplified NN
decoder:

x̂NN = arg max
~x

N∑
n=1

M∑
i=1

KniIo(κdec(~x)), (A.20)

where κdec(~x) is defined in (A.19).

In numerical simulations, we use (A.17) to calculate activities of read-
out neurons and maximum of which coincides with the NN decode in (A.20).
The results of this simplification were identical to those by training weights
according to the update rule (A.14) (data not shown).

A.1.4 When is the NN decoder close to the ML decoder?

Now, we compare the NN decoder with the ML decoder and identify
conditions under which they are close. Depending on the relative size between
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σe and σsen and the order of σh, we consider four cases. For each case, the
following polynomial approximation of the Bessel function [3] is used:

Io(z) ≈

{
1 + 3.52

(
z

3.75

)2
if z < 3.75

ez√
2πz

otherwise .
(A.21)

i) σe � σsen and σh ∼ 1
H
� 1: When both σe and σh are small, κdec is large.

Thus, substituting the polynomial approximation of Bessel function (A.21) for
large κdec to (A.20), we have

x̂NN ≈ arg max
~x

N∑
n=1

M∑
i=1

Kni
eκdec√
2πκdec

(A.22)

ii) σe � σsen, σe � 1
2π

, and σh ∼ 1
H
� 1: In this case, we have κe � 1 and

κe � κh. Under this condition, κdec is close to kh and we use this fact for a
simplfication:

κdec =

√
κ2e + κ2h + 2κeκh cos 2π

(
~x

λn
− ~φ∗ni

)
(A.23)

≈ κh

√
1 + 2

κe
κh

cos 2π

(
~x

λn
− ~φ∗ni

)
(A.24)

≈ κh + κe cos 2π

(
~x

λn
− ~φ∗ni

)
. (A.25)
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Substituting (A.21) and (A.25) into (A.20), we have

x̂NN = arg max
~x

N∑
n=1

M∑
i=1

Kni
eκdec√
2πκdec

(A.26)

≈ arg max
~x

N∑
n=1

M∑
i=1

Kni
eκh+κe cos 2π(

~x
λn
−~φ∗ni)√

κh + κe cos 2π
(
~x
λn
− ~φ∗ni

) (A.27)

≈ arg max
~x

N∑
n=1

M∑
i=1

Knie
κe cos 2π( ~x

λn
−~φ∗ni) (A.28)

≈ arg max
~x

N∑
n=1

M∑
i=1

Kni

(
1 +

(
κe cos 2π

(
~x

λn
− ~φ∗ni

)))
(A.29)

≈ arg max
~x

N∑
n=1

M∑
i=1

Kni

(
cos 2π

(
~x

λn
− ~φ∗ni

))
(A.30)

This leads to the same expression as the ML decoder under the assumption of
negligible sensing noise (A.8).

iii) σsen > 0, σe � σsen, and σh ∼ λ: This is the opposite case of ii:
κe � 1� κh and κdec is approximated around ke.

κdec =

√
κ2e + κ2h + 2κeκh cos 2π

(
~x

λn
− ~φ∗ni

)
(A.31)

≈ κe

√
1 + 2

κh
κe

cos 2π

(
~x

λn
− ~φ∗ni

)
(A.32)

≈ κe + 2
κh
κe

cos 2π

(
~x

λn
− ~φ∗ni

)
(A.33)
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Substituting (A.21) and (A.33) to (A.20), we have

x̂NN = arg max
~x

N∑
n=1

M∑
i=1

Kni
eκdec√
2πκdec

(A.34)

≈ arg max
~x

N∑
n=1

M∑
i=1

Kni
eκe+2

κh
κe

cos 2π( ~x
λn
−~φ∗ni)√

2πκe + 2κh
κe

cos 2π
(
~x
λn
− ~φ∗ni

) (A.35)

≈ arg max
~x

N∑
n=1

M∑
i=1

Knie
2
κh
κe

cos 2π( ~x
λn
−~φ∗ni) (A.36)

≈ arg max
~x

N∑
n=1

M∑
i=1

Kni

(
1 +

(
2
κh
κe

cos 2π

(
~x

λn
− ~φ∗ni

)))
(A.37)

≈ arg max
~x

N∑
n=1

M∑
i=1

Kni

(
cos 2π

(
~x

λn
− ~φ∗ni

))
(A.38)

This leads to the same expression as the ML decoder under the assumption of
negligible sensing noise (A.8).

iv) σe � σsen, and σh ∼ λ: When both σe and σh are large, κdec is small.
Thus, substituting the polynomial approximation of Bessel function (A.21) for
small κdec to (A.20), we have

x̂NN = arg max
~x

N∑
n=1

M∑
i=1

Kni

(
1 +

3.52

3.752

(
κ2e + κ2h + 2κeκh cos 2π

(
~x

λn
− ~φ∗ni

)))

= arg max
~x

N∑
n=1

M∑
i=1

Kni

(
4 + κ2e + κ2h

2κeκh
+ cos 2π

(
~x

λn
− ~φ∗ni

))

= arg max
~x

N∑
n=1

M∑
i=1

Kni

(
cos 2π

(
~x

λn
− ~φ∗ni

))
(A.39)

This leads to the same expression as the ML decoder under the assumption of
negligible sensing noise (A.8).

Thus, for cases ii, iii, and iv, the NN decoder is equivalent to an ML
decoder that is ignorant of sensing noise.

Comparing with the numerical results, case i and ii correspond to the
NN decoder with a narrow σh, Figure 2.5. From the latter, we know that the
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NN decoder is close to the ML decoder ignorant of sensing noise. However,
interestingly, the total MI of the NN decoder is very close to that of the ML
decoder for a larger σe (Figure 2.5D) becuase the effect of sensing noise is not
significant when σe � σsen.

On the other hand, case iii and iv correspond to the NN decoder with
wider σh, Figure 2.6. In Figure 2.6D, the total MI of the NN decoder becomes
closer to the ML decoder for both narrow and wide σe’s. In other words,
increasing σh rescues the catastrophic failure of the NN decoder with both
narrow σh and σe. Still, there is a gap between the NN and the ML decoders,
indicating the failure of including the effect of the sensing noise. This gap
becomes negligible for wider σe � σsen.

A.1.5 Details of numerical simulations

In numerical simulations for the ML decoder, (A.6) is used in the fol-
lowing way. First, the range of spatial location [−Rl/2 Rl/2]D is densely
quantized into HD bins with equal size. Next, then likelihood is calculated
for each bin. Finally, location with maximum likelihood is chosen as the ML
estimate.

For the NN decoder, we use (A.17) to calculate activities of output
neurons. The preferred locations are set to the same quantized bins as the ML
decoder. The preferred location of the maximally responding output neurons
coincides with the NN decode in (A.20). The results of this simplification were
identical to those by training weights according to the update rule (A.14) (data
not shown).

For numerical simulations for one-dimensional spatial location (D = 1),
the coding range [−150 150] (Rl = 300) is quantized into H = 19200 bins with
equal size 1

64
. For the grid networks, N = 8, λn = {30, 34, 38, 42, 46, 50, 54, 58},

M = 256, and rm∆t = 1. In Figure 3 for the ML decoder, sensing noise σsen

and grid cell tuning curve width σe are varied independently. In Figure 4 for
the NN decoder with narrow σh, the sensing noise σsen is fixed to 0.1 and σe
is varied. Decoding tuning curve κdec = κe = 1

(2πσe)2
under the assumption

that σh is in the order of 1
H

and σh � λσe. In Figure 5 for the NN decoder
with varying σh, the sensing noise σsen is fixed to 0.1 and σe and σh are varied
independently.
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A.2 The stretch factor increases with decreasing σe.

To provide the connection between the FI and geometric view of de-
coding, let us calculate the stretch factor of GC. The noiseless instantaneous
firing rate vector of GC in network n is denoted as ~rn(φ) with each element
having identical circular normal tuning curve translated by its preferred phase
φni:

~rn(φ) = [rn1(φ), rn2(φ), . . . rnM(φ)] (A.40)

rni(φ) = rme
κe{cos(2π(φn−φni))−1}. (A.41)

First, ~rn(φ) lies on the M-sphere with a radius R. This is readily seen
by that Eucledian norm of any ~rn(φ) is a constant, regardless of φ:

|rni(φ)|2 = r2m

M∑
i=1

e2κe{cos(2π(φn−φni))−1} (A.42)

= r2mM
Io(2κe)

e2κe
, (A.43)

where (A.43) follows from turning the summation into integral under assump-
tion of a large M . Thus

R(σe) =
rm
eκe

√
MIo(2κe). (A.44)

Next, the stretch factor Ln(σe) is calculated from the arc-length:

Ln(σe) =

∫ 1

0

∣∣∣∣ ∂~rn∂dφn

∣∣∣∣ dφn. (A.45)

Since∣∣∣∣ ∂~rn∂dφn

∣∣∣∣ = rm

√√√√ M∑
i=1

e2κe{cos(2π(φn−φni))−1} sin2(2π(φn − φni))(2πκe)2

=
πrm
eκe

√
M2κeI1(2κe), (A.46)

Ln(σe) =
πrm
eκe

√
M2κeI1(2κe) (A.47)
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For σe � 1, I1(2κe) ≈ Io(2κe), therefore from (A.44) and (A.47)

Ln(σe)

R(σe)
≈ 1√

2σe
. (A.48)

This explains the denser packing of coding line with a narrow tuning curve
widths and resulting higher threshold error probability.

A.3 Fisher information calculation

Fisher information (FI) provides an upper bound of total mutual in-
formation. This is because its estimate of mean squared error squared error
is a lower bound, and since it does not account for the occurrence of nonlocal
threshold errors. When threshold error does not occur, the posterior distribu-
tion of spatial location is unimodal and Gaussian [89]. Under this condition,
with the assumption of a large number of neurons, the MI is related with the
FI as follows [18]:

I(x; x̂|no threshold error) = H(x)− 1

2
log

2πe

|J(x)|
, (A.49)

Thus, in general, the mutual information is bounded from above by (A.49):

I(x; x̂) ≤ I(x; x̂|no threshold error) =
1

2
log |J(x)|+ log

(
RD
l√

2πe

)
. (A.50)

Next, the Fisher information about the spatial location J(x) is calcu-
lated by summing FI from each network Jn(x):

J(~x) =
N∑
n=1

Jn(~x) (A.51)

The inverse of FI per network includes the effect of the sensing error and CR
bound of reading out phase from Poisson spikes:

1

Jn(~x)
= λ2n

(
σ2
sen +

1

Jn(~φn)

)
, (A.52)
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where Jn(~φn) is the FI due to Poission spikes:

Jn(~φn) =
1

D

M∑
i=1

〈
−∂

2 logP (Kni|~φn)

∂2~φn

〉
Kni

=
rm∆t

(2πσ2
e)

2

M∑
i=1

D∏
d′=1

e

(
cos(2π(φ

(d′)
n −φ∗(d

′)
ni

))−1

(2πσe)2

)
sin2

(
2π
(
φ(d)
n − φ

(d)∗
ni

))
=

(
(2π)2

Mrm∆t

D

)
κe

(
I1(κe)

eκe

)(
I0(κe)

eκe

)(D−1)

(A.53)

where superscript (d) represents the d-dimensional component, κe = 1/(2πσe)
2,

I1 and I0 are the first and the zeroth order modified Bessel functions of the
first kind, respectively.

Note that even if Jn(~φn) tends to infinity, Jn(~x) is finite due to the
sensing noise (A.52). This explains the saturation of FI for narrow tuning
curve width in the presence of sensing noise.

A.4 The posterior distribution and estimation of pth for
single-population codes.

The posterior distributions of single populations codes, from which FI
and Pth in Figure 2.3F and G are calculated, are shown here.

Figure A.1 shows posterior probabilities of the ML decoder without
sensing error σsen = 0. In the posterior, the width of the central peak wc is
given from the square root of the inverse J(x) and then probability of threshold
error is defined as P (x − cwc < x̂ML < x + cwc|x), where c = 6 controls
the confidence interval and is adjusted to exclude the main peak but include
significant portions of threshold errors.

Neither switching the ML decoder to the NN decoder nor changing the
tuning curve shape from circular normal to cosine shows qualitatively different
posteriors, Figures A.2 and A.3.

When the sensing error with intermediate magnitude (σsen = 0.05)
are added, the main peak of the posterior becomes wider and, consequently,
the overall Pth decreases, compared to the case with σsen = 0, Figure A.4.

109



−0.5 0 0.5
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0

σ
e
=0.0063

σse
n =

0.
00

x
ML

−0.5 0 0.5

σ
e
=0.0125

x
ML

−0.5 0 0.5

σ
e
=0.0250

x
ML

−0.5 0 0.5

σ
e
=0.0500

x
ML

−0.5 0 0.5
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0

σ
e
=0.1000

σse
n =

0.
00

x
ML

−0.5 0 0.5

σ
e
=0.2000

x
ML

−0.5 0 0.5

σ
e
=0.4000

x
ML

Figure A.1: Posterior probabilities P (x̂ML|x = 0) for different tuning curve
widths σe with the ML decoder and σsen = 0.
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Figure A.2: Posterior probabilities P (x̂ML|x = 0) with the NN decoder shows
no significant difference.

However, the dependence of Pth on σe is preserved: Pth > 0 for a very narrow
σe and Pth = 0 otherwise.

On the other hand, when the sensing noise becomes much larger σsen =
0.2, the posterior becomes wide, Figure A.5 and Pth = 0 for all σe in the
simulated range.
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Figure A.3: Posterior probabilities P (x̂ML|x = 0) with cosine tuning curve
shows no significant difference.
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Figure A.4: Posterior probabilities P (x̂ML|x = 0) with an intermediate sensing
error (σsen = 0.05, the ML decoding, circular normal tuning curve)

A.5 The relative sizes of spike sample noise and sensing
noise.

In numerical simulations, parameters are chosen such that the effects
of sensing error and spike sample error are in the same order of magnitude.
The sensing error is varied from 0 to 0.2. In each network with D = 1 and
M = 256, as σe varied from 0.00625 to 0.4,

√
J(φ)−1 monotonically increases

from 0.0031 to 0.096 (red dashed lines in Figure A.6).
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Figure A.5: Posterior probabilities P (x̂ML|x = 0) with a large sensing error
(σsen = 0.2, circular norma tuning curve, the ML decoding, circular normal
tuning curve)
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Figure A.6: 1/
√
J(φ)−1 as a function of σe for D = 1 and M = 256

A.6 The posterior distributions and threshold errors of
multi-scale population codes

Figures A.7 and A.8 show the posterior distributions by numerical simu-
lations for multiple populations (with N = 8). The threshold error for multiple
populations, defined as P (|x̂ML − x| > 1

2
minn λn|x), is shown in red.

A too wide tuning curve σe = 0.4 results in large threshold error prob-
abilities in both the ML and the NN decoder.
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Figure A.7: P (x̂ML|x = 0), N = 8, ML decoding. Red: threshold error.
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Figure A.8: P (x̂NN |x = 0), N = 8, NN decoding. Red: threshold error.

A.7 Equivalence of noisy learning and increasing σh

When the NN decoder was derived, the sensing noise was assumed
to be insignificant during training, due to the presence of rich spatial cues.
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What happens when sensing noise is not negligible during training? Here, we
show that training the NN decoder in the presence of sensing noise is roughly
equivalent to increasing the during-training decoding tuning curve width σh,
by an appropriately scaled version of the sensing error, λ̄σsen. As we show
in Figure 2.6, increasing the during-training encoder width by this amount
brings the decoding performance of the NN decoder nearly to par with that of
the ML decoder in the presence of sensing noise. Therefore, training decoder
weights in the presence of sensing noise results in better decoder performance
after training.

wj
′

ni =
1

H

∑
~x∈[−Rl/2, Rl/2]D

r′ni(~x)hj(~x) (A.54)

r′ni(~x) =

∫
[0,1]D

rni(~φn)P (~φn|~x)d~φn , (A.55)

where the learning rule in (A.54) is defined similarly to (A.15) with noisy
response in (A.55). When this noisy weight is used for decoding, the activity
of decoding neuron follows in (A.16) becomes:

h
′
j ∝

N∑
n=1

M∑
i=1

∑
~x∈[xj−λn/2, xj+λn/2]D

Kni

∫
~ξn∈[0,1]D

e
κe cos

(
2π
(
~x
λn
−~φ∗ni−

~ξn

))
e
− 1

2

(
~ξn
σsen

)2
d~ξ

 e−
(
~x−~x∗j

)2
2σ2
h

≈
N∑
n=1

M∑
i=1

∑
~x′∈[xj−λn/2), xj+λn/2)]D

Knie
κe cos

(
2π

(
~x′
λn
−~φ∗ni

))e
−

(
~x′−~x∗j

)2
2(σ2

h
+λ2nσ

2
sen)

 , (A.56)

Note that (A.56) has the same form as noiseless activity in (A.16) with effective
decoding tuning curve width σ′h:

σ2
h
′
= σ2

h + λ2nσ
2
sen. (A.57)

Thus, the sensing noise during the training is equivalent to the increase of σh
at the NN decoder.

Sensing noise during the training effectively widens the bumps in the
connectivity between GC and the NN decoder wjni. The trained weight in
(A.15) is convolved with sensing noise:
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A.8 2D input shows qualitatively the same results as
1D

Figure A.9 shows numerical simulations for two-dimensional spatial lo-
cation (D = 2). The number of neurons is reduced due to the memory and time
requirements: M = 32 × 32, H = 300 × 300. The sensing noise σsen = 0.1 is
fixed to 0.1 and σe is varied. σh is either narrow (κdec = κe) or wide σh = 0.1λ.
Other parameters remain the same as for D = 1.

A.9 Hierachically nested spatial periods generate qual-
itatively the same results for optimal tuning curve
width

Based on neurobiological findings for grid cells – the periods span the
relatively small range of 30 cm to 3 m or about one decade in magnitude –
we considered in this work a multiperiodic code with a small range of spatial
periods. In other words, λN � Rl, and λN/λ1 ≈ 2 (N = 8). The periods λn
were related through: λn = 30 + 4(n − 1). An alternative choice is to pick
λN = Rl (N = 8), with periods related according to λn = λ02

n−1. Thus,
λ0 = 3 and λN/λ0 = 128.

With a large hierarchical span of scales in the periods, sensing noise
induces large threshold errors in the NN decoder, when σe is small (narrow
tuning curves), Figure A.10; with ML decoding, narrower tuning curves are
better. This result is in complete agreement with results when the periods are
roughly similar in size and all much smaller than the range Rl. Thus, the code
structure and the effect of tuning curve width on threshold error is not much
different for multi-scale codes with a narrow versus large span of periods.
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Figure A.9: Results for 2D multiperiod multipopulation coding. Results for
two-dimensional spatial locations (D = 2, σsen = 0.1) shows the same pat-
tern as is for the one-dimensional case. (A) Fisher information stays relatively
constant in the presence of the sensing error. (B) With the ML decoder, the
probability of threshold error (Pth) is close to zero (green circles). In contrast,
the NN decoder with narrow σh ∼ 1

M
� 1 results in a large Pth as tuning

curve width becomes narrower. Here, blue square and black triangle rep-
resent rectangular and triangular lattices for arrangements of tuning curve in
2-dimensional spatial location The threshold error probability does not depend
on the spatial arrangement. This large Pth is reduced by increasing σh = 0.1λ,
denoted as NNW in the legend. Again, the choice of the spatial arrange-
ment makes no difference (cyan square and gray triangle for rectangular and
triangular arrangements, respectively.) (C) Consequently, the total mutual
information (MI) stays constant for the ML decoder but rapidly drops for the
NN with narrower σh as the tuning curve width decreases. This drop in MI for
NN decoder is rescued by increasing σh. There is no significant difference due
to the choice of the lattice. Parameters used for numerical simulations are as
follows: Rl = 300, H = 300 × 300, N = 8, λn = {30, 34, 38, 42, 46, 50, 54, 58},
λ = 44, M = 32× 32,, rm∆t = 1, σsen = 0.1, σh ∼ 1

H
for the NN decoder and

σh = 0.1λ for the NNW decoder. The number of samples for each condition
is 104.
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Figure A.10: A multi-scale code with hierarchically nested scales of periods
exhibits the same dependence on tuning curve widths as for an MPC with
distinct but similarly sized periods. (A) The posterior probability and (B) MI
of an MPC with hierachically nested spatial periods. Each row of (A) shows
posterior distribution for different σe’s with fixed sensing noise σsen = 0.1, with
ML (top) and NN (bottom) decoders. NN decoding produces more frequent
threshold errors, and a corresponding loss of information, for narrow tuning
widths, σe ≤ 0.01. These threshold errors of NN results in a sharp decrease in
MI as σe decreases. This is in contrast to the MI of ML which increases and
then saturates as σe decreases. Except for the choice of the spatial periods λ’s,
parameters for numerical simulations are the same as those used in Results.
The coding range [−192 192] (Rl = 384) is quantized into H = 19200 bins with
equal size 1

64
. For the grid networks, N = 8, λn = {3, 6, 12, 24, 48, 96, 192, 384},

M = 256, and rm∆t = 1. σe is varied from 0.0125 to 0.2828 by a factor of
√

2
while σsen = 0.1 is fixed.
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Appendix B

Supplementary information for Chapter 3

B.1 The product of two Gaussian distributions

The product of two Gaussians N(µ1, ν1) and N(µ2, ν2) is a scaled Gaus-

sian.

N(µ1, ν1)N(µ2, ν2) = κ12N(µ12, ν12) (B.1)

where the mean µ12, variance ν12, and scale κ12 are given as follows:

µ12 = (
µ1
ν1

+
µ2
ν2

)

(
1

ν1
+

1

ν2

)−1
(B.2)

ν12 =

(
1

ν1
+

1

ν2

)−1
(B.3)

κ12 =

√
ν1ν2
ν12

exp

(
1

2

{
µ21
ν1

(
ν12
ν1
− 1

)
+
µ22
ν2

(
ν12
ν2
− 1

)
+ 2

ν12
ν1ν2

µ1µ2

})
(B.4)

B.2 A lower bound of the mean square error.

A lower bound on the achievable mean square error (MSE) is derived
assuming additional knowledge about the correct set of Gaussians. Under this
assumption, the decoder only needs to combine N independent measurements
with additive variances σ2

a2
i
i = 1, 2, . . . N . Thus,

E
[
(Ŝ − S)2

]
≥ σ2∑N

i=1 a
2
n

. (B.5)
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Appendix C

Supplementary information for Chapter 4

C.1 Calculating the probability of threshold error using
the union bound

The probability of threshold error is calculated as follows. Suppose

that true codeword X is in the i’th segment and let Eij be the event that

this codeword is decodeed to another segment j by noise. Corresponding

probability Pij is as follows:

Pij = 1− Φ

(
dij
2σ

)
, (C.1)

where dij is the distance between segments i and j and Φ(x) is the cumulative

distribution of the standard normal distribution defined by 1√
2π

∫ x
−∞ e

− t
2

2 dt.

Then, the threshold error event is the union of Eij with j being neigh-

bors of i. Thus, the probability of threshold error is

Pth = P

 ⋃
j∈N(i)

Eij

 , (C.2)

where N(i) represents the neighbors of i excluding i. Considering the union

bound of (C.2), we have an upper bound on Pth with the union replaced by

the summation of corresponding probabilities:

Pth ≤
∑
j∈N(i)

Pij ≤ K

(
1− Φ

(
dmin
2σ

))
(C.3)
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where K is the number of neighbors and dmin is the minimum distance. When

the dimension is high, this upper bound is known to be a tight approximation

of the threshold error [37].

C.2 The lower bound of distortion of the shift-map codes
for a given parameter α.

A lower bound on the distortion of the shift-map code with parameter

α is calculated as follows. Since the first encoded variable X1 = S is most

sensitive to the additive noise Z1, let us consider the case where a large error

occurs in the estimate of S because the observation Y is pushed toward to a

different segment of the code segments in the first dimension. To be specific,

when |Z1| > 1
2α

and Zn = 0 for n > 1, the estimation error is 1
α

. In addition, if

|Z1| > 1
2α

and Zn(n > 1) have the same sign as Z1, the estimation error only

increases. The set of such Z is denoted as T1 ⊂ T. The distortion considering

only Z ∈ T1 is a lower bound of the distortion considering all Z ∈ T. Therefore,

the second term in (4.7) is greater than erfc
(

1
2
√
2ασ

) (
1
2

)(N−2) 1
α2 , where erfc is

the complementary error function. Consequently, the distortion of the shift-

map code with α is bounded from below by:

D ≥
(
1− PU

th

) σ2

(LSM(α))2
+ erfc

(
1

2ασ

)(
1

2

)(N−2)
1

α2
, (C.4)

where PU
th is the union bound of the probability of threshold error calculated

similarly to (C.3), LSM(α) is the stretch factor defined in (4.12).
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[17] W. Michael Brown and Alex Bäcker. Optimal neuronal tuning for finite

stimulus spaces. Neural Computation, 18(7):1511–1526, 2006.

[18] Nicolas Brunel and Jean-Pierre Nadal. Mutual information, fisher infor-

mation, and population coding. Neural Computation, 10(7):1731–1757,

1998.

[19] Yoram Burak and Ila R. Fiete. Accurate path integration in continuous

attractor network models of grid cells. PLoS Comput Biol, 5(2), Feb

2009.

[20] Yoram Burak and Ila R. Fiete. Fundamental limits on persistent activity

in networks of noisy neurons. Proceedings of the National Academy of

Sciences, 109(43):17645–17650, 2012.

123



[21] Neil Burgess. Spatial memory: how egocentric and allocentric combine.

Trends in Cognitive Sciences, 10(12):551 – 557, 2006.

[22] Y Burnod and H Korn. Consequences of stochastic release of neu-

rotransmitters for network computation in the central nervous system.

Proceedings of the National Academy of Sciences, 86(1):352–356, 1989.

[23] Stephen Cannon, David Robinson, and Shihab Shamma. A proposed

neural network for the integrator of the oculomotor system. Biological

Cybernetics, 49(2):127–136, 1983.

[24] Stephen C. Cannon and David A. Robinson. An improved neural-

network model for the neural integrator of the oculomotor system: More

realistic neuron behavior. Biological Cybernetics, 53(2):93–108, 1985.

[25] B. Chen and G.W. Wornell. Analog error-correcting codes based on

chaotic dynamical systems. Communications, IEEE Transactions on,

46(7):881–890, July 1998.

[26] S.-Y. Chung. On the Construction of Some Capacity-Approaching Cod-

ing Schemes. PhD thesis, M.I.T., 2000.

[27] Seong Taek Chung and A. Goldsmith. Degrees of freedom in adaptive

modulation: a unified view. In Vehicular Technology Conference, 2001.

VTC 2001 Spring. IEEE VTS 53rd, volume 2, pages 1267–1271, 2001.

[28] Albert Compte, Nicolas Brunel, Patricia S. Goldman-Rakic, and Xiao-

Jing Wang. Synaptic mechanisms and network dynamics underlying

124



spatial working memory in a cortical network model. Cerebral Cortex,

10(9):910–923, 2000.

[29] J. H. Conway, N. J. A. Sloane, and E. Bannai. Sphere Packings, Lattices,

and Groups. Springer, 3rd edition, 1999.

[30] T. Cover, A.E. Gamal, and M. Salehi. Multiple access channels with

arbitrarily correlated sources. Information Theory, IEEE Transactions

on, 26(6):648–657, Nov. 1980.

[31] Harald Cramér. Mathematical methods of statistics. Princeton Univer-

sity Press, Princeton, 1946.

[32] Peter Dayan and L. F. Abbott. Theoretical neuroscience : computa-

tional and mathematical modeling of neural systems. Massachusetts

Institute of Technology Press, Cambridge, Mass., 2001.

[33] A. Destexhe, M. Rudolph, J. M. Fellous, and T. J. Sejnowski. Fluctu-

ating synaptic conductances recreate in vivo-like activity in neocortical

neurons. Neuroscience, 107(1):13–24, 2001.

[34] Pier Luigi Dragotti and Michael Gastpar. Distributed Source Coding:

Theory, Algorithms and Applications. Academic Press, 2009.

[35] A. Aldo Faisal, Luc P. J. Selen, and Daniel M. Wolpert. Noise in the

nervous system. Nat Rev Neurosci, 9(4):292–303, 2008.

125



[36] Ila R. Fiete, Yoram Burak, and Ted Brookings. What grid cells convey

about rat location. Journal of Neuroscience, 28(27):6858–6871, 2008.

[37] Jr. Forney, G.D. and G. Ungerboeck. Modulation and coding for lin-

ear gaussian channels. Information Theory, IEEE Transactions on,

44(6):2384 –2415, 1998.

[38] Brendan J. Frey and Delbert Dueck. Clustering by passing messages

between data points. Science, 315:972–976, 2007.

[39] Mark C. Fuhs and David S. Touretzky. A spin glass model of path in-

tegration in rat medial entorhinal cortex. The Journal of Neuroscience,

26(16):4266–4276, 2006.

[40] Robert Gallager. Low-density parity-check codes. Information Theory,

IRE Transactions on, 8(1):21–28, 1962.

[41] GallagerR.G. Low-Density Parity-Check Codes. PhD thesis, M.I.T,

1963.

[42] M. Gastpar. Uncoded transmission is exactly optimal for a simple

gaussian sensor network. Information Theory, IEEE Transactions on,

54(11):5247–5251, Nov. 2008.

[43] M. Gastpar, B. Rimoldi, and M. Vetterli. To code, or not to code: lossy

source-channel communication revisited. Information Theory, IEEE

Transactions on, 49(5):1147 – 1158, May 2003.

126



[44] AP Georgopoulos, AB Schwartz, and RE Kettner. Neuronal population

coding of movement direction. Science, 233(4771):1416–1419, 1986.

[45] Inmar E. Givoni and Brendan J. Frey. A binary variable model for

affinity propagation. Neural Computation, 21(6):1589–1600, Nov. 2009.

[46] A. Goldsmith. Wireless Communications. Cambridge University Press,

2005.
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