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Modular multiplication is a core operation in virtually all public-key cryptosystems 
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Chapter 1

Introduction

Modular multiplication is a core operation in almost all public-key cryptosystems in 

use today.  In this research parallel, high-speed designs for modular multiplication are 

presented.  This research takes advantage of the transistor bounty provided by Moore’s law 

and the continuously diminishing average cost of a transistor.  In addition, advances in 

automatic synthesis are leveraged to explore designs that are otherwise difficult to manually 

layout.

Given the large body of knowledge concentrating on cryptography and its 

implementation, the scope of this work is restricted to public key cryptosystems and parallel 

modular multiplier designs. Examples are provided to underscore the motivation for the 

research problem.  The next section concludes with the statement of the research problem.  

1.1 Motivation

In 1976, Whitfield Diffie and Martin Hellman [14] introduced the concept of public-

key cryptography (PKC).  PKC facilitates secure communication without the need for any 

prior agreement on a shared secret key. The field of public-key cryptography has blossomed 

into an array of algorithms, architectures and applications over the past three decades.  The 

popularity of e-commerce is due in a large part to PKC.  

Two widely adopted public-key cryptosystems are the Rivest-Shamir-Addleman 

(RSA) and Elliptic Curve Cryptography (ECC).  Ronald Rivest, Adi Shamir and Leonard 
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Addleman [35] introduced the RSA scheme in 1978.  ECC was proposed independently by 

Neal Koblitz [22] and Victor Miller [27] around 1985.  These cryptographic schemes are 

based on the assumed hardness of some underlying mathematical problem.  For the RSA, 

there are sub-exponential time algorithms for solving the underlying problem, whereas for the 

ECC, only fully-exponential time algorithms are yet known. Thus, ECC offers security 

equivalent to RSA for much smaller key sizes.  The security of a 160-bit ECC is comparable 

to that of a 1024-bit RSA scheme [19].   There are no known polynomial-time algorithms for 

solving the underlying mathematical problem in either the RSA or the ECC scheme.

On one hand, there is a growing demand for high-speed hardware implementation of 

these cryptographic protocols, particularly in high-performance network routers and web 

servers.  On the other hand, there is a demand for low-complexity, low-power hardware 

implementations as well.  This is mainly in the resource-constrained smartcard environment.  

This research does not address the requirements of the resource-constrained segment.  The

focus of this research is the design of parallel multiplier schemes that can significantly 

improve the performance of cryptographic protocols of the future.  Figure 1.1 [30] shows the 

trend for Moore’s law on the number of transistors that can fit on a chip.  
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Figure 1.1: Integrated circuit complexity [30].

The actual number of transistors on microprocessors has closely tracked Gordon Moore’s 

1965 projection [29].   Figure 1.2 [30] shows the average price of a transistor from 1968 to 

2002. The average price of a transistor has decreased markedly over the past four decades.  

Increasing transistor budgets and decreasing average price per transistor opens up the 

possibility for high-speed designs that were not technologically or economically feasible in 

the past.  Lenstra and Verheul [23] predicted cryptographic key sizes up to the year 2050.  

Their projections are based on the assumptions that no new ground-breaking solutions will be 

discovered to the underlying mathematical problems of the RSA and ECC schemes.  

Recommended cryptographic key sizes change frequently since increased computing power 

makes it easier to solve the underlying mathematical problems of these cryptosystems.  Thus, 
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the recommended key size must always be large enough such that the computational 

resources to solve the underlying mathematical problem are out of reach for practically 

anyone.  Figure 1.3 shows the expected key sizes for equivalent security for both the RSA 

and ECC schemes up to the year 2010 [23].  Clearly, ECC seems more desirable than the 

RSA going forward. In the near future, parallel modular multiplier schemes will be feasible 

for operand sizes of up to 256 bits for ECC-based cryptosystems.  Current operand sizes for 

conventional parallel multipliers used in microprocessors are only between 32 and 64 bits.  

Even with Moore’s law, parallel modular multiplier schemes for the RSA’s large operand 

sizes may not be feasible because of interconnect delay and large fan-outs. 

Figure 1.2: Average transistor price by year [30].
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Figure 1.3: RSA and ECC key length by year [23]. 

 

Traditionally, research on high-speed modular multipliers has targeted the RSA with 

its very large operand size.  Thus, most of the previous approaches have been iterative, bit-

serial or digit-serial.  Also, since ECC is traditionally used in resource-constrained 

environments, most of the multipliers targeted to ECC have also been bit-serial to meet the 

stringent area and power budgets of these devices. Recently, there has been a proposal to 

move ECC into high performance web servers [50].  This opens a vista of opportunity for the 

development of high-speed modular multipliers for ECC-sized operands which is the focus of 

this research work.  These high-speed multipliers will be the building blocks of future 

hardware crypto-accelerators.   In addition, ECC can utilize polynomial modular arithmetic. 

Like integer modular arithmetic, most of the architectures that have been proposed for 

polynomial modular arithmetic are not fully parallel.  This research work also explores novel 
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schemes for parallel polynomial modular arithmetic.  The following section gives a statement 

of the research problem.

Research Problem

The primary goal of this research is to explore novel algorithms and architectures for 

parallel integer and polynomial modular multipliers.

The major components of the research are:

• Exploration of novel parallel algorithms for modular multiplication

• Design of efficient hardware architectures based on the parallel algorithms

• Implementation and characterization of the hardware designs

1.2. Mathematical Background and Notation

Modular multiplication is simply the computation of the remainder of the product of 

two numbers with respect to a modulus. More formally, the modular multiplication problem 

is defined as the computation of R = A × B mod M given the integers A, B, M with 0 ≤ A, B < 

M. For most cryptographic applications such as the RSA or ECC scheme, only the case of an 

odd M is relevant. In the case where the modulus M is a prime, modular arithmetic is 

primarily arithmetic in a prime Galois field GF(p).  A number of definitions relating to 

arithmetic in finite fields are presented below.

Definition 1.1: A ring (R, +, x) consists of a set R with two binary operations + (addition) 

and x (multiplication) on the set R, satisfying the following conditions:
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1. (R, +) is an abelian group with identity denoted 0. An abelian group is a group for which 

the elements commute (i.e. A • B = B • A, for all elements A and B, where • is the group 

operation). 

 2. The operation x is associative.  That is, a x (b x c) = (a x b) x c for all a, b, c ∈ R.

3. There is a multiplicative identity denoted 1, with 1≠ 0, such that 1 x a = a x 1 = a for all a

∈ R. 

4. The operation x is distributive over +.  That is, a x (b + c) = (a x b) + (a x c) and (b + c) x 

a = (b x a) + (c x a) for all a, b, c ∈ R.

The ring is a commutative ring if a x b = b x a for all a, b ∈ R.

Definition 1.2: A field is a commutative ring in which all non-zero elements have 

multiplicative inverses.  This implies that there exists an element a-1 for all elements a ∈ R

apart from 0 for which a x a-1 = 1.  The set of integers modulo a prime p with addition and 

multiplication performed modulo p is a field.  

Definition 1.3: A field that has a finite number of elements is called a finite field or Galois 

field.  The order of a finite field F is the number of elements in F (#F). For any prime p, 

GF(p) is a prime Galois field with p elements.  For every prime power pm, there exists a 

unique finite field of order pm.  This Galois field is denoted by the prime extension field 

GF(pm).  The case where the prime p = 2 is the binary extension field GF(2m).

Definition 1.4: Polynomial basis – the elements of the Galois field GF(pm) can be represented 

as polynomials of the form:  a(z) = am-1z
m-1 + ..... + a2z

2 + a1z + a0 .  The element ai is the 
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coefficient of zi.  The largest integer k for which ak ≠ 0 is called the degree of a(z), denoted 

deg(a(z)).  ak is called the leading coefficient of a(z).

1.3   Contribution and Dissertation Overview

In this dissertation novel algorithms and architectures for integer and polynomial 

basis parallel modular multipliers are presented. The major contributions of the research are:

• Novel parallel algorithms for integer and polynomial modular multiplication

• Design of efficient hardware architectures based on the parallel algorithms

• Implementation, quantitative analysis and characterization of the parallel hardware 

designs 

The organization of this dissertation is as follows.

In chapter 2, a background on conventional (non-modular) multiplication algorithms 

and architectures are presented. This chapter discusses the algorithms for serial, serial-

parallel and fully parallel multiplication.  In addition, the hardware structures to implement 

these algorithms are also presented.

In chapter 3, a number of modular multiplication algorithms that have been proposed 

in the literature are reviewed.  The chapter concludes with a presentation of a novel parallel 

modular algorithm introduced in this dissertation.

In chapter 4, a survey of existing architectures for modular multiplication is 

presented.  In addition, a new parallel modular multiplier is also presented. Four variants of 

this architecture are discussed with emphasis on a trade-off between speed and area.
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In chapter 5, GF(pm) and GF(2m) polynomial modular arithmetic is introduced in 

detail.  Existing algorithms for performing polynomial modular arithmetic are presented 

along with new algorithms introduced in this dissertation.

In chapter 6, novel and previously proposed hardware architectures for polynomial 

modular arithmetic are discussed.

The dissertation is concluded in chapter 7.
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Chapter 2

Conventional Multiplication Algorithms and Architectures

Let a and b be two n-digit numbers expressed in radix r as:

∑
∑
−

=
−−

−
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−−

==

==
1
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)...(

n

i

i
inn
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i
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rbbbbb

raaaaa

where the digits of a  and b are in the range [0, r-1].  In general r can be any positive number.  

For computer implementations, r is often selected to be a power of 2.  The school-book 

algorithm for multiplying a and b produces the partial products by multiplying each digit of 

the multiplier operand (bi) by the entire number representation of the multiplicand (a).  Let tij

denote the (carry, sum) pair produced from the product of ai and bj.  For instance, in radix 10, 

when ai = 6 and bj = 4, then tij = (2, 4). The carry is ai·bj div r and the sum is ai·bj mod r.  The 

partial products are typically arranged thus:

a3 a2 a1 a0

x b3 b2 b1 b0   

______________________________________
t03 t02 t01 t00 

        t13 t12 t11 t10 

               t23 t22 t21 t20 

         t33 t32 t31 t30 

 _______________________________________
t7 t6 t5 t4  t3 t2 t1 t0

The last row is the summation of all the partial products – a 2n-digit number.  The sequence 

of operations involves a series of digit multiplies and adds.  The school-book algorithm using 

carry-save representation is presented below:
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Figure 2.1: Carry-Save school-book multiplication algorithm

The standard multiplication algorithm can be implemented in hardware with varying degrees 

of parallelism - a serial, parallel or hybrid serial-parallel architecture.

2.1   Bit-serial multipliers             

Bit-serial multipliers are useful when area overhead is of concern, and speed is not of 

primary importance.  In bit-serial designs, both operands of the multiplication operation are 

processed serially. The basic building blocks of a bit-serial multiplier are a 1-bit multiplier 

which can be implemented with an AND gate, and a bit accumulator.  The inputs are fed into 

the multiplier serially and the output is also transmitted in a serial fashion.

2.2 Serial-parallel multipliers

In this architecture, one of the operands is processed in parallel while the other is 

processed serially. The basic components are AND gates for generating the partial products 

Algorithm 2.1: Carry-Save school-book multiplication algorithm

Inputs: A, B, Output: R = (A·B)  

Initialization: tij = 0 for 0 ≤ i <2n

For i = 0 to n-1 do

C = 0;

For j = 0 to n-1 do

(C, S) =  tij + ai·bj. + C

ti+j = S

ti+n = S

output: (t2n-1 t2n-1 ... t0)
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and carry-save adders.  The architecture implements the inner loop of Algorithm 2.1 in 

parallel.  In each iteration, a sum and carry vector pair is produced, which is added to the next 

set of partial products.  In this architecture, the multiplier inputs are fed in serially and the 

final output is available in parallel after a number of cycles.

2.3   Parallel multipliers

Fully-parallel multiplier architectures process both operands in parallel.  The 

components of this multiplier scheme are an array of AND gates and a tree of parallel 

counters.  The partial products are compressed in parallel to a pair of sum and carry vectors 

in logarithmic time.  A final fast carry-propagate adder is then used to produce the final 

result.  Parallel multipliers require a large area for implementation but have a very low delay.
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Chapter 3

Modular Multiplication Algorithms

Basically, the objective of an n-bit modular multiplication is to take two n-bit 

numbers A and B and derive a result A·B mod M that is at most n-bits as well.  This is 

achieved by subtracting a multiple of the modulus M from A·B such that the result is n-bits 

wide and also less than M.  This differs from conventional multiplication where the product 

of two n-bit numbers will be at most 2n bits wide. For modular multiplication, the product of 

two n-bit numbers modulo another n-bit number yields a result that is at most n-bits wide.

3.1. Related Work

A number of algorithms have also been proposed in the literature for modular 

multiplication. Some of these algorithms include the Brickell [9] and Montgomery [28] 

algorithms.  For some of the algorithms, computation proceeds from the least significant digit 

to the most significant digit.  One example of this approach is the Montgomery algorithm.  

The advantage of this approach in hardware implementations is the fact that modular 

correction bits and carry signals propagate in the same direction. There are also some 

algorithms in the literature where the computation proceeds from the most significant digit 

position to the least. Another approach is based on lookup tables [49]. The effectiveness of 

this approach depends on the ability to minimize the size of the lookup tables required.
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Some of the algorithms that have been proposed only work for certain types of 

modulus while others are generally applicable to any modulus.  The classical modular 

multiplication algorithm and Barrett’s algorithm work for any modulus.  However, the 

Montgomery algorithm works only for odd moduli.  This does not pose a problem, as most of 

the application areas of modular arithmetic such as public-key cryptography require the use 

of odd moduli.

3.1.1 Classical modular multiplication algorithm

The classical approach for performing modular multiplication involves computing the 

product A·B, and then subtracting a multiple of the modulus M that makes the result to be less 

than the modulus.  An optimization of this approach interleaves the computation of the 

product and the subtraction of the modulus. The classical algorithm is generally inefficient 

and very slow. The interleaved classical modular multiplication is presented in Algorithm 

3.1.

Figure 3.1: Classical modular multiplication algorithm.

Algorithm 3.1: Classical modular multiplication 

Inputs: A, B, M with 0 ≤ A, B < M, Output: R = AB mod M

R = 0; 

For i = n-1 to 0

Begin 

R = 2·R + ai·B; 

qi = R div M;

R = R - qi·M; 

End
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3.1.2 Montgomery algorithm

Another approach to performing modular multiplication is the Montgomery 

algorithm. The basic idea behind Montgomery multiplication is the fact that one can add a 

multiple of the modulus M to the product A·B to yield a result that is at most 2n+1 bits wide.  

Adding, instead of subtracting, a multiple of the modulus M does not affect the computation, 

since the result will be congruent to A·B modulo M.  Two numbers are said to be congruent if 

their remainder when divided by the modulus is the same.  Thus, A·B, A·B +M, A·B +2M, ...  

A·B + kM are all congruent modulo M.    This implies: A·B ≡ A·B +M ≡ A·B +2M ≡ ...  (A·B + 

kM) mod M. In the Montgomery algorithm, the multiple of the modulus M that is added to 

A·B is chosen in such a way that the lower n-bits of the 2n+1-bit result are all zeroes. The 

least significant half of the 2n+1-bit result that are all zeroes are then discarded.  This way, 

the result would have been reduced to at most n+1 bits in width. A single subtraction of the 

modulus M can then be performed to further reduce the result to at most n-bits and make it 

less than M if required. It has been shown by Walter [46] that the extra subtraction may not 

be necessary under certain conditions.

Montgomery’s approach in essence achieves the objective of modular multiplication, 

which is to take two n-bit numbers, multiply them and derive a result that is at most n-bits 

wide.  The resulting n-bit number is not exactly A·B mod M. It is referred to in the literature 

as a Montgomery product A·B 2-nmod M.  However, most cryptographic schemes make use of 

repeated modular multiplications such as modular exponentiation - Ae mod M. Montgomery 

multiplication can then be used in performing the repeated multiplications, and only the final 

result of the exponentiation is converted back from the Montgomery domain.  Thus, the cost 
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of conversion to and from the Montgomery domain is amortized over the repeated modular 

multiplications.  The conversion from the Montgomery domain is just another Montgomery 

multiplication by 22n.  See [28] for the detailed proof of correctness of the Montgomery 

algorithm.  Just like the classical modular algorithm, Montgomery’s algorithm can also be 

performed in a fashion whereby the computation of the product and the addition of the 

modulus are interleaved.  The interleaved Montgomery modular multiplication is presented in 

Algorithm 3.2.

Figure 3.2: Montgomery modular multiplication algorithm.

In each iteration of the loop, the least significant bit of the intermediate result is 

inspected. If it is ‘1’, i.e. the intermediate result is odd; we add the modulus M to make it 

even. This is possible since M is guaranteed to be odd in the cryptographic applications of 

interest.  Thus, at each step the intermediate result is made to be even.  This even number can 

be divided by 2 without any remainder. This division by 2 reduces the intermediate result to 

n+1 bits again. Dividing the intermediate result by 2 is equivalent to discarding the current 

Algorithm 3.2: Montgomery modular multiplication 

Inputs: A, B, M with 0 ≤ A, B < M

Output: R = Montgomery Product (A·B2-n) mod M

R = 0; 

For i = 0 to n-1 do

Begin 

R = R + ai·B;       

R = R + r0·M; 

R = R div 2;
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least significant bit of the intermediate result that is zero. After n steps these divisions add up 

to one division by 2n, or discarding the least significant n-bits that are zeroes.

3.1.3 Barrett’s algorithm

Barrett’s algorithm computes P = X mod M given X and M.  Typically, the 

multiplication operation is first performed and then a modular reduction operation follows.  

The algorithm requires the pre-computation of the quantity r2k/M where r is the radix in 

which the algorithm is implemented, usually a power of 2.  The cost of the pre-computation 

can be amortized over repeated modular reductions.

Figure 3.3: Barrett’s modular reduction algorithm.

3.1.4  Algorithms for special moduli

If the modulus for the modular multiplication operation has a special form, faster 

reduction techniques can be utilized.  An efficient technique can be utilized for modular 

reduction if the modulus is of the form rn – c for a radix r implementation.

Algorithm 3.3: Barrett’s modular reduction

Inputs: X, M and µ = r2k/M Output: P = X mod M

Q1 = X/rk-1 , Q1 = Q2·µ , Q3 = Q2/rk+1
P1 = X mod rk+1,  P2 = Q3·M mod rk+1, P = P1 - P2

If P < 0 then P = P + rk+1 

While P ≥M do

P = P – M

Output : P
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Figure 3.4: Modular reduction algorithm for special moduli.

3.2     Contributions 

The major contribution [37] in this section is the generalization of the Montgomery 

modular algorithm to modular vector summation and the introduction of a fully parallel 

version of the Montgomery modular multiplication.  Montgomery’s algorithm is usually 

favored in hardware implementations over both the Barrett’s algorithm and the classical 

algorithm since it handles the propagation of carries and the modular correction bits 

efficiently.  The generalized parallel Montgomery algorithm is applicable to combined multi-

operand addition and modular reduction.

3.2.1 Generalization of the Montgomery Algorithm

In this section, we make some extensions to and generalize the Montgomery 

algorithm to apply not only to multiplication but also to vector summation.  The basic idea 

behind the extension is to transform an nxn-bit multiplication into a summation of k n-bit 

Algorithm 3.4: Modular reduction for M = rn - c

Inputs: X and M = rn - c Output: P = X mod M

Q0 = X/rn , P0 = X – Q0·r
n, P = P0, i = 0  

While Qi ≥ 0 do

Qi+1 = Qi·c/ rn , Pi+1 = Qi·c – Qi+1 r
n

i = i +1, P = P + Pi

While P ≥M do

P = P – M

Output: P
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numbers whose sum is congruent to the nxn-bit product with respect to the modulus. The 

modular reduction is then performed with the sum of the k n-bit numbers instead of the nxn-

bit product.  The advantage of this approach is that the vector summation of k n-bit numbers 

can be interleaved with the modular reduction in log1.5k time using parallel counters - full 

adders and half adders.  Thus, if k is less than 1.5n, the new algorithm will be faster.

Given k n-bit integers  X0, X1, ... , Xk-1  with Xj = ∑−
=
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2
n

i

ij
ix for  0 ≤ j < k , the modular vector 

summation of the integers is given by:  MX
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3.2.2 Parallel Montgomery Algorithm

Three n-bit unsigned binary integers, A = an-1 an-2 an-3 ... a2 a1 a0, B = bn-1 bn-2 bn-3 ... b2 b1 b0, 

and M = mn-1 mn-2 mn-3 ... m2 m1 m0 have the values:
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The Montgomery Product A·B·2-n mod M has the value

A·B·2-n mod M ≡ 1}{0,,
2
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Suppose we can find k n-bit numbers {X0, X1, X2, X3 ... Xk-1} : 0 ≤Xj< 2n for j = 0 to k-1 that 

satisfy:
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This revised algorithm is contingent on being able to find k n-bit numbers {X0, X1, X2, X3, ... 

Xk-1} such that 0 ≤Xj < 2n for j = 0 to k-1 that satisfy: MBaX
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Chapter 4

Modular Multiplier Architectures – GF(p)

This chapter focuses on hardware architectures for modular multiplication or 

arithmetic in prime Galois fields GF(p).  The hardware architectures implement the 

algorithms presented in the previous chapters.  Hardware architectures are usually more 

efficient than software implementations for modular arithmetic.  However, hardware 

implementations may be less flexible than software-only approaches.

4.1     Related work 

A number of modular multiplier architectures have been presented in the literature.  

Most of the architectures are based on Montgomery’s algorithm because it is specially suited 

for hardware implementation.  The hardware Montgomery multipliers can broadly be 

classified as either bit-serial or high-radix architectures.

 4.1.1 Bit-serial architectures

Bit-serial Montgomery multipliers implement the inner loop of Algorithm 3.2.  The 

basic components of such bit-serial architectures are AND gates and carry-save adders and an 

accumulator for accumulating the partial results.  The division by 2 in the algorithm is readily 

implemented as a bit-shift in hardware.

4.1.2 High-radix architectures

High- radix Montgomery multipliers are similar to the bit-serial architectures, but in 

each iteration, a digit of the multiplier operand is processed rather than just a bit.  The 

multiplicand bits are processed in parallel.  Processing multiple digits at a time makes the 
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quotient selection more complex and each iteration does not involve only a simple bit-shift as 

in the serial architecture.  The basic components of the high-radix architecture are an array of 

digit-by-digit multipliers and adders.  Each iteration takes more time to complete than in the 

bit-serial architecture, but the total number of iterations is reduced.

4.2      Contributions

The major contribution [37] in this section is the efficient implementation of the 

generalized Montgomery modular algorithm presented in the previous chapter.  Four designs 

for implementing the parallel Montgomery algorithm are explored in this section.  All the 

designs utilize small look-up tables and fast, massively parallel multipliers.  Two of the 

designs trade off smaller look-up tables for a larger, slightly slower multiplier.  The other two 

approaches use larger look-up tables but a smaller, faster multiplier.

4.2.1 Parallel Montgomery multipliers

In this section, the modified Montgomery algorithm is implemented in hardware. 

With conventional parallel multipliers, the partial product matrix bits are generated by an 

array of AND gates, and are reduced to sum and carry vectors using a Wallace [48] or Dadda 

[12] tree.  The sum and carry vectors in the last stage can then be added using a high-speed 

carry-propagate adder. The Wallace reduction tree is usually composed of full-adders and 

half-adders.  In the proposed scheme for the modified Montgomery multiplication algorithm, 

back-to-back full-adders and half-adders are utilized.  Figure 4.1a shows in more detail the 

modifications to the conventional Wallace tree. The rows in the bit product array are banded 

together into groups of 3’s and full adders are used to reduce 3 rows to 2 rows.  So as to 

ensure that the least significant bit is zero at the end of each stage of the reduction tree, we 
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arrange the two full adders back-to-back.  After the 3 rows have been reduced to 2 rows, if 

the least significant bit of the group is ‘1’, then the bits of the modulus M are combined with 

the 2 rows to yield a new set of two rows with the least significant bit zero.  The least 

significant bit is then discarded at the end of that reduction stage.  For practical designs, 

additional buffers will be needed to handle the large fan-out of the least significant bit 

position.  

It is possible that after the organization of the rows into groups of 3’s, two rows are 

left.  The two rows are combined with back-to-back half-adders as shown in Figure 4.1b.  

Still, after the groupings, it’s possible that only one row is left.  In this case, the single row is 

combined with the modulus M using half-adders to ensure the least significant bit is zero, as 

shown in Figure 4.1c. In this case, that single row will become two rows in the next stage 

after the modulus has been combined with it.  This does not significantly affect the rate at 

which all the rows of the summation matrix are reduced to the final two rows.  The number 

of rows in the stages of the Wallace reduction tree are n,  .... 13, 9, 6, 4, 3, 2. With the 

modified Wallace tree, the width of each stage is n-bits except for the last two stages (with 

heights of 4→3 and 3→2) where the back-to-back adders are not used.  It is not necessary 

that the least significant bits are zero in the last two stages.  At this point, the widths of the 

rows will remain n+1-bits until the final stage. Thus, the final two rows are n+1-bits wide.
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The first stage in Figure 4.2 shows the partial product matrix for A·B.  This array is 

transformed to the summation matrix in the next stage.  The remaining stages in Figure 4.2

Black dots – bits form the summation matrix
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Figure 4.2: Reduction stages of the 
generalized parallel Montgomery 
multiplier.

 Gray dots – Modulus bits : used only when LSB is ‘1’

White dots – LSB with a value of ‘0’

(b). 2 rows combined with the Modulus to yield 2 rows.

(a). 3 rows combined with the Modulus to yield 2 rows.

(c). Single row combined with the Modulus to yield 2 rows.

Figure 4.1: Legend for the symbols. 
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are those of a modified Wallace tree that reduce the summation array to a pair of sum and 

carry vectors in the final stage.  The primary difference between the conventional Wallace 

tree and the modified Wallace tree is the fixed width of each stage in the modified scheme.  

In the modified scheme, the least significant bits are discarded at each stage.  This ensures 

that the widths of the successive stages are the same.  Keeping the width constant is achieved 

by using back-to-back full adders and half adders. The modulus M is added to the output of a 

bank of full-adders if the least significant bit is ‘1’.  Since the modulus M is odd, the resulting 

pair of carry and sum vectors at the output of the second set of full adders will have the least 

significant bit as ‘0’.

Design Alternatives

This section presents four design alternatives for the Parallel Montgomery Multipliers 

(PMMs).  All the designs follow the generalized hardware implementation with different 

values of k for the summation array.

Implementation I

In this section, we focus on how to generate the summation array vectors Xj s.  The bit 

product array for multiplying two numbers can be divided into two halves.  The least 

significant half has n rows ranging from 1 bit to n bits in width.  Similarly, the most 

significant half has n-1 rows ranging in width from 1 to n-1 bits.  Thus, the total number of 

bits in the most significant half is n(n-1)/2. We envision a lookup table (LUT) that holds pre-

computed values of 2i mod M for n ≤ i < 2n-1.  This LUT will have n-1 entries of n-bits each.  

The right half of the bit product array is then expanded to n(n+1)/2 rows as shown in Figure 
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4.3 for a 4x4 bit multiplier. As shown in the figure, there are 6 dots in the left half of the bit 

product array, and each dot forms a new row in the summation matrix.  These new 6 rows are 

then combined with the 4 rows from the right half of the bit product array to yield the 

summation matrix with 10 rows.  

For every ith bit in the left half of the bit product array that is ‘1’, the output of the LUT 

forms a new row that represents 2i mod M else the new row will be all zeroes.  This 

guarantees that every row in the summation array represents a number that is less than 2n.  

The rows of the summation array are then summed in logarithmic time using the modified 

Wallace tree. In this case, the parameter k = n(n+1)/2.  Subsequent section explore ways to

further reduce k and also the size of the LUTs.

Implementation II

In this section, an alternative scheme to reduce the size of the lookup table is 

proposed.  In this approach, the size of the lookup table is reduced by half but the size of the 

summation array is increased by about a factor of 1.5.  Since the reduction tree is of 

logarithmic time complexity, the total delay is minimally impacted.  That is, the number of 

stages is increased from log1.5(n(n+1)/2) to log1.5(1.5·n(n+1)/2) ~  log1.5(n(n+1)/2) + l  ~ 

2log1.5 n.  The basic idea behind this approach is to group adjacent bits in the left half of the 

bit product array into pairs and then convert each pair of bits into 3 unary bits.  This is 

essentially performing the reverse operation of a full adder.  This guarantees that every other 

column of bits in the left half of the bit product array will be zero. This approach is depicted 

in Figure 4.4 for a 4x4 bit multiplier.  In the figure, the 6 dots in the left half of the bit 

product array are converted into 8 dots, so that the summation array has a total of 12 rows. 
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Thus, the height of summation array has increased by about a factor of 1.5 as compared to the 

example in the previous section.  However, the number of non-zero columns will be reduced 

by half.  Thus, the size of the lookup table will also be reduced half, since only the values 2i

mod M for i = n, n+2, n+4 ... 2n-1 need to be stored.  As shown in Figure 4.4, there are only 2 

non-zero columns in the left half of the bit product array.  This approach trades off a smaller 

lookup table for a larger bit-product array without significantly impacting the total delay.  

However, the hardware complexity is significantly increased. 

Implementation III

Another idea to simplify the hardware complexity is introduced in this section.  

Instead of increasing the height of the bit product array from n to n(n+1)/2, we leave the bit 

product array with a height of n.  We then split the bit-product array into two halves, and the 

reduction of both halves proceeds in parallel as in the previous two approaches. Both halves 

will be simultaneously reduced to two rows in log1.5n stages.  Similarly, the reduction is 

interleaved with the “zeroing out” of the least significant bits at each stage.  Thus, at the 

completion of both stages we will have two n-bit rows in the left half and two n+1-bit rows in 

the right half.  The bits in the left half are scaled by a factor 2n + logn .  Thus, we can modify the 

lookup table so that it contains the residues 2i mod M, (n + logn)  ≤ i ≤ (2n + logn).  The first 

2n bits of the summation array are then generated from the two n-bit rows of the left half and 

the LUT. Each bit from the two rows on the left half becomes a new row in the resulting 

summation array.  
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Figure 4.3: Implementation I Figure 4.4:  Implementation II

4x4-bit  PMM. 4x4-bit  PMM.

The resulting summation array has 2n + 2 rows and it can be reduced to two rows in log1.5(2n

+ 2) ~ log1.5n stages.  Thus, the total delay is (log1.5n + log1.5(2n + 2)) ~ 2log1.5n stages. This 

is about the same delay as the two previous approaches.  However, the hardware complexity 
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has been greatly reduced.  The height of the bit product array has been reduced from n(n

+1)/2 to  two arrays of height n operating in parallel followed by one array of height 2n + 2. 

Figure 4.5 shows an example for a 4x4 bit multiplier.  It is split into the left and right halves 

with 3 and 4 rows respectively.  

Figure 4.5: Implementation III Figure 4.6: Implementation IV 4x4-

4x4 bit PMM. bit PMM.
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The left half requires only one stage to reduce it to two 3-bit wide rows. The right half 

requires two stages to reduce it to two 5-bit wide rows.  As has been noted before, the back-

to-back adders are only used in the reduction stages before the last two.  Thus, the least 

significant bits are not discarded in this example because there are only two stages.  However, 

for 5x5-bit, 6x6-bit and larger multipliers, each half will involve discarding the least 

significant bits at all but the last two stages.  As shown in the figure, the 5 dots from the two 

rows on the left half are transformed into the first five rows of the summation matrix, and the 

two rows from the right half complete the summation matrix.  The summation matrix of 7 

rows is then reduced to the final sum and carry vectors in 4 stages.

Implementation IV

In this section, the size of the lookup table for Implementation III is further reduced.  As in 

the approach in the last section, the bit product array is split into two halves that are reduced 

in parallel.  However, in this case, after the left half has been reduced to two rows, we then 

group adjacent bits in pairs and split them into unary bits just like in the approach of 

Implementation II.  This is depicted in Figure 4.6 for a 4x4 bit multiplier.  The two rows in 

the left half are then transformed into 6 rows with every other bit guaranteed to be a zero.  

Thus, each row contains at most n/2 non-zero bits.  The lookup table size can then be reduced 

by half. In this example, the left half has only two columns of non-zero bits.  Each non-zero 

bit from the left half is then transformed into a new row in the resulting bit matrix.  The 

resulting summation matrix will now have a height of 3n + 2. This summation array will be 

reduced to two rows in log1.5(3n + 2) ~ log1.5n stages.  The total number of stages is then 

(log1.5n +log1.5(3n + 2)) ~ 2log1.5n stages. As shown in Figure 4.6, the summation matrix is 
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reduced to the final two rows in 5 stages.  Table 4.1 summarizes the four design approaches 

for the parallel Montgomery multipliers.

Table 4.1: Comparison and evaluation of parallel Montgomery multipliers.

Height (k) of 

Summation Array(s) 

Number of 

entries in LUT

Number of stages

I n(n +1)/2 n log1.5(n (n+1)/2)

II 3n(n+1)/4 n/2 log1.5(3n(n +1)/ 4)

III n, 2n +2 n log1.5(n(2n + 2))

IV n, 3n +2 n/2 log1.5(n(3n + 2))

To obtain area and delay estimates, a specialized C++ program was developed that 

generates structural Verilog models for the Parallel Montgomery Multipliers (PMM), given 

an operand size, n.  As a proof of concept, the C++ program was used to generate Verilog 

models of PMMs for various operand sizes.  The designs were synthesized on a 0.18 micron 

CMOS standard cell library.  The normalized delay and area estimates were extrapolated to 

show a trend of how each of the approaches scale as the operand size is increased.  These 

results are presented in Figure 4.7.  The area complexity is O(k2) and the delay complexity is 

O(logk) for all the four schemes.  The trend lines in Figure 4.7a depict the area complexities 

of the four implementations.  Note that k for each implementation type is derived from the 

operand size n using Table 4.1.
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Figure 4.7: Normalized area and delay estimates for the parallel Montgomery multipliers.

Evaluation

The architectures presented in this section involve significant hardware complexity 

but exploit massive parallelism.  All of the designs can be pipelined to further improve the 

throughput.  Most of the implementations of Montgomery multiplication in the literature are 

based on bit-serial or systolic designs, pumping the global signals through flip-flops to reduce 

the delay and avoid large fan-out.  The systolic-array method, however, needs a large number 

of registers and long latency.  The effects of large fan-out and global wire delays in the 

parallel schemes presented are less severe for smaller operand sizes.  Thus, the schemes 

presented may be targeted towards the Elliptic Curve Cryptosystem where the operand sizes 

are currently between 128 and 160 bits.  For the RSA scheme where the operand sizes are 

about 1024 bits, large fan-out may pose a greater obstacle to practical implementations.  The 
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other proposal in the literature for constructing logarithmic time modular multipliers [45] 

requires multiplication with real numbers and does not exclusively use fixed point arithmetic.
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Chapter 5

Polynomial Modular Multiplication Algorithms

5.1     GF(pm) polynomial arithmetic

Arithmetic in Galois fields is an integral part of elliptic curve cryptosystems [22] [27]. 

Typical choices of fields include the prime Galois field GF(p), realized as the integers 

modulo a prime p, and binary extension field GF(2m), often realized as the set of binary 

polynomials of degree at most m-1.  The elements of GF(2m) can be represented in a number 

of ways such as the polynomial and the normal bases.  In the polynomial basis, multiplication 

is performed modulo an irreducible polynomial. The polynomial basis representation in the 

binary extension field case can be generalized to all extension fields GF(pm), with coefficient 

arithmetic performed in GF(p) (modulo p , p prime).

The prime Galois field GF(p) is the set of all positive integers less than a particular 

prime number.  For instance, Galois Field GF(13) is the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12}.  With this finite field, addition is the same as conventional addition, but after addition, 

the result is reduced modulo the prime, in this case 13 – that is - divide the result by 13 and 

take the remainder.  This ensures that the final result is always less than 13 and it is thus a 

member of the set {0, 1, 2, 3, .... , 12} which is GF(13).  The same goes for field 

multiplication, the conventional multiplication followed by a modulo operation to reduce the 

result to be less than the prime p.
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The finite field GF(pm) can be represented in the polynomial basis representation.  In 

this representation, the elements of the finite field are not integers but each member of the 

field is actually a polynomial of degree m-1.  The degree of a polynomial is the power of the 

highest non-zero co-efficient.  For instance, in GF(p3) we can have a polynomial a(z) = a2*z2

+ a1*z + a0 – the degree of this polynomial is 2.  Similarly we can have another polynomial 

b(z) = b2*z2 + b1*z + b0.  Let p = 13, then the finite field GF(p3) = GF(133)  with two example 

elements a(z) = 8z2 + 7z + 3 and b(z) = 2z2 + 9z + 1.  The coefficients of the polynomials are 

the integers in the range  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, that is the coefficients are 

elements of GF(p) or GF(13) since p = 13 in this case.  Addition involves just adding the 

corresponding coefficients of the polynomial, and performing the modulo operation if ever 

the result is larger than 13 or the prime p.  So a(z) + b(z) = (8 +2)*z2 + (7+ 9)*z + (3+1) = 

10z2 + 3z + 4.

Field multiplication of a(z) and b(z) = (8z2 + 7z + 3)*(2z2 + 9z + 1)  = 16z4 + 72z3 + 

8z2 + 14z3  + 63z2 + 7z + 6z2 + 27z + 3 = 16z4 + 86z3 + 77z2 + 34z + 3.  The coefficients are 

then reduced to be in the range {0, 1, ... , 12}.  This yields 3z4 + 8z3 + 12z2 + 8z + 3.  

However, the degree of the polynomial must be at most m-1 for elements of GF(pm).  A

polynomial modulo operation is thus required.  This involves dividing the intermediate

product polynomial by another polynomial and taking the remainder polynomial as the result.

The polynomial that is used to perform the modulo operation is a special polynomial called 

an irreducible polynomial for that finite field.  The irreducible polynomial is a monic 

polynomial that cannot be factored into simpler terms over GF(p). For instance, let the
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irreducible polynomial for the field GF(133) be z3 -2.  Then the polynomial modulo operation 

yields:  (3z4 + 8z3 + 12z2 + 8z + 3) mod (z3 -2) =  12z2 + z + 6.

The integer modular arithmetic is referred to as subfield reduction and polynomial 

modulo operation as the extension field reduction.

5.1.1 Related work

There are three broad classes of algorithms for finite field multiplication: serial, serial-

parallel, and parallel multiplication. Serial GF(pm) multiplication involves processing all the 

coefficients of the multiplicand operand in parallel while processing  the coefficients of the 

multiplier operand serially.  Serial-parallel algorithms process more than one coefficient of 

the multiplier operand at a time.  The fully parallel algorithms process both operands in 

parallel.

5.1.1.1 Element-serial algorithms

Figure 5.1: Element-serial GF(pm) multiplication algorithm.

Algorithm 5.1: Serial GF(pm) multiplication algorithm
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5.1.1.2 Element-serial/parallel algorithms 

Figure 5.2: Element-serial/parallel GF(pm) multiplication algorithm.

5.1.2 Contributions 

The major contribution [38] in this section is a multiply-accumulate algorithm for a 

special class of GF(pm) called Type II Optimal Extension Fields (OEFs) [3].  The proposed 

algorithm takes advantage of the special properties of this family of finite fields to perform 

efficient field operations. The concept of merged arithmetic is introduced to dissolve the 

boundaries between discrete modular multiplies and additions.

5.1.2.1 Merged-arithmetic GF(pm) multiplication algorithm

Certain finite fields simplify the hardware implementation of finite field arithmetic.

One such field is a prime Galois field where the prime is of the special form 2n – c, 
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where c is relatively “small” compared to the size of 2n.  The modulo operation is 

easily performed by successively substituting 2n with the smaller integer c.  For 

instance, say p = 29 = 25 – 3.  Since 25 ≡ 3 mod 29, we can replace the occurrence of 25

with 3.  For example, 140 = 4* 25 + 12 = 4*3 + 12 ≡ 24 mod 29.  

The same also holds for the polynomial modulo operation in GF(pm). If the 

irreducible polynomial is in a simple form, then the polynomial modulo operation is 

simplified.  For example, take the irreducible polynomial f(z) = z3 -2 for GF(133). To 

perform the polynomial modulo operation : (3z4 + 8z3 + 12z2 + 8z + 3) mod (z3 -2) , we 

can use the congruence that z3 ≡ 2 mod f(z).  Every occurrence of z3 can be replaced 

with 2.  This yields: 3z4 + 8z3 + 12z2 + 8z + 3 = 3*2z + 8*2 + 12z2 + 8z + 3 = 6z + 16 + 

12z2 + 8z + 3 = 12z2 + z + 6.

Optimal Extension field is another type of special finite field that facilitates simpler 

arithmetic introduced by Bailey and Paar [3] in 1998.

The specifications are for a Galois extension field GF(pm) with the following 

restrictions:

• the prime p must be of the form p = 2n ± c with log2c < n/2

• the irreducible polynomial used for the polynomial modulo operation must be 

a binomial 

This Optimal Extension Field (OEF) is further divided into two classes:

Type I is the case where the prime is of the form 2n ± 1 – that is the value c is 1 

which further simplifies the arithmetic for the integer modulo operation.
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Type II is the case where the irreducible polynomial is of the form f(z) = zm – 2 

which further simplifies the arithmetic for the polynomial modulo operation.

In this dissertation, another class of Optimal Extension Fields that make for simpler 

and faster arithmetic is introduced. 

The specifications are for a Galois extension field GF(pm) with the following 

restrictions:

• the prime p must be of the form p = 2n - c with (2log2c + log2m  +1) ≤ n

• the irreducible polynomial used for the polynomial modulo operation must be 

f(z) = zm – 2 .

This special Optimal Extension Field (OEF) facilitates merged arithmetic which 

allows several multiply operations to be combined together.  In addition, it allows 

subfield and extension field reductions to be combined together. Furthermore, the cost 

of one carry-propagate addition is distributed over several multiply operations when 

performing arithmetic in this finite field.

This special class of OEFs are a subset of the regular Type II OEFs and do not introduce 

any addition security considerations.  Table 5.1 shows some examples of the special OEFs.

Table 5.1: Examples of the special OEFs.

p f parameters
213 - 1 z13 - 2 mn = 169

216 – 15 z13 - 2 mn = 208
217 – 31 z13 - 2 mn = 221
218 – 11 z13 - 2 mn = 234
255 – 55 z3 - 2 mn = 165
256 – 57 z3 - 2 mn = 168
257 – 13 z3 - 2 mn  = 171
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5.2    GF(2m) polynomial arithmetic

GF(2m) arithmetic is the special case of GF(pm) arithmetic where the prime p = 2.  

Arithmetic units for the Galois field GF(2m) are readily implemented in hardware.  The 

Galois field GF(2) has two elements: 0 and 1.  Arithmetic operations in GF(2) are performed 

modulo 2.  GF(2) addition is implemented by an XOR gate, while GF(2) multiplication is 

implemented by an AND gate. Each element of the extension field GF(2m) is usually 

represented as a polynomial of degree at most m-1 with binary coefficients.  For this 

representation, the addition operation is bit-independent and can be performed in parallel.  

However, multiplication is more complex. For polynomial multiplication, the product of the 

coefficients of the operands is first computed to yield a polynomial of degree at most 2m - 2.  

This polynomial is then reduced modulo an irreducible polynomial p(z) to yield the final 

result.

5.2.1 Related work  

A number of algorithms have been proposed for arithmetic in binary extension fields.  

Most of the algorithms that do not require special irreducible polynomials are bit-serial in 

nature.  Some parallel algorithms are efficient for fields that have an irreducible polynomial 

of a special form e.g. a trinomial of the form zm + z + 1.

5.2.1.1 Bit-serial algorithms 

The shift-and-add method for GF(2m) multiplication is based on the observation that:

a(z)·b(z) = am-1z
m-1b(z) + ... + a2z

2b(z) + a1zb(z) + a0b(z).
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Let the irreducible polynomial f(z)  be of the form zm + r(z).  Then, zm ≡ r(z) (mod f(z)) since 

-1 ≡ 1 (mod 2). Therefore :
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Thus, b(z)·z mod f(z) can be computed by a left-shift of the vector representation of b(z), 

followed by addition of r(z) to b(z) if the bit bm-1 is 1.

Figure 5.3: Bit-serial GF(2m) multiplication algorithm.

5.2.1.2 Bit-parallel algorithms 

The bit-parallel algorithm uses the property of the irreducible polynomial to combine 

the polynomial modulo operation and the multiplication together.  Most of these bit-parallel 

Algorithm 5.3: Bit-serial GF(2m) multiplication algorithm

INPUT: a = (am-1, ..., a1, a0), b = (bm-1, ..., b1, b0) 

and irreducible polynomial f(z)  = zm + r(z),  and r = (rm-1, ..., b1, b0)

OUTPUT: c = a·b

Initialization: c =  0

 For i from m-1 to 1 do

c = leftshift(c) + cm-1r.

c = c + bia.

Output: c
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algorithms are for special trinomials and pentanomials.  Thus, the algorithms are not flexible, 

and are constructed on a case-by-case basis for each irreducible polynomial.

5.2.2 Contributions 

The major contribution [39] in this section is a multiply-accumulate algorithm for a GF(2m) 

fields that can be adapted to perform both scalar and vector computations.

5.2.2.1 Parallel GF(2m) scalar and vector polynomial multiplication

The field GF(2m) is associated with a monic irreducible polynomial p(z) = zm +f(z), 

where f(z) = fm-1z
m-1 + fm-2z

m-2 + ... + f1z + 1,  fm-1, fm-2, ... f1  ∈ {0,1}.  The multiply-accumulate 

result : c(z) + a(z)· b(z) mod p(z), a(z), b(z), c(z) ∈ GF(2m), is computed in two steps.  The 

polynomial multiply-accumulate operation over GF(2), c(z) + a(z)·b(z), is first performed and 

an intermediate polynomial of degree 2m – 2 is obtained.  A polynomial modulo operation is 

then performed to reduce its degree to at most m-1.  Since the irreducible polynomial p(z) = 

zm + f(z), then  zm ≡ f(z) (mod p(z)), zm+1 = z ·zm ≡ z ·f(z) (mod p(z)) , ...  , z2m-2 = zm-2 ·zm ≡ zm-2 

·f(z) (mod p(z)).  The polynomial modulo operation can thus be performed by successively 

replacing zm+i with zi ·f(z) for m ≤ i ≤ 2m – 2.  Two sub-arrays are required for the entire 

GF(2m) MAC operation.  One for the multiply-add operation over GF(2) and the other for the 

polynomial modulo operation. These sub-arrays complete the following operations:

INPUTS:   c(z) = cm-1z
m-1 + cm-2z

m-2
  + . . . + c1z  + c0

                  a(z)= am-1z
m-1 + am-2z

m-2
  + . . . + a1z  + a0

                  b(z) = bm-1z
m-1 + bm-2z

m-2
  + . . . + b1z  + b0

p(z) = zm +f(z) = zm + fkz
k + fk-1z

k-1 + ... + f1z + 1
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 MUL-ACC over GF(2) : d(z) = c(z)  + a(z)· b(z) = 

(c0 ⊕ a0b0) 

   + (c1 ⊕ a0b1 ⊕ a1b0)z

   + (c2  ⊕ a0b2 ⊕ a1b1 ⊕ a2b0)z
2

+ . . . + (cm-1 ⊕ a0b m-1 ⊕ a1bm-2 ⊕  . . . ⊕ am-1b0)z
m-1 

   + . . . + (am-1bm-2 ⊕ am-2bm-1)z
2m-3 

  + (am-1bm-1)z
2m-2 

     d(z) = d2m-2z
2m-2 + d2m-3z

2m-3
  + . . . + d1z  + d0

POLY-REDC: d(z) mod p(z) =

(d0  ⊕ dm) +

    (d1  ⊕ f1dm ⊕ dm+1)z +

(d2  ⊕ f2dm ⊕ f1dm+1 ⊕ dm+2)z
2 + . . . +

    (dk ⊕ fkdm ⊕ ... ⊕ f2dm+k-2 ⊕ . . .⊕ dm+k)z
k + 

    (dk+1 ⊕ fkdm+1⊕ ... ⊕ f2dm+k-1 ⊕ . . .⊕ dm+k+1)z
k+1 + . . . +

    (dm-2⊕ fkd2m-k-2 ⊕ ... ⊕ f2d2m -4 ⊕ . . . ⊕ d2m-2)z
m-2 +

    (dm-1⊕ fkd2m-k-1 ⊕ ... ⊕ f2d2m -3 ⊕ f1d2m -2)z
m-1 + 

    (fkd2m-k⊕ ... ⊕ f3d2m -3 ⊕ f2d2m -2)z
m +. . . +

          (fkd2m-2)z
m+k-2 

Two rounds of the POLY-REDC operation suffice to reduce the degree of the 

intermediate polynomial d(z) to at most m-1 if the generating polynomial is of the form zm + 

f(z) , with the degree(f(z)) = k < m/2.
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Chapter 6

Polynomial Modular Multiplier Architectures

6.1 GF(pm) architectures

GF(pm) architectures can be broadly classified into element-serial, element-

serial/parallel and parallel architectures.  The distinction between the different classes is in 

the number of coefficient elements of the multiplier operand that are processed 

simultaneously.  In all the three groups, the multiplicand operands are processed in parallel.  

There is an area-speed trade-off among the three architectures.  The element-serial provides 

the smallest area but requires a large number of iterations to complete one GF(pm)

multiplication.  On the other hand, the fully parallel architecture requires a large silicon area 

but completes the entire GF(pm) multiplication in one step.  Figure 6.1 depicts the three broad 

classes GF(pm) multiplier architectures.
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Figure 6.1:  The three classes of GF(pm) multiplier architecture.

6.1.1 Related work

Finite field multipliers for GF(pm) have been extensively investigated for the case where p

is relatively “small” (p = 2, 3 and p < 28) . Particularly, a number of parallel multiplier 

schemes for the binary extension field GF(2m) where p = 2 have been proposed.  A number of 

these multiplier architectures are based on the polynomial basis representation. The gate 

complexity and delay of these schemes is dependent on the choice of the irreducible 

polynomial for the extension field reduction as subfield operations involves modulo 2 or 

one’s complement arithmetic and is readily implemented by XOR gates.  Thus, most of the 

schemes focus on low-weight reduction polynomials with certain desirable properties.  One 

of the first parallel polynomial basis multipliers for GF(2m) was presented by Bartee and 
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Schnedier [5].  Another parallel multiplier design proposed by Mastrovito [25][26] 

formulates the entire GF(2m) multiplication as a set of matrix operations. Mastrovito-type 

multipliers optimized for certain classes of irreducible polynomials have also been 

investigated by Reyhani-Masoleh and Hasan [34] and Rodriguez-Henriquez and Koc [36]. In 

addition to parallel multipliers, bit-serial multipliers have also been proposed for GF(2m).  

Beth and Gollman [7] describe various msb- and lsb-first bit-serial multipliers.  Song and 

Parhi [42] proposed a digit-serial/parallel multiplier for GF(2m). A number of arithmetic units 

for GF(2m) using the normal basis representation have also been presented in the literature 

[1][2][15][24].

Recently, there has been an interest in GF(pm) multipliers for the case p = 3 because of the 

bandwidth advantages of finite fields of characteristic 3 in the implementation of identity-

based cryptosystems [8]. Page and Smart [32] proposed a multiplier architecture specifically 

for GF(3m) arithmetic. Bertoni et. al. [6] presented a digit/element architecture for GF(pm) 

based on a generalization of the serial/parallel multiplier introduced by Song and Parhi [42], 

and also provided implementation details for GF(3m). For GF(pm) architectures where p < 28, 

some specialized GF(p) multipliers have been proposed as the basic building blocks. Some of 

these specialized GF(p) multipliers are table lookup-based [4][21] and utilize index calculus 

to transform the multiplication operation to an addition. Other specialized GF(p) multiplier 

schemes [18] [20] that have been proposed for p < 25, are based on combinatorial logic for 

the full truth-table of the modular multiplication operation. 
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A number of GF(pm) multiplier architectures have been introduced for the case where p is a 

large prime and m is 1, the prime Galois field GF(p). Some of these scalable, bit-serial 

architectures [17] [40] are capable of performing both GF(p) and GF(2m) operations.  

6.1.1.1 Element-serial architectures

Element-serial architectures process the coefficients of the multiplier operand serially 

and the coefficients of the multiplicand operand in parallel.  The basic components of this 

architecture are modular multipliers and modular adders.  The modular multipliers can be 

implemented as bit-serial, digit-serial or parallel multipliers.  Each modular multiplier 

representing the individual coefficient multiplication operates in parallel with all the others.  

Modular multipliers may also be required for the polynomial modulo operation performed at 

each step.

6.1.1.2 Element-serial/parallel architectures

Element-serial/parallel architectures process multiple coefficients of the multiplier 

operand at a time.  The coefficients of the multiplicand operand are processed in parallel just 

like the element-serial architecture.  The basic components of this architecture are also 

modular multipliers and modular adders.  The outputs of the modular multipliers can be 

added iteratively or with a tree of modular adders.  The utilization of a tree structure for 

summing provides greater benefits when the number of elements of the multiplier operand 

processed in parallel is large. 

6.1.2 Contributions

The major contribution [38] in this section is a parallel multiply-accumulate 

architecture that utilizes merged arithmetic to combine subfield and extension field 
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reductions.  The multiply-accumulate scheme delays the final carry-propagate additions until 

the partial products from the multiplication, the subfield reduction and the extension field 

reduction have been fully accumulated.  This enables the cost of a single carry-propagate 

addition to be amortized over several multiply operations. The design requires a large area for 

practical implementation, but exploits massive parallelism at the subfield and extension field 

levels.  In addition, the design can be pipelined to further improve the throughput.

  As a trade-off between area and delay, a modified version of Bertoni et. al’s [6] 

generalized digit/element-based GF(pm) architecture that utilizes merged arithmetic is also 

implemented. This modified architecture provides an improvement over Bertoni et. al’s 

scheme.

6.1.2.1 Merged-arithmetic GF(pm) multiplier architecture

This section presents a multiply-accumulate architecture for multipliers over a 

special class of Type II Optimal Extension Fields (OEFs) discussed in the previous section.  

The Type II OEF multiplier presented uses merged arithmetic to combine multiple multiply 

and addition operations together.  Unlike previous work, the multiplier also performs subfield 

and extension field reduction in parallel for this class of finite fields.  Though the multiplier 

design requires large silicon area for practical implementation, it obviates the need for 

performing subfield and extension field reduction separately, thereby reducing the overall 

delay.
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Hardware implementation of prime field reduction

The elements of a prime field GF(p), can be realized as the integers modulo the 

prime p.  The advantages of some special classes of prime numbers for efficient 

modular arithmetic have been noted by Crandall [11]. Pseudo-Mersenne primes are one 

such class of primes.  A pseudo-Mersenne prime of the form p = 2n – c for some 

integers n and c with log2c < n/2 simplifies the modular reduction operation.  This 

simplification is possible because of the congruence 2n ≡ c (mod p), which allows for 2n

to be interchanged with the “smaller” c.    The same concept can also be applied to 

high-speed parallel multipliers.  Parallel multipliers using Dadda [12] or Wallace [48] 

trees perform multiplication in three stages.   The first stage generates the bit product 

matrix using an array of AND gates, the next stage compresses the array down to sum 

and carry vectors using half-adders and full-adders. The half- and full-adders only 

propagate carries at most one bit position.  The final stage uses a carry-propagate adder 

(CPA) to add the sum and carry vectors.  Figure 6.2 shows a dot diagram for an 8x8-bit 

Wallace tree.    

Figure 6.2: Dot diagram for 8x8 Wallace tree.

bit product 
matrix

compression
stages

full-adder

half-adder
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The output of the Wallace [48] tree can be reduced modulo a pseudo-Mersenne 

prime without first adding the sum and carry vectors with a CPA.  Figure 6.3a shows 

the first step to perform this modular reduction. The bits in the most significant half of 

the output of the Wallace tree are ANDed with the bits of c to form a new bit product 

array.  Each bit in the left half becomes a new row of gray dots.  The new bits are 

represented by the diagonal gray dots in Figure 6.3a.  This bit-product array is also 

reduced with a Dadda/Wallace tree.  Note that the height of this bit product array is 2c

+ 2, and is much smaller than the nxn multiplication array if c << n.

Figure 6.3a: Dot diagram for modular reduction.

The bits in the left half of the output of the second Wallace tree form a third array 

which is compressed to two rows of output bits as shown in Figure 6.3b. The final two 

rows are then summed with a CPA.  Provided log2c << n/2, the final result will be at 

most n+2 bits. 
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Figure 6.3b: Dot diagram for modular reduction.

Hardware implementation of extension field reduction

For extension field reduction, emphasis is placed on a special family of Type II OEFs in 

this work.   This special class of Type II OEF is the Galois field GF(pm) such that:

1. p = 2n – c for some integers n and c > 0,  with (2log2c + log2m +1) ≤ n;  and

2. an irreducible polynomial f(z) = zm – 2  exists in  Fp[z].

Most Type II OEFs already satisfy the extra requirement of this special class i.e. log2c << 

n/2. For this special class of Type II OEF, a parallel multiplier scheme that uses the concept 

of merged arithmetic is presented.  Merged arithmetic was proposed by Swartzlander [43] to 

implement a combination of multiplication and addition functions together.  Figure 6.4 shows 

a parallel multiplier for GF(p3)  where p = 2n – c, (2log2c + log23 +1) ≤ n, and f(z) = zm-2. The 

polynomial product c(z) and its coefficients ct are computed as follows:
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Since the irreducible polynomial for Type II OEF is of the form f(z) = zm -2, then zm ≡ 2 mod 

f(z) and zm+i ≡ 2zi mod f(z) for m ≤ i < 2m-1.  The columns of bit-product arrays of degree m + 

i can be multiplied by 2, or shifted and included in the array column of degree i.  This is 

depicted in the second stage in Figure 6.4.  This yields an mxm matrix of nxn-bit product 

arrays. Using the concept of merged arithmetic, a column of m (nxn)-bit arrays can be 

compressed together in approximately log1.5 (mn) stages with a Wallace [48] or Dadda [12] 

tree. This is faster than if the column compression for each array was performed separately. 

The output of the compression tree for each column will be at most 2n + log2m + 1 bits wide.

Figure 6.4: Parallel multiplier scheme for GF(p3), p = 2n–c, log2c <<n, and f(z) = zm – 2.

Provided (2log2c + log2m +1) ≤ n, using a similar principle as presented for GF(p) in the 

previous section, at most two rounds of reduction with the bits of c will suffice to reduce each 

column to at most n + 2 bits. 

The gate complexity of each column:

•  mn2 AND gates
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compression
stages

modular 
reduction

stages



53

•  mn2 – 2(2n+lg2m)  full-adders

•  2(lg2c)(n+lg2m)     AND gates

• [2(lg2c)(n+lg2m)+2n] – [2(lg2c+ lg2m+n)] full-adders

•  2(lg2c)( lg2c+lg2m)   AND gates

•  [2(lg2c)( lg2c+lg2m) +2n] – [2(n+2)] full-adders

•  1  carry-propagate adder

The total area for all the m columns is m times the gate complexity of one column.  The total 

delay in terms of AND gate delay (TA) and full-adder delay (TFA): 

•  1   TA (bit array generation)

•  lg1.5mn TFA (compression of the mn rows)

•  1  TA (bit array generation)

•  lg1.5(2lg2c +2) TFA  ( subfield reduction)

•  1 TA  (bit array generation)

•  lg1.5(2lg2c +2)  TFA (subfield reduction)

•  1 carry-propagate adder delay

 The gate complexity and delay of the multiplier can be further reduced.  A carry-delayed 

adder (CDA) [31] is utilized to minimize the height of the reduction trees in the modular 

reduction rounds. The CDA is a two-level carry save adder.  The carry-delayed adder 

produces a pair of integers (D, T) called a carry-delayed number, using the following set of 

equations: 
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In the first round, each column of mn rows is compressed to two rows.  An extra half-adder 

stage is introduced in the most-significant half of th-e output of the Wallace/Dadda tree to 

guarantee the property of the carry-delayed adder that Di+1 ∧ Ti = 0.  The bits of D and T now 

represent the most-significant half of the output of the first round.  The bits of both T and D

are ANDed with the bits of c.  The appropriately shifted outputs of the AND gates are then 

“ORed” together.  This approach reduces the height of the modular reduction rounds by half.  

Figure 6.5 shows the transformation of the output of the carry-delayed adder for a field 

GF(pm) where p = 28 – c and log2c ≤ 3.

Figure 6.5: Transformation of the CDA output.

The gate complexity of the scheme using the CDA after the compression rounds involves 

extra half-adders and OR gates.  However, the heights of the reduction trees for the modular 

  bits of ‘c’ 
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reduction rounds are reduced by half and this reduces the number of full-adders needed for 

the Wallace/Dadda trees in those stages.

Implementation

To obtain area and delay estimates, a specialized C++ program was developed that 

generates low-level structural Verilog models for GF(pm) multipliers for any given value of  p

and m, where p is a pseudo-Mersenne prime. The GF(pm) multipliers use a fast carry-

lookahead adder for the final addition. The designs were synthesized using the Synopsys 

suite of tools on a 0.18µ standard cell library.  The C++ program was used to generate 

Verilog models of multipliers for three of the special OEFs in Table 5.1.  The fields are 

selected to have field orders large enough for current security needs and field parameters not 

easily susceptible to the generalized GHS attack [13].  The delay and area estimates are 

presented in Table 6.1 and 6.2. For easy comparison between the two schemes presented, the 

percentage decrease in delay and area provided by the carry-delayed adder (CDA) designs is 

also shown. The CDA versions have a smaller area because the reduction in the heights of the 

modular reduction trees more than compensates for the extra half-adder stage and OR gates.  

The number of gate delays in the critical path is a function of the logarithm of the parameters 

(n, m and c), and the extent of the benefit of the CDA version depends on the parameters of 

the GF(pm) multiplier.

Table 6.1: Delay estimates for GF(pm) multipliers.

Unpipelined delay (nanoseconds)
Field parameters No CDA CDA % decrease

GF(213 – 1)13 38.98 36.29 6.9%
GF(218– 11)13 56.55 55.34 2.1%
GF(257– 13)3 52.81 42.03 20.41%
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Table 6.2: Area estimates for GF(pm) multipliers. 

Area (equivalent gates)

Field parameters
No CDA

(x103)
CDA
(x103)

% 
decrease

GF(213 – 1)13 152.73 136.03 10.9%
GF(218– 11)13 306.75 271.33 11.6%
GF(257– 13)3 155.18 120.85 22.1%

Comparison to related work

Much of the prior work relating to OEFs has focused on software implementation [3] [16]. 

Großschädl et al. [16] explored the use of multiply-accumulate instructions to support OEF 

arithmetic.  

Bertoni et. al. [6] presented a generalized digit/element GF(pm) multiplier architecture.  

The basic idea of the scheme involves processing all the coefficients of the multiplicand b(z) 

in parallel, while processing D elements of the coefficients of the multiplier operand a(z) in 

each step. The extension field reduction is also performed in each step. This scheme is a 

generalization of the serial/parallel GF(2 m) architecture proposed by Song and Parhi [42]. 

The architecture requires approximately m/D cycles to complete one GF(pm) multiplication.  

The C++ program was customized to generate structural Verilog models for the architectures 

presented in [6] and [42] based on the optimal irreducible polynomials.  In addition, a 

modified version of the Bertoni et. al’s [6] scheme that incorporates merged arithmetic was 

also developed.  In this modified scheme, the boundaries between discrete modular multiplies 

and modular additions are dissolved.  Table 6.3 compares the merged scheme with the 

architectures proposed in [6] and [42].  The percentage reduction in area and delay provided 

by the merged arithmetic version over the architecture in [6] is also presented.  The GF(2173) 
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and GF(2239) fields are chosen because they have about the same field orders with the 

parameters used for the GF(pm) fields.

Table 6.3: Comparison with Song/Parhi and Bertoni et al.

 Delay (nanoseconds)

GF(2173) GF(213 -1)13

D [42] [6] Merged % decr.
1 1.35 30.89 22.88 25.93%
2 3.05 42.08 26.17 37.81%
4 4.14 55.16 30.69 44.36%

Area (equivalent gates)

GF(2173) GF(213 -1)13

D [42] [6] Merged % decr.
1 311 20020 20381 -1.80%
2 2192 40538 35673 12.00%
4 3550 86283 66831 22.54%

 Delay (nanoseconds)

GF(2239) GF(218 -11)13

D [42] [6] Merged % decr.
1 1.35 49.51 37.62 24.02%
2 2.91 61.46 42.65 30.61%
4 3.63 80.41 46.43 42.26%

Area (equivalent gates)

GF(2239) GF(218 -11)13

D [42] [6] Merged % decr.
1 429 45937 48699 -6.01%
2 1731 93254 73291 21.41%
4 5339 189423 129688 31.54%

Note that the case where the digit size D = 1 is equivalent to a bit-serial architecture.  For D > 

1, the coefficient elements are summed with a tree of modular adders as in [6].  As the 

digit/element size is increased, the merged scheme provides greater improvement over 
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Bertoni’s [6] scheme as several modular multipliers and modular adders are merged together, 

avoiding multiple carry-propagate adder delays.  Compared to the parallel multiply-

accumulate scheme, these digit/element schemes have smaller areas but require more than 

one cycle to complete a single multiplication. The multiplier GF(2m) in [42] provides a very 

low cycle time since the subfield operations are basically XORs.  Bit-serial multipliers for the 

prime field GF(p) are made up of carry-save adders. The bit-serial schemes require a lot more 

cycles to complete a modular multiplication. As noted in [6] fields of characteristic 2 are 

difficult to surpass if both area and time performance measures are considered. 

6.2 GF(2m) architectures

GF(2m) architectures can be broadly classified into bit-serial and bit-parallel 

architectures.  The bit-serial architectures require several clock cycles to complete one GF(2m)

multiplication but have a low area overhead.  On the other hand, the bit-parallel architectures 

a low delay but high area overhead. Mastrovito multipliers [25][26] are an example of bit-

parallel architectures.

6.2.1 Related work

A parallel polynomial basis GF(2m) multiplier was first suggested by Bartee and 

Schneider [5].    Another multiplier scheme was proposed by Mastrovito [25][26] for 

polynomial basis multiplication.  The Mastrovito design formulates the polynomial 

multiplication as a set of matrix operations. The gate complexity of the Mastrovito multiplier 

depends on the choice of the irreducible polynomial used and is suited to special classes of 

reduction polynomials. The multiplier schemes by Reyhani-Masoleh and Hasan [34] are very 
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similar to the Mastrovito scheme.  The multiplier design presented by Rodriguez-Henriquez 

and Koc [36] are optimized for a special class of irreducible polynomial.

6.2.1.1 Bit-serial architectures

Bit-serial GF(2m) multipliers implement Algorithm 5.3  in hardware. The figure 

below depicts a Most Significant Bit first (MSB) multiplier for GF(25)

Figure 6.6: Bit-serial multiplier for GF(25). 

6.2.1.2 Bit-parallel architectures

Most bit-parallel GF(pm) multiplier architectures are tailored to specific irreducible 

polynomials, particularly certain trinomials and pentanomials.  Mastrovito [25] multipliers 

are an example of such multiplier architectures.  Bit-parallel multipliers have a low delay but 
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a high area overhead and are inflexible since they can only be utilized for a specific 

irreducible polynomial.

6.2.2 Contributions

The main contribution [39] in this section is a parallel GF(2m) multiply-accumulate 

architecture.   In application areas where repeated finite field multiplications and additions 

are performed, the addition and multiplication operations can be combined together using a 

multiply-accumulate (MAC) unit. The vector MAC can be utilized in an environment where 

repeated GF(2m) multiplications that have no dependencies need to be performed. Instead of 

serializing these individual operations, they can be performed in pairs. 

6.2.2.1 Parallel scalar and vector polynomial multiplier architecture

 This section presents a vector multiply-accumulate (MAC) architecture over the binary 

extension field GF(2m) capable of supporting multiple precisions simultaneously. The vector 

MAC can perform one GF(2m) or two GF(2(m/2)) multiply-accumulates using essentially the 

same hardware as a scalar GF(2m) Mastrovito-type multiplier. The vector capability is 

enabled by inserting mode-dependent masks in the bit product and reduction arrays of the 

GF(2m) MAC. This architecture leverages an existing scalar structure for performing multiple 

operations in vector mode. Essentially the same hardware is shared between scalar and vector 

modes. Although there is a slight delay and area penalty for the mode-dependent masking, 

this overhead is relatively insignificant. Both the stand-alone scalar GF(2m) MAC and the 

vector GF(2m) MAC were implemented in structural Verilog and synthesized on a 0.18 

micron standard cell library to compare the area and delay for different values of m. 
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Figure 6.7 shows a parallel GF(28) MAC scheme in Dadda[12] dot notation. The ellipses 

represent XOR gates.  In Figure 6.7, the gray dots represent the bits of f(z) and the black dots 

the partial product bits.  Let the degree of f(z)  be k.  In the example in Fig. 6.7, m = 8 and k = 

4, so   f(z) = f4z
4 + f3z

3+ f2z
2 + f1z + 1,  f4, f 3,  f2, f 1  ∈ {0, 1}. The irreducible polynomial is  p(z) 

= z8 + f(z) = z8 + f4z
4 + f3z

3+ f2z
2 + f1z + 1. For example, p(z) = z8 + z4 + z3+ z + 1 is a 

generating polynomial for GF(28).  The bit product matrix is generated by an array of AND 

gates.  In the first compression round, bits in the same column are XORed together using a 

tree of XOR gates.  In the next round, output bits representing a degree greater than or equal 

to m are ANDed with bits of f(z), and shifted accordingly to form a new bit product array.  

Each output bit from the first round of degree greater than or equal to m becomes a new row 

of input bits in the next round. This is based on the congruence zm+i ≡ zi ·f(z) (mod p(z)) for m

≤ i ≤ 2m – 2.  Similarly, the next round involves column-wise XORs of the bits in the array.  

The total delay in terms of AND gate delay (TA) and XOR gate delay (TX): 

•  TA (to generate the bit product array for a(z)·b(z))

•  log(m + 1) TX  (to reduce m + 1 rows to a single row)

• TA  ( 1st  bit product array of f(z) – gray dots)

• log(k + 2) TX (to reduce the (k+2) rows to a single row)

• TA (2nd bit product array of f(z) – gray dots)

• logk TX (to reduce the new k rows to a single row)
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Figure 6.7: GF(28) parallel multiply-accumulate architecture.

The gate count:

•  m2 AND gates (bit product array for MUL-ACC)

• (m2 + m) – (2m – 1) XOR gates (MUL-ACC compression round)

• (k + 1)·(m – 1) AND gates (to generate the 1st bit product array for POLY-REDC)

•  m + (k + 1)·(m – 1) – ( k + m - 1) = k·m -2k + m XOR gates (POLY-REDC 

compression round)

•  (k + 1)· (k - 1) AND gates (to generate the 2nd bit product array for POLY-REDC)

•  m + (k + 1)· (k - 1) – m = (k + 1)· (k - 1) XOR gates (POLY-REDC compression 

round)

+

a(z)·b(z)

c(z)

c(z) + a(z)·b(z)

MUL-ACC
log(m +1)Tx

POLY-REDC
log(k +2)Tx

POLY-REDC
log(k)Tx
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Vector GF(2m) Multiply-Accumulate Architecture

A MAC unit for GF(2m) can be modified to support two GF(2m/2) MAC operations in 

vector mode. Figure 6.8 shows a shared segmentation [44] scheme to support two polynomial 

multiplications in parallel.  The white regions in Figure 6.8 are masked (zero insert) 

depending upon the operating mode.  The dark regions are not replaced with ‘zeroes’.  There 

is an extra area and delay overhead for masking and multiplexing the mode-dependent bits in 

the product array generation and in the XOR reduction trees. Figure 6.9 provides a detailed 

dot diagram for a GF(28)/GF(24) MAC scheme.

      Scalar mode                         Vector mode

Figure 6.8: High-level view of the vector multiply-accumulate unit.
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Figure 6.9: Dot diagram for a GF(28)/GF(24)  multiply-accumulate unit.

mask (zero insert) for vector mode

mask (zero insert) for scalar mode
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Implementation

In practice, for irreducible polynomials zm + f(z), the degree of f(z) is usually much 

smaller than m/2.  Let k be the degree of f(z), empirical evidence suggests that the minimum 

possible value of k << m/2. Seroussi [41] tabulated low-weight binary irreducible 

polynomials over GF(2m) for 2 ≤ m ≤ 10,000. All the irreducible polynomials were either 

trinomials (zm + zk +1), m > k > 0, or pentanomials (zm + zk3 + zk2 + zk1 +1), m > k3 > k2 > k1 > 

0. The values were tabulated based on the smallest values of k and k3 possible for the 

trinomials and pentanomials respectively.  The highest tabulated value of k3 for irreducible 

pentanomials was 56 for m = 9760. Thus, the MAC designs can be optimized for irreducible 

pentanomials where the value of k is significantly smaller than m. When higher-weight 

polynomials other than trinomials and pentanomials are considered, the value of k is even 

smaller.  A Pari/GP[33] program was developed to find irreducible polynomials p(z) = zm + 

f(z) with the minimum possible degree of f(z) for 2 ≤m ≤256. Unlike previous work, higher-

weight polynomials other than trinomials and pentanomials were also considered.  Table 6.4

gives the minimum values of k for irreducible polynomials p(z) = zi + f(z), degree(f(z)) = k. In 

addition, Table 6.4 also shows the gate and transistor counts for the different values of m

using the minimum value of k.  The analysis assumes AND gates implemented with 6 

transistors, and XOR gates implemented with 12 transistors.  Note that this is a conservative 

estimate as an XOR gate can be implemented with only 4 transistors [10].  Table 6.5 shows 

the estimated gate delays for MACs with different bit-lengths.  TA denotes the delay of an 

AND gate and TX denotes the delay of an XOR gate.  



66

Table 6.4: Area estimates for scalar GF(2m) multiply-accumulate units.

m 16 32 64 128 256

k 5 7 8 10 11

AND gates 370 1320 4648 17590 68440

XOR gates 351 1283 4579 17456 68176
AND 
transitors 2220 7920 27888 105540 410640
XOR 
transistors 4212 15396 54948 209472 818112
Total 
transistors 6432 23316 82836 315012 1228752

Table 6.5: Delay estimates for scalar GF(2m) multiply-accumulate units.

m 16 32 64 128 256

k 5 7 8 10 11

(AND) TA 3 3 3 3 3

(XOR) TX 11 13 14 15 17

To obtain actual area and delay estimates, a specialized C++ program was developed to 

generate structural Verilog models for both the scalar and vector GF(2m) MAC designs for 

any given value of m and k. The C++ program was used to generate Verilog models of scalar 

and  vector GF(2m) MAC designs for m  = 16, 32 , 64, 128, and  256 bits .  The values of k

used for the implementation are the same as those of Table 6.4.  The designs were 

synthesized on a 0.18 micron CMOS standard cell library.  The normalized delay and area 

estimates are presented in Figure. 6.10 and 6.11 respectively.  The “vectorized” MAC designs 

have a delay and area penalty because of the extra delay for the mode-dependent masking and 
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multiplexing.  The extra overhead highly depends on the parameters m and k for the MAC 

designs.  The overhead cost of the mode-dependent masking increases with higher values of k.

Normalized Delay vs. Bit Size
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Figure 6.10: Normalized delay estimates for the scalar and vector GF(2m) MAC architectures.
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Figure 6.11: Normalized area estimates for the scalar and vector GF(2m) MAC architectures.

Comparison to Related Work and Conclusion

The gate complexity and delay of the MAC designs presented in this work depend on the 

choice of the irreducible polynomial.   In contrast to standard Mastrovito-type finite field 

multipliers, the MAC scheme presented here does not require the reduction polynomial to be 
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fixed. A GF(2m) MAC design with design parameters (m, k) can be used for arithmetic in any 

extension field GF(2i), i ≤ m, provided that k is chosen such that there exists one or more 

reduction polynomials of  the form p(z) = zi + f(z) where degree(f(z)) ≤ k   for all i ≤ m.  The 

data from Seroussi’s table [41] suggests that the minimum possible values of k are indeed 

very small for pentanomials. It should be noted that the flexibility of the GF(2m) MAC design 

comes at an extra cost to the gate complexity and delay compared to conventional 

Mastrovito-type GF(2m) multipliers.  
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Chapter 7

Conclusion

In this dissertation, innovations in algorithms and architectures for modular arithmetic have 

been presented:

• a parallel extension of Montgomery’s modular multiplication algorithm

• an merged-arithmetic algorithm for  a special class of  Optimal Extension Fields

• an algorithm for scalar and vector mode GF(2m) multiply-accumulate operation

7.1   GF(p) multiplier architectures

Chapter 4 presents the design space exploration for the implementation of the parallel 

Montgomery modular algorithm. In the chapter, four designs are introduced which trade-off 

speed and area to varying degrees.  A proof of concept implementation and characterization 

is also presented.

7.2   GF(2m) and  GF(pm) polynomial multiplier architectures 

Chapter 5 presents a merged-arithmetic multiply-accumulate algorithm for a special 

family of Optimal Extension Fields (OEFs).  The architecture for implementing the merged-

arithmetic algorithm is presented in Chapter 6.  In Chapter 5, an algorithm for adaptable for 

performing scalar and vector GF(2m) multiply-accumulate operations is presented.  The 
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hardware scheme for implementing the scalar and vector-mode GF(2m) multiply-accumulate 

operations is presented in Chapter 6.
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