
Copyright

by

Moboluwaji Olusegun Sanu

2005

The Dissertation Committee for Moboluwaji Olusegun Sanu
certifies that this is the approved version of the following dissertation:

Parallel Multipliers for Modular Arithmetic

Committee:

Earl E. Swartzlander, Jr., Supervisor

Jacob A. Abraham

Mircea D. Driga

Jose F. Voloch

Baxter F. Womack

Parallel Multipliers for Modular Arithmetic

by

Moboluwaji Olusegun Sanu, B.S.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2005

This dissertation is dedicated to the Almighty God.

v

Acknowledgments

“But as for me, this secret is not revealed to me for any wisdom that I have more than

any living” (Daniel 2:30a) – all the glory be to God for His infinite wisdom and knowledge.

I would like to thank my supervisor, Prof. Earl E. Swartzlander, Jr., for his constant

support. He guided me with keen insight and kind understanding during the course of my

research. His unassuming attitude in spite of his immense stature in his field of expertise has

left an indelible impression on me. I would also like to thank Prof. Jacob Abraham, Mircea

Driga, Jose Voloch, and Baxter Womack for finding time to serve on my dissertation

committee and providing valuable suggestions to improve this dissertation. I also

acknowledge all the support and guidance of Prof. Craig Chase during the course of my

graduate study.

Appreciation also goes to the staff of the Graduate Office – Melanie Gulick and

Michelle Belisle for all their help. I’m grateful to my family - parents, sister, both of my

brothers and the bride of my youth - for all their encouragement and support.

vi

Parallel Multipliers for Modular Arithmetic

Publication No. _______________________

Moboluwaji Olusegun Sanu, Ph.D.

The University of Texas at Austin, 2005

Supervisor: Earl E. Swartzlander, Jr.

Modular multiplication is a core operation in virtually all public-key cryptosystems

in use today. In this research, parallel, high-speed designs for modular multiplication are

presented. These high speed designs take advantage of the transistor bounty provided by

Moore’s law and the continuously diminishing average cost of a transistor. In addition,

advances in Computer-Aided Design (CAD) synthesis are leveraged to explore designs that

are otherwise difficult to manually layout. Novel parallel algorithms and high-speed

multipliers for prime and extension Galois fields are presented in this work. A tool is

developed that automatically generates Hardware Description Language (HDL) code for the

various designs. Simulation is used to evaluate the area and delay complexities of all the

designs.

vii

Table of Contents

Acknowledgments ..v

Abstract..vi

List of Tables ..x

List of Figures xi

Chapter 1. Introduction...1

1.1 Motivation ...1

1.2 Mathematical background and notation...6

1.3 Contribution and dissertation overview...8

Chapter 2. Conventional Multiplication Algorithms and Architectures10

2.1 Bit-serial multipliers ..11

2.2 Serial-parallel multipliers ..11

2.3 Parallel multipliers...12

Chapter 3. Modular Multiplication Algorithms..13

3.1 Related work..13

3.1.1 Classical modular multiplication algorithm ..14

3.1.2 Montgomery algorithm..15

3.1.3 Barrett’s algorithm ..17

3.1.4 Algorithms for special moduli...17

3.2 Contributions ...18

3.2.1 Generalization of Montgomery multiplication..18

3.2.2 Parallel Montgomery multiplication algorithm...19

viii

Chapter 4. Modular Multiplier Architectures – GF(p) ..21

4.1 Related work..21

4.1.1 Bit-serial architectures...21

4.1.2 High-radix architectures ..21

4.2 Contributions ...22

4.2.1 Parallel Montgomery multipliers...22

Chapter 5. Polynomial Modular Multiplication Algorithms ..34

5.1 GF(pm) polynomial arithmetic ...34

5.1.1 Related work..36

5.1.1.1 Element-serial algorithms ..36

5.1.1.2 Element-serial/parallel algorithms ...37

5.1.2 Contributions...37

5.1.2.1 Merged-arithmetic GF(pm) multiplication algorithm ...37

5.2 GF(2m) polynomial arithmetic ...40

5.2.1 Related work..40

5.2.1.1 Bit-serial algorithms...40

5.2.1.2 Bit-parallel algorithms ...41

5.2.2 Contributions..42

5.2.2.1 Parallel scalar and vector polynomial multiplication..42

Chapter 6. Polynomial Modular Multiplier Architectures ...44

6.1 GF(pm) architectures ..44

6.1.1 Related work..45

ix

6.1.1.1 Element-serial architectures...47

6.1.1.2 Element-serial/parallel architectures..47

6.1.2 Contributions...47

6.1.2.1 Merged-arithmetic GF(pm) multiplier architecture...48

6.2 GF(2m) architectures ..58

6.2.1 Related work..58

6.2.1.1 Bit-serial architectures ...59

6.2.1.2 Bit-parallel architectures ..59

6.2.2 Contributions...60

6.2.2.1 Scalar and vector polynomial multiplier architecture ..60

Chapter 7. Conclusion ...69

7.1 GF(p) multiplier architectures ...69

7.2 GF(2m) and GF(pm) polynomial multiplier architectures ..69

Bibliography ...71

Vita.................. ..77

x

List of Tables

4.1 Comparison and evaluation of parallel Montgomery multipliers31

5.1 Examples of the special OEFs ..39

6.1 Delay estimates for GF(pm) multipliers...55

6.2 Area estimates for GF(pm) multipliers ..56

6.3 Comparison with Song/Parhi and Bertoni et al...57

6.4 Area estimates for scalar GF(2m) multiply-accumulate units..66

6.5 Delay estimates for scalar GF(2m) multiply-accumulate units..66

xi

List of Figures

1.1 Integrated circuit complexity ..3

1.2 Average transistor price by year ...4

1.3 RSA and ECC key length by year...5

2.1 Carry-Save school-book multiplication algorithm..11

3.1 Classical modular multiplication algorithm..14

3.2 Montgomery modular multiplication algorithm..16

3.3 Barrett’s modular reduction algorithm..17

3.4 Modular reduction algorithm for special moduli ..18

4.1 Legend for the symbols...24

4.2 Reduction stages of the generalized parallel Montgomery multiplier24

4.3 Implementation I 4x4-bit PMM ...28

4.4 Implementation II 4x4-bit PMM..28

4.5 Implementation III 4x4-bit PMM ..29

4.6 Implementation IV 4x4-bit PMM ..29

4.7 Normalized area and delay estimates for the parallel Montgomery multipliers32

5.1 Element-serial GF(pm) multiplication algorithm...36

5.2 Element-serial/parallel GF(pm) multiplication algorithm..37

5.3 Bit-serial GF(2m) multiplication algorithm ...41

6.1 The three classes of GF(pm) multiplier architecture..45

6.2 Dot diagram for 8x8 Wallace tree...49

6.3 Dot diagram for modular reduction ..50

xii

6.4 Parallel multiplier scheme for GF(p3), p = 2n–c, log2c <<n, and f(z) = zm – 252

6.5 Transformation of the CDA output...54

6.6 Bit-serial multiplier for GF(25) ...59

6.7 GF(28) parallel multiply-accumulate architecture...62

6.8 High- level view of the vector multiply-accumulate unit ..63

6.9 Dot diagram for a GF(28)/GF(24) multiply-accumulate unit..64

6.10 Normalized delay estimates for the scalar and vector GF(2m) MAC architectures...........67

6.11 Normalized area estimates for the scalar and vector GF(2m) MAC architectures.............67

1

Chapter 1

Introduction

Modular multiplication is a core operation in almost all public-key cryptosystems in

use today. In this research parallel, high-speed designs for modular multiplication are

presented. This research takes advantage of the transistor bounty provided by Moore’s law

and the continuously diminishing average cost of a transistor. In addition, advances in

automatic synthesis are leveraged to explore designs that are otherwise difficult to manually

layout.

Given the large body of knowledge concentrating on cryptography and its

implementation, the scope of this work is restricted to public key cryptosystems and parallel

modular multiplier designs. Examples are provided to underscore the motivation for the

research problem. The next section concludes with the statement of the research problem.

1.1 Motivation

In 1976, Whitfield Diffie and Martin Hellman [14] introduced the concept of public-

key cryptography (PKC). PKC facilitates secure communication without the need for any

prior agreement on a shared secret key. The field of public-key cryptography has blossomed

into an array of algorithms, architectures and applications over the past three decades. The

popularity of e-commerce is due in a large part to PKC.

Two widely adopted public-key cryptosystems are the Rivest-Shamir-Addleman

(RSA) and Elliptic Curve Cryptography (ECC). Ronald Rivest, Adi Shamir and Leonard

2

Addleman [35] introduced the RSA scheme in 1978. ECC was proposed independently by

Neal Koblitz [22] and Victor Miller [27] around 1985. These cryptographic schemes are

based on the assumed hardness of some underlying mathematical problem. For the RSA,

there are sub-exponential time algorithms for solving the underlying problem, whereas for the

ECC, only fully-exponential time algorithms are yet known. Thus, ECC offers security

equivalent to RSA for much smaller key sizes. The security of a 160-bit ECC is comparable

to that of a 1024-bit RSA scheme [19]. There are no known polynomial-time algorithms for

solving the underlying mathematical problem in either the RSA or the ECC scheme.

On one hand, there is a growing demand for high-speed hardware implementation of

these cryptographic protocols, particularly in high-performance network routers and web

servers. On the other hand, there is a demand for low-complexity, low-power hardware

implementations as well. This is mainly in the resource-constrained smartcard environment.

This research does not address the requirements of the resource-constrained segment. The

focus of this research is the design of parallel multiplier schemes that can significantly

improve the performance of cryptographic protocols of the future. Figure 1.1 [30] shows the

trend for Moore’s law on the number of transistors that can fit on a chip.

3

Figure 1.1: Integrated circuit complexity [30].

The actual number of transistors on microprocessors has closely tracked Gordon Moore’s

1965 projection [29]. Figure 1.2 [30] shows the average price of a transistor from 1968 to

2002. The average price of a transistor has decreased markedly over the past four decades.

Increasing transistor budgets and decreasing average price per transistor opens up the

possibility for high-speed designs that were not technologically or economically feasible in

the past. Lenstra and Verheul [23] predicted cryptographic key sizes up to the year 2050.

Their projections are based on the assumptions that no new ground-breaking solutions will be

discovered to the underlying mathematical problems of the RSA and ECC schemes.

Recommended cryptographic key sizes change frequently since increased computing power

makes it easier to solve the underlying mathematical problems of these cryptosystems. Thus,

4

the recommended key size must always be large enough such that the computational

resources to solve the underlying mathematical problem are out of reach for practically

anyone. Figure 1.3 shows the expected key sizes for equivalent security for both the RSA

and ECC schemes up to the year 2010 [23]. Clearly, ECC seems more desirable than the

RSA going forward. In the near future, parallel modular multiplier schemes will be feasible

for operand sizes of up to 256 bits for ECC-based cryptosystems. Current operand sizes for

conventional parallel multipliers used in microprocessors are only between 32 and 64 bits.

Even with Moore’s law, parallel modular multiplier schemes for the RSA’s large operand

sizes may not be feasible because of interconnect delay and large fan-outs.

Figure 1.2: Average transistor price by year [30].

5

0

200

400

600

800

1000

1200

1400

1600

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

Year

K
ey

 le
n

gt
h

 in
 b

it
s

RSA key length

ECC key length

Figure 1.3: RSA and ECC key length by year [23].

Traditionally, research on high-speed modular multipliers has targeted the RSA with

its very large operand size. Thus, most of the previous approaches have been iterative, bit-

serial or digit-serial. Also, since ECC is traditionally used in resource-constrained

environments, most of the multipliers targeted to ECC have also been bit-serial to meet the

stringent area and power budgets of these devices. Recently, there has been a proposal to

move ECC into high performance web servers [50]. This opens a vista of opportunity for the

development of high-speed modular multipliers for ECC-sized operands which is the focus of

this research work. These high-speed multipliers will be the building blocks of future

hardware crypto-accelerators. In addition, ECC can utilize polynomial modular arithmetic.

Like integer modular arithmetic, most of the architectures that have been proposed for

polynomial modular arithmetic are not fully parallel. This research work also explores novel

6

schemes for parallel polynomial modular arithmetic. The following section gives a statement

of the research problem.

Research Problem

The primary goal of this research is to explore novel algorithms and architectures for

parallel integer and polynomial modular multipliers.

The major components of the research are:

• Exploration of novel parallel algorithms for modular multiplication

• Design of efficient hardware architectures based on the parallel algorithms

• Implementation and characterization of the hardware designs

1.2. Mathematical Background and Notation

Modular multiplication is simply the computation of the remainder of the product of

two numbers with respect to a modulus. More formally, the modular multiplication problem

is defined as the computation of R = A × B mod M given the integers A, B, M with 0 ≤ A, B <

M. For most cryptographic applications such as the RSA or ECC scheme, only the case of an

odd M is relevant. In the case where the modulus M is a prime, modular arithmetic is

primarily arithmetic in a prime Galois field GF(p). A number of definitions relating to

arithmetic in finite fields are presented below.

Definition 1.1: A ring (R, +, x) consists of a set R with two binary operations + (addition)

and x (multiplication) on the set R, satisfying the following conditions:

7

1. (R, +) is an abelian group with identity denoted 0. An abelian group is a group for which

the elements commute (i.e. A • B = B • A, for all elements A and B, where • is the group

operation).

 2. The operation x is associative. That is, a x (b x c) = (a x b) x c for all a, b, c ∈ R.

3. There is a multiplicative identity denoted 1, with 1≠ 0, such that 1 x a = a x 1 = a for all a

∈ R.

4. The operation x is distributive over +. That is, a x (b + c) = (a x b) + (a x c) and (b + c) x

a = (b x a) + (c x a) for all a, b, c ∈ R.

The ring is a commutative ring if a x b = b x a for all a, b ∈ R.

Definition 1.2: A field is a commutative ring in which all non-zero elements have

multiplicative inverses. This implies that there exists an element a-1 for all elements a ∈ R

apart from 0 for which a x a-1 = 1. The set of integers modulo a prime p with addition and

multiplication performed modulo p is a field.

Definition 1.3: A field that has a finite number of elements is called a finite field or Galois

field. The order of a finite field F is the number of elements in F (#F). For any prime p,

GF(p) is a prime Galois field with p elements. For every prime power pm, there exists a

unique finite field of order pm. This Galois field is denoted by the prime extension field

GF(pm). The case where the prime p = 2 is the binary extension field GF(2m).

Definition 1.4: Polynomial basis – the elements of the Galois field GF(pm) can be represented

as polynomials of the form: a(z) = am-1z
m-1 + + a2z

2 + a1z + a0 . The element ai is the

8

coefficient of zi. The largest integer k for which ak ≠ 0 is called the degree of a(z), denoted

deg(a(z)). ak is called the leading coefficient of a(z).

1.3 Contribution and Dissertation Overview

In this dissertation novel algorithms and architectures for integer and polynomial

basis parallel modular multipliers are presented. The major contributions of the research are:

• Novel parallel algorithms for integer and polynomial modular multiplication

• Design of efficient hardware architectures based on the parallel algorithms

• Implementation, quantitative analysis and characterization of the parallel hardware

designs

The organization of this dissertation is as follows.

In chapter 2, a background on conventional (non-modular) multiplication algorithms

and architectures are presented. This chapter discusses the algorithms for serial, serial-

parallel and fully parallel multiplication. In addition, the hardware structures to implement

these algorithms are also presented.

In chapter 3, a number of modular multiplication algorithms that have been proposed

in the literature are reviewed. The chapter concludes with a presentation of a novel parallel

modular algorithm introduced in this dissertation.

In chapter 4, a survey of existing architectures for modular multiplication is

presented. In addition, a new parallel modular multiplier is also presented. Four variants of

this architecture are discussed with emphasis on a trade-off between speed and area.

9

In chapter 5, GF(pm) and GF(2m) polynomial modular arithmetic is introduced in

detail. Existing algorithms for performing polynomial modular arithmetic are presented

along with new algorithms introduced in this dissertation.

In chapter 6, novel and previously proposed hardware architectures for polynomial

modular arithmetic are discussed.

The dissertation is concluded in chapter 7.

10

Chapter 2

Conventional Multiplication Algorithms and Architectures

Let a and b be two n-digit numbers expressed in radix r as:

∑
∑
−

=
−−

−

=
−−

==

==
1

0
021

1

0
021

)...(

)...(

n

i

i
inn

n

i

i
inn

rbbbbb

raaaaa

where the digits of a and b are in the range [0, r-1]. In general r can be any positive number.

For computer implementations, r is often selected to be a power of 2. The school-book

algorithm for multiplying a and b produces the partial products by multiplying each digit of

the multiplier operand (bi) by the entire number representation of the multiplicand (a). Let tij

denote the (carry, sum) pair produced from the product of ai and bj. For instance, in radix 10,

when ai = 6 and bj = 4, then tij = (2, 4). The carry is ai·bj div r and the sum is ai·bj mod r. The

partial products are typically arranged thus:

a3 a2 a1 a0

x b3 b2 b1 b0

t03 t02 t01 t00

 t13 t12 t11 t10

 t23 t22 t21 t20

 t33 t32 t31 t30

t7 t6 t5 t4 t3 t2 t1 t0

The last row is the summation of all the partial products – a 2n-digit number. The sequence

of operations involves a series of digit multiplies and adds. The school-book algorithm using

carry-save representation is presented below:

11

Figure 2.1: Carry-Save school-book multiplication algorithm

The standard multiplication algorithm can be implemented in hardware with varying degrees

of parallelism - a serial, parallel or hybrid serial-parallel architecture.

2.1 Bit-serial multipliers

Bit-serial multipliers are useful when area overhead is of concern, and speed is not of

primary importance. In bit-serial designs, both operands of the multiplication operation are

processed serially. The basic building blocks of a bit-serial multiplier are a 1-bit multiplier

which can be implemented with an AND gate, and a bit accumulator. The inputs are fed into

the multiplier serially and the output is also transmitted in a serial fashion.

2.2 Serial-parallel multipliers

In this architecture, one of the operands is processed in parallel while the other is

processed serially. The basic components are AND gates for generating the partial products

Algorithm 2.1: Carry-Save school-book multiplication algorithm

Inputs: A, B, Output: R = (A·B)

Initialization: tij = 0 for 0 ≤ i <2n

For i = 0 to n-1 do

C = 0;

For j = 0 to n-1 do

(C, S) = tij + ai·bj. + C

ti+j = S

ti+n = S

output: (t2n-1 t2n-1 ... t0)

12

and carry-save adders. The architecture implements the inner loop of Algorithm 2.1 in

parallel. In each iteration, a sum and carry vector pair is produced, which is added to the next

set of partial products. In this architecture, the multiplier inputs are fed in serially and the

final output is available in parallel after a number of cycles.

2.3 Parallel multipliers

Fully-parallel multiplier architectures process both operands in parallel. The

components of this multiplier scheme are an array of AND gates and a tree of parallel

counters. The partial products are compressed in parallel to a pair of sum and carry vectors

in logarithmic time. A final fast carry-propagate adder is then used to produce the final

result. Parallel multipliers require a large area for implementation but have a very low delay.

13

Chapter 3

Modular Multiplication Algorithms

Basically, the objective of an n-bit modular multiplication is to take two n-bit

numbers A and B and derive a result A·B mod M that is at most n-bits as well. This is

achieved by subtracting a multiple of the modulus M from A·B such that the result is n-bits

wide and also less than M. This differs from conventional multiplication where the product

of two n-bit numbers will be at most 2n bits wide. For modular multiplication, the product of

two n-bit numbers modulo another n-bit number yields a result that is at most n-bits wide.

3.1. Related Work

A number of algorithms have also been proposed in the literature for modular

multiplication. Some of these algorithms include the Brickell [9] and Montgomery [28]

algorithms. For some of the algorithms, computation proceeds from the least significant digit

to the most significant digit. One example of this approach is the Montgomery algorithm.

The advantage of this approach in hardware implementations is the fact that modular

correction bits and carry signals propagate in the same direction. There are also some

algorithms in the literature where the computation proceeds from the most significant digit

position to the least. Another approach is based on lookup tables [49]. The effectiveness of

this approach depends on the ability to minimize the size of the lookup tables required.

14

Some of the algorithms that have been proposed only work for certain types of

modulus while others are generally applicable to any modulus. The classical modular

multiplication algorithm and Barrett’s algorithm work for any modulus. However, the

Montgomery algorithm works only for odd moduli. This does not pose a problem, as most of

the application areas of modular arithmetic such as public-key cryptography require the use

of odd moduli.

3.1.1 Classical modular multiplication algorithm

The classical approach for performing modular multiplication involves computing the

product A·B, and then subtracting a multiple of the modulus M that makes the result to be less

than the modulus. An optimization of this approach interleaves the computation of the

product and the subtraction of the modulus. The classical algorithm is generally inefficient

and very slow. The interleaved classical modular multiplication is presented in Algorithm

3.1.

Figure 3.1: Classical modular multiplication algorithm.

Algorithm 3.1: Classical modular multiplication

Inputs: A, B, M with 0 ≤ A, B < M, Output: R = AB mod M

R = 0;

For i = n-1 to 0

Begin

R = 2·R + ai·B;

qi = R div M;

R = R - qi·M;

End

15

3.1.2 Montgomery algorithm

Another approach to performing modular multiplication is the Montgomery

algorithm. The basic idea behind Montgomery multiplication is the fact that one can add a

multiple of the modulus M to the product A·B to yield a result that is at most 2n+1 bits wide.

Adding, instead of subtracting, a multiple of the modulus M does not affect the computation,

since the result will be congruent to A·B modulo M. Two numbers are said to be congruent if

their remainder when divided by the modulus is the same. Thus, A·B, A·B +M, A·B +2M, ...

A·B + kM are all congruent modulo M. This implies: A·B ≡ A·B +M ≡ A·B +2M ≡ ... (A·B +

kM) mod M. In the Montgomery algorithm, the multiple of the modulus M that is added to

A·B is chosen in such a way that the lower n-bits of the 2n+1-bit result are all zeroes. The

least significant half of the 2n+1-bit result that are all zeroes are then discarded. This way,

the result would have been reduced to at most n+1 bits in width. A single subtraction of the

modulus M can then be performed to further reduce the result to at most n-bits and make it

less than M if required. It has been shown by Walter [46] that the extra subtraction may not

be necessary under certain conditions.

Montgomery’s approach in essence achieves the objective of modular multiplication,

which is to take two n-bit numbers, multiply them and derive a result that is at most n-bits

wide. The resulting n-bit number is not exactly A·B mod M. It is referred to in the literature

as a Montgomery product A·B 2-nmod M. However, most cryptographic schemes make use of

repeated modular multiplications such as modular exponentiation - Ae mod M. Montgomery

multiplication can then be used in performing the repeated multiplications, and only the final

result of the exponentiation is converted back from the Montgomery domain. Thus, the cost

16

of conversion to and from the Montgomery domain is amortized over the repeated modular

multiplications. The conversion from the Montgomery domain is just another Montgomery

multiplication by 22n. See [28] for the detailed proof of correctness of the Montgomery

algorithm. Just like the classical modular algorithm, Montgomery’s algorithm can also be

performed in a fashion whereby the computation of the product and the addition of the

modulus are interleaved. The interleaved Montgomery modular multiplication is presented in

Algorithm 3.2.

Figure 3.2: Montgomery modular multiplication algorithm.

In each iteration of the loop, the least significant bit of the intermediate result is

inspected. If it is ‘1’, i.e. the intermediate result is odd; we add the modulus M to make it

even. This is possible since M is guaranteed to be odd in the cryptographic applications of

interest. Thus, at each step the intermediate result is made to be even. This even number can

be divided by 2 without any remainder. This division by 2 reduces the intermediate result to

n+1 bits again. Dividing the intermediate result by 2 is equivalent to discarding the current

Algorithm 3.2: Montgomery modular multiplication

Inputs: A, B, M with 0 ≤ A, B < M

Output: R = Montgomery Product (A·B2-n) mod M

R = 0;

For i = 0 to n-1 do

Begin

R = R + ai·B;

R = R + r0·M;

R = R div 2;

17

least significant bit of the intermediate result that is zero. After n steps these divisions add up

to one division by 2n, or discarding the least significant n-bits that are zeroes.

3.1.3 Barrett’s algorithm

Barrett’s algorithm computes P = X mod M given X and M. Typically, the

multiplication operation is first performed and then a modular reduction operation follows.

The algorithm requires the pre-computation of the quantity r2k/M where r is the radix in

which the algorithm is implemented, usually a power of 2. The cost of the pre-computation

can be amortized over repeated modular reductions.

Figure 3.3: Barrett’s modular reduction algorithm.

3.1.4 Algorithms for special moduli

If the modulus for the modular multiplication operation has a special form, faster

reduction techniques can be utilized. An efficient technique can be utilized for modular

reduction if the modulus is of the form rn – c for a radix r implementation.

Algorithm 3.3: Barrett’s modular reduction

Inputs: X, M and µ = r2k/M Output: P = X mod M

Q1 = X/rk-1 , Q1 = Q2·µ , Q3 = Q2/rk+1
P1 = X mod rk+1, P2 = Q3·M mod rk+1, P = P1 - P2

If P < 0 then P = P + rk+1

While P ≥M do

P = P – M

Output : P

18

Figure 3.4: Modular reduction algorithm for special moduli.

3.2 Contributions

The major contribution [37] in this section is the generalization of the Montgomery

modular algorithm to modular vector summation and the introduction of a fully parallel

version of the Montgomery modular multiplication. Montgomery’s algorithm is usually

favored in hardware implementations over both the Barrett’s algorithm and the classical

algorithm since it handles the propagation of carries and the modular correction bits

efficiently. The generalized parallel Montgomery algorithm is applicable to combined multi-

operand addition and modular reduction.

3.2.1 Generalization of the Montgomery Algorithm

In this section, we make some extensions to and generalize the Montgomery

algorithm to apply not only to multiplication but also to vector summation. The basic idea

behind the extension is to transform an nxn-bit multiplication into a summation of k n-bit

Algorithm 3.4: Modular reduction for M = rn - c

Inputs: X and M = rn - c Output: P = X mod M

Q0 = X/rn , P0 = X – Q0·r
n, P = P0, i = 0

While Qi ≥ 0 do

Qi+1 = Qi·c/ rn , Pi+1 = Qi·c – Qi+1 r
n

i = i +1, P = P + Pi

While P ≥M do

P = P – M

Output: P

19

numbers whose sum is congruent to the nxn-bit product with respect to the modulus. The

modular reduction is then performed with the sum of the k n-bit numbers instead of the nxn-

bit product. The advantage of this approach is that the vector summation of k n-bit numbers

can be interleaved with the modular reduction in log1.5k time using parallel counters - full

adders and half adders. Thus, if k is less than 1.5n, the new algorithm will be faster.

Given k n-bit integers X0, X1, ... , Xk-1 with Xj = ∑−
=

1

0

2
n

i

ij
ix for 0 ≤ j < k , the modular vector

summation of the integers is given by: MX
k

j

j mod
1

0
∑−

=
. We define the Montgomery

modular vector summation as:

1}{0,,
2

2

mod2
5.1

5.1

5.1

log

1log

0

1

0
1

0

log ∈
+

≡
∑∑∑

−

=

−

=−

=
−

jk

k

j
j

j
k

j

j

k

j

kj e

MeX

MX

3.2.2 Parallel Montgomery Algorithm

Three n-bit unsigned binary integers, A = an-1 an-2 an-3 ... a2 a1 a0, B = bn-1 bn-2 bn-3 ... b2 b1 b0,

and M = mn-1 mn-2 mn-3 ... m2 m1 m0 have the values:

A = ∑−
=

1

0

2
n

i

i
ia B =∑−

=

1

0

2
n

i

i
ib M = ∑−

=

1

0

2
n

i

i
im (1)

The Montgomery Product A·B·2-n mod M has the value

A·B·2-n mod M ≡ 1}{0,,
2

22
1

0

1

0 ∈
+∑∑ −

=

−

=
in

n

i
i

i
n

i
i

i

e

MeBa

(2)

Suppose we can find k n-bit numbers {X0, X1, X2, X3 ... Xk-1} : 0 ≤Xj< 2n for j = 0 to k-1 that

satisfy:

20

MBaX
n

i
i

i
k

j

j mod2
1

0

1

0




≡ ∑∑ −

=

−

=
(3)

Since each Xj is at most n-bits wide, ∑−
=

1

0

k

j

jX is at most (n + log2k) bits wide.

Furthermore, the expression ∑−

=

1log

0

5.1

2
k

j
j

j Me will be at most (n + log1.5k) bits wide. Therefore,

the sum ∑∑ −

=

−

=
+

1log

0

1

0

5.1

2
k

j
j

j
k

j

j MeX will be at most (n + log1.5k + 2) bits wide, since log1.5k >

log2k. Thus, the expression in (4) will be at most (n + 2) bits wide.

1}{0,,
2

2

mod2
5.1

5.1

5.1

log

1log

0

1

0
1

0

log ∈
+

≡
∑∑

∑
−

=

−

=−

=
−

jk

k

j
j

j
k

j

j

k

j

kj e

MeX

MX (4)

This revised algorithm is contingent on being able to find k n-bit numbers {X0, X1, X2, X3, ...

Xk-1} such that 0 ≤Xj < 2n for j = 0 to k-1 that satisfy: MBaX
n

i
i

i
k

j

j mod2
1

0

1

0
∑∑ −

=

−

=
≡ .

21

Chapter 4

Modular Multiplier Architectures – GF(p)

This chapter focuses on hardware architectures for modular multiplication or

arithmetic in prime Galois fields GF(p). The hardware architectures implement the

algorithms presented in the previous chapters. Hardware architectures are usually more

efficient than software implementations for modular arithmetic. However, hardware

implementations may be less flexible than software-only approaches.

4.1 Related work

A number of modular multiplier architectures have been presented in the literature.

Most of the architectures are based on Montgomery’s algorithm because it is specially suited

for hardware implementation. The hardware Montgomery multipliers can broadly be

classified as either bit-serial or high-radix architectures.

 4.1.1 Bit-serial architectures

Bit-serial Montgomery multipliers implement the inner loop of Algorithm 3.2. The

basic components of such bit-serial architectures are AND gates and carry-save adders and an

accumulator for accumulating the partial results. The division by 2 in the algorithm is readily

implemented as a bit-shift in hardware.

4.1.2 High-radix architectures

High- radix Montgomery multipliers are similar to the bit-serial architectures, but in

each iteration, a digit of the multiplier operand is processed rather than just a bit. The

multiplicand bits are processed in parallel. Processing multiple digits at a time makes the

22

quotient selection more complex and each iteration does not involve only a simple bit-shift as

in the serial architecture. The basic components of the high-radix architecture are an array of

digit-by-digit multipliers and adders. Each iteration takes more time to complete than in the

bit-serial architecture, but the total number of iterations is reduced.

4.2 Contributions

The major contribution [37] in this section is the efficient implementation of the

generalized Montgomery modular algorithm presented in the previous chapter. Four designs

for implementing the parallel Montgomery algorithm are explored in this section. All the

designs utilize small look-up tables and fast, massively parallel multipliers. Two of the

designs trade off smaller look-up tables for a larger, slightly slower multiplier. The other two

approaches use larger look-up tables but a smaller, faster multiplier.

4.2.1 Parallel Montgomery multipliers

In this section, the modified Montgomery algorithm is implemented in hardware.

With conventional parallel multipliers, the partial product matrix bits are generated by an

array of AND gates, and are reduced to sum and carry vectors using a Wallace [48] or Dadda

[12] tree. The sum and carry vectors in the last stage can then be added using a high-speed

carry-propagate adder. The Wallace reduction tree is usually composed of full-adders and

half-adders. In the proposed scheme for the modified Montgomery multiplication algorithm,

back-to-back full-adders and half-adders are utilized. Figure 4.1a shows in more detail the

modifications to the conventional Wallace tree. The rows in the bit product array are banded

together into groups of 3’s and full adders are used to reduce 3 rows to 2 rows. So as to

ensure that the least significant bit is zero at the end of each stage of the reduction tree, we

23

arrange the two full adders back-to-back. After the 3 rows have been reduced to 2 rows, if

the least significant bit of the group is ‘1’, then the bits of the modulus M are combined with

the 2 rows to yield a new set of two rows with the least significant bit zero. The least

significant bit is then discarded at the end of that reduction stage. For practical designs,

additional buffers will be needed to handle the large fan-out of the least significant bit

position.

It is possible that after the organization of the rows into groups of 3’s, two rows are

left. The two rows are combined with back-to-back half-adders as shown in Figure 4.1b.

Still, after the groupings, it’s possible that only one row is left. In this case, the single row is

combined with the modulus M using half-adders to ensure the least significant bit is zero, as

shown in Figure 4.1c. In this case, that single row will become two rows in the next stage

after the modulus has been combined with it. This does not significantly affect the rate at

which all the rows of the summation matrix are reduced to the final two rows. The number

of rows in the stages of the Wallace reduction tree are n, 13, 9, 6, 4, 3, 2. With the

modified Wallace tree, the width of each stage is n-bits except for the last two stages (with

heights of 4→3 and 3→2) where the back-to-back adders are not used. It is not necessary

that the least significant bits are zero in the last two stages. At this point, the widths of the

rows will remain n+1-bits until the final stage. Thus, the final two rows are n+1-bits wide.

24

The first stage in Figure 4.2 shows the partial product matrix for A·B. This array is

transformed to the summation matrix in the next stage. The remaining stages in Figure 4.2

Black dots – bits form the summation matrix

∑−
=

1

0

2
n

i

i
iBa

∑−
=

1

0

k

j

jX

Half-Adder

Full-Adder

Full-Adder
Full-Adder

Full-Adder-Half-Adder

Half-Adder-Full Adder

Half-Adder
Half-Adder

Figure 4.2: Reduction stages of the
generalized parallel Montgomery
multiplier.

 Gray dots – Modulus bits : used only when LSB is ‘1’

White dots – LSB with a value of ‘0’

(b). 2 rows combined with the Modulus to yield 2 rows.

(a). 3 rows combined with the Modulus to yield 2 rows.

(c). Single row combined with the Modulus to yield 2 rows.

Figure 4.1: Legend for the symbols.

25

are those of a modified Wallace tree that reduce the summation array to a pair of sum and

carry vectors in the final stage. The primary difference between the conventional Wallace

tree and the modified Wallace tree is the fixed width of each stage in the modified scheme.

In the modified scheme, the least significant bits are discarded at each stage. This ensures

that the widths of the successive stages are the same. Keeping the width constant is achieved

by using back-to-back full adders and half adders. The modulus M is added to the output of a

bank of full-adders if the least significant bit is ‘1’. Since the modulus M is odd, the resulting

pair of carry and sum vectors at the output of the second set of full adders will have the least

significant bit as ‘0’.

Design Alternatives

This section presents four design alternatives for the Parallel Montgomery Multipliers

(PMMs). All the designs follow the generalized hardware implementation with different

values of k for the summation array.

Implementation I

In this section, we focus on how to generate the summation array vectors Xj s. The bit

product array for multiplying two numbers can be divided into two halves. The least

significant half has n rows ranging from 1 bit to n bits in width. Similarly, the most

significant half has n-1 rows ranging in width from 1 to n-1 bits. Thus, the total number of

bits in the most significant half is n(n-1)/2. We envision a lookup table (LUT) that holds pre-

computed values of 2i mod M for n ≤ i < 2n-1. This LUT will have n-1 entries of n-bits each.

The right half of the bit product array is then expanded to n(n+1)/2 rows as shown in Figure

26

4.3 for a 4x4 bit multiplier. As shown in the figure, there are 6 dots in the left half of the bit

product array, and each dot forms a new row in the summation matrix. These new 6 rows are

then combined with the 4 rows from the right half of the bit product array to yield the

summation matrix with 10 rows.

For every ith bit in the left half of the bit product array that is ‘1’, the output of the LUT

forms a new row that represents 2i mod M else the new row will be all zeroes. This

guarantees that every row in the summation array represents a number that is less than 2n.

The rows of the summation array are then summed in logarithmic time using the modified

Wallace tree. In this case, the parameter k = n(n+1)/2. Subsequent section explore ways to

further reduce k and also the size of the LUTs.

Implementation II

In this section, an alternative scheme to reduce the size of the lookup table is

proposed. In this approach, the size of the lookup table is reduced by half but the size of the

summation array is increased by about a factor of 1.5. Since the reduction tree is of

logarithmic time complexity, the total delay is minimally impacted. That is, the number of

stages is increased from log1.5(n(n+1)/2) to log1.5(1.5·n(n+1)/2) ~ log1.5(n(n+1)/2) + l ~

2log1.5 n. The basic idea behind this approach is to group adjacent bits in the left half of the

bit product array into pairs and then convert each pair of bits into 3 unary bits. This is

essentially performing the reverse operation of a full adder. This guarantees that every other

column of bits in the left half of the bit product array will be zero. This approach is depicted

in Figure 4.4 for a 4x4 bit multiplier. In the figure, the 6 dots in the left half of the bit

product array are converted into 8 dots, so that the summation array has a total of 12 rows.

27

Thus, the height of summation array has increased by about a factor of 1.5 as compared to the

example in the previous section. However, the number of non-zero columns will be reduced

by half. Thus, the size of the lookup table will also be reduced half, since only the values 2i

mod M for i = n, n+2, n+4 ... 2n-1 need to be stored. As shown in Figure 4.4, there are only 2

non-zero columns in the left half of the bit product array. This approach trades off a smaller

lookup table for a larger bit-product array without significantly impacting the total delay.

However, the hardware complexity is significantly increased.

Implementation III

Another idea to simplify the hardware complexity is introduced in this section.

Instead of increasing the height of the bit product array from n to n(n+1)/2, we leave the bit

product array with a height of n. We then split the bit-product array into two halves, and the

reduction of both halves proceeds in parallel as in the previous two approaches. Both halves

will be simultaneously reduced to two rows in log1.5n stages. Similarly, the reduction is

interleaved with the “zeroing out” of the least significant bits at each stage. Thus, at the

completion of both stages we will have two n-bit rows in the left half and two n+1-bit rows in

the right half. The bits in the left half are scaled by a factor 2n + logn . Thus, we can modify the

lookup table so that it contains the residues 2i mod M, (n + logn) ≤ i ≤ (2n + logn). The first

2n bits of the summation array are then generated from the two n-bit rows of the left half and

the LUT. Each bit from the two rows on the left half becomes a new row in the resulting

summation array.

28

Figure 4.3: Implementation I Figure 4.4: Implementation II

4x4-bit PMM. 4x4-bit PMM.

The resulting summation array has 2n + 2 rows and it can be reduced to two rows in log1.5(2n

+ 2) ~ log1.5n stages. Thus, the total delay is (log1.5n + log1.5(2n + 2)) ~ 2log1.5n stages. This

is about the same delay as the two previous approaches. However, the hardware complexity

29

has been greatly reduced. The height of the bit product array has been reduced from n(n

+1)/2 to two arrays of height n operating in parallel followed by one array of height 2n + 2.

Figure 4.5 shows an example for a 4x4 bit multiplier. It is split into the left and right halves

with 3 and 4 rows respectively.

Figure 4.5: Implementation III Figure 4.6: Implementation IV 4x4-

4x4 bit PMM. bit PMM.

30

The left half requires only one stage to reduce it to two 3-bit wide rows. The right half

requires two stages to reduce it to two 5-bit wide rows. As has been noted before, the back-

to-back adders are only used in the reduction stages before the last two. Thus, the least

significant bits are not discarded in this example because there are only two stages. However,

for 5x5-bit, 6x6-bit and larger multipliers, each half will involve discarding the least

significant bits at all but the last two stages. As shown in the figure, the 5 dots from the two

rows on the left half are transformed into the first five rows of the summation matrix, and the

two rows from the right half complete the summation matrix. The summation matrix of 7

rows is then reduced to the final sum and carry vectors in 4 stages.

Implementation IV

In this section, the size of the lookup table for Implementation III is further reduced. As in

the approach in the last section, the bit product array is split into two halves that are reduced

in parallel. However, in this case, after the left half has been reduced to two rows, we then

group adjacent bits in pairs and split them into unary bits just like in the approach of

Implementation II. This is depicted in Figure 4.6 for a 4x4 bit multiplier. The two rows in

the left half are then transformed into 6 rows with every other bit guaranteed to be a zero.

Thus, each row contains at most n/2 non-zero bits. The lookup table size can then be reduced

by half. In this example, the left half has only two columns of non-zero bits. Each non-zero

bit from the left half is then transformed into a new row in the resulting bit matrix. The

resulting summation matrix will now have a height of 3n + 2. This summation array will be

reduced to two rows in log1.5(3n + 2) ~ log1.5n stages. The total number of stages is then

(log1.5n +log1.5(3n + 2)) ~ 2log1.5n stages. As shown in Figure 4.6, the summation matrix is

31

reduced to the final two rows in 5 stages. Table 4.1 summarizes the four design approaches

for the parallel Montgomery multipliers.

Table 4.1: Comparison and evaluation of parallel Montgomery multipliers.

Height (k) of

Summation Array(s)

Number of

entries in LUT

Number of stages

I n(n +1)/2 n log1.5(n (n+1)/2)

II 3n(n+1)/4 n/2 log1.5(3n(n +1)/ 4)

III n, 2n +2 n log1.5(n(2n + 2))

IV n, 3n +2 n/2 log1.5(n(3n + 2))

To obtain area and delay estimates, a specialized C++ program was developed that

generates structural Verilog models for the Parallel Montgomery Multipliers (PMM), given

an operand size, n. As a proof of concept, the C++ program was used to generate Verilog

models of PMMs for various operand sizes. The designs were synthesized on a 0.18 micron

CMOS standard cell library. The normalized delay and area estimates were extrapolated to

show a trend of how each of the approaches scale as the operand size is increased. These

results are presented in Figure 4.7. The area complexity is O(k2) and the delay complexity is

O(logk) for all the four schemes. The trend lines in Figure 4.7a depict the area complexities

of the four implementations. Note that k for each implementation type is derived from the

operand size n using Table 4.1.

32

Trend for PMM Area Complexity

0

10

20

30

40

50

60

4 6 8 10

Operand Size

N
or

m
al

iz
ed

 A
re

a

I
II
III
IV
Trend I
Trend II
Trend III
Trend IV

Trend for PMM Delay

0

0.5

1

1.5

2

2.5

3

3.5

4 6 8 10

Operand Size

N
o

rm
a

liz
e

d
 D

e
la

y

I
II
III
IV

 (a) (b)

Figure 4.7: Normalized area and delay estimates for the parallel Montgomery multipliers.

Evaluation

The architectures presented in this section involve significant hardware complexity

but exploit massive parallelism. All of the designs can be pipelined to further improve the

throughput. Most of the implementations of Montgomery multiplication in the literature are

based on bit-serial or systolic designs, pumping the global signals through flip-flops to reduce

the delay and avoid large fan-out. The systolic-array method, however, needs a large number

of registers and long latency. The effects of large fan-out and global wire delays in the

parallel schemes presented are less severe for smaller operand sizes. Thus, the schemes

presented may be targeted towards the Elliptic Curve Cryptosystem where the operand sizes

are currently between 128 and 160 bits. For the RSA scheme where the operand sizes are

about 1024 bits, large fan-out may pose a greater obstacle to practical implementations. The

33

other proposal in the literature for constructing logarithmic time modular multipliers [45]

requires multiplication with real numbers and does not exclusively use fixed point arithmetic.

34

Chapter 5

Polynomial Modular Multiplication Algorithms

5.1 GF(pm) polynomial arithmetic

Arithmetic in Galois fields is an integral part of elliptic curve cryptosystems [22] [27].

Typical choices of fields include the prime Galois field GF(p), realized as the integers

modulo a prime p, and binary extension field GF(2m), often realized as the set of binary

polynomials of degree at most m-1. The elements of GF(2m) can be represented in a number

of ways such as the polynomial and the normal bases. In the polynomial basis, multiplication

is performed modulo an irreducible polynomial. The polynomial basis representation in the

binary extension field case can be generalized to all extension fields GF(pm), with coefficient

arithmetic performed in GF(p) (modulo p , p prime).

The prime Galois field GF(p) is the set of all positive integers less than a particular

prime number. For instance, Galois Field GF(13) is the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12}. With this finite field, addition is the same as conventional addition, but after addition,

the result is reduced modulo the prime, in this case 13 – that is - divide the result by 13 and

take the remainder. This ensures that the final result is always less than 13 and it is thus a

member of the set {0, 1, 2, 3, , 12} which is GF(13). The same goes for field

multiplication, the conventional multiplication followed by a modulo operation to reduce the

result to be less than the prime p.

35

The finite field GF(pm) can be represented in the polynomial basis representation. In

this representation, the elements of the finite field are not integers but each member of the

field is actually a polynomial of degree m-1. The degree of a polynomial is the power of the

highest non-zero co-efficient. For instance, in GF(p3) we can have a polynomial a(z) = a2*z2

+ a1*z + a0 – the degree of this polynomial is 2. Similarly we can have another polynomial

b(z) = b2*z2 + b1*z + b0. Let p = 13, then the finite field GF(p3) = GF(133) with two example

elements a(z) = 8z2 + 7z + 3 and b(z) = 2z2 + 9z + 1. The coefficients of the polynomials are

the integers in the range {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, that is the coefficients are

elements of GF(p) or GF(13) since p = 13 in this case. Addition involves just adding the

corresponding coefficients of the polynomial, and performing the modulo operation if ever

the result is larger than 13 or the prime p. So a(z) + b(z) = (8 +2)*z2 + (7+ 9)*z + (3+1) =

10z2 + 3z + 4.

Field multiplication of a(z) and b(z) = (8z2 + 7z + 3)*(2z2 + 9z + 1) = 16z4 + 72z3 +

8z2 + 14z3 + 63z2 + 7z + 6z2 + 27z + 3 = 16z4 + 86z3 + 77z2 + 34z + 3. The coefficients are

then reduced to be in the range {0, 1, ... , 12}. This yields 3z4 + 8z3 + 12z2 + 8z + 3.

However, the degree of the polynomial must be at most m-1 for elements of GF(pm). A

polynomial modulo operation is thus required. This involves dividing the intermediate

product polynomial by another polynomial and taking the remainder polynomial as the result.

The polynomial that is used to perform the modulo operation is a special polynomial called

an irreducible polynomial for that finite field. The irreducible polynomial is a monic

polynomial that cannot be factored into simpler terms over GF(p). For instance, let the

36

irreducible polynomial for the field GF(133) be z3 -2. Then the polynomial modulo operation

yields: (3z4 + 8z3 + 12z2 + 8z + 3) mod (z3 -2) = 12z2 + z + 6.

The integer modular arithmetic is referred to as subfield reduction and polynomial

modulo operation as the extension field reduction.

5.1.1 Related work

There are three broad classes of algorithms for finite field multiplication: serial, serial-

parallel, and parallel multiplication. Serial GF(pm) multiplication involves processing all the

coefficients of the multiplicand operand in parallel while processing the coefficients of the

multiplier operand serially. Serial-parallel algorithms process more than one coefficient of

the multiplier operand at a time. The fully parallel algorithms process both operands in

parallel.

5.1.1.1 Element-serial algorithms

Figure 5.1: Element-serial GF(pm) multiplication algorithm.

Algorithm 5.1: Serial GF(pm) multiplication algorithm

Inputs: ∑∑ −

=

−

=
==

1

0

1

0

,
m

i

i
i

m

i

i
i zbBzaA where ai, bi∈ GF(p) and an irreducible

polynomial f(z)

Output: C ≡ AB = ∑−
=

1

0

m

i

i
i zc with ci∈ GF(p)

C = 0

for i = 0 to m-1 do

C = biA + C

A = Az mod f(z)

end for

37

5.1.1.2 Element-serial/parallel algorithms

Figure 5.2: Element-serial/parallel GF(pm) multiplication algorithm.

5.1.2 Contributions

The major contribution [38] in this section is a multiply-accumulate algorithm for a

special class of GF(pm) called Type II Optimal Extension Fields (OEFs) [3]. The proposed

algorithm takes advantage of the special properties of this family of finite fields to perform

efficient field operations. The concept of merged arithmetic is introduced to dissolve the

boundaries between discrete modular multiplies and additions.

5.1.2.1 Merged-arithmetic GF(pm) multiplication algorithm

Certain finite fields simplify the hardware implementation of finite field arithmetic.

One such field is a prime Galois field where the prime is of the special form 2n – c,

Algorithm 5.1: Element-serial/parallel GF(pm) multiplication algorithm

Inputs: ,
1

0∑ −
== m

i

i
i zaA where ai∈ GF(p),

  ,
1/

0∑ −
== Dm

i

D
i

izBB with

10,
1

0
−≤≤=∑ −

= + dizbB
D

j

j
jDii and an irreducible polynomial f(z)

Output: C ≡ AB = ∑−
=

1

0

m

i

i
i zc with ci∈ GF(p)

C = 0

for i = 0 to m/D-1 do

C = BiA + C

A = AzD mod f(z)

end for

Output: (C mod f(z))

38

where c is relatively “small” compared to the size of 2n. The modulo operation is

easily performed by successively substituting 2n with the smaller integer c. For

instance, say p = 29 = 25 – 3. Since 25 ≡ 3 mod 29, we can replace the occurrence of 25

with 3. For example, 140 = 4* 25 + 12 = 4*3 + 12 ≡ 24 mod 29.

The same also holds for the polynomial modulo operation in GF(pm). If the

irreducible polynomial is in a simple form, then the polynomial modulo operation is

simplified. For example, take the irreducible polynomial f(z) = z3 -2 for GF(133). To

perform the polynomial modulo operation : (3z4 + 8z3 + 12z2 + 8z + 3) mod (z3 -2) , we

can use the congruence that z3 ≡ 2 mod f(z). Every occurrence of z3 can be replaced

with 2. This yields: 3z4 + 8z3 + 12z2 + 8z + 3 = 3*2z + 8*2 + 12z2 + 8z + 3 = 6z + 16 +

12z2 + 8z + 3 = 12z2 + z + 6.

Optimal Extension field is another type of special finite field that facilitates simpler

arithmetic introduced by Bailey and Paar [3] in 1998.

The specifications are for a Galois extension field GF(pm) with the following

restrictions:

• the prime p must be of the form p = 2n ± c with log2c < n/2

• the irreducible polynomial used for the polynomial modulo operation must be

a binomial

This Optimal Extension Field (OEF) is further divided into two classes:

Type I is the case where the prime is of the form 2n ± 1 – that is the value c is 1

which further simplifies the arithmetic for the integer modulo operation.

39

Type II is the case where the irreducible polynomial is of the form f(z) = zm – 2

which further simplifies the arithmetic for the polynomial modulo operation.

In this dissertation, another class of Optimal Extension Fields that make for simpler

and faster arithmetic is introduced.

The specifications are for a Galois extension field GF(pm) with the following

restrictions:

• the prime p must be of the form p = 2n - c with (2log2c + log2m +1) ≤ n

• the irreducible polynomial used for the polynomial modulo operation must be

f(z) = zm – 2 .

This special Optimal Extension Field (OEF) facilitates merged arithmetic which

allows several multiply operations to be combined together. In addition, it allows

subfield and extension field reductions to be combined together. Furthermore, the cost

of one carry-propagate addition is distributed over several multiply operations when

performing arithmetic in this finite field.

This special class of OEFs are a subset of the regular Type II OEFs and do not introduce

any addition security considerations. Table 5.1 shows some examples of the special OEFs.

Table 5.1: Examples of the special OEFs.

p f parameters
213 - 1 z13 - 2 mn = 169

216 – 15 z13 - 2 mn = 208
217 – 31 z13 - 2 mn = 221
218 – 11 z13 - 2 mn = 234
255 – 55 z3 - 2 mn = 165
256 – 57 z3 - 2 mn = 168
257 – 13 z3 - 2 mn = 171

40

5.2 GF(2m) polynomial arithmetic

GF(2m) arithmetic is the special case of GF(pm) arithmetic where the prime p = 2.

Arithmetic units for the Galois field GF(2m) are readily implemented in hardware. The

Galois field GF(2) has two elements: 0 and 1. Arithmetic operations in GF(2) are performed

modulo 2. GF(2) addition is implemented by an XOR gate, while GF(2) multiplication is

implemented by an AND gate. Each element of the extension field GF(2m) is usually

represented as a polynomial of degree at most m-1 with binary coefficients. For this

representation, the addition operation is bit-independent and can be performed in parallel.

However, multiplication is more complex. For polynomial multiplication, the product of the

coefficients of the operands is first computed to yield a polynomial of degree at most 2m - 2.

This polynomial is then reduced modulo an irreducible polynomial p(z) to yield the final

result.

5.2.1 Related work

A number of algorithms have been proposed for arithmetic in binary extension fields.

Most of the algorithms that do not require special irreducible polynomials are bit-serial in

nature. Some parallel algorithms are efficient for fields that have an irreducible polynomial

of a special form e.g. a trinomial of the form zm + z + 1.

5.2.1.1 Bit-serial algorithms

The shift-and-add method for GF(2m) multiplication is based on the observation that:

a(z)·b(z) = am-1z
m-1b(z) + ... + a2z

2b(z) + a1zb(z) + a0b(z).

41

Let the irreducible polynomial f(z) be of the form zm + r(z). Then, zm ≡ r(z) (mod f(z)) since

-1 ≡ 1 (mod 2). Therefore :

))((mod)...()(

)...(

)...()(

0
2

1
3

2
1

21

0
2

1
3

2
1

21

01
2

2
2

2
1

1

zfzbzbzbzbzrb

zbzbzbzbzb

bzbzbzbzbzzzb

m
mm

m
m

m
m

m
m

m
m

+++++≡
+++++=

+++++⋅=⋅

−
−−

−
−−

−
−

−
−

Thus, b(z)·z mod f(z) can be computed by a left-shift of the vector representation of b(z),

followed by addition of r(z) to b(z) if the bit bm-1 is 1.

Figure 5.3: Bit-serial GF(2m) multiplication algorithm.

5.2.1.2 Bit-parallel algorithms

The bit-parallel algorithm uses the property of the irreducible polynomial to combine

the polynomial modulo operation and the multiplication together. Most of these bit-parallel

Algorithm 5.3: Bit-serial GF(2m) multiplication algorithm

INPUT: a = (am-1, ..., a1, a0), b = (bm-1, ..., b1, b0)

and irreducible polynomial f(z) = zm + r(z), and r = (rm-1, ..., b1, b0)

OUTPUT: c = a·b

Initialization: c = 0

 For i from m-1 to 1 do

c = leftshift(c) + cm-1r.

c = c + bia.

Output: c

42

algorithms are for special trinomials and pentanomials. Thus, the algorithms are not flexible,

and are constructed on a case-by-case basis for each irreducible polynomial.

5.2.2 Contributions

The major contribution [39] in this section is a multiply-accumulate algorithm for a GF(2m)

fields that can be adapted to perform both scalar and vector computations.

5.2.2.1 Parallel GF(2m) scalar and vector polynomial multiplication

The field GF(2m) is associated with a monic irreducible polynomial p(z) = zm +f(z),

where f(z) = fm-1z
m-1 + fm-2z

m-2 + ... + f1z + 1, fm-1, fm-2, ... f1 ∈ {0,1}. The multiply-accumulate

result : c(z) + a(z)· b(z) mod p(z), a(z), b(z), c(z) ∈ GF(2m), is computed in two steps. The

polynomial multiply-accumulate operation over GF(2), c(z) + a(z)·b(z), is first performed and

an intermediate polynomial of degree 2m – 2 is obtained. A polynomial modulo operation is

then performed to reduce its degree to at most m-1. Since the irreducible polynomial p(z) =

zm + f(z), then zm ≡ f(z) (mod p(z)), zm+1 = z ·zm ≡ z ·f(z) (mod p(z)) , ... , z2m-2 = zm-2 ·zm ≡ zm-2

·f(z) (mod p(z)). The polynomial modulo operation can thus be performed by successively

replacing zm+i with zi ·f(z) for m ≤ i ≤ 2m – 2. Two sub-arrays are required for the entire

GF(2m) MAC operation. One for the multiply-add operation over GF(2) and the other for the

polynomial modulo operation. These sub-arrays complete the following operations:

INPUTS: c(z) = cm-1z
m-1 + cm-2z

m-2
 + . . . + c1z + c0

 a(z)= am-1z
m-1 + am-2z

m-2
 + . . . + a1z + a0

 b(z) = bm-1z
m-1 + bm-2z

m-2
 + . . . + b1z + b0

p(z) = zm +f(z) = zm + fkz
k + fk-1z

k-1 + ... + f1z + 1

43

 MUL-ACC over GF(2) : d(z) = c(z) + a(z)· b(z) =

(c0 ⊕ a0b0)

 + (c1 ⊕ a0b1 ⊕ a1b0)z

 + (c2 ⊕ a0b2 ⊕ a1b1 ⊕ a2b0)z
2

+ . . . + (cm-1 ⊕ a0b m-1 ⊕ a1bm-2 ⊕ . . . ⊕ am-1b0)z
m-1

 + . . . + (am-1bm-2 ⊕ am-2bm-1)z
2m-3

 + (am-1bm-1)z
2m-2

 d(z) = d2m-2z
2m-2 + d2m-3z

2m-3
 + . . . + d1z + d0

POLY-REDC: d(z) mod p(z) =

(d0 ⊕ dm) +

 (d1 ⊕ f1dm ⊕ dm+1)z +

(d2 ⊕ f2dm ⊕ f1dm+1 ⊕ dm+2)z
2 + . . . +

 (dk ⊕ fkdm ⊕ ... ⊕ f2dm+k-2 ⊕ . . .⊕ dm+k)z
k +

 (dk+1 ⊕ fkdm+1⊕ ... ⊕ f2dm+k-1 ⊕ . . .⊕ dm+k+1)z
k+1 + . . . +

 (dm-2⊕ fkd2m-k-2 ⊕ ... ⊕ f2d2m -4 ⊕ . . . ⊕ d2m-2)z
m-2 +

 (dm-1⊕ fkd2m-k-1 ⊕ ... ⊕ f2d2m -3 ⊕ f1d2m -2)z
m-1 +

 (fkd2m-k⊕ ... ⊕ f3d2m -3 ⊕ f2d2m -2)z
m +. . . +

 (fkd2m-2)z
m+k-2

Two rounds of the POLY-REDC operation suffice to reduce the degree of the

intermediate polynomial d(z) to at most m-1 if the generating polynomial is of the form zm +

f(z) , with the degree(f(z)) = k < m/2.

44

Chapter 6

Polynomial Modular Multiplier Architectures

6.1 GF(pm) architectures

GF(pm) architectures can be broadly classified into element-serial, element-

serial/parallel and parallel architectures. The distinction between the different classes is in

the number of coefficient elements of the multiplier operand that are processed

simultaneously. In all the three groups, the multiplicand operands are processed in parallel.

There is an area-speed trade-off among the three architectures. The element-serial provides

the smallest area but requires a large number of iterations to complete one GF(pm)

multiplication. On the other hand, the fully parallel architecture requires a large silicon area

but completes the entire GF(pm) multiplication in one step. Figure 6.1 depicts the three broad

classes GF(pm) multiplier architectures.

45

Figure 6.1: The three classes of GF(pm) multiplier architecture.

6.1.1 Related work

Finite field multipliers for GF(pm) have been extensively investigated for the case where p

is relatively “small” (p = 2, 3 and p < 28) . Particularly, a number of parallel multiplier

schemes for the binary extension field GF(2m) where p = 2 have been proposed. A number of

these multiplier architectures are based on the polynomial basis representation. The gate

complexity and delay of these schemes is dependent on the choice of the irreducible

polynomial for the extension field reduction as subfield operations involves modulo 2 or

one’s complement arithmetic and is readily implemented by XOR gates. Thus, most of the

schemes focus on low-weight reduction polynomials with certain desirable properties. One

of the first parallel polynomial basis multipliers for GF(2m) was presented by Bartee and

46

Schnedier [5]. Another parallel multiplier design proposed by Mastrovito [25][26]

formulates the entire GF(2m) multiplication as a set of matrix operations. Mastrovito-type

multipliers optimized for certain classes of irreducible polynomials have also been

investigated by Reyhani-Masoleh and Hasan [34] and Rodriguez-Henriquez and Koc [36]. In

addition to parallel multipliers, bit-serial multipliers have also been proposed for GF(2m).

Beth and Gollman [7] describe various msb- and lsb-first bit-serial multipliers. Song and

Parhi [42] proposed a digit-serial/parallel multiplier for GF(2m). A number of arithmetic units

for GF(2m) using the normal basis representation have also been presented in the literature

[1][2][15][24].

Recently, there has been an interest in GF(pm) multipliers for the case p = 3 because of the

bandwidth advantages of finite fields of characteristic 3 in the implementation of identity-

based cryptosystems [8]. Page and Smart [32] proposed a multiplier architecture specifically

for GF(3m) arithmetic. Bertoni et. al. [6] presented a digit/element architecture for GF(pm)

based on a generalization of the serial/parallel multiplier introduced by Song and Parhi [42],

and also provided implementation details for GF(3m). For GF(pm) architectures where p < 28,

some specialized GF(p) multipliers have been proposed as the basic building blocks. Some of

these specialized GF(p) multipliers are table lookup-based [4][21] and utilize index calculus

to transform the multiplication operation to an addition. Other specialized GF(p) multiplier

schemes [18] [20] that have been proposed for p < 25, are based on combinatorial logic for

the full truth-table of the modular multiplication operation.

47

A number of GF(pm) multiplier architectures have been introduced for the case where p is a

large prime and m is 1, the prime Galois field GF(p). Some of these scalable, bit-serial

architectures [17] [40] are capable of performing both GF(p) and GF(2m) operations.

6.1.1.1 Element-serial architectures

Element-serial architectures process the coefficients of the multiplier operand serially

and the coefficients of the multiplicand operand in parallel. The basic components of this

architecture are modular multipliers and modular adders. The modular multipliers can be

implemented as bit-serial, digit-serial or parallel multipliers. Each modular multiplier

representing the individual coefficient multiplication operates in parallel with all the others.

Modular multipliers may also be required for the polynomial modulo operation performed at

each step.

6.1.1.2 Element-serial/parallel architectures

Element-serial/parallel architectures process multiple coefficients of the multiplier

operand at a time. The coefficients of the multiplicand operand are processed in parallel just

like the element-serial architecture. The basic components of this architecture are also

modular multipliers and modular adders. The outputs of the modular multipliers can be

added iteratively or with a tree of modular adders. The utilization of a tree structure for

summing provides greater benefits when the number of elements of the multiplier operand

processed in parallel is large.

6.1.2 Contributions

The major contribution [38] in this section is a parallel multiply-accumulate

architecture that utilizes merged arithmetic to combine subfield and extension field

48

reductions. The multiply-accumulate scheme delays the final carry-propagate additions until

the partial products from the multiplication, the subfield reduction and the extension field

reduction have been fully accumulated. This enables the cost of a single carry-propagate

addition to be amortized over several multiply operations. The design requires a large area for

practical implementation, but exploits massive parallelism at the subfield and extension field

levels. In addition, the design can be pipelined to further improve the throughput.

 As a trade-off between area and delay, a modified version of Bertoni et. al’s [6]

generalized digit/element-based GF(pm) architecture that utilizes merged arithmetic is also

implemented. This modified architecture provides an improvement over Bertoni et. al’s

scheme.

6.1.2.1 Merged-arithmetic GF(pm) multiplier architecture

This section presents a multiply-accumulate architecture for multipliers over a

special class of Type II Optimal Extension Fields (OEFs) discussed in the previous section.

The Type II OEF multiplier presented uses merged arithmetic to combine multiple multiply

and addition operations together. Unlike previous work, the multiplier also performs subfield

and extension field reduction in parallel for this class of finite fields. Though the multiplier

design requires large silicon area for practical implementation, it obviates the need for

performing subfield and extension field reduction separately, thereby reducing the overall

delay.

49

Hardware implementation of prime field reduction

The elements of a prime field GF(p), can be realized as the integers modulo the

prime p. The advantages of some special classes of prime numbers for efficient

modular arithmetic have been noted by Crandall [11]. Pseudo-Mersenne primes are one

such class of primes. A pseudo-Mersenne prime of the form p = 2n – c for some

integers n and c with log2c < n/2 simplifies the modular reduction operation. This

simplification is possible because of the congruence 2n ≡ c (mod p), which allows for 2n

to be interchanged with the “smaller” c. The same concept can also be applied to

high-speed parallel multipliers. Parallel multipliers using Dadda [12] or Wallace [48]

trees perform multiplication in three stages. The first stage generates the bit product

matrix using an array of AND gates, the next stage compresses the array down to sum

and carry vectors using half-adders and full-adders. The half- and full-adders only

propagate carries at most one bit position. The final stage uses a carry-propagate adder

(CPA) to add the sum and carry vectors. Figure 6.2 shows a dot diagram for an 8x8-bit

Wallace tree.

Figure 6.2: Dot diagram for 8x8 Wallace tree.

bit product
matrix

compression
stages

full-adder

half-adder

50

The output of the Wallace [48] tree can be reduced modulo a pseudo-Mersenne

prime without first adding the sum and carry vectors with a CPA. Figure 6.3a shows

the first step to perform this modular reduction. The bits in the most significant half of

the output of the Wallace tree are ANDed with the bits of c to form a new bit product

array. Each bit in the left half becomes a new row of gray dots. The new bits are

represented by the diagonal gray dots in Figure 6.3a. This bit-product array is also

reduced with a Dadda/Wallace tree. Note that the height of this bit product array is 2c

+ 2, and is much smaller than the nxn multiplication array if c << n.

Figure 6.3a: Dot diagram for modular reduction.

The bits in the left half of the output of the second Wallace tree form a third array

which is compressed to two rows of output bits as shown in Figure 6.3b. The final two

rows are then summed with a CPA. Provided log2c << n/2, the final result will be at

most n+2 bits.

bit product
matrix

compression
stages

half-adder

 bits of ‘c’

full-adder

51

Figure 6.3b: Dot diagram for modular reduction.

Hardware implementation of extension field reduction

For extension field reduction, emphasis is placed on a special family of Type II OEFs in

this work. This special class of Type II OEF is the Galois field GF(pm) such that:

1. p = 2n – c for some integers n and c > 0, with (2log2c + log2m +1) ≤ n; and

2. an irreducible polynomial f(z) = zm – 2 exists in Fp[z].

Most Type II OEFs already satisfy the extra requirement of this special class i.e. log2c <<

n/2. For this special class of Type II OEF, a parallel multiplier scheme that uses the concept

of merged arithmetic is presented. Merged arithmetic was proposed by Swartzlander [43] to

implement a combination of multiplication and addition functions together. Figure 6.4 shows

a parallel multiplier for GF(p3) where p = 2n – c, (2log2c + log23 +1) ≤ n, and f(z) = zm-2. The

polynomial product c(z) and its coefficients ct are computed as follows:

∑
∑ ∑

∑∑

=+

−

=

−

=
+

−
−

−

=

−

=

=
++≡≡










==

tji
jit

m

t

m

t

t
mtt

m
m

t
t

m

j

j
j

m

i

i
i

pbac

zfzcczczc

zbzazbzazc

.modwhere

))((mod)2(

)()()(

22

0

2

0

1
1

1

0

1

0

bit product
matrix

compression
stages

 bits of ‘c’

full-adder

half-adder

52

Since the irreducible polynomial for Type II OEF is of the form f(z) = zm -2, then zm ≡ 2 mod

f(z) and zm+i ≡ 2zi mod f(z) for m ≤ i < 2m-1. The columns of bit-product arrays of degree m +

i can be multiplied by 2, or shifted and included in the array column of degree i. This is

depicted in the second stage in Figure 6.4. This yields an mxm matrix of nxn-bit product

arrays. Using the concept of merged arithmetic, a column of m (nxn)-bit arrays can be

compressed together in approximately log1.5 (mn) stages with a Wallace [48] or Dadda [12]

tree. This is faster than if the column compression for each array was performed separately.

The output of the compression tree for each column will be at most 2n + log2m + 1 bits wide.

Figure 6.4: Parallel multiplier scheme for GF(p3), p = 2n–c, log2c <<n, and f(z) = zm – 2.

Provided (2log2c + log2m +1) ≤ n, using a similar principle as presented for GF(p) in the

previous section, at most two rounds of reduction with the bits of c will suffice to reduce each

column to at most n + 2 bits.

The gate complexity of each column:

• mn2 AND gates

bit product
matrix

compression
stages

modular
reduction

stages

53

• mn2 – 2(2n+lg2m) full-adders

• 2(lg2c)(n+lg2m) AND gates

• [2(lg2c)(n+lg2m)+2n] – [2(lg2c+ lg2m+n)] full-adders

• 2(lg2c)(lg2c+lg2m) AND gates

• [2(lg2c)(lg2c+lg2m) +2n] – [2(n+2)] full-adders

• 1 carry-propagate adder

The total area for all the m columns is m times the gate complexity of one column. The total

delay in terms of AND gate delay (TA) and full-adder delay (TFA):

• 1 TA (bit array generation)

• lg1.5mn TFA (compression of the mn rows)

• 1 TA (bit array generation)

• lg1.5(2lg2c +2) TFA (subfield reduction)

• 1 TA (bit array generation)

• lg1.5(2lg2c +2) TFA (subfield reduction)

• 1 carry-propagate adder delay

 The gate complexity and delay of the multiplier can be further reduced. A carry-delayed

adder (CDA) [31] is utilized to minimize the height of the reduction trees in the modular

reduction rounds. The CDA is a two-level carry save adder. The carry-delayed adder

produces a pair of integers (D, T) called a carry-delayed number, using the following set of

equations:

54

0,,

),()()(,

01

1

=∧=⊕=
∧∨∧∨∧=⊕⊕=

+

+
DCSDCST

CBCABACCBAS

iiiiii

iiiiiiiiiii

The values Di+1 and Ti are the outputs of a half-adder cell with inputs Si and Ci. An important

property of the carry-delayed adder is that Di+1 ∧ Ti = 0 for all i = 0,1,....n-1. This is easily

verified as:

0))C(S)C((

)(

iii

1

=∧∨∧∧∧=
⊕∧∧=∧+

iii

iiiiii

SCS

CSCSTD

In the first round, each column of mn rows is compressed to two rows. An extra half-adder

stage is introduced in the most-significant half of th-e output of the Wallace/Dadda tree to

guarantee the property of the carry-delayed adder that Di+1 ∧ Ti = 0. The bits of D and T now

represent the most-significant half of the output of the first round. The bits of both T and D

are ANDed with the bits of c. The appropriately shifted outputs of the AND gates are then

“ORed” together. This approach reduces the height of the modular reduction rounds by half.

Figure 6.5 shows the transformation of the output of the carry-delayed adder for a field

GF(pm) where p = 28 – c and log2c ≤ 3.

Figure 6.5: Transformation of the CDA output.

The gate complexity of the scheme using the CDA after the compression rounds involves

extra half-adders and OR gates. However, the heights of the reduction trees for the modular

 bits of ‘c’

55

reduction rounds are reduced by half and this reduces the number of full-adders needed for

the Wallace/Dadda trees in those stages.

Implementation

To obtain area and delay estimates, a specialized C++ program was developed that

generates low-level structural Verilog models for GF(pm) multipliers for any given value of p

and m, where p is a pseudo-Mersenne prime. The GF(pm) multipliers use a fast carry-

lookahead adder for the final addition. The designs were synthesized using the Synopsys

suite of tools on a 0.18µ standard cell library. The C++ program was used to generate

Verilog models of multipliers for three of the special OEFs in Table 5.1. The fields are

selected to have field orders large enough for current security needs and field parameters not

easily susceptible to the generalized GHS attack [13]. The delay and area estimates are

presented in Table 6.1 and 6.2. For easy comparison between the two schemes presented, the

percentage decrease in delay and area provided by the carry-delayed adder (CDA) designs is

also shown. The CDA versions have a smaller area because the reduction in the heights of the

modular reduction trees more than compensates for the extra half-adder stage and OR gates.

The number of gate delays in the critical path is a function of the logarithm of the parameters

(n, m and c), and the extent of the benefit of the CDA version depends on the parameters of

the GF(pm) multiplier.

Table 6.1: Delay estimates for GF(pm) multipliers.

Unpipelined delay (nanoseconds)
Field parameters No CDA CDA % decrease

GF(213 – 1)13 38.98 36.29 6.9%
GF(218– 11)13 56.55 55.34 2.1%
GF(257– 13)3 52.81 42.03 20.41%

56

Table 6.2: Area estimates for GF(pm) multipliers.

Area (equivalent gates)

Field parameters
No CDA

(x103)
CDA
(x103)

%
decrease

GF(213 – 1)13 152.73 136.03 10.9%
GF(218– 11)13 306.75 271.33 11.6%
GF(257– 13)3 155.18 120.85 22.1%

Comparison to related work

Much of the prior work relating to OEFs has focused on software implementation [3] [16].

Großschädl et al. [16] explored the use of multiply-accumulate instructions to support OEF

arithmetic.

Bertoni et. al. [6] presented a generalized digit/element GF(pm) multiplier architecture.

The basic idea of the scheme involves processing all the coefficients of the multiplicand b(z)

in parallel, while processing D elements of the coefficients of the multiplier operand a(z) in

each step. The extension field reduction is also performed in each step. This scheme is a

generalization of the serial/parallel GF(2 m) architecture proposed by Song and Parhi [42].

The architecture requires approximately m/D cycles to complete one GF(pm) multiplication.

The C++ program was customized to generate structural Verilog models for the architectures

presented in [6] and [42] based on the optimal irreducible polynomials. In addition, a

modified version of the Bertoni et. al’s [6] scheme that incorporates merged arithmetic was

also developed. In this modified scheme, the boundaries between discrete modular multiplies

and modular additions are dissolved. Table 6.3 compares the merged scheme with the

architectures proposed in [6] and [42]. The percentage reduction in area and delay provided

by the merged arithmetic version over the architecture in [6] is also presented. The GF(2173)

57

and GF(2239) fields are chosen because they have about the same field orders with the

parameters used for the GF(pm) fields.

Table 6.3: Comparison with Song/Parhi and Bertoni et al.

 Delay (nanoseconds)

GF(2173) GF(213 -1)13

D [42] [6] Merged % decr.
1 1.35 30.89 22.88 25.93%
2 3.05 42.08 26.17 37.81%
4 4.14 55.16 30.69 44.36%

Area (equivalent gates)

GF(2173) GF(213 -1)13

D [42] [6] Merged % decr.
1 311 20020 20381 -1.80%
2 2192 40538 35673 12.00%
4 3550 86283 66831 22.54%

 Delay (nanoseconds)

GF(2239) GF(218 -11)13

D [42] [6] Merged % decr.
1 1.35 49.51 37.62 24.02%
2 2.91 61.46 42.65 30.61%
4 3.63 80.41 46.43 42.26%

Area (equivalent gates)

GF(2239) GF(218 -11)13

D [42] [6] Merged % decr.
1 429 45937 48699 -6.01%
2 1731 93254 73291 21.41%
4 5339 189423 129688 31.54%

Note that the case where the digit size D = 1 is equivalent to a bit-serial architecture. For D >

1, the coefficient elements are summed with a tree of modular adders as in [6]. As the

digit/element size is increased, the merged scheme provides greater improvement over

58

Bertoni’s [6] scheme as several modular multipliers and modular adders are merged together,

avoiding multiple carry-propagate adder delays. Compared to the parallel multiply-

accumulate scheme, these digit/element schemes have smaller areas but require more than

one cycle to complete a single multiplication. The multiplier GF(2m) in [42] provides a very

low cycle time since the subfield operations are basically XORs. Bit-serial multipliers for the

prime field GF(p) are made up of carry-save adders. The bit-serial schemes require a lot more

cycles to complete a modular multiplication. As noted in [6] fields of characteristic 2 are

difficult to surpass if both area and time performance measures are considered.

6.2 GF(2m) architectures

GF(2m) architectures can be broadly classified into bit-serial and bit-parallel

architectures. The bit-serial architectures require several clock cycles to complete one GF(2m)

multiplication but have a low area overhead. On the other hand, the bit-parallel architectures

a low delay but high area overhead. Mastrovito multipliers [25][26] are an example of bit-

parallel architectures.

6.2.1 Related work

A parallel polynomial basis GF(2m) multiplier was first suggested by Bartee and

Schneider [5]. Another multiplier scheme was proposed by Mastrovito [25][26] for

polynomial basis multiplication. The Mastrovito design formulates the polynomial

multiplication as a set of matrix operations. The gate complexity of the Mastrovito multiplier

depends on the choice of the irreducible polynomial used and is suited to special classes of

reduction polynomials. The multiplier schemes by Reyhani-Masoleh and Hasan [34] are very

59

similar to the Mastrovito scheme. The multiplier design presented by Rodriguez-Henriquez

and Koc [36] are optimized for a special class of irreducible polynomial.

6.2.1.1 Bit-serial architectures

Bit-serial GF(2m) multipliers implement Algorithm 5.3 in hardware. The figure

below depicts a Most Significant Bit first (MSB) multiplier for GF(25)

Figure 6.6: Bit-serial multiplier for GF(25).

6.2.1.2 Bit-parallel architectures

Most bit-parallel GF(pm) multiplier architectures are tailored to specific irreducible

polynomials, particularly certain trinomials and pentanomials. Mastrovito [25] multipliers

are an example of such multiplier architectures. Bit-parallel multipliers have a low delay but

a4 a3 a2 a1 a0

c4 c3 c2 c1 c0

r4 r3 r2 r1 r0

b4

b3

b2

b1

b0

0

b
a

c

C

A

C←C � (A & B)

B

60

a high area overhead and are inflexible since they can only be utilized for a specific

irreducible polynomial.

6.2.2 Contributions

The main contribution [39] in this section is a parallel GF(2m) multiply-accumulate

architecture. In application areas where repeated finite field multiplications and additions

are performed, the addition and multiplication operations can be combined together using a

multiply-accumulate (MAC) unit. The vector MAC can be utilized in an environment where

repeated GF(2m) multiplications that have no dependencies need to be performed. Instead of

serializing these individual operations, they can be performed in pairs.

6.2.2.1 Parallel scalar and vector polynomial multiplier architecture

 This section presents a vector multiply-accumulate (MAC) architecture over the binary

extension field GF(2m) capable of supporting multiple precisions simultaneously. The vector

MAC can perform one GF(2m) or two GF(2(m/2)) multiply-accumulates using essentially the

same hardware as a scalar GF(2m) Mastrovito-type multiplier. The vector capability is

enabled by inserting mode-dependent masks in the bit product and reduction arrays of the

GF(2m) MAC. This architecture leverages an existing scalar structure for performing multiple

operations in vector mode. Essentially the same hardware is shared between scalar and vector

modes. Although there is a slight delay and area penalty for the mode-dependent masking,

this overhead is relatively insignificant. Both the stand-alone scalar GF(2m) MAC and the

vector GF(2m) MAC were implemented in structural Verilog and synthesized on a 0.18

micron standard cell library to compare the area and delay for different values of m.

61

Figure 6.7 shows a parallel GF(28) MAC scheme in Dadda[12] dot notation. The ellipses

represent XOR gates. In Figure 6.7, the gray dots represent the bits of f(z) and the black dots

the partial product bits. Let the degree of f(z) be k. In the example in Fig. 6.7, m = 8 and k =

4, so f(z) = f4z
4 + f3z

3+ f2z
2 + f1z + 1, f4, f 3, f2, f 1 ∈ {0, 1}. The irreducible polynomial is p(z)

= z8 + f(z) = z8 + f4z
4 + f3z

3+ f2z
2 + f1z + 1. For example, p(z) = z8 + z4 + z3+ z + 1 is a

generating polynomial for GF(28). The bit product matrix is generated by an array of AND

gates. In the first compression round, bits in the same column are XORed together using a

tree of XOR gates. In the next round, output bits representing a degree greater than or equal

to m are ANDed with bits of f(z), and shifted accordingly to form a new bit product array.

Each output bit from the first round of degree greater than or equal to m becomes a new row

of input bits in the next round. This is based on the congruence zm+i ≡ zi ·f(z) (mod p(z)) for m

≤ i ≤ 2m – 2. Similarly, the next round involves column-wise XORs of the bits in the array.

The total delay in terms of AND gate delay (TA) and XOR gate delay (TX):

• TA (to generate the bit product array for a(z)·b(z))

• log(m + 1) TX (to reduce m + 1 rows to a single row)

• TA (1st bit product array of f(z) – gray dots)

• log(k + 2) TX (to reduce the (k+2) rows to a single row)

• TA (2nd bit product array of f(z) – gray dots)

• logk TX (to reduce the new k rows to a single row)

62

Figure 6.7: GF(28) parallel multiply-accumulate architecture.

The gate count:

• m2 AND gates (bit product array for MUL-ACC)

• (m2 + m) – (2m – 1) XOR gates (MUL-ACC compression round)

• (k + 1)·(m – 1) AND gates (to generate the 1st bit product array for POLY-REDC)

• m + (k + 1)·(m – 1) – (k + m - 1) = k·m -2k + m XOR gates (POLY-REDC

compression round)

• (k + 1)· (k - 1) AND gates (to generate the 2nd bit product array for POLY-REDC)

• m + (k + 1)· (k - 1) – m = (k + 1)· (k - 1) XOR gates (POLY-REDC compression

round)

+

a(z)·b(z)

c(z)

c(z) + a(z)·b(z)

MUL-ACC
log(m +1)Tx

POLY-REDC
log(k +2)Tx

POLY-REDC
log(k)Tx

63

Vector GF(2m) Multiply-Accumulate Architecture

A MAC unit for GF(2m) can be modified to support two GF(2m/2) MAC operations in

vector mode. Figure 6.8 shows a shared segmentation [44] scheme to support two polynomial

multiplications in parallel. The white regions in Figure 6.8 are masked (zero insert)

depending upon the operating mode. The dark regions are not replaced with ‘zeroes’. There

is an extra area and delay overhead for masking and multiplexing the mode-dependent bits in

the product array generation and in the XOR reduction trees. Figure 6.9 provides a detailed

dot diagram for a GF(28)/GF(24) MAC scheme.

 Scalar mode Vector mode

Figure 6.8: High-level view of the vector multiply-accumulate unit.

64

Figure 6.9: Dot diagram for a GF(28)/GF(24) multiply-accumulate unit.

mask (zero insert) for vector mode

mask (zero insert) for scalar mode

65

Implementation

In practice, for irreducible polynomials zm + f(z), the degree of f(z) is usually much

smaller than m/2. Let k be the degree of f(z), empirical evidence suggests that the minimum

possible value of k << m/2. Seroussi [41] tabulated low-weight binary irreducible

polynomials over GF(2m) for 2 ≤ m ≤ 10,000. All the irreducible polynomials were either

trinomials (zm + zk +1), m > k > 0, or pentanomials (zm + zk3 + zk2 + zk1 +1), m > k3 > k2 > k1 >

0. The values were tabulated based on the smallest values of k and k3 possible for the

trinomials and pentanomials respectively. The highest tabulated value of k3 for irreducible

pentanomials was 56 for m = 9760. Thus, the MAC designs can be optimized for irreducible

pentanomials where the value of k is significantly smaller than m. When higher-weight

polynomials other than trinomials and pentanomials are considered, the value of k is even

smaller. A Pari/GP[33] program was developed to find irreducible polynomials p(z) = zm +

f(z) with the minimum possible degree of f(z) for 2 ≤m ≤256. Unlike previous work, higher-

weight polynomials other than trinomials and pentanomials were also considered. Table 6.4

gives the minimum values of k for irreducible polynomials p(z) = zi + f(z), degree(f(z)) = k. In

addition, Table 6.4 also shows the gate and transistor counts for the different values of m

using the minimum value of k. The analysis assumes AND gates implemented with 6

transistors, and XOR gates implemented with 12 transistors. Note that this is a conservative

estimate as an XOR gate can be implemented with only 4 transistors [10]. Table 6.5 shows

the estimated gate delays for MACs with different bit-lengths. TA denotes the delay of an

AND gate and TX denotes the delay of an XOR gate.

66

Table 6.4: Area estimates for scalar GF(2m) multiply-accumulate units.

m 16 32 64 128 256

k 5 7 8 10 11

AND gates 370 1320 4648 17590 68440

XOR gates 351 1283 4579 17456 68176
AND
transitors 2220 7920 27888 105540 410640
XOR
transistors 4212 15396 54948 209472 818112
Total
transistors 6432 23316 82836 315012 1228752

Table 6.5: Delay estimates for scalar GF(2m) multiply-accumulate units.

m 16 32 64 128 256

k 5 7 8 10 11

(AND) TA 3 3 3 3 3

(XOR) TX 11 13 14 15 17

To obtain actual area and delay estimates, a specialized C++ program was developed to

generate structural Verilog models for both the scalar and vector GF(2m) MAC designs for

any given value of m and k. The C++ program was used to generate Verilog models of scalar

and vector GF(2m) MAC designs for m = 16, 32 , 64, 128, and 256 bits . The values of k

used for the implementation are the same as those of Table 6.4. The designs were

synthesized on a 0.18 micron CMOS standard cell library. The normalized delay and area

estimates are presented in Figure. 6.10 and 6.11 respectively. The “vectorized” MAC designs

have a delay and area penalty because of the extra delay for the mode-dependent masking and

67

multiplexing. The extra overhead highly depends on the parameters m and k for the MAC

designs. The overhead cost of the mode-dependent masking increases with higher values of k.

Normalized Delay vs. Bit Size

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

16 32 64 128 256

Bit Size

N
or

m
al

iz
ed

 D
el

ay

Normalized
Delay (Scalar)

Normalized
Delay (Vector)

Figure 6.10: Normalized delay estimates for the scalar and vector GF(2m) MAC architectures.

Normalized Area vs. Bit Size

0

100

200

300

400

500

16 32 64 128 256
Bit Size

N
or

m
al

iz
ed

 A
re

a

Normalized Area
(Scalar)

Normalized Area
(Vector)

Figure 6.11: Normalized area estimates for the scalar and vector GF(2m) MAC architectures.

Comparison to Related Work and Conclusion

The gate complexity and delay of the MAC designs presented in this work depend on the

choice of the irreducible polynomial. In contrast to standard Mastrovito-type finite field

multipliers, the MAC scheme presented here does not require the reduction polynomial to be

68

fixed. A GF(2m) MAC design with design parameters (m, k) can be used for arithmetic in any

extension field GF(2i), i ≤ m, provided that k is chosen such that there exists one or more

reduction polynomials of the form p(z) = zi + f(z) where degree(f(z)) ≤ k for all i ≤ m. The

data from Seroussi’s table [41] suggests that the minimum possible values of k are indeed

very small for pentanomials. It should be noted that the flexibility of the GF(2m) MAC design

comes at an extra cost to the gate complexity and delay compared to conventional

Mastrovito-type GF(2m) multipliers.

69

Chapter 7

Conclusion

In this dissertation, innovations in algorithms and architectures for modular arithmetic have

been presented:

• a parallel extension of Montgomery’s modular multiplication algorithm

• an merged-arithmetic algorithm for a special class of Optimal Extension Fields

• an algorithm for scalar and vector mode GF(2m) multiply-accumulate operation

7.1 GF(p) multiplier architectures

Chapter 4 presents the design space exploration for the implementation of the parallel

Montgomery modular algorithm. In the chapter, four designs are introduced which trade-off

speed and area to varying degrees. A proof of concept implementation and characterization

is also presented.

7.2 GF(2m) and GF(pm) polynomial multiplier architectures

Chapter 5 presents a merged-arithmetic multiply-accumulate algorithm for a special

family of Optimal Extension Fields (OEFs). The architecture for implementing the merged-

arithmetic algorithm is presented in Chapter 6. In Chapter 5, an algorithm for adaptable for

performing scalar and vector GF(2m) multiply-accumulate operations is presented. The

70

hardware scheme for implementing the scalar and vector-mode GF(2m) multiply-accumulate

operations is presented in Chapter 6.

71

Bibliography

[1] G. Agnew, R. Mullin, I. Onyszchuk and S. Vanstone, “An implementation for a fast

public-key cryptosystem,” Journal of Cryptology, vol. 3, no. 2, 1991, pp. 63-79.

[2] G. Agnew, R. Mullin and S. Vanstone, “An implementation of elliptic curve

cryptosystems over F(2155),” IEEE Journal on Selected Areas in Communications, vol. 11,

1993, pp. 804-813.

[3] D. Bailey and C. Paar, “Optimal extension fields for fast arithmetic in public-key

algorithms,” Advances in Cryptology - CRYPTO ’98, (LNCS 1462), 1998, pp. 472-485.

[4] J. Bajard, L. Imbert, C. Negre and T. Plantard, “Efficient multiplication in GF(pk) for

elliptic curve cryptography, ” Symposium on Computer Arithmetic, 2003, pp. 181–187.

[5] T. Bartee and D. Schneider, “Computation with finite fields,” Information and Computers,

vol. 5, 1963, pp. 79-98.

[6] G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar and T. Wollinger, “Efficient

GF(pm) arithmetic architectures for cryptographic applications,” Topics in Cryptology-CT-

RSA 2003 (LNCS 2612), 2003, pp. 158-175.

[7] T. Beth and D. Gollmann, “Algorithm engineering for public key algorithms,” IEEE

Journal on Selected Areas in Communications, vol. 7, 1989, pp. 458-465.

[8] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,” Advances

in Cryptology –CRYPTO 2001 (LNCS 2139), 2001, pp. 213-229.

[9] E.F. Brickell, “A fast modular multiplication algorithm with application to two key

cryptography,” Proceedings of Crypto 82, pp. 51- 60, 1982.

72

[10] H. T. Bui, A. K. Al-Sheraidah and Y. Wang, “New 4-Transistor XOR and XNOR

designs,” Proceedings of the 2nd IEEE Asia-Pacific Conference on ASIC, Korea, 2000, pp.

25-28.

[11] R. E. Crandall, “Method and apparatus for public key exchange in a cryptographic

system,” U.S. Patent No. 5,159,632, 1992.

[12] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34, 1965, pp.

349-356.

[13] C. Diem, “The GHS attack in odd characteristic,” Journal of Ramanunjan Mathematical

Society, vol. 18, no. 1, 2003, pp. 1-32.

[14] W. Diffie and M.E. Hellman, “New directions in cryptography,” IEEE Transactions on

Information Theory, vol. 22, 1976, pp. 644-654.

[15] L. Gao, S. Shrivastava, and G. Sobelman, “Elliptic curve scalar multiplier design using

FPGAs,” Cryptographic Hardware and Embedded Systems (LNCS 2162), 2001, pp. 251-

261.

[16] J. Großschädl, S. Kumar and C. Paar, “Architectural support for arithmetic in optimal

extension fields,” IEEE International Conference on Application-specific Systems,

Architectures and Processors, 2004, pp. 111-124.

[17] J. Großschädl, “A bit-serial unified multiplier architecture for finite fields GF(p) and

GF(2m),” Cryptographic Hardware and Embedded Systems (LNCS 2162), 2001, pp. 202-219.

[18] J. Guajardo, T. Wollinger, and C. Paar, “Area efficient GF(p) architectures for GF(pm)

multipliers,” IEEE International Midwest Symposium on Circuits and Systems, vol. 2, 2002,

pp. 37-40.

73

[19] D. Hankerson, A. Menezes and S.Vanstone. “Guide to elliptic curve cryptography”,

Springer-Verlag, New York, 2004.

[20] A. Hiasat, “Semi-custom VLSI design for RNS multipliers using combinatorial logic

approach,” Third IEEE International Conference on Electronics, Circuits, and Systems,

1996, pp. 935-938.

[21] G. Jullien, W. Lue and N. Wigley, “High throughput VLSI DSP using replicated finite

rings,” Journal of VLSI Signal Processing, vol.14, no. 2, 1996, pp. 207-220.

[22] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48, no.

177, 1987, pp. 203-209.

[23] A. K. Lenstra and E. R. Verheul “Selecting Cryptographic Key Sizes”, Proceedings of

the Third International Workshop on Practice and Theory in Public Key Cryptography:

Public Key Cryptography, 2000, pp. 446 – 465.

[24] P. Leong and K. Leung, “A microcoded elliptic curve processor using FPGA

technology,” IEEE Transactions on VLSI Systems, vol. 10, 2002, pp. 550-559.

[25] E. D. Mastrovito, “VLSI architectures for computation in Galois fields,” Ph.D. thesis,

Linkoping University, 1991.

[26] E. D. Mastrovito, “VLSI designs for multiplication over finite fields GF(2m),” Sixth

Symposium on Applied Algebra, Algebraic Algorithms, and Error Correcting Codes

(AAECC-6), 1988, pp. 297-309.

[27] V. Miller, “Uses of elliptic curves in cryptography,” Advances in Cryptology, vol. 218,

1985, pp. 417 - 426.

74

[28] P. L. Montgomery, “Modular Multiplication without Trial Division,” Mathematics of

Computation, vol. 44, 1985, pp. 519-521.

[29] G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics, vol.

38, no. 8, 1965, pp. 114 - 117.

[30] G. E. Moore, “No Exponential is Forever … but We Can Delay ‘Forever’”,

International Solid State Circuits Conference – Digest of Technical Papers, 2003, pp.20-23.

[31] M. J. Norris and G. J. Simmons, “Algorithms for high-speed modular arithmetic,”

Congressus Numeratium, vol. 31, 1981, pp. 153-163.

[32] D. Page and N. Smart, “Hardware implementation of finite fields of characteristic three,”

Cryptographic Hardware and Embedded Systems (LNCS 2523), 2002, pp. 529-539.

[33] Pari/GP (Computer Algebra System) available from: http://pari.math.u-bordeaux.fr/.

[34] A. Reyhani-Masoleh and M. A. Hasan, “Low complexity bit parallel architectures for

polynomial basis multiplication over GF(2m),” IEEE Transactions on Computers, vol. 53,

2004, pp. 945-959.

[35] R. L. Rivest, A. Shamir and L. Adleman, “A Method for obtaining Digital Signatures

and Public-Key Cryptosystems,” Communications of the ACM, vol. 21, no. 2, 1978, pp. 120-

126.

[36] F. Rodriguez-Henriquez and C. Koc, “Parallel multipliers based on special irreducible

pentanomials,” IEEE Transactions on Computers, vol. 52, 2003, pp. 1535-1542.

[37] M. O. Sanu, E. E. Swartzlander Jr. and C. M. Chase, “Parallel Montgomery Multipliers”,

IEEE 15th International Conference on Application-specific Systems, Architectures and

Processors, 2004, pp. 63-72.

75

[38] M. O. Sanu and E. E. Swartzlander, “Multiply-Accumulate Architecture for a Special

Class of Optimal Extension Fields”, IEEE 16th International Conference on Application-

specific Systems, Architectures and Processors, 2005.

[39] M. O. Sanu and E. E. Swartzlander, “A Vector Multiply-Accumulate Architecture for

GF(2m) ,” IEEE 48th International Midwest Symposium on Circuits and Systems, 2005.

[40] E. Savas, A. Tenca and C. Koc, “A scalable and unified multiplier architecture for finite

fields GF(p) and GF(2m),” Cryptographic Hardware and Embedded Systems (LNCS 1965),

2000, pp. 277-292.

[41] G. Seroussi, “Table of low-weight binary irreducible polynomials,” Hewlet-Packard

Labs, HPL-98-135 Tech Report, 1998.

[42] L. Song and K. Parhi, “Low-energy digit-serial/parallel finite field multipliers,” Journal

of VLSI Signal Processing, vol. 19, 1998, pp. 149-166.

[43] E. E. Swartzlander Jr., “Merged arithmetic,” IEEE Transactions on Computers, vol. C-

29, 1980, pp. 946-950.

[44] D. Tan, A. Danysh, and M. Liebelt “Multiple-precision fixed-point vector multiply-

accumulator using shared segmentation,” Proceedings of the 16th IEEE Symposium on

Computer Arithmetic ARITH-16, 2003, pp. 12-19.

[45] C. D. Walter, “Logarithmic Speed Modular Multiplication,” Electronics Letters, vol. 30,

no. 17, 1994, pp. 1397-1398.

[46] C. D. Walter, “Montgomery Exponentiation Needs No Final Subtractions,” Electronics

Letters, vol. 35, no. 21, 1999, pp. 1831-1832.

76

[47] C. D. Walter, “An Overview of Montgomery’s Multiplication Technique: How to make

it Smaller and Faster,” Proceedings of the First Workshop on Cryptographic Hardware and

Embedded Systems, Springer Lecture Notes in Computer Science, vol. 1717, 1999, pp. 80-

93.

[48] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Computers,

vol. 13, 1964, pp. 14-17.

[49] C.-W. Wu and Y.-F. Chou, “General modular multiplication by block multiplication and

table lookup,” Proceedings of the IEEE Int. Symp. Circuits and Systems (ISCAS), (London),

1994, pp. 295-298.

[50] http://research.sun.com/projects/crypto/draft-ietf-tls-ecc-05.txt, ECC Cipher Suites for

SSL, IETF Internet-draft specifying the use of Elliptic Curve Cryptography with SSL, July

2004.

77

VITA

Moboluwaji Olusegun Sanu was born in Nigeria, the son of Dr. and Mrs. A. O. Sanu.

He received the Bachelor of Science degree from Obafemi Awolowo University, Nigeria in

1999. He also received the Master of Science in Engineering degree from the University of

Texas at Austin in 2002. He is a member of the Application Specific Processing Group, The

University of Texas at Austin, where his research focuses on efficient computer arithmetic

and VLSI design for Galois fields.

Permanent Address: 1 Child Evangelism Drive, Iwo Road, Ibadan, Nigeria.

This dissertation was typed by the author.

