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Preface

This thesis is the culmination of work with Profs. Carlos Carvalho, James

Scott, and Nicholas Polson over the course of three years. Much of what is presented

here has been reported in two papers: Windle and Carvalho [2012] and Polson et al.

[2013b]. I refer to these works often, sometimes quoting passages, propositions, and

so forth so long as I was the one that penned the words originally. The narrative

of the thesis focuses on my contributions to these projects, though I am indebted to

my collaborators for their many helpful insights and suggestions without which this

dissertation would not have been possible. I must recognize that I had nothing to do

with one particularly brilliant idea: the recognition that 1/ cosh
√
t/2 is the Laplace

transform of a tractable distribution and, further, that this integral identity can be

used for data augmentation in binary logistic regression and related models is solely

attributable to Profs. Scott and Polson.
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The first portion of this thesis develops efficient samplers for the Pólya-Gamma dis-

tribution, an essential component of the eponymous data augmentation technique that can

be used to simulate posterior distributions derived from logistic likelihoods. Building fast

computational schemes for such models is important due to their broad use across a range

of disciplines, including economics, political science, epidemiology, ecology, psychology, and

neuroscience. The second portion of this thesis explores models of time-varying covariance

matrices for financial time series. Covariance matrices describe the dynamics of risk and the

ability to forecast future variance and covariance has a direct impact on the investment de-

cisions made by individuals, banks, funds, and governments. Two options are pursued. The

first incorporates information from high-frequency statistics into factor stochastic volatility

models while the second models high-frequency statistics directly. The performance of each

is assessed based upon its ability to hedge risk within a class of similarly risky assets.
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Gibbs sampler. FS follows Frühwirth-Schnatter et al. [2009]. RAM is
the random walk Metropolis-Hastings sampler from the bayesm pack-
age. α is the true intercept and yi is the ith response. Each model has
three continuous predictors. Taken from Polson et al. [2013b]. . . . . 46

2.4 Non-parametric negative binomial regression benchmarks. PG is the
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Chapter 1

Introduction

This thesis follows two paths of research. First, we discuss posterior simulation

for logistic likelihoods. Such likelihoods are encountered in a number of statistical

models, such as binary logistic regression, contingency tables, and negative binomial

regression for count data. We focus on a data augmentation strategy called the

Pólya-Gamma (PG) technique [Polson et al., 2013b], which, as its name suggests,

employs Pólya-Gamma random variables to facilitate posterior simulation. A key

factor in the efficiency of the PG technique is the rate at which one can generate such

variates. Thus, developing good sampling schemes is important for the success of the

PG method. Herein we develop three approaches, both exact and approximate, that

taken together efficiently produce random variates from the Pólya-Gamma family

across its entire parametric space. Second, we discuss forecasts of high-dimensional,

time-varying covariance matrices that use high-frequency data. Over the last few

decades, advances in storing and processing vast quantities of data have enabled

statisticians and econometricians to measure variations and covariations in daily asset

returns using data collected within a day, as opposed to data collected over several

days. These statistics appear to offer better methods for estimating and predicting

daily covariance matrices. We find that this is indeed the case compared to factor

stochastic volatility, a well-worn Bayesian approach. To improve predictions, we

1



explore extensions to factor stochastic volatility that incorporate information from

high-frequency statistics as well as matrix-variate methods that treat high-frequency

statistics as data to be modeled.
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Chapter 2

Sampling Pólya-Gamma Random Variates for

Posterior Distributions Derived from Logistic

Likelihoods

Efficient sampling from the Pólya-Gamma family of distributions is a key

ingredient in the approach advocated by Polson et al. [2013b] for posterior inference

when modeling count data, categorical data, or binary data. Their technique, called

the Pólya-Gamma method, is useful when working with logistic likelihoods, which

can be written as a product of terms of the form

(eψi)ai

(1 + eψi)bi

where ψi = xiβ is a linear combination of predictors and ai and bi are quantities

determined by the number of trials, the response, the hyperparameters, or some com-

bination thereof. Such models arise when one can describe the outcome variable in

terms a proportion, such as in binary logistic regression, multinomial logistic regres-

sion, contingency tables, and negative binomial regression for count data, and this

proportion is modeled on the log-odds scale. The aforementioned models are employed

within a variety of quantitative research areas, such as economics, epidemiology, neu-

roscience, psychology, ecology, and political science. Thus it is of great interest to

develop efficient, exact, and user friendly inference techniques for these models. The

3



PG method satisfies all of these criteria, though only when one may efficiently sample

from the Pólya-Gamma family of distributions. This chapter develops samplers for

that purpose.

Competing methods of posterior inference for these models include Metropolis-

Hastings-based methods as well as Gibbs sampling based methods. Metropolis-

Hastings methods require specifying a proposal distribution that is often accompanied

by a tuning parameter, which is an impediment to out-of-the box usability as well

as aesthetically unappealing. Gibbs sampling based methods, on the other hand,

are fully automatic in the sense that they require no such tuning parameter. In-

stead, these methods introduce auxiliary variables that yield convenient complete

conditional distributions. The Pólya-Gamma method follows this approach.

The structure of the chapter is as follows. First, we review binary logistic

regression, which motivates the data augmentation trick and sampler to follow, and

is one of the the two main benchmarks we will use to test the Pólya-Gamma method.

The preliminary discussion (§2.1) summarizes alternate data augmentation schemes

and shows how to employ the Pólya-Gamma data augmentation technique. Second,

we define the Pólya-Gamma distribution, enumerate its properties, and present a

general approach for Pólya-Gamma data augmentation (§2.2). Third, we devise a

Pólya-Gamma sampler and analyze its efficiency both mathematically and empir-

ically (§2.3, §2.4, and §2.5). The empirical portion includes an extensive suite of

binary logistic regression and negative binomial regression benchmarks to highlight

the performance of the Pólya-Gamma sampler and Pólya-Gamma technique against

other methods. A discussion of dynamic binomial logistic regression (§2.6) follows

4



to exemplify the flexibility of the Pólya-Gamma approach. Lastly, we present alter-

nate (§2.7) and approximate (§2.8) Pólya-Gamma samplers to address deficiencies of

the original Pólya-Gamma generator and then compare all three samplers to identify

where each sampler excels within the Pólya-Gamma parametric space (§2.9).

2.1 Background

2.1.1 Binary Logistic Regression

The canonical example that motivates the discussion to come is binary logistic

regression, in which the response variable yi may only take on two values, {0, 1}, with

the probability that

P (yi = 1|β) = pi.

We write this conditionally since pi depends upon β. In particular, logistic regression

stipulates a linear relationship on the log-odds scale,

ψi = log
( pi

1− pi

)
= xiβ.

Here xi is the d-dimensional row-vector of explanatory variables and may include a

pseudo-variable to account for an intercept while β is a d-dimensional column vector.

Given n observations and ~p = {pi}, the conditional density is

p(y|~p) ∝
n∏
i=1

pyii (1− pi)1−yi .

Inverting the relationship between ψi and pi yields

pi =
eψi

1 + eψi

5



and hence the conditional density in ψ = {ψi} is

p(y|ψ) ∝
n∏
i=1

( eψi

1 + eψi

)yi( 1

1 + eψi

)1−yi
∝

n∏
i=1

eψiyi

1 + eψi
(2.1)

∝
n∏
i=1

δ1(yi)
( eψi

1 + eψi

)
+ δ0(yi)

( 1

1 + eψi

)
. (2.2)

One may construct Gibbs samplers in at least two different ways. The best

alternative Gibbs-sampling based methods introduce auxiliary random variables to

augment the conditional density p(y|β). In contrast, the PG method introduces

auxiliary random variables to augment the posterior density p(β|y).

2.1.2 Alternate Data Augmentation Approaches

Holmes and Held [2006], Frühwirth-Schnatter and Frühwirth [2007, 2010], and

Fussl et al. [2013] introduce auxiliary random variables that yield convenient com-

plete conditionals for binary or binomial logistic regression. A simple, approximate

model is given in Albert and Chib [1993] using the t-link function. Holmes and

Held [2006] and Frühwirth-Schnatter and Frühwirth [2010] take inspiration from the

data augmentation approach of Albert and Chib [1993] for the probit model while

Frühwirth-Schnatter and Frühwirth [2007] and Fussl et al. [2013] follow the random

utility approach of McFadden [1974]. We summarize the various approaches below.

Proceeding as in Albert and Chib [1993], one may introduce a single auxiliary

random variable zi so that the data generating process for the conditional distribution

p(y|ψ) is expressed as {
yi = 1{zi > 0}
zi = ψi + νi, νi ∼ Lo(0, 1)

(2.3)

6



where Lo is the logistic distribution. One may verify this by writing

p(yi|ψi) = p(yi|zi)p(zi|ψi)

where

p(yi|zi) = δ1(yi)1{zi > 0}+ δ0(yi)1{zi ≤ 0}

and use the cumulative distribution function of the logistic distribution to show that

P (zi > 0) = eψi/(1 + eψi) and hence

p(yi|ψi) =

∫ ∞
−∞

p(yi|zi)p(zi|ψi)dzi.

This representation does not produce a convenient form for Gibbs sampling and hence

another layer of auxiliary random variables must be introduced.

Holmes and Held use the scale mixture of normals representation found in

Andrews and Mallows [1974] to write the logistic error term as{
Lo(0, 1) = N(0, λ)

λ ∼ 4KS2

where KS is a Kolmogorov-Smirnov distribution [Devroye, 1986]. Thus, their aug-

mented representation of yi is
yi = 1{zi > 0}
zi = ψi + εi, εi ∼ N(0, λi)

λi ∼ 4KS2.

This is precisely the form one seeks because p(z|β) is now normal (recall that ψi = xiβ)

and hence the conditional posterior, p(β|z, λ), will also be normal given a normal prior

for β. Further, this augmentation yields a manageable, though complex, posterior

distribution p(λi|ψi, yi) that engenders a Gibbs-sampler.
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Frühwirth-Schnatter and Frühwirth [2010] approximate Lo(0, 1) with a discrete

mixture of normals, that is {
Lo(0, 1) ≈ N(0, vr)

r ∼ MN(1, w).

where v is a known vector and MN(1, w) is a multinomial draw with a single trial and

known weights w. Though this is not an exact representation of the logistic density,

Frühwirth-Schnatter and Frühwirth show that the size of the discrete mixture need

not be large to arrive at a very good approximation. The approximate, augmented

representation is then 
yi = 1{zi > 0}
zi = ψi + εi, εi ∼ N(0, vri)

ri ∼ MN(1, w).

Again, this makes p(z|β) normal and hence p(β|z, r) is normal given a normal prior

for β. The posterior distribution of r is multinomial.

In yet another data augmentation scheme, Frühwirth-Schnatter and Frühwirth

[2007] make use the fact that the difference of two type-I extreme value distributions

is logistically distributed. In particular, if νui and ν0
i are distributed as − log E(1),

then νui − ν0
i ∼ Lo(0, 1); thus, one may substitute

zi = ψi + νui − ν0
i

in (2.3). Letting

zui = ψi + νui

we see that zi > 0 ⇐⇒ zui > z0
i where z0

i = ν0
i so that (2.3) becomes{

yi = 1{zui > z0
i }

zui = ψi + νui , ν
u
i ∼ − log E(1).
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This is the random utility approach of McFadden [1974]. Approximating νui as a

discrete normal of mixture N(mr, vr), where m and v are vectors and r ∼ MN(1, w),

though v and w are different than those from the proceeding paragraph, yields the

augmented representation
yi = 1{zui > z0

i }
zui = ψi + εui , εui ∼ N(mri , vri)

ri ∼ MN(1, w).

This has tractable complete conditional or marginal posteriors.

Fussl et al. [2013] follow this approach for binomial models, though one must

tabulate not a single discrete mixture, but an entire family. In particular, suppose

that there there are k trials at each observation so that yi is the number of successes

accumulated from yij, j = 1, . . . , k binary responses. The McFadden [1974] model

becomes 

yi =
∑n

j=1 yij

yij = 1{zuij > z0
ij}

zuij = ψi + νuij
z0
ij = ν0

ij

νuij, ν
0
ij ∼ − log E(1), j = 1, . . . , k.

Let f : Rn → R map v ∈ Rn to − log
∑k

j=1 exp(−vj). Then, letting{
z∗i = f({yuij}j)− f({y0

ij}j)
ν∗i = f(νuij)− f(ν0

ij),

we can collapse zuij = ψi + νuij into

z∗i = ψi + ν∗i , ν∗i ∼ Lok,
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where Lok is a type III logistic distribution, which in turn can be approximated by a

discrete mixture of normals so that{
z∗i = ψi + ε∗i , ε∗i ∼ N(0, vk,ri)

ri ∼ MN(1, wk).

Note the dependence of w and v on k: one must tabulate the weights and variances

for the entire family Lok, k ∈ N for this to be useful. In practice, Fussl et al. [2013]

tabulate weights and variances for some k and then interpolate within those weights

and variances for arbitrary k ∈ N.

Albert and Chib [1993] provide an approximate approach using a t(d)-link,

which is a good choice since the logistic quantiles are almost a linear function of t(8)

quantiles. The subsequent model is{
yi = 1{zi > 0}
zi = ψi + εi, εi ∼ N(0, 1)

to t(d)-link regression by introducing another random variable φi so that the latent

structure is {
zi = ψi + εi ∼ N(0, 1/φi)

φi ∼ Ga(d/2, d/2).

This requires only adding an additional step to sample (φ|z, β) to the Albert and

Chib probit sampler.

All of the proceeding methods employ an augmented representation that re-

quires at least two auxiliary variables. A heuristic rule is that the more variables

one introduces, the greater the autocorrelation between samples. One prefers less

autocorrelation because fewer samples are required to get a decent representation of

the population. Thus, one would ideally employ as few auxiliary random variables as
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possible when Gibbs sampling. The PG method uses only a single layer of auxiliary

variables and hence has an intrinsic advantage compared to these other techniques.

2.1.3 The Pólya-Gamma Method

The alternate methods we discussed above can all be phrased in terms of data

augmentation for the conditional distribution p(y|β). In contrast, the PG method

can be seen as data augmentation for the posterior distribution p(β|y). Consider the

posterior distribution generated from (2.1),

p(β|y) = c(y)
[ n∏
i=1

eyixiβ

1 + exiβ

]
p(β).

If one can write a single term from the product as (recall that ψi = xiβ)

eψiyi

1 + eψi
∝ eψiκi

∫ ∞
0

exp
(
− ψ2

i

2
ωi

)
p(ωi|y)dωi, (2.4)

then one can produce a joint distribution

p(β, ω|y) = C(y) exp
(
κ′Xβ − 1

2
βX ′ΩXβ

)
p(β)

n∏
i=1

p(ωi|y),

where Ω is a diagonal matrix with entries Ωii = ωi, that marginalizes to the proper dis-

tribution for (β|y). Note that the integral in (2.4) is like a Laplace transform. A con-

sequence of this integral representation is that the conditional distribution p(β|y, ω)

will be normal given a normal prior p(β). If furthermore, one can sample from

p(ωi|y, β) ∝ exp
(
− ψ2

i

2
ωi

)
p(ωi|y), (2.5)

then one can do Gibbs sampling as the conditional density for ω is

p(ω|y, β) =
n∏
i=1

p(ωi|y, β).
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The challenge is to find the distribution for ωi for which (2.4) holds.

Of course, the Pólya-Gamma family of distributions is the class that satisfies

(2.4) and (2.5). When ωi ∼ PG(1)

1/ cosh(ψi/2) =

∫ ∞
0

exp
(
− ψ2

i

2
ωi

)
p(ωi)dωi (2.6)

so that we have

eψiyi

1 + eψi
= 2−1eψi(yi−1/2) cosh−1(ψi/2),

satisfying equation (2.4). Furthermore, we define the Pólya-Gamma family by expo-

nentially tilting a PG(1) random variate so that x ∼ PG(1, z) has a density

p(x|z) ∝ exp(−z
2

2
x)p(x), p(x) ∼ PG(1). (2.7)

Hence, by definition, the conditional distribution of ωi given in (2.5) is PG(1, ψi),

which we will show later can be sampled efficiently.

Posterior Calculation 2.1 (Gibbs sampling for binary logistic regression). Given

a normal prior β ∼ N(β;m0, V0), we may Gibbs sample (β, ω|y) by

1. (β|y, ω) ∼ N(m1, V1) where{
V −1

1 = V −1
0 +X ′ΩX

V −1
1 m1 = X ′κ+ V −1

0 m0

and κ = y − 1/2;

2. (ω|y, β) ∼
∏n

i=1 p(ωi|y, β) where ωi ∼ PG(1, ψi) and ψ = Xβ.
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As we mentioned at the outset, the key to this being an efficient posterior

simulation technique is the ability to efficiently sample from the PG(b, ψ) distribu-

tion. Before tackling that problem, we define the Pólya-Gamma distribution more

rigorously and present some of its properties.

2.2 The Pólya-Gamma Distribution

The Pólya-Gamma distribution is closely related to one of the probability laws

described by Biane et al. [2001]. Thus this section is influenced by their work. We

define the Pólya-Gamma distribution to satisfy equations similar to (2.6) and (2.7)

and then show that such a distribution exists using Biane et al. [2001].

Definition 2.2 (The Pólya-Gamma Distribution). Suppose b > 0 and z ≥ 0. A

density p(x|b) on R+ is PG(b) if its Laplace transform is

cosh−b(
√
t/2) =

∫ ∞
0

exp(−tx)p(x|b)dx.

A random variable X ∼ PG(b, z) for z > 0 is defined by the density

p(x|b, z) = coshb(z/2) exp(−xz2/2)p(x|b).

This characterizes the distribution since the Laplace transform uniquely de-

termines a probability distribution [Billingsley, 1986]. We will see that such a Laplace

transform exists below. Substituting t = ψ2/2 into the Laplace transform shows that

cosh−b(z/2) =

∫ ∞
0

exp(−xz2/2)p(x|b)dx

and hence the expression for p(x|b, z) is indeed a density.
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Recall that we are interested in doing posterior inference for posteriors for the

form

p(β|y) ∝ p(β)
n∏
i=1

(eψi)ai

(1 + eψi)bi
(2.8)

where ai and bi are some functions of the data y and other parameters and ψi =

xiβ. The Pólya-Gamma distribution is the exact distribution needed to augment this

posterior for simulation via Gibbs sampling. In fact, we may state a more general

result by letting ψ = β({xi}i) where β is now a Gaussian process not a vector in Rp.

This framework subsumes many models, including regression and dynamic regression.

See Rasmussen and Williams [2006] (an excellent book that is freely available online)

for an introduction to Gaussian processes.

Posterior Calculation 2.3 (Pólya-Gamma Data Augmentation). Suppose the pos-

terior is (2.8) where ψ = β(X), X is the collection of covariates, and p(β) is a

Gaussian process prior for β. Then the density p(β|y) may be augmented with ran-

dom variables (ωi|ψi, y) ∼ PG(bi, ψi) , i = 1, . . . , n so that the complete conditional

p(β|y, ω) is equivalent to that derived from the non-parametric regression
zi = ψi + εi, εi ∼ N(0, 1/ωi)

ψ = β(X)

β ∼ GP(m,K).

where m and K are a mean and a covariance function,

zi = κi/ωi,

is pseudo-data, and κi = ai − bi/2. Further, the complete conditional p(ω|y, β) is

n∏
i=1

p(ωi|bi, ψi).
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We are implicitly conditioning on the covariates X throughout. Note that the Pólya-

Gamma data augmentation turns simulation of the regression coefficient into weighted

least squares.

Proof. Multiply (2.8) by p(ω|β, y) =
∏n

i=1 p(ωi|bi, ψi) to get

p(β, ω|y) = p(β|y)p(ω|β, y)

∝ p(β)
n∏
i=1

(eψi)ai

(1 + eψi)bi
p(ωi|bi, ψi)

∝ p(β)
n∏
i=1

eκiψi−
1
2
ψ2
i ωip(ωi|bi).

First, note that integrating in ω recovers the marginal posterior p(β|y), so this

is a valid data augmentation. Second, by construction, the complete conditional

p(ω|β, y) =
∏n

i=1 p(ωi|bi, ψi) as desired. Lastly, completing the square in the last

proportional relationship shows that

p(β|ω, y) ∝ p(β)
n∏
i=1

exp
(
− 1

2
ωi(zi − ψi)2

)
where zi = κi/ωi. Since this product is identical to the likelihood in ψ of a collection

of independent normal observations zi ∼ N(ψi, 1/ωi), the posterior for (β|ω, y) is

identical to the one generated by
zi = ψi + εi, εi ∼ N(0, 1/ωi),

ψ = β(X)

β ∼ GP(m,K).
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Example 2.4 (Regression). Consider the case of regression. Suppose the posterior

is (2.8) and that {
ψ = Xβ,

β ∼ N(m0, V0).

Then, following standard posterior calculations, p(β|ω, y) ∝ N(β;m1, V1) where{
V −1

1 = V −1
0 +X ′ΩX, Ω = diag{ωi},

m1 = V1

[
V −1

0 m0 +X ′Ωz
]

= V1

[
V −1

0 m0 +X ′κ
]
,

and κi = ai − bi/2, i = 1, . . . , n.

We have yet to establish that the Pólya-Gamma distribution exists and that

it has a density. However, Biane et al. [2001] essentially show this and many sub-

sequently properties. They survey laws that connect analytic number theory and

Brownian excursions. One such distribution, which we denote by J∗(b), has Laplace

transform given by

E[e−tJ
∗(b)] = cosh−b(

√
2t).

Biane et al. [2001] show that this distribution has a density and derive one of its

representations. Thus, the existence of PG(b) = J∗(b)/4 is verified and our definition

of PG(b, z) assured. When devising samplers, we find it convenient to work with

the J∗(b) distribution, since there is then a trove of prior work to reference directly,

instead of obliquely by a re-scaling. Above, we extended the definition of the Pólya-

Gamma family by exponential tilting so that

pPG(x|z, b) = coshb(z/2)e−xz
2/2pPG(x|b).

Similarly, we define J∗(b, z) so that a J∗(b, z) random variable has density

pJ∗(x|z, b) = coshb(z)e−xz
2/2pJ∗(x|b),
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in which case we have the following definition.

Definition 2.5. J∗(b, z) is the distribution with Laplace transform

coshb(z) cosh−b(
√

2t+ z2).

As noted above, Biane et al. [2001] show that there is a distribution with

Laplace transform cosh−b(
√

2t) and that it has a density. A single distribution may

be turned into an entire family by exponential tilting (see p. 6 of Jensen [1995]). In

particular, if a density p(x) has Laplace transform ϕ(t), then

e−λxp(x)/ϕ(λ)

engenders a family of densities, indexed by λ, that have Laplace transform

ϕ(t+ λ)/ϕ(λ).

This is precisely the path we have taken to construct J∗(b, z) and PG(b, z) using

λ = z2/2.

Fact 2.6. The following aspects of the J∗(b, z) distribution are useful.

1. PG(b, z) = 1
4
J∗(b, z/2).

2. J∗(b) has a density and it may be written as

pJ∗(x|b) =
2b

Γ(b)

∞∑
n=0

(−1)n
Γ(n+ b)

Γ(n+ 1)

(2n+ b)√
2πx3

exp
(
− (2n+ b)2

2x

)
.

Thus, the density of J∗(b, z) is

pJ∗(x|b, z) = coshb(z)e−xz
2/2pJ∗(x|b).
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3. The J∗(b, z) distribution is infinitely divisible. Thus, if X ∼ J∗(nb, z) where

b > 0 and n ∈ N, and Xi
iid∼ J∗(b, z) for i = 1, . . . , n, then

X
D
=

n∑
i=1

Xi.

4. The moment generating function of J∗(b, z) is

M(t; b, z) = coshb(z) cosb(
√

2t− z2)

and may be written as an infinite product

∞∏
n=0

(
1− t

dn

)−b
, dn =

π2

2

(
n+

1

2

)2

+
z2

2
.

5. Hence, J∗(b, z) is an infinite convolution of gammas and can be represented as

J∗(b, z) ∼
∞∑
n=0

gn
dn
, gn

iid∼ Ga(b, 1).

Proof. Biane et al. [2001] provide justification for items (2), (3), and essentially (5).

Justification for items (1) and (4) are in Polson et al. [2013b], though we present the

arguments here. For item (1), let X = J∗(b, z/2) and Y = X/4 transform

pJ∗(x|b, z/2)dx = coshb(z/2) exp
(
− x

4

z2

2

)
pJ∗(x|b)dx

to

coshb(z/2) exp
(
− yz

2

2

)
pJ∗(4y|b)d(4y) = coshb(z/2) exp(−yz2/2)pPG(y|b)dy.

The last expression is by definition Y ∼ PG(b, z). Regarding (4), recall the Laplace

transform of J∗(b, z) (Definition 2.5) is

ϕ(t|b, z) = coshb(z) cosh−b(
√

2t+ z2).
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By the Weierstrass factorization theorem [Pennisi, 1976], cosh(
√

2t) can be written

as

cosh(
√

2t) =
∞∏
n=0

(
1 +

t

cn

)
, cn =

π2

2
(n+ 1/2)2.

Taking the reciprocal of ϕ(t|1, z) yields

cosh(
√

2t+ z2)

cosh(z)
=

∏∞
n=0

(
1 + t+z2/2

cn

)
∏∞

n=0

(
1 + z2/2

cn

) =
∞∏
i=0

(
1 +

t

cn + z2/2

)
;

thus,

ϕ(t|b, z) =
∞∏
n=0

(
1 +

t

dn

)−b
, dn =

π2

2
(n+ 1/2)2 +

z2

2
.

Since ϕ(−t; b, z) = M(t; b, z) we have

M(t; b, z) =
∞∏
n=0

(
1− t

dn

)−b
and

M(t; b, z)

coshb(z)
= cosh−b(

√
−2t+ z2) = cos−b(

√
2t− z2).

Regarding item (5), one may invert the infinite product representation of Laplace

transform to show that

J∗(b, z) ∼
∞∑
n=0

gn
dn
, gn

iid∼ Ga(b, 1).

2.2.1 An Alternate Density

Below we devise a J∗(1, z), which is motivated by Devroye [2009], and relies

on a reciprocal relationship noticed by Ciesielski and Taylor [1962], who show that in
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addition to Fact (2.6.2) one may represent the density of a J∗(1) random variable as

∞∑
n=0

(−1)nπ
(
n+

1

2

)
e(n+1/2)2π2x/2. (2.9)

By pasting these two densities together, one can construct an extremely efficient

sampler. Unfortunately, there is no known general reciprocal relationship that would

extend this approach to J∗(n) for general n; however, Biane et al. [2001] provide an

alternate density for the J∗(2) distribution based upon a reciprocal relationship with

another random variable.

While there may not be an obvious reciprocal relationship to use, one may

find other alternate representations for the density of J∗(h) random variables when h

is a positive integer. Exploiting an idea from Kent [1980] for infinite convolutions of

exponential random variables, one may invert the moment generating function using

partial fractions. Consider the moment generating function of J∗(h):

M(t) =
∞∏
n=0

(
1− t

cn

)−h
, cn =

π2

2
(n+ 1/2)2 (2.10)

This can be expanded by partial fractions so that

M(t) =
∞∑
n=0

h∑
m=1

Anm
(t− cn)m

. (2.11)

Inverting this sum term by term we find that one can represent the density as

f(x|h) =
∞∑
n=0

h∑
m=1

Anm
xm−1e−cix

(m− 1)!
,

and infinite sum of gamma kernels.
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To find formulas for the {Anm}nm coefficients, consider the Laurent series

expansion of M(t) about ci.

M(t) =
∞∑
n=0

a(i)
n (t− ci)n +

h∑
m=1

b
(i)
m

(t− ci)m
. (2.12)

Such an expansions is valid since cn is an isolated singular point. Since the coefficients

at the pole are unique, comparing coefficients in (2.11) and (2.12) shows that Aim =

b
(i)
m . Further, one may calculate b

(i)
m by considering the function

νh(t) = (t− ci)hM(t)

and the computing

b(i)
m =

ν
(h−m)
h (ci)

(h−m)!
.

(See Churchill and Brown [1984].) Writing the MGF in product form, as in (2.10),

we see that

νh(t) = (−ci)h
∏
n 6=i

(
1− t

cn

)h
.

Define

ψh(t) = h log(−ci)− h
∑
n6=i

(
1− t

cn

)
.

Then log νh(t) = expψh(t) and the derivatives of ν can then be expressed as

ν ′h = eψhψ′h;

ν ′′h = eψh(ψ′h)
2 + eψhψ′′h;

ν ′′′h = eψh(ψ′h)
3 + 3eψhψ′hψ

′′
h + eψhψ′′′h

. . . = . . .
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where

ψ
(k)
1 (t) = (k − 1)!

∑
n6=i

(cn − t)−k.

Thus, one may calculate b
(i)
m numerically using ψ

(k)
h , though the convergence may be

slow.

However, the most important coefficient, b
(i)
h , is already known. Make the

dependence of b
(i)
m on h explicit by writing b

(i)
m (h). From the formulas above we know

that b
(i)
h (h) = νh(ci) and that νh(ci) = exp(ψ1(ci))

h. But exp(ψ1(ci)) = ν1(ci) = b
(i)
1 (1).

From the reciprocal relationship provided at the start of the section, we know that

b
(i)
1 (1) = (−1)i

√
2ci. Thus,

Aih = b
(i)
h (h) = (−1)ih(2ci)

h/2.

For h ∈ N, the density for J∗(h) takes the form

f(x|h) =
∞∑
n=0

[ h∑
m=1

Anm(h− 1)!

Anh(m− 1)!

1

xh−m

]Anhxh−1e−cix

(h− 1)!

so the Anh terms dominate for large x. Further, among those terms, the first,

A0hx
h−1e−c0x

(h− 1)!
=

(π/2)hxh−1e−c0x

(h− 1)!
,

should dominate as x→∞.

Remark 2.7. This provides insight into the tail behavior of the J∗(h) distribution.

For the right tail, we expect the density to decay as a Ga(h, c0) distribution. Examining

the representation (2.6.2), we expect the left tail to decay like IGa(1/2, h2/2). These

two observations will prove useful when finding an approximation of the J∗(h) density.
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We may multiply each of these densities by e−xz
2/2 to determine the tail behavior of

J∗(h, z): the right tail should look like Ga(h, c0 + z2/2) while the left tail should look

like IG(µ = h/z, h2).

2.3 A J∗(n, z) sampler for n ∈ N

Efficient Pólya-Gamma sampling, or equivalently J∗(n, z) sampling, is the

focus of this chapter and essential for the success of the PG method. One could

truncate the sum-of-gammas representation (Fact 2.6.5) to generate an approximate

random variate, but this is inexact, potentially leading to errors when simulating

posterior distributions. It also requires generating many gamma random variates for

each J∗ random variate, which is a rather large computational cost to bear. However,

in the case of J∗(1, z) one may avoid this problem. Simulating from the J∗(1, z)

distribution is (1) pertinent for doing Pólya-Gamma data augmentation for binary

logistic regression and (2) useful for generating J∗(n, z) random variates, n ∈ N, as

J∗(n, z) is equivalent in distribution to the sum of n independent J∗(1, z) random

variates. Devroye [2009] develops an efficient, exact sampler for J∗(1) and thus his

work is an important foundation upon which the J∗(1, z) sampler is built.

The J∗(1, z) sampler employs von Neumann’s alternating sum method [De-

vroye, 1986], which is an accept/reject algorithm for densities that may be represented

as infinite, alternating sums. To remind the reader about accept/reject samplers, one

generates a random variable Y with density f by repeatedly generating a proposal X

from density g and U from U(0, c g(X)) where c ≥ ‖f/g‖∞ until

U ≤ f(X); then set Y ← X.
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(See Robert and Casella [2005] for more details.) The von Neumann alternating sum

method requires that the density be expressed as an infinite, alternating sum

f(x) = lim
n→∞

Sn(x), Sn(x) =
n∑
i=0

(−1)iai(x)

for which the partial sums Si satisfy the partial sum criterion

∀x, S0(x) > S2(x) > . . . > f(x) > . . . > S3(x) > S1(x), (2.13)

which is equivalent to the sequence {ai(x)}∞i=1 decreasing in i for all x. In that case,

we have that u < f(x) if and only if there is some odd i such that u ≤ Si(x) and

u > f(x) if and only if there is some even i such that u ≥ Si(x). Thus one need

not calculate the infinite sum to see if u < f(x), one only needs to calculate as many

terms as necessary to find that u ≤ Si(x) for odd i or u ≥ Si(x) for even i. (We must

be careful when x = 0.) Below we will see that for the J∗(1, z) sampler, one rarely

needs to calculate a partial sum past S1(x) before deciding to accept or reject.

2.3.1 Sampling from J∗(1, z)

The J∗(1) density may be represented in two different ways

f(x) =
n∑
i=0

(−1)naLn(x) =
n∑
i=0

(−1)naRn (x),

corresponding to Fact (2.6.2) and (2.9), where

aLn(x) = π(n+
1

2
)
( 2

πx

)3/2

exp
(
− 2(n+ 1/2)2

x

)
(2.14)

and

aRn (x) = π
(
n+

1

2

)
exp

(
− (n+ 1/2)2π2x

2

)
. (2.15)
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Neither {aLn(x)}∞n=0 or {aRn (x)}∞n=0 are decreasing for all x, thus neither satisfy the

partial sum criterion. However, Devroye shows that aRn (x) is decreasing on IR =

[(log 3)/π2,∞) and that aLn(x) is decreasing for IL = [0, 4/ log 3]. These intervals

overlap and hence one may pick t in the intersection of these two intervals to define

the piecewise coefficient

an(x) =

{
aLn(x), x ≤ t

aRn (x), x > t

so that an(x) ≥ an+1(x) for all n and all x ≥ 0. Devroye finds that t = 2/π is the

best choice of t for his J∗(1, 0) sampler, which is where aL0 (x) = aR0 (x) Below we show

that this still holds for J∗(1, z). Thus the density f may be written as

f(x) =
∞∑
i=0

(−1)nan(x)

and this representation does satisfy the partial sum criterion (2.13). The density of

J∗(1, z) is then

f(x|z) = cosh(z) exp(−xz2/2)f(x)

according to our construction of J∗(1, z), in which case it also has an infinite sum

representation

f(x|z) =
∞∑
i=0

(−1)an(x|z), an(x|z) = cosh(z) exp(−xz2/2)an(x)

that satisfies (2.13) for the partial sums Sn(x|z) =
∑n

i=0(−1)nai(x|z), as

an(x) ≥ an+1(x) =⇒ an(x|z) ≥ an+1(x|z).

Following our initial discussion of the von Neumann alternating sum method,

all that remains is to find a suitable proposal distribution g. One would like to find
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a distribution g for which ‖f/g‖∞ is small, since this controls the rejection rate. A

natural candidate for g is the density defined by the kernel S0(x|z) = a0(x|z) as

S0(x|z) ≥ f(x|z) for all x. In that case, we sample X ∼ g until U ∼ U(0, a0(x|z))

has U ≤ f(X).

The proposal g is thus defined from (2.14) and (2.15) by

g(x|z) ∝ a0(x|z) = cosh(z)


( 2

πx3

)1/2

exp
(−1

2x
− z2

2
x
)

x < t

π

2
exp

(
−
[π2

8
+
z2

2

]
x
)

x ≥ t.

Let aL0 (x|z) = a0(x|z)1{x < t} be the left-hand kernel and define the right-hand

kernel aR0 (x|z) similarly. Rewriting the exponent in the left-hand kernel yields

−1

2x
− z2

2
x =
−z2

2x
(x2 − 2x|z|−1 + 2x|z|−1 + z−2)

=
−z2

2x
(x− |z|−1)2 − |z|;

hence

aL0 (x|z) = (1 + e−2|z|) IG(x|µ = |z|−1, λ = 1)

where IG(x|µ, λ) is the density of the inverse Gaussian distribution,

IG(x|µ, λ) =
( λ

2πx3

)1/2

exp
(−λ(x− µ)2

2µ2x

)
.

The normalizing constants

p =

∫ t

0

aL0 (x|z)dx and q =

∫ ∞
t

aR0 (x|z)dx (2.16)

let us express g as the mixture

g(x|z) =
q

p+ q

aL0 (x|z)

q
+

p

p+ q

aR0 (x|z)

p
.
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and shows that (suppressing the dependence on t)

c(z)g(x|z) = a0(x|z) where c(z) = p(z) + q(z).

Thus, one may draw X ∼ g(x|z) as

X ∼


IG(µ = |z|−1, λ = 1)1{x < t}, with prob. p/(p+ q)

E
(

rate =
π2

8
+
z2

2

)
1{x ≥ t}, with prob. q/(p+ q).

One may sample from the truncated exponential by taking X ∼ Ex
(

rate = π2

8
+ z2

2

)
and returning X + t. Sampling from the truncated inverse Gaussian requires a bit

more work, which we describe in Appendix 1. To recapitulate, to draw J∗(1, z):

1. Sample X ∼ g(x|z).

2. Generate U ∼ U(0, a0(X|z)).

3. Iteratively calculate Sn(X|z), starting at S1(X|z), until U ≤ Sn(X|z) for an

odd n or U > Sn(X|z) for an even n.

4. Accept if n is odd; return to step 1 if n is even.

2.3.2 Sampling J∗(n, z)

One can use the J∗(1, z) sampler to generate draws from the J∗(n, z) distri-

bution when n is a positive integer. As shown by Fact (2.6.3), sample Xi ∼ J∗(1, z)

for i = 1, . . . , n and then return Y =
∑n

i=1Xi.
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2.4 Analysis of the J∗(1, z) Sampler

We are interested in quantifying the efficiency of the J∗(1, z) sampler. There

are several metrics of interest, including (1) the rejection rate of the sampler, which

describes the number of proposals one must make before accepting; (2) the number

of partial sums one must calculate before deciding to accept or reject, which controls

the average time to sample a random variate; and (3) the total number of partial

sums one must calculate over all of the proposals made.

2.4.1 Acceptance Rate

The probability of accepting a proposal X ∼ g(x|z), given the value of that

proposal is

P(U ≤ f(X)|X = x) =
f(x|z)

c(z, t)g(x|z)
.

Integrating over the proposal density we find that the marginal probability of accept-

ing a proposal is

P(U ≤ f(X)) = c(z, t)−1.

Thus for each z we want to find t = t(z) that minimizes c(z, t); maximizing c(z, t(z))

over z then yields the worst possible acceptance rate. The following proposition

and proof, which was taken from Polson et al. [2013b], shows the best value of t

is independent of z and that even in the worst case scenario, the acceptance rate

c(z, t)−1 is close to unity.

Proposition 2.8. Writing out the expressions for p and q from (2.16) yields

p(z, t) =

∫ t

0

π

2
cosh(z) exp

{
−z

2x

2

}
aL0 (x)dx,
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q(z, t) =

∫ ∞
t

π

2
cosh(z) exp

{
−z

2x

2

}
aR0 (x)dx .

The following facts about the Pólya-Gamma rejection sampler hold.

1. The best truncation point t∗ is independent of z ≥ 0.

2. For a fixed truncation point t, p(z, t) and q(z, t) are continuous, p(z, t) decreases

to zero as z diverges, and q(z, t) converges to 1 as z diverges. Thus c(z, t) =

p(z, t) + q(z, t) is continuous and converges to 1 as z diverges.

3. For fixed t, the average probability of accepting a draw, 1/c(z, t), is bounded

below for all z. For t∗, this bound to five digits is 0.99919, which is attained at

z ' 1.378.

Proof. We consider each point in turn. Throughout, t is assumed to be in the interval

of valid truncation points, IL ∩ IR.

1. We need to show that for fixed z, c(z, t) = p(z, t) + q(z, t) has a maximum

in t that is independent of z. For fixed z ≥ 0, p(z, t) and q(z, t) are both

differentiable in t. Thus any extrema of c will occur on the boundary of the

interval IL ∩ IR, or at the critical points for which ∂c
∂t

= 0; that is t ∈ IL ∩ IR

for which

cosh(z) exp
{
− z2

2
t
}

[aL0 (t)− aR0 (t)] = 0.

The exponential term is never zero, so an interior critical point must satisfy

aL0 (t)− aR0 (t) = 0, which is independent of z. Devroye shows there is one such

critical point, t∗ ' 2/π, and that it corresponds to a maximum.
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2. Both p and q are integrals of recognizable kernels. Rewriting the expressions in

terms of the corresponding densities and integrating yields

p(z, t) = cosh(z)
π

2

1

y(z)
exp

{
− y(z)t

}
, y(z) =

z2

2
+
π2

8
,

and

q(z, t) = (1 + e−2z)ΦIG(t|1/z, 1)

where ΦIG is the cumulative distribution function of an IG(1/z, 1) distribution.

One can see that p(z, t) is eventually decreasing in z for fixed t by noting that

the sign of ∂p
∂z

is determined by

tanh(z)− z
z2

2
+ π2

8

− zt ,

which is eventually negative. (In fact, for the t∗ calculated above it appears to

be negative for all z ≥ 0, which we do not prove that here.) Further, p(z, t) is

continuous in z and converges to 0 as z diverges.

To see that q(z, t) converges to 1, consider a Brownian motion (Ws) defined on

the probability space (Ω,F ,P) and the subsequent Brownian motion with drift

Xz
s = zs + Ws. The stopping time T z = inf{s > 0|Xz

s ≥ 1} is distributed as

IG(1/z, 1) and P(T z < t) = P(maxs∈[0,t] X
z
s ≥ 1). Hence P(T z < t) is increasing

and limz→∞ P(T z < t) = 1, ensuring that q(z, t) = (1+e−2z)P(T z < t) converges

to 1 as z → ∞ as well. Continuity follows by considering the cumulative

distribution P(T z < t) = Φ((zt − 1)/
√
t) − exp(2zt)Φ((−1 − zt)/

√
t), which is

a composition of continuous functions in z.
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By the continuity and tail behavior of p and q, it follows that c(z, t) = p(z, t) +

q(z, t), for fixed t, is continuous for all z and converges to 1 as z diverges.

Further c(z, t) ≥ 1 since the target density and proposal density satisfy f(x|z) ≤

c(z, t)g(x|z) for all x ≥ 0. Thus, c takes on its maximum over z.

3. Since, for each t, c(z, t) is bounded above in z, we know that 1/c(z, t) is bounded

below above zero. For t∗, we numerically calculate that 1/c(z, t∗) attains its

minimum 0.9991977 at z ' 1.378; thus, 1/c(z, t∗) > 0.99919 suggesting that no

more than 9 of every 10,000 draws are rejected on average.

Remark 2.9. Having found that the best truncation point t∗ is independent of z, we

henceforth assume that value is fixed and drop it from the notation.

2.4.2 The Distribution of Partial Sums Calculated

In the alternating sum algorithm, one proposes X ∼ g(x|z), generates U ∼

U(0, S0(X|z)), and then checks U ≤ f(X|z) by iteratively computing partial sums.

As seen in Figure 2.1, X will be accepted or rejected after calculating the nth partial

sum if U ∈ (Sn−2, Sn] for odd n (with the convention that S−1 = 0) or U ∈ (Sn, Sn−2]

for even n, for n ∈ N. This observation motivates the following proposition.

Proposition 2.10. When sampling X ∼ J∗(1, z), the probability of deciding to accept

or reject a proposal after calculating the nth partial sum Sn, n ∈ N, is

1

c(z)

∫ ∞
0

(an−1(x|z)− an(x|z))dx.
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Figure 2.1: The probability of accepting or rejecting after calculating the jth partial
sum. When deciding to accept or reject using von Neumann’s alternating sum method
one iteratively checks U ≤ Sj(X) if j is odd and U > Sj(X) is j is even for j = 1, 2, . . ..
Thus the decision to stop is made on the jth iteration if U is in (Sj−2, Sj] if j is odd
and (Sj, Sj−2] if j is even (with the convention that S−1 = 0). Since U is uniformly
distributed given X the probability that U is in the jth interval is the ratio of the
interval’s length to S0.

Proof. Let Sn(x|z) denote the partial sums
∑n

i=0(−1)iai(x|z) and let S−1(x|z) = 0.

Let L denote the number of partial sums calculated before deciding to accept or reject

a proposal. That is X is drawn from g(x|z), U is drawn from U(0, a0(X|z)), and L is

the smallest natural number for which U ∈ Kn(X|z) where

Kn(x|z) :=

{
(Sn−2(x|z), Sn(x|z)], odd n,

(Sn(x|z), Sn−2(x|z)], even n.

The probability

P(L = n|X = x) = P(U ∈ Kn|X = x) =
|K(x|z)|
a0(x|z)

since U is uniformly distributed. The length of the nth interval is

|Kn(x|z)| = an−1(x|z)− an(x|z);
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so marginalizing over x we find that

P(L = n) =

∫ ∞
0

an−1(x|z)− an(x|z)

c(z)g(x|z)
g(x|z)dx =

1

c(z)

∫ ∞
0

an−1(x|z)− an(x|z)dx.

We may calculate each integral analytically as the piecewise definition of ai is

composed of an exponential kernel and an inverse Gaussian kernel. For the exponen-

tial kernel:

aRn (x|z) = cosh(z)π
(
n+

1

2

)
exp

{
− x

2

(
z2 + (n+ 1/2)2π2

)}
.

For the inverse Gaussian kernel,

2 cosh(z)
(

2n+ 1
)( 1

2πx3

)1/2

exp
{
−
(z2

2
x+

(2n+ 1)2

2x

)}
,

we may rearrange the term in the exponent,

−z
2

2
x− (2n+ 1)2

2x
= − z

2

2x

(
x2 + µ2

n

)
, µ2

n = (2n+ 1)2/z2

=
−z2

2x

(
x2 − 2µnx+ µ2

n + 2µnx
)

= −z2µn −
λn

2xµ2
n

(x− µn)2, λn = (2n+ 1)2,

to get

aLn(x|z) = 2 cosh(z) exp(−|z|(2n+ 1))
( λn

2πx3

)1/2

exp
{
− λn

2xµ2
n

(x− µn)2
}
.

The corresponding integrals of interest are∫ ∞
t

aRn (x|z) = cosh(z)
yn

1
2

(
z2 + y2

n

) exp
{
− t

2

(
z2 + y2

n

)}
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where yn = (n+ 1/2)π; and∫ t

0

aLn(x|z) = (1 + e−2|z|)e−2n|z|ΦIG(t|µ = µn, λ = λn).

The first four probabilities for the worst case z, z = 1.378, are

n 1 2 3 4
P(L = n) 9.991977e-01 8.023005e-04 1.727943e-09 8.213354e-18

.

2.4.3 Average Number of Partial Sums Calculated

Given this distribution of inner loop iterations, one may calculate a variety of

summary statistics, such as the average number of inner loop iterations. Namely,

E[L] =
∞∑
n=1

n P(L = n).

Writing down this sum explicitly, one finds that

∞∑
n=1

n P(L = n) =
1

c(z)

∞∑
n=0

∫ ∞
0

a(x|z)dx,

which simplifies the calculation.

2.4.4 Wald’s Theorem

The calculations above are done marginally, per proposal. For instance, we

calculated the average number of partial sums calculated for each proposal, that is the

average number of partial sums we expect to calculate before making a single decision

to accept or reject. However, it is possible to go one step further and calculate these

averages not just on a per proposal basis, but summed over all of the proposals made

before accepting. This is Wald’s Theorem [Devroye, 1986].
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Theorem 2.11 (Wald’s Theorem). Assume that W1,W2, . . . , are i.i.d. Rd-valued

random variables, and that Ψ is an arbitrary non-negative Borel measurable function

of Rd. Then, for all stopping rules N ,

E
[ N∑
i=1

Ψ(Wi)
]

= E[N ] E[Ψ(W1)].

To see how this theorem might be useful, imagine an accept/reject type algo-

rithm. Each time one makes a proposal, one generates a vector of random variables

Wi = (Xi, Ui) that are i.i.d. It may be the case that Wi has more than two random

variables. Further, there is some stopping rule N that records the total number of

proposals and a function Ψ that maps Wi to some quantity of interest such as the

number of floating point operations, the number of if statements evaluated, or the

number of partial sums evaluated. We know that N is a stopping time because, as

pointed out by Devroye, {N = n} is determined by W1, . . . ,Wn and thus N = n is

Fn-measurable. Wald’s theorem tells us how to calculate the expected total number

of whatever it is we are interested in, i.e. the expected value of

N∑
i=1

Ψ(Wi).

Example 2.12 (Theorem 5.1, Devroye [1986]). Let Li denote the total number of

partial sums calculated until deciding to accept or reject the ith proposal. Let N be

the total number of proposals made before accepting. Then the average total number

of partial sums calculated, over all proposals, is

∞∑
n=0

∫ ∞
0

an(x|z)dx.
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Proof. By Wald’s theorem

E[
N∑
i=1

Li] = E[N ]E[Li].

The probability of accepting a proposal is

ρ = c(z)−1

and the number of proposals made before accepting, M , is NB(1, 1 − ρ). Thus, the

expected value of N is E[N ] = E[M + 1] = c(z). Hence,

E[
N∑
i=1

Li] = c(z)
1

c(z)

∞∑
n=0

∫ ∞
0

an(x|z)dx.

Doing the calculation, E
[∑N

i=1 Li

]
is 1.0016 when z = 1.378, the worst case

scenario for z. In other words, on average, one only needs to execute 1.0016 inner-loop

iterations in total when z = 1.378.

2.5 The J∗(1, z) sampler in practice

We have shown that the J∗(1, z) sampler has excellent theoretical performance,

very often accepting the first proposal after calculating the first partial sum. However,

the most important measure of the J∗(1, z) sampler is not its theoretical properties,

but rather the performance of the Pólya-Gamma data augmentation technique when

using the J∗(1, z) sampler. Thus, to gauge the strengths and weaknesses of the

J∗(1, z) sampler and the corresponding J∗(n, z) sampler we will conduct an extensive

suite of empirical tests comparing the Pólya-Gamma technique using this sampler to

competing methods.
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Two models are considered, binary logistic regression and negative binomial

regression for count data. Binary logistic requires generating a single J∗(1, z) random

variate for each observation while negative binomial regression requires generating

roughly yi J
∗(1, z) random variates where yi is the ith response. When the number

of counts at each observation is somewhat large this may become a problem. Thus,

the J∗(1, z) sampler should perform well in the first case, but poorly in the second.

For binary logistic regression, the Pólya-Gamma technique is compared against

8 other techniques, 4 of which are data augmentation techniques and 4 of which

are Metropolis-Hastings based techniques. (For more details on Metropolis-Hastings

see Robert and Casella [2005].) For negative binomial regression, the Pólya-Gamma

technique is compared against 2 other techniques, one of which is a data augmentation

approach, the other of which is a random walk Metropolis sampler.

Following Frühwirth-Schnatter and Frühwirth [2010], the primary metric of

comparison will be the effective sampling rate (ESR), which is the effective sample

size per second (ESS). The ESR quantifies how quickly a sampler can produce in-

dependent draws from the posterior distribution. However, the ESR is sensitive to

numerous idiosyncrasies relating to the implementation of the routines, the language

in which they are written, and the hardware on which they are run. We generate

these benchmarks using R, an interpretive language that is not nearly as fast as a

compiled language, though some of the R routines make calls to external C code.

Details on the implementations of the routines can be found in Appendix 3.

We draw several conclusions from these benchmarks. In terms of effective

sample size, the Pólya-Gamma technique performs well. In terms of effective sam-
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pling rate, the Pólya-Gamma method using the J∗(1, z) sampler out-performs other

data augmentation techniques for binary logistic regression. While the Pólya-Gamma

method does not out-perform the independence Metropolis samplers for binary logis-

tic regression, it is easier to code and more amenable to complex models. For instance,

the independence Metropolis samplers that work well in the simplest case are not eas-

ily transferred to mixed models or factor models. For negative binomial regression the

Pólya-Gamma method only performs well when the count sizes are relatively small.

One can mitigate this deficiency by considering more complicated models in which a

greater proportion of time will be spent simulating from other parameters or states

present in the model. The poor performance in the negative binomial case is a con-

sequence of the fact that the J∗(1, z) sampler generates J∗(n, z) by summing n ∈ N

J∗(1, z) random variates, an issue we will address later.

2.5.1 Benchmarking Procedure

For each data set, we run 10 MCMC batches, each batch generating 12,000

samples, the first 2,000 of which are discarded as burn in to leave a total of 10 batches

of 10,000 samples. Each simulation produces a Markov chain whose invariant distri-

bution is the posterior p(β, . . . |y) where . . . denote the auxiliary variables. For each

component of the regression coefficient β ∈ Rp the effective sample size is calculated

using the coda package [Plummer et al., 2006] and averaged across the 10 batches.

The effective sample size estimates the number of (effectively) independent samples

that have been produced by the Markov chain. Following Holmes and Held [2006],
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the ESS of βi from the kth batch is

ESSi,k = M/{1 + 2
∞∑
j=1

ρi,k(j)}

where M is the number of post-burn-in samples and ρi,k(j) is the jth autocorrelation

of the chain Ci,k = {β(t,k)
i }Mt=1. The coda package estimates the autocorrelation by fit-

ting Ci,k to an autoregressive process [Hamilton, 1994]. The component-wise effective

sample sizes are then averaged across batches to produce

ESSi =
1

10

10∑
i=1

ESSi,k,

the point estimate of the effective sample size the the ith component of β.

The effective sample size is an important theoretical quantity, but from a

practical perspective the rate at which one produces effectively independent samples

is more meaningful. Hence, we normalize the effective sample sizes using the time it

takes to generate the sample, yielding the component-wise effective sampling rates:

ESRi,k =
ESSi,k

time to produce M samples
.

Note that the effective sampling rate does not include the time spent preprocessing or

burning into the Markov chain. As with the ESS, we average the effective sampling

rates over batches to produce component-wise ESRi, i = 1, . . . , p. We summarize

the component-wise ESS and ESR via their minimum, median, and maximum. The

numerical experiments are conducted using R 2.15.1 on an Ubuntu machine with an

Intel Core i5 quad core processor and 8GB of RAM.
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2.5.2 Binary Logistic Regression

Data Sets and Alternate Methods

The data sets used are featured in either Holmes and Held [2006] or Frühwirth-

Schnatter and Frühwirth [2010]. We also construct two synthetic data sets to assess

the effect of correlation in the predictors. The competing methods include data aug-

mentation approaches, such as O’Brien and Dunson [2004], Frühwirth-Schnatter and

Frühwirth [2010], Gramacy and Polson [2012], and Fussl et al. [2013], as well as

Metropolis-based approaches such as Rossi et al. [2005]. We omit a comparison with

Holmes and Held [2006] and Frühwirth-Schnatter and Frühwirth [2007] since a few

initial tests showed these methods to be inferior Frühwirth-Schnatter and Frühwirth

[2010], verifying the work therein. A complete description of the data sets and meth-

ods can be found in Appendix 3.

Results

As seen in Table 2.1, the Pólya-Gamma method beats all other data aug-

mentation techniques for binary logistic regression in terms of both median effective

sample size and median effective sampling rate. (Henceforth, we will always be refer-

ring to median values.) The Pólya-Gamma method always beats the independence

Metropolis samplers in terms of effective sample size; however, it does not beat the

independence Metropolis samplers in terms of effective sampling rate. Independence

Metropolis samplers perform well since (1) proposals are cheap, a consequence of only

performing large computations in the preprocessing stage, and (2) a Gaussian or t

distribution that matches the mode and Hessian at the mode of the posterior will
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Nodal Diab. Heart AC GC1 GC2 Sim1 Sim2
ESS Pólya-Gamma 4860 5445 3527 3840 5893 5748 7692 2612

PG:Best Aug. 2.95 2.63 5.68 3.68 2.65 2.67 2.54 4.55
PG:Best Met. 1.35 1.04 3.28 9.25 1.76 5.47 1.87 1.88

ESR Pólya-Gamma 1632 964 634 300 383 258 2010 300
PG:Best Aug. 1.84 2.52 3.39 4.35 2.97 3.04 1.93 5.08
PG:Best Met. 0.58 0.38 1.17 2.46 0.41 1.16 0.70 0.56

Table 2.1: A summary of the binary logistic regression benchmarks. For each data
set, an MCMC simulation generates 12,000 samples, the first 2,000 are discarded,
leaving a total of 10,000 samples. The effective sample size (ESS) and effective sam-
pling rates (ESR) are calculated for each component of the regression coefficient, β,
individually. The rows labeled Pólya-Gamma report the median effective sample size
of {βi}pi=1. The rows labeled PG:Best Aug. and PG: Best Met. report the ratio of
Pólya-Gamma median ESS or ESR to the ESS or ESR of the best alternative data
augmentation scheme or Metropolis-Hastings scheme. A more detailed table may be
found in Appendix 3.3.

make a good proposal given sufficient data. (Such an approach a proposal is called a

Laplace approximation.)

However, a major advantage of data augmentation, and hence the Pólya-

Gamma technique, is that it is easily adapted to more complicated models. Consider,

for instance, a binary logistic mixed model whose intercepts are random effects, in

which case the log odds for observation j from group i, ψij, is modeled by:

ψij = αi + xijβ

αi ∼ N(m, 1/φ)

m ∼ N(0, κ2/φ)

φ ∼ Ga(1, 1)

β ∼ N(0, 100I).

(2.17)

An extra step is easily added to the Pólya-Gamma Gibbs sampler to estimate α, β,

m and φ. However, if one follows the path taken for binary logistic regression, and
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chooses a proposal based upon the Laplace approximation for all of the parameters

together, then the independence Metropolis approach will perform poorly, as seen in

Table 2.2. The results in Table 2.2 make use of a Gaussian proposal but a student-t

proposal performs no better. Altering the independence Metropolis sampler to draw

in blocks would require recalculating the posterior mode and variance for each block,

a time consuming process that would negate the advantages of the independence

Metropolis approach. It may be possible to find better Metropolis-based methods,

such as Gamerman [1997]. We leave the task of trying all such possibilities to another

researcher and simply observe that the Metropolis-based approaches that work well

in the simple case do not transfer over to slightly more complicated cases; further

that the very openness of the aforementioned proposition is a point in favor of the

Pólya-Gamma technique. The Pólya-Gamma method combines speed, ease of use,

and flexibility, requiring no input from the user in terms of selecting proposals or tun-

ing parameters and accommodating more complicated models without hassle. Thus,

when using the Pólya-Gamma approach, any sacrifice one might make in terms of

effective sampling rate is made up for in simplicity.

2.5.3 Negative Binomial Regression

Data Sets and Alternate Methods

For negative binomial regression, we conduct benchmarks using two synthetic

data sets consisting of N = 400 predictors and responses. The main difference be-

tween data sets is the average count size: one has fewer counts on average, while the
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Synthetic: N = 500, Pa = 5, Pb = 1, samp=10,000, burn=2,000, thin=1
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 7.29 1.00 4289.29 6975.73 9651.69 588.55 957.18 1324.31
Ind-Met. 3.96 0.70 1904.71 3675.02 4043.42 482.54 928.65 1022.38

Polls: N = 2015, Pa = 49, Pb = 1, samp=100,000, burn=20,000, thin=10
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 31.94 1.00 5948.62 9194.42 9925.73 186.25 287.86 310.75
Ind-Met. 146.76 0.006 31.36 52.81 86.54 0.21 0.36 0.59

Xerop: N = 1200, Pa = 275, Pb = 8, samp=100,000, burn=20,000, thin=10
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 174.38 1.00 850.34 3038.76 4438.99 4.88 17.43 25.46
Ind-Met. 457.86 ' 0 1.85 3.21 12.32 0.00 0.01 0.03

Table 2.2: A set of three benchmarks for binary logistic mixed models. N denotes the
number of samples, Pa denotes the number of groups, and Pb denotes the dimension
of the fixed effects coefficient. The random effects are limited to group dependent
intercepts. Notice that the second and third benchmarks are thinned every 10 samples
to produce a total of 10,000 posterior draws. Even after thinning, the effective sample
size for each is low compared to the PG method. The effective samples sizes are taken
for the collection (α, β,m) and do not include φ. Taken from Polson et al. [2013b].

other has more counts on average. Synthetic responses are generated using the model{
yi ∼ NB(mean = µi, d)

log µi = ι+ xiβ

where β ∈ R3. The model with fewer counts corresponds to ι = 2 while the model

with more counts corresponds to ι = 3, producing a sample mean of roughly 8 in the

former and 24 in the latter. In both cases, d = 4.

We compare the Pólya-Gamma method to the random walk Metropolis sam-

pler of Rossi et al. [2005] and the discrete mixture of normals approach of Frühwirth-

Schnatter et al. [2009] who exploit the Poisson-Gamma mixture representation of the

negative binomial distribution. In particular, yi ∼ NB(d, pi) can be simulated via{
yi ∼ Pois(λi)

λi ∼ αiGa(d, 1)
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where log(αi) = ψi = log pi
1−pi . Letting zi = log λi we see that

zi = ψi + νi , νi ∼ log Ga(d, 1).

Approximating νi by a discrete normal of mixtures yields{
zi = ψi + εi, εi ∼ N(mr,d, vr,d)

ri ∼ MN(1, wd),

where md, vd, and wd are the means, variances, and weights of the normal mixture

that approximates a log Ga(d, 1) distribution. As is the case for Fussl et al. [2013], this

requires tabulating a large, finite number of discrete mixtures and then interpolating

for those values of d not directly calculated. One can easily move between the log-odds

and the log mean of the negative binomial distribution by log(µi) = ψi + log(d).

Results

The Pólya-Gamma approach out-performs the other methods in terms of ef-

fective sample size; however, its effective sampling rates fare less well when working

with anything but small counts. Recall that, currently, a PG(n, z) random variate is

generated by summing n J∗(1, z) random variates and that the likelihood for negative

binomial regression is
n∏
i=1

(eψi)yi

(1 + eψi)d+yi
.

Following Posterior Calculation 2.3, the auxiliary variables will be sampled as PG(bi, ψi)

where bi = d+yi, i = 1, . . . , N . Thus, one must sample Nd+
∑N

i=1 yi J
∗(1, z) random

variates, where yi is the response, at every MCMC iteration. When the number of

counts is relatively high this becomes a burden and the J∗(n, z) sampler performs
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poorly. We see this in Table (2.3), where the Pólya-Gamma sampler does well when

working with relatively small count sizes, but poorly when that is not the case. (For

all models we consider, the parameter d is estimated using a random-walk Metropolis-

Hastings step over the integers.)

The Pólya-Gamma method does better when working with models that devote

proportionally less time to sampling the auxiliary variables. For instance, consider

the model 
yi ∼ NB(mean = µi, d), i = 1, . . . , N

log µi = υ(xi),

υ ∼ GP (0, K)

where K is the square exponential covariance kernel,

K(x1, x2) = κ+ exp
(‖x1 − x2‖2

2`2

)
,

with characteristic length scale ` and nugget κ. Again, one must sample Nd+
∑N

i=1 yi

J∗(1, z) random variates to generate the PG auxiliary variables. However, to sample

log µ, one must calculate the Cholesky decomposition of a precision matrix of order N ,

the number of responses. One can preprocess this decomposition if the other param-

eters are known; however, if one wants to estimate d or one of the hyperparameters

in K, then this decomposition must be repeated at every step in the Gibbs sampler.

In that case, the time taken to sample the PG random variates is the same as in the

parametric regression setting above, but the proportion of time spent sampling them

is reduced. The same holds for the auxiliary variables in Frühwirth-Schnatter et al.

[2009].

Table (2.4) shows that the time spent calculating a large Cholesky decompo-

sition at each step alters the ESR calculation to make the Pólya-Gamma approach
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Less Counts: α = 2, ȳ = 8.11,
∑
yi = 3244, N = 400

Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 26.84 1.00 7269.13 7646.16 8533.51 270.81 284.85 317.91
FS 8.10 1.00 697.38 719.36 759.13 86.10 88.80 93.70
RAM 10.17 30.08 737.95 748.51 758.57 72.59 73.62 74.61

More Counts: α = 3, ȳ = 23.98,
∑
yi = 9593, N = 400

Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 58.99 1.00 3088.04 3589.67 4377.21 52.35 60.85 74.20
FS 8.21 1.00 901.50 915.39 935.06 109.73 111.45 113.84
RAM 8.69 30.33 757.91 763.81 771.73 87.25 87.93 88.84

Table 2.3: Negative binomial regression benchmarks. PG is the Pólya-Gamma Gibbs
sampler. FS follows Frühwirth-Schnatter et al. [2009]. RAM is the random walk
Metropolis-Hastings sampler from the bayesm package. α is the true intercept and yi
is the ith response. Each model has three continuous predictors. Taken from Polson
et al. [2013b].

competitive. In the first synthetic data set in Table (2.4), 256 equally spaced points

in R2 are used to generate a draw υ(xi) and yi for i = 1, . . . , 256 where υ ∼ GP (0, K)

and K has length scale ` = 0.1 and a nugget = 0.0. The average count value of

the synthetic data set is ȳ = 35.7, yielding 9137 total counts, which is roughly the

same amount as in the larger negative binomial example discussed earlier. Whereas

before the Pólya-Gamma method lost when working with this number of total counts,

it now wins. In the second synthetic data set, 1000 randomly selected points were

chosen to generate a draw from υ(xi) where υ ∼ GP (0, K) and K has length scale

` = 0.1 and a nugget = 0.0001. The average count value is ȳ = 22.72, yielding 22, 720

total counts. The larger problem shows an even greater improvement in performance

over the method of Frühwirth-Schnatter et al. Hence, despite the J∗(1, z) sampler’s

poor performance for negative binomial regression, there are situations where it is

still useful.
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Gaussian Process: ȳ = 35.7,
∑
yi = 9137, N = 256, ` = 0.1, nugget=0.0

Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 101.89 1.00 790.55 6308.65 9798.04 7.76 61.92 96.19
FS 53.17 1.00 481.36 1296.27 2257.27 9.05 24.38 42.45

Gaussian Process: ȳ = 22.7,
∑
yi = 22732, N = 1000, ` = 0.1, nugget=0.0001

Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 2021.78 1.00 1966.77 6386.43 9862.54 0.97 3.16 4.88
FS 1867.05 1.00 270.13 1156.52 1761.70 0.14 0.62 0.94

Table 2.4: Non-parametric negative binomial regression benchmarks. PG is the Pólya-
Gamma method. FS follows Frühwirth-Schnatter et al. [2009]. There are roughly as
many total counts as in the first table as their are in the larger example in Table
2.3; however, the cost of drawing the posterior mean at the observed data points is
much greater in this case, which reduces the penalty associated with sampling many
Pólya-Gamma random variables. The second table shows that the cost drawing the
posterior mean is even more pronounced for larger problems. N is the total number
of observations and yi denotes the ith observation. Taken from Polson et al. [2013b].

2.5.4 Recapitulation

The J∗(1, z) sampler works well for binary logistic regression and binary logis-

tic mixed models, but poorly for negative binomial regression. The poor performance

is due to the way in which one samples J∗(n, z) for n ∈ N. In particular, such ran-

dom variates heretofore have been generated by summing n independent draws from

J∗(1, z), a time consuming process when n is large. Thus, a major goal in the sequel

is develop new J∗(n, z) samplers that do better when drawing J∗(n, z) for large n

and, consequently, that improve the performance of the Pólya-Gamma technique for

negative binomial regression. First, though, we will take a closer look the the inherent

advantages of the Pólya-Gamma technique over Metropolis-based approaches when

working with slightly more complicated models.

The Pólya-Gamma approach is superior in general because it is fast, easy to
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use, and flexible. Above, we justify this claim by running benchmarks for a set of

binary logistic mixed models. Those benchmarks did not look closely at the collection

of Metropolis-Hastings methods available and hence our conclusion is not definitive.

Mixed models are but one example we could have considered: factor models and

dynamic models are two more cases where the independence Metropolis techniques

used in regression do not easily transfer. Thus, to bolster our claim further, we take

a more detailed look at the dynamic binary logistic models.

2.6 Dynamic Models : A Case Study

In §2.5.2, we found that independence Metropolis often works well for binary

logistic regression. Simply extending what works well in that simple case does not

apply to more complicated models, such as mixed models, though we did not examine

all of the possible variations in Metropolis-Hastings like algorithms one might pursue.

Here, we examine another class of more complicated models, dynamic generalized

linear models with logistic likelihoods, and argue that there is no Metropolis-based

analog that performs better in this setting. Thus, there are settings in which the

Pólya-Gamma approach decisively out-performs all other options.

Recall that, in the most general setting we have considered, posterior distri-

butions amenable to the Pólya-Gamma technique take the form

p(β|y) = p(β)
n∏
i=1

(eψi)ai

(1 + eψi)bi

where ψi = β(xi) and β ∼ GP(m,K). In the dynamic case, the prior for β becomes

a Gaussian time series, for instance, insisting that β is an autoregressive process of
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order 1 [Hamilton, 1994], that is β ∼ AR(1), imposes the prior dynamics

βi = µ+ φ(βi−1 − µ) + ηi, ηi ∼ N(0,W ).

Applying Posterior Calculation 2.3, the complete conditional for β under the aug-

mented model is identical to the posterior for β under
zi = ψi + εi, εi ∼ N(0, 1/ωi),

ψi = xiβi,

βi = µ+ φ(βi−1 − µ) + ηi, ηi ∼ N(0,W ).

where zi = (ai− bi/2)/ωi. This is a dynamic linear model and hence one may forward

filter and backwards sample to draw p(β|W ) (see Frühwirth-Schnatter [1994], Carter

and Kohn [1994]), a relatively fast procedure that takes O(n) operations, unlike the

general Gaussian process case, which requires O(n3) operations per sample.

We now turn to previous efforts for simulating dynamic models like the one

above. Much of this work focuses on the larger class of dynamic linear models
yi ∼ P(ψi)

ψi = xiβi

βi ∼ AR(1),

where the response (yi|ψi) is drawn from an exponential family [Casella and Berger,

2002]. Such models are called dynamic generalized linear models (DGLM).

2.6.1 Previous Efforts

Bayesian inference for dynamic generalized linear models dates back to at

least West et al. [1985] who used conjugate updating with backwards sampling by

linear Bayes (CUBS) to sample the dynamic regression coefficients of DGLMs when
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the observation (yi|ψi) comes from an exponential family; but their method is only

approximate. Much effort has been devoted to developing exact posterior samplers,

though none has proved to be completely satisfactory. A primary goal of any such

sampler is to sample states jointly, like the forward filter backwards sampler (FFBS)

of Frühwirth-Schnatter [1994] and Carter and Kohn [1994], since jointly sampling

states tends to result in less autocorrelation than sampling the states component-

wise, an approach suggested by Carlin et al. [1992] prior to the advent of the advent

of the FFBS. However, the FFBS procedure requires Gaussian, linear state-space

evolution equations and observation equations. Without these assumptions, as is the

case with exponential families in general, the machinery of the FFBS breaks down.

To resurrect the FFBS, one may approximate the posterior with some convenient

proposal density and then accept or reject using Metropolis-Hastings, or one may use

data augmentation so that, conditionally, the observations and states are generated

by a DLM. Neither method is guaranteed to work well.

Gamerman [1998] discusses various Metropolis-Hastings based approaches, all

of which rely on some Laplace-type approximation (and hence all of which can be

phrased as iteratively reweighed least squares [Wedderburn, 1974]) for generating pro-

posals. None of the various approaches is completely satisfactory: component-wise

proposals have decent acceptance rates, though high autocorrelation between consec-

utive samples, while joint proposals suffer from unacceptably small acceptance rates.

Gamerman’s solution is to transform the problem so that one samples the innovation

variances component-wise using a Laplace approximation with Metropolis-Hastings

update, arguing that the new coordinate system possesses less intrinsic correlation.
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But this approach is more computationally intensive since one must transform the pro-

posals back to the original coordinate system at each iteration to evaluate Metropolis-

Hastings acceptance probability.

Shephard and Pitt [1997] attempt to strike a balance between the autocorrela-

tion of consecutive samples and the acceptance probabilities of proposed samples by

drawing blocks of states. Sampling in blocks reduces autocorrelation while restraining

the size of the blocks ensures a reasonable Metropolis-Hastings acceptance probability.

However, their method still suffers from autocorrelation between consecutive draws

for the hidden states.

More recently, techniques have emerged that do generate joint draws of the

states. Ravines et al. [2006] built upon West et al. [1985] by adding a Metropolis-

Hastings step to sample the states exactly. Though this at first would seem like a

poor choice due to the high dimensionality often encountered in time series, they

find that, in fact, the technique results in reasonable acceptance rates unlike a global

Laplace approximation. That conjugate updating improves the Metropolis-Hastings

proposal enough to allow for “efficient” joint draws is somewhat surprising.

All of the data augmentation techniques described in Section 2.1.2 for bi-

nary logistic regression, that is Holmes and Held [2006], Frühwirth-Schnatter and

Frühwirth [2007], Frühwirth-Schnatter and Frühwirth [2010], and Fussl et al. [2013],

can be immediately extended to dynamic binary logistic regression. The compar-

isons below make use of Fussl et al. [2013], since that is the most recent method

from the Frühwirth-Schnatter school. The data augmentation approach of Frühwirth-

Schnatter et al. [2009] can be extended to dynamic negative binomial regression for
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count data.

DGLMs can be cast within the more general framework of non-linear non-

Gaussian state-space models. Geweke and Tanizaki [2001] highlight the various works

of Kitagawa, Tanizaki, and Mariano, among others, to filter, smooth, or simulate

states within this context using numerical integration, re-sampling, or rejection sam-

pling. However, the more general setting does not provide more insight into how one

may jointly samples states in DGLMs. Each of the approaches they review is flawed:

numerical integration does not work well outside of the simplest settings, sampling

marginally smoothed states using sequential methods is time consuming, and rejec-

tion sampling may have poor acceptance probabilities. None of the methods cited by

Geweke and Tanizaki are useful for generating posterior samples of the states jointly,

an extremely desirable property. Their solution is to sample the states component-

wise using a Laplace approximation and a Metropolis-Hastings step, which in the case

of exponential families returns us to the methods discussed by [Gamerman, 1998].

Godsill et al. [2004] show how one may jointly sample states using particle filters;

however, that approach is relatively slow, on the order of O(Mn) for each draw from

p(β|y) where M is the number of particles and n is the number of observations.

2.6.2 Benchmarks

We compare the Pólya-Gamma data augmentation technique using the J∗(1, z)

sampler for dynamic binomial logistic regression against the data augmentation strat-

egy of Fussl et al. [2013] and the Metropolis-Hastings strategy of Ravines et al. [2006],

who report a better effective sample size than Gamerman [1998]. As in the static case,
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the primary metric of comparison is the median effective sampling rate. (See §2.5 for

the definition of effective sample size and effective sampling rate.) However, in this

case, the quantity of interest is not a p-dimensional regression coefficient, but rather

a p × n-dimensional dynamic regression coefficient {βit : t = 1, . . . , T, i = 1, . . . , p}.

Thus, the median effective sample size and median effective sampling rate is calcu-

lated over both i and t.

Three data sets comprise the suite of benchmarks. The first data set is the

Tokyo rainfall data set found in Kitagawa [1987], which has 366 binomial observations,

365 of which have 2 trials, and one of which has a single trial. (There is one observation

on February 29.) The dynamic regression coefficient β is given a local level prior,

βt = βt−1 + ηt , ηt ∼ N(0,W ).

The second and third data sets consist of synthetic binary responses, periodic covari-

ates, and prior dynamics β ∼ AR(1),

βt = Φβt−1 + ηt , ηt ∼ N(0,W ),

where βt ∈ R2 for T = 500 observations, Φ = 0.95I2, and the innovation variance is

W = 0.172I2.

As seen in Table 2.5, the Pólya-Gamma approach has superior effective sample

size and superior effective sampling rate compared to the other methods. Unlike the

static case, these models possess hyperparameters, which can dilute the differences in

effective sample size. A more detailed table can be found in Appendix 4, where one

finds that the CUBS method has a poor effective sampling rate due to its long run
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Tokyo Rain Synth 1 Synth 2
ESS Pólya-Gamma 7735 7063 4802

PG:Fussl 2.12 1.25 1.27
PG:CUBS 10.15 12.24 8.88

ESR Pólya-Gamma 356 228 155
PG:Fussl 2.01 1.29 1.30

PG:CUBS 109.20 247.83 178.16

Table 2.5: Dynamic binary logistic regression benchmarks. As in Section , the median
effective sample size and median effective sampling of {βi}ni=1 has been calculated for
each method. Here those quantities are reported for the Pólya-Gamma technique
as well as the data augmentation scheme of Fussl et al. [2013] and the Metropolis-
Hastings based approach of Ravines et al. [2006]. PG:Fussl and PG:CUBS report
the ratio of the Pólya-Gamma median ESS or ESR to the ESS and ESR of each
competing method.

time. This is a consequence of the way in which one forward filters under CUBS. At

each time step, one must use a root finding algorithm to transform the first and second

moments of p(βt|Dt−1) to a new coordinate system. The run time may be improved by

picking better initial conditions or loosening the conditions for convergence; options

that we do not explore here. Whatever improvements one might make, the CUBS

approach still has vastly inferior effective sample size compared to the Pólya-Gamma

approach and so it is extremely unlikely that tweaking the root finding algorithm

could result in the huge improvements necessary to even make it competitive with

either data augmentation approach. Thus, in the case of dynamic binomial regression,

the Pólya-Gamma method is definitively the most efficient technique.
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2.7 An Alternate J∗(h, z) Sampler

In Section 2.5, the J∗(1, z) sampler performed well in binary logistic regression,

but performed poorly for negative binomial regression, a consequence of the fact that

one must sample n J∗(1, z) random variates to produce a single J∗(n, z) random

variate for n ∈ N. Here we devise an alternate algorithm that will directly draw from

J∗(n, z) for n ≥ [1, 4].

2.7.1 An Alternate J∗(h) sampler

The basic strategy will be the same as in §2.3: find two functions ` and r such

that the density f is dominated by ` on (0, t] and r on (t,∞). Truncated versions of `

and r can then be used to generate a proposal. Previously, these proposals came from

the density of f , which when h = 1, has two infinite, alternating sum representations.

Pasting together these two representations together one may immediately appeal to

the von Neumann alternating sum technique to accept or reject a proposal; but this

only works when h = 1. For h 6= 1, the density in Fact 2.6.2 is still valid:

f(x|h) =
2h

Γ(h)

∞∑
n=0

(−1)n
Γ(n+ h)

Γ(n+ 1)

(2n+ h)√
2πx3

exp
(
− (2n+ h)2

2x

)
. (2.18)

We know that the coefficients of this alternating sum, which we call aLn , are not

decreasing in n ∈ N0 for all x > 0; they are only decreasing in n ∈ N0 for x in some

interval IL. However, it is the case that aLn(x|h) is decreasing for sufficiently large n

for all x > 0. Thus, we may still appeal to a von Neumann-like procedure, but only

once we know that we have reached an n∗(x) so that aLn(x|h) is decreasing for n ≥ n∗.

The following proposition shows that we can identify when this is the case.
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Proposition 2.13. Fix h ≥ 1 and x > 0. The coefficients {aLn(x)}∞n=0 in (2.18) are

decreasing, or they are increasing and then decreasing. Further, if aLn(x∗) is decreasing

for n ≥ n∗, then aLn(x) is decreasing for n ≥ n∗ for x ≤ x∗.

Proof. Fix h ≥ 1 and x > 0; calculate aLn+1(x|h)/aLn(x|h). It is

Γ(n+ 1)

Γ(n+ 2)

Γ(n+ 1 + h)

Γ(n+ h)

2n+ 2 + h

2n+ h
exp

{
− 1

2x

[
(2n+ 2 + h)2 − (2n+ h)2

]}
=
n+ h

n+ 1

2n+ h+ 2

2n+ h
exp

{
− 1

2x

[
4(2n+ h) + 4

]}
=
(

1 +
h− 1

n+ 1

)(
1 +

2

2n+ h

)
exp

{
− 2

x

[
(2n+ h) + 1

]}
.

Since x > 0, the exponential term decays to zero as n diverges and there is smallest

n∗ ∈ N0 for which this quantity is less than unity. Further, it is less than unity for

all such n ≥ n∗ as all three terms in the product are decreasing in n. The ratio also

decreases as x decreases, thus aLn(y) is decreasing for n ≥ n∗ when y ≤ x.

Corollary 2.14. Suppose h ≥ 1 and x > 0 and let SLn (x|h) =
∑n

i=0(−1)iaLi (x|h).

There is an n∗ ∈ N0 for which f(y|h) < SLn (y|h) for all even n ≥ n∗ and f(y|h) >

SLn (y|h) for all odd n ≥ n∗ for y ≤ x.

Corollary 2.15. There is an x∗(h),

x∗(h) = sup
{
x : {aLn(x|h)}∞n=0 is decreasing

}
,

so that {aLn(x|h)}∞n=0 is decreasing for all x < x∗. Thus `(x|h) = aL0 (x|h) satisfies

Sn(x|h) ≤ `(x|h), ∀n ∈ N0,∀x < x∗(h).
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When h = 1, we have another representation of f(x|h) as an infinite alternating

sum. This is not the case when h 6= 1; however, revisiting §2.2.1, when h ∈ N, we

may also write f(x|h) as

f(x|h) =
∞∑
n=0

[ h∑
m=1

Anm(h− 1)!

Anh(m− 1)!

1

xh−m

]Anhxh−1e−cnx

(h− 1)!
, cn =

π2

2
(n+ 1/2)2.

When x is large, the term with m = h will dominate, leaving

∞∑
n=0

Anhx
h−1e−cnx

(h− 1)!
, Anh = (−1)nh(2cn)h/2.

Again, since e−cnx decays rapidly in n the first term of this sum should be the most

important. Hence, for sufficiently large x, f(x|h) should look like

r(x|h) =
A0hx

h−1e−c0x

(h− 1)!
=

(π/2)h/2xh−1e−c0x

(h− 1)!
.

This will be the right hand side proposal.

Conjecture 2.16. The functions `(x|h) and r(x|h) dominate f(x|h) on overlapping

intervals that contain a point t(h).

For h ≥ 1, we know that `(x|h) will dominate f(x|h) on some interval [0, x∗(h))

from Corollary 2.15. We have not proved that r(x|h) dominates f(x|h) on an over-

lapping interval; however, we do have numerical evidence that this is the case. Let

ρL(x|h) = f(x|h)/`(x|h) and ρR(x|h) = f(x|h)/r(x|h). If both ρL(x|h) and ρR(x|h)

are less than unity on overlapping intervals, then ` and r dominate f on overlapping

intervals. As seen in Figure 2.2, this appears to be the case for both ρL and ρR on

the entire real line. In that case, ` and r are both valid bounding kernels and the
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proposal density

g(x|h) ∝ k(x|h) =

{
`(x|h), x < t

r(x|h), x ≥ t.

has

f(x|h) ≤ k(x|h) for all x > 0;

further, g(x|h) is a mixture

g(x|h) =
p

p+ q

`(x|h)

p
+

q

p+ q

r(x|h)

q

where

p(t|h) =

∫ t

0

`(x|h)dx and q(t|h) =

∫ ∞
t

r(x|h)dx

and the normalizing constant of k(x|h) is c(t|h)−1 where

c(t|h) = p(t|h) + q(t|h).

Thus, Corollary 2.14 and Conjecture 2.16 lead to the following sampler:

1. Sample X ∼ g(x|h)

2. Sample U ∼ U(0, k(X|h)).

3. Iteratively calculate the partial sums SLn (x|h) until

• SLn (X|h) has decreased from n− 1 to n, and

• U < SLn (X|h) for odd n or SLn (X|h) < U for even n.

Both `(x|h) and r(x|h) are kernels of known densities. In particular,

`(x|h) =
2h

Γ(1)

h√
2π
x−3/2 exp

(
− h2

2x

)
,
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is the kernel of an inverse Gamma distribution, IGa(1/2, h2/2), and

r(x|h) =
(π/2)h/2xh−1e−

π2

8
x

(h− 1)!

is the kernel of gamma distribution, Ga(h, π2/8). We can rewrite

`(x|h) = 2hIGa(x|1/2, h2/2)

to find

p(t|h) = 2h
Γ(1/2, (h2/2)/t)

Γ(1/2)

where Γ(a, b) is the upper incomplete gamma function, and we can rewrite

r(x|h) = (4/π)hGa(x|h, rate = π2/8))

to find

q(t|h) =
( 4

π

)hΓ(h, (π2/8)t)

Γ(h)
.

Note that this provides a way to calculate t(h), since we want to minimize c(t|h) =

p(t|h) + q(t|h). This is identical to choosing the truncation point t(h) to be the point

at which ρL(x|h) and ρR(x|h) intersect.

2.7.2 An Alternate J∗(h, z) Sampler

Recall Fact 2.6.2, which says the density of J∗(h, z) is

f(x|h, z) = coshh(z)e−xz
2/2f(x|h)

where f(x|h) is given in (2.18). Following the general path put forth in the previous

section, one finds that almost nothing changes. In particular, if we let aLn(x|h, z) =
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Figure 2.2: A plot of the f(x|h)/`(x|h) and f(x|h)/r(x|h) for h = 1.0 to h = 4.0
by 0.1. The dark lines correspond to h = 1. The curve corresponding to ` increases
monotonically while the curve corresponding to r decreases monotonically. The black
line plots the point of intersection between the two curves as h changes.
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coshh(z)e−xz
2/2aLn(x|h) and let SLn (x|h, z) =

∑n
i=0(−1)iaLn(x|h, z), then the analogous

propositions, corollaries, and conjectures from the previous section still hold. In

particular,

aLn+1(x|h)

aLn(x|h)
=
aLn+1(x|h, z)
aLn(x|h, z)

so Proposition 2.13, Corollary 2.14, and Corollary 2.15 hold with aLn(x|h) replaced

by aLn(x|h, z), SLn (x|h) replaced by SLn (x|h, z), and `(x|h) replaced by `(x|h, z) =

aLn(x|h, z). Additionally, nothing changes with regards the bounding kernel since

f(x|h) ≤ k(x|h) ⇐⇒ f(x|h, z) ≤ k(x|h, z)

where

k(x|h, z) = coshh(z)e−xz
2/2k(x|h).

Hence the only major change is the form of the proposal density and the corresponding

mixture representation. After adjusting, the left bounding kernel becomes

`(x|h, z) = coshh(z)2h
h√
2π
x−3/2 exp

(
− h2

2x
− xz2

2

)
,

and the right bounding kernel becomes

r(x|h, z) = coshh(z)
(π/2)h/2xh−1

(h− 1)!
exp

[
−
(π2

8
+
z2

2

)
x
]
.

Let

g(x|h, z) ∝ k(x|h, z) =

{
`(x|h, z), x < t(h)

r(x|h, z), x ≥ t(h),

and

p(t|h, z) =

∫ t

0

`(x|h, z)dx and q(t|h, z) =

∫ ∞
t

r(x|h, z)dx.
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Then one can represent g(x|h, z) as the mixture

g(x|h, z) =
p

p+ q

`(x|h, z)
p

+
q

p+ q

r(x|h, z)
q

and the normalizing constant of k(x|h, z) is (suppressing the dependence on t)

c(h, z) = p(h, z) + q(h, z)

Thus, one can sample J∗(h, z) by

1. Sample X ∼ g(x|h, z)

2. Sample U ∼ U(0, k(x|h)).

3. Iteratively calculate the partial sums SLn (x|h) until

• SLn (X|h) has decreased from n− 1 to n, and

• U < SLn (X|h) for odd n or SLn (X|h) < U for even n.

Note that the above procedure uses k(x|h) and Sn(x|h) instead of k(x|h, z) and

Sn(x|h, z). This is because

f̃(x|h)/g̃(x|h) = f̃(x|h, z)/g̃(x|h, z)

and

f̃(x|h)/SLn (x|h) = f̃(x|h, z)/SLn (x|h, z).

Again, the kernels `(x|h, z) and r(x|h, z) are recognizable. The exponential

term of `(x|h, z) is

− z
2

2x

[(h
z

)2
+ x2

]
.
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Completing the square yields

−(z/h)2h2

2x

[
(x− h/z)2

]
− zh;

so

`(x|h, z) = (1 + e−2|z|)h
h√

2πx3
exp

(
− (z/h)2h2

2x

[
(x− h/z)2

])
,

which is the kernel of an inverse Gaussian distribution with parameters µ = h/z and

λ = h2. The right kernel is a gamma distribution with shape parameter h and rate

parameter λz = π2/8 + z2/2. Thus, the left hand is

`(x|h, z) = (1 + e−2|z|)hIG(x|µ = h/z, λ = h2) for z > 0

and

`(x|h, 0) = 2hIGa(x|1/2, h2/2);

the right hand kernel is

r(x|h, z) =
(π/2
λz

)h
Ga(x|h, rate = λz), λz = π2/8 + z2/2;

and the respective weights are

p(t|h, z) = (2he−zh)ΦIG(t|h/z, h2),

p(t|h, 0) = 2h
Γ(1/2, (h2/2)(1/t))

Γ(1/2)
,

and

q(t|h, z) =
(π/2
λz

)hΓ(h, λzt)

Γ(h)
.
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Truncation Point

The normalizing constant c(t|h, z) is

c(t|h, z) =

∫ t

0

coshh(z)e−xz
2/2`(x|h)dx+

∫ ∞
t

coshh(z)e−xz
2/2r(x|h)dx.

To minimize c(t|h, z) over t, note that the critical points, which satisfy

coshh(z)e−xz
2/2
[
`(x|h)− r(x|h)

]
= 0,

are independent of z. Hence we only need to calculate the best t = t(h) as a function

of h.

2.7.3 Recapitulation

While the J∗(1, z) sampler from §2.3 works well from binomial logistic re-

gression, it cannot produce random variates from J∗(h, z) in a single draw when

h ∈ N\{1}. The sampler breaks completely when h /∈ N. In contrast, the method

put forth in this section can produce draws from J∗(h, z) for h ≥ 1 if Conjecture

2.16 holds. We numerically verify this is the case for h ∈ [1, 4]. In practice, to draw

J∗(h, z) when h > 4, we take sums independent J∗ random variates like before. The

new sampler is limited in two ways. First, the best truncation point t is a function

of h, and must be calculated numerically. Second, the normalizing constant c(h, z)

grows as h increases. The former is not too troubling as one may precompute many

t(h) and then interpolate between values of h not specified. However, the latter is

disturbing as 1/c(h, z) is the probability of accepting a proposal. Thus, as h increases

the probability of accepting a proposal decreases. To address this deficiency, we devise

yet another sampler.
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2.8 An Approximate J∗(b, z) Sampler

Daniels [1954] provides a method to construct approximations to the density

of the mean of n independent and identically distributed random variables. More

generally, Daniels procedure produces approximations to the density of X(n)/n where

X(h) is an infinitely divisible family [Sato, 1999]. The approximation improves as n

increases. This is precisely the scenario we are interested in addressing, as J∗(n, z)

is infinitely divisible and the two previously proposed samplers do not perform well

when sampling J∗(n, z), or equivalently J∗(n, z)/n, for large n.

2.8.1 The Saddle Point Approximation

The method of Daniels [1954] and variants thereof are known as saddlepoint

approximations or the method of steepest decent. In addition to Daniels [1954],

Murray [1974] provides an accessible explanation of the asymptotic expansion and

approximation, including numerous helpful graphics. A more technical analysis may

be found in the paper by Barndorff-Nielsen and Cox [1979] and the books by Butler

[2007] and Jensen [1995]. McLeish [2010] provides several examples of simulating

random variates following the approach of Lugannani and Rice [1980]. Below, we

briefly summarize the basic idea behind the approximation following Daniels [1954].

Let X(h) be an infinitely divisible family. Let M(t) denote the moment gen-

erating function of X(1), and let K(t) denote its cumulant generating function:

M(t) = eK(t) =

∫ ∞
−∞

etxf(x)dx.

where f(x) is the density of the random variable X(1). Let x̄ denote X(n)/n, which
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can be thought of as the sample mean of n independent X(1) random variables when

n is an integer. The MGF of x̄ is Mn(t/n) and its Fourier inversion is

fn(x̄) =
1

2π

∫ ∞
−∞

Mn(it/n)e−itx̄dt =
n

2π

∫ ∞
−∞

Mn(it)e−intx̄dt

where fn is the density of X(n)/n. The goal is to pick the path of this integral in a

way that concentrates as much mass as possible at a single point. Changing variables

to T = it and phrasing this integral in terms of the cumulant generating function

yields

fn(x̄) =
n

2πi

∫ ∞i
−∞i

en[K(T )−T x̄]dT.

One can concentrate mass at T0 + 0i where T0 is chosen to minimize

K(T )− T x̄ over T ∈ R,

which will be a saddle point. Consequently, one may descend quickly in the directions

perpendicular to the real axis at T0 + 0i, which leads to an integral like

fn(x̄) =
n

2πi

∫ T0+∞i

T0−∞i
en(K(T )−T x̄)dT,

though some care must be taken with the path of integration near T0 +0i. Performing

an asymptotic expansion of K(T ) at T0 and integrating yields the approximation of

Daniels:

spn(x̄) =
( n

2π

)1/2

K ′′(T0)−1/2en[K(T0)−T0x̄];

note T0(x) solves

K ′(T0)− x̄ = 0. (2.19)
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Daniels [1954] (p. 639) provides conditions that ensure the approximation will hold,

which in the case of the J∗(1, z) distribution are

lim
u→(π2/8)−

K ′0(u) =∞ and lim
u→−∞

K ′0(u) = 0

where K0(u) = log cos
√

2u is the cumulant generating function of J∗(1). As seen in

Fact 2.19, this is indeed the case.

2.8.2 Sampling the saddlepoint approximation

The saddlepoint approximation provides a good point-wise approximation of

the density of J∗(n, z)/n. To make this useful for Pólya-Gamma data augmentation,

we need to sample from the density proportional to spn(x). (Henceforth we drop

the bar notation for x̄.) One general approach is to bound log spn(x) from above by

piecewise linear functions, in which case the approximation will consist of a mixture

of truncated exponentials. When the log-density is a concave functions, one is assured

that such an approximation exists. Devroye provides several examples of how this

may be used in practice, even for the case of arbitrary log-concave densities [Devroye,

1986, 2012].

Figure 2.3 shows an example of a piecewise linear envelope that bounds a

log-concave density. One can construct such an envelope by picking points {xi} on

the the graph of the density f , finding the tangent lines Li at each point, and then

constructing the function e(x) = mini Li(x), which corresponds to a piecewise linear

function. It is a good idea to pick one of the points to be the mode of the density,

since having e(x) > log f(x) may cause the proposal to be much larger than the

density after exponentiation.
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Figure 2.3: A log concave density bounded by a piecewise linear function.

We follow the piecewise linear envelope approach, though with a few modifica-

tions. In particular, we will bound the term K(t)−tx found in the exponent of spn(x)

rather than the kernel itself using functions more complex than affine transforms. It

will require some care to make sure that the subsequent envelope does not supersede

log spn(x) too much. However, by working with K(t) − tx directly, we avoid having

to deal with the K ′′(t) term in spn(x), which will causes the mode of spn(x) to shift

as n changes.

Recall that t is implicitly a function of x that arises via the minimization of

K(t)− tx over t. This may be phrased in terms of convex duality via

φ(x) = min
s∈R

{
K(s)− sx

}
(2.20)

where K(t) is the cumulant generating function: K(t) is strictly convex on dom K =

{t : K(t) <∞} as J∗(1, z) has a second moment [Jensen, 1995]. Using this notation,
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we may write

spn(x) =
( n

2π

)1/2

K ′′(t(x))−1/2enφ(x).

When needed, we will write Kz(t) to denote the explicit dependence on z, though

usually we will suppress the dependence on z. The connection to duality will help us

find a good bound for φ(x); the following facts will be useful.

Fact 2.17. Let K be the cumulant generating function of J∗(1, z). Let φ(x) be the

concave dual of K as in (2.20). Let

t(x) = argmin
s∈R

{
K(s)− sx

}
.

Assume that when we write t we are implicitly evaluating it at x. Then

1. K(t) is strictly convex.

2. K(t) is smooth.

3. K ′(t) = x;

4. φ(x) = K(t)− tx;

5. φ′(x) = −t;

6.
dt

dx
(x) = [K ′′(t)]−1;

7. As seen by item (3), φ′(x) is maximized when t(x) = 0. Thus,

m = argmax
x

φ(x) is attained when m = K ′(0).
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Proof. Barndorff-Nielsen [1978] shows that (1) holds so long as J∗(1, z) has a second

moment, which it does. The cumulant generating function K(t) = − log cos
√

2t is

smooth by composition of smooth functions so long as

cos
√

2t =

{
cos
√

2t, t ≥ 0

cosh
√

2|t|, t < 0

is smooth. For t 6= 0 this holds since cos and cosh are smooth and
√

2t is smooth

for t 6= 0. For t = 0, this follows from the Taylor expansion of cos and cosh. Items

(3)-(7) are consequences of (1) and (2).

Remark 2.18. Sometimes it will be helpful to work with a shifted version of t:

u = t − z2/2. To reiterate, we will go between three different variables: x, t, and

u characterized by the bijections

1. x = K ′(t) and

2. u = t− z2/2.

It will also be helpful to have the derivatives of K on hand and a few facts

about x and u.

Fact 2.19. Recall that K(t) = log cosh(z) − log cos
√

2u is the cumulant generating

function of J∗(1, z). Its derivatives, with respect to t, are:

1. K ′(t) =
tan
√

2u√
2u

;

2. K ′′(t) =
tan2(

√
2u)

2u
+

1

2u

(
1− tan

√
2u√

2u

)
.
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Note that we are implicitly evaluating u at t as described in Remark 2.18. As shown

above, K ′(t) = x. Evaluating K ′′ at t(x) yields

K ′′(t) = x2 +
1

2u
(1− x).

We may write tan
√
s√

s
piecewise as

tan
√
s√

s
=


tan
√
s√

s
, s > 0

tanh
√
|s|√

|s|
, s < 0

1, s = 0.

The last fact can be seen by taking the Taylor expansion around s = 0. Thus, u <

0 ⇐⇒ x < 1, u > 0 ⇐⇒ x > 1, and u = 0 ⇐⇒ x = 1.

This leads to the following two claims, which will help us bound the saddlepoint

approximation. Notice that in each case, we adjust φ(x) to match the shape of the

tails as suggested by Remark 2.7.

Lemma 2.20. The function ηr(x) = φ(x)− (log(x)− log(xc)) is strictly concave for

x > 0.

Proof. Taking derivatives:

η′r(x) = φ′(x)− 1

x

and

η′′r (x) = − dt
dx

(x) +
1

x2
.

Using Fact 2.17, this is negative if and only if

[K ′′(t)]−1 ≥ 1

x2
⇐⇒ x2 ≥ K ′′(t) ⇐⇒ 0 ≥ (1− x)

2u
.
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When x > 1, u(x) > 0, and η′′r (x) < 0. When x < 1, u(x) < 0, and η′′r (x) < 0.

Continuity of K ′′ ensures that η′′r (1) ≤ 0.

Lemma 2.21. The function ηl(x) = φ(x)− 1
2

(
1
xc
− 1

x

)
is strictly concave for x > 0.

Proof. Taking derivatives:

η′`(x) = φ′(x)− 1

2x2

and

η′′` (x) = − dt
dx

(x) +
1

x3
.

Using Fact 2.17, this is negative if and only if

[K ′′(t)]−1 ≥ 1

x3
⇐⇒ x3 ≥ K ′′(t) ⇐⇒ (x2 +

1

2u
)(x− 1) ≥ 0.

Again, we know that when x > 1, u > 0, and hence ηl(x) < 0. When x < 1 we need

to show that x2 + 1/(2u) < 0. This is equivalent to showing that

x2 < − 1

2u
⇐⇒ 2ux2 > −1, u < 0.

That is

tan2
√

2u > −1 ⇐⇒ tanh
√
|2u| > −1, for u < 0,

which indeed holds. Thus, when x < 1, ηl(x) < 0. Again, continuity of K ′′ then

ensures that η′′l (1) ≤ 0.

These two lemmas ensure the following claim.
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Lemma 2.22. Let

δ(x) =

{
1
2

(
1
xc
− 1

x

)
x ≤ xc,

log(x)− log(xc), x > xc.

Then η(x) = φ(x)− δ(x), is continuous on R and concave on the intervals (0, xc) and

(xc,∞).

We may create an envelope enclosing φ in the following way. See Figure 2.4

for a graphical interpretation.

1. Pick three points x` < xc < xr corresponding to left, center, and right.

2. Find the tangent lines L` and Lr that touch the graph of η at x` and xr.

3. Construct an envelope of η using those two lines, that is

e(x) =

{
L`(x), x < xc,

Lr(x), x ≥ xc.

Then an envelope for φ(x) is

φ(x) ≤ e(x) + δ(x).

Conjecture 2.23. K ′′(t)/x2 is increasing on x > 0 with limx→0+ K ′′(t)/x2 = 0 and

limx→∞K
′′(t)/x2 = 1 and K ′′(t)/x3 is decreasing on x > 0 with limx→0+ K ′′(t)/x3 = 1

and limx→∞K
′′(t)/x3 = 0.

This can be seen by plotting these functions; however, we do not have a com-

plete proof currently. Instead, we employ the following lemma.
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Lemma 2.24. Given xc ∈ (0,∞), there are constants α`, αr > 0 such that K ′′(t)

satisfies

1 ≥ K ′′(t)

x3
≥ α` for x < xc

and

1 ≥ K ′′(t)

x2
≥ αr for x > xc.

Proof. The upper bounds are verified in the proofs of Lemmas 2.21 and 2.20. For

the lower bounds, recall that K ′′(t(x)) > 0 for x ∈ IM := [1/M,M ] for any M > 1.

Thus, K ′′(t(x)) is bounded from below on IM . In addition, x2 and x3 are bounded on

the same interval from above. Hence the ratios K ′′(t)/x3 and K ′′(t)/x2 are bounded

from below on IM and we only need to consider the tail behavior of these ratios.

Let v(x) = 2u(x). When x < 1, v < 0, and x2|v| = tanh2
√
|v| the ratio

K ′′(t)/x3 =
1

x
− 1− x
x(x2|v|)

=
1

x
− 1− x
x tanh2

√
|v|
.

Employing the trigonometric identity − sinh2 = 1− coth2 and writing out x(v) yields

1

tanh2
√
|v|

+
1

x

(
1− coth2

√
|v|
)

=
1

tanh2
√
|v|
−
√
|v| cosh

√
|v|

sinh3
√
|v|

.

As v → −∞ the first term converges to unity while the second term vanishes. Since

v is an increasing function of x that diverges to −∞ as x→ 0+, for any 1 > α` > 0,

there is an M > 1 such that K ′′(t)/x3 > α` for x < 1/M .

Similarly, when x > 1, v > 0, and x2v = tan2
√
v the ratio

K ′′(t)/x2 = 1 +
1− x
x2v

= 1 +
1− x

tan2
√
v
.
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The last term can be rewritten as

1− x
tan2
√
v

=
1

tan
√
v

( 1

tan
√
v
− 1√

v

)
,

which converges to zero as v → (π/2)2−. Since v is increasing in x and converges to

(π/2)2 as x → ∞, for any 1 > αr > 0, there is an M > 1 such that K ′′(t)/x2 > αr

for x > M .

Lemma 2.22 and Lemma 2.24 give us the following proposition.

Proposition 2.25. There exists constants 1 > α`, αr > 0 such that the saddle point

approximation of J∗(n, z)/n is bounded by the envelope

k(x|h, z) =
( n

2π

)1/2

α
−1/2
` e

n
2xc x−3/2 exp

(
− n

2x
+ nL`(x|z)

)
, x < xc

α
−1/2
r xnc x

n−1 exp
(
nLr(x|z)

)
, x > xc,

where L` is the line touching η at x` and Lr is the line touching η at xr. Further, L′`

and L′r are negative when x` ≥ m = argmax
x

φ(x).

Proof. Lemma 2.22 and Lemma 2.24 provide the envelope. It only remains to show

that the slopes of L` and Lr are negative when x` ≥ m. Note that the concavity of φ

ensures that φ′(x) ≤ 0 when x ≥ m. Thus, in the left case, L′`(x`) = φ′(x`)− 1
2x2
`
< 0.

Similarly, in the right case, L′r(xr) = φ′(xr)− 1
xr
< 0.

Given the stipulation that x` ≥ argmax
x

φ(x), the left hand kernel, k`(x|h, z), is

an inverse Gaussian kernel while the right hand kernel, kr(x|h, z), is a gamma kernel.
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To see this let ρ` = −2L′`(x) and b` = L`(0); then the exponent of the left hand kernel

is

nb` −
nρ`x

2
− n

2x
=
−nρ`

2x

( 1

ρ`
+ x2

)
+ nb`.

Taking the first term and completing the square yields

−nρ`
2x

(
x− 1
√
ρ`

)2

− n√ρ`.

Thus

k`(x|h, z) = κ`

( n

2πx3

)1/2

exp
{−nρ`

2x

(
x− 1
√
ρ`

)2}
where

κ` = α
−1/2
` e

n
2xc

+nb`−n
√
ρ`

so k` is the kernel of an inverse Gaussian distribution with parameters µ = 1/
√
ρ`

and λ = n. For the right hand kernel let ρr = −L′r(x) and br = Lr(0), which yields

kr(x|h, z) = κr
(nρr)

nxn−1

Γ(n)
e−nρrx

where

κr =
( n

2παr

)1/2 enbrΓ(n)

(nρr)n

so kr is the kernel of a Gamma distribution with shape n and rate nρr. These two

observations show that g(x|h, z) ∝ k(x|h, z) is a mixture, which can be sampled in a

manner similar to the previous two algorithms.

We have yet to specify the points x`, xc, or xr. As mentioned at the outset,

it is important to choose these points carefully so that the envelope does not exceed

the target density by too much. Currently, we set x` to be the mode of φ. By picking

76



x` to match the maximum of φ we guarantee that the mode of spn(x) matches the

mode of k(x|h, z) as n → ∞. We could set xr = 1.2x` and then chose xc so that

L`(xc) = Lr(xc), in which case the envelope e is continuous. When that is the

case the following proposition holds. However, this requires a non-linear solve, so in

practice we simply set xc = 1.1x`.

Proposition 2.26. Suppose e is continuous. Let m be the maximum of φ(x). If

x` = m, then the envelope e(x) + δ(x) takes on its maximum at m as well. Further,

as n → ∞, the mode of the saddlepoint approximation converges to the mode of

k(x|h, z).

Proof. Suppose m maximizes φ and x` = m. Then

e′(x`) + δ′(x`) = φ′(x`) = 0.

Since e′(x`) + δ′(x`) is strictly concave on (0, xc], x` must be the maximum of the

left-hand portion of the envelope for φ. We will show that this is the only maximum

by contradiction. Suppose the right-hand portion of the envelope of φ has a maximum

at y > xc. Since that portion is also strictly concave, we must have φ′(y) − δ′(y) =

0 =⇒ φ′(y) = δ′(y). But φ′(y) < 0 since y > m and δ′(y) = 1/y > 0, a contradiction.

To see that the modes of spn and k(x|h, z) converge as n → ∞, take the log

of each. The log of the saddlepoint approximation is like

φ(x)− 1

2n
logK ′′(t(x))

while the log of the left hand kernel, where the maximum is, is like

e(x) + δ(x)− 3

2n
log x.
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Since δ and φ are concave and decay faster than log x as x→ 0+ and log x is increasing,

we know that the argmax of each converges to m.

Collecting all of the above lemmas leads to the following approximate sampler

of J∗(n, z). Some preliminary notation: let φz(x) be the concave dual of Kz(t); let

spn(x|z) be the saddle point approximation; and let m be the mode of φz: m =

(tanh z)/z.

• Preprocess.

1. Let x` = m, xc = 1.1x`, and xr = 1.2x`.

2. Calculate the tangent lines of η at x` and xr; L`(x|z) and Lr(x|z) respec-

tively.

3. Construct the proposal g(x|n, z) ∝ k(x|n, z).

• Accept/reject.

1. Draw X ∼ g(x|n, z).

2. Draw U ∼ U(0, k(X|n, z).

3. If U > spn(X|z), return to 1.

4. Return nX.
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Figure 2.4: The saddlepoint approximation. The saddle point approximation is pro-
portional to [K ′′(t(x))]−0.5 exp(nφ(x)). In the left plot, η(x) is a solid black curve,
which is bounded from above by an envelope of the dotted blue line on the left and
the dotted cyan line on the right. The green line is -δ(x). On the right, the saddle-
point approximation in black, and the left and right envelopes are in blue and cyan
respectively. This bound is a bit exaggerated since n = 4, which is rather small. The
bounding envelope improves as n increases.

2.8.3 Recapitulation

The saddlepoint approximation sampler generates approximate J∗(n, z) ran-

dom variates when n is large, a regime that the previous two samplers handled poorly.

The saddlepoint approximation sampler is similar to the previous two samplers in that

the proposal is a mixture of an inverse Gaussian kernel and a gamma kernel. Hence

the basic framework to simulate the approximation requires routines already devel-

oped in §2.3 and §2.7. We have identified that a good choice of x` is the mode of φ;

however, we have not yet identified the optimal choices of xc and xr. The values of

x`, xc, and xr depend on the tilting parameter z, but not the shape parameter n in

J∗(n, z). Thus, one could preprocess x`, xr, and xc for various values of z and then

interpolate. We leave this task for another day.
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2.9 Comparing the Samplers

We have a total of four J∗(n, z) samplers available: the method from §2.3,

which we call the Devroye approach, based upon sampling J∗(1, z) random variates;

the method from §2.7, which we call the alternate approach, that lets one directly draw

J∗(n, z) for n ∈ [1, 4]; the method from §2.8 using the saddlepoint approximation; and

the method based upon Fact 2.6.5, where one simply truncates the infinite sum after,

for instance, drawing 200 gamma random variables. Recall that to sample J∗(n, z)

using the J∗(1, z) sampler, one sums n independent copies of J∗(1, z). Similarly, to

sample J∗(n, z) when n > 4 using the alternate method, we sum an appropriate

number of J∗(bi, z), bi ∈ (1, 4) so that
∑m

i=1 bi = n.

We compare these methods empirically on a MacBook Pro with 2 GHz Intel

Core i7 CPU and 8GB 1333 MHz DDR3 RAM. For a variety of (n, z) pairs, we

record the time taken to sample 10,000 J∗(n, z) random variates. Table 2.6 reports

the best method for each (n, z) pair, along with the speed up over the Devroye

approach as measured by the ratio of the time taken to draw samples using the

Devroye method to the time taken to draw samples using the best method. The

Devroye approach works well for n = 1, 2 while the alternate method works well

for n = 3, . . . , 10. The saddlepoint approximation works well for moderate to large

n. These general observations do not change drastically across different z, though

changing z can change the best sampler for fixed n. Based upon these observations,

we may generate a hybrid sampler, which uses the Devroye method when n = 1, 2, the

alternate method for n ∈ (1, 13)\{1, 2}, the saddlepoint method when 13 ≤ n ≤ 170,

and a normal approximation for n ≥ 170. The normal approximation is not strictly
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necessary for large n, but the pre-built routines used to calculate the gamma function

break down for n ≥ 170. In this case, a simple fix is to calculate the mean and variance

of the PG(n, z) distribution using the moment generating function from Fact 2.6, and

then sample from a normal distribution by matching moments. The central limit

theorem suggests that this is a reasonable approximation when n is sufficiently large.

While the alternate and approximate samplers accelerate J∗(n, z) sampling, it

remains to show that these new samplers improve the effective sampling rate, which

is the main benchmark when comparing alternate posterior simulation techniques.

Recall that Table 2.3 shows that the Pólya-Gamma method has a poor effective sam-

pling rate compared to the method of Frühwirth-Schnatter et al. [2009] for negative

binomial regression with moderate count sizes. The main bottleneck for the Pólya-

Gamma technique was the generation of J∗(n, z) random variates. As seen in 2.7,

the hybrid sampler considerably improves the effective sampling rate for the data set

named “More Counts” data set from 2.3. In particular, the run time for the Pólya-

Gamma method is cut by at least half. Previously, the Pólya-Gamma technique

lost to Frühwirth-Schnatter et al. [2009] for this data set; now, it wins. Thus, the

new samplers do have a practical impact on the Pólya-Gamma data augmentation

technique.

2.10 Recapitulation

The Pólya-Gamma data augmentation technique is useful when modeling pro-

portions on the log-odds scale. Binary logistic regression and negative binomial re-

gression are two prime examples that fit within this paradigm. As seen in Posterior
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Best Method
n \ z 0 0.1 0.5 1 2 10

1 DV DV DV DV DV DV
2 DV DV AL AL AL AL
3 DV AL AL AL AL AL
4 AL AL AL AL AL AL
10 SP AL AL AL AL AL
12 SP SP SP AL AL AL
14 SP SP SP SP SP AL
16 SP SP SP SP SP AL
18 SP SP SP SP SP SP
20 SP SP SP SP SP SP
30 SP SP SP SP SP SP
40 SP SP SP SP SP SP
50 SP SP SP SP SP SP
100 SP SP SP SP SP SP

Speed-up over J∗(1, z) sampler
0 0.1 0.5 1 2 10

1 1 1 1 1 1
1 1 1 1.08 1.08 1.22
1 1.26 1.25 1.29 1.64 1.78

1.21 1.5 1.58 1.47 1.93 2.75
1.34 1.36 1.3 1.35 1.7 2.14
1.64 1.54 1.54 1.52 1.94 2.56
1.86 1.72 1.77 1.7 1.92 2.26
2.06 1.87 2 1.93 2.21 2.57
2.27 2.07 2.17 2.15 2.46 2.42
2.51 2.25 2.35 2.36 2.69 2.74
3.68 3.36 3.57 3.36 3.92 4.05
4.68 4.41 4.57 4.48 4.99 5.51
5.83 5.16 5.55 5.55 6.11 6.78
11.07 10.4 10.66 10.44 12.22 10.45

Table 2.6: J∗(n, z) benchmarks. For each method and each (n, z) pair the time taken
to draw 10,000 samples was recorded and compared. The left portion of the table
lists the best method for each (n, z) pair. The methods benchmarked include DV, the
method from §2.3; AL, the method from §2.7; SP, the method from §2.8; and GA, an
approximate draw using a truncated sum of 200 gamma random variates based upon
Fact 2.6.5. Notice that the truncated sum method never wins. The DV method wins
for small n; the AL method wins for modest n, and the SP method wins for medium
and large n. The right hand portion of the table shows the ratio of the time taken to
sample each (n, z) pair using DV to the time taken to sample using the best method.

More Counts data from Table 2.3: intercept = 3, ȳ = 23.98, N = 400

Method time ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 23.57 3127.85 3654.58 4380.93 132.68 155.02 185.83
FS 8.07 920.40 934.28 973.08 114.00 115.71 120.52

Table 2.7: A negative binomial example using the hybrid sampler. The data set is
identical to that used in the “More Counts” data set from Table 2.3. Using the hybrid
sampler, the Pólya-Gamma data augmentation approach wins whereas before it lost.
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Calculation 2.3, the Pólya-Gamma approach is quite general and can be applied to

any statistical model that has a logistic likelihood for the log odds {ψi = β(xi)}

and a Gaussian process prior, GP (m,K), for β. This framework subsumes static

regression, mixed models, factor models, dynamic regression, and non-parametric re-

gression. It is important to develop efficient schemes for posterior inference since such

models arise in neuroscience, psychology, epidemiology, ecology, health care, political

science, economics, and weather forecasting. The rate at which one can generate

Pólya-Gamma random variates is a key factor in the efficiency of the Pólya-Gamma

scheme; hence, building fast samplers is essential.

To that end, we have developed three procedures for generating random vari-

ates from the J∗(h, z) family of distributions and, consequently, from the PG(h, z)

family of distributions. Each algorithm excels in various portions of the distribution’s

parametric space. Taken together, the three procedures comprise an efficient PG(h, z)

sampler. Prior to the development of these samplers, the Pólya-Gamma technique

used the sum-of-gammas representation (Fact 2.6.5) to make approximate draws from

J∗(h, z). However, this method performs poorly and without the faster samplers pre-

sented in this thesis, the Pólya-Gamma technique would not out-perform other data

augmentation approaches. With these samplers, the Pólya-Gamma technique out-

performs O’Brien and Dunson [2004], Holmes and Held [2006], Frühwirth-Schnatter

and Frühwirth [2007], Frühwirth-Schnatter and Frühwirth [2010], Gramacy and Pol-

son [2012], and Fussl et al. [2013] for binary and binomial logistic regression. It

out-performs Frühwirth-Schnatter et al. [2009] for negative binomial regression when

working with small to moderate count sizes.
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Beyond considerations of efficiency, the Pólya-Gamma technique is easy to im-

plement and interpret. Unlike other data augmentation schemes, the PG technique

requires one layer, as opposed to two layers, of latent variables, and hence requires

keeping track of only two, as opposed to three, conditional distributions for Gibbs

sampling. Further, unlike Metropolis-Hastings based approaches, it does not require

one to select and then tune a proposal. Of the PG method’s two complete condi-

tionals, one is Gaussian and can be interpreted as the posterior of a normal linear

model, familiar territory for must users. The other is simply a draw from the Pólya-

Gamma distribution. Thus, the only real prerequisite for using the Pólya-Gamma

technique is that one be able to simulate Pólya-Gamma random variates. This thesis

provides such samplers. An accompanying R Package, BayesLogit [Polson et al.,

2013a], implements these samplers and is freely available from the Comprehensive R

Archive Network. The package includes routines for binary logistic regression and

multinomial regression in addition to Pólya-Gamma random variate sampling.
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Chapter 3

Forecasting High-Dimensional, Time-Varying

Variance-Covariance Matrices with

High-Frequency Data

Financial theory suggests that asset returns are driven by a few common

sources of variation. Thus, many models decompose returns into a linear combination

of common factors that are shared across all stocks and idiosyncratic factors that are

unique to each asset. For instance, the Capital Asset Pricing Model (CAPM) [Sharpe,

1964] decomposes asset returns using a single common factor, which is taken to be

the returns on the market-portfolio. Sharpe presents an economic argument; however,

from a simplified statistical point of view we may consider his model as a collection

of simple linear regressions over the i = 1, . . . , n assets for times t = 1, . . . , T ,

rit = βirM,t + εit, εit ∼ N(αi, σ
2
i ).

One may add additional common factors by including additional regressors, for in-

stance, market capitalization, earnings per price, or book value to market value. This

information may be incorporated in various ways [Fama and French, 1993, Rosenberg

and McKibben, 1973], but the basic idea is the same: regress asset returns on a set

of known factors.

It is possible to follow the same line of reasoning but without directly specifying
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what the factors represent, in which case the factors are unknown quantities that must

be estimated from the data. A latent factor model, called factor stochastic volatility

(FSVol), takes the form

rit =

p∑
k=1

xikfkt + εit, εit ∼ N(0, ψit)

for i = 1, . . . , n where {fit}t, i = 1, . . . , p are the common factors and {εit}t, i =

1, . . . , n are the idiosyncratic factors. If we assume that the assets’ mean daily return is

zero, which is statistically justifiable, then both the common and idiosyncratic factors

can be modeled as white noise processes with slowly changing variances. (White noise

is sequence of uncorrelated, mean zero random variables [Hamilton, 1994].) Such

a model is useful for forecasting the variance-covariance structure of asset returns.

In particular, FSVol induces a specific structure on the daily (i.e. conditional upon

parameters that change daily) covariance matrix of rt,

Σt = XFtX
′ + Et (3.1)

where Ft and Et are diagonal matrices. Covariance matrices of this form have fewer

degrees of freedom than arbitrary symmetric, positive definite matrices and thus the

dimensionality of the problem is reduced, facilitating estimation and prediction.

Factor stochastic volatility is used to model a variety of financial time se-

ries and phenomenon, including foreign exchange returns [Pitt and Shephard, 1999,

Aguilar and West, 2000, Lopes and Carvalho, 2007, Zhou et al., 2012, Nakajima and

West, 2012], contagion across markets [Lopes and Migon, 2002], equity returns [Car-

valho et al., 2011], and interest rates [Hays et al., 2012]. All of these assets have the
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characteristic that a few shared components control the covariation. Until recently,

such models were employed mostly for daily returns or returns calculated over an even

longer period. But such models ignore a significant amount of data since financial

assets are traded throughout the day.

In recent decades, the ability to record and process vast quantities of data

have enabled statisticians and econometricians to make use of this intraday data for

estimation and prediction of daily measures of variation and covariation. In particular,

the theory of stochastic processes provides justification for constructing measures of

variation and covariation for time series that are indexed on a continuum. Many

financial assets are traded often enough that one may make use of these theoretical

quantities to construct “high-frequency” statistics, also called realized measures. The

high-frequency statistic we are most interested in is realized covariance, which is a

high-frequency analog to the daily covariance matrix.

Koopman et al. [2005] have shown that high-frequency statistics provide su-

perior estimates and forecasts of daily variance compared to several low-frequency

alternatives in the univariate case. Liu [2009] has shown that many low-frequency

methods for estimating and forecasting daily covariance matrices are inferior to fore-

casts generated by exponentially smoothing realized covariance matrices. His analysis

considers a relatively high-dimensional setting, in which one wants to mimic a market

portfolio using the 30 assets of the Dow Jones Industrial Average. However, Liu’s

analysis focuses on frequentist techniques for covariance estimation and he does not

consider factor stochastic volatility.

We build upon Liu’s work and have made three contributions to this discourse.
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First, we show that forecasts generated by factor stochastic volatility are inferior to

forecasts generated by exponentially smoothing realized covariance matrices. Second,

to improve FSVol, we develop FSVol-like models that a incorporate information from

realized covariance matrices. One such extension out-performs the original FSVol

model; however, like the original model, that extension cannot compete with expo-

nentially smoothing the high-frequency statistics. Third, we construct a model for

matrix-variate data that produces identical forecasts to the aforementioned exponen-

tial smoothing procedure, thus wrapping an ad hoc technique in a statistical model.

Though we do not follow Liu exactly, we share his goal of comparing models in an

economically meaningful way. In particular, to compare FSVol, our extensions to

FSVol, exponential smoothing, and our matrix-variate model, we construct one-day

ahead portfolios for each approach and evaluate the performance of these portfolios

over the course of several months.

The outline of this chapter is as follows. We review factor stochastic volatil-

ity and realized covariance (§3.1). We then develop extensions to factor stochastic

volatility that incorporate information form high-frequency statistics and compare

these extensions to exponentially smoothed realized covariance matrices (§3.2 and

§3.4). After finding that these extensions are still inferior we build a matrix-variate

model (§3.7).
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3.1 Model Setup

3.1.1 Stochastic Volatility

The daily returns of financial assets display four prominent features: (1) the

marginal mean of the returns is minuscule compared to the marginal variance; (2) the

returns are uncorrelated; (3) the returns are heavy tailed; and (4) the variance of the

returns appears to change slowly over time. These features suggest modeling daily

returns as heteroscedastic white noise. Stochastic volatility [Taylor, 1982, Jacquier

et al., 1994, Kim et al., 1998] is one attempt in this direction. In the basic stochastic

volatility (SV) model, the returns are normally distributed given the log-variance ht:

(xt|ht) ∼ N(0, eht);

and the log-variance evolves as an AR(1) process [Hamilton, 1994]:

ht = µ+ φ(ht−1 − µ) + ωt, ωt ∼ N(0,W ).

The parameter φ is usually close to 1 which induces a high-degree of autocorrelation in

{ht} so that the log-variance meanders slowly about µ. One can extend this approach

to a multivariate time series:{
xit ∼ N(0, ehit), i = 1, . . . , n;

ht = µ+ φ� (ht−1 − µ) + ωt, ωt ∼ N(0,W );

where µ and φ are vectors, W is a covariance matrix, � denotes the Hadamard

product, and n is the dimension of xt. We write xt ∼ SV (µ, φ,W ) when xt is a

stochastic volatility process. Unfortunately, the multivariate version of stochastic

volatility cannot capture interesting correlation structures between daily returns as
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the conditional and marginal covariance structure of xt is diagonal:

Var(xt|ht)ij =

{
exp(hit), i = j

0, i 6= j

so

Var(xt) = Var(E(xt|ht)) + E(Var(xt|ht)) = E[diag{exp(hit)}pi=1].

as E(xt|ht) = 0.

3.1.2 Factor Stochastic Volatility

Factor stochastic volatility fuses stochastic volatility and factor models to pro-

duce time series with non-trivial covariance structures that still possess features (1)

through (4) from the preceding section. A (static) factor model is a dimensionality

reduction technique for modeling data jointly [Basilevsky, 1994], as opposed to con-

ditionally. Suppose one has a collection of independent and identically distributed

observations, xi ∼ N(0,Σ), i = 1, . . . , T where xi ∈ Rn. The matrix Σ has n(n+1)/2

free parameters. When the there is little data relative to the degrees of freedom in Σ,

that is when n is not much smaller than T , Σ is difficult to estimate. However, if one

has reason to believe that the covariation in xi is driven by a few common factors,

then one can reduce the degrees of freedom in the system and improve estimation. In

particular, if

xi = Xfi + εi,

where fi ∼ N(0, Ip) and εi ∼ N(0,Ψ) are both independent and identically dis-

tributed, then the implied covariance structure of xi is

Var(xi) = XX ′ + Ψ.
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When X is low rank the degrees of freedom are reduced, facilitating estimation of

Var(xt). Factor stochastic volatility generalizes the factor model above by letting {fi}

or {εi} have some sort of inter-observation dependence. Specifically, {fi} and {εi}

are taken to be multivariate stochastic volatility processes.

Suppose {rt}Tt=1 is a collection of n-dimensional daily asset returns. Then rt

follows a factor stochastic volatility process, denoted rt ∼ FSV [Aguilar, 1998, Lopes

and West, 2004, Chib et al., 2006, 2009], if
rt = Xft + εt

ft ∼ SV (µf , φf ,W f )

εt ∼ SV (µε, φε,W ε)

where X is an n×p dimensional matrix called the factor loadings, ft is a p-dimensional

stochastic volatility process, {fit}t is called the ith factor, and εt is an n-dimensional

stochastic volatility process called the idiosyncratic noise that has diagonal W ε. The

conditional variance is

Var(rt|X, hft , hεt) = XFtX
′ + Et (3.2)

where Ft and Et are diagonal with

Fiit = eh
f
it , i = 1, . . . , p, and Eiit = eh

ε
it , i = 1, . . . , n.

Thus, in FSVol the covariation between assets is completely determined by the factor

loadings X and the factor log-variances hft . By modeling ft and εt as stochastic

volatility processes we replicate the characteristic white noise with slowly evolving

variance found in financial asset returns.
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3.1.3 Posterior Inference for FSVol

Posterior inference for factor stochastic volatility proceeds using standard

Markov chain Monte Carlo techniques [Aguilar, 1998]. However, there are two points

worth noting. First, one must constrain the factor loadings X for purposes of identi-

fication. In particular, one can transform ft using a unitary matrix Γ, f̃t = Γ′ft, to

produce a model indistinguishable from the original:

rt = Xft + εt = X̃f̃t + εt,

where X̃ = XΓ′. We follow Aguilar [1998] and constrain X to be unit lower triangular

to identify the model.

Second, we use an approximate version of stochastic volatility to facilitate pos-

terior inference. Consider a univariate stochastic volatility process xt ∼ SV (µ, φ,W )

and let ht = log Var(xt), t = 1, . . . , T be the log-variance of xt. The conditional

distribution ({ht}Tt=0|{xt}Tt=1, µ, φ,W ) is not easy to simulate and hence we appeal to

a standard data augmentation trick [Kim et al., 1998, Frühwirth-Schnatter, 2007]. In

particular, one can transform xt to yt by yt = log(x2
t ) to take

xt ∼ N(0, eht) to yt ∼ ht + log(χ2
1),

which makes yt linearly related to the log-variance ht. The innovation log(χ2
1) can be

approximated as a discrete mixture of normals

log(χ2
1) ' N(mγ, vγ)

where γ ∼ MN(1,w) and w, m, and v are known vectors. The approximation of
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xt ∼ SV (µ, φ,W ) is then
yt = log x2

t

yt = ht + νt νt ∼ N(mγt , vγt),

γt ∼ MN(1, w), i = 1, . . . , n,

ht = µ+ φ(ht−1 − µ) + ωt, ωt ∼ N(0,W ).

Conditional upon {γt}, {yt} is the response from a dynamic linear model, in which case

{ht} may be sampled using forward filter backwards sampling [Frühwirth-Schnatter,

1994, Carter and Kohn, 1994]. The trick works for multivariate stochastic volatility

as well.

3.1.4 Realized Covariance

The discrete time stochastic volatility and factor stochastic volatility models

discussed above are appropriate when working with daily returns. However, prices are

observed more than once per day. In fact, the price of a liquid stock is updated often

enough that one may appeal to the theory of continuous time stochastic processes

for insight. To that end, suppose {St}t≥0 is a continuous time stochastic process

representing the the price of a stock, where t is measured in days, and Rt is the

cumulative log return of the stock: Rt = logSt − logS0. Define the δ-log-returns as

rt(δ) = Rt − Rt−δ. The day-t realized variance of the log-returns process {Rt} using

an δ-spaced grid is

RVt(δ) =
∑

δi∈(t−1,t]

r2
δi(δ).

In other words, the day-t realized variance is the sum of intraday squared returns.

Though this is phrased in terms of a 24 hour day, we assume that the price of the
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stock changes only when the markets are open and hence this can be thought of as

the realized variance within the trading day.

One can devise reasonable models in which the realized covariance reconciles

with the conditional variance of daily returns. For instance, Barndorff-Nielsen and

Shephard [2004] show that if the log-returns are an Itō process

Rt =

∫ t

0

αtdWt

where {αt} is independent from {Wt}, then the day-t quadratic variation

〈R〉t − 〈R〉t−1 := lim
δ→0

RVt(δ)

is identical to the daily variance σ2
t , that is, the distribution of the daily returns

conditional upon σt are{
rt(1) = σtεt, εt ∼ N(0, 1),

σ2
t = limδ→0RVt(δ).

While this derivation is specific to the modeling assumptions, Andersen et al. [2001]

show empirically that this holds approximately.

When working with time series recorded at a high-frequency, one observes at

the end of day t RVt(δ) where δ is near 0; hence one expects, given the modeling

assumptions above, that RVt(δ) ' σ2
t . In practice, one must account for various

forms of noise in the system, in which case the prices observed at the finest scale

are perturbed versions of some “true” latent price. This fine-scale noise is attributed

to market microstructure such as the bid-ask bounce, “refreshing” prices, and the

discreteness of prices Zhang et al. [2005]. Naively summing intraday returns at the
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highest possible frequency accumulates this noise and results in estimates that appear

to diverge, or at least differ greatly from low-frequency estimates of the daily variance.

Initially, statisticians used intraday returns at “safe” frequencies [Andersen et al.,

2003] to avoid this problem. More complicated estimators of the daily quadratic

variation use all intraday data, but adjust for the market microstructure noise [Ait-

Sahalia et al., 2011, Barndorff-Nielsen et al., 2008].

The same theory carries over when working with multivariate processes to

produce measures of covariation. In particular, the high-frequency analog of a daily

covariance matrix is called realized covariance and is constructed like realized vari-

ance, but using the outer product, instead of the square, of intraday returns:

RCt(δ) =
∑

δi∈(t−1,t]

rδi(δ)rδi(δ)
′

where now Rt and rt(δ) = Rt − Rt−δ are vectors. RCt(δ) converges to the daily

multivariate quadratic variation, 〈R〉t − 〈R〉t−1. As before, market microstructure

noise infects the fine-scale returns and one cannot naively sum the intraday outer

product of returns to yield a reasonable approximation. To that end, we use of

Barndorff-Nielsen et al.’s multivariate realized kernel [Barndorff-Nielsen et al., 2011],

denoting the estimates of the daily quadratic covariation by RKt and calling the

collection {RKt}Tt=1 the realized kernels.

3.1.5 Exponential Smoothing Realized Kernels

Stochastic volatility and factor stochastic volatility are model based approaches

to prediction. However, one may predict future responses using ad hoc forecasting
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procedures as well. For time series, exponential smoothing is a popular technique for

producing such forecasts. Exponential smoothing refers to a moving weighted average

where the weights decay geometrically, wi ∝ λi [Montgomery et al., 1990]. One can

recursively construct an approximation to this weighted average, St, by averaging

the most recent weighted average with a new observation. One-step ahead forecasts

can be made by predicting that the value of interest tomorrow will be the weighted

average of today. In the case of realized kernels, that is{
St = λSt−1 + (1− λ)RKt

Σ̂t = St−1.
(3.3)

The quantity St is “adapted” to the data in the sense that it only uses information

acquired up to and including time t; further, Σ̂t is a proper prediction because it only

uses information acquired prior to time t. Since there is no statistical model, one

must find alternate ways to pick the parameter λ. A general approach is to pick some

measure of discrepancy between the forecasted value and the observed value and then

minimize the average empirical discrepancy over an in-sample set.

One note on terminology is in order. Exponential smoothing refers to a

weighted average of past observations to produce a single point estimate or point

forecast. “Smoothing” in this sense refers to averaging. In the context of state-space

models, “smoothing” may refer to a retrospective distribution, such as p(θt−k|Dt)

where {θt} are the hidden states and Dt = {y1, . . . , yt} is the data up till time t, or

some joint retrospective distribution such as p({θt}ti=1|Dt).

96



3.2 Extensions to Factor Stochastic Volatility

As mentioned in the introduction, it is common to model the returns of many

assets using a few explicit or implicit factors [Sharpe, 1964, Fama and French, 1993,

Rosenberg and McKibben, 1973, Pitt and Shephard, 1999, Aguilar and West, 2000,

Lopes and Carvalho, 2007, Zhou et al., 2012, Nakajima and West, 2012, Lopes and

Migon, 2002, Carvalho et al., 2011, Hays et al., 2012]. Simultaneously, high-frequency

statistics have been shown to be useful in univariate and multivariate forecasts of

volatility [Koopman et al., 2005, Liu, 2009]. Thus, we would like to find hybrid

models that incorporate information from the realized kernel while preserving a fac-

tor structure and its corresponding interpretation. Here, we construct such models,

taking information from realized kernels and inserting it into the factor stochastic

volatility model as exogenous data.

3.2.1 Factor “Decomposition”

To motivate our approach, we consider a factor decomposition of covariance

matrices. Recall that the conditional structure of the covariance matrix in FSVol is

given by (3.2):

Var(rt|hft , hεt , X) = XFtX
′ + Et

where Ft = Var(ft|hft ) and Et = Var(εt|hft ). If we make the simplifying assumption

that intraday returns rt(δ) (as defined in §3.1.4) are independent and identical normal

distributions with mean zero and constant variance given (hft , h
ε
t , X), then

Σt = Var(rt|hft , hεt , X) = Var
( ∑
δi∈(t−1,t]

rδi(δ)
∣∣∣hft , hεt , X)
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and the distribution of the realized covariance is

∑
δi∈(t−1,t]

rδi(δ)rδi(δ)
′ ∼ Wm(1/δ,Σt).

Thus we should have

RKt ' RCt(δ) ∼ Wm(1/δ,XFtX
′ + Et),

in which case one may estimate the values X, Ft, and Et by maximum likelihood using

data RKt. Denote these point estimates by X̂t, F̂t, and Êt for day t (see Ch. 4 from

Basilevsky [1994]). The quantities X̂t, F̂t, and Êt suffer from modeling error, since

intraday returns are not iid, as well as sampling error. Accounting for both sources

of error, the estimators are some perturbed versions of the true values. For instance,

we could say that

X̂t = X + noise

and F̂t = Ft · noise where “noise” denotes some unspecified distribution. The latter

is additive on the log-scale,

log F̂iit = logFiit + noise = hfit + noise

which is be convenient for modeling purposes. Recall that X and hft determine

the conditional covariance structure of the returns rt and hence we may benefit by

incorporating log F̂iit and X̂t into factor stochastic volatility models to track hit and

X respectively. In this way, we follow a two stage approach to avoid considering a

complicated likelihood by first modeling RKt to extract X̃t and F̃t and then using

those point estimates as exogenous data for factor stochastic volatility models.
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3.2.2 Factor Log-Variances

As suggested by the factor decomposition of RKt above, vit = log F̂iit, should

be related to the log-variances hft . We may incorporate this new data by adding an

additional observation of hft , to the stochastic volatility model for ft,
fit = N(0, ehit), i = 1, . . . , p,

vt = hft + ηt, ηt ∼ N(a,B)

hft = µ+ φ� (hft−1 + µ) + ωt, ωt ∼ N(0,W ).

In general, one need not take vt to be {log F̂iit}i. Instead, one might take vt to be

some other source of information that informs the log-variances. For instance, vt

could be the first p eigenvalues of RKt.

3.2.3 Factor Loadings

In classic FSVol, it is difficult, though possible, to let the factor loadings vary

in time [Lopes and Carvalho, 2007]. The realized kernel offers a direct route less

sensitive dynamic factor loadings. As before suppose one has data X̃t that informs

the factor loadings X, or letting the loadings evolve in time, Xt. One can incorporate

this new information by changing the factor stochastic volatility model so that
rt = Xtft + εt, ft, εt ∼ SV

x̃t = xt + ηt, ηt ∼ N(0, B)

xt = xt−1 + ωt ωt ∼ N(0, V θ).

where x̃t = vecl X̃t, xt = vecl Xt, and vecl vectorizes the lower triangular portion of a

matrix. The matrix valued data need not come from the factor decomposition above,

for instance, one might take the first few columns of the Cholesky decomposition of

RKt to inform Θt.
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Alcoa (AA) American Express (AXP) Boeing (BA) Bank of America (BAC) Caterpillar (CAT)
Cisco (CSCO)* Chevron (CVX) Du Pont (DD) Disney (DIS) General Electric (GE)
Home Depot (HD) Hewlett-Packard (HPQ) IBM (IBM) Intel (INTC)* Johnson & Johnson (JNJ)
JP Morgan (JPM) Kraft (KFT) Coca-Cola (KO) McDonald’s (MCD) 3M (MMM)
Merck (MRK) Microsoft (MSFT)* Pfizer (PFE) Proctor & Gamble (PG) AT&T (T)
Traveler’s (TRV) United Technologies (UTX) Verizon (VZ) Walmart (WMT) Exxon Mobil (XOM)

Table 3.1: The thirty stocks which make up the data set. The asterisk denotes com-
panies whose primary exchange is the NASDAQ. All other companies trade primarily
on the NYSE. Taken from Windle and Carvalho [2012].

3.3 Data, Evaluation, and Computation

To assess the models presented in §3.2.2 and §3.2.3 we compare their predictive

performance to the classic factor stochastic volatility model and to exponentially

smoothed realized kernels.

3.3.1 Data

The data set follows the 30 stocks in the Dow Jones Industrial Average (as

of October, 2010; see Table 3.1) for T = 927 days of trading beginning on February

27, 2007 and ending on October 29, 2010. The daily returns {rt} are calculated

using the open-to-close log return, rit = logPit,close − logPit,open, where i ∈ 1, . . . , n

corresponds to the ith stock and t ∈ 1, . . . , 927 corresponds to the t-th trading day.

We construct the realized kernels using intraday transaction data provided by the

Trades and Quotes (TAQ) database, which records the tick-by-tick prices at which

a security was bought or sold1. Details on how the data was cleaned and how the

realized kernels were constructed can be found in Appendix 5.

1Wharton Research Data Services (WRDS) was for gathering and processing data used for these
benchmarks. This service and the data available thereon constitute valuable intellectual property
and trade secrets of WRDS and/or its third-party suppliers
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3.3.2 Evaluation

We compare factor stochastic volatility-like models and forecasts based on

exponentially smoothing realized kernels using two measures. The primary metric is

the empirical standard deviation of the one-step ahead minimum variance portfolio

returns, which assesses a model’s ability to hedge risk among a class of similarly risky

assets. The one-step ahead minimum variance portfolio is

πt = argmin
‖ξ‖1=1

Var[ξ′rt|Dt−1]

where Dt−1 = {r1, . . . , rt−1} is the data observed up to and including time t − 1.

When E(rt|Σt) = 0, as is the case with the FSVol-like models, the one-day ahead

minimum variance portfolio can be calculated as

πt = argmin
‖ξ‖1=1

ξΣ̂tξ where Σ̂t = E[Σt|Dt−1].

In the case of FSVol with static factor loadings, Σt = XFtX
′ + Et. In the case of

dynamic factor loadings, Σt = ΘtFtΘ
′
t + Et. In the case of exponential smoothing,

Σ̂t = St−1 as in (3.3). The aggregate loss is then the empirical standard deviation of

the minimum variance portfolios

L1({Σ̂t}, {rt}) = sd{π′trt}Tt=1, (3.4)

where πt = argmin
‖ξ‖1=1

ξΣ̂tξ. An alternative measure of performance is the log-(Gaussian)-

likelihood,

L2({Σ̂t}, {rt}) =
T∑
t=1

−1

2
log |Σ̂t| −

1

2
r′tΣ

−1
t rt. (3.5)

We treat the predictive log-likelihood as a check upon the primary metric.
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3.3.3 Prediction

To to generate one-step ahead forecasts for exponential smoothing we split the

data set into an initialization set, t = 1, . . . , 50; an in-sample set, t = 51, . . . , 100; and

an out-of-sample set, t = 101, . . . , 920. The initialization set is used to pick S50 to

set up the exponential smoother. Next, we pick λ to minimize the loss L1 over the

in-sample set using predictions generated from (3.3). The parameter λ is then fixed

to exponentially smooth the out-of-sample set using (3.3).

Estimation and prediction for the FSVol-like models is more complicated. Both

FSVol and the FSVol-like models may be decomposed into convenient conditional

densities for Gibbs sampling [Aguilar, 1998]. Some constrained parameters, such as

φf and φε require a Metropolis-within-Gibbs step. We want to produce forecasts

Σ̂t = E[XFtX
′ + Et|Dt−1]

for t = 101, . . . , 920 where Ft and Et are diagonal with Fiit = eh
f
it , i = 1, . . . , p and

Eiit = eh
ε
it , i = 1, . . . , n. To calculate a single point estimate we must simulate the

joint distribution

p(X, hft , h
ε
t |Dt−1)

which may be produced using the posterior distribution

p(X, hft−1, µ
f , . . . , hεt−1, µ

ε, . . . |Dt−1).

To compute a one-step ahead forecast of (Σt|Dt−1) for t ∈ 101, . . . , 920, one must re-

run our Gibbs sampler at each time step t ∈ 101, . . . , 920. Thus for each factor-like

model with 1, 2, or 3 factors we generate 1500 samples, discarding the first 500 as
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burn-in, 820 times over. These posterior simulations may also be used to examine the

adapted estimates E[Σt|Dt]. We implement the Gibbs samplers in C++. It takes on

the order of a minute to produce 1500 samples for a single t and thus takes several

days to produce forecasts for all of the days and models we consider. 2

3.4 Model Comparison

Table 3.2 shows that the forecasts produced by exponentially smoothing real-

ized kernels are superior to the forecasts produced by FSVol and the extensions to

FSVol described in §3.2.2 and §3.2.3. This bolsters the result found in Liu [2009] that

exponentially smoothing realized kernels is superior to more complicated models that

only make use of daily data. However, as seen in Table 3.2, the portfolio constructed

using FSVol averages only 0.0633% more standard deviation per day than the portfo-

lio constructed using realized kernels. Thus, for every $10,000 invested daily, one takes

on $6.33 in extra risk by using the factor stochastic volatility model instead of the

realized kernel forecasting procedure when predicting the one-step ahead covariance

matrix.

Among the extensions to factor stochastic volatility, only the dynamic factor

loadings model that uses information from the Cholesky decomposition of RKt out-

performs factor stochastic volatility. In that model, we take X̃t from §3.2.3 to be the

first p columns from Lt where LtDtL
′
t = RKt is the Cholesky decomposition p is the

2One pays a price in the time taken to implement complied code. We have written over 20,000
lines of code to implement, test, and coordinate the C++, R, Bash, and Perl routines needed to run
the MCMC simulations.
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number of factors.

Table 3.2 also includes the performance of each method when using the adapted

estimates E[Σt|Dt] for each loss function. The labeling “Realized Kernel - Random

Walk” means that both the time t estimate and the time t + 1 forecast are equal to

RKt. It appears that RKt is a good proxy for the daily covariance matrix as it has

the best log-likelihood and a decent portfolio performance. Among the FSVol models,

one finds that only the dynamic factor loadings models improve upon classic factor

stochastic volatility.

In general, one benefits by working with the whole realized kernel; but, ex-

ponential smoothing, the method used here to produce forecasts of daily covariance

using the whole realized kernel, is ad hoc and lacks a notion of likelihood. A equivalent

forecast generated by a statistical model would be preferable since it would include

an accompanying notion of uncertainty. Below, we tackle this problem, building upon

the model of Uhlig [1997] to wrap exponential smoothing within a statistical model,

but first take a closer look at the robustness of exponentially smoothing realized

kernels.

3.5 Robustness of Exponential Smoothing

The empirical comparisons above engender two criticisms. First, the data set

considered heretofore follows the share prices of 30 large companies, for which stocks

are traded frequently. Stocks that trade frequently are called liquid while stocks

that trade infrequently are called illiquid. The realized kernel estimator relies on

synchronizing the price vector of a collection of assets using the asset that is slowest
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Method Factors Adapted Estimate 1-Step Ahead Forecast
MVP LLH MVP LLH

Factor Stochastic Volatility 1 0.008837 97382 0.010213 94910
2 0.008504 97824 0.009923 95155
3 0.008400 98187 0.010035 95302

Log Variances - Eigenvalues 1 0.009275 97361 0.010588 94948
2 0.009262 97762 0.010637 95177
3 0.009359 97998 0.010810 95280

Loadings - Cholesky 1 0.007567 97567 0.009968 94120
2 0.007490 98280 0.009783 94606
3 0.007729 98443 0.009931 94714

Log Variances - Factor “Decomp.” 1 0.009572 97199 0.010964 94798
2 0.009027 97633 0.010449 95050
3 0.009116 98002 0.010766 95264

Loadings - Factor “Decomp” 1 0.008121 97787 0.010079 94778
2 0.007795 97520 0.010343 94028
3 0.007834 97449 0.010161 94592

Realized Kernel - Random Walk 0.007836 101384 0.010602 91966
Exponential Smoothing 0.008782 98096 0.009290 96675
Uhlig-like Model 0.007836 101384 0.009615 94047

Table 3.2: The covariance estimation and prediction benchmarks. For each t =
101, . . . , 920, we calculate an adapted estimate Var[rt|Dt] and a one-step ahead fore-
cast Var[rt|Dt−1] of the day t covariance matrix; Dt is the data up to time t. For
the FSVol-like models we re-estimate all of the parameters, in addition to all of the
hidden states, for each t. For exponential smoothing, we use the in-sample period of
t = 51, . . . , 100 to pick the smoothing parameter λ which we then took as fixed, i.e.
as part of the data set Dt, for t = 101, . . . , 920. The entry labeled “Realized Ker-
nel - Random Walk” estimates the day t covariance matrix using the day t realized
kernel and forecasts the day t covariance matrix using the day t − 1 realized kernel.
For exponential smoothing, the adapted estimate is the exponentially smoothed re-
alized kernels, St, while the one-step ahead forecast is the day t− 1 weighted average
St−1. See equation (3.3). The column labeled MVP reports the empirical standard
deviation of the minimum variance portfolios and the column labeled LLH reports
the log-likelihood, each calculated with both the adapted estimates and 1-step ahead
forecasts. The realized kernel provides the best adapted estimate while the smoothed
realized kernel provides the best 1-step ahead forecast. The row labeled Uhlig-like
model refers to the estimates and forecasts produced using the model described in
§3.7 with parameters (k, n, λ) determined by constrained maximum likelihood, also
described in §3.7. This table and the accompanying caption is taken from Windle
and Carvalho [2012].
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to update. Thus, if one of the stocks within a portfolio is traded infrequently, the

quality of the realized kernel estimate will degrade. However, this illiquidity will

not affect factor stochastic volatility so long as the illiquid stock is traded at least

once per day. Consequently, it may be the case that exponentially smoothing realized

kernels does not work as well as FSVol when one includes an infrequently traded asset.

Second, exponential smoothing relies on a single parameter to generate forecasts of

matrix-variate data; but it may be inappropriate to use a single parameter when the

collection of assets is not similar or when one considers many assets.

To check how infrequently traded assets impact forecasts, we artificially induce

illiquidity in the data from §3.3. Instead of using an entire day’s worth in intraday

price data to construct realized kernels, we use prices observed at 5, 10, 15, 30, and

60 minute intervals. As before, an in-sample period is used to select the smoothing

parameter for each set of realized kernels and an out-of-sample period is used to

measure its performance. The plot on the left of Figure 3.1 shows choice of smoothing

parameter for each collection while the plot on the right shows the resulting empirical

standard deviation of the minimum variance portfolios. Exponential smoothing still

beats FSVol when the realized kernels are constructed using prices observed every 5,

10, or 15 minutes. At 30 and 60 minutes FSVol out performs exponential smoothing.

Thus, factor stochastic volatility may beat exponentially smoothed realized kernels

in extreme circumstances.

To check if exponential smoothing is too parsimonious, we expand the number

of assets under consideration to 96 equities3, selected, in part, so that the new data

3The ticker symbols for the assets used are AA, ABT, AFL, AIG, ALL, APA, APC, AXP, BA,

106



Figure 3.1: Illiquidity benchmarks. We construct the realized kernels for the 30 assets
from §3.3 using prices sampled periodically every 5, 10, 15, 30, and 60 minutes. The
vertical line in the left-hand plot is the in-sample choice of λ. The horizontal line
in the right-hand plot is the ESDMVP for the portfolio for the out-of-sample period
using the in-sample choice of λ. The full realized kernel performs best out-of-sample,
though the 5 and 10 minute estimates are not far behind. The best FSVol like model
had an ESDMVP of 0.00978, which is higher than the portfolios constructed using
the 5, 10, or 15 minute realized covariances. Taken from Windle and Carvalho [2012].
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covers the same time period as the original data set. For the entire collection of

assets, a new set of realized kernels is constructed RKt, t = 1, . . . , 920. To study the

effect of portfolio size and portfolio composition on the smoothing parameter and

the resulting empirical measure of loss, we repeat the same procedure as described

in §3.3. In particular, a portfolio of size N assets is selected at random; the best

smoothing parameter from (3.3) is chosen by minimizing the loss over the in-sample

period, which in this case is t = 51, . . . , 150; and the out-of-sample loss produced via

(3.3) is calculated. This procedure is repeated 200 times for each N = 30, . . . , 90. The

left plot of Figure 3.2 shows that the smoothing parameter is stable, while the right

plot shows that the average empirical standard deviation decreases as the number

of assets increases; thus, exponential smoothing is improves as the number of assets

increases.

3.6 Exponential Smoothing and Volatility Models

The straight-forward nature of exponential smoothing compels us to explain

that, in fact, similar forecasting procedures are found in popular univariate volatility

models and consequently, devising a multidimensional model that reproduces expo-

nential smoothing is a natural step forward, despite its apparent simplicity. Thus, to

clarify the mechanics of volatility forecasting and to show that encapsulating expo-

BAC, BAX, BBT, BEN, BK, BMY, C, CAH, CAT, CCL, CL, COP, CVS, CVX, D, DD, DE, DHR,
DIS, DOW, DUK, EMC, EMR, EXC, FDX, GD, GE, GIS, HAL, HD, HON, HPQ, IBM, ITW, JNJ,
JPM, K, KMB, KO, LLY, LMT, LOW, MCD, MDT, MMM, MO, MRK, MRO, NEM, NKE, NOC,
OXY, PEP, PFE, PG, PNC, PX, RTN, SLB, SO, STI, STT, SYY, T, TGT, TWX, TXN, UNH,
UNP, USB, UTX, VZ, WAG, WFC, WMT, XOM, AAPL, AMAT, AMGN, COST, CSCO, DELL,
INTC, MSFT, ORCL, QCOM, YHOO.
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Figure 3.2: Portfolio composition. A plot of the smoothing parameter λ selected by
minimizing in-sample loss of N stocks selected at random within a pool of 96 assets
is on the left while the subsequent out-of-sample loss is on the right. In this case we
take the in-sample period to be t = 51, . . . , 150 and the out-of-sample period to be
t = 151, . . . , 920. The red line is the median ESDMVP for each N and the green lines
are the first and third quartiles. Taken from Windle and Carvalho [2012].
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nential smoothing in a model has precedent, we explain how the two most common

models in univariate volatility forecasting, GARCH(1,1) and stochastic volatility, are

exponential smoothing with mean reversion.

Briefly recapitulating exponential smoothing, consider the univariate time se-

ries {yt}Tt=1 and suppose that one has observed data Dt = {y1, . . . , yt}. To forecast

one step into the future using exponential smoothing, pick a smoothing parameter

λ ∈ (0, 1) and construct the exponentially weighted average

ŷt+1 ∝
t−1∑
i=0

λkyt−i.

As λ → 0 the weighted average approaches a random walk forecast ŷt+1 = yt,

which is the point-wise forecast produced when the dynamics of yt follow yt =

yt−1 + ωt, ωt ∼ N(0,W ). As λ → 1 the weighted average approaches a white noise

forecast ŷt+1 =
∑t−1

i=0
1
t
yt−i, which is the point-wise forecast produced when the

dynamics of yt follow yt ∼ N(µ,W ). In between these two extremes the one-step

ahead forecasts balances the most recent observations with those further into the

past. The generalized autoregressive conditional heteroskedasticity (GARCH) model

[Bollerslev, 1986] and stochastic volatility (SV) model [Taylor, 1982] are extensions

of this approach.

3.6.1 GARCH(1,1) and Stochastic Volatility Forecasts

Suppose that (Pt)
T
t=1 are a sequence of asset prices, such as the daily closing

price of some equity, and that rt = logPt − logPt−1, t = 1, . . . , T are the log-returns

of those prices.
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The GARCH(1,1) model specifies that{
rt = σtεt, εt ∼ N(0, 1),

σ2
t = α + βσ2

t−1 + γr2
t−1.

Expanding the recursion for σ2
t produces

σ2
t = α

k∑
i=0

βi + γ

k∑
i=0

βir2
t−i−1 + βk+1σ2

t−k−1.

In the limit this becomes

σ2
t = (1− γ′)µ+ γ′

∞∑
i=0

wir
2
t−i−1 (3.6)

where µ = α/(1− β − γ), wi = (1− β)βi, α′ = α/(1− β), and γ′ = γ/(1− β), which

shows that the forecast for σ2
t will average a long-term mean and the exponentially

weighted moving average of past squared returns. Thus, instead of starting with

the GARCH(1,1) model, one could start with the forecast (3.6) and then pick the

parameters α, β, and γ to minimize the loss function
∑T

t=1N(rt|0, σ2
t ), where σ2

t

comes from (3.6), given the data {rt}Tt=∞. This procedure produces identical point

estimates to those one would get by picking α, β, and γ by maximum likelihood

using the GARCH model. In this way, GARCH(1,1) is like an exponential smoothing

forecasting procedure in which the measure of loss is a Gaussian likelihood.

Stochastic volatility has a similar interpretation, but instead of smoothing

squared returns, one smooths the log of square returns, that is one takes the expo-

nentially weighted geometric average of squared returns to produce a point forecast.

Again, suppose that {rt} are the returns of some financial asset. Recall that Taylor’s

model [Taylor, 1982] is{
rt ∼ N(0, eht),

ht = α + φht−1 + ωt, ωt ∼ N(0,W )
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where one now tracks the log variance ht. As seen in §3.1.3, the transformation

yt = log(r2
t ) leads to {

yt = ht + νt,

ht = α + φht−1 + ωt, ωt ∼ N(0,W ).

The distribution of νt should be logχ2
1; however, let us approximate this using νt ∼

N(0, V ), in which case the model above becomes a dynamic linear model (DLM)

and hence has closed form filtering and forecasting distributions [Harrison and West,

1997]. In particular, Given ht−1 ∼ N(mt−1, Ct−1) the DLM recursions are

Mean Variance
ht | Dt−1 at := α + φmt−1 Rt := φ2Ct−1 +W
yt | Dt−1 ft := at Qt := Rt + V
ht | Dt mt := (I − At)(α + φmt−1) + Atyt Ct = Rt − AtRt

where At = RtQ
−1
t . One can show that

at = α + φ(I − At−1)at−1 + φAt−1yt−1,

and further that, given to noise ratio r = W/V ,

1

At
= 1 +

1

φ2At−1 + r
.

Expanding the recursion for at one finds that

at =
k−1∑
i=0

M t−1
i α +

k−1∑
i=0

M t−1
i φAt−i−1yt−i−1 +M t−1

k at−k

where

M t
i =

1∏
j=i

φ(I − At) for i > 0 and M t
0 = 1.
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As At converges to A, the limit in k is approximately

at = α
∞∑
i=0

ψi +
∞∑
i=0

ψi(φA)yt−i−1, where ψ = φ(1− A).

We can rewrite this as

at = (1− γ′)µ+ γ′
∞∑
i=0

wi log(r2
t−i−1) (3.7)

where µ = α′/(1 − γ′), α′ = α/(1 − ψ), γ′ = (φ − ψ)/(1 − ψ), and wi = (1 − ψ)ψi.

Thus, the forecast for ht is an average of a long-term mean and an exponentially

weighted average of the past log squared returns and the point forecast exp(at) of

the variance Var(rt|Dt−1) is like a geometric exponentially weighted moving average

of past log squared returns.

3.7 Model Based Exponential Smoothing

As seen in §3.4, exponentially smoothing realized kernels produces good fore-

casts, but exponential smoothing lacks the richness of a statistical model; for instance,

the forecasts produced using exponential smoothing do not include a description of

how forecast errors are distributed. We are interested in filling this gap for large,

dynamic covariance matrices, just as GARCH(1,1) and SV fill this gap for univariate

time series. The following discussion follows Windle and Carvalho [2012].

Exponential smoothing covariance matrices dates back to at least Quintana

and West [1987], where it is called variance discounting. Subsequently, Shephard

[1994] provided a model-based justification for univariate variance discounting while

Uhlig [1997] provided a model-based justification for variance discounting when the
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response is a vector. More recent proposals include the Wishart autoregressive process

of Gourieroux et al. [2009], the multivariate stochastic volatility models of Philipov

and Glickman [2006], the inverse Wishart autoregressive process of Fox and West

[2011], and the HEAVY models of Noureldin et al. [2011]. Fox and West remark that

one may employ the techniques of Pitt and Walker [2005] to construct matrix variate

processes. One may indirectly model covariance matrices either through the Cholesky

decomposition Chiriac and Voev [2010] or the matrix logarithm Bauer and Vorkink

[2011]. The approach entertained here differs from the above models in its simplicity.

We draw inspiration from the state-space model of Uhlig [1997] in which the

hidden states correspond to precision matrices and the observations correspond to

vectors of asset returns. The filtered estimates and one-step ahead forecasts pro-

duced by this model are exponentially weighted averages of the the outer product of

past returns. We aim to use the same machinery to produce filtered estimates and

one-step ahead forecasts that are exponentially weighted averages of realized covari-

ance matrices. Prado and West [2010] explore a similar option; though, their model

constrains the smoothing parameter λ found in (3.3) so that λ > (m − 2)/(m − 1)

where m is the order of the matrix-variate data. When m is large this forces λ to be

very close to 1, which may be unreasonable. Our model, in contrast, allows for more

freedom in the smoothing parameter.

3.7.1 The Model

The following extension to the work of Uhlig [1997] handles relatively high-

dimensional covariance matrices and wraps the exponential smoothing forecasting
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procedure in a model. As noted above, Uhlig’s original model encased exponential

smoothing techniques [Quintana and West, 1987] in a statistical model. His model

smooths rank-1 covariance matrices of order m via
Yt ∼ Wm(1,P−1

t )

Pt = U ′t−1ΨtUt−1/λ, Ψt ∼ βm

(
ν−1

2
, 1/2, I

)
Ut−1 = chol Pt−1.

where Yt = rtr
′
t and rt are a vector of asset returns. Wm is the Wishart distribution

and βm is the multivariate beta distribution, which we describe below. One may

exponentially smooth symmetric, positive definite matrices of rank k, including full

rank matrices, via

Yt ∼ Wm(k, (kPt)−1) (3.8)

Pt = U ′t−1ΨtUt−1/λ, Ψt ∼ βm

(n
2
,
k

2
, I
)
, (3.9)

Ut−1 = chol Pt−1

where n > m − 1 and k ∈
{

(m − 1,∞) ∪ {1, . . . ,m − 1}
}

. The evolution from the

distribution of (Pt−1|Dt−1) to the distribution of (Pt|Dt−1) proceeds in closed form

as justified by the following theorem, taken from Windle and Carvalho [2012], which

combines theorems found in Uhlig [1997], Muirhead [1982], and Dı́az-Garćıa [2003].

Regarding notation, we will write S+
m,i for the set of symmetric, non-negative definite

matrices of order m and rank i with the convention that S+
m,i consists of those matrices

with rank die ∧m when i is a real number. When considering full-rank matrices we

just write S+
m. We write S+

m,i(A) as the set of X ∈ S+
m,i such that A−X ∈ S+

m.

Definition 3.1. Let k be a positive integer less than m or a real number greater than
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m− 1 and n > m− 1. The multivariate beta distribution βm(k/2, n/2), is

U ∼
Γm
[

1
2
(k + n)

]
Γm(1

2
k)Γm(1

2
n)

(detU)(k−m−1)/2
[

det(I − U)
](n−m−1)/2

dU

for U ∈ S+
m(I) when k > m− 1 and

U ∼
Γm
[

1
2
(k + n)

]
Γm(1

2
k)Γm(1

2
n)

(detD)(k−m−1)/2
[

det(I − U),
](n−m−1)/2

dU

where U = HDH ′ ∈ S+
m,k(I), H is a matrix of orthonormal columns of order m× k,

and D is a diagonal matrix of order k × k, when k is a positive integer less than m.

When k is a positive integer less than m we define

V ∼ βm(n/2, k/2)

by V = I − U and U ∼ βm(k/2, n/2). We define

V ∼ βm(k/2, n/2, S)

by V = T ′UT where T ′T = S is the Cholesky factorization of S and U ∼ βm(k/2, n/2).

Theorem 3.2. Let k be a positive integer less than m or a real number greater than

m − 1 and let n > m − 1. The bijection from S+
m,k × S+

m to S+
m × S+

m,k(I) defined by

(A,B) 7→ (S, U) via {
S = A+B

U = (T−1)′AT−1

where T ′T = S and T is the upper triangular Cholesky factor of S, or inversely{
A = T ′UT,

B = T ′(I − U)T,
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defines a change of variables from

A ∼ Wm(k,Σ) ⊥ B ∼ Wm(n,Σ) (3.10)

to

S ∼ Wm(n+ k,Σ) ⊥ U ∼ βm(k/2, n/2). (3.11)

Further, the conditional distribution of (S|B) and (B|S) are

S | B = Wm(k,Σ) +B, (3.12)

and

B | S = T ′(I − U)T = βm(n/2, k/2, S). (3.13)

One may forward filter and backwards sample the joint distribution (P1:T |DT )

[Windle and Carvalho, 2012], but we are interested in 1-step ahead forecasts and hence

the distribution of (Yt|Dt−1), which only requires understanding how (Pt−1|Dt−1) and

(Pt|Dt−1) change with time. In particular, given the information set Dt−1, suppose

that

Pt−1 ∼ Wm(n+ k,Σ−1
t−1) ⊥ Ψt ∼ βm(n/2, k/2),

which is similar to equation (3.11). This implies that

Zt ∼ Wm(k,Σ−1
t−1) ⊥ λPt ∼ Wm(n,Σ−1

t−1)

as seen in equation (3.10) and tells us how the distribution of Pt−1 transitions to the

distribution of Pt. We may update the distribution (Pt|Dt−1) ∼ Wm(n,Σ−1
t−1/λ) with
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the data Yt:

p(Pt|Dt−1, Yt) ∝ p(Yt|Pt)p(Pt|Dt−1)

∝ |Pt|(k−m−1)/2|Pt|(n−m−1)/2 exp
(
− 1

2
tr
[
YtkPt + PtλΣt−1

])
∝ |Pt|(ν−m−1)/2 exp

(
− 1

2
tr Pt

[
kYt + λΣt−1

])
∝ Wm(ν, (λΣt−1 + kYt)

−1), ν = k + n.

We repeat this process to generate the distributions for (Pt|Dt−1) and (Pt|Dt) recur-

sively.

The evolution may be summarized as in Windle and Carvalho [2012]. Suppose

Σ0 is initialized to some prior value. Proceeding inductively, one has:

• Time t− 1 “posterior:”

Pt−1 | Dt−1 ∼ Wm(ν,Σ−1
t−1).

• Evolution, i.e. time t “prior:”

Pt | Dt−1 = λ−1Wm(n,Σ−1
t−1).

• Observation:

Yt | Pt ∼ Wm(k, (kPt)−1).

This ensures that E[Yt|Pt] = P−1
t .

• Update, i.e. time t “posterior:”

Pt | Dt ∼ Wm(ν, (λΣt−1 + kYt)
−1).
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One only needs the recursion

Σt = λΣt−1 + kYt

to keep track of the parameter Σt. The following moments are taken from Windle

and Carvalho [2012] as well.

• “Posterior” mean of hidden variance:

E[P−1
t−1|Dt−1] =

Σt−1

ν −m− 1
.

• “Prior” mean of hidden variance:

E[P−1
t |Dt−1] =

λΣt−1

ν − k −m− 1
.

• Forecasted mean of hidden variance:

E[Yt | Dt−1] = E[ E[Yt | Pt, Dt−1] | Dt−1] = E[P−1
t | Dt−1].

If we chose

λ =
ν − k −m− 1

ν −m− 1
(3.14)

then the time t “prior” mean of the hidden variance is equal to the time t− 1 “pos-

terior” mean. In terms of λ and k the constraint is

ν −m− 1 = k(1− λ)−1.

In the limit, i.e. for sufficiently large N ,

Σt ' k
N∑
i=0

λiYt−i,
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and thus,

E[Yt|Dt−1] ' (1− λ)
N∑
i=0

λiYt−1−i

In other words, the 1-step ahead point forecasts E[Yt|Dt−1] are an exponentially

weighted average of past observations {Ys}t−1
s=1, just like exponential smoothing.

Degenerate Evolution

One drawback to this model is that the evolution of Pt degenerates to a non-

recognizable distribution when one does not update the information set with new

observations. In particular, suppose that one has the information set Dt−1 and con-

sider evolving (Pt|Dt−1) to (Pt+1|Dt−1). Using Theorem 3.2, one would go from

Pt|Dt−1 ∼ Wm(n,Σ−1
t−1/λ) ⊥ Ψt ∼ βm(n/2, k/2).

to

Pt+1 ∼ Wm(n− k,Σ−1
t−1/λ

2).

Thus as we evolve Pt without updating the information set Dt−1 the distribution loses

k degrees of freedom. Iterating many steps into the future, (Pt+j|Dt−1) eventually

becomes an unrecognizable distribution.

3.7.2 Estimating n, k, and λ

Windle and Carvalho [2012] show that one may take a joint draw from the

complete conditional ({Ps}Ts=0|DT , n, k, λ). However, the complete conditionals for n,

k, and λ do not have convenient forms and hence one must appeal to a Metropolis-

Hastings step or some other method for picking these parameters. To that end, it
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is more convenient to consider the marginal posterior (n, k, λ|DT ). In Proposition

3.3 below (taken from Windle and Carvalho [2012]) we show that one may marginal-

ize the hidden states {Pt} to produce the conditional distributions (Yt|Dt−1, n, k, λ).

These distributions can be used to factor the joint distribution (Y1:T |D0) where

D0 = {Σ0, n, k, λ} as

p(Y1:T |D0) =
[ T∏
t=1

p(Yt|Dt−1)
]
. (3.15)

One may use this factorization to pick (n, k, λ) by maximum likelihood or to calculate

the log-posterior of (n, k|DT ) for Metropolis-Hastings sampling. Its distribution is

related to the multivariate beta distributions of Olkin and Rubin [1964].

Proposition 3.3. Suppose that k, n > m, (Yt|Pt) ∼ Wm(k, (kPt)−1), and (Pt|Dt−1) ∼

Wm(n, V −1
t ). Then the density for (Yt|Dt−1) is

β′m(k/2, n/2, Vt/k) :=
Γm(ν

2
)

Γm(n
2
)Γm(k

2
)

|Yt|(k−m−1)/2|Vt/k|n/2

|Vt/k + Yt|ν/2
.

Proof. To see this consider the joint density p(Yt|Pt)p(Pt|Dt−1). It is

|kPt
∣∣k/2

2km/2Γm(k
2
)
|Yt|(k−m−1)/2 exp

{−1

2
tr kPtYt

}
|Vt|n/2

2nm/2Γm(n
2
)
|Pt|(n−m−1)/2 exp

{−1

2
tr VtPt

}
which is

|Yt|(k−m−1)/2

2km/2Γm(k
2
)

|Vt|n/2

2nm/2Γm(n
2
)
kkm/2|Pt|(ν−m−1)/2 exp

{−1

2
tr
(
Vt + kYt

)
Pt
}
.

The latter terms are the kernel for a Wishart distribution. Integrating the kernel for

Pt produces
2νm/2Γm(ν

2
)

|Vt + kYt|ν/2
.
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Hence the distribution of Yt|Dt−1 is

Γm(ν
2
)kkm/2

Γm(n
2
)Γm(k

2
)

|Yt|(k−m−1)/2|Vt|n/2

|Vt + kYt|ν/2
.

Factoring the k in the denominator gives us

Γm(ν
2
)

Γm(n
2
)Γm(k

2
)

|Yt|(k−m−1)/2|Vt/k|n/2

|Vt/k + Yt|ν/2
.

Proposition 3.3 may be used to select the parameters n, k, and λ. Recall

that the data set described in §3.3 consists of realized kernels RKt constructed for

t = 1, . . . , 920 days and that this data set has been partitioned into a initialization

set RKt, t = 1, . . . , 50, a in-sample set RKt, t = 51, . . . , 100, and an out-of-sample

set RKt, t = 101, . . . , 920. To select n, k, and λ by maximum likelihood, we first

set Σ50 by exponentially smoothing RKt for t = 1, . . . , 50 with smoothing parameter

0.9, a common default value, to generate S50 as in (3.3) and then letting Σ50 = kS50.

Given Σ50 and the constraint (3.14) one can calculate the likelihood for the in-sample

set, `(n, k|Y51:100,Σ50), using Proposition 3.3. Figure 3.3 shows the level sets for

this likelihood. The maximum is at (n, k) = (43.61, 70.66), implying a smoothing

parameter λ = 0.476, which somewhat smaller than one would expect. To compare

this model-based method with the previous approaches, we fix λ, n, and k from

the maximum likelihood estimate and compute the empirical loss for the out-of-

sample set using (3.3). As seen Table 3.2 these forecasts out-perform the FSVol-

like models; however, the matrix-variate model-based approach under-performs the

forecasts generated by picking the exponential smoothing parameter by minimizing

the primary measure of loss.
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Figure 3.3: The matrix-variate, state-space model’s marginal log-likelihood. The
log-likelihood of (n, k|{RKt}100

t=51,Σ50) where Σ50 has been initialized by exponential
smoothing and λ is fixed by constraint (3.3). Proposition 3.3 shows how to compute
the log-likelihood. Taken from Windle and Carvalho [2012].
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3.7.3 Connection to IGARCH

Returning to the discussion from §3.6, one may reconcile the Uhlig-like, matrix-

variate state-space model with an integrated GARCH model. In particular, consider

the IGARCH model for daily returns:{
rt ∼ N(0, σ2

t )

σ2
t = λσ2

t−1 + (1− λ)r2
t .

Like §3.6, σ2
t is the rolling, exponentially weighted average of past square returns.

The factorization p(r1:T |D0) =
∏T

t=1 p(rt|Dt−1) lets one calculate the likelihood of

λ. Similarly, after marginalizing Pt in the Uhlig-like model, an integrated GARCH

representation emerges: {
Yt ∼ β′m(k

2
, n

2
, V ∗t )

V ∗t = λ(V ∗t−1 + Yt−1),

so that

V ∗t =
N∑
i=1

λiYt−1

is a rolling, exponentially weighted sum of past realized kernels. The same factoriza-

tion p(Y1:T |D0) =
∏T

t=1 p(Yt|Dt−1) with constraint (3.14) lets one estimate (k, n) and

hence λ. Thus, both models generate exponentially weighted sums whose smoothing

parameters can be selected via a likelihood of the form

T∑
t=1

log p(Yt|Dt−1, λ).

3.8 Recapitulation

Koopman et al. [2005] and Liu [2009] show that high-frequency statistics are

a useful source of data for forecasting variation and covariation of financial asset
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returns. These observations prompted us to examine (1) whether factor stochastic

volatility is inferior to simple forecasting procedures that use high-frequency statis-

tics and (2) whether one can incorporate information from high-frequency statistics

into factor-like models. To both inquiries the result is affirmative. As seen in §3.4,

exponential smoothing realized kernels produces better forecasts than factor stochas-

tic volatility models, which only make use of daily returns. Given that observation,

we embarked on the task of improving factor stochastic volatility models using high-

frequency data. We found that one can do this by altering FSVol so that the factor

loadings change in time and track information from the realized kernel. Such a model

preserves the factor interpretation of asset returns, a desirable feature of any financial

model. However, the dynamic factor loadings model still performs poorly compared

to smoothing realized kernels.

All of these conclusions are drawn using a financially meaningful measure

of loss, the empirical standard deviation of the one-step ahead minimum variance

portfolios. One of the main applications of forecasting covariance matrices is the

construction of optimal portfolios for an investor with certain, predefined attitudes

towards risk and return. Our primary measure of loss fits within this framework, but

does not depend on the mean of the assets’ returns, a desirable property as estimating

the mean is difficult. As a tool of portfolio construction, we have shown that exponen-

tially smoothing realized kernels is better than factor stochastic volatility. Though,

it is worth noting that the magnitude by which factor stochastic volatility loses is

not too great, an observation relevant for users of these models, whose resources will

vary. An investor may study our results and find that the extra cost of acquiring the
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high-frequency data to construct realized kernels outweighs any advantage gained in

improvements in prediction of covariance matrices. However, if one does have access

to this data we have shown that exponentially smoothing realized kernels produces

better portfolios. Further, we have shown that the performance of these portfolios

is robust to to the inclusion of infrequently traded assets and to the specific compo-

sition and size of the collection of assets considered, important points for volatility

forecasting in practice.

Despite these successes, exponential smoothing is an ad hoc approach, and it

is be preferable to encase the procedure in a statistical model. To that end, we have

built a matrix-variate state-space model, in the spirit of Uhlig [1997], that has closed

form evolution and filtering equations, essential attributes when working with high-

dimensional objects. Further, the hidden states of the model can be marginalized to

estimate the two remaining parameters.
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Appendix 1

Pseudocode

Algorithm 1 IG(µ, λ) Sampler [Devroye, 1986].

Y ∼ N(0, 1).
W ← µ(1 + µY

2λ
).

X ← W −
√
W 2 − µ2.

U ∼ U(0, 1).
if U > µ/(µ+X) then

X ← µ2/X.
end if
Return X.

Algorithm 2 IGa(1/2, scale = s)1(0,t) Sampler [Devroye, 1986].

R← t/s.
E ∼ N (0, 1)1(1/

√
R,∞).

X = s/E2.
Return X.

Algorithm 3 IG(µ, λ)1(0,t) Sampler.

z ← 1
µ
. If you pass z directly then z = 0 is a IGa(1/2, λ)1(0,t) draw.

repeat
X ∼ IGa(1/2, λ/2)1(0,t).

α← exp(−λz
2

2
X)

U ∼ U
until U ≤ α
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Algorithm 4 Hybrid IG(µ, λ)1(0,t) Sampler.

Let τ be some pre-specified constant, e.g. τ = µ.
X ← X + 1.
if t < τ then

X ∼ IG(µ, λ)1(0,t) from Algorithm 3.
else

repeat
X ∼ IG(µ, λ)

until X < t
end if

Algorithm 5 Ga(shape, rate)1(t,∞) Sampler [Philippe, 1997, Dagpunar, 1978].

a← shape; b← t rate.
c0 ← 0.5((b− a) +

√
(b− a)2 + 4b)/b.

repeat
X ∼ b+ E(c0)
log ρ = (a− 1) log(X)−X(1− c0)
logM = (a− 1) log((a− 1)/(1− c0))− (a− 1)

until logU(0, 1) ≤ log ρ− logM .
Return tX/b.
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Algorithm 6 J∗(1, z) Sampler.

Input: z, a positive real number
Define: pigauss(t | µ, λ), the CDF of the inverse Gaussian distribution
Define: an(x), the piecewise-defined coefficients in (1) and (2).
t← 0.64, K ← π2/8 + z2/2
p← π

2K
exp(−Kt)

q ← 2 exp(−|z|) pigauss(t | µ = 1/z, λ = 1.0)
repeat

Generate U, V ∼ U(0, 1)
if U < p/(p+ q) then

(Truncated Exponential)
X ← t+ E/K where E ∼ E(1)

else
(Truncated Inverse Gaussian)
µ← 1/z
if µ > t then

repeat
Generate 1/X ∼ χ2

11(t,∞)

until U(0, 1) < exp(− z2

2
X)

else
repeat

Generate X ∼ IG(µ, 1.0)
until X < t

end if
end if
S ← a0(X), Y ← V S, n← 0
repeat

n← n+ 1
if n is odd then

S ← S − an(X); if Y < S, then return X
else

S ← S + an(X); if Y > S, then break
end if

until FALSE
until FALSE
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Algorithm 7 J∗(h) Sampler from §2.7.

Let an be the coefficients from the inverse Gamma representation.
p← pr(t)/(p`(t) + pr(t)).
if runif(1) < p then

X ← Ga(h, rate = π2/8)I(t,∞).
else

X ← IGa(1/2, h2/2)I(0,t).
end if
S ← S0(X).
Y ← runif(0, g̃(X)).
decreasing, done← FALSE.
prev ← S.
n← 0
while !done do

a.n← an(X).
decreasing ← a.n < prev.
if n is odd then

S ← S − an(X).
done← (Y ≤ S) and decreasing

else
S ← S + an(X).
done← (Y > S) and decreasing

end if
end while
Accept if Y ≤ S.
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Algorithm 8 J∗(h, z) Sampler from §2.7.

Let an be the coefficients from the inverse gamma representation.
Everything here is conditional upon z and h.
p← pr(t, z, h)/(p`(t, z, h) + pr(t, z, h)).
λz = π2/8 + z2/2.
if runif(1) < p then

X ← Ga(h, rate = λz)I(t,∞).
else

X ← IGauss(µ = h/z, h2)I(0,t).
end if
S ← S0(X).
Y ← runif(0, g̃(X)).
decreasing, done← FALSE.
prev ← S.
n← 0
while !done do

a.n← an(X).
decreasing ← a.n < prev.
if n is odd then

S ← S − an(X).
done← (Y ≤ S) and decreasing

else
S ← S + an(X).
done← (Y > S) and decreasing

end if
end while
Accept if Y ≤ S.
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Algorithm 9 J∗(h, z) Saddlepoint Sampler from §2.8.

Setup:
Pick x`, xc, and xr.
Let κ`, κr, ρ`, ρr, and k(x|h, z) be as in Proposition 2.25.
Let sph(x|z) be the saddle point approximation.
Accept/Reject:
w` ← κ`ΦIG(xc, µ = 1/ρ`, λ = h).
wr ← κr(1− ΦGa(xc, shape = h, rate = hρr)).
w ← w` + wr.
go← 1.
while go do

if U(0, w) ≤ w` then
X ← IG(µ = 1/

√
ρ`, λ = h)1(0,xc).

K ← k(X|h, z). . k(x|h, z) is defined piecewise.
else

X ← Ga(shape = h, rate = hρr)1(xc,∞)

K ← k(X|h, z).
end if
S ← sph(X|z)
go← U(0, K) > S.

end while
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Appendix 2

Truncated Inverse Gaussian Acceptance Rate

We employ two methods to simulate a truncated inverse Gaussian random

variate, Y ∼ IG(µ, λ)1(0,t). One approach is to use rejection sampling. In that case,

the probability of accepting a proposal X ∼ IG(µ, λ) is

ΦIG(t|h/z, h2).

Another approach is to use accept/reject sampling with an X ∼ IG(1/2, h2/2) pro-

posal. The inverse Gaussian kernel is

kf (x) = e−zhx−3/2 exp
(
− z2

2x
(x− h/z)2

)
= x−3/2 exp

(
− xz2

2
− h2

2x

)
.

while the kernel of the proposal is

kg(x) = x−3/2 exp
(
− h2

2x

)
.

The ratio of the target to the proposal is

kf (x)

kg(x)
= e−xz

2/2,

which we may maximize over x ∈ (0, t) to see that c = 1 ensures that

kf (x) ≤ ckg(x)
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on (0, t) and so the probability of accepting a proposal is

Eg[e−xz
2/2] =

e−zh

ΦIGa(t; 1/2, h2/2)
ΦIG(t, h/z, h2)

Thus, it is better to use the accept/reject approach if

e−zh ≥ 1− ΦGa(1/t, 1/2, rate = h2/2).
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Appendix 3

Binary Logistic Regression and Mixed Model

Benchmarks

Descriptions of the data sets and methods used for the binary logistic regression

and binary logistic mixed model benchmarks can be found in the technical supplement

to Polson et al. [2013b]. The descriptions are reproduced here for convenience.

3.1 Data Sets

Nodal: part of the boot R package [Canty and Ripley, 2012]. The response indicates

if cancer has spread from the prostate to surrounding lymph nodes. There are

53 observations and 5 binary predictors.

Pima Indian: There are 768 observations and 8 continuous predictors. It is noted

on the UCI website that there are many predictor values coded as 0, though

the physical measurement should be non-zero [Machine Learning Repository,

2012d]. We have removed all of those entries to generate a data set with 392

observations. The marginal mean incidence of diabetes is roughly 0.33 before

and after removing the data.

Heart: The response represents either an absence or presence of heart disease. There

are 270 observations and 13 attributes of which 6 are categorical or binary and
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1 is ordinal. The ordinal covariate has been stratified by dummy variables

[Machine Learning Repository, 2012c].

Australian Credit: The response represents either accepting or rejecting a credit

card application [Machine Learning Repository, 2012a]. The meaning of each

predictor has been removed to protect the propriety of the original data. There

are 690 observations and 14 attributes, of which 8 are categorical or binary.

There were 37 observations with missing attribute values. These missing values

have been replaced by the mode of the attribute in the case of categorical data

and the mean of the attribute for continuous data. This data set is linearly

separable and results in some divergent regression coefficients, which are kept

in check by the prior.

German Credit: The response represents either a good or bad credit risk [Machine

Learning Repository, 2012b]. There are 1000 observations and 20 attributes

including both continuous and categorical data. We benchmark two scenarios.

In the first, the ordinal covariates have been given integer values and have not

been stratified by dummy variable, yielding a total of 24 numeric predictors. In

the second, the ordinal data has been stratified by dummy variables, yielding a

total of 48 predictors.

3.2 Methods

All of these routines are implemented in R, though some of them make calls

to C. In particular, the independence Metropolis samplers do not make use of any
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non-standard calls to C, though their implementations have very little R overhead

in terms of function calls; the Pólya-Gamma method calls a C routine to sample the

Pólya-Gamma random variates, but otherwise only uses R. We think this is fair since

other basic random variate generators in R call compiled code. As a check upon our

independence Metropolis sampler we include the independence Metropolis sampler of

Rossi et al. [2005], which may be found in the bayesm package [Rossi, 2012], though

their sampler uses a t6 proposal while ours uses a normal proposal. The suite of

routines in the binomlogit package [Fussl, 2012] implement the techniques discussed

in Fussl et al. [2011]. One routine provided by the binomlogit package coincides

with the technique described in Frühwirth-Schnatter and Frühwirth [2010] for the

case of binary logistic regression. A separate routine implements the latter and uses

a single call to C. Gramacy and Polson’s R package, reglogit, also calls external C

code [Gramacy, 2012]. For every data set the regression coefficient was given a diffuse

N(0, 0.01I) prior, except when using Gramacy and Polson’s method, in which case

it was given a exp(
∑

i |βi/100|) prior per the specifications of the reglogit package.

The following is a short description of each method along with its abbreviated name.

PG: The Pólya-Gamma technique.

FS: The method of Frühwirth-Schnatter and Frühwirth [2010].

IMN: Independence Metropolis with a normal proposal. We calculate the poste-

rior mode and the Hessian at the mode to pick the mean and variance of the

proposal.
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IMT: Independence Metropolis with a t6 proposal from the R package bayesm [Rossi,

2012]. One calculates the posterior mode and the Hessian at the mode to pick

the mean and scale matrix of the proposal.

OD: The method of O’Brien and Dunson [2004]. Strictly speaking, this is not logistic

regression; it is binary regression using a student’s T cumulative distribution

function as the inverse link function. Their approach reduces to the t-link

approach of Albert and Chib [1993] when not correcting by Metropolis-Hastings.

To speed up the sampling we do not use the correction step.

Fussl: Work by Fussl et al. [2013] that extends the technique of Frühwirth-Schnatter

and Frühwirth [2010]. A convenient representation is found that relies on a

discrete mixture of normals approximation. From the R package binomlogit

[Fussl, 2012].

MHGB: Similar to the discrete mixture of normals approach in Fussl et al. [2013],

but instead of using a discrete mixture of normals, use a single normal to ap-

proximate the error term and correct using Metropolis-Hastings. MHGB stands

for Metropolis-Hastings within Gibbs for binomial logistic regression. From the

R package binomlogit.

MHG1: This routine is identical to MHGB, but is restricted to binary logistic re-

gression. From the R package binomlogit.

MHGH: Like the discrete mixture of normals approach found in Fussl et al. [2013],

but the specific sampling procedure is determined by the ratio yi/ni. From the

R package binomlogit.
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GP: The method of Gramacy and Polson [2012]. They employ another data aug-

mentation scheme that uses only a single layer of latents. This routine uses a

double exponential prior. The scale of this prior is set to agree with the scale of

the normal prior used in all other cases above. From the R package reglogit

[Gramacy, 2012].
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3.3 Binary Logistic Regression Benchmarks

The following eight tables comprise the binary logistic benchmarks reported

in §2.5. “ARate” refers the Metropolis-Hastings acceptance rate. When a sampler

does not use a Metropolis-Hastings step, ARate is set to 1.0. The tables report the

time taken to generate 10,000 samples along with the the minimum, median, and

maximum effective sample sizes and effective sampling rates of those 10,000 samples.

These numbers have been averaged over 10 batches for each data set.

Nodal data: N = 53, P = 6
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 2.98 1.00 3221.12 4859.89 5571.76 1081.55 1631.96 1871.00
IMN 1.76 0.66 1070.23 1401.89 1799.02 610.19 794.93 1024.56
IMT 1.29 0.64 3127.79 3609.31 3993.75 2422.49 2794.69 3090.05
OD 3.95 1.00 975.36 1644.66 1868.93 246.58 415.80 472.48
FS 3.49 1.00 979.56 1575.06 1902.24 280.38 450.67 544.38
Fussl 2.69 1.00 1015.18 1613.45 1912.78 376.98 598.94 710.30
MHGB 1.41 0.62 693.34 1058.95 1330.14 492.45 751.28 943.66
MHG1 1.30 0.61 671.76 1148.61 1339.58 518.79 886.78 1034.49
MHGH 3.06 1.00 968.41 1563.88 1903.00 316.82 511.63 622.75
GP 17.86 1.00 2821.49 4419.37 5395.29 157.93 247.38 302.00

Diabetes: N = 392, P = 9
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 5.65 1.00 3255.25 5444.79 6437.16 576.14 963.65 1139.24
IMN 2.21 0.81 3890.09 5245.16 5672.83 1759.54 2371.27 2562.59
IMT 1.93 0.68 4751.95 4881.63 5072.02 2456.33 2523.85 2621.98
OD 6.63 1.00 1188.00 2070.56 2541.70 179.27 312.39 383.49
FS 6.61 1.00 1087.40 1969.22 2428.81 164.39 297.72 367.18
Fussl 6.05 1.00 1158.42 1998.06 2445.66 191.52 330.39 404.34
MHGB 3.82 0.49 647.20 1138.03 1338.73 169.41 297.98 350.43
MHG1 2.91 0.48 614.57 1111.60 1281.51 211.33 382.23 440.63
MHGH 6.98 1.00 1101.71 1953.60 2366.54 157.89 280.01 339.18
GP 88.11 1.00 2926.17 5075.60 5847.59 33.21 57.61 66.37
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Heart: N = 270, P = 19
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 5.56 1.00 2097.03 3526.82 4852.37 377.08 633.92 872.30
IMN 2.24 0.39 589.64 744.86 920.85 263.63 333.19 413.03
IMT 1.98 0.30 862.60 1076.04 1275.22 436.51 543.95 645.13
OD 6.68 1.00 620.90 1094.27 1596.40 93.03 163.91 239.12
FS 6.50 1.00 558.95 1112.53 1573.88 85.92 171.04 241.96
Fussl 5.97 1.00 604.60 1118.89 1523.84 101.33 187.49 255.38
MHGB 3.51 0.34 256.85 445.87 653.13 73.24 127.28 186.38
MHG1 2.88 0.35 290.41 467.93 607.80 100.70 162.25 210.79
MHGH 7.06 1.00 592.63 1133.59 1518.72 83.99 160.72 215.25
GP 65.53 1.00 1398.43 2807.09 4287.55 21.34 42.84 65.43

Australian Credit: N = 690, P = 35
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 12.78 1.00 409.98 3841.02 5235.53 32.07 300.44 409.48
IMN 3.42 0.22 211.48 414.87 480.02 61.89 121.53 140.59
IMT 3.92 0.00 8.27 10.08 26.95 2.11 2.57 6.87
OD 14.59 1.00 28.59 988.30 1784.77 1.96 67.73 122.33
FS 15.05 1.00 36.22 1043.69 1768.47 2.41 69.37 117.53
Fussl 14.92 1.00 29.34 991.32 1764.40 1.97 66.44 118.27
MHGB 8.93 0.19 13.03 222.92 435.42 1.46 24.97 48.76
MHG1 7.38 0.19 13.61 220.02 448.76 1.85 29.83 60.84
MHGH 18.64 1.00 28.75 1040.74 1817.85 1.54 55.84 97.53
GP 162.73 1.00 95.81 2632.74 4757.04 0.59 16.18 29.23

German Credit: N = 1000, P = 25
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 15.37 1.00 3111.71 5893.15 6462.36 202.45 383.40 420.44
IMN 3.58 0.68 2332.25 3340.54 3850.71 651.41 932.96 1075.47
IMT 4.17 0.43 1906.23 2348.20 2478.68 457.11 563.07 594.30
OD 17.32 1.00 1030.53 2226.92 2637.98 59.51 128.59 152.33
FS 18.21 1.00 957.05 2154.06 2503.09 52.55 118.27 137.43
Fussl 18.13 1.00 955.41 2150.59 2533.40 52.68 118.60 139.70
MHGB 10.60 0.29 360.72 702.89 809.20 34.03 66.30 76.33
MHG1 8.35 0.29 334.83 693.41 802.33 40.09 83.04 96.08
MHGH 22.15 1.00 958.02 2137.13 2477.10 43.25 96.48 111.84
GP 223.80 1.00 2588.07 5317.57 6059.81 11.56 23.76 27.08
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German Credit Full: N = 1000, P = 49
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 22.30 1.00 2803.23 5748.30 6774.82 125.69 257.75 303.76
IMN 4.72 0.41 730.34 1050.29 1236.55 154.73 222.70 262.05
IMT 6.02 0.00 5.49 14.40 235.50 0.91 2.39 39.13
OD 25.34 1.00 717.94 2153.05 2655.86 28.33 84.96 104.80
FS 26.44 1.00 727.17 2083.48 2554.62 27.50 78.80 96.62
Fussl 26.91 1.00 755.31 2093.68 2562.11 28.06 77.80 95.21
MHGB 14.66 0.13 132.74 291.11 345.12 9.05 19.86 23.54
MHG1 12.45 0.13 136.57 290.13 345.22 10.97 23.31 27.73
MHGH 35.99 1.00 742.04 2075.41 2579.42 20.62 57.67 71.67
GP 243.41 1.00 2181.84 5353.41 6315.71 8.96 21.99 25.95

Synthetic, orthogonal predictors: N = 150, P = 10
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 3.83 1.00 6140.81 7692.04 8425.59 1604.93 2010.44 2201.04
IMN 1.87 0.78 3009.10 4114.86 4489.16 1609.67 2200.72 2397.94
IMT 1.54 0.64 3969.87 4403.51 4554.04 2579.84 2862.12 2960.05
OD 4.88 1.00 2325.65 3030.71 3590.09 476.36 620.74 735.29
FS 4.46 1.00 2162.42 2891.85 3359.98 484.91 648.41 753.38
Fussl 3.79 1.00 2207.30 2932.21 3318.37 583.11 774.58 876.59
MHGB 2.10 0.53 1418.07 1791.71 2030.70 676.70 854.94 968.96
MHG1 1.72 0.53 1386.35 1793.50 2022.31 805.40 1042.20 1174.97
MHGH 4.34 1.00 2170.71 2887.57 3364.68 500.67 666.18 776.37
GP 38.53 1.00 5581.31 7284.98 8257.91 144.85 189.07 214.32

Synthetic, factor predictors: N = 500, P = 20
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 8.70 1.00 1971.61 2612.10 2837.41 226.46 300.10 325.95
IMN 2.52 0.42 826.94 966.95 1119.81 327.98 382.96 443.65
IMT 2.59 0.34 1312.67 1387.94 1520.29 507.54 536.84 588.10
OD 9.67 1.00 428.12 573.75 652.30 44.28 59.36 67.48
FS 9.85 1.00 459.59 585.91 651.05 46.65 59.48 66.09
Fussl 9.51 1.00 422.00 564.95 639.89 44.39 59.43 67.31
MHGB 5.35 0.33 211.14 249.33 281.50 39.46 46.58 52.59
MHG1 4.17 0.32 201.50 239.50 280.35 48.37 57.51 67.30
MHGH 11.18 1.00 452.50 563.30 644.73 40.46 50.37 57.65
GP 114.98 1.00 748.71 1102.59 1386.08 6.51 9.59 12.06
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3.4 Binary Logistic Mixed Model Data Sets

Synthetic: A synthetically generated data set with 5 groups, 100 observations within

each group, and a single fixed effect.

Polls: Voting data from a Presidential campaign [Gelman and HIll, 2006]. The re-

sponse indicates a vote for or against former President George H.W. Bush.

There are 49 groups corresponding to states. Some states have few observa-

tions, necessitating a model that shrinks coefficients towards a global mean to

get reasonable estimates. A single fixed effect corresponding to race is included.

Entries with missing data were deleted to yield a total of 2015 observations.

Xerop: The Xerop data set from the epicalc R package [Chongsuvivatwong, 2012],

examines if vitamin A deficiencies contribute to respiratory infections. Multiple

observations of each individual were made. The data is grouped by individual id

yielding a total of 275 random intercepts. A total of 5 fixed effects are included in

the model—age, sex, height, stunted growth, and season—corresponding to an

8 dimensional regression coefficient after expanding the season covariate using

dummy variables.
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Appendix 4

Dynamic Binary Logistic Regression Benchmarks

4.1 Data Sets

Tokyo Rainfall: A data set found in Kitagawa [1987] that counts the days on which

it rained over a two-year period. The data set includes a leap year.

Synth Low: 500 synthetic binary responses with 2 loosely correlated predictors.

Synth High: 500 synthetic binary responses with 2 highly correlated predictors.

4.2 Benchmarks
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Dataset: Tokyo. Prior: φ = 1,W ∼ IGa(150, 15). T = 366.
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 21.72 1.00 4352.80 7735.08 10081.46 200.43 356.18 464.22
Fussl 20.60 1.00 1627.61 3649.46 5428.93 79.03 177.19 263.60
CUBS 233.98 0.47 652.86 761.98 910.62 2.79 3.26 3.89

Dataset: Synth Low. Prior φi = 0.95,Wi = 0.172. T = 500, P = 2.
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 28.34 1.00 8309.00 9395.80 9894.45 293.16 331.50 349.09
Fussl 29.08 1.00 5299.68 7646.07 9800.60 182.26 262.96 337.05
CUBS 609.04 0.68 2424.95 3930.01 5168.38 3.98 6.45 8.49

Dataset: Synth High. Prior: φi = 0.95,Wi = 0.172. T = 500, P = 2.
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 28.46 1.00 8611.53 9441.44 9894.56 302.60 331.76 347.68
Fussl 29.19 1.00 6204.70 7879.60 9656.77 212.54 269.91 330.78
CUBS 610.43 0.61 2562.38 4291.96 6932.42 4.20 7.03 11.36

Dataset: Synth Low. Prior φi ∼ N(0.95, 0.01),Wi ∼ IGa(10, 1). T = 500, P = 2.
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 31.03 1.00 1348.88 7063.34 9914.37 43.46 227.65 319.53
Fussl 31.81 1.00 1213.67 5643.54 9060.83 38.15 177.40 284.82
CUBS 627.81 0.65 125.22 576.81 1695.55 0.20 0.92 2.70

Dataset: Synth High. Prior φi ∼ N(0.95, 0.01),Wi ∼ IGa(10, 1). T = 500, P = 2.
Method time ARate ESS.min ESS.med ESS.max ESR.min ESR.med ESR.max
PG 31.02 1.00 686.61 4802.36 9523.97 22.13 154.81 307.01
Fussl 31.84 1.00 479.20 3774.41 8505.58 15.05 118.55 267.15
CUBS 618.25 0.55 181.61 541.04 1617.91 0.29 0.87 2.61

Table 4.1: The minimum, median, and maximum effective sample sizes and effective
sampling rates calculated for dynamic binary and binomial logistic regression for the
Pólya-Gamma technique, the method of Fussl et al. [2013], and the method of Ravines
et al. [2006].
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Appendix 5

Realized Kernel Construction

Our construction of the realized kernels is based upon Barndorff-Nielsen et al.

[2009, 2011]. Barndorff-Nielsen et al.’s model, which takes into account market mi-

crostructure noise, is

Xti = Yti + Uti

where {ti}ni=1 are the times at which the m-dimensional vector of log stock prices,

{Xt}t≥0, are observed, {Yt}t≥0 is the latent log stock price, and {Uti}nt=1 are errors

introduced by market microstructure. The challenge is to construct estimates of the

quadratic variation of {Yt} with the noisy data {Xti}ni=1. They do this using a kernel

approach,

K(Xt) =
H∑

h=−H

k
( h
H

)
Γh

where

Γh(Xt) =
n∑

j=h+1

xjx
′
j−h, for h ≥ 0,

with xj = Xsj −Xsj−1
and Γh = Γ′−h for h < 0. The kernel k(x) is a weight function

and lives within a certain class of functions. While this provides a convenient formula

for calculating realized kernels, the choice of weight function and proper bandwidth

H requires some nuance. Barndorff-Nielsen et al. [2011] discuss both issues. We

follow their suggestion, using the Parzen kernel for the weight function and picking
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H as the average of the collection of bandwidths {Hi}mi=1 one calculates for each asset

individually. Before addressing either of those issues one must address the practical

problem of cleansing and synchronizing the data.

Clean the data : The data was cleaned using the following rules.

• Retrieve prices from only one exchange. For most companies we used the

NYSE, but for Cisco, Intel, and Microsoft we used FINRA’s Alternative

Display Facility.

• If there are several trades with the same time stamp, which is accurate up

to seconds, then the median price across all such trades is taken to be the

price at that time.

• Discard a trade when the price is zero.

• Discard a trade when the correction code is not zero.

• Discard a trade when the condition code is a letter other than ‘E’ or ‘F’.

Synchronize Prices : Regarding synchronization, prices of different assets are not

updated at the same instant in time. To make use of the statistical theory for

constructing the realized measures one must decide how to “align” prices in

time so that they appear to be updated simultaneously. Barndorff-Nielsen et

al. suggest constructing a set of refresh times (τj) which corresponds to a “last

most recently updated approach.” The first refresh time τ1 is the first time

at which all asset prices have been updated. The subsequent refresh times are

inductively defined so that τn is the first time at which all assets prices have
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been updated since τn−1. After cleansing and refreshing the data, one is left

with the collection (Xτj) from which the realized kernels will be calculated.

Jitter End Points : For their asymptotic results to hold Barndorff-Nielsen et al.

suggest jittering the first and last observations (Xτj). We do this by taking the

average of the first two observations and relabeling the resulting quantity as

the first observation and taking the average of the last two observations and

labeling the resulting quantity as the last observation.

Calculate Bandwidths :

We follow Barndorff-Nielsen et al. [2009] when calculating each Hi individually

using the time series {X(i)
t } before it has been synchronized or jittered. For

the moment, we assume that i is fix and suppress it from the notation. In

particular, for each asset i the bandwidth H is estimated as

Ĥ = c∗(ξ̂2)2/5n3/5

where c∗ = 0.97 for the Parzen kernel, n is the number of observations, and the

estimate of ξ2 is

ξ̂2 = ω̂2/ÎV .

ÎV is the realized variance sampled on a 20 minute grid. ω̂2 is an estimate of

the variance of Uτi and is given by

ω̂2 =
1

q

q∑
k=1

ω̂2
k with ω̂2

k =
RV

(k)
dense

2n(k)

.
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The quantity RV
(k)
dense is the sum of square increments taken at a high frequency.

RV
(k)
dense =

nk−1∑
j=0

x
(k)2
j , xkj = (Xqj+k −Xq(j−1)+k), k = 1, . . . , q.

and nk is the number of observations elements in {xkj}
nk
j=1. For each time series

we chose q = bn/195c, which is the average number of ticks on that day per

two minute period [Barndorff-Nielsen et al., 2009].

Calculate Realized Kernel Estimate :

At the end of the day one has {Xτj} and H. Using these quantities the real-

ized covariation matrix is estimated using the kernel method described at the

beginning of the section.
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