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For T the circle group, we construct a differential refinement of T-

equivariant K-theory. We first construct a de Rham model for delocalized

equivariant cohomology H

D and a delocalized equivariant Chern character

ChD : K

T Ñ H


D based on [19] and [14]. We show that ChD induces an

isomorphism ChD : K

T b C Ñ H


D . We then construct a geometric model

for differential T-equivariant K-theory analogous to the model of differential

K-theory in [27] and deduce its basic properties.
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Chapter 1

Introduction

Differential cohomology is a refinement of cohomology for smooth man-

ifolds that includes local geometric as well as global topological information.

For M a compact smooth manifold, the differential refinement qH�pMq of ordi-

nary integral cohomology H�pM ; Zq consists roughly of integral cocycles and

differential forms representing them. Thus, whereas H2pM ; Zq is the discrete

abelian group of isomorphism classes of complex line bundles on M , qH2pMq is

the abelian Lie group of isomorphism classes of line bundles with connection.

Differential K-theory has been constructed by Hopkins-Singer [31], Klonoff

[36], Freed-Lott [27], Bunke-Schick [20], and Simons-Sullivan [47]. A schematic

description is as follows. Let β be a formal variable of deg β � �2 and let R

be the Z-graded ring R � Crβ, β�1s. Let K
pMq denote the Z-graded ring of

topological K-theory and let ΩpM ; Rq
 denote the algebra of differential forms

with values in R. Differential K-theory fits into the following commutative

diagram,

qK
pMq > ΩpM ; Rq
closed

K
pMq
_

Ch
> HdRpM ; Rq


r�sdR

_
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where the bottom map is the Chern character Ch : K
pMq Ñ HdRpM ; Rq
,

the right vertical map is given by taking the de Rham cohomology class and

ΩpM ; Rq
closed are the closed differential forms. One way to define differential

K-theory is to require the above to be a homotopy pullback square. This

makes clear how differential K-theory combines topological K-theory and dif-

ferential forms. Freed and Lott construct a geometric model by generators

and relations. The generators of qK0pMq are triples pE,∇, ηq where E Ñ M

is a vector bundle with connection ∇ and η P ΩpM ; Rq�1{im pdq; the relations

come from short exact sequences of vector bundles. For qK�1pMq, one does the

same on M � S1, then uses Bott periodicity to define qKjpMq for any integer

j. Ortiz ([44]) constructs differential G-equivariant K-theory for G a finite

group. In this paper, we construct differential T-equivariant K-theory for T

the circle group.

Equivariant K-theory K

TpMq is constructed as the Grothendieck group

of isomorphism classes of T-equivariant vector bundles. There is a stan-

dard equivariant de Rham cohomology HTpM ; Rq
 represented by equivari-

ant differential forms. The equivariant K-theory K

TpMq is a module over

K

Tpptq � RpTq � Zrt, t�1s, the representation ring of T, and there is an aug-

mentation homomorphism ε : RpTq Ñ Z given by evaluating at t � 1. The

kernel of this homomorphism is called the augmentation ideal, denote it by I.

There is an equivariant Chern character ChT : K

TpMq Ñ HTpM ; Rq
, but by

the Atiyah-Segal Completion theorem [9], it factors through the completion

of K

TpMq at the ideal I and, in fact, H


TpMq is isomorphic to this comple-

2



tion. Thus, if one attempted to construct differential T-equivariant K-theory

by forming a pullback diagram as above with K

TpMq and HTpM ; Rq
, the

additional geometric information in such a model would be a refinement of

only a small piece of the topological theory. To repair this defect, we must

use a “delocalized” equivariant de Rham cohomology that detects the whole

group T, not just a formal neighborhood of the identity. The idea of “glob-

alizing” the Chern character has been studied for finite and discrete groups

in [48], [11], and for compact Lie groups in[23], [28], [12], [19], [45] and [14].

We present a construction which combines the models of Brylinski [19] and

Block-Getzler [14] and use it to construct differential T-equivariant K-theory

by analogy with Freed-Lott [27].

In addition to the mathematical appeal of marrying global topology

and differential forms, there is some motivation for studying differential K-

theory from theoretical physics. Charges of D-branes in type II string theory

are elements of differential K-theory, [43], [25], and qK� is also related to T -

duality [34].

The format of the present paper is as follows. In section 2, we briefly

review the constructions of K
pMq and K

TpMq, recall their salient features,

and also recall the construction of the classical Chern character. In section 3,

we review equivariant cohomology and the equivariant Chern character. We

conclude by reiterating the necessity of a delocalized theory. In section 4, we

construct delocalized equivariant cohomology and the delocalized equivariant

Chern character. We show that upon tensoring with C, the latter is an iso-

3



morphism. In section 5, we construct differential T-equivariant K-theory and

deduce some of its basic properties.

4



Chapter 2

K-theory, Equivariant K-theory, and the

Chern character

2.1 K-theory

In this section we rapidly recall the basic features of K-theory and set

conventions. Let M be a compact smooth manifold, let V pMq denote the set

of isomorphism classes of finite rank complex vector bundles over M and let

∆ � V pMq � V pMq be the diagonal. The set V pMq is a monoid under direct

sum of bundles; we make a group by taking

K0pMq :� pV pMq � V pMqq{∆. (2.1)

For vector bundles E,F , the isomorphism class of E bF depends only on the

isomorphism classes of E and F . Thus, tensor product of bundles induces

a commutative product on V pMq so induces on K0pMq the structure of a

commutative ring. This ring satisfies the standard universal property that if

A a commutative ring, any map ϕ : V pMq Ñ A that satisfies for all rEs, rF s P

V pMq, ϕprE`F sq � ϕprEsq�ϕprF sq and ϕprEbF sq � ϕprEsqϕprF sq induces

a unique ring homomorphism K0pMq Ñ A.

Identifying Sn with Rn Y tptu, for i : M � M � tptu ãÑ M � Sn, we

5



define

K�npMq :� kertK0pM � Snq
i�
ÝÑ K0pMqu. (2.2)

For H Ñ S2 � CP1 the Hopf line bundle, the dual of the tautological line

bundle, the class β :� rHs � r1s P K�2pptq is called the Bott class and multi-

plication by it induces the Bott periodicity isomorphism

K�npXq
β

�
> K�n�2pXq (2.3)

for n ¥ 0. One inductively defines KnpXq :� Kn�2pXq for n ¥ 1. We will

write K
pMq for the full Z-graded ring

K
pMq :�
à
jPZ

KjpMq. (2.4)

An equivalent description of K0pMq is as the free abelian group F gen-

erated by all (finite rank, complex) vector bundles on M modulo the subgroup

S generated by short exact sequences. Recall that if

0 > E1
i
> E2 > E3 > 0

is a short exact sequence of vector bundles, there exists a splitting s : E3 Ñ E2.

This determines an isomorphism

i` s : E1 ` E3
�
ÝÑ E2.

It follows that taking the quotient of F by the subgroup generated by short ex-

act sequences identifies isomorphic bundles and identifies direct sum of bundles

with addition in F.

6



There is an equivalent description of K�1pMq in terms of pairs consist-

ing of a bundle on M along with an automorphism. One then takes the free

abelian group generated by such pairs pE, γq modulo short exact sequences in

which the maps of bundles commute with the automorphisms, and the relation

pE, γq � pE, γ1q � pE, γγ1q. This description is related to bundles on M � S1

as follows.

Definition 2.1.1. If E Ñ M is a vector bundle and γ : E Ñ E is an au-

tomorphism, let π : M � I Ñ M be projection. Let Eγ denote the bundle

π�E ÑM � I with the bundles π�E|M�t0u and π�E|M�t1u identified via γ.

Every bundle on M � S1 is isomorphic to one obtained from a bundle

on M with an automorphism in this way. If p : M � S1 ÑM is projection, a

pair pE, γq determines an element

rEγs � rp�Es P K�1pMq (2.5)

in the first definition (2.2) of K-theory in degree �1.

2.2 Equivariant K-theory

For G a compact Lie group, G-equivariant K-theory of a smooth com-

pact G-manifold M is defined as the Grothendieck group of G-equivariant

vector bundles over M .

Definition 2.2.1. Let M be a smooth compact G-manifold. A G-equivariant

vector bundle over M is a smooth G-manifold E with a map π : E Ñ M

satisfying the following three conditions

7



1. π : E ÑM is a vector bundle,

2. the projection map π is equivariant,

3. for each g P G, the map Em Ñ Egm is a linear map of vector spaces.

Let M be a compact smooth G-manifold, let VGpMq be the set of

isomorphism classes of finite rank complex G-equivariant vector bundles on

M and let ∆G � VGpMq � VGpMq be the diagonal. We define

K0
GpMq :� pVGpMq � VGpMqq{∆G. (2.6)

For i : M �M � tptu ãÑM � Sn,

K�n
G pMq :� kertK0

GpM � Snq
i�
ÝÑ K0

GpMqu (2.7)

where we consider M � Sn as a G-manifold with trivial G-action on the sec-

ond factor. Bott periodicity also holds in equivariant K-theory, see [46]. We

inductively define Kn
GpMq � Kn�2

G pMq for n ¥ 1 and write

K
pMq �
à
jPZ

Kj
GpMq (2.8)

for the full Z-graded ring.

Again, one can equivalently describe K0
GpMq as the quotient of the free

abelian group generated by all finite rank complex G-equivariant vector bun-

dles by the subgroup generated by short exact sequences. Every G-equivariant

vector bundle on M � S1 is isomorphic to one obtained from an equivariant

vector bundle on M with an equivariant automorphism as in definition 2.1.1

8



and K�1
G pMq can similarly be described as generated by pairs consisting of an

equivariant bundle with an equivariant automorphism.

Definition 2.2.2. Let Eγ Ñ M � S1 denote the bundle obtained from an

equivariant bundle E ÑM and an equivariant automorphism γ : E Ñ E.

Two important cases of K

G are the extremes:

Proposition 2.9. If G acts freely on M and π : M Ñ M{G is the quotient

map then

π� : K
pM{Gq > K

GpMq (2.10)

is an isomorphism.

If E Ñ M is an equivariant vector bundle, E{G Ñ M{G is again a

vector bundle. We have maps

Q : VGpMq Ñ V pM{Gq and π� : V pM{Gq Ñ VGpMq

where QprEsq � rE{Gs and π�rF s � rπ�F s. Both Q and π� are maps of

monoids, Q � π� � Id, and π� �Q is an isomorphism. It follows by the univer-

sal properties of K
pM{Gq and K

GpMq that they induce inverse isomorphisms.

See [46] Proposition 2.1.

If G acts trivially on M , there is a map K
pMq Ñ K

GpMq given by

considering a vector bundle as an equivariant vector bundle with trivial G-

action. For RpGq the representation ring of G, the map M Ñ pt induces a

9



homomorphism of rings RpGq � K

Gpptq Ñ K


GpMq. Combining these yields a

homomorphism µ : K
pMq bRpGq Ñ K

GpMq.

Proposition 2.11. If G acts trivially on M , then the homomorphism

µ : K
pMq bRpGq > K

GpMq (2.12)

is an isomorphism.

One constructs an inverse to µ by decomposing an equivariant vector

bundle into its isotypical pieces. See [46] Proposition 2.2. For G � T, this

is particularly easy. A T-vector bundle E Ñ M decomposes as E �
ÀN

i�1Ei

where T acts on Ei by the character τ ÞÑ τ ki . Identifying the representa-

tion ring RpTq with Zrt, t�1s by the isomorphism which sends the defining

representation of T to t, one sends

K0
TpMq > K0pMq b Zrt, t�1s

rEs >
Ņ

i�1

tkirEis.
(2.13)

On the right, rEis P K
0pMq means the class of Ei as a non-equivariant vector

bundle. In degree �j we do the same for bundles on M � Sj.

Another important case is that of a homogeneous space. Let H be a

closed subgroup of G. A representation V of H determines a G-vector bundle

G �H V Ñ G{H and a the fiber E|HPG{H of a G-vector bundle E Ñ G{H is

an H-representation. Thinking of a representation as a vector bundle over a

point, we have

10



Proposition 2.14. The above correspondence induces an isomorphism

K

GpG{Hq � K


Hpptq � RpHq (2.15)

2.3 The classical Chern character

For M a compact smooth manifold we work with the differential graded

algebra

pΩpM ; Rq
, dq

of differential forms on M with values in the graded ring R :� Crβ, β�1s where

deg β � �2. We grade by total degree: for η P ΩkpM ; Cq,

degpηβ`q � k � 2`.

The cohomology HpM ; Rq
 of this complex is Z-graded with

HpM ; Rq0 �
8¹
k�0

H2kpM ; Cqβk and HpM ; Rq�1 �
8¹
k�0

H2k�1pM ; Cqβk�1

(2.16)

and multiplication by β and β�1 give periodicity isomorphisms. We write

HpM ; Rq
 �
à
jPZ

HpM ; Rqj (2.17)

for the full Z-graded ring.

Let E Ñ M be a vector bundle with connection ∇ : Ω0pM ;Eq Ñ

Ω1pM ;Eq. Combining the de Rham d on forms with ∇ on sections of E, this

extends uniquely to an operator

d∇ : ΩkpM ;Eq Ñ Ωk�1pM ;Eq (2.18)

11



which satisfies the Leibnitz rule. A connection on E induces a connection on

the dual bundle E� and hence by the Leibnitz rule a connection on E bE� �

EndpEq. We thus obtain an operator

d∇ : ΩkpM ; EndpEqq Ñ Ωk�1pM ; EndpEqq. (2.19)

The induced operator 2.19 can be expressed in terms of the operator 2.18 by,

for α P ΩkpM ; EndpEqq,

d∇α � rd∇, αs. (2.20)

Let F � d2
∇ P Ω2pM ; EndpEqq be the curvature of ∇.

Definition 2.3.1. The Chern character of ∇ is the differential form

Chp∇q :� trpe�βF q �
8̧

j�0

1

j!
p�βqj tr pF ^ � � � ^ F qlooooooomooooooon

j

P ΩpM ; Rq0

Lemma 2.21. For α P Ω
pM ; EndpEqq,

d trpαq � trprd∇, αsq.

Proof. On some open set U � M , we may write ∇ � d � A with A P

Ω1pU ; EndpEqq. On U we have,

trprd∇, αsq � trprd� A,αsq � trprd, αsq � trprA,αsq � trpdαq � 0 � d trpαq

since the trace vanishes on brackets.

Lemma 2.22. The form Chp∇q is closed.

12



Proof.

dChp∇q � d trpe�βF q � trprd∇, e
�βF sq �

8̧

j�0

p�βqj

j!
trprd∇, F sq � 0

since rd∇, F s � rd∇, d
2
∇s � 0. This last equation is the Bianchi identity.

It follows that Chp∇q determines a class rChp∇qs P HpM ; Rq0. Next,

we see that changing the connection changes the Chern character form by an

explicit exact form. It will follow from this that the class rChp∇qs depends

only on the bundle E and not on the particular connection chosen.

Let CE be the affine space of all connections on E. It is modeled on

the vector space Ω1pM ; EndpEqq. Let ∇1 be another connection on E and

let ∇s : I Ñ CE be a smooth path with ∇0 � ∇ and ∇1 � ∇1. There is a

canonical path, ∇� sp∇1�∇q, from ∇ to ∇1, but we will make a construction

that holds for any smooth path and then deduce the dependence on the chosen

path. Let π : M � I Ñ M be projection (where I is the interval r0, 1s with

coordinate s). The path ∇s determines a connection on W � π�E ÑM � I,

∇ � ∇s � dsBs. (2.23)

See appendix B for the definition and properties of integration along the fiber.

Definition 2.3.2. The Chern-Simons form of the path ∇s is

CSp∇sq �

»
r0,1s

Chp∇q P ΩpM ; Rq�1.

13



More explicitly, if σ P Ω0pM � I,W q, F is the curvature of ∇, and Fs

is the curvature of ∇s, we have

Fσ � ∇2
σ

� p∇s � dsBsqp∇s � dsBsqσ

� ∇2
sσ �∇stdsBsσu � dsBst∇sσu � 0

� Fsσ � ds^ t∇spBsσqu � ds^

"�
d∇s

ds



σ

*
� ds^∇spBsσq

� Fsσ � ds^

"�
d∇s

ds



σ

*
where we use the Leibnitz rule in the third line and d∇s

ds
P Ω1pM ; EndpEqq.

Thus,

F � Fs �
d∇s

ds
^ ds.

Computing, we find,

Chp∇q � trpe�βF q

� trpe�βFseβpd∇s{dsq^dsq

� tr

�
e�βFs

�
1� β

d∇s

ds
^ ds




� trpe�βFsq � β tr

�
e�βFs

d∇s

ds



^ ds

so

CSp∇sq �

»
r0,1s

β tr

��
d∇s

ds



e�βFs



ds P ΩpM ; Rq�1. (2.24)

It follows by Stokes’ theorem that

dCSp∇sq � d

»
r0,1s

Chp∇q �
»
r0,1s

dChp∇q �
»
Br0,1s

Chp∇q � Chp∇1q � Chp∇q.

Thus, the class rChp∇qs P HpM ; Rq0 is independent of the chosen connection.

14



Definition 2.3.3. The Chern character of E is

ChpEq :� rChp∇qs P HpM ; Rq0.

Next, we show that changing the path changes the Chern-Simons form

by an exact form.

Lemma 2.25. If α : S1 Ñ CE is a smooth loop of connections on E, then

CSpαq is exact.

Proof. Let p : M � S1 Ñ M and π : M � I Ñ M be the projections and let

V � p�E ÑM�S1. The path α determines a connection ∇ on π�E ÑM�I

as in equation 2.23. Since α is a loop, we may view ∇ as a connection on V .

Observe that

CSpαq �

»
S1

Chp∇q � p� Chp∇q.

By Stokes’ theorem,

dCSpαq � Chp∇q � Chp∇q � 0

so CSpαq is closed. Moreover,

rCSpαqs � rp� Chp∇qs

� p� ChpV q

� p� Chpp�Eq

� p�pp
� ChpEqq

� 0

by equation B.1. Therefore CSpαq is exact.

15



We may now make the following definition.

Definition 2.3.4. If∇ and∇1 are two connections on E and∇s is any smooth

path with ∇0 � ∇ and ∇1 � ∇1, then

CSp∇1,∇q :� CSp∇sq mod im pdq P ΩpM ; Rq�1{im pdq.

It follows that for connections ∇,∇1,∇2,

CSp∇2,∇q � CSp∇2,∇1q � CSp∇1,∇q. (2.26)

The reason to remember the dependence of the Chern-Simons form on

the path is the following.

Lemma 2.27. If ϕ : I Ñ AutpEq, is a path of bundle automorphisms with

ϕ0 :� ϕp0q � Id, ∇ is a connection on E, and we set ∇1 � ϕ�1∇, then

CSp∇,∇1q � 0 P ΩpM ; Rq�1{im pdq.

Proof. For W � π�E ÑM � I, let

∇ � ϕ�s∇� dsBs,

and let r∇ � ∇� dsBs.

Then ϕ defines an automorphism of W which is ϕs on W |M�tsu and

∇ � ϕ� r∇.
16



Writing F and rF for the curvatures of the indicated connections, it follows

that

F � ϕ�1 rFϕ.
Since the trace is conjugation invariant, this implies that

Chp∇q � trpe�βF q � trpe�β
rF q � Chpr∇q.

Observe that r∇ is determined by the constant path ∇ so by equation 2.24»
r0,1s

Chpr∇q � »
r0,1s

β tr

��
d∇
ds



e�βF



ds � 0

since the integrand is identically zero. It follows that

CSpϕ�s∇q �
»
r0,1s

Chp∇q �
»
r0,1s

Chpr∇q � 0 P ΩpM ; Rq�1.

Thus

CSp∇1,∇q � 0 P ΩpM ; Rq�1{im pdq.

That is, the Chern-Simons form of the path ϕ�s∇ is identically zero so the

Chern-Simons form of the two connections constructed using any path is zero

modulo exact forms.

2.4 The Chern character homomorphism

The Chern character determines a homomorphism Ch : K
pMq Ñ

HpM ; Rq
 of Z-graded rings. Indeed, if V,W Ñ M are vector bundles with

connections ∇V and ∇W , and curvatures FV and FW , respectively, then ∇V `
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∇W is a connection on V `W with curvature FV ` FW and

Chp∇V `∇W q � trpeβpFV `FW qq

� trpeβFV q � trpeβFW q (2.28)

� Chp∇V q � Chp∇W q.

Similarly,

∇V b∇W :� ∇V b 1W � 1V b∇W (2.29)

is a connection on V bW with curvature FV b 1W � 1V b FW and

Chp∇V b∇W q � trpe�βpFV b1W�1V bFW qq

� trpe�βpFV b1W qe�βp1V bFW qq

� trppe�βFV b 1W qp1V b e�βFW qq

� trpe�βFV b e�βFW q (2.30)

� tr
�
e�βFV

�
^ tr

�
e�βFW

�
� Chp∇V q ^ Chp∇W q.

It follows from the universal property that Ch induces a ring homomor-

phism

Ch0 : K0pMq Ñ HpM ; Rq0. (2.31)

We define

Ch�n : K�npMq > HpM ; Rq�n (2.32)

to be the composition

K�npMq �> K0pM � Snq
Ch0

> HpM � Sn; Rq0
p�
> HpM ; Rq�n (2.33)
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where p� is the integration along the fiber map defined in appendix B. We

then inductively define Chn � Chn�2 for n ¥ 1. The key fact is that

Key Fact (Atiyah-Hirzebruch [5]): The induced map

Ch : K
pMq b C > HpM ; Rq
 (2.34)

is an isomorphism.
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Chapter 3

Equivariant Cohomology and the Equivariant

Chern Character

For M a compact smooth T-manifold, we review Cartan’s model of

equivariant differential forms on M and the corresponding equivariant coho-

mology HTpM ; Rq
. We construct the equivariant Chern character ChT and

deduce the equivariant versions of the properties of the classical Chern charac-

ter just seen. We discuss the Completion and Localization theorems in equiv-

ariant K-theory which prevent the induced homomorphism ChT : K

TpMq Ñ

HTpM ; Rq
 from being a complex isomorphism and thus demands a “delocal-

ized” theory.

3.1 Equivariant Differential Forms and Equivariant Co-
homology

See [13] Chapter 7 for a thorough treatment of this material. Let M be

a smooth manifold with a smooth action of the circle group T and let t � iR

denote the Lie algebra of T. Let u P t� � piRq� be the standard generator of

the dual Lie algebra: for ir P iR, upirq � r. Let CpMq
 denote the Z-graded

algebra

CpMq
 :� ΩpM ; Rqrruss
. (3.1)
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We set deg u � 2 so that for η P ΩpM ; Rqk,

degpηu`q � k � 2`. (3.2)

The group T acts on differential forms by pullback. Extending linearly over u

gives an action on CpMq
 and we write

CTpMq
 :� ΩpM ; RqTrruss
 (3.3)

for the subalgebra of T-invariant power series. Let ξ denote the vector field

on M corresponding to i P iR. Thus, for m PM ,

ξm �
d

dt

����
t�0

eit �m. (3.4)

Define the operator dT on ω P CpMq
 by

dTω � dω � uιξω. (3.5)

Explicitly,

dT

�
8̧

k�0

ωku
k

�
�

8̧

k�0

pdωkqu
k �

8̧

k�0

pιξωkqu
k�1. (3.6)

One readily checks that T abelian implies that for any τ P T, τ�ξm � ξτ �m so

τ�ιξ � ιξτ
�. (3.7)

It follows that

τ�dT � dTτ
� (3.8)

and thus

dTpCTpMq
q � CTpMq
�1. (3.9)
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By Cartan’s formula L � dι � ιd we have d2
T � �uLξ which vanishes on

T-invariant differential forms so

pCTpMq
, dTq (3.10)

is a complex.

Definition 3.1.1. The complex pCTpMq
, dTq is called the Cartan complex.

An element of this complex is called an equivariant differential form. A ho-

mogeneous element ω P CTpMqk consists of a power series

ω �
8̧

j�0

ωju
j (3.11)

where the coefficients are homogeneous invariant differential forms

ωj P pΩpM ; Rqk�2jqT. (3.12)

Remark 3.13. The Cartan complex with complex coefficients is usually de-

fined using polynomials in u rather than power series so that, for example, in

degree 2k one has

ΩpM ; CqTrus2k �

#
ķ

j�0

ωju
j

�����ωj P Ωk�2jpM ; CqT
+
. (3.14)

Our definition is related to the standard one by

CTpMq0 �
8¹
k�0

βkΩpM ; CqTrus2k (3.15)

and

CTpMq�1 �
8¹
k�0

βk�1ΩpM ; CqTrus2k�1 (3.16)
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We thus see that β is a bookkeeping device that allows us to shift all of the

homogeneous pieces of the standard Cartan complex of even degree into degree

0 and of odd degree into degree �1. We allow power series in u because we are

taking the direct product rather than the direct sum, but this is a convention

that depends on what one means by the ring associated to a graded ring (see

[41] Remark 1.2). The point is that β retains the ordinary cohomological

degree and in each β degree we have the standard Cartan complex.

Definition 3.1.2. Equivariant cohomology is the (2-periodic) Z-graded coho-

mology theory given by

HTpM ; Rq
 :� HpCTpMq
, dTq. (3.17)

Proposition 3.18. Two important properites of T-equivariant cohomology are

1. if f, g : M Ñ N are smooth equivariant maps and there exists a smooth

T-equivariant homotopy from f to g, then the induced maps on equivari-

ant cohomology are equal

f� � g� : HTpN ; Rq
 > HTpM ; Rq
,

2. if U and V are T-invariant open sets such that M � U Y V , then

HTpM ; Rq
, HTpU ; Rq
 ` HTpV ; Rq
 and HTpU X V ; Rq
 fit into a long

exact Mayer-Vietoris sequence.

Proof. For the first property, consider M�I as a T-manifold with trivial action

on the second factor. If H : M � I Ñ N is the homotopy and ω P CTpNq

,
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then H�ω P CTpM � Iq
. Observe that, as in appendix B, if ξ is the vector

field on N which generates the T-action, then ξ � pξ, 0q is the vector field

which generates the T-action on N � I and for any η P ΩpN � I; Rq
,

ιξ

�»
r0,1s

η



�

»
r0,1s

pιξηq. (3.19)

It follows by Stokes’ theorem and the previous observation that

g�ω � f�ω � dT

»
r0,1s

H�ω. (3.20)

For the second, one must choose an equivariant partition of unity sub-

ordinate to the cover tU, V u. These exist by, for example, [29] B.33. The

result then follows by the same method as in ordinary de Rham cohomology

(see [16], p.22).

Example 3.21. Let T act on M � S1 by double-speed rotation: for τ P T

and λ P S1, τ �λ � τ 2λ. Since the T-invariant 0-forms on S1 are the constants

R, it follows that

CTpS
1q0 �

#
8̧

k�0

αku
k

�����αk P R�2k

+

�

#
8̧

k�0

akpβuq
k

����� ak P C

+
. (3.22)

Since

dT

�¸
k

akpβuq
k

�
�
¸
k

pdakqpβuq
k � 0, (3.23)

all equivariant 0-forms are closed. If η is the unique T-invariant 1-form on

S1 satisfying ιξη � ηpξq � 1, the equivariant �1-forms are the series whose
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coefficients are constant multiples of η,

CTpS
1q�1 �

#
8̧

k�0

ckηβ
k�1uk

����� ck P C

+
. (3.24)

Since

dT

8̧

k�0

ckηβ
k�1uk �

8̧

k�0

ckpdηqβ
k�1uk �

8̧

k�0

ckηpξqβ
k�1uk�1

�
8̧

k�0

�ckpβuq
k�1 (3.25)

the exact equivariant 0-forms are those power series with zero constant term.

The equivariantly closed equivariant �1-forms are clearly zero. Thus,

HTpS
1; Rqq �

"
C q � 0
0 q � �1

*
� Hppt; Rqq � HpS1{T; Rqq. (3.26)

This illustrates a limitation of equivariant cohomology: it does not see the

doubling of the action. This is a general phenomenon, equivariant cohomology

does not distinguish between free actions (those with trivial stabilizer) and

locally free actions (those with finite stabilizers). See appendix C.

For comparison, we compute the equivariant K-theory of the same

setup.

Example 3.27. Let T again act on M � S1 by double-speed rotation. Every

complex line bundle on S1 is topologically trivial, but there are equivariant line

bundles which are necessarily isomorphic as line bundles, but not equivariantly

isomorphic. If T � S1 � C is the equivariant line bundle with T-action τ �

px, λq � pτ 2x, τλq, and 1 � S1 � C is the equivariant line bundle with the
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trivial action τ � px, λq � pτ 2x, λq, one can easily write down an isomorphism

Tb2 � 1. It follows that for k P Z, there are isomorphisms of equivariant line

bundles

Tbk �

"
1, k even
T, k odd

(3.28)

and thus,

K0
TpS

1q b C � Ct1u ` CtT u. (3.29)

Next, every equivariant bundle over M � S1 is isomorphic to one obtained

from an equivariant bundle on M with an equivariant automorphism. If α is

an automorphism of T or 1, equivariance implies that for x P M and τ P T,

αpτ 2xq � αpxq so α must be constant. It follows that every equivariant vector

bundle on M � S1 is isomorphic to a pullback and thus that the restriction

map

i� : K0
TpM � S1q > K0

TpMq (3.30)

is injective. This implies that K�1
T pMq :� ker i� � 0. We have found that

Kq
TpS

1q b C �

"
Ct1u ` CtT u q � 0
0 q � �1.

(3.31)

Thus, K

T does detect the doubling of the action whereas H


T does not.

Let E Ñ M be a T-equivariant vector bundle and for τ P T let Lτ :

E Ñ E denote the action of τ on E. Denote the sections of E by Ω0pM ;Eq;

let

Ω
pM ;Eq � Ω
pMq bΩ0pMq Ω0pM ;Eq (3.32)
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be the differential forms with values in E and let

CpM ;Eq
 :� CpMq
 bΩ0pMq Ω0pM ;Eq (3.33)

be the equivariant differential forms with values in E. The group T acts on

sections of E by, for σ P Ω0pM ;Eq, τ P T,

pτ � σqpmq :� Lτσpτ
�1 �mq. (3.34)

Hence, T acts on Ω
pM ;Eq by, for ω P Ω
pM ; Cq,

τ � pω b σq � τ�ω b pτ � σq. (3.35)

Extending the action to be linear over u and R induces an action on CpM ;Eq
.

We then set

C

TpM ;Eq :� C
pM ;EqT. (3.36)

Recall that ξ, defined in equation 3.4, is the vector field on M corresponding

to the action of i P iR. We then also have the Lie derivative of the section σ

in the direction of ξ,

LE
ξ σ �

d

dt

����
t�0

eit � σ. (3.37)

If ∇ is a connection on E we say that ∇ is T-invariant if it commutes with

the T-action on CpM ;Eq
, that is, for every τ P T,

r∇, τ �s � 0. (3.38)

Differentiating, it follows that if ∇ is invariant,

r∇,LE
ξ s � 0. (3.39)
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The space CT
E of invariant connections is a non-empty affine subspace of the

affine space CE of all connections. See appendix D.

Definition 3.1.3. For ∇ an invariant connection on E the correpsonding

equivariant connection is the operator

∇T :� ∇� uιξ : CpM ;Eq
 > CpM ;Eq
�1. (3.40)

One checks that for α P CpMqj and θ P CpM ;Eq,

∇Tpα ^ θq � dTα ^ θ � p�1qjα ^∇Tθ. (3.41)

As before, ∇ on E induces a connection ∇ on EndpEq. The corresponding

equivariant connection is an operator

∇T : CpM ; EndpEqq
 > CpM ; EndpEqq
�1. (3.42)

As in the non-equivariant case (equations 2.18 and 2.19), the operators 3.40

and 3.42 are related by, for θ P CTpM ; EndpEqq
,

∇Tθ � r∇T, θs. (3.43)

Definition 3.1.4. The equivariant curvature of the invariant connection ∇ is

the operator

F T :� p∇Tq2 � uLE
ξ : CpM ;Eq
 > CpM ;Eq
�2. (3.44)

Lemma 3.45. The equivariant curvature F T is in CTpM ; EndpEqq2 and sat-

isfies the equivariant Bianchi identity

∇TF T � 0. (3.46)
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Proof. To show that F T P CTpM ; EndpEqq2 we show that it commutes with

multiplication by any α P CpMq
. Let εpαq denote exterior multiplication by

α. We have

rF T, εpαqs � rp∇Tq2 � uLE
ξ , εpαqs

� r∇T, r∇T, εpαqss � urLE
ξ , εpαqs

� r∇T, εpdTαqs � uεpLE
ξ αq (3.47)

� εtpd2
T � uLE

ξ qαu

� 0.

Next, the equivariant Bianchi identity follows from the decomposition

∇TF T � r∇T, p∇Tq2 � uLE
ξ s

� r∇T, p∇Tq2s � ur∇,LE
ξ s � u2rιξ,L

E
ξ s (3.48)

where the second term vanishes by the invariance of ∇ and the third by the

Cartan formula L � dι� ιd on differential forms.

Expanding the definition of the equivariant curvature, we have

F T � p∇q2 � u∇ιξ � uιξ∇� uLE
ξ . (3.49)

An element of CpM ;Eq
 is a sum of elements of the form ω b σ for

ω P CpMq
 and σ P Ω0pM ;Eq and it is easy to verify that

F Tpω b σq � pF ^ ωq b σ � uω b pLE
ξ �∇ξqσ. (3.50)
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Definition 3.1.5. The moment of the T-action relative to the connection ∇

is

µ :� utLE
ξ �∇ξu P t� b Ω0pM ; EndpEqqT. (3.51)

We may thus write

F T � F � µ P CTpM ; EndpEqq2. (3.52)

If ∇ is an invariant connection such that LE
ξ � ∇ξ, then we see that F T � F .

Such a connection is called basic for the T-action and always exists if the action

has finite stabilizers. See appendix D for a discussion.

3.2 The Equivariant Chern character

In this subsection, we define the equivariant Chern character and derive

properties analogous to those of the classical Chern character in subsection 2.3.

Lemma 3.53. For α P CpM ; EndpEqq
,

dT trpαq � trpr∇T, αsq. (3.54)

Proof. The proof of Lemma 2.21 works here since on some open set U � M

we can write ∇T � dT � A for A P Ω1pU ; EndpEqq.

Definition 3.2.1. The equivariant Chern character of the invariant connec-

tion ∇ is the equivariant differential form

ChTp∇q � tr
�
e�βF

T
	
P CTpMq0. (3.55)
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Lemma 3.56. The form ChTp∇q is equivariantly closed.

Proof. The proof is the same as Lemma 2.22, this time using Lemma 3.53 and

the equivariant Bianchi identity.

Next, suppose that ∇ and ∇1 are two invariant connections on E ÑM

and let W � π�E Ñ M � I. If ∇s : I Ñ CT
E is a smooth path of invariant

connections with∇0 � ∇ and∇1 � ∇1, ∇s determines an invariant connection

∇ on W given by equation 2.23. The equivariant connection corresponding to

∇ is

∇T
� ∇T

s � dsBs � p∇s � uιξq � dsBs. (3.57)

Using that ιξds � 0, one derives as preceding equation 2.24 that

F
T
� F T

s � ds^
d∇s

ds
(3.58)

where Fs again denotes the curvature of ∇s.

Definition 3.2.2. The equivariant Chern-Simons form of the path ∇s is

CSTp∇sq :�

»
r0,1s

ChTp∇q P CTpMq�1. (3.59)

As for equation 2.24, one derives the explicit expression

CSTp∇sq �

»
r0,1s

β tr

�
d∇s

ds
e�βF

T
s



ds (3.60)

from equation 3.58 and the definition of ChT.

Lemma 3.61.

dT CSTp∇sq � ChTp∇1q � ChTp∇q. (3.62)
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Proof. This follows by Stokes’ theorem and equation 3.19.

As before, we show that changing the path of invariant connections

changes the equivariant Chern-Simons form by an equivariantly exact form.

Lemma 3.63. If α : S1 Ñ CT
E is a loop of invariant connections, then CSTpαq

is exact.

Proof. Again, let p : M � S1 Ñ M be projection, let V � p�E, and let ∇

be the connection determined by α on V . Then CSTpαq is closed and the

method of Lemma 2.25 carries over word for word, now using p� in equivariant

cohomology. Thus rCSTpαqs � 0 so CSTpαq is exact.

Definition 3.2.3. The equivariant Chern-Simons form of connections ∇1,∇

is

CSTp∇1,∇q :� CSTp∇sq mod im pdTq P CTpMq�1{im pdTq (3.64)

for any smooth path ∇s with ∇0 � ∇ and ∇1 � ∇1.

It again follows, in analogy with equation 2.26, that if ∇,∇1 and ∇2

are three connections that

CSTp∇2,∇q � CSTp∇2,∇1q � CSTp∇1,∇q (3.65)

Lemma 3.66. If E Ñ M is a T-equivariant vector bundle with invariant

connection ∇, ϕ : I Ñ AutpEq is a family of automorphisms with ϕ0 � Id

(where ϕs :� ϕpsq), then taking ∇1 � ϕ�1∇,

CSTp∇1,∇q � 0 P CTpMq�1{im pdTq. (3.67)
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Proof. The proof is the same as Lemma 2.27: the path of invariant connections

ϕ�s∇ determines an invariant connection

∇ � ϕ�s∇� dsBs (3.68)

on W � π�E ÑM � I. The corresponding equivariant connection is

∇T
� ϕ�s∇� dsBs � uιξ

� pϕ�s∇� uιξq � dsBs (3.69)

� pϕ�s∇qT � dsBs.

Since ϕs : E Ñ E covers the identity on M ,

pϕ�s∇qT � ϕ�s p∇Tq (3.70)

so

∇T
� ϕ�s p∇Tq � dsBs. (3.71)

Let r∇T � ∇T � dsBs, (3.72)

then considering ϕ as an automorphism of W , we may write

∇T
� ϕ�s p∇Tq � dsBs � ϕ�pr∇Tq. (3.73)

As before, the path which determines r∇ is constant so by equation 3.60,

CSTpϕ
�
s∇q �

»
r0,1s

ChTp∇q �
»
r0,1s

ChTpr∇q � 0 (3.74)

since the last integrand vanishes. It follows that

CSTp∇1,∇q � 0 P CTpMq�1{im pdTq. (3.75)
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3.3 The Equivariant Chern character homomorphism

If V and W are equivariant vector bundles over M with invariant con-

nections ∇V and ∇W , respectively, then ∇V ` ∇W and ∇V b ∇W (defined

in equation 2.29) are invariant connections on V ` W and V b W , respec-

tively, as in the non-equivariant case. They have curvatures FV`W � FV `FW

and FVbW � FV b 1W � 1V b FW , respectively. One readily checks that the

moments relative to these connections are

µV`W � µV ` µW and µVbW � µV b 1W � 1V b µW (3.76)

from which it follows that the equivariant curvatures corresponding to these

invariant connections are

F T
V`W � F T

V ` F T
W and F T

VbW � F T
V b 1W � 1V b F T

W . (3.77)

The calculations 2.28 and 2.30 and the above formulae imply that

ChTp∇V `∇W q � ChTp∇V q � ChTp∇W q (3.78)

and

ChTp∇V b∇W q � ChTp∇V q ^ ChTp∇W q. (3.79)

It follows from the universal property that ChT induces a ring homomorphism

Ch0
T : K0

TpMq Ñ HTpM ; Rq0 (3.80)

and we define

Ch�nT : K�n
T pMq > HTpM ; Rq�n (3.81)
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to be the composition

K�n
T pMq �> K0

TpM � Snq
Ch0

T
> HTpM � Sn; Rq0

p�
> HTpM ; Rq�n (3.82)

where p� is the integration along the fiber map defined in appendix B.2. We

set ChnT � Chn�2
T for n ¥ 1.

3.4 Completion and Localization

Recall that in examples 3.21 and 3.27 of T acting on S1 by double speed

rotation, we found that K

T sees the doubling of the action whereas H


T does

not. The equivariant Chern character cannot therefore be an isomorphism

over C. An explanation of this discrepancy is as follows. The ring K

TpMqbC

is a module over

K

Tpptq b C � RpTq b C � Crt, t�1s, (3.83)

the complexified character ring of T. For τ P T, let K

TpMq b Cτ denote the

localization at the ideal of characters which vanish at τ and let K

TpMq b

C^
τ denote the formal completion at the same ideal. By the Atiyah-Segal

completion theorem [9],

K

TpMq b C^

1 � HTpM ; Rq
. (3.84)

Thinking of KTpMq
 b C as a sheaf over Spec Crt, t�1s � C�, this indicates

that the equivariant cohomology only detects the stalk of this sheaf over 1 P T.

Here C� � TC is the complexification of the group T; the module K

TpMq cor-

responds to the unitary part, the restriction of the sheaf to T � C�. A special
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case of a theorem of Freed-Hopkins-Telemen ([26], Theorem 3.9) describes the

stalks of this sheaf at other points of T in terms of equivariant cohomology,

too. Writing M τ for the submanifold with stabilizer subgroup xτy � T, it says

that there is a natural isomorphism

K

TpMq b C^

τ � K

TpM

τ q b C^
τ � HTpM

τ ; Rq
 (3.85)

in which the first isomorphism is induced by the inclusion M τ
ãÑM .

The idea of globalizing the Chern character Ch : K

TpMq b C Ñ

HTpM ; Rq
 to detect the whole sheaf and not just a single stalk has been

studied for finite groups [48] and [11] and for compact Lie groups [19], [14],

[26]. The idea of constructing a de Rham model of KTpMqbC to receive such

a map has been studied in [19] and [14]. We present a de Rham model and cor-

responding delocalized Chern character that are similar to those of Brylinski

[19] and Block-Getzler [14].
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Chapter 4

Delocalized Equivariant Cohomology

4.1 Delocalized equivariant differential forms and delo-
calized equivariant cohomology

Let M be a compact smooth manifold with a smooth action of T. For

H � T a subgroup, we write

MH � tm PM | hm � m for all h P Hu (4.1)

for the points fixed by H. For H � xτy, we write M τ :� M xτy. See appendix

A for relevant facts about group actions. Two motivations for the complex we

present are the following. First, there is an isomorphism

K

TpM

Tq b C � K
pMTq b Crt, t�1s
ChbId

�
> HpMT; Rq
 b Crt, t�1s (4.2)

by proposition 2.11 and the classical complex Chern character isomorphism.

This suggests that we start with ΩpMT; Rq
bCrt, t�1s. Second, equation 3.85

suggests that we add to this the Cartan complexes on all of the fixed point

sets M τ . We must then require that these agree in an appropriate sense on

MT.

By Appendix A.6 only finitely many subgroups of T appear as stabilizer

subgroups. Since every proper closed subgroup of T is finite cyclic, it follows

37



that there are finitely many τ P T for which M τ properly contains MT. Let

STpMq � tτ P T |M τ �MT � ∅u (4.3)

be this finite set of group elements. We introduce the following definition.

Definition 4.1.1. A delocalized equivariant differential form is

• A finite Laurent series

ω �
Ņ

k��M

ωkt
k P ΩpMT; Rq
 b Crt, t�1s (4.4)

valued in differential forms on the fixed points MT. The grading is just

that of the differential forms.

• A collection tητuτPSTpMq of equivariant differential forms ητ P CTpM
τ q


on the submanifolds M τ .

These must be related by the following

Compatibility condition: ητ |MT �
Ņ

k��M

τ kωke
�βiku (4.5)

as elements of CTpM
Tq
.

Definition 4.1.2. Let ATpMqj denote the homogeneous delocalized equivari-

ant differential forms of degree j, the abelian group of pairs pω, tητuτPSTpMqq

as above in which ω and the ητ are homogeneous of degree j. Let

pATpMq
, dTq (4.6)

denote the full Z-graded complex.
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We extend the de Rham d and the wedge ^ to ΩpMT; Rq
 b Crt, t�1s

to be linear over Crt, t�1s and define the differential on A

T by

δpω, tητuq � pdω, tdTητuq. (4.7)

We may multiply delocalized forms by multiplying the series and wedging: the

product �
Ņ

k��M

ωkt
k, tητu

�
�

�
N 1¸

k��M 1

θjt
j, tξτu

�
(4.8)

is the delocalized equivariant differential form�
Ņ

k��M

N 1¸
j��M 1

pωk ^ θjqt
k�j, tητ ^ ξτuτPSTpMq

�
. (4.9)

Finally, Crt, t�1s acts on ATpMq
 by

t � pω, tητuτPSTq � ptω, tτητuτPSTpMqq (4.10)

where τητ means multiplication by the complex number τ P T. Thus, ATpMq


becomes a differential Z-graded algebra over Crt, t�1s.

Definition 4.1.3. The delocalized equivariant cohomology of M is the coho-

mology of this complex,

HDpMq
 :� HpATpMq
, δq.

Remark 4.11. We denote the delocalized equivariant cohomology by H

D and

reserve HTp�; Rq
 for the T-equivariant cohomology defined in the previous

section.

39



Proposition 4.12. Delocalized equivariant cohomology satisfies the familiar

properties

1. if f, g : N Ñ M are smoothly homotopic smooth T-maps then f� � g� :

HDpMq
 Ñ HDpNq

,

2. if U, V �M are T-invariant open sets with M � U Y V , then HDpMq
,

HDpUq

`HDpV q


 and HDpU XV q

 fit into a long exact Mayer-Vietoris

sequence,

3. for each n, the projection p : M � Sn ÑM induces an integration along

the fiber map,

p� : HDpM � Snq
 Ñ HDpMq
�n

which satisfies the push-pull formula B.1.

Proof. We sketch the proof.

1. If N and M are smooth compact T-manifolds, consider N � I as a

T-manifold with the trivial action on the second factor. Given maps

f, g : N Ñ M , suppose that H : N � I Ñ M is a smooth homotopy

with Hpn, 0q � fpnq and Hpn, 1q � gpnq. We extend the operations of

pullback and integration to Ωp�,Rq
bCrt, t�1s by requiring them to be

linear over Crt, t�1s. Let α � rω, tητus P HDpMq
 where

ω �
Ņ

k��M

ωkt
k. (4.13)
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Then

H�ω �
Ņ

k��M

H�ωkt
k (4.14)

and we now check that

H�pω, tητuq � pH�ω, tH�ητuq (4.15)

satisfies the compatibility condition 4.5 and is thus an element of ATpN�

Iq
. Observe that

H�ητ |NT�I � H�pητ |MTq

� H�

�
Ņ

k��M

τ kωke
�βiku

�
(4.16)

�
Ņ

k��M

τ kpH�ωkqe
�βiku.

so H�pω, tητuq P ATpN � Iq
. We now verify that»
r0,1s

H�pω, tητuq �

�»
r0,1s

H�ω,

"»
r0,1s

H�ητ

*

(4.17)

is an element of ATpNq

. The compatibility condition follows by inte-

grating both sides of the above equation 4.16 and observing that»
r0,1s

#
Ņ

k��M

τ kpH�ωkqe
�βiku

+
�

Ņ

k��M

τ k
"»

r0,1s

pH�ωkq

*
e�βiku. (4.18)

Finally,

δ

�»
r0,1s

H�ω,

"»
r0,1s

ητ

*

�

�
d

»
r0,1s

H�ω,

"
dT

»
r0,1s

H�ητ

*

� pg�ω � f�ω, tg�ητ � f�ητuq (4.19)

� g�pω, tητuq � f�pω, tητuq

Therefore g�α � f�α.
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2. For the Mayer-Vietoris property, let M be a compact smooth T-manifold,

U, V an invariant open cover of M and let tρU , ρV u be an equivariant

partition of unity subordinate to this cover. We must show that

0 > ATpMq

jU`jV

> ATpUq

 `ATpV q


 µ
> ATpU X V q
 > 0

pα, βq > α � β

is a short exact sequence of cochain complexes. The key step is to show

exactness at the last stage, that is, to show that the difference map

µ is surjective. One does this by extending forms on U X V to U by

multiplying by ρV and to V by multiplying by ρU . Since multiplication by

partitions of unity commutes with restriction of forms, one readily verifies

that the same method shows that the above sequence of delocalized forms

is short exact.

3. We indicated how integration along the fiber works in the proof of the

first property. For p : M � Sn ÑM and pθ, tξτuq P ATpM � Snqj,

p�pθ, tξτuq :� pp�θ, tp�ξτuq P ATpMqj�n. (4.20)

One verifies that p�θ and tp�ξτu satisfy the compatibility condition as

indicated in the proof of the first property. Since p� is a chain map in

ordinary cohomology and in equivariant cohomology, it is in delocalized

equivariant cohomology so induces a map»
Sn
� p� : HDpM � Snq
 > HDpMq
�n (4.21)
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The method of appendix B works in the present setting to show that

for pt P Sn and i : M � tptu ãÑ M � Sn the inclusion, integration over the

fiber restricts to an isomorphism

0 > ker i� � HDpMq�n bHnpSn; Cq > HDpM � Snq0 > HDpMq0 > 0

HDpMq�n

� p�
_

(4.22)

Example 4.23. Let M � pt, then STpMq � ∅ so

ATpptq

 � Ωppt; Rq
 b Crt, t�1s � R
 b Crt, t�1s. (4.24)

It follows that

HDpptq
q �

"
Crt, t�1s, q � 0
0, q � �1.

(4.25)

Example 4.26 (Free action). Let T act freely on M , then MT � ∅, STpMq �

t1u, and M1 �M so

ATpMq
 � CTpMq
. (4.27)

It follows from proposition C.7 that

HDpMq
 � HTpM ; Rq
 � HpM{T; Rq
. (4.28)

Example 4.29 (Locally free action). Let T act on M � S1 by double-speed

rotation, that is, for τ P T, λ P M , τ � λ � τ 2λ. In this case, STpMq � t�1u,

MT � ∅, and M�1 �M so we get two copies of the Cartan complex,

ATpS
1q
 � CTpS

1q
 ` CTpS
1q
, (4.30)
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one for each element of STpMq. It follows that

HDpS
1q
 � HTpS

1q
 `HTpS
1q
 (4.31)

and by Proposition C.7

HDpS
1q
 � HpS1{T; Rq
 `HpS1{T; Rq
 � Hppt; Rq
 `Hppt; Rq
. (4.32)

Thus, HDpS
1q
 detects the doubling of the action.

4.2 The Delocalized Equivariant Chern character

Let E ÑM be a T-equivariant vector bundle with invariant connection

∇, corresponding equivariant connection ∇T, and equivariant curvature F T.

For τ P T, let Lτ : E Ñ E denote the action of τ on E. If τ � m � m for

some m PM , although Lτ is invertible, it maps Em to Eτ �m � Em so does not

cover the identity on M . It is therefore not a vector bundle automorphism of

E. However, since T acts trivially on MT, for all τ P T,

Lτ : E|MT Ñ E|MT (4.33)

is a bundle automorphism. Letting τ vary, we obtain a homomorphism

L : T Ñ AutpE|MTq (4.34)

and write Lt :� Lptq. Similarly, for τ P STpMq,

Lτ : E|Mτ Ñ E|Mτ (4.35)
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is a bundle automorphism. On differential forms with values in E, T acts

by a combination of pullback and its action on E. However, for τ P STpMq,

the pullback action of τ on ΩpM τ ; Rq
 is trivial so τ acts on ΩpM ;E|Mτ q


simply by Lτ . We introduce the following definition. It is the equivariant

Chern character of [14] (following proposition 4.3) adapted to our complex of

delocalized equivariant differential forms.

Definition 4.2.1. The delocalized equivariant Chern character of ∇ is the

delocalized equivariant form

ChDp∇q �
�
ChDp∇qT, tChDp∇qτuτPSTpMq

�
P ATpMq0 (4.36)

where

ChDp∇qT :� tr
�
Lte

�βF
��
MT

�
P ΩpMT; Rq0 b Crt, t�1s (4.37)

and

ChDp∇qτ :� tr
�
Lτe

�βFT
���
Mτ

	
P CTpM

τ q0. (4.38)

As written, it is not obvious that ChDp∇qT (equation 4.37) is an element

of ΩpMT; Rq0bCrt, t�1s. We verify this first. We must then check that ChDp∇q

satisfies the compatibility condition 4.5.

For the first statement, recall from Proposition 2.11 that we may decom-

pose E|MT into its isotypical components, that is, there exists an isomorphism

of equivariant vector bundles

ϕ : V :�
Nà
i�1

Vi Ñ E|MT (4.39)
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where each Vi ÑMT is an equivariant vector bundle on which Lλ acts by mul-

tiplication by λki for some ki P Z. Endow
À

i Vi with the pullback connection

ϕ�∇. Since ∇ is T-invariant, ϕ�∇ respects the direct sum decomposition of

V so decomposes as

ϕ�∇ �
Nà
i�1

∇i. (4.40)

Let F be the curvature of ∇. It follows that the curvature Fϕ�∇ � ϕ�1Fϕ

of ϕ�∇ also respects the direct sum decomposition so we may write Fϕ�∇ �À
i Fi. We have

pFϕ�∇q
j �

Nà
i�1

F j
i �

Nà
i�1

Fi ^ � � � ^ Filoooooomoooooon
j

. (4.41)

Then, writing Lt for the T-action on V as well as on E|MT ,

ChDpϕ
�∇qT � tr

�
Lte

�βFϕ�∇
�

� tr
�
Lte

�βp
À
i Fiq

�
�

Ņ

i�1

tr
�
Lte

�βFi
�

(4.42)

�
Ņ

i�1

tr
�
tkie�βFi

�
�

Ņ

i�1

tki Chp∇iq P ΩpMT; Rq0 b Crt, t�1s.
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Since ϕ is equivariant, we have

ChDpϕ
�∇qT � tr

�
Lte

�βFϕ�∇
�

� tr
�
Lte

ϕ�1p�βqFϕ
	

� tr
�
Ltϕ

�1e�βFϕ
�

(4.43)

� tr
�
ϕ�1Lte

�βFϕ
�

� tr
�
Lte

�βF
�

� ChDp∇qT.

Therefore, ChDp∇qT is indeed an element of ΩpMT; Rq0 b Crt, t�1s.

To verify the compatibility condition 4.5 we proceed as follows. Observe

that on E|MT Ñ MT, T acts trivially on the base, but nontrivially on the

bundle. Since T acts trivially on MT, the operator ∇ξ vanishes, but LE
ξ need

not. Thus, the equivariant curvature F T of ∇ reduces to

F T � F � µ � F � utLE
ξ �∇ξu � F � uLE

ξ . (4.44)

Since ϕ is equivariant, the equivariant curvature of ϕ�∇ on V is

F T
ϕ�∇ � Fϕ�∇ � uLV

ξ � ϕFϕ�1 � uϕLE
ξ ϕ

�1 � ϕF Tϕ�1. (4.45)

It follows from the calculation 4.43 that

ChDp∇qτ |MT � tr
�
Lτe

�βFT
���
MT

	
� tr

�
Lτe

�βFT
ϕ�∇

���
MT

	
. (4.46)

Now, F T
ϕ�∇ respects the direct sum decomposition of V so may be written as

F T
ϕ�∇ �

Nà
j�1

tFj � uL
Vj
ξ u. (4.47)
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Since T acts on Vj by multiplication, the Lie derivative on sections (equation

3.37) takes the following simplified form. For a section σ : MT Ñ Vj,

L
Vj
ξ σ �

d

dt

����
t�0

ekjitσ � kjiσ, (4.48)

so L
Vj
ξ � pkjiqIdVj P Ω0pMT; EndpVjqq. It follows that

ChDp∇qτ |MT � tr
�
Lτe

�βpFT
ϕ�∇q

	
�

Ņ

j�1

tr
�
τ kje�βpFj�ukjiIdVj q

	
�

Ņ

j�1

τ kj trpe�βFje�pβukjiqIdVj q (4.49)

�
Ņ

j�1

τ kj trpe�βFjqe�βukji

�
Ņ

j�1

τ kj Chp∇jqe
�βukji.

By the calculations 4.42 and 4.43,

ChDp∇qT �
Ņ

j�1

tkj Chp∇jq, (4.50)

so the calculation 4.49 is exactly the compatibility condition 4.5. Therefore

ChDp∇q is indeed a delocalized equivariant differential form.

Next, let ψ : p rE, r∇q Ñ pE,∇q be an isomorphism of equivariant bundles

with connection over M , meaning that ψ is an equivariant isomorphism andr∇ � ψ�∇. Write rF T and F T for the equivariant curvatures of r∇ and ∇,

respectively. By equation 4.45,

rF T � ψ�1F Tψ (4.51)
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so by the conjugation invariance of the trace,

ChDpr∇q � ChDp∇q. (4.52)

Lemma 4.53. The delocalized form ChDp∇q is closed.

Proof. By the invariance of ∇ (and the fact that τ acts trivially on M τ ),

∇TLτ � Lτ∇T on CTpM
τ ; EndpE|Mτ qq
. Similarly, ∇Lt � Lt∇ on

ΩpMT; EndpE|MTqq
. It follows by Lemma 2.21 that on MT,

d tr
�
Lte

�βF
�
� tr

�
r∇, Lte�βF s

�
� tr

�
Ltr∇, e�βF s

�
� 0 (4.54)

since r∇, e�βF s � 0 by the Bianchi identity as in Lemma 2.22. Similarly, on

M τ by Lemma 3.53,

dT tr
�
Lτe

�βFT
	
� tr

�
Lτ r∇T, e�βF

T
s
	
� 0 (4.55)

by the equivariant Bianchi identity as in Lemma 3.56. Therefore,

δChDp∇q � pdChDp∇qT, tdT ChDp∇qτuq � 0. (4.56)

Definition 4.2.2. Let ∇ and ∇1 be two invariant connections on E, π :

M � I ÑM projection and W � π�E ÑM � I. Let ∇s be a smooth path of

invariant connections with ∇0 � ∇ and ∇1 � ∇1 and let ∇ be the invariant

connection on W corresponding to ∇s. Define

CSDp∇sq :�

»
r0,1s

ChDp∇q P ATpMq�1. (4.57)
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One derives an explicit expression for CSDp∇sq as done in equation

2.24. By equation 3.58, for each τ P STpMq,

CSDp∇sqτ �

»
r0,1s

tr

�
Lτ exp

"
�β

�
F T
s � ds^

d∇s

ds


*����
Mτ



�

»
r0,1s

β tr

�
d∇s

ds
Lτ expt�βF T

s u

����
Mτ



ds. (4.58)

Simiarly,

CSDp∇sqT �

»
r0,1s

β tr

�
d∇s

ds
Lt expt�βFsu

����
MT



ds. (4.59)

Lemma 4.60.

δCSDp∇sq � ChDp∇1q � ChDp∇q. (4.61)

Proof. We decompose W into its T-eigenbundles on pM � IqT � MT � I and

its τ -eigenbundles on pM � Iqτ � M τ � I and use the previous results. As

in equation 4.39 and the discussion there, on MT � I there is an equivariant

isomorphism

ϕ :
Nà
i�1

Wi Ñ W |MT�I (4.62)

and

ϕ�∇ �
Nà
i�1

∇i. (4.63)

Write pϕ�∇q|MT�t0u �
Nà
i�1

∇i and pϕ�∇q|MT�t1u �
Nà
i�1

∇1
i. Then by equation

4.42

CSDp∇sqT �

»
r0,1s

ChDp∇qT �
Ņ

i�1

tki
»
r0,1s

Chp∇iq (4.64)

so

dCSDpγqT �
Ņ

i�1

tkitChp∇1
iq � Chp∇iqu � ChDp∇1qT � ChDp∇qT. (4.65)
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By a similar argument, we may decompose W |Mτ�I into its τ -eigenbundles

and write

CSDp∇sqτ �

»
r0,1s

ChDp∇qτ �
M̧

j�1

τmj
»
r0,1s

ChTp∇jq. (4.66)

It follows that

dT CSDp∇sqτ � ChDp∇1qτ � ChDp∇qτ (4.67)

and thus

δCSDp∇sq � ChDp∇1q � ChDp∇q. (4.68)

Lemma 4.69. If α : S1 Ñ CT
E is a loop if invariant connections, then CSDpαq

is exact.

Proof. The formal proof of Lemma 2.25 again applies word for word now using

integration along the fiber in delocalized equivariant cohomology.

Definition 4.2.3. The delocalized equivariant Chern-Simons form of a pair

of invariant connections ∇1 and ∇ is

CSDp∇1,∇q :� CSDp∇sq mod im pδq P ATpMq�1{im pδq (4.70)

for any smooth path ∇s of invariant connections with ∇0 � ∇ and ∇1 � ∇1.

It again follows by analogy with equations 2.26 and 3.65 that if ∇2,∇1

and ∇ are three connections

CSDp∇2,∇q � CSDp∇2,∇1q � CSDp∇1,∇q. (4.71)
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Lemma 4.72. If ϕ : I Ñ AutpEq is a smooth path of automorphisms with

ϕ0 � Id, then taking ∇1 � ϕ�1∇,

CSDp∇1,∇q � 0 P ATpMq�1{im pδq. (4.73)

Proof. The proof is the same as that of Lemma 3.66, the corresponding state-

ment in equivariant cohomology. Using the notation of 3.66,

CSDpϕ
�
s∇q �

»
r0,1s

ChDp∇q �
»
r0,1s

ChDpr∇q � 0 (4.74)

since the path which determines r∇ is constant so by the formulae 4.58 and

4.59, the last integrand vanishes.

4.3 The delocalized equivariant Chern character is a
complex isomorphism

It follows from the calculations of sections 2.4 and 3.3 that ChD takes

direct sum to addition and tensor product to wedge. Thus, by the universal

property ChD induces a ring homomorphism

Ch0
D : K0

TpMq Ñ HDpMq0. (4.75)

We again define

Ch�nD : K�n
T pMq Ñ HDpMq�n (4.76)

by the composition

K�n
T pMq �> K0

TpM � Snq
Ch0

D

> HDpM � Snq0
p�
> HDpMq�n (4.77)
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where p� is the integration along the fiber map defined in equation 4.21. We

then set ChnD � Chn�2
D for n ¥ 1. We show in this section that this homomor-

phism induces an isomorphism upon tensoring with C.

Theorem 4.78. For any compact smooth T-manifold M , ChD induces a ring

homomorphism

ChD : K

TpMq b C > HDpMq
 (4.79)

which is an isomorphism.

Brylinski constructs an equivariant Chern character in his model and

proves that it is an isomorphism [19] so this is not a new theorem. There

is a quasi-isomorphism from our complex to his so the two versions of de-

localized equivariant cohomology agree and the delocalized Chern characters

agree under the induced isomorphism. However, rather than appeal to this

isomorphism, we give a direct proof which uses the theorem of Freed-Hopkins-

Teleman (equation 3.85, [26] theorem 3.9) mentioned at the beginning of the

section.

Proof. We make a Mayer-Vietoris argument. Let U be an invariant neigh-

borhood of MT which equivariantly deformation retracts onto it and let V �

M �MT. Then tU, V u is an invariant open cover of M and it follows from

Proposition 2.11 that

K

TpUq b C � K
pUq b Crt, t�1s. (4.80)
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Since

ATpM
Tq
 � ΩpMT; Rq
 b Crt, t�1s (4.81)

the homotopy invariance of H

D implies that

HDpUq

 � HpU ; Rq
 b Crt, t�1s. (4.82)

It follows that
K


TpUq b C ChD
> HDpUq




K
pUq b Crt, t�1s

�
_

ChbId
> HpU ; Rq
 b Crt, t�1s

�
_

(4.83)

commutes. Since the classical Chern character is a complex isomorphism, it

follows that

ChD : K

TpUq b C > HDpUq


 (4.84)

is an isomorphism.

Remark 4.85. Note that V equivariantly deformation retracts onto the com-

plement of an open tubular neighborhood of MT, a closed subset of M which

is thus compact. We replace V with this homotopy equivalent compact set in

the rest of the proof.

Observe that since V T � ∅ so the complex of delocalized equivariant

differential forms is just the direct sum of the Cartan complexes indexed by

STpV q,

pA

TpV q, δq �

� à
τPSTpV q

CTpV
τ q
, dT

�
(4.86)
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hence

HDpV q

 �

à
τPSTpV q

HTpV
τ ; Rq
. (4.87)

If E Ñ V is an equivariant vector bundle and ∇ is any invariant connection on

E, we saw in the previous section that for each τ P STpV q, we can decompose E

over V τ into its isotypical subbundles. Thus, writing ∇τ for the restriction of

∇ to E|V τ there exists an equivariant isomorphism of bundles with connection

pE|V τ ,∇τ q
�
>

Nτà
i�1

pEτ
i ,∇τ

i q (4.88)

and using this isomorphism, we may write the delocalized Chern character as

the map

K0
TpV q b C ChD

>
à
τ

HTpV
τ ; Rq0

rEs >
à
τ

Nτ̧

i�1

τ kirChTp∇τ
i qs

(4.89)

The Freed-Hopkins-Teleman theorem ([26] theorem 3.9) describes the comple-

tion of twisted G-equivariant K-theory in terms of G-equivariant cohomology.

The untwisted version of this theorem for G � T states that for X any finite

T-CW complex there are natural isomorphisms

K

TpXq b C^

q

�
> K


TpX
τ q b C^

q

�
> HTpX

τ ; Rq
. (4.90)

Here q P C� and τ P T � C� is a generator of the unitary part of the algebraic

subgroup generated by q, that is, the intersection of that algebraic subgroup

with T. The first map is induced by inclusion. By [33], every compact smooth

T-manifold can be given the structure of a T-CW complex so we may apply the

theorem to V . Since the T-action on V has finitely many (finite) stabilizers,
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K

TpV qbC^

q � 0 unless q � τ P STpV q. Thus K

TpV qbC is the global sections

of a skyscraper sheaf supported on STpV q � T. It follows that this sheaf is the

direct sum of its stalks

K

TpV q b C �

à
τPSTpV q

K

TpV q b C^

τ . (4.91)

By 4.90, there is thus a natural isomorphism

ψFHT : K

TpV q b C �

>
à
τ

HTpV
τ ; Rq
. (4.92)

We must now show that our homomorphism (4.89) is the isomorphism (4.92).

The τ -component of the isomorphism (4.92) can be expressed as follows. Let

ET Ñ BT be the universal principal T-bundle. First, ψFHT decomposes into

τ -eigenbundles. Writing Eτ for E|V τ it is

K

TpV q b C > K


TpV
τ q b C > K


TpV
τ q b C

rEs > rEτ s >
Nτ̧

i�1

τ kirEτ
i s

(4.93)

It then completes

K

TpV

τ q b C > K

TpV

τ q b C^
τ � K
pV τ �T ETq b C (4.94)

and identifies the completion with the ordinary K-theory of the Borel quotient

V τ �T ET by the Atiyah-Segal Competion theorem [9]. Finally, it maps this

to equivariant cohomology by the ordinary Chern character

K
pV τ �T ETq b C ChbId
> HpV τ �T ET; Rq
 �: Htop

T pV τ ; Rq
. (4.95)

This last group is the topological definition of T-equivariant cohomology. Bott

and Tu [17] prove the compatibility of equivariant characteristic classes con-

structed using the topological definition of equivariant cohomology and those
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constructed as we have done in the Cartan model. To elaborate briefly, there

are two ways to obtain equivariant cohomology classes on V τ from an equiv-

ariant vector bundle. One is to use equivariant geometric objects associated to

the equivariant bundle on V τ to obtain classes in the cohomology of the Cartan

model as we have done. The other is to construct a (non-equivariant) vector

bundle on V τ �TET, then construct its characteristic classes in singular coho-

mology to obtain cohomology classes on V τ �T ET. There is an isomorphism

between the cohomology of the Cartan model and the topological definition of

T-equivariant cohomology called the equivariant de Rham isomorphism. See

[17] and [30]. Bott and Tu show that the two constructions described com-

mute with this isomorphism. It follows that the following diagram in which

the vertical map is the equivariant de Rham isomorphism

HTpV
τ ; Rq


K

TpV

τ q b C >

ChT bId
>

K

TpV

τ q b C^
τ ChbId

> Htop
T pV τ ; Rq


�
_

(4.96)

commutes. Precomposing with the map which restricts from V to V τ then

decomposes into τ -eigenbundles, we obtain

HTpV
τ ; Rq


K
pV q b C > K

TpV

τ q b C >

ChT bId
>

K

TpV

τ q b C^
τ ChbId

> Htop
T pV τ ; Rq


�
_

rEs >
Nτ̧

i�1

τ kirEτ
i s

(4.97)

The bottom row is the isomorphism ψFHT and from equation (4.89) it is clear
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that the diagonal is the delocalized Chern character ChD . Therefore

ChD : KTpV q

 b C > HDpV ; Rq


is an isomorphism. Since the action is locally free on U X V , ChD is an

isomorphism on U X V as well. It follows by the Mayer-Vietoris sequence and

the Five Lemma that

ChD : K

TpMq b C > HDpM ; Rq


is an isomorphism.

58



Chapter 5

Differential T-equivariant K-theory

We construct differential equivariant K-theory by generators and rela-

tions as before. This time, we take a free abelian group modulo a subgroup

generated by certain short exact sequences rather than pairs modulo the di-

agonal. This is inspired by and completely analogous to the construction of

Freed-Lott [27].

5.1 Even differential T-equivariant K-theory

Suppose that

0 > E1
ι
> E2 > E3 > 0 (5.1)

is a short exact sequence of equivariant vector bundles with invariant connec-

tions t∇iu
3
i�1, respectively, and let

σ : E3 Ñ E2 (5.2)

be a splitting. Then

ι` σ : E1 ` E3 Ñ E2 (5.3)

is an isomorphism.
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Definition 5.1.1. The triple Chern-Simons form of the three connections is

CSDp∇1,∇2,∇3q :� CSDppι` σq�∇2,∇1 `∇3q P ATpMq�1{im pδq. (5.4)

We see that this is independent of the chosen splitting as follows. Since

the space of splittings is affine, if σ1 : E3 Ñ E2 is another splitting, there exists

a path γ with γp0q � σ and γp1q � σ1. Then

ϕpsq � pι` γpsqq�1pι` σq : E1 ` E3 Ñ E1 ` E3 (5.5)

is a path of automorphisms with ϕp0q � Id. It follows from the additivity of

CSD (equation 4.71) and lemma 4.72 that the sum

CSDppι` σq�∇2,∇1 `∇3q � CSDp∇1 `∇3, pι` σ1q�∇2q (5.6)

is equal to

CSDppι` σq�∇2, pι` σ1q�∇2q (5.7)

which is zero. Thus,

CSDppι` σq�∇2,∇1 `∇3q � CSDppι` σ1q�∇2,∇1 `∇3q. (5.8)

Definition 5.1.2. The group qK0
TpMq is the abelian group given by the fol-

lowing generators and relations. A generator is a triple

E � pE,∇, ηq (5.9)

where

• E ÑM is an equivariant vector bundle,
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• ∇ is an invariant connection on E,

• η P ATpMq�1{im pδq.

The relations are E2 � E1 � E3 whenever there is a short exact sequence 5.1 of

equivariant vector bundles and

η2 � η1 � η3 � CSDp∇1,∇2,∇3q P ATpMq�1{im pδq. (5.10)

Definition 5.1.3. The group qKj
TpMq for j even is defined as above with

η P ATpMqj�1{im pδq. In this case, equation 5.10 becomes

η2 � η1 � η3 � β�j{2 CSDp∇1,∇2,∇3q P ATpMqj�1{im pδq. (5.11)

Let ATpMq�jK � ATpMq�jclosed denote the union of affine spaces of (de-

localized equivariantly) closed differential forms whose cohomology class lies

in the image of Ch�jD : K�j
T pMq Ñ HDpMq�j. Observe that two generators

pE,∇, ηq and pE,∇, η1q in degree 0 are equivalent if and only if there exists

an automorphism ϕ : E Ñ E and

η1 � η � CSDpϕ
�∇,∇q. (5.12)

In this case, there exists an equivariant bundle Eϕ Ñ M � S1 with invariant

connection ∇ such that

CSDpϕ
�∇,∇q �

»
S1

ChDp∇q mod im pδq (5.13)

so

η1 � η P ATpMq�1
K . (5.14)
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Define the characteristic class (or forgetful) map on generators by

qK0
TpMq

c
> K0

TpMq

rE,∇, ηs > rEs
(5.15)

There is also a curvature map,

qK0
TpMq

ω
> ATpMq0K

rE,∇, ηs > ChDp∇q � δη
(5.16)

It follows from equation 5.12 that ω takes the same value on equivalent gen-

erators so is well-defined. By analogy with [40] we define flat qKT-theory in

degree �1 to be the kernel of this map

qK�1
T,flatpMq :� kerω. (5.17)

5.2 Odd differential T-equivariant K-theory

Let E ÑM be an equivariant vector bundle with invariant connection

∇ and let γ : E Ñ E be an equivariant automorphism of E. Let ∇s be a

smooth path of connections with ∇0 � ∇ and ∇1 � γ�∇ � γ�1∇γ. Let

∇γ
� ∇s � dsBs. (5.18)

Now let γ1 and γ2 be two automorphisms of E. Le ∇s1 be a smooth path from

∇ to γ�1∇ and let ∇s2 be a smooth path from ∇ to pγ1γ2q
�∇ and let

∇γ1,γ2
� s1∇s1 � s2∇s2 � ds1Bs1 � ds2Bs2 (5.19)

For

∆ � tps1, s2q P A2 | s1 ¥ 0, s2 ¥ 0, and s1 � s2 ¤ 1u (5.20)
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the standard 2-simplex and π : M �∆ ÑM projection, ∇γ1,γ2
is a connection

on π�E ÑM �∆. Let

CSDp∇, γ1, γ2q :�

»
∆

ChDp∇
γ1,γ2

q P ATpMq�2{im pδq. (5.21)

Let tEiu
3
i�1 be equivariant vector bundles with invariant connections

t∇iu
3
i�1 and equivariant automorphisms tγiu

3
i�1 which fit into a diagram

0 > E1
ι
> E2 > E3 > 0

0 > E1

γ1

_
ι
> E2

γ2

_
> E3

γ3

_
> 0

(5.22)

in which the rows are exact and the squares commute. The triple Chern-

Simons form is defined in degree �1 as follows. Let π : M � I Ñ M be

projection and let σ : E3 Ñ E2 be a splitting which makes 5.22 commute.

Then∇1`∇3 and pι`σq�∇2 are connections on E1`E3. Let W � π�pE1`E3q

and let Γ � π�pγ1`γ3q be the induced automorphism of W . Choose a smooth

path of connections from π�p∇1 ` ∇3q to π�pι ` σq�∇2. This determines a

connection ∇W on W .

Definition 5.2.1. The triple Chern-Simons form in degree �1 is the form

CSDpt∇iu
3
i�1, tγiu

3
i�1q :�

»
r0,1s

CSDpΓ
�∇W ,∇W q P ATpMq�2{im pδq. (5.23)

Definition 5.2.2. The group qK�1
T pMq is the abelian group given by the fol-

lowing generators and relations. A generator is a quadruple

E � pE,∇, γ, ηq (5.24)

where
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• E ÑM is an equivariant vector bundle,

• ∇ is an invariant connection on E,

• γ : E Ñ E is an equivariant automorphism

• η P ATpMq�2{im pδq.

The relations are

1. E2 � E1 � E3 whenever there is a commutative diagram of equivariant

vector bundles 5.22 and

η2 � η1 � η3 � CSDpt∇iu
3
i�1, tγiu

3
i�1q,

2. pE,∇, γ1, 0q � pE,∇, γ2, 0q � pE,∇, γ1γ2,CSDp∇, γ1, γ2qq.

Definition 5.2.3. The group qKj
TpMq for j odd is defined as above with η P

ATpMqj�1{im pδq and the relations suitably shifted by a power of β.

Let E Ñ M is a bundle with two commuting (equivariant) automor-

phisms γ and ϕ. Let ∇γ
be the connection constructed as in equation (5.18)

on Eγ Ñ M � S1. Let p : M � S1 Ñ M be projection, then since γϕ � ϕγ,

Φ :� p�ϕ determines an automorphism of Eγ. Choose a path from ∇γ
to

Φ�∇γ
and let r∇ be the corresponding connection on pEγqΦ ÑM � S1 � S1.

Observe now that the two generators pE,∇, γ, ηq and pE,∇, γ, η1q are

equivalent if and only if there is an automorhpism ϕ : E Ñ E which makes
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the diagram

E
ϕ
> E

E

γ

_

ϕ
> E

γ

_
(5.25)

commute and

η1 � η � CSDpΦ
�∇γ

,∇γ
q �

»
S1

»
S1

ChDpr∇q (5.26)

so

η1 � η P ATpMq�2
K . (5.27)

The characteristic class and curvature maps are defined in degree �1

on generators by qK�1
T pMq

c
> K�1

T pMq

rE,∇, γ, ηs > rE, γs
(5.28)

and qK�1
T pMq

ω
> ATpMq�1

rE,∇, γ, ηs > Ch�1
D p∇γ

q � δη
(5.29)

For non-equivariant differential K-theory qK
, we adopt the model of

[27] excluding the hermitian metrics. Thus, a generator of qK0pMq is a triple

pE,∇, ηq where E Ñ M is a vector bundle with connection ∇ and η P

ΩpM ; Rq�1. A generator of qK�1pMq is a quadruple pE,∇, γ, ηq where γ :

E Ñ E is an automorphism. The relations are the basis for our relations

so are completely analogous. There are analogous non-equivariant character-

istic class and curvature maps and qK

flat is the kernel of the non-equivariant

curvature map.
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Lott indicates in [40] that qK

flatpMq is isomorphic to K
pM ; C{Zq. The

proof is apparent from the description in [7] section 5 and [35] section 7.21. We

present the details in the next section and use the same method to construct

an isomorphism qK

T,flatpMq > qK
pM ; C{Zq. (5.30)

See appendix E for a description of the models we adopt for K-theory and

equivariant K-theory with C{Z coefficients.

5.3 A map qK


flatpMq Ñ K
pM ; C{Zq

Let M be a smooth manifold. There is a curvature map given in degree

0 by qK0pMq
ω
> ΩpM ; Rq0K

rE,∇, ηs > Chp∇q � dη
(5.31)

and in degree �1 by qK�1pMq
ω
> ΩpM ; Rq�1

K

rE,∇, γ, ηs > Ch�1p∇q � dη
(5.32)

of which qKj�1
flat pMq is the kernel in degree j. We will construct a map

F : qK

flatpMq > K
pM ; C{Zq (5.33)

as follows. We describe the map in degree �1 first. There is a map

K�1pM ; Qq pρ,�ιq
> K�1pM ; Q{Zq `HpM ; Rq�1 (5.34)

described in appendix E and

K�1pM ; C{Zq � cokerpρ,�ιq. (5.35)
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We will construct a mapqK�1
flatpMq

pΓ,Υq
> K�1pM ; Q{Zq `HpM ; Rq�1

rEs � rE1s > pa, bq
(5.36)

that depends on choices, then show that making different choices changes pa, bq

to pa� ρpcq, b� ιpcqq for some c P K�1pM ; Qq so that pa, bq is unique up to an

element of the image of pρ,�ιq.

We first construct Γ. Let E � pE,∇, ηq and E1 � pE 1,∇1, η1q represent

an element rEs � rE1s P qK�1
flatpMq. Then

Chp∇q � dη � Chp∇1q � dη1. (5.37)

It follows that rankE � rankE 1. The Chern character Ch : K0pM ; Zq Ñ

HpM ; Rq0 has kernel the torsion subgroup of K0pM ; Zq and ChprEs � rE 1sq is

represented by Chp∇q �Chp∇1q � dpη � η1q so rEs � rE 1s is a torsion element

of K0pM ; Zq. Thus, for some n,

rnEs � rnE 1s � 0 (5.38)

so for some k � nm, there exists an isomorphism

npE ` Cmq
�
> npE 1 ` Cmq (5.39)

Adjusting our representatives E and E1 by adding pCm, d, 0q to both, we may

assume that E and E 1 are bundles such that there exist an isomorphism nE Ñ

nE 1. Let ϕ be such an isomorphism. This defines an element

rE,E 1, ϕs P K�1pM ; Z{nZq (5.40)
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We set

a � ΓprEs � rE1sq (5.41)

to be the image of rE,E 1, ϕs in the colimit K�1pM ; Q{Zq.

We now construct the other component Υ of our map. There is one

obvious connection∇`n on nE. The isomorphism ϕ : nE Ñ nE 1 gives another:

ϕ�p∇1`nq. Let

ζ � η � η1 �
CSp∇`n, ϕ�∇1`nq

n
P ΩpM ; Rq�1 (5.42)

Then

dζ � dη � dη1 �
Chp∇`nq � Chpϕ�∇1`nq

n

� dη � dη1 �
nChp∇q � nChp∇1q

n
(5.43)

� 0

so ζ defines a cohomology class in HpM ; Rq�1; we set

b :� ΥprEs � rE1sq � rζs. (5.44)

Suppose now that we repeat the above construction, but this time us-

ing a different isomorphism ψ : nE Ñ nE 1. Let us add subscripts to our

constructions to distinguish those constructed with ϕ from those constructed

with ψ. Thus, we now denote a, ζ and b by aϕ, ζϕ, bϕ. Then ψ � ϕγ where

γ � ϕ�1ψ is an automorphism of nE. Let us look at the Υ component first.

Observe that ψ�p∇1`nq � γ�ϕ�p∇1`nq so up to exact forms

CSp∇`n, ψ�p∇1`nqq � CSp∇`n, ϕ�p∇1`nqq � CSpϕ�p∇1`nq, γ�ϕ�p∇1`nqq.

(5.45)
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We thus see that

ζψ � ζϕ �
CSpϕ�∇1`n, γ�pϕ�∇1`nqq

n
P ΩpM ; Rq�1. (5.46)

We must show that this term represents an element in the image of j � Ch�1 :

K�1pM ; Qq Ñ HpM ; Rq�1. We will construct an element of K�1pM ; Qq of

which it is the image. Let Vγ � pnEqγ Ñ M � S1 (using the notation of

definition 2.1.1) and let∇s be a path of connections constant in a neighborhood

of 0 and 1 with ∇0 � ϕ�∇1`n and ∇1 � γ�pϕ�∇1`nq. Let ∇ � ∇s � dsBs.

Then ∇ defines a connection on Vγ. Let p : M � S1 Ñ M be projection and

set

c �
rVγs � rp�nEs

n
P K�1pM ; Qq. (5.47)

Then ιpcq is represented by

1

n

»
S1

Chp∇q � CSpγ�pϕ�∇1`nq, ϕ�∇1`nq

n
P ΩpM ; Rq�1. (5.48)

Thus

ζψ � ζϕ �
CSpϕ�∇1`n, γ�pϕ�∇1`nqq

n

� ζϕ �
CSpγ�pϕ�∇1`nq, ϕ�∇1`nq

n
(5.49)

so

bψ � bϕ � jpcq. (5.50)

Next, if we construct the first component Γ using ψ instead of ϕ, aψ

is the image of rE,E 1, ψs P K�1pM ; Z{nZq in the colimit K�1pM ; Q{Zq. We
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must show that aψ � aϕ � ρpcq. For p : M � S1 Ñ M , the element c P

K�1pM ; Qq is the image of

rc � rVγs � rp�nEs P An � K�1pM ; Zq (5.51)

in the colimit which defines K-theory with Q-coefficients so ρpcq is the image

of the reduction mod n of rc in the colimit K�1pM ; Q{Zq. We have

rc P An � K�1pM ; Zq > K�1pM ; Z{nZqQ rc mod n

c P K�1pM ; Qq
_

.............
ρ
> K�1pM ; Q{Zq

_
Q ρpcq
_

(5.52)

and we show in appendix E (equation E.11) that

rV, V 1, rψs � rV, V 1, rϕs � rc mod n. (5.53)

It follows that

aψ � aϕ � ρpcq (5.54)

as desired.

In degree 0, the construction is very similar. If rEs�rE1s is in the kernel

of the curvature map in degree 0, let E � pE,∇, γ, ηq and E1 � pE 1,∇1, γ1, η1q.

Then pE,∇, γq defines a bundle Eγ ÑM�S1 with connection∇γ
and similarly

for pE 1,∇1, γ1q and the element rEγs�rE
1
γ1s P K

0pM�S1q is torsion. Choosing

an isomorphism ϕ : nEγ Ñ nE 1
γ1 , we obtain an element of K0pM ; Z{nZq. This

determines the first component of F in degree 0. For the second, set

ζϕ � η � η1 �
β�1

n

»
S1

CSpϕ�∇γ`n
,∇γ`n

q P ΩpM ; Rq0 (5.55)
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Showing that the image of F is unique up to the image of pρ,�ιq is completely

analogous to the degree �1 case.

Finally, suppose that we carry out the above construction this time

for m � n. Let us choose an isomorphism rϕ : mE Ñ mE 1 and let parϕ, brϕq

be the resulting element of K�1pM ; Q{Zq `HpM ; Rq�1. Then we get an iso-

morphism nrϕ : nmE Ñ nmE 1 and a corresponding element panrϕ, bnrϕq. Then

rE,E 1, nrϕs P K�1pM ; Z{nmZq and rE,E 1, nrϕs � nrE,E 1, rϕs so the images of

rE,E 1, nrϕs and nrE,E 1, rϕs in the colimit are equal,

anrϕ � arϕ P K�1pM ; Q{Zq. (5.56)

Similarly,

ζnrϕ � η � η1 �
CSpnrϕ�p∇1`nmq,∇`nmq

nm

� η � η1 �
nCSprϕ�p∇1`mq,∇`mq

nm
mod im pdq (5.57)

� ζrϕ mod im pdq

so

bnrϕ � brϕ P HpM ; Rq�1 (5.58)

It follows that for ϕ : nE Ñ nE 1 the original isomorphism of our construction,

amϕ � aϕ and bmϕ � bϕ. (5.59)

Thus paϕ, bϕq corresponds to the isomorphism mϕ : nmE Ñ nmE 1 and parϕ, brϕq

corresponds to the isomorphism nrϕ : nmE Ñ nmE 1. It follows that the

difference

pamϕ, bmϕq � panrϕ, bnrϕq (5.60)
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is in the image of pρ,�ιq so the constructions using n and m determine the

same element of the cokernel K�1pM ; C{Zq.

5.4 The map qK


flatpMq Ñ K
pM ; C{Zq is an isomorphism

We will show that the map constructed in the previous section is an

isomorphism by showing that both qK

flatpMq and K
pM ; C{Zq fit into long

exact sequences, map one long exact sequence to the other, and use the Five

Lemma. K
pM ; C{Zq fits into the long exact coefficient sequence

� � � > K�1pM ; Cq > K�1pM ; C{Zq > K0pM ; Zq > � � � (5.61)

The sequence (E.6) is the long exact sequence corresponding to the coefficient

exact sequence 0 Ñ Z Ñ Z Ñ Z{nZ Ñ 0. One constructs the long exact

sequence corresponding to 0 Ñ Z Ñ Q Ñ Q{Z Ñ 0 from this by taking

colimits as one constructs K
pX; Q{Zq from K
pX; Z{nZq. From this, it is

easy to construct the sequence (5.61). The following lemma is due to Karoubi;

it appears in [35] section 7.21.

Lemma 5.62. The flat differential K-theory group qK

flatpMq fits into the long

exact sequence

� � � > HpM ; Rq�1 j
> qK�1

flatpMq
k
> K0pM ; Zq i

> HpM ; Rq0
j
> � � �

(5.63)

where

1. j : HpM ; Rq�1 Ñ qK�1
flatpMq is given by, for α a closed �1-form with
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α � rηs,

jpαq � rCn, d, ηs � rCn, d, 0s

2. k is the forgetful map,

kprE,∇, ηs � rE 1,∇1, η1sq � rEs � rE 1s,

3. i is the map induced by the inclusion Z ãÑ C followed by the Chern

character isomorphism Ch : K
pM ; Cq Ñ HpM ; Rq
, and

4. j : HpM ; Rq0 Ñ qK0
flatpMq is given by, for α a closed 0-form with α � rηs,

jpαq � rCn, d, Id, ηs � rCn, d, Id, 0s

Proof. We first verify exactness at HpM ; Rq�1, qK�1
flatpMq, and K0pM ; Zq.

1. Exactness at K0pM ; Zq. The kernel of i is the torsion subgroup of

K0pM ; Zq so by definition of qK�1
flatpMq, ik � 0. If rEs � rCrs P K0pM ; Zq

is in the kernel of i, then if ∇ is any connection on E and d is the trivial

connection on Cr, Chp∇q � Chpdq represents the image under i so is an

exact form. Thus, there is a �1-form η such that Chp∇q � Chpdq �

Chp∇q � rankE � dη. Then

rEs � rCrs � ktrE,∇, ηs � rCr, d, 0su. (5.64)

2. Exactness at qK�1
flatpMq. It is clear that kj � 0. If

E� E1 � rE,∇, ηs � rE 1,∇1, η1s P qK�1
flatpMq (5.65)

73



is in the kernel of k, then there exists an isomorphism α : E ` Ck Ñ

E 1 ` Ck and

E� E1 � rE ` Ck,∇` d, ηs � rE 1 ` Ck,∇1 ` d, η1s. (5.66)

Then

rE 1 ` Ck,∇1 ` d, η1s � rE ` Ck,∇` d, η2s (5.67)

where η2 � η1 � CSpα�p∇1 ` dq,∇` dq so

E� E1 � rE ` Ck,∇` d, ηs � rE ` Ck,∇` d, η2s

� rE,∇, ηs � rE,∇, η2s (5.68)

Now, let F be a complement to E so there exists an isomorphism E`F �

Cr and let ∇F be a connection on F . Then adjusting our representatives

E,E1 by adding pF,∇F , 0q to both we have

E� E1 � rCr,∇`∇F , ηs � rCr,∇`∇F , η
2s. (5.69)

Changing representatives one last time we have

E� E1 � rCr, d, rηs � rCr, d, rη2s
� rCr, d, rη � rη2s � rCr, d, 0s (5.70)

� jprrη � rη2sq
where rη � η�CSp∇`∇F , dq and similarly for rη2. Therefore the sequence

is exact at qK�1
flatpMq.
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3. Exactness at HpM ; Rq�1. Let γ be an automorphism of the trivial bundle

of rank r over M � I and let Wγ Ñ M � S1 be the bundle obtained

by gluing the ends via γ as in the previous section. Every element of

K�1pM ; Zq of of the form rWγs � rCrs. Let ∇s be a path of connections

from d to γ�d and let ∇ be the corresponding connection on Wγ. Then

itrWγs � rCrsu �

»
S1

Chp∇q � CSpγ�d, dq (5.71)

so

jitrWγs � rCrsu � rCr, d,CSpγ�d, dqs � rCr, d, 0s. (5.72)

One readily deduces from the relations which define qK0pMq by consid-

ering the exact sequence

0 > Cr γ
> Cr > 0 > 0 (5.73)

that these two triples are equivalent so their difference is zero. Therefore

ji � 0.

Next, suppose that for α � rηs P HpM ; Rq�1, jpαq � 0. Then

pCr, d, ηq � pCr, d, 0q. (5.74)

It follows that there exists a short exact sequence of vector bundles over

M

0 > Cr γ
> Cr > 0 > 0 (5.75)

and

η � 0� 0� CSpγ�d, dq (5.76)

so indeed α � Ch�1prWγs � rCrsq � iprWγs � rCrsq.
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To show exactness of the next portion

� � � > HpM ; Rq0
j
> qK0

flatpMq
k
> K1pM ; Zq i

> HpM ; Rq1
j
> � � � (5.77)

of the sequence is completely analogous. Since all of the groups are periodic

with period 2, this completes the proof.

Lemma 5.78. The following diagram commutes

K�1pM ; Zq i
> HpM ; Rq�1 j

> qK�1
flatpMq

k
> K0pM ; Zq i

> HpM ; Rq0

K�1pM ; Zq

�
_

ZãÑC
> K�1pM ; Cq

�
_

π
> K�1pM ; C{Zq

F
_

b
> K0pM ; Zq

�
_

ZãÑC
> K0pM ; Cq

�
_

Proof. The vertical maps marked � are the inverses of the Chern character

isomorphisms in the given degree. It is clear that the squares on the ends

commute. The map π is given by the composition

K�1pM ; Cq > K�1pM ; Q{Zq `HpM ; Rq�1 > K�1pM ; C{Zq

E > p0,Ch�1pEqq > r0,Ch�1pEqs
(5.79)

where Ch�1 is the Chern character in degree �1 (not the inverse) and brack-

ets indicate the image in the quotient group. It follows that for α � rηs P

HpM ; Rq�1, going around the square

HpM ; Rq�1 j
> qK�1

flatpMq

K�1pM ; Cq
_

π
> K�1pM ; C{Zq

F
_

(5.80)

counter-clockwise is given by

α > r0, αs. (5.81)
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Going around clockwise is given by

α > Fjpαq � F prCr, d, ηs � rCr, d, 0sq � ra, bs (5.82)

To construct the first component of F prCr, d, ηs � rCr, d, 0sq, we can choose

n � 1 and the isomorphism Cr Ñ Cr to be the identity. Then a � Γjpαq � 0.

The second component

b � Υjpαq (5.83)

is the cohomology class of η � CSpd, dq, but CSpd, dq is an exact form so

b � rηs � α (5.84)

and we have

Fjpαq � r0, αs (5.85)

so indeed, the square commutes.

Finally, the map marked b is the Bockstein homomorphism. In our

model of K�1pM ; C{Zq it is given as follows. K�1pM ; Q{Zq is defined as the

colimit of the diagram of groups An � K�1pM ; Z{nZq where, ifm � kn there is

a unique map An Ñ Am which is multiplication by k. Returning briefly to the

notation A � B �M � S2 and g � 1M �Σfn, K�1pM ; Z{nZq � K0pB,A, gq.

For each n there is a map, the connecting homomorphism in the long exact

sequence,

K0pB,A, gq � K�1pM ; Z{nZq > K0pM ; Zq � K0pX � S2, X � tptuq

rV, V 1, rϕs > rV s � rV 1s.
(5.86)
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These induce a map on the colimitK�1pM ; Q{Zq Ñ K0pM ; Zq by the universal

property. Precomposing with projection gives a map

rb : K�1pM ; Q{Zq `HpM ; Rq�1 > K�1pM ; Q{Zq > K0pM ; Zq (5.87)

When we constructed F , we showed that the difference of two elements

rV, V 1, rϕs, rV, V 1, rψs P K�1pM ; Z{nZq (5.88)

is the reduction mod n of an element rc P K�1pM ; Zq which was a lift of c P

K�1pM ; Qq and deduced that the difference of the images rV, V 1rϕs, rV, V 1, rψs P
K�1pM ; Q{Zq is ρpcq where ρ : K�1pM ; Qq Ñ K�1pM ; Q{Zq is the reduction

mod Z. It follows that rb is constant on the fibers of the quotient map so

descends to a map

K�1pM ; Q{Zq `HpM ; Rq�1
rb
> K0pM ; Zq

K�1pM ; C{Zq
_ b

>
(5.89)

Let rEs � rE1s P qK�1
flatpMq with E � pE,∇, ηq and E1 � pE 1,∇1, η1q and let

rE,E 1, ϕs � ΓprEs � rE1sq denote the image of rE,E 1, ϕs P K�1pM ; Z{nZq in

the colimit K�1pM ; Q{Zq. Unraveling the definitions of F and b we see that

bF pE� E1q � brrE,E 1, ϕs, rζϕss � rEs � rE 1s P K0pM ; Zq (5.90)

is indeed the forgetful map k so the remaining square does commute.

The proof that the portion of the diagram centered on F : qK0
flatpMq Ñ

K0pM ; C{Zq commutes is again entirely analogous. This completes the proof.
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Corollary 5.91. The map

F : qK

flatpMq > K
pM ; C{Zq (5.92)

is an isomorphism.

Proof. Both sequences are exact and the two maps on either side of F :qK

flatpMq Ñ K
pM ; C{Zq are isomorphisms. The Five Lemma then implies

that F is an isomorphism.

5.5 An isomorphism qK


T,flatpMq Ñ K


TpM ; C{Zq

For M now a smooth T-manifold, we have the analogous equivariant

curvature map ω defined in equations 5.16 and 5.29. We set qKj�1
T,flatpMq to be

the kernel of the equivariant curvature map in degree j.

We construct a map

F : qK

T,flatpMq > K


TpM ; C{Zq (5.93)

as before. The previous construction holds in the equivariant setting because

the kernel of the delocalized Chern character ChD : K

TpMq Ñ HDpMq
 is

again the Z-torsion subgroup. Thus if rEs�rE1s P qK�1
T,flatpMq with E � pE,∇, ηq

and E1 � pE 1,∇1, η1q, we deduce as before that for some n, rnEs� rnE 1s � 0 in

K0
TpMq so may once again assume that there exists an isomorphism ϕ : nE Ñ

nE 1. This is how we construct the first component of F . We construct the

second component as before now using delocalized equivariant Chern-Simons
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forms. This produces an element pa, bq � paϕ, bϕq P K
�1
T pM ; Q{Zq`HDpMq�1.

Repeating the construction with ψ � ϕγ, we have already indicated that

aψ � aϕ � ρpcq where

c �
rVγs � rp�nEs

n
P K�1

T pM ; Qq (5.94)

and showing that bψ � bϕ�ιpcq is completely analogous to the non-equivariant

argument. The construction in degree 0 is also analogous to the non-equivariant

one. We thus get a well-defined map

F : qK

T,flatpMq > K


TpM ; C{Zq (5.95)

The groups K

TpM ; C{Zq fit into a long exact sequence corresponding to the

coefficient short exact sequence 0 Ñ Z Ñ C Ñ C{Z Ñ 0. The groupsqK

T,flatpMq fit into an exact sequence analogous to the non-equivariant flat

differential K-groups.

Lemma 5.96. In the diagram,

K�1
T pM ; Zq i

> HDpM ; Rq�1 j
> qK�1

T,flatpMq
k
> K0

TpM ; Zq i
> HDpM ; Rq0

K�1
T pM ; Zq

�
_

ZãÑC
> K�1

T pM ; Cq

�
_

π
> K�1

T pM ; C{Zq

F
_

b
> K0

TpM ; Zq

�
_

ZãÑC
> K0

TpM ; Cq

�
_

the rows are exact and the diagram commutes.

Sketch of proof. Proving that the non-equivariant sequence was exact used

that every bundle has a complement, that Ch : K
pM ; Cq Ñ HpM ; Rq
 is

an isomorphism, that every element of K�1pMq can be constructed from an

80



automorphism of a bundle over M , and the relations which define qK
pMq.

The above facts hold in the equivariant setting and the relations which defineqK

TpMq are completely analogous so we obtain an analogous exact sequence

for qK

T,flatpMq. The proof that the diagram commutes is identical to the non-

equivariant case.

Corollary 5.97. The map

F : qK

T,flatpMq > K


TpM ; C{Zq (5.98)

is an isomorphism.

5.6 Exact Sequences for qK


T

Differential K-theory fits into exact sequences

0 >
ΩpM ; Rq
�1

ΩpM ; Rq
�1
K

> qK
pMq > K
pMq > 0 (5.99)

and

0 > K
�1pM ; C{Zq > qK
pMq > ΩpM ; Rq
K > 0 (5.100)

We show that the equivariant theory fits into analogous exact sequences.

Let

PTpMq0 � tpc, αq P K0
TpMq �ATpMq0K | ChDpcq � rαsu. (5.101)

Proposition 5.102. There are exact sequences

0 >
ATpMq
�1

ATpMq
�1
K

> qK

TpMq

c
> K


TpMq > 0 (5.103)
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0 > K
�1
T pM ; C{Zq > qK


TpMq
ω
> ATpMq
K > 0 (5.104)

and

0 >
HDpMq
�1

Ch
�1
D K
�1

T pMq

rh
> qK


TpMq
χ
> PTpMq
 > 0. (5.105)

Proof. In degree 0: in the sequence 5.103, the homomorphism c is clearly

surjective since every equivariant vector bundle has an invariant connection.

Define

h : ATpMq�1 > qK0
TpMq (5.106)

by

hpηq � rC, d, ηs � rC, d, 0s. (5.107)

Here C is the equivariantly trivial bundle of rank and d is the trivial connection.

By equation 5.12, the kernel of h is ATpMq�1
K so h induces a injective map

h :
ATpMq�1

ATpMq�1
K

> qK0
TpMq (5.108)

It is clear that c�h � 0. We must show that ker c � im h. Suppose that E�E1

is in ker c and let pE,∇, ηq represent E and pE 1,∇1, η1q represent E1. Then

rEs � rE 1s in K0
TpMq so there exists an isomorphism ϕ : E ` Cn Ñ E 1 ` Cn

for some n. Note that here Cn is a topologically trivial, but not necessarily

equivariantly trivial, bundle. We have

E� E1 � rE,∇, ηs � rE 1,∇1, η1s

� rE ` Cn,∇` d, ηs � rE 1 ` Cn,∇1 ` d, η1s (5.109)

� rE ` Cn,∇` d, ηs � rE ` Cn, r∇, η1s
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Let F be an equivariant bundle such that there is an equivariant isomorphism

E ` Cn ` F � Cr. If ∇F is any invariant connection on F , then adding

pF,∇F , 0q to both representatives we have

E� E1 � rCr,∇1, ηs � rCr,∇2, η
1s

� rCr,∇1, ηs � rCr,∇1, rη1s (5.110)

� rCr,∇1, η � rη1s � rCr,∇1, 0s

(5.111)

where rη1 � η1 � CSDp∇1,∇2q. Finally, it is clear from the relations which

define qK0
T that

rCr,∇1, η � rη1s � rCr,∇1, 0s � rC, d, η � rη1s � rC, d, 0s (5.112)

so

E� E1 � hprη � rη1q. (5.113)

Therefore the sequence is exact.

The sequence 5.104 is exact by corollary 5.97 that kerω is isomorphic

to C{Z-K-theory in degree �1.

The proof that the sequence 5.105 is exact is very similar to the discus-

sion the section 5.3. The map rh is is just the map h on cohomology classes:

for α � rηs P HDpMq�1,

rhpαq � rCn, d, ηs � rCn, d, 0s.
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By equation 5.12 and the discussion there, if rhprηsq � rhprη1sq � 0, η � η1 P

ATpMq�1
K so rη � η1s P Ch�1

D K�1
T pMq � HDpMq�1. Thus,

rh :
HDpMq�1

Ch�1
D K�1

T pMq
> qK0

TpMq

is injective. The map χ is defined by

χpE� E1q � prEs � rE 1s,ChDp∇q � δη � ChDp∇1q � δη1q

where E is represented by pE,∇, ηq and E1 is represented by pE 1,∇1, η1q. It

is clear that χ � rh � 0. We must show that kerχ � im rh. The kernel of χ

consists of differences E� E1 for which

1. rEs � rE 1s and

2. ChDp∇q � ChDp∇1q � δη � δη1

The second condition implies that rankE � rankE 1. That rEs � rE 1s means

that there exists an isomorphism E`Cn Ñ E 1`Cn. By adjusting the original

representatives, we may assume that there exists an isomorphism ϕ : E Ñ E 1.

Observe that, as in the construction in section 5.3, the second condition implies

that

ζ :� η � η1 � CSDpϕ
�∇1,∇q P ATpMq�1
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is closed. Then

E� E1 � rE,∇, ηs � rE 1,∇1, η1s

� rE,∇, ηs � rE,∇, η1 � CSDpϕ
�∇1,∇qs

� rCn, r∇, ηs � rCn, r∇, η1 � CSDpϕ
�∇1,∇qs

� rCn, d, η � µs � rCn, d, η1 � CSDpϕ
�∇1,∇q � µs

� rCn, d, ζs � rCn, d, 0s

� rhprζsq
where in the third line we added a complementary bundle to E and µ �

CSDpr∇, dq. Therefore, the sequence 5.105 is exact.

Showing that the sequences are exact in degree �1 is almost completely

analogous. One must use the second relation defining qK�1
T to show, for exam-

ple, that

rE, d, γ, ηs � rE, d, γ, η1s � rCn, d, Id, ηs � rCn, d, Id, η1s

to deduce the exactness of 5.103. Since all groups are periodic with period 2,

this completes the proof.

5.7 Some Calculations

We again identify the representation ringRpTq of the circle with Zrt, t�1s

as in proposition 2.11.

Proposition 5.114. For T acting on the point and RpTq the representation
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ring of the circle, we have

qKj
Tpptq �

"
RpTq j � 0
pRpTq b Cq{RpTq j � �1.

Proof. When j � 0, ATpptq
j�1 � 0 so by sequence 5.103 and proposition 2.11,

qK0
Tpptq � K0

Tpptq � K0pptq b Zrt, t�1s � Zrt, t�1s.

When j � �1, K�1
T pptq � 0 so by sequence 5.103,

qK�1
T pptq � ATpMq�2{ATpMq�2

K � Crt, t�1s{Zrt, t�1s.

It is reasonable to ask if for free actions, by analogy with Proposition

2.9, qK�
TpMq is isomorphic to qK�pM{Tq. The answer is no: although every

equivariant vector bundle on M is isomorphic to a pullback, not every connec-

tion is pulled back. There are many more (delocalized equivariant) differential

forms on M than there are (ordinary) differential forms on M{T. It is also rea-

sonable to ask if for trivial actions, by analogy with Proposition 2.11, qK�
TpMq

is isomorphic to qK�pMq bRpTq. The answer is yes.

Proposition 5.115. If T acts trivially on M ,

qK�
TpMq � qK�pMq bRpTq.

Proof. For rE,∇, ηs P qK0
TpMq, we may decompose pE,∇q into its eigenbun-

dles, pE,∇q �
�ÀN

i�1Ei,
ÀN

i�1∇i

	
, where T acts on Ei by τ ÞÑ τ ki . Since
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ATpMq�1 � ΩpM ; Rq�1 b Crt, t�1s, we may write

η �
Ņ

i�1

ηit
ki �

N�M̧

i�N�1

ηit
`i

for ηi P ΩpM ; Rq�1. In this decomposition of η we have merely separated the

characters which appear in the decomposition of E from those which do not.

Then

rE,∇, ηs �
Ņ

i�1

rEi,∇i, ηit
kis �

N�M̧

i�N�1

r0, 0, ηit
`is.

Define

ψ : qK0
TpMq > qK0pMq bZ Zrt, t�1s

by

rE,∇, ηs >
Ņ

i�1

rEi,∇i, ηist
ki �

N�M̧

i�N�1

r0, 0, ηist
`i

where rEi,∇i, ηis P qK0pMq is the element obtained by forgetting the T-action

on E. Tensoring the sequence 5.99 with RpTq � Zrt, t�1s over Z preserves

exactness since a Laurent polynomial is zero if and only if all of its coefficients

are zero. This gives the bottom row in the following diagram

0 >
ΩpM ; Rq�1 bRpTq
ΩpM ; Rq�1

K bRpTq
> qK0

TpMq
cT

> K0
TpMq > 0

0 >
ΩpM ; Rq�1 bRpTq
ΩpM ; Rq�1

K bRpTq

�_

> qK0pMq bRpTq

ψ
_

cbId
> K0pMq bRpTq

�
_

> 0

in which the top row is the sequence 5.103. We denote the forgetful map in

the top row by cT to distinguish it from the corresponding map in the non-

equivariant theory. It is clear that this diagram commutes so by the Five

Lemma, ψ is an isomorphism in degree 0.

87



For a generator rE,∇, γ, ηs P qK�1
T pMq, since γ is an equivariant auto-

morphism, it respects the decomposition of pE,∇q into eigenbundles. We may

thus define ψ analogously in degree �1 and the same argument shows that it

is again an isomorphism.
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Appendix A

Preliminaries on group actions

Let M be a compact smooth manifold with a smooth action of a com-

pact Lie group G. The following rapid review is based on [49] and appendix

B of [29]. By “subgroup of G” we will mean “closed subgroup of G”. For

m P M , we will write Gm � G for the stabilizer subgroup tg P G | gm � mu

and for H � G

MH :� tm PM | hm � m for all h P Hu

for the points fixed by H.

Proposition A.1 ([49] Prop 5.4). For m P M , the map ψm : G{Gm Ñ M ,

gGm ÞÑ g �m, is an embedding. Consequently, the orbit G �m is an embedded

submanifold G-diffeomorphic to G{Gm.

Proof. The action map GÑM , g ÞÑ g �m is smooth, has constant rank, and

factors as G
π
ÝÑ G{Gm

ψmÝÝÑ M . It follows that ψm : G{Gm Ñ M is smooth. It

is injective and has constant rank so it is an immersion. Since G is compact,

ψm is an embedding.
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Proposition A.2 (GGK B.26). For m P MG a fixed point, there exists a G-

diffeomorphism from an open neighborhood of the origin in TmM to an open

neighborhood of m in M .

Proof. Let U �M be an invariant open set containingm and let f : U Ñ TmM

be any smooth function with dfm � Id : TmM Ñ TmM . Then F : U Ñ TmM ,

F puq �
³
G
g�fpg

�1uqdg is smooth, G-equivariant, and has dFm � Id. By the

Implicit Function Theorem, we may invert F on a neighborhood of m to obtain

the desired G-diffeomorphism.

Observe that for m PM , TmM is a representation of Gm which decom-

poses as

TmM � pTmMqGm `W � TmpG �mq `W

Proposition A.3 (Equivariant Tubular Neighbhorhood Theorem, GGK B.24).

For m P M , choose a Gm-invariant metric. There exists a disc D � W and

a G-diffeomorphism ϕ : G�Gm D Ñ U � M onto an open neighborhood U of

the orbit G �m such that ϕrg, 0s � g �m.

Proof. By the previous proposition, there exists a Gm-diffeomorphism

topen neighborhood of 0 P TmM � TmpG �mq `W u

topen neighborhood of m PMu.

ψ

_
(A.4)

Choose a Gm-invariant metric on M and let D1 � W be a disc about the origin

contained in the domain of ψ. Define ϕ : G�Gm D
1 ÑM by

ϕrg, vs � g � ψpvq.
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Then ϕ is well defined and a local diffeomorphism at re, 0s. Since ϕ is G-

equivariant, it is a local diffeomorphism at rg, 0s for all g P G. To see that

there exists a disc D � D1 and neighborhood U � U 1 of the orbit G � m

such that ϕ : G �Gm D Ñ U is a diffeomorphism, we argue by contradiction.

Suppose that ϕ is not injective for any D � D1. Then there exist vn, wn P W

with vn, wn Ñ 0 and gn, hn P G such that rgn, vns � rhn, wns but for which

gn � ψpvnq � ϕrgn, vns � ϕrhn, wns � hn � ψpwnq.

We may assume without loss of generality that hn � e for all n. (If not, we

take rgn � h�1
n gn and rhn � e.) The G-action determines a map

α : G�M >M �M

pg, xq > pg � x, xq.

Since the action is proper, α is a proper map. We have

αpgn, ψpvnqq � pgn � ψpvnq, ψpvnqq � pψpwnq, ψpvnqq.

This sequence in M � M converges to pm,mq. If K � M � M is a com-

pact set containing pm,mq, then α�1pKq is compact so contains a convergent

subsequence pgnj , ψpvnjqq Ñ pg8,mq. On the one hand,

ϕrgnj , vnj s
jÑ8
ÝÝÝÑ ϕrg8, 0s � g8 � ψp0q � g8 �m.

On the other hand,

ϕre, wnj s
jÑ8
ÝÝÝÑ ϕre, 0s � m.

Since ϕrgn, vns � ϕre, wns, it follows that g8 �m � m. Therefore g8 P Gm so

rg8, 0s � re, 0s P G�Gm D
1.
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We have shown that rgnj , vnj s and re, wnj s are two sequences in G�GmD
1 which

converge to re, 0s and

ϕrgnj , vnj s � ϕre, wnj s.

Thus, ϕ is not injective on any neighborhood of re, 0s which contradicts that

it is a local diffeomorphism at that point. It follows that there exists a disc

D � D1 and a neighborhood U � U 1 of the orbit G �m such that

ϕ : G�Gm D Ñ U

is a G-diffeomorphism.

Proposition A.5. For any non-trivial subgroup H, MH is a disjoint union

of closed submanifolds.

Proof. That the action is continuous implies that MH is closed. Let F be a

connected component of MH and let m P F . Consider M as an H-manifold

and apply Proposition A.2 to obtain an H-diffeomorphism ψ : V Ñ U for

open sets 0 P V � TmM and m P U �M . Then ψ : V X pTmMqH Ñ U XMH

is a diffeomorphism.

The orbit type of m P M is the conjugacy class of its stabilizer Gm in

G. The orbit type is constant on an orbit because the stabilizer of g � m is

gGmg
�1.

Proposition A.6 (GGK B.39). M has finitely many orbit types.
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Proof. Cover M by equivariant tubular neighborhoods of orbits and choose a

finite subcover. If we can show that for an H-vector space W , G�HW has only

finitely many orbit types, it follows that M does. Thus, consider M � G�HW .

We proceed by induction on the dimension of M . If dimM � 1, then either

H � G and dimW � 1 or dimG{H � 1 and W � 0. In the first case, W is a

1-dimensional vector space on which H � G acts. If there extists a g P G and

a nonzero w P W such that g �w � w, then by linearity, g acts trivially on W .

If K is the kernel of the representation G Ñ AutpW q, then for any nonzero

w P W , K � Gw and Gw � K so Gw � K. It follows that the only orbit types

are pKq and pGq, corresponding to the nonzero vectors and the zero vector,

respectively. In the second case, W � 0. Since

re, 0s � raa�1, 0s � a � ra, 0s,

re, 0s and ra, 0s have the same orbit type. The stabilizer Gre,0s � H so the

orbit type of any ra, 0s PM is pHq. Thus, the only orbit type is pHq. For the

inductive step, assume that every G-manifold of dimension   n has finitely

many orbit types. Let M � G�HW have dimension n and fix an H-invariant

inner product on W (so H acts unitarily on W ). For ra, ws P M , if w � 0,

ra, ws has orbit type pHq. If w � 0, ra, ws has the same orbit type as ra, w{}w}s:

that the action is linear implies Hw � Hw{}w}. Let SW � W be the unit sphere,

and let N � G�H S
W . Then N has dimension n� 1 and ra, w{}w}s P N . By

hypothesis, N has only finitely many orbit types. Since the orbit type of every

point in M is the orbit type of a point in N , M has only finitely many orbit

types.
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Appendix B

Integration along the fiber

B.1 Non-equivariant case

See [16] page 37 for a thorough discussion and proofs. Let M be a

compact smooth manifold, let S1 be the circle with its standard orientation

and let p : M � S1 Ñ M be projection. Integration over the circle defines a

map »
S1

� p� : ΩpM � S1; Rqj > ΩpM ; Rqj�1

By Stokes’ theorem,

p�d � dp�

so p� is a chain map»
S1

� p� : pΩpM � S1; Rq
, dq > pΩpM ; Rq
�1, dq

and thus induces a map in cohomology»
S1

� p� : HpM � S1; Rq
 > HpM ; Rq
�1

called integration over the fiber (or push forward). Let p and π be the projec-

tions

M � S1

M

p

<
S1

π

>
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then by the Kunneth theorem ([16] p.47), there is an isomorphism

HpM ; Rq
 bHpS1; Cq
 �
> HpM � S1; Rq


ω b η > p�ω ^ π�η

Fix a point pt P S1 and let i : M �M �tptu ÑM �S1 be the inclusion, then

we obtain an exact sequence

0 > ker i� > HpM � S1; Rq

i�

> HpM ; Rq
 > 0

where i� is surjective because i�p� � Id. By the Kunneth theorem, we have

HpM � S1; Rq0 � pHpM ; R0q bH0pS1; Cqq ` pHpM ; Rq�1 bH1pS1; Cqq

If ds is a volume form on S1 with volume 1, then i�ds � 0. We may thus

identify ker i� with the second summand above. Finally, since integration over

the circle is an isomorphism H1pS1; Cq Ñ C, the integration map

p� : HpM ; Rq�1 bH1pS1; Cq > HpM ; Rq�1

is an isomorphism. We thus see that p� is an isomorphism

0 > ker i� > HpM � S1; Rq0
i�

> HpM ; Rq0 > 0

HpM ; Rq�1

� p�
_

on the kernel of i�. Observe that under the Kunneth isomorphism, p� is the

map

p�pp
�ω ^ π�ηq � ω ^ p�η (B.1)
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We will refer to this formula as the push-pull formula. It says that HpM �

S1; Rq
 and HpM ; Rq
 are both HpM ; Rq
-modules and that p� is a map of

modules. A special case is the formula

p�pp
�ωq � 0.

If we replace S1 by Sn above, the same argument shows that p� defines an

isomorphism

0 > ker i� > HpM � Sn; Rq0
i�

> HpM ; Rq0 > 0

HpM ; Rq�n

� p�
_

where now i is the inclusion M � tptu ÑM � Sn.

B.2 Equivariant case

Let M be a compact smooth T-manifold and consider M � S1 as a T-

manifold with trivial action on the second factor. Let ξ be the vector field onM

which generates the T-action. There is a canonical isomorphism T pM �S1q �

TM ` TS1 under which the vector field which generates to the T-action on

M � S1 is pξ, 0q. We will denote both the vector fields on M and M � S1 by

ξ and rely on context. Extending integration to be linear over u gives a map»
S1

� p� : CTpM � S1qj > CTpMqj�1

One readily checks that for η P CTpM � S1q


ιξ

»
S1

η �

»
S1

ιξη.
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It follows that

dTp� � p�dT

so p� is a chain map»
S1

� p� : pCTpM � S1q
, dTq > pCTpMq
�1, dTq

and thus induces a map in cohomology

p� : HTpM � S1; Rq
 > HTpM ; Rq
�1

The Kunneth theorem holds in equivariant cohomology as well so the discus-

sion of the previous section extends to the present context. More generally, if

p : M � Sn Ñ M is projection and i : M � tptu Ñ M � Sn is inclusion, p�

defines an isomorphism

0 > ker i� > HTpM � Sn; Rq0
i�

> HTpM ; Rq0 > 0

HTpM ; Rq�n

� p�
_

which also satisfies a push-pull formula analogous to equation B.1.
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Appendix C

The Complex of Basic Forms and Equivariant

Cohomology

Let G be a compact Lie group with Lie algebra g and M a compact

smooth G-manifold. For X P g we denote by the same letter the corresponding

vector field on M .

Definition C.0.1. A differential form ω P Ω
pMq is basic if it is

• invariant, g�ω � ω for all g P G, and

• horizontal, ιXω � 0 for all X P g.

Let Ω
pMqbas � Ω
pMq denote the subalgebra of basic differential

forms. If the action is free, then M{G is a smooth manifold, π : M ÑM{G is

a principal G-bundle, and the basic forms on M are exactly those forms pulled

back from M{G.

C.1 Koszul’s theorem

Koszul’s theorem states that the complex of basic forms on M computes

the real cohomology of the quotient M{G. Let π : M ÑM{G be the quotient
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map. The argument goes as follows. For k P Z¥0, let Fk ÑM{G be the sheaf

that to an open set U �M{G assigns

FkpUq � Ωkpπ�1Uqbas.

One proves a Poincaré lemma which shows that the complex of sheaves

0 > R > F0 d
> F1 d

> F2 d
> � � �

is an acyclic resolution of the constant sheaf R Ñ M{G. It follows by the

uniqueness of sheaf cohomology that the complex of basic forms on M com-

putes the real cohomology of M{G.

Theorem C.1 (Koszul’s Poincaré lemma). Let ω be a basic form on M . If ω

is closed on an equivariant tubular neighborhood of an orbit in M , then it is

exact on that neighborhood.

Koszul describes the proof in [37]. We include it for completeness.

Proof. Let p PM be a point with stabilizer H � G and let G �p be the orbit of

p. By Proposition A.3 the orbit G �p has an equivariant tubular neighborhood

of the form N � G�HV where V is representation of H. N is the vector bundle

associated to the principal H-bundle G Ñ G{H. It follows that pullback by

the projection map πH : G� V Ñ G�H V gives an isomorphism

π�H : Ω
pG�H V q
�
> Ω
pG� V qH bas

where H bas denotes the forms which are basic for the H-action. In fact, G

also acts on G�V by its action on (the left) on G and this commutes with the
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H action so there is a G �H action on G � V . This descends to a G-action

on N � G�H V . Pullback by πH restricts to an isomorphism

π�H : Ω
pG�H V qG bas
�
> Ω
pG� V qG�H bas

Now, G�V Ñ pG�V q{G � V is an (H-equivariant) principal G-bundle. Our

diagram looks like

G� V

G�H V

πH

<
G�G V � V

πG

>

It follows that pullback by πG defines an isomorphism

π�G : Ω
pV qH bas
�
> Ω
pG� V qG�H bas

We have thus identified the G-basic forms on the neighborhood N of the orbit

of p with the H-basic forms on V . Now that we are in a vector space, we can

use the standard proof of the Poincaré lemma (see [22] chapter 4, section 3).

Let ω be a closed H-basic form on V and let F : V � r0, 1s Ñ V be the map

F pv, tq � tv. Then F is an H-equivariant homotopy from the identity map on

V to the constant map. Let ιi : V Ñ V � tiu be the inclusions for i � 0, 1,

and let

K : Ω
pV � r0, 1sq > Ω
�1pV q

be the map

η >

»
r0,1s

η.

101



Let ω � F �ω P Ω
pV � r0, 1sq, then we have

ι�1ω � ι�0ω � dKω �Kdω

which reduces to

ω � dpKωq.

Now, the H-action on V � r0, 1s is trivial on the second factor so for any

X P LiepHq, ιXK � KιX . Then, since pushforward by F just scales the vector

field X, one readily checks that Kω is basic. This completes the proof.

It follows by the uniqueness of sheaf cohomology that

Theorem C.2 (Koszul).

HpΩ
pM ; RqG bas, dq � H
pM{G; Rq.

C.2 The Weil Model, the Cartan Model, and Locally
Free Actions

Let M be a compact smooth T-manifold and let t � LiepTq � iR. As

usual, we let ξ denote both i P t and the vector field on M which it generates.

The Weil complex of M is

W 
pMq � Ω
pMq b Λ
pt�q b Sym
pt�q

Let θ P Λ1pt�q and u P Sym1pt�q denote the generators, thus θpξq � upξq � 1.

The grading is by total degree, deg θ � 1 and deg u � 2. Then

W 
pMq � Ω
pMq b pR` Rθq b Rrus
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The differential is the graded derivation which extends the de Rham d on forms

and satisfies

dθ � u and du � 0.

We extend the contraction operator and Lie derivative by

ιξθ � θpξq � 1 and ιξu � 0

and define Lξ � dιξ � ιξd. An element of the Weil complex is basic if it is

invariant and horizontal: that is, annihilated by Lξ and ιξ. Let W pMq
bas

denote the subcomplex of basic forms.

Theorem C.3 (Cartan, Mathai-Quillen). There is a quasi-isomorphism

pW 
pMqbas, dq
ϕMQ
> pΩpMqTrus
, dTq

α � θιξα > α

a� θιξa < a

Now suppose that the T-action on M is locally free meaning that it has

finite stabilizers.

Theorem C.4 (Cartan). If T acts on M locally freely, the inclusion

j : pΩ
pMqbas, dq � > pW 
pMqbas, dq

induces an isomorphism

j : HpΩ
pMqbas, dq
�
> HpW 
pMqbas, dq.

103



In this case, the vector field ξ which generates the action is nowhere

zero. Let γ P Ω1pMq be an invariant one-form satisfying γpξq � 1. The

idea is that γ and dγ will play the roles of θ and u, respectively. A proof of

the corresponding theorem for G an arbitrary compact connected Lie group

appears in [30] chapter 5. We deduced this direct proof from the discussion

there.

Proof. Let rω be a homogeneous element of W 
pMqbas of degree d. Then we

can express rω as

rω � ņ

r�0

rωrur.
Since rω is basic, the forms rωr are basic so we can write them as

rωr � ωr � θιξωr

for homogeneous elements ωr P Ωd�2rpMqT. Define

π : W dpMqbas > ΩdpMqbas

by

πprωq � ņ

r�0

pωr � γ ^ ιξωrq ^ pdγqr.

That is, we replace θ with γ and u with dγ, respectively. One readily checks

that π is a chain map. It may be that terms in this sum vanish for r ¤ n. We

will define a chain homotopy

Q : W dpMqbas Ñ W d�1pMqbas
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such that

dQ�Qd � Id� jπ. (C.5)

We define it by

Qprωq � ņ

r�1

r�1̧

j�0

pθ � γq ^ rωr ^ pdγqjur�1�j

Observe that Qprωq is basic since ιξpθ � γq � 0 � ιξu and the forms rωr and dγ
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are basic. We verify equation C.5.

dQprωq �d� ņ

r�1

r�1̧

j�0

pθ � γq ^ rωr ^ pdγqjur�1�j

�

�
ņ

r�1

r�1̧

j�0

pu� dγq ^ rωr ^ pdγqjur�1�j

�
ņ

r�1

r�1̧

j�0

pθ � γq ^ tdωr � uιξωr � θdιξωru ^ pdγqjur�1�j

�
ņ

r�1

r�1̧

j�0

rωr ^ pdγqjur�j

�
ņ

r�1

r�1̧

j�0

rωr ^ pdγqj�1ur�1�j

�
ņ

r�1

r�1̧

j�0

θdωr ^ pdγqjur�1�jlooooooooooooooooomooooooooooooooooon
A

�
ņ

r�1

r�1̧

j�0

θιξωr ^ pdγqjur�jloooooooooooooooomoooooooooooooooon
B

�
ņ

r�1

r�1̧

j�0

γ ^ dωr ^ pdγqjur�1�jlooooooooooooooooooomooooooooooooooooooon
C

�
ņ

r�1

r�1̧

j�0

γ ^ ιξωr ^ pdγqjur�jloooooooooooooooooomoooooooooooooooooon
D

�
ņ

r�1

r�1̧

j�0

θγ ^ ιξdωr ^ pdγqjur�1�jlooooooooooooooooooooomooooooooooooooooooooon
E

where we used in the last line that dιξ � �ιξd since the forms ωr are invariant
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so their Lie derivatives vanish. To calculate Qdprωq, we have to write drω as a

sum of polynomials in u with basic coefficients. We have

drω � ņ

r�0

pdωr � uιξωr � θdωrqu
r

�
ņ

r�0

pdωr � θιξdωrqu
r �

ņ

r�0

ιξωru
r�1

Then

Qdprωq � ņ

r�1

r�1̧

j�0

pθ � γq ^ pdωr � θιξdωrq ^ pdγqjur�1�j

�
ņ

r�0

ŗ

j�0

pθ � γq ^ pιξωrq ^ pdγqjur�j

�
ņ

r�1

r�1̧

j�0

θdωr ^ pdγqjur�1�jlooooooooooooooomooooooooooooooon
A

�
ņ

r�1

r�1̧

j�0

γ ^ dωr ^ pdγqjur�1�jlooooooooooooooooooomooooooooooooooooooon
C

�
ņ

r�1

r�1̧

j�0

θγ ^ ιξdωr ^ pdγqjur�1�jlooooooooooooooooooooomooooooooooooooooooooon
E

�
ņ

r�0

ŗ

j�0

θιξωr ^ pdγqjur�jloooooooooooooooomoooooooooooooooon
B1

�
ņ

r�0

ŗ

j�0

γ ^ ωrιξ ^ pdγqjur�jloooooooooooooooooomoooooooooooooooooon
D1

Thus, in dQ � Qd, the terms marked A,C, and E cancel. For the remaining
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pairs of terms we have

B �B1 �
ņ

r�1

r�1̧

j�0

θιξωr ^ pdγqjur�j

�
ņ

r�0

ŗ

j�0

θιξωr ^ pdγqjur�j

��
ņ

r�0

θιξωr ^ pdγqr

and

D �D1 ��
ņ

r�1

r�1̧

j�0

γ ^ ιξωr ^ pdγqjur�j

�
ņ

r�0

ŗ

j�0

γ ^ ιξωr ^ pdγqjur�j

�
ņ

r�0

γ ^ ιξωr ^ pdγqr

We are left with

pdQ�Qdqrω � ņ

r�1

r�1̧

j�0

rωr ^ pdγqjur�j

�
ņ

r�1

r�1̧

j�0

rωr ^ pdγqj�1ur�1�j

�
ņ

r�0

θιξωr ^ pdγqr

�
ņ

r�0

γ ^ ιξωr ^ pdγqr

�
ņ

r�1

rωrur � ņ

r�1

rωr ^ pdγqr

�
ņ

r�0

θιξωr ^ pdγqr �
ņ

r�0

γ ^ ιξωr ^ pdγqr
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Note that
ņ

r�0

rωr ^ pdγqr is not quite jπprωq because the coefficients are

rωr � ωr � θιξωr rather than ωr � γ ^ ιξωr.

The last two sums exactly make the necessary substitution. Thus

pdQ�Qdqrω � ņ

r�1

rωrur �
�

ņ

r�1

rωr ^ pdγqr

�
ņ

r�0

θιξωr ^ pdγqr �
ņ

r�0

γ ^ ιξωr ^ pdγqr

�

�
ņ

r�0

rωrur � ņ

r�0

pωr � γ ^ ιξωrqu
r

�rω � jπprωq
Since π is the identity on Ω
pMqbas, πj � Id. Going the other way, jπ is chain

homotopic to the identity so j and π are homotopy inverses to each other.

Therefore j induces an isomorphism in cohomology.

Observe that the inclusions commute with the Mathai-Quillen map

pW 
pMqbas, dq
ϕMQ
> pΩpMqTrus
, dTq

pΩ
pMqbas, dq
Y

^

�

>

We will thus also denote by j the inclusion of the basic forms into the Cartan

complex. This is a chain map because on basic forms dT � d. By Koszul’s

theorem we may identify the cohomology of the quotient with the cohomology

of the complex of basic forms

H
pM{T; Rq � HpΩ
pMqbas, dq.
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We thus obtain

Corollary C.6. The inclusion

j : pΩ
pMqbas, dq � > pΩpMqTrus
, dTq

induces an isomorphism

j : H
pM{T; Rq � HpΩ
pMqbas, dq > HpΩpMqTrus
, dTq � H

TpM ; Rq.

It follows that the inclusion induces an isomorphism with periodic co-

efficients, too.

Corollary C.7. The inclusion

j : ΩpM ; Rq
bas
� > CTpMq


8¹
k�0

βk�
Ω2k�
pM ; Cqbas

�_

� >
8¹
k�0

βk�
ΩpM ; CqTrus2k�

�_

induces an isomorphism

j : HpM{T; Rq
 > HTpM ; Rq
.
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Appendix D

Invariant and basic connections

Let π : P Ñ M be a principal G-bundle. Recall that for p P P

there is a well-defined vertical tangent space Vp � kerπ� � TpP and writing

Pm :� π�1pmq, there are diffeomorphisms ϕp : G Ñ Pπppq given by g ÞÑ p � g.

Identifying g with the left-invariant vector fields on G, recall that the Maurer-

Cartan form of G is the g-valued one-form ωMC that takes v P TgG to the

unique left-invariant vector field that it generates. A connection on P is a

one-form ω P Ω1pP ; gq satisfying

1. ωp�g � Adg�1 ωp, and

2. ϕ�pω � ωMC .

Equivalently, a connection is a smooth G-invariant distribution H such that

Hp ` Vp � TpP ; the correspondence is Hp Ø kerωp. By the second condition,

for each p P P , a connection gives a splitting ωp : TpP Ñ g of the short exact

sequence

0 > g
ϕp
> TpP

π�
> TπppqM > 0.

A local section σ : U Ñ P gives a local trivialization ϕ : U � G Ñ P |U ,

pm, gq ÞÑ σpmq � g, U � G has canonical horizontal subspaces, and pushing
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these forward by ϕ gives a connection on P |U . Since the space of splittings

of a short exact sequence of vector spaces is an affine space, we may average

local connections with partitions of unity to obtain a connection on P .

Suppose now that M is a T-manifold and that there is a T-action on P

which covers the action on M . A connection ω P Ω1pP ; gq on P is T-invariant

if τ�ω � ω for all τ P T. If θ P Ω1pP ; gq is any connection,
³
T τ

�θdµ is an

invariant connection. It follows that the space of invariant connections CT
P on

P is a non-empty affine subspace of the space CP of all connections on P .

Recall that if E Ñ M is a vector bundle and P Ñ M is its principal

G-bundle of frames, then we may write E as an associated vector bundle

E � P �GV for a representation ρ : GÑ AutpVq. Sections σpmq � rp, sppqs of

E are thus in bijection with functions s : P Ñ V satisfying spp�gq � ρpgq�1sppq.

If ω is a connection on P , it determines a connection on E by

σ ÞÑ ∇σ ô s ÞÑ ds� 9ρpωqs.

From this expression, one readily checks that an invariant connection on E is

one induced from an invariant connection on P .

Consider again a smooth compact T-manifold M and a principal G-

bundle P Ñ M with an action of T covering the action on M . Suppose now

that the action on M is locally free, has only finite stabilizers, and let ξ and

ξ be the vector fields on P and M , respectively, which generate the T-action.

Since ξ covers ξ and ξ is nowhere zero it follows that ξ is nowhere vertical. A

basic connection on P is a connection ω P Ω1pP ; gq which is a basic differential
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form for the T-action on P . Thus, ω is invariant, τ�ω � ω, for all τ P T, and

horizontal with respect to the T-action, ιξω � 0.

We show the existence of basic connections as follows. The real span

of the vector field ξ determines a real sub-line bundle L � TP and for all

p P P , Lp X Vp � 0. To make our connection T-horizontal, we must choose

splittings sp : TpP Ñ g such that Lp � ker sp. For σ : U Ñ P a local section

and ϕ : U � G Ñ P |U the corresponding local trivialization, L determines a

smooth, nowhere vertical, real line bundle rL � T pU �Gq. Choosing horizon-

tal subspaces which contain rL gives a connection ωU on P |U which satisfies

ιξωU � 0. Since being horizontal is a linear condition, averaging horizontal

local connection forms by partitions of unity again gives a connection ω on P

which satisfies ιξω � 0. Finally, setting

rω � »
T
τ�ωdµ

yields a basic connection.

Finally, if the T-action on M has finite stabilizers and E is a T-

equivariant vector bundle, P its principal frame bundle and ω is a basic con-

nection on P , then the induced connection ∇ on E satisfies

∇ξσ � LE
ξ σ ô ιξpds� 9ρpωqsq � LP

ξ
s

ô ιξds� 9ρpιξωqs� pιξds� dιξsq

ô ιξds� 0� ιξds� 0 � 0

Thus, a basic connection on E, one which satisfies ∇ξ�LE
ξ � 0, is one induced

from a basic connection on P .
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Appendix E

Equivariant K-theory with C{Z-coefficients

E.1 Relative K-theory

Given a continuous map g : A Ñ B of compact Hausdorff topological

spaces, we can think of the K-theory of B relative to A (with respect to g)

as the reduced K-theory of the mapping cone Cpgq � B Yg CA. The cofiber

sequence of g gives the usual long exact sequence

rK0pAq < rK0pBq < rK0pCpgqq < rK�1pAq < rK�1pBq . . . (E.1)

relating rK
pAq, rK
pBq and rK
pCpgqq. Another helpful description of the rel-

ative K-theory is as equivalence classes of triples pE,E 1, ϕq where E,E 1 Ñ B

are vector bundles and ϕ : g�E Ñ g�E 1 is an isomorphism. This is an obvious

generalization of the situation in which g is an inclusion.

Definition E.1.1. Given g : A Ñ B, let CpB,A, gq be the set of triples

pE,E 1, ϕq where E,E 1 Ñ B are vector bundles and ϕ : g�E Ñ g�E 1 is an

isomorphism. An isomorphism of triples E � F � pF, F 1, ψq is a pair of

isomorphisms E Ñ E 1 and F Ñ F 1 which make the diagram

g�E
ϕ
> g�E 1

g�F
_

ψ
> g�F 1

_
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commute. An elementary triple is one of the form P � pP, P, Idq. Let � be

the equivalence relation E � F if and only if there exist elementary triples P,Q

such that

E` P � F ` Q.

Let K0pB,A, gq be the semi-group of equivalence classes under direct sum.

Since every vector bundle has a complement, we can represent any element of

K0pB,A, gq by a triple in which one of the bundles is trivial.

An element pE,Ck, ϕq P CpB,A, gq defines a vector bundle EYϕ Ck on

Cpgq � B Yg CA: it is E Ñ B and the trivial bundle Ck Ñ CA glued over

the base of the cone A � CA via the trivialization ϕ : g�E Ñ Ck. Define

p : K
pB,A, gq > rK
pCpgqq

by

rE,Ck, ϕs > rE Yϕ Cks � rCks

Observe that when g is an inclusion, K
pB,A, gq � rK
pB{Aq and p is pullback

by the quotient map B Y CA Ñ B Y CA{CA � B{A in which case it is an

isomorphism.

Proposition E.2. The map p is an isomorphism of semi-groups.

Proof. We construct an inverse

q : rK
pCpgqq > K
pB,A, gq
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to p as follows. Write the cone on A as

CA � A� r0, 1s{tpa, 0q � �u

and let pt P CA be the cone point. Let

V � tpa, tq P CA | t ¤ 1{2u

be a closed neighborhood of pt. By Excision

rK
pCpgqq � K
pBYgCA, ptq � K
pBYgCA, V q � K
pBYgCAztptu, V ztptuq

An element E P K
pBYgCAztptu, V ztptuq is represented by a triple pE,Ck, ϕq

where

ϕ : E|V ztptu > Ck|V ztptu

is an isomorphism. Since CAztptu deformation retracts to A, we may assume

that E is constant along the cone, that is, that E|CAztptu is pulled back from

the base A � CA; if not, we can choose an isomorphism to a bundle that is

pulled back and change ϕ accordingly to obtain an equivalent triple. Since

E is a bundle on the punctured mapping cone, the pullback of E from B to

A � CA is the restriction of E to A � CA, that is, g�E|B � E|A�CA. Now,

identifying A with A� t1{2u � CA we have

E|A�t1{2u � EA�t0u � g�E|B

so restricting ϕ to A� t1{2u � V gives an isomorphism

ϕ1 :� ϕ|A�t1{2u : g�E|B > Ck
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We thus define q by

q : rK
pCpgqq
�
> K
pCpgqztptu, V ztpuq > K
pB,A, gq

rEs � rCks > rE,Ck, ϕs > rE|B,Ck, ϕ1s

Now, qp � Id. Going the other way, since we assumed that E was constant

along the cone, ϕ extends to the whole cone to give an isomorphism

IdY ϕ�1 : E|B Yϕ1 Ck > E

from which it follows that pq � Id.

Remark E.3. Giving K0pB,A, gq the group structure inherited from p, it is

a group and p is an isomorphism of groups.

A homotopy between two elements of CpB,A, gq is an element of CpB�

I, A� I, g � Idq which restricts to the two given elements at the ends.

Proposition E.4. Homotopic elements of CpB,A, gq define the same element

of K0pB,A, gq.

This follows from the homotopy invariance of rK0pCpgqq.

We will frequently appeal to this description of relative K-theory, even

when the map is an inclusion. We will see that this gives a useful perspective

on K-theory with Z{nZ-coefficients.

E.2 K-theory with Z{nZ-coefficients

Let fn : S1 Ñ S1 be the map z ÞÑ zn and let Cfn be the mapping cone

of fn. That is,

CS1 :� pS1 � Iq{pS1 � t0uq
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and

Cfn :� pCS1 \ S1q{tpt, 1q � fnptqu � CS1 Yfn S
1.

For X a topological space without basepoint we define

K0pX; Z{nZq :� K0pX � Cfn, X � tptuq,

K�jpX; Z{nZq :� K0pX � CΣjfn, X � tptuq.

and

KjpX; Z{nZq :� Kj�2pX; Z{nZq

for j ¥ 1. To understand this definition, observe that the cofiber sequence for

fn yields a sequence

X � S1 1X�fn
> X � S1 > X � Cfn > X � S2 1X�Σfn

> X � S2 � � � (E.5)

For X a space without basepoint, X� � X \ � and Sn the n-sphere with a

fixed base point pt,

K�npXq :� rK0pSnpX�qq � K0pX � Sn, X � tptuq

It follows that applying K0p�, X � tptuq to the sequence of spaces (E.5) (to

the right of X � Cfn) yields a long exact sequence

K0pX; Z{nZq <δ K0pX; Zq <n K0pX; Zq < K�1pX; Z{nZq <δ � � � (E.6)

The “reduction mod n” map δ is the connecting homomorphism of the long

exact sequence. We will make explicit the construction shortly.
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Observe also that there are homeomorphisms

pX�Cfnq{X�tptu � CpX�S1q\X�S1{tpx, t, 1q � px, fnptqqu � Cp1X�fnq

and more generally

pX � CΣjfnq{X � tptu � Cp1X � Σjfnq

so that

K�jpX; Z{nZq � K�jpCp1X � Σjfnq, ptq � rK�jpCp1X � Σjfnqq

Thus,

K0pX; Z{nZq � rK0pCp1X � fnqq � K0pX � S1, X � S1, 1X � fnq

so elements of K0pX; Z{nZq are equivalence classes of triples pE,E 1, ϕq where

E,E 1 are vector bundles over X � S1 and

ϕ : p1X � fnq
�E > p1X � fnq

�E 1

is an isomorphism. Similarly, elements of K�1pX; Z{nZq are equivalences

classes of triples pF, F 1, ψq where F, F 1 are vector bundles over X � S2 and

ψ : p1X � Σfnq
�F > p1X � Σfnq

�F 1

is an isomorphism.

Now let H be the Hopf bundle over S2 and let ξ � rHs P K0pS2q. Then

ξn � 1 � npξ � 1q
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so

ξn � pn� 1q � nξ.

It follows that the bundles Hbn`pn�1qC and nH are stably equivalent. Since

they have the same degree and rank there exists an isomorphism

Hbn ` pn� 1qC Ñ nH. (E.7)

Fix such an isomorphism αn for each n ¥ 2 and identify pΣfnq
�H with Hbn.

Let E,E 1 be bundles over X and α an isomorphism nE Ñ nE 1. Let

V :� E b pH ` pn� 1qCq and V 1 :� E 1 b pH ` pn� 1qCq

Then V, V 1 are bundles over X � S2 and writing g � 1X � Σfn,

g�V � E b pHbn ` pn� 1qCq Idbαn
> E b nH � nE bH,

similarly for g�V 1, and α : nE Ñ nE 1 yields a definite isomorphism g�V Ñ

g�V 1. We have just shown that

Proposition E.8 (Atiyah-Patodi-Singer). A pair of bundles E,E 1 Ñ X with

an isomorphism α : nE Ñ nE 1 defines an element of K�1pX; Z{nZq.

We now describe the “reduction mod n” map. Let A � B � X � S2

and let g � 1X � Σfn and consider the diagramrK0pB Yg CAq

K0pB Yg CA,Bq h
>

m� >

K0pB,A, gq

� p

^

j
> K0pBq

k�

>

K�1pAq � rK0pSpA�qq

� θ
_
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1. θ is the isomorphism induced by the quotient map B Yg CA{B � SA,

2. m�, k� are induced by the obvious inclusions,

3. p is the isomorphism described in the previous section

4. h � qm� is defined to make the triangle commute,

5. j is the forgetful map rE,E 1, ϕs ÞÑ rEs � rE 1s.

Since k� is restriction to B � BYg CA, it is clear that the right-hand triangle

commutes. The construction of h and the fact that the row is exact now follows

the standard construction of the connecting homomorphism in the long exact

sequence of a pair (when the map is inclusion, see [3] Proposition 2.4.4)

Let i : B ãÑ Cpgq � B Yg CA be inclusion and identify

K0pB Yg CA,Bq � K0pB Yg CA,B, iq.

In this description, m� is the map “forget the isomorphism over B”; it is

then clear that jh � 0 since k�m� � 0: it takes bundles on Cpgq with an

isomorphism over B to the difference of their restrictions to B. To see that

ker j � im h, suppose that E P K0pB,A, gq and jpEq � 0. If pE,Ck, ϕq

represents E then rEs�rCks � 0 in K0pBq. Thus, there exists an isomorphism

ψ : E ` Cr > Ck�r

of bundles over B. There is a canonical isomorphism g�pE`Crq Ñ g�E`Cr;

let

rϕ � ϕ` Id : g�E ` Cr �
> Ck�r.
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Then

rE ` Cr,Ck�r, rϕs � E P K0pB,A, gq.

Set rE � rE ` Cr Yrϕ Ck�r,Ck�r, ψs P K0pB Yg CA,B, iq.

Then identifying rK0pBYgCAq with K0pBYgCAztptu, V ztptuq by the Excision

isomorphism

m�rE � rE ` Cr Yrϕ Ck�r,Ck�r, Ids P K0pB Yg CAztptu, V ztptuq

so

hprEq � qm�prEq � rE ` Cr,Ck�r, rϕs � E P K0pB,A, gq.

In short, h is given by

hrE ` Cr Yrϕ Ck�r,Ck�r, ψs � rE ` Cr,Ck�r, rϕs.
Recalling that A � B � X � S2, the “reduction mod n” map is thus the

composition

δ : K�1pX; Zq > K�1pAq
θ�1

> K0pB Yg CA,Bq
h
> K0pB,A, gq � K�1pX; Z{nZq

where the first map is the Bott periodicity isomorphism.

We have seen that if E and E 1 are vector bundles over X such that

there exists an isomorphism ϕ : nE Ñ nE 1, then pE,E 1, ϕq defines an element

of K�1pX; Z{nZq. If we choose a different isomorphism ψ : nE Ñ nE 1, then

pE,E 1, ψq defines another element of K�1pX; Z{nZq. These two elements are

122



not in general the same. We identify their difference as the reduction mod n

of a specific integral class.

Let γ : nE Ñ nE be an automorphism such that ψ � ϕγ. Observe

that ϕγ ` Id and ϕ ` γ are both isomorphisms nE ` nE Ñ nE 1 ` nE. An

explicit homotopy ϕγ ` Id � ϕ` γ is given by�
ϕ cos2pπt{2q � ϕγ sin2pπt{2q sinpπt{2q cospπt{2qpϕγ � ϕq
sinpπt{2q cospπt{2qpγ � Idq sin2pπt{2q � γ cos2pπt{2q



For this to be an isomorphism of bundles for all t P r0, 1s it must be an

isomorphism on every fiber. Let U � X be an open set on which both bundles

are trivializable and choose trivializations nE|U Ñ U�Cr and nE 1|U Ñ U�Cr.

Let ϕU , γU : U � Cr Ñ U � Cr be ϕ and γ in these trivializations, then

ϕUpxq, γUpxq are isomorphisms for each x P U and over U , the given homotopy

factors as the composition of�
ϕU 0
0 1


�
cospπt{2q sinpπt{2q
� sinpπt{2q cospπt{2q



(E.9)

and �
1 0
0 γU


�
cospπt{2q � sinpπt{2q
sinpπt{2q cospπt{2q



(E.10)

which makes clear that it is an isomorphism for all t P r0, 1s.

Now, let

V � E b pH ` pn� 1qCq and V 1 � E 1 b pH ` pn� 1qCq

be the bundles over X � S2 corresponding to E and E 1. Identify g�V with

nE bH by the chosen isomorphism 1E b αn and similarly identify g�V 1 with
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nE 1 bH. Then

rϕ � ϕb 1H : g�V > g�V 1

and

rV, V 1, rϕs P K�1pX; Z{nZq

is the element determined by pE,E, ϕq. Similarly, rV, V 1, rψs is the element

determined by pE,E 1, ψq where rψ � ψb1H . The automorphism γ also induces

an automorphism rγ � γ b 1H : g�V Ñ g�V and thus an element rV, V, rγs P
K�1pX; Z{nZq. The homotopy ϕ ` γ � ϕγ ` Id gives a homotopy rϕ ` rγ �
rϕrγ ` Id. By the homotopy invariance of K�1pX; Z{nZq we see that

rV, V 1, rϕs � rV, V, rγs � rV ` V, V 1 ` V, rϕ` rγs
� rV ` V, V 1 ` V, rϕrγ ` Ids

� rV, V 1, rϕrγs � rV, V, Ids

� rV, V 1, rϕrγs
� rV, V 1, rψs

We now construct an element of K�1pX; Zq of which rV, V, rγs is the reduction

mod n. Let p : M � S1 ÑM be projection. The automorphism γ : nE Ñ nE

determines a bundle Vγ � pnEqγ ÑM � S1 thus an element

rVγs � rp�nEs P K�1pX; Zq.

Under the Bott periodicity isomorphism,

K�1pX; Zq > K�1pAq

rVγs � rp�nEs > rVγ bHs � rp�nE bHs � prVγs � rp�nEsq
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Analogously to the previous construction, this is the difference of two elements:

the one obtained from the bundle nE bH Ñ X � S2 and the automorphism

γ b 1H and the one obtained as before from (the pullback of) nE Ñ X � S2

and the automorphism γ. From this description, it is not hard to see that

K�1pAq
hθ�1

> K0pB,A, gq

rVγ bHs � rp�nE bHs � prVγs � rp�nEsq > rV, V, rγs � rp�nE, p�nE, γs

where V is as above. For the given bundles nEbH and nE over A � X �S2,

we just have to find bundles over B � X�S2 of which these are the pullbacks

via g. The intermediate step that we have skipped is to find complements to

the given bundles on A so that we can extend them over the cone CA. In

K0pB,A, gq, the bundles on A need not extend over the cone so we can just

subtract off these extra terms again. Finally, the last term rnE, nE, γs is zero

in K�1pX; Z{nZq: since g�nE � nE, the triple pnE, nE, γq is equivalent to

the triple pnE, nE, Idq as illustrated by the diagram

nE
γ
> nE

nE

γ

_

Id
> nE

Id

_

Therefore,

rV, V 1, rψs � rV, V 1, rϕs � rV, V, rγs P K�1pX; Z{nZq

is the reduction mod n of

rVγs � rp�nEs P K�1pX; Zq. (E.11)
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E.3 K-theory with C{Z-coefficients

The rational numbers Q can be constructed as the colimit of the dia-

gram of abelian groups An � Z for n P Z¡0 where, if m � nk, there is a unique

map fnm : An Ñ Am which is multiplication by k. K
pX; Qq is defined as the

colimit of the analogous diagram with An � K
pX; Zq in which the unique

map An Ñ Am is again multiplication by k. The maps

Qn : An > K
pXq bQ

a > ab
1

n

(E.12)

induce an isomorphism

Q : K
pX; Qq > K
pXq bQ (E.13)

We identify K
pX; Qq with K
pXq b Q under this isomorphism. Similarly,

Q{Z can be constructed as the colimit of the diagram with An � Z{nZ and

if m � nk there is a unique map An Ñ Am which is multiplication by k.

K
pX; Q{Zq is then defined as the colimit of the analogous diagram with

An � K
pX; Z{nZq. The reduction mod Z map

ρ : K
pX; Qq > K
pX; Q{Zq

is the map induced on colimits from the morphism of diagrams which on the

nth group is reduction mod n. Setting K
pM ; Cq :� K
pMq b C there is the

obvious injection

i : K
pX; Qq �> K
pX; Cq
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Together, these yield a map

pρ,�iq : K
pX; Qq > K
pX; Q{Zq `K
pXq b C.

We define

K
pX; C{Zq � cokerpρ,�iq

When M � pt, it is not hard to see that in even degrees pρ,�ιq is an

injective map Q Ñ Q{Z`C with cokernel C{Z and the groups are all zero in

odd degrees.

If X � M is a smooth manifold, since Ch : K
pMq b C Ñ HpM ; Rq


is an isomorphism, we can make the same construction with

ι � Ch �i : K
pM ; Qq �> HDpMq
.

Then

cokerpρ,�ιq � K
pM ; C{Zq.

This is the model we use.

E.4 T-equivariant K-theory with C{Z coefficients

We proceed by direct analogy with the non-equivariant case. There are

no new constructions, we merely indicate what we used at each step of the

previous construction and why the same works in the equivariant setting. If

X is a T-space and Y is any space, we make X � Y a T-space with trivial

action on the second factor. The formulation of relative cohomology for any
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equivariant map g : A Ñ B of T-spaces goes through as before as does the

isomorphism K0
TpB,A, gq �

rK0
TpCpgqq. For fn : S1 Ñ S1 and Cfn as above,

we define T-equivariant K-theory with Z{nZ coefficients by

K0
TpX; Z{nZq :� K0pX � Cfn, X � tptuq

and

K�j
T pX; Z{nZq :� K0pX � CΣjfn, X � tptuq

for j ¡ 0 and set Kj
TpX; Z{nZq � Kj�2

T pX; Z{nZq for j ¡ 1. We see that

K0
TpX; Z{nZq is represented by triples pE,E 1, ϕq where E,E 1 Ñ X � S1 are

equivariant vector bundles and

ϕ : p1X � fnq
�E > p1X � fnq

�E 1

is an isomorphism. Elements of K�1pX; Z{nZq are similarly represented by

pairs of bundles over X � S2 with an isomorphism of pullbacks. Since Bott

periodicity holds in equivariant K-theory, the same argument shows that a pair

of bundles E,E 1 Ñ X with an isomorphism nE Ñ nE 1 defines an element of

K�1
T pX; Z{nZq. If E,E 1 Ñ X are two bundles and ϕ, ψ : nE Ñ nE 1 are two

isomorphisms, write ψ � ϕγ where γ : nE Ñ nE is an automorphism. As

before, let V � E b pH ` pn � 1qCq and V 1 � E 1 b pH ` pn � 1qCq be the

corresponding bundles over X � S2 and let rϕ � ϕ b 1H and similarly for rψ
and rγ. Let π : X � I Ñ X and p : X � S1 Ñ X be projections and let

Vγ � π�nE{γ Ñ X � S1 as before. Then the same argument shows that

rV, V 1, rψs � rV, V 1, rϕs � rV, V, rγs P K�1
T pX; Z{nZq
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is the reduction mod n of

rVγs � rp�nEs P K�1
T pX; Zq.

Equivariant K-theory with Q and Q{Z coefficients are defined as the analo-

gous colimits and equivariant K-theory with C{Z coefficients as the analogous

cokernel

K

TpX; C{Zq :� tK


TpX; Q{Zq `K

TpXq b Cu{K


TpXq bQ

When X � M is a compact smooth T-manifold, since ChD : K
pM ; Cq Ñ

HDpM ; Rq
 is an isomorphism, we again take

K

TpM ; C{Zq � tK


TpX; Q{Zq `HDpMq
u{K

TpXq bQ.
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Géométrie différentielle. Colloques Internationaux du Centre National

de la Recherche Scientifique, Strasbourg, 1953, pages 137–141. Centre

National de la Recherche Scientifique, Paris, 1953.

[39] H. Blaine Lawson, Jr. and Marie-Louise Michelsohn. Spin geometry,

volume 38 of Princeton Mathematical Series. Princeton University Press,

Princeton, NJ, 1989.

[40] John Lott. R{Z index theory. Comm. Anal. Geom., 2(2):279–311, 1994.

[41] J. Lurie. A survey of elliptic cohomology. In Algebraic topology, volume 4

of Abel Symp., pages 219–277. Springer, Berlin, 2009.

[42] J. P. May. Equivariant homotopy and cohomology theory, volume 91

of CBMS Regional Conference Series in Mathematics. Published for

the Conference Board of the Mathematical Sciences, Washington, DC,

1996. With contributions by M. Cole, G. Comezaña, S. Costenoble, A.

D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G.

Triantafillou, and S. Waner.

[43] Gregory Moore and Edward Witten. Self-duality, Ramond-Ramond fields

and K-theory. J. High Energy Phys., (5):Paper 32, 32, 2000.

[44] Michael Luis Ortiz. Differential equivariant k-theory. Ph.D. Thesis,

arXiv:0905.0476v2 [math.AT].

135



[45] Ioanid Rosu. Equivariant K-theory and equivariant cohomology. Math.

Z., 243(3):423–448, 2003. With an appendix by Allen Knutson and Rosu.

[46] Graeme Segal. Equivariant K-theory. Inst. Hautes Études Sci. Publ.

Math., (34):129–151, 1968.

[47] James Simons and Dennis Sullivan. Structured vector bundles define

differential K-theory. In Quanta of maths, volume 11 of Clay Math.

Proc., pages 579–599. Amer. Math. Soc., Providence, RI, 2010.
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