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For T the circle group, we construct a differential refinement of T-
equivariant K-theory. We first construct a de Rham model for delocalized
equivariant cohomology H}, and a delocalized equivariant Chern character
Chg : K} — HZ, based on [19] and [14]. We show that Chgy induces an
isomorphism Chgy : K1 @ C — H?,. We then construct a geometric model
for differential T-equivariant K-theory analogous to the model of differential

K-theory in [27] and deduce its basic properties.
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Chapter 1

Introduction

Differential cohomology is a refinement of cohomology for smooth man-
ifolds that includes local geometric as well as global topological information.
For M a compact smooth manifold, the differential refinement H* (M) of ordi-
nary integral cohomology H*(M;Z) consists roughly of integral cocycles and
differential forms representing them. Thus, whereas H?(M;Z) is the discrete
abelian group of isomorphism classes of complex line bundles on M, Ji; (M) is
the abelian Lie group of isomorphism classes of line bundles with connection.
Differential K-theory has been constructed by Hopkins-Singer [31], Klonoff
[36], Freed-Lott [27], Bunke-Schick [20], and Simons-Sullivan [47]. A schematic
description is as follows. Let 3 be a formal variable of deg 3 = —2 and let R
be the Z-graded ring R = C[3, 37']. Let K*(M) denote the Z-graded ring of
topological K-theory and let Q(M;R)* denote the algebra of differential forms
with values in R. Differential K-theory fits into the following commutative
diagram,

K*(M) —> Q(M;R)?

closed

|

K*(M) > Har(M;R)*



where the bottom map is the Chern character Ch : K*(M) — Hyr(M;R)*,
the right vertical map is given by taking the de Rham cohomology class and
Q(M;R) 8 seq are the closed differential forms. One way to define differential
K-theory is to require the above to be a homotopy pullback square. This
makes clear how differential K-theory combines topological K-theory and dif-
ferential forms. Freed and Lott construct a geometric model by generators
and relations. The generators of K°(M) are triples (E,V,n) where E — M
is a vector bundle with connection V and n € Q(M;R)~! /im (d); the relations
come from short exact sequences of vector bundles. For K (M), one does the
same on M x S', then uses Bott periodicity to define K7 (M) for any integer
j. Ortiz ([44]) constructs differential G-equivariant K-theory for G a finite
group. In this paper, we construct differential T-equivariant K-theory for T

the circle group.

Equivariant K-theory K7.(M) is constructed as the Grothendieck group
of isomorphism classes of T-equivariant vector bundles. There is a stan-
dard equivariant de Rham cohomology Ht(M;R)* represented by equivari-
ant differential forms. The equivariant K-theory Kf(M) is a module over
K:(pt) = R(T) = Z|t,t™"], the representation ring of T, and there is an aug-
mentation homomorphism € : R(T) — Z given by evaluating at ¢ = 1. The
kernel of this homomorphism is called the augmentation ideal, denote it by I.
There is an equivariant Chern character Chy : K(M) — Hyp(M;R)*, but by
the Atiyah-Segal Completion theorem [9], it factors through the completion

of Kp(M) at the ideal I and, in fact, Hp(M) is isomorphic to this comple-



tion. Thus, if one attempted to construct differential T-equivariant K-theory
by forming a pullback diagram as above with Kp(M) and Hp(M;®R)*, the
additional geometric information in such a model would be a refinement of
only a small piece of the topological theory. To repair this defect, we must
use a “delocalized” equivariant de Rham cohomology that detects the whole
group T, not just a formal neighborhood of the identity. The idea of “glob-
alizing” the Chern character has been studied for finite and discrete groups
in [48], [11], and for compact Lie groups in[23], [28], [12], [19], [45] and [14].
We present a construction which combines the models of Brylinski [19] and
Block-Getzler [14] and use it to construct differential T-equivariant K-theory
by analogy with Freed-Lott [27].

In addition to the mathematical appeal of marrying global topology
and differential forms, there is some motivation for studying differential K-
theory from theoretical physics. Charges of D-branes in type II string theory
are elements of differential K-theory, [43], [25], and K* is also related to T-
duality [34].

The format of the present paper is as follows. In section 2, we briefly
review the constructions of K*(M) and K5.(M), recall their salient features,
and also recall the construction of the classical Chern character. In section 3,
we review equivariant cohomology and the equivariant Chern character. We
conclude by reiterating the necessity of a delocalized theory. In section 4, we
construct delocalized equivariant cohomology and the delocalized equivariant

Chern character. We show that upon tensoring with C, the latter is an iso-



morphism. In section 5, we construct differential T-equivariant K-theory and

deduce some of its basic properties.



Chapter 2

K-theory, Equivariant K-theory, and the
Chern character

2.1 K-theory

In this section we rapidly recall the basic features of K-theory and set
conventions. Let M be a compact smooth manifold, let V(M) denote the set
of isomorphism classes of finite rank complex vector bundles over M and let
A c V(M) x V(M) be the diagonal. The set V(M) is a monoid under direct

sum of bundles; we make a group by taking
K°(M) := (V(M) x V(M))/A. (2.1)

For vector bundles F, F', the isomorphism class of £ & F depends only on the
isomorphism classes of ' and F. Thus, tensor product of bundles induces
a commutative product on V(M) so induces on K°(M) the structure of a
commutative ring. This ring satisfies the standard universal property that if
A a commutative ring, any map ¢ : V(M) — A that satisfies for all [E], [F] €
VM), o([E®F]) = o([E]) + ¢([F]) and o([E® F]) = o([E]([F]) induces

a unique ring homomorphism K°(M) — A.

Identifying S™ with R™ u {pt}, for i : M = M x {pt} — M x S", we



define

i*

K™(M) := ker{ K°(M x S™) *» K°(M)}. (2.2)

For H — S? =~ CP! the Hopf line bundle, the dual of the tautological line
bundle, the class 3 := [H] — [1] € K72(pt) is called the Bott class and multi-

plication by it induces the Bott periodicity isomorphism
KE(X) 5 K %(X) (2.3)

for n = 0. One inductively defines K"(X) := K" *(X) for n > 1. We will
write K*(M) for the full Z-graded ring
K*(M) := @ K (M). (2.4)
JEZ
An equivalent description of K°(M) is as the free abelian group F gen-
erated by all (finite rank, complex) vector bundles on M modulo the subgroup

S generated by short exact sequences. Recall that if

i

0 Ey Es Es 0

is a short exact sequence of vector bundles, there exists a splitting s : F3 — Ej.

This determines an isomorphism
i(‘DS : El (‘BE;} i’ EQ-

It follows that taking the quotient of F by the subgroup generated by short ex-
act sequences identifies isomorphic bundles and identifies direct sum of bundles

with addition in F.



There is an equivalent description of K~'(M) in terms of pairs consist-
ing of a bundle on M along with an automorphism. One then takes the free
abelian group generated by such pairs (F,~) modulo short exact sequences in
which the maps of bundles commute with the automorphisms, and the relation
(E,v) + (E,y") = (E,vy). This description is related to bundles on M x S?

as follows.

Definition 2.1.1. If £ — M is a vector bundle and v : £ — E is an au-
tomorphism, let 7 : M x I — M be projection. Let E, denote the bundle
m*E — M x I with the bundles 7*E|py 40y and 7% E|yx 1y identified via 7.

Every bundle on M x S! is isomorphic to one obtained from a bundle
on M with an automorphism in this way. If p : M x S* — M is projection, a

pair (F,~) determines an element
[E,] = [p*E] € K (M) (2.5)

in the first definition (2.2) of K-theory in degree —1.

2.2 Equivariant K-theory

For G a compact Lie group, G-equivariant K-theory of a smooth com-
pact G-manifold M is defined as the Grothendieck group of G-equivariant

vector bundles over M.

Definition 2.2.1. Let M be a smooth compact G-manifold. A G-equivariant
vector bundle over M is a smooth G-manifold E with a map 7 : £ — M

satisfying the following three conditions



1. 7 : E — M is a vector bundle,
2. the projection map 7 is equivariant,

3. for each g € G, the map E,, — Eg,, is a linear map of vector spaces.

Let M be a compact smooth G-manifold, let V(M) be the set of
isomorphism classes of finite rank complex G-equivariant vector bundles on

M and let Ag < V(M) x V(M) be the diagonal. We define
Kg(M) = (Va(M) x Va(M))/Ac. (2.6)

Fori: M = M x {pt} — M x S™,

K(M) := ker{ K&(M x S™) 5 KY%(M)} (2.7)
where we consider M x S™ as a G-manifold with trivial G-action on the sec-
ond factor. Bott periodicity also holds in equivariant K-theory, see [46]. We
inductively define KZ%(M) = K2 (M) for n = 1 and write

K*(M) = @ KL(M) (2.8)
JEZ
for the full Z-graded ring.

Again, one can equivalently describe KZ(M) as the quotient of the free
abelian group generated by all finite rank complex G-equivariant vector bun-
dles by the subgroup generated by short exact sequences. Every G-equivariant
vector bundle on M x S! is isomorphic to one obtained from an equivariant

vector bundle on M with an equivariant automorphism as in definition 2.1.1



and K '(M) can similarly be described as generated by pairs consisting of an

equivariant bundle with an equivariant automorphism.

Definition 2.2.2. Let £, — M x S denote the bundle obtained from an

equivariant bundle £ — M and an equivariant automorphism v : F — E.

Two important cases of K. are the extremes:

Proposition 2.9. If G acts freely on M and m : M — M/G is the quotient
map then

" K*(M/G) — K&L(M) (2.10)

1S an isomorphism.

If E — M is an equivariant vector bundle, /G — M /G is again a

vector bundle. We have maps
Q:Ve(M)—->V(M/G) and 7*:V(M/G)— Vg(M)

where Q([E]) = [E/G] and 7*[F| = [#*F]. Both @ and 7* are maps of
monoids, Q o* = Id, and 7* o () is an isomorphism. It follows by the univer-
sal properties of K*(M /G) and K2.(M) that they induce inverse isomorphisms.

See [46] Proposition 2.1.

If G acts trivially on M, there is a map K*(M) — K& (M) given by
considering a vector bundle as an equivariant vector bundle with trivial G-

action. For R(G) the representation ring of G, the map M — pt induces a



homomorphism of rings R(G) = K¢ (pt) — K&(M). Combining these yields a
homomorphism p : K*(M)® R(G) — K&(M).

Proposition 2.11. If G acts trivially on M, then the homomorphism
p: K (M)® R(G) — K&(M) (2.12)
s an isomorphism.

One constructs an inverse to p by decomposing an equivariant vector
bundle into its isotypical pieces. See [46] Proposition 2.2. For G = T, this
is particularly easy. A T-vector bundle £ — M decomposes as F = @f\il E;
where T acts on F; by the character 7 — 7%. Identifying the representa-
tion ring R(T) with Z[t,t'] by the isomorphism which sends the defining
representation of T to ¢, one sends

K2(M) — K'(M)®Z[t, 1]
N (2.13)
[E] ——— > " [E)].
i=1

On the right, [E;] € K°(M) means the class of E; as a non-equivariant vector

bundle. In degree —j we do the same for bundles on M x S7.

Another important case is that of a homogeneous space. Let H be a
closed subgroup of G. A representation V of H determines a G-vector bundle
G xgV — G/H and a the fiber E|geq/m of a G-vector bundle £ — G/H is
an H-representation. Thinking of a representation as a vector bundle over a

point, we have

10



Proposition 2.14. The above correspondence induces an isomorphism

Ke(G/H) = K3y (pt) = R(H) (2.15)

2.3 The classical Chern character

For M a compact smooth manifold we work with the differential graded
algebra
(QM;R)*, d)

of differential forms on M with values in the graded ring R := C[3, 57| where
deg 8 = —2. We grade by total degree: for n e QF(M;C),

deg(np’) = k —2¢.
The cohomology H(M;R)* of this complex is Z-graded with

H(M;R)® = [ [H*(M;C)3* and H(M;R)™' = [ [ H*'(M;C)8*"
k=0 k=0

(2.16)

and multiplication by 3 and 37! give periodicity isomorphisms. We write

H(M;R)* =P H(M;R) (2.17)

JEZ

for the full Z-graded ring.

Let E — M be a vector bundle with connection V : Q°(M; E) —
Q'(M; E). Combining the de Rham d on forms with V on sections of E, this

extends uniquely to an operator
dy : Q" (M; E) — Q*"Y(M; F) (2.18)

11



which satisfies the Leibnitz rule. A connection on F induces a connection on
the dual bundle £* and hence by the Leibnitz rule a connection on £ &® F* =~

End(E). We thus obtain an operator
dy : QF(M;End(E)) — Q"(M; End(E)). (2.19)

The induced operator 2.19 can be expressed in terms of the operator 2.18 by,
for o € QF(M; End(FE)),
deé = [dv,a]. (220)

Let F' = d% € Q*(M;End(E)) be the curvature of V.
Definition 2.3.1. The Chern character of V is the differential form

Ch(V) = tr(e~"F) Zjl— BY tr(F A+ A F) e Q(M:R)°
= %,_J
J

Lemma 2.21. For a € Q*(M;End(E)),
dtr(a) = tr(|dy, al).

Proof. On some open set U < M, we may write V = d + A with A €
QYU;End(E)). On U we have,

tr([dv, a]) = tr([d + A, a]) = tr([d, a]) + tr([A4, a]) = tr(da) + 0 = d tr(«)
since the trace vanishes on brackets. O

Lemma 2.22. The form Ch(V) is closed.

12



Proof.

dCh(V) = dtr(e™F) = tr([dy, e™PF]) 2 tr ([dv, F]) = 0

since [dy, F'] = [dy,d%] = 0. This last equation is the Bianchi identity. O

It follows that Ch(V) determines a class [Ch(V)] € H(M;R)°. Next,
we see that changing the connection changes the Chern character form by an
explicit exact form. It will follow from this that the class [Ch(V)] depends

only on the bundle £ and not on the particular connection chosen.

Let Cg be the affine space of all connections on E. It is modeled on
the vector space Q'(M;End(F)). Let V' be another connection on E and
let V, : I — Cg be a smooth path with Vy = V and V; = V'. There is a
canonical path, V + s(V' = V), from V to V', but we will make a construction
that holds for any smooth path and then deduce the dependence on the chosen
path. Let m : M x I — M be projection (where I is the interval [0, 1] with

coordinate s). The path V determines a connection on W = 7*E — M x I,
V =V + dsos. (2.23)
See appendix B for the definition and properties of integration along the fiber.
Definition 2.3.2. The Chern-Simons form of the path V; is
CS(V.) f Ch(V) e Q(M; R)~!

[0,1]

13



More explicitly, if o € Q°(M x I, W), F is the curvature of V, and F,
is the curvature of V,, we have
Fo=V'o
= (Vs +dsds)(Vs + dsds)o
= V20 + V{dsd,o} + dso,{V.o} + 0

= Fyo0 —ds A {V(0s0)} +ds A {(ddvs) 0} + ds A V(0s0)
s

= F,o+ds {(dvs) 0}
ds

where we use the Leibnitz rule in the third line and £ € Q'(M;End(E)).

Thus,
dV,
ds

F=F,— A ds.

Computing, we find,

Ch(V) = tr(e )

_ tr(ef,BFs 6,C?’(ciVs/cls)/\ds)

. (ﬁF <1 T, d>)
ds

dV
= tr(e #*) + Btr (eﬁFSd—VS> A ds

S0
CS(V,) = J G tr <(%) eﬁFS> ds e Q(M;R) (2.24)
[0.1]

S

It follows by Stokes’ theorem that

d0s(vy)—d| on@) - J

[0,1] [0,1]

dCh(V) + f Ch(V) = Ch(V') — Ch(V).

a[0,1]

Thus, the class [Ch(V)] € H(M;R)? is independent of the chosen connection.

14



Definition 2.3.3. The Chern character of F is

Ch(E) := [Ch(V)] € H(M;R)°.

Next, we show that changing the path changes the Chern-Simons form

by an exact form.

Lemma 2.25. If o : S' — Cg is a smooth loop of connections on E, then

CS(w) is exact.

Proof. Let p: M x S* — M and 7 : M x I — M be the projections and let
V = p*E — M x S*. The path « determines a connection V on 7*E — M x [
as in equation 2.23. Since « is a loop, we may view V as a connection on V.
Observe that

CS(a) = J Ch(V) = p. Ch(V).

S1
By Stokes’ theorem,

dCS(a) = Ch(V) — Ch(V) = 0

so CS(«) is closed. Moreover,

[CS()] = [p« Ch(V)]
= p. Ch(V)
= p. Ch(p*E)
= p«(p" Ch(E))

=0

by equation B.1. Therefore CS(«) is exact. O

15



We may now make the following definition.

Definition 2.3.4. If V and V' are two connections on F and V is any smooth

path with Vo = V and V; = V', then

CS(V', V) := CS(V,) mod im (d) € Q(M;R) " /im (d).

It follows that for connections V, V', V”,

CS(V", V) = CS(V", V') + CS(V', V). (2.26)

The reason to remember the dependence of the Chern-Simons form on

the path is the following.

Lemma 2.27. If ¢ : I — Aut(FE), is a path of bundle automorphisms with

o :=(0) = Id, V is a connection on E, and we set V' = oV, then
CS(V,V') =0e Q(M;R) /im (d).
Proof. For W = n*E — M x I, let
V = ¢*V + dsd,

and let

V =V + dsd..

Then ¢ defines an automorphism of W which is ¢, on W| Mx{s} and
V = ¢*V.

16



Writing F' and F for the curvatures of the indicated connections, it follows
that

F = goflﬁ Pp.
Since the trace is conjugation invariant, this implies that

~

Ch(V) = tr(e #F) = tr(e #F) = Ch(V).

Observe that V is determined by the constant path V so by equation 2.24

J Ch(V)=| ptr <(ﬂ> e—ﬂF> ds =0
[0,1] [0,1] ds

since the integrand is identically zero. It follows that

CS(¢*V) = Ch(V) = Ch(V) =0e QM;R)"..

[0,1] [0,1]
Thus
CS(V',V) =0e€ Q(M;R)™*/im (d).
That is, the Chern-Simons form of the path ¢*V is identically zero so the

Chern-Simons form of the two connections constructed using any path is zero

modulo exact forms. O

2.4 The Chern character homomorphism

The Chern character determines a homomorphism Ch : K*(M) —
H(M;R)* of Z-graded rings. Indeed, if VW — M are vector bundles with

connections Vy and Vy, and curvatures Fy and Fyy, respectively, then Vi @

17



Vw is a connection on V @ W with curvature Fy @ Fy and
Ch(Vy @ Vi) = tr(e?FvoFm))
= tr(e”V) + tr(e®W) (2.28)
= Ch(Vy) + Ch(Vw).
Similarly,
Vv@Vy =Vy®1ly + 1y Vi (2.29)
is a connection on V & W with curvature Fy ® 1y + 1y ® Fyy and
Ch(Vy ® Vi) = tr(eiﬁ(FV@lWHV@FW))
— tr(e PEVEIW) o~ BvOFw))
= tr((e7 @ 1w)(ly @ e™"™))
= tr(e PV @ e PF) (2.30)
=tr (e_ﬁFV) A tr (e_ﬂFW)
= Ch(Vy) A Ch(Vy).
It follows from the universal property that Ch induces a ring homomor-

phism
Ch’: K°(M) — H(M;R)°. (2.31)

We define
Ch": K "(M)— H(M;R)™ (2.32)

to be the composition

K (M) => KO(M x S") &5 H(M x S R)° 28 HOM;R)™  (2.33)

18



where p, is the integration along the fiber map defined in appendix B. We

then inductively define Ch™ = Ch"™? for n = 1. The key fact is that

Key Fact (Atiyah-Hirzebruch [5]): The induced map
Ch: K*(M)®C — H(M;R)* (2.34)

is an isomorphism.

19



Chapter 3

Equivariant Cohomology and the Equivariant
Chern Character

For M a compact smooth T-manifold, we review Cartan’s model of
equivariant differential forms on M and the corresponding equivariant coho-
mology Ht(M;R)*. We construct the equivariant Chern character Chy and
deduce the equivariant versions of the properties of the classical Chern charac-
ter just seen. We discuss the Completion and Localization theorems in equiv-
ariant K-theory which prevent the induced homomorphism Chy : K3(M) —
Hp(M;R)* from being a complex isomorphism and thus demands a “delocal-

ized” theory.

3.1 Equivariant Differential Forms and Equivariant Co-
homology
See [13] Chapter 7 for a thorough treatment of this material. Let M be
a smooth manifold with a smooth action of the circle group T and let t = iR
denote the Lie algebra of T. Let u € t* = (iR)* be the standard generator of
the dual Lie algebra: for ir € iR, u(ir) = r. Let C(M)* denote the Z-graded

algebra
C(M)" = Q(M; R)[[u]]" (3.1)



We set degu = 2 so that for n e Q(M;R)F,

deg(nu’) = k + 2¢.

(3.2)

The group T acts on differential forms by pullback. Extending linearly over u

gives an action on C(M)* and we write

Cr(M)* := Q(M; R)*[[u]]’

(3.3)

for the subalgebra of T-invariant power series. Let ¢ denote the vector field

on M corresponding to ¢ € iR. Thus, for m € M,

d it

gm: Etzoe

- m.
Define the operator dr on w € C(M)* by

drw = dw — utew.
Explicitly,

dr (Z wkuk> = Z(dwk)uk — Z(ngk)uk“.

k=0 k=0

(3.6)

One readily checks that T abelian implies that for any 7 € T, 7.&,, = &rn SO

T e = LeT™.

It follows that
T*dT = dTT*
and thus

dT(CT(M).) c CT(M).+1.

21
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By Cartan’s formula L = dv + «d we have di = —ul; which vanishes on

T-invariant differential forms so
(Cr(M)*, dr) (3.10)
is a complex.

Definition 3.1.1. The complex (Ct(M)*,dr) is called the Cartan complex.
An element of this complex is called an equivariant differential form. A ho-

mogeneous element w € Cp(M)* consists of a power series
0
w= iju] (3.11)
j=0
where the coefficients are homogeneous invariant differential forms
w; € (QUM; R)F—2)T, (3.12)

Remark 3.13. The Cartan complex with complex coefficients is usually de-
fined using polynomials in u rather than power series so that, for example, in
degree 2k one has

Q(M; C)'u]* = {Z wju!

J=0

w; € Q2 (M; C)T} : (3.14)

Our definition is related to the standard one by

Cx()° = [ | oMy (3.15
and
Cx0) = [ | #1005 €) (.10
k=0
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We thus see that 3 is a bookkeeping device that allows us to shift all of the
homogeneous pieces of the standard Cartan complex of even degree into degree
0 and of odd degree into degree —1. We allow power series in u because we are
taking the direct product rather than the direct sum, but this is a convention
that depends on what one means by the ring associated to a graded ring (see
[41] Remark 1.2). The point is that § retains the ordinary cohomological

degree and in each 3 degree we have the standard Cartan complex.

Definition 3.1.2. Equivariant cohomology is the (2-periodic) Z-graded coho-

mology theory given by
HT(M;R). = H(OT(M).,CZ'H‘) (317)
Proposition 3.18. Two important properites of T-equivariant cohomology are

1. if f,g: M — N are smooth equivariant maps and there exists a smooth
T-equivariant homotopy from f to g, then the induced maps on equivari-

ant cohomology are equal
[P =g": Hy(N;R)* — Hp(M;R)*,

2.4f U and V are T-invariant open sets such that M = U u V', then
Hy(M;R)*, Hy(U; R)* @ Hr(V;R)* and Hr(U n V;R)* fit into a long

exact Mayer-Vietoris sequence.

Proof. For the first property, consider M x I as a T-manifold with trivial action

on the second factor. If H : M x I — N is the homotopy and w € Cp(N)*,
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then H*w € Cp(M x I)*. Observe that, as in appendix B, if £ is the vector
field on N which generates the T-action, then & = (£,0) is the vector field

which generates the T-action on N x I and for any n € Q(N x I; R)*,

o I, ) - [ (319)

It follows by Stokes’ theorem and the previous observation that

g*w — ffw =dr H*w. (3.20)
[0,1]

For the second, one must choose an equivariant partition of unity sub-
ordinate to the cover {U,V}. These exist by, for example, [29] B.33. The
result then follows by the same method as in ordinary de Rham cohomology

(see [16], p.22). O

Example 3.21. Let T act on M = S* by double-speed rotation: for 7 € T

and A € S, 7-\ = 72)\. Since the T-invariant O-forms on S! are the constants

akefR }

Flag e C} . (3.22)

R, it follows that

o

{

Since

dr <Z ak(ﬂu)k> = \(day,)(Bu)* =0, (3.23)

k
all equivariant O-forms are closed. If 7 is the unique T-invariant 1-form on

St satisfying wen = n(§) = 1, the equivariant —1-forms are the series whose
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coefficients are constant multiples of 7,

Crp (Sl {Z c 77/8k+1uk
k=0

€ (C} (3.24)

Since
a0
d’ﬂ‘ZC 775’”1 k Z d77 ﬁkﬂ k ZC 77 ﬁkH k+1
k=0 k=0 k=0
o0
— Z L (Bu)F ! (3.25)

the exact equivariant 0-forms are those power series with zero constant term.

The equivariantly closed equivariant —1-forms are clearly zero. Thus,

Hy(S"R)" = { ;1Y } — H(pt; R)" = H(SYT; R (3.26)

This illustrates a limitation of equivariant cohomology: it does not see the
doubling of the action. This is a general phenomenon, equivariant cohomology
does not distinguish between free actions (those with trivial stabilizer) and

locally free actions (those with finite stabilizers). See appendix C.

For comparison, we compute the equivariant K-theory of the same

setup.

Example 3.27. Let T again act on M = S by double-speed rotation. Every
complex line bundle on S* is topologically trivial, but there are equivariant line
bundles which are necessarily isomorphic as line bundles, but not equivariantly
isomorphic. If T = S! x C is the equivariant line bundle with T-action 7 -

(#,\) = (7%x,7)), and 1 = S* x C is the equivariant line bundle with the
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trivial action 7 - (z,\) = (722, \), one can easily write down an isomorphism

T®% ~ 1. Tt follows that for k € Z, there are isomorphisms of equivariant line

bundles
1, k even
Rk~ EX)
== { T, kodd (3:28)
and thus,
KY(SH®C =C{1}®C{T}. (3.29)

Next, every equivariant bundle over M x S! is isomorphic to one obtained
from an equivariant bundle on M with an equivariant automorphism. If « is
an automorphism of 7" or 1, equivariance implies that for x € M and 7 € T,
a(r%r) = a(r) so a must be constant. It follows that every equivariant vector
bundle on M x S! is isomorphic to a pullback and thus that the restriction
map

i* KQ(M x S — K2(M) (3.30)
is injective. This implies that Ky (M) := keri* = 0. We have found that

Cli}@C{T} ¢=0
0

Ki(SH)®C = { L

(3.31)

Thus, Kt does detect the doubling of the action whereas Hy does not.

Let E — M be a T-equivariant vector bundle and for 7 € T let L, :

E — E denote the action of 7 on E. Denote the sections of E by Q°(M; E);
let

Q" (M: B) = (M) @aoy (M E) (332)
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be the differential forms with values in F and let
C(M;E)* := C(M)* ®qoqary Q°(M; E) (3.33)

be the equivariant differential forms with values in £. The group T acts on

sections of E by, for 0 € Q°(M; E), T € T,

(7-0)(m) = L,o(r"-m). (3.34)
Hence, T acts on Q*(M; E) by, for we Q*(M;C),

T (Ww®0)=Tw (1 0). (3.35)

Extending the action to be linear over u and R induces an action on C'(M; E)*.
We then set
C3(M; E) :=C*(M; E)". (3.36)

Recall that &, defined in equation 3.4, is the vector field on M corresponding
to the action of 7 € {R. We then also have the Lie derivative of the section o
in the direction of &,

d it

B
Lio= pr t:0€ - 0. (3.37)

If V is a connection on E we say that V is T-invariant if it commutes with

the T-action on C'(M; E)*, that is, for every 7 € T,

[V, 7] =0. (3.38)
Differentiating, it follows that if V is invariant,

[V, L¢] =0. (3.39)
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The space €}, of invariant connections is a non-empty affine subspace of the

affine space Cg of all connections. See appendix D.

Definition 3.1.3. For V an invariant connection on E the correpsonding

equivariant connection is the operator

VI i=V —we: O(M;E) — C(M; E)**. (3.40)

One checks that for a € C(M)7 and 0 € C(M; E),
Via A 0) =dra b+ (—1)Yan V. (3.41)

As before, V on E induces a connection V on End(£). The corresponding

equivariant connection is an operator
V! C(M;End(E))* — C(M;End(E))**. (3.42)

As in the non-equivariant case (equations 2.18 and 2.19), the operators 3.40

and 3.42 are related by, for § € Cp(M; End(E))",
v =[V", 9. (3.43)

Definition 3.1.4. The equivariant curvature of the invariant connection V is

the operator
F'i= (V) +ulf : C(M; E)* — C(M; E)***. (3.44)

Lemma 3.45. The equivariant curvature FT is in Cp(M;End(E))? and sat-

isfies the equivariant Bianchi identity

VIFT = 0. (3.46)
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Proof. To show that FT e Cp(M;End(E))? we show that it commutes with
multiplication by any « € C(M)*. Let e(«) denote exterior multiplication by

«. We have

[F*,e(a)] = [(VF)? + ulg, e(a)]
= [VE V5 e(@)]] +ulLf, e(a)]
= [V", e(dra)] + ue(Lf ) (3.47)
= e{(d + uly)a}

=0.
Next, the equivariant Bianchi identity follows from the decomposition

VIFT = [V5 (VD) + ulf]

= [VE (V] +ulV, L8] — u’ee, LF] (3.48)

where the second term vanishes by the invariance of V and the third by the

Cartan formula £ = dv + «d on differential forms. ]
Expanding the definition of the equivariant curvature, we have

FT' = (V) —uVie —uteV + ulf. (3.49)

An element of C(M; E)* is a sum of elements of the form w ® o for

we C(M)* and 0 € Q°(M; E) and it is easy to verify that

Fllo®o) = (F Aw)®0 + uw @ (Lf — Ve)o. (3.50)
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Definition 3.1.5. The moment of the T-action relative to the connection V
18

pi=u{lf — V¢} e * @ Q°(M; End(E))". (3.51)
We may thus write
F' = F + pe Cr(M;End(E))*. (3.52)

If V is an invariant connection such that LF = Vg, then we see that FT = F.
Such a connection is called basic for the T-action and always exists if the action

has finite stabilizers. See appendix D for a discussion.

3.2 The Equivariant Chern character

In this subsection, we define the equivariant Chern character and derive

properties analogous to those of the classical Chern character in subsection 2.3.

Lemma 3.53. For a € C(M;End(F))*,
drtr(a) = tr([V7, a]). (3.54)

Proof. The proof of Lemma 2.21 works here since on some open set U < M

we can write VT = dr + A for A € QY(U; End(F)). O

Definition 3.2.1. The equivariant Chern character of the invariant connec-

tion V is the equivariant differential form

Chy(V) = tr (e*ﬁFT) e Cr(M)°. (3.55)
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Lemma 3.56. The form Chy(V) is equivariantly closed.

Proof. The proof is the same as Lemma 2.22, this time using Lemma 3.53 and

the equivariant Bianchi identity. ]

Next, suppose that V and V' are two invariant connections on £ — M
and let W = 7*F — M x I. If V, : [ — €} is a smooth path of invariant
connections with Vo = V and V; = V’/, V, determines an invariant connection
V on W given by equation 2.23. The equivariant connection corresponding to
V is

V' = VT +dsd, = (V, — uig) + dsd,. (3.57)

Using that t¢ds = 0, one derives as preceding equation 2.24 that

_ d
F' =F"+dsa st (3.58)
S

where F, again denotes the curvature of V.

Definition 3.2.2. The equivariant Chern-Simons form of the path V; is

CSp(V,) = Chr(V) € Cp(M)™ (3.59)

[0,1]

As for equation 2.24, one derives the explicit expression

d T
CSr(Vy) = B tr (&eﬁFS) ds (3.60)
[0.1] ds

from equation 3.58 and the definition of Chr.

Lemma 3.61.
dr CS1(Vy) = ChT(V') — Chrp(V). (3.62)
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Proof. This follows by Stokes’ theorem and equation 3.19. ]

As before, we show that changing the path of invariant connections

changes the equivariant Chern-Simons form by an equivariantly exact form.

Lemma 3.63. If o : S' — CL is a loop of invariant connections, then CSt(a)

18 exact.

Proof. Again, let p : M x S* — M be projection, let V = p*E, and let V
be the connection determined by « on V. Then CSt(«a) is closed and the
method of Lemma 2.25 carries over word for word, now using p, in equivariant

cohomology. Thus [CSp(a)] = 0 so CSy(a) is exact. O

Definition 3.2.3. The equivariant Chern-Simons form of connections V', V
is

CS’H‘(V/, V) = CS’H‘(VS) mod im (d’]r) € GT(M)_I/IIH (d’]r) (364)
for any smooth path V, with Vo =V and V; = V',

It again follows, in analogy with equation 2.26, that if V,V’ and V”

are three connections that
CST(V”, V) = CST(V”, V') + CST(V’, V) (3.65)

Lemma 3.66. If E — M is a T-equivariant vector bundle with invariant
connection V, ¢ : I — Aut(E) is a family of automorphisms with ¢y = Id
(where s := p(s)), then taking V' = ¢}V,

CSp(V', V) =0e Cr(M)~"/im (dr). (3.67)
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Proof. The proof is the same as Lemma 2.27: the path of invariant connections

©*V determines an invariant connection
V = ¢*V +dsd, (3.68)
on W =n*E — M x I. The corresponding equivariant connection is
—T %
V' =@V +dsds — uig
= (psV — wg) + dso; (3.69)

= (p*V)" + ds0;.

Since ¢, : E — E covers the identity on M,

(P:V)" = @i(V7) (3.70)
SO
V' =" (V) + dsé,. (3.71)
Let
VT = V7 + dsé,, (3.72)

then considering ¢ as an automorphism of W, we may write

V' = oH (V) + dso, = ¢* (V7). (3.73)

As before, the path which determines V is constant so by equation 3.60,

CSp(pfV) = Chr(V) = Chp(V) =0 (3.74)
[0,1] [0,1]

since the last integrand vanishes. It follows that
CST(V/, V) =0¢€ C']T(M)il/lm (d’[[‘) (375)

]
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3.3 The Equivariant Chern character homomorphism

If V and W are equivariant vector bundles over M with invariant con-
nections Vy and Vyy, respectively, then Vi @ Vi and Vy ® Vi (defined
in equation 2.29) are invariant connections on V@ W and V ® W, respec-
tively, as in the non-equivariant case. They have curvatures Fygw = Fy @ Fy
and Fygw = Fyv @ 1w + 1y @ Fw, respectively. One readily checks that the

moments relative to these connections are

pvew = py @ pw  and  pygw = py @ ly + 1y @ pw (3.76)

from which it follows that the equivariant curvatures corresponding to these

invariant connections are
F&T@W =Fr®F;  and F$®W = @ly + 1y @ Fy. (3.77)
The calculations 2.28 and 2.30 and the above formulae imply that
Chr(Vy @ Vi) = Chy(Vy) + Chr(Vyy) (3.78)

and

It follows from the universal property that Chr induces a ring homomorphism
ChY : K2(M) — Hrp(M;R)° (3.80)

and we define

Chy™ : Ko"(M) —> Hp(M;R)™" (3.81)
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to be the composition
K;™"(M) => K{(M x S™) o He(M % S R)Y —> Hy(M;R)™  (3.82)
T *

where p, is the integration along the fiber map defined in appendix B.2. We

set Chf = Chy 2 forn > 1.

3.4 Completion and Localization

Recall that in examples 3.21 and 3.27 of T acting on S* by double speed
rotation, we found that K7 sees the doubling of the action whereas Hy does
not. The equivariant Chern character cannot therefore be an isomorphism
over C. An explanation of this discrepancy is as follows. The ring K3(M)®C

is a module over
Kipt)®C = R(T)®@C = C[t,t '], (3.83)

the complexified character ring of T. For 7 € T, let K3(M) ® C, denote the
localization at the ideal of characters which vanish at 7 and let K5(M) ®
C? denote the formal completion at the same ideal. By the Atiyah-Segal

completion theorem [9],
Ki(M)®Cy = Hp(M;R)*. (3.84)

Thinking of Kr(M)* ® C as a sheaf over Spec C[t,¢ '] = C*, this indicates
that the equivariant cohomology only detects the stalk of this sheaf over 1 € T.
Here C* = T¢ is the complexification of the group T; the module K3(M) cor-

responds to the unitary part, the restriction of the sheaf to T < C*. A special
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case of a theorem of Freed-Hopkins-Telemen ([26], Theorem 3.9) describes the
stalks of this sheaf at other points of T in terms of equivariant cohomology,
too. Writing M7 for the submanifold with stabilizer subgroup (r) < T, it says

that there is a natural isomorphism
Ky(M)®Cr = Ky(MT)®Cl = Hr(MT™;R)* (3.85)

in which the first isomorphism is induced by the inclusion M7 <— M.

The idea of globalizing the Chern character Ch : K#(M)® C —
Hyp(M;R)* to detect the whole sheaf and not just a single stalk has been
studied for finite groups [48] and [11] and for compact Lie groups [19], [14],
[26]. The idea of constructing a de Rham model of Kr(M)®C to receive such
a map has been studied in [19] and [14]. We present a de Rham model and cor-

responding delocalized Chern character that are similar to those of Brylinski

[19] and Block-Getzler [14].
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Chapter 4

Delocalized Equivariant Cohomology

4.1 Delocalized equivariant differential forms and delo-
calized equivariant cohomology
Let M be a compact smooth manifold with a smooth action of T. For

H < T a subgroup, we write
M" ={me M |hm=mforal he H} (4.1)

for the points fixed by H. For H = {r), we write M7 := M<™. See appendix
A for relevant facts about group actions. Two motivations for the complex we

present are the following. First, there is an isomorphism

Ch®Id
—

Ki(M"®C=K*(M")®C[t,t7'] HM"R)*@C[t,t7'] (4.2

by proposition 2.11 and the classical complex Chern character isomorphism.
This suggests that we start with Q(M™; R)* @ C[t,t']. Second, equation 3.85
suggests that we add to this the Cartan complexes on all of the fixed point
sets M. We must then require that these agree in an appropriate sense on
MT.

By Appendix A.6 only finitely many subgroups of T appear as stabilizer

subgroups. Since every proper closed subgroup of T is finite cyclic, it follows
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that there are finitely many 7 € T for which M7 properly contains MT. Let
Sp(M)={reT|M —M" % 2} (4.3)
be this finite set of group elements. We introduce the following definition.

Definition 4.1.1. A delocalized equivariant differential form is

e A finite Laurent series
N
w= Y wtte QMR QClt,t ] (4.4)
k=—M
valued in differential forms on the fixed points M™*. The grading is just

that of the differential forms.

e A collection {n:},es.(ar) of equivariant differential forms 7, € Cr(M7)*

on the submanifolds M.

These must be related by the following

N
Compatibility condition: n;|yr = Z TFupe Pk (4.5)
k=—M

as elements of Cp(MT)*.

Definition 4.1.2. Let Ap(M)’ denote the homogeneous delocalized equivari-
ant differential forms of degree j, the abelian group of pairs (w, {n;}res;(ar))

as above in which w and the 7, are homogeneous of degree j. Let
(Ar(M)*, dr) (4.6)

denote the full Z-graded complex.

38



We extend the de Rham d and the wedge A to Q(MT; R)* @ C|[t,t!]

to be linear over C[t,¢ '] and define the differential on A% by

(S(W, {777}) = (dw7 {d'ﬂ‘nr})' (47)

We may multiply delocalized forms by multiplying the series and wedging: the

product

( > wktk,{m}> ( > @tﬁ{@}) (43)

is the delocalized equivariant differential form

( Z Z (wk A ej)tk+j> {777' A gT}TESqr(M)) . (49)

k=—M j=—M’

Finally, C[¢,t '] acts on Ap(M)* by

t-(w, {nr}resy) = (tw, {707 }reseany) (4.10)

where 77, means multiplication by the complex number 7 € T. Thus, Ap(M)*

becomes a differential Z-graded algebra over C[t,¢!].

Definition 4.1.3. The delocalized equivariant cohomology of M is the coho-

mology of this complex,
Hy(M)® := H(Ar(M)*®,9).

Remark 4.11. We denote the delocalized equivariant cohomology by H?7, and
reserve Hp(—;R)* for the T-equivariant cohomology defined in the previous

section.
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Proposition 4.12. Delocalized equivariant cohomology satisfies the familiar

properties

*

1. if f,g: N — M are smoothly homotopic smooth T-maps then f* = g* :
Hg(M)* — Hg(N)*,

2. if U,V < M are T-invariant open sets with M = U 'V, then Hy(M)®,
Hy(U)* @ Hgy(V)* and Hy(U nV)* fit into a long exact Mayer-Vietoris

sequence,

3. for each n, the projection p : M x S™ — M induces an integration along

the fiber map,
et Ho(M x S™)* — Ho(M)*™™

which satisfies the push-pull formula B.1.
Proof. We sketch the proof.

1. If N and M are smooth compact T-manifolds, consider N x [ as a
T-manifold with the trivial action on the second factor. Given maps
f,g: N — M, suppose that H : N x I — M is a smooth homotopy
with H(n,0) = f(n) and H(n,1) = g(n). We extend the operations of
pullback and integration to Q(—, R)* ® C[t,t '] by requiring them to be

linear over C[t,t7!]. Let a = [w, {n,}] € Hy(M)* where

N
w= Y wth (4.13)
k=—M
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Then

N
H'w= Y H'wt (4.14)
k=M
and we now check that
H*(w,{n-}) = (H*w,{H"n:}) (4.15)

satisfies the compatibility condition 4.5 and is thus an element of Ap (N x

I)*. Observe that

H*T]T|NT><I = H*(UT|MT)

N
= H* ( Z Tkwk.e_'gik“> (4.16)
k=M

N .
- Z Tk(H*wk)e*mk“.

k=—M
so H*(w,{n,}) € Ar(N x I)*. We now verify that

o () = ( » o » mnl)

is an element of Agp(N)*.

[0,1]

The compatibility condition follows by inte-

grating both sides of the above equation 4.16 and observing that

k=—M

Finally,

(el (el o)
[0,1] [0,1] [0,1] [0,1]

= (9"w — f*w, {g"n- — [*n:}) (4.19)

= g*(w, {777'}) - f*(w’ {777})

Therefore g*a = f*a.
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2. For the Mayer-Vietoris property, let M be a compact smooth T-manifold,
U,V an invariant open cover of M and let {py, pyy} be an equivariant
partition of unity subordinate to this cover. We must show that

0 —=> Ar(M)* 2% AL (U) @ A(V) 5 Az (U A V) —> 0

(,f) ——>a -0

is a short exact sequence of cochain complexes. The key step is to show
exactness at the last stage, that is, to show that the difference map
i is surjective. One does this by extending forms on U n'V to U by
multiplying by py and to V' by multiplying by py. Since multiplication by
partitions of unity commutes with restriction of forms, one readily verifies
that the same method shows that the above sequence of delocalized forms

is short exact.

3. We indicated how integration along the fiber works in the proof of the
first property. For p: M x S™ — M and (0,{&,,}) € Ap(M x S™),

pe(0.{6: ) == (040, {ps&s}) € Ax (M), (4.20)

One verifies that p.0 and {p.&,;} satisfy the compatibility condition as
indicated in the proof of the first property. Since p, is a chain map in
ordinary cohomology and in equivariant cohomology, it is in delocalized

equivariant cohomology so induces a map
J = PDs : H@(M X Sn). — H@(M).in (421)
[
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The method of appendix B works in the present setting to show that
for pt € S™ and i : M x {pt} — M x S™ the inclusion, integration over the

fiber restricts to an isomorphism

0 —> keri* = Hy(M)™ ® H"(S™;C) —> Hy(M x S")° — Hy(M)? —= 0

Hy(M)™
(4.22)
Example 4.23. Let M = pt, then Sp(M) = & so
Ar(pt)® = Q(pt; R)* QC[t,t '] = R*QC[t,t 1] (4.24)
It follows that
Ha(pt)? = { Jeeh a0 (4.25)

Example 4.26 (Free action). Let T act freely on M, then MT = &, Sp(M) =
{1}, and M' = M so
Ar(M)* = Cr(M)*. (4.27)

It follows from proposition C.7 that
Hy(M)* = Hp(M;R)* =~ H(M/T;R)". (4.28)

Example 4.29 (Locally free action). Let T act on M = S! by double-speed
rotation, that is, for 7 € T, A€ M, 7- X = 72\. In this case, St(M) = {£1},

MT = @, and M*! = M so we get two copies of the Cartan complex,

Ar(SY)* = C(SY)* @ Cr(S1), (4.30)
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one for each element of Sp(M). It follows that
Hy(SY* = Hp(SY) @ Hrp(S")* (4.31)
and by Proposition C.7
Hy(SY* = H(SY/T; R)* ®@ H(S'/T;R)* = H(pt; R)* ® H(pt; R)*.  (4.32)

Thus, Hy(S")* detects the doubling of the action.

4.2 The Delocalized Equivariant Chern character

Let E — M be a T-equivariant vector bundle with invariant connection
V, corresponding equivariant connection VT, and equivariant curvature FT.
For 7 € T, let L, : E — E denote the action of 7 on E. If 7-m # m for
some m € M, although L, is invertible, it maps F,, to E,.,, # E,, so does not
cover the identity on M. It is therefore not a vector bundle automorphism of

E. However, since T acts trivially on M*, for all 7 € T,

L. : Elyr — Bl (4.33)
is a bundle automorphism. Letting 7 vary, we obtain a homomorphism

L:T — Aut(E|ymr) (4.34)
and write L; := L(t). Similarly, for 7 € Sy(M),

Ly E|ly- — E|ar (4.35)
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is a bundle automorphism. On differential forms with values in E, T acts
by a combination of pullback and its action on E. However, for 7 € Sp(M),
the pullback action of 7 on Q(M7;R)* is trivial so 7 acts on Q(M; E|y-)*
simply by L,. We introduce the following definition. It is the equivariant
Chern character of [14] (following proposition 4.3) adapted to our complex of

delocalized equivariant differential forms.

Definition 4.2.1. The delocalized equivariant Chern character of V is the

delocalized equivariant form

Chy(V) = (Cho(V)r, {Cha (V) }resoian) € Ar(M)° (4.36)
where
Chy (V)1 :=tr (Lie™"],,0) € UM R)° Q@ C[t, 7] (4.37)
and
Chy (V)7 = tr (LTe_BFT‘MT) e Op(M7)". (4.38)

As written, it is not obvious that Chg (V) (equation 4.37) is an element
of Q(MT; R)°®C]Jt, t~1]. We verify this first. We must then check that Chg (V)

satisfies the compatibility condition 4.5.

For the first statement, recall from Proposition 2.11 that we may decom-
pose E|yr into its isotypical components, that is, there exists an isomorphism

of equivariant vector bundles

N
0V :i=@Vi—> E|yr (4.39)

i=1

45



where each V; — M7 is an equivariant vector bundle on which Ly acts by mul-
tiplication by A* for some k; € Z. Endow @, V; with the pullback connection
©*V. Since V is T-invariant, ¢*V respects the direct sum decomposition of

V' so decomposes as
N
i=1

Let F be the curvature of V. It follows that the curvature Fo«y = ¢ 'Fop
of p*V also respects the direct sum decomposition so we may write F +y =

@, F;. We have

N N
(Forw)Y =@ F =P F A AF. (4.41)
=1 :

Then, writing L, for the T-action on V' as well as on E|yr,

Chy(¢*V)r = tr (Lte_ﬁpw*v)

—t (Lte_ﬁ(@i Fi))

-

L

-
I
—

tr (Le %) (4.42)

o

-
Il
—_

tr (tk”'e_ﬁFi)

t* Ch(V;) e QM R)° @ C[t, 1.

.

-
Il
—
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Since ¢ is equivariant, we have

Ch@(QD*V)T tr (LtefﬁF‘P*V)

=tr (Lyp e ") (4.43)

Therefore, Chy(V)r is indeed an element of Q(MT; R)°® C[t,t™!].

To verify the compatibility condition 4.5 we proceed as follows. Observe
that on E|yr — MT, T acts trivially on the base, but nontrivially on the
bundle. Since T acts trivially on M, the operator V¢ vanishes, but L need

not. Thus, the equivariant curvature F* of V reduces to
F'=F+p=F+u{lf -V = F+ul{. (4.44)
Since ¢ is equivariant, the equivariant curvature of ©*V on V is
FE*V = Fury + ui)é/ = pFp ' + ugpL?gp’l = pFTp !, (4.45)
It follows from the calculation 4.43 that

Cho (V) |yr = tr (Lfe”BFT‘ ) = tr (LTefﬁFg*v

MT) . (4.46)

MT
Now, F! E*V respects the direct sum decomposition of V' so may be written as
N

Fleg = DIF; +ulf’}. (4.47)

j=1
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Since T acts on V; by multiplication, the Lie derivative on sections (equation
3.37) takes the following simplified form. For a section o : MT — V},

LYig d

fo=- ehito = kjio, (4.48)

t=0

so Ly’ = (kji)Idy, € Q°(M™; End(V})). It follows that

Cho (V)| = tr (LTe‘ﬁ(FE*V))

[
M=

tr (Tkje—,a(FjJrukjude))

<.
Il
_

75 (=B g~ (Bukii)Idv, ) (4.49)

I
M=

<.
I
—

7 tr (e PF) e Fukit

<
Il
—_

Il
.MZ

I
1=
ﬁ
ks
Q
=
<
.
N
m\
@
IS
E

<.
Il
_

By the calculations 4.42 and 4.43,
N
Chy (V)r = >t Ch(V;), (4.50)
j=1
so the calculation 4.49 is exactly the compatibility condition 4.5. Therefore

Chgy(V) is indeed a delocalized equivariant differential form.

Next, let 1) : (E , %) — (E, V) be an isomorphism of equivariant bundles
with connection over M, meaning that 1) is an equivariant isomorphism and
V = ¢*V. Write FT and FT for the equivariant curvatures of V and V,

respectively. By equation 4.45,

FT =y 'Fy (4.51)
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so by the conjugation invariance of the trace,

Chy(V) = Chy(V). (4.52)
Lemma 4.53. The delocalized form Chy(V) is closed.

Proof. By the invariance of V (and the fact that 7 acts trivially on MT7),
VIL, = L, V" on Cr(M™; End(E|y-))*. Similarly, VL, = L,V on
Q(M™; End(E|yr))*. It follows by Lemma 2.21 that on M7,

dtr (Lee ™) = tr ([V, Lie ")) = tr (L,[V,e™?"]) =0 (4.54)

since [V, e #F] = 0 by the Bianchi identity as in Lemma 2.22. Similarly, on
MT™ by Lemma 3.53,

dy tr (LTe’ﬁFT) = tr (LT[VT, e’ﬁFT]) =0 (4.55)

by the equivariant Bianchi identity as in Lemma 3.56. Therefore,
6 Chy(V) = (dChg(V)r, {dr Chy(V),}) = 0. (4.56)
O

Definition 4.2.2. Let V and V'’ be two invariant connections on FE, 7 :
M x I — M projection and W = n*E — M x I. Let V, be a smooth path of
invariant connections with Vo = V and V; = V' and let V be the invariant

connection on W corresponding to V. Define

CS(V.) i J[O | Ca(®) 500 (4.57)
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Omne derives an explicit expression for CS4(V) as done in equation

2.24. By equation 3.58, for each 7 € Sy(M),

CS4(Vs), = J tr (LT exp {—ﬁ (FST + ds A de) }‘ )
[0,1] ds MT

= Btr ( Vs L, exp{—BF'} )ds. (4.58)
[0,1] M7
Simiarly,
CS4(Vs)r = Btr (lLt exp{—(Fs} ) ds. (4.59)
[0,1] MT
Lemma 4.60.
§ CS4(Vs) = Chg(V') — Chgy(V). (4.61)

Proof. We decompose W into its T-eigenbundles on (M x I)T = MT x I and
its T-eigenbundles on (M x I)™ = M7 x I and use the previous results. As
in equation 4.39 and the discussion there, on M™ x I there is an equivariant
isomorphism

N
SO:C—DVVi_)W|MT><I (462)

=1

and

V= év—)ﬁ, (4.63)

N
Write (¢*V) N w0y = @V and ( )|M11‘><{1} = (—BV; Then by equation
i=1
4.42

CS@(VS)TZJ Chy(V g} J Vi) (4.64)

[0,1]

SO

dCSy(y)r = Zt’“ {Ch(V!) — Ch(V,)} = Chy(V')r — Chy(V)r.  (4.65)

i=1
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By a similar argument, we may decompose W |y-«; into its 7-eigenbundles

and write
— M J—
S5 (V). = J Chy(T), = 3 7™ f Cho(V,).  (4.66)
[071] 7j=1 [0»1]
It follows that

dr CS%(V,), = Chy(V'), — Chy(V), (4.67)

and thus
§ CS4(Vs) = Chgy(V') — Chgy(V). (4.68)
O

Lemma 4.69. If a : S* — CF is a loop if invariant connections, then CSg()

18 exact.

Proof. The formal proof of Lemma 2.25 again applies word for word now using

integration along the fiber in delocalized equivariant cohomology. O

Definition 4.2.3. The delocalized equivariant Chern-Simons form of a pair

of invariant connections V' and V is
CSy»(V', V) := CS»(V,) mod im (6) € Ap(M)™!/im (6) (4.70)
for any smooth path V, of invariant connections with Vo = V and V; = V'

It again follows by analogy with equations 2.26 and 3.65 that if V”, V'

and V are three connections

CSo(V", V) = CSu(V", V') + CSy(V', V). (4.71)
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Lemma 4.72. If ¢ : I — Aut(E) is a smooth path of automorphisms with
o = Id, then taking V' = ¢}V,

CSH(V', V) = 0 € Ap(M) " fim (5). (4.73)

Proof. The proof is the same as that of Lemma 3.66, the corresponding state-

ment in equivariant cohomology. Using the notation of 3.66,

~

CSg(piV) = J Chy (V) = f Chy(V) =0 (4.74)
[0,1] [0,1]

since the path which determines V is constant so by the formulae 4.58 and

4.59, the last integrand vanishes. O

4.3 The delocalized equivariant Chern character is a
complex isomorphism

It follows from the calculations of sections 2.4 and 3.3 that Chy takes
direct sum to addition and tensor product to wedge. Thus, by the universal

property Chg induces a ring homomorphism
Ch), : K2(M) — Hgy(M)°. (4.75)

We again define
Ch,": K;"(M) —» Hyp(M)™ (4.76)

by the composition

K:"(M) == K{(M x S™) ot Hy(M x S™)° —> Hoy(M) ™ (4.77)
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where p, is the integration along the fiber map defined in equation 4.21. We
then set Ch?, = Ch?jz for n = 1. We show in this section that this homomor-

phism induces an isomorphism upon tensoring with C.

Theorem 4.78. For any compact smooth T-manifold M, Chy induces a ring

homomorphism

Chy : K3(M)®C —> Hy(M)* (4.79)

which is an isomorphism.

Brylinski constructs an equivariant Chern character in his model and
proves that it is an isomorphism [19] so this is not a new theorem. There
is a quasi-isomorphism from our complex to his so the two versions of de-
localized equivariant cohomology agree and the delocalized Chern characters
agree under the induced isomorphism. However, rather than appeal to this
isomorphism, we give a direct proof which uses the theorem of Freed-Hopkins-
Teleman (equation 3.85, [26] theorem 3.9) mentioned at the beginning of the

section.

Proof. We make a Mayer-Vietoris argument. Let U be an invariant neigh-
borhood of M™ which equivariantly deformation retracts onto it and let V =
M — M". Then {U,V} is an invariant open cover of M and it follows from

Proposition 2.11 that

Kr(U)®C = K*(U)®CJ[t,t '] (4.80)
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Since

Ap(MT)* = QM"; R)* @ C[t, 7] (4.81)

the homotopy invariance of H, implies that

Hy(U)* = H(U;R)* @ C[t, t7']. (4.82)
It follows that o
KyU)®C z Hy(U)*
l; l; (4.83)

K*(U)@Clt,t '] =% H(U;R) @CIt, ¢']
commutes. Since the classical Chern character is a complex isomorphism, it
follows that

Chy : K3(U)®C — Hy(U)* (4.84)
is an isomorphism.

Remark 4.85. Note that V' equivariantly deformation retracts onto the com-
plement of an open tubular neighborhood of MT, a closed subset of M which
is thus compact. We replace V' with this homotopy equivalent compact set in

the rest of the proof.

Observe that since VT = @ so the complex of delocalized equivariant
differential forms is just the direct sum of the Cartan complexes indexed by

St(V),
(AT(V),9) =< P CT(VT)sz) (4.86)

TES’H‘(V)
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hence

Hy(V)' = P Ho(VT;R)". (4.87)
TeST(V)

If F — V is an equivariant vector bundle and V is any invariant connection on
E, we saw in the previous section that for each 7 € St(V'), we can decompose E
over V7 into its isotypical subbundles. Thus, writing V7 for the restriction of

V to E|y- there exists an equivariant isomorphism of bundles with connection
. N,

(Elv-,V7) = P(E],V]) (4.88)
i=1

and using this isomorphism, we may write the delocalized Chern character as

the map
KAV)®C 22> (P Hy(V7; R)°
N, (4.89)
[E] ———> @) 7 [Cha(V])]

T =1

The Freed-Hopkins-Teleman theorem ([26] theorem 3.9) describes the comple-
tion of twisted G-equivariant K-theory in terms of G-equivariant cohomology.
The untwisted version of this theorem for G = T states that for X any finite

T-CW complex there are natural isomorphisms
K} (X)®Cp = Kf(XT)®C) — Hp(XT;R)". (4.90)

Here g € C* and 7 € T < C* is a generator of the unitary part of the algebraic
subgroup generated by ¢, that is, the intersection of that algebraic subgroup
with T. The first map is induced by inclusion. By [33], every compact smooth
T-manifold can be given the structure of a T-CW complex so we may apply the

theorem to V. Since the T-action on V' has finitely many (finite) stabilizers,
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K3(V)®C, =0 unless ¢ = 7 € Sp(V). Thus K3(V)®C is the global sections
of a skyscraper sheaf supported on St(V') < T. It follows that this sheaf is the
direct sum of its stalks

K(V)®eC= @ Ki(V)®C]. (4.91)

TES’E(V)

By 4.90, there is thus a natural isomorphism
Yrar : Ka(V)@C = D Hr(VT;R)*. (4.92)

We must now show that our homomorphism (4.89) is the isomorphism (4.92).
The 7-component of the isomorphism (4.92) can be expressed as follows. Let
ET — BT be the universal principal T-bundle. First, ¥ pgr decomposes into
T-eigenbundles. Writing E7 for E|y- it is

K(V)®C—= Ki(VT)®C —= K3 (V) ®C

N, (4.93)
[E] [E7) —— 3, (E]

It then completes
KV ®C—= Kp(VH®Cr =K (VT xpr ET)®C (4.94)

and identifies the completion with the ordinary K-theory of the Borel quotient
V7T xp ET by the Atiyah-Segal Competion theorem [9]. Finally, it maps this
to equivariant cohomology by the ordinary Chern character

Ch®Id
—

K*(V™ xp ET)®C H(V™ xp ET;R)* = H*(V™;R)*.  (4.95)

This last group is the topological definition of T-equivariant cohomology. Bott
and Tu [17] prove the compatibility of equivariant characteristic classes con-

structed using the topological definition of equivariant cohomology and those
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constructed as we have done in the Cartan model. To elaborate briefly, there
are two ways to obtain equivariant cohomology classes on V7 from an equiv-
ariant vector bundle. One is to use equivariant geometric objects associated to
the equivariant bundle on V™ to obtain classes in the cohomology of the Cartan
model as we have done. The other is to construct a (non-equivariant) vector
bundle on V7 x1 E'T, then construct its characteristic classes in singular coho-
mology to obtain cohomology classes on V™ xp ET. There is an isomorphism
between the cohomology of the Cartan model and the topological definition of
T-equivariant cohomology called the equivariant de Rham isomorphism. See
[17] and [30]. Bott and Tu show that the two constructions described com-
mute with this isomorphism. It follows that the following diagram in which
the vertical map is the equivariant de Rham isomorphism

Hr (VT R)*
[

Ei(V)®C—= Ki(V)®@CP oo Hy (VT R)

commutes. Precomposing with the map which restricts from V to V7 then

decomposes into T-eigenbundles, we obtain

Chr ®Id \L

E(V)®C—= K:(V)®C —= Ki(V)®C; gz HyP (VT R)"
NT
[E] ——— > 7" [E]]

=1

(4.97)

The bottom row is the isomorphism 1 rgr and from equation (4.89) it is clear
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that the diagonal is the delocalized Chern character Chg. Therefore
Chgy : KT(V). ®RC —> H@(V; IR).

is an isomorphism. Since the action is locally free on U n V, Chy is an
isomorphism on U NV as well. It follows by the Mayer-Vietoris sequence and

the Five Lemma that
Chy : K3(M)® C — Hg(M;R)*

is an isomorphism. [
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Chapter 5

Differential T-equivariant K-theory

We construct differential equivariant K-theory by generators and rela-
tions as before. This time, we take a free abelian group modulo a subgroup
generated by certain short exact sequences rather than pairs modulo the di-

agonal. This is inspired by and completely analogous to the construction of

Freed-Lott [27].

5.1 Even differential T-equivariant K-theory

Suppose that

L

0 B B, By 0 (5.1)

is a short exact sequence of equivariant vector bundles with invariant connec-

tions {V;}3_,, respectively, and let
o E3 g E2 (52)

be a splitting. Then
L@O‘ZEl@EgﬁEQ (53)

is an isomorphism.
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Definition 5.1.1. The triple Chern-Simons form of the three connections is

CS@(Vl,VQ,Vg) = CS@((L@U)*VQ, V1 @Vg) € .AT(M)_I/im (5) (54)

We see that this is independent of the chosen splitting as follows. Since
the space of splittings is affine, if 0’ : E3 — FEs is another splitting, there exists

a path v with v(0) = o and (1) = ¢’. Then
p(s) = (L@7(s) "(1®0): E1® B3 — 1 ® Es (5.5)

is a path of automorphisms with ¢(0) = Id. It follows from the additivity of

CS4 (equation 4.71) and lemma 4.72 that the sum
CSo((t@0)"Va, Vi@ V3) + CSy(V1 @ Vs, (1 ®0')"V3) (5.6)

is equal to

CSy((t®0)*Va, (L ® 0')*Vs) (5.7)

which is zero. Thus,
CS@((L &) O')*VQ, V1 &) Vg) = CS@((L @ OJ)*VQ, V1 ) Vg) (58)

Definition 5.1.2. The group Iv(%(]\/[ ) is the abelian group given by the fol-

lowing generators and relations. A generator is a triple
&= (E,V,n) (5.9)
where
e F — M is an equivariant vector bundle,
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e V is an invariant connection on F,
e ne Ap(M)~!/im (9).

The relations are & = & + &3 whenever there is a short exact sequence 5.1 of

equivariant vector bundles and
2 =M + 3+ CSy(V1, Vy, Vi) € Ap(M) ™ /im (). (5.10)

Definition 5.1.3. The group Iv({r(M ) for j even is defined as above with

n e Ar(M)’~1/im (§). In this case, equation 5.10 becomes

N =m +n3+ 5_j/2 CS4(V1,V2, V) € AT(M)j_l/im (6). (5.11)

Let Ar(M) < Ar(M)_].., denote the union of affine spaces of (de-
localized equivariantly) closed differential forms whose cohomology class lies
in the image of Ch,/ : K;7(M) — Hy(M)~7. Observe that two generators
(E,V,n) and (E,V,n') in degree 0 are equivalent if and only if there exists

an automorphism ¢ : ' — F and
n =n+ CSqy(p*V, V). (5.12)

In this case, there exists an equivariant bundle E, — M x S! with invariant

connection V such that

CS4(p*V,V) = J Chy(V) mod im (4) (5.13)
S1
n —neAr(M);. (5.14)
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Define the characteristic class (or forgetful) map on generators by

KR (M) —> Kp(M)

(5.15)
There is also a curvature map,
K§(M) ——= Az(M)5
(5.16)

[E,V,n] = Chg (V) - dn
It follows from equation 5.12 that w takes the same value on equivalent gen-
erators so is well-defined. By analogy with [40] we define flat IV(T—theory in

degree —1 to be the kernel of this map

Kb (M) = kerw. (5.17)

5.2 0Odd differential T-equivariant K-theory

Let £ — M be an equivariant vector bundle with invariant connection
V and let v : E — E be an equivariant automorphism of E. Let V be a

smooth path of connections with Vo = V and V| = v*V = y~1V~. Let
V' =V, + dsé,. (5.18)

Now let 71 and 7, be two automorphisms of E. Le V,, be a smooth path from
V to 4§V and let Vg, be a smooth path from V to (7172)*V and let

v’hﬂz = Slvsl + 52V32 + dslﬁsl + d52(332 (519)

For
A={(s1,89) €A*| 51 = 0,8, =0, and s; + s < 1} (5.20)
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1,
\Y%

the standard 2-simplex and 7 : M x A — M projection, ? is a connection

on m*FE — M x A. Let

CSH(V, 7, 72) = L Cho(V"'"?) € Ar(M)~2/im (0). (5.21)

Let {FE;}?_, be equivariant vector bundles with invariant connections

{V:}?_, and equivariant automorphisms {v;}?_, which fit into a diagram

L

0 E, E, Esy 0
71l % %l (5.22)
0 E, —> FE, F; 0

in which the rows are exact and the squares commute. The triple Chern-
Simons form is defined in degree —1 as follows. Let # : M x I — M be
projection and let o : F3 — FE5 be a splitting which makes 5.22 commute.
Then Vi®V3 and (1@B0)*V, are connections on 1@ FE3. Let W = m*(E1®E3)
and let I' = 7* (7, @+3) be the induced automorphism of W. Choose a smooth
path of connections from 7*(V; @ V3) to 7*(¢ @ 0)*Va. This determines a

connection Vi, on W.

Definition 5.2.1. The triple Chern-Simons form in degree —1 is the form
OS5 (Vallor ) = | CS0(T" T, Vi) € (M) 3). - (5:29)
[0.1]

Definition 5.2.2. The group [?f 1(M) is the abelian group given by the fol-

lowing generators and relations. A generator is a quadruple
£ = (E,Y,7.7) (5.24)

where
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e [/ — M is an equivariant vector bundle,

e V is an invariant connection on F,

v : E — FE is an equivariant automorphism

n e AT(M)_Q/im (0).
The relations are

1. & = & + & whenever there is a commutative diagram of equivariant

vector bundles 5.22 and

N2 =" + 13+ CS@({V,-}le, {i ?:1),

2. (Eavvfylao) + (E,V,")Q,O) = (E7v7’71727089(v771772))'

Definition 5.2.3. The group [v({r(M) for j odd is defined as above with 7 €
Ap(M)7~1/im (§) and the relations suitably shifted by a power of 3.

Let E — M is a bundle with two commuting (equivariant) automor-
phisms v and ¢. Let V' be the connection constructed as in equation (5.18)
on E, > M x S*. Let p: M x S* — M be projection, then since yp = ¢,
® := p*p determines an automorphism of £,. Choose a path from V' to

®*V" and let V be the corresponding connection on (Ey)e > M x St x St

Observe now that the two generators (E,V,~,n) and (E,V,~,n) are

equivalent if and only if there is an automorhpism ¢ : E — E which makes
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the diagram

&5
lﬁ
&5

Lol o2

E %@ E
commute and
1 —n=CSy(®*V', V') = J J Chy (V) (5.26)
st Jgst
SO
i —neAr(M)2. (5.27)

The characteristic class and curvature maps are defined in degree —1

on generators by

K7 (M) —5 Kp' (M)
(5.28)
[E,V,v,n] —> [E,9]

and

~

Kp'(M) —— Ag(M) ™!
[E,V,7.1] = Ch;' (V") — én 2%
For non-equivariant differential K-theory K *, we adopt the model of
[27] excluding the hermitian metrics. Thus, a generator of K9(M) is a triple
(E,V,n) where E — M is a vector bundle with connection V and 1 €
Q(M:R)'. A generator of K (M) is a quadruple (E,V,~,7n) where 7 :
E — FE is an automorphism. The relations are the basis for our relations
so are completely analogous. There are analogous non-equivariant character-

istic class and curvature maps and Kj§,, is the kernel of the non-equivariant

curvature map.
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Lott indicates in [40] that K3, (M) is isomorphic to K*(M;C/Z). The
proof is apparent from the description in [7] section 5 and [35] section 7.21. We
present the details in the next section and use the same method to construct

an isomorphism

K (M) = K*(M;C/Z). (5.30)
See appendix E for a description of the models we adopt for K-theory and

equivariant K-theory with C/Z coefficients.

5.3 A map K; (M) — K*(M;C/Z)

Let M be a smooth manifold. There is a curvature map given in degree

0 by
K°(M) 25 Q(M; R)%
(5.31)
[E,V,n] = Ch(V) —dn
and in degree —1 by
K7 (M) == Q(M; R
(5.32)

[£,V,7,1] > Ch™ (V) — dn

of which I?é;tl (M) is the kernel in degree j. We will construct a map
F: K. (M) — K*(M:C/Z) (5.33)
as follows. We describe the map in degree —1 first. There is a map
K= (M; Q) =% K7 (M Q/Z) @ H(M; R)™ (5.34)
described in appendix E and

K ' (M;C/Z) = coker(p, —t). (5.35)
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We will construct a map
Kot () 25 K1 (M Q/Z) @ H(M; R)
(€] - [T (a,b)

that depends on choices, then show that making different choices changes (a, b)

(5.36)

to (a + p(c),b—i(c)) for some c € K~1(M;Q) so that (a,b) is unique up to an

element of the image of (p, —¢).

We first construct I'. Let € = (F,V,n) and & = (E', V', /') represent
an element [&] — [¢/] € K, !

flat

(M). Then
Ch(V) —dn = Ch(V') —dy'. (5.37)

It follows that rank £ = rank £’. The Chern character Ch : K°(M;Z) —
H(M:;R)° has kernel the torsion subgroup of K°(M;Z) and Ch([E]| - [E']) is
represented by Ch(V) — Ch(V') = d(n—1') so |E] — [E'] is a torsion element
of K°(M;Z). Thus, for some n,

[nE]—[nE'l=0 (5.38)
so for some k = nm, there exists an isomorphism
n(E®C") = n(E'@C™) (5.39)

Adjusting our representatives € and & by adding (C™,d,0) to both, we may
assume that £ and £’ are bundles such that there exist an isomorphism nF —

nkE’. Let ¢ be such an isomorphism. This defines an element

[E,E' ¢l e K Y(M;Z/n7Z) (5.40)
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We set
a=T([&] -[&]) (5.41)
to be the image of [E, £, ¢] in the colimit K~ (M;Q/Z).

We now construct the other component T of our map. There is one
obvious connection V¥ on nE. The isomorphism ¢ : nE — nE’ gives another:
©* (V') Let
CS(V®™, p*\V'on) c

C=n—n+ Q(M;R)~! (5.42)
Then
d¢ = dn —dn' + Ch(ve") _fh(w*v,®n)
—dn—dif + n Ch(V) ;nCh(V’) (5.43)
~ 0
so ¢ defines a cohomology class in H(M;®R)™!; we set
b:="T([€] - [€]) = [C]. (5.44)

Suppose now that we repeat the above construction, but this time us-
ing a different isomorphism v : nE — nE’. Let us add subscripts to our
constructions to distinguish those constructed with ¢ from those constructed
with . Thus, we now denote a,( and b by a, (s, b,. Then 1» = ¢y where
v = ¢~ is an automorphism of nE. Let us look at the T component first.

Observe that ¢*(V'®") = v*¢*(V'®") so up to exact forms

CS(VO", 1 (V9")) = CS(VE", " (V")) 4+ CS(* (V/E"), 4" (V'2").
(5.45)
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We thus see that

CS(QO*VI@H, ’7* (QO*VI®H)) .

n

Gy — Cp = Q(M;R)™. (5.46)

We must show that this term represents an element in the image of j = Ch™' :
K YM;Q) - H(M;R)"*. We will construct an element of K '(M;Q) of
which it is the image. Let V, = (nE), — M x S* (using the notation of
definition 2.1.1) and let V be a path of connections constant in a neighborhood
of 0 and 1 with Vo = ¢©*V'® and V; = v*(¢*V*®). Let V = V, + dsd.

Then V defines a connection on V,. Let p: M x S* — M be projection and

set
c= [V’V]_nﬂ e K~L(M; Q). (5.47)
Then ¢(c) is represented by
1 - * *\7/Pn *\7/Pn
—f on(v) = SOEVE), VT o). (5.48)
n Js1 n
Thus
CS *vl@nj * *vl@n
Co— o+ (¢ 73 (" Vo))
CS * *vl@n’ *vl@n
_¢,— (v (e )¢ ) (5.49)
n
SO
by = b, — j(c). (5.50)

Next, if we construct the first component I' using ¢ instead of ¢, ay

is the image of [E, E',¢] € K~'(M;Z/nZ) in the colimit K~*(M;Q/Z). We
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must show that ay = a, 4+ p(c). For p : M x S* — M, the element ¢ €
K~1(M;Q) is the image of

g=[V,]—[p*nE]l € A, = K (M;Z) (5.51)

in the colimit which defines K-theory with Q-coefficients so p(c) is the image
of the reduction mod n of ¢ in the colimit K—(M;Q/Z). We have

ce A, =K YM;Z) —> K '(M;Z/nZ)> & mod n

T

ce K (M;Q) e KM Q/Z) 3 p(0)

p

and we show in appendix E (equation E.11) that
[V,V', 4] = [V, V', &] = & mod n. (5.53)

It follows that
a5 — a, = pl0) (5.54)
as desired.

In degree 0, the construction is very similar. If [E] —[€'] is in the kernel
of the curvature map in degree 0, let € = (E,V,v,n) and & = (E', V', v/, 1/).
Then (E, V,7) defines a bundle £, — M x S* with connection V" and similarly
for (E', V', ~') and the element [E,]—[E!,] € K°(M x S*) is torsion. Choosing
an isomorphism ¢ : nE, — nE,, we obtain an element of K°(M;Z/nZ). This
determines the first component of F' in degree 0. For the second, set

-1

Co=n—n"+ ﬂ— CS(go*vV@n,V@n) e Q(M;R)° (5.55)

n S1
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Showing that the image of F' is unique up to the image of (p, —t) is completely

analogous to the degree —1 case.

Finally, suppose that we carry out the above construction this time
for m # n. Let us choose an isomorphism ¢ : mE — mE’ and let (ag, by)
be the resulting element of K1 (M;Q/Z)@® H(M;R)~'. Then we get an iso-
morphism n@ : nmE — nmE’ and a corresponding element (a,g, b,z). Then
[E,E' \ngl e KY(M;Z/nmZ) and [E, E',n| = n[E, E', $] so the images of

[E,E',ng]| and n[E, E', ] in the colimit are equal,

(pg = ag € Kﬁl(M; Q/7). (5.56)
Similarly,
) CS nN* vl@nm 7V(—Bnm
Gup = —of + DTV
nm
ok em em
gy 4 RESEVE), V) od im (d) (5.57)
nm
= (3 mod im (d)
SO
by = bz e H(M;R)™! (5.58)

It follows that for ¢ : nE — nE’ the original isomorphism of our construction,
Umy = Gy and by, = by. (5.59)

Thus (a., b,) corresponds to the isomorphism my : nmE — nmE’ and (ag, by)
corresponds to the isomorphism n@ : nmE — nmFE’. It follows that the

difference

(@mgs bng) = (@ng, bnp) (5.60)
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is in the image of (p, —t) so the constructions using n and m determine the

same element of the cokernel K1 (M;C/Z).

5.4 The map K, (M) — K*(M;C/Z) is an isomorphism
We will show that the map constructed in the previous section is an

isomorphism by showing that both lV(f'lat(M) and K*(M;C/Z) fit into long

exact sequences, map one long exact sequence to the other, and use the Five

Lemma. K*(M;C/Z) fits into the long exact coefficient sequence
oo —> K YM;C) = K Y(M;C/Z) — K (M;Z) —> - (5.61)

The sequence (E.6) is the long exact sequence corresponding to the coefficient
exact sequence 0 — Z — Z — Z/nZ — 0. One constructs the long exact
sequence corresponding to 0 — Z — Q — Q/Z — 0 from this by taking
colimits as one constructs K*(X;Q/Z) from K*(X;Z/nZ). From this, it is
easy to construct the sequence (5.61). The following lemma is due to Karoubi;

it appears in [35] section 7.21.

Lemma 5.62. The flat differential K -theory group I?f’lat(M) fits into the long

exact sequence

> HOM;R) ' 5 K (M) 5 KOOM;Z) -5 H(M;R)® > ...

(5.63)

where
1. j: HM;R)™" — I?Ealt(M) is given by, for a a closed —1-form with
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a = [n],
jla) =[C",d,n] - [C",d,0]

2. k is the forgetful map,

k([Evv777] - [E/7V/>77,]) = [E] - [El]a

3. 1 is the map induced by the inclusion Z — C followed by the Chern
character isomorphism Ch : K*(M;C) - H(M;R)*, and

4. j: HM;R)" — I?gat(M) is given by, for a a closed 0-form with o = [n],
jla) =[C",d, Id,n] — [C",d, Id,0]
Proof. We first verify exactness at H(M;R)™!, Kz L(M), and K°(M;Z).

1. Exactness at K°(M;Z). The kernel of ¢ is the torsion subgroup of
K°(M;Z) so by definition of K (M), ik = 0. If [E] - [C"] € K°(M; Z)
is in the kernel of ¢, then if V is any connection on E and d is the trivial
connection on C", Ch(V) — Ch(d) represents the image under i so is an
exact form. Thus, there is a —1-form 1 such that Ch(V) — Ch(d) =
Ch(V) —rank E = dn. Then

[E]=[C"] = K{[E,V,n] = [C", d,0]}. (5.64)
2. Exactness at Iv(ﬂ’ai(M). It is clear that kj = 0. If
E—& =[E,V.n—[E.V y]e Ky (M) (5.65)
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is in the kernel of k, then there exists an isomorphism « : E @ C* —

E' @ CF and
E—&=[EaC Vadn - [EaC, Vadrn] (5.66)

Then
[E'eChV'@dn]|=EaC!,Vad] (5.67)
where " = ' + CS(a*(V' @ d), VB d) so
E—&=[E®C,Vadn -[E®C,V®dn]

= [E.V,n] - [E,V.7"] (5.68)

Now, let F' be a complement to E so there exists an isomorphism FPF =~

C" and let Vg be a connection on F. Then adjusting our representatives

&€, & by adding (F, Vg, 0) to both we have
E-&=[C",V®Vrn—-[C,V®VEr1"]. (5.69)
Changing representatives one last time we have

E=&=[C"d,q]-[C",di"]
= [@7’7 d? 77 - 77/,] - [@ra d, 0] (570)
= j(m=1"1)

where 7] = n+CS(V@®V g, d) and similarly for 7”. Therefore the sequence

is exact at kf;alt(M).
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3. Exactness at H(M;R)™*. Let v be an automorphism of the trivial bundle
of rank r over M x I and let W, — M x S* be the bundle obtained
by gluing the ends via v as in the previous section. Every element of
K=Y (M;Z) of of the form [W,] —[C"]. Let V be a path of connections

from d to v*d and let V be the corresponding connection on W,. Then

1= = | @) = cserda) 6T
]Z{[W’Y] - [QT]} = [QTv da CS(’V*CL d)] - [@r7 d> 0] (572)

One readily deduces from the relations which define K O(M) by consid-

ering the exact sequence

0 C > 0 0 (5.73)
that these two triples are equivalent so their difference is zero. Therefore
ji = 0.

Next, suppose that for a = [n] € H(M;R)™ !, j(a) = 0. Then
(C",d,n) ~ (C",d,0). (5.74)

It follows that there exists a short exact sequence of vector bundles over
M
0 cC > 0 0 (5.75)

and

n=0+0+CS(v*d,d) (5.76)

so indeed a = Ch™([W,] — [C"]) = i([W,] — [C"]).
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To show exactness of the next portion
o> H(M:R)° > K, (M) > KNM;Z) > H(M;R)' > .. (5.77)

of the sequence is completely analogous. Since all of the groups are periodic

with period 2, this completes the proof. O

Lemma 5.78. The following diagram commutes

~

K-YM;Z) —> H(M; R)™ L= K;1(M) —5 KO(M;Z) —> H(M;R)°

O A A

K™Y (M;Z) == K~'(M;C) — K~'(M;C/Z) > K°(M;Z) = K"(M;C)

k4

Proof. The vertical maps marked = are the inverses of the Chern character
isomorphisms in the given degree. It is clear that the squares on the ends
commute. The map 7 is given by the composition

K Y (M;C) — K ' (M;Q/Z)® H(M;R)"' — K (M;C/Z)

(5.79)
€| (0,Ch (&) ——= [0,Ch 1(&)]

where Ch™" is the Chern character in degree —1 (not the inverse) and brack-
ets indicate the image in the quotient group. It follows that for o = [n] €

H(M;®R)™! going around the square

HM;R)™ L >

l lF (5.80)

a—> [0, al. (5.81)



Going around clockwise is given by
a—=> Fj(a) = F([C',d,n] — [C,d,0]) = [a,0] (5.82)

To construct the first component of F(|C",d,n| — [C",d,0]), we can choose
n = 1 and the isomorphism C" — C" to be the identity. Then a = I'j(«) = 0.
The second component

b="Tj(a) (5.83)

is the cohomology class of n + CS(d, d), but CS(d, d) is an exact form so
b=T[n] = a (5.84)

and we have

Fj(a) = [0,q] (5.85)
so indeed, the square commutes.

Finally, the map marked b is the Bockstein homomorphism. In our
model of K~'(M;C/Z) it is given as follows. K '(M;Q/Z) is defined as the
colimit of the diagram of groups A,, = K~ (M;Z/nZ) where, if m = kn there is
a unique map A,, — A,, which is multiplication by k. Returning briefly to the
notation A =B =M x S? and g = 1y x Zf,, KY(M;Z/nZ) = K°(B, A, g).
For each n there is a map, the connecting homomorphism in the long exact
sequence,

K°(B,A,9) = K Y(M;Z/nZ) —> K°(M;7Z) = K°(X x 5%, X x {pt})
[V.V', &l Vi-[V'].

(5.86)
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These induce a map on the colimit K~(M;Q/Z) — K°(M;Z) by the universal

property. Precomposing with projection gives a map
b K™Y (M;Q/Z)® H(M;R)™" — K~Y(M;Q/Z) — K"(M;Z)  (5.87)
When we constructed F', we showed that the difference of two elements
V.V, ], [V.V' ¢l e K~ (M;Z/nZ) (5.88)

is the reduction mod n of an element ¢ € K~(M;Z) which was a lift of ¢ €

_ ~.

K=Y(M;Q) and deduced that the difference of the images [V, V'3], [V, V', 9] €
K=YM;Q/Z) is p(c) where p: K~}(M;Q) — K~Y(M;Q/Z) is the reduction
mod Z. It follows that b is constant on the fibers of the quotient map so
descends to a map
K (M;Q/Z) @ H(M; R) ™ > KO(M; 2)
l / (5.89)
K '(M;C/7)

Let [&] — [&'] € KzL(M) with & = (E,V,n) and & = (E',V',7/) and let
[E,E',¢] = T([€] = [€']) denote the image of [E, E', ] € K~'(M;Z/nZ) in
the colimit K~ '(M;Q/Z). Unraveling the definitions of F and b we see that

bE(E — &) = W[E. B oL, = [E] - [E € K°O0M:Z)  (5.90)
is indeed the forgetful map £ so the remaining square does commute.

The proof that the portion of the diagram centered on F : [v(gat(]\/[ ) —
K°M;C/Z) commutes is again entirely analogous. This completes the proof.

]
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Corollary 5.91. The map
F: K. (M) —> K*(M:C/Z) (5.92)
s an isomorphism.

Proof. Both sequences are exact and the two maps on either side of F' :
[v(ﬂ'at(M ) — K*(M;C/Z) are isomorphisms. The Five Lemma then implies

that F'is an isomorphism. ]

5.5 An isomorphism [v(q},ﬂat(M) — K3 (M;C/Z)

For M now a smooth T-manifold, we have the analogous equivariant
curvature map w defined in equations 5.16 and 5.29. We set [v(%jﬂ;t(]\/[ ) to be

the kernel of the equivariant curvature map in degree j.

We construct a map
F: Kp4oi(M) — K3(M;C/Z) (5.93)

as before. The previous construction holds in the equivariant setting because
the kernel of the delocalized Chern character Chy : K3(M) — Hy(M)® is
again the Z-torsion subgroup. Thus if [E]—[&'] € [V(i}qat(M) with & = (E,V,n)
and &' = (E', V', 1), we deduce as before that for some n, [nE]—[nE’] = 0in
K2(M) so may once again assume that there exists an isomorphism ¢ : nE —
nkE’. This is how we construct the first component of F. We construct the

second component as before now using delocalized equivariant Chern-Simons
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forms. This produces an element (a,b) = (a,,b,) € Ky (M;Q/Z)®Hy(M)™1,
Repeating the construction with ¢y = ¢7, we have already indicated that

ay = a, + p(c) where

[V,] = [p*nE] c

n

K (M;Q) (5.94)

C =

and showing that by, = b, —(c) is completely analogous to the non-equivariant
argument. The construction in degree 0 is also analogous to the non-equivariant

one. We thus get a well-defined map
F: K3 (M) — K3(M;C/2) (5.95)

The groups K3(M;C/Z) fit into a long exact sequence corresponding to the
coefficient short exact sequence 0 — Z — C — C/Z — 0. The groups
Iv({r’ﬂat(]\/[ ) fit into an exact sequence analogous to the non-equivariant flat

differential K-groups.

Lemma 5.96. In the diagram,

Ki'(M;Z) —> Ho(M; R)™ L Kih (M) —> KQ(M;Z) —> Hy(M;R)°

R

E:'(M;Z) o—= K7'(M;C) — K7 '(M;C/Z) —> Kx(M;Z) =2 Kz(M;C)

the rows are exact and the diagram commutes.

Sketch of proof. Proving that the non-equivariant sequence was exact used
that every bundle has a complement, that Ch : K*(M;C) — H(M;R)* is

an isomorphism, that every element of K~!(M) can be constructed from an
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automorphism of a bundle over M, and the relations which define K *(M).

The above facts hold in the equivariant setting and the relations which define

lv(q}(M ) are completely analogous so we obtain an analogous exact sequence

for lv(iﬁat(M ). The proof that the diagram commutes is identical to the non-

equivariant case. 0

Corollary 5.97. The map

F: K3 4. (M) — K3(M;C/Z) (5.98)

1S an isomorphism.

5.6 Exact Sequences for [v({r

and

Differential K-theory fits into exact sequences

Q(M;R)*! -, .
R K* (M) — K*(M) —> 0 (5.99)

0—> K*"YM;C/Z) —> K*(M) —> Q(M;R)% —> 0 (5.100)

We show that the equivariant theory fits into analogous exact sequences.

Let

Pr(M)" = {(c,a) € Kp(M) x Ap(M) | Chg(c) = [a]}. (5.101)

Proposition 5.102. There are exact sequences

AT(M).fl

A —> K3(M) -5 Ka(M) —> 0 (5.103)
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0 —=> K37 H(M;C/Z) — K3(M) =5 Ap(M)} —= 0 (5.104)
and

H@(M)._l
Chi, ' Kx (M)

o e (M) 25 Po(M)* —> 0. (5.105)

Proof. In degree 0: in the sequence 5.103, the homomorphism c¢ is clearly

surjective since every equivariant vector bundle has an invariant connection.

Define

h: Ap(M)™" — KoUM) (5.106)
by

h(n) = [C,d,n] - [C,d,0]. (5.107)

Here C is the equivariantly trivial bundle of rank and d is the trivial connection.

By equation 5.12, the kernel of h is Ap(M)%' so h induces a injective map

- Ar(M)™!

It is clear that coh = 0. We must show that ker ¢ = im h. Suppose that & — &’
is in kerc and let (E,V,n) represent & and (E’, V' 1) represent &’. Then
[E] = [E'] in K%(M) so there exists an isomorphism ¢ : E®@C" — E' @ C"
for some n. Note that here C" is a topologically trivial, but not necessarily

equivariantly trivial, bundle. We have

E-¢& =[E,V,n]—[E, V' "]
=[FC",Vadn—[FeC" V' &dn] (5.109)

—[E®C" Vad - [E®C, V.1
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Let F' be an equivariant bundle such that there is an equivariant isomorphism
EeC'"@®F =~ C". If Vg is any invariant connection on F, then adding

(F,Vr,0) to both representatives we have

&—8&=[C",Vi,n]—[C", V1]
= [T, Vi,n] = [C", V4, 7] (5.110)
=[C", V1,7 =] - [C", V1,0]
(5.111)

where 7' = 1 + CS4(V1,V2). Finally, it is clear from the relations which
define K9 that

[QT7 vb n— 77,] - [Qr7 vl? 0] = [Qv d’ n— ﬁl] - [Q’ d? 0] (5'112)
SO
E—& =hn{EH-7). (5.113)
Therefore the sequence is exact.

The sequence 5.104 is exact by corollary 5.97 that kerw is isomorphic
to C/Z-K-theory in degree —1.

The proof that the sequence 5.105 is exact is very similar to the discus-
sion the section 5.3. The map D is is just the map h on cohomology classes:

for « = [n] € Hy(M) ™,

() = [C",d,n] - [C",d,0].
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By equation 5.12 and the discussion there, if h([]) — h([7]) = 0, n — 1 €
Ap(M)%! so [n—n'] € Chy! Ki' (M) < Hy(M)™'. Thus,

o H_@(M)_l

: — KM
Ch;jl K’EI(M) T( )

is injective. The map y is defined by
X(€ —¢&") = ([E] - [E'], Chy(V) — dn — Chy (V') + d77')

where € is represented by (E,V,n) and €' is represented by (E', V' ;7). It
is clear that x o h = 0. We must show that ker y = im h. The kernel of X

consists of differences & — &’ for which

1. [E] =[£'] and

2. Ch@(V) - Ch@(V’) = 577 - (577,

The second condition implies that rank £ = rank E’. That [E]| = [E’] means
that there exists an isomorphism E@C" — E'@C". By adjusting the original
representatives, we may assume that there exists an isomorphism ¢ : £ — E'.
Observe that, as in the construction in section 5.3, the second condition implies
that

C:=n—n+CSy(¢*V' V) e Ar(M)™*
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is closed. Then
E—-& =[E,V,n]—[E, V7]
= [E> v, 77] - [E7 V, 77/ - CS@(SO*Vlv V)]
= [gn’ %7 77] o [Qn’ %7 77, - CS@(@*Vla V)]
=[C",d,n+p] = [C",d,n" — CSo(¢*V', V) + ]

=[C",d, (] -[C",d,0]

where in the third line we added a complementary bundle to £ and p =

CS@(%, d). Therefore, the sequence 5.105 is exact.

Showing that the sequences are exact in degree —1 is almost completely
analogous. One must use the second relation defining [v(f ! to show, for exam-

ple, that
[E7 d7 Y5 77] - [E7 da Y, 77/] = [@n, da [da 77] - [Qna d7 [d7 77,]
to deduce the exactness of 5.103. Since all groups are periodic with period 2,

this completes the proof. ]

5.7 Some Calculations

We again identify the representation ring R(T) of the circle with Z[t, t7}]

as in proposition 2.11.

Proposition 5.114. For T acting on the point and R(T) the representation
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ring of the circle, we have

o R(T) =0
Kalpt) = { (R(T)® C)/R(T) j= 1.

Proof. When j = 0, Ar(pt)’~! = 0 so by sequence 5.103 and proposition 2.11,

~

K2(pt) = K2(pt) = K°(pt) Q Z[t, t7'] = Z[t, t71].
When j = —1, K;'(pt) = 0 so by sequence 5.103,
Ki'(pt) = Ap(M) 2/ Ar(M)2 = C[t,t /2]t t'].
O

It is reasonable to ask if for free actions, by analogy with Proposition
2.9, [V({F(M) is isomorphic to Iv(*(M/']I‘) The answer is no: although every
equivariant vector bundle on M is isomorphic to a pullback, not every connec-
tion is pulled back. There are many more (delocalized equivariant) differential
forms on M than there are (ordinary) differential forms on M /T. Tt is also rea-
sonable to ask if for trivial actions, by analogy with Proposition 2.11, Iv({f(M )
is isomorphic to K*(M)® R(T). The answer is yes.

Proposition 5.115. If T acts trivially on M,

~

K:(M) = K*(M) ® R(T).

e

Proof. For [E,V,n] € IV(%(M), we may decompose (F, V) into its eigenbun-
dles, (E,V) = ((‘DZJL E,®Y, Vi), where T acts on E; by 7 + 7Fi. Since
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Ap(M)™ = Q(M; R)"' @ C[t,t™!], we may write

N+M

n—Zmﬁ+ > mit"

i=N+1

for n; € Q(M;R)~!. In this decomposition of  we have merely separated the

characters which appear in the decomposition of E from those which do not.

Then

N N+M

|E,V,n] = Z [E:, Vimit™ ]+ > [0,0,mit"].

i=1 i=N+1

Define
W KO(M) — K°(M) ®y Z[t, t™]

by

N N+M

=1 i=N+1

where [E;, V;,m:] € K°(M) is the element obtained by forgetting the T-action
on E. Tensoring the sequence 5.99 with R(T) = Z[t,t"'] over Z preserves
exactness since a Laurent polynomial is zero if and only if all of its coefficients

are zero. This gives the bottom row in the following diagram

Q(M;R)~' ® R(T)

0 Q(M; R) < ® R(T) f(%iM) — K%iM) -
V= P ~
o s QILRT@R) _ pg o m i 8t oy b

QM;R)' @ R(T)
in which the top row is the sequence 5.103. We denote the forgetful map in

the top row by cr to distinguish it from the corresponding map in the non-
equivariant theory. It is clear that this diagram commutes so by the Five

Lemma, ) is an isomorphism in degree 0.
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For a generator [E,V,v,n] € Iv(q} L(M), since « is an equivariant auto-
morphism, it respects the decomposition of (E, V) into eigenbundles. We may
thus define ¢ analogously in degree —1 and the same argument shows that it

is again an isomorphism. 0
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Appendix A

Preliminaries on group actions

Let M be a compact smooth manifold with a smooth action of a com-
pact Lie group G. The following rapid review is based on [49] and appendix
B of [29]. By “subgroup of G” we will mean “closed subgroup of G”. For
m € M, we will write G,,, € G for the stabilizer subgroup {g € G | gm = m}
and for H ¢ G

M" :={meM|hm=mforal he H}
for the points fixed by H.

Proposition A.1 ([49] Prop 5.4). For m € M, the map v, : G/G,, — M,
gG, — g -m, is an embedding. Consequently, the orbit G - m is an embedded

submanifold G-diffeomorphic to G/Gp,.

Proof. The action map G — M, g — g - m is smooth, has constant rank, and
factors as G > G/G,p, Ym, M. Tt follows that Um : G/Gp — M is smooth. It
is injective and has constant rank so it is an immersion. Since G is compact,

Y, is an embedding. ]
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Proposition A.2 (GGK B.26). For m € MY a fized point, there exists a G-
diffeomorphism from an open neighborhood of the origin in T,,M to an open

neighborhood of m in M.

Proof. Let U < M be an invariant open set containing m and let f : U — T,, M
be any smooth function with df,, = Id : T,,M — T,,M. Then F : U — T,,M,
F(u) = §, g«f (9~ 'u)dg is smooth, G-equivariant, and has dF,, = Id. By the
Implicit Function Theorem, we may invert F' on a neighborhood of m to obtain

the desired G-diffeomorphism. O

Observe that for m € M, T,,M is a representation of (z,, which decom-
poses as
TuaM = (T, M)’ W =T, (G-m)®W
Proposition A.3 (Equivariant Tubular Neighbhorhood Theorem, GGK B.24).
For m e M , choose a G,,-invariant metric. There exists a disc D < W and

a G-diffeomorphism ¢ : G xg, D — U < M onto an open neighborhood U of
the orbit G - m such that ¢[g,0] = g - m.

Proof. By the previous proposition, there exists a GG,-diffeomorphism
{open neighborhood of 0 € T, M = T,,(G - m) ® W}
wl (A.4)

{open neighborhood of m € M}.

Choose a G,,-invariant metric on M and let D' < W be a disc about the origin

contained in the domain of 1. Define ¢ : G xg,, D' — M by
plg.v] = g- ().
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Then ¢ is well defined and a local diffeomorphism at [e,0]. Since ¢ is G-
equivariant, it is a local diffecomorphism at [g,0] for all g € G. To see that
there exists a disc D < D' and neighborhood U < U’ of the orbit G - m
such that ¢ : G x¢g,, D — U is a diffeomorphism, we argue by contradiction.
Suppose that ¢ is not injective for any D < D’. Then there exist v,,w, € W

with v,, w, — 0 and g,, h,, € G such that |g,v,]| # [hn, w,] but for which

Gn - w(vn) = (p[gnavn] = (p[hmwn] = i - w(wn)

We may assume without loss of generality that h, = e for all n. (If not, we

take G, = h, 'g, and ﬁn = e.) The G-action determines a map

a:GxM-—>MxM
(g,x)l%(gx,x)

Since the action is proper, « is a proper map. We have

G, Y(Vn)) = (gn - Y (0n), ¥(vn)) = (W(wn), Y (vn)).

This sequence in M x M converges to (m,m). If K < M x M is a com-
pact set containing (m,m), then a~!(K) is compact so contains a convergent
subsequence (gy,, ¥ (vn,)) = (g, m). On the one hand,

Plgn; 00,1 = 2190, 0] = goo = $(0) = goo - .

On the other hand,

ple,w,] 25 ¢le, 0] = m.

Since ©|gn, vn] = ple, wy], it follows that gy - m = m. Therefore g, € G, S0
[9:0,0] = [e,0] € G x¢, D'

92



We have shown that [g,,, vy, ] and [e, w,,] are two sequences in G x¢,, D" which

converge to [e, 0] and
(p[gnjv Unj] = 90[67 wnj]'
Thus, ¢ is not injective on any neighborhood of [e, 0] which contradicts that

it is a local diffeomorphism at that point. It follows that there exists a disc

D < D’ and a neighborhood U < U’ of the orbit G - m such that
@Y G X Gm D—-U
is a G-diffeomorphism. O

Proposition A.5. For any non-trivial subgroup H, MY is a disjoint union

of closed submanifolds.

Proof. That the action is continuous implies that M*# is closed. Let F be a
connected component of M and let m € F. Consider M as an H-manifold
and apply Proposition A.2 to obtain an H-diffeomorphism ¢ : V' — U for
opensets 0 Ve T;,,M and me U < M. Then ¢ : V n (T, M) — U~ MH"

is a diffeomorphism. n

The orbit type of m € M is the conjugacy class of its stabilizer G,, in

G. The orbit type is constant on an orbit because the stabilizer of g - m is

9Gmg .

Proposition A.6 (GGK B.39). M has finitely many orbit types.
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Proof. Cover M by equivariant tubular neighborhoods of orbits and choose a
finite subcover. If we can show that for an H-vector space W, G x g W has only
finitely many orbit types, it follows that M does. Thus, consider M = Gx g W.
We proceed by induction on the dimension of M. If dim M = 1, then either
H=Gand dimW =1 or dimG/H =1 and W = 0. In the first case, W is a
1-dimensional vector space on which H = G acts. If there extists a g € G and
a nonzero w € W such that g-w = w, then by linearity, g acts trivially on W.
If K is the kernel of the representation G — Aut(W), then for any nonzero
weW, K cG,and G, < K so G, = K. It follows that the only orbit types
are (K) and (G), corresponding to the nonzero vectors and the zero vector,

respectively. In the second case, W = 0. Since
[e,0] = [aa~%,0] = a- [a,0],

[e,0] and [a,0] have the same orbit type. The stabilizer G = H so the
orbit type of any [a,0] € M is (H). Thus, the only orbit type is (H). For the
inductive step, assume that every G-manifold of dimension < n has finitely
many orbit types. Let M = G x g W have dimension n and fix an H-invariant
inner product on W (so H acts unitarily on W). For |a,w] € M, if w = 0,
[a, w] has orbit type (H). If w # 0, [a, w] has the same orbit type as |a, w/|w]]:
that the action is linear implies H,, = H. . Let S W < W be the unit sphere,
and let N = G x5 S™. Then N has dimension n — 1 and [a, w/|w]|] € N. By
hypothesis, N has only finitely many orbit types. Since the orbit type of every
point in M is the orbit type of a point in N, M has only finitely many orbit

types. O]
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Appendix B

Integration along the fiber

B.1 Non-equivariant case

See [16] page 37 for a thorough discussion and proofs. Let M be a
compact smooth manifold, let S! be the circle with its standard orientation
and let p : M x S* — M be projection. Integration over the circle defines a
map

fl =ps: QUM x S R)Y — Q(M;R) !
S
By Stokes’ theorem,
pxd = dp,
SO P, 1S a chain map
L — e (Q(M x SR)",d) = (UM R, d)
and thus induces a map in cohomology
fl e H(M x SLR)* —> H(M;R)*!
S

called integration over the fiber (or push forward). Let p and 7 be the projec-

tions

M x St
VRN
M St
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then by the Kunneth theorem ([16] p.47), there is an isomorphism

H(M;R)* @ H(S';C)* = H(M x S';R)*

w&nt pw AT
Fix a point pt € S and let i : M = M x {pt} — M x S* be the inclusion, then

we obtain an exact sequence
0 —= keri* —> H(M x S;R)* > H(M;R)* —= 0
where ¢* is surjective because ¢*p* = Id. By the Kunneth theorem, we have
H(M x S R) = (HM;R°) @ H°(S";C)) ® (H(M;R) ' ® H'(S';C))

If ds is a volume form on S! with volume 1, then i*ds = 0. We may thus
identify ker ¢* with the second summand above. Finally, since integration over

the circle is an isomorphism H'(S';C) — C, the integration map
P HM;R)™'@ H (S C) —> H(M;R)™*

is an isomorphism. We thus see that p, is an isomorphism

0 — > keri* — > H(M x S5 R)° > H(M;R)° —= 0

%lp*

H(M;R)™
on the kernel of i*. Observe that under the Kunneth isomorphism, p, is the

map

P(P*w A TN) = w A pun (B.1)
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We will refer to this formula as the push-pull formula. It says that H(M x
St R)* and H(M;R)* are both H(M;R)*-modules and that p, is a map of

modules. A special case is the formula

p«(p*w) = 0.

If we replace S' by S™ above, the same argument shows that p, defines an

isomorphism

0 > keri* — = H(M x S R)° > HM;R)® —=>0

N\Lp*

H(M;R)™

where now i is the inclusion M x {pt} — M x S™.

B.2 Equivariant case

Let M be a compact smooth T-manifold and consider M x S* as a T-
manifold with trivial action on the second factor. Let & be the vector field on M
which generates the T-action. There is a canonical isomorphism 7' (M x S') =~
TM @ TS* under which the vector field which generates to the T-action on
M x S'is (£,0). We will denote both the vector fields on M and M x S* by

¢ and rely on context. Extending integration to be linear over u gives a map
f — pa: Co(M x SV —> Cn(MY~!
Sl

One readily checks that for n € Cp(M x S1)*

Lgf n= J Lg?].
St S
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It follows that

d']l‘p* = Dx d']l‘

SO py is a chain map
Ll = pe: (Or(M x SY*, dyp) —> (Cr(M)*~Y, dr)
and thus induces a map in cohomology
pe : Ho(M x 8% R)* — Hy(M;R)* !

The Kunneth theorem holds in equivariant cohomology as well so the discus-
sion of the previous section extends to the present context. More generally, if
p: M x S™— M is projection and i : M x {pt} — M x S™ is inclusion, p,

defines an isomorphism

0 ker i* He(M x S R)° > Hy(M;R)® —> 0
Q\LP*
HT(M,R)in

which also satisfies a push-pull formula analogous to equation B.1.

98



Appendix C

The Complex of Basic Forms and Equivariant
Cohomology

Let G be a compact Lie group with Lie algebra g and M a compact
smooth G-manifold. For X € g we denote by the same letter the corresponding

vector field on M.

Definition C.0.1. A differential form w € Q*(M) is basic if it is

e invariant, g*w = w for all g € G, and

e horizontal, txw = 0 for all X € g.

Let Q*(M)pas < Q°(M) denote the subalgebra of basic differential
forms. If the action is free, then M /G is a smooth manifold, 7 : M — M /G is

a principal G-bundle, and the basic forms on M are exactly those forms pulled

back from M/G.

C.1 Koszul’s theorem

Koszul’s theorem states that the complex of basic forms on M computes

the real cohomology of the quotient M /G. Let m : M — M /G be the quotient
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map. The argument goes as follows. For k € ZZ°, let ¥ — M /G be the sheaf

that to an open set U < M /G assigns
FHU) = Q¥ (77U ) pas-

One proves a Poincaré lemma which shows that the complex of sheaves

0 R go_do gt 4o g2 4

is an acyclic resolution of the constant sheaf R — M/G. Tt follows by the
uniqueness of sheaf cohomology that the complex of basic forms on M com-

putes the real cohomology of M/G.

Theorem C.1 (Koszul’s Poincaré lemma). Let w be a basic form on M. If w
1s closed on an equivariant tubular neighborhood of an orbit in M, then it is

exact on that neighborhood.
Koszul describes the proof in [37]. We include it for completeness.

Proof. Let p e M be a point with stabilizer H < GG and let G- p be the orbit of
p. By Proposition A.3 the orbit G -p has an equivariant tubular neighborhood
of the form N = G x yV where V is representation of H. N is the vector bundle
associated to the principal H-bundle G — G/H. It follows that pullback by

the projection map mg : G x V — G x gz V gives an isomorphism
T QNG xg V) = QG X V) g bas

where H bas denotes the forms which are basic for the H-action. In fact, G

also acts on G x V' by its action on (the left) on G and this commutes with the
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H action so there is a G x H action on G x V. This descends to a G-action

on N = G xg V. Pullback by 7y restricts to an isomorphism
T (G x g V)gbas — (G X V) Gx i bas

Now, GxV — (GxV)/G =V is an (H-equivariant) principal G-bundle. Our

diagram looks like

GxV
N
GxgV GxgV =V

It follows that pullback by 7g defines an isomorphism
7ot (V) Hbas = Q* (G x V)GxHbas

We have thus identified the G-basic forms on the neighborhood N of the orbit
of p with the H-basic forms on V. Now that we are in a vector space, we can
use the standard proof of the Poincaré lemma (see [22] chapter 4, section 3).
Let w be a closed H-basic form on V and let F' : V x [0,1] — V be the map
F(v,t) = tv. Then F' is an H-equivariant homotopy from the identity map on
V' to the constant map. Let ¢; : V' — V x {i} be the inclusions for i = 0,1,

and let
K:Q(V x[0,1]) = Q" HV)

be the map

[
(0,1]
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Let W = F*w € Q*(V x [0,1]), then we have
o — 1w = dKw + Kdw

which reduces to

w=d(Kv).

Now, the H-action on V' x [0,1] is trivial on the second factor so for any
X € Lie(H), txK = Kux. Then, since pushforward by F just scales the vector

field X, one readily checks that K@ is basic. This completes the proof. [

It follows by the uniqueness of sheaf cohomology that

Theorem C.2 (Koszul).
H(Q*(M;R)gpas, d) = H*(M/G; R).

C.2 The Weil Model, the Cartan Model, and Locally
Free Actions

Let M be a compact smooth T-manifold and let t = Lie(T) = iR. As
usual, we let £ denote both i € t and the vector field on M which it generates.

The Weil complex of M is
W*(M)=Q"(M)®@A*(t") ® Sym*®(t*)

Let # € A'(t*) and u € Sym'(t*) denote the generators, thus 8(¢) = u(¢) = 1.

The grading is by total degree, degf = 1 and degu = 2. Then
We(M) =0 (M)® (RORI) ® R[u]
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The differential is the graded derivation which extends the de Rham d on forms
and satisfies

dd =u and du=0.

We extend the contraction operator and Lie derivative by
=60 =1 and ru=0

and define L, = die + ted. An element of the Weil complex is basic if it is

invariant and horizontal: that is, annihilated by L¢ and te. Let W (M),

bas

denote the subcomplex of basic forms.

Theorem C.3 (Cartan, Mathai-Quillen). There is a quasi-isomorphism

(W* (M)ps, d) == (M) [u]", dr)

a— Qo ———> «

a—0Biea I a

Now suppose that the T-action on M is locally free meaning that it has

finite stabilizers.

Theorem C.4 (Cartan). If T acts on M locally freely, the inclusion
3+ (0 (M)vas, d) == (W*(M)pas, d)

induces an isomorphism
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In this case, the vector field & which generates the action is nowhere
zero. Let v € QY(M) be an invariant one-form satisfying v(£) = 1. The
idea is that v and d~v will play the roles of 6 and u, respectively. A proof of
the corresponding theorem for G an arbitrary compact connected Lie group
appears in [30] chapter 5. We deduced this direct proof from the discussion

there.

Proof. Let @ be a homogeneous element of W*(M )p,s of degree d. Then we
can express  as
n
B= > G
r=0
Since @ is basic, the forms @, are basic so we can write them as

~

Wy = wy — OLew,
for homogeneous elements w, € Q4= (M)T. Define
I Wd(M)bas — Qd(M)bas

by

n

(W) = Z(wr — 7 A tewy) A (dy)"

r=0

That is, we replace 6 with v and u with dv, respectively. One readily checks
that 7 is a chain map. It may be that terms in this sum vanish for r < n. We

will define a chain homotopy

Q : Wd(M)bas - Wdil(M)bas

104



such that

dQ + Qd = Id — jm. (C.5)
We define it by
n r—1 . )
Q@) =D D10 =) Ay A (dy)Yur™
r=135=0

Observe that Q(@) is basic since t¢(6 — ) = 0 = teu and the forms &, and dy
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are basic. We verify equation C.5.

= Z (0 — ) A {dw, — utew, + Odiew,} A (dy)u" 7

r=1j=0
n r—1
= Z Oy A (dy) w7
r=1j5=0
r—1
_ Z &r A (d,y)wrlur 1—j
r=1j=0
n r—1
= Z Odw, A (dy)Yu" 177
r=14=0
A
n r—1
+ Z Z 9@5% (d’y)
N r=175=0 ,
B
n r—1
+ D207 Adwr A (dyYur T
. r=15=0 )
¢

rT—

1
Y A tewy A (dy)u"

n
r=1

7=0
D
n r—1
—ZZQ’}/Abgdwr (dy) w7
r=15=0
E
where we used in the last line that die = —i¢d since the forms w, are invariant
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so their Lie derivatives vanish. To calculate Qd(@), we have to write dw as a

sum of polynomials in u with basic coefficients. We have

dwr — utew, + Odw, )u"

(dw, — Oredw, )u" — Z ng,.urﬂ

r=0 r=0

M: I M:

Then

QA(®) = ) 326 %) A (ducr — Bredioy) A (dyPur

r=0j=0

Q<

n r—1

+220’7/\L5dw7« (dy)u" 17

r=135=0

(- ~

B
— Z Z Orew, A

r=075=0

g

B/

+ Zn: Zr] Y A wpte A (dy) "

r=0;j=0
. ~
e

D/

Thus, in d@Q + Qd, the terms marked A, C, and E cancel. For the remaining

107



pairs of terms we have

n r—1

B+ B' = Z Z Orew, A (dy)'u

r=135=0

= Zn] Zr] Orew, A (dy)'u

r=075=0
n

=— Z Orew, A (dry
r=0

and

n r—1

D+ D = ZZvAngT

r=1j=0

n T
—1—227/\%%/\

r=0 ;=0

= Z YA Lewr A (dy)"
r=0

We are left with

r=0 r=0
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n
Note that Z Oy A (dy)" is not quite jm (@) because the coefficients are
r=0

~

Wy = wp — Orew,  rather than w, — vy A tew,.
The last two sums exactly make the necessary substitution. Thus

(dQ + Qd)s = Y &y — (Z Wr A (dy)

r=1

+ Z Orew, A (dy)" — Z YA Lewy A (d’y)r>

r=0 r=0

r=0 r=0

Since 7 is the identity on Q°*(M )pas, mj = Id. Going the other way, jm is chain
homotopic to the identity so j and 7 are homotopy inverses to each other.

Therefore j induces an isomorphism in cohomology. O

Observe that the inclusions commute with the Mathai-Quillen map
(W* (M), d) =5 (M) [u]*, dr)
[
(€ (M)pas, d)
We will thus also denote by j the inclusion of the basic forms into the Cartan
complex. This is a chain map because on basic forms dr = d. By Koszul’s
theorem we may identify the cohomology of the quotient with the cohomology

of the complex of basic forms
H*(M/T;R) = H(Q* (M )pas, d).
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We thus obtain
Corollary C.6. The inclusion

5 (Q (M)pas, d) = (M) [u]*, dr)
induces an isomorphism

g H(M/T;R) = H(Q"(M)pas, d) —> H(QUM)" [u]*, dr) = Hr(M;R).

It follows that the inclusion induces an isomorphism with periodic co-

efficients, too.

Corollary C.7. The inclusion

J: QM; R)a = Cr(M)*

bas

L I

1_[ ﬁk—oQZk—o (M; (C)bas SR ﬁ ﬁk—oQ(M; C)T[U]Zk—.

k=0 k=0

induces an isomorphism

j:H(M/T;R)* —> Hp(M;R)".
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Appendix D

Invariant and basic connections

Let m : P — M be a principal G-bundle. Recall that for p € P
there is a well-defined vertical tangent space V), = kern, < T,P and writing
P,, := n~'(m), there are diffeomorphisms ¢, : G — Py, given by g — p - g.
Identifying g with the left-invariant vector fields on G, recall that the Maurer-
Cartan form of G is the g-valued one-form wyc that takes v € T,G to the
unique left-invariant vector field that it generates. A connection on P is a

one-form w € Q(P; g) satisfying
1. wpy = Ady1w,, and
2. ppw =wyc-

Equivalently, a connection is a smooth G-invariant distribution H such that
H,®V, =1T,P; the correspondence is H, <> ker w,. By the second condition,
for each p € P, a connection gives a splitting w, : T, P — g of the short exact

sequence

0 g —2% T,P "% Tp(yM —> 0.

A local section o : U — P gives a local trivialization ¢ : U x G — P|y,

(m,g) — o(m) - g, U x G has canonical horizontal subspaces, and pushing
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these forward by ¢ gives a connection on P|y. Since the space of splittings
of a short exact sequence of vector spaces is an affine space, we may average

local connections with partitions of unity to obtain a connection on P.

Suppose now that M is a T-manifold and that there is a T-action on P
which covers the action on M. A connection w € Q'(P;g) on P is T-invariant
if 7*w = w for all 7 € T. If § € Q'(P;g) is any connection, {,7*0dy is an
invariant connection. It follows that the space of invariant connections €5 on

P is a non-empty affine subspace of the space Cp of all connections on P.

Recall that if £ — M is a vector bundle and P — M is its principal
G-bundle of frames, then we may write E as an associated vector bundle
E = P xV for a representation p : G — Aut(V). Sections o(m) = [p, s(p)] of

1

E are thus in bijection with functions s : P — V satisfying s(p-g) = p(g)~'s(p).

If w is a connection on P, it determines a connection on E by
o Vo < s ds+ p(w)s.

From this expression, one readily checks that an invariant connection on E is

one induced from an invariant connection on P.

Consider again a smooth compact T-manifold M and a principal G-
bundle P — M with an action of T covering the action on M. Suppose now
that the action on M is locally free, has only finite stabilizers, and let & and
¢ be the vector fields on P and M, respectively, which generate the T-action.
Since € covers € and ¢ is nowhere zero it follows that € is nowhere vertical. A

basic connection on P is a connection w € Q!(P; g) which is a basic differential
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form for the T-action on P. Thus, w is invariant, 7*w = w, for all 7 € T, and

horizontal with respect to the T-action, tzw = 0.

We show the existence of basic connections as follows. The real span
of the vector field € determines a real sub-line bundle L < TP and for all
pe P, L,nV, =0. To make our connection T-horizontal, we must choose
splittings s, : T,P — g such that L, < kers,. For ¢ : U — P a local section
and ¢ : U x G — P|y the corresponding local trivialization, L determines a
smooth, nowhere vertical, real line bundle L « T(U x G). Choosing horizon-
tal subspaces which contain L gives a connection wy on P|y which satisfies
tgwy = 0. Since being horizontal is a linear condition, averaging horizontal
local connection forms by partitions of unity again gives a connection w on P

which satisfies tzw = 0. Finally, setting
W= J T wdp
T
yields a basic connection.

Finally, if the T-action on M has finite stabilizers and E is a T-
equivariant vector bundle, P its principal frame bundle and w is a basic con-

nection on P, then the induced connection V on E satisfies

Veo —Lio < tg(ds + p(w)s) — Qgs
< 1gds + plrew)s — (tgds + digs)
< tgds + 0 —1gds =0 =0
Thus, a basic connection on F, one which satisfies V¢ —LSE = (), is one induced

from a basic connection on P.
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Appendix E

Equivariant K-theory with C/Z-coefficients

E.1 Relative K-theory

Given a continuous map g : A — B of compact Hausdorff topological
spaces, we can think of the K-theory of B relative to A (with respect to g)
as the reduced K-theory of the mapping cone C(g) = B u, C'A. The cofiber

sequence of g gives the usual long exact sequence
K°(A) < K°(B) <— K°(C(9)) <= K Y(A) <~ K Y(B)... (E.1)

relating K*(A), K*(B) and K*(C(g)). Another helpful description of the rel-
ative K-theory is as equivalence classes of triples (E, E', ¢) where E, E' — B
are vector bundles and ¢ : g* E — ¢g*FE’ is an isomorphism. This is an obvious

generalization of the situation in which ¢ is an inclusion.

Definition E.1.1. Given g : A — B, let C(B, A, g) be the set of triples
(E,E',¢) where E,E' — B are vector bundles and ¢ : ¢*E — ¢g*E’ is an
isomorphism. An isomorphism of triples € =~ F = (F, F’ ¢) is a pair of
isomorphisms F — E’ and F' — F’ which make the diagram

J°E % "B

|
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commute. An elementary triple is one of the form P = (P, P, Id). Let ~ be
the equivalence relation & ~ JF if and only if there exist elementary triples P, Q
such that

ERP=TFQ.

Let K°(B, A, g) be the semi-group of equivalence classes under direct sum.
Since every vector bundle has a complement, we can represent any element of

K°(B, A, g) by a triple in which one of the bundles is trivial.

An element (E,C", ¢) € C(B, A, g) defines a vector bundle E u@@k on
C(g) = Bu, CA: it is E — B and the trivial bundle C* — CA glued over

the base of the cone A © C'A via the trivialization ¢ : ¢* E — C*. Define

p: K*(B,A,g) — K*(C(g))

[E.C",¢] > [E v, C'] - [C]]

Observe that when g is an inclusion, K*(B, A, g) = K*(B/A) and p is pullback
by the quotient map B u CA — B u CA/CA = B/A in which case it is an

isomorphism.

Proposition E.2. The map p is an isomorphism of semi-groups.

Proof. We construct an inverse

~

q: K*(C(g)) = K*(B, A, g)
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to p as follows. Write the cone on A as
CA=Ax]0,1]/{(a,0) ~ =}
and let pt € C'A be the cone point. Let
V={(a,t) e CA|t < 1/2}

be a closed neighborhood of pt. By Excision

~

K*(C(g)) = K*(Bu,CA,pt) = K*(Bu,CA,V) = K*(Bu,CA\{pt}, V\{pt})

An element € € K*(Bu,CA\{pt}, V\{pt}) is represented by a triple (F, C, ¢)
where
@ vy = CFlon

is an isomorphism. Since C'A\{pt} deformation retracts to A, we may assume
that F is constant along the cone, that is, that E|ca\ gy is pulled back from
the base A ¢ CA; if not, we can choose an isomorphism to a bundle that is
pulled back and change ¢ accordingly to obtain an equivalent triple. Since
E is a bundle on the punctured mapping cone, the pullback of £ from B to
A < CA is the restriction of E to A ¢ CA, that is, g*F|g = E|acca. Now,
identifying A with A x {1/2} < C'A we have

Elaxqjzr = Eaxioy = 9" E|B
so restricting ¢ to A x {1/2} < V gives an isomorphism
¢ = §0|Ax{1/2} 1 9g*Elp — Qk
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We thus define ¢ by
q: K*(C(g)) = K*(C(g)\{pt}, V\{p}) — K*(B, A, g)

[E] - [Qk] > [Evgkv 90] > [E|B7gk7 90/]
Now, gp = Id. Going the other way, since we assumed that E was constant

along the cone, ¢ extends to the whole cone to give an isomorphism
Idugp ' ElguyCt —>FE

from which it follows that pq = Id. ]
Remark E.3. Giving K°(B, A, g) the group structure inherited from p, it is
a group and p is an isomorphism of groups.

A homotopy between two elements of C'(B, A, g) is an element of C'(B x
I, A x I, g x Id) which restricts to the two given elements at the ends.
Proposition E.4. Homotopic elements of C(B, A, g) define the same element
of K°(B, A, g).

This follows from the homotopy invariance of K°(C(g)).

We will frequently appeal to this description of relative K-theory, even
when the map is an inclusion. We will see that this gives a useful perspective

on K-theory with Z/nZ-coefficients.

E.2 K-theory with Z/nZ-coefficients

Let f, : S* — S! be the map z + 2" and let C'f,, be the mapping cone
of f,. That is,
CS* = (S* x I)/(S* x {0})
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and

Cfa=(CS U SHA D) ~ fu(t)} = CS" vy, S
For X a topological space without basepoint we define
K°(X;Z/nZ) := K*(X x Cfo, X x {pt}),

K9(X;Z/nZ) = K°(X x OX7 f,, X x {pt}).

and

KI(X;Z/nZ) := K/ *(X;Z/nZ)

for 7 = 1. To understand this definition, observe that the cofiber sequence for

fn vields a sequence
X xS XSt S X x Of, > X x §2 PR x g2 (B5)

For X a space without basepoint, X* = X 1 % and S™ the n-sphere with a

fixed base point pt,
K™(X):= KO(S™(X™)) = K°(X x 8", X x {pt})

It follows that applying K°(—, X x {pt}) to the sequence of spaces (E.5) (to

the right of X x C'f,,) yields a long exact sequence
KY(X;7Z/nZ) 2 K'(X;7) < KY(X;7) <- K Y(X;Z/n7Z) < .. (E.6)
The “reduction mod n” map 9 is the connecting homomorphism of the long

exact sequence. We will make explicit the construction shortly.
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Observe also that there are homeomorphisms
(X Cfo)/X x{pt} = C(X x SHUX xS /{(2,1,1) ~ (, fu(t))} = C(1x % fa)
and more generally

(X x CYIf£,)/X x {pt} = C(1x x ¥ f,)

so that

K(X;Z/nZ) = K7 (C(1x x S f,),pt) = K7 (C(1x x S f,))
Thus,

KX, Z/nZ) = K°(C(1x x f)) = K%(X x 8, X x S',1x x f,)

so elements of K9(X;Z/nZ) are equivalence classes of triples (F, E’, p) where

E, E'" are vector bundles over X x S! and
@ : (1X X fn)*E — (1X X fn)*El

is an isomorphism. Similarly, elements of K~'(X;Z/nZ) are equivalences

classes of triples (F, F’, 1) where F, F' are vector bundles over X x S? and
¢ : (1X X Efn)*F — (1X X Efn)*F,

is an isomorphism.

Now let H be the Hopf bundle over S? and let £ = [H] € K°(S?). Then
' —1=n(—-1)
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SO
"+ (n—1)=ng.
It follows that the bundles H®"@®(n—1)C and nH are stably equivalent. Since

they have the same degree and rank there exists an isomorphism
H® @ (n—1)C — nH. (E.7)

Fix such an isomorphism «,, for each n = 2 and identify (Xf,)*H with H®".

Let E, E' be bundles over X and « an isomorphism nE — nFE’. Let
V=EQH®&nh-1)C) and V':=EQ(H®n-1)C)

Then V, V' are bundles over X x 5% and writing g = 1x x Xf,,,

¢V =E® H"®(n—-1)C) 2% penH =nE®H,

!

similarly for ¢*V’, and « : nE — nFE' yields a definite isomorphism g*V —

g*V'. We have just shown that
Proposition E.8 (Atiyah-Patodi-Singer). A pair of bundles E, E' — X with

an isomorphism o : nE — nE' defines an element of K *(X;Z/nZ).

We now describe the “reduction mod n” map. Let A = B = X x §?

and let ¢ = 1x x X f,, and consider the diagram

K°(B U, CA)

K°(B uy, CA,B) ——= K°(B, A, g) — K°(B)

)

K™'(4) = K°(S(4"))
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1. 6 is the isomorphism induced by the quotient map B v, CA/B =~ SA,
2. m*, k* are induced by the obvious inclusions,

3. p is the isomorphism described in the previous section

4. h = gm* is defined to make the triangle commute,

5. j is the forgetful map [E, E', ¢]| — [E] — [E"].

Since k* is restriction to B < Bu, CA, it is clear that the right-hand triangle
commutes. The construction of h and the fact that the row is exact now follows
the standard construction of the connecting homomorphism in the long exact

sequence of a pair (when the map is inclusion, see [3] Proposition 2.4.4)

Let i : B — C(g) = B vy, CA be inclusion and identify
K°(Bu,CA,B) = K°(Bu, CA, B,1i).

In this description, m* is the map “forget the isomorphism over B”; it is
then clear that jh = 0 since k*m* = 0: it takes bundles on C(g) with an
isomorphism over B to the difference of their restrictions to B. To see that
kerj = im h, suppose that & € K°(B, A, g) and j(&) = 0. If (E,CF ¢)

represents & then [E]—[C*] = 0 in K°(B). Thus, there exists an isomorphism
w - B (_Bg'r > gk-&-r

of bundles over B. There is a canonical isomorphism ¢*(F@®C") —» ¢* E®C";

let

~

{5=<p€-)fdg*E6-)@T = Qk+r.
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Then
[E@C",C"", 3] =€Ee K°(B,A,qg).

Set
E=[E®C usCH" CH" ] e K°(B U, CA, B,i).

Then identifying K°(Bu,CA) with K°(Bu,CA\{pt}, V\{pt}) by the Excision

isomorphism
m*€ = [E@C" us CH CM" 1d] € K°(B u, CA\{pt}, V\{pt})

SO

h(E) = qm*(€) = [E® T ,CH", 3] = € ¢ K°(B, A, g).

In short, A is given by
hE®C up CH,CH" ] = [E@CT,C", 3],

Recalling that A = B = X x S2%, the “reduction mod n” map is thus the

composition
5. KYX:Z) — K Y(4) > KB u, CA, B) 'S K°(B, A, q) = K~ Y(X;Z/nZ)

where the first map is the Bott periodicity isomorphism.

We have seen that if £ and E’ are vector bundles over X such that
there exists an isomorphism ¢ : nE — nFE’, then (E, E’, p) defines an element
of K~1(X;Z/nZ). 1If we choose a different isomorphism ¢ : nE — nFE’, then
(E, E', 1) defines another element of K 1(X;Z/nZ). These two elements are
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not in general the same. We identify their difference as the reduction mod n

of a specific integral class.

Let v : nEE — nE be an automorphism such that ¥ = ¢7y. Observe
that oy @ Id and ¢ @« are both isomorphisms nF @ nE — nE' @&nFE. An

explicit homotopy ¢y @ Id ~ ¢ @~y is given by

< @ cos?(mt/2) + pysin®(rt/2) sin(wt/2) cos(mt/2)(py — ¢) )
sin(mt/2) cos(nt/2)(y — Id)  sin®(nt/2) + 7y cos?(wt/2)

For this to be an isomorphism of bundles for all ¢ € [0,1] it must be an
isomorphism on every fiber. Let U < X be an open set on which both bundles
are trivializable and choose trivializations nE|y — U xC" and nE'|y — U xC".
Let wy,vwv : U xC" — U x C" be ¢ and ~ in these trivializations, then
oy (), yu(z) are isomorphisms for each « € U and over U, the given homotopy

factors as the composition of

(% 1) (Shh ) =

and

( 1 0 ) ( cos(mt/2) —sin(7t/2) ) (E.10)

0 v sin(mt/2)  cos(mt/2)

which makes clear that it is an isomorphism for all ¢ € [0, 1].

Now, let
V=E®H®&n-1)C) and V' =EF@(H&(n—-1)C)

be the bundles over X x S? corresponding to £ and E’. Identify ¢*V with

nFE ® H by the chosen isomorphism 1z ® «,, and similarly identify ¢*V' with
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nE' ® H. Then

P=p@1ly:g"V—=>gV'
and

V.V, 3] e K (X Z/nZ)

is the element determined by (E, E, ). Similarly, [V,V’ ,1;] is the element
determined by (E, E’, 1) where ¥ = 1b®1p. The automorphism v also induces
an automorphism ¥ = y® 1y : ¢*V — ¢*V and thus an element [V, V 7] €
K Y(X;Z/nZ). The homotopy ¢ @ vy ~ ¢y @® Id gives a homotopy @7 ~
&y @ Id. By the homotopy invariance of K (X;Z/nZ) we see that

V.V, el+[VVAl=[VeV.V eV .gad]
=[VeV,V'eV,gya@Id
= [V,V', &3] + [V, V. Id]
= [V,V', &9]

~

= [‘/v? VI? w]

We now construct an element of K'(X;Z) of which [V, V, 7] is the reduction
mod n. Let p: M x S* — M be projection. The automorphism ~ : nE — nE

determines a bundle V., = (nE), — M x S thus an element
[V,] - [p*nE] e K '(X;Z).

Under the Bott periodicity isomorphism,
KE(X;Z) K~'(A)

Vil = [p*nE] = [V, @ H] = [p*nE @ H] = ([V;] = [p*nE])
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Analogously to the previous construction, this is the difference of two elements:
the one obtained from the bundle nE ® H — X x S? and the automorphism
7 ® 1y and the one obtained as before from (the pullback of) nE — X x S?

and the automorphism ~. From this description, it is not hard to see that

K1(A) o K°(B, A, g)

[V, ® H] = [p*"nE @ H] — ([V,] = [p*nE]) = [V, V. 7] = [p*nE, p*nE, 7]

where V is as above. For the given bundles nE® H and nE over A = X x S2,
we just have to find bundles over B = X x S? of which these are the pullbacks
via g. The intermediate step that we have skipped is to find complements to
the given bundles on A so that we can extend them over the cone C'A. In
K°(B, A, g), the bundles on A need not extend over the cone so we can just
subtract off these extra terms again. Finally, the last term [nFE, nE,~] is zero
in K1 (X;Z/nZ): since g*nE = nE, the triple (nE,nkE,~) is equivalent to

the triple (nE,nE, Id) as illustrated by the diagram

nkE > nE

nE?nE

Therefore,
[V,V' 4] = V.V, 3] = [V,V.3] € K~1(X; Z/nZ)
is the reduction mod n of

[V,] - [p*nE] e K '(X;Z). (E.11)
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E.3 K-theory with C/Z-coefficients

The rational numbers @Q can be constructed as the colimit of the dia-
gram of abelian groups A,, = Z for n € Z>° where, if m = nk, there is a unique
map fum : An — Ay, which is multiplication by k. K*(X;Q) is defined as the
colimit of the analogous diagram with A, = K*(X;Z) in which the unique
map A, — A,, is again multiplication by k. The maps

Qn:A,—> K (X)®Q

1 (E.12)
aH—>aQ —
n

induce an isomorphism
Q: K*(X;Q) = K*(X)®Q (E13)

We identify K*(X;Q) with K*(X) ® Q under this isomorphism. Similarly,
Q/Z can be constructed as the colimit of the diagram with A, = Z/nZ and
if m = nk there is a unique map A, — A,, which is multiplication by k.
K*(X;Q/Z) is then defined as the colimit of the analogous diagram with
A, = K*(X;Z/nZ). The reduction mod Z map

p: K°(X;Q) — K*(X;Q/Z)

is the map induced on colimits from the morphism of diagrams which on the
n' group is reduction mod n. Setting K*(M;C) := K*(M)® C there is the

obvious injection

it K*(X;Q) = K*(X;C)
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Together, these yield a map
(p, —1) : K*(X;Q) = K*(X;Q/Z) @ K*(X) @ C.

We define
K*(X;C/Z) = coker(p, —i)

When M = pt, it is not hard to see that in even degrees (p, —¢) is an
injective map Q — Q/Z @ C with cokernel C/Z and the groups are all zero in

odd degrees.
If X = M is a smooth manifold, since Ch : K*(M)® C — H(M;R)*
is an isomorphism, we can make the same construction with
t=Choi: K*(M;Q) = Hy(M)".
Then
coker(p, —t) = K*(M;C/Z).

This is the model we use.

E.4 T-equivariant K-theory with C/Z coefficients

We proceed by direct analogy with the non-equivariant case. There are
no new constructions, we merely indicate what we used at each step of the
previous construction and why the same works in the equivariant setting. If
X is a T-space and Y is any space, we make X x Y a T-space with trivial

action on the second factor. The formulation of relative cohomology for any
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equivariant map g : A — B of T-spaces goes through as before as does the
isomorphism K9(B, A, g) = K%(C(g)). For f, : S* — S' and C'f, as above,

we define T-equivariant K-theory with Z/nZ coefficients by
KAX;Z/nZ) = K°(X x Cf,, X x {pt})

and

K/ (X;Z/nZ) = KO(X x C¥I f,, X x {pt})

for j > 0 and set KL(X;Z/nZ) = KL *(X;Z/nZ) for j > 1. We sce that
K2(X;Z/nZ) is represented by triples (E, E', p) where E, E' — X x S! are

equivariant vector bundles and
@ : (1X X fn)*E — (1X X fn)*El

is an isomorphism. Elements of K 1(X;Z/nZ) are similarly represented by
pairs of bundles over X x S? with an isomorphism of pullbacks. Since Bott
periodicity holds in equivariant K-theory, the same argument shows that a pair
of bundles F, ' — X with an isomorphism nE — nE’ defines an element of
K: (X;Z/nZ). If E,E' — X are two bundles and ¢,v : nE — nE' are two
isomorphisms, write ¢ = ¢y where v : nE — nE is an automorphism. As
before, let V = EQ (H® (n — 1)C) and V' = ' ® (H & (n — 1)C) be the
corresponding bundles over X x S? and let § = ¢ ® 1y and similarly for QZ
and §. Let 7 : X xI — X and p : X x S! — X be projections and let

V, =7m*nE/vy — X x S! as before. Then the same argument shows that
[V, V', 0] = [V, V', 8] = [V.V.A] € K7 ' (X Z/nZ)
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is the reduction mod n of
V)] - [p*nE] e K;'(X;Z).

Equivariant K-theory with Q and Q/Z coefficients are defined as the analo-
gous colimits and equivariant K-theory with C/Z coefficients as the analogous

cokernel
Ki(X;C/Z) == {K3(X;Q/Z) @ K1(X) ® C} /K (X) ®Q

When X = M is a compact smooth T-manifold, since Chy : K*(M;C) —

Hg(M;R)* is an isomorphism, we again take

K3 (M;C/Z) = {K3(X; Q/Z) @ Hy(M)*}/ K3 (X) @ Q.
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