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EXECUTIVE SUMMARY 

INTRODUCTION AND PROBLEM STATEMENT 

This report surveys available experimental results on passenger comfort 

due to changes in a vehicle's longitudinal direction. The purpose of the 

study was to assess the state-of-the-art in passenger tolerances to longitud

inal acceleration and jerk loads. These effects bear on the design of vehicle 

propulsion and braking systems, as well as central headway, speed, and sched

uling controls, for automated, high-capacity vehicle networks. 

RESULTS AND CONCLUSION 

The literature survey uncovered a total of eleven studies dealing with 

passenger comfort due to longitudinal motion. Of these, six were "subjective" 

studies, in which selected passengers were exposed to various motion changes 

and asked to record their feelings about the motion on a questionnaire. The 

remaining five studies attempted to objectively measure some comfort-related 

parameters, such as loss of balance or severity of brake application. It is 

found that the wide variability in type of study and form of results does not 

allow conclusive statements to be made regarding passenger acceptability of 

any specific acceleration-jerk profile in a given transportation system. The 

survey did indicate, however, that for public mass transportation, steady 

non-emergency accelerations in the range 0.11 g to 0.15 g fall in the "accept

able" range for most studies, and could be larger. It is unlikely that values 

of jerk larger than 0.30 gls would be acceptable for most public transportation. 
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INTRODUCTION 

Passenger comfort in public ground transportation is determined by the 

changes in motion felt in all directions, as well as by other environmental 

effects. This report, however, treats only comfort due to motion changes in 

a vehicle's longitudinal direction, that is, in its direction of travel or 

fore-and-aft direction. In automated or semi-automated vehicle network, fast 

starts and stops will be necessary in order to merge vehicles into high speed 

traffic at close headways. However, the limiting factor in operating a 

vehicle network at high capacity, high velocity, and short trip times may in 

fact be passenger intolerance of the high longitudinal acceleration and jerk 

loads required. If passengers are unrestrained in the vehicle, the standees, 

aged. infirm and children will be the critical passengers to consider. Pass

enger tolerances to longitudinal acceleration and jerk loads will thus affect 

not only the design of the vehicle propulsion and braking system, but also 

the central headway, speed, and scheduling controls for the entire network. 

To assess the state-of-the-art in this area, the work that follows surveys 

available experimental studies of longitudinal comfort. 

1 
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PART I 

ACCELERATION AND DECELERATION LEVELS IN CURRENT USE 

An excellent review of experimental longitudinal comfort studies prior 

to 1970 can be found in the work by Gebhard [lJ*. He points out that conven

tional subways and commuter trains are designed to accelerate at about 3.0 mph/s 

(4.830 kph/s) or .138 g. Long cross-country passenger trains accelerate less 

than half this fast. Table 1 provides some acceleration data for a variety 

of passenger vehicles. It should be observed that none of the acceleration 

values for the public ground systems, in which passengers may be standing, 

exceeds 0.16 g. On the other hand, if a passenger is properly seated (car or 

airplane) or prepared (motorcycle), the acceleration levels can be as high as 

1/2 g or larger. 

Deceleration levels specified for various transportation vehicles depend 

upon whether the braking is normal, called service braking, or emergency. 

For electric rapid transit cars in the U.S., Reference [5J indicates normal 

braking of 0.12 g to 0.14 g and emergency braking from 0.14 g to 0.30 g. An 

automobile can decelerate at rates larger than 0.6 g [6J. Table 2 lists normal 

and emergency deceleration capability for the first three vehicle systems of 

Table 1. 

Objective Comfort Measurements 

Most of the known attempts to assess passenger comfort have used a 

"questionnaire," or subjective approach. In these studies, which will be 

reviewed in the next section, selected subjects were placed in vehicles or 

laboratory devices, exposed to various motion changes, and asked to record 

their feelings about the motion on a questionnaire. In this section, we re

view those few studies available in which some objective measurement of comfort

related parameters was attempted. Objective studies have the advantage that 

results are less easily open to misinterpretation than are results of subject

ive studies. 

* Numbers in brackets refer to references at the end. 

3 



TABLE 1. 

ACCELERATION LEVELS FOR VARIOUS PASSENGER VEHICLES 

Vehicle 

Morgantown PRT System 
(Morgantown, West Virginia) 

AI RTRAN S 
(Dallas-Fort Worth Airport) 

BART (San Francisco) 

Motor Cars 

VW 1500 

Ford Fairlane 

Pontiac Grand Prix 

Motorcycle 

Norton 750 

Commercial Jet 

Aircraft Takeoff 

Approximate 

mph/s 

3.0 

2.5 

3.3 

4.5 

7.9 

10.0 

13.0 

11.0 

Maximum 

kph/s 

4.8 

4.1 

5.3 

7.2 

12.7 

16.1 

20.9 

17.7 

Acceleration 

g 

.137 

.116* 

.152* 

.205 

.360 

.456 

.593 

.501 

Reference 

2 

3 

4 

1 

1 

1 

1 

1 

*These vehicle systems have a number of acceleration and jerk specifications, 
depending on the operating condition. The values listed are the maximums. 

4 



TABLE 2. 

DECELERATION LEVELS FOR THREE VEHICLE SYSTEMS 

Vehicle Max. Normal Dec Max. Emergency Dec Reference 

mph/s kph/s g mph/s kph/s g 

Morgantown 3.0 4.8 .137 7.2 11.5 0.330 2 

AI RTRAN S 2.5 4.1 .116 6.1 9.8 0.280 3 

BART 3.3 5.3 .152 3.3 5.3 0.152 4 

5 



It has been suspected that automobile drivers impose upon themselves 

consistently higher longitudinal accelerations than found in public ground 

tratl.sportation. To investigate this possibility Mortimer [7] and his 

associates planted a recording accelerometer in the trunk of a car in the 

motor pool at the University of Michigan. Drivers who used the car were aware 

that an experiment was in progress, but not what type of experiment it was. 

Originally, the car was equipped with conventional hydraulic brakes, and 28 

people drove it for 4254 miles. Then power assist was added to the brakes and 

16 people drove the car for an additional 2001 miles. Figure 1 gives the 

distribution of peak decelerations for a total of 8934 brake applications. 

It can be seen that decelerations exceeded 0.15 g for 35% of the brake appli

cations. Recall from Table 2 that this deceleration level was the maximum 

normal deceleration of the three automated vehicle systems surveyed. On the 

other hand, Figure 1 shows that only for 2.5% of the brake applications did 

drivers exceed 0.3 g, which is the maximum emergency deceleration for the 

vehicle systems in Table 2. Mortimer gives no indication of the type of driving 

conditions experienced by these drivers, but it is likely that a substantial 

amount of city driving was involved. Moreover, it is not clear whether the 

accelerometer data was processed to remove the effects of grade changes. 

In a different study by Torres [8J, longitudinal accelerations experienced 

by drivers under freeway conditions were measured. A standard 1967 Plymouth 

sedan was instrumented to measure fore-and-aft acceleration and velocity. 

Acceleration data was "de-trended" to remove the effects of grade changes. 

The most useful data was collected using six drivers, each on a different day 

making eight runs in one direction (east bound) and eight in the opposite dir

ection (west bound) over a two-mile section of the eight-lane Ventura Freeway 

in southern California. The drivers were instructed to drive as they normally 

do, which led to an appreciable amount of lane changing and passing. Runs 

were made during the morning peak traffic period with the heavy traffic in the 

eastbound direction. Figure 2 presents two "de-trended" acceleration histograms 

for one driver, each obtained by averaging over three runs. Torres presents 

these histograms as being typical for all drivers. Apparently, all accelera-
2 

tions larger than 4 ftls (.124 g) were lumped together at the "tails" of these 

histograms. Observe that both the mean accelerations and durations of accel-

6 
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eration change dramatically with vehicle concentration. Unfortunately, mean 

accelerations across the driver set for various traffic conditions were 

apparently biased by calibration errors. However, the standard deviations of 

the detrended acceleration data appear valid and were found to be related to 

traffic volume, as shown in Figure 3. Torres calls this standard deviation 

"acceleration noise" and considers it a measure of driver effort or stress. 

As the geometry of the highway or prevailing traffic conditions change, the 

driver is forced to adapt dynamically. Unfortunately, road-vehicle interact

ions and wind buffeting, rather than driver effects, may account for the 

"acceleration" noise at higher speeds. These effects may also account for 

some of the large dispersion of data in Figure 3. No attempt was made to 

separate these effects from driver effects. As expected, higher speeds occur 

at lower volumes, such that wind-buffeting and road-vehicle interaction effects 

would be most severe at the lower volumes. If, as Torres suggests, "acceler

ation noise" i.s a measure of driver stress, one might support from these results 

a suspicion that such stress increases with traffic volume. On the other 

hand, the relationship between stress and acceleration noise has not been con

clusively established and remains a subjective assumption. 

A different type of measurement was done by Hirschfeld [9J in the 1930's 

to determine the effects of motion on loss of balance of standing passengers. 

This investigation merits special consideration for several reasons: (1) stand

ing passengers may in fact be the critical elements in governing longitudinal 

motion characteristics in public ground transportation; (2) the study uncover

ed evidence that different acceleration - jerk profiles produce different 

results, such that single-number specifications for these quantities may be 

incomplete. In what follows, we trace Gebhard's [lJ summary of Hirshfeld's 

[9J results. 

The experimental laboratory arrangement consisted of a small car riding 

on a smooth track such that the car could accelerate from rest at any value 

up to 12 ft/s2 (.373 g) with jerk at any value up to 50 ft/s3 (1.553 g/s). 

The measured quantity for a standing passenger facing forward in the car was 

"loss of balance," which was electrically recorded when the standee either 

grabbed a handrail for support or moved either foot from the prescribed pos

ition: left heel eight inches (20.3 cm) in front of and ten inches (25.4 cm) 

9 
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to the left of the right heel, with electrical contacts at the left toe and 

right heel. 

A total of 110 subjects of both sexes of various ages (11 to 78 years), 

heights (4'4" to 6'4"), weights (87 to 235 pounds), and backgrounds were test

ed under a variety of starting conditions. The most significant of these 

conditions were as follows: 
A 

A. Acceleration ~ was increased linearly from zero at constant jerk j, 
A A A 

such that a = jt where t is time. Values of j ranged from less 

than 1 to 10 ft/s3 (less than .031 g/s to 0.311 g/s) and t ranged 

up to 7 secs. 

B. Acceleration was increased from 0 very rapidly to a specified con

stant value. This was accomplished by suddenly releasing the brake 

from a car having a specified pre-release force. This force yielded 

jerk values of 10 ft/s3 (.311 g/s) or greater over a period of 1 

second or less. Values for the final constant acceleration phase 

ranged from 1.0 to 3.5 ft/s2 (.031 to .109 g). 
A 

C. Jerk was increased linearly from 0 such that j = kIt. Thus, accelera-

tion increased parabolically from 0 according to a 0.5 k1t2. Values 

of k1 ranged from 0.2 to 1.0 ft/s4 (.0062 to .031 g/s2) and t ranged 

up to 7 seconds. 

D. A short initial "warning" period of constant low acceleration for 

3 seconds was followed by a parabolic increase in a as in Method C. 

The initial value of a. ranging from 1 to 2 ft/s2 (.031 to .062 g). 

was established by linearly increasing the acceleration from 0 at 

values of j from 2 to 7 ft/s2 (.062 to .219 g/s). 

Table 3 lists the number of subjects and tests run, together with the positions 

of the subjects, for each of the four methods. A major difficulty with the 

data reported by Hirshfeld is that the results for subjects are pooled, and 

the data is given as the percentage of tests in which all riders maintained 

balance to a given level of acceleration. Moreover, no attempt was made to 

use the same subjects for all of the test conditions, or for that matter, for 

all the various values for j or k1 in any one testing condition. Different 

subjects and different numbers of subjects were used in the various tests. 
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l. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

TABLE 3. 

CONDITIONS USED FOR LOSS-OF-BALANCE TESTS 

(AFTER HIRSHFELD [9] AND GEBHARD ["' J) 

Subject's Position 

Facing Forward, Unsupported 

Facing Forward, Unsupported 

Facing Forward, Unsupported 

Facing Forward, Unsupported 

Facing Forward, Unsupported 

Facing Sideways, Unsupported 

Facing Forward, Holding 
Over-Head Strap 

Facing Forward, Holding 
Vertical Stanchion 

Facing Forward, Males on 
Low and High Heels 

Facing Forward, Females 
On Low and High Heels 

Starting 
Method 

A 

B 

C 

D 

A 

A 

A 

A 

A 

A 

12 

Number Of 
Subjects 

79 

25 

44 

15 

23 

22 

26 

27 

6 

3 

Number Of 
Tests 

489 

236 

133 

81 

98 

74 

123 

87 

37 

9 



Hirshfeld reports that a given subject was extremely variable in ability to 

retain balance, although this variability is not quantified. Variability 

between subjects was also large, but this variability was not related to any 

subject characteristics such as sex, age, or height. 

Results for several values of j are given in Table 4 for Method A with 

unsupported subjects facing forward, Condition 1, Table 3. The only case for 

which the number N of tests is mentioned is for j = 4.5 ft/s3 (.140 g/s), for 

which N = 58. As may be seen from the table for values of ~ between 3 and 7 

ft/s2 (.094 and .217 g), higher balance retention is obtained for the larger 

jerk values. Hirshfeld suggests that this may be due to a subject's tendency 

to qUickly sense and strongly adjust to high jerk values, carrying through the 

adjusting posture to high values of a. Low jerk values, on the other hand, 

are more casually accepted such that the subject does not have a strong compen

sating posture when high values of a are reached. However, Hirshfeld's data 

suggests that the limit for this effect is approximately 7 ft/s3 (.217 g/s). 

This conclusion tends to be supported by data from Method E, Condition 2, 

Table 3, in which j was at least 10 ft/s3 (.311 g/s). No subject was able to 

maintain balance for a = 3.5 ft/s2 (.109 g) under Method E, whereas in Method 
A / 2 A, 50% of all subjects maintained balance to a = 5 ft s (.155 g) or larger 

A 3 
when j was less than 7 ft/s (.217 g/s). Hirshfeld reports that for all tests 

with forward facing standees in Method A, the average acceleration obtained 

before loss of balance was 5.3 ft/s2 (.165 g). 

Method C tested the possibility that "slower starts," with jerk increasing 

linearly, would allow progressive adjustment by the subject, such that ultimately 

higher values of a could be reached without losing balance. Results are given 

in Table 5 for unsupported standees facing forward, Condition 3, Table 3, for 
A 

several values of k1 in the formula j = kIt. As for Method A, the data shows 

that "faster starts" (higher values of k1' in this case), do not lead to more 

loss of balance. However, it can be seen by comparing data in Tables 4 and 5, 

that no advantage is gained by using the slower start of Method C. In fact, 

since minimizing the time to reach a desired acceleration ad is likely to be 

important in automated transportation systems, Method A would be superior for 

those cases of constant jerk j in which j2/a
d 

> k
1
/2. For ad = 3.0 ft/s2 

(.093 g), 80 to 90 percent of the tests showed balance retention for the high-
4 A 3 

est values of k1 = 1.0 ft/s (.031 g/s) in Method C and j 6.5 ft/s (.202 g/s) 
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TABLE 4. 

STARTING METHOD A: 

PERCENT OF TESTS IN WHICH BALANCE WAS 

RETAINED, UNSUPPORTED FORWARD-FACING STANDEES 

(AFTER HIRSHFELD [9J AND GEBHARD [1J) 

Avg. Acceleration Jerk 
Attained 

ft/s3 ft/s3 g/s g/s 

ft/sec 2 g 

1 .031 99% 97% 

2 .062 95 93 

3 .093 87 81 

4 .124 67 70 

5 .155 42 55 

6 .186 12 30 

7 .217 4 18 

8 .248 1 7 

14 

ft/s3 g/s 

99% 

93 

85 

80 

70 

60 

20 

-



...... 
\.Jl 

Avg. Acceleration 
Attained 

ft/sZ g 

1 .031 

2 .062 

3 .093 

4 .124 

5 .155 

6 .186 

7 .217 

TABLE 5. 

STARTING METHOD C: 

PERCENT OF TESTS IN WHICH BALANCE WAS RETAINED, 

UNSUPPORTED FORWARD-FACING STANDEES 

(AFTER HIRSHFELD [9J AND GEBHARD [1J) 

k1' Rate of Change of Jerk 

ft/s4 g/s2 ft/s4 g/s2 ft/s4 g/s2 ft/s4 

0.2 .0062 0.4 .0124 0.6 .0186 0.8 

98% 100% 100% 100% 

92 100 100 100 

71 75 90 98 

48 42 55 56 

41 15 32 31 

16 8 9 13 

1 3 5 -

g/s 2 ft/s 4 
g/s Z 

.0248 1.0 .0311 

100% 

99 

86 

75 

47 

15 

3 



in Method A. The inequality above is satisfied for this comparison, and the 

corresponding times are 0.46 seconds for Method A and 2.45 seconds for Method C. 

With Method D, Hirshfeld attempted to assess whether a short "warning 

acceleration" would lead to better balance retention. However, the results 

were no better than the more severe starting tests of Method A. On the average, 

balance was lost for ~ 5.4 ft/s2 (.168 g) at t = 7.0 seconds. In Method A, 

only 2.5 seconds were required for this average acceleration. 

Results for the remaining test conditions 5 through 10 in Table 3 are 

available only in the form of average accelerations attained before loss of 

balance, and this data is given in Table 6. These results should be compared 

with the average a = 5.3 ft/s2 (.165 g) obtained for Method A with forward 

facing standees, Condition 1 in Table 3. As might be expected, facing sideways 

unsupported, holding on overhead strap, and holding a vertical stanchion give 

increasingly better results compared with the unsupported-forward condition. 

Moreover, it might be possible to interpret the "facing backward, unsupported" 

condition as equivalent to deceleration for forward facing, unsupported standees. 
2 

Under such an interpretation, the average from Table 6 of 4.2 ft/s (.130 g) 

indicates that deceleration would be more critical than acceleration. 

The problem addressed by Hirshfeld was also investigated by Browning [10J 

in more recent work. Browning was interested in passenger tolerance to motion 

of pedestrian conveyors moving at line speeds in the range 9.11 to 14.58 ft/s 

(10 to 16 kph). The upsetting effect of accelerations was studied by filming 

subjects standing on a trolley accelerated in a known fashion. The trolley 

ran on pneumatic wheels and was guided along a single floor-mounted rail. 

Power was provided by a battery electric towing trailer with provision to auto

matically control acceleration. The main testing stage "involved between 150 

and 300 adult subjects drawn from all parts of the Royal Aircraft Establishment, 

together with a similar number of people from families of employees and a num

ber of special subjects, i.e., groups of children and disabled people." All 

subjects carried what was thought to be realistic amounts of luggage. Data 

from these experiments were recorded in three ways: (a) edited films showing 

many people taking part in the experiments; (b) an analysis of these films 

made by the author or by a panel of experts; and (c) an analysis of the written 

responses made by the passengers immediately after taking in the experiments. 

Browning however, is suspicious of the subject opinions, and the bulk of the 
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TABLE 6. 

STARTING METHOD A: 

AVERAGE ACCELERATION OBTAINED BEFORE LOSS OF BALANCE 

(AFTER HIRSHFELD [9J AND GEBHARD [1J) 

Condition Average Acceleration Attained 

Facing backward, unsupported 

Facing sideways, unsupported 

Facing forward, holding 
overhead strap 

Facing forward, holding 
vertical stanchion 

Facing forward, unsupported 

Males, high heels 

Males, low heels 

Females, high heels 

Females, low heels 

17 

ft/s2 g 

4.2 

6.1 

7.4 

8.7 

4.8 

5.3 

5.3 

3.2 

0.13 

0.19 

0.23 

0.27 

0.15 

0.16 

0.16 

0.10 



conclusions are based on Method B. Summarizing earlier work, but providing 

no details, he reports that small amplitude fore-and-aft vibration of the 

floor is effectively damped out by the legs of a standing person. Apparently, 

the natural frequency of the balancing reaction is approximately 1 hz, and 

fore-and-aft vibration of large amplitudes (several cm) near this frequency 

makes balancing difficult unless the subject walks. 

The upsetting effect of acceleration, Browning reports, depends not only 

upon the level of acceleration, but also on the jerk, a conclusion also reach

ed by Hirshfeld. However, Browning's acceleration time profile, shown in the 

inset of Figure 4, resulted in a constant steady velocity at the end of the 

profile transient. whereas Hirshfeld's did not. A profile such as that shown 

in the inset of Figure 4 has been called a "three-phase" start by Thurlow [llJ. 

and for the case at hand. the constant decelerating jerk at the end of the 

profile was made equal to the accelerating jerk at the beginning. Browning 

assumes that the upsetting effect is applicable to the complete profile. Fig

ure 4 shows in solid lines the combinations of acceleration and "rise time," 

defined in the inset. judged by the panel to cause "slight relative movement" 

for passengers and recommended by the panel as tentative "acceptance curves." 

In dotted lines are shown corresponding curves of jerk versus rise time derived 

from the solid line data. Observe that the jerk can be as high as .325 g/s 

for fit adults. provided the acceleration is no larger than .065 g. Now con

sider Hirshfeld's implication that the first phase of the starting transient 

is responsible for upsetting effects, rather than the complete transient. 

Under this assumption, compare data in Figure 4. The three encircled points, 

calculated from the second row of Table 4. represent the only acceleration -

rise time values from Table 4 that lie between the two acceleration curves 

in Figure 4. Accordingly. if this assumption were valid. Browning's "slight 

relative motion" corresponds to 93-95% balance retention in Hirshfeld's study. 

On the other hand. the comparison is not strictly accurate. and caution must 

be employed in drawing such conclusions. 

Finally. for a given line speed, acceleration patterns that cause the 

same upsetting effect are not equally attractive because they do not all require 

the same acceleration length. Browning reports that the choice of values for 

the three-phase start of Figure 4 to yield minimum lengths is virtually indepen

dent of the line speed in the range 10-16 kph, and are given as follows: 
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Moderate Relative 
Movement 

Slight Relative 
Movement 

Virtually No 
Relative Movement 

General Public 

.070 g in ~ to 1 s 
(.070 to .350 g/s) 

.055 g in 1 s 
(.055 g/s) 

.040 g in 1 to 2 s 
(.020 tu .04Q g/s) 

Fit Adults 

.115 g in ~ to 1 s 
(.115 to .230 g/s) 

.090 g in 1 s 
(.090 g/s) 

.065 g in 1 to 2 s 
(~033 to .065 g/s) 

Small boxes mark the points in Figure 4 that correspond to minimum acceleration 

lengths for "slight relative movements. f1 Given a minimum acceleration length, 

observe that for "moderate relative movement" the jerk values can be twice as 

high as acceleration values, whereas for "slight relative movement," these 

values are equal. 

Subjective Comfort Measurements 

By far, the most common type of experimental study with subjects consists 

of relating physical measurements of acceleration and jerk to passenger opinions 

marked on a questionnaire. In most cases, a salient part of the procedure 

called for subjects to mark a scale using from 3 to 7 gradations with subject

ive titles assigned to each gradation, such as "just noticeable," "quite pro

nounced, but not at all uncomfortable," and "rather uncomfortable." In review

ing these studies, two categories of difficulties arise. The first is due to 

fundamental questions regarding validity of this approach for assessing passen

ger comfort. The second arises because of the wide variation among investiga

tors in methods, subject populations, questionnaire designs, experimental 

vehicles, and nature of measured data. On the other hand, some of the same 

questions arise for objective studies. We address these difficulties in order. 

Gebhard [lJ has suggested that one difficulty with questionnaire responses 

on acceptability is that these judgements do not necessarily reveal what a 

subject will actually accept in a transportation system. In fact, this problem 

may be a special case of the classical conflict between Freudian and Skinnerian 

psychologies: What a subject says he feels may not indicate how he behaves, 

or may be induced to behave, in any situation. To this writer's knowledge, 

it has not been tested, let alone established, that a rider's judgement of 
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acceptability in a short experimental ride is adequate to define tolerance or 

acceptability in daily commuting. It is more likely that this issue should 

be treated as a trade-off between a number of variables, as for example, between 

travel time, convenience and comfort. More simply put as an elementary example, 

given two transportation systems operating between two points, one "uncomfort

able" but "fast" and the second "comfortable" but "slow," what are the percent

ages of people of various backgrounds that actually use (not say they will use) 

one system over the other. As Gebhard states [1J, "Riders overwhelmingly accept 

the automobile for travel to the center city, while damning the many annoyances 

due to traffic and parking." A subject who regularly exceeds ~ g in his private 

automobile may check 1/8 g as the upper limit of comfort on a questionnaire. 

What is needed, it appears, is assessment of behavior itself (i.e. ridership), 

rather than feelings about acceptability. 

The second category of difficulties is not unrelated to the first. Hanes 

[12J has defined the problem as the difficulty in determining exactly who did 

what and how. Fundamentally, the responses made by a subject on a questior-naire 

are likely to depend upon what he thinks is expected of him. Hence, variability 

among results of different tests could be dependent upon instructions subjects 

are given, number of gradations used for sealed judgements, and wording of des

criptions associated with the scale. For example, consider two questionnaires 

each having five places for responses numbered 1, 2, •.. 5. Suppose for the 

first questionnaire, the descriptions were (in order 1 to 5) "imperceptible," 

"just perceptible," "fairly perceptible," "perceptible," and "very perceptible." 

For the second, let the descriptions be "not noticeable,1I "noticeable," "strong," 

"slightly uncomfortable," and "very uncomfortable." There exists the possibility 

that a bias exists for the second questionnaire over the first at the suggest

ion that discomfort may be encountered during the test. Moreover, there is 

no accurate method to relate the responses on one questionnaire to those of 

the other. 

Finally, the type of subject population used has an enormous effect on 

the type of responses obtained. It is reasonable to expect a thorough study 

to report responses with respect to various subject population variables, such 

as age, sex, ridership history, and occupation (including transportation expert

ise). The parenthetical variable is included because in several instances 
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[6 13 14J complete tests have been done with the only subJ'ects being those , , 
with occupational affiliation with transportation. The bias introduced by such 

a procedure has been analyzed in a recent study [15J and will be reviewed later. 

Although all of the studies reported below exhibit some of these theoretical 

limitations, it is nevertheless instructive to review the data. 

Wilson [6J conducted tests on braking of automobiles using as subjects 

eight department heads or their assistants from General Motors Proving Grounds. 

Table 7 gives the average ratings in three categories of these eight for various 

average decelerations. Wilson does not report how the average ratings were com

piled, but the average deceleration values were calculated from the distances 

required to stop from 70 mph (112.7 kph), and thus are likely below the maximum 

decelerations experienced during the stop. Also shown for comparison are two 

other deceleration values. It is interesting to compare the first value in 

Table 7, labeled "comfortable" and "preferred" with Mortimer's data in Figure 1. 

From this figure we see that Mortimer's drivers equaled or exceeded 0.266 g for 

less than 10% of the brake applications, pointing up a substantial descrepancy 

between the objective and subjective measurements, particularly those that use 

subjects having expertise in the area being investigated. 

In a later study, Loach [13Jconducted exploratory tests on a two-car elec

tric train and an electric trolley bus. The subjects used were the 12 members 

of the Track Committee of the Railway Executive of British Railways. For both 

vehicles, the subjects sat on longitudinally oriented seats, or stood. No details 

are given as to the type of acceleration or deceleration profile used, except 

that the driver "endeavored to accelerate or decelerate at a constant rate." 

The average judgements of the subjects are given in Table 8 for seated subjects 

in the electric train. Apparently, the subjects were in fact experiencing lateral 

acceleration and deceleration because of the seating arrangement, which may 

account for the relatively low acceleration values reported. Loach reports that 

in one or two tests with the subjects standing in unspecified orientation, eval

uations showed that .10 g was the approximate limit that could be attained with

out discomfort and that .123 g was somewhat uncomfortable. Results of decelera

tion tests with the trolley bus are "pooled," containing evaluations of both 

sitting and standing subjects, and are given in Table 9. No explanation is 
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+1. 

+2. 

*3. 

+4. 

*5. 

TABLE 7. 

EVALUATION OF 70 MPH STOPS IN AUTOMOBILES 

AT GM PROVING GROUND 

(AFTER WILSON [6J) 

Evaluation+ or 
Condition* 

Comfortable to Passenger, 
Preferred by Driver. 

Undesirable, but not 
alarming to Passenger; 
Driver would rather not use. 

Design Deceleration for 
Pennsylvania Turnpike 

Severe and Uncomfortable to 
Passengers, Slides Objects 
off Seats. 
Driver Classes as an 
Emergency Stop. 

Maximum StoP. Car Stays 
in a 12-Foot Lane with
out skidding. 
Brakes in Best Condition. 

Average Deceleration 
(g) 

0.266 

0.343 

0.401 

0.432 

0.606 
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TABLE 8. 

EVALUATION OF ELECTRIC TRAIN MOTIONS 

(AFTER LOACH [13J) 

Evaluation 

Just Noticeable 

Noticeable 

Pronounced but not 
Objectionable 

Quite Pronounced but not 
at all Uncomfortable 

Strong and Slightly Uncomfortable 

Rather Uncomfortable 

24 

Acceleration or Deceleration 
(g) 

.046 

.059-.068 

.091 

.105-.114 

.127 

.155 



TABLE 9. 

EVALUATION OF TROLLEY BUS MOTIONS 

(AFTER LOACH [13J) 

Evaluation 

Pronounced and Barely Comfortable, 
especially when there had been 
a rapid increase in the decelera
tion to that value 

Somewhat Uncomfortable 

Uncomfortable 

Deceleration (g) 

.182 

.228 

.273 
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given by Loach for the lack of lower acceleration levels in the trolley bus test, 

for the changes in subjective evaluation titles between the train and bus tests, 

or for the apparent discrepancies in the results of the two tests. Moreover, 

although jerk was not measured, Loach states that a given deceleration was more 

easily withstood when lower values of jerk were used. 

A more thorough series of studies have been conducted by various investiga

tors connected with the Japanese National Railways (JNR) [14, 16, 17, 18, 19J. 
The first three of these are related, and Gebhard [lJ has summarized the des

criptions used for a five-category rating scale, given in Table 10. The 1960 

report by Matsudaira [14J covered a preliminary test using 20 engineers connect

ed with the JNR, whereas his 1962 report [16J apparently covers the same tests 

as those described in more detail by Matsui [17J, in which approximately 40 

college students were used. Accordingly, the slight variability in wording be

tween the second and third columns of Table 10 could be due to anomalies in 

translation from Japanese to English. On the other hand, the substantial dif

ferences in descriptors in the first column from those of the other two could 

not likely be attributed solely to translation problems and it is evident that 

the meanings are very different for some of the categories. In the first study, 

using the 20 JNR engineers or subjects, Matsudaira [14J found that starting 

accelerations up to 0.15 g fell in Ride Index 3 (Table 10) or below for seated 

passengers, although evidently seats were oriented both laterally and longitud

inally. In deceleration tests, judgements of seated and standing passengers 

were pooled, and most subjects rated decelerations between 0.16 and 0.18 g under 

Ride Index 4. 

For the second series of tests reported by both Matsudaira [16J and Matsui 

[17J. we follow the latter because of the detail available. Approximately 40 

volunteer male students from two unjversities were used as subjects. Attempts 

were made to assess independently the effects of constant deceleration, called 

R tests for "retardation," and constant jerk, called J tests. The deceleration 

profile used was similar to the three-phase profile used by Browning for acceler

ation in Figure 4, except that only the constant acceleration level in the second 

phase &nd the jerk level in the final phase were controlled and held constant. 

The initial jerk phase was not controlled. All tests were conducted with an 
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Ride Index 

1 

2 

3 

4 

5 

TABLE 10. 

DESCRIPTORS USED FOR JUDGEMENTS ABOUT 

ACCELERATION AND DECELERATION IN JNR TESTS 

(AFTER GEBHARD [1]) 

Investigator 

Matsudaira [14] Matsudaira [16] 
Acceleration and Deceleration Deceleration 

Insensible Insensible 

Just Sensible Just Sensible 

Sensible, but not Noticeable 
Uncomfortable 

Somewhat uneasy Slightly 
Uncomfortable 

A little Uncomfortable Very Uncom-
fortable 

27 

Matsui [17] 
Deceleration 

Not Noticeable 

Just Noticeable 

Remarkable 

A bit Uncom-
fortable 

Quite Uncom-
fortable 



initial speed of 70 kph in a special passenger car of a two-car train. An aud

ible signal was given during the second phase of constant deceleration so that 

raters could concentrate their attention on either the constant value of deceler

ation or the constant value of J in the third phase, according to which category 

of test, specified beforehand, was being conducted. Raters were told to close 

their eyes before the first phase and open them 30 seconds after the car had 

stopped. Standing raters could use overhead hand straps and faced sideways with 

feet 30 cm apart. The form used for the evaluation actually provided for a 

contiuum of evaluations in which the ride index number in Table 10 marked only 

the upper boundaries of the categories described. That is, for example, a rater 

could check anywhere between 2 and 3 on the scale to fall in Ride Index 3. Results 

were presented of ride index averages for various postures plotted versus either 

acceleration for R tests or log of jerk for J tests. Altogether, 169 tests were 

made, producing 7000 ratings. During R tests, the final jerk value was held 

constant and five values of deceleration, randomly chosen,. were used. For jerk 

tests, four values of jerk were used, each with two different levels of constant 

deceleration. Under a fixed condition of rater's posture in each of the Rand J 

test series, the same combination of constant deceleration and constant jerk 

appeared at least three times. Matsui presents the most useful condensation of 

all this data to be that shown in Table 11. He considers Ride Index 3 as the 

limit for normal service braking and Ride Index 4 as the limit for emergency 

braking. Each of the tabular values represents either the acceleration (jerk) 

for the Mean Ride Index shown, or the acceleration (jerk) for the mean index 

plus one standard deviation (S.D.) in Index. Observe that for side facing, 

sitting passengers, all acceleration values for both ride indices are consider

ably higher than Loach's values in Table 8 under the headings "Quite Pronounced 

but not at all Uncomfortable" and "Strong and Slightly Uncomfortable." Moreover, 

quick computation shows that the side-facing, standing passengers apparently 

tolerated higher accelerations and jerks in Ride Index 3 than those recommended 

by Browning for fit adults in Figure 4, although Browning's subjects were likely 

facing forward without overhead straps. On the other hand, Hirshfeld's average 

attained accelerations of 0.19 and 0.23 g for side-facing standees and front

facing standees using straps, respectively, in Table 6, correlates well with 
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Ride Index 3 

Mean == 3 

Mean + S.D. = 3 

Ride Index 4 

Mean = 4 

Mean + S.D. 4 

Ride Index 3 

Mean = 3 

Mean + S.S. = 3 

Ride Index 4 

Mean = 4 

Mean + S.D. 4 

TABLE 11. 

DECELERATION AND JERK EVALUATIONS 

(AFTER MATSUI [17J) 

R-Tests Deceleration (g) 

Sitting Sitting Sitting 
Front-faced Rear-faced Side-faced 

.19 .19 .16 

.14 .13 .13 

.3 .3 .2 

.22 .19 .18 

J-Tests Jerk (g/s) 

1.2 1.7 0.5 

0.3 0.3 0.12 

10.0 10.0 10.0 

1-2 3-4 1-2 

Ride Index 3: "Remarkable" 

Ride Index 4: "A Bit Uncomfortable tl 
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Standing 
Side-faced 

.15 

.11 

.2 

.17 

2.0 

0.12 

10.0 

2-3 



Matsui's mean of 0.2 g under Ride Index 4 for side-facing standees. Finally, 

for front-facing, seated passengers, the value of 0.14 g under Ride Index 3 was 

eqUalled or exceeded by Mortimer's [7J drivers 40-50% of the time (Figure 1). 

In perhaps the most detailed subjective study, reported briefly by Matsudaira 

[18J, and later in more detail by Urabe and Noruma [19], three categories were 

used to obtain passenger evaluations: (l)"Sensation," with four levels: "No 

feeling," "Indistinct feeling," "Distinct feeling," and "Strong feeling"; (2) 

"Mood," with a continuum scale ranging from, 0 labeled "Comfortable" to,S, 

labeled "Uncomfortable. 1I The continuum was scored in five levels by scoring "0" 

for all marks between 0 and 1, "I" for all marks between 1 and 2, etc.; (3) 

IIJudgement," with two levels labeled "Permissible comfort" and "Not Permissible 

discomfort." The subjects consisted mainly of approximately 50 college students 

[18J. supplemented with "some" JNR employees [19J, number unspecified. The 

investigators conducted deceleration tests. starting at approximately 70 kph and 

using a three-phase deceleration profile, in which the first and third phases 

had constant jerk controlled at different values. The study was apparently 

designed to obtain passenger ratings in each of the categories above for various 

combinations of posture, initial jerk-phase value, constant deceleration value. 

and final jerk-phase value. It is unclear, however, what different acceleration 

and jerk values actually were used. Evidently, the critical parameters were 

found to be deceleration and final jerk values. Tables 12 and 13 give the main 

results, and it should be noted that all seated passengers faced sideways. thus 

experiencing lateral deceleration. Table 12 presents data on the "Sensation" 

category. and gives percentages of subjects who had "Strong feelings" for the 

deceleration and final jerk values indicated. Table 13 gives data in the "Judge

ment" category, for "Not Pennissible discomfort. 11 Observe that at the lower end 

of the rater population deceleration and jerk values judged "Not Permissibly 

Uncomfortable l1 are lower than those "strongly felt." The opposite holds at the 

high end of the rater population. It can be seen that tolerance to deceleration 

and jerk values are greater in a crowded, seated position and least when standing 

facing backward. Moreover. subjects who feel decelerations strongly do not 

necessarily rate them as unacceptably uncomfortable. 

The most recent study available, by Cussik and Mooring [15J, was conducted 
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Percent of 
Raters 

ncrowded Sitting 
ideways 

rowded Sitting 
ideways 

tanding Facing 
orward 

tanding Facing 
,ackward 

w ..... 

TABLE 12. 

CONSTANT DECELERATION AND FINAL JERK VALUES 

MARKED "STRONG FEELING" BY THE INDICATED PERCENTAGES OF RATERS [19] 

Deceleration (g) Jerk (g/s) 

o 5 10 20 30 40 50 60 80 100 o 5 10 20 30 40 50 60 80 100 

.122 .125 .127 .133 .139 .147 .156 .164 .181 .204 I .074 .077 .082 .091 .099 .108 .119 .130 .158 .187 

.136 .139 .142 .147 .156 .164 .170 .178 .195 .218 I .085 .088 .093 .102 .113 .125 .136 .150 .181 .224 

.113 .116 .119 .127 .133 .142 .150 .158 .175 .198 I .054 .057 .062 .071 .079 .088 .099 .113 .142 .184 

.085 .088 .091 .096 .102 .108 .113 .122 .139 .158 I .057 .059 .062 .071 .076 .085 .093 .105 .125 .153 



W 
N 

Percent of 
Raters 

Jncrowded Sitting 
lideways 

~rowded Sitting 
;ideways 

3tanding Facing 
i"orward 

Standing Facing 
Backward 

TABLE 13. 

CONSTANT DECELERATION AND FINAL JERK VALUES 

HARKED "NOT PERMISSIBLY UNCOMFORTABLE" BY THE INDICATED PERCENTAGES OF RATERS [19J 

Deceleration (g) Jerk (g/s) 

o 5 10 20 30 40 50 60 80 100 o 5 10 20 30 40 50 60 80 100 

.085 .105 .130 .150 .164 .175 .187 .207 .221 .068.091 .122.147.451.184 

.096 .119 .142 .161 .175 .187 .198 .215 .226 .074 .091 .113 .127 .139 .147 

.079.096.119.130 .142.153.158.173.184 .074 .091 .113 .127 .139 .150 

.071 .076 .091.102 .1l0 .116 .122 .133 .139 .027 .040 .059 .028 .091 .102 .113 .136 



as part of a program for the development of new urban transportation systems. 

Four prototype "Personal Rapid Transit (PRT) Systems" developed by different 

companies were tested in conjunction with an exhibition called "TRANSPO '72" at 

Dulles International Airport, Washington, D. C. Apparently, all subjects were 

seated but the seating arrangements varied among the vehicles. The investigation 

employed 94 "normal" subjects drawn from the staff of the Johns Hopkins University, 

Applied Physics lab, none of whom was engaged in transportation-related work. 

Detailed statistics on each subject were collected and care was taken to insure 

statistical representation of the general population in each rating group. In 

addition, 12 transportation specialists, called "experts," were used as subjects. 

All were male engineers or technicians ranging in age from 25 to 50 years old. 

Cussik and Mooring [15] report that although detailed physical measurements and 

subjective responses were recorded and remain available, only limited and incon

clusive data analysis was done. In fact, the authors list references to 42 

magnetic data tapes on ride quality alone. Only a sample of the subjective re

actions was chosen for correlation with measured acceleration and jerk, and only 

for two of the vehicles did the sample deal with longitudinal acceleration and 

jerk. Vehicle I had 12 side-facing seats, such that subjects experienced longi

tudinal accelerations as lateral accelerations. Vehicle II had six side-facing 

seats, three forward-facing seats, and three backward-facing seats, but the data 

presented is averaged over all passengers. Moreover, in the limited data avail

able, given in Table 14, it is unclear whether the "mean judgement" included the 

"experts" as well as the "normals." The evaluation scale used was as follows: 

o (not detectable), 1 (barely noticeable), 2 (clearly noticeable), 3 (strong), 

and 4 (violent). It is unclear whether the starts and stops in Table 14 were of 

the three-phase type discussed earlier, and no information is given as to what 

points in the starting and stopping transients correspond to the acceleration 

and jerk values listed. The values given were "manually scaled from the acceler

ation records, care being taken to exclude extremely sharp peaks (those that 

peaked in less than about 0.1 record)." Cussik and Mooring note that the judge

ment for Vehicle I on stopping appears high when compared with the other data, 

but no explanation is given. 

In addition to the limited comfort data, Cussik and Mooring present a com-
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Vehicle and 
Condition 

I Start 

I Stop 

II Start 

II Stop 

TABLE 14. 

RIDE COMFORT SUMMARY FOR TWO PRT VEHICLES 

(AFTER CUSSIK AND MOORING [15]) 

Longitudinal 
Acceleration or 
Deceleration 

(g) 

0.17 

0.16 

0.18 

0.17 

Longitudinal 
Jerk 

(g/sec) 

0.25 

0.17 

0.15 

0.20 
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Mean 
Judgement 

Between "barely" and 
"clearly noticeable 

Between "clearly 
noticeable" and 
"strong" (2.3) 

"Barely noticeable" 

Between "barely" and 
clearly noticeable" 

(1. 5) 

(1. 0) 

(1. 2) 



parison between ratings of the male "experts" and those of the male "normal" 

subjects. No values are given for the acceleration and jerk corresponding to 

the ~ean ratings, shown in Table 15, in which the scale used was the same as that 

for Table 14. Observe that in all but one test, the "experts" rated the condition 

less severe than the "normals" and the differences in ratings are substantial for 

most of the conditions for Vehicle I, in which all seated subjects faced sideways. 
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TABLE 15. 

RIDE QUALITY COMPARISONS OF "EXPERTS" AND "NORMALS" 

(AFTER CUSSIK AND MOORING [15J) 

Mean Judgement 

Vehicle and Condition Male "Normal" Male "Experts" 

I "J erk" at Start 1 1.7 1.2 

"Jerk" at Start 2 1.7 1.1 

"Jerk" at Start 3 1.5 0.9 

I "Jerk" at Stop 1 2.3 1.9 

"Jerk" at Stop 2 2.2 1.6 

"Jerk" at Stop 3 2.3 1.5 

II " Jerk" at Start 4 1.0 0.9 

"Jerk" at Start 5 1.0 1.1 

II tt Jerk" at Stop 4 1.2 0.8 

"Jerk" at Stop 5 1.3 0.8 
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PART II 

CONCLUSION 

It is tempting to provide, as Gebhard [1] has done, a summary table of jerk 

and acceleration values that might be taken as "nominal" or "acceptable" for var

ious types of vehicles and conditions. Certainly, for public mass transport, 

steady non-emergency accelerations in the range 0.11 g to 0.15 g fall in the 

"acceptablell range for most studies, and could be larger. It is unlikely that 

values of jerk larger than 0.30 g/sec would be acceptable for most public trans

portation. Beyond this, however, the available results on comfort do not provide 

a satisfactory basis for choosing any particular acceleration-jerk profile in 

preference to any other. The wide variability in method and type of results 

sought precludes a useful condensation of results. There appears to be extreme 

sensitivity in the results to the environmental and test conditions and no study 

has specifically addressed whether or not the results obtained are repeatable. 

Moreover, the effect of different populations on test results has not been ade

quately reported, and difficulties with subjects who IIlearn" the test during the 

experiment leave questions about reliability of the results. In addition, al

though the International Organization for Standards [20] has specifically includ

ed different comfort limits for different durations of exposure to whole-body 

vibration, none of the studies surveyed here addressed the question of how the 

extent and the duration of a test affected results. In fact, no studies have 

been found that examined passenger response to frequency of start-stop motions, 

such as occur in short-haul transportation systems. All studies found delt es

sentially with single-transient tests. 

Finally, no large-scale studies have been found that show how well objective 

or subjective test results correlate with ridership in actual transportation 

systems. 
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