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Abstract 

 

Development of Software Architecture to Investigate Bridge Security 

 
Joeny Quan Bui, M. S. E. 

The University of Texas at Austin, 2012 

 
Supervisor:  Eric Williamson 

 
After September 11, 2001, government officials and the engineering community 

have devoted significant time and resources to protect the country from such attacks 

again.  Because highway infrastructure plays such a critical role in the public’s daily life, 

research has been conducted to determine the resiliency of various bridge components 

subjected to blast loads.  While more tests are needed, it is now time to transfer the 

research into tools to be used by the design community.   

The development of Anti-Terrorism Planner for Bridges (ATP-Bridge), a program 

intended to be used by bridge engineers and planners to investigate blast loads against 

bridges, is explained in this thesis.  The overall project goal was to build a program that 

can incorporate multiple bridge components while still maintaining a simple, user-

friendly interface.  This goal was achieved by balancing three core areas: constraining the 

graphical user interface (GUI) to similar themes across the program, allowing flexibility 
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in the creation of the numerical models, and designing the data structures using object-

oriented programming concepts to connect the GUI with the numerical models.   

An example of a solver (prestressed girder with advanced SDOF analysis model) 

is also presented to illustrate a fast-running algorithm.  The SDOF model incorporates the 

development of a moment-curvature response curve created by a layer-by-layer analysis, 

a non-linear static analysis accounting for both geometric non-linearity as well as 

material non-linearity, and a Newmark-beta-based SDOF analysis.  The results of the 

model return the dynamic response history and the amount of damage. 

ATP-Bridge is the first software developed that incorporates multiple bridge 

components into one user-friendly engineering tool for protecting bridge structures 

against terrorist threats.  The software is intended to serve as a synthesis of state-of-the-

art knowledge, with future updates made to the program as more research becomes 

available.  In contrast to physical testing and high-fidelity finite element simulations, 

ATP-Bridge uses less time-consuming, more cost effective numerical models to generate 

dynamic response data and damage estimates.  With this tool, engineers and planners will 

be able to safeguard the nation’s bridge inventory and, in turn, reinforce the public’s 

trust. 
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“That’s been one of my mantras – focus and simplicity.  Simple can be harder than 
complex: You have to work hard to get your thinking clean to make it simple.  But it’s 

worth it in the end because once you get there, you can move mountains.” 
 

Steve Jobs (1989) 
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Chapter 1:  Introduction 

In the decade following September 11, 2001, government officials and the 

engineering community have devoted time and resources to protect the country from such 

attacks again.  The highway bridge infrastructure, a system utilized daily by most 

Americans, is considered a potential terrorist target because it is a public symbol, and an 

attack can cause major disruptions to the local economy.  Before the last decade, only a 

limited number of studies considered the response of bridge components subjected to 

blast loads.  Although buildings and bridges have similar structural components, there are 

a number of behavior variations that warrant additional exploration. Furthermore, most 

bridge engineers have limited experience in blast-resistant design principles. 

With these concerns, researchers at the University of Texas at Austin were tasked 

with the creation of Anti-Terrorist Bridge Planner (ATP-Bridge) PC software.  The 

purpose of this software is to transition the knowledge gained through research over the 

last decade into a user-friendly software that allows bridge engineers and planners to 

investigate the response of different bridge components to a postulated terrorist threat 

scenario involving explosives.  Analysis results provided by the software can be used to 

conduct vulnerability assessments of planned or existing bridges, and the information can 

also be used to determine whether structural hardening is needed to protect a critical 

bridge component.  The project is funded by the US Department of Homeland Security 

(DHS) and is overseen by the US Army Corp Engineer Research Development Center.  

The software is designed to analyze a variety of bridge components, from reinforced 

concrete columns to steel plates on a bridge tower.  As new research becomes available, 

additional components can be incorporated into the software.   
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This thesis outlines the development of the software architecture and lays out the 

different programming concepts used to address the identified challenges.  The main 

challenge in developing ATP-Bridge is balancing the desire to create user-friendly 

software while still incorporating multiple bridge components with different loading 

conditions, material behavior, and modes of failure.  The scope of this thesis covers the 

motivation for the research, the theory behind the software architecture, and how the 

software interacts with the user.  This thesis also includes an example of a bridge 

component numerical model (prestressed girder) and describes how it is implemented 

inside the program. 

THESIS OUTLINE 

The thesis is divided into seven chapters, including this introductory chapter.  

Chapter 2 provides an overview of threats against bridges, prior experimental testing 

against bridge components, current practices, research motivation, and current design 

challenges.  Chapter 3 describes the program flow path, the different programming styles, 

and general aspects of object oriented programming that are relevant to the current study.  

Chapter 4 explains the relationships between the core data structures, and it gives a 

thorough explanation on how they were implemented in practice.  Chapter 5 lays out the 

schematics of the graphical user interface and provides an in-depth discussion on the 

graphics engine.  Chapter 6 presents an advanced single-degree-of-freedom model using 

a layer-by-layer moment curvature response curve and non-linear static analysis for the 

resistance function.  Finally, Chapter 7 ends the thesis with further recommendations for 

the software and the prestressed girder model. 
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Chapter 2:  Background, Motivation, and Challenges 

There have been terrorist threats against US interests, both domestically and 

abroad, dating back well before September 11, 2001.  Events like the 1998 bombing at 

the US embassies in Tanzania and Kenya (FEMA 427, 2003), the 1993 World Trade 

Center truck bombing at the North Tower (NRC, 1995), and the Oklahoma City bombing 

of the Alfred P. Murrah Federal Building (NRC, 1995) highlight the need for structures to 

be designed with consideration given to blast protection.  After the tragic events of 

September 11, 2001, there has been a renewed focus amongst policy makers about the 

security and readiness of the country to defend against such attacks across a wide range 

of infrastructure (FHWA, 2003).  

 

Figure 2.1: Documented Worldwide Terrorist Attacks on Public Transportation 

Infrastructure (Jenkins & Butterworth, 2010)  
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The protective design community has previously focused on military structures 

and federal buildings.  Yet, as shown in Figure 2.1 there has been a worldwide increase in 

documented terrorist threats against public transportation infrastructure starting roughly 

around the 90s.  Over the last decade, however, awareness of the vulnerability of public 

highway infrastructure has been raised, with concerns not only from a safety perspective 

but also an economic and socioeconomic perspective (Williamson, et al. 2010). 

TERRORIST THREATS AGAINST BRIDGES 

The Mineta Transportation Institute (MTI) documented 1633 worldwide terrorist 

attacks against public surface transportation infrastructure since the first quarter of 2010, 

including 161 attacks against highway infrastructure (Jenkins and Butterworth, 2010).  

Although there has been only one documented bridge attack on US soil—the 1977 Route 

1 Bridge in Florida Homestead and Key West—there have been many reported incidents 

during the last decade that show bridges are potential targets for terrorists.  On February 

16, 1982, Oakland’s Bay Bridge was targeted by an unknown terrorist leaving 40 lbs of 

liquid explosive beneath the bridge (Jenkins, 1997).  On June 29, 1993, the George 

Washington Bridge was the target of nine arrested terrorists (Jenkins, 1997).  The 

Brooklyn Bridge has been targeted in the past, with plans to bring down the bridge with 

various methods such as cutting through the suspension cables (Weiser, 2011).   

Even though all the bridges described above are iconic bridges, they are only a 

small portion of the total bridge inventory within the US.  Data have shown that it is more 

likely that typical bridges are targeted, as shown in Figure 2.2 (Jenkins, 2001).  Bridges 
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can be the only entrance to a community, and they can be an important route for critical 

infrastructure like power plants, water treatment facilities, or shipping yards.  If a series 

of attacks were coordinated, it could cause devastating economic consequences to the 

surrounding communities and beyond. 

 

Figure 2.2: Percentage of Bridge Targeted in Industrialized Nation between 1980 and 

2006 (Jenkins, 2001)  

EXPERIMENTAL RESEARCH AND CURRENT PRACTICE 

Within the last decade, several researchers have studied the effects of blast loads 

acting against different bridge components.  The previous projects consider different 

bridge systems and materials.     

Suspension 
30% 

Cable Stay 
Tied Arch 

15% Truss 
5% 

Railroad 
15% 

Other 
Highway 
Bridges 

35% 



6 
 

For example, researchers at the University of Texas at Austin performed half-

scale tests on bridge columns (Williams, 2009).  This work was funded by the National 

Cooperative Highway Research Program.  The researchers studied the behavior of 

rectangular and circular columns, varying the transverse reinforcement detailing and the 

overall dimensions to determine the governing failure mechanisms associated with 

different threats and design parameters.  Knowledge from that research led to blast-

resistant design guidelines, which are detailed in NCHRP Report 645 (Williamson, et al., 

2010). 

Bruneau and Fujikura from SUNY Buffalo studied the response of quarter-scale 

concrete pier-bent models (Bruneau, 2010).  Their goal was to prevent breaching, which 

is characterized by the complete loss of concrete at a localized cross-section, from 

occurring in the piers.  The study led them to include a composite steel jacket along the 

height of the column.  Their primary conclusion was that the addition of the composite 

jacket increased the ductility on the column. 

Aside from columns, research has been conducted on other critical bridge 

components.  Prestressed girders were the focus of a recent study by Cofer (2012).  This 

project included full-scale tests against typical AASHTO girder designs for both above- 

and below-deck threats.  Data collected from the tests were used to validate detailed finite 

element models.  After achieving a satisfactory single girder model, they extrapolated the 

model to include a full cross-section of a composite girder deck.  The main conclusion 

reported is that the primary mode of failure is concrete rubbelization and shear failure. 
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The Federal Highway Administration (FHWA) funded research involving the 

blast testing of one-quarter scale representations of steel suspension bridge towers.  

Testing for this project was carried out by the Engineer Research and Development 

Center (ERDC) of the US Army Corp of Engineers (Ray, 2006).  The objective of the test 

program was to determine the blast resistance of steel plates subjected to a variety of 

threats, considering a wide range of support conditions.  The measured steel plate 

response was compared with results from numerical simulations to determine how 

accurate the models were at predicting the failure mechanism.  ERDC also considered 

potential retrofit options and evaluated them during the test program. 

The cited projects above provide insight to the blast-resistant design community 

on the actual behavior of different bridge components subjected to explosive threats.  To 

protect the approximately 600,000 bridges in the US, however, there needs to be a design 

tool that is capable of analyzing the majority of the bridge components found in practice.  

CURRENT PRACTICE 

Currently, there are multiple approaches available for analyzing structures 

subjected to blast loads.  The tools range from approximating a component as a single-

degree-of-freedom (SDOF) system to a coupled fluid-structure finite element analysis.  

Although seismic and blast loadings on bridges share similar traits, designing for seismic 

loads will not necessarily satisfy the requirements for blast (Holland, 2008).  The 

methods used for a given project will depend upon the experience and expertise of the 
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project personnel, the budget, and the desired accuracy from the client (Winget and 

Williamson, 2000). 

Although it might be desirable for an engineer to model a bridge globally, it is 

usually not necessary to do so for assessing bridge vulnerability to potential blast threats.  

Because the pressure from a blast wave attenuates quickly with distance, damage is 

typically localized around the detonation site (Cofer, 2012).  Thus, studying individual 

bridge components can provide valuable insight on how a bridge performs when 

subjected to an explosion while maintaining simplicity in the engineering models used to 

predict response. 

Determining whether a given bridge should be designed for blast protection 

should be based on a vulnerability assessment.  A vulnerability assessment, such as the 

one suggested by AASHTO (2002), should determine the importance and criticality of a 

bridge relative to the whole infrastructure network.  If a bridge is deemed to be at risk, it 

should be assessed at an individual component level.  Ray (2007) recently proposed a 

method for determining the risk associated with individual bridge components based on 

the occurrence, vulnerability, and importance of the individual members. 

If by choice of the owner or through the outcome of a formal vulnerability 

assessment it has been determined that a bridge requires protection from blast loads, there 

are several options available.  The most efficient means of protecting highway bridges is 

during the design phase through planning and site layout (Winget, et al., 2010).  Planning 

could include increased surveillance, fencing off critical components, or increasing the 
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lighting around dark areas.  Because these options are not always available, it is 

important to have available tools for retrofitting and analysis.   

PURPOSE OF THE RESEARCH PROJECT 

The main objective of this project is to develop the Anti-Terrorist Planner for 

Bridges (ATP-Bridge) software.  This work is funded by the Department of Homeland 

Security and overseen by the US Army Corp of Engineers.  The software is created for a 

Windows-based PC, with a graphical user interface (GUI), navigation control scheme, 

and 2D and 3D rendering engine.  These components will be explained in subsequent 

chapters. 

The intent of the software is to provide a simple tool for bridge engineers to use 

when designing bridges to resist blast and other extreme loads.  There is a great need to 

protect our domestic infrastructure; however, with the economic reality that there are 

limited resources available, it is not possible to have separate, detailed analyses for every 

bridge.  Therefore, this software will not only allow engineers and planning personnel to 

quickly evaluate whether a bridge needs further protection, but it will help bridge 

engineers during the design process.  

The software is to be a clearinghouse of experimental research done in the last 

decade and to be expandable to allow the incorporation of new data as it becomes 

available.   To reflect the diversity of bridge systems around the US as shown in Figure 

2.3, the ATP-Bridge software is component-based rather than focusing on a single 

system.   
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Figure 2.3: Percentage of Different Bridge System in the U.S. Inventory as of 2011 

(National Bridge Inventory, 2011) 

Structural analysis options available vary depending upon the complexity of the 

component being analyzed.  Some bridge components can be accurately modeled as a 

single-degree-of-freedom system, whereas other components are complex and require 

correlation with empirical data.  Although finite element models, if used correctly, are 

considered more accurate than SDOF or empirical models, they require a large 

investment in time and computational resources. 
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ATP-Bridge does not require users to decide the most appropriate method of 

analysis for a given component.  Rather, the software has built-in algorithms that have 

been developed by researchers on this project to provide accurate predictions of response.  

The algorithms have been validated against test data and detailed finite element models.  

With the adopted software development approach, the user interface and the analysis 

modules are self-contained, making it possible for analysis modules to be coded by 

different developers without needing to know the details of the interface.   

A possibility for component-based software is to compute local damage caused by 

a blast load and then map the damage back to a static global structural analysis program.  

With the new global model, an engineer can evaluate the residual capacity of a bridge 

system without needing to do a costly non-linear analysis of the entire structure. 

GOAL OF THE SOFTWARE 

“The complexity of software is an essential property, not an accidental one.” 

(Brooks, 1986) 

The ATP-Bridge software is organized to analyze individual bridge components 

rather than a complete system, which leads to several development challenges.  Of 

primary importance is creating a simple and intuitive user interface that supports a 

multitude of different components, each having different material properties and response 

characteristics.  To create a user-friendly interface, the steps required to define input 

parameters or to review the results must be similar and predictable across the different 

components.  Doing so requires the core data structure of the program to be generic and 
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have the ability to store different types of data.  This requirement for a generic data 

structure makes it possible for the interface, including the navigational control system 

and the 3D graphics environment, to behave seamlessly amongst the different 

components.   

The goals for the software create a complex set of challenges for its development.  

Booch (1994) divides these complexities into four different elements: (1) the complexity 

of the problem domain, (2) the challenge of managing the developmental process, (3) the 

flexibility throughout the process, and (4) the problem of characterizing a discrete 

system.  The following is a discussion of these different elements as it relates to ATP-

Bridge. 

The Complexity of the Problem Domain 

“This external complexity usually springs from the ‘impedance mismatch’ that 

exists between the users of a system and its developer: users generally find it very hard to 

give precise expression to their needs in a form that developers can understand.”  

(Booch, 1994)   

 
The problem domain can be generically described as required information that is 

needed to find the solution to a problem.  It is important for the client and the developer 

to communicate their individual vision of the program throughout the software 

development period. 
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The general framework for the ATP-Bridge software is a multi-component blast 

design tool.  Single-component analysis software requires a user interface for the inputs 

and outputs along with a solver to calculate the desired results.  The challenges are 

magnified with the creation of a software package that can handle multiple types of 

individual components, each having their own different sets of inputs and outputs.  

Another challenge is maintaining and balancing requirements that might contradict each 

other for different components.  Completely integrating all components to a standard 

interface is difficult without knowing in advance all the different components that the 

software may eventually include.  This is due to the fact that the scope of all the 

components is not fully defined, and it is not possible to fully define them because 

ongoing research may require new interpretations of existing data.  Thus, it is not clear 

how to enforce standardization for the user interface or even if it is desirable to do so 

because future components might be unnecessarily constrained due to current choices. 

Another challenge to the problem domain concerns how the software evolves with 

time.  Success is measured not only on how accurate and well developed the software is, 

but also on how useful it is to the protective design community at large.  The software 

needs to address the problems that users face.  The decision to make it component-based 

reflects the research work done to date.  Nonetheless, even during the early stages of 

program development, consideration must be given to whether the software may 

eventually allow for a global bridge model to be analyzed or whether other output (e.g., 

vulnerability) may be needed. 
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The Challenge of Managing the Developmental Process 

“The fundamental task of the software development team is to engineer the 

illusion of simplicity – to shield users from this vast and often arbitrary external 

complexity.”  (Booch, 1994) 

 
There are a variety of different software development models that exist today, 

with classical ones such as the “waterfall” model and the stepwise refinement model, to 

the more modern ones such as rapid prototyping and the joint application development 

model (Scacchi, 2001).  All the different models have the same overall goal of providing 

a conceptual scheme for managing the development process.  Each model may vary in its 

implementation, but all development models include planning, requirement analysis, 

functional specification, detailed component design specification, debugging, and 

maintenance (Scacchi, 2001). 

A concern when developing large software projects is carefully managing the 

development cycle.  With poorly managed projects, it becomes increasingly difficult to 

make small changes without having a big impact on code that was developed earlier.  The 

inertia of the software will become too hard for the development team to overcome as the 

size of the software increases.  Therefore, it is important for the team to constantly iterate 

and reevaluate the efficiency of the software.   

With a large team that is working on different areas, there will inherently be 

fragmentation amongst the groups, with models and interface development moving at 

different paces.  To accommodate this challenge, there needs to be early planning and 
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coordination amongst the team on how the different areas mesh together.  It is necessary 

for the software to be well documented and follow strict guidelines to become predictable 

for the developers to maintain the integrity of the software over its lifetime. 

There are issues that arise when managing the software development process in a 

university research setting.  It is always desirable for the development team to be intact 

throughout the full cycle of the software development.  Because of the turnover of 

graduate students coming into the program, however, it is not possible to maintain the 

same development team for its full duration.  Therefore, as stated above, it is necessary to 

keep things well documented. 

Despite the best efforts of the developers, software will have bugs, and users may 

experience crashes or incorrect functioning of a program.  Maintenance beyond the 

development stage is a consideration that the client needs to consider.  Although most 

bugs should be corrected during the debugging cycle, software in commercial settings 

will have issues that the development team will be unable to predict.  A program with a 

graphical user interface only increases the unpredictability, where concerns about the 

physical environment change for each user and the 3D graphical environment depends on 

physical hardware like the graphics card. 

The Flexibility Possible through Software 

“Software offers the ultimate flexibility, so it is possible for a developer to express 

almost any kind of abstraction.  This flexibility turns out to be an incredibly seductive 
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property, however, because it also forces the developer to craft virtually all the primitive 

building blocks upon which these higher-level abstractions stand.”  (Booch, 1994) 

 
Software that is poorly organized and too complex to use will frustrate the target 

audience and discourage them from using it.  That is why it is critical that users find it 

intuitive and responsive to how they think.  The problem is that users have different 

styles and behave differently from each other.  Although it is impossible for software to 

satisfy everyone, it is important to develop a flexible program that gives multiple ways to 

progress through an analysis and to communicate and visualize material in more ways 

than one. 

Different people learn in different ways, with some being more visual while 

others are more hands-on.  These different learning styles are similar for a person using 

computer software.  That is why successful software needs to have multiple ways to 

perform the same task.  Different people are more attuned to clicking menu items or 

toolbar buttons, while others prefer using the keyboard to navigate through the software.  

All this additional flexibility added to the program adds to the challenges and requires 

additional planning and coding. 

The Problems of Characterizing the Behavior of Discrete System 

“Because we execute our software on digital computers, we have a system with 

discrete states.  By contrast, analog systems such as the motion of the tossed ball are 

continuous system.”  (Booch, 1994) 



17 
 

 
In analyzing structures subjected to blast loads, there is a large variability not only 

in the characterization of the explosive but also in the way component response is 

computed.  Aside from errors associated with the variability of the input parameters, 

implementation of the solution on computers only adds to the error due to the limits of 

compound round-off and data type manipulation.  While these limits are unavoidable, it 

is important for program developers to understand and account for them in their software 

design.  

Another concern is the validity of the component models beyond the developers’ 

intent.  All the component models should be verified for accuracy within a reasonable 

range, but it is impossible to check every input a user may provide.  Users could generate 

a section property that is valid but inherently unstable, apply a load that is theoretically 

possible but outside the range of knowledge, or trigger an equation that will return a 

result close to infinity.  To limit these difficulties, a vigorous debugging process is 

necessary. 

SUMMARY 

This chapter provides an overview of the vulnerability of transportation 

infrastructure, previous experimental research, and current design practice.  To allow 

bridge engineers the ability to analyze structural components subjected to blast loads, the 

primary objective of this research is to develop a user-friendly software application that 

runs efficiently on a personal computer.  Following a brief description of the desired 
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software capabilities, the goals and challenges of developing such a program are 

discussed.  The next chapter details how the software design challenges are addressed in 

this study.  
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Chapter 3: Software Architecture and Design  

To ensure that current and future versions of ATP-Bridge are robust, thorough 

planning was devoted to the development of its global framework.  Although there has 

not been a universally adopted definition for software architecture in the computer 

science community, a good explanation provided by Microsoft (2009) describes it as the 

interaction of the major program elements with each other and the hardware.  Software 

architecture also takes into consideration the needs of various stakeholders: the users, the 

clients, and the developers.   This chapter details the overall software framework and 

paradigms. 

PROGRAM FLOW CHART 

Examining a high-level view of solving any structural analysis problem, there are 

three generic stages involved as shown in Figure 3.1.  First is the [Pre–Processor] 

segment, where the problem domain is defined and the scenario is understood.  Second is 

the [Analysis] segment, where the program will choose a solution method (empirical 

equations, direct stiffness method, finite element method, etc.) to solve the problem 

domain.  Lastly, the [Post-Processor] segment is where the results are processed into 

desired output (producing graphs, contour plots, etc.) and reported to the user.   

 

Figure 3.1: General Structural Analysis Program Flow 
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 For the analysis of a structural component subjected to blast, the three segments 

from the general cases are further refined into blast-specific segments.  The [Pre-

Processor] segment is divided into the [Define Component Geometry] and [Define Blast 

Loads] segments, and the [Post-Processor] segment is divided into the [Failure Mode] 

and [Display Results] segments (Figure 3.2). The [Define Component Geometry] could 

consist of many different parameters depending on the type of component being 

analyzed.  Examples include the global dimensions, shape, material properties, and 

boundary conditions.   The [Define Blast Loads] segment can consist of many different 

parameters that are specifically associated with the component being analyzed, such as 

charge weight and diameter, charge location, and proximity to a reflecting surface such as 

the deck.  The [Failure Mode] segment consists of local failure and global failure.  Output 

from the [Display Results] segment varies depending on the fidelity of the component 

model used.  Examples of the different results are displacements, spall length, and breach 

length.  

 

 

Figure 3.2: Blast-Component Structural Analysis Flow Chart 

Further refinement is possible for specific components, as shown in Figure 3.3 

and Figure 3.4 for a reinforced concrete column and steel plate, respectively.  With 

further refinement, there is greater divergence in common segments that are shared 
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among the different components.  Comparing the flow chart of the reinforced concrete 

column with the steel plate, the two differ largely on the type of geometry declarations, 

including parameters such as support conditions and material properties.  For loads, both 

components utilize similar parameters with the exception that reinforced concrete 

columns need information about the deck to calculate reflections.  These variations in 

required input only compare two structural components.  With each additional structural 

component, there will be even more variation, and planning the interface becomes a 

significant challenge. 

 

Figure 3.3: Reinforced Concrete Column Blast-Component Structural Analysis Flow 

Chart 
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Figure 3.4: Steel Plate Blast-Component Structural Analysis Flow Chart 

 To avoid problems associated with the creation of component-specific input and 

output, ATP-Bridge is organized and planned according to a blast-component structural 

analysis flow chart.  Each component is organized in broad segments and with the 

interface design for a generic component type.  This generic flow path addresses the 

challenge of adding new components into the software as the project progresses. 

PROGRAM PARADIGM 

After determining the overall strategy in the software flow path, the next stage is 

to determine the appropriate paradigm.  Paradigm is used in this thesis as the structure, 

style, and relationship regarding how the program is coded and developed. There are 

many different paradigms that can be used during software development, with some 

being more efficient than others at solving specific tasks.  This thesis does not cover all 

of the different possibilities.  Rather, it focuses on the ones used in ATP-Bridge.  The 
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following sections provide brief explanations of the paradigms used along with 

references where additional information can be found. 

Modular Programming 

 The general concept of modular programming focuses on creating independent, 

interchangeable components that complete a task within a module.  Defined by Turner 

(1980) as the “locality of reference”, a module needs to be self-contained and can only 

reference things inside its scope and passed through its boundaries.  The data passed to a 

module must have clearly defined data types.  This separation of tasks lends itself well to 

team projects, where different developers can focus on their specific concerns and easily 

maintain the work inside the modules they are developing.  

Object-Oriented Programming 

Object-oriented programming was developed to overcome the underlying security 

issues with reusing modules.  There are two types of object-oriented programming: class-

based and prototype-based (Craig, 2000).  The focus in this thesis is on the former.  Any 

references made to object-oriented programming in this thesis assumes the class-based 

approach.  Because object-oriented programming is an important concept within the 

architecture of ATP-Bridge, the following paragraphs give a thorough description of the 

important features. 

At its most fundamental level, object-oriented programming models all problems 

as classes and objects.  As stated in Craig (2000), the concept of classes can be thought of 



24 
 

as a set of objects, a program structure, a template that produces objects, or a data type.  

Each definition is correct, but none fully defines the whole entity.   

Classes hold both data and methods wrapped into one ‘data type’.  Objects, 

conversely, take all the attributes of the class and create an independent instance of that 

class, where it then is possible to be passed and returned through functions and 

subroutines, assign variables, and store arrays and data structures.  A clear difference 

between classes and objects is that a class does not exist at runtime, whereas an object 

does.   

To distinguish between user-defined classes and objects in this thesis, user-

defined classes will be designated with “bold-italic” font while objects of that class are 

designated with just “italic” font.  For example, a class of Animals will have objects of 

that class designated as tiger, bears, and fish. 

What makes object-oriented programming a powerful concept and a popular 

programming style is its adherence to its principles, as discussed in Brooch (1994).  This 

project uses the concepts of abstraction, encapsulation, polymorphism, and inheritance.  

The following sections give a general description and examples of those concepts.   

Abstraction 

 “An abstraction denotes the essential characteristics of an object that distinguish 

it from all other kinds of objects and thus provide(s) crisply defined conceptual 

boundaries, relative to the perspective of the viewer.” (Booch, 1994) 
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Data abstraction is the concept of factoring out all the unnecessary details and 

capturing only those details that are relevant to the problem domain.  An example of 

abstraction is trying to calculate payroll for an employee.  When calculating payroll, it is 

unnecessary to know the employee’s eye color, what car they drive, or their favorite 

food—those are unnecessary details.  The information that is needed to be abstracted is 

the employee’s social security number, salary, and mailing address.  Abstraction is 

essential to modeling. 

Encapsulation 

 “Encapsulation is the process of compartmentalizing the elements of an 

abstraction that constitute its structure and behavior; encapsulation serves to separate 

the contractual interface of an abstraction and its implementation.” (Booch, 1994) 

 
Encapsulation is information hiding.  There is an interface for the public to 

access, but the internal workings are restricted and hidden.  A typical example of 

encapsulation is a person driving a car.  Most drivers do not know how cars are built, 

how engines work, or even how radios are connected.  That knowledge is not required for 

individuals to drive a car.  The information provided to the driver is how to start the 

ignition, where the gas pedal is, and how to shift gears.  The benefit of encapsulation in 

programming comes when there is a need to improve a code’s efficiency.  When 

encapsulation is utilized correctly, there is no need for something previously written to 

know that a change had been made as long as it returns the same values.   
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Inheritance 

“Hierarchy (inheritance) is a ranking or ordering of abstraction.” (Booch, 1994) 

 
Inheritance is an important concept that is used to achieve flexibility.  Inheritance 

makes a family of classes by designating super-classes and sub-classes.  Super-classes 

can be described as parent classes or base classes, where sub-classes are child classes, 

derived classes, or inherited classes.  This concept leads to a hierarchal tree, where there 

can be many sub-classes for one super-class.  Super-classes hold traits that are applicable 

to sub-classes, such as data types, subroutines, and functions.  Sub-classes, meanwhile, 

inherit the attributes of the super-class, which reinforces reusability of codes.  Therefore, 

sub-classes can reference codes from the super-classes, but super-classes cannot 

reference code from the sub-classes.  An example of hierarchy is the animal kingdom, 

with reptiles and mammals both being a sub-class of animals, and tigers and bears being 

sub-classes of mammals.  Traits like eating and sleeping are shared amongst all animals; 

having fur is specific to mammals. 

Polymorphism 

“The term means literally ‘many formed’ and refers to the property of object-

oriented languages that they permit routines to have more than one type assignment.” 

(Craig, 1994) 

 
As defined in Craig (1994), there are three primary types of polymorphism: 

genericity, inclusive polymorphism, and ad hoc polymorphism.  Genericity is an idea that 
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relates with inheritance, where a super-class and sub-class share methods with the same 

signature but return different results when called.  Inclusive polymorphism is the idea that 

methods defined for a super-class will be made available to its sub-classes.  Ad hoc 

polymorphism is commonly called methods overloading; methods with the same name 

but with different signatures (parameters inside the method calls) will access different 

algorithms. 

Event-Driven Programming 

ATP-Bridge, as well as most GUI software, uses event-driven programming.  

Conceptually, this type of programming is based on interaction with the user and does not 

have a pre-determined sequential order.  ATP-Bridge reacts to triggered events, such as 

clicking the mouse or typing a letter on the keyboard.  Once an event is triggered, a set of 

operations is performed that were written for the specific event.  A key component to 

user-friendly software is developing multiple paths to a desired destination, and ATP-

Bridge provides a variety of ways to carry out specific tasks including use of pull-down 

menus, shortcut icons, and text entered from the keyboard.  See Faison (2006) for a 

detailed discussion on event-driven programming. 

ATP-BRIDGE PARADIGM 

As stated in Van Roy (2009), most sizable software has two or more program 

paradigms that fully describe the relationships among different elements.  With the 

demand of maintaining a flexible and robust program, ATP-Bridge uses a mixture of 
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event-driven programming, object-oriented programming, and modularized programming 

at different levels.   

At the highest level, the program uses the modular paradigm, dividing the 

software into two segments: a front-end and a back-end.  The front-end segment 

incorporates the interface and the data structures, with both adhering strictly to an object-

oriented paradigm.  In addition to the object-oriented paradigm, the interface also adheres 

to the event-driven paradigm to interact with the user.  The back-end module incorporates 

a solver for the different bridge components that are analyzed.  Those solvers are 

unconstrained to any specific paradigm, and other developers may determine the most 

appropriate paradigm for it.   Figure 3.5 provides a visual description of the program 

organization. 
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Figure 3.5: ATP-Bridge Paradigm 

The user interacts with the interface to characterize the problem parameters.  

Once the user is satisfied with the parameters, the information is stored in data structures 

and saved until triggered for analysis.  When the user initiates the command to carry out 
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an analysis, assuming both the corresponding structural component and load classes are 

complete (i.e., have parameters that fall within appropriate ranges and completely define 

the problem being solved), the program will convert the data structures into appropriate 

parameters for the specific solver.  Once the analysis is complete, the results are 

converted back into parameters to store in the data structures. Users can then prompt the 

interface to see the results.   

This careful arrangement among the three paradigms ensures reliability, 

robustness, reusability, and security.  It also provides the flexibility necessary for this 

software to mature.  The pure separation from the modular paradigm allows the different 

components of the software to be developed by different developers concurrently without 

needing constant interaction.  An important benefit from the modular paradigm is its clear 

separation of the least sensitive information—the interface and data structure—with the 

more sensitive information—the solvers and external loading software.  This separation 

compartmentalizes the information not only from the users but from the developers of the 

program.  Similar to the military concept of “need to know”, information that is not 

necessary for the different developers to accomplish their tasks is left hidden.    

SUMMARY 

This chapter provides a description of the overall flow path of ATP-Bridge, 

explains modular, object-oriented, and event-driven programming, and presents the ATP-

Bridge Paradigm.  The next chapter describes in detail the main data structures: structural 

component, loads, and nexus. 



31 
 

Chapter 4: Data Structures 

Data structure is defined by Lafore (2003) as “the arrangement of data in a 

computer’s memory.”  This chapter focuses on the core ATP-Bridge software data 

structures: the Structural Component, the Load, and the Nexus class.  The collection of 

these three data structures is used by all the different components inside the software, 

similarly to how the heart and circulatory system run all the major organs inside a body.  

Without them there is no path to connect the user with the interface, the interface with the 

solver, and the solver to the results.   

DATA STRUCTURE RELATIONSHIPS 

 From Chapter 3, it is clear that there should be at least two generic data structures 

in ATP-Bridge: the Structural Component and the Load classes.  In addition to these two 

classes, there is one more important data structure: the Nexus class.  Nexus is defined in 

the Oxford dictionary as “a connection or (a) series of connections linking two or more 

things.”  The Nexus class used in this software links the front-end segment with the back-

end segment of the software.  The front-end segment consists of the graphical user 

interface, whereas the back-end segment consists of the bridge component model and 

Bridge Explosive Loading (BEL) software, developed by the US Army Corps of 

Engineers to predict blast loads against bridge components (USACE-ERDC, 2004). 

 The relationship among these three important data structures is important to the 

overall organization of the software.  Below are three different relationships that were 
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considered for the software: the Nexus assembly, the Load assembly, and the Structural 

Component assembly.  The names of these three options relate to the class that is the top 

tier of the associated assembly. 

Nexus Assembly 

Shown in Figure 4.1 is an assembly of the Nexus class, with one Structural 

Component and Load class contained inside the Nexus class.  The benefit of this model 

is that the interior classes are independent of each other; therefore, the order in which 

they are defined is unimportant.   

 

Figure 4.1: Nexus Assembly Class Model Diagram 

One drawback of this assembly occurs when a user wants to observe the behavior 

of different loading conditions on the same bridge component.  Under these conditions, 

the program requires the same Structural Component class to be declared multiple times, 
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adding unnecessary and redundant data types.  In addition, when changes are required for 

the Structural Component, multiple actions are necessary to change the same parameter 

through the different assemblies.  

Load Assembly  

In the Load assembly, the Load class is the host of the assembly, as shown in 

Figure 4.2.  Contained inside the Load class is an array of Structural Component classes; 

within a Structural Component class there exists one Nexus class.   

 

Figure 4.2: Load Assembly Class Model Diagram 

A good illustration of this assembly is a single explosive relative to an entire 

bridge.  A designer can define one explosive in coordinate space and then define multiple 
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bridge components (columns, beams, bent, slabs, etc.) with respect to that explosive.  

With this information defined, it is possible to calculate the response of each component 

independently of the others by simply considering the relative distances from the 

explosive. 

Structural Component Assembly  

Finally, the third assembly is similar to the second one but with the major 

difference of the Structural Component class being the host instead of the Load class.  

This assembly is shown in Figure 4.3.  The benefit of this assembly is that it follows the 

procedure used in practice to design against blast loads.   

 

Figure 4.3: Structural Component Assembly Class Model Diagram 
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In practice, engineers would determine the critical component in a structure, and 

then they would run a series of possible loading scenarios to determine the component’s 

response.  Designers would vary the standoff distances or charge weight to determine its 

overall vulnerability.  Lastly, a determination of desired protection or retrofit needed for 

the component is considered. 

CLASS NAMING CONVENTION AND STANDARD 

A thorough explanation of the definitions, standard organization, naming 

convention, and keywords will enhance the readability of the remaining parts of this 

chapter.  The front-end segment of the software is coded primarily in Visual Basic.NET 

(VB.NET); therefore, the keywords defined below rely on standard Visual Basic syntax.  

Although the keywords vary across different programming languages, the concepts are 

nearly the same.   The following is a series of definitions and keywords.  For a complete 

list, see the glossary included at the end of this thesis. 

- ‘MustInherit’ – specifies that a class cannot be used to declare a new object and that 

it only exists as a super-class that must be inherited.   

- ‘MustOverride’ – specifies that a method has no body in the current class, and it 

must be overridden in the sub-class before use.  

- ‘Overridable’ – specifies that a method has a body in the current super-class, but it 

can be overridden by a sub-class. 

-  ‘Private’ – specifies that one or more declared programming element are accessible 

only from within the class. 
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- ‘Property’ is a special keyword inside Visual Basic used to give a controlled 

interface for the internal data type inside the class. 

- ‘Protected’ – specifies that one or more declared programming elements are 

accessible only from within the super-class or from a sub-class. 

- ‘Public’ – specifies that one or more declared programming elements are accessible 

inside and outside the class. 

Applied Encapsulation 

In the ATP-Bridge software, all variables defined inside a class are not accessible 

outside the class, except for certain exceptions.  Figure 4.4 shows a generic class diagram 

indicating the different properties and methods used.   

 

Figure 4.4: Typical Class Notation and Layout 
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The naming convention for all ‘private’ or ‘protected’ variables that are hidden 

from outside a class but accessible inside a class include the prefix ‘My’ to designate its 

scope, such as MyLocations.  This naming convention provides a clear designation of the 

scope of the class global variables, the variables used in the parameter list, and the local 

variables used inside methods.  As a result, no public access to class variables is possible 

aside from defined interfaces that allow control to the developer regarding how they are 

used.  This requirement adheres to the principle of encapsulation.  Exceptions to this rule 

include system variables from the Visual Studio environment and defined constant 

variables that do not change at runtime.   

All subroutines that strictly populate the variables begin with the prefix ‘Set’, an 

example being the SetLocation(…) subroutine.  The subroutine parameter list ensures that 

data passed into the class are the correct data type, allowing no implicit conversion in the 

software.  Once the correct parameters are passed, the subroutine can check if they are 

within the correct range before storage.   

Real, physical variables that define actual objects have not only magnitude but 

units of reference as well.  It is therefore necessary that both the magnitude and unit are 

stored as a pair to define one physical variable.  Because magnitude is a ‘double’ data 

type and unit is a ‘string’ data type, one way to create an attached pair using one data 

type is through a two-dimensional array of the ‘object’ data type.  An example of this is 

shown in Figure 4.5, with the second column being the ‘double’ data type and the third 

column being the ‘string’ data type.   
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Figure 4.5: Subroutine SetLocation(…) Example 

In contrast to the ‘Set’ subroutine, functions that retrieve variables begin only 

with the ‘Get’ prefix.  An example is shown in Figure 4.6.  The function 

GetLocationY(Unit : String) returns the Y coordinates of the component back to the user.  

To return a value the user must designate a desired unit it wishes to return in, leaving the 

conversion process to take place “behind the scenes” and hidden from the caller.  This 

process is another example of encapsulation. 
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Figure 4.6: Return Function GetLocationY(…) Example 

The Role of Inheritance 

Inheritance is the central concept that allows the ATP-Bridge software to connect 

the different areas of the program, allowing the graphical user interface and the 3D 

rendering environment to be created with reliability and robustness.  This is all possible 

because development of the user interface is designed for the Structural Component, 

Load, and Nexus super-class, not for any specific bridge component like concrete column 

or steel plate. Hence, when developing new components in the future, instead of being 

concerned about how to change the user interface to accommodate the new components, 
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the developer would inherit the super-class ensuring that it has all the required properties 

and methods necessary to integrate into the software.   

 For example, information the graphic engine reads from an array of Structural 

Component is shown in Figure 4.7.  The graphics engine does not need to be changed to 

render the Column, the Plate, or any other bridge component.  As long as those sub-

classes inherit the Structural Component, the graphics will populate the graphics engine 

based off of the configuration inside the class.  

 

Figure 4.7: Data Storage of Sub-Class 

 An additional requirement specifically for this software is that all sub-classes 

should only have data types that are inherited from the super-class.  The super-class 

should provide the generic necessary data types for the sub-class, or, for special 
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circumstances, the sub-class should use one of the optional data types provided in the 

super-class.  To create a usable variable for the sub-class, the ‘Property’ keyword should 

be used as shown in Figure 4.8.  Sub-classes can be visualized as a template of the super-

class, customizing different data types for the specific components. 

 

Figure 4.8: Sub-class Data Type Variable 

Polymorphism in Practice 

 With the requirement that a sub-class inherit all the methods, it is necessary to 

have a mechanism to alter necessary methods to customize it to the sub-class.  

Polymorphism is used to overcome this obstacle, allowing sub-classes to override the 

signature of the super-class to create a new body of code.  Some methods designated with 
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the keyword ‘MustOverride’ are required by the sub-class to override it.  Thus, when a 

method that is overridden is called, it will be redirected to the specific sub-class.  Figure 

4.9 shows the polymorphism of the SetMeshes() subroutine, with the same method in the 

structural component producing different results in the graphics engine. 

 

Figure 4.9: SetMesh() Subroutine Example 
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STRUCTURAL COMPONENT CLASS 

The Structural Component class is the super-class for all bridge components and 

stores all the properties used inside its sub-class.  This class can be divided into three 

distinct phases: physical attributes and methods, analysis, and user interface and graphics 

engine interactions.  The phases are shown in Figure 4.10. 

 

Figure 4.10: Structural Component Class Phases 
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Physical Attributes and Methods 

The first phase defines the physical properties of a component such as units, 

geometry, materials, etc.  The following class diagram, Figure 4.11, and subsequent text 

provide a description of the important properties and methods in this phase of the class.  

 

Figure 4.11: Structural Component Class Physical Attributes and Methods Diagram 

The MyID variable stores the ID of a bridge component as an integer data type.  

This variable is unique for each bridge component of the project and is initialized in the 
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constructor of the class, though the SetID(…) subroutine allows the ID to be changed 

when one or more structural components are removed.  The GetID() function, conversely, 

retrieves the ID for display in the user interface.   

The MyUnitSystem variable stores the unit system of the project as a string data 

type, with the values being either ‘US’ or ‘Metric’.  After the variable is set in the 

constructor, it cannot be changed for the duration of the object’s existence.  This is 

because all the other properties inside the class and the hosted classes are determined 

relative to the unit system. 

The MyType variable stores the bridge component type as a string variable, such 

as ‘Circle Column’, ‘Rectangle Column’, ‘Steel Plate’, etc.  This attribute is used by the 

user interface to determine which bridge component sub-class is to be created.  The user 

interface retrieves this variable with the GetComponentType() function. 

MyGlobalDimension is a two-dimensional array that stores the global or overall 

dimensions of each bridge component such as height, width, depth, etc.  The generic 

SetGlobalDimension(…) subroutine copies the two-dimensional array passed to it, but it 

is more common to overload this subroutine and have multiple parameter lists to set the 

array.  Figure 4.12 provides an example of an overloaded subroutine.  The 

GetGlobalDimension() function is the generic return method to pass back an entire array, 

but it is more common for the sub-class to have a specific function to return just one 

dimension.  For example, the GetHeight(Unit : String) function returns the total height in 

the unit given inside the parameter list. 
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Figure 4.12: Plate Class Overload SetGlobalDimension(…) Subroutine 

MyLocalDimension performs a similar function to MyGlobalDimension but 

instead defines local parameters that are usually specific to the cross-sectional area 

information of a bridge component.  An example of this is in the Column sub-class where 

this array is used to store the concrete cover and transverse rebar size information.  The 
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SetLocalDimension(…) subroutine and the GetLocalDimension(…) function have 

equivalent roles as the global dimension case. 

The MyLocation object array stores the x, y, and z coordinates of a bridge 

component with respect to its origin, which is specified during its development for the 

specific bridge component.  This variable is declared during the constructor of the class 

and can be modified later with the SetLocation(…) subroutine.  The GetLocationX(…), 

GetLocationY(…), and GetLocationZ(…) are used to retrieve the value of the origin with 

respect to a desired unit.  

MyMaterials is an object array of the Material class.  The Material class collects 

information on common material properties such as yield strength, ultimate strength, 

modulus of elasticity, etc.  The Material class is a super-class and must be inherited by 

sub-classes such as the Concrete or Steel sub-class.  The caller retrieves this variable by 

the GetMaterials() function. 

MyObjectTables is an object array that holds a two-dimensional matrix of generic 

‘object’ data types.  The ObjectTables class was created to address the need to store data 

information with attributes similar to a spreadsheet.  For the reinforced concrete column, 

the tables hold the reinforcement layout information such as bar size, location, units, etc.  

The caller retrieves the array with the GetObjectTable() function. 

Analysis 

The analysis phase of this class handles the interaction with the Load class, the 

Nexus class, and running the analysis.  The class diagram shown in Figure 4.13 and 
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subsequent paragraphs provide a brief explanation of the properties and methods related 

to this phase. 

 

Figure 4.13: Structural Component Class Analysis Diagram 

The MyLoadCase array stores all the Loads objects that are linked to a given 

bridge component.  The AddLoadCase(…) subroutine is used to add the load case to the 

end of the array.  Similarly, the DeleteLoadCase(…) subroutine removes the specified 

load case designated by the Index variable.  When the user needs to know if the array is 

empty, the IsThereLoadCase() performs that function.  The GetListOfLoadCase()and 
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GetLogOfLoadCase(…)  are two functions that return a list of string variables for the user 

interface to communicate with the user the available load cases. 

The MyLock variable is used to determine if the properties of the bridge 

component are locked from changes.  Initially, when the bridge component is created, 

this logical variable is ‘false’; once a single analysis is completed, the variable is set to 

‘true’, locking the bridge component parameters from being changed.  Locking the bridge 

component prevents the user from changing problem parameters unintentionally.  When 

the user wants to change the properties of the ‘locked’ bridge component, the user 

interface will prompt the user.  If the user chooses to continue, the variable is ‘unlocked’ 

and all the results are cleared with the ClearAllNexus() subroutine, disposing all the 

Nexus sub-class inside all the load arrays. 

The RunAnalysis(…) subroutine is an important method that must be overridden 

by the sub-class.  This method triggers the call to create the Nexus class inside 

MyLoadCase[Index].  To return this analysis for post-processing, the user interface calls 

the GetAnalysis(…) function.  The GetLogOfAnalysis(…), GetResultOfAnalysis(…), 

GetListOfAnalysis(…), and GetResultsOfAnalysis(…) are all the remaining analysis 

functions used to convey information of the analysis back to the user interface. 

User Interface and Graphics Engine 

This phase of the class interacts with the User Interface and Graphics Engine.  

Figure 4.14 and the following paragraphs provide a brief explanation of the properties 

and methods related to this phase. 



50 
 

 

 

Figure 4.14: Structural Component Class User Interface and Graphics Engine Diagram 

 MyMesh is an object of the Mesh Component class, which defines the geometry 

of the graphics object that is rendered by the graphics engine.  The subroutine 

SetMeshes(), which must be overridden, creates a Mesh Component sub-class with the 

specific mesh fidelity associated with a specific bridge component.  Additional 

information on the construction of the Mesh Component class is presented in the next 

chapter. 

The GetJQBComponent(…) function creates a JQB Component class and returns 

it to the GUI to be loaded into the graphics engine.  The JQB Component class is used by 
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the graphics engine to render the component.  It does this by collecting information from 

the mesh component and converts it into a graphics format that the graphics engine uses 

for rendering.  A detailed explanation of the JQB Component is presented in the next 

chapter.   

 The GetTreeNode() function returns a windows form Tree Node object to the 

caller.  The Tree Node class is used by the GUI to present information about the 

Structural Component in a tree-view format.  The function returns all of the specific 

properties of the class, including geometry, material, load case, etc.  The Tree Node is a 

class provided in the Microsoft.NET environment and is further described in the next 

chapter. 

LOAD CLASS 

The Load class is a super-class that holds all the information concerning the 

loading scenario associated with a given bridge component.  This class defines explosive 

parameters such as physical dimension, location, and type to retrieve the pressure-time 

history from BEL, an external software using fundamental equations and empirical data 

to calculate blast loads acting against bridge components (USACE-ERDC, 2004). Each 

bridge component should have a corresponding Load sub-class with all the inherited 

properties, but it should also be able to accommodate any special loading conditions.  For 

example, the Column Load class inherits the Load class, but it also takes into account 

column axial load and deck geometry.  These two parameters are stored in 

MyExternalLoads and MyExternalGeometry, respectively.  The class diagram shown in 
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Figure 4.15 and subsequent paragraphs provide a brief explanation of the properties and 

methods in this class. 

 

Figure 4.15: Load Class Analysis Diagram 
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The MyID variable provides a unique identifier for the Load class relative to the 

bridge component, similarly to the ID explained earlier when describing Structural 

Component.  MyStructuralComponent is a reference variable allowing the Load class to 

call the Structural Component public methods.  The MyLock variable is also similar to 

the variable with the same name in the Structural Component class, but it is only 

applicable for the specific load case.  Therefore, if one analysis is done on 

MyLoadCase[1] but not on MyLoadCase[2], then MyLoadCase[1] and the bridge 

component are locked for this case but not MyLoadCase[2].   

MyNexus is an object of the Nexus class connecting the Structural Component 

with the Loads class.  Unlike the Structural Component with multiple Loads, there is 

only one Nexus per Loads object.  Therefore, when the Structural Component   

RunAnalysis() subroutine is triggered, it calls the Loads  CreateNexus() subroutine to 

create a new Nexus class for the analysis.  If the user decides to change a parameter of 

the Loads class, the ClearNexus() subroutine is called to delete the Nexus class. 

The MyAxis string variable determines the axis along which the explosive is 

allowed to vary; the possible choices are locking it on the ‘x-axis’ or ‘y-axis’ or allowing 

complete movement in space with an ‘xy-axis’ value.  With the axis known, the x, y, and 

z coordinate can be stored in MyLocations array.  With the location of the explosive and 

the location of the bridge component specified, it is possible to determine the height of 

the explosive above the ground surface, the standoff distance of the explosive from the 

bridge component, and the blast face side of the bridge component.   
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MyBelID, MyType, and MyTypeID are all variables used to determine the type of 

explosive.  The user chooses the explosive type from a list of available options, and the 

results are stored.  MyType and MyTypeID, respectively, are string descriptions of the 

explosive type and index location inside that list.  After the explosive type is selected, a 

corresponding BEL ID is found from a list and stored in the MyBelID variable. The BEL 

ID is an input for BEL that is used to correctly characterize the blast load.   

MyShape, MyShapeDiameter, MyShapeLDRatio, MyChargeWeight and 

MyTntEqFactor are variables that define the overall geometry and magnitude of the 

explosive.  MyShape defines the explosive as either a cylindrical or spherical charge.  

MyShapeDiameter defines the gross diameter of the explosive.  MyShapeLDRatio is the 

length-to-depth ratio used to define the geometry of a cylindrical charge.  

MyChargeWeight defines the charge weight specific to the explosive type.  With those 

parameters, BEL is used to generate pressure-time histories for analysis.  MyTntEqFactor 

is an additional variable used in some analyses in place of BEL to convert the explosive 

specified by the user to an equivalent weight of TNT. 

With all the explosive parameters set, the subroutine MeshExplosiveComponent() 

is called to create MyMesh, an object of the Mesh Explosive class.  MeshExplosive is 

similar to the MeshComponent class in the Structural Component class, but it can only 

render BEL spherical and cylindrical charges.  The GetMesh() function likewise returns 

the MyMesh variable to the JQB Component for rendering. 
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NEXUS CLASS 

The generic Nexus class has only a few objects and data types that must be 

inherited because the purpose of the Nexus class is to tailor the strict format of the 

Structural Component and Load classes to an external solver.  The solver can vary from 

case to case depending upon the component being analyzed.   

The constructor requires two reference variables, Structural Component and 

Load, for initialization, and is stored in MyStructuralComponent and MyLoad. The 

Nexus class takes the two objects and tailors their properties to parameters that are 

specific to the solver used for analysis.  Figure 4.16 shows a class diagram of the Nexus 

class. 
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Figure 4.16: Nexus Class Analysis Diagram 

For example, the analysis for the Column Nexus runs through two separate 

solvers, one for local damage and the other for global damage.  First, the Column Nexus 

class needs to determine if the column failed locally.  Thus, a set of parameters is passed 

into the reinforced concrete column local damage solver.  Once the local damage analysis 

is completed, three possible results are returned to the nexus: breaching, spalling, or no 

damage.  If there is no damage or if the spall length is less than the depth of the column, 

the analysis continues by considering global response and calling the global damage 

solver.  If the column is breached or the damage is too severe, the column is considered 

compromised without the need for carrying out a global response analysis.   
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Once the analysis is completed, the results are meshed and displayed in the 

graphics engine.  The sub-class must override the MeshResults() subroutine, which 

meshes the post-processing results to the bridge component and stores it in the MyMesh 

array.  The Mesh Component in the array is a sub-class of the class, inheriting all its 

properties while tailoring the rendering specifically to the results.  The GetMeshes() 

function returns the array to the graphics engine for rendering. 

Some additional properties and methods are shared with all of the Nexus sub-

class.  MyPath is a string variable that stores the external location to output any results 

from the solvers.  MyLock is used similarly to the previous two classes to determine if a 

previous analysis exists.  Finally, the DidAnalysisRan() function is used to determine if 

an analysis ran to completion. 

ADDITIONAL DATA TYPES 

For the previous three classes, there is a collection of data types that are declared 

in the super-class (Figure 4.17).  These data types are available to be used by the sub-

class for specific parameters that are not currently addressed by the super-class.     
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Figure 4.17: Optional Data Types  

The desired way to utilize these data types is through the ‘Property’ keyword, as 

shown in Figure 4.18.  Effectively, the keyword allows the sub-class to consider the data 

type as defined inside the sub-class even though it is actually stored in a super-class 

variable.  
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Figure 4.18: Overriding Optional Data Type StrengthInputs() Example 

SUMMARY 

This chapter includes a description of the fundamental data structures used in the 

ATP-Bridge software, a brief overview of the programming style used to accomplish the 

object-oriented programming structure, and a thorough explanation of all the important 

properties and methods inside the super-class.  The next chapter details the graphical user 

interface, gives a brief summary of DirectX, and explains the graphics engine.  
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Chapter 5: Graphical User Interface and Graphics Engine 

If data structures are the heart of ATP-Bridge, the graphical user interface (GUI) 

is the body.  The GUI is designed to interact with the user through simple and intuitive 

forms that convert user input into required variables for the solvers.  The first part of this 

chapter provides a description of the overall GUI design and structure, the Navigation 

control, and the 3D Rendering viewer.  The second part of this chapter includes a 

detailed description of the graphics engine, which is broken into three sections: Direct3D 

Graphical Environment, Graphics Engine Components, and the Graphics Engine Cycles.   

The Direct3D Graphical Environment section provides a high-level explanation 

on Direct3D fundamental concepts regarding how rendering is performed.  For more 

information on Direct3D, see books by Miller (2004) and Luna (2008).  The next section, 

Graphics Engine Component, builds on this information and presents a new set of classes 

that are common to the structural engineering community—nodes, triangles, and 

quadrilateral elements—and hides all the primitive features of Direct3D from future 

developers.  The last section, Graphics Engine Cycle, explains how the graphics engine 

component operates to render the 3D environment.   

Throughout this chapter, the ‘JQB’ prefix is used as a special designation for 

many of the classes.  The prefix is used to distinguish between graphics engine classes 

and non-graphics engine classes. 
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GRAPHICAL USER INTERFACE OVERALL DESIGN  

The GUI environment starts with the main form (Figure 5.1), which is divided 

into three different segments.  The first segment is the ribbon area that holds the Menu 

Item control and the Quick Icon control.  The Menu Item control has a series of standard 

menu items that is typical throughout all Windows software, establishing a familiar 

option to navigate through the software.  The Quick Icon control contains a subset of the 

buttons included in the Menu Item control, having small icons that provide quick 

shortcuts for users.  The typical items are the Define Geometry, Define Loads, and Run 

Analysis buttons. 

 

 

Figure 5.1: Graphical User Interface Schematic 
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The second segment is the Navigation control.  This control interacts with all the 

bridge components inside the project.  There are two sub-controls inside the Navigation 

control.  The first is the Tree-View Summary control, which displays all the different 

bridge components inside the project and their respective load cases.  The second is the 

Viewer Setting control, which gives a user the ability to switch the display in the 3D 

Rendering viewer to show the explosive, component geometry, local damage, and 

displacements. 

The last section is the 3D Rendering viewer, the central visual component used to 

communicate the scenario with the user.  The viewer is used to present a 3D 

representation of the bridge component being analyzed and the explosive.  It is designed 

to give the user information not only on the scale of the component but also the position 

of the explosive in space, the extent of damage, and the level of deflection.   
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Figure 5.2: Graphical User Interface Collapse Navigation Control 

A concern in designing the GUI is presenting information concisely without 

cluttering the screen with too many options.  That is why the GUI is designed with the 3D 

Rendering viewer having the largest screen area, and it is used to render as much 

information about the scenario as possible.  Because the screen size varies across 

different computers, the GUI is designed to allow the Navigation control to collapse to 

the sides, thereby increasing the screen space.  Figure 5.2 provides a schematic of the 

collapse Navigation control. 
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NAVIGATIONAL CONTROL 

The Navigation control main component is the tab page container, allowing the 

two sub-controls (Tree-View Summary and Viewer Setting control) to be added into the 

container.  If future controls are required, the Navigation control is able to accommodate 

future expansion. 

Tree-View Summary Control 

The Tree-View Summary control is designed to present all the critical 

information of the bridge components in a project.  One of the GUI design goals was to 

keep all the information in front of the user, allowing them to verify that information is 

correctly entered.   

 

Figure 5.3: Tree-View Control General Information Section 

The first primary node in the control presents the generic information provided 

when a project is created as shown in Figure 5.3.  The information includes the project 

name, engineer of record, and unit system.  Right-clicking on the nodes brings up a form 
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that prompts the user to change the project name and engineer of record, but the unit 

system is not allowed to be changed after a project is created. 

All primary nodes thereafter hold bridge component information.  Although it is 

not desirable to present all the bridge component information, certain information like 

global dimensions and material properties are desirable.   Figure 5.4 presents a schematic 

of some bridge component tree-nodes. 

 

Figure 5.4: Tree-View Control Structural Component Section 
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Each bridge component tree-node has a respective right click menu list that gives 

the ability to edit, copy, or delete the component.  The menu also gives the user the 

ability to add load cases to the specific component. 

 

Figure 5.5: Tree-View Control Load Case Section 

If a bridge component has a load case, the load case will be displayed in a 

secondary tree-node for that bridge component.  The load cases, like the bridge 

components, need to contain essential information, such as charge weight and location.  

The menu options for the loads are ‘add’, ‘edit’, and ‘delete’.  
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Viewer Setting Control 

The Viewer Setting control is used to communicate with the graphics viewer 

regarding the information that is to be displayed.  The control has options to switch 

among bridge components, load cases, and results as shown in Figure 5.6 below. 

 

Figure 5.6: Viewer Setting Control 

Additional settings specific to the bridge components are displayed in the optional 

panel sections below the ‘Show Explosive’ checkbox.  Examples of possible features in 

the optional panel are the scale factor, the plane color, and the damage color.  
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DIRECT3D GRAPHICAL ENVIRONMENT 

The graphical environment used inside ATP-Bridge for 3D rendering is Direct3D.  

Direct3D is an application programming interface (API) giving developer’s access to the 

user’s graphics hardware (Luna, 2008).  Direct3D provides a standard syntax for 3D 

rendering used across different hardware, ensuring continuity exists as long as the 

hardware is Direct3D compatible.  Below is a brief introduction on vertices, primitive 

types, vertex buffer, and index buffer.  These key concepts are needed to understand how 

the graphics engine is created.   

Throughout the remaining part of the chapter, there are references to vectors and 

matrices.  Vectors and matrices are components used in 3D mathematics to render 3D 

environments into a 2D monitor.  Vectors are used to represent either points in space or 

direction.  Matrices are used to manipulate vectors, allowing operations such as 

translation, rotation, and scaling.  A concise explanation on 3D mathematics can be found 

in Appendix A, while the books by Luna (2008) or Thorn (2005) can be consulted for 

additional information. 

Vertices and Primitives Types 

Vertices in Direct3D are vectors describing a point in 3D space.  Vertices hold 

additional attributes beyond position, such as lighting, normal component, textures, etc.  

For the ATP-Bridge graphics engine, the only additional attribute for vertices is color.  

Vertices are the main building block used to render lines and planes.   
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All graphics drawn in Direct3D are derived from either a point, line, or a triangle 

primitive.  Primitives in Direct3D are different types of rendering options; the basic list 

includes Point List, Line List, Line Strip, Triangle List, Triangle Strip, and Triangle Fan.  

Primitives are rendered with colors set at the vertices.  Therefore, if the colors of the 

vertices are different along the primitive, it will be interpolated.  The two primitive types 

used in the JQB Graphics Engine are the Line List and the Triangle List, which are 

presented below.  More information on the other types can be found in the book by Luna 

(2008).   

Line List is the primitive type that defines an individual line, which simply 

consists of two vertices for each line.  Figure 5.7 provides a visual diagram. 

 

Figure 5.7: Line List Primitive Type (Miller, 2004) 

Triangle List is the primitive type that requires three vertices to render one 

triangle element.  Figure 5.8 provides a visual diagram. 
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Figure 5.8: Triangle List Primitive Type (Miller, 2004) 

Vertex Buffers and Index Buffers 

A vertex buffer is used to load an array of vertices into the graphics device.  Using 

a vertex buffer minimizes the time to render because it reads the data straight from the 

graphics device rather than from the system memory (Miller, 2004).   

A drawback of using only the vertex buffer is that it requires declaring multiple 

vertices at the same point to draw primitives that share common vertices (Figure 5.9).  

Aside from requiring multiple vertices at the same location, it also requires multiple 

processes of the vertices to load into the graphics card.  One way to improve efficiency is 

by using indices and an index buffer. 
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Figure 5.9: Vertex Buffer and Index Buffer (Thorn, 2005) 

Indices, unlike vertices, are simply integer values that are either short or long data 

types.  Indices are loaded into the index buffer, similarly to how vertices are loaded into 

the vertex buffer.  Each index has a value that corresponds with a vertex location inside 

its respective vertex buffer.  With the index buffer, the graphics engine can access the 

vertices more than once to declare a primitive.  The index buffer always exists with a 

vertex buffer; without it, there is nothing to reference. 

GRAPHICS ENGINE COMPONENTS 

The 3D Rendering viewer links with ATP-Bridge graphics engine, used to render 

bridge components and explosives.  It is also used in post-processing results.  The 

graphics engine utilizes a collection of Direct3D and ATP-Bridge custom classes to 

facilitate the rendering.  The list of custom classes includes JQB Element, Mesh 
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Component, JQB Blackboard, and JQB Component.  These custom classes are 

described in detail in the following sections. 

JQB Elements 

The graphics engine rendering of bridge components is designed utilizing 

common structural analysis elements: Node, Triangle, and Quadrilateral.  These 

elements provide program developers the simplicity of meshing a component by 

automating the processes of creating vertices, indices, vertex buffers, and index buffers. 

Node Element 

Node is a class that defines a point in space where other planar elements connect.   

The class stores the x, y, and z global coordinate space with respect to the origin, shown 

in Figure 5.10.  MyX, MyY, and MyZ are the respective variables that hold the coordinates 

and are only accessible inside the class.  The variables are set through the constructor 

New(…) or through the property keywords X(), Y(), and Z(). 
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Figure 5.10: Node Class Diagram 

In addition to the coordinates, the Node class stores the properties MyID and 

MyColor.  MyID is a unique index used by the planar JQB Elements to identify a node.  

MyColor stores the color index used when rendering elements.  Both of the values are set 

in the constructor and are accessible through the property keyword ID() and Color().   

Plane Element Superclass 

The JQB Element class is a super-class of a generic plane element (Figure 5.11) 

that must be inherited by the sub-class.  In ATP-Bridge, there are currently two elements 
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used to draw planes: the Triangle and Quadrilateral.  It is possible, however, to inherit 

the class so that solid elements can be rendered. 

The JQB Element class has two variables: MyID and MyArrayOfNodeID.  MyID, 

the unique element identifier, is an integer variable that can be changed with the property 

keyword ID().  MyArrayOfNodeID is an array of integers used to store the ID of the 

Node.  

As shown in Figure 5.11, there are four functions that are used to assemble the 

index buffer: GetTriangleIndices(), GetTriangleIndicesCount(), GetLineIndices(), and 

GetLineIndicesCount().  The sub-class must inherit all four functions.  The function 

GetTriangleIndices() returns an short type array used to render one Triangle List 

primitive.  The function GetLineIndices() returns a short type array used to render Line 

List primitives.  The functions GetTriangleIndicesCount() and GetLineIndicesCount() 

returns the number of triangle indices and the number of line indices, respectively.  
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Figure 5.11: JQB Element 

Triangle Element 

The Triangle element is a planar element with three nodes.  It has the class 

diagram shown in Figure 5.12.  Nodal IDs are set through the constructor and can be 

changed using the property keywords NodeAID(), NodeBID(…), and NodeCID().  
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Figure 5.12: Triangle Element 

As shown in Figure 5.13, the four functions from JQB Element class are 

overridden and return the values shown in Equation (5-1), Equation (5-2), Equation (5-3), 

and Equation (5-4). 

 

Figure 5.13: Triangles Element Class Diagram 
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𝐺𝑒𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠() = �
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷

� (5-1) 

𝐺𝑒𝑡𝐿𝑖𝑛𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠() =

⎣
⎢
⎢
⎢
⎢
⎡
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷⎦

⎥
⎥
⎥
⎥
⎤

 (5-2) 

𝐺𝑒𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠𝐶𝑜𝑢𝑛𝑡() = 3 (5-3) 

𝐺𝑒𝑡𝐿𝑖𝑛𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠𝐶𝑜𝑢𝑛𝑡() = 6 (5-4) 

Quadrilateral Element 

The Quadrilateral element is a planar element with four nodes (Figure 5.14).  

Nodal IDs are set through the constructor and can be accessed using the property 

keywords ID(), NodeAID(), NodeBID(), NodeCID() and NodeDID().  

 

 

Figure 5.14: Quadrilateral Element 
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As shown in Figure 5.15, the four functions from JQB Element class are 

overridden and return the values shown in Equation (5-5), Equation (5-6), Equation (5-7), 

and Equation (5-8). 

 

Figure 5.15: Quadrilateral Element Class Diagram 

𝐺𝑒𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠() =

⎣
⎢
⎢
⎢
⎢
⎡
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐷 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷⎦

⎥
⎥
⎥
⎥
⎤

 (5-5) 

𝐺𝑒𝑡𝐿𝑖𝑛𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠() =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐷 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐷 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5-6) 
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𝐺𝑒𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠𝐶𝑜𝑢𝑛𝑡() = 6 (5-7) 

𝐺𝑒𝑡𝐿𝑖𝑛𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠𝐶𝑜𝑢𝑛𝑡() = 8 (5-8) 

Mesh Component 

Mesh Component uses a collection of Node, Triangle, and Quadrilateral 

elements to assemble a 3D object.  Mesh Component is a super-class and must be 

inherited by the sub-class for specific 3D objects, such as a cylindrical prism, a 

rectangular prism, or a rectangular plate.  Figure 5.16 presents the class diagram for the 

Mesh Component. 
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Figure 5.16: Mesh Component Class Diagram 

In the sub-class constructor, the method defines the global dimensions, the mesh 

density, and any other additional parameters required to create the mesh.  The sub-class 

then calls the functions DefineNodes(), DefineTriangles(), and DefineQuadrilaterals() to 

create MyNodes, MyTriangles, and MyQuadrilaterals.  These three functions must be 

overridden in the sub-class with a meshing algorithm developed for the specific bridge 

component being rendered.  To further explain these functions, a simple example of a 

triangle prism is presented, with a schematic shown in Figure 5.17. 
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Figure 5.17: Triangle Prism Schematic 

With the global dimension ‘H’ and ‘L’ defined and the mesh density set as ‘1’ for 

all sides, the constructor will call the function DefineNodes() to construct the six 

perimeter nodes of the prism.  As presented in Figure 5.18 and Table 5.1, the function 

defines the bottom three nodes at z = 0.0 and top three nodes at distance z = H. 
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Figure 5.18: Triangle Prism Node Element 

Table 5.1: Triangle Prism Node Table 

Node ID X Y Z 
1 − 1 2⁄ 𝐿 -�3 4⁄ 𝐿  0.0 
2 + 1 2⁄ 𝐿 -�3 4⁄ 𝐿 0.0 
3 0.0 +�3 4⁄ 𝐿 0.0 
4 − 1 2⁄ 𝐿 -�3 4⁄ 𝐿  𝐻 
5 + 1 2⁄ 𝐿 -�3 4⁄ 𝐿 𝐻 
6 0.0 +�3 4⁄ 𝐿 𝐻 
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 Following the nodal declaration, the Triangle element is declared using the 

DefineTriangle() function.  Two triangles are constructed; one connects the top nodes and 

the other connects the bottom nodes. 

  

 

Figure 5.19: Triangle Prism Triangle Element 

Table 5.2: Triangle Prism Triangle Table 

Triangle ID Node A Node B Node C 
1 Node 4 Node 5 Node 6 
2 Node 1 Node 2 Node 3 
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Following the triangle declaration, the Quadrailateral element is declared using 

the DefineQuadrilateral() function.  There are three quadrilaterals constructed connecting 

the three sides of the prism. 

 

 

Figure 5.20: Triangle Prism Quadrilateral Element 

Table 5.3: Triangle Prism Quadrilateral Table 

Quadrilateral ID Node A Node B Node C Node D 
1 Node 1 Node 4 Node 6 Node 3 
2 Node 3 Node 6 Node 5 Node 2 
3 Node 2 Node 5 Node 4 Node 1 

 

Once the nodes, triangles, and quadrilateral elements are defined, these elements 

can be used to generate the necessary arrays and parameters to render the object in the 
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graphics engine.  The function GetGraphicObject(…) returns the Graphics Object 

structure that is used by the graphics engine to render the component.  The graphics 

object is described in the next section; in short, it stores the vertices and indices of a 

bridge component.  The method calls the GetNodeVertices(), GetPlaneIndices(), 

GetPlanePrimitiveCount(), GetWireframeIndices(), and GetWireframePrimitiveCount() 

functions to create the Graphics Object.   

The function GetNodeVertices() processes the nodal information positions and 

colors into vertices to load into a vertex buffer.  With the vertices loaded, the triangle and 

line indices list can be formed with the GetPlaneIndices()and GetWireframeIndices() 

functions, respectively.  The number of triangle and line primitives are determined using 

the functions GetPlanePrimitiveCount() and GetWireframePrimitiveCount(), 

respectively. 

Graphics Object 

Graphics Object is a collection of data placed into a structure type that is used to 

render an object in the graphics engine.  All data types inside the structure haves public 

access and therefore do not need any respective methods to set or return the data.  Figure 

5.21 shows a diagram of the structure. 
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Figure 5.21: Graphics Object Structure Diagram 

The graphics engine stores information for both the solid planes and the 

wireframe lines for a given component.  Both require a combination of vertices, indices, 

and a number of primitives to create the vertex buffer and index buffer.  The structure 

also stores the world matrix of the component.  The world matrix is used to determine the 

orientation of the component from its local coordinate system to the global (or world) 

coordinate system.  For a typical Graphics Object, the world matrix is the identity matrix, 

meaning the local coordinate axes are the same as the global coordinate axes. 

The one method that is available inside the structure is the GetGraphicObejct(…) 

function.  This function passes to the graphics device the location where the vertex and 
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index buffer information will be loaded.  It then returns the graphics object back to the 

graphics engine to display. 

GRAPHICS ENGINE CYCLE 

After meshing a given bridge component, the mesh is stored in the Structural 

Component object for rendering in the graphics engine.  There are four different 

segments of the graphics engine cycle as shown in Figure 5.22: the GUI, ATP-Bridge 

Graphics Engine, the JQB Component, and the Structural Component.  

 

Figure 5.22: Graphics Engine Flow Chart 
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The cycle starts with a GUI-triggered event, such as a mouse click or a button 

being pressed.  Such an event then communicates with the ATP-Bridge graphics engine 

to modify the environment.  Afterwards, the graphics engine will update the frame by 

calling the JQB Component class to re-render the bridge component.  The JQB 

Component takes the mesh component stored in the Structural Component class and 

renders it in the GUI.  This four-step process completes a single frame of the graphics 

engine.  The following sections detail the three additional classes in the cycle: JQB 

Graphics Engine, JQB Blackboard, and JQB Component. 

JQB Graphics Engine Class 

The JQB Graphics Engine class helps create the virtual environment where 

bridge components are rendered.  Because the class is designed only to initialize the 

correct graphics card parameters, setup the presentation space, and control the camera 

(explained later in this chapter), the class must be inherited by the sub-class to render 

bridge components.  Figure 5.23 presents a partial list of the critical properties and 

methods inside the class.   

MyDevice is a variable of the Device class from Direct3D and is the means to 

communicate with a PC’s graphics card.  The SetDevice() subroutine is called to establish 

the device, determining whether the computer will be using its graphics processor unit 

(hardware processing) or its central processing unit (software processing).  The 

subroutine determines which window form the device is displayed to, and it establishes 

the different display properties used in the rendering.  The details of these parameters are 
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omitted because it is beyond the scope of the thesis; additional information can be found 

in the book by Miller (2004). 

 

Figure 5.23: JQB Graphics Engine General Class Diagram 

To animate the environment, the GUI calls the subroutine Update(), which re-

renders the scene for the next frame.  The Update() subroutine must be inherited by the 

sub-class and is designed to call the OneFrameUpdate() subroutine and any other 

subroutine in the sub-class to update the frame.  The OneFrameUpdate() subroutine calls 
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the SetupLight() subroutine to update the lighting, the SetupCamera() subroutine to 

update the camera, and the TransformMatrix() subroutine to modify the world matrix that 

establishes the overall local coordinate axes relative to the global coordinate system.  In 

the software, both the lighting and the world matrix currently does not change at run-

time, with the lighting turned off and the world matrix set to the identity matrix.  Of these 

three subroutine, SetupCamera() is further explained because it plays an important role in 

ATP-Bridge.   

The SetupCamera() subroutine edits the variable MyCamera of the JQBCamera 

class.  This class is developed according to Thorn’s (2005) book, using a camera matrix 

that defines the location, target focus, and its angle of rotation.  Figure 5.24 shows a list 

of properties and methods used to control the camera.   
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Figure 5.24: JQB Graphics Engine Camera Class Diagram 

Three camera methods are used to initialize the camera: SetCameraPosition(…) 

defines the camera location in 3D space,  SetCameraTarget(…) defines the point in space 

where the camera is focused, and SetCameraDefault(…) sets the default orientation of the 

camera.  Three interactive motions are modeled in the ATP-Bridge graphics engine: 

zooming, panning, and rotating the camera. 
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Zooming the camera is activated when the user scrolls the middle mouse button, 

triggering an event that calls the ZoomToolScroll(…) subroutine in the graphics engine. 

This subroutine stores the amount of scrolling in a variable called MyZoomIncrement.  

The subroutine then updates the camera position forward and backwards with respect to 

the camera target; Figure 5.25 provides a visual description.  

 

Figure 5.25: Zooming the Camera 

Panning the camera is activated by the user clicking the left mouse button, 

triggering an event in the graphics engine that calls the subroutine PanToolClicked(…). 

This subroutine tracks the initial and current (x, y) coordinates of the mouse and stores it 

in the MyInitialPanX and MyInitialPanY variables.  If the button is still pressed and the 

user drags the mouse, the PanToolDrag(…) subroutine is triggered to update the current 

(x, y) coordinate in the variables MyPanX and MyPanY.  To simulate panning, the camera 
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position and target position are translated by the same amount, as shown Figure 5.26.  

When the left button is released, the PanToolUnclick(…) subroutine is called to stop 

updating. 

 

Figure 5.26: Panning the Camera 

Rotating the camera is activated by the user clicking the middle mouse button, 

triggering an event in the graphics engine that calls the subroutine RotateToolEnter(…). 

This method tracks the initial and current (x, y) coordinates of the mouse and stores it in 

the MyInitialRotationX and MyInitialRotationY variables.  If the button remains pressed 

while the user drags the mouse, the RotateToolDrag(…) subroutine is triggered to update 

the current (x, y) coordinate in the variables MyRotateX and MyRotateY, and it then 

updates the next frame.  To rotate the camera, the location of the camera pivots about the 

target position and the camera angle rotates pointing to the target location; see Figure 
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5.27 for a visual diagram.  When the button is released, the RotateToolUnclick(…) 

subroutine is called to inform the graphics engine to cease updating.   

 

 

Figure 5.27: Rotating the Camera 

JQB Blackboard Class 

JQB Blackboard is the sub-class of the JQB Graphics Engine and is created to 

render objects in the graphics engine (Figure 5.28).  MyComponent is the reference 

variable of the JQB Component class stored in the Structural Component data structure 

and is used to switch between different bridge components by changing the variable in 

the SetJQBComponent(…) subroutine.  More information about this class is provided in 

the next section. 
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Figure 5.28: JQB Blackboard Class Diagram Method() 

Once the JQB Component reference variable is stored, the component can then 

be rendered by calling the Update() subroutine.  As previously stated, the Update() 

subroutine calls the OneFrameUpdate() subroutine from the super-class, but it also calls 

the OneFrameRender() subroutine declared in the sub-class.  The OneFrameRender() 

subroutine is used to render objects onto the screen. 
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Figure 5.29: OneFrameRender() Method 

A flowchart of the OneFrameRender() method is shown in Figure 5.29.  The 

method begins by calling MyDevice  Clear(), a method used to wipe the existing data 

from the buffer and set the background color.  The buffer is similar to a blackboard—a 

space used to draw the content.  In ATP-Bridge there are two buffers: a front buffer that 

is being displayed currently and a back buffer that is used to draw the next frame.  After a 



97 
 

frame is done rendering, the back buffer is swapped with the front buffer and presented.  

This process continues in reverse for the next frame. 

To begin rendering in the buffer, the method MyDevice  BeginScene() is called 

to prepare the device.  Once the device is ready for rendering, the first decision is to 

determine whether to render an axis on the screen.  If it is to be rendered, the 

AxisRender(…) subroutine is called.  Following that, the next step is to determine 

whether a component exists for rendering.  If so, the class will call the MyComponent  

FrameRender() subroutine inside the JQB Component class.  The last decision concerns 

whether to display the triad defining the global origin in space.  If it is to be displayed, 

the TriadRender() subroutine is called.  After all the rendering is done, MyDevice  

EndScene() is called to instruct the device that the buffer is ready to be presented.  

Finally, the program calls MyDevice  Present() to swap the back buffer with the front 

buffer and display the content of the back buffer. 

JQB Component 

The JQB Component class is the intermediary component connecting the JQB 

Blackboard with the Structural Component class.  This class is a super-class and must 

be inherited by the sub-class.  By allowing sub-classes, program developers are able to 

customize the rendering algorithm for each bridge component.  See Figure 5.30 and 

Figure 5.31 for a list of important properties and methods for the class.   
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Figure 5.30: JQB Component Class Diagram Properties 
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Figure 5.31: JQB Component Class Diagram Methods() 

The class is initialized with the constructor New(…), requiring both the Structural 

Component and the Direct3D Device declared in the graphics engine as reference 

variables.  Inside the constructor, the SetPrimaryMesh(…) subroutine is called to store the 

undeformed mesh from the Structural Component class into the MyPrimaryMesh 

variable.  Afterwards, the MyPrimaryObject graphics object is created by calling the 

SetComponent(…) subroutine.  Similarly to the primary mesh and object, the 
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SetSeconaryMesh() subroutine and SetResults() are used to store the post-processing 

results mesh and graphics object, respectively.  As for the SetResults() subroutine, it must 

be inherited for the sub-class so it is able to allow different options to render each specific 

bridge component.   

The subroutine UpdateJQBStructuralComponent(…) is called by the GUI to 

specify which load case mesh explosive should be displayed, which results are to be 

displayed, and how the bridge components should be displayed.  This subroutine must be 

overridden by the sub-class so that in can include the different variations of post-

processed results for each specific bridge component.  Given the index, the sub-class will 

determine which mesh and graphics object is loaded into the MySecondaryMesh and 

MySecondaryObject variables, respectively.  The GetDefaultCamera() method must also 

be inherited by the sub-class.  This function returns the default camera position set for a 

bridge component when it is first loaded in the graphics engine. 

The FrameRender(…) subroutine is called by JQB Blackboard to initiate 

rendering of a bridge component.  The subroutine must be overridden for the individual 

sub-class, and the subroutine chooses between the ComponentFrameRender() or 

ResultsFrameRender() subroutine to display bases from the MyDisplayIndex variable 

value.  Similarly, the MyDisplayExplosive variable is used to determine if the explosive 

should be displayed, and if so the ExplosiveFrameRender() is called to render the 

explosive. 
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Figure 5.32: ComponentFrameRender() Subroutine Rendering Algorithm 

There are sequences of steps required to render a graphics object into the device 

buffer.  Shown in Figure 5.32 is the ComponentFrameRender() example to render the 

planes of the primary object.  The first step involves calling the SetStreamSource(…) 

method and loading the vertex buffer from MyPrimaryObject to the device buffer.  The 

second step sets the world matrix to the desired matrix to render the object.  The third 

step sets the vertex format to the ‘positioned color’ to determine the type of vertices to 

render.  The fourth step is to load the index buffer into the device.  Finally, the last step is 
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to draw the primitive in the device by specifying the primitive type, the number of 

vertices, and the number of primitive types to render.  This same sequence is used to 

render the MySecondaryObject variable, both for the planes and the wireframe.  Once 

both sequences complete rendering the planes and wireframe of a bridge component, the 

results are displayed in the GUI 3D Rendering viewer.  This cycle then continues for the 

next frame to create a dynamic environment. 

SUMMARY 

This chapter includes a description of the overall GUI concepts and design, a brief 

introduction of Direct3D, and an explanation of the graphics engine structure.  The next 

chapter steps through an example of a solver.  The solver presented evaluates a simplified 

flexural model for a prestressed concrete bridge girder. 
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Chapter 6: Prestressed Girder Model 

The last part of ATP-Bridge needed to complete the software cycle is comprised 

of the solvers.   A solver takes information from a data structure, analyzes it, and displays 

it in the GUI.  A solver is similar to a brain, which processes complex decisions that are 

then communicated back to the body.  Solvers are numerical models that are independent 

among the bridge components included in ATP-Bridge.  This arrangement allows each 

solver to choose the most appropriate model for the specific bridge component being 

analyzed. 

For example, in ATP-Bridge, the reinforced concrete column’s solver is an 

advanced single-degree-of-freedom model, whereas the steel plate’s solver is a set of 

empirical equations.  These two models are different, but both models provide the desired 

level of computational efficiency and accuracy when compared with available test data. 

To illustrate the development of a solver, the flexural response of prestressed 

girders subjected to blast loading is investigated using a simplified single-degree-of-

freedom (SDOF) model.  Prestressed girders are used throughout the US highway 

infrastructure because of their low cost, superb strength, and ease of construction.  

Prestressed girders make up approximately 11% of the current bridge inventory in the US 

(Cofer, 2012).  They perform a critical role in elevating the deck and spanning a bridge 

between the piers.  When they have been targeted in the past, the bridges that were 

attacked sustained substantial damage.  For example, an attack in western Iraq targeting a 

bridge where Iraqi soldiers were crossing caused the complete failure of some of the 
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girders as well as large portion of the deck, as reported in the Washington Post article by 

al-Mokhtar (2009).  Figure 6.1 shows an above-deck view of the damage. 

 

Figure 6.1: Bridge Destroyed in Iraq from Truck Bomb (The Washington Post, al- 

Mokhtar, 2009) 

EXPERIMENTAL WORK 

Although extensive research on prestressed girders has been conducted for static 

loading and traffic loading conditions, only limited data exist for the response of these 

components subjected to blast loads.  To date, the only known experimental study was 

conducted by Cofer (2012) at Washington State University.   

Blast testing was performed by the Engineer Research and Development Center 

(ERDC) of the US Army Corps of Engineers (Matthews, 2008).  There were two loading 

scenarios—one case involving a detonation on top of the prestressed girder and the other 

case involving a detonation below the girder.  The geometry of the test specimen was a 
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Colorado Department of Transportation bulb-tee section having a 3 ft.−6 in. in depth, 3 

ft.−7 in. top flange width, and a 2 ft.–3 in. bottom flange width.  The dimensions are 

shown on Figure 6.2.  The girder spanned 68 ft.–4 in. and rested on two bearing pads. 

 

Figure 6.2: Colorado Bulb-Tee Test Specimen Dimensions (Matthews, 2008) 

For the above-girder detonation scenario, the explosive was placed at a standoff 

of approximately X.XX ft. from the mid-span of the test specimen.  The blast load 

resulted in rubblizing approximately 3 ft. – 6 in. of the concrete on the top flange and 

along the web.  In addition, heavy cracking was observed along the web, and longitudinal 

cracking occurred along the underside of the flange (Matthew, 2008).  Figure 6.3 shows 

the damage that occurred for the above-girder detonation scenario.  
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Figure 6.3: Test Specimen Above-Detonation Scenario (Matthews, 2008) 

For the below-girder detonation scenario, the explosive was place at a standoff of 

XX.X ft. below the mid-span of the test specimen.  The explosion destroyed 9 ft. of the 

top flange.  Of the remaining concrete, less than on 1 ft. was rubblized, and heavy 

cracking occurred 10 ft. along the web.  Figure 6.4 shows the damage experienced for the 

below-girder detonation scenario. 
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Figure 6.4: Test Specimen Below-Girder Detonation Load Case (Matthews, 2008) 

 For both scenarios, the prestressed girder failed due to local damage.  Although 

the results cannot be directly compared with a flexural model, the experimental data 

collected can be used to validate a prestressed girder (FE) model.  In turn, the FE model 

can be used to compare with a single-degree-of-freedom response model (SDOF) for 

investigating scenarios in which girder damage is not as severe as that observed in the 

test program described in this section.  The FE validation was performed by Hendryx 

(2012); interested readers may consult his thesis for additional information.  This thesis 

uses the validated model and compares it with the SDOF response model at the end of 

this chapter. 
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ADVANCED SINGLE-DEGREE-OF-FREEDOM ALGORITHM 

The prestressed girder solver created for ATP-Bridge uses an SDOF analysis 

procedure that is consistent with the guidelines given in UFC 3-340-02 (Department of 

Defense, 2008), but it also includes several enhanced features based on work done by 

Sammarco (2012) for the analysis of reinforced concrete columns subjected to blast 

loads.   

Sammarco’s model analyzes both the flexural and dynamic shear response of 

reinforced concrete columns.  In his model, the two response modes are uncoupled due to 

the notably different dynamic response characteristics.  It is hypothesized for this 

research that the same computational algorithm can be applied to prestressed girders due 

to the largely different natural periods associated with the primary modes of response in 

flexure and in shear that occur for members with typical properties and geometries. 

Sammarco’s flexural model involves three major phases.  The first phase is the 

development of a bilinear moment-curvature response curve, taking into account dynamic 

increase factors, confinement effects, and axial loads (Department of Defense, 2008).  

The second phase is the development of a non-linear resistance function that uses the 

flexural mode shape derived from the user-specified threat scenario.  The resistance 

function is produced by performing a static analysis that accounts for geometric non-

linearity and plastic hinge formation.  The final phase is a non-linear SDOF analysis 

using the formulated resistance function and the pressure-time history generated from the 

BEL software (USACE-ERDC, 2004).  The remaining sections of this chapter cover the 
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development of the three analysis phases for the prestressed girder model.  A description 

regarding how the current model differs from Sammarco’s model for reinforced concrete 

columns is also provided. 

MOMENT-CURVATURE RELATIONSHIP 

Like Sammarco’s model, the first phase for the analysis of blast-loaded 

prestressed girders is the construction of the moment-curvature relationship.  The 

moment-curvature relationship for the prestressed girder model differs from Sammarco’s 

model in many respects.  One concern with the model is the addition of prestressing 

strands that have no defined yield plateau and initial strain, requiring an additional term 

when calculating the moment-curvature relationship.  Another concern is with the initial 

strain—the moment-curvature response of the prestressing model is put into initial 

reverse curvature at zero applied moment.  Because of these differences, the moment-

curvature relationship is first developed using a layer-by-layer analysis as described in 

the text by Collins and Mitchell (1997), then simplified into a bilinear model.   

The layer-by-layer analysis consists of breaking a prestressed girder cross-section 

into small incremental areas with a respective material model.  The concrete section is 

broken into thin rectangular fibers (Figure 6.5-a), and the mild-steel reinforcement and 

prestressing strand are modeled using circular fibers.  Based on the assumption that plane 

section remains plane, strains at the centroid at each fiber can be found assuming a linear 

distribution of the strain through the depth of the cross-section.  Stresses can then be 

found knowing the strain in a given fiber and the associated material model properties. 
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Figure 6.5: Fiber Diagrams of the Test Specimen 

Two variables are needed to generate the moment-curvature relationship of a 

flexural member: curvature and axial strain at the centroid of the cross-section. With 

these two variables, strains at any point in the cross-section can be found using Equation 

(6-1).  Figure 6.5-b shows the strain diagram along the cross section. 

𝜀𝑥 = 𝜀𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 + 𝜙 𝑦𝑥 (6-1) 

where,  

𝜀𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = axial strain at the centroid of the cross-section 

𝜙 = curvature of the cross-section 

𝑦𝑥 = distance from centroid to fiber being analyzed 
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In the algorithm used for this study, the curvature is first established, and then 

strain at the centroid is iterated upon until convergence is achieved.  Iterations are needed 

because of the non-linear stress-strain relationship that exists in each fiber through the 

depth of the cross-section.  To find the correct pair, all the internal forces within the 

section must be in equilibrium.  The governing equation is presented in Equation (6-2), 

where the forces from the concrete fibers, the reinforcement fibers, and the prestressing 

fibers must be equal to all externally acting axial loads.  Convergence is achieved when 

Equation (6-2) is satisfied within the desired tolerance.  After ensuring convergence, the 

moment capacity of the section can then be calculated using Equation (6-3). 
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�𝑀ℎ

𝑙

ℎ=1

= �𝑓𝑐(𝜀𝑖) 𝑏𝑖ℎ𝑖𝑦𝑐𝑖

𝑚

𝑖 = 1

+ �𝑓𝑠�𝜀𝑗� 𝐴𝑠𝑗  𝑦𝑐𝑗

𝑛

𝑗=1

+ �𝑓𝑝(𝜀𝑘) 𝐴𝑝𝑘𝑦𝑝𝑗

𝑘

𝑘=1

 (6-3) 

where,  

𝑁ℎ = axial loads acting along the section 

𝑀ℎ = moments about the z-axis  

𝑦𝑐 = distance from the fiber to the centroid of the entire cross-section 

𝑓𝑐(𝜀𝑖) = concrete stress at a given strain 

𝑏𝑖 = width of a fiber 

ℎ𝑖 = height of a fiber 

𝑓𝑠�𝜀𝑗� = steel stress at a given strain 
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𝐴𝑠𝑗  = area of reinforcement 

𝑓𝑝(𝜀𝑘) = prestressing strand stress at a given strain 

𝐴𝑝𝑘 = area of the prestressing strand 
 

Concrete Material Model 

Concrete material properties must be modeled accurately to determine the 

response of a prestressed girder.  Concrete complexity stems from its non-linear behavior 

and its different response characteristics in tension and compression.  Because of these 

properties, concrete is modeled using two sets of equations for compression and tension. 

In the concrete material model, the governing equation used for concrete in 

compression is shown in Equation (6-4).  This equation is chosen because it takes into 

account high-strength concrete, which is commonly used in the construction of 

prestressed bridge girders (Collins and Mitchell, 1997).  

𝑓𝑐
𝑓′𝑐

=
𝜂 �𝜖𝑐𝑓 𝜖′𝑐⁄ �

𝜂 − 1 + �𝜖𝑐𝑓 𝜖′𝑐⁄ �
𝜂𝜅 (6-4) 

where,  

𝑓′𝑐 = peak compressive stress (in psi)  

𝜖′𝑐 = strain when 𝑓𝑐 reaches 𝑓′𝑐  

 =  
𝑓′𝑐
𝐸𝑐

𝜂
𝜂 − 1
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𝜂 = curve-fitting factor  

 = 0.80 +  𝑓′𝑐 2500⁄   

𝐸𝑐 = tangent stiffness when 𝜖𝑐𝑓 equals zero  

 = 57,000�𝑓′𝑐  𝑓′𝑐 ≤ 6000 𝑝𝑠𝑖 

 = 40,000�𝑓′𝑐 + 10,000  𝑓′𝑐 > 6000 𝑝𝑠𝑖 

𝜅 = factor to increase the post-peak decay in stress  

 = 0.67 +  𝑓′𝑐 9,000⁄  < 1.0 

 = 1.0 ≥ 1.0 

Although it is typical to ignore concrete in tension for ultimate design in 

reinforced concrete, it is desirable to include some tension capacity in the analysis of 

prestressed girders.  Otherwise, the girder will have a brittle failure in reverse curvature.  

For concrete in tension, linear behavior is assumed (using the compressive elastic 

modulus) until the stress reaches the modulus of rupture (ACI 318-08).  This behavior is 

captured in Equation (6-5), Equation (6-6), and Equation (6-7). 

𝑓𝑟 = 7.5�𝑓′𝑐  (6-5) 

𝜀′𝑠 = 𝑓𝑟 𝐸𝑠⁄   (6-6) 

𝑓𝑐 = 𝐸𝑠𝜀𝑐𝑓 for 𝜀𝑐𝑓 ≤  𝜀′𝑠 (6-7) 

 
Tension stiffening then dictates the behavior after rupture.  Tension stiffening is 

the phenomenon that occurs after concrete cracks and the section is still able to transfer 
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stress around the prestressing or mild steel reinforcement.  The presence of the 

reinforcement lets the concrete transfer tension around the cracks, as long as the 

reinforcement has not yielded.  Tension stiffening only occurs 7.5 times the diameter 

away from the reinforcement (Collins and Mitchell, 1997).  Equation (6-8) represents this 

behavior. 

𝑓𝑐 =
𝛼1𝛼2𝑓𝑟

1 + �500𝜀𝑐𝑓
 𝑓𝑜𝑟 𝜀𝑐𝑓 ≥  𝜀′𝑠 (6-8) 

where,   

𝛼1 = 1.0 for mild deformed bars 

 = 0.7 for prestressing strands 

𝛼2 = 1.0 for short-term loading 
 = 0.7 for long-term loading 
 

Combining all the governing equations for concrete produces a continuous stress-

strain diagram as shown in Figure 6.6. 
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Figure 6.6: f’c = 8,500 psi Concrete Model Stress-Strain Curve 

Mild Steel Reinforcement Model 

Mild steel reinforcement used in prestressed concrete creates a “partially 

prestressed” section, a terminology used in the industry.  The addition of mild steel 

reinforcement increases the ductility of a girder compared to a “fully prestressed” girder, 

which is a girder without mild steel reinforcement. 

The governing equations used for the mild steel reinforcement model is the 

standard bilinear curve up until the end of the steel yield plateau.  Beyond this point, a 
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parabolic curve is fit from the yield plateau to the ultimate stress of the concrete.  The 

mild steel reinforcement is then considered to be ruptured beyond the ultimate strain.  

This behavior is captured through Equation (6-9), Equation (6-10), Equation (6-11), and 

Equation (6-12). 

𝑓𝑠 = 𝐸𝑠𝜀𝑠𝑓 for 𝜀𝑠 ≤ 𝜀𝑠𝑦 (6-9) 

𝑓𝑠 = 𝑓𝑠𝑦 
for 𝜀𝑠𝑦 ≤ 𝜀𝑠

≤ 𝜀𝑠ℎ 
(6-10) 

𝑓𝑠 =
1

(𝜀𝑠𝑢 − 𝜀𝑠ℎ)2 �
�𝑓𝑦 − 𝑓𝑢�𝜀𝑠𝑓2 + �2𝜀𝑠𝑢𝑓𝑠𝑢 − 2𝜀𝑠𝑢𝑓𝑦�𝜀𝑠𝑓     

+ 𝜀𝑠𝑢2 𝑓𝑠𝑦 − 2𝜀𝑠𝑢𝜀𝑠ℎ𝑓𝑢 + 𝜀𝑠ℎ2 𝑓𝑠𝑢
� 

for 𝜀𝑠ℎ ≤ 𝜀𝑠

≤ 𝜀𝑠𝑦 
(6-11) 

𝑓𝑠 = 0 for 𝜀𝑠𝑢 ≤ 𝜀𝑠 (6-12) 

where, 

𝐸𝑠 = steel modulus of elasticity 

𝑓𝑦 = yield strength 

𝑓𝑢 = ultimate strength 

𝜀𝑠𝑦 = yield strain = 𝑓𝑦 𝐸𝑠⁄  

𝜀𝑠ℎ = strain at the onset of strain hardening 

𝜀𝑠𝑢 = strain at ultimate stress 

 
Figure 6.7 presents the mild-steel reinforcement behavior up until the ultimate 

strain.  This behavior is equivalent for both tension and compression. 
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Figure 6.7: 60 ksi Reinforcement Material Model 

Prestressing Strand Material Model 

Modern-day prestressing utilizes thin wires or 7-wire strands, with the most 

common strength being 270 ksi low-relaxing strands.  Unlike mild-steel reinforcement, 

prestressing strands do not have a well defined yield plateau.  A common formula for the 

stress-strain response of prestressing strands is the modified Ramberg-Osgood function 

(Mattock, 1979), shown in Equation (6-13).  
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𝑓𝑝𝑠 = 𝜀𝑝𝑠𝐸

⎣
⎢
⎢
⎢
⎢
⎡

𝑄 +
1 − 𝑄

�1 + �
𝐸 𝜀𝑝𝑠
𝐾 𝑓𝑝𝑦

�
𝑅
�
1
R�

⎦
⎥
⎥
⎥
⎥
⎤

≤ 𝑓𝑝𝑢 (6-13) 

where,  

𝑓𝑝𝑠 = prestressing stress of the strand 

𝜀𝑝𝑠 = prestressing strain of the strand 

𝐸 = modulus of elasticity 

𝑓𝑝𝑦 = yield stress of strand 

𝑓𝑝𝑢 = ultimate stress of strand 

𝑄,𝐾,𝑎𝑛𝑑 𝑅 = curve fitting parameters 
 

For this research, the prestressing strand stress-strain model is based on Equation 

(6-14), which was developed by Devalapura and Maher (1992).  This equation is an 

enhanced version of Equation (6-13), fit to experimental test data.  One notable finding 

from their research is that the modulus of elasticity is typically higher than 28,000 ksi, so 

the constants were adjusted to a modulus of 28,500 ksi.  Recommended constants for the 

different types of strands are given in Table 6-1. 

 

𝑓𝑝𝑠 = 𝜀𝑝𝑠 �𝐴 +
𝐵

�1 + (𝐶 𝜀𝑝𝑠)𝐷�
1
𝐷
� ≤ 𝑓𝑝𝑢 (6-14) 

where,  
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𝑓𝑝𝑠 = prestressing stress 

𝜀𝑝𝑠 = prestressing strain 

𝑓𝑝𝑢 = ultimate stress of strand 

𝐴,𝐵,𝐶,𝑎𝑛𝑑 𝐷 = curve fitting parameters 

 

Table 6-1: Power Formula Constants for the Prestressing Stress-Strain Diagram  

Steel Type 𝑓𝑝𝑠/𝑓𝑝𝑢 𝜀𝑝𝑦 𝐴 𝐵 𝐶 𝐷 

270 ksi strand 0.90 0.010 887 2,7613 112.4 7.360 
250 ksi strand 0.90 0.010 384 27,616 119.7 6.430 
250 ksi wire 0.90 0.010 435 28,565 125.1 6.351 
235 ksi wire 0.90 0.010 403 28,597 133.1 5.463 
150 ksi bar 0.85 0.080 467 28533 225.2 4.991 

Table is replicated from Devalapura and Maher (1992) 
 
In the prestressing strand constitutive model, the strand has no capacity in 

compression.  Figure 6.8 shows the stress-strain curve for 270 ksi low relaxation strand. 
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Figure 6.8: 270 ksi Low-Relaxation Prestressing Strand Material Model 

Dynamic Increase Factor (DIF)  

Past research (e.g., Malvar (1998)) has shown that concrete and mild-steel 

reinforcement have increased capacity at high strain rates.  To account for strain rate 

effects, the analyses for this research use the dynamic increase factors (DIF) given in 
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in the “far range” or low pressure range, concrete exhibits an increase in the ultimate 

strength but not in yielding (Figure 6.9).  With mild-steel reinforcement, the yield 

strength and ultimate strength are increased (Figure 6.10).  Because prestressing strand is 

highly stressed, these elements are not known to exhibit DIFs (DOD, 2008). 

Table 6-2: Dynamic Increase Factor for Far Range  

 Yield Stress Ultimate Stress 
 𝒇𝒅𝒚/𝒇𝒚 𝒇𝒅𝒖/𝒇𝒖 

Concrete1 — 1.12 
Mild-Steel Reinforcement1 1.17 1.05 
Prestressing Strand2 — 1.00 
1 – UFC 3-340-02; page 1068 (Department of Defense, 2008) 

2 – UFC 3-340-02; page 1651 (Department of Defense, 2008) 
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Figure 6.9: Dynamically Adjusted Concrete Stress-Strain Curve (Department of Defense, 

2008) 
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Figure 6.10: Dynamically Adjusted Mild-Steel Reinforcement Stress-Strain Curve 

(Department of Defense, 2008) 

Layer-by-Layer Moment-Curvature Analysis 

Utilizing the material models described in the previous sections, the moment-

curvature relationship for the Colorado Bulb-Tee is shown in Figure 6.11 using a layer-

by-layer analysis procedure.  Observing Figure 6.11, the girder has a much larger 

capacity when bending in positive curvature than negative curvature.  The section is able 

to avoid brittle failure because of the mild-steel reinforcement.  The maximum positive 

moment capacity is approximately 4680 kip-ft.  For negative curvature, the maximum 
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capacity is approximately 440 kip-ft, nearly 10 times less than the positive bending 

moment capacity.  

To validate the accuracy of the layer-by-layer analysis, the same section was 

analyzed using RESPONSE 2000.  RESPONSE 2000 is a program created by Bentz and 

Collins (2001) that is able to determine the complete load-deformation response curve for 

a prestressed or a reinforced concrete section.  The program was verified against 

experimental data during its development.  One of the features in RESPONSE 2000 is the 

ability to create a moment-curvature diagram.   

 

Figure 6.11: Colorado Bulb-Tee Moment-Curvature 
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Looking at the two sets of data, the layer-by-layer analysis developed for this 

research can be seen to compute the response of Colorado bulb-tee accurately with 

respect to RESPONSE 2000.  There are minor differences in the moment-curvature 

response when the girder starts to behave non-linearly, but the differences are within 

reasonable limits. 

Bilinear Moment-Curvature Diagram 

For computational efficiency, after running the layer-by-layer analysis, the 

moment-curvature relationship needs to be reduced to a simplified bilinear expression so 

it can be used to develop a resistance function for SDOF analyses of blast-loaded girders.  

The critical points on the bilinear moment-curvature relationship are the yield curvature 

and the ultimate curvature.  To maintain the same slope for the elastic range between 

positive and negative loading, the initial capacity is interpolated between the positive and 

negative yielding points. 

The second point on the bilinear moment-curvature plot is achieved when the 

girder section yields.  Yielding in a non-prestressed section occurs when the bottom layer 

of mild-steel reinforcement reaches the yield strain (for positive curvature).  With the 

addition of prestressing strand, however, an analysis must be performed to determine 

which of the two reinforcement types yield first.  In addition, for an over-reinforced 

section, it is likely that concrete crushes before either of the reinforcement types can 

reach its yield strain.  As noted by Paulay and Priestly (1992), for a section in which the 

yielding curvature is controlled by the concrete strain, the compressive strain at the 
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extreme fiber can be assumed to be  𝜀𝑐 = 0.0015.  To determine which scenario controls, 

the numerical procedure described in the previous section iterates through the fibers to 

check for yielding.  When found, it saves the corresponding curvature.   

The third point on the bilinear moment-curvature diagram is the ultimate 

curvature of the section.  Ultimate curvature occurs when the mild-steel reinforcement 

goes beyond its fracture strain or the prestressing strand reaches its ultimate strain.  For 

concrete, the ultimate strain is taken to be the well established value of 𝜀𝑐𝑢 = 0.003 from 

ACI 318-08.  Like the yield curvature, the program iterates through and saves the 

ultimate curvature and corresponding moment when one of the fibers reaches the ultimate 

strain. 

The results of the bilinear extraction are plotted alongside the layer-by-layer 

moment-curvature diagram in Figure 6.12.  As seen in the figure, the yield curvature of 

the bilinear moment-curvature relationship is the linear extrapolation of the value found 

in the layer-by-layer analysis up to the ultimate moment capacity.  This simplified 

bilinear extrapolation can then be used to generate a resistance function, which is 

described in detail in the next section. 

The bilinear moment-curvature shown in Figure 6.12 plots the additional moment 

capacity of the girder after the initial moments were applied.  If the initial moments were 

included, the layer-by-layer moment-curvature would cross through the origin at zero-

curvature, with the entire plot translating accordingly.  Due to the simplifications made in 

the bilinear extraction, there will be some residual bending moments remaining at zero 
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curvature.  For the non-linear static analysis presented later, plastic hinging is checked 

using a modified bilinear moment-curvature considering the undeformed girder, which 

includes the initial moments in the plot.  

 

Figure 6.12: Bilinear Moment Curvature  

RESISTANCE FUNCTION 

The next phase in the model development is creating the resistance function.  
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stepping through a non-linear static analysis accounting for both geometric and material 

non-linearity.  Unlike the previous discussion which focused on the response of an 

individual cross-section, the resistance function is determined by considering the overall 

response of a girder, accounting for load magnitude and distribution, support conditions, 

and internal resistance. 

Static Analysis 

In the numerical procedure used to determine the resistances function for a 

specific girder, a non-linear static analysis is performed to compute the load-deflection 

response. The analysis solves for displacements using Equation (6-15), where [𝐾𝑡] is the 

tangent stiffness matrix and [𝑃𝑡] is the global load vector for unconstrained degrees-of-

freedom.   

[𝐾𝑡][∆𝑡] = [𝑃𝑡] (6-15) 

The tangent stiffness matrix is the combination of the elastic stiffness [𝐾𝑒] and the 

geometric stiffness �𝐾𝑔�, shown in Equation (6-16).  The elastic stiffness matrix accounts 

for the linear strength of a beam element due to its physical properties.  The geometric 

stiffness accounts for second-order P-∆  effects and depends only on the internal axial 

load and the length of a given beam element. 

[𝐾𝑡] = [𝐾𝑒] + �𝐾𝑔� (6-16) 

The global load vector is the combination of the nodal forces �𝑃𝑗� and the member 

fixed-end forces [𝑃𝑚].  Nodal forces are concentrated loads acting at the node.  Member 
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forces act along a beam element and are distributed to the nodes as “equivalent forces”.  

Equation (6-17) presents the global load vector in condensed form. 

⌈𝑃𝑡⌉ = [𝑃𝑚] + �𝑃𝑗� (6-17) 

 Appendix B presents the complete elastic and tangent stiffness matrices for the 

beam element used in this research as well as the load vectors for a uniformly distributed 

load and a triangular load. 

Load Spatial Distribution 

The loading distribution caused by an explosive depends upon the explosive 

location and the charge weight as shown in Figure 6.13.  Before the dynamic response of 

a prestressed girder begins, static forces are first applied to determine the resistance 

function.  The dynamic analysis uses the resistance function along with the inertia of the 

system to compute a time-varying response.  In determining the resistance function, the 

numerical procedure used in this study applies initial prestressing forces ‘𝑃’ and the 

initial moment ‘𝑀’.  The prestressing puts the beam elements in compression and into 

negative curvature.  In addition to the prestressing force, the user is given the option to 

apply a uniform dead load ‘𝜔1’ to account for self-weight load such as the concrete deck 

or rails. 
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Figure 6.13: Load Distribution  

The load being incremented in the model is the blast load generated from the 

explosive as specified in the threat scenario defined by the user.  Explosives are high-rate 

chemical reactions that have a sudden release of energy that propagates through air as a 

shock wave.  The shock waves create a sudden over-pressure with respect to the ambient 

pressure at a point in space.  After the shock front passes a given point, the pressure 

decays rapidly until it becomes less than the ambient pressure, creating low-magnitude 

suction.  Figure 6.14 illustrates the pressure-time history for a typical shock front.   
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Figure 6.14: Pressure-Time Curve for Free-Air Explosion (Department of Defense, 2008) 

As the shock front propagates from the center of the explosive, the pressure 

reduces the further it travels without any reflections.  Therefore, depending on the 

standoff of the explosive from the target, the pressure distribution along a girder could 

vary dramatically for a small standoff threat or be nearly uniform for a large standoff 

threat.  Figure 6.15 shows three distinct scenarios: scenario (a) shows a ‘contact’ 

detonation that creates a large local spike around the explosive, scenario (b) shows a 

‘close-in’ detonation that has a varying distribution along the blast-loaded face, and 

scenario (c) shows a ‘far-range’ detonation with a ‘near’ uniform distribution along the 

blast-loaded face. 
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Figure 6.15: Blast Distribution Variation with Respect to Standoff (Department of 

Defense, 2008) 

For the analysis procedure adopted for this research, the distribution along a 

girder is idealized as varying linearly, with the peak pressure corresponding to the center 

of gravity of the explosive.  This distribution is able to cover both the ‘close-in’ 

detonation as well as the ‘far-range’ detonation.  As illustrated in Figure 6.13, the end 

pressure is a function of the peak pressure ‘𝜔𝑜’.  To determine the end pressures, the 

positive impulse needs to be determined for the left and right edge as well at the peak 

location.  The positive impulses are determined by summing the positive pressure time-

history, generated by BEL, before the negative phase.  The end distribution factors are 

then calculated based on the ratio of the specific impulse at the ends with respect to the 

peak impulse (Equation (6-18) and Equation (6-19)).  This model retains the peak 

pressure as the remaining independent quantity to increment. 
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𝛼𝐿 =
𝐼𝑆𝑃.𝐿𝑒𝑓𝑡

𝐼𝑆𝑃.𝑃𝑒𝑎𝑘
 (6-18) 

𝛼𝑅 =
𝐼𝑆𝑃.𝑅𝑖𝑔ℎ𝑡

𝐼𝑆𝑃.𝑃𝑒𝑎𝑘
 (6-19) 

Incremental-Iterative Method 

With the inclusion of geometric and material non-linearity, an incremental load 

stepping scheme is needed to solve for the load-deflection curve for a given girder.  

Instead of a single-step scheme such as the ‘Forward Euler’ method, an incremental-

iterative scheme is utilized.  At each incremental load step {𝑑𝑃𝑖}, the system response is 

solved iteratively to determine the equilibrium position.  Figure 6.16 illustrates the 

method, and Equation (6-20) is solved at each increment. 
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Figure 6.16: Incremental Iteration (McGuire, Gallagher, and Ziemian, 2000) 

[∆𝑖] = [∆𝑖−1] + ��𝑑∆𝑖
𝑗�

𝑚𝑖

𝑗=1

 (6-20) 

The algorithm used to solve the non-linear static analysis is described in the book 

by McGuire, Gallaher, and Ziemian (2000).  The two parameters that the method is 

solving for at each load increment are the load ratio factor 𝑑𝜆𝑖
𝑗 and an incremental 

displacement vector 𝑑∆𝑖
𝑗.  The load ratio factor is used with respect to a reference load 

�𝑃𝑟𝑒𝑓�.  The ‘i’ subscript notation on the variables denotes the load increment, whereas 

the superscript ‘j’ denotes the iterative step. 
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Geometric Non-linearity 

At the beginning of each load increment, the geometry of the previous converged 

state �𝐾𝑖
𝑗−1� is used to solve the system response at the next iteration.  Equation (6-21) is 

used to solve for the reference displacement vector �𝑑∆𝚤
𝚥������ applying the reference load to 

the previous converged state.  Equation (6-22) determines the residual load vector 

�𝑅𝑖
𝑗−1�, which is the difference between the external load vector �𝑃𝑖

𝑗−1� and the internal 

load vector �𝐹𝑖
𝑗−1�.  For the first iteration, the residual load vector is set to ‘0’.  With the 

residual load vector, the residual displacement vector �𝑑∆𝚤
𝚥������ can then be found using 

Equation (6-23). 

�𝑃𝑟𝑒𝑓� = �𝐾𝑖
𝑗−1��𝑑∆𝚤

𝚥������ (6-21) 

�𝑅𝑖
𝑗−1� = �𝑃𝑖

𝑗−1� − �𝐹𝑖
𝑗−1� (6-22) 

�𝑅𝑖
𝑗−1� = �𝐾𝑖

𝑗−1� �𝑑∆𝚤
𝚥������ (6-23) 

The next step in the analysis is determining the load ratio factor.  The initial load 

ratio factor 𝑑𝜆𝑖1 is determined by using Equation (6-24), which is an automated approach 

described in the text by McGuire, Gallagher, and Ziemians (2000).  That approach uses a 

scaled parameter that is multiplied with the previous initial load ratio 𝑑𝜆𝑖−11 .  The scale 

parameter is the ratio of the desired number of increment ‘𝑁𝑑’ over the previous number 

of increment ‘𝑁𝑖−1’ raised to the exponential parameter ‘𝛾’.  The exponential parameter 

is set at 0.5.   
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𝑑𝜆𝑖1 = ±𝑑𝜆𝑖−11 �
𝑁𝑑
𝑁𝑖−1

�
𝛾

 (6-24) 

For 𝑗 ≥ 2, the load ratio factor is determined using Equation (6-20)—the 

‘Constant Arc Length’ method.  The method is implemented because it is able to account 

for limit points as well as for sharp changes in the load-deflection response that may 

occur due to plastic hinging.   

𝑑𝜆𝑖
𝑗 = −

{𝑑Δ𝑖1}𝑇 �𝑑∆𝚤
𝚥������

{𝑑Δ𝑖1}𝑇�𝑑∆𝚤
𝚥������ + 𝑑𝜆𝑖1

 (6-25) 

 Once the load ratio is determined, the displacement for the iteration is calculated 

using Equation (6-26).  With the displacement vector calculated, the system is then 

checked for convergence.   

�𝑑Δ𝑖
𝑗� = 𝑑𝜆𝑖

𝑗�𝑑∆𝚤
𝚥������ + �𝑑∆𝚤

𝚥������ (6-26) 

 The convergence criterion is checked by calculating the Modified Euclidean 

norm, shown in Equation (6-27).  This value is computed using a normalized ratio with 

the kth iterative displacement ‘𝑑∆𝑘’, the largest total translational displacement ‘∆𝑟𝑒𝑓’, 

and the number of unknown displacements ‘N’.  The acceptable tolerance used is 10−4. 

‖𝜀‖ =  �
1
𝑁
��

𝑑∆𝑘
∆𝑟𝑒𝑓

�
2𝑁

𝑘=1

 (6-27) 
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Material Non-Linearity 

Once the load ratio is determined, displacements are calculated at the beam 

element nodes.  Internal forces are checked to determine whether yielding has occurred.  

If the load ratio indicates the plastic moment capacity has been exceeded, the load ratio is 

proportioned downward and the increment is then recalculated with the new load ratio.  If 

the load ratio is determined to fall within the tolerance, a plastic hinge is placed in the 

appropriate beam element.  In the next increment, the structure will be analyzed with the 

new configuration. 

GENERALIZED SINGLE-DEGREE-OF-FREEDOM SYSTEM 

After the development of the resistance function, the model is now able to solve a 

generalized SDOF system.  A single-degree-of-freedom model is chosen over a multi-

degree-of-freedom model because it is computationally more expedient while still 

maintaining an acceptable level of accuracy.  As stated in Conrath, et al. (1990), as long 

as the mode of response is well understood, a SDOF model is an “effective and efficient 

method of accounting for the transient nature of the blast load.” 
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Figure 6.17: Equivalent Single-Degree-of-Freedom System 

Equation (6-28) is the governing equation of motion as described by Biggs (1964) 

to compute the displacement of the system as a function of time.  In the differential 

equation, the two terms that need to be solved are the acceleration term 𝑑
2

𝑑𝑡2
𝑢(𝑡) and the 

displacement term embedded in the resistance function 𝑅(𝑢).  The terms modifying the 

acceleration are the load-mass factor 𝐾𝐿𝑀(𝑢) (presented in the next paragraph) and the 

total mass of the system 𝑀𝑡𝑜𝑡𝑎𝑙.  As stated previously, the resistance function is the 

restoring force and depends non-linearly on the deformation of the system.  The damping 

term is neglected in this model because of its negligible contribution (Conrath, et al., 

1990).  On the right-hand side of the equation is the forcing function 𝐹(𝑡), explained in 

the next section. 
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𝐾𝐿𝑀(𝑢) 𝑀𝑡𝑜𝑡𝑎𝑙
𝑑2

𝑑𝑡2
𝑢(𝑡) + 𝑅(𝑢) = 𝐹(𝑡) (6-28) 

The load-mass factor shown in Equation (6-29) is the ratio of the mass factor 

𝐾𝑀(𝑢) relative to the load factor 𝐾𝐿(𝑢).  These factors are used to transform the real 

system into an equivalent SDOF system.  The mass factor relates the actual distributed 

inertial resistance to the idealized mass, by equating the kinetic energy of the two 

systems.  Likewise, the load factor relates the total loading distribution in the actual 

system with the idealized load, by equating the work done by the two systems. Additional 

details for computing these factors can be found in Biggs (1964).   

Both factors use the shape function 𝜙(𝑥,𝑢), which is the deformation mode shape 

from a static application of the applied blast load distribution. Equation (6-30) and 

Equation (6-31) transform the mass and load into a single parameter.  The load-mass 

factor is calculated at each load step during the development of the resistance function.  

More information can be found from Biggs (1964).   

𝐾𝐿𝑀(𝑢) =
𝐾𝑀(𝑢)
𝐾𝐿(𝑢)

 (6-29) 

𝐾𝑀(𝑢) =
∫ 𝑚(𝑥,𝑢)𝜙(𝑥,𝑢)2𝐿
0 𝑑𝑥

∫ 𝑚(𝑥,𝑢)𝐿
0 𝑑𝑥

 (6-30) 

𝐾𝐿(𝑢) =
∫ 𝑓(𝑥,𝑢)𝜙(𝑥,𝑢)𝐿
0 𝑑𝑥

∫ 𝑓(𝑥, 𝑢)𝐿
0 𝑑𝑥

 (6-31) 
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Forcing Function 

Due to the short-duration blast loading that is being considered, it acts over a 

much shorter time than the period of the girders typically found in practice.  As such, the 

loading is impulsive, and the model forcing function seeks to preserve the total impulse 

acting on the structure.  Equation (6-32) defines the forcing function as the product of 

maximum force 𝐹𝑚𝑎𝑥 and an exponentially decaying function.  The maximum force is 

determined by using the peak pressure at the center of gravity with the loading 

distribution utilized for the non-linear static analysis.  An exponentially decaying 

function is used to capture the loading with respect to time for a typical blast load, and it 

conservatively ignores the negative phase of the blast load.   

𝐹(𝑡) = 𝐹𝑚𝑎𝑥 �𝑒
−𝑡 𝑡0� � =  � 𝐴(𝑥) 𝑝𝑚𝑎𝑥

𝐿

0
(𝑥)𝑑𝑥 �𝑒−

𝑡
𝑡0� � 

= 𝑏𝑤𝑝𝐶𝐺.𝑚𝑎𝑥 �𝑙𝐿 �
(1+𝛼𝐿)

2
� + 𝑙𝑅 �

(1−𝛼𝑅)
2

�� �𝑒−
𝑡
𝑡0� � 

(6-32) 

where,  

𝑏𝑤  = width of the girder 

𝑝𝐶𝐺.𝑚𝑎𝑥 = maximum pressure at C.G. 

𝑙𝐿 = length of the girder to the left of the explosive 

𝑙𝑅 = length of the girder to the right of the explosive 
 

The only parameter that is not defined yet in Equation (6-32) is 𝑡0, the equivalent 

time duration.  This variable is found by preserving the impulse, a measure of loading 
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intensity.  Equation (6-33) calculates the equivalent uniform impulse 𝐸𝑈𝐼𝑠𝑝 by 

normalizing the specific impulse with the elastic shape function 𝜙(𝑥).  Equation (6-34) 

calculates the equivalent uniform pressure similarly to the equivalent uniform impulse.  

The impulse and pressure are determined at the end points and explosive center-of-

gravity by summing the pressure time-history from BEL.  Afterwards, the impulses for 

the remainder of the girder nodal locations are interpolated from those points.  Finally, 

with the equivalent uniform impulse and the equivalent peak pressure, 𝑡0 can be 

calculated using Equation (6-35). 

𝐸𝑈𝐼𝑆𝑃 =  
∫ 𝐼𝑆𝑃(𝑥)𝜙(𝑥)𝐿
0 𝑑𝑥

∫ 𝜙(𝑥)𝐿
0 𝑑𝑥

= 𝐸𝑈𝑃 𝑡0 
(6-33) 

𝐸𝑈𝑃 =
∫ 𝑃𝑅(𝑥)𝜙(𝑥)𝐿
0 𝑑𝑥

∫ 𝜙(𝑥)𝐿
0 𝑑𝑥

 
(6-34) 

𝑡0 =
𝐸𝑈𝐼𝑠𝑝
𝐸𝑈𝑃

 
(6-35) 

Solving the Equation of Motion with Newmark-beta Method 

Equation (6-28) cannot be solved with a closed form solution because of the 

irregular loading and the non-linear behavior of the resisting function.  Therefore, the 

model for this research utilizes the Newmark-Beta average acceleration scheme to solve 

the equation of motion (Chopra, 2006).  The first step at each load increment is to 

determine the resisting force and the instantaneous load-mass factor from the resistance 

function.  The second step is to determine the total applied force on the system at that 
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time step. The next step is to solve for displacement at the next time step.  The last step is 

to solve for velocity and acceleration at the current time step.  Appendix E presents the 

detailed steps needed to solve the differential equation of motion using the Newmark-beta 

method.  Additional information on this numerical procedure can be found in the book by 

Chopra (2006) or Tedesco, McDougal, and Ross (1990).  

EXAMPLE OF GIRDER MODEL 

To demonstrate the SDOF model, the response of an explosive placed at mid-span 

is explored for the Washington State Bulb-Tee girder.  The explosive is located at a 

scaled standoff distance of 𝑍 = 𝑋.𝑋𝑋 𝑓𝑡 𝑙𝑏1/3⁄  above the deck.  The physical standoff 

and the charge weight were chosen to ensure that inelastic flexural response will occur 

without causing local failure.  For comparison, a finite element model was developed by 

Hendryx (2012) to analyze the girder with the same assumed loading. 

Girder Single-Degree-of-Freedom Model 

With the physical geometry of the girder established, pressure-time histories are 

developed from BEL for points at the center-of-gravity location and at the girder end 

(Figure 6.18).  The solver then calculates the peak pressures, peak specific impulse, and 

load distribution factor used in establishing the loading distribution.  The values are given 

in Table 6-3. 
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Figure 6.18: Pressure-Time History at Girder Center and Left/Right Edge 

Table 6-3: Loading Parameters 

Peak Pressure at CG 𝑃𝑃𝑒𝑎𝑘.𝐶𝐺 = 𝑋𝑋𝑋.𝑋 𝑝𝑠𝑖 

Peak Pressure at Girder End 𝑃𝑃𝑒𝑎𝑘.𝐸𝑛𝑑 = 𝑋𝑋𝑋.𝑋 𝑝𝑠𝑖 

Specific Impulse at CG 𝐼𝑆𝑃.𝐶𝐺 = 0.𝑋𝑋𝑋 𝑝𝑠𝑖– 𝑠 

Specific Impulse at Girder End 𝐼𝑆𝑃.𝐸𝑛𝑑𝑠 = 0.𝑋𝑋𝑋 𝑝𝑠𝑖– 𝑠 

Load Distribution Factor at Girder End 𝛼𝑒𝑛𝑑 = 0.389 

Equivalent Uniform Pressure 𝐸𝑈𝑃 = 𝑋𝑋𝑋. 0 𝑝𝑠𝑖 

Equivalent Uniform Specific Impulse 𝐸𝑈𝐼𝑆𝑃 = 0.𝑋𝑋𝑋 𝑝𝑠𝑖– 𝑠 

Time Constant 𝑡𝑜 = 0.000765 𝑠 

Maximum Force 𝐹𝑚𝑎𝑥 = 𝑋𝑋𝑋𝑋𝑋.𝑋 𝑘𝑖𝑝𝑠 
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With the loading distribution determined, a non-linear static analysis is then 

performed for the girder. The girder is sub-divided into 30 beam elements with all 

elements having the sectional properties shown in Figure 6.19.  Before the loading 

increment begins, the girder is first loaded statically with an initial axial compressive 

force 𝑃 =  724.6 kips and an initial moment 𝑀 =  −13,267 kip-in.  An additional 

uniformly distributed load 𝜔 =  0.056 kip/in is applied to account for self-weight.   

With the combined loading, the girder deflects in reverse curvature with a camber 

at mid-span of 2.4 in.  The girder is then incrementally loaded until it fails.  The 

resistance function is then determined by storing the mid-span deflection and total 

applied incremental load at each load step.  Figure 6.19 shows the mid-span resistance 

function.  As expected, when the resistance function deflects in negative curvature, it has 

substantially less capacity then when it deflects in positive curvature.  Once the girder 

hinges, it behaves plastically until it fails.   
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Figure 6.19: Resistance Function 

In Figure 6.19, the negative applied load—the resultant force from the distributed 

blast load—corresponds to load applied over the deck with the loads acting downward.  

The deflection therefore will also be downward and in positive curvature.  For the 

positive applied load, the reverse scenario exists.  

After the non-linear static analysis, the deflection at each load step is used to 

generate the shape functions and the load-mass factors.  To solve for the equivalent 

uniform specific impulse and the equivalent uniform pressure, a shape function at an 

early load increment is used. Using Equations (6-32), the forcing function can be seen in 
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Figure 6.20 with all the forcing parameters presented in Table 6-3.  The forcing function 

shows an applied downward load on the structural system that decays at approximately 

0.004 seconds. 

 

Figure 6.20: Forcing Function 

With the resistance function, the load-mass factor, and the forcing function, the 

SDOF model is then solved.  Figure 6.21 shows the displacement, velocity, and 

acceleration time-history of the girder model.  During the early stage of the loading, the 

girder deflects downward up until it reaches approximately -5.0 in.  When it hits its peak 
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negative deflection, the girder still remains elastic.  Upon rebounding, the girder reaches 

plastic deformation at approximately 5 in. and deforms plastically until it reaches 13.3 in. 
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Figure 6.21: Displacement/Velocity/Acceleration Time History at the Mid-Span. 
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Comparison of SDOF Model with FEM Model 

The FEM model used for validation was constructed in LS-DYNA running an 

explicit analysis.  The details of the model are reported in Hendryx (2012).  Figure 6.22 

shows FEM results of the mid-span deflection with respect to time.  Prestressing force 

was applied initially, and then the blast load was applied 1.0 second later (after 

equilibrium from the prestressing force was achieved).  The peak negative deflection was 

computed to be approximately 5.0 in., while the girder rebounds up to a deflection of 

4.14 in. 

 

Figure 6.22: Girder FEM Displacement-Time History at Mid-Span 
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Compared with the FEM model, the SDOF model predicts the peak negative 

displacement accurately but grossly overestimates the rebound displacement.  The 

camber determined for the FEM model returns approximately 1.4 in., as opposed to the 

2.4 in. determined by the SDOF model.  The difference between the two models is 

because the SDOF model uses a reduced stiffness generated from the moment-curvature 

diagram, which leads to over-predicting the camber—which in actuality remains in the 

elastic range.   

At this time, a great amount of uncertainty still exists for the two models.  One 

interesting area of concern is that the SDOF model remains elastic during the early phase 

of response, whereas the FEM model shows some plasticity.  This difference might be 

attributed to the simplification of the sectional property of the model, where the reduced 

stiffness allows the SDOF model to remain elastic for a larger deflection.   

For the rebound displacement, the SDOF model vastly over-predicts the 

displacement because the capacity of the girder in negative curvature is so weak; once the 

girder hits the plastic region it starts deforming plastically.  These large differences 

between the two models indicate that the SDOF model and the FEM model have some 

discrepancies that require further study.  Refinement of the models is expected to occur 

outside of the work presented in this thesis. 
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SUMMARY 

This chapter includes an example of a solver: the prestressed girder model.  The 

girder model determines a moment-curvature response curve and a corresponding 

resistance function for use in dynamic analyses of an SDOF system.  For comparison, an 

FEM analysis with the same load case was modeled.  Although the SDOF model trends 

with the FEM results, further refinement is necessary to provide a more reliable model.  

The next chapter summarizes this thesis and gives recommendations for future research.  
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Chapter 7: Summary, Recommendations, and Conclusions 

During the last decade following September 11, 2001, government officials and 

the engineering community have devoted time and resources to protect the country from 

such attacks again.  Because the highway infrastructure plays such a critical role in the 

public’s daily life, research was conducted on various bridge components to determine 

their resiliency against explosive attacks.  While more tests are needed, it is now time to 

transfer the research into tools to be used by the design community.   

SUMMARY OF RESEARCH PROGRAM 

The US Department of Homeland Security sponsored the research described in 

this thesis with the primary goal of creating a user-friendly PC software that analyzes the 

effects of explosives on bridge components.  The software is designed to be a 

clearinghouse of previous research, incorporating numerical models validated against 

experimental data.  The program is intended to be fast-running an easy to use.  The target 

audience is design engineers, but it can still be used by emergency responders in planning 

for such attacks (Sammarco, 2012).  

This thesis explains in detail how ATP-Bridge was developed to address the 

primary project objective.  It describes how to develop software that is both user-friendly 

and expedient, yet still able to account for different bridge components with different 

modes of failure.  The challenge was addressed by using object-oriented programming 

principles—specifically inheritance—to normalize common features while still giving 
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developers enough flexibility to modify their data structures and graphical components to 

their specific bridge components. 

To create this multi-component analysis software, ATP-Bridge requires each 

bridge component to have separate data structures, graphics components, and solvers.  

These three parts embody different functions of the bridge component: the data structure 

is used to store the information from the user, the graphics component is used to render 

the information, and the solver analyzes the information. 

There are three major data structures: the Structural Component, Load, and 

Nexus.  The Structural Component stores all the physical attributes of the bridge 

component, such as geometries, materials, and boundary conditions data.  The Load 

stores all the loading data, both explosive loading and external static loading.  The Nexus 

processes the data from the previous two data structures and connects it with the solver to 

analyze. 

The graphical user interface (GUI) connects the user with the back-end of the 

program: the data structures and solvers.  The GUI has multiple components that are used 

to communicate with the user: Menu Item Control, Quick Icon Control, Navigation 

Control, and 3D Rendering Viewer.  The first three components are different ways to 

trigger the user’s commands through various forms of Windows-based controls.  The last 

component, 3D Rendering Viewer, is used to render the user’s commands and display 

graphics in 3D.   
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Finally, an example of a solver (prestressed girder with advanced SDOF analysis 

model) is presented to illustrate a fast-running algorithm and attempts at its validation.  

The SDOF model incorporates the development of a moment-curvature response curve 

created by a layer-by-layer analysis, a non-linear static analysis accounting for both 

geometric non-linearity as well as material non-linearity, and a Newmark-beta-based 

SDOF analysis.  The model is then compared with an FEM model developed by Hendryx 

(2012).  While the initial response between both models was shown to be in good 

agreement, the overall differences between the two cases require further study. 

SNAPSHOTS OF THE ANTI-TERRORIST BRIDGE PLANNER 

Taking the concepts developed and illustrated in the thesis, the development team 

at UT Austin has been working on many overall features of the software, including 

geometry and loading forms, the graphics components, and post-processing the results. 

Some snapshots are provided below for the prestressed girder. 

Figure 7.1 shows a snapshot of the geometry form with the cross-section 

displayed.  Geometry forms are designed to have all the necessary information pertaining 

to the physical parameters such as dimensions, material properties, and boundary 

conditions.  The form uses tab pages at the top to switch between major categories; for 

the prestressed girder the categories are ‘Section’, ‘Elevation’, and ‘Material’.  By 

defining all the geometry information in one form, error checking is simplified.  If the 

user inputs any incorrect value or values beyond the model’s limitation, the form will be 

able to prevent the user from storing to the Structural Component data structure.  Under 
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such conditions, the program gives the user instant feedback where the error occurred.  

This programming approach adds a layer of data security inside the program.   

 

 

Figure 7.1: Geometry Form for Prestressed Girder 
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Figure 7.2 shows a snapshot of the load form.  The form is used to define 

parameters containing the loading conditions including not only the explosive threat 

scenario but also the static loading associated with dead loads.  The center of the form 

shows the explosives relative to the girder model, scaling both the explosives and the 

girder graphics.  The parameters used to define the explosive threat scenario are the 

charge weight, shape, and explosive type (populated with options allowed in BEL). 
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Figure 7.2: Load Form for Prestressed Girder 
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Figure 7.3 is a snapshot of the ATP-Bridge main form.  At the center of the form 

is the 3D Rendering Viewer, showing an isometric view of the prestressed girder being 

analyzed.  At the top of the form is the traditional Menu Item control with the Quick 

Icon control just below it.  At the far left-hand side of the form is the Navigation 

Control.  Inside of it is the Tree-View control, showing the different types of bridge 

components inside the project. 

 

Figure 7.3: Graphics Engine Rendering of Prestressed Girder 

RECOMMENDATIONS FOR FUTURE WORK 

As ATP-Bridge continues to progress, there are some areas that are worth 

exploring to create a more efficient program.  One area that could expedite the design 
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cycle for design engineers is allowing ATP-Bridge to be able to look at an entire bridge 

system and not exclusively a single component.  For example, currently in the software 

when analyzing a prestressed girder bridge the user is required to define separately 

multiple reinforced concrete columns and prestressed girders as well as multiple loads for 

each component.  Another example of this is the steel tower, requiring the user to define 

multiple interior cells and corner cells when analyzing a single tower.   

If the program is capable of defining the bridge system globally, this allows the 

user to more efficiently utilize their time and also minimize user-input errors.  To achieve 

this in ATP-Bridge, it is recommended that an additional layer to the software be 

developed.  This top layer would define the global geometry of the bridge system that 

will then automate single bridge components and explosives for analysis. 

Another area of concern in ATP-Bridge is the file output.  Currently, the software 

generates multiple files in ‘txt’ extension format.  Although this method is adequate, 

there are a series of issues concerning program robustness and security.  First, the files 

are output to an external file from the solver and then read back into the software.  This 

creates vulnerability in the software, where the file can be corrupted or where content can 

be changed outside the software before the files are input back into the program.  Another 

concern is that ‘txt’ files are in ASCII format, which can be opened from any notepad 

program and read by unintended users.  

The recommended solution to address these issues is the implementation of a 

database.  A database can store the data into one file and maintain a single file throughout 
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a project.  Also, with some databases, it is possible to encrypt the file with a password to 

keep it from intrusion. 

RECOMMENDATIONS ON PRESTRESSED GIRDER SOLVER FOR FUTURE WORK 

With the prestressed girder model, there are a series of simplifications that were 

made with respect to Sammarco’s reinforced concrete column model that need to be 

explored further.  The first omission is the effects of dynamic shear.  Most of the research 

currently for dynamic shear looks at traditional reinforced concrete, not prestressed 

concrete.  There is not enough information in the open literature at this time, and it is 

recommended that testing be done to study this potential response mode in prestressed 

girders.   

Another behavior that is of interest is confinement effects, where concrete 

experiences an increase in strength and ductility when it is confined with transverse 

reinforcement.  Confinement effects in traditional reinforced concrete have been well 

established.  The most widely used model is explained in Mander’s landmark paper 

(1989), which considers a wide range of parameters including effective lateral confining 

stress and transverse reinforcement spacing.  Recently, Ross et al. (2012) observed an 

increase in ductility with an increase in confinement steel for prestressed girders.  

Another test done by Patzlaff, et al. (2012) led to similar conclusions about the increase 

in ductility; however, the researchers observed no noticeable increase in flexural 

capacity.  It is recommended that future work consider confinement effects in the 

development of the moment-curvature response curve for prestressed girders. 
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Although the girder specimen used in the Washington State research had strands 

positioned at a constant elevation, it is common in practice to find prestressed girders that 

have draped or harped strands for long spans.  Draping or harping is used to distribute the 

eccentric internal prestressing along the length of the girder with near zero eccentric 

moment at the ends and maximum eccentric loading at the mid-span.  One advantage 

delivered from varying the eccentricity is eliminating tensile stress at the top flange near 

the supports. Another advantage is the reduction in the number of strands required 

because of vertical forces produced from the prestressing (Nawy, 2003).  It is 

recommended that in constructing the resistance function, different section properties are 

used along the length of the girder to account for draping or harping. 

In ATP-Bridge, the prestressed girder excludes the strength of the deck when 

calculating the strength because the specimen tested by Washington State was a bare 

girder.  For typical design, the deck is accounted for in the flexural response calculations 

of prestressed girders.  Therefore, it is recommended that the deck be included in the 

analyses and that the predicted response be validated against either new experimental 

data or detailed FEA models. 

In BEL, pressure-time histories do not account for non-plane shapes.  Because of 

this limitation, shape factors were proposed by Williams (2009) for analyzing blast-

loaded bridge columns that take into account the effects of clearing and column 

engulfment.  For prestressed girders, clearing effects will depend upon the loading 

scenario being above-deck or below-deck.  In the above-deck scenario, the blast pressure 
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will be distributed across the bridge deck, which will then induce load into the girders.  In 

the below-deck scenario, the effects of the blast loading will first interact with the I-shape 

girder before it engages the deck.  In addition, the effect of blast reflection off the deck 

and girders is not well understood.  Therefore, more work needs to be done to understand 

the local effects of the blast loads around prestressed girders. 

Finally, a more refined assumption is needed to characterize the load distribution 

along the girder length.  In the girder model, a simplification of a trapezoidal loading is 

used to account for the explosive, as proposed by Sammarco et al. (2012) for his column 

model.  But the trapezoidal loading assumption might be overly conservative for long 

girder spans, where loading along the girder could be more localized as reported by 

Gannon et al. (2006).   One recommendation is to track more pressures along the length, 

therefore getting a more refined load distribution. 

CONCLUSION 

In conclusion, the development of ATP-Bridge, a program intended to be used by 

bridge engineers and planners to investigate terrorist threats against bridges, is explained 

in this thesis.  The overall project goal was to build a program that can incorporate 

multiple bridge components while still maintaining a simple, user-friendly interface.  

This goal was achieved by balancing three core areas: constraining the graphical user 

interface to similar themes across the program, allowing flexibility in the creation of the 

numerical models, and designing the data structures using object-oriented programming 

concepts to connect the GUI with the numerical models.   
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ATP-Bridge is the first software developed that incorporates multiple bridge 

components into one user-friendly engineering tool for protecting bridge structures 

against terrorist threats.  The software is intended to serve as a synthesis of state-of-the-

art knowledge, with future updates made to the program as more research becomes 

available.  In contrast to physical testing and high-fidelity finite element simulations, 

ATP-Bridge uses less time-consuming, more cost effective numerical models to generate 

dynamic response parameters and damage estimates.  With this tool, engineers and 

planners will be able to safeguard the nation’s bridge inventory and, in turn, reinforce the 

public’s trust.  
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Appendix A:  Programming Glossary 

Boolean – a binary variable, having two possible values of either true or false. 

 

Cast Type –explicitly converting an expression to a specified data type, object, structure, 

class, or interface. 

 

Class – collection of data types and methods that prescribes to object-oriented principles 

of encapsulation, polymorphism, inheritance, etc.  

 

Class-Tree – collection of super-class and sub-class as one family. 

 

Double – a floating value with double precision. 

 

Function – declares the name, parameters, and code that defines a procedure. 

 

Inherits – causes the current class or interface to inherit the attributes, variables, 

properties, procedures, and events from another class or set of interfaces. 

 

Integer – a whole number; a number that is not a fraction. 

 

List – contains any number of elements that are accessed sequentially. 

 

Method – a subroutine, function, or property inside a class.   

 

Must Inherit – specifies that a class can be used only as a base class and cannot create a 

new object directly from it. 
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Must Override – specifies that a property or procedure is not implemented in this class 

and must be overridden in a derived class before it can be used. 

 

New – create a new object instance, or specifies a constructor constraint on a type 

parameter. 

 

Object – a generic data type that could be character, string, integer, float, or boolean.  The 

object has the ability to hold different data types in an array. 

 

Overridable  – specifies that a  property or procedure can be overridden by an identically 

named property or procedure in a derived class. (vb.net keyword) 

 

Parameter list – the list of data types and objects passed to a method by the caller. 

 

Private – specifies that one or more declared programming elements are accessible only 

from within their declaration context, including from within any contained types.  

 

Protected – specifies that one or more declared programming elements are accessible 

only from within their own class or from a derived class. 

 

Property – store and retrieve a value. 

 

Properties – data type used inside the class body that is global inside the class but private 

outside. 

 

Public – specifies that one or more declared programming elements have no access 

restrictions.  
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Read Only – specifies that a variable or property can be read but not written. 

 

Reference Variable – a variable that stores the address of a data type or object.  By 

default, all class objects are ‘passed by reference’ in Visual Basic. 

 

Signature – at the beginning of a method, the signature includes the method’s name, 

private/public/protected, and the parameter list. 

 

Signature – name and arguments of a method. 

 

Single – floating point data type with single precision. (vb.net keword) 

 

String – sequence of character or an array of characters. 

 

Structure – composed of data types and methods but is not able to fully implement 

object-oriented programming. (vb.net keyword)  

 

Sub-class – class that inherits the super-class and inherits all the properties and methods. 

(also known as ‘child class’, ‘inherited class’ or ‘derived class’). 

 

Super-class – class that is inherited by another class (also known as ‘parent class’ or 

‘base class’). 
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Appendix B:  3D Mathematics 

The way to represent 3D space inside a 2D medium is through vector and matrix 

mathematics.  The following section introduces vectors, matrices, and their manipulation. 

Vector Algebra 

Vectors are elements that have both magnitude and direction.  They are used in 

Direct3D for a variety of different purposes, such as giving instruction on where light 

should be pointing, what direction a plane is facing, and the how the camera is oriented.  

Vector manipulation within Direct3D operates the same way as in vector algebra, such as 

vector addition, subtraction, multiplication, dot product, and cross product.   

Vectors in Direct3D are defined with the tail being at the origin of the local 

coordinate axis (Figure B.1).  Points are defined by a position vector, where the location 

of the point is at the top of the vector (Figure B.1).  Four-tuples are used in Direct3D to 

represent vectors Equation (B-1) and points Equation (B-2).  The difference between the 

two is that a vector has ‘0’ in the last column, whereas points have ‘1’. 

𝑣 = [𝑥 𝑦 𝑧 0] (B-1) 

𝑤 = [𝑥 𝑦 𝑧 1] (B-2) 
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Figure B.1: Normal Vector (Left) and Position Vector (Right) (Luna, 2010) 

Matrix Algebra 

Matrices are used to perform all the geometric translation, rotation, and scaling of 

vectors in 3D space.  All common matrix operations can be used to manipulate vectors 

and matrices, such as matrix addition, multiplication, transpose, and inverse.   

Scaling 

Scaling in Direct3D utilizes a 4×4 matrix as given in Equation (B-3).  Scaling is 

done by multiplying the vectors or points by the scale matrix, modifying the column of 

the vector with the corresponding row in the matrix.  Sx scales along the x-axis, Sy along 

the y-axis, and Sz along the z-axis.   

𝑆 = �

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0
0 0 𝑠𝑧 0
0 0 0 1

� (B-3) 
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Rotation 

Rotation in Direct3D is performed relative to the origin of the world space; world 

space is the rendering space with a third (z) dimension.  Equations (B-4), Equation (B-5), 

and Equation (B-6) below are used to rotate a vector about the x-axis, y-axis, and z-axis, 

respectively.  The rotation angle θ must be specified in radians. 

𝑅𝑥 = �

1 0 0 0
0 cos 𝜃 sin𝜃 0
0 − sin𝜃 cos 𝜃 0
0 0 0 1

� (B-4) 

𝑅𝑦 = �

cos𝜃 0 − sin𝜃 0
0 1 0 0

sin 𝜃 0 cos 𝜃 0
0 0 0 1

� (B-5) 

𝑅𝑧 = �

cos𝜃 sin 𝜃 0 0
− sin𝜃 cos𝜃 0 0

0 0 1 0
0 0 0 1

� (B-6) 

Translation 

Translations are performed by using a 4×4 matrix with the first three columns of 

the last row having a magnitude that adds to the distance in the vector.  As shown in 

Equation (B-7), element [4, 1], [4, 2], and [4, 3] will change the magnitude of the vector a 

relative distance bx, by, and bz with respect the x-axis, y-axis, and z-axis. 

𝑇 = �

1 0 0 0
0 1 0 0
0 0 1 0
𝑏𝑥 𝑏𝑦 𝑏𝑧 1

� (B-7) 
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Appendix C:  Frame Element in ATP-Bridge 

 

Figure C.1: Frame Element Degrees-of-Freedom (McGuire, Gallagher, and Ziemian, 

2000) 

The following variables are used throughout Appendix C. 

𝐸 = modulus of elasticity 

𝐴 = area of a frame element 

𝐿 = length of a frame element 

𝐼𝑥 = moment of inertia 

𝑃 = internal axial load along the section 
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ELASTIC AND GEOMETRIC STIFFNESS MATRIX (MCGUIRE ET AL, 2002) : 

𝐾𝑒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐴

𝐿� 0 0 −𝐸𝐴 𝐿� 0 0

0 12𝐸𝐼𝑧
𝐿3� 6𝐸𝐼𝑧

𝐿2� 0 −12𝐸𝐼𝑧
𝐿3� 6𝐸𝐼𝑧

𝐿2�

0 6𝐸𝐼𝑧
𝐿2� 4𝐸𝐼𝑧

𝐿� 0 −6𝐸𝐼𝑧
𝐿2� 2𝐸𝐼𝑧

𝐿�

−𝐸𝐴 𝐿� 0 0 𝐸𝐴
𝐿� 0 0

0 −12𝐸𝐼𝑧
𝐿3� − 6𝐸𝐼𝑧

𝐿2� 0 12𝐸𝐼𝑧
𝐿3� − 6𝐸𝐼𝑧

𝐿2�

0 6𝐸𝐼𝑧
𝐿2� 2𝐸𝐼𝑧

𝐿� 0 −6𝐸𝐼𝑧
𝐿2� 4𝐸𝐼𝑧

𝐿�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (C-1) 

 

𝐾𝑔 =
𝑃
𝐿

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 −1 0 0
0 6

5�
𝐿

10� 0 − 6
5�

𝐿
10�

0 𝐿
10� 2𝐿2

15� 0 −𝐿 10� −𝐿
2

30�

−1 0 0 1 0 0
0 −6

5� −𝐿 10� 0 6
5� −𝐿 10�

0 𝐿
10� −𝐿

2
30� 0 −𝐿 10� 2𝐿2

15�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(C-2) 

 

MEMBER LOAD VECTOR: 

𝑃𝑚 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐹𝑥1
𝐹𝑦1
𝑀𝑧1
𝐹𝑥2
𝐹𝑦2
𝑀𝑧2⎦

⎥
⎥
⎥
⎥
⎤

  (C-3) 
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Equations for Triangular Load Fixed-End Moments and Shear (Kassimali, 1999): 

𝐹𝑦1 =
𝑤1(𝐿 − 𝑙1)3

20𝐿3
�(7𝐿 + 8𝑙1) −

𝑙2(3𝐿 + 2𝑙1)
(𝐿 − 𝑙1) �1 +

𝑙2
𝐿 − 𝑙1

+
𝑙22

(𝐿 − 𝑙1)2�

+
2𝑙24

(𝐿 − 𝑙1)2�

+
𝑤2(𝐿 − 𝑙1)3

20𝐿2
�(3𝐿 + 2𝑙1) �1 +

𝑙2
𝐿 − 𝑙1

+
𝑙22

(𝐿 − 𝑙1)2
�

−
𝑙23

(𝐿 − 𝑙1)2
�2 +

15𝐿 − 8𝑙2
𝐿 − 𝑙1

�� 

(C-4) 

𝑀𝑧1 =
𝑤1(𝐿 − 𝑙1)3

60𝐿2
�3(𝐿 + 4𝑙1) −

𝑙2(2𝐿 + 3𝑙1)
𝐿 − 𝑙1

�1 +
𝑙2

𝐿 − 𝑙1
+

𝑙22

(𝐿 − 𝑙1)2�

+
3𝑙24

(𝐿 − 𝑙1)3�

+
𝑤2(𝐿 − 𝑙2)3

60𝐿2
�(2𝐿 + 3𝑙1) �1 +

𝑙2
𝐿 − 𝑙1

+
𝑙22

(𝐿 − 𝑙1)2�

−
3𝑙23

(𝐿 − 𝑙1)2 �1 +
5𝐿 − 4𝑙2
𝐿 − 𝑙1

�� 

(C-5) 

𝐹𝑦2 = �
𝑤1 + 𝑤2

2
� (𝐿 − 𝑙1 − 𝑙2) − 𝐹𝑦1 (C-6) 

𝑀𝑧2 =
𝐿 − 𝑙1 − 𝑙2

6
[𝑤1(−2𝐿 + 2𝑙1 − 𝑙2) − 𝑤2(𝐿 − 𝑙1 + 2𝑙2)] + 𝐹𝑦2(𝐿) −𝑀𝑧1 

(C-7) 
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Appendix D:  Incremental-Iteration Variable Definitions  

�𝐾𝑖
𝑗−1� = stiffness matrix using deformed geometry 

𝑃𝑟𝑒𝑓 = reference load 

𝑑𝜆𝑖
𝑗 = load ratio for the current iteration 

[∆𝑖] = total displacement vector at increment i 

�𝑑∆𝑖
𝑗� = iteration displacement vector at iteration j 

�𝑃𝑖
𝑗−1� = total external applied force vector 

�𝐹𝑖
𝑗−1� = total internal forces vector element forces at global degree of freedom 

�𝑅𝑖
𝑗−1� = imbalance between external and internal force vector 

𝑑𝜆𝑖
𝑗 = load ratio at the current iteration 

�𝑑∆𝚤
𝚥������ = displacement vector due to reference load at iteration j 

�𝑑∆𝚤
𝚥������ = displacement vector due to residual force at iteration j 

�𝑑Δ𝑖
𝑗� = displacement vector at iteration j 
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Appendix E:  Newmark-beta Average Acceleration (Chopra, 2006) 

Average Acceleration Constant Parameter 

𝛾 =
1
2

 

𝛽 =
1
4

 

1.0 Initial Calculation. 

1.1 𝑢̈0 = 𝑝0−𝑐𝑢̇0−(𝑓𝑠)0
𝑚

 

1.2 ∆𝑡 

1.3 𝑎 = 1
𝛽∆𝑡

𝑚 + 𝛾
𝛽
𝑐 

1.4 𝑏 = 1
2𝛽
𝑚 + Δ𝑡 � 𝛾

2𝛽
− 1� 𝑐 

2.0 Calculations for each time step i. 

 2.1 Δ𝑝̂i = Δ𝑝i + 𝑎𝑢̇𝑖 + 𝑏𝑢̈𝑖 

 2.2 Determine the tangent stiffness 𝑘𝑖. 

 2.3 𝑘�𝑖 = 𝑘𝑖 + 𝛾
𝛽Δ𝑡

𝑐 + 1
𝛽(Δ𝑡)2

𝑚 

 2.4 Solve for Δ𝑢𝑖 from 𝑘�𝑖 and Δ𝑝̂𝑖 using the iterative procedure. 

 2.5 Δ𝑢̇𝑖 = 𝛾
𝛽Δ𝑡

𝛥𝑢𝑖 −
𝛾
𝛽
𝑢̇𝑖 + Δ𝑡 �1 − 𝛾

2𝛽
� 𝑢̈𝑖 

 2.6 Δ𝑢̈𝑖 = 1
𝛽(Δ𝑡)2

Δ𝑢𝑖 −
1
𝛽Δ𝑡

𝑢̇𝑖 −
1
2𝛽
𝑢̈𝑖 

 2.7 u𝑖+1 = 𝑢𝑖 + Δ𝑢𝑖 

  𝑢̇𝑖+1 = 𝑢̇𝑖 + Δ𝑢̇𝑖 
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  𝑢̈𝑖+1 = 𝑢̈𝑖 + Δ𝑢̈𝑖 

3.0 Repetition for the next step. Replace i by i + 1 and implement steps 2.1 to 

2.7 for the next step. 
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