

Copyright

by

Joeny Quan Bui

2012

The Thesis Committee for Joeny Quan Bui

Certifies that this is the approved version of the following thesis:

Development of Software Architecture to Investigate Bridge Security

APPROVED BY

SUPERVISING COMMITTEE:

Eric Williamson

Oguzhan Bayrak

Supervisor:

Development of Software Architecture to Investigate Bridge Security

by

Joeny Quan Bui, B.S.

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2012

Dedication

To my loving parents and my dearest Shina, being the rock on which I rest.

v

Acknowledgements

I would first like to acknowledge the mentorship of Dr. Williamson. Through his

guidance and this research, I realized my potential as an engineer. I would also like to

acknowledge Eric Sammarco, a trusted colleague who provided me with insight and

wisdom in both engineering and life. Finally, I would like to acknowledge the US Army

Corp of Engineers for their support, and the MUSE office for all the help.

vi

Abstract

Development of Software Architecture to Investigate Bridge Security

Joeny Quan Bui, M. S. E.

The University of Texas at Austin, 2012

Supervisor: Eric Williamson

After September 11, 2001, government officials and the engineering community

have devoted significant time and resources to protect the country from such attacks

again. Because highway infrastructure plays such a critical role in the public’s daily life,

research has been conducted to determine the resiliency of various bridge components

subjected to blast loads. While more tests are needed, it is now time to transfer the

research into tools to be used by the design community.

The development of Anti-Terrorism Planner for Bridges (ATP-Bridge), a program

intended to be used by bridge engineers and planners to investigate blast loads against

bridges, is explained in this thesis. The overall project goal was to build a program that

can incorporate multiple bridge components while still maintaining a simple, user-

friendly interface. This goal was achieved by balancing three core areas: constraining the

graphical user interface (GUI) to similar themes across the program, allowing flexibility

vii

in the creation of the numerical models, and designing the data structures using object-

oriented programming concepts to connect the GUI with the numerical models.

An example of a solver (prestressed girder with advanced SDOF analysis model)

is also presented to illustrate a fast-running algorithm. The SDOF model incorporates the

development of a moment-curvature response curve created by a layer-by-layer analysis,

a non-linear static analysis accounting for both geometric non-linearity as well as

material non-linearity, and a Newmark-beta-based SDOF analysis. The results of the

model return the dynamic response history and the amount of damage.

ATP-Bridge is the first software developed that incorporates multiple bridge

components into one user-friendly engineering tool for protecting bridge structures

against terrorist threats. The software is intended to serve as a synthesis of state-of-the-

art knowledge, with future updates made to the program as more research becomes

available. In contrast to physical testing and high-fidelity finite element simulations,

ATP-Bridge uses less time-consuming, more cost effective numerical models to generate

dynamic response data and damage estimates. With this tool, engineers and planners will

be able to safeguard the nation’s bridge inventory and, in turn, reinforce the public’s

trust.

viii

Table of Contents

Acknowledgements ..v

Abstract .. vi

Table of Contents ... viii

List of Tables .. xii

List of Figures .. xiii

Chapter 1: Introduction ..1

Thesis Outline ...2

Chapter 2: Background, Motivation, and Challenges ..3

Terrorist Threats Against Bridges ...4

Experimental Research and Current Practice ...5

Current Practice ..7

Purpose of the Research Project ...9

Goal of the Software ...11

The Complexity of the Problem Domain ...12

The Challenge of Managing the Developmental Process14

The Flexibility Possible through Software ..15

The Problems of Characterizing the Behavior of Discrete System16

Summary ...17

Chapter 3: Software Architecture and Design ...19

Program Flow Chart ..19

Program Paradigm ..22

Modular Programming ...23

Object-Oriented Programming...23

Abstraction ..24

Encapsulation ..25

ix

Inheritance...26

Polymorphism ...26

Event-Driven Programming ...27

ATP-Bridge Paradigm ..27

Summary ...30

Chapter 4: Data Structures ...31

Data Structure Relationships...31

Nexus Assembly ..32

Load Assembly ..33

Structural Component Assembly ...34

Class Naming Convention and Standard ..35

Applied Encapsulation ...36

The Role of Inheritance ...39

Polymorphism in Practice ..41

Structural Component Class ...43

Physical Attributes and Methods ...44

Analysis..47

User Interface and Graphics Engine ..49

Load Class ...51

Nexus Class ...55

Additional Data Types ..57

Summary ...59

Chapter 5: Graphical User Interface and Graphics Engine60

Graphical User Interface Overall Design ..61

Navigational Control ...64

Tree-View Summary Control ..64

Viewer Setting Control ..67

Direct3D Graphical Environment ...68

Vertices and Primitives Types ...68

Vertex Buffers and Index Buffers ..70

x

Graphics Engine Components...71

JQB Elements...72

Node Element..72

Plane Element Superclass ...73

Triangle Element ...75

Quadrilateral Element ...77

Mesh Component ...79

Graphics Object ...85

Graphics Engine Cycle ...87

JQB Graphics Engine Class ...88

JQB Blackboard Class ...94

JQB Component ...97

Summary ...102

Chapter 6: Prestressed Girder Model ...103

Experimental Work ...104

Advanced Single-Degree-of-Freedom Algorithm108

Moment-Curvature Relationship ..109

Concrete Material Model ...112

Mild Steel Reinforcement Model...115

Prestressing Strand Material Model ...117

Dynamic Increase Factor (DIF) ...120

Layer-by-Layer Moment-Curvature Analysis123

Bilinear Moment-Curvature Diagram ..125

Resistance Function ..127

Static Analysis ...128

Load Spatial Distribution ...129

Incremental-Iterative Method ..133

Geometric Non-linearity ...135

Material Non-Linearity ...137

Generalized Single-Degree-of-Freedom System ..137

xi

Forcing Function ..140

Solving the Equation of Motion with Newmark-beta Method141

Example of Girder Model ...142

Girder Single-Degree-of-Freedom Model ...142

Comparison of SDOF Model with FEM Model149

Summary ...151

Chapter 7: Summary, Recommendations, and Conclusions152

Summary of Research Program ..152

Snapshots of the Anti-Terrorist Bridge Planner..154

Recommendations for Future Work..158

Recommendations on Prestressed Girder Solver for Future Work160

Appendix A: Programming Glossary ...164

Appendix B: 3D Mathematics ..167

Vector Algebra ..167

Matrix Algebra ..168

Scaling...168

Rotation ...169

Translation ..169

Appendix C: Frame Element in ATP-Bridge ...171

Elastic and Geometric Stiffness Matrix (McGuire et al, 2002) :172

Member Load Vector: ...172

Equations for Triangular Load Fixed-End Moments and Shear

(Kassimali, 1999): ..173

Appendix D: Incremental-Iteration Variable Definitions174

Appendix E: Newmark-beta Average Acceleration (Chopra, 2006)175

References ..177

Vita ...183

xii

List of Tables

Table 5.1: Triangle Prism Node Table ...82

Table 5.2: Triangle Prism Triangle Table ..83

Table 5.3: Triangle Prism Quadrilateral Table ..84

Table 6-1: Power Formula Constants for the Prestressing

 Stress-Strain Diagram ...119

Table 6-2: Dynamic Increase Factor for Far Range ...121

xiii

List of Figures

Figure 2.1: Documented Worldwide Terrorist Attacks on Public

 Transportation Infrastructure (Jenkins & Butterworth, 2010)3

Figure 2.2: Percentage of Bridge Targeted in Industrialized Nation

 between 1980 and 2006 (Jenkins, 2001) ...5

Figure 2.3: Percentage of Different Bridge System in the U.S. Inventory

 as of 2011 (National Bridge Inventory, 2011)10

Figure 3.1: General Structural Analysis Program Flow ...19

Figure 3.2: Blast-Component Structural Analysis Flow Chart20

Figure 3.3: Reinforced Concrete Column Blast-Component

 Structural Analysis Flow Chart ...21

Figure 3.4: Steel Plate Blast-Component Structural Analysis Flow Chart22

Figure 3.5: ATP-Bridge Paradigm ...29

Figure 4.1: Nexus Assembly Class Model Diagram ..32

Figure 4.2: Load Assembly Class Model Diagram ..33

Figure 4.3: Structural Component Assembly Class Model Diagram34

Figure 4.4: Typical Class Notation and Layout ...36

Figure 4.5: Subroutine SetLocation(…) Example ..38

Figure 4.6: Return Function GetLocationY(…) Example39

Figure 4.7: Data Storage of Sub-Class ...40

Figure 4.8: Sub-class Data Type Variable ...41

Figure 4.9: SetMesh() Subroutine Example ...42

Figure 4.10: Structural Component Class Phases ..43

Figure 4.11: Structural Component Class Physical Attributes and

xiv

 Methods Diagram..44

Figure 4.12: Plate Class Overload SetGlobalDimension(…) Subroutine46

Figure 4.13: Structural Component Class Analysis Diagram48

Figure 4.14: Structural Component Class User Interface and

 Graphics Engine Diagram ...50

Figure 4.15: Load Class Analysis Diagram ...52

Figure 4.16: Nexus Class Analysis Diagram ...56

Figure 4.17: Optional Data Types ..58

Figure 4.18: Overriding Optional Data Type StrengthInputs() Example59

Figure 5.1: Graphical User Interface Schematic ..61

Figure 5.2: Graphical User Interface Collapse Navigation Control63

Figure 5.3: Tree-View Control General Information Section64

Figure 5.4: Tree-View Control Structural Component Section65

Figure 5.5: Tree-View Control Load Case Section ...66

Figure 5.6: Viewer Setting Control ..67

Figure 5.7: Line List Primitive Type (Miller, 2004) ..69

Figure 5.8: Triangle List Primitive Type (Miller, 2004)70

Figure 5.9: Vertex Buffer and Index Buffer (Thorn, 2005)71

Figure 5.10: Node Class Diagram ..73

Figure 5.11: JQB Element..75

Figure 5.12: Triangle Element ...76

Figure 5.13: Triangles Element Class Diagram ..76

Figure 5.14: Quadrilateral Element..77

Figure 5.15: Quadrilateral Element Class Diagram..78

Figure 5.16: Mesh Component Class Diagram ...80

xv

Figure 5.18: Triangle Prism Node Element ...82

Figure 5.19: Triangle Prism Triangle Element..83

Figure 5.20: Triangle Prism Quadrilateral Element ...84

Figure 5.21: Graphics Object Structure Diagram..86

Figure 5.22: Graphics Engine Flow Chart ...87

Figure 5.23: JQB Graphics Engine General Class Diagram89

Figure 5.24: JQB Graphics Engine Camera Class Diagram91

Figure 5.25: Zooming the Camera ...92

Figure 5.26: Panning the Camera...93

Figure 5.27: Rotating the Camera ..94

Figure 5.28: JQB Blackboard Class Diagram Method()95

Figure 5.29: OneFrameRender() Method ..96

Figure 5.30: JQB Component Class Diagram Properties98

Figure 5.31: JQB Component Class Diagram Methods()99

Figure 5.32: ComponentFrameRender() Subroutine Rendering Algorithm101

Figure 6.1: Bridge Destroyed in Iraq from Truck Bomb

 (The Washington Post, al- Mokhtar, 2009)104

Figure 6.2: Colorado Bulb-Tee Test Specimen Dimensions

 (Matthews, 2008) ..105

Figure 6.3: Test Specimen Above-Detonation Scenario

 (Matthews, 2008) ..106

Figure 6.4: Test Specimen Below-Girder Detonation Load Case

 (Matthews, 2008) ..107

Figure 6.5: Fiber Diagrams of the Test Specimen ...110

Figure 6.6: f’c = 8,500 psi Concrete Model Stress-Strain Curve115

xvi

Figure 6.7: 60 ksi Reinforcement Material Model...117

Figure 6.8: 270 ksi Low-Relaxation Prestressing Strand Material Model120

Figure 6.9: Dynamically Adjusted Concrete Stress-Strain Curve

 (Department of Defense, 2008) ...122

Figure 6.10: Dynamically Adjusted Mild-Steel Reinforcement123

 Stress-Strain Curve (Department of Defense, 2008)123

Figure 6.11: Colorado Bulb-Tee Moment-Curvature ..124

Figure 6.12: Bilinear Moment Curvature...127

Figure 6.13: Load Distribution ..130

Figure 6.14: Pressure-Time Curve for Free-Air Explosion

 (Department of Defense, 2008) ...131

Figure 6.15: Blast Distribution Variation with Respect to Standoff

 (Department of Defense, 2008) ...132

Figure 6.16: Incremental Iteration (McGuire, Gallagher, and Ziemian, 2000) ...134

Figure 6.17: Equivalent Single-Degree-of-Freedom System138

Figure 6.18: Pressure-Time History at Girder Center and Left/Right Edge143

Figure 6.19: Resistance Function ...145

Figure 6.20: Forcing Function ...146

Figure 6.21: Displacement/Velocity/Acceleration Time History

 at the Mid-Span. ..148

Figure 6.22: Girder FEM Displacement-Time History at Mid-Span149

Figure 7.1: Geometry Form for Prestressed Girder ...155

Figure 7.2: Load Form for Prestressed Girder ...157

Figure 7.3: Graphics Engine Rendering of Prestressed Girder158

xvii

Figure D.1: Frame Element Degrees-of-Freedom

 (McGuire, Gallagher, and Ziemian, 2000)......................................171

xviii

“That’s been one of my mantras – focus and simplicity. Simple can be harder than
complex: You have to work hard to get your thinking clean to make it simple. But it’s

worth it in the end because once you get there, you can move mountains.”

Steve Jobs (1989)

1

Chapter 1: Introduction

In the decade following September 11, 2001, government officials and the

engineering community have devoted time and resources to protect the country from such

attacks again. The highway bridge infrastructure, a system utilized daily by most

Americans, is considered a potential terrorist target because it is a public symbol, and an

attack can cause major disruptions to the local economy. Before the last decade, only a

limited number of studies considered the response of bridge components subjected to

blast loads. Although buildings and bridges have similar structural components, there are

a number of behavior variations that warrant additional exploration. Furthermore, most

bridge engineers have limited experience in blast-resistant design principles.

With these concerns, researchers at the University of Texas at Austin were tasked

with the creation of Anti-Terrorist Bridge Planner (ATP-Bridge) PC software. The

purpose of this software is to transition the knowledge gained through research over the

last decade into a user-friendly software that allows bridge engineers and planners to

investigate the response of different bridge components to a postulated terrorist threat

scenario involving explosives. Analysis results provided by the software can be used to

conduct vulnerability assessments of planned or existing bridges, and the information can

also be used to determine whether structural hardening is needed to protect a critical

bridge component. The project is funded by the US Department of Homeland Security

(DHS) and is overseen by the US Army Corp Engineer Research Development Center.

The software is designed to analyze a variety of bridge components, from reinforced

concrete columns to steel plates on a bridge tower. As new research becomes available,

additional components can be incorporated into the software.

2

This thesis outlines the development of the software architecture and lays out the

different programming concepts used to address the identified challenges. The main

challenge in developing ATP-Bridge is balancing the desire to create user-friendly

software while still incorporating multiple bridge components with different loading

conditions, material behavior, and modes of failure. The scope of this thesis covers the

motivation for the research, the theory behind the software architecture, and how the

software interacts with the user. This thesis also includes an example of a bridge

component numerical model (prestressed girder) and describes how it is implemented

inside the program.

THESIS OUTLINE

The thesis is divided into seven chapters, including this introductory chapter.

Chapter 2 provides an overview of threats against bridges, prior experimental testing

against bridge components, current practices, research motivation, and current design

challenges. Chapter 3 describes the program flow path, the different programming styles,

and general aspects of object oriented programming that are relevant to the current study.

Chapter 4 explains the relationships between the core data structures, and it gives a

thorough explanation on how they were implemented in practice. Chapter 5 lays out the

schematics of the graphical user interface and provides an in-depth discussion on the

graphics engine. Chapter 6 presents an advanced single-degree-of-freedom model using

a layer-by-layer moment curvature response curve and non-linear static analysis for the

resistance function. Finally, Chapter 7 ends the thesis with further recommendations for

the software and the prestressed girder model.

3

Chapter 2: Background, Motivation, and Challenges

There have been terrorist threats against US interests, both domestically and

abroad, dating back well before September 11, 2001. Events like the 1998 bombing at

the US embassies in Tanzania and Kenya (FEMA 427, 2003), the 1993 World Trade

Center truck bombing at the North Tower (NRC, 1995), and the Oklahoma City bombing

of the Alfred P. Murrah Federal Building (NRC, 1995) highlight the need for structures to

be designed with consideration given to blast protection. After the tragic events of

September 11, 2001, there has been a renewed focus amongst policy makers about the

security and readiness of the country to defend against such attacks across a wide range

of infrastructure (FHWA, 2003).

Figure 2.1: Documented Worldwide Terrorist Attacks on Public Transportation

Infrastructure (Jenkins & Butterworth, 2010)

4

The protective design community has previously focused on military structures

and federal buildings. Yet, as shown in Figure 2.1 there has been a worldwide increase in

documented terrorist threats against public transportation infrastructure starting roughly

around the 90s. Over the last decade, however, awareness of the vulnerability of public

highway infrastructure has been raised, with concerns not only from a safety perspective

but also an economic and socioeconomic perspective (Williamson, et al. 2010).

TERRORIST THREATS AGAINST BRIDGES

The Mineta Transportation Institute (MTI) documented 1633 worldwide terrorist

attacks against public surface transportation infrastructure since the first quarter of 2010,

including 161 attacks against highway infrastructure (Jenkins and Butterworth, 2010).

Although there has been only one documented bridge attack on US soil—the 1977 Route

1 Bridge in Florida Homestead and Key West—there have been many reported incidents

during the last decade that show bridges are potential targets for terrorists. On February

16, 1982, Oakland’s Bay Bridge was targeted by an unknown terrorist leaving 40 lbs of

liquid explosive beneath the bridge (Jenkins, 1997). On June 29, 1993, the George

Washington Bridge was the target of nine arrested terrorists (Jenkins, 1997). The

Brooklyn Bridge has been targeted in the past, with plans to bring down the bridge with

various methods such as cutting through the suspension cables (Weiser, 2011).

Even though all the bridges described above are iconic bridges, they are only a

small portion of the total bridge inventory within the US. Data have shown that it is more

likely that typical bridges are targeted, as shown in Figure 2.2 (Jenkins, 2001). Bridges

5

can be the only entrance to a community, and they can be an important route for critical

infrastructure like power plants, water treatment facilities, or shipping yards. If a series

of attacks were coordinated, it could cause devastating economic consequences to the

surrounding communities and beyond.

Figure 2.2: Percentage of Bridge Targeted in Industrialized Nation between 1980 and

2006 (Jenkins, 2001)

EXPERIMENTAL RESEARCH AND CURRENT PRACTICE

Within the last decade, several researchers have studied the effects of blast loads

acting against different bridge components. The previous projects consider different

bridge systems and materials.

Suspension
30%

Cable Stay
Tied Arch

15% Truss
5%

Railroad
15%

Other
Highway
Bridges

35%

6

For example, researchers at the University of Texas at Austin performed half-

scale tests on bridge columns (Williams, 2009). This work was funded by the National

Cooperative Highway Research Program. The researchers studied the behavior of

rectangular and circular columns, varying the transverse reinforcement detailing and the

overall dimensions to determine the governing failure mechanisms associated with

different threats and design parameters. Knowledge from that research led to blast-

resistant design guidelines, which are detailed in NCHRP Report 645 (Williamson, et al.,

2010).

Bruneau and Fujikura from SUNY Buffalo studied the response of quarter-scale

concrete pier-bent models (Bruneau, 2010). Their goal was to prevent breaching, which

is characterized by the complete loss of concrete at a localized cross-section, from

occurring in the piers. The study led them to include a composite steel jacket along the

height of the column. Their primary conclusion was that the addition of the composite

jacket increased the ductility on the column.

Aside from columns, research has been conducted on other critical bridge

components. Prestressed girders were the focus of a recent study by Cofer (2012). This

project included full-scale tests against typical AASHTO girder designs for both above-

and below-deck threats. Data collected from the tests were used to validate detailed finite

element models. After achieving a satisfactory single girder model, they extrapolated the

model to include a full cross-section of a composite girder deck. The main conclusion

reported is that the primary mode of failure is concrete rubbelization and shear failure.

7

The Federal Highway Administration (FHWA) funded research involving the

blast testing of one-quarter scale representations of steel suspension bridge towers.

Testing for this project was carried out by the Engineer Research and Development

Center (ERDC) of the US Army Corp of Engineers (Ray, 2006). The objective of the test

program was to determine the blast resistance of steel plates subjected to a variety of

threats, considering a wide range of support conditions. The measured steel plate

response was compared with results from numerical simulations to determine how

accurate the models were at predicting the failure mechanism. ERDC also considered

potential retrofit options and evaluated them during the test program.

The cited projects above provide insight to the blast-resistant design community

on the actual behavior of different bridge components subjected to explosive threats. To

protect the approximately 600,000 bridges in the US, however, there needs to be a design

tool that is capable of analyzing the majority of the bridge components found in practice.

CURRENT PRACTICE

Currently, there are multiple approaches available for analyzing structures

subjected to blast loads. The tools range from approximating a component as a single-

degree-of-freedom (SDOF) system to a coupled fluid-structure finite element analysis.

Although seismic and blast loadings on bridges share similar traits, designing for seismic

loads will not necessarily satisfy the requirements for blast (Holland, 2008). The

methods used for a given project will depend upon the experience and expertise of the

8

project personnel, the budget, and the desired accuracy from the client (Winget and

Williamson, 2000).

Although it might be desirable for an engineer to model a bridge globally, it is

usually not necessary to do so for assessing bridge vulnerability to potential blast threats.

Because the pressure from a blast wave attenuates quickly with distance, damage is

typically localized around the detonation site (Cofer, 2012). Thus, studying individual

bridge components can provide valuable insight on how a bridge performs when

subjected to an explosion while maintaining simplicity in the engineering models used to

predict response.

Determining whether a given bridge should be designed for blast protection

should be based on a vulnerability assessment. A vulnerability assessment, such as the

one suggested by AASHTO (2002), should determine the importance and criticality of a

bridge relative to the whole infrastructure network. If a bridge is deemed to be at risk, it

should be assessed at an individual component level. Ray (2007) recently proposed a

method for determining the risk associated with individual bridge components based on

the occurrence, vulnerability, and importance of the individual members.

If by choice of the owner or through the outcome of a formal vulnerability

assessment it has been determined that a bridge requires protection from blast loads, there

are several options available. The most efficient means of protecting highway bridges is

during the design phase through planning and site layout (Winget, et al., 2010). Planning

could include increased surveillance, fencing off critical components, or increasing the

9

lighting around dark areas. Because these options are not always available, it is

important to have available tools for retrofitting and analysis.

PURPOSE OF THE RESEARCH PROJECT

The main objective of this project is to develop the Anti-Terrorist Planner for

Bridges (ATP-Bridge) software. This work is funded by the Department of Homeland

Security and overseen by the US Army Corp of Engineers. The software is created for a

Windows-based PC, with a graphical user interface (GUI), navigation control scheme,

and 2D and 3D rendering engine. These components will be explained in subsequent

chapters.

The intent of the software is to provide a simple tool for bridge engineers to use

when designing bridges to resist blast and other extreme loads. There is a great need to

protect our domestic infrastructure; however, with the economic reality that there are

limited resources available, it is not possible to have separate, detailed analyses for every

bridge. Therefore, this software will not only allow engineers and planning personnel to

quickly evaluate whether a bridge needs further protection, but it will help bridge

engineers during the design process.

The software is to be a clearinghouse of experimental research done in the last

decade and to be expandable to allow the incorporation of new data as it becomes

available. To reflect the diversity of bridge systems around the US as shown in Figure

2.3, the ATP-Bridge software is component-based rather than focusing on a single

system.

10

Figure 2.3: Percentage of Different Bridge System in the U.S. Inventory as of 2011

(National Bridge Inventory, 2011)

Structural analysis options available vary depending upon the complexity of the

component being analyzed. Some bridge components can be accurately modeled as a

single-degree-of-freedom system, whereas other components are complex and require

correlation with empirical data. Although finite element models, if used correctly, are

considered more accurate than SDOF or empirical models, they require a large

investment in time and computational resources.

Slab
13.26%

String / Multi-
Beam / Girder /

Floorbeam
System

42%

Tee Beam
5.91% Box Beam

9.87%

Truss
1.83%

Arch
1.19%

Suspension
0.02%

Channel Beam
2.39%

Culvert
21.83%

Frame (Except
Culverts)

0.88%
Other
0.68%

11

ATP-Bridge does not require users to decide the most appropriate method of

analysis for a given component. Rather, the software has built-in algorithms that have

been developed by researchers on this project to provide accurate predictions of response.

The algorithms have been validated against test data and detailed finite element models.

With the adopted software development approach, the user interface and the analysis

modules are self-contained, making it possible for analysis modules to be coded by

different developers without needing to know the details of the interface.

A possibility for component-based software is to compute local damage caused by

a blast load and then map the damage back to a static global structural analysis program.

With the new global model, an engineer can evaluate the residual capacity of a bridge

system without needing to do a costly non-linear analysis of the entire structure.

GOAL OF THE SOFTWARE

“The complexity of software is an essential property, not an accidental one.”

(Brooks, 1986)

The ATP-Bridge software is organized to analyze individual bridge components

rather than a complete system, which leads to several development challenges. Of

primary importance is creating a simple and intuitive user interface that supports a

multitude of different components, each having different material properties and response

characteristics. To create a user-friendly interface, the steps required to define input

parameters or to review the results must be similar and predictable across the different

components. Doing so requires the core data structure of the program to be generic and

12

have the ability to store different types of data. This requirement for a generic data

structure makes it possible for the interface, including the navigational control system

and the 3D graphics environment, to behave seamlessly amongst the different

components.

The goals for the software create a complex set of challenges for its development.

Booch (1994) divides these complexities into four different elements: (1) the complexity

of the problem domain, (2) the challenge of managing the developmental process, (3) the

flexibility throughout the process, and (4) the problem of characterizing a discrete

system. The following is a discussion of these different elements as it relates to ATP-

Bridge.

The Complexity of the Problem Domain

“This external complexity usually springs from the ‘impedance mismatch’ that

exists between the users of a system and its developer: users generally find it very hard to

give precise expression to their needs in a form that developers can understand.”

(Booch, 1994)

The problem domain can be generically described as required information that is

needed to find the solution to a problem. It is important for the client and the developer

to communicate their individual vision of the program throughout the software

development period.

13

The general framework for the ATP-Bridge software is a multi-component blast

design tool. Single-component analysis software requires a user interface for the inputs

and outputs along with a solver to calculate the desired results. The challenges are

magnified with the creation of a software package that can handle multiple types of

individual components, each having their own different sets of inputs and outputs.

Another challenge is maintaining and balancing requirements that might contradict each

other for different components. Completely integrating all components to a standard

interface is difficult without knowing in advance all the different components that the

software may eventually include. This is due to the fact that the scope of all the

components is not fully defined, and it is not possible to fully define them because

ongoing research may require new interpretations of existing data. Thus, it is not clear

how to enforce standardization for the user interface or even if it is desirable to do so

because future components might be unnecessarily constrained due to current choices.

Another challenge to the problem domain concerns how the software evolves with

time. Success is measured not only on how accurate and well developed the software is,

but also on how useful it is to the protective design community at large. The software

needs to address the problems that users face. The decision to make it component-based

reflects the research work done to date. Nonetheless, even during the early stages of

program development, consideration must be given to whether the software may

eventually allow for a global bridge model to be analyzed or whether other output (e.g.,

vulnerability) may be needed.

14

The Challenge of Managing the Developmental Process

“The fundamental task of the software development team is to engineer the

illusion of simplicity – to shield users from this vast and often arbitrary external

complexity.” (Booch, 1994)

There are a variety of different software development models that exist today,

with classical ones such as the “waterfall” model and the stepwise refinement model, to

the more modern ones such as rapid prototyping and the joint application development

model (Scacchi, 2001). All the different models have the same overall goal of providing

a conceptual scheme for managing the development process. Each model may vary in its

implementation, but all development models include planning, requirement analysis,

functional specification, detailed component design specification, debugging, and

maintenance (Scacchi, 2001).

A concern when developing large software projects is carefully managing the

development cycle. With poorly managed projects, it becomes increasingly difficult to

make small changes without having a big impact on code that was developed earlier. The

inertia of the software will become too hard for the development team to overcome as the

size of the software increases. Therefore, it is important for the team to constantly iterate

and reevaluate the efficiency of the software.

With a large team that is working on different areas, there will inherently be

fragmentation amongst the groups, with models and interface development moving at

different paces. To accommodate this challenge, there needs to be early planning and

15

coordination amongst the team on how the different areas mesh together. It is necessary

for the software to be well documented and follow strict guidelines to become predictable

for the developers to maintain the integrity of the software over its lifetime.

There are issues that arise when managing the software development process in a

university research setting. It is always desirable for the development team to be intact

throughout the full cycle of the software development. Because of the turnover of

graduate students coming into the program, however, it is not possible to maintain the

same development team for its full duration. Therefore, as stated above, it is necessary to

keep things well documented.

Despite the best efforts of the developers, software will have bugs, and users may

experience crashes or incorrect functioning of a program. Maintenance beyond the

development stage is a consideration that the client needs to consider. Although most

bugs should be corrected during the debugging cycle, software in commercial settings

will have issues that the development team will be unable to predict. A program with a

graphical user interface only increases the unpredictability, where concerns about the

physical environment change for each user and the 3D graphical environment depends on

physical hardware like the graphics card.

The Flexibility Possible through Software

“Software offers the ultimate flexibility, so it is possible for a developer to express

almost any kind of abstraction. This flexibility turns out to be an incredibly seductive

16

property, however, because it also forces the developer to craft virtually all the primitive

building blocks upon which these higher-level abstractions stand.” (Booch, 1994)

Software that is poorly organized and too complex to use will frustrate the target

audience and discourage them from using it. That is why it is critical that users find it

intuitive and responsive to how they think. The problem is that users have different

styles and behave differently from each other. Although it is impossible for software to

satisfy everyone, it is important to develop a flexible program that gives multiple ways to

progress through an analysis and to communicate and visualize material in more ways

than one.

Different people learn in different ways, with some being more visual while

others are more hands-on. These different learning styles are similar for a person using

computer software. That is why successful software needs to have multiple ways to

perform the same task. Different people are more attuned to clicking menu items or

toolbar buttons, while others prefer using the keyboard to navigate through the software.

All this additional flexibility added to the program adds to the challenges and requires

additional planning and coding.

The Problems of Characterizing the Behavior of Discrete System

“Because we execute our software on digital computers, we have a system with

discrete states. By contrast, analog systems such as the motion of the tossed ball are

continuous system.” (Booch, 1994)

17

In analyzing structures subjected to blast loads, there is a large variability not only

in the characterization of the explosive but also in the way component response is

computed. Aside from errors associated with the variability of the input parameters,

implementation of the solution on computers only adds to the error due to the limits of

compound round-off and data type manipulation. While these limits are unavoidable, it

is important for program developers to understand and account for them in their software

design.

Another concern is the validity of the component models beyond the developers’

intent. All the component models should be verified for accuracy within a reasonable

range, but it is impossible to check every input a user may provide. Users could generate

a section property that is valid but inherently unstable, apply a load that is theoretically

possible but outside the range of knowledge, or trigger an equation that will return a

result close to infinity. To limit these difficulties, a vigorous debugging process is

necessary.

SUMMARY

This chapter provides an overview of the vulnerability of transportation

infrastructure, previous experimental research, and current design practice. To allow

bridge engineers the ability to analyze structural components subjected to blast loads, the

primary objective of this research is to develop a user-friendly software application that

runs efficiently on a personal computer. Following a brief description of the desired

18

software capabilities, the goals and challenges of developing such a program are

discussed. The next chapter details how the software design challenges are addressed in

this study.

19

Chapter 3: Software Architecture and Design

To ensure that current and future versions of ATP-Bridge are robust, thorough

planning was devoted to the development of its global framework. Although there has

not been a universally adopted definition for software architecture in the computer

science community, a good explanation provided by Microsoft (2009) describes it as the

interaction of the major program elements with each other and the hardware. Software

architecture also takes into consideration the needs of various stakeholders: the users, the

clients, and the developers. This chapter details the overall software framework and

paradigms.

PROGRAM FLOW CHART

Examining a high-level view of solving any structural analysis problem, there are

three generic stages involved as shown in Figure 3.1. First is the [Pre–Processor]

segment, where the problem domain is defined and the scenario is understood. Second is

the [Analysis] segment, where the program will choose a solution method (empirical

equations, direct stiffness method, finite element method, etc.) to solve the problem

domain. Lastly, the [Post-Processor] segment is where the results are processed into

desired output (producing graphs, contour plots, etc.) and reported to the user.

Figure 3.1: General Structural Analysis Program Flow

20

 For the analysis of a structural component subjected to blast, the three segments

from the general cases are further refined into blast-specific segments. The [Pre-

Processor] segment is divided into the [Define Component Geometry] and [Define Blast

Loads] segments, and the [Post-Processor] segment is divided into the [Failure Mode]

and [Display Results] segments (Figure 3.2). The [Define Component Geometry] could

consist of many different parameters depending on the type of component being

analyzed. Examples include the global dimensions, shape, material properties, and

boundary conditions. The [Define Blast Loads] segment can consist of many different

parameters that are specifically associated with the component being analyzed, such as

charge weight and diameter, charge location, and proximity to a reflecting surface such as

the deck. The [Failure Mode] segment consists of local failure and global failure. Output

from the [Display Results] segment varies depending on the fidelity of the component

model used. Examples of the different results are displacements, spall length, and breach

length.

Figure 3.2: Blast-Component Structural Analysis Flow Chart

Further refinement is possible for specific components, as shown in Figure 3.3

and Figure 3.4 for a reinforced concrete column and steel plate, respectively. With

further refinement, there is greater divergence in common segments that are shared

21

among the different components. Comparing the flow chart of the reinforced concrete

column with the steel plate, the two differ largely on the type of geometry declarations,

including parameters such as support conditions and material properties. For loads, both

components utilize similar parameters with the exception that reinforced concrete

columns need information about the deck to calculate reflections. These variations in

required input only compare two structural components. With each additional structural

component, there will be even more variation, and planning the interface becomes a

significant challenge.

Figure 3.3: Reinforced Concrete Column Blast-Component Structural Analysis Flow

Chart

22

Figure 3.4: Steel Plate Blast-Component Structural Analysis Flow Chart

 To avoid problems associated with the creation of component-specific input and

output, ATP-Bridge is organized and planned according to a blast-component structural

analysis flow chart. Each component is organized in broad segments and with the

interface design for a generic component type. This generic flow path addresses the

challenge of adding new components into the software as the project progresses.

PROGRAM PARADIGM

After determining the overall strategy in the software flow path, the next stage is

to determine the appropriate paradigm. Paradigm is used in this thesis as the structure,

style, and relationship regarding how the program is coded and developed. There are

many different paradigms that can be used during software development, with some

being more efficient than others at solving specific tasks. This thesis does not cover all

of the different possibilities. Rather, it focuses on the ones used in ATP-Bridge. The

23

following sections provide brief explanations of the paradigms used along with

references where additional information can be found.

Modular Programming

 The general concept of modular programming focuses on creating independent,

interchangeable components that complete a task within a module. Defined by Turner

(1980) as the “locality of reference”, a module needs to be self-contained and can only

reference things inside its scope and passed through its boundaries. The data passed to a

module must have clearly defined data types. This separation of tasks lends itself well to

team projects, where different developers can focus on their specific concerns and easily

maintain the work inside the modules they are developing.

Object-Oriented Programming

Object-oriented programming was developed to overcome the underlying security

issues with reusing modules. There are two types of object-oriented programming: class-

based and prototype-based (Craig, 2000). The focus in this thesis is on the former. Any

references made to object-oriented programming in this thesis assumes the class-based

approach. Because object-oriented programming is an important concept within the

architecture of ATP-Bridge, the following paragraphs give a thorough description of the

important features.

At its most fundamental level, object-oriented programming models all problems

as classes and objects. As stated in Craig (2000), the concept of classes can be thought of

24

as a set of objects, a program structure, a template that produces objects, or a data type.

Each definition is correct, but none fully defines the whole entity.

Classes hold both data and methods wrapped into one ‘data type’. Objects,

conversely, take all the attributes of the class and create an independent instance of that

class, where it then is possible to be passed and returned through functions and

subroutines, assign variables, and store arrays and data structures. A clear difference

between classes and objects is that a class does not exist at runtime, whereas an object

does.

To distinguish between user-defined classes and objects in this thesis, user-

defined classes will be designated with “bold-italic” font while objects of that class are

designated with just “italic” font. For example, a class of Animals will have objects of

that class designated as tiger, bears, and fish.

What makes object-oriented programming a powerful concept and a popular

programming style is its adherence to its principles, as discussed in Brooch (1994). This

project uses the concepts of abstraction, encapsulation, polymorphism, and inheritance.

The following sections give a general description and examples of those concepts.

Abstraction

 “An abstraction denotes the essential characteristics of an object that distinguish

it from all other kinds of objects and thus provide(s) crisply defined conceptual

boundaries, relative to the perspective of the viewer.” (Booch, 1994)

25

Data abstraction is the concept of factoring out all the unnecessary details and

capturing only those details that are relevant to the problem domain. An example of

abstraction is trying to calculate payroll for an employee. When calculating payroll, it is

unnecessary to know the employee’s eye color, what car they drive, or their favorite

food—those are unnecessary details. The information that is needed to be abstracted is

the employee’s social security number, salary, and mailing address. Abstraction is

essential to modeling.

Encapsulation

 “Encapsulation is the process of compartmentalizing the elements of an

abstraction that constitute its structure and behavior; encapsulation serves to separate

the contractual interface of an abstraction and its implementation.” (Booch, 1994)

Encapsulation is information hiding. There is an interface for the public to

access, but the internal workings are restricted and hidden. A typical example of

encapsulation is a person driving a car. Most drivers do not know how cars are built,

how engines work, or even how radios are connected. That knowledge is not required for

individuals to drive a car. The information provided to the driver is how to start the

ignition, where the gas pedal is, and how to shift gears. The benefit of encapsulation in

programming comes when there is a need to improve a code’s efficiency. When

encapsulation is utilized correctly, there is no need for something previously written to

know that a change had been made as long as it returns the same values.

26

Inheritance

“Hierarchy (inheritance) is a ranking or ordering of abstraction.” (Booch, 1994)

Inheritance is an important concept that is used to achieve flexibility. Inheritance

makes a family of classes by designating super-classes and sub-classes. Super-classes

can be described as parent classes or base classes, where sub-classes are child classes,

derived classes, or inherited classes. This concept leads to a hierarchal tree, where there

can be many sub-classes for one super-class. Super-classes hold traits that are applicable

to sub-classes, such as data types, subroutines, and functions. Sub-classes, meanwhile,

inherit the attributes of the super-class, which reinforces reusability of codes. Therefore,

sub-classes can reference codes from the super-classes, but super-classes cannot

reference code from the sub-classes. An example of hierarchy is the animal kingdom,

with reptiles and mammals both being a sub-class of animals, and tigers and bears being

sub-classes of mammals. Traits like eating and sleeping are shared amongst all animals;

having fur is specific to mammals.

Polymorphism

“The term means literally ‘many formed’ and refers to the property of object-

oriented languages that they permit routines to have more than one type assignment.”

(Craig, 1994)

As defined in Craig (1994), there are three primary types of polymorphism:

genericity, inclusive polymorphism, and ad hoc polymorphism. Genericity is an idea that

27

relates with inheritance, where a super-class and sub-class share methods with the same

signature but return different results when called. Inclusive polymorphism is the idea that

methods defined for a super-class will be made available to its sub-classes. Ad hoc

polymorphism is commonly called methods overloading; methods with the same name

but with different signatures (parameters inside the method calls) will access different

algorithms.

Event-Driven Programming

ATP-Bridge, as well as most GUI software, uses event-driven programming.

Conceptually, this type of programming is based on interaction with the user and does not

have a pre-determined sequential order. ATP-Bridge reacts to triggered events, such as

clicking the mouse or typing a letter on the keyboard. Once an event is triggered, a set of

operations is performed that were written for the specific event. A key component to

user-friendly software is developing multiple paths to a desired destination, and ATP-

Bridge provides a variety of ways to carry out specific tasks including use of pull-down

menus, shortcut icons, and text entered from the keyboard. See Faison (2006) for a

detailed discussion on event-driven programming.

ATP-BRIDGE PARADIGM

As stated in Van Roy (2009), most sizable software has two or more program

paradigms that fully describe the relationships among different elements. With the

demand of maintaining a flexible and robust program, ATP-Bridge uses a mixture of

28

event-driven programming, object-oriented programming, and modularized programming

at different levels.

At the highest level, the program uses the modular paradigm, dividing the

software into two segments: a front-end and a back-end. The front-end segment

incorporates the interface and the data structures, with both adhering strictly to an object-

oriented paradigm. In addition to the object-oriented paradigm, the interface also adheres

to the event-driven paradigm to interact with the user. The back-end module incorporates

a solver for the different bridge components that are analyzed. Those solvers are

unconstrained to any specific paradigm, and other developers may determine the most

appropriate paradigm for it. Figure 3.5 provides a visual description of the program

organization.

29

Figure 3.5: ATP-Bridge Paradigm

The user interacts with the interface to characterize the problem parameters.

Once the user is satisfied with the parameters, the information is stored in data structures

and saved until triggered for analysis. When the user initiates the command to carry out

30

an analysis, assuming both the corresponding structural component and load classes are

complete (i.e., have parameters that fall within appropriate ranges and completely define

the problem being solved), the program will convert the data structures into appropriate

parameters for the specific solver. Once the analysis is complete, the results are

converted back into parameters to store in the data structures. Users can then prompt the

interface to see the results.

This careful arrangement among the three paradigms ensures reliability,

robustness, reusability, and security. It also provides the flexibility necessary for this

software to mature. The pure separation from the modular paradigm allows the different

components of the software to be developed by different developers concurrently without

needing constant interaction. An important benefit from the modular paradigm is its clear

separation of the least sensitive information—the interface and data structure—with the

more sensitive information—the solvers and external loading software. This separation

compartmentalizes the information not only from the users but from the developers of the

program. Similar to the military concept of “need to know”, information that is not

necessary for the different developers to accomplish their tasks is left hidden.

SUMMARY

This chapter provides a description of the overall flow path of ATP-Bridge,

explains modular, object-oriented, and event-driven programming, and presents the ATP-

Bridge Paradigm. The next chapter describes in detail the main data structures: structural

component, loads, and nexus.

31

Chapter 4: Data Structures

Data structure is defined by Lafore (2003) as “the arrangement of data in a

computer’s memory.” This chapter focuses on the core ATP-Bridge software data

structures: the Structural Component, the Load, and the Nexus class. The collection of

these three data structures is used by all the different components inside the software,

similarly to how the heart and circulatory system run all the major organs inside a body.

Without them there is no path to connect the user with the interface, the interface with the

solver, and the solver to the results.

DATA STRUCTURE RELATIONSHIPS

 From Chapter 3, it is clear that there should be at least two generic data structures

in ATP-Bridge: the Structural Component and the Load classes. In addition to these two

classes, there is one more important data structure: the Nexus class. Nexus is defined in

the Oxford dictionary as “a connection or (a) series of connections linking two or more

things.” The Nexus class used in this software links the front-end segment with the back-

end segment of the software. The front-end segment consists of the graphical user

interface, whereas the back-end segment consists of the bridge component model and

Bridge Explosive Loading (BEL) software, developed by the US Army Corps of

Engineers to predict blast loads against bridge components (USACE-ERDC, 2004).

 The relationship among these three important data structures is important to the

overall organization of the software. Below are three different relationships that were

32

considered for the software: the Nexus assembly, the Load assembly, and the Structural

Component assembly. The names of these three options relate to the class that is the top

tier of the associated assembly.

Nexus Assembly

Shown in Figure 4.1 is an assembly of the Nexus class, with one Structural

Component and Load class contained inside the Nexus class. The benefit of this model

is that the interior classes are independent of each other; therefore, the order in which

they are defined is unimportant.

Figure 4.1: Nexus Assembly Class Model Diagram

One drawback of this assembly occurs when a user wants to observe the behavior

of different loading conditions on the same bridge component. Under these conditions,

the program requires the same Structural Component class to be declared multiple times,

33

adding unnecessary and redundant data types. In addition, when changes are required for

the Structural Component, multiple actions are necessary to change the same parameter

through the different assemblies.

Load Assembly

In the Load assembly, the Load class is the host of the assembly, as shown in

Figure 4.2. Contained inside the Load class is an array of Structural Component classes;

within a Structural Component class there exists one Nexus class.

Figure 4.2: Load Assembly Class Model Diagram

A good illustration of this assembly is a single explosive relative to an entire

bridge. A designer can define one explosive in coordinate space and then define multiple

34

bridge components (columns, beams, bent, slabs, etc.) with respect to that explosive.

With this information defined, it is possible to calculate the response of each component

independently of the others by simply considering the relative distances from the

explosive.

Structural Component Assembly

Finally, the third assembly is similar to the second one but with the major

difference of the Structural Component class being the host instead of the Load class.

This assembly is shown in Figure 4.3. The benefit of this assembly is that it follows the

procedure used in practice to design against blast loads.

Figure 4.3: Structural Component Assembly Class Model Diagram

35

In practice, engineers would determine the critical component in a structure, and

then they would run a series of possible loading scenarios to determine the component’s

response. Designers would vary the standoff distances or charge weight to determine its

overall vulnerability. Lastly, a determination of desired protection or retrofit needed for

the component is considered.

CLASS NAMING CONVENTION AND STANDARD

A thorough explanation of the definitions, standard organization, naming

convention, and keywords will enhance the readability of the remaining parts of this

chapter. The front-end segment of the software is coded primarily in Visual Basic.NET

(VB.NET); therefore, the keywords defined below rely on standard Visual Basic syntax.

Although the keywords vary across different programming languages, the concepts are

nearly the same. The following is a series of definitions and keywords. For a complete

list, see the glossary included at the end of this thesis.

- ‘MustInherit’ – specifies that a class cannot be used to declare a new object and that

it only exists as a super-class that must be inherited.

- ‘MustOverride’ – specifies that a method has no body in the current class, and it

must be overridden in the sub-class before use.

- ‘Overridable’ – specifies that a method has a body in the current super-class, but it

can be overridden by a sub-class.

- ‘Private’ – specifies that one or more declared programming element are accessible

only from within the class.

36

- ‘Property’ is a special keyword inside Visual Basic used to give a controlled

interface for the internal data type inside the class.

- ‘Protected’ – specifies that one or more declared programming elements are

accessible only from within the super-class or from a sub-class.

- ‘Public’ – specifies that one or more declared programming elements are accessible

inside and outside the class.

Applied Encapsulation

In the ATP-Bridge software, all variables defined inside a class are not accessible

outside the class, except for certain exceptions. Figure 4.4 shows a generic class diagram

indicating the different properties and methods used.

Figure 4.4: Typical Class Notation and Layout

37

The naming convention for all ‘private’ or ‘protected’ variables that are hidden

from outside a class but accessible inside a class include the prefix ‘My’ to designate its

scope, such as MyLocations. This naming convention provides a clear designation of the

scope of the class global variables, the variables used in the parameter list, and the local

variables used inside methods. As a result, no public access to class variables is possible

aside from defined interfaces that allow control to the developer regarding how they are

used. This requirement adheres to the principle of encapsulation. Exceptions to this rule

include system variables from the Visual Studio environment and defined constant

variables that do not change at runtime.

All subroutines that strictly populate the variables begin with the prefix ‘Set’, an

example being the SetLocation(…) subroutine. The subroutine parameter list ensures that

data passed into the class are the correct data type, allowing no implicit conversion in the

software. Once the correct parameters are passed, the subroutine can check if they are

within the correct range before storage.

Real, physical variables that define actual objects have not only magnitude but

units of reference as well. It is therefore necessary that both the magnitude and unit are

stored as a pair to define one physical variable. Because magnitude is a ‘double’ data

type and unit is a ‘string’ data type, one way to create an attached pair using one data

type is through a two-dimensional array of the ‘object’ data type. An example of this is

shown in Figure 4.5, with the second column being the ‘double’ data type and the third

column being the ‘string’ data type.

38

Figure 4.5: Subroutine SetLocation(…) Example

In contrast to the ‘Set’ subroutine, functions that retrieve variables begin only

with the ‘Get’ prefix. An example is shown in Figure 4.6. The function

GetLocationY(Unit : String) returns the Y coordinates of the component back to the user.

To return a value the user must designate a desired unit it wishes to return in, leaving the

conversion process to take place “behind the scenes” and hidden from the caller. This

process is another example of encapsulation.

39

Figure 4.6: Return Function GetLocationY(…) Example

The Role of Inheritance

Inheritance is the central concept that allows the ATP-Bridge software to connect

the different areas of the program, allowing the graphical user interface and the 3D

rendering environment to be created with reliability and robustness. This is all possible

because development of the user interface is designed for the Structural Component,

Load, and Nexus super-class, not for any specific bridge component like concrete column

or steel plate. Hence, when developing new components in the future, instead of being

concerned about how to change the user interface to accommodate the new components,

40

the developer would inherit the super-class ensuring that it has all the required properties

and methods necessary to integrate into the software.

 For example, information the graphic engine reads from an array of Structural

Component is shown in Figure 4.7. The graphics engine does not need to be changed to

render the Column, the Plate, or any other bridge component. As long as those sub-

classes inherit the Structural Component, the graphics will populate the graphics engine

based off of the configuration inside the class.

Figure 4.7: Data Storage of Sub-Class

 An additional requirement specifically for this software is that all sub-classes

should only have data types that are inherited from the super-class. The super-class

should provide the generic necessary data types for the sub-class, or, for special

41

circumstances, the sub-class should use one of the optional data types provided in the

super-class. To create a usable variable for the sub-class, the ‘Property’ keyword should

be used as shown in Figure 4.8. Sub-classes can be visualized as a template of the super-

class, customizing different data types for the specific components.

Figure 4.8: Sub-class Data Type Variable

Polymorphism in Practice

 With the requirement that a sub-class inherit all the methods, it is necessary to

have a mechanism to alter necessary methods to customize it to the sub-class.

Polymorphism is used to overcome this obstacle, allowing sub-classes to override the

signature of the super-class to create a new body of code. Some methods designated with

42

the keyword ‘MustOverride’ are required by the sub-class to override it. Thus, when a

method that is overridden is called, it will be redirected to the specific sub-class. Figure

4.9 shows the polymorphism of the SetMeshes() subroutine, with the same method in the

structural component producing different results in the graphics engine.

Figure 4.9: SetMesh() Subroutine Example

43

STRUCTURAL COMPONENT CLASS

The Structural Component class is the super-class for all bridge components and

stores all the properties used inside its sub-class. This class can be divided into three

distinct phases: physical attributes and methods, analysis, and user interface and graphics

engine interactions. The phases are shown in Figure 4.10.

Figure 4.10: Structural Component Class Phases

44

Physical Attributes and Methods

The first phase defines the physical properties of a component such as units,

geometry, materials, etc. The following class diagram, Figure 4.11, and subsequent text

provide a description of the important properties and methods in this phase of the class.

Figure 4.11: Structural Component Class Physical Attributes and Methods Diagram

The MyID variable stores the ID of a bridge component as an integer data type.

This variable is unique for each bridge component of the project and is initialized in the

45

constructor of the class, though the SetID(…) subroutine allows the ID to be changed

when one or more structural components are removed. The GetID() function, conversely,

retrieves the ID for display in the user interface.

The MyUnitSystem variable stores the unit system of the project as a string data

type, with the values being either ‘US’ or ‘Metric’. After the variable is set in the

constructor, it cannot be changed for the duration of the object’s existence. This is

because all the other properties inside the class and the hosted classes are determined

relative to the unit system.

The MyType variable stores the bridge component type as a string variable, such

as ‘Circle Column’, ‘Rectangle Column’, ‘Steel Plate’, etc. This attribute is used by the

user interface to determine which bridge component sub-class is to be created. The user

interface retrieves this variable with the GetComponentType() function.

MyGlobalDimension is a two-dimensional array that stores the global or overall

dimensions of each bridge component such as height, width, depth, etc. The generic

SetGlobalDimension(…) subroutine copies the two-dimensional array passed to it, but it

is more common to overload this subroutine and have multiple parameter lists to set the

array. Figure 4.12 provides an example of an overloaded subroutine. The

GetGlobalDimension() function is the generic return method to pass back an entire array,

but it is more common for the sub-class to have a specific function to return just one

dimension. For example, the GetHeight(Unit : String) function returns the total height in

the unit given inside the parameter list.

46

Figure 4.12: Plate Class Overload SetGlobalDimension(…) Subroutine

MyLocalDimension performs a similar function to MyGlobalDimension but

instead defines local parameters that are usually specific to the cross-sectional area

information of a bridge component. An example of this is in the Column sub-class where

this array is used to store the concrete cover and transverse rebar size information. The

47

SetLocalDimension(…) subroutine and the GetLocalDimension(…) function have

equivalent roles as the global dimension case.

The MyLocation object array stores the x, y, and z coordinates of a bridge

component with respect to its origin, which is specified during its development for the

specific bridge component. This variable is declared during the constructor of the class

and can be modified later with the SetLocation(…) subroutine. The GetLocationX(…),

GetLocationY(…), and GetLocationZ(…) are used to retrieve the value of the origin with

respect to a desired unit.

MyMaterials is an object array of the Material class. The Material class collects

information on common material properties such as yield strength, ultimate strength,

modulus of elasticity, etc. The Material class is a super-class and must be inherited by

sub-classes such as the Concrete or Steel sub-class. The caller retrieves this variable by

the GetMaterials() function.

MyObjectTables is an object array that holds a two-dimensional matrix of generic

‘object’ data types. The ObjectTables class was created to address the need to store data

information with attributes similar to a spreadsheet. For the reinforced concrete column,

the tables hold the reinforcement layout information such as bar size, location, units, etc.

The caller retrieves the array with the GetObjectTable() function.

Analysis

The analysis phase of this class handles the interaction with the Load class, the

Nexus class, and running the analysis. The class diagram shown in Figure 4.13 and

48

subsequent paragraphs provide a brief explanation of the properties and methods related

to this phase.

Figure 4.13: Structural Component Class Analysis Diagram

The MyLoadCase array stores all the Loads objects that are linked to a given

bridge component. The AddLoadCase(…) subroutine is used to add the load case to the

end of the array. Similarly, the DeleteLoadCase(…) subroutine removes the specified

load case designated by the Index variable. When the user needs to know if the array is

empty, the IsThereLoadCase() performs that function. The GetListOfLoadCase()and

49

GetLogOfLoadCase(…) are two functions that return a list of string variables for the user

interface to communicate with the user the available load cases.

The MyLock variable is used to determine if the properties of the bridge

component are locked from changes. Initially, when the bridge component is created,

this logical variable is ‘false’; once a single analysis is completed, the variable is set to

‘true’, locking the bridge component parameters from being changed. Locking the bridge

component prevents the user from changing problem parameters unintentionally. When

the user wants to change the properties of the ‘locked’ bridge component, the user

interface will prompt the user. If the user chooses to continue, the variable is ‘unlocked’

and all the results are cleared with the ClearAllNexus() subroutine, disposing all the

Nexus sub-class inside all the load arrays.

The RunAnalysis(…) subroutine is an important method that must be overridden

by the sub-class. This method triggers the call to create the Nexus class inside

MyLoadCase[Index]. To return this analysis for post-processing, the user interface calls

the GetAnalysis(…) function. The GetLogOfAnalysis(…), GetResultOfAnalysis(…),

GetListOfAnalysis(…), and GetResultsOfAnalysis(…) are all the remaining analysis

functions used to convey information of the analysis back to the user interface.

User Interface and Graphics Engine

This phase of the class interacts with the User Interface and Graphics Engine.

Figure 4.14 and the following paragraphs provide a brief explanation of the properties

and methods related to this phase.

50

Figure 4.14: Structural Component Class User Interface and Graphics Engine Diagram

 MyMesh is an object of the Mesh Component class, which defines the geometry

of the graphics object that is rendered by the graphics engine. The subroutine

SetMeshes(), which must be overridden, creates a Mesh Component sub-class with the

specific mesh fidelity associated with a specific bridge component. Additional

information on the construction of the Mesh Component class is presented in the next

chapter.

The GetJQBComponent(…) function creates a JQB Component class and returns

it to the GUI to be loaded into the graphics engine. The JQB Component class is used by

51

the graphics engine to render the component. It does this by collecting information from

the mesh component and converts it into a graphics format that the graphics engine uses

for rendering. A detailed explanation of the JQB Component is presented in the next

chapter.

 The GetTreeNode() function returns a windows form Tree Node object to the

caller. The Tree Node class is used by the GUI to present information about the

Structural Component in a tree-view format. The function returns all of the specific

properties of the class, including geometry, material, load case, etc. The Tree Node is a

class provided in the Microsoft.NET environment and is further described in the next

chapter.

LOAD CLASS

The Load class is a super-class that holds all the information concerning the

loading scenario associated with a given bridge component. This class defines explosive

parameters such as physical dimension, location, and type to retrieve the pressure-time

history from BEL, an external software using fundamental equations and empirical data

to calculate blast loads acting against bridge components (USACE-ERDC, 2004). Each

bridge component should have a corresponding Load sub-class with all the inherited

properties, but it should also be able to accommodate any special loading conditions. For

example, the Column Load class inherits the Load class, but it also takes into account

column axial load and deck geometry. These two parameters are stored in

MyExternalLoads and MyExternalGeometry, respectively. The class diagram shown in

52

Figure 4.15 and subsequent paragraphs provide a brief explanation of the properties and

methods in this class.

Figure 4.15: Load Class Analysis Diagram

53

The MyID variable provides a unique identifier for the Load class relative to the

bridge component, similarly to the ID explained earlier when describing Structural

Component. MyStructuralComponent is a reference variable allowing the Load class to

call the Structural Component public methods. The MyLock variable is also similar to

the variable with the same name in the Structural Component class, but it is only

applicable for the specific load case. Therefore, if one analysis is done on

MyLoadCase[1] but not on MyLoadCase[2], then MyLoadCase[1] and the bridge

component are locked for this case but not MyLoadCase[2].

MyNexus is an object of the Nexus class connecting the Structural Component

with the Loads class. Unlike the Structural Component with multiple Loads, there is

only one Nexus per Loads object. Therefore, when the Structural Component 

RunAnalysis() subroutine is triggered, it calls the Loads  CreateNexus() subroutine to

create a new Nexus class for the analysis. If the user decides to change a parameter of

the Loads class, the ClearNexus() subroutine is called to delete the Nexus class.

The MyAxis string variable determines the axis along which the explosive is

allowed to vary; the possible choices are locking it on the ‘x-axis’ or ‘y-axis’ or allowing

complete movement in space with an ‘xy-axis’ value. With the axis known, the x, y, and

z coordinate can be stored in MyLocations array. With the location of the explosive and

the location of the bridge component specified, it is possible to determine the height of

the explosive above the ground surface, the standoff distance of the explosive from the

bridge component, and the blast face side of the bridge component.

54

MyBelID, MyType, and MyTypeID are all variables used to determine the type of

explosive. The user chooses the explosive type from a list of available options, and the

results are stored. MyType and MyTypeID, respectively, are string descriptions of the

explosive type and index location inside that list. After the explosive type is selected, a

corresponding BEL ID is found from a list and stored in the MyBelID variable. The BEL

ID is an input for BEL that is used to correctly characterize the blast load.

MyShape, MyShapeDiameter, MyShapeLDRatio, MyChargeWeight and

MyTntEqFactor are variables that define the overall geometry and magnitude of the

explosive. MyShape defines the explosive as either a cylindrical or spherical charge.

MyShapeDiameter defines the gross diameter of the explosive. MyShapeLDRatio is the

length-to-depth ratio used to define the geometry of a cylindrical charge.

MyChargeWeight defines the charge weight specific to the explosive type. With those

parameters, BEL is used to generate pressure-time histories for analysis. MyTntEqFactor

is an additional variable used in some analyses in place of BEL to convert the explosive

specified by the user to an equivalent weight of TNT.

With all the explosive parameters set, the subroutine MeshExplosiveComponent()

is called to create MyMesh, an object of the Mesh Explosive class. MeshExplosive is

similar to the MeshComponent class in the Structural Component class, but it can only

render BEL spherical and cylindrical charges. The GetMesh() function likewise returns

the MyMesh variable to the JQB Component for rendering.

55

NEXUS CLASS

The generic Nexus class has only a few objects and data types that must be

inherited because the purpose of the Nexus class is to tailor the strict format of the

Structural Component and Load classes to an external solver. The solver can vary from

case to case depending upon the component being analyzed.

The constructor requires two reference variables, Structural Component and

Load, for initialization, and is stored in MyStructuralComponent and MyLoad. The

Nexus class takes the two objects and tailors their properties to parameters that are

specific to the solver used for analysis. Figure 4.16 shows a class diagram of the Nexus

class.

56

Figure 4.16: Nexus Class Analysis Diagram

For example, the analysis for the Column Nexus runs through two separate

solvers, one for local damage and the other for global damage. First, the Column Nexus

class needs to determine if the column failed locally. Thus, a set of parameters is passed

into the reinforced concrete column local damage solver. Once the local damage analysis

is completed, three possible results are returned to the nexus: breaching, spalling, or no

damage. If there is no damage or if the spall length is less than the depth of the column,

the analysis continues by considering global response and calling the global damage

solver. If the column is breached or the damage is too severe, the column is considered

compromised without the need for carrying out a global response analysis.

57

Once the analysis is completed, the results are meshed and displayed in the

graphics engine. The sub-class must override the MeshResults() subroutine, which

meshes the post-processing results to the bridge component and stores it in the MyMesh

array. The Mesh Component in the array is a sub-class of the class, inheriting all its

properties while tailoring the rendering specifically to the results. The GetMeshes()

function returns the array to the graphics engine for rendering.

Some additional properties and methods are shared with all of the Nexus sub-

class. MyPath is a string variable that stores the external location to output any results

from the solvers. MyLock is used similarly to the previous two classes to determine if a

previous analysis exists. Finally, the DidAnalysisRan() function is used to determine if

an analysis ran to completion.

ADDITIONAL DATA TYPES

For the previous three classes, there is a collection of data types that are declared

in the super-class (Figure 4.17). These data types are available to be used by the sub-

class for specific parameters that are not currently addressed by the super-class.

58

Figure 4.17: Optional Data Types

The desired way to utilize these data types is through the ‘Property’ keyword, as

shown in Figure 4.18. Effectively, the keyword allows the sub-class to consider the data

type as defined inside the sub-class even though it is actually stored in a super-class

variable.

59

Figure 4.18: Overriding Optional Data Type StrengthInputs() Example

SUMMARY

This chapter includes a description of the fundamental data structures used in the

ATP-Bridge software, a brief overview of the programming style used to accomplish the

object-oriented programming structure, and a thorough explanation of all the important

properties and methods inside the super-class. The next chapter details the graphical user

interface, gives a brief summary of DirectX, and explains the graphics engine.

60

Chapter 5: Graphical User Interface and Graphics Engine

If data structures are the heart of ATP-Bridge, the graphical user interface (GUI)

is the body. The GUI is designed to interact with the user through simple and intuitive

forms that convert user input into required variables for the solvers. The first part of this

chapter provides a description of the overall GUI design and structure, the Navigation

control, and the 3D Rendering viewer. The second part of this chapter includes a

detailed description of the graphics engine, which is broken into three sections: Direct3D

Graphical Environment, Graphics Engine Components, and the Graphics Engine Cycles.

The Direct3D Graphical Environment section provides a high-level explanation

on Direct3D fundamental concepts regarding how rendering is performed. For more

information on Direct3D, see books by Miller (2004) and Luna (2008). The next section,

Graphics Engine Component, builds on this information and presents a new set of classes

that are common to the structural engineering community—nodes, triangles, and

quadrilateral elements—and hides all the primitive features of Direct3D from future

developers. The last section, Graphics Engine Cycle, explains how the graphics engine

component operates to render the 3D environment.

Throughout this chapter, the ‘JQB’ prefix is used as a special designation for

many of the classes. The prefix is used to distinguish between graphics engine classes

and non-graphics engine classes.

61

GRAPHICAL USER INTERFACE OVERALL DESIGN

The GUI environment starts with the main form (Figure 5.1), which is divided

into three different segments. The first segment is the ribbon area that holds the Menu

Item control and the Quick Icon control. The Menu Item control has a series of standard

menu items that is typical throughout all Windows software, establishing a familiar

option to navigate through the software. The Quick Icon control contains a subset of the

buttons included in the Menu Item control, having small icons that provide quick

shortcuts for users. The typical items are the Define Geometry, Define Loads, and Run

Analysis buttons.

Figure 5.1: Graphical User Interface Schematic

62

The second segment is the Navigation control. This control interacts with all the

bridge components inside the project. There are two sub-controls inside the Navigation

control. The first is the Tree-View Summary control, which displays all the different

bridge components inside the project and their respective load cases. The second is the

Viewer Setting control, which gives a user the ability to switch the display in the 3D

Rendering viewer to show the explosive, component geometry, local damage, and

displacements.

The last section is the 3D Rendering viewer, the central visual component used to

communicate the scenario with the user. The viewer is used to present a 3D

representation of the bridge component being analyzed and the explosive. It is designed

to give the user information not only on the scale of the component but also the position

of the explosive in space, the extent of damage, and the level of deflection.

63

Figure 5.2: Graphical User Interface Collapse Navigation Control

A concern in designing the GUI is presenting information concisely without

cluttering the screen with too many options. That is why the GUI is designed with the 3D

Rendering viewer having the largest screen area, and it is used to render as much

information about the scenario as possible. Because the screen size varies across

different computers, the GUI is designed to allow the Navigation control to collapse to

the sides, thereby increasing the screen space. Figure 5.2 provides a schematic of the

collapse Navigation control.

64

NAVIGATIONAL CONTROL

The Navigation control main component is the tab page container, allowing the

two sub-controls (Tree-View Summary and Viewer Setting control) to be added into the

container. If future controls are required, the Navigation control is able to accommodate

future expansion.

Tree-View Summary Control

The Tree-View Summary control is designed to present all the critical

information of the bridge components in a project. One of the GUI design goals was to

keep all the information in front of the user, allowing them to verify that information is

correctly entered.

Figure 5.3: Tree-View Control General Information Section

The first primary node in the control presents the generic information provided

when a project is created as shown in Figure 5.3. The information includes the project

name, engineer of record, and unit system. Right-clicking on the nodes brings up a form

65

that prompts the user to change the project name and engineer of record, but the unit

system is not allowed to be changed after a project is created.

All primary nodes thereafter hold bridge component information. Although it is

not desirable to present all the bridge component information, certain information like

global dimensions and material properties are desirable. Figure 5.4 presents a schematic

of some bridge component tree-nodes.

Figure 5.4: Tree-View Control Structural Component Section

66

Each bridge component tree-node has a respective right click menu list that gives

the ability to edit, copy, or delete the component. The menu also gives the user the

ability to add load cases to the specific component.

Figure 5.5: Tree-View Control Load Case Section

If a bridge component has a load case, the load case will be displayed in a

secondary tree-node for that bridge component. The load cases, like the bridge

components, need to contain essential information, such as charge weight and location.

The menu options for the loads are ‘add’, ‘edit’, and ‘delete’.

67

Viewer Setting Control

The Viewer Setting control is used to communicate with the graphics viewer

regarding the information that is to be displayed. The control has options to switch

among bridge components, load cases, and results as shown in Figure 5.6 below.

Figure 5.6: Viewer Setting Control

Additional settings specific to the bridge components are displayed in the optional

panel sections below the ‘Show Explosive’ checkbox. Examples of possible features in

the optional panel are the scale factor, the plane color, and the damage color.

68

DIRECT3D GRAPHICAL ENVIRONMENT

The graphical environment used inside ATP-Bridge for 3D rendering is Direct3D.

Direct3D is an application programming interface (API) giving developer’s access to the

user’s graphics hardware (Luna, 2008). Direct3D provides a standard syntax for 3D

rendering used across different hardware, ensuring continuity exists as long as the

hardware is Direct3D compatible. Below is a brief introduction on vertices, primitive

types, vertex buffer, and index buffer. These key concepts are needed to understand how

the graphics engine is created.

Throughout the remaining part of the chapter, there are references to vectors and

matrices. Vectors and matrices are components used in 3D mathematics to render 3D

environments into a 2D monitor. Vectors are used to represent either points in space or

direction. Matrices are used to manipulate vectors, allowing operations such as

translation, rotation, and scaling. A concise explanation on 3D mathematics can be found

in Appendix A, while the books by Luna (2008) or Thorn (2005) can be consulted for

additional information.

Vertices and Primitives Types

Vertices in Direct3D are vectors describing a point in 3D space. Vertices hold

additional attributes beyond position, such as lighting, normal component, textures, etc.

For the ATP-Bridge graphics engine, the only additional attribute for vertices is color.

Vertices are the main building block used to render lines and planes.

69

All graphics drawn in Direct3D are derived from either a point, line, or a triangle

primitive. Primitives in Direct3D are different types of rendering options; the basic list

includes Point List, Line List, Line Strip, Triangle List, Triangle Strip, and Triangle Fan.

Primitives are rendered with colors set at the vertices. Therefore, if the colors of the

vertices are different along the primitive, it will be interpolated. The two primitive types

used in the JQB Graphics Engine are the Line List and the Triangle List, which are

presented below. More information on the other types can be found in the book by Luna

(2008).

Line List is the primitive type that defines an individual line, which simply

consists of two vertices for each line. Figure 5.7 provides a visual diagram.

Figure 5.7: Line List Primitive Type (Miller, 2004)

Triangle List is the primitive type that requires three vertices to render one

triangle element. Figure 5.8 provides a visual diagram.

70

Figure 5.8: Triangle List Primitive Type (Miller, 2004)

Vertex Buffers and Index Buffers

A vertex buffer is used to load an array of vertices into the graphics device. Using

a vertex buffer minimizes the time to render because it reads the data straight from the

graphics device rather than from the system memory (Miller, 2004).

A drawback of using only the vertex buffer is that it requires declaring multiple

vertices at the same point to draw primitives that share common vertices (Figure 5.9).

Aside from requiring multiple vertices at the same location, it also requires multiple

processes of the vertices to load into the graphics card. One way to improve efficiency is

by using indices and an index buffer.

71

Figure 5.9: Vertex Buffer and Index Buffer (Thorn, 2005)

Indices, unlike vertices, are simply integer values that are either short or long data

types. Indices are loaded into the index buffer, similarly to how vertices are loaded into

the vertex buffer. Each index has a value that corresponds with a vertex location inside

its respective vertex buffer. With the index buffer, the graphics engine can access the

vertices more than once to declare a primitive. The index buffer always exists with a

vertex buffer; without it, there is nothing to reference.

GRAPHICS ENGINE COMPONENTS

The 3D Rendering viewer links with ATP-Bridge graphics engine, used to render

bridge components and explosives. It is also used in post-processing results. The

graphics engine utilizes a collection of Direct3D and ATP-Bridge custom classes to

facilitate the rendering. The list of custom classes includes JQB Element, Mesh

72

Component, JQB Blackboard, and JQB Component. These custom classes are

described in detail in the following sections.

JQB Elements

The graphics engine rendering of bridge components is designed utilizing

common structural analysis elements: Node, Triangle, and Quadrilateral. These

elements provide program developers the simplicity of meshing a component by

automating the processes of creating vertices, indices, vertex buffers, and index buffers.

Node Element

Node is a class that defines a point in space where other planar elements connect.

The class stores the x, y, and z global coordinate space with respect to the origin, shown

in Figure 5.10. MyX, MyY, and MyZ are the respective variables that hold the coordinates

and are only accessible inside the class. The variables are set through the constructor

New(…) or through the property keywords X(), Y(), and Z().

73

Figure 5.10: Node Class Diagram

In addition to the coordinates, the Node class stores the properties MyID and

MyColor. MyID is a unique index used by the planar JQB Elements to identify a node.

MyColor stores the color index used when rendering elements. Both of the values are set

in the constructor and are accessible through the property keyword ID() and Color().

Plane Element Superclass

The JQB Element class is a super-class of a generic plane element (Figure 5.11)

that must be inherited by the sub-class. In ATP-Bridge, there are currently two elements

74

used to draw planes: the Triangle and Quadrilateral. It is possible, however, to inherit

the class so that solid elements can be rendered.

The JQB Element class has two variables: MyID and MyArrayOfNodeID. MyID,

the unique element identifier, is an integer variable that can be changed with the property

keyword ID(). MyArrayOfNodeID is an array of integers used to store the ID of the

Node.

As shown in Figure 5.11, there are four functions that are used to assemble the

index buffer: GetTriangleIndices(), GetTriangleIndicesCount(), GetLineIndices(), and

GetLineIndicesCount(). The sub-class must inherit all four functions. The function

GetTriangleIndices() returns an short type array used to render one Triangle List

primitive. The function GetLineIndices() returns a short type array used to render Line

List primitives. The functions GetTriangleIndicesCount() and GetLineIndicesCount()

returns the number of triangle indices and the number of line indices, respectively.

75

Figure 5.11: JQB Element

Triangle Element

The Triangle element is a planar element with three nodes. It has the class

diagram shown in Figure 5.12. Nodal IDs are set through the constructor and can be

changed using the property keywords NodeAID(), NodeBID(…), and NodeCID().

76

Figure 5.12: Triangle Element

As shown in Figure 5.13, the four functions from JQB Element class are

overridden and return the values shown in Equation (5-1), Equation (5-2), Equation (5-3),

and Equation (5-4).

Figure 5.13: Triangles Element Class Diagram

77

𝐺𝑒𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠() = �
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷

� (5-1)

𝐺𝑒𝑡𝐿𝑖𝑛𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠() =

⎣
⎢
⎢
⎢
⎢
⎡
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷⎦

⎥
⎥
⎥
⎥
⎤

 (5-2)

𝐺𝑒𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠𝐶𝑜𝑢𝑛𝑡() = 3 (5-3)

𝐺𝑒𝑡𝐿𝑖𝑛𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠𝐶𝑜𝑢𝑛𝑡() = 6 (5-4)

Quadrilateral Element

The Quadrilateral element is a planar element with four nodes (Figure 5.14).

Nodal IDs are set through the constructor and can be accessed using the property

keywords ID(), NodeAID(), NodeBID(), NodeCID() and NodeDID().

Figure 5.14: Quadrilateral Element

78

As shown in Figure 5.15, the four functions from JQB Element class are

overridden and return the values shown in Equation (5-5), Equation (5-6), Equation (5-7),

and Equation (5-8).

Figure 5.15: Quadrilateral Element Class Diagram

𝐺𝑒𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠() =

⎣
⎢
⎢
⎢
⎢
⎡
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐷 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷⎦

⎥
⎥
⎥
⎥
⎤

 (5-5)

𝐺𝑒𝑡𝐿𝑖𝑛𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠() =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐵 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐶 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐷 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐷 𝐼𝐷
𝑁𝑜𝑑𝑒 𝐴 𝐼𝐷⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5-6)

79

𝐺𝑒𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠𝐶𝑜𝑢𝑛𝑡() = 6 (5-7)

𝐺𝑒𝑡𝐿𝑖𝑛𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠𝐶𝑜𝑢𝑛𝑡() = 8 (5-8)

Mesh Component

Mesh Component uses a collection of Node, Triangle, and Quadrilateral

elements to assemble a 3D object. Mesh Component is a super-class and must be

inherited by the sub-class for specific 3D objects, such as a cylindrical prism, a

rectangular prism, or a rectangular plate. Figure 5.16 presents the class diagram for the

Mesh Component.

80

Figure 5.16: Mesh Component Class Diagram

In the sub-class constructor, the method defines the global dimensions, the mesh

density, and any other additional parameters required to create the mesh. The sub-class

then calls the functions DefineNodes(), DefineTriangles(), and DefineQuadrilaterals() to

create MyNodes, MyTriangles, and MyQuadrilaterals. These three functions must be

overridden in the sub-class with a meshing algorithm developed for the specific bridge

component being rendered. To further explain these functions, a simple example of a

triangle prism is presented, with a schematic shown in Figure 5.17.

81

Figure 5.17: Triangle Prism Schematic

With the global dimension ‘H’ and ‘L’ defined and the mesh density set as ‘1’ for

all sides, the constructor will call the function DefineNodes() to construct the six

perimeter nodes of the prism. As presented in Figure 5.18 and Table 5.1, the function

defines the bottom three nodes at z = 0.0 and top three nodes at distance z = H.

82

Figure 5.18: Triangle Prism Node Element

Table 5.1: Triangle Prism Node Table

Node ID X Y Z
1 − 1 2⁄ 𝐿 -�3 4⁄ 𝐿 0.0
2 + 1 2⁄ 𝐿 -�3 4⁄ 𝐿 0.0
3 0.0 +�3 4⁄ 𝐿 0.0
4 − 1 2⁄ 𝐿 -�3 4⁄ 𝐿 𝐻
5 + 1 2⁄ 𝐿 -�3 4⁄ 𝐿 𝐻
6 0.0 +�3 4⁄ 𝐿 𝐻

83

 Following the nodal declaration, the Triangle element is declared using the

DefineTriangle() function. Two triangles are constructed; one connects the top nodes and

the other connects the bottom nodes.

Figure 5.19: Triangle Prism Triangle Element

Table 5.2: Triangle Prism Triangle Table

Triangle ID Node A Node B Node C
1 Node 4 Node 5 Node 6
2 Node 1 Node 2 Node 3

84

Following the triangle declaration, the Quadrailateral element is declared using

the DefineQuadrilateral() function. There are three quadrilaterals constructed connecting

the three sides of the prism.

Figure 5.20: Triangle Prism Quadrilateral Element

Table 5.3: Triangle Prism Quadrilateral Table

Quadrilateral ID Node A Node B Node C Node D
1 Node 1 Node 4 Node 6 Node 3
2 Node 3 Node 6 Node 5 Node 2
3 Node 2 Node 5 Node 4 Node 1

Once the nodes, triangles, and quadrilateral elements are defined, these elements

can be used to generate the necessary arrays and parameters to render the object in the

85

graphics engine. The function GetGraphicObject(…) returns the Graphics Object

structure that is used by the graphics engine to render the component. The graphics

object is described in the next section; in short, it stores the vertices and indices of a

bridge component. The method calls the GetNodeVertices(), GetPlaneIndices(),

GetPlanePrimitiveCount(), GetWireframeIndices(), and GetWireframePrimitiveCount()

functions to create the Graphics Object.

The function GetNodeVertices() processes the nodal information positions and

colors into vertices to load into a vertex buffer. With the vertices loaded, the triangle and

line indices list can be formed with the GetPlaneIndices()and GetWireframeIndices()

functions, respectively. The number of triangle and line primitives are determined using

the functions GetPlanePrimitiveCount() and GetWireframePrimitiveCount(),

respectively.

Graphics Object

Graphics Object is a collection of data placed into a structure type that is used to

render an object in the graphics engine. All data types inside the structure haves public

access and therefore do not need any respective methods to set or return the data. Figure

5.21 shows a diagram of the structure.

86

Figure 5.21: Graphics Object Structure Diagram

The graphics engine stores information for both the solid planes and the

wireframe lines for a given component. Both require a combination of vertices, indices,

and a number of primitives to create the vertex buffer and index buffer. The structure

also stores the world matrix of the component. The world matrix is used to determine the

orientation of the component from its local coordinate system to the global (or world)

coordinate system. For a typical Graphics Object, the world matrix is the identity matrix,

meaning the local coordinate axes are the same as the global coordinate axes.

The one method that is available inside the structure is the GetGraphicObejct(…)

function. This function passes to the graphics device the location where the vertex and

87

index buffer information will be loaded. It then returns the graphics object back to the

graphics engine to display.

GRAPHICS ENGINE CYCLE

After meshing a given bridge component, the mesh is stored in the Structural

Component object for rendering in the graphics engine. There are four different

segments of the graphics engine cycle as shown in Figure 5.22: the GUI, ATP-Bridge

Graphics Engine, the JQB Component, and the Structural Component.

Figure 5.22: Graphics Engine Flow Chart

88

The cycle starts with a GUI-triggered event, such as a mouse click or a button

being pressed. Such an event then communicates with the ATP-Bridge graphics engine

to modify the environment. Afterwards, the graphics engine will update the frame by

calling the JQB Component class to re-render the bridge component. The JQB

Component takes the mesh component stored in the Structural Component class and

renders it in the GUI. This four-step process completes a single frame of the graphics

engine. The following sections detail the three additional classes in the cycle: JQB

Graphics Engine, JQB Blackboard, and JQB Component.

JQB Graphics Engine Class

The JQB Graphics Engine class helps create the virtual environment where

bridge components are rendered. Because the class is designed only to initialize the

correct graphics card parameters, setup the presentation space, and control the camera

(explained later in this chapter), the class must be inherited by the sub-class to render

bridge components. Figure 5.23 presents a partial list of the critical properties and

methods inside the class.

MyDevice is a variable of the Device class from Direct3D and is the means to

communicate with a PC’s graphics card. The SetDevice() subroutine is called to establish

the device, determining whether the computer will be using its graphics processor unit

(hardware processing) or its central processing unit (software processing). The

subroutine determines which window form the device is displayed to, and it establishes

the different display properties used in the rendering. The details of these parameters are

89

omitted because it is beyond the scope of the thesis; additional information can be found

in the book by Miller (2004).

Figure 5.23: JQB Graphics Engine General Class Diagram

To animate the environment, the GUI calls the subroutine Update(), which re-

renders the scene for the next frame. The Update() subroutine must be inherited by the

sub-class and is designed to call the OneFrameUpdate() subroutine and any other

subroutine in the sub-class to update the frame. The OneFrameUpdate() subroutine calls

90

the SetupLight() subroutine to update the lighting, the SetupCamera() subroutine to

update the camera, and the TransformMatrix() subroutine to modify the world matrix that

establishes the overall local coordinate axes relative to the global coordinate system. In

the software, both the lighting and the world matrix currently does not change at run-

time, with the lighting turned off and the world matrix set to the identity matrix. Of these

three subroutine, SetupCamera() is further explained because it plays an important role in

ATP-Bridge.

The SetupCamera() subroutine edits the variable MyCamera of the JQBCamera

class. This class is developed according to Thorn’s (2005) book, using a camera matrix

that defines the location, target focus, and its angle of rotation. Figure 5.24 shows a list

of properties and methods used to control the camera.

91

Figure 5.24: JQB Graphics Engine Camera Class Diagram

Three camera methods are used to initialize the camera: SetCameraPosition(…)

defines the camera location in 3D space, SetCameraTarget(…) defines the point in space

where the camera is focused, and SetCameraDefault(…) sets the default orientation of the

camera. Three interactive motions are modeled in the ATP-Bridge graphics engine:

zooming, panning, and rotating the camera.

92

Zooming the camera is activated when the user scrolls the middle mouse button,

triggering an event that calls the ZoomToolScroll(…) subroutine in the graphics engine.

This subroutine stores the amount of scrolling in a variable called MyZoomIncrement.

The subroutine then updates the camera position forward and backwards with respect to

the camera target; Figure 5.25 provides a visual description.

Figure 5.25: Zooming the Camera

Panning the camera is activated by the user clicking the left mouse button,

triggering an event in the graphics engine that calls the subroutine PanToolClicked(…).

This subroutine tracks the initial and current (x, y) coordinates of the mouse and stores it

in the MyInitialPanX and MyInitialPanY variables. If the button is still pressed and the

user drags the mouse, the PanToolDrag(…) subroutine is triggered to update the current

(x, y) coordinate in the variables MyPanX and MyPanY. To simulate panning, the camera

93

position and target position are translated by the same amount, as shown Figure 5.26.

When the left button is released, the PanToolUnclick(…) subroutine is called to stop

updating.

Figure 5.26: Panning the Camera

Rotating the camera is activated by the user clicking the middle mouse button,

triggering an event in the graphics engine that calls the subroutine RotateToolEnter(…).

This method tracks the initial and current (x, y) coordinates of the mouse and stores it in

the MyInitialRotationX and MyInitialRotationY variables. If the button remains pressed

while the user drags the mouse, the RotateToolDrag(…) subroutine is triggered to update

the current (x, y) coordinate in the variables MyRotateX and MyRotateY, and it then

updates the next frame. To rotate the camera, the location of the camera pivots about the

target position and the camera angle rotates pointing to the target location; see Figure

94

5.27 for a visual diagram. When the button is released, the RotateToolUnclick(…)

subroutine is called to inform the graphics engine to cease updating.

Figure 5.27: Rotating the Camera

JQB Blackboard Class

JQB Blackboard is the sub-class of the JQB Graphics Engine and is created to

render objects in the graphics engine (Figure 5.28). MyComponent is the reference

variable of the JQB Component class stored in the Structural Component data structure

and is used to switch between different bridge components by changing the variable in

the SetJQBComponent(…) subroutine. More information about this class is provided in

the next section.

95

Figure 5.28: JQB Blackboard Class Diagram Method()

Once the JQB Component reference variable is stored, the component can then

be rendered by calling the Update() subroutine. As previously stated, the Update()

subroutine calls the OneFrameUpdate() subroutine from the super-class, but it also calls

the OneFrameRender() subroutine declared in the sub-class. The OneFrameRender()

subroutine is used to render objects onto the screen.

96

Figure 5.29: OneFrameRender() Method

A flowchart of the OneFrameRender() method is shown in Figure 5.29. The

method begins by calling MyDevice  Clear(), a method used to wipe the existing data

from the buffer and set the background color. The buffer is similar to a blackboard—a

space used to draw the content. In ATP-Bridge there are two buffers: a front buffer that

is being displayed currently and a back buffer that is used to draw the next frame. After a

97

frame is done rendering, the back buffer is swapped with the front buffer and presented.

This process continues in reverse for the next frame.

To begin rendering in the buffer, the method MyDevice  BeginScene() is called

to prepare the device. Once the device is ready for rendering, the first decision is to

determine whether to render an axis on the screen. If it is to be rendered, the

AxisRender(…) subroutine is called. Following that, the next step is to determine

whether a component exists for rendering. If so, the class will call the MyComponent 

FrameRender() subroutine inside the JQB Component class. The last decision concerns

whether to display the triad defining the global origin in space. If it is to be displayed,

the TriadRender() subroutine is called. After all the rendering is done, MyDevice 

EndScene() is called to instruct the device that the buffer is ready to be presented.

Finally, the program calls MyDevice  Present() to swap the back buffer with the front

buffer and display the content of the back buffer.

JQB Component

The JQB Component class is the intermediary component connecting the JQB

Blackboard with the Structural Component class. This class is a super-class and must

be inherited by the sub-class. By allowing sub-classes, program developers are able to

customize the rendering algorithm for each bridge component. See Figure 5.30 and

Figure 5.31 for a list of important properties and methods for the class.

98

Figure 5.30: JQB Component Class Diagram Properties

99

Figure 5.31: JQB Component Class Diagram Methods()

The class is initialized with the constructor New(…), requiring both the Structural

Component and the Direct3D Device declared in the graphics engine as reference

variables. Inside the constructor, the SetPrimaryMesh(…) subroutine is called to store the

undeformed mesh from the Structural Component class into the MyPrimaryMesh

variable. Afterwards, the MyPrimaryObject graphics object is created by calling the

SetComponent(…) subroutine. Similarly to the primary mesh and object, the

100

SetSeconaryMesh() subroutine and SetResults() are used to store the post-processing

results mesh and graphics object, respectively. As for the SetResults() subroutine, it must

be inherited for the sub-class so it is able to allow different options to render each specific

bridge component.

The subroutine UpdateJQBStructuralComponent(…) is called by the GUI to

specify which load case mesh explosive should be displayed, which results are to be

displayed, and how the bridge components should be displayed. This subroutine must be

overridden by the sub-class so that in can include the different variations of post-

processed results for each specific bridge component. Given the index, the sub-class will

determine which mesh and graphics object is loaded into the MySecondaryMesh and

MySecondaryObject variables, respectively. The GetDefaultCamera() method must also

be inherited by the sub-class. This function returns the default camera position set for a

bridge component when it is first loaded in the graphics engine.

The FrameRender(…) subroutine is called by JQB Blackboard to initiate

rendering of a bridge component. The subroutine must be overridden for the individual

sub-class, and the subroutine chooses between the ComponentFrameRender() or

ResultsFrameRender() subroutine to display bases from the MyDisplayIndex variable

value. Similarly, the MyDisplayExplosive variable is used to determine if the explosive

should be displayed, and if so the ExplosiveFrameRender() is called to render the

explosive.

101

Figure 5.32: ComponentFrameRender() Subroutine Rendering Algorithm

There are sequences of steps required to render a graphics object into the device

buffer. Shown in Figure 5.32 is the ComponentFrameRender() example to render the

planes of the primary object. The first step involves calling the SetStreamSource(…)

method and loading the vertex buffer from MyPrimaryObject to the device buffer. The

second step sets the world matrix to the desired matrix to render the object. The third

step sets the vertex format to the ‘positioned color’ to determine the type of vertices to

render. The fourth step is to load the index buffer into the device. Finally, the last step is

102

to draw the primitive in the device by specifying the primitive type, the number of

vertices, and the number of primitive types to render. This same sequence is used to

render the MySecondaryObject variable, both for the planes and the wireframe. Once

both sequences complete rendering the planes and wireframe of a bridge component, the

results are displayed in the GUI 3D Rendering viewer. This cycle then continues for the

next frame to create a dynamic environment.

SUMMARY

This chapter includes a description of the overall GUI concepts and design, a brief

introduction of Direct3D, and an explanation of the graphics engine structure. The next

chapter steps through an example of a solver. The solver presented evaluates a simplified

flexural model for a prestressed concrete bridge girder.

103

Chapter 6: Prestressed Girder Model

The last part of ATP-Bridge needed to complete the software cycle is comprised

of the solvers. A solver takes information from a data structure, analyzes it, and displays

it in the GUI. A solver is similar to a brain, which processes complex decisions that are

then communicated back to the body. Solvers are numerical models that are independent

among the bridge components included in ATP-Bridge. This arrangement allows each

solver to choose the most appropriate model for the specific bridge component being

analyzed.

For example, in ATP-Bridge, the reinforced concrete column’s solver is an

advanced single-degree-of-freedom model, whereas the steel plate’s solver is a set of

empirical equations. These two models are different, but both models provide the desired

level of computational efficiency and accuracy when compared with available test data.

To illustrate the development of a solver, the flexural response of prestressed

girders subjected to blast loading is investigated using a simplified single-degree-of-

freedom (SDOF) model. Prestressed girders are used throughout the US highway

infrastructure because of their low cost, superb strength, and ease of construction.

Prestressed girders make up approximately 11% of the current bridge inventory in the US

(Cofer, 2012). They perform a critical role in elevating the deck and spanning a bridge

between the piers. When they have been targeted in the past, the bridges that were

attacked sustained substantial damage. For example, an attack in western Iraq targeting a

bridge where Iraqi soldiers were crossing caused the complete failure of some of the

104

girders as well as large portion of the deck, as reported in the Washington Post article by

al-Mokhtar (2009). Figure 6.1 shows an above-deck view of the damage.

Figure 6.1: Bridge Destroyed in Iraq from Truck Bomb (The Washington Post, al-

Mokhtar, 2009)

EXPERIMENTAL WORK

Although extensive research on prestressed girders has been conducted for static

loading and traffic loading conditions, only limited data exist for the response of these

components subjected to blast loads. To date, the only known experimental study was

conducted by Cofer (2012) at Washington State University.

Blast testing was performed by the Engineer Research and Development Center

(ERDC) of the US Army Corps of Engineers (Matthews, 2008). There were two loading

scenarios—one case involving a detonation on top of the prestressed girder and the other

case involving a detonation below the girder. The geometry of the test specimen was a

105

Colorado Department of Transportation bulb-tee section having a 3 ft.−6 in. in depth, 3

ft.−7 in. top flange width, and a 2 ft.–3 in. bottom flange width. The dimensions are

shown on Figure 6.2. The girder spanned 68 ft.–4 in. and rested on two bearing pads.

Figure 6.2: Colorado Bulb-Tee Test Specimen Dimensions (Matthews, 2008)

For the above-girder detonation scenario, the explosive was placed at a standoff

of approximately X.XX ft. from the mid-span of the test specimen. The blast load

resulted in rubblizing approximately 3 ft. – 6 in. of the concrete on the top flange and

along the web. In addition, heavy cracking was observed along the web, and longitudinal

cracking occurred along the underside of the flange (Matthew, 2008). Figure 6.3 shows

the damage that occurred for the above-girder detonation scenario.

106

Figure 6.3: Test Specimen Above-Detonation Scenario (Matthews, 2008)

For the below-girder detonation scenario, the explosive was place at a standoff of

XX.X ft. below the mid-span of the test specimen. The explosion destroyed 9 ft. of the

top flange. Of the remaining concrete, less than on 1 ft. was rubblized, and heavy

cracking occurred 10 ft. along the web. Figure 6.4 shows the damage experienced for the

below-girder detonation scenario.

107

Figure 6.4: Test Specimen Below-Girder Detonation Load Case (Matthews, 2008)

 For both scenarios, the prestressed girder failed due to local damage. Although

the results cannot be directly compared with a flexural model, the experimental data

collected can be used to validate a prestressed girder (FE) model. In turn, the FE model

can be used to compare with a single-degree-of-freedom response model (SDOF) for

investigating scenarios in which girder damage is not as severe as that observed in the

test program described in this section. The FE validation was performed by Hendryx

(2012); interested readers may consult his thesis for additional information. This thesis

uses the validated model and compares it with the SDOF response model at the end of

this chapter.

108

ADVANCED SINGLE-DEGREE-OF-FREEDOM ALGORITHM

The prestressed girder solver created for ATP-Bridge uses an SDOF analysis

procedure that is consistent with the guidelines given in UFC 3-340-02 (Department of

Defense, 2008), but it also includes several enhanced features based on work done by

Sammarco (2012) for the analysis of reinforced concrete columns subjected to blast

loads.

Sammarco’s model analyzes both the flexural and dynamic shear response of

reinforced concrete columns. In his model, the two response modes are uncoupled due to

the notably different dynamic response characteristics. It is hypothesized for this

research that the same computational algorithm can be applied to prestressed girders due

to the largely different natural periods associated with the primary modes of response in

flexure and in shear that occur for members with typical properties and geometries.

Sammarco’s flexural model involves three major phases. The first phase is the

development of a bilinear moment-curvature response curve, taking into account dynamic

increase factors, confinement effects, and axial loads (Department of Defense, 2008).

The second phase is the development of a non-linear resistance function that uses the

flexural mode shape derived from the user-specified threat scenario. The resistance

function is produced by performing a static analysis that accounts for geometric non-

linearity and plastic hinge formation. The final phase is a non-linear SDOF analysis

using the formulated resistance function and the pressure-time history generated from the

BEL software (USACE-ERDC, 2004). The remaining sections of this chapter cover the

109

development of the three analysis phases for the prestressed girder model. A description

regarding how the current model differs from Sammarco’s model for reinforced concrete

columns is also provided.

MOMENT-CURVATURE RELATIONSHIP

Like Sammarco’s model, the first phase for the analysis of blast-loaded

prestressed girders is the construction of the moment-curvature relationship. The

moment-curvature relationship for the prestressed girder model differs from Sammarco’s

model in many respects. One concern with the model is the addition of prestressing

strands that have no defined yield plateau and initial strain, requiring an additional term

when calculating the moment-curvature relationship. Another concern is with the initial

strain—the moment-curvature response of the prestressing model is put into initial

reverse curvature at zero applied moment. Because of these differences, the moment-

curvature relationship is first developed using a layer-by-layer analysis as described in

the text by Collins and Mitchell (1997), then simplified into a bilinear model.

The layer-by-layer analysis consists of breaking a prestressed girder cross-section

into small incremental areas with a respective material model. The concrete section is

broken into thin rectangular fibers (Figure 6.5-a), and the mild-steel reinforcement and

prestressing strand are modeled using circular fibers. Based on the assumption that plane

section remains plane, strains at the centroid at each fiber can be found assuming a linear

distribution of the strain through the depth of the cross-section. Stresses can then be

found knowing the strain in a given fiber and the associated material model properties.

110

Figure 6.5: Fiber Diagrams of the Test Specimen

Two variables are needed to generate the moment-curvature relationship of a

flexural member: curvature and axial strain at the centroid of the cross-section. With

these two variables, strains at any point in the cross-section can be found using Equation

(6-1). Figure 6.5-b shows the strain diagram along the cross section.

𝜀𝑥 = 𝜀𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 + 𝜙 𝑦𝑥 (6-1)

where,

𝜀𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = axial strain at the centroid of the cross-section

𝜙 = curvature of the cross-section

𝑦𝑥 = distance from centroid to fiber being analyzed

111

In the algorithm used for this study, the curvature is first established, and then

strain at the centroid is iterated upon until convergence is achieved. Iterations are needed

because of the non-linear stress-strain relationship that exists in each fiber through the

depth of the cross-section. To find the correct pair, all the internal forces within the

section must be in equilibrium. The governing equation is presented in Equation (6-2),

where the forces from the concrete fibers, the reinforcement fibers, and the prestressing

fibers must be equal to all externally acting axial loads. Convergence is achieved when

Equation (6-2) is satisfied within the desired tolerance. After ensuring convergence, the

moment capacity of the section can then be calculated using Equation (6-3).

�𝑁ℎ

𝑙

ℎ =1

= �𝑓𝑐(𝜀𝑖) 𝑏𝑖ℎ𝑖

𝑚

𝑖 = 1

+ �𝑓𝑠�𝜀𝑗� 𝐴𝑠𝑗

𝑛

𝑗=1

+ �𝑓𝑝(𝜀𝑘) 𝐴𝑝𝑘

𝑘

𝑘=1

 (6-2)

�𝑀ℎ

𝑙

ℎ=1

= �𝑓𝑐(𝜀𝑖) 𝑏𝑖ℎ𝑖𝑦𝑐𝑖

𝑚

𝑖 = 1

+ �𝑓𝑠�𝜀𝑗� 𝐴𝑠𝑗 𝑦𝑐𝑗

𝑛

𝑗=1

+ �𝑓𝑝(𝜀𝑘) 𝐴𝑝𝑘𝑦𝑝𝑗

𝑘

𝑘=1

 (6-3)

where,

𝑁ℎ = axial loads acting along the section

𝑀ℎ = moments about the z-axis

𝑦𝑐 = distance from the fiber to the centroid of the entire cross-section

𝑓𝑐(𝜀𝑖) = concrete stress at a given strain

𝑏𝑖 = width of a fiber

ℎ𝑖 = height of a fiber

𝑓𝑠�𝜀𝑗� = steel stress at a given strain

112

𝐴𝑠𝑗 = area of reinforcement

𝑓𝑝(𝜀𝑘) = prestressing strand stress at a given strain

𝐴𝑝𝑘 = area of the prestressing strand

Concrete Material Model

Concrete material properties must be modeled accurately to determine the

response of a prestressed girder. Concrete complexity stems from its non-linear behavior

and its different response characteristics in tension and compression. Because of these

properties, concrete is modeled using two sets of equations for compression and tension.

In the concrete material model, the governing equation used for concrete in

compression is shown in Equation (6-4). This equation is chosen because it takes into

account high-strength concrete, which is commonly used in the construction of

prestressed bridge girders (Collins and Mitchell, 1997).

𝑓𝑐
𝑓′𝑐

=
𝜂 �𝜖𝑐𝑓 𝜖′𝑐⁄ �

𝜂 − 1 + �𝜖𝑐𝑓 𝜖′𝑐⁄ �
𝜂𝜅 (6-4)

where,

𝑓′𝑐 = peak compressive stress (in psi)

𝜖′𝑐 = strain when 𝑓𝑐 reaches 𝑓′𝑐

 =
𝑓′𝑐
𝐸𝑐

𝜂
𝜂 − 1

113

𝜂 = curve-fitting factor

 = 0.80 + 𝑓′𝑐 2500⁄

𝐸𝑐 = tangent stiffness when 𝜖𝑐𝑓 equals zero

 = 57,000�𝑓′𝑐 𝑓′𝑐 ≤ 6000 𝑝𝑠𝑖

 = 40,000�𝑓′𝑐 + 10,000 𝑓′𝑐 > 6000 𝑝𝑠𝑖

𝜅 = factor to increase the post-peak decay in stress

 = 0.67 + 𝑓′𝑐 9,000⁄ < 1.0

 = 1.0 ≥ 1.0

Although it is typical to ignore concrete in tension for ultimate design in

reinforced concrete, it is desirable to include some tension capacity in the analysis of

prestressed girders. Otherwise, the girder will have a brittle failure in reverse curvature.

For concrete in tension, linear behavior is assumed (using the compressive elastic

modulus) until the stress reaches the modulus of rupture (ACI 318-08). This behavior is

captured in Equation (6-5), Equation (6-6), and Equation (6-7).

𝑓𝑟 = 7.5�𝑓′𝑐 (6-5)

𝜀′𝑠 = 𝑓𝑟 𝐸𝑠⁄ (6-6)

𝑓𝑐 = 𝐸𝑠𝜀𝑐𝑓 for 𝜀𝑐𝑓 ≤ 𝜀′𝑠 (6-7)

Tension stiffening then dictates the behavior after rupture. Tension stiffening is

the phenomenon that occurs after concrete cracks and the section is still able to transfer

114

stress around the prestressing or mild steel reinforcement. The presence of the

reinforcement lets the concrete transfer tension around the cracks, as long as the

reinforcement has not yielded. Tension stiffening only occurs 7.5 times the diameter

away from the reinforcement (Collins and Mitchell, 1997). Equation (6-8) represents this

behavior.

𝑓𝑐 =
𝛼1𝛼2𝑓𝑟

1 + �500𝜀𝑐𝑓
 𝑓𝑜𝑟 𝜀𝑐𝑓 ≥ 𝜀′𝑠 (6-8)

where,

𝛼1 = 1.0 for mild deformed bars

 = 0.7 for prestressing strands

𝛼2 = 1.0 for short-term loading
 = 0.7 for long-term loading

Combining all the governing equations for concrete produces a continuous stress-

strain diagram as shown in Figure 6.6.

115

Figure 6.6: f’c = 8,500 psi Concrete Model Stress-Strain Curve

Mild Steel Reinforcement Model

Mild steel reinforcement used in prestressed concrete creates a “partially

prestressed” section, a terminology used in the industry. The addition of mild steel

reinforcement increases the ductility of a girder compared to a “fully prestressed” girder,

which is a girder without mild steel reinforcement.

The governing equations used for the mild steel reinforcement model is the

standard bilinear curve up until the end of the steel yield plateau. Beyond this point, a

-10

-8

-6

-4

-2

0

2

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004

St
re

ss
 (k

si
)

Strain (in/in)

Concrete Material Model Stress-Strain Curve

116

parabolic curve is fit from the yield plateau to the ultimate stress of the concrete. The

mild steel reinforcement is then considered to be ruptured beyond the ultimate strain.

This behavior is captured through Equation (6-9), Equation (6-10), Equation (6-11), and

Equation (6-12).

𝑓𝑠 = 𝐸𝑠𝜀𝑠𝑓 for 𝜀𝑠 ≤ 𝜀𝑠𝑦 (6-9)

𝑓𝑠 = 𝑓𝑠𝑦
for 𝜀𝑠𝑦 ≤ 𝜀𝑠

≤ 𝜀𝑠ℎ
(6-10)

𝑓𝑠 =
1

(𝜀𝑠𝑢 − 𝜀𝑠ℎ)2 �
�𝑓𝑦 − 𝑓𝑢�𝜀𝑠𝑓2 + �2𝜀𝑠𝑢𝑓𝑠𝑢 − 2𝜀𝑠𝑢𝑓𝑦�𝜀𝑠𝑓

+ 𝜀𝑠𝑢2 𝑓𝑠𝑦 − 2𝜀𝑠𝑢𝜀𝑠ℎ𝑓𝑢 + 𝜀𝑠ℎ2 𝑓𝑠𝑢
�

for 𝜀𝑠ℎ ≤ 𝜀𝑠

≤ 𝜀𝑠𝑦
(6-11)

𝑓𝑠 = 0 for 𝜀𝑠𝑢 ≤ 𝜀𝑠 (6-12)

where,

𝐸𝑠 = steel modulus of elasticity

𝑓𝑦 = yield strength

𝑓𝑢 = ultimate strength

𝜀𝑠𝑦 = yield strain = 𝑓𝑦 𝐸𝑠⁄

𝜀𝑠ℎ = strain at the onset of strain hardening

𝜀𝑠𝑢 = strain at ultimate stress

Figure 6.7 presents the mild-steel reinforcement behavior up until the ultimate

strain. This behavior is equivalent for both tension and compression.

117

Figure 6.7: 60 ksi Reinforcement Material Model

Prestressing Strand Material Model

Modern-day prestressing utilizes thin wires or 7-wire strands, with the most

common strength being 270 ksi low-relaxing strands. Unlike mild-steel reinforcement,

prestressing strands do not have a well defined yield plateau. A common formula for the

stress-strain response of prestressing strands is the modified Ramberg-Osgood function

(Mattock, 1979), shown in Equation (6-13).

0

10

20

30

40

50

60

70

80

90

100

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

St
re

ss
 (

ks
i)

Strain (in/in)

Mild Steel Reinforcement Material Model Stress-Strain Curve

118

𝑓𝑝𝑠 = 𝜀𝑝𝑠𝐸

⎣
⎢
⎢
⎢
⎢
⎡

𝑄 +
1 − 𝑄

�1 + �
𝐸 𝜀𝑝𝑠
𝐾 𝑓𝑝𝑦

�
𝑅
�
1
R�

⎦
⎥
⎥
⎥
⎥
⎤

≤ 𝑓𝑝𝑢 (6-13)

where,

𝑓𝑝𝑠 = prestressing stress of the strand

𝜀𝑝𝑠 = prestressing strain of the strand

𝐸 = modulus of elasticity

𝑓𝑝𝑦 = yield stress of strand

𝑓𝑝𝑢 = ultimate stress of strand

𝑄,𝐾,𝑎𝑛𝑑 𝑅 = curve fitting parameters

For this research, the prestressing strand stress-strain model is based on Equation

(6-14), which was developed by Devalapura and Maher (1992). This equation is an

enhanced version of Equation (6-13), fit to experimental test data. One notable finding

from their research is that the modulus of elasticity is typically higher than 28,000 ksi, so

the constants were adjusted to a modulus of 28,500 ksi. Recommended constants for the

different types of strands are given in Table 6-1.

𝑓𝑝𝑠 = 𝜀𝑝𝑠 �𝐴 +
𝐵

�1 + (𝐶 𝜀𝑝𝑠)𝐷�
1
𝐷
� ≤ 𝑓𝑝𝑢 (6-14)

where,

119

𝑓𝑝𝑠 = prestressing stress

𝜀𝑝𝑠 = prestressing strain

𝑓𝑝𝑢 = ultimate stress of strand

𝐴,𝐵,𝐶,𝑎𝑛𝑑 𝐷 = curve fitting parameters

Table 6-1: Power Formula Constants for the Prestressing Stress-Strain Diagram

Steel Type 𝑓𝑝𝑠/𝑓𝑝𝑢 𝜀𝑝𝑦 𝐴 𝐵 𝐶 𝐷

270 ksi strand 0.90 0.010 887 2,7613 112.4 7.360
250 ksi strand 0.90 0.010 384 27,616 119.7 6.430
250 ksi wire 0.90 0.010 435 28,565 125.1 6.351
235 ksi wire 0.90 0.010 403 28,597 133.1 5.463
150 ksi bar 0.85 0.080 467 28533 225.2 4.991

Table is replicated from Devalapura and Maher (1992)

In the prestressing strand constitutive model, the strand has no capacity in

compression. Figure 6.8 shows the stress-strain curve for 270 ksi low relaxation strand.

120

Figure 6.8: 270 ksi Low-Relaxation Prestressing Strand Material Model

Dynamic Increase Factor (DIF)

Past research (e.g., Malvar (1998)) has shown that concrete and mild-steel

reinforcement have increased capacity at high strain rates. To account for strain rate

effects, the analyses for this research use the dynamic increase factors (DIF) given in

Table 6-2. DIFs give the ratio of dynamic strength to static strength and are frequently

used for blast-resistant design in SDOF models (Dunseberry, 2010). For concrete design

0

50

100

150

200

250

300

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

St
re

ss
 (

ks
i)

Strain (in/in)

Prestress Strand Material Model Stress-Strain Curve

121

in the “far range” or low pressure range, concrete exhibits an increase in the ultimate

strength but not in yielding (Figure 6.9). With mild-steel reinforcement, the yield

strength and ultimate strength are increased (Figure 6.10). Because prestressing strand is

highly stressed, these elements are not known to exhibit DIFs (DOD, 2008).

Table 6-2: Dynamic Increase Factor for Far Range

 Yield Stress Ultimate Stress
 𝒇𝒅𝒚/𝒇𝒚 𝒇𝒅𝒖/𝒇𝒖

Concrete1 — 1.12
Mild-Steel Reinforcement1 1.17 1.05
Prestressing Strand2 — 1.00
1 – UFC 3-340-02; page 1068 (Department of Defense, 2008)

2 – UFC 3-340-02; page 1651 (Department of Defense, 2008)

122

Figure 6.9: Dynamically Adjusted Concrete Stress-Strain Curve (Department of Defense,

2008)

123

Figure 6.10: Dynamically Adjusted Mild-Steel Reinforcement Stress-Strain Curve

(Department of Defense, 2008)

Layer-by-Layer Moment-Curvature Analysis

Utilizing the material models described in the previous sections, the moment-

curvature relationship for the Colorado Bulb-Tee is shown in Figure 6.11 using a layer-

by-layer analysis procedure. Observing Figure 6.11, the girder has a much larger

capacity when bending in positive curvature than negative curvature. The section is able

to avoid brittle failure because of the mild-steel reinforcement. The maximum positive

moment capacity is approximately 4680 kip-ft. For negative curvature, the maximum

124

capacity is approximately 440 kip-ft, nearly 10 times less than the positive bending

moment capacity.

To validate the accuracy of the layer-by-layer analysis, the same section was

analyzed using RESPONSE 2000. RESPONSE 2000 is a program created by Bentz and

Collins (2001) that is able to determine the complete load-deformation response curve for

a prestressed or a reinforced concrete section. The program was verified against

experimental data during its development. One of the features in RESPONSE 2000 is the

ability to create a moment-curvature diagram.

Figure 6.11: Colorado Bulb-Tee Moment-Curvature

-500

500

1500

2500

3500

4500

-0.0005 -0.0003 -0.0001 0.0001 0.0003 0.0005

Be
nd

in
g

M
om

en
t (

ki
ps

-ft
)

Curvature (1/rad)

Comparison of Response 2000 with Layer-by-Layer Analysis

Response 2000

Layer-by-Layer Analysis

125

Looking at the two sets of data, the layer-by-layer analysis developed for this

research can be seen to compute the response of Colorado bulb-tee accurately with

respect to RESPONSE 2000. There are minor differences in the moment-curvature

response when the girder starts to behave non-linearly, but the differences are within

reasonable limits.

Bilinear Moment-Curvature Diagram

For computational efficiency, after running the layer-by-layer analysis, the

moment-curvature relationship needs to be reduced to a simplified bilinear expression so

it can be used to develop a resistance function for SDOF analyses of blast-loaded girders.

The critical points on the bilinear moment-curvature relationship are the yield curvature

and the ultimate curvature. To maintain the same slope for the elastic range between

positive and negative loading, the initial capacity is interpolated between the positive and

negative yielding points.

The second point on the bilinear moment-curvature plot is achieved when the

girder section yields. Yielding in a non-prestressed section occurs when the bottom layer

of mild-steel reinforcement reaches the yield strain (for positive curvature). With the

addition of prestressing strand, however, an analysis must be performed to determine

which of the two reinforcement types yield first. In addition, for an over-reinforced

section, it is likely that concrete crushes before either of the reinforcement types can

reach its yield strain. As noted by Paulay and Priestly (1992), for a section in which the

yielding curvature is controlled by the concrete strain, the compressive strain at the

126

extreme fiber can be assumed to be 𝜀𝑐 = 0.0015. To determine which scenario controls,

the numerical procedure described in the previous section iterates through the fibers to

check for yielding. When found, it saves the corresponding curvature.

The third point on the bilinear moment-curvature diagram is the ultimate

curvature of the section. Ultimate curvature occurs when the mild-steel reinforcement

goes beyond its fracture strain or the prestressing strand reaches its ultimate strain. For

concrete, the ultimate strain is taken to be the well established value of 𝜀𝑐𝑢 = 0.003 from

ACI 318-08. Like the yield curvature, the program iterates through and saves the

ultimate curvature and corresponding moment when one of the fibers reaches the ultimate

strain.

The results of the bilinear extraction are plotted alongside the layer-by-layer

moment-curvature diagram in Figure 6.12. As seen in the figure, the yield curvature of

the bilinear moment-curvature relationship is the linear extrapolation of the value found

in the layer-by-layer analysis up to the ultimate moment capacity. This simplified

bilinear extrapolation can then be used to generate a resistance function, which is

described in detail in the next section.

The bilinear moment-curvature shown in Figure 6.12 plots the additional moment

capacity of the girder after the initial moments were applied. If the initial moments were

included, the layer-by-layer moment-curvature would cross through the origin at zero-

curvature, with the entire plot translating accordingly. Due to the simplifications made in

the bilinear extraction, there will be some residual bending moments remaining at zero

127

curvature. For the non-linear static analysis presented later, plastic hinging is checked

using a modified bilinear moment-curvature considering the undeformed girder, which

includes the initial moments in the plot.

Figure 6.12: Bilinear Moment Curvature

RESISTANCE FUNCTION

The next phase in the model development is creating the resistance function.

Described by Biggs (1964) as “the internal force tending to restore the element to its

unloaded position”, the resistance function is used in the SDOF model as the resisting

force in the dynamic analysis. In the model, the resistance function is generated by

-1000

0

1000

2000

3000

4000

5000

-0.0005 -0.0003 -0.0001 0.0001 0.0003 0.0005

Be
nd

in
g

M
om

en
t (

ki
ps

-ft
)

Curvature (1/rad)

Bi-Linear Extraction of Layer-by-Layer Analysis

Layer-by-Layer Analysis

Simplified Bi-Linear
Curve

128

stepping through a non-linear static analysis accounting for both geometric and material

non-linearity. Unlike the previous discussion which focused on the response of an

individual cross-section, the resistance function is determined by considering the overall

response of a girder, accounting for load magnitude and distribution, support conditions,

and internal resistance.

Static Analysis

In the numerical procedure used to determine the resistances function for a

specific girder, a non-linear static analysis is performed to compute the load-deflection

response. The analysis solves for displacements using Equation (6-15), where [𝐾𝑡] is the

tangent stiffness matrix and [𝑃𝑡] is the global load vector for unconstrained degrees-of-

freedom.

[𝐾𝑡][∆𝑡] = [𝑃𝑡] (6-15)

The tangent stiffness matrix is the combination of the elastic stiffness [𝐾𝑒] and the

geometric stiffness �𝐾𝑔�, shown in Equation (6-16). The elastic stiffness matrix accounts

for the linear strength of a beam element due to its physical properties. The geometric

stiffness accounts for second-order P-∆ effects and depends only on the internal axial

load and the length of a given beam element.

[𝐾𝑡] = [𝐾𝑒] + �𝐾𝑔� (6-16)

The global load vector is the combination of the nodal forces �𝑃𝑗� and the member

fixed-end forces [𝑃𝑚]. Nodal forces are concentrated loads acting at the node. Member

129

forces act along a beam element and are distributed to the nodes as “equivalent forces”.

Equation (6-17) presents the global load vector in condensed form.

⌈𝑃𝑡⌉ = [𝑃𝑚] + �𝑃𝑗� (6-17)

 Appendix B presents the complete elastic and tangent stiffness matrices for the

beam element used in this research as well as the load vectors for a uniformly distributed

load and a triangular load.

Load Spatial Distribution

The loading distribution caused by an explosive depends upon the explosive

location and the charge weight as shown in Figure 6.13. Before the dynamic response of

a prestressed girder begins, static forces are first applied to determine the resistance

function. The dynamic analysis uses the resistance function along with the inertia of the

system to compute a time-varying response. In determining the resistance function, the

numerical procedure used in this study applies initial prestressing forces ‘𝑃’ and the

initial moment ‘𝑀’. The prestressing puts the beam elements in compression and into

negative curvature. In addition to the prestressing force, the user is given the option to

apply a uniform dead load ‘𝜔1’ to account for self-weight load such as the concrete deck

or rails.

130

Figure 6.13: Load Distribution

The load being incremented in the model is the blast load generated from the

explosive as specified in the threat scenario defined by the user. Explosives are high-rate

chemical reactions that have a sudden release of energy that propagates through air as a

shock wave. The shock waves create a sudden over-pressure with respect to the ambient

pressure at a point in space. After the shock front passes a given point, the pressure

decays rapidly until it becomes less than the ambient pressure, creating low-magnitude

suction. Figure 6.14 illustrates the pressure-time history for a typical shock front.

131

Figure 6.14: Pressure-Time Curve for Free-Air Explosion (Department of Defense, 2008)

As the shock front propagates from the center of the explosive, the pressure

reduces the further it travels without any reflections. Therefore, depending on the

standoff of the explosive from the target, the pressure distribution along a girder could

vary dramatically for a small standoff threat or be nearly uniform for a large standoff

threat. Figure 6.15 shows three distinct scenarios: scenario (a) shows a ‘contact’

detonation that creates a large local spike around the explosive, scenario (b) shows a

‘close-in’ detonation that has a varying distribution along the blast-loaded face, and

scenario (c) shows a ‘far-range’ detonation with a ‘near’ uniform distribution along the

blast-loaded face.

132

Figure 6.15: Blast Distribution Variation with Respect to Standoff (Department of

Defense, 2008)

For the analysis procedure adopted for this research, the distribution along a

girder is idealized as varying linearly, with the peak pressure corresponding to the center

of gravity of the explosive. This distribution is able to cover both the ‘close-in’

detonation as well as the ‘far-range’ detonation. As illustrated in Figure 6.13, the end

pressure is a function of the peak pressure ‘𝜔𝑜’. To determine the end pressures, the

positive impulse needs to be determined for the left and right edge as well at the peak

location. The positive impulses are determined by summing the positive pressure time-

history, generated by BEL, before the negative phase. The end distribution factors are

then calculated based on the ratio of the specific impulse at the ends with respect to the

peak impulse (Equation (6-18) and Equation (6-19)). This model retains the peak

pressure as the remaining independent quantity to increment.

133

𝛼𝐿 =
𝐼𝑆𝑃.𝐿𝑒𝑓𝑡

𝐼𝑆𝑃.𝑃𝑒𝑎𝑘
 (6-18)

𝛼𝑅 =
𝐼𝑆𝑃.𝑅𝑖𝑔ℎ𝑡

𝐼𝑆𝑃.𝑃𝑒𝑎𝑘
 (6-19)

Incremental-Iterative Method

With the inclusion of geometric and material non-linearity, an incremental load

stepping scheme is needed to solve for the load-deflection curve for a given girder.

Instead of a single-step scheme such as the ‘Forward Euler’ method, an incremental-

iterative scheme is utilized. At each incremental load step {𝑑𝑃𝑖}, the system response is

solved iteratively to determine the equilibrium position. Figure 6.16 illustrates the

method, and Equation (6-20) is solved at each increment.

134

Figure 6.16: Incremental Iteration (McGuire, Gallagher, and Ziemian, 2000)

[∆𝑖] = [∆𝑖−1] + ��𝑑∆𝑖
𝑗�

𝑚𝑖

𝑗=1

 (6-20)

The algorithm used to solve the non-linear static analysis is described in the book

by McGuire, Gallaher, and Ziemian (2000). The two parameters that the method is

solving for at each load increment are the load ratio factor 𝑑𝜆𝑖
𝑗 and an incremental

displacement vector 𝑑∆𝑖
𝑗. The load ratio factor is used with respect to a reference load

�𝑃𝑟𝑒𝑓�. The ‘i’ subscript notation on the variables denotes the load increment, whereas

the superscript ‘j’ denotes the iterative step.

135

Geometric Non-linearity

At the beginning of each load increment, the geometry of the previous converged

state �𝐾𝑖
𝑗−1� is used to solve the system response at the next iteration. Equation (6-21) is

used to solve for the reference displacement vector �𝑑∆𝚤
𝚥������ applying the reference load to

the previous converged state. Equation (6-22) determines the residual load vector

�𝑅𝑖
𝑗−1�, which is the difference between the external load vector �𝑃𝑖

𝑗−1� and the internal

load vector �𝐹𝑖
𝑗−1�. For the first iteration, the residual load vector is set to ‘0’. With the

residual load vector, the residual displacement vector �𝑑∆𝚤
𝚥������ can then be found using

Equation (6-23).

�𝑃𝑟𝑒𝑓� = �𝐾𝑖
𝑗−1��𝑑∆𝚤

𝚥������ (6-21)

�𝑅𝑖
𝑗−1� = �𝑃𝑖

𝑗−1� − �𝐹𝑖
𝑗−1� (6-22)

�𝑅𝑖
𝑗−1� = �𝐾𝑖

𝑗−1� �𝑑∆𝚤
𝚥������ (6-23)

The next step in the analysis is determining the load ratio factor. The initial load

ratio factor 𝑑𝜆𝑖1 is determined by using Equation (6-24), which is an automated approach

described in the text by McGuire, Gallagher, and Ziemians (2000). That approach uses a

scaled parameter that is multiplied with the previous initial load ratio 𝑑𝜆𝑖−11 . The scale

parameter is the ratio of the desired number of increment ‘𝑁𝑑’ over the previous number

of increment ‘𝑁𝑖−1’ raised to the exponential parameter ‘𝛾’. The exponential parameter

is set at 0.5.

136

𝑑𝜆𝑖1 = ±𝑑𝜆𝑖−11 �
𝑁𝑑
𝑁𝑖−1

�
𝛾

 (6-24)

For 𝑗 ≥ 2, the load ratio factor is determined using Equation (6-20)—the

‘Constant Arc Length’ method. The method is implemented because it is able to account

for limit points as well as for sharp changes in the load-deflection response that may

occur due to plastic hinging.

𝑑𝜆𝑖
𝑗 = −

{𝑑Δ𝑖1}𝑇 �𝑑∆𝚤
𝚥������

{𝑑Δ𝑖1}𝑇�𝑑∆𝚤
𝚥������ + 𝑑𝜆𝑖1

 (6-25)

 Once the load ratio is determined, the displacement for the iteration is calculated

using Equation (6-26). With the displacement vector calculated, the system is then

checked for convergence.

�𝑑Δ𝑖
𝑗� = 𝑑𝜆𝑖

𝑗�𝑑∆𝚤
𝚥������ + �𝑑∆𝚤

𝚥������ (6-26)

 The convergence criterion is checked by calculating the Modified Euclidean

norm, shown in Equation (6-27). This value is computed using a normalized ratio with

the kth iterative displacement ‘𝑑∆𝑘’, the largest total translational displacement ‘∆𝑟𝑒𝑓’,

and the number of unknown displacements ‘N’. The acceptable tolerance used is 10−4.

‖𝜀‖ = �
1
𝑁
��

𝑑∆𝑘
∆𝑟𝑒𝑓

�
2𝑁

𝑘=1

 (6-27)

137

Material Non-Linearity

Once the load ratio is determined, displacements are calculated at the beam

element nodes. Internal forces are checked to determine whether yielding has occurred.

If the load ratio indicates the plastic moment capacity has been exceeded, the load ratio is

proportioned downward and the increment is then recalculated with the new load ratio. If

the load ratio is determined to fall within the tolerance, a plastic hinge is placed in the

appropriate beam element. In the next increment, the structure will be analyzed with the

new configuration.

GENERALIZED SINGLE-DEGREE-OF-FREEDOM SYSTEM

After the development of the resistance function, the model is now able to solve a

generalized SDOF system. A single-degree-of-freedom model is chosen over a multi-

degree-of-freedom model because it is computationally more expedient while still

maintaining an acceptable level of accuracy. As stated in Conrath, et al. (1990), as long

as the mode of response is well understood, a SDOF model is an “effective and efficient

method of accounting for the transient nature of the blast load.”

138

Figure 6.17: Equivalent Single-Degree-of-Freedom System

Equation (6-28) is the governing equation of motion as described by Biggs (1964)

to compute the displacement of the system as a function of time. In the differential

equation, the two terms that need to be solved are the acceleration term 𝑑
2

𝑑𝑡2
𝑢(𝑡) and the

displacement term embedded in the resistance function 𝑅(𝑢). The terms modifying the

acceleration are the load-mass factor 𝐾𝐿𝑀(𝑢) (presented in the next paragraph) and the

total mass of the system 𝑀𝑡𝑜𝑡𝑎𝑙. As stated previously, the resistance function is the

restoring force and depends non-linearly on the deformation of the system. The damping

term is neglected in this model because of its negligible contribution (Conrath, et al.,

1990). On the right-hand side of the equation is the forcing function 𝐹(𝑡), explained in

the next section.

139

𝐾𝐿𝑀(𝑢) 𝑀𝑡𝑜𝑡𝑎𝑙
𝑑2

𝑑𝑡2
𝑢(𝑡) + 𝑅(𝑢) = 𝐹(𝑡) (6-28)

The load-mass factor shown in Equation (6-29) is the ratio of the mass factor

𝐾𝑀(𝑢) relative to the load factor 𝐾𝐿(𝑢). These factors are used to transform the real

system into an equivalent SDOF system. The mass factor relates the actual distributed

inertial resistance to the idealized mass, by equating the kinetic energy of the two

systems. Likewise, the load factor relates the total loading distribution in the actual

system with the idealized load, by equating the work done by the two systems. Additional

details for computing these factors can be found in Biggs (1964).

Both factors use the shape function 𝜙(𝑥,𝑢), which is the deformation mode shape

from a static application of the applied blast load distribution. Equation (6-30) and

Equation (6-31) transform the mass and load into a single parameter. The load-mass

factor is calculated at each load step during the development of the resistance function.

More information can be found from Biggs (1964).

𝐾𝐿𝑀(𝑢) =
𝐾𝑀(𝑢)
𝐾𝐿(𝑢)

 (6-29)

𝐾𝑀(𝑢) =
∫ 𝑚(𝑥,𝑢)𝜙(𝑥,𝑢)2𝐿
0 𝑑𝑥

∫ 𝑚(𝑥,𝑢)𝐿
0 𝑑𝑥

 (6-30)

𝐾𝐿(𝑢) =
∫ 𝑓(𝑥,𝑢)𝜙(𝑥,𝑢)𝐿
0 𝑑𝑥

∫ 𝑓(𝑥, 𝑢)𝐿
0 𝑑𝑥

 (6-31)

140

Forcing Function

Due to the short-duration blast loading that is being considered, it acts over a

much shorter time than the period of the girders typically found in practice. As such, the

loading is impulsive, and the model forcing function seeks to preserve the total impulse

acting on the structure. Equation (6-32) defines the forcing function as the product of

maximum force 𝐹𝑚𝑎𝑥 and an exponentially decaying function. The maximum force is

determined by using the peak pressure at the center of gravity with the loading

distribution utilized for the non-linear static analysis. An exponentially decaying

function is used to capture the loading with respect to time for a typical blast load, and it

conservatively ignores the negative phase of the blast load.

𝐹(𝑡) = 𝐹𝑚𝑎𝑥 �𝑒
−𝑡 𝑡0� � = � 𝐴(𝑥) 𝑝𝑚𝑎𝑥

𝐿

0
(𝑥)𝑑𝑥 �𝑒−

𝑡
𝑡0� �

= 𝑏𝑤𝑝𝐶𝐺.𝑚𝑎𝑥 �𝑙𝐿 �
(1+𝛼𝐿)

2
� + 𝑙𝑅 �

(1−𝛼𝑅)
2

�� �𝑒−
𝑡
𝑡0� �

(6-32)

where,

𝑏𝑤 = width of the girder

𝑝𝐶𝐺.𝑚𝑎𝑥 = maximum pressure at C.G.

𝑙𝐿 = length of the girder to the left of the explosive

𝑙𝑅 = length of the girder to the right of the explosive

The only parameter that is not defined yet in Equation (6-32) is 𝑡0, the equivalent

time duration. This variable is found by preserving the impulse, a measure of loading

141

intensity. Equation (6-33) calculates the equivalent uniform impulse 𝐸𝑈𝐼𝑠𝑝 by

normalizing the specific impulse with the elastic shape function 𝜙(𝑥). Equation (6-34)

calculates the equivalent uniform pressure similarly to the equivalent uniform impulse.

The impulse and pressure are determined at the end points and explosive center-of-

gravity by summing the pressure time-history from BEL. Afterwards, the impulses for

the remainder of the girder nodal locations are interpolated from those points. Finally,

with the equivalent uniform impulse and the equivalent peak pressure, 𝑡0 can be

calculated using Equation (6-35).

𝐸𝑈𝐼𝑆𝑃 =
∫ 𝐼𝑆𝑃(𝑥)𝜙(𝑥)𝐿
0 𝑑𝑥

∫ 𝜙(𝑥)𝐿
0 𝑑𝑥

= 𝐸𝑈𝑃 𝑡0
(6-33)

𝐸𝑈𝑃 =
∫ 𝑃𝑅(𝑥)𝜙(𝑥)𝐿
0 𝑑𝑥

∫ 𝜙(𝑥)𝐿
0 𝑑𝑥

(6-34)

𝑡0 =
𝐸𝑈𝐼𝑠𝑝
𝐸𝑈𝑃

(6-35)

Solving the Equation of Motion with Newmark-beta Method

Equation (6-28) cannot be solved with a closed form solution because of the

irregular loading and the non-linear behavior of the resisting function. Therefore, the

model for this research utilizes the Newmark-Beta average acceleration scheme to solve

the equation of motion (Chopra, 2006). The first step at each load increment is to

determine the resisting force and the instantaneous load-mass factor from the resistance

function. The second step is to determine the total applied force on the system at that

142

time step. The next step is to solve for displacement at the next time step. The last step is

to solve for velocity and acceleration at the current time step. Appendix E presents the

detailed steps needed to solve the differential equation of motion using the Newmark-beta

method. Additional information on this numerical procedure can be found in the book by

Chopra (2006) or Tedesco, McDougal, and Ross (1990).

EXAMPLE OF GIRDER MODEL

To demonstrate the SDOF model, the response of an explosive placed at mid-span

is explored for the Washington State Bulb-Tee girder. The explosive is located at a

scaled standoff distance of 𝑍 = 𝑋.𝑋𝑋 𝑓𝑡 𝑙𝑏1/3⁄ above the deck. The physical standoff

and the charge weight were chosen to ensure that inelastic flexural response will occur

without causing local failure. For comparison, a finite element model was developed by

Hendryx (2012) to analyze the girder with the same assumed loading.

Girder Single-Degree-of-Freedom Model

With the physical geometry of the girder established, pressure-time histories are

developed from BEL for points at the center-of-gravity location and at the girder end

(Figure 6.18). The solver then calculates the peak pressures, peak specific impulse, and

load distribution factor used in establishing the loading distribution. The values are given

in Table 6-3.

143

Figure 6.18: Pressure-Time History at Girder Center and Left/Right Edge

Table 6-3: Loading Parameters

Peak Pressure at CG 𝑃𝑃𝑒𝑎𝑘.𝐶𝐺 = 𝑋𝑋𝑋.𝑋 𝑝𝑠𝑖

Peak Pressure at Girder End 𝑃𝑃𝑒𝑎𝑘.𝐸𝑛𝑑 = 𝑋𝑋𝑋.𝑋 𝑝𝑠𝑖

Specific Impulse at CG 𝐼𝑆𝑃.𝐶𝐺 = 0.𝑋𝑋𝑋 𝑝𝑠𝑖– 𝑠

Specific Impulse at Girder End 𝐼𝑆𝑃.𝐸𝑛𝑑𝑠 = 0.𝑋𝑋𝑋 𝑝𝑠𝑖– 𝑠

Load Distribution Factor at Girder End 𝛼𝑒𝑛𝑑 = 0.389

Equivalent Uniform Pressure 𝐸𝑈𝑃 = 𝑋𝑋𝑋. 0 𝑝𝑠𝑖

Equivalent Uniform Specific Impulse 𝐸𝑈𝐼𝑆𝑃 = 0.𝑋𝑋𝑋 𝑝𝑠𝑖– 𝑠

Time Constant 𝑡𝑜 = 0.000765 𝑠

Maximum Force 𝐹𝑚𝑎𝑥 = 𝑋𝑋𝑋𝑋𝑋.𝑋 𝑘𝑖𝑝𝑠

 X

100 X

200 X

300 X

400 X

500 X

600 X

700 X

800 X

0.0000 0.0050 0.0100 0.0150 0.0200

Pr
es

su
re

 (p
si

)

Time (sec)

Pressure-Time History at Girder Center of Gravity

Center Left/Right Edge

144

With the loading distribution determined, a non-linear static analysis is then

performed for the girder. The girder is sub-divided into 30 beam elements with all

elements having the sectional properties shown in Figure 6.19. Before the loading

increment begins, the girder is first loaded statically with an initial axial compressive

force 𝑃 = 724.6 kips and an initial moment 𝑀 = −13,267 kip-in. An additional

uniformly distributed load 𝜔 = 0.056 kip/in is applied to account for self-weight.

With the combined loading, the girder deflects in reverse curvature with a camber

at mid-span of 2.4 in. The girder is then incrementally loaded until it fails. The

resistance function is then determined by storing the mid-span deflection and total

applied incremental load at each load step. Figure 6.19 shows the mid-span resistance

function. As expected, when the resistance function deflects in negative curvature, it has

substantially less capacity then when it deflects in positive curvature. Once the girder

hinges, it behaves plastically until it fails.

145

Figure 6.19: Resistance Function

In Figure 6.19, the negative applied load—the resultant force from the distributed

blast load—corresponds to load applied over the deck with the loads acting downward.

The deflection therefore will also be downward and in positive curvature. For the

positive applied load, the reverse scenario exists.

After the non-linear static analysis, the deflection at each load step is used to

generate the shape functions and the load-mass factors. To solve for the equivalent

uniform specific impulse and the equivalent uniform pressure, a shape function at an

early load increment is used. Using Equations (6-32), the forcing function can be seen in

-500 X

-400 X

-300 X

-200 X

-100 X

 X

100 X

200 X

-15 -10 -5 0 5 10 15

Fo
rc

e
(k

ip
s)

Mid Span Deflection (in.)

Resistance Function

146

Figure 6.20 with all the forcing parameters presented in Table 6-3. The forcing function

shows an applied downward load on the structural system that decays at approximately

0.004 seconds.

Figure 6.20: Forcing Function

With the resistance function, the load-mass factor, and the forcing function, the

SDOF model is then solved. Figure 6.21 shows the displacement, velocity, and

acceleration time-history of the girder model. During the early stage of the loading, the

girder deflects downward up until it reaches approximately -5.0 in. When it hits its peak

-18000 X

-16000 X

-14000 X

-12000 X

-10000 X

-8000 X

-6000 X

-4000 X

-2000 X

 X

2000 X

0 0.002 0.004 0.006 0.008 0.01

Fo
rc

e
(k

ip
s)

Time (secs)

Force Function

147

negative deflection, the girder still remains elastic. Upon rebounding, the girder reaches

plastic deformation at approximately 5 in. and deforms plastically until it reaches 13.3 in.

148

Figure 6.21: Displacement/Velocity/Acceleration Time History at the Mid-Span.

-6

-1

4

9

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Di
sp

la
ce

m
en

t (
in

.)

Time (sec)

Displacement Time History

-150

-100

-50

0

50

100

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ve
lo

ci
ty

 ((
in

/s
)

Time (sec)

Velocity Time History

-1500

-500

500

1500

2500

3500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ac
ce

le
ra

tio
n

(in
/s

^2
)

Time (sec)

Acceleration Time History

149

Comparison of SDOF Model with FEM Model

The FEM model used for validation was constructed in LS-DYNA running an

explicit analysis. The details of the model are reported in Hendryx (2012). Figure 6.22

shows FEM results of the mid-span deflection with respect to time. Prestressing force

was applied initially, and then the blast load was applied 1.0 second later (after

equilibrium from the prestressing force was achieved). The peak negative deflection was

computed to be approximately 5.0 in., while the girder rebounds up to a deflection of

4.14 in.

Figure 6.22: Girder FEM Displacement-Time History at Mid-Span

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Di
sp

la
ce

m
en

t (
in

.)

Time (sec)

Midspan Deflection

150

Compared with the FEM model, the SDOF model predicts the peak negative

displacement accurately but grossly overestimates the rebound displacement. The

camber determined for the FEM model returns approximately 1.4 in., as opposed to the

2.4 in. determined by the SDOF model. The difference between the two models is

because the SDOF model uses a reduced stiffness generated from the moment-curvature

diagram, which leads to over-predicting the camber—which in actuality remains in the

elastic range.

At this time, a great amount of uncertainty still exists for the two models. One

interesting area of concern is that the SDOF model remains elastic during the early phase

of response, whereas the FEM model shows some plasticity. This difference might be

attributed to the simplification of the sectional property of the model, where the reduced

stiffness allows the SDOF model to remain elastic for a larger deflection.

For the rebound displacement, the SDOF model vastly over-predicts the

displacement because the capacity of the girder in negative curvature is so weak; once the

girder hits the plastic region it starts deforming plastically. These large differences

between the two models indicate that the SDOF model and the FEM model have some

discrepancies that require further study. Refinement of the models is expected to occur

outside of the work presented in this thesis.

151

SUMMARY

This chapter includes an example of a solver: the prestressed girder model. The

girder model determines a moment-curvature response curve and a corresponding

resistance function for use in dynamic analyses of an SDOF system. For comparison, an

FEM analysis with the same load case was modeled. Although the SDOF model trends

with the FEM results, further refinement is necessary to provide a more reliable model.

The next chapter summarizes this thesis and gives recommendations for future research.

152

Chapter 7: Summary, Recommendations, and Conclusions

During the last decade following September 11, 2001, government officials and

the engineering community have devoted time and resources to protect the country from

such attacks again. Because the highway infrastructure plays such a critical role in the

public’s daily life, research was conducted on various bridge components to determine

their resiliency against explosive attacks. While more tests are needed, it is now time to

transfer the research into tools to be used by the design community.

SUMMARY OF RESEARCH PROGRAM

The US Department of Homeland Security sponsored the research described in

this thesis with the primary goal of creating a user-friendly PC software that analyzes the

effects of explosives on bridge components. The software is designed to be a

clearinghouse of previous research, incorporating numerical models validated against

experimental data. The program is intended to be fast-running an easy to use. The target

audience is design engineers, but it can still be used by emergency responders in planning

for such attacks (Sammarco, 2012).

This thesis explains in detail how ATP-Bridge was developed to address the

primary project objective. It describes how to develop software that is both user-friendly

and expedient, yet still able to account for different bridge components with different

modes of failure. The challenge was addressed by using object-oriented programming

principles—specifically inheritance—to normalize common features while still giving

153

developers enough flexibility to modify their data structures and graphical components to

their specific bridge components.

To create this multi-component analysis software, ATP-Bridge requires each

bridge component to have separate data structures, graphics components, and solvers.

These three parts embody different functions of the bridge component: the data structure

is used to store the information from the user, the graphics component is used to render

the information, and the solver analyzes the information.

There are three major data structures: the Structural Component, Load, and

Nexus. The Structural Component stores all the physical attributes of the bridge

component, such as geometries, materials, and boundary conditions data. The Load

stores all the loading data, both explosive loading and external static loading. The Nexus

processes the data from the previous two data structures and connects it with the solver to

analyze.

The graphical user interface (GUI) connects the user with the back-end of the

program: the data structures and solvers. The GUI has multiple components that are used

to communicate with the user: Menu Item Control, Quick Icon Control, Navigation

Control, and 3D Rendering Viewer. The first three components are different ways to

trigger the user’s commands through various forms of Windows-based controls. The last

component, 3D Rendering Viewer, is used to render the user’s commands and display

graphics in 3D.

154

Finally, an example of a solver (prestressed girder with advanced SDOF analysis

model) is presented to illustrate a fast-running algorithm and attempts at its validation.

The SDOF model incorporates the development of a moment-curvature response curve

created by a layer-by-layer analysis, a non-linear static analysis accounting for both

geometric non-linearity as well as material non-linearity, and a Newmark-beta-based

SDOF analysis. The model is then compared with an FEM model developed by Hendryx

(2012). While the initial response between both models was shown to be in good

agreement, the overall differences between the two cases require further study.

SNAPSHOTS OF THE ANTI-TERRORIST BRIDGE PLANNER

Taking the concepts developed and illustrated in the thesis, the development team

at UT Austin has been working on many overall features of the software, including

geometry and loading forms, the graphics components, and post-processing the results.

Some snapshots are provided below for the prestressed girder.

Figure 7.1 shows a snapshot of the geometry form with the cross-section

displayed. Geometry forms are designed to have all the necessary information pertaining

to the physical parameters such as dimensions, material properties, and boundary

conditions. The form uses tab pages at the top to switch between major categories; for

the prestressed girder the categories are ‘Section’, ‘Elevation’, and ‘Material’. By

defining all the geometry information in one form, error checking is simplified. If the

user inputs any incorrect value or values beyond the model’s limitation, the form will be

able to prevent the user from storing to the Structural Component data structure. Under

155

such conditions, the program gives the user instant feedback where the error occurred.

This programming approach adds a layer of data security inside the program.

Figure 7.1: Geometry Form for Prestressed Girder

156

Figure 7.2 shows a snapshot of the load form. The form is used to define

parameters containing the loading conditions including not only the explosive threat

scenario but also the static loading associated with dead loads. The center of the form

shows the explosives relative to the girder model, scaling both the explosives and the

girder graphics. The parameters used to define the explosive threat scenario are the

charge weight, shape, and explosive type (populated with options allowed in BEL).

157

Figure 7.2: Load Form for Prestressed Girder

158

Figure 7.3 is a snapshot of the ATP-Bridge main form. At the center of the form

is the 3D Rendering Viewer, showing an isometric view of the prestressed girder being

analyzed. At the top of the form is the traditional Menu Item control with the Quick

Icon control just below it. At the far left-hand side of the form is the Navigation

Control. Inside of it is the Tree-View control, showing the different types of bridge

components inside the project.

Figure 7.3: Graphics Engine Rendering of Prestressed Girder

RECOMMENDATIONS FOR FUTURE WORK

As ATP-Bridge continues to progress, there are some areas that are worth

exploring to create a more efficient program. One area that could expedite the design

159

cycle for design engineers is allowing ATP-Bridge to be able to look at an entire bridge

system and not exclusively a single component. For example, currently in the software

when analyzing a prestressed girder bridge the user is required to define separately

multiple reinforced concrete columns and prestressed girders as well as multiple loads for

each component. Another example of this is the steel tower, requiring the user to define

multiple interior cells and corner cells when analyzing a single tower.

If the program is capable of defining the bridge system globally, this allows the

user to more efficiently utilize their time and also minimize user-input errors. To achieve

this in ATP-Bridge, it is recommended that an additional layer to the software be

developed. This top layer would define the global geometry of the bridge system that

will then automate single bridge components and explosives for analysis.

Another area of concern in ATP-Bridge is the file output. Currently, the software

generates multiple files in ‘txt’ extension format. Although this method is adequate,

there are a series of issues concerning program robustness and security. First, the files

are output to an external file from the solver and then read back into the software. This

creates vulnerability in the software, where the file can be corrupted or where content can

be changed outside the software before the files are input back into the program. Another

concern is that ‘txt’ files are in ASCII format, which can be opened from any notepad

program and read by unintended users.

The recommended solution to address these issues is the implementation of a

database. A database can store the data into one file and maintain a single file throughout

160

a project. Also, with some databases, it is possible to encrypt the file with a password to

keep it from intrusion.

RECOMMENDATIONS ON PRESTRESSED GIRDER SOLVER FOR FUTURE WORK

With the prestressed girder model, there are a series of simplifications that were

made with respect to Sammarco’s reinforced concrete column model that need to be

explored further. The first omission is the effects of dynamic shear. Most of the research

currently for dynamic shear looks at traditional reinforced concrete, not prestressed

concrete. There is not enough information in the open literature at this time, and it is

recommended that testing be done to study this potential response mode in prestressed

girders.

Another behavior that is of interest is confinement effects, where concrete

experiences an increase in strength and ductility when it is confined with transverse

reinforcement. Confinement effects in traditional reinforced concrete have been well

established. The most widely used model is explained in Mander’s landmark paper

(1989), which considers a wide range of parameters including effective lateral confining

stress and transverse reinforcement spacing. Recently, Ross et al. (2012) observed an

increase in ductility with an increase in confinement steel for prestressed girders.

Another test done by Patzlaff, et al. (2012) led to similar conclusions about the increase

in ductility; however, the researchers observed no noticeable increase in flexural

capacity. It is recommended that future work consider confinement effects in the

development of the moment-curvature response curve for prestressed girders.

161

Although the girder specimen used in the Washington State research had strands

positioned at a constant elevation, it is common in practice to find prestressed girders that

have draped or harped strands for long spans. Draping or harping is used to distribute the

eccentric internal prestressing along the length of the girder with near zero eccentric

moment at the ends and maximum eccentric loading at the mid-span. One advantage

delivered from varying the eccentricity is eliminating tensile stress at the top flange near

the supports. Another advantage is the reduction in the number of strands required

because of vertical forces produced from the prestressing (Nawy, 2003). It is

recommended that in constructing the resistance function, different section properties are

used along the length of the girder to account for draping or harping.

In ATP-Bridge, the prestressed girder excludes the strength of the deck when

calculating the strength because the specimen tested by Washington State was a bare

girder. For typical design, the deck is accounted for in the flexural response calculations

of prestressed girders. Therefore, it is recommended that the deck be included in the

analyses and that the predicted response be validated against either new experimental

data or detailed FEA models.

In BEL, pressure-time histories do not account for non-plane shapes. Because of

this limitation, shape factors were proposed by Williams (2009) for analyzing blast-

loaded bridge columns that take into account the effects of clearing and column

engulfment. For prestressed girders, clearing effects will depend upon the loading

scenario being above-deck or below-deck. In the above-deck scenario, the blast pressure

162

will be distributed across the bridge deck, which will then induce load into the girders. In

the below-deck scenario, the effects of the blast loading will first interact with the I-shape

girder before it engages the deck. In addition, the effect of blast reflection off the deck

and girders is not well understood. Therefore, more work needs to be done to understand

the local effects of the blast loads around prestressed girders.

Finally, a more refined assumption is needed to characterize the load distribution

along the girder length. In the girder model, a simplification of a trapezoidal loading is

used to account for the explosive, as proposed by Sammarco et al. (2012) for his column

model. But the trapezoidal loading assumption might be overly conservative for long

girder spans, where loading along the girder could be more localized as reported by

Gannon et al. (2006). One recommendation is to track more pressures along the length,

therefore getting a more refined load distribution.

CONCLUSION

In conclusion, the development of ATP-Bridge, a program intended to be used by

bridge engineers and planners to investigate terrorist threats against bridges, is explained

in this thesis. The overall project goal was to build a program that can incorporate

multiple bridge components while still maintaining a simple, user-friendly interface.

This goal was achieved by balancing three core areas: constraining the graphical user

interface to similar themes across the program, allowing flexibility in the creation of the

numerical models, and designing the data structures using object-oriented programming

concepts to connect the GUI with the numerical models.

163

ATP-Bridge is the first software developed that incorporates multiple bridge

components into one user-friendly engineering tool for protecting bridge structures

against terrorist threats. The software is intended to serve as a synthesis of state-of-the-

art knowledge, with future updates made to the program as more research becomes

available. In contrast to physical testing and high-fidelity finite element simulations,

ATP-Bridge uses less time-consuming, more cost effective numerical models to generate

dynamic response parameters and damage estimates. With this tool, engineers and

planners will be able to safeguard the nation’s bridge inventory and, in turn, reinforce the

public’s trust.

164

Appendix A: Programming Glossary

Boolean – a binary variable, having two possible values of either true or false.

Cast Type –explicitly converting an expression to a specified data type, object, structure,

class, or interface.

Class – collection of data types and methods that prescribes to object-oriented principles

of encapsulation, polymorphism, inheritance, etc.

Class-Tree – collection of super-class and sub-class as one family.

Double – a floating value with double precision.

Function – declares the name, parameters, and code that defines a procedure.

Inherits – causes the current class or interface to inherit the attributes, variables,

properties, procedures, and events from another class or set of interfaces.

Integer – a whole number; a number that is not a fraction.

List – contains any number of elements that are accessed sequentially.

Method – a subroutine, function, or property inside a class.

Must Inherit – specifies that a class can be used only as a base class and cannot create a

new object directly from it.

165

Must Override – specifies that a property or procedure is not implemented in this class

and must be overridden in a derived class before it can be used.

New – create a new object instance, or specifies a constructor constraint on a type

parameter.

Object – a generic data type that could be character, string, integer, float, or boolean. The

object has the ability to hold different data types in an array.

Overridable – specifies that a property or procedure can be overridden by an identically

named property or procedure in a derived class. (vb.net keyword)

Parameter list – the list of data types and objects passed to a method by the caller.

Private – specifies that one or more declared programming elements are accessible only

from within their declaration context, including from within any contained types.

Protected – specifies that one or more declared programming elements are accessible

only from within their own class or from a derived class.

Property – store and retrieve a value.

Properties – data type used inside the class body that is global inside the class but private

outside.

Public – specifies that one or more declared programming elements have no access

restrictions.

166

Read Only – specifies that a variable or property can be read but not written.

Reference Variable – a variable that stores the address of a data type or object. By

default, all class objects are ‘passed by reference’ in Visual Basic.

Signature – at the beginning of a method, the signature includes the method’s name,

private/public/protected, and the parameter list.

Signature – name and arguments of a method.

Single – floating point data type with single precision. (vb.net keword)

String – sequence of character or an array of characters.

Structure – composed of data types and methods but is not able to fully implement

object-oriented programming. (vb.net keyword)

Sub-class – class that inherits the super-class and inherits all the properties and methods.

(also known as ‘child class’, ‘inherited class’ or ‘derived class’).

Super-class – class that is inherited by another class (also known as ‘parent class’ or

‘base class’).

167

Appendix B: 3D Mathematics

The way to represent 3D space inside a 2D medium is through vector and matrix

mathematics. The following section introduces vectors, matrices, and their manipulation.

Vector Algebra

Vectors are elements that have both magnitude and direction. They are used in

Direct3D for a variety of different purposes, such as giving instruction on where light

should be pointing, what direction a plane is facing, and the how the camera is oriented.

Vector manipulation within Direct3D operates the same way as in vector algebra, such as

vector addition, subtraction, multiplication, dot product, and cross product.

Vectors in Direct3D are defined with the tail being at the origin of the local

coordinate axis (Figure B.1). Points are defined by a position vector, where the location

of the point is at the top of the vector (Figure B.1). Four-tuples are used in Direct3D to

represent vectors Equation (B-1) and points Equation (B-2). The difference between the

two is that a vector has ‘0’ in the last column, whereas points have ‘1’.

𝑣 = [𝑥 𝑦 𝑧 0] (B-1)

𝑤 = [𝑥 𝑦 𝑧 1] (B-2)

168

Figure B.1: Normal Vector (Left) and Position Vector (Right) (Luna, 2010)

Matrix Algebra

Matrices are used to perform all the geometric translation, rotation, and scaling of

vectors in 3D space. All common matrix operations can be used to manipulate vectors

and matrices, such as matrix addition, multiplication, transpose, and inverse.

Scaling

Scaling in Direct3D utilizes a 4×4 matrix as given in Equation (B-3). Scaling is

done by multiplying the vectors or points by the scale matrix, modifying the column of

the vector with the corresponding row in the matrix. Sx scales along the x-axis, Sy along

the y-axis, and Sz along the z-axis.

𝑆 = �

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0
0 0 𝑠𝑧 0
0 0 0 1

� (B-3)

169

Rotation

Rotation in Direct3D is performed relative to the origin of the world space; world

space is the rendering space with a third (z) dimension. Equations (B-4), Equation (B-5),

and Equation (B-6) below are used to rotate a vector about the x-axis, y-axis, and z-axis,

respectively. The rotation angle θ must be specified in radians.

𝑅𝑥 = �

1 0 0 0
0 cos 𝜃 sin𝜃 0
0 − sin𝜃 cos 𝜃 0
0 0 0 1

� (B-4)

𝑅𝑦 = �

cos𝜃 0 − sin𝜃 0
0 1 0 0

sin 𝜃 0 cos 𝜃 0
0 0 0 1

� (B-5)

𝑅𝑧 = �

cos𝜃 sin 𝜃 0 0
− sin𝜃 cos𝜃 0 0

0 0 1 0
0 0 0 1

� (B-6)

Translation

Translations are performed by using a 4×4 matrix with the first three columns of

the last row having a magnitude that adds to the distance in the vector. As shown in

Equation (B-7), element [4, 1], [4, 2], and [4, 3] will change the magnitude of the vector a

relative distance bx, by, and bz with respect the x-axis, y-axis, and z-axis.

𝑇 = �

1 0 0 0
0 1 0 0
0 0 1 0
𝑏𝑥 𝑏𝑦 𝑏𝑧 1

� (B-7)

170

171

Appendix C: Frame Element in ATP-Bridge

Figure C.1: Frame Element Degrees-of-Freedom (McGuire, Gallagher, and Ziemian,

2000)

The following variables are used throughout Appendix C.

𝐸 = modulus of elasticity

𝐴 = area of a frame element

𝐿 = length of a frame element

𝐼𝑥 = moment of inertia

𝑃 = internal axial load along the section

172

ELASTIC AND GEOMETRIC STIFFNESS MATRIX (MCGUIRE ET AL, 2002) :

𝐾𝑒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐴

𝐿� 0 0 −𝐸𝐴 𝐿� 0 0

0 12𝐸𝐼𝑧
𝐿3� 6𝐸𝐼𝑧

𝐿2� 0 −12𝐸𝐼𝑧
𝐿3� 6𝐸𝐼𝑧

𝐿2�

0 6𝐸𝐼𝑧
𝐿2� 4𝐸𝐼𝑧

𝐿� 0 −6𝐸𝐼𝑧
𝐿2� 2𝐸𝐼𝑧

𝐿�

−𝐸𝐴 𝐿� 0 0 𝐸𝐴
𝐿� 0 0

0 −12𝐸𝐼𝑧
𝐿3� − 6𝐸𝐼𝑧

𝐿2� 0 12𝐸𝐼𝑧
𝐿3� − 6𝐸𝐼𝑧

𝐿2�

0 6𝐸𝐼𝑧
𝐿2� 2𝐸𝐼𝑧

𝐿� 0 −6𝐸𝐼𝑧
𝐿2� 4𝐸𝐼𝑧

𝐿�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (C-1)

𝐾𝑔 =
𝑃
𝐿

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 −1 0 0
0 6

5�
𝐿

10� 0 − 6
5�

𝐿
10�

0 𝐿
10� 2𝐿2

15� 0 −𝐿 10� −𝐿
2

30�

−1 0 0 1 0 0
0 −6

5� −𝐿 10� 0 6
5� −𝐿 10�

0 𝐿
10� −𝐿

2
30� 0 −𝐿 10� 2𝐿2

15�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(C-2)

MEMBER LOAD VECTOR:

𝑃𝑚 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐹𝑥1
𝐹𝑦1
𝑀𝑧1
𝐹𝑥2
𝐹𝑦2
𝑀𝑧2⎦

⎥
⎥
⎥
⎥
⎤

 (C-3)

173

Equations for Triangular Load Fixed-End Moments and Shear (Kassimali, 1999):

𝐹𝑦1 =
𝑤1(𝐿 − 𝑙1)3

20𝐿3
�(7𝐿 + 8𝑙1) −

𝑙2(3𝐿 + 2𝑙1)
(𝐿 − 𝑙1) �1 +

𝑙2
𝐿 − 𝑙1

+
𝑙22

(𝐿 − 𝑙1)2�

+
2𝑙24

(𝐿 − 𝑙1)2�

+
𝑤2(𝐿 − 𝑙1)3

20𝐿2
�(3𝐿 + 2𝑙1) �1 +

𝑙2
𝐿 − 𝑙1

+
𝑙22

(𝐿 − 𝑙1)2
�

−
𝑙23

(𝐿 − 𝑙1)2
�2 +

15𝐿 − 8𝑙2
𝐿 − 𝑙1

��

(C-4)

𝑀𝑧1 =
𝑤1(𝐿 − 𝑙1)3

60𝐿2
�3(𝐿 + 4𝑙1) −

𝑙2(2𝐿 + 3𝑙1)
𝐿 − 𝑙1

�1 +
𝑙2

𝐿 − 𝑙1
+

𝑙22

(𝐿 − 𝑙1)2�

+
3𝑙24

(𝐿 − 𝑙1)3�

+
𝑤2(𝐿 − 𝑙2)3

60𝐿2
�(2𝐿 + 3𝑙1) �1 +

𝑙2
𝐿 − 𝑙1

+
𝑙22

(𝐿 − 𝑙1)2�

−
3𝑙23

(𝐿 − 𝑙1)2 �1 +
5𝐿 − 4𝑙2
𝐿 − 𝑙1

��

(C-5)

𝐹𝑦2 = �
𝑤1 + 𝑤2

2
� (𝐿 − 𝑙1 − 𝑙2) − 𝐹𝑦1 (C-6)

𝑀𝑧2 =
𝐿 − 𝑙1 − 𝑙2

6
[𝑤1(−2𝐿 + 2𝑙1 − 𝑙2) − 𝑤2(𝐿 − 𝑙1 + 2𝑙2)] + 𝐹𝑦2(𝐿) −𝑀𝑧1

(C-7)

174

Appendix D: Incremental-Iteration Variable Definitions

�𝐾𝑖
𝑗−1� = stiffness matrix using deformed geometry

𝑃𝑟𝑒𝑓 = reference load

𝑑𝜆𝑖
𝑗 = load ratio for the current iteration

[∆𝑖] = total displacement vector at increment i

�𝑑∆𝑖
𝑗� = iteration displacement vector at iteration j

�𝑃𝑖
𝑗−1� = total external applied force vector

�𝐹𝑖
𝑗−1� = total internal forces vector element forces at global degree of freedom

�𝑅𝑖
𝑗−1� = imbalance between external and internal force vector

𝑑𝜆𝑖
𝑗 = load ratio at the current iteration

�𝑑∆𝚤
𝚥������ = displacement vector due to reference load at iteration j

�𝑑∆𝚤
𝚥������ = displacement vector due to residual force at iteration j

�𝑑Δ𝑖
𝑗� = displacement vector at iteration j

175

Appendix E: Newmark-beta Average Acceleration (Chopra, 2006)

Average Acceleration Constant Parameter

𝛾 =
1
2

𝛽 =
1
4

1.0 Initial Calculation.

1.1 𝑢̈0 = 𝑝0−𝑐𝑢̇0−(𝑓𝑠)0
𝑚

1.2 ∆𝑡

1.3 𝑎 = 1
𝛽∆𝑡

𝑚 + 𝛾
𝛽
𝑐

1.4 𝑏 = 1
2𝛽
𝑚 + Δ𝑡 � 𝛾

2𝛽
− 1� 𝑐

2.0 Calculations for each time step i.

 2.1 Δ𝑝̂i = Δ𝑝i + 𝑎𝑢̇𝑖 + 𝑏𝑢̈𝑖

 2.2 Determine the tangent stiffness 𝑘𝑖.

 2.3 𝑘�𝑖 = 𝑘𝑖 + 𝛾
𝛽Δ𝑡

𝑐 + 1
𝛽(Δ𝑡)2

𝑚

 2.4 Solve for Δ𝑢𝑖 from 𝑘�𝑖 and Δ𝑝̂𝑖 using the iterative procedure.

 2.5 Δ𝑢̇𝑖 = 𝛾
𝛽Δ𝑡

𝛥𝑢𝑖 −
𝛾
𝛽
𝑢̇𝑖 + Δ𝑡 �1 − 𝛾

2𝛽
� 𝑢̈𝑖

 2.6 Δ𝑢̈𝑖 = 1
𝛽(Δ𝑡)2

Δ𝑢𝑖 −
1
𝛽Δ𝑡

𝑢̇𝑖 −
1
2𝛽
𝑢̈𝑖

 2.7 u𝑖+1 = 𝑢𝑖 + Δ𝑢𝑖

 𝑢̇𝑖+1 = 𝑢̇𝑖 + Δ𝑢̇𝑖

176

 𝑢̈𝑖+1 = 𝑢̈𝑖 + Δ𝑢̈𝑖

3.0 Repetition for the next step. Replace i by i + 1 and implement steps 2.1 to

2.7 for the next step.

177

References

1. al-Mokhtar, U. “Insurgents Destroy 2 Bridges in Anbar.” The Washington Post on the
Web. 18 Oct. 2009. 5 July 2012. <http://www.washingtonpost.com/wp-
dyn/content/article/2009/10/17/AR2009101700690.html>

2. American Concrete Institute (ACI 318-08) (2008). Building Code Requirement for

Structural Concrete and Commentary. Farmington Hills, MI.

3. American Association of State Highway and Transportation Officials (AASHTO).

(2002). A Guide to Highway Vulnerability Assessment for Critical Asset Identification
and Protection. Science Applications International Corporation, Washington, D.C.

4. Ayoub. A, and Fillppou, F., (2010). “Finite-Element Model for Pretensioned

Prestressed Concrete Girders.” Journal of Structural Engineering, ASCE, Volume
136, Issue 4, pg. 401-409, April 2010

5. Bentz, E. and Collins, M. P., (2001). Response-2000, Shell-2000, Triax-2000,

Membrane-2000 User Manual. Mar. 2001, 26 August 2012.
<http://www.ecf.utoronto.ca/~bentz/manual2/final.pdf>

6. Biggs, J. (1964). Introduction to Structural Dynamics. McGraw-Hill, Inc. US

7. Booch, G. (1994). Object-Oriented Analysis and Design with Applications. The

Benjamin/Cummings Publishing Company, Inc., Redwood City, California

8. Brooks, F. P. (1986). “No Silver Bullet – Essence and Accident in Software

Engineering.” IEEE Computer. Pg 10-19

9. Bruneau, M., Fujikura, S., and Lopez-Garcia, D. (2007). “Blast Resistant Bridge

Piers.” Structural Magazine, March, pg 19-21.

10. Chopra, A. K. (2006). Dynamics of Structures Theory and Applications to
Earthquake Engineer 3rd Edition. Prentice Hall.

11. Cofer, W. F., Matthews, D. S., and McLean, D. I. (2012). “Effects of Blast Loading

on Prestressed Girder Bridges.” Shock and Vibration. Vol. 19. Num. 1

12. Collins. M., and Mitchell. D. (1997). Prestressed Concrete Structures. Response

Publications. Ontario, Canada

http://www.washingtonpost.com/wp-dyn/content/article/2009/10/17/AR2009101700690.html
http://www.washingtonpost.com/wp-dyn/content/article/2009/10/17/AR2009101700690.html
http://www.ecf.utoronto.ca/~bentz/manual2/final.pdf

178

13. Conrath, E. J., et. al.. (1990). Structural Design for Physical Security State of the

Practice. American Society of Civil Engineering. Reston, Virginia.

14. Craig, I. (2000). The Interpretation of Object-Oriented Programming Languages.
Springer, London, Great Britain

15. Department of Army. (1990). Structures to Resist the Effects of Accidental Explosions

(TM 5-1300). U.S. Government Printing Office, Washington, D. C. (approved for
public release).

16. Department of Defense. (2008). Unified Facilities Criterion – Structures to Resist the

Effects of Accidental Explosions (UFC 3-340-02).

17. Department of Homeland Security (DHS). (1993). “The World Trade Center

Bombing: Report and Analysis.” U.S. Fire Administration/Technical Report Series,
USFA-TR-076, February 1993

18. Devalapura, R. and Tadros, M. K. “Stress-Strain Modeling of 270 ksi Low-

Relaxation Prestressing Strands.” PCI Journal, March-April, 1992

19. Dusenberry, D. O. (2010). Handbook for Blast Resistant Design of Building. John

Wiley & Sons, Inc., Hoboken, New Jersey

20. Faison, T. (2006). Event-Based Programming Taking Events to the Limit. Apress,

New York, NY

21. Federal Emergency Management Agency (FEMA 427). (2003). Risk Management
Series. Primer for Design of Commercial Buildings to Mitigate Terrorist Attacks.

22. Federal Highway Administration (FHWA), (2003). “Recommendations for Bridge

and Tunnel Security.” Rep. Prepared by the Blue Ribbon Panel on Bridge and Tunnel
Security, Washington, D.C.

23. Fujikura, S. and Bruneau, M. (2011). “Experimental Investigation of Seismically

Resistant Bridge Piers under Blast Loading.” Journal of Bridge Engineering, ASCE,
Vol. 16, No. 1, February 2011, pp. 63-71

24. Gannon, J. C., Marchand, K. A., and Williamson, E. B., (2006). “Approximation of

Blast Loading and Single-Degree-of-Freedom Modeling Parameters for Long Span
Girders.” Structures Under Shock and Impact IX, pg. 3-12

179

25. Garlan, D., and Perry, D. (2005). “Introduction to the Special Issue on Software
Architecture.” IEEE Transactions of Software Engineering – Special issue on
software architecture, Vol. 21, Issue 4, April 2005

26. Hendryx, R. (2012). Thesis, The University of Texas at Austin. December 2012

27. Holland, C. (2008). Blast-Resistant Design of Highway Bridge Columns. Thesis, The

University of Texas at Austin, August 2008

28. Jenkins, B. M. (1997). “Protecting Public Surface Transportation and Patrons from

Terrorist Activities: Case Studies of Best Security Practices and a Chronology of
Attacks.” MTI Report 97-4. Mineta Transportation Institute, San Jose, CA.

29. Jenkins, B. M. and Gersten, L. N. (2001). “Protecting Public Surface Transportation

Against Terrorism and Serious Crime: Continuing Research on Best Security
Practices” MTI Report 01-07. Mineta Transportation Institute, San Jose, CA.

30. Jenkins, B. M. and Butterworth, B. R. (2010). “Explosives and Incendiaries used in

Terrorist Attacks on Public Surface Transportation: A Preliminary Empirical
Examination (MTI Report WP 09-02).” Mineta Transportation Institute , San Jose,
CA

31. Kassimali, A. (1999). Matrix Analysis of Structures. Brooks/Cole Publishing

Company, Pacific Grove, CA.

32. Lafore, R. (2003). Data Structures & Algorithms in Java. Second Edition. Sams
Publishing, Indianapolis, Indiana

33. Luna, F. (2008). Introduction to 3D Game Programming with DirectX 10. Woodware

Publishing, Inc., Plano, TX.

34. Patzlaff, Q., Morcous, G., Hanna, K., and Tadros, M. K. (2012). “Bottom Flange
Confinement Reinforcement in Prestressed Concrete Bridge Girders.” Journal of
Bridge Engineering, 17(4), pg 607-616

35. Paulay, T. and Priestley, M. J. N. (1992). Seismic Design of Reinforced Concrete and

Masonry Buildings. Wiley Interscience Publication

36. Malvar, L. J., and Crawford, J. E. (1998). “Dynamic Increase Factors for Concrete.”

Twenty-Eighth DDESB Seminars. Orlando, FL

180

37. Malvar, L. J., and Crawford, J. E. (1998). “Dynamic Increase Factors for Steel
Reinforcing Bars.” Twenty-Eight DDESB Seminar. Orlando, FL

38. Mander, J. B., Priestley, M. J. N., and Park, R. (1988). “Theoretical Stress-Strain

Model for Confined Concrete.” Journal of Structural Engineering, 114(8), pg 1804-
1826

39. Matthews, D. S. (2008). “Blast Effects on Prestressed Concrete Bridges.” Thesis,

Washington State University

40. Mattock, A. H. (1979). “Flexural Strength of Prestressed Concrete Section by

Programmable Calculator.” PCI Journal, Vol. 24. No. 1, Jan.-Feb. 1979.

41. McGuire, W., Gallagher, R.H., and Ziemian, R.D. (2000). Matrix Structural Analysis

Second Edition. John Wiley & Sons, Inc. Danvers, MA.

42. Microsoft (2009), “Microsoft Application Architecture Guide 2nd Edition.” Pattern

and Practices, Microsoft Corporation

43. Miller, T. (2004), “Managed DirectX 9 Graphics and Game Programming.” Sams

Publishing, Indianapolis, Indiana.

44. National Bridge Inventory (NBI). (2011). “Count of Bridges by Structure Type.”

Excel, Retrieve February 21, 2012 from the World Wide Web.
http://www.fhwa.dot.gov/bridge/struct.cfm

45. National Research Council (NRC). (1995). Protecting Buildings from Bomb Damage:

Transfer of Blast-Effects Mitigation Technologies from Military to Civilian
Applications. National Academy Press. Washington, D.C.

46. Nawy, E. G. (2003). Prestressed Concrete: A Fundamental Approach Fourth Edition.

Prentice Hall, Upper Saddle River, NJ

47. Ray, J. C. (2006). “Validation of Numerical Modeling and Analysis of Steel Bridge

Towers Subjected to Blast Loadings.” Proc., 2006 Structures Congress, ASCE,
Reston, Va.

48. Ray, J. (2007). “Risk-Based Prioritization of Terrorist Threat Mitigation Measures on

Bridges.” Journal of Bridge Engineering, Vol. 12, Iss. 2, pp 140-146

http://www.fhwa.dot.gov/bridge/struct.cfm

181

49. Ross, B. E., Hamilton, H. R., and Consolazio, G. R. (2011). “Experimental and
Analytical Evaluations of Confinement Reinforcement in Pretensioned Concrete
Beams.” Transportation Research Record 2251, Transportation Research Board,
Washington, D.C.

50. Sammarco, E.L., et. al. (2012). “Development of a Novel Engineering Tool for

Assessing Vulnerability of Critical Highway Bridge Component Subjected to Blast.”
Munich Bridge Assessment Conference. Munich, Germany

51. Scacchi, W. (2001). “Process Models in Software Engineering.” Encyclopedia of

Software Engineering, 2nd Edition, John Wiley and Sons, Inc. New York, December
2001.

52. Tedesco, J. W., McDougal, W. G., and Ross, A. R. (1990). Structural Dynamics

Theory and Application. Addison-Wesley. Meno Park, California.

53. Thorn, A. (2005). DirectX 9 Graphics The Definitive Guide to Direct3D. Woodware
Publishing, Inc., Plano, TX.

54. Turner, J. (1980). “The Structure of Modular Programs.” Communication of the ACM,

Vol. 23, Num. 5, pg 272-277, May 1980

55. U.S. Army Corps of Engineers’ Engineer Research and Development Center
(USACE-ERDC). (2004). Bridge Explosive Loading (BEL) version 1.1.0.3.
Vicksburg, MS. (distribution limited to U.S. Government agencies and their
contractors).

56. Van Roy, P. (2009). “Programming Paradigms for Dummies: What Every

Programmer Should Know.” New Computational Paradigms for Computer Music

57. Weiser, B. and Baker, A. (2011). “A Bridge Under Scrutiny, by Plotters and the

Police.” The New York Times. Retrieve February 21, 2012 from the World Wide
Web: http://www.nytimes.com/2011/04/27/nyregion/brooklyn-bridge-was-terror-plot-
target-documents-reveal.html?ref=brooklynbridge

58. Williams, G. D. III. (2009), Analysis and Response Mechanisms of Blast-Loaded

Reinforced Concrete Columns. Dissertation, The University of Texas at Austin, May
2009

http://www.nytimes.com/2011/04/27/nyregion/brooklyn-bridge-was-terror-plot-target-documents-reveal.html?ref=brooklynbridge
http://www.nytimes.com/2011/04/27/nyregion/brooklyn-bridge-was-terror-plot-target-documents-reveal.html?ref=brooklynbridge

182

59. Williamson, E. B., Bayrak, O., Williams, Marchand, K. A., Kulicki, J., and et al.
(NCHRP 645) (2010), “Blast-Resistant Highway Bridges: Design and Detailing
Guidelines.” National Cooperative Highway Research Program Report 645,
Transportation Research Board

60. Winget, D.G, Marchand, K. A., and Williamson, E. B. (2005). “Analysis and Design
of Critical Bridges Subjected to Blast Loads”, Journal of Structural Engineering,
ASCE, Vol. 131, No. 8, pg 1243-1255

183

Vita

Joeny Bui was born and raised in Houston, Texas from two loving parents who

immigrated to the US from Vietnam. He graduated from South Houston High School

and received his Bachelor of Science in Architectural Engineering from the University of

Texas at Austin in the fall of 2008. In August 2010, he returned to school to pursue

research at the University of Texas at Austin working as a research assistant in the

Mechanics, Uncertainty, and Simulation in Engineering (MUSE) laboratory.

Permanent e-mail: joeny.bui@utexas.edu

This thesis was typed by the author.

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Thesis Outline

	Chapter 2: Background, Motivation, and Challenges
	Figure 2.1: Documented Worldwide Terrorist Attacks on Public Transportation Infrastructure (Jenkins & Butterworth, 2010)
	Terrorist Threats Against Bridges
	Figure 2.2: Percentage of Bridge Targeted in Industrialized Nation between 1980 and 2006 (Jenkins, 2001)

	Experimental Research and Current Practice
	Current Practice
	Purpose of the Research Project
	Figure 2.3: Percentage of Different Bridge System in the U.S. Inventory as of 2011 (National Bridge Inventory, 2011)

	Goal of the Software
	The Complexity of the Problem Domain
	The Challenge of Managing the Developmental Process
	The Flexibility Possible through Software
	The Problems of Characterizing the Behavior of Discrete System

	Summary

	Chapter 3: Software Architecture and Design
	Program Flow Chart
	Figure 3.1: General Structural Analysis Program Flow
	Figure 3.2: Blast-Component Structural Analysis Flow Chart
	Figure 3.3: Reinforced Concrete Column Blast-Component Structural Analysis Flow Chart
	Figure 3.4: Steel Plate Blast-Component Structural Analysis Flow Chart

	Program Paradigm
	Modular Programming
	Object-Oriented Programming
	Abstraction
	Encapsulation
	Inheritance
	Polymorphism

	Event-Driven Programming

	ATP-Bridge Paradigm
	Figure 3.5: ATP-Bridge Paradigm

	Summary

	Chapter 4: Data Structures
	Data Structure Relationships
	Nexus Assembly
	Figure 4.1: Nexus Assembly Class Model Diagram

	Load Assembly
	Figure 4.2: Load Assembly Class Model Diagram

	Structural Component Assembly
	Figure 4.3: Structural Component Assembly Class Model Diagram

	Class Naming Convention and Standard
	Applied Encapsulation
	Figure 4.4: Typical Class Notation and Layout
	Figure 4.5: Subroutine SetLocation(…) Example
	Figure 4.6: Return Function GetLocationY(…) Example

	The Role of Inheritance
	Figure 4.7: Data Storage of Sub-Class
	Figure 4.8: Sub-class Data Type Variable

	Polymorphism in Practice
	Figure 4.9: SetMesh() Subroutine Example

	Structural Component Class
	Figure 4.10: Structural Component Class Phases
	Physical Attributes and Methods
	Figure 4.11: Structural Component Class Physical Attributes and Methods Diagram
	Figure 4.12: Plate Class Overload SetGlobalDimension(…) Subroutine

	Analysis
	Figure 4.13: Structural Component Class Analysis Diagram

	User Interface and Graphics Engine
	Figure 4.14: Structural Component Class User Interface and Graphics Engine Diagram

	Load Class
	Figure 4.15: Load Class Analysis Diagram

	Nexus Class
	Figure 4.16: Nexus Class Analysis Diagram

	Additional Data Types
	Figure 4.17: Optional Data Types
	Figure 4.18: Overriding Optional Data Type StrengthInputs() Example

	Summary

	Chapter 5: Graphical User Interface and Graphics Engine
	Graphical User Interface Overall Design
	Figure 5.1: Graphical User Interface Schematic
	Figure 5.2: Graphical User Interface Collapse Navigation Control

	Navigational Control
	Tree-View Summary Control
	Figure 5.3: Tree-View Control General Information Section
	Figure 5.4: Tree-View Control Structural Component Section
	Figure 5.5: Tree-View Control Load Case Section

	Viewer Setting Control
	Figure 5.6: Viewer Setting Control

	Direct3D Graphical Environment
	Vertices and Primitives Types
	Figure 5.7: Line List Primitive Type (Miller, 2004)
	Figure 5.8: Triangle List Primitive Type (Miller, 2004)

	Vertex Buffers and Index Buffers
	Figure 5.9: Vertex Buffer and Index Buffer (Thorn, 2005)

	Graphics Engine Components
	JQB Elements
	Node Element
	Figure 5.10: Node Class Diagram

	Plane Element Superclass
	Figure 5.11: JQB Element

	Triangle Element
	Figure 5.12: Triangle Element
	Figure 5.13: Triangles Element Class Diagram

	Quadrilateral Element
	Figure 5.14: Quadrilateral Element
	Figure 5.15: Quadrilateral Element Class Diagram

	Mesh Component
	Figure 5.16: Mesh Component Class Diagram
	Figure 5.18: Triangle Prism Node Element
	Table 5.1: Triangle Prism Node Table
	Figure 5.19: Triangle Prism Triangle Element

	Table 5.2: Triangle Prism Triangle Table
	Figure 5.20: Triangle Prism Quadrilateral Element

	Table 5.3: Triangle Prism Quadrilateral Table

	Graphics Object
	Figure 5.21: Graphics Object Structure Diagram

	Graphics Engine Cycle
	Figure 5.22: Graphics Engine Flow Chart
	JQB Graphics Engine Class
	Figure 5.23: JQB Graphics Engine General Class Diagram
	Figure 5.24: JQB Graphics Engine Camera Class Diagram
	Figure 5.25: Zooming the Camera
	Figure 5.26: Panning the Camera
	Figure 5.27: Rotating the Camera

	JQB Blackboard Class
	Figure 5.28: JQB Blackboard Class Diagram Method()
	Figure 5.29: OneFrameRender() Method

	JQB Component
	Figure 5.30: JQB Component Class Diagram Properties
	Figure 5.31: JQB Component Class Diagram Methods()
	Figure 5.32: ComponentFrameRender() Subroutine Rendering Algorithm

	Summary

	Chapter 6: Prestressed Girder Model
	Figure 6.1: Bridge Destroyed in Iraq from Truck Bomb (The Washington Post, al- Mokhtar, 2009)
	Experimental Work
	Figure 6.2: Colorado Bulb-Tee Test Specimen Dimensions (Matthews, 2008)
	Figure 6.3: Test Specimen Above-Detonation Scenario (Matthews, 2008)
	Figure 6.4: Test Specimen Below-Girder Detonation Load Case (Matthews, 2008)

	Advanced Single-Degree-of-Freedom Algorithm
	Moment-Curvature Relationship
	Figure 6.5: Fiber Diagrams of the Test Specimen
	Concrete Material Model
	Figure 6.6: f’c = 8,500 psi Concrete Model Stress-Strain Curve

	Mild Steel Reinforcement Model
	Figure 6.7: 60 ksi Reinforcement Material Model

	Prestressing Strand Material Model
	Table 6-1: Power Formula Constants for the Prestressing Stress-Strain Diagram
	Figure 6.8: 270 ksi Low-Relaxation Prestressing Strand Material Model

	Dynamic Increase Factor (DIF)
	Table 6-2: Dynamic Increase Factor for Far Range
	Figure 6.9: Dynamically Adjusted Concrete Stress-Strain Curve (Department of Defense, 2008)
	Figure 6.10: Dynamically Adjusted Mild-Steel Reinforcement Stress-Strain Curve (Department of Defense, 2008)

	Layer-by-Layer Moment-Curvature Analysis
	Figure 6.11: Colorado Bulb-Tee Moment-Curvature

	Bilinear Moment-Curvature Diagram
	Figure 6.12: Bilinear Moment Curvature

	Resistance Function
	Static Analysis
	Load Spatial Distribution
	Figure 6.13: Load Distribution
	Figure 6.14: Pressure-Time Curve for Free-Air Explosion (Department of Defense, 2008)
	Figure 6.15: Blast Distribution Variation with Respect to Standoff (Department of Defense, 2008)

	Incremental-Iterative Method
	Figure 6.16: Incremental Iteration (McGuire, Gallagher, and Ziemian, 2000)
	Geometric Non-linearity
	Material Non-Linearity

	Generalized Single-Degree-of-Freedom System
	Figure 6.17: Equivalent Single-Degree-of-Freedom System
	Forcing Function
	Solving the Equation of Motion with Newmark-beta Method

	Example of Girder Model
	Girder Single-Degree-of-Freedom Model
	Figure 6.18: Pressure-Time History at Girder Center and Left/Right Edge
	Figure 6.19: Resistance Function
	Figure 6.20: Forcing Function
	Figure 6.21: Displacement/Velocity/Acceleration Time History at the Mid-Span.

	Comparison of SDOF Model with FEM Model
	Figure 6.22: Girder FEM Displacement-Time History at Mid-Span

	Summary

	Chapter 7: Summary, Recommendations, and Conclusions
	Summary of Research Program
	Snapshots of the Anti-Terrorist Bridge Planner
	Figure 7.1: Geometry Form for Prestressed Girder
	Figure 7.2: Load Form for Prestressed Girder
	Figure 7.3: Graphics Engine Rendering of Prestressed Girder

	Recommendations for Future Work
	Recommendations on Prestressed Girder Solver for Future Work

	Appendix A: Programming Glossary
	Appendix B: 3D Mathematics
	Vector Algebra
	Matrix Algebra
	Scaling
	Rotation
	Translation

	Appendix C: Frame Element in ATP-Bridge
	Figure C.1: Frame Element Degrees-of-Freedom (McGuire, Gallagher, and Ziemian, 2000)
	Elastic and Geometric Stiffness Matrix (McGuire et al, 2002) :
	Member Load Vector:
	Equations for Triangular Load Fixed-End Moments and Shear (Kassimali, 1999):

	Appendix D: Incremental-Iteration Variable Definitions
	Appendix E: Newmark-beta Average Acceleration (Chopra, 2006)
	References
	Vita

