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Large volumes of natural gas exist in tight fissured reservoirs. Hydraulic 

fracturing is one of the main stimulating techniques to enhance recovery from these 

fractured reservoirs. Although hydraulic fracturing has been used for decades for the 

stimulation of tight gas reservoirs, a thorough understanding of the interaction between 

induced hydraulic fractures and natural fractures is still lacking. Recent examples of 

hydraulic fracture diagnostic data suggest complex, multi-stranded hydraulic fracture 
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geometry is a common occurrence. The interaction between pre-existing natural fractures 

and the advancing hydraulic fracture is a key condition leading to complex fracture 

patterns. Large populations of natural fractures that exist in formations such as the 

Barnett shale are sealed by precipitated cements which could be quartz, calcite, etc. Even 

though there is no porosity in the sealed fractures, they may still serve as weak paths for 

fracture initiation and/or for diverting the path of the growing hydraulic fractures. 

Performing hydraulic fracture design calculations under these complex conditions 

requires modeling of fracture intersections and tracking fluid fronts in the network of 

reactivated fissures. In this dissertation, the effect of the cohesiveness of the sealed 

natural fractures and the intact rock toughness in hydraulic fracturing are studied. 

Accordingly, the role of the pre-existing fracture geometry is also investigated. The 

results provide some explanations for significant differences in hydraulic fracturing in 

naturally fractured reservoirs from non-fractured reservoirs. For the purpose of this 

research, an extended finite element method (XFEM) code is developed to simulate 

fracture propagation, initiation and intersection. The motivation behind applying XFEM 

are the desire to avoid remeshing in each step of the fracture propagation, being able to 

consider arbitrary varying geometry of natural fractures and the insensitivity of fracture 

propagation to mesh geometry. New modifications are introduced into XFEM to improve 

stress intensity factor calculations, including fracture intersection criteria into the model 

and improving accuracy of the solution in near crack tip regions. 

The presented coupled fluid flow-fracture mechanics simulations extend available 

modeling efforts and provide a unified framework for evaluating fracture design 
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parameters and their consequences. Results demonstrate that fracture pattern complexity 

is strongly controlled by the magnitude of in situ stress anisotropy, the rock toughness, 

the natural fracture cement strength, and the approach angle of the hydraulic fracture to 

the natural fracture. Previous studies (mostly based on frictional fault stability analysis) 

have concentrated on predicting the onset of natural fracture failure. However, the use of 

fracture mechanics and XFEM makes it possible to evaluate the progression of fracture 

growth over time as fluid is diverted into the natural fractures. 

Analysis shows that the growing hydraulic fracture may exert enough tensile 

and/or shear stresses on cemented natural fractures that they may be opened or slip in 

advance of hydraulic fracture tip arrival, while under some conditions, natural fractures 

will be unaffected by the hydraulic fracture. A threshold is defined for the fracture energy 

of cements where, for cases below this threshold, hydraulic fractures divert into the 

natural fractures. The value of this threshold is calculated for different fracture set 

orientations. Finally, detailed pressure profile and aperture distributions at the 

intersection between fracture segments show the potential for difficulty in proppant 

transport under complex fracture propagation conditions. 

Whether a hydraulic fracture crosses or is arrested by a pre-existing natural 

fracture is controlled by shear strength and potential slippage at the fracture intersections, 

as well as potential debonding of sealed cracks in the near-tip region of a propagating 

hydraulic fracture. We introduce a new more general criterion for fracture propagation at 

the intersections. We present a complex hydraulic fracture pattern propagation model 
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based on the Extended Finite Element Method as a design tool that can be used to 

optimize treatment parameters under complex propagation conditions.  
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Chapter 1.  Introduction 
  

1.1. Hydraulic Fracturing 
 

Hydraulic fracturing began in the oil and gas industry during the 1930s when 

Dow Chemical Company discovered that by applying a large enough downhole fluid 

pressure, it was possible to deform and fracture the rock formation to have a more 

effective acid stimulation (Grebe et al. 1935). The first non-acid hydraulic fracturing 

treatment for well stimulation was introduced in Kansas in 1947 on a gas well in Hugoton 

field in order to compare the new technique with the available acidization technology 

(Veatch et al. 1989). At the present time, hydraulic fracturing is extensively used to 

improve oil and gas wells’ productivity. Of the production wells drilled in North America 

since the 1950s, about 70% of gas wells and 50% of oil wells have been hydraulically 

fractured (Valko and Economides, 1995). Thousands of treatments are implemented each 

year in a wide range of geological formations which may vary from low permeability gas 

fields, weakly consolidated offshore sediments such as those in the Gulf of Mexico, soft 

coal beds for methane extraction, naturally fractured reservoirs, and geometrically 

complex structures such as lenticular formations (Adachi et al. 2007).   
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Hydraulic fracturing is a common technique not just for enhancing hydrocarbon 

production but also geothermal energy extraction (Sasaki, 1998; Berumen et al., 2000). It 

is widely used for other purposes like hazardous solid waste disposal (Hunt et al., 1994; 

Hainey et al. 1999), measurement of in-situ stresses (Hayashi et al., 1997; Raaen et al., 

2001), fault reactivation in mining (Board et al. 1992) and remediation of soil and ground 

water aquifers (Murdoch and Slack 2002). Hydraulic fractures which are naturally 

induced by pressurized fluid in the host rock are also observed in outcrops as joints 

(Pollard and Aydin, 1988; Lacazette and Engelder, 1992) and veins (Sirivastava and 

Engelder, 1991), as well as magma-driven dikes (Pollard, 1987; Rubin, 1995). Primary 

oil migration may also happen through buoyancy-driven fracture propagation through a 

phenomenon very similar to hydraulic fracturing (Jin and Johnson, 2008). 

A hydraulic fracture is induced in two phases (Weijers, 1995). It starts with 

perforating the casing and creating finger-like holes or weak points in the formation. 

Then a viscous fluid called a “pad” is pumped into the well. When the downhole pressure 

goes beyond “breakdown pressure,” a fracture initiates from the perforated interval and 

grows into the surrounding rock (reservoir). In the second phase, a slurry of fluid mixed 

with sorted sand (proppant) is injected. This slurry extends the initiated fracture and 

transports the proppant deep into the fracture. After the materials are pumped in, the fluid 

chemically breaks back to a lower viscosity mixture and flows back out of the well, 

leaving a highly conductive propped path for the flow of oil/gas to the wellbore (Veatch 

et al., 1989). This high permeability pathway is narrow, but can be extremely long. 

Typical widths of a hydraulic fracture are on the order of 0.25 in. (or less), while the 
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effective length may be 3000 feet tip to tip (Economides et al., 1993). The whole 

treatment may take place on a time-scale of tens of minutes to a few hours, depending 

upon the designed fracture size and volume of proppant to be placed. A successful 

treatment may increase the production up to 10s of times, making the technique 

economically attractive. A hydraulic fracture will grow in the direction normal to the 

smallest of the three principal stresses as it tends to open in the direction of least 

resistance. For most reservoir depths of interest in the petroleum industry, the smallest 

principal stress is in the horizontal plane, which restricts fractures to the vertical plane. 

Therefore, one may map fractures on the horizontal plane. However, an ideal model 

should include the three-dimensional aspects of the problem, the available techniques in 

the literature for three-dimensional analysis of fractures (for instance Rungamornrat et 

al., 2005) are computationally so expensive that current computers can only handle one 

or two fractures. Therefore to save the computational efforts and avoid further 

complexities, the investigation was limited to the two-dimensional analysis on the 

horizontal plane. However, two dimensional model will provide a framework for further 

developments to three dimensional analysis. 

The geometry of the induced fracture is dominated by the rock’s mechanical 

properties, in-situ stresses, the rheological properties of the fracturing fluid and local 

heterogeneities such as natural fractures and weak bedding planes. In the case of an 

isotropic and homogeneous medium, the in-situ stress state is the controlling factor on 

fracture development (Weijers, 1995). Since in most cases, reservoirs do not satisfy these 

ideal conditions, it is worthwhile to understand the effect of other factors on hydraulic 
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fractures. In this dissertation, the effect of natural discontinuities on hydraulic fracture 

development will be investigated. 

 

1.2. Hydraulic Fracturing in Naturally Fractured Reservoirs 
 

Large volumes of natural gas are stored in low-permeability fractured reservoirs 

around the world. Tight gas sandstones are part of what is known as unconventional gas, 

which also includes coal bed methane, shale gas and natural gas hydrates. Based on the 

U.S. Gas Policy Act of 1978, if the in-situ gas permeability of a reservoir is equal to or 

less than 0.1 md, it is designated as a tight gas formation. Independent of this definition, 

natural fractures are extremely important to unconventional gas reservoirs (Aguilera, 

2008) because without fractures, it is not possible to recover hydrocarbons from these 

reservoirs. Some examples of unconventional gas reservoirs are the Barnett Shale 

formation (with an estimated 2.5 trillion cubic feet exploitable gas reserved), the Mesa 

Verde formation in the Piceance basin, the Devonian carbonates in West Texas (Britt et 

al. 1994), the Devonian shale in the Antrim formation (Hopkins et al. 1998) and clay-

carbonate reservoirs in China (Jiang et al. 2006). Because of the low permeability of 

these formations and the low conductivity of the natural fracture networks, stimulation 

techniques such as hydraulic fracturing are necessary to make economic production 

possible. The low conductivity of the natural fracture system could be caused by 

occluding cements that precipitated during the diagenesis process (Laubach 2003, Gale et 

al. 2007). All the cores recovered from the Forth Worth basin in the Barnett Shale contain 
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cemented natural fractures (Gale et al. 2007). In the Delaware basin, few partially 

cemented fractures are identified in the cores, and the rest of the fractures are sealed by 

cements (Ali et al. 2008). 

The fact that natural fractures might be sealed by cements does not mean that they 

can be ignored while designing well completion processes. Cemented natural fractures 

can still act as weak paths for fracture growth. However, the presence of pre-existing 

natural fractures is not always advantageous.  

One common observation in naturally fractured reservoirs is a high leakoff rate 

during the hydraulic fracturing. In some cases, fluid leakoff in these reservoirs are 

reported to be as high as fifty times larger than the fluid leakoff in non-fractured 

reservoirs. This issue becomes more interesting with the knowledge that in non-fractured 

reservoirs the leakoff rate is dependent on formation permeability, net treatment pressure 

and fracture fluid parameters (Valkó and Economides, 1995), whereas field observation 

during hydraulic fracturing in fractured reservoirs shows that, surprisingly, leakoff in 

these reservoirs primarily depends on net treatment pressure and fracture fluid parameters 

but not formation permeability (Barree 1998, Britt et al. 1994). Historically, attempts to 

fracture wells in naturally fractured reservoirs have been unsuccessful due to high leakoff 

rates and gel damage (Palmer et al. 1991). There is a threshold for net pressure above 

which natural fractures are open. If net pressure stays below this threshold, fractures 

remain closed and do not contribute to leakoff. This mechanism makes the leakoff rate in 

naturally fractured reservoirs strongly pressure dependent. 



6 
 

A typical approach to control high leakoff rate in fractured reservoirs has been to 

pump larger pad volumes, but the washout process has not been very successful. 

Fractures may close in a different order that they were opened, so gels could be entrapped 

in the fracture networks. The remaining gels could cause damage to the reservoir 

permeability. 

New diagnostic tools developed during the last decade strongly demonstrate the 

existence of multiple fracture propagation or multi-stranded hydraulic fractures in 

naturally fractured reservoirs. Dynamic fracture mechanics indicates that only in cases 

where fracture propagation speed is comparable to the seismic velocity (more precisely, 

the Rayleigh wave speed) of the material, crack tip branching (shown in Figure 1.1) will 

occur (Freund 1990). However, field data demonstrate that hydraulic fractures propagate 

at much less speeds than seismic wave speeds (Valkó and Economides, 1995), so multi-

branched fracturing should not exist in a homogeneous, isotropic, intact rock mass.  

 

 

 

Figure 1.1: A typical view of branches as observed in Polymethyl methacrylate 
(PMMA). The main crack has propagated from left to right along the center of the 
photograph. The fracture propagation speed is about half of the Rayleigh wave speed of 
PMMA (from Fineberg and Marder 1999). 
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There is strong evidence from field data that supports the existence of multi-

segmented induced fractures. One of North America’s largest hydraulic fracturing 

operations during the 80s was conducted at Fenton Hill, New Mexico, to stimulate 

geothermal energy reservoirs. In the largest operation, 21,000 m3 of water was injected 

into jointed granitic rock at a depth of 3.5 km (Murphy and Fehler 1986). Micro-

earthquakes induced during this job were recorded with geophones placed in the wells 

that were drilled into the reservoir, as well as surface seismometers. The recorded micro-

seismic events demonstrated a pattern for the hydraulic fracture propagation. However, 

this pattern was inconsistent with conventional fracturing theories. The conventional 

theories predict failure toward the orientation that is normal to the least compressive in-

situ stresses, but in this case, the cloud of seismic events broadened in the direction of the 

minimum compressive stress. Murphy et al. (1986) argued that shear slippage along pre-

existing joints is more easily activated than conventional tensile failure, particularly when 

the difference between minimum and maximum earth stresses is large and the joints are 

aligned along the direction of the principal earth stresses, and a low viscosity fluid such 

as slickwater is injected. They concluded that “shear slippage results in local 

redistribution of stresses, which allows a branching, or dendritic stimulation pattern to 

evolve, in agreement with the patterns of micro-seismic locations (Murphy et al. 1986). 

The present day in-situ tectonic stress direction can be rotated from the time of the 

formation of natural fractures (Laubach et al. 2004). So, natural fractures are not 

necessarily aligned with the present day direction of maximum compressive stress. Thus, 

natural fractures may not be parallel with the hydraulic fracture and might be intersected 
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by the hydraulic fracture. Intersection with geological discontinuities such as joints, 

bedding planes, faults and flaws in reservoirs might render fractures non-planar and 

multi-branch. 

Fracture branching and segmentation are frequently observed phenomena in 

outcrops (Pollard et al. 1975; Delaney and Pollard 1981). Therefore, studying fracture 

branching and segmentation are not only important in production engineering, but these 

studies also broaden the knowledge about the formation mechanisms of complex natural 

fracture systems. Olson (2004) considered the issue of multiple growing fractures in the 

characterization of fractured reservoirs. However for practical purposes, complex non-

planar multi-stranded hydraulic fractures are generally modeled as single planar fractures. 

This simplification may overestimate net pressure in the fracture network, overestimate 

the propped length and width of an individual fracture and consequently increase the 

potential for early screen-outs and underestimation of fluid leak-off. In practice, such 

inaccurate conclusions may lead to a poor design of hydrofrac jobs and loss of 

productivity (Hallam and Last, 1991).  

Fracture offset (fracture diversion) and fracture branching result in a reduction, at 

least locally, of fracture width. Local fracture width reduction may cause proppant 

bridging and pre-mature screen-out. For instance, hydraulic fracturing in the Minami-

Nagoka gas field encountered premature screen-out (Sato et al., 1998). Based on their 

report, only 20% of the designed volume of proppant was placed in the reservoir. 

Fracturing pressure analysis typically attributes screens-outs to either excessive fluid 

leakoff or insufficient fracture width. However, Sato et al. did not observe excessive fluid 
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leakoff. Additionally, the extremely high net pressure (4000 psi) would imply a relatively 

wide fracture if only a single-stranded hydraulic fracture is assumed. With further 

pressure analysis, they were able to show the existence of multi-stranded fractures. 

Hopkins et al. (1998) analyzed the performance of hydraulic fracturing in the 

fractured Antrim shale in Michigan. Their microseismic imaging results described a 

cloud of fracturing events within approximately 50ft of the presumed hydraulic fracture 

tip. These measurements were validated with eight hydraulic fractures recovered in cores 

from two deviated wellbores drilled across the hydraulic fracture trend.  Despite the high 

differential stresses, they concluded that complex fracture paths are primarily controlled 

by Antrim Shale natural fractures geometry. This conclusion was in contrast with 

Blanton’s theory (Blanton, 1982), which limits natural fracture dilation to locations with 

low differential stresses. 

On the other hand, Warpinski and Teufel (1987) recognized the difference 

between the in-situ stresses as the governing factor for fracture cross-over or fracture 

diversion in mineback experiments (Figure 1.2). However, mineback experiments have 

several major differences from hydraulic fracturing, such as shallow depth and low 

confining stresses. On the other hand, it is not feasible to monitor hydraulic fractures in 

the subsurface with great precision, because of the limited access to the subsurface. 

Tiltmeters and microseismic monitoring do not have a sufficient resolution to identify 

small scale fracture complexity.  However, it is possible to gather some qualitative data 

about far-field fracture complexity from fracture pressure analyses (Cipolla et al. 2008) 

and core studies. 
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Warpinski et al. (1993) analyzed the characteristic of the core acquired from the 

Williams Fork formation of Mesaverde group in the Piceance basin, Colorado six years 

after the hydraulic fracturing treatment. They identified two sets of propped multiple-

fracture zones, which were offset by 75ft. Cores recovered from Antrim Shale of the 

Michigan Basin also contained multiple fracture zones containing sand (Hopkins et al. 

1995). These direct observations provide stronger evidence to challenge the concept of 

the conventional two planar symmetric wing models. 

 

 
Figure 1.2: Part of the hydraulic fracture (red line) exposed by mining at 
Northparkes. Note offset as the fracture interacts with a cemented natural fracture 
(by Rob Jeffrey from CSIRO website). The hydraulic fracture propagated from 
right to the left. Offset (diversion) point is demonstrated by an arrow. 
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Efforts to understand this problem are not limited to field observations and 

mathematical modeling. Lab experiments were also performed to reproduce field data 

and examine mathematical models. Lamont and Jessen (1963) performed 70 hydraulic 

fracturing experiments in six different rock types, using triaxial compression (up to 1140 

psi) with different approach angles to understand the fracture crossing phenomenon. The 

size of their samples was less than a meter. Hydraulic fractures appeared to crossover 

closed pre-existing fractures at all intersection angles. However, Lamont and Jessen 

noted that the fracture propagation speeds in their lab models were considerably greater 

than the field tests, making their results less reliable.  

Daneshy (1974), based on his experiments, argued that the hydraulic fractures 

appeared to be arrested when the natural fractures were open at the intersection point and 

appeared to cross the natural fractures when they were closed. Later, Anderson (1982) 

showed the importance of friction on hydraulic fracture growth near unbonded interfaces 

in rock. These tests were performed in Nugget sandstone and Indiana Limestone under 

uniaxial loading. The results lead to the concept of a threshold of normal stress below 

which hydraulic fracture growth is arrested by a natural fracture. They found that this 

normal stress is inversely proportional to friction between surfaces of the natural fracture. 

Blanton (1982 and 1986) performed similar experiments to generalize Anderson’s 

(1982) results for different intersection angles. He used blocks of Devonian Shale 

(12×12×15 inches) cast in hydrostone to show that a hydraulic fracture crosses over the 

pre-existing fracture only under high differential stresses and high angles of approach. He 

noted that in most cases fractures were either diverted or arrested by pre-existing 
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fractures, but he did not provide any threshold for the approach angle to predict fracture 

arrest or fracture diversion. Cleary et al. (1991) argued that fracture energy (due to its 

pressure) is high enough to open any fracture in any orientation, but they did not give any 

clear scheme or analysis for their claim. 

The complex propagation paths discussed by Warpinski (1993) lead to higher 

pressure drops, causing the drainage radius of the induced fracture become less than that 

predicted by theories for non-fractured reservoirs. However in some reservoirs, fracture 

pattern complexity is more favorable as it leads to more recovery from very low 

permeability reservoirs (Cipolla et al. 2008).  

In some papers, abnormally high net pressure has been accredited to 

simultaneously propagating multiple strands (for instance Stadulis 1995), because the 

sub-parallel pressurized fractures are trying to close each other. Cleary et al. (1994) 

considered a number of field examples in which multiple far-field fractures played a key 

role. They concluded that the pressure fall-off after the treatment is closer to the behavior 

of fall-off from multiple fractures, and a single fracture alone cannot match the data. 

A schematic illustration of the fracture intersection with a geological discontinuity 

is depicted in Figure 1.3. Due to a high stress anisotropy, the hydraulic fracture may not 

be able to re-open the natural fracture, but the shear slippage along the natural fracture 

will initiate new fractures that do not have a hydraulic connection with the main fracture 

strand and grow in the direction normal to minimum horizontal stress. Thus the effect of 

fractures on proppant transport could be severe. The new propped fracture could be kept 
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open by the friction force of the joint surfaces only. Generally, the non-planarity of the 

fracture system hinders proppant transport through the network (Warpinski 1987). 

Adverse effects of hydraulic fracturing are not limited to the high pressure drop or 

hindering proppants transport. Induced stresses by propped hydraulic fractures may close 

or reduce the aperture of open natural fractures (Palmer 1993) as schematically show in 

Figure 1.4. Induced hydraulic fractures facilitate fluid production and corresponding 

pressure drawdown, reduction of pore pressure increases effective stresses, which will 

decrease natural fractures’ openings and consequently fracture permeability (Buchsteiner 

et al. 1993). Therefore in case of pressure sensitive reservoirs, the overall permeability of 

the reservoir may decrease by hydraulic fracturing. Damage to the reservoir permeability 

could also be caused by gel remnants trapped in natural fractures (Branagan 1987, Palmer 

et al. 1991). 

 

Figure 1.3:  An example of a complex hydraulic fracture pattern growth by slippage 
along a fissure due to a high stress anisotropy. 



14 
 

Rodgerson (2000) focused more on damage mechanisms and cleanup problems as 

major challenges for hydraulic fracturing treatment in naturally fractured reservoirs. He 

recognized three major types of damages: proppant pack damage, damage to matrix 

permeability and plugging of natural fractures. However, his work does not contain any 

clear analysis or explanation of these damage mechanisms. His analysis only considered 

post-frac fall-off pressure. He suggests using improved breaker systems and low-

molecular weight polymers to avoid plugging natural fractures.  

 

 

Figure 1.4:  The hydraulic fracture, surrounded by parallel natural fractures, is 
located in the middle of this schematic picture. Some natural fractures may close 
under the pressure of the induced hydraulic fracture. σH and σh are minimum and 
maximum horizontal stresses, respectively. 
 

Considering the detrimental effects of natural fractures on hydraulic fracturing, in 

many cases hydraulic fractures were designed to reduce the fracture complexity by 
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adding some particulates to plug the small natural fractures (Britt et al. 1994, Batendburg 

and Hellman 2002). No matter how successful this approach could be, it leads to the 

neglect of the inherent advantage of these reservoirs, i.e. the presence of fractures as high 

permeability fluid conduits. 

Following the approach mentioned in the previous paragraph, the results of the 

hydraulic fracturing treatment could have a negative outcome in fractured reservoirs. To 

avoid such situations, it is necessary to review long-held assumptions such as a single 

planar fracture in classical approaches to this problem. Nolte (1987) stated that the next 

meaningful advance in hydraulic fracturing “must address the case of multiple fractures 

and slippage at joints”. 

To handle the conceptual transition from a classical planar fracture to a more 

complex fracture network and propagating multiple hydraulic fractures, it is needed to 

develop better models and theories. These models should explain the physics behind the 

interaction between the hydraulic fracture and natural fractures and incorporate other 

sides of the problem such as competition between multiple fracture tips. 

Understanding the geometry, the growth process and the interaction with natural 

fractures is important for designing, monitoring and assessing the induced fractures and 

their effects on the wellbore production. Here, the efforts were aimed at developing 

models to explain and predict these observations.  
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1.3. Hydraulic Fracturing Models 
 

Even in the most basic form, hydraulic fracturing is a complex process, not just 

because of the heterogeneity of the earth structure, and indeterminate in-situ stresses or 

rock behavior, but also because of the physical complexities of the problem. It involves 

coupling three processes: (i) mechanical deformation of the formation caused by the 

pressure inside the fracture, (ii) fluid flow within the fracture networks and (iii) fracture 

propagation. Rock deformation is usually modeled with the theory of linear elasticity. 

The fluid flow inside the fracture is usually simplified to flow along a channel by using 

lubrication theory, which is represented by a nonlinear partial differential equation that 

relates the fluid flow velocity with the fracture width and pressure gradient along the 

fracture. The fracture propagation process is usually considered in the framework of 

linear elastic fracture mechanics (LEFM) theory.  

When ambiguities such as the effect of pre-existing fractures or the effect of the 

multi-layers are added to these issues, they bring up more uncertainty and complexity to 

the problem. This problem needs more investigation concerning the effects on each of the 

processes described in the previous paragraph.  

There have been some efforts to model fully three-dimensional hydraulic fractures 

(e.g. Sousa et al, 1993 and Rungamornrat et al. 2005). But these efforts were limited to a 

few numbers of fractures due to the computational complexities of 3D problems. 

Consequently, this investigation is limited to the modeling of two-dimensional 

configurations. 
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The first simplified theoretical models for hydraulic fracturing were developed in 

the 1950s (Crittendon 1950, Harrison et al. 1954 and Hubbert and Willis 1957). The 

methods of fracture mechanics were first applied to this problem by Barenblatt (1956 and 

1962). One of the pioneering works in this era was a paper by Perkins and Kern (1961) 

who adapted the classic Sneddon (1946) elasticity plane-strain crack solution to establish 

the so-called PK model shown in Figure 1.5. Nordgren (1972) modified the PK model to 

devise the PKN model, which included the effects of fluid loss to the formation. 

Nordgren’s formulation was based on substituting the elliptic fracture opening relation 

into the lubrication equation. Khristianovic and Zheltov (1955), and Geertsma and de 

Klerk (1969) independently developed the so-called KGD (plane strain) model depicted 

in Figure 1.6. Estimates of the fracture growth rate based on simple elastic models and 

the approximate integration of Reynolds’ equation have been reviewed extensively by 

Geertsma and Haafkens (1979). Daneshy (1973) extended the KGD model for the case of 

power-law fluids, and Spence and Sharp (1985) introduced fracture toughness into the 

model. 

The PKN and KGD models differ in one major assumption: the way in which they 

convert a three-dimensional solid and fracture mechanics problem to a two-dimensional 

plane strain model. Khristianovic and Zheltov assumed plane strain in the horizontal 

direction i.e. all horizontal cross sections act independently or equivalently, which is 

equivalent to assuming that the fracture width changes much more slowly vertically along 

the fracture surface from any point on the fracture surface than it does horizontally. In 

practice it is true if the fracture height is much greater than the length or if free slip 
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occurs at the boundaries of pay zone. Perkins and Kern, on the other hand, assumed that 

each vertical cross section acts independently (Figure 1.5), which is equivalent to 

assuming that the pressure at any section is dominated by the height of the section rather 

than the length of the fracture. This is true if the length is much greater than the height. 

This difference in one basic assumption has lead to two different ways of solving the 

problem. In the case of the PKN model, the effect of the fracture tip is not considered; the 

concentration is on the effect of fluid flow and the corresponding pressure gradients. In 

the KGD model, however, the tip region plays a much more important role. 

 

 
Figure 1.5: Schematic illustration of PKN fracture model (borrowed from Adachi 
et al. 2007).The parameters l, H and w are fracture height, length and width, 
respectively. 
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Figure 1.6: Schematic picture of KGD model (borrowed from Adachi et al. 
2007). The parameters l, H and w are fracture height, length and width, 
respectively. 
 

Several different approaches have been used to solve these problems. In recent 

years, there has been a return to analytical solutions to achieve a better understanding of 

different regimes of fracture propagation. Analytical solutions are limited to very simple 

planar geometries in a homogeneous isotropic medium, but they provide insight about the 

asymptotic behavior of the pressure distribution near the fracture tips. Additionally,  the 

type of singularities verified in analytical solutions can be used for selecting the most 

appropriate test functions to obtain an optimal convergence rate in numerical solutions. A 

significant amount of research has been carried out to obtain analytical solutions for 

several cases: the zero-toughness, impermeable case (Desroches et al. 1994); the zero-

toughness, leak-off dominated case (Lenoach 1995); and the development of previous 

cases for toughness- dominated regimes (Detournay and Garagash 2003). 

These studies have shown that hydraulic fractures can be understood within a 

parametric space defined by dimensionless numbers, whose extremes are controlled by 
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toughness, viscosity, or leak-off dominated regimes. The hydraulic fracture evolves in 

this parametric space over time (Detournay 2004, Adachi and Detournay 2007). So, 

researchers were able to categorize hydraulic fracturing using the dimensionless groups 

that control different competitive processes. 

The first similarity solution for the hydraulic fracturing problem was presented by 

Spence and Sharp (1985). This solution has become a reference point for studying 

numerical solutions. The method involves self-similar (power-law) relations between the 

fracture pressure and the fracture opening itself. An object is said to be self-similar if it 

looks "roughly" the same on any scale. They expanded the solution for fracture opening 

in a Chebyshev series with unknown coefficients. Using insights from fracture 

mechanics, they presumed square-root tip asymptotics for the fracture opening. The 

pressure was then determined by integrating the elasticity equation. They utilized the 

stress intensity factor to control the propagation of the fracture. 

Following this approach, Adachi and Detournay (2002) investigated the self-

similar solution of a plane-strain hydraulic fracture problem. Their methodology was 

based on Spence and Sharp’s (1985) paper, but with some differences. Toughness was 

neglected in their solution. They assumed that there was no lag between the fluid and the 

fracture tip during fracture propagation. 

Simultaneously, some efforts were put into developing similar solutions and 

concepts for penny-shaped fractures. Since this geometry was not considered in this 

research, this part of the literature was not covered. Further information can be found in 

Adachi et al. (2007). 
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More comprehensive reviews of analytical solutions in the literature can be found 

in Advani et al. (1997), and Adachi et al. (2007). As noted earlier, the analytical solutions 

do not only provide useful benchmarks for numerical simulations. They also determine 

the type of the asymptotic behavior of the fluid pressure near the fracture tips, which can 

be used in the framework of partition unity methods(will be discussed in chapter 2) to 

solve more general problems. 

Several numerical solutions for the fluid flow-driven fracture problem have been 

proposed in the past three decades. There are essentially two main choices for 

discretizing the elasticity equations to solve the equations numerically: 1) an integral 

equation formulation such as the displacement discontinuity method (Olson 1995, Yew 

and Liu 1993); or 2) discretization of the partial differential equations via the finite 

element or finite difference methods. 

Cleary and Wong (1985) presented a boundary-element based numerical approach 

for solving the penny-shaped model. They used ring dislocations distribution to 

approximate the fracture width. Then, the resultant elasticity equation was solved by 

using Gauss-Chebyshev quadrature method, and the fluid component was solved using 

the finite difference method. 

Advani and Lee (1992) used finite element methods to discretize Nordgren’s one-

dimensional formulation. This methodology was unable to incorporate fracture 

interactions or even non-planar fracture growth. Desroches and Thiercelin (1993) 

developed a numerical model based on variational methods and on the integral equations 

approach for the elasticity equation, relating the gradient of the fracture’s width to the net 
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fluid pressure in the fracture. This method was also limited to planar fractures. Later, 

Olson (1995) used boundary element methods to simulate non-planar hydraulic fracture 

growth from highly deviated wells. 

Siebrits and Peirce (2000) presented a fully coupled method for modeling planar 

three-dimensional fluid-driven fractures in a layered medium. They used a Fourier-based 

displacement discontinuity method to generate the layer dependent influence coefficients 

matrix from the elasticity equations. In this model, the fluid equations were solved using 

a standard finite difference method. Most of the methods discussed in this section failed 

to deal with intersecting fractures or even multi-fracture systems. In order to apply their 

methods to naturally fractured reservoirs, some modifications are necessary. 

 

1.4. Modelling Hydraulic Fracturing in Fractured Reservoirs 
 

Models for hydraulic fracturing in fractured reservoirs should be established on 

the pre-existing set of fractures. It is essential to start with a realistic model for the 

geometry of natural fractures in order to produce a reasonable and realistic realization for 

hydraulic fracturing in these reservoirs. Natural fractures may be characterized through 

core and log analysis. Advanced logging techniques such as FMI (Fullbore Formation 

Micro-Imager) and EMI (Electro Micro-Imaging) may be employed to facilitate the 

determination of the existence and estimation of the average properties of natural fracture 

sets (Daveies et al. 1992, Schoenberg and Sayers, 1995). Furthermore, using techniques 

such as enhancements in pressure fall-off analysis and pre-job injection diagnostics 
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(Johnson et al., 1998), it is possible to estimate the potential impacts of natural fractures 

prior to starting a frac job. 

In the literature, fracture patterns are usually generated by random methods (e.g. 

Zhang 2002), but in nature, fracture patterns are not the product of purely random 

phenomena. For this reason, some efforts were made toward applying fracture mechanics 

to generate more realistic fracture patterns. This approach attempted to reproduce the 

same fracture spacing, length and aperture distributions (Olson, 1993). Young’s modulus 

of elasticity, subcritical crack index, mechanical bed thickness, and tectonic strains 

(and/or pore pressure) are the input parameters of the mechanical model. Olson (2004) 

has shown that fracture patterns (particularly with respect to clustering) are dependent on 

the subcritical index (SCI) for a constant strain, mechanical bed thickness, and elastic 

properties of rock. He showed that high subcritical crack indices cause fractures to grow 

as clusters where the median fracture length is low and the overall fracture intensity is 

also low. Intermediate values of SCI lead to fairly regular spacing with larger median 

lengths; very low indices lead to larger fracture lengths. After establishing a realistic 

model for natural fractures in subsurface, the next step is modeling the interaction 

between the hydraulic fracture and surrounding natural fractures. 

Jeffrey et al. (1987) used two dimensional displacement discontinuity methods for 

investigating the interaction between natural fractures and the hydraulic fracture. They 

were able to model slippage along the hydraulic fracture due to the presence of natural 

fractures. 
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Akulich and Zvyagin (2008) investigated the interaction between a growing 

hydraulic fracture and a fault in an infinite impermeable elastic medium under plane 

strain conditions. They considered incompressible Newtonian fluid for the fracturing 

fluid and the Mohr-Coulomb criterion for fault failure. For fluid flow inside the hydraulic 

fracture, they assumed zero net pressure at the front as the boundary condition. Their 

modeling did not include fracture intersections, but it gives an idea about the slippage 

along the fault and how it affects the stress intensity factors at the tip of the growing 

hydraulic fractures. 

De Pater and Beugelsdijk (2005) used the Distinct Element Method to couple 

fluid flow in fractures and deformation of the formation. It is possible to handle multiple 

fracture propagation using this method, but the fracture network geometry depends on the 

shape of the elements. Very fine elements are needed to reduce the sensitivity of the 

results to the size and shape of the elements. The elements are assumed as rigid bodies 

but the contact between elements is elastic. Determining consistent values for elastic 

contact parameters introduces further complexities into the problem. 

Lam and Cleary (1984) attempted to solve a similar problem. They modeled the 

effect of frictional interfaces (bedding planes) on hydraulic fracture growth under plane 

strain conditions, so slippage (not opening) along the natural fracture played the main 

role in this scenario (Figure 1.7). They used boundary element methods (the displacement 

discontinuity method) to address this problem. However, they assumed a constant fluid 

pressure inside the fracture. Zhang et al. (2007) incorporated fluid flow into this problem 

and solved the resultant coupled equations. 
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Figure 1.7: Schematic plan view of the hydraulic fracture approaching and 
intersecting a natural fracture is depicted. 
 

More recently, Lecampion (2008) attempted to use the Extended Finite Element 

Methods (XFEM) to solve this problem. He sought the elasticity solution via XFEM for a 

given fracture geometry with either specified pressure distribution or opening profile. 

Modeling was limited to fractures located along the element edges; the fracture 

propagation and coupling process were not addressed in Lecampion (2008). The main 

advantage of XFEM was neglected by assuming that the fractures were required to be 

aligned with the element edge. 

This area of hydraulic fracture modeling in naturally fractured reservoirs is new, 

not many researchers have worked on this subject so far. Therefore, there are few 

resources on this problem in the literature. 
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1.5. Outline of the Dissertation 
 

The main objective of this dissertation is to understand and predict the interaction 

of a hydraulic fracture with pre-existing natural fractures. Natural fractures can be 

partially or completely sealed by cements. The main interest of this study is the 

investigation of dominant factors that governing the diversion or offset of hydraulic 

fractures in the presence of natural fractures. A new mechanism for remote reactivation 

of fractures will be introduced. This study attempts to address some questions about the 

probable effects of natural fractures on the formation of multi-stranded fractures and the 

existence of the scattered seismics during hydraulic fracturing treatments. 

On the basis of this dissertation, it can be briefly stated that the goal is to 

characterize hydraulic fracture growth as a function of stress field, rock and cement 

properties and natural fractures present to be able to predict the size and orientation of 

induced hydraulic fractures. Due to the computational complexity of three dimensional 

analysis of fractures, all the analyses will be limited to the two dimensional geometries. 

The result will yield a methodology for a better understanding to map hydraulic fracture 

placed into naturally fractured rock and the mean to predict and avoid difficulties in the 

hydraulic fracturing process. 

Chapter two of this dissertation introduces the governing equations for fracture 

mechanics analysis and explains the basics of the numerical tool applied to this problem; 

the extended finite element methods (XFEM). The chapter terminates with examples to 

verify model accuracy. Chapter three will apply this methodology to treat the effect of 

natural fractures on the growing hydraulic fractures. Preliminary results for uniform 
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pressure distribution are presented. Chapter four introduces fluid flow calculation to the 

model developed in Chapter 3. Complexities involved in coupling fracture mechanics and 

fluid flow simulations will be discussed in detail. In the second part of this chapter, the 

model will be adapted to perform fluid flow calculation in the case of hydraulic fracture 

diversion into natural fractures.  

The last chapter will outline results achieved by using this model and will suggest 

further steps to develop the presented methodology. Some applications of this research 

finding will be discussed in more detail. Immediate future works to extend this project 

will be presented. 



28 
 

 

Chapter 2. The Numerical Method 

 

In this chapter, the theoretical foundation of the problems solved in the next 

chapters will be introduced. The numerical tool to simulate these problems will be 

explained in detail. Subsequently, the advantages of these methods that persuaded us to 

choose them for the purpose of this research will be discussed. 

The governing equations for quasi-static crack propagation in the strong form and 

the weak form will be presented. Based on these forms, the Extended Finite Element 

Method (XFEM) formulation will be derived. The post-processing methods for crack 

propagation calculations, especially for stress intensity factors calculations, will be 

discussed. Some important aspects were incorporated in the model to address issues such 

as crack coalescence, crack branching and complex geometry issues that arise during the 

hydraulic fracturing treatments. 

 

2.1 Introduction 
 

The investigation is limited to two dimensional methods here. The key 

simplification is that the plane strain model assumes that the fracture is infinite in extent 

in one direction. This is not necessarily a good assumption, but the presented model is a 

preliminary model testing an entirely new method, and for computational simplicity, it 
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was chosen to sacrifice the three dimensional aspects of the problem. A more complete 

model must ultimately add those three dimensional aspects back in the calculation.  

Various techniques have been proposed in the literature for dealing with the crack 

growth problem. As an example, discrete element methods (like the spring-network 

model, Curtin and Scher 1990) are very intuitive and somewhat easier to implement in 

comparison to other available methods.  However, elastic homogeneity and grid-

independent crack propagation cannot be achieved in those types of models. Boundary 

element methods (e.g. Aliabadi and Brebbia, 1993) have also been used widely in the 

fracture mechanics literature, but incorporating inhomogeneities into these techniques is 

cumbersome. Furthermore, boundary element methods generate full matrices, which 

require large amounts of memory to store, and require greater computational effort to 

solve the associated system of equations. This issue worsens in larger problems with 

many fractures. 

In the finite element framework, modeling of crack growth has been carried out 

applying various remeshing strategies in the literature (for example Martha et al. (1993), 

Carter et al. (1997), Bouchard et al. (2000) and Patzak and Jirásek (2004)), but remeshing 

is computationally burdensome, involving the transfer of data between the different 

meshes. To address this inefficiency, the extended finite element method (XFEM) was 

developed (Moës et al. 1999). In this approach, discontinuities like fractures are allowed 

to propagate independently of the mesh configuration by permitting the discontinuity to 

cross the elements. For this purpose, finite element space will be enriched by additional 

functions which are inspired from the analytical or asymptotic solution of the problem. 
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For instance, it makes it possible to embed discontinuities in the solution space. The 

enrichment is performed from node to node in a mesh by activating extra degrees of 

freedom when needed. 

XFEM has been utilized for two dimensional static and quasi-static problems. 

Strouboulis et al. (2000) used local enrichment to model holes and corners. Belytschko 

and Black (1999) applied the partition of unity enrichment for crack displacement 

discontinuity and near tip fields. The partition of unity principle provides a mathematical 

framework to enrich a finite element space with a global function while keeping the 

sparsity of the stiffness matrix (Melenk and Babuŝka, 1996). Daux et al. (2000) 

developed this method for modeling holes and intersected or branched cracks. The 

application of this technique for three dimensional cracks has been carried out by 

Sukumar et al. (2000) and Moës et al. (2002). Recent applications of this method include 

dynamic crack propagation (Réthoré, 2005) and shear band propagation (Song et al., 

2006), cohesive fracture (Asferg et al., 2007), polycrystals and grain boundaries (Simone 

et al., 2006), and dislocations (Ventura et al., 2005; Gracie et al., 2007). 

Numerical techniques such as the generalized finite element method (Strouboulis 

et al., 2001) and the element partition method (Duarte et al., 2001) are also based on the 

partition of unity principle. The partition of unity generalizes the standard Galerkin finite 

element approximation by providing a technique to embed local solutions of boundary 

value problems (or at least asymptotic behavior of discontinuities) into the finite element 

method. In XFEM, the framework of the partition of unity is used to enrich the classical 

displacement-based finite element approximation with discontinuous functions such as 
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the Heaviside function and Westergaard functions. Some of the advantages of the XFEM 

are: the symmetry and sparsity of the stiffness matrix is preserved; the crack geometry 

can be completely arbitrary with respect to the mesh; and automatic enforcement of 

continuity. 

The extended finite element (XFEM) approximation is based on the 

decomposition of the displacement field into two parts as 

EC uuu += ,   (2.1) 

where Cu  is the continuous displacement field and Eu  is the discontinuous (or the 

enriched) part. The continuous component is approximated by the classic finite element 

shape function, 

       = ( )C
I I

I S
u N x u

∈
∑ ,  (2.2) 

where S  is the set of all nodes in the domain, IN  are the shape functions and Iu  are the 

nodal unknowns. The enrichment part is given as 

      
=1

= ( ) ( )
nenr

E
J J

J S

u N x x aτ τ

ττ ∈

Ψ∑∑ % ,  (2.3) 

where enrn  is the number of types of enrichments. For instance for crack tip enrichment, 

enrn  is four (equations 2.15-2.18). τΨ  are enrichment functions, τS  is the set of nodes 

enriched by τΨ , and τ
Ja  are the unknowns associated with node J  for enrichment 

function τ . 
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The shape functions for the enrichment, JN~ , are not necessarily the same as the 

shape functions for the continuous part of displacement approximation, IN . In this work 

linear shape functions have been used for the enrichment. Linear and quadratic functions 

are utilized for the continuous part of the displacement. For the sake of numerical 

efficiency and simplicity, equation (2.3) can be rewritten as 

      ( )( ) τττ

ττ
JIJ

J

enrn
E axxxNu Ψ−Ψ∑∑

∈

)()(~=
1= S

.  (2.4) 

Note that the enrichment function is shifted by its nodal value τ
IΨ  so that the 

displacement enrichment vanishes at nodal points. To treat displacement discontinuities, 

interpolation shape functions in equation (2.4) do not need to be the same order as 

continuous part of displacement. For example, for the 6 node triangular elements, their 

midpoints are not used for the displacement enrichment. The details of τ
IΨ  functions will 

be given in the next sections. 

2.2 Governing equations 
 

Although many techniques presented here are applicable to non-linear, inelastic, 

large deformation problems, but only small linear elastic deformations are considered. 

Let Ω  be a regular body bounded by a smooth curve Γ . The boundary Γ  of the body Ω  

can be divided into uΓ  and tΓ , depending on whether the boundary conditions at a given 

location on the boundary are displacement (Dirichlet) boundary conditions ( uΓ ) or 
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tractions ( tΓ ). Let u  and ε  be the displacement and strain field respectively. Strain is 

defined as 

       us∇=ε ,    (2.5) 

where s∇  indicates the symmetric part of the gradient.  

       For traction-free cracks, the strong form of the initial boundary value problem has 

the following form 

      Ω=+ in        0, ijij bσ , 

      uon                  Γ= uu , 

      ton             Γ=⋅ tnσ ,                                                          (2.6) 

      cron             0 Γ=⋅ nσ , 

where σ  is the Cauchy stress tensor, b  the body force per unit volume, n  the outward 

unit normal vector to the boundary, u  prescribed displacement and the t  prescribed 

traction. The stress and strain are related by the linear elastic constitutive law 

     klijklij C εσ = ,  (2.7) 

where ijklC  are the components of the elasticity tensor. 

 

2.3 Weak Form Formulation 
 

Let u  be the solution for the boundary value problem (2.6), with )(uσ  the 

corresponding Cauchy stress tensor. In the absence of inertial forces, the elements of the 

stress tensor must satisfy the elastic equilibrium equation for the static case, given by 
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      Ω+ inbijij 0=,σ .  (2.8) 

This equilibrium equation is the set of two coupled second-order elliptical partial 

differential equations for the two dimensional problem. 

To build a variational solution, it is required that the trial functions u  satisfy all 

displacement boundary conditions and usual smoothness ( 0C ), 

       { }ucr uuCuuUUu Γ=Γ∈=∈ on   ,on except   , 0 . (2.9)  

The test functions vδ  are defined by 

       { }u000 on  0 ,on except   , Γ=Γ∈=∈ vUvvUUv cr δδδδ . (2.10) 

The weak form of the equilibrium equation and traction boundary condition is 

       0            ..)(:)( Uvvdtvdbdvu
t

∈∀Γ+Ω=Ω ∫∫∫ ΓΩΩ
δδδδεσ , (2.11) 

where : represents tensor products (Gonzalez and Stuart, 2008). In the case of linear 

elastic material, one can obtain the following weak form from equation (2.11), 

       0            ..)(::)( UvvdtvdbdvCu
t

∈∀Γ+Ω=Ω ∫∫∫ ΓΩΩ
δεε .   (2.12) 

 

2.4 Extended finite element approximation 
 

An important feature of crack deformation is that stress varies as the inverse of 

the square root of distance from the crack tip ( r1/ , where r  is the radial distance from 

the crack tip), and it is desirable to include this asymptotic solution in the enrichment for 

elements adjacent to a crack tip. In standard FEM using 6-node isoparametric triangular 

elements, crack-tip singularity is approximated by moving the mid-side node to the 
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quarter point, but the results are not very accurate. XFEM incorporates the asymptotic 

terms explicitly for a much more accurate solution at lesser computational cost.  

When solving crack problems using XFEM, the nodes are divided into three 

different node sets:  

N      : the set of all nodes in the discretized model;  

TIPN   : the set of nodes of all elements containing the crack tip;  

crN    : the set of nodes of all elements containing cracks but not crack tips. 

Therefore, in developing extended finite element for the crack growth problem, it is 

necessary to distinguish between elements in the vicinity of the fracture tip and elements 

that surround the remainder of the crack (see Figure 2.1) from other elements in the 

model.  

Now the solutions are set up for each node set, the displacement approximation 

for any point in Ω can be written as follows 

4

1

( ) ( ) ( )( ( ) ( ))

( ) ( ( , ) ( ))

h
I I I I I

crI N I N

k k k
I I I

TIP kI N

u x N x u N x H x H x a

N x F r F x bθ

∈ ∈

=∈

= + − +

−

∑ ∑

∑ ∑

%

%
, (2.13) 

where x  is the position vector, Iu  is the nodal displacements, IN  and IN~  are the shape 

functions for non-enriched and enriched nodes, respectively. )(xH  is a modified 

Heaviside step function given by 
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Figure 2.1: Nodal enrichment for a single crack inserted in a large elastic medium. 
Nodes with tip-enrichment are indiacted by red circles. Nodes with step function 
enrichment are shown by solid blue squares. Red squares show the location of crack tip in 
previous time-steps. 
 

⎩
⎨
⎧

>+
<−

=
0. xif           1
0 xif          1

)(xH   (2.14) 

)( IxH  in equation (2.13) is the value of the Heaviside function at node I .  

The F-enrichment terms, ),( θrF l , in equation (2.13) are the bases for the 

Westergaard field for the crack tip. The F-enrichment terms are defined in Fleming et al. 

(1997) as 

2
sin=),(1 θθ rrF ,  (2.15) 

2
cos=),(2 θθ rrF ,  (2.16) 
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θθθ sin
2

sin=),(3 rrF ,  (2.17) 

θθθ sin
2

cos=),(4 rrF ,  (2.18) 

where r  and θ  are local polar coordinate system at the crack tip. In the case that a crack 

tip is coincident with a finite element edge, it is needed to avoid linear dependencies 

between basis functions by limiting the enrichment to nodes located on the crack. 

By substituting the displacement approximation into the strain definition 

(equation 2.5); the following formula is obtained 

uBh =ε ,  (2.19) 

where  

][= 4321 b
K

b
K

b
K

b
K

a
J

u
I BBBBBBB .  (2.20) 

Noticing that indices in the equation (2.20) are varying as 1,...,I N=  , 1,..., crJ N=  

and 1,..., TIPK N= . The components of the strain displacement matrix have the following 

forms (Budyn et al., 2004) 
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and 
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By substituting the defined displacement and the strain approximation into the weak form 

solution (2.12), the standard discrete system of equations will be obtained 

extfKd = ,  (2.24) 

Where d  is the array of nodal displacements, and K  is the global stiffness matrix, 

defined as 

Ω∫Ω dBCBK
T

h= ,  (2.25) 

where C  is the elasticity tensor (equation 2.7). 

The expression for external forces, which includes cohesive forces and inside 

crack forces, is 

};;;;;{= 4321 b
K

b
K

b
K

b
K

a
J

u
I

ext
I fffffff ,  (2.26) 

where 

Ω+Γ ∫∫ ΩΓ
dbNdtNf II

t

u
I = ,                (2.27) 

( )( ) ( )( ) Ω−+Γ− ∫∫ ΩΓ
dbxHHNdtxHHNf JJJJ

t

a
J

~~= , and (2.28) 

( )( ) ( )( ) Ω−+Γ− ∫∫ ΩΓ
dbxFFNdtxFFNf K

ll
KK

ll
K

t
l

bl
K

~~=| 1,2,3,4= . (2.29) 

The essential boundary conditions can be enforced directly on the vector d in a 

similar manner to classic FEM. Additionally, the geometry of the crack system is 

represented by explicit discretization. Since cracks geometry is updated every time step 
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this process needs to be repeated. This methodology is similar to the modified level set 

method used by Sukumar et al. (2001). 

 

2.5 Element Integration 

F-enriched nodes around the crack tips are enriched with non-linear, singular 

terms (equations 2.15-2.18), and this can lead to inaccuracies in results. To remedy this 

issue, two strategies were used: 1) element partitioning to increase numerical integration 

accuracy, 2) adding extra F-enriched nodes beyond the immediate tip element. 

In XFEM, element partitioning is implemented exclusively for the sake of 

numerical integration, no additional degrees of freedom are introduced into the 

system/discrete space. Because nonlinear F-enriched terms are located in areas of high 

displacement gradient, they require higher order precision for numerical integration in 

order to prevent numerical inaccuracies. For this purpose, the elements cut by cracks are 

partitioned into sub-elements, and numerical integration is done separately within each of 

these sub-domains (Figure 2.2).  Additionally, higher numbers of Gaussian quadrature 

points for numerical integration were tried to achieve an acceptable accuracy within 

economic computational effort. Finally, 19 Gauss quadrature points were chosen for the 

numerical integration scheme. 
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Figure 2.2: Triangular partitioning of elements cut by crack for numerical 
integrations. 
 

As noted, the nodes of the elements containing the fracture tip are enriched with 

Westergaard functions, but this enrichment is not enough to obtain high numerical 

accuracy for displacement and displacement gradients (stresses) near the crack tip. It may 

lead to drastic numerical errors in partially F-enriched elements. A Partially F-enriched 

element is one for which only some nodes are F-enriched. These partially F-enriched 

elements surround the crack tip. Accuracy of results in the near-tip elements is of 

significant importance as they are used in contour integral methods to calculate the stress 

intensity factor at the crack tips that will be discussed in the next section. 

Partially F-enriched elements do not satisfy the partition of unity principle, on 

which X-FEM is built. This problem may lead to degraded convergence rate. To avoid 

this problem, tip enrichment (F-enrichment) is not only used for crack-tip elements but 
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also for all the nodes within a certain radius, fr  from the crack tip. This effect is more 

prominent in cases where the crack faces are not traction free. Since the hydraulic 

fracturing problem involves loading on crack faces, this issue is of great importance for 

the problems studied in this research. By considering the extra tip enrichment, more 

precise values for the stresses near the tips and tractions at the crack surfaces are 

achieved. There are other different approaches to avoid this issue, such as the 

discontinuous Galerkin method or assumed strain method (Gracie et al. 2008). 

Figure 2.3 shows how a large number of enriched nodes are introduced around the 

crack tip  to remove the jump in the transient elements, and thus reducing the error in 

near tip calculations. The physical interpretation of this phenomena is that the nonlinear 

behavior of displacement and displacement gradients are not just limited to the crack tip 

element but extend to a distance from the crack tip. 
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Figure 2.3: Using larger number of enriched nodes around the crack tip removes the 
jump in the transient elements and thus reduces the error in near tip calculations. 

 

2.6 Stress Intensity Factor Calculations 
 

Crack propagation analysis requires the evaluation of the parameters such as the 

energy release rate and stress intensity factors (SIF) to determine the length, velocity and 

orientation of the crack propagation. The stress intensity factor is used in fracture 

mechanics to more accurately predict the stress state ("stress intensity") near the tip of a 

crack caused by loads. In other words, the stress intensity factor is the magnitude of stress 

singularity at the crack tip (Anderson 1994). The magnitude of stress intensity factor 

depends on sample geometry, the size and location of the crack, and the magnitude and 

the modal distribution of loads on the material. The energy release rate for crack growth 
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or strain energy release rate is the change in elastic strain energy per unit area of crack 

growth. 

The well-known criteria for crack propagation are maximum circumferential 

(hoop) stress (Erdogan and Sih 1963), maximum energy release rate (Nuismer 1975), and 

maximum strain energy density criterion (Sih 1974). All these criteria predict both the 

direction of propagation and the stress at which propagation would occur. They forecast 

slightly different angles for the initial kink, but they all predict kink initiation. Because of 

the abrupt change in tangent direction at the kink points, the direction that locally releases 

the maximum energy or satisfies some other mixed mode criterion, do not necessarily 

coincide with 0=IIK  for the incipient kink (Cotterell and Rice 1980). Cotterell and Rice 

showed that Erdogan and Sih (1963) criterion is a more realistic criterion at the incipient 

kinks. Therefore, here the Erdogan and Sih (1963) criterion was used to determine crack 

growth orientation, 

( )⎟
⎠
⎞

⎜
⎝
⎛ +± 8)/(/

4
1arctan2= 2

IIIIII KKKKθ , (2.30) 

where θ  is the crack growth angle in the crack-tip local coordinate system. The formula 

(2.30) gives two directions for crack propagation; the one with positive (tensile) hoop 

stress is acceptable. 

        Several techniques have been proposed in the literature to extract stress intensity 

factors using numerical results such as obtained using finite element or boundary element 

methods. Many of these methods are based on the J-integral (Rice, 1968) or one of its 

variations such as the M-integral or the domain equivalent integral (Moran and shih, 
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1987; Li et al. 1985). The interaction integral is a popular approach for the extraction of 

stress intensity factors. This method is derived from J-integral by considering auxiliary 

fields. Both methods are discussed in detail in the next subsection. In addition to these 

methods, two other methods for stress intensity factor calculations were introduced for 

the first time in the framework of extended fintie element methods. 

The Contour Integral Method (CIM) and the Cutoff Function Method (CFM) are 

superconvergent techniques proposed by Szabo and Babuska (1988) for the calculation of 

the stress intensity factors. These methods were originally introduced in the context of the 

p-version of the finite element method (a version of the finite element methods that tries 

to optimize numerical accuracy by increasing the order of test functions), but they can be 

adapted to the partition of unity methods as well. The CIM and the CFM are called 

superconvergent methods because the associated results converge to exact values of 

stress intensity factors as fast as the strain energy converges to its exact value. These 

methods are based on the computation of a functional from the finite element solution 

and the so-called extraction function. In the CIM, only the numerical solution for 

displacements is utilized for the related functional computations. For this reason, the CIM 

is in general more accurate than similar methods. On the other hand, CFM does not 

require any information on the derivative of displacements, and in this sense its 

implementation time is shorter than for other methods. These advantages make CFM and 

CIM good candidates for the purpose of SIF calculations especially in cases, where there 

is a loading on fracture surfaces such as a fluid pressure, because they involve less 

computations.  
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2.6.1. The Interaction Energy Integral Method 

The most common way to obtain stress intensity factors is by using the J-integral 

and its variations. In linear elasticity, the general form of the J -contour integral for a 

crack in the presence of tractions on the crack faces is given by: 

dsnuJ jiijjikik
cc

)
2
1(= ,11 σδεσ −∫

−Γ∪+Γ∪Γ
.   (2.31) 

The coordinate system is centered on the crack tip with the 1x  axis tangent to the crack at 

the tip (as shown in Figure 2.4a). jn  is the jth component of the outward normal vector to 

the closed contour −+ Γ∪Γ∪Γ
cc

 , and ijδ  is the Kronecker delta which is one when 

ji =  and otherwise is zero. ,1iu is the derivative of the displacements at node i with 

respect to x1-axis. The J -integral is path independent and due to the singularity at the 

crack tip, integral (2.31) is not trivial and measures the strength of the singularity at the 

crack tip. Irwin showed that for a linear elastic material, the quantity J  is equal to strain 

energy release rate 

*

2

*

2

=
E
K

E
KJ III + ,          (2.32) 

where EE =*  for plane stress ( E  is Young's modulus) and )/(1= 2* ν−EE  for plane 

strain (where ν  is the Poisson's ratio). 

Using the divergence theorem, the equation (2.31) may be converted to a domain 

integral (Rice, 1968) as 
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dsqnudAquJ jiijjikik
cc

jjikikiijA
)

2
1()

2
1(= ,11,1,1 σδεσδεσσ −+− ∫∫

−Γ+Γ U
, (2.33) 

where q,i is the derivative of the weight function, q (shown in Figure 2.4) with respect to 

local xi-axis. Using weight function limits area integration (first integral in equation 

2.33)to the contour elements (shown in Figure 2.4) that makes this method more 

convenient for FEM purposes.  It is not possible to decompose the value of J  into the 

explicit stress intensity factors IK  and IIK  as shown in equation 2.32 in situations of 

mixed mode loading (i.e., both IK  and IIK  are non-zero). However, it is possible to 

separately extract the stress intensity factors by using auxiliary states. Consider state 1 

),,( (1)(1)(1)
iijij uεσ  to correspond to the given state of the stress and state 2 ),,( (2)(2)(2)

iijij uεσ  to 

be the auxiliary state.  This auxiliary state is generated based on the asymptotic field for 

pure mode I or pure mode II. Using superposition, the J -integral for the sum of the two 

states can be written as 

))()(( *

2(2)(1)

*

2(2)(1)
)2,1(

E
KK

E
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+
+

= .  (2.34) 

On the other hand, one may decompose )2,1(J to states (1) and (2), 
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The interaction integral is defined as 

)(2= (2)(1)(2)(1)
*

1,2
IIIIII KKKK

E
I + .                 (2.36) 

 



47 
 

 

(a)

  (b) 
 
 

Figure 2.4: (a) The contour and domain to compute the J-integral and interaction 
integral. (b) The contour around a crack tip for the contour integral calculations in the 
presented model for triangular elements. The color shows the values of the weight 
function which varies from zero (blue) to one (red). 
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Inserting the J -integral sum (2.35) into the J-integral formula (2.33) and using the 

definition (2.36) for the interaction integral results in 

 

.)(

)(=
(1)
,1

(2)(2)
,1

(1)
1

(2)(1)

,1
(2)(1)(1)

,1
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,1
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dsqnuu

dAquuI

jiijiijjikik
cc

jjikikiijiijA

σσδεσ

δεσσσ

−−

+−+

∫
∫

−Γ∪+Γ

 (2.37) 

Choosing the auxiliary state as the pure mode I asymptotic field (i.e., 0=1,= (2)(2)
III KK ), 

KI can be extracted as 

)(1,
*

(1)

2
= IMode

I IEK .                  (2.38) 

Using the pure mode II state (i.e., 1=0,= (2)(2)
III KK ), (1)

IIK  can be similarly extracted. 

This method requires the calculation of both displacement gradients and stresses, which 

makes the process lengthy and time-consuming. 

 

2.6.2. Displacement Interpolation Method 

A simpler and computationally less expensive way to calculate stress intensity 

factors is to compare the crack tip stress or displacement field with the asymptotic forms. 

The displacements on a line ahead of the crack tip )=( πθ  are given by (Anderson, 1994) 
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,  (2.39) 

which implies that displacements near the crack tip depend on SIF.  

The crack opening displacement (COD) can be extracted directly from equation 

(2.13) by subtracting displacements of the fracture surfaces from each other 

II
WI

II
WI

h NbrNau ~2~2=][ ∑∑
∈∈

+ .  (2.40) 

The above equation gives COD for both linear and quadratic elements. The 

accuracy problem of this method deteriorates in the case of multiple fracture tip 

interaction, and led us to neglect this method and resort to other available methods. 

Later, formula (2.40) is used to calculate fracture width for solving fluid flow 

equation in Chapter 4. 

 

2.6.3. The Cutoff function Method (CFM)  

The same extracion functions are used in the cutoff function method and contour integral 

methods. The so-called extraction functions for mode I and mode II are defined 

respectively as (Szabo and Babuska, 1991) 

3 1 5( ) cos cos1 2 2 2 2=
3 1 52 2 ( )sin sin
2 2 2 2

I kB
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θ θ

θ θπ

−
−

⎡ ⎤− +⎢ ⎥
⎢ ⎥
⎢ ⎥− + +⎢ ⎥⎣ ⎦

Iv  (2.41) 
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and 

1 1 5( )sin sin1 2 2 2 2=
1 1 52 2 ( )cos cos
2 2 2 2

II kB
G r k

θ θ

θ θπ

−
−

⎡ ⎤− + −⎢ ⎥
⎢ ⎥
⎢ ⎥− − +⎢ ⎥⎣ ⎦

IIv , (2.42) 

where )1/(2 kGBB III +−== −− , G being the elastic shear modulus and k is v43− for 

the plane strain condtion and )1/()3( vv +−  for the plane stress condition. The extraction 

function for each mode is defined as the negative of the eigenvalue of the asymptotic 

expansion of the stress field associated with that mode. Derivation of these equations can 

be found in Szabo and Babuska (1991). These functions do not have finite strain energy 

in any arbitrary domain Ω  containing the crack tip (shown in Figure 2.5). However, they 

have finite strain energy in donut-shape subdomains, *Ω , which does not contain the 

fracture tip (Figure 5).  The local character of the extraction function is preserved around 

the crack tip hence )(rφ  is equal to 1 inside the inner ring (Figure 5) and is zero out of 

the exterior ring, 

( , ) ( ) ( , )
( , ) ( ) ( , )

I I

II II

w r r v r
w r r v r

θ θ

θ θ

− −

− −

= Φ

= Φ
.  (2.43) 

The cutoff function is defined by (Szabo and Babuška, 1991) 
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Figure 2.5: Coordinate systems and integration contours for superconvergent extraction 
methods. 
 

The function Ф(r) varies smoothly from 1 to 0 between ρ1 and ρ2 , and its derivative is 

zero at these points. 

By applying boundary conditions on the corresponding tractions, it is possible to describe 

the stress intensity factors as 
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where 3
ip  and 3

ip  are prescribed tractions on crack faces 3Γ and 4Γ (shown in Figure 

2.5), respectively. It is important to note that  P3 and P4 are vectors with both normal and 

shear components. In the above equations, )(w
kT  is the k-th component of the traction 

vector corresponding to displacement w and defined by 

j
u

ij
u

i nT )()( σ= .  (2.47) 

        It can be seen that equations (2.45) and (2.46) unlike equation (2.37) do not require 

calculating stresses or displacement derivatives. That means fewer computations and 

faster calculation of stress intensity factors. 

  

2.6.4. The Contour Integral Method (CIM)  

The Contour Integral Method (CIM) is another superconvergent extraction 

method used in this research. This class of methods is based on developing and 

computing a functional from finite element solutions. The functional can be a stress at a 

point or a stress intensity factor. These methods were originally developed by Babuŝka 

and Miller (1984) based on the extraction functions introduced in (2.41) and (2.42). The 

derivation process is simillar to CFM, but no filter functions, such as Ф, will be 

introduced. The details for derivation can be found in Pereira and Duarte (2006). The 

final formulae are 
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        CIM have the same advantages that CFM have over J-integral methods. It means 

that it does not require computing displacement derivatives or calculating stresses. What 

makes CIM more attractive than CFM is the fact that it is only necessary to calculate a 

contour integral rather than area integrals. This difference can save CPU time without 

loosing accuracy, as the two methods produce results with comparable accuracy.  

 

2.7. Fracture Coalescence 
 

Crack coalescence can introduce difficulties in the numerical implementation of 

the presented model, and thus some special conditions or procedures need to be defined 

for approaching and intersecting crack tips (Figure 2.6). When the distance between a 

growing crack tip and a piece of another crack is less than the minimum admissible crack 

length increment, the cracks are considered to be intersected. The tip enrichment must be 

removed from the element containing the intersection point but there is still a need for a 

step function enrichment representing the crack body. Consequently, a new modified step 

function enrichment must be added to the elements at crack intersections. 

  When two cracks are joined, the crack tip enrichment of the approaching tip is 

removed. By using the sign distance function (which is equal to +1 on one side of the 

fracture and -1 on the other side of the fracture) of the pre-existing fracture (master crack) 

)(1 Xf  and approaching crack (minor crack) )(2 Xf , the signed distance function (step 
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function) of the approaching crack is modified (see Figure 2.7). Three different 

subdomains will be created: 0)<0,<( 21 ff , 0)>0,>( 21 ff  and 0)<0,>( 21 ff . The 

signed distance function of the minor crack of a point X will be modified as: 

( )( ) ( )( )
( )( ) ( )( )

1 1 1 J 1

2 2 1 J 1

         f (X ).f (X) > 0
( ) =

         f (X ).f (X) < 0
J

J

H f X H f X
J X

H f X H f X

⎧ −⎪
⎨

−⎪⎩
 (2.50) 

where JH  is a point located on the side of the master crack on which the minor crack 

does not exist. The function )(XJ  models that the approaching crack 2 is arrested on the 

other crack 1. The displacement in the element containing the intersection is 

 

 

Figure 2.6: The junction of two cracks occurs when one crack approaches and eventually 
touches the other. The tip enrichment of the approaching crack is removed after the two 
cracks junction, and the connection of two cracks is modeled by a junction enrichment 
function J (black circle nodes). The enrichment for the nodes whose supports are cut by 
two or more discontinuities is explained in the text. 
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Since enrichment of the crack intersections requires higher nodal degrees of 

freedom, the finite element code’s data structure should be adjustable to this issue. In 

addition, the preprocessing components should be able to identify crack intersections to 

be able to assign the appropriate type of enrichments. 

 

 

Figure 2.7: The signed distance functions for minor (Figure a) and major (Figure b) 
fractures. The minor fracture is the fracture joining an existing fracture. The new signed 
distance function for the intersection is shown in part c. 

 

It is notable that it is required to avoid the creation of a rigid body mode by 

preventing cracks to intersect each other twice. If two cracks are already intersected or 

intersected to common cracks, they cannot be joined again because it will lead to 
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instability due to the loss of the constraint. In such cases, the approaching tip is 

deactivated for further growth. Figure 2.8 shows a potential case, which may lead to a 

double intersection in the next steps, unless one of the tips freezes. 

 

 

Figure 2.8: Two approaching cracks before intersection. 

 

2.8. Convergence Test 
 

The XFEM method described above has been implemented in Matlab-based code. 

The convergence and discretization error are tested by several examples. To check the 

solution convergence, a measure should be defined. This measure also indicates the 

magnitude of the discretization error. It is possible to use stress intensity factors as a 

measure for the solution convergence, but stress intensity factor calculations may involve 
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some additional inaccuracy, in addition to that, it provides information about near crack 

tip accuracy not the whole domain. For this purpose, the normalized energy error norm is 

used. The normalized energy error norm is computed by 

( )Energy error =
( )

hW
W
ε ε
ε
− ,  (2.48) 

where W is 

2
1

::
2
1=)( ⎟

⎠
⎞

⎜
⎝
⎛ Ω∫Ω dW εεε C ,  (2.49) 

Where C is the elasticity matrix,ε  is the exact strain field and hε  is the approximate 

strain field computed using the finite element solution. In case no analytical solution is 

available, it is possible to use total elastic energy to measure the convergence rate and 

posteriori error. 

 

2.10. Numerical Examples 
 

To validate the accuracy of the model, numerical results have been compared to 

examples of available analytical solutions in the literature. Additionally, using the 

methodology introduced in the previous section, the convergence of results for different 

cases are compared to each other. Crack opening displacements, the stress intensity 

factors and the energy error are calculated and compared with analytical or bench mark 

solutions available in the literature. The results of linear and quadratic XFEM are also 
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compared. Finally, results of different techniques for stress intensity factors are compared 

and discussed.  

The first example is an infinite plane containing a crack with length 2a under 

uniform remote stress field, σ . This problem has a closed form stress solution 

(Westergaard 1939) of, 

2 '
= '

'

x I I II II

y I I II

xy I II II

ReZ y ImZ ImZ y ReZ
ReZ y ImZ y ReZ

y ReZ ReZ y ImZ
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′
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⎧ ⎫ − +⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ + −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪− −⎩ ⎭ ⎩ ⎭⎩ ⎭

, (2.50) 

where (Irwin 1957, 1958, Paris 1965 etc) 
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and iyxz += . The closed form displacement field is 
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where β  is defined as 
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⎨
⎧

+
−
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=
ν
ν

β .  (2.54) 

Westergaard’s solution is used to calculate displacements at the boundaries of the model, 

then the calculated displacements are applied as boundary conditions in order to generate 

results for an infinite plane. Using this strategy, the stress intensity factors (SIF) 
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calculated by the XFEM code should not depend on the size of the model and should be 

the same as SIF for the crack in an infinite plane.  

The accuracy of displacement results for the XFEM implementation were 

examined using linear and quadratic elements in the mesh (Figure 2.9). For the quadratic 

element cases, the size of enrichment area was varied as well using hrf 5.1=  and 

hrf 5.2= , where h is the characteristic size of the elements (roughly, h is square root of 

element’s area divided by two). This was done to evaluate the sensitivity of results with 

respect to the the size of enrichment area. The results show close agreement between all 

methods and the analytical results, but the quadratic elements with larger enrichment area 

( hrf 5.2= ) indicates the best agreement. Therefore, the rest of the tests were executed 

with the quadratic elements. Using quadratic elements improves the accuracy of the 

fracture opening profile, but there are still small purturbations in transient elements. 

In Table 2.1, the effect of the radius of tip enrichment on the accuracy of resultant 

stress intensity factors were shown. The values shown for KI are normalized with respect 

to the analytical solution. Larger enrichment radius leads to smooth displacement fields 

around the crack tip, thereby improving accuracy of stress intensity factors. 

 

rf KI 
1.00 h 0.945102
1.50 h 0.977467
2.50 h 0.983202

Table 2.1: The effect of the radius of tip enrichment on the accuracy of the calculated 
stress intensity factors. 
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In Figure 2.10, different methods for stress intensity factor calculation are 

compared with each other. As noted, CIM and CFM have almost the same accuracy, but 

due to the computational simplicity of CIM, this method is chosen for most of the 

simulations presented in chapter 3 and chapter 4. 

The error in energy (equation 2.48) is plotted for linear and quadratic XFEM in 

Figure 2.11. While the accuracy of quadratic elements is greater for crack opening 

displacements and J-integral values, the rate of the convergence is actually less than the 

case with the linear elements. This behavior, which is probably due to the singularity at 

the crack tip, has also been reported by Stazi et al. (2002). Figure 2.12 shows the 

convergence of the J-integral, which is proportional to the convergence of stress intensity 

factors at the tip. J-integral and stress intensity factors cannot be a good measure for 

convergence studies of the problem, because the methods for extracting these values add 

more error into the calculations. However, using CFM, more accurate results were 

obtained for stress intensity factors compared to the J-integral and inteaction integral 

method. 

The case with multiple fractures growing under uniform far-field tension is shown 

in Figure 2.13. In the case where multiple fracture tips are propagating simultaneously, 

the crack tip with the greatest stress intensity factor will propagate for a distance equal to 

the pre-determined length increment. Other tips will propagate a distance proportional to 

the magnitude of their stress intensity factors. 
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Figure 2.10: Different methods for stress intensity factor calculations are 
compared. 
 
 

 

 Figure 2.11: Energy error rates for linear and quadratic elements are shown. 

 



63 
 

 
Figure 2.12:  J-integral (energy release rate) error is plotted versus the number of 
nodes (N) for linear elements. 

 

 
Figure 2.13: Modelling multiple crack propagation in XFEM. The specimen is 
under uniaxial tension in the vertical direction. 
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For the case of a pressurized crack in an infinite plane, the Westergaard functions 

are 

.0=)(

,
)/(1

=)(
2

zZ
za

zZ

II

I σσ
−

−   (2.55) 

Despite different stress fields, it can be shown by superposition that the values of stress 

intesity factors are the same as the last example. 

In the hydraulic fracturing problem, fracturing fluid applies pressure as a 

distributed load on the fracture walls. It is of great importance to have accurate results for 

traction at the fracture walls. In the case that only tip elements are enriched with tip 

enrichment functions, it is not possible to honor the same traction at the fracture walls, 

where the traction is supposed to be equal to the applied pressure. In this situation, 

several jumps in traction may form along the fracture (Figure 2.14 and Figure 2.15). To 

avoid this problem, the radius of tip enrichment is increased to 2h (where h is the size of 

elements). But some small jumps may still exist that can be dissolved by mesh refinement 

in the vicinity of the fracture tip (Figure 2.16). 
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Figure 2.14: Stress discontinuities in transient element, due to the lack of satisfying 
partition of unity principles in these elements, is compared with analytical solution (in 
pink).Pressure inside the fracture is 1000, and there is no far field stress. 
 
 

 

Figure 2.15: Effect of the radius of tip enrichment on the accuracy of traction and normal 
stress distribution. 
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Figure 2.16: Effect of mesh refinement (in the presence of r-refinement) on the accuracy 
of traction and normal stress distribution. 

 

Figure 2.17 shows the geometry of two intersected cracks. The crack opening 

profile for the minor crack is plotted in figure 2.18. There is a stress singularity at the 

intersection point; however, the order of this singularity, which will be discussed in 

chapter 3, is less than the fracture tip singularity. Therefore, the stress singularity at the 

intersections may cause some inaccuracy that will be decreased by decreasing the size of 

the elements near the intersection point. The effect of mesh refinement on the accuracy of 

the results is noticeable in this problem. Figure 2.19 shows a typical mesh refinement 

near the intersection points. The results were compared with results of ANSYS 

(commercial finite element package) to check the accuracy of results.  
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Figure 2.17: Nodal enrichment at a normal crack intersection. Four nodes (red 
solid circles) around the intersection point are enriched with the modified step 
function in equation (2.50). 

 

Figure 2.18: The crack opening profile for the minor crack of the intersected 
crack system shown in Figure 2.17. It can be seen that the results of the refined 
mesh shows a good agreement with ANSYS results (red continuous line). 
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Figure 2.19: Example of mesh refinement near the points where fracture 
orientation makes abrupt changes at A and B. 
 

         The XFEM code is designed to handle multiple crack growth problems. For 

instance, Figure 2.20 shows the growth of two initially parallel fractures under the effect 

of remote tension, where two cracks evolve into an en-echelon geometry. In the case of 

multiple fractures, several fracture tips could be eligible to grow, but the length of the 

growth will be proportional to their associated stress intensity factors. 
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 Figure 2.20: Two parallel fractures are growing under remote vertical tension. 

 

2.11 Conclusion 
 

In this chapter, the basis of the Extended Finite Element Methods (XFEM) for a 

general fracture propagation problem is explained. Methods for incorporating the near 

crack tip enrichment and the step function  in the framework of  extended finite element 

for linear and quadratic elements are described. The rate of convergence for these 

elements are compared to each other. The crack geometry is approximated by a signed 

distance function, which is a simplified version of the level set method. A new 

generalization for the signed distance function is introduced to incorporate fracture 

junctions. The new fracture junction function involves less degrees of freedom in 

comapre to the junction function introduced in Budyn et al. (2002). It was found that the 

effect of mesh size near the intersection point is crucial for the accuracy of results. So, 
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local mesh refinement capability is also added to the XFEM model to enhance numercial 

accuracy at the fracture junctions. 

The CIM and CFM superconvergent methods are used for SIF calculations. It is 

the first time that these methods were applied in the XFEM framework. It was found that 

these methods give more accurate results in comparison to common techniques such as J-

integral and interaction integrals. In addition, these methods are computationallt less 

expensive in compare to the other methods. To dissolve the inaccuracy caused by 

partially enriched elements, a larger radius for crack tip enrichment is used. This issue 

was crucial for accurate calculation of tractions and diplacement gradients near the 

fracture tip, because these items require more accuracy to achieve more precise results for 

SIF calculations.  

Based on the concepts discussed, a computer code was developed that 

incorporates all the mentioned capabilities. Some modifications were also introduced to 

the XFEM model to facilitate handling the problems that will be discussed in the next 

chapters. The implementation was limited to six node triangle elements, but it can be 

developed to quadrilateral elements. At the end of the chapter, some numerical examples 

were implemented to demonstrate the robustness and accuracy of the model. 
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Chapter 3. Interaction Between Hydraulic Fractures 
and Natural Fractures  
  

3.1. Introduction 

Hydraulic fracturing is one of the main stimulating techniques to enhance 

recovery from tight naturally fractured reservoirs.  In many regions, the orientation of 

current in-situ stresses has not changed from the time of the formation of the natural 

fractures (Laubach et al., 2004). Consequently, the hydraulic fracture is likely to be sub-

parallel to the fractures with which it interacts.  In other regions the natural fractures are a 

result of a totally different stress regime than the present day, so the natural fractures may 

be oblique or orthogonal to the hydraulic fracture path. 

The Barnett Shale is an example of a naturally fractured gas formation that has 

recently generated great interest with regard to complex hydraulic fracture response.   It 

is a laminated silicious mudrock with carbonate concretions (Loucks and Ruppel, 2007), 

where natural fractures are common. The fractures typically have narrow apertures (less 

than 0.05 millimeters) and are generally sealed by calcite (Gale et al. 2007) at least those 

found in cores. The origin of these opening-mode fractures could be tectonic paleostress, 

differential compaction, local effects of folding or major faults and sag features 
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associated with underlying karsts. Commercial production without stimulation has been 

achieved in a small fraction of shale wells that intercept natural fractures (Curtis, 2002). 

In most other cases, successful shale-gas production requires hydraulic fracturing to 

improve wellbore-to-natural fracture system communication, which eliminates the high 

near-wellbore pressure gradient. Additionally, coring has shown that hydraulic fractures 

have been diverted along and have propped pre-existing natural fractures (e.g. Hopkins et 

al., 1998 and Lancaster et al. 1992). Therefore, understanding the geometry and the 

growth process of hydraulic fractures and their interaction with natural fractures is 

important for designing, monitoring and assessing the induced fractures and their effects 

on the wellbore production. 

Micro-seismic data collected during hydraulic fracture treatments for Barnett 

Shale wells reveals a complex geometry, where hydraulic fractures may propagate as 

multiple segments with different orientations influenced by pre-existing fractures, which 

lead to a cloud of epicenters. Although micro-seismic mapping provides insights on the 

interaction of hydraulic fracturing with natural fracture systems and stress regimes 

(Yingping et al. 1998), the phenomenon behind the scattered epicenters observed during 

fracture jobs are not fully explained (Rutledge and Phillips, 2003). Waters et al. (2006) 

provided a map (Figure 3.1) of the microseismic events generated during a staged 

hydraulic fracturing treatment. The microseismic does not show a narrow band 

perpendicular to the minimum horizontal stress, but there is a huge region of affected 

rock volume, extending hundreds to thousands of feet along the expected hydraulic 

fracture direction (parallel to the orientation of maximum horizontal stress). The cloud 
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also extends hundreds of feet in the orthogonal direction. Based on the evidence of 

complex fracture geometry, extended finite element method (XFEM) was used to 

investigate the mechanics of this process. 

 

 

Figure 3.1:  Map of the microseismic events generated during a staged hydraulic 
fracturing treatment, from Waters et al. (2006), shows the orientation of 
maximum in situ stress, σH and the orientation of expansion of microseismic shear 
events. 
 

Additionally, the apparent toughness of the earth as seen by a hydraulic fracture 

can be higher than laboratory values because of the presence of natural fractures in the 
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near tip region. Delaney and Pollard (1981) considered a similar problem for the effect of 

pre-existing joints (or simply flaws) in the fracture process zone on apparent fracture 

toughness for en echelon dike propagation. Germanovich et al. (1998) followed the same 

analogy to model multi-segmented (or finger-like) hydraulic fractures. Olson and Pollard 

(1989, 1991) studied the interaction of propagating natural fractures and their cumulative 

effects on reservoir characterization. However, in most of these studies all fractures are 

open, already pressurized and actively propagating. 

The reason for the existence of apparent toughness is the presence of the 

debonded naturally fractures, which causes near tip stress redistribution. This 

contribution is rather similar to plastic deformation at the crack tip of a metal. Although it 

looks counterintuitive, similar phenomena have been observed in single phase 

polycrystalline materials for which the fracture energy is many times that of a single 

crystal (Hutchinson, 1990). The configuration with highest resistance is the configuration 

that minimizes the maximum energy release rates at all the crack tips involved in the 

interaction. Obviously, the outcome of such a configuration provides insight to the 

maximum amount of toughness increase that can happen due to the presence of natural 

fractures.  

Here, the goal is explaining these contradictory outcomes. The purpose of this 

chapter is to demonstrate how natural fractures in naturally fractured reservoirs could be 

influential on hydraulic fracturing treatment efficiency, and the resulting gas production.  

Three possibilities might occur during the hydraulic fracturing of naturally 

fractured reservoirs (Figure 3.2). First, the natural fractures may have no influence and 
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the hydraulic fracture will propagate in a direction parallel to the maximum horizontal 

stress, as expected in the classic sense. This may be a result of high cement strength in 

the natural fractures (comparable to matrix strength), unfavorable natural fractures 

orientation, or a fracturing pressure that is not high enough to overcome the normal stress 

perpendicular to the natural fracture. In the second scenario, once the hydraulic fracture 

intersects the natural fracture, the hydraulic fracture is arrested and the fluid is completely 

diverted into the natural fracture system. The natural fractures will open if the energy of 

the growing hydraulic fracture is large enough to debond (re-open) fracture cements or if 

the shear stresses are large enough to overcome the friction between fracture surfaces. In 

the third scenario, both the newly formed hydraulic fracture and the natural fractures will 

interact and intersect in a complex manner. Debonding can also take place ahead of the 

primary crack before the fractures intersection (Figure 3.3). The growing fracture exerts 

large tensile and shear stresses ahead of and near the tip. These stresses can be large 

enough to debond or shear the sealed natural fractures. So in the first series of events 

(Figure 3.2), the hydraulic fracture propagates all the way into the natural fracture before 

the interaction occurs. In the other case, the natural fracture starts to open/shear or 

propagate before the hydraulic fracture arrives because of near-tip stress concentrations. 

If this happens, it may even divert the growing fractures into double-deflection in the 

natural fractures. In this scenario the natural fracture may stop (arrest) the growing 

hydraulic fracture in the case of high stress anisotropy.  

The properties of fracture cements are distinct from those for intact rock. 

Depending on the cement material (and fracture) properties, the pre-existing fractures 
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may act as a weak path or a barrier for further crack propagation. This forms a 

competition between sealed pre-existing cracks and the intact matrix for fracturing 

(Figure 3.4). 

 

 

 

Figure 3.2: Possible scenarios at normal intersection of a hydraulic fracture and a natural 
fracture. 
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(a)  (b) 

Figure 3.3: Schematic illustration for debonding induced by the approaching crack, (a) 
induced by tensile failure, and (b) induced by shear failure. 

 

 

 

Figure 3.4: Intersection of Hydraulic fracture with closed cemented fracture. Two 
potential growth paths have been shown in red. 
 

The methodology presented in this chapter does not incorporate the fluid flow part 

of the problem. The main concentration is on the fracture mechanics aspect of the 

problem. The fluid flow communication between hydraulic fracture and natural fracture 

is accomplished by extending the uniform pressure boundary conditions along the 
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hydraulic fracture to all intersected and reopened natural fractures. This is equivalent to 

assuming a zero-viscosity fluid as done in Olson (2008). 

 

3.2. Analytical results 

Attention here is mainly focused to the interaction between the hydraulic fracture 

and one or two natural fractures. A rational for limiting the investigation to one or two of 

the closest fractures is the work of Montagut and Kachanov (1988) on large arrays of 

interacting microcracks. Their calculations suggest that locations of the nearest 

microcracks largely determine whether shielding or anti-shielding happens and details of 

the distribution of microcracks outside the tip region is less important. 

Fracture interaction was examined by looking at the analytical results for stress 

around the tip of a pressurized hydraulic fracture.  The normal and shear stresses for a 

uniformly pressurized crack of length 2a are (Pollard and Segall, 1989) 
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where r and θ are local polar coordinates at the crack tip (Figure 3.5), xxσ  and yyσ  are the 

normal stresses parallel and normal to the crack, respectively and xyσ is the shear stress. P 

is the pressure inside the crack.  
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Figure 3.5: The geometry of a pressurized crack in an infinite plate. 

 

The cemented natural fracture is not actually included in the analysis – the 

stresses along the location of a hypothetical crack are simply calculated. The shear and 

normal tractions induced on the cemented crack lying parallel to the hydraulic fracture is 

plotted in the Figure 3.6. Only the part of the natural fracture that is very close and ahead 

of the hydraulic fracture tip is under tensile stress (from -0.070 toward ahead, where the 

distance between fractures is 0.25), otherwise the hydraulic fracture exerts additional 

compression on the natural fracture (behind the hydraulic fracture tip).  The shear traction 

peaks slightly behind the hydraulic fracture tip at -0.04 with a right lateral shear sense 

(positive), while ahead of the tip the shear sense is left-lateral but much smaller in 

magnitude.  These results indicate that it is most likely to get opening mode fracture 
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growth initiated ahead and to either side of the tip of an approaching hydraulic fracture.  

Induced shear is more likely where shear stress magnitude peaks behind the tip, where 

the induced normal stress is slightly tensile. Both are conditions that would promote slip.  

The shear-induced slip may not result in additional fracture propagation, but it may 

generate microseismic events that can be used to map the passage of the hydraulic 

fracture tip through the rock mass. 

For the case where the natural fractures are orthogonal to the hydraulic fracture 

path (the case for the Barnett Shale), the shear and normal tractions exerted on the sealed 

cemented crack lying normal to the hydraulic fracture is plotted in the Figure 3.7. The 

hydraulic fracture extends from west to east while the natural fracture runs from south to 

north. Only the part of the natural fracture that is within a specific radius from the 

hydraulic fracture tip is under tensile stress (in this example for the part (a), it is extended 

from -3.9 to 3.9), however, the length of tensile zone is much larger than the case of 

parallel fractures discussed in the previous example. This observation suggests more 

successful results of hydraulic fracturing in reservoirs that natural fractures are 

orthogonal rather than parallel to the orientation of maximum horizontal stress. The shear 

traction peaks is slightly offset with respect to the hydraulic fracture tip at x=2.0 with a 

right lateral shear sense (positive).  These results indicate that it is most likely to get 

opening mode fracture growth initiated ahead of the tip of an approaching hydraulic 

fracture.  Induced shear is more likely where shear stress magnitude peaks behind the tip, 

where the induced normal stress is slightly tensile. Both conditions would promote slip. 
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Figure 3.6: The shear and normal tractions (negative, if compression) exerted on the 
closed cemented fracture is plotted by blue and green lines. The origin for the x-axis is 
the closest point of the natural to the hydraulic fracture shown in the legend.  

 

The next stages of fracture propagation after debonding are too complicated to be 

followed by analytical methods. This discussion is left here for later in the numerical 

results section. 

 To develop a better insight into this mechanism, the same analytical calculations 

were repeated for the case in which the hydraulic fracture is inclined rather than 

perpendicular to the natural fracture (Figure 3.8). The hydraulic fracture extends from 

west to east while the natural fracture runs from south-west to north-east (They make 45 

degree angle with respect to each other). Only the part of the natural fracture that is very 

close and located in the south side (behind) of the hydraulic fracture tip is under tensile 
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stress (in this example for the plot in part (a), it is extended from -8.1 to -5.1), otherwise 

the hydraulic fracture exerts additional compression on the rest of the natural fracture 

(behind and ahead of the hydraulic fracture tip). It is notable that the length of the zone 

under tension is much shorter than in the previous case. 

The shear traction peaks is shifted completely to one side of the hydraulic fracture 

tip at -3.2 with a right lateral shear sense (positive), while ahead of the tip the shear sense 

is left-lateral but much smaller in magnitude. As the hydraulic fracture grows farther 

toward the natural fracture, the shear peak point shifts toward the head of the hydraulic 

fracture tip. These results indicate that it is most likely to initiate shearing mode fracture 

growth behind the tip of an approaching hydraulic fracture.  Induced shear is more likely 

where shear stress magnitude peaks behind the tip. The shear-induced slip may not 

provide porosity, but it breaks the natural fracture’s seal and generates microseismic  

events (similar to the case of Figure 3.6) that can be used to record the passage of the 

hydraulic fracture tip through the rock mass. 
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(a) (b) 

 (c) 
 
 
 

Figure 3.7:  Normal and shear tractions ahead of the normal primary crack that are 
experienced by a sealed crack at distances of 1.0, 0.5 and 0.05 respectively (distances and 
tractions are normalized with respect to growing fracture length and pressure, 
respectively). These results are reproduced by XFEM results. 
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(a) (b) 

  (c) 

 
Figure 3.8:  Normal and shear tractions ahead of the declined primary crack (45 degrees) 
that are experienced along the sealed crack at different distances to the middle of the seal 
crack: 1.0, 0.5 and 0.05 respectively (distances and tractions are normalized with respect 
to growing fracture length and pressure, respectively). These plots were compared with 
XFEM results. 
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The minimum potential energy principle implies that double-deflected cracks may 

not be produced by a simple intersection of the hydraulic fracture and sealed natural 

fractures, but the occurrence of debonding in the natural fractures located ahead of the 

primary hydraulic fracture may generate several progressive strands for the propagating 

fractures. This would explain the formation of the observed multi-stranded fractures. This 

phenomenon was first suggested for cracks in composite materials by Cook and Gordon 

(1964), but it took a longer time to be experimentally observed in some biomaterial 

systems (for instance Majumdar et al., 1998). Leguillon et al. (2000) tried to analyze the 

asymptotic behaviors of this mechanism. 

 

3.3. Crack propagation criteria 
 

The stress fields from the analytical, static results suggest a way in which 

fractures might interact and propagate.  However, the actual propagation is calculated 

using criteria from linear elastic fracture mechanics (LEFM).  Fracture propagation in 

LEFM is a function of opening and shearing mode stress intensity factors (KI and KII, 

respectively), which are measures of stress concentration at the tip of the crack (Lawn, 

2004). The two stress intensity factors are combined in the energy release rate fracture 

propagation criterion used in this research. The energy release rate, G, is related to the 

stress intensity factors through Irwin's relation, 
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where EE =*  for plane stress ( E  is Young's modulus) and )/(1= 2* ν−EE  for plane 

strain (where ν  is the Poisson's ratio).  If the energy release rate is greater than a critical 

value, Gc, the fracture will propagate critically. This is the propagation criterion in the 

absence of chemical weakening effects that can cause “sub-critical” crack growth 

(Atkinson, 1989).  However, in subcritical crack growth, a similar criterion can be 

prescribed, but with a modified value of Gc.  In linear elastic fracture mechanics, the 

energy release rate is equal to the value of J-integral (Rice, 1968). 

The direction of the fracture growth is that which maximizes the energy release 

rate. If G  is the energy release rate in a specific orientation, 0θ , Nuismer’s (1975) 
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Nuismer (1975) derived these equations from Westergaard’s solution using perturbation 

techniques. The values for Ik and IIk at different orientations for pure mode I is plotted 

in Figure 3.9. 
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Figure 3.9: Values of Ik and IIk  for a pure mode I case is plotted in this figure. The 
values are normalized with respect to the maximum stress intensity factor, KI. The energy 
release rates in different directions are plotted (normalized with respect to its maximum 
value.). 
 

In the case that sufficient energy is available for fracture propagation, and where a 

crack has more than one path to follow (Figure 3.4), the path most likely for it to utilize 

would be the path that has the maximum energy release rate, or the greater relative 

energy release rate (Freund and Suresh, 2003). The two paths can be compared by 

looking at the ratios rock
cGG/  and frac

cGG/ (Figure 3.10), where rock
cG  is the rock fracture 

energy (the energy release rate corresponding to fracture toughness) and frac
cG  is the 

energy required to open the unit length of the cemented fractures. Fracture re-opening 

may happen through the cement or through the cement-matrix interface. Thus, frac
cG  is 

associated with the smaller value between the cohesion of the cement and intact rock or 

the adhesion of cement grains to each other. If frac
cGG/ is greatest, the pre-existing 
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fracture will re-open.  If rock
cGG/ is greatest, propagation will create new fracture surface 

following a path of 0=IIK . 

 

 

(a) (b) 

Figure 3.10: Part (a) shows an example where there is not sufficient energy release 
rate for fracture growth in the direction of the natural fracture shown in red line (-80 
and 100 degrees), but there is sufficient energy to fracture the rock. Part (b) shows the 
case where the fracture will grow in one the fracture wings (oriented at -65 degree). 

 

The crack deflection into one side of the sealed crack corresponds to higher 

energy release rate compared to the deflection into both sides. For instance, it requires 

about 30% extra energy to induce double-sided fracture for the normal incidence angle 

case (He and Hutchinson, 1989). Therefore, the crack will generally deflect to one side 

after intersecting the sealed fracture. Although the double branch could occur if the 

toughness of the fracture cements depends strongly on the stress intensity factor phase 
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angle (He and Hutchinson, 1989). The stress intensity factor phase angle is the tangent of 

the ratio of mode I and mode II stress intensity factors ( )/tan( III KK=φ ). 

Cemented fractures are presumed to have no effect on the stress distribution 

around the primary crack tip. This would be explicitly true if the two fracture surfaces 

were perfectly bonded together.  Hence, the quality of this assumption depends on the 

degree of cementation and the relative strength of the cement material and the matrix to 

which it is bonded.   

The growing hydraulic fracture exerts shear and tensile stresses on cemented 

cracks even before intersecting them. Depending on cemented fracture toughness, the 

shear and/or tensile components of stress may debond the cemented fractures before the 

incident crack reaches the cemented fracture as shown in Figure 3.3. This mechanism 

does not necessarily cause any opening, but debonded fractures can be reopened by the 

intersecting crack much easier than the bonded fractures.  

 

3.4. Crack Initiation and Crack Kinking 

 
When hydraulic fractures intersect oblique natural fractures, a kink is formed in 

the fracture path (Figure 3.11b). These kinks can be the locations of stress concentration 

although the order of stress singularity is not as high as for a crack tip. Additionally, 

cemented fractures are weak paths for fracture propagation. Suppose that the growing 

crack (Figure 3.11a) is deflected into a weak path and it advances through the cemented 

fracture for a while (Figure 3.11b). Due to the increase in fracture length, pressure-drop 
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along the induced fracture increases. Therefore, the treatment pressure has to be increased 

to overcome this resistance and to let the hydraulic fracture continue growing. This 

increase may provide sufficient pressure for the initiation of a new branch of crack from 

the kink point to the other-side of the sealed fracture. An example of a possible snap-back 

path is sketched in Figure 3.11c. However, this is a very special case that may happen in 

certain rock
c

frac
c GG /  ratios, loading conditions and incidence angle. 

The order of stress singularity at the corner (kink) points depends on the angle 

between fractures that are making the wedged corner (angle α in Figure 3.11). The stress 

field near the kink point obeys the asymptotic elasticity solution (Szabo and Babuska 

1991), which is the generalization of the solution for the stress around the crack tip 
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for the mode II. r  and θ  are local polar coordinates shown in Figure 3.12. λ  is equal to 

α
π
2

, where α  is the kink (larger) angle (shown in Figure 3.12). The )(iQ s are defined as 
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The singularities at the corners are weaker than the crack tip singularity that 

makes corners play a role as secondary flaws or as a secondary choice for fracture 

propagation. In the case of large pressure drops along the fractures or presence of natural 

barriers against the growing tips, weak paths could be activated at these corners (Figure 

3.11). If a corner is activated, the resultant shear slippage at the corner point generates a 

microseismic event. This scenario may be the cause of seismic activities from scattered 

locations around the hydraulic fracturing zone. 

 

 

Figure 3.11: This figure shows the steps that leads possible paths for crack initiation at 
the corner. Part b shows what is called a kink (in the red path). However, it is not 
guaranteed that fracture propagates in the other wing as there is a competition between 
the host rock and cemented fracture. 
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Figure 3.12: Local coordinate system at the crack kink. 

 

3.6. Algorithm for Crack Propagation 
 

The flowchart for the crack growth algorithm is displayed in Figure 3.13. The first 

step is to solve the governing elasticity equations for the fractured domain. These results 

are then used to compute the stress intensity factors, IK  and IIK , at the crack tips. The 

flowchart uses a flag parameter called “Debonding Flag”. When this parameter is equal to 

2, the algorithm checks for possible debonding in the cemented fractures. If the 

Debonding Flag is 1, it means that a debonded zone is already developed. The crack 

debonding process could be unstable. The debonded length may jump from an initial 

value to a certain final length. Therefore, the algorithm calculates the equilibrium fracture 
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length. The third step is to compute the propagation criteria to see which tips are 

propagating. The tips with energy release rates higher than fracture toughness of the 

surrounding material will propagate. In the next step, the relevant growth rate of the 

propagating tips and associated orientation will be determined. Then if any fracture tip 

propagates, intersection and coalescence with other fractures will be checked. When the 

distance between a hydraulic fracture tip with an open (or debonded) fracture is less than 

the minimum allowable length increment for fracture growth, fracture coalescence takes 

place. At the end of the cycle, all these steps may be repeated again to develop the 

fracture pattern further. 

Further details are involved in the third step. If the current crack tip is within the 

intact matrix, it is then needed to determine the maximum energy release rate of the crack 

tip and compare that with its critical value cG . If the maximum energy release rate (G) is 

greater than cG , the crack will propagate in the direction of the maximum hoop stress. 

The growing crack-tip will move for the determined length increment or up to a sealed 

crack. If the crack has progressed through the sealed crack, then it is necessary to 

determine energy release rate (G) in the direction of maximum hoop stress as well as both 

directions along the sealed crack. The crack-tip will advance in the direction(s) that 

energy release rate (G) is greater than i
cG  (where i = rock, fracture) if any satisfy this 

condition. Based on that the crack tip will move forward for a determined length 

increment along the seal or along the direction of the maximum hoop stress (whatever 

applies).  
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Figure 3.13: Flowchart of the algorithm for crack propagation/debonding. 

 

3.7. Numerical Results 
 

The treatment pressure, rock elastic properties, rock toughness, in-situ stresses, 

the geometry of natural (pre-existing) fractures and cohesiveness of the cements in the 

sealed fracture are the data necessary for the simulation. The maximum and minimum 



95 
 

horizontal stresses can be found from the inversion of borehole sonic data (Sinha et al. 

2007) or from micro-fracturing or shut-in pressure from pressure-time curves. There are 

also techniques available in the literature to specify the subsurface fracture pattern 

characteristics based on the tectonic regime, rock properties and core data (Gale et al. 

2004 or Olson et al. 2006). Assuming that all the required data is given, some explanatory 

examples are solved in this section. 

Two distinct possibilities were considered for the interactions between the 

hydraulic fracture and natural fractures. In the first case, it is assumed that cracks are 

fully-sealed by cements and will not debond before intersection with the approaching 

crack. The threshold of the cement fracture toughness is verified. Below this threshold, 

the approaching cracks will be diverted by the natural fractures, while above that natural 

fractures will not affect fracture growth direction. For the case of normal intersection 

(Figure 3.14a), it is found that threshold for rockfrac GG /  is 0.25 for fracture to be diverted 

along the path of the existing crack. This value matches the analytical solution proposed 

by He and Hutchinson (1993) for interface cracks. The calculated threshold is 

independent of the rock elastic properties. This value is independent of the loading 

condition and matrix elastic properties. The results were examined for different size of 

elements and different size of the models. The threshold is strongly dependent on the 

angle of the intersection, because when natural fractures tilted about 6 degrees with 

respect to the normal of the primary hydraulic fracture the threshold for rockfrac GG /  

increases to 0.32; and when the tilting angle becomes 30 degrees (Figure 3.14b), the 
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threshold value for rockfrac GG /  exceeds one half. By considering the fact that cements are 

usually weaker than matrix, it implies that natural fracture most probably will divert 

fractures from the in-situ maximum horizontal stress direction when they are not aligned 

parallel to the in-situ minimum horizontal stress (Figures 3.14 and 3.15). The threshold 

value for rockfrac GG /  for different intersection angles is plotted in Figure 3.14c. It shows 

that at low intersection angles, there is a small chance that the advancing hydraulic 

fracture will cross over an existing natural fracture. This could be the case when the 

orientation of the principle tectonic stresses during the formation of natural fractures is 

not the same as today's orientation (e.g. Laubach et al. 2004). In this case, if the treatment 

pressure is not large enough to overcome the exerted stresses (which has a value between 

Sh and SH), then the crack tip might be arrested. Subsequently, fractures may resume 

propagation from any other possible weak position along the already developed fracture, 

which is similar to the scenario depicted in Figure 3.11. This could be one of the possible 

cases that lead to the formation of multi-branched fractures.  

Based on the algorithm shown in Figure 3.13, several examples will now be 

solved to show the potency of the technique.  
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(a)  (b) 

 

(c) 

Figure 3.14: Hydraulic fracture diverted at (a) normal and (b) oblique 60 degrees natural 
fracture. In part (c), critical values for fracture energy of cements for hydraulic fracture 
deflection are shown for different orientation of natural fractures. 
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Figure 3.15: Complex geometry of the fracture growth. Natural fractures are depicted 
with thinner lines. 

 

Subsequently, the induced debonded area may also change the stress intensity 

factor at the tip of the hydraulic fracture, these changes will be discussed later (figures 

3.21-3.23). The opening and sliding displacements along the debonded crack is shown in 

Figure 3.18. It is remarkable that the debonding length and the stress intensity factors at 

the tips of the primary fracture or new initiated fracture are independent of the rock 

stiffness, because the stress field of the growing fracture is independent of rock elastic 

properties.  
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(a) (b) 

3.16: Symmetric debonding of the sealed crack by a perpendicular primary hydraulic 
fracture, Parts (a) and (b) show the configuration before and after debonding, 
respectively. 
 

  
  (a)  (b) 
Figure 3.17: Asymmetric debonding of the sealed crack by a non-perpendicular fracture. 
Part (a) shows the position of the hydraulic fracture before debonding and part (b) shows 
the configuration after debonding.  
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Figure 3.18: The opening and sliding displacements along the debonded zone of Figure 
3.16. The opening displacement of the debonded part is not a quadratic function of the 
position along the crack but the forth order polynomial. It is notable that there is no 
pressure inside the debonded zone. 

 

For the case of non-normal intersection, the induced debonding is asymmetric 

with respect to the approaching crack and may possibly become partly closed under the 

effect of the approaching fracture. In non-normal cases, shear failure plays a significant 

rule in activating the fractures (Figure 3.19) and forming asymmetric debonding with 

respect to the approaching crack. This observation can be justified by comparing figure 

3.8 and 3.9, where non-normality amplifies the shear traction exerted on the natural 

fracture. Shear induced debonded zones (such as Figure 3.19) are not necessarily 

intersected by the advancing hydraulic fracture. 
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The fracture deflected by non-normal intersection have an asymmetric opening 

which directs the fluid toward the direction going farther from the primary fracture so 

double-deflected fracture will tend to propagate on just one-side (Figure 3.20). 

The next stages of fracture propagation after debonding is complicated as the 

fracture propagation will be dominated by many factors such as anisotropy of tectonic 

stresses and the size and orientation of the debonded length with respect to the tip of 

hydraulic fracture. 

Shum and Hutchinson (1990) and Hutchison (1987) studied the crack tip 

shielding and anti-shielding by parallel en echelon offsetting cracks. However their 

analyses were limited to uniform far-field loading which is not the case for hydraulic 

fracture but it may represent high permeability reservoirs case, where both fractures 

could be pressurized. 
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(a) (b) 

Figure 3.19: Debonding zone (right side) is caused by shear failure. Cemented natural 
fracture is demonstrated in gray.                 
 

 

Figure 3.20: Asymmetric crack opening displacements along the non-normal double- 
deflected fracture. 
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The crack debonding phenomena may also occur in parallel (and subparallel) 

fractures as well. In such situations, the effect of the re-opened fractures is complicated. 

In next stages of hydraulic fracture growth, the debonded zone of natural fracture might 

be closed or partly closed under the compression of the growing pressurized hydraulic 

fracture. Depending on the position of the natural fracture with respect to the hydraulic 

fracture, stress intensity factor at the tip of hydraulic fracture might be greater or less than 

the case of a single fracture (Figure 3.21). So in some cases, the pre-existing fractures 

may virtually increase rock toughness and consequently requires higher pressure for 

further fracturing of the reservoir. All previous works in this field have considered the 

effect of farfield mode I or mode II boundary conditions. However, for the hydraulic 

fracturing problem, different boundary conditions have to be considered, which leads to 

different stress field distributions. In Figures 3.22 and 3.23, changes of stress intensity 

factor at the tip of hydraulic fracture due to the presence of surrounding open natural 

fracture is compared for the case of farfield boundary condition and hydraulic fracturing 

problem boundary conditions. 

In Figure 3.22, the effect of non-aligned reactivated fractures is shown. The 

amplification of stress intensity factor at the tip of the hydraulic fracture is also plotted. It 

is assumed that a/b = 0.20. For large values of angle α (demonstrated in Figure 3.22), the 

natural fracture might be closed, but sliding along the sides of natural fractures become a 

mechanism for deformation relaxation and amplification of the stress intensity factor at 

the tip of the hydraulic fracture. Therefore, by maintaining constant fluid pressure in the 

primary crack, it will be accelerated toward the debonded crack. It is notable that no fluid 
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pressure is assumed inside the debonded crack before the intersection with the primary 

hydraulic fracture. 

 

 
Figure 3.21: Normalized energy release rate at the tip of a growing hydraulic fracture 
which is under the influence a parallel fracture. 

 

Weertman (1984), Shum and Hutchinson (1990) and Hutchison (1987) studied the 

crack tip shielding and anti-shielding by parallel en echelon offsetting cracks. However 

their analyses were limited to uniform far-field loading which is not the case for 

hydraulic fracturing problem. The difference between two regimes of loading is evident 

in Figure 3.22b. The amplification of energy release rate in case that only hydraulic 

fracture is pressurized, is larger than the case were both fractures are pressurized. 

Figure 3.23 and its associated plot show that hydraulic fracture would be attracted 

toward the debonded zone especially at low angles, α. However, this tendency depends 

on the orientation of the debonded zone with respect to the hydraulic fracture. 
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Based on the previous examples, one may conclude that if debonding or cement 

failure happens due to the tensile failure (Figure 3.16) there is more chance for fracture 

coalescence, rather than the case where cements inside the fracture failed under the effect 

of shear stresses (Figure 3.19). Because tensile-induced debonded zones (Figure 3.23) 

attract the advancing hydraulic fracture, but Shear-induced debonded zones are not 

necessarily intersected by the advancing hydraulic fracture. Fracture coalescence is very 

important because isolated debonded zones will not contribute to flow inside the 

hydraulic fracture, hence they will not enhance well performance. However, isolated 

reopened fractures may generate some microseismic activities and contribute to the 

scattered cloud of epicenters. 
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(a) 

 (b) 
 

Figure 3.22: (a) The position of natural fracture (with length b-a) is shown with respect 
to approaching hydraulic fracture (a/b =0.20). (b) Normalized energy release rate for the 
hydraulic fracture tip for two situations are plotted, first, only the hydraulic fracture is 
pressurized. In the second case, both fractures have the same pressure. 
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(a) 

(b) 
Figure 3.23: (a) The schematic picture of hydraulic fracture (left) in interaction with a 
debonded natural crack (right). (b) Normalize energy release rate at the tip of the 
hydraulic fracture is plotted for different natural fracture orientation. For calculations, it 
is assumed that d/a=1.50. 

 

In some cases because of the specific geological structures like the existence of a 

major fault or sagging structures near the fracturing zone, there may not be an isotropic 

in-situ stresses. Under such conditions, crack deflection will not be affected by the 

anisotropic tectonic stresses. However, stress anisotropy may affect the growth rate of the 

deflected fracture in the new direction or even shield it, but it will not govern the 
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intersection scenario. Nevertheless, anisotropy of in-situ stresses may impede or facilitate 

debonding in front of the growing fracture. 

In case of anisotropic in situ stresses, the required stress for debonding the parallel 

natural fractures (Sh,min-Pp-σt,cement, where Pp is the pore pressure and σt,cement is the tensile 

strength of the cement) is less that the required stress for debonding orthogonal natural 

fractures (SH,max-Pp-σt,cement). Therefore, it is more likely to reactivate parallel natural 

fractures by hydraulic fracturing in anisotropic reservoirs. 

The path followed by the fracture in the presence of the parallel debonded area is 

sensitive to the tectonic stress anisotropy (Figure 3.24). In case of isotropic or low 

anisotropic in-situ stresses, the hydraulic fracture is advancing toward the natural fracture 

with a high angle. But as the differential stress increases, the hydraulic fracture will have 

lower tendency for coalescence into the parallel natural fractures. It can be concluded that 

high anisotropic in situ stress state facilitates reopening of parallel natural fracture, but 

since they cannot coalesce with the main hydraulic fracture, they will not contribute to 

the wellbore production enhancement. 

The curvature of the miss-aligned section of the hydraulic fracture depends on the 

stress anisotropy (compared in Figure 3.24) and the length of debonded zone. The extra 

curvature will reduce fracture effective length and increase pressure drop along the 

fracture. Both of these issues will not improve the efficiency of the fracturing treatment. 
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Figure 3.24. The effect of anisotropy of in-situ stresses on the interaction between a 
growing hydraulic fracture (from left to right) and a debonded natural fracture. Thick 
blue lines show the initial fractures. The effect of stress anisotropy is demonstrated in the 
associated plots for a/b = 0.30. 

 

In the last couple examples, the interaction between an advancing hydraulic 

fracture and surrounding open natural fractures before their coalescence was discussed. 

Depending on the size of the open part of the natural fracture, fractures coalescence could 

affect the fracturing job. As the primary hydraulic fracture reaches an open natural 

fracture, due to the strain relaxation at the tip of the approaching fracture, extra volume 

will be provided inside the fracture. As an example, consider that the length of natural 

fracture is about 40% of the hydraulic fracture length and horizontal in-situ stresses are 

isotropic. Figure 3.25 shows the opening profile of the primary hydraulic fracture before 

crack intersection (geometry of Figure 3.2.a), at the time of the intersection and at the 

time when enough pressure build-up for further propagation (geometry shown in Figure 

3.2.c). Immediately after the intersection, 16.7% in this case is added to the initial 
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fracture volume. To be able to maintain enough pressure for fracture propagation, it is 

necessary to pump almost the same amount of fluid as was inside the non-intersected 

fracture (102.2% of initial fluid volume). It is noticeable that major part of the excessive 

volume is provided inside the primary fracture (about 85%).  

This observation may explain the high leakoff rates and the large amount 

screenouts reported in the field during hydraulic fracturing in the fractured reservoirs 

(e.g. Nolte and Smith 1979, Warpinski, 1990).  

 

 
Figure 3.25. Fracture profile before, at and after intersection with an un-cemented (or 

activated fracture). 
 

3.8. Conclusion 
 
        The interaction between a growing hydraulic fracture and surrounding natural 

fractures were studied in this chapter. New energy criterion was proposed to determine 
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the orientation of fracture propagation. Generally, three possibilities might occur while 

fracturing a fractured reservoir. First, the natural fractures may have no influence and the 

hydraulic fracture will propagate in the direction normal to the minimum horizontal 

stress. In this case, the cement bond strength is greater than or close to the matrix rock 

strength and natural fractures are orthogonal or close to orthogonal to the direction of the 

maximum horizontal stress. In the second scenario, the system of natural fractures will 

divert the advancing hydraulic fracture, and natural fractures are ultimately extended by 

the intersected hydraulic fractures. The dominant factor on fracture behavior in this case 

is the ratio rockfrac GG /  that depends on the cement toughness and natural fractures 

orientation angles with respect to the primary hydraulic fracture. Therefore, the 

orientation of the present-day in-situ stresses with respect to the natural fractures set is 

another major factor that dominates the efficiency of the hydraulic fracturing treatment. 

In the third scenario, the growing hydraulic fracture exerts large enough tractions on the 

surrounding natural fractures, which may re-activate natural fractures even without 

intersection and lead to the formation of double-deflected fractures after primary fracture 

reaches the debonded zone. It was shown that when natural fractures are perpendicular to 

the direction of the hydraulic fracture growth, the largest possible debonded zone may 

form, which is equivalent to the most optimum case to stimulate a reservoir. 

The effect of in situ stress anisotropy on natural fractures reactivation was also 

discussed. In situ stress anisotropy may increase the possibility of debonding parallel 

natural fractures, but stress anisotropy prevents the debonded zones to coalesce with the 

hydraulic fracture, so they will not enhance well performance. The new induced parallel 
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open natural fractures increase the apparent toughness of the earth. Simillar increase in 

apparent toughness has been observed in natural fracture swarms by Olson (2004). 

          The coalescence of the hydraulic fracture with open natural fractures causes strain 

relaxation at the reaching tip, which provides larger volumes mainly inside the primary 

hydraulic fracture and then the connected natural fracture. It was shown in an example 

that after intersecting open natural fractures, it might be needed to inject several times 

larger than amount of already pumped fluid into the system to be able to maintain enough 

pressure for continuing fracturing job. These episodes may be observed as high 

screenouts for operators on the surface. 

The fracture propagation modeling demonstrated using Extended Finite Element 

and propagation models for cemented fractures are keys to enable proper hydraulic 

fracture design analysis by considering prescribed fractures geometry. However, 

modeling the reactivation of open mode fractures in naturally fractured reservoirs 

requires to have the natural fracture system characterized. There exist some integrated 

models in the literature that can be utilized for this purpose (e.g. Laubach et al. 2000). By 

combining the knowledge of natural fracture patterns, cement properties and today’s in-

situ stresses, it is possible to build a model to make a realistic prediction about the 

hydraulic fracturing efficiency. 

To investigate other aspects of this problem like gel damage to the reservoir due 

to the incomplete washout processes and other complicated behavior of the interaction 

between hydraulic fracture and natural fractures requires including coupling the fluid 
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flow, proppant transpost and rock deformation which could be a subject for further 

studies. 
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Chapter 4. Coupled Modeling of Hydraulic Fracture 
Propagation 

 

In the previous chapters, the role of the fluid flow component of the hydraulic 

fracturing problem was neglected. As discussed before, uniform pressure assumption was 

used for fracture networks, which is equivalent to a zero viscosity assumption for the 

fracturing fluid. There are some aspects of the problems hidden in the fluid flow part of 

the problem, such as issues raised by pressure changes along the fracture length. It would 

be of great importance to solve the fluid flow equation and elasticity equations 

simultaneously.  

 This chapter begins with an introduction to the problem and derivation of the 

governing equations. Issues such as boundary conditions and their consequent effects is 

studied in detail. Then appropriate numerical schemes to solve this problem in the 

framework of Extended Finite Element Methods (XFEM) will be established. A few 

examples will be considered. Their results will be compared with solutions available in 

the literature to validate the model. After fractures coalesce, the hydraulic fracture mode 

may change from pure mode one to mixed modes one and two. It will be shown how this 

change may contribute to difficulties in fracturing fluid penetration and to a reduction in 

fracture width. 
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4.1. Coupled Hydraulic Fracturing Model 
 

Mathematical modeling of fluid-driven fractures has attracted many contributions, 

which are aimed at predicting the evolution of treatment pressure, induced fracture length 

and width, and geometry of the fracture system. The fluid injection rate, in situ stresses, 

fluid rheology and rock mechanical properties are input data for such models. Classical 

papers on this subject have used simplified assumptions about the fracture geometry 

(Khristianovic and Zheltov, 1955, Barenblatt, 1962, Geertsma and de Klerk 1969, 

Weertman, 1971, Spence and Turcotte 1985). 

In general, solutions for fluid-driven fractures are tremendously difficult to 

construct even for simple geometries. This difficulty is due to moving boundary 

conditions, non-linearity of the governing equation for fluid flow in fractures, the high 

gradient of displacement near the fracture tip, and non-locality of the solution. Non-

linearity comes from the fact that fracture permeability is a cubic function of the fracture 

width. Non-locality means that the fracture opening at one point is a function of fluid 

pressure at another point along the fracture (Detournay, 2004). Despite the previous 

uncoupled simulations, the process leads to a time dependent varying pressure 

distribution. Additionally, the fracture grows with an unknown speed, which may also 

vary with time. 

The hydraulic fracturing model simulates the manner in which fracture length, 

width and frac-fluid pressure distribution evolve with time. This procedure required 

consideration of three issues: (1) Fracture fluid pressure build-up in a partially filled 
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stationary fracture; (2) Fracture fluid front advancement inside the crack; and (3) Crack 

propagation with moving fluid.  

A typical cross section of a hydraulic fracture is shown in Figure 4.1. The 

governing equations are those of elasticity, mass conservation, fluid rheology and fluid 

leak-off, as well as crack propagation criteria. Here, the effect of fluid leak-off was 

neglected without a loss of generality as the incorporation of leakoff does not involve a 

new conceptual complexity. It should be noted that these governing equations are 

coupled to each other and hence need to be solved simultaneously as the system evolves 

with time. 

 

 
Figure 4.1: Schematic geometry of the hydraulic fracturing treatment. 

 

This research is focused on understanding and modeling the possible effect of pre-

existing fractures on the propagation of hydraulic fractures. In naturally fractured 
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reservoirs, a hydraulic fracture can be arrested or decelerated as a result of diversion and 

frictional sliding along the pre-existing fractures, because fluid penetration through 

frictionally pre-existing fractures is difficult. A competition between crack propagation 

from secondary flaws and debonding of the natural fracture plays an important role in 

determining the direction of the hydraulic fracture growth. Before going into further 

detail, the governing equations of this process are reviewed. 

 

4.2. Governing Equations 
 

For the sake of simplicity, it is assumed that fractures are propagating in an 

isotropic, impermeable linear elastic medium under plane strain conditions, and that the 

fracture is driven by an incompressible Newtonian fluid from a source located 

somewhere along the fracture (i.e. the wellbore). Crack propagation is always assumed to 

be quasi-static. Given that fluid is injected into the fracture at a constant volumetric rate 

Q0, the goal is to determine the fracture length as a function of time, and the fracture 

opening and fluid pressure as functions of time t and location (x,y). 

For an incompressible Newtonian fluid, neglecting gravitational forces, the 

equations of motions can be written as (Currie, 2003) 

2 2

2 2( ) ( )u u u P u uu v
t x y x x y

ρ μ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂
         (4.1) 

2 2

2 2( ) ( )v v v P v vu v
t x y y x y

ρ μ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂
,         (4.2) 
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where x and y are local coordinate system in the fracture (y-direction refers to the width 

direction and x-direction refers to the direction along the fracture.), ρ is the density of the 

fluid, u(x,y,t) and v(x,y,t) are the components of the velocity in the x and y direction, 

P(x,y,t) is the net pressure distribution within the fluid and μ is the viscosity of the fluid. 

For a crack whose length is aligned with the x-axis, the y-dimension is so small compared 

to the x-dimension that the net pressure can be considered uniform i.e. / 0P y∂ ∂ = . 

Therefore, P is only a function of x and t. Away from the crack tip the fluid velocity 

along the crack, u, is orders of magnitudes larger than the fluid velocity normal to the 

plane, v, and can be neglected. This is equivalent to the laminar flow assumption for fluid 

flow inside the fracture. By using dimensional analysis, it is possible to show that for a 

low Reynolds number and for a small inertia term, the above equations reduce to 

2

2

P u
x y

μ∂ ∂
=

∂ ∂
,             (4.3) 

and the average velocity, u, can be calculated from 

2

12
w Pu

sμ
∂

= −
∂

.             (4.4) 

Consequently, the fluid flow part of the problem is reduced to a one dimensional 

problem. Hereafter, s is used rather than x for the dimension along the crack. Therefore, 

the fracture is not required to be a straight fracture. Justification for this argument is 

given in Appendix A. 
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By considering the same assumptions considered for the equations of motion, the 

mass conservation equation can be written for an infinitesimal element of fluid and then 

simplified to 

)(),(),(
0 sQ

s
tsq

t
tsw δ=

∂
∂

+
∂

∂ ,           (4.5) 

where δ(s) is the Dirac delta function. It is remarkable that equation (4.5) is a local 

continuity condition. By substituting the mass conservation equation into the equation of 

motion, the lubrication equation (Batchelor, 1967) can be obtained 
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∂
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=
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μ

,          (4.6) 

which is true whenever ( ) 1q w
h

ρ
μ

pp , where h is the fracture height. Additionally, w(s,t) 

is the fracture width at point s and time t; ρ is the fluid density, q is the flux per unit 

height and μ is the fluid viscosity. Nilson (1981, 1988) and Spence and Sharp (1985) 

discussed the validity and limits of the lubrication approximation for the fluid flow 

description inside the fractures (cavities). Based on their analysis, fluid flow should be 

laminar, and the width of the fracture should be small in comparison to the other 

dimensions of the fracture.  

  The boundary conditions at the wellbore are that the fluid flux is equal to the 

injection rate, 

0)0( Qq = .             (4.7) 



120 
 

At the fracture tip, the fracture opening displacement is zero w(l)=0. In addition, it is 

assumed that there is no flow at the fracture tip so ( ) 0q l = . Substituting this condition in 

equation (4.3), zero flux at the tip can be interpreted as  

3 ( )( ) 0,         at P tw t x l
x

∂
= =

∂
.           (4.8) 

A primary difficulty of hydraulic fracturing problems comes from the coupling of the 

fluid flow inside the fracture and the equation governing the opening of the fracture. To 

address this problem, an iterative process is designed to obtain the solution. 

At the beginning of each time step, the net pressure distribution is assumed to be 

known (which is usually the net pressure distribution of the previous time step). For the 

first time step, a uniform net pressure distribution is assumed. The width distribution 

along the fracture is calculated using the quadratic extended finite element method 

(XFEM). A new fluid net pressure distribution, P, is determined by solving equation (4.6) 

using the calculated width and boundary conditions (4.7) and (4.8). This process is 

repeated until reaching the convergent solution. 

 

4.3. Discretization of the Flow Equation 
 

The standard Galerkin finite element method is utilized to solve equation (4.6). 

The fluid net pressure inside the fracture is approximated by 

∑
−

=
N

i
ii pssp

ˆ

1

)()( ϕ ,            (4.9) 
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where φi(s) is the shape function for node i, and Pi is the corresponding nodal value for 

the net pressure at node i. In the case of linear elements, the pressure gradient will be 

constant within each element; however, the precision of fluid pressure gradient is 

important because it determines the fluid flux inside the fracture. Thus a lack of precision 

in the calculation of the pressure will have a domino effect on the accuracy of the results. 

Quadratic elements are used for fluid flow to improve the numerical accuracy of the 

results. The variational (weak) form of the equation (4.6) is 

dss
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where Lq  is the flux rate of the fluid loss to the formation. Fluid-loss is not considered in 

this research but it is included in the formulation to include a more general case.  

Integrating the right hand side of equation (4.10) by parts results in 
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The flux rate specified at the wellbore implies the following boundary condition, 
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Considering zero opening at the fracture tip implies that 
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3

,

1 ( ) 0
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Pw s
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∂
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∂
,           (4.13) 

where L1 and L2 are the position of the fracture tips with respect to the wellbore located 

at 0=s . In cases where the position of the fluid front Lf is different from the fracture tip, 
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the condition 0=P  should be satisfied at the fluid front. One may assume that fluid lag 

may always exist behind the fracture tip but its length is sometimes negligible. This 

assumption implies using a zero boundary condition at the fracture tip. It is notable that 

the above boundary conditions are not sufficient at the crack intersections. For those 

situations, some modifications are applied. Based on the derived weak form, equation 

(4.11) can be rewritten as 

ij j iC P f= ,           (4.14) 

where 
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and 
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wf s ds q t s ds
t
ϕ ϕΔ

= +
Δ∫ ∫ ,        (4.16) 

where the matrix C is indirectly dependent on P by its relation to w. Using the current 

values of P and w to evaluate C, the above equation is solved for a new net pressure P. 

Here, C is a function of width (w) only. In the case of more complicated fluid models 

such as power-law fluids, C depends on net pressure as well. The formulation for the 

power-law fluid is given in Appendix B. 

The fluid flow elements are always treated as straight elements. Therefore, the 

element size should be small enough to accommodate the error caused by this smoothing 

process in curved fractures. 
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The lubrication equation (4.6) is a second order differential equation with respect 

to P and requires two boundary conditions to be solvable. Choosing the second boundary 

condition is crucial as it affects the strategy for solving coupled elasticity and fluid flow 

equations. Note that the zero-flux boundary condition is applicable if and only if the fluid 

occupies the whole fracture volume and no lag exists between the fluid front and fracture 

tip. In the case of fluid lag, net pressure in the lag zone will be zero, or more precisely, 

equal to the pore pressure in the formation. Later in this chapter, it will be shown that a 

pressure boundary condition at the tip will not affect fluid flow far from the tip. 

 From the lubrication equation (4.6), it can be seen that the pressure gradient 

becomes infinite as s L→  because 0w → . Based on the asymptotic solutions from linear 

fracture mechanics, fracture opening, w near the crack tip is proportional to the square 

root of the distance from the fracture tip 

w r∝  .           (4.17) 

From the Poiseuille’s flow equation, the fluid velocity near the tip is proportional to 

2 Pu w
r

∂
∝

∂
.            (4.18) 

Since the velocity of the fluid is supposed to be constant in the steady state regime, then 

2

1P
r w

∂
∝

∂
. By substituting equation (4.18) for fracture opening into the previous equation 

and integrating, there will be 

ln( )p r∝ .             (4.19) 
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This means that net pressure has a singular logarithmic behavior near the fracture tip. The 

negative net pressure near the fracture tip provides a very small suction zone with 

pressure less than the reservoir pressure. 

In the above asymptotic analysis, leakoff was not included. In the case of leakoff, 

equation (4.18) cannot be true. Therefore, the validity of equation (4.19) is limited to 

impermeable formations. Additionally, this analysis is for the cases where the LEFM 

assumptions of linear elasticity and small deformation/displacement near the crack tip 

can be used. It is possible that net pressure would be smaller than the closure stress in 

some parts of the fracture and still has positive opening displacements. Thus, it may be 

concluded that the zero net pressure boundary condition could not be a realistic 

assumption for near fracture tip studies, but the length of the zone with negative net 

pressure is very small compared to the fracture length. Thus, a zero net pressure boundary 

condition has been used by several authors (for instance Yew and Liu, 1993 and Siebrits 

and Peirce, 2000). The difficulties that exist in applying the zero flux boundary condition 

make this approach more attractive. 

 One of the complications of the zero flux or only Neumann boundary condition is 

that the stiffness matrix C introduced in (4.15) is not invertible and the solution for p is 

unique up to an arbitrary constant. To remove this indeterminacy, it is needed to add a 

constraint to equations by imposing the global conservation of mass into the problem 

∫∫ =
tL

Qdtwdx .        (4.20) 



125 
 

It is noteworthy that equation (4.5) is the local continuity condition, and the equation 

(4.20) is a global conservation of mass. The solvability condition (4.20) plays an 

important role in the design of efficient schemes to solve the coupled equations (4.14) 

and (4.20) because of the pressure indeterminacy of the fluid flow equation. 

 

4.4. Coupling Fluid Flow and Rock Deformation 
 

The elasticity, fluid flow and fracture growth equations should ideally be fully 

coupled in order to solve the system of equations correctly. In this part, an algorithm is 

introduced to solve the elasticity and fluid flow equations given by 

 
= in situd P σ −−K  and        (4.21) 

w CP S
t

Δ
= +

Δ
,         (4.22) 

for P and w. The variable d in equation (4.21) is the displacement vector, which is used 

for calculating the fracture opening Δw. The vector S in equation (4.22) is the source/sink 

vector associated with injection sources and probable leak-offs. K  is the elastic stiffness 

matrix for fractured medium calculated and defined in the framework of Extended Finite 

Element Methods (X-FEM) as  

Ω∫Ω dDh BBK
T

= , 

which is equation (2.25). To avoid confusion with matrix C in equation (4.22), the 

character D is used for the elastic property matrix. Further explanations about this 
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equation can be found in chapter 2. The coupled equations (4.21) and (4.22) are fully 

nonlinear due to the presence of the term w3 in the flow equation. 

In order to solve the system of equations (4.21) and (4.22), it is necessary to use 

an algorithm that involves the inversion of the global stiffness matrix. Given a trial 

solution ( , )k kw p , a fixed point strategy based on this approach involves solving the fluid 

flow equation for 1kp + , which is then used in equation (4.21) to determine 1kw + . In order to 

stabilize this process, the following sequence of Picard iterations is implemented 
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11 ++ → kk wd           (4.26) 

This approach is inspired by the methods built by Yew et al. (1988) and Adachi et al. 

(2007), which used Picard iteration to solve this coupled problem. They modify both net 

pressure and fracture width at each iteration, so that the fracture width used for fluid flow 

calculations is not exactly the width calculated by the fracture mechanics model. To 

avoid this discrepancy in the presented model, only net pressure (not fracture width) is 

modified using equation (4.24). Fracture width changes in this model are directly 

calculated based on the modified pressure from the previous iteration. To implement this 

procedure, it is necessary to make C invertible by imposing the global mass conservation 

condition (solvability condition). Using the fixed point theorem, this process can be 
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shown to converge for 0 0.50α< <  provided the time steps are small enough (Liao et al. 

2007). The validity of this analysis is not affected by only updating pressure. 

 The convergence of iterations is examined with the average error in the pressure 

distribution in all elements. This criterion is written as 
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where ε is the predetermined tolerance, and ( )n
iP is pressure at node i in iteration n. The 

time step in the simulation is determined from the total mass balance 
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The flowchart to implement the algorithm for zero pressure boundary condition at 

the fracture tip is shown in Figure 4.2. One limitation to the Picard iteration technique is 

that the initial value used in the iteration must be close to the correct answer. However, 

using the pressure from the previous step seems to be sufficient. 

In this chapter, only the fluid flow boundary conditions are discussed. Additional 

boundary conditions for solid part of the problem are also required. Rollers were used to 

constrain normal deformations at the boundaries. For the propagation part of the problem, 

the stress intensity factors were used in Erdogan-Sih’s (1963) criterion to determine the 

orientation of the hydraulic fracture propagation. It should be noted that in discretization 

of the problem, there is no need to have solid and fluid nodes to coincide on each other. 
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But to minimize the projection error between solid and fluid elements, it is better to 

choose elements of the same order. 

The stiffness matrix calculated by XFEM is independent of loading and depends 

only on the fracture geometry. The XFEM stiffness matrix needs to be calculated once at 

the beginning of each time step. This leads to a significant saving in computation time.  
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Figure 4.2: Flowchart for the numerical scheme to simulate hydraulic fractures 
propagation. 
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4.5. Numerical Examples and Discussion 

A variety of numerical simulations have been carried out, and the results of these 

simulations indicate that the numerical strategy is well-behaved and possesses a rapid rate 

of convergence. Here, results for different cases are presented in order to illsutrate the 

power of the model. 

Because of the complexity of the hydraulic fracturing problem, there is no exact 

solution for verification of the model accuracy beyond the simplest examples. For a two 

dimensional fracture with a Newtonian fluid, Geertsma and de Klerk (1969) obtained an 

approximate solution. The expression for fracture length, fracture opening at the 

wellbore, and net pressure were derived as 
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where E′ is plane-strain modulus of elasticity ( 2
1

GE
ν

′ =
−

), and 0q  is the injection rate per 

unit height of the fracture ( 0 0 / fq Q h= ). Geertsma’s model uses the smooth closing 

surfaces assumption as the boundary condition at the crack tip ( ( , ) / 0)w L t x∂ ∂ = , which is 

in accordance with Barenblatt’s model for cohesive cracks. Therefore, results are not 

necessarily similar to the results of the model with the zero pressure boundary condition 
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at the tips. Geertsma also assumed that the flow rate is everywhere equal to the injection 

rate, so he neglects fluid storage in the fracture as the width changes with time. Since 

pressure in Geertsma’s model is net pressure, no in situ stress was assumed in this model 

to make comparison easier. However, the presented model is capable of handling 

anisotropy of in situ stresses. 

For a 12 minute constant rate injection of a Newtonian fluid (Table 4.1 has the 

details of the input), the XFEM numerical model shows good agreement with the 

analytical solution (Figures 4.3, 4.4 and 4.5). The fracture length and net pressure results 

are almost a perfect match, while the XFEM model predicts a slight higher width at later 

time than the Geertsma model. The reason that XFEM model predicts different width is 

probably due to neglecting the storage effect by the simplifying assumption that 

Geertsma’s has made with constant flow rate inside the fracture. This discrepancy has 

also been reported in Yew et al. (1988). The execution time for this example is described 

in Appendix C. 

 

 

 

 

 

 

 

Table 4.1: Details of input data for the first test case. 

Young’s modulus (E) 4.0 × 106 psi 

Shear modulus (G) 1.6 × 106  psi 

Poisson’s ratio (ν) 0.25 

Injection rate (Q0) 5 bbl/min 

Fracturing Fluid viscosity (μ) 100 cP 

Fracture Height (h) 100 ft 



132 
 

The bottomhole pressure, plotted in Figure 4.3, deserves further attention. It 

shows that the bottomhole pressure drops with time while the fracture width increases. 

This result is a consequence of assuming an infinite height for the fracture (KGD 

geometry), which implies that longer fractures require less pressure to maintain the same 

opening. In practice, however, the pressure is rarely decreasing because the length of the 

induced fracture is usually longer than the fracture height, so the fracture height restricts 

the fracture opening. In the KGD model, the net pressure gradient decreases rapidly with 

fracture length and reaches an almost constant value.  The pressure profile and fracture 

width distribution along the hydraulic fracture are shown in Figures 4.6 and 4.7 

respectively. Pressure drop rate, in both models, is slow near the wellbore, but increases 

rapidly near the fracture tip. Half of the pressure drop takes place in about 10% of the 

fracture length down the fracture tip. The large pressure drop at the tip is due to the zero 

net pressure boundary condition at the fracture tip. 

It is important to note that the model has been tested with different initial guesses 

for the pressure distribution, but the solution converged rapidly to the accepted range. It 

is able to achieve results with less than 5% percent error in less than 10 iterations. The 

model is examined for different initial lengths for the hydraulic fracture to make sure that 

the results were insensitive to the initial length of the hydraulic fracture in the model or 

the location of the initial fracture with respect to the finite element mesh. 
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Figure 4.3: Fracture pressure at the wellbore for KGD and the current model. 

 

 

 
Figure 4.4: Fracture width at the wellbore for KGD and the current model. 
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Figure 4.5: Fracture half length versus injection time, computed with current and 
KGD models. 

  
 
 
 

 
Figure 4.6: Pressure profile in the hydraulic fracture, computed with the 
presented model. 
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Figure 4.7: Fracture opening profile of the hydraulic fracture, computed with the 
presented model. 
 

At the beginning of the pumping period, the stress intensity factor grows 

smoothly until it reaches a constant value (Figure 4.8). The magnitude of stress intensity 

factor (for instance when L = 19.50 m, 1/2m-MPa33.4=IK ) is much larger than the 

common values for rock toughness (for instance 1.00 1/2m-MPa for most Shales 

(Zimmerman, 2005)). Therefore, it may be concluded that viscosity not toughness is the 

major dissipating mechanism in this treatment. This observation differentiates a coupled 

solid-fluid flow simulation from a zero-viscosity simulation presented in the previous 

chapter. In the case in which fluid flow was neglected, the stress intensity factor at the 

fracture tip increases with fracture length. In addition, the values for stress intensity 
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factors at the fracture tips were much larger than stress intensity factors calculated by 

incorporating the effect of fluid flow. 

 
Figure 4.8: The stress intensity factor for current coupled simulation with 
uniform pressure fluid at different times during injection. The magnitudes are 
normalized to KI for uniformly pressurized fracture, where pressure is equal to the 
wellbore pressure at the initial stage. 
 

The same numerical experiment was repeated with different injection rates to 

assess its effects. The fracture opening and the pressure profile for these cases are 

compared in figures 4.9 and 4.10, respectively. A higher injection rate causes higher 

pressure drop along the fracture, resulting in an overall higher net pressure. And fracture 

width is greater for higher injection rate because of that higher net pressure. Since, there 

is a feedback between fracture width, injection rate and pressure, doubling the rate does 

not double the pressure.  
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Figure 4.9: The effect of different fluid injection rate on the fracture opening 
profile. 

 
 

 
Figure 4.10: The effect of different fluid injection rates on the fracture pressure 
profile. 
 

Figure 4.11 compares the effect of the fracturing fluid viscosity on the fracture 

pressure profile. Increasing viscosity will increase fracturing pressure, because of the 

added resistance to push the fluid down the fracture. However, increasing viscosity does 
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not show any big difference in the fracture pressure distribution near the fracture tip, but 

for the rest parts of the fracture, the results for fracture pressure are more sensitive to 

viscosity than to injection rate (Figure 4.10). The same change in response by increasing 

the viscosity by 50% is obtained as for increasing the rate by 100%. Therefore, it can be 

concluded that the viscosity should have a high value to induce a larger width, and 

consequently, better proppant transport during the fracture propagation stage. For this 

purpose, crosslinkers of the polymer chains have been employed in the industry to 

increase the viscosity substantially. On the other hand for an equal volume of injected 

fluid, the effect of increasing treatment-fluid viscosity is to increase the fracture width 

and decrease its length. 

 

Figure 4.11: The effect of fracturing fluid viscosity on the fracture pressure 
profile. 

 

This numerical experiment was repeated with a zero flux boundary condition at 

the fracture tip. The results are similar to the results of the zero net pressure boundary 
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condition model (Figure 4.12 and Figure 4.13). There are some discrepancies in pressure 

for early stages when the hydraulic fracture is short, because Geertsma and de Klerk 

(1969) use cohesive zone at the fracture. The cohesive zone could affect pressure at the 

wellbore in short fractures, but in longer fractures, the effect of cohesive zone will be 

limited to the near fracture tip zone. 

 

 

Figure 4.12: Comparison of bottomhole pressures in three models. 
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Figure 4.13: Fracture width distributions at the wellbore in three models. 
 

Most of the fracturing fluids used in the oil industry fit better in the category of 

power-law fluids (Appendix B). Most fracturing fluids are characterized by power-law 

index 'n  between 0 and 1 (Cameron and Prud’homme 1989). This corresponds to the so-

called shear thinning behavior, because at low Reynolds numbers, the stresses induced by 

shear thinning are large enough to move the particles away from the centerline and from 

the fracture walls. Hence, proppants can reach farther distances in the hydraulic fracture 

(Huang and Joseph, 2000). Accordingly, in the next example, a case of a power-law fluid 

is considered. 

The formulation for power-law fluid is presented in appendix B. A power-law 

constitutive equation requires two parameters: the power-law index, 'n  and the 
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consistency index, 'K . For the special case that 0.1'=n , equations B.1, B.2 and B.3 

reduce to the corresponding equations for the Newtonian fluid. Here, a power-law fluid 

with 30lb cross-linked gel and 7.0'=n , 2n'/ftlbf.sec 02.0'=K  is considered. Other 

properties are shown in Table 4.2. The pressure profile in the fracture induced by this 

fluid is compared with a Newtonian fluid ( 0.1'=n ) in Figure 4.14a. It shows less net 

pressure at the wellbore for the shear thinning fluid, lower bottomhole pressure makes the 

fracturing job more feasible. The difference between pressure in two fluids decreases as 

one gets farther away from the wellbore.  

 

 

 

 

 

 
 
 

Table 4.2: Input data for the non-Newtonian fluid case. 
 

Figure 4.14b shows fracture length versus injection time for different power-law 

indices. The tangent line at each point to this plot is the fracture propagation speed. At 

early stages, the fracture with shear thinning fluid propagates faster as expected. But for 

large enough time (after 260 sec here), the fracture driven by a power-law fluid with a 

given power-law index 0.1'=n  would propagate faster, compared to the case of a fluid 

with a lower power-law index. This counterintuitive result can be explained by the fact 

Young’s modulus (E) 4.0 × 106 psi 

Shear modulus (G) 1.6 × 106  psi 

Poisson’s ratio (ν) 0.25 

Injection rate (Q0) 10 bbl/min 

Fracture Height (H) 100 ft 
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that a fluid with lower power-law index is not necessarily less viscous than a fluid with 

higher power-law index. In general, if the rheological curves of two fluids with different 

'n  and K  intersect each other at a given reference value then the fluid with lower power-

law index would actually have a higher apparent viscosity after the intersection point. 

Adachi and Detournay (2002) made a similar observation with their analytical solution. 

 

 

Figure 4.14a: The pressure profile in a wing of the hydraulic fracture. 
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Figure 4.14b: Fracture length versus pumping time compared for different 
power-law index (Q = 2.00 bbl/min, the other specifications are simillar to Table 
4.1). 

 

4.6. Fracture Diversion 

It has been demonstrated in Chapter 3 that the hydraulic fracturing of wells in 

naturally fractured reservoirs can differ significantly from hydraulic fracturing in 

conventional homogeneous isotropic reservoirs. In this section, the coupled-simulation 

technique developed earlier in this chapter is applied to study a situation where a 

hydraulic fracture intersects a natural fracture, and the fracture energy of the cement is 

low enough to divert the hydraulic fracture based on the maximum energy release rate 

criteria (see section 3.4). 

The displacement of fracture surfaces in a kinked fracture are continuous 

functions. Therefore, the difference between displacements, which is the fracture opening 

in the global coordinate system, is also a continuous function. Because each side of any 

kinked point exists at two different local coordinate systems, the fracture width 
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distribution becomes discontinuous at each kink point. The fluid flow equations are 

usually solved using finite element, finite difference, or finite volume schemes. In 

methods such as finite difference method in where the problem is solved for nodal values, 

it is not possible to introduce fracture width discontinuity at the kink point.  However, in 

finite element methods, the global stiffness matrix (equation 4.15) is constructed element 

by element.  Therefore, it is possible to incorporate fracture width discontinuity into the 

model. 

A simplified assumption can be made about the laminar flow at the kink points. 

This would not be an appropriate assumption for large Reynolds numbers. Up to this 

point, it has been assumed that flow in the fracture has a low Reynolds number.  Based 

on this assumption, the lubrication equation could be utilized for modeling fluid flow 

inside the fracture. Therefore, the assumption for laminar flow at the kinked points does 

not add a new limitation to the analysis. By looking at the lubrication equation (equation 

4.6), it can be seen that discontinuity of fracture width causes discontinuity of the fracture 

pressure gradient. It is notable that the pressure has a unique value at the kink point. 

In the presence of natural fractures, the hydraulic fracture is not necessarily 

symmetric. Thus, the wellbore is not necessarily located in the middle of two fracture 

tips. Despite some models, such as those developed by Advani and Lee 1982, the model 

presented here can handle these cases without any issues. The only limitation is that the 

wellbore should be located on a node in order to obtain accurate results from the model. 

Two cases are considered here: (1) a case where the hydraulic fracture forms a 

small-angle kink to follow the natural fracture path; and (2) the case for which the 
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hydraulic fracture forms a large-angle kink to follow the natural fracture path. In all the 

examples, the hydraulic fracture is growing in two wings, and the initial fracture length is 

5.8m. 

Table 4.3 contains the details of the input for Case 1. The fracture toughness of 

the cement is assumed to be as large as half of the toughness of the intact rock. A zero 

pressure boundary condition is assumed to exist at the tips.  In situ stress is not 

considered for now. A lack of in situ stress is equivalent to the isotropic in situ stress field 

because the pressure is assumed to be the net pressure. 

In the first example the natural fracture orientation (strike) is only 18 degrees 

away from the hydraulic fracture trend, and the wellbore is located at s = 0.0 (Figure 

4.15).  Figure 4.16 illustrates the pressure profile along a diverted hydraulic fracture. No 

noticeable change in pressure gradient exists after the intersection between the hydraulic 

fracture and the natural fracture, which is located at m 23.7=s . The small magnitude of 

the pressure gradient change is not surprising because of the small discontinuity in 

fracture width at the intersection point (Figure 4.17), which in turn is caused by the 

orientation changes of the hydraulic fracture. Due to the low angle of diversion, the 

fracture width has a small discontinuity. The issue of pressure gradient change after the 

intersection point requires further investigation to understand the possible effect of the 

intersection angle and in situ stress anisotropy. 
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Table 4.3: Input data for the fracture diversion simulation. 

 

The pressure profile shows negative values in areas close to the tip of the short 

diverted fracture (Figure 4.16). The negative net pressure is characteristic behavior of the 

asymptotic solution near the fracture tip. In cases where the length of the dry zone is not 

considered explicitly in the model, negative net pressure appears near the fracture tip 

(Adachi and Detournay, 2008). However, the negative net pressure zone cannot be 

interpreted as a dry zone because the negative net pressure is not equivalent to negative 

absolute pressure. It only implies that a suction zone exists behind the hydraulic fracture 

tip. This phenomenon is expected because it is difficult for the fluid to penetrate into the 

newly induced section of the hydraulic fracture.  

 

Young’s modulus (E) 3.5 × 106 psi 

Poisson’s ratio (ν) 0.20 

Injection rate (Q0) 10 bbl/min 

Fracturing fluid viscosity (μ) 100 cP 

Fracture height  100 ft 

Fracture toughness 1.50 1/2MPa.m  

Fracture cement toughness 0.75 1/2MPa.m  
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Figure 4.15: A schematic illustration of a low-angle fracture diversion (18 
degrees). The cemented natural fracture is plotted in gray, and the hydraulic 
fracture is plotted in blue. The location of the wellbore is depicted by a red circle. 
 

 
Figure 4.16: Pressure profile along a hydraulic fracture. The pressure gradient 
change due to the intersection point is not noticeable. 
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Figure 4.17: Shear and normal displacements of fracture faces with respect to 
each other.  
 

In the second example, the hydraulic fracture approaches a natural fracture and 

makes a 60 degree angle with the natural fracture (Figure 4.18).  This wellbore is located 

at 0=s . The hydraulic fracture tip diverts into the natural fracture at m 83.7=s . 

Fracture propagation in the new direction is slower than the other tip of the hydraulic 

fracture (Figure 4.18). It is remarkable that anisotropy of in situ stresses is not present to 

impede further fracture propagation at the intersection point. Therefore, it may be 

concluded that the hydraulic fracture decelerates in the natural fracture due to the abrupt 

change in its orientation. By pumping more fluid, fracture propagating from the other tip 

faster.  

In the case of large kink-angle, the pressure builds up behind the fracture tip, and 

the pressure front becomes sharper to push fluid farther inside the diverted branch (Figure 
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4.19). When the fracture has not progressed enough inside the new fracture, the 

displacements of the induced fracture surface (the part located in the natural fracture) are 

more sliding rather than opening (Figure 4.20). This explains why the net pressure inside 

the branch near the fracture tip is zero or negative (see Figure 4.21).  As the fracture 

propagates farther down inside the natural fracture, enough spacing is provided for fluid 

to flow, and the suction zone becomes smaller. A small abrupt change exists in the 

fracture width at the intersection point (Figure 4.20). Additionally, orientation changes 

causes some sliding, the magnitude of which is comparable to the fracture width 

magnitude. However, the induced sliding does not contribute to the fluid flow inside the 

fracture, but it can generate microseismic events. 

Bottomhole pressure decreases as fracture propagates through the natural fracture 

(comparing Figure 4.22 with 4.21), but the pressure at the intersection point increases. 

Because the resistance against fracture growth increases as fracture propagates further. 

The change in pressure gradient enhances by further propagation. Additionally, fracture 

propagation increases the width at the intersection point (comparing Figure 4.23 with 

4.20) but the magnitude of the fracture width drop at the intersection point increases as 

well. Therefore, the intersection point still works as a choke for fluid flow inside the 

fracture. 
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Figure 4.18: Geometry of a high angle fracture diversion. The left wing of the 
hydraulic fracture is not shown completely in this picture. 

 

The bottomhole pressure during this fracture treatment is plotted in Figure 4.24. 

The fluctuation in net pressure gradient is associated with the direction changes in figure 

4.18. The magnitude of the fluctuation in wellbore pressure is not large enough to be 

easily recognized at the weillbore. Therefore, pressure changes are probably not useful 

for diagnosing natural fracture intersections. 
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Figure 4.19: A comparison of the pressure profile of the fracture when the 
fracture tip has passed the intersection point (red line) to the pressure profile in 
the absence of natural fractures (blue line). 

 

Figure 4.20: Fracture displacements in normal and tangential directions 
compared to a straight fracture and a diverted fracture. Abrupt changes in both 
components of displacement in the diverted case are noticeable. 
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Figure 4.21: The net pressure profile of the fracture in the cemented natural 
fracture (blue line) compared to the pressure profile in the absence of natural 
fractures (red line). 
 

 

Figure 4.22: The net pressure profile inside the diverted hydraulic fracture 
compared with the straight hydraulic fracture. 
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Figure 4.23: Opening and shearing displacements of the diverted hydraulic 
fracture compared with the straight hydraulic fracture. 
 

 

Figure 4.24: Bottomhole fracture pressure for the case of figure 4.18. 
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Figure 4.25 illustrates how mode I and II stress intensity factors change during the 

period that the hydraulic fracture diverts into the natural fracture. The mode II stress 

intensity factor increases and the mode I stress intensity factor drops as the fracture 

moves along the natural fracture (the path segment starts from s = 7.22 m, where s is the 

1D coordinate system along the induced fracture). Because the critical energy release rate 

at the cemented path is lower, the change in stress intensity factors does not stop fracture 

from propagating.  The mode II stress intensity factor is always much less than the mode 

I stress intensity factor and therefore cannot alter the fracture growth regime from mode I 

to pure mode II. It also shows that the mode I stress intensity factor increases as the 

hydraulic fracture propagates farther down in the cemented path. 

 

 

Figure 4.25: The changes of stress intensity factor during the growth of the 
hydraulic fracture through the natural fracture. SIFs were normalized KI of a 
straight hydraulic fracture with similar conditions. 



155 
 

The contribution of the mode II stress intensity factor may insist for a period of 

time after the hydraulic fracture diverted into the natural fracture. Accordingly, the 

hydraulic fracture continues its propagation in mixed mode I and II. This is a 

combination of opening and sliding along the natural fracture rather than a pure opening 

of the natural fracture. At this point, the fracture width at the kink point increases, but the 

fracture opening inside the natural fracture is not large enough to facilitate fluid flow and 

subsequently to increase pressure. After the hydraulic fracture propagates for a period of 

time, the fracture gains a large enough opening in the natural fracture for fluid to flow; 

this is coincident with the smooth reduction of the mode II stress intensity factor and 

increase of mode one stress intensity factor at the growing tip of the hydraulic fracture.  

In order to study the effect that in situ stress anisotropy has on the fracture 

diversion, the previous example was simulated for the case that principal horizontal 

stresses are not equal to each other. Table 4.4 contains input data related to this example. 

The hydraulic fracture intersects the natural fracture at s =7.18m (Origin of the 

coordinate system is located at the wellbore.) because the fracture does not have enough 

energy to further propogate in the new direction, the fracture tip freezes. It is remarkable 

that the stress anisotropy tries to impede further fracture propagation through the natural 

fracture. By pumping more fluid, the fracture continues propagating from the other tip 

(the other wing extends from m 18.7−=s  to m 34.11−=s ). As the fracture propogates 

in the other tip, pressure will build up at the hydraulic fracture-natural fracture 

intersection. Consequently, the hydraulic fracture resumes its propagation in the natural 

fracture path. Figure 4.26 illustrates the pressure profile inside the hydraulic fracture as it 
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propagates through the sealed natural fracture. As the fracture propagates through the 

new path, the bottomhole pressure decreases slightly, but the pressure at the intersection 

point and inside the natural fracture increases.  

 

Young’s modulus (E) 4.0 × 106 psi 

Shear modulus (G) 1.6 × 106  psi 

Poisson’s ratio (ν) 0.25 

Injection rate (Q0) 10 bbl/min 

Fracturing Fluid viscosity (μ) 500 cP  

Fracture Height (H) 100 ft 

Rock Fracture Toughness (KIC)  2.5 Mpa.m1/2  

Cement Toughness  0.30 KIC  

SH,max – SH,min  350 psi  

Table 4.4: Input data for the fracture diversion simulation under anisotropic stress 
condition. 

 

Figure 4.26: Pressure profile in diverted fracture as it grows through the natural 
fracture. 
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Despite isotropic stress state that no significant pressure gradient changes were 

observed in the diverted fracture (Figure 4.16), fracture gradient changes after 

intersection point is observable in this case (Figure 4.26). The pressure buildup or sharp 

pressure front in the diverted fracture is needed to overcome the unfavorable orientation 

of the natural fracture with respect to the principal in situ stresses.  

The fracture width profile is shown in Figure 4.27. The change in fracture width 

at the intersection point is much more than the fracture width changes in the isotropic 

case (Figure 4.23). As fracture propagates farther into the natural fracture, fracture width 

changes at the intersection point increases. Therefore, it becomes harder for the fluid and 

proppants to flow into the natural fracture. This choke may cause early screenout at the 

hydraulic fracture-natural fracture intersection. The bottomhole pressure in this case 

(Figure 4.28) is about 400 KPa greater than the bottomhole pressure in the basic case 

with no natural fracture. The pressure difference due to the fracture diversion is not still 

high enough to be identified at the borehole. 

Figure 4.29 compared fracture growth after diverting by the natural fracture with 

the growth of a straight hydraulic fracture. However, the other tip of the hydraulic 

fracture is not affected by the unfavorable direction of the natural fracture, the diverted 

hydraulic fracture grow slower than the straight non-diverted fracture. The reason behind 

this observation can be found in Figure 3.30, which shows large reduction in mode I 

stress intensity factor which provide energy to push fracture farther. It is noticeable that 

due to stress anisotropy, mode II has become the dominant mode after fracture diversion, 

which is in opposition with previous observation in isotropic reservoirs (Figure 4.25).  



158 
 

 

 

Figure 4.27: Fracture width profile in diverted fracture as it grows through the 
natural fracture. 

 

 

Figure 4.28: Bottomhole pressure in the presence of a high angle natural fracture 
and stress anisotropy compared to the case with no natural fractures. 
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Figure 4.29: Growth of diverted fracture compared with the growth of the 
straight fracture. 
 

 

 

Figure 4.30: Stress intensity factor of diverted fracture compared with ones of the 
straight fracture. 
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The ability of the diverted hydraulic fracture to progress inside a natural fracture 

also depends on the distance from the wellbore to the intersection point. It is notable that 

the distance of the natural fracture to the wellbore is not a governing factor on fracture 

diversion or fracture crossover because stress intensity factor is almost constant at the tips 

of symmetric fractures. As shown in Figure 4.31 as a straight fracture propagates farther 

due to viscous dissipations, there is less pressure built up behind the fracture tip. 

Therefore, the growing fracture exerts less pressure on the part of the rock which is ahead 

of the hydraulic fracture. Therefore, in distances farther from the wellbore there is a 

smaller chance to re-open the cemented fractures. 

 

 

Figure 4.31: The pressure profile inside the hydraulic fracture at different 
injection times. 
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4.7. Conclusions 

The coupled problem of fluid flow, fracture propagation and interaction with pre-

existing fractures was solved numerically. The fluid flow part was solved using standard 

Galerkin finite element methods. A methodology is developed to couple the lubrication 

equation with the XFEM model to model the interaction between fluid flow inside the 

fracture with rock deformations. The XFEM model results show good agreement with 

KGD model for planar fractures. The effects of different boundary conditions at the 

fracture tip were also considered. It was found that zero net pressure at the tip and zero 

flux at tip do generate similar results for fluid flow far from the fracture tips. 

Fracture diversions into the pre-existing natural fractures were also studied. The 

pressure gradient discontinuity at the intersection point of the hydraulic fracture with the 

natural fracture and its subsequent effects on the shape of pressure profile in the natural 

fracture has been discussed. The effects of the orientation of natural fractures, wellbore 

location and fracturing fluid viscosity and in situ stress anisotropy have been explored. 

It was shown that the effect of stress anisotropy could magnify the effect of 

natural fractures on hydraulic fracturing propagation. In highly anisotropic cases, the 

diverted hydraulic fracture may arrest by the natural fracture. Additionally in these cases, 

fracture width reduction at the intersection point amplifies, so the likelihood of proppant 

bridging increases. Therefore, it may be predicted that hydraulic fracturing in isotropic 

fractured formations could be more successful in compare to fractured reservoir with high 

in situ stress anisotropy. 
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It is concluded that natural fractures may have a significant effect on hydraulic 

fracturing, specifically fracture pattern, length and width, and proppant transport. Non-

planar geometry restricts fracture width, which increases fracture treating pressure near 

the intersection point. This phenomenon may cause screen-out during the proppant stages 

of a fracturing job. In the other hand, it was found that bottomhole pressure is not 

sensitive to fracture diversion. Therefore, it cannot be used for diagnosing fracture 

diversions. But the resultant reduction in fracture length can decrease expected well 

production enhancements and put at risk well economics. Therefore to predict fracture 

growth in natural fractures, spacing and orientation of natural fractures must be specified. 

The optimum fracturing job would be the fracturing treatment that will cross and 

connect as much of the natural fracture system to the wellbore as possible. Based on what 

has been studied so far, this case may happen when the original direction of the hydraulic 

fracture is perpendicular to the orientation of natural fractures. In this situation, the 

hydraulic fracture open natural fractures or reactivate them, but it is less likely to divert 

into natural fracture, which reduces the fracture drainage radius. In case of diversion, it 

will resume its propagation in the original direction due to the unfavorable orientation of 

the natural fractures. 
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Chapter 5. Conclusions and Recommendations 
 
 
 
 
5.1. Summary of the completed work 
 

In this dissertation, the interactions between a growing hydraulic fracture and the 

surrounding natural fractures were studied. These interactions range from the intersection 

of natural fractures to the far-field reactivation of them. Three possibilities that might 

occur during the hydraulic fracturing of naturally fractured reservoirs were considered. 

First, the natural fractures may have no influence and the hydraulic fracture will 

propagate in a direction parallel to the maximum horizontal stress as expected in non-

fractured reservoirs. This may be a result of high cement strength in the natural fractures 

(comparable to matrix strength), unfavorable natural fracture orientation, or a fracturing 

pressure that is not high enough to overcome the normal stress perpendicular to the 

natural fracture. In the second scenario, the hydraulic fracture intersects the natural 

fracture, and the hydraulic fracture is arrested. The fluid is completely diverted into the 

natural fracture system. The natural fractures will open if the energy of the growing 

hydraulic fracture is large enough to reopen fracture cements or if the shear stresses are 

large enough to overcome the friction between fracture surfaces. An energy criterion was 

proposed to predict fracture diversion based on fracture energy of cements, fracture 
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energy of rock and the orientation of natural fractures. This criterion includes interaction 

with both cemented and uncemented fractures. In the third scenario, debonding may take 

place ahead of the primary crack prior to the fractures’ intersection. The growing fracture 

exerts large tensile and shear stresses ahead of and near the tip. These stresses can be 

large enough to debond or shear the sealed natural fractures. So in the first and second 

types of events, the hydraulic fracture propagates all the way into the natural fracture 

before the interaction occurs. In the third case, the natural fracture starts to open/shear or 

propagate before the hydraulic fracture arrives because of near-tip stress concentrations.  

To be able to study more complex situations, an extended finite element (XFEM) 

code was developed. Fractures are allowed to propagate independently of the mesh 

configuration by permitting the fracture to cross the elements. Additionally, the 

symmetry and sparsity of the stiffness matrix is preserved. A new junction function was 

introduced to handle fracture intersections, and a new model for fracture propagation 

(based on energy release rate) was incorporated into the XFEM model. To improve the 

accuracy of partially enriched elements, a larger radius for crack tip enrichment was 

considered in the model. The CIM and CFM superconvergent methods are used for stress 

intensity factor calculations. It is the first time that these methods were applied in the 

XFEM framework. It was found that these methods give more accurate results in 

comparison to other common techniques in the literature. 

The XFEM model provides an opportunity to consider more complicated 

configurations for fracture interaction. For instance, it was shown that under certain 

circumstances, the presence of debonded fractures surrounding the hydraulic fracture tip 
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may accelerate or decelerate growing fractures. In chapter three, different scenarios in 

reactivation of natural fractures were studied by using the developed XFEM model and 

governing factors in all of these scenarios were discussed. 

In Chapter 4, the models developed in previous chapters were coupled with fluid 

flow in the hydraulic fracture. This coupling provided insight on pressure changes due to 

the interaction of a hydraulic fracture with natural fractures. The new model results show 

good agreement with KGD model for planar fractures. The effects of different boundary 

conditions at the fracture tip were also studied. It was found that zero net pressure at the 

tip and zero flux at tip generate similar results for fluid flow far from the fracture tips. 

The pressure gradient discontinuity at the intersection point of the hydraulic 

fracture with the natural fracture and its subsequent effects on the shape of pressure 

profiles shows the greater amount of effort needed for fracture propagation through the 

natural fracture. The effects of the orientation of natural fractures, wellbore location and 

fracturing fluid viscosity and in situ stress anisotropy indicate their significant role in 

fracture propagation in the new direction. It was shown that the effect of stress anisotropy 

could magnify the effect of natural fractures on hydraulic fracturing propagation. 

The findings in this research can be used to explain different observed behaviors 

of hydraulic fracturing in tight gas reservoirs. It gives the ability to predict the possible 

reactivations of natural fractures and the potential scenario of the reactivation process.  

Generally, these techniques can be utilized to modify pressure decline analysis and 

associated design and diagnostic techniques; for instance one method is proposed by 

Nolte (1988). 
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5.2 Possible lines for future research 

The current model cannot incorporate the height effect into the equations. 

Therefore, it only represents KGD geometry, which is limited to short and tall fractures. 

The next step to complete this problem is to add the height constraint that is equivalent to 

PKN geometry shown in Chapter 1.  In addition to that the model presented here is 

unable to incorporate multiple layers in the system. Since in most cases, fracturing 

treatments are done in multi-layered systems, a more realistic model needs to incorporate 

this aspect of the problem. To achieve this goal, one of the main possible lines for future 

research is to extend the current model to three dimensions. The three dimensional 

analysis can be done using brick elements to construct the finite element model. The 

height in the pseudo-3D models is a function of position along the fracture as well as 

time. The main assumption is that the fracture length is much greater than the height, and 

an important difference between the pseudo-3D and the 2D models is the addition of a 

vertical fluid flow component. A shear lag approximation is one of the techniques used in 

the literature to implement pseudo 3D geometry (Huang et al. 2004). The pseudo-3D 

models have been used to model fractures that cross multiple rock layers with differing 

stresses and properties. These models are simpler and faster than fully 3D models and are 

limited to vertical fractures.  

In hydraulic fracturing jobs, the fracture is first initiated with a clean fluid and 

then followed with a slurry containing proppant. The proppant is introduced into the 

fracture for maintaining the fracture opening after the fracturing operation, and to ensure 

a good conductivity of the induced fracture. The results shown in previous chapters 
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demonstrate that when the induced fracture pattern is complex, there are some restrictions 

on fracture width at the intersection points that could have a considerable impact on the 

proppant transport. Consequently the resultant proppant bridging could affect the fracture 

network conductivity and well performance. 

To address this issue, the proppant transport equations can be coupled to the 

current system of equations in a loose manner at the end of each time step. Using the 

calculated pressure distribution, it is possible to determine the velocity of proppants, vp, 

and using that value to get the proppant concentration distribution c by solving the 

following equation, 

 ( )( ) . 0p
cw cwv
t

∂
+∇ =

∂
,              (5.1) 

which describes the time dependent distribution of the concentration of proppant in the 

fracture. The proppant concentration calculated by equation (5.1) is used to adjust fluid 

density, ρ, and fluid viscosity in the lubrication equation (equation 4.6). It is notable that 

in the case of varying density the term sP ∂∂ / is replaced by ( gsP ρ−∂∂ / ). The volume 

of proppant, calculated using proppant concentration, is a design parameter that may 

affect treatment time and injection rate. Therefore, it is necessary to incorporate the 

proppant transport for practical purposes. 

Despite the limitations noted, the model presented in this dissertation could 

successfully investigate characteristic behavior of fracture intersections and potential 

reactivation mechanisms of natural fractures. The developed model provides a framework 

for further development to address limitations such as height effect. 
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Appendix A: Validity of The Lubrication Equation 

 

Since the width of the hydraulic fracture is much less than the other dimensions of the 

hydraulic fracture, the fluid motion inside the fracture can be assumed to be similar to 

fluid flow inside a narrow channel. In the model presented, the lubrication equation 

(equation 4.6) is used, this equation is derived for fluid flow inside two straight parallel 

plates. Field observations and outcrops show that fractures are not always planar. They 

may have non-planar geometry due the orientation of the tectonic stresses, 

heterogeneities such as joints or stress fields induced by local structures such as faults. 

Here, the authenticity of laminar Poiseuille flow for fluid inside the fractures is verified 

and its limitations are determined.  

Following Wang (1980), the position vector for the center line of the fracture is 

give by 

ˆ ˆ( ) ( )R X s i Y s j= +
r

.           (A.1) 

The channel is defined by two surfaces at the distance w/2 from the center line. The unit 

tangent vector t̂  to the fracture center line is 

ˆ ˆˆ dx dyt i j
ds ds

= + .           (A.2) 

From the Frenet formula, 

ˆ ˆ ˆˆ,  dt dnn t
ds ds

κ κ= = − ,          (A.3) 



169 
 

where κ(s) is the curvature and n̂ is a unit normal vector. The position of an arbitrary 

point inside the channel can be expressed by 

ˆ( ) ( )x R s n sη= +
rr ,           (A.4) 

where η  is the distance from the center line, / 2 / 2w wη− < < . 

The continuity equation for this coordinate system is 

( )1 0u v
s

κη
η

∂ ∂
+ − =⎡ ⎤⎣ ⎦∂ ∂

,           (A.5) 

where u and v are the velocity components in the s and η directions. By neglecting 

inertial forces, the Navier-Stokes equation (see, e.g., Batchelor, 1970) takes the form 

( )( )1 1 1
1 1

p v u
s s

μ κη
κη η κη η

⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂
= − − −⎨ ⎬⎢ ⎥− ∂ ∂ − ∂ ∂⎣ ⎦⎩ ⎭

 , and      (A.6) 

( )( )1 1
1 1

p v u
s s

μ κη
η κη κη η

⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂
= − −⎨ ⎬⎢ ⎥∂ − ∂ − ∂ ∂⎣ ⎦⎩ ⎭

,       (A.7) 

where μ is the viscosity of the fluid and p is the net fluid pressure. 

The solution for the equations (A.6) and (A.7) for constant curvature and linear 

pressure variation results along the fracture (channel) results in the following velocity 

distribution for the fluid 

       ( , ) 0v s η = ,         (A.8) 
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           (A.9) 
The velocity distribution derived from the above equation can be plotted for different 

curvatures. The velocity is no longer parabolic for large curvatures. The flow rate along 

the fracture can be calculated by integrating the tangential velocity over the fracture 

width 
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In cases that κw is much less than one, the above equation reduces to the 

Poiseuille’s equation 

 
3

12
w pQ

sμ
∂

= −
∂

.        (A.11) 

 
 
This analysis cannot be extended for fluid flow at sharp corners such as kink points. But 

it guaranties the validity of lubrication equation for the curved path fractures. 
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Appendix B: Power-law Fluids Formulations 

 

  In this appendix, a formulation for non-Newtonian fluid flow in fractures is 

developed. Typical fracturing fluids fall in the category of power-law fluids (Ben-Naceur, 

1989), in which 

'' nK γτ &= ,            (B.1) 

where τ  is the shear stress, 'n is the power-law index, γ& is shear rate, and 'K is the 

consistency index. 

The pressure gradient for power-law fluids is 

'
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When 1'=n , the fluid reduces to the Newtonian fluid (equation 4.4) with μ= K' , the 

viscosity of the fluid. By rearranging the above equation, there will be 
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 By substituting the above equation into the mass conservation equation (4.5), the 

governing equation for fluid flow inside the fracture will be obtained as 
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One of the boundary condition of the above equation is constant flux rate at the wellbore,  

0
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In a manner similar to Newtonian fluids, the standard Galerkin finite element method is 

used to solve the fluid flow equation. The fluid pressure is approximated by 

∑
−

=
N

i
ii pssp

ˆ

1

)()( ϕ . 

Where φi(s) is the shape function for node i, Pi is the corresponding nodal value for the 

node i. The variational (weak) form of the equation (4.6) becomes 
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After integration by parts, there will be 

ij j iC P f= ,            (B.7) 
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and 

( ) ( ) ( )i i L i
L L

wf s ds q t s ds
t
ϕ ϕΔ

= +
Δ∫ ∫ ,         (B.9) 

where the matrix C is also dependent on P as it affects w. Using the current values of P 

and w to evaluate C, the above equation can be solved for a new pressure P.  
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To simplify fluid flow calculations, net pressure rather than absolute pressure is 

always used here. In some rare cases, net pressure in non-planar fractures, due to 

anisotropic in situ stress state, may peak in a location different from wellbore. This may 

make the term '/1)/( nsP ∂−∂ in equation (B.8) imaginary. To avoid this issue, absolute 

pressure instead of net pressure can be used in calculations. Since, absolute pressure is 

always decreasing away from the wellbore, the term sP ∂∂− / will be always positive. In 

addition, the absolute pressure at the fracture tips will be set to be equal to the far field in 

situ stress to satisfy zero net pressure at the fracture tips.  
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Appendix C: Execution Time 

 

  The code for coupling fluid flow with XFEM is built in MATLAB. Since it is not 

compiled in a high-performance programming language such as FORTRAN, it is hard to 

judge the speed and robustness of the algorithms through the MATLAB code execution 

times. The code is implemented in a dual processor (GenuineIntel x86 Family 6 Model 

15 Stepping 6 ~2394 Mhz) machine with 2GB memory. The acceptable convergence 

error for pressure was considered to be less than 0.5% in these calculations. 

 

 

 

 

 No. of Elements D.O.F CPU Time 

1 st  Step 39000 157050 136.58 

20th Step 39000 157701 3285.14 

Table C.1: CPU time required for coupled simulation of KGD problem.
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Nomenclature 

b             Body forces 

B            Strain displacement matrix 

c             Proppant concentration 

C            Fluid flow stiffness matrix 

D            Elasticity matrix 

E            Young’s modulus of elasticity 

E'            Plane-strain modulus of elasticity 

Fl            F-enrichment terms 

G            Shear modulus 

G           Energy release rate 

frac
cG       Cement fracture energy 

rock
cG       Rock fracture energy 

H            Heaviside step function 

h             Fracture height 

I             Magnitude of interaction integral 

J             Magnitude of J-integral 

J            Enrichment function for open fracture intersections 

K            Stiffness matrix 

KI           Mode I stress intensity factor 

KII          Mode I stress intensity factor 
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KIc          Fracture toughness 

K'           Consistency index  

L            Fracture length 

'n           Power-law index 

enrn         Number of types of enrichments 

N            Number of elements 

Ni           Shape function at node i 

iN~          Shape function for enrichment at node i 

NTIP      Set of nodes of all elements containing the crack tip 

Ncr        Set of nodes of all elements containing cracks but not crack tips. 

P            Fluid Pressure 

Q           Flux rate 

Q0          Injection rate 

qi           J-integral weight function at node i 

r             Radial distance from the crack tip 

rf            Radius of crack tip enrichment 

Sh           Minimum horizontal stress 

SH          Maximum horizontal stress 

t             Time 

T            Traction vector 

u            Displacements 
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uC          Continuous displacement field  

uD          Discontinuous displacement field 

V-I         Extraction function for mode I 

V-II        Extraction function for mode I 

vp           Velocity of proppants 

w           Fracture width 

W          Elastic energy 

Z           Westergaard’s stress function 

 

Greek Symbols 

Гcr        Fracture surface 

Гu         Boundary with prescribed displacements 

Гt         Boundary with prescribed tractions 

γ&          Shear rate  

δ          Kronecker delta function 

ε         Strain 

κ          Curvature 

λ          Order of singularity at the kink points 

μ          Fluid viscosity 

ν          Poisson’s ratio 

ρ          Density 

σ          Stress 
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τ       Shear stress 

φ          Shape function 

Ф        Cut-off function   

Ψ        Enrichment functions 

Ω         Elastic domain 
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