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Several analytical mean field models are presented for the class of stimuli 

responsive polymers that are driven by the lower critical solution temperature (LCST) 

transition.  For solutions above the polymer crossover concentration, a hybrid model 

combines lattice-fluid excluded volume and van-der-Waals interactions with a 

combinatorial approach for the statistics of hydrogen bonding, hydration, and ionic 

bonding.  This approach yields models for the LCST of both neutral polymers and lightly 

charged polyelectrolytes in aqueous salt solution.  The results are shown to be in semi-

quantitative agreement with experimental data for the cloud point of polyethylene oxide 

(PEO) in aqueous solution with various salts, and some aspects of the lyotropic series are 

reproduced.  Results for lightly charged polyelectrolytes are compared to and shown to be 

in qualitative agreement with aspects of experimentally observed behavior. Finally, a 

framework is established for extension of these models to further aspects of the lyotropic 

series and polyelectrolyte behavior. 

At the nanoscale, lattice fluid (LF) and scaled particle theory (SPT) approaches 

are employed to model the LCST-related coil-globule-transition (CGT) of isolated 
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polymer chains in highly dilute solution.  The predicted CGT behavior semi-

quantitatively correlates with experimental results for several polymer-solvent systems 

and over a range of pressures.  Both the LF and SPT models exhibit a heating induced 

coil-to-globule transition (HCGT) temperature that increases with pressure until it merges 

with a cooling induced coil-to-globule transition (CCGT).  The point at which the CCGT 

and HCGT meet is a hypercritical point that also corresponds to a merging of the lower 

critical and upper critical solution temperatures.  Theoretical results are discussed in 

terms of a generalized polymer/solvent phase diagram that possesses three hypercritical 

points.  Within the lattice model, a dimensionless transition temperature  is given for a 

long chain simply by the equation 

Θ

( )Bη1 sΘ (= − Θ ,  where )Bηs Θ  is the bulk solvent 

occupied volume fraction at the transition temperature.  Furthermore, there is a critical 

value of the ratio of polymer to solvent S-L characteristic temperature below which no 

HCGT transition is predicted for an infinite chain. 
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Chapter 1. Introduction 

The lower critical solution temperature (LCST) transition is a ubiquitous and 

fundamental mechanism by which many stimuli responsive polymers react to 

environmental changes.  This mechanism has drawn great interest in the development of 

synthetic ‘smart polymers,’ and it is believed to contribute to the function of many 

biopolymers.  LCST physics drive two qualitatively distinct but related behaviors.  For 

solutions of uncrosslinked polymers above the chain overlap concentration, the LCST 

presents as a macro-scale phase separation.  On the other hand, in macromolecular 

systems that are either highly dilute or are covalently constrained from phase separation, 

the LCST takes the form of a swelling transition at the scale of the molecule or covalently 

constrained network.   These behaviors exist over a wide range of polymer solution 

properties, from nonpolar polymers in organic solvents to polyelectrolytes in aqueous 

solution.  Despite this extensive applicability, a predictive and even qualitative theoretical 

understanding of these phenomena is lacking in many cases. Accordingly, this work 

presents a new set of models extending theoretical understanding and semi-quantitative 

prediction of LCST phenomena to a range of previously unaddressed systems. 

1.1. Polymer Solution Phase Behavior 

1.1.1. Characteristics 

It has long been understood that polymer solutions exhibit rich phase behavior 

that is qualitatively distinct from that of small molecule mixtures.  Whereas small 

molecule solutions exhibit thermally induced mixing, as early as 1960 Freeman and 

Rowlinson reported thermally induced phase separation in polymer solutions1.  The 

modern picture of binary polymer solution phase behavior is of a variety of possible 

phase diagrams.  The typical temperature-composition phase diagram for a weakly 

interacting polymer solution includes two phase boundaries, the lower corresponding to 

thermally induced mixing and the upper corresponding to thermally induced demixing, as 
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shown in Figure 12-4.  For the lower boundary, the maximum temperature at which 

thermally induced mixing occurs is known as an upper critical solution temperature 

(UCST).  For the upper boundary, the minimum temperature at which thermally induced 

demixing occurs is known as a lower critical solution temperature (LCST).  Alternatively, 

these terms are sometimes used to refer to the infinite molecular weight limit of these 

extrema or to the entire corresponding spinodal or binodal curve.  The asymmetry in the 

critical curves in Figure 1 originates from the asymmetry in component size; in general, 

the more dissimilar the molecular size of the components, the greater the asymmetry in 

the phase diagram.  As shown in Figure 2, as the polymer molecular weight goes to 

infinity and the solvent molecular weight is held constant, the LCST and UCST move to 

zero composition at a condition corresponding to the Flory theta point.   

Beyond this typical behavior for weakly interacting polymers, many other T-x 

phase diagrams exist for polymer solutions in general2, 3, 5, 6, particularly in the presence 

of strong intermolecular interactions.  Solutions may exhibit LCST or UCST behavior 

only (Figure 3 a, b), and these critical curves may possess multiple extrema7 (Figure 3 c, 

d).  Merging of an LCST and a UCST curve may result in a necked immiscible region, as 

in Figure 3e.  Closed immiscibility loops are also observed (Figure 3f), as are such loops 

in the presence of other typical or atypical LCST and UCST curves (Figure 3 g, h).  

Furthermore, the system pressure and component molecular weights may control which 

such behavior is observed.4, 8. 
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Figure 1: Temperature-composition phase diagram for weakly interacting polymer 

solution.  The striped gray area is the metastable region and the solid gray area is the 

unstable region. 
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Figure 2:  Effect of polymer molecular weight on solution phase behavior.  Curves may 

represent either spinodal or binodal loci.  Dashed curves correspond to increasing chain 

molecular weight in the direct of the dotted line. 
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Figure 3:  Polymer solution and blend phase diagrams.  Behaviors include LCST only (a), 

UCST only (b), LCST and UCST curves with multiple extrema (c and d). merged LCST 

and UCST (e), closed immiscibility loops (f), and combinations of LCST, UCST, and 

closed immiscibility loop behavior (g and h).  Curves may represent either spinodal or 

binodal curves. 

The pressure-temperature behavior of these phase boundaries in polymer 

solutions has likewise been the subject of great interest.    For weakly interacting polymer 

solutions where the T-x phase behavior is generally of the form of Figure 1, the LCST is 

observed to have a universally positive slope with pressure.  The UCST, on the other 

hand, may have a positive or negative slope, or both in different pressure ranges.  

Furthermore, at low pressure the UCST and LCST may meet at a so-called hypercritical 

point3.  In a seminal work9, Konyenburg and Scott in 1968 (republished in 1980) 
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presented a theoretical development of the possible critical behaviors of binary van der 

Waals mixtures.  This work has been applied3, 10 for classifying the pressure-temperature 

phase behaviors of various weakly interacting polymer solutions. 

More recently, Imre and associates have proposed3, 4, 8, 10 that a single ‘master 

curve’ may combine the behavior of the various Konyenburg and Scott classifications for 

weakly interacting polymer solutions.  In particular, they argue that apparently different 

classifications appear only because the liquid-liquid phase boundary sometimes extends 

into a metastable region with respect to liquid-vapor or liquid-solid phase stability.  The 

proposed master curve, displayed in Figure 4, includes three ‘hypercritical points’: one at 

a minimum temperature Tmin, one at a minimum pressure Pmin, and one at a local pressure 

maximum Pmax.  Points on the curve to the left of Pmin correspond to the UCST in Figure 

1, while points between Pmin and Pmax correspond to the LCST.   The high pressure 

hypercritical point Pmax, and the UCST to its right have not been experimentally 

confirmed, likely due to polymer degradation at elevated temperatures3, 11.  However, 

evidence for such a maximum and ensuing UCST exists in several forms.  From a 

theoretical standpoint, the possibility of a high temperature closed immiscibility loop has 

been shown based on the Sanchez-Lacombe (S-L) lattice fluid model5.  Experimentally, 

results in polymer-solvent systems have exhibited distinct negative curvature in the 

LCST, indicating the possibility of a maximum11, 12.  In addition, the phase lines of 

several small molecule systems13 as well as systems of hydrocarbons in CO2
14 have been 

experimentally shown to exhibit a maximum in pressure. 

Differences in the positions of the hypercritical points of Figure 4 in different 

systems then explain the appearance of qualitatively different behaviors in previous 

studies.  When the metastable liquid state found at pressures below the vapor-liquid 

equilibrium pressure (including at negative pressures) is not considered, systems with 

Pmin below this curve appear are incorrectly taken to have separate and non-contacting 

LCST and UCST phase boundaries.  Similarly, when Tmin is at negative pressure, the 

UCST would appear to have a purely positive slope, and when it is at extremely high 
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pressure the system would appear to have a purely negative slope.  Furthermore, Tmin may 

be experimentally inaccessible if it falls below the freezing temperature of the solvent.  In 

support of this perspective, Imre and associates have demonstrated experimental results 

in which the LCST and UCST cloud point curves continue into the negative pressure 

domain and meet at a previously unknown low pressure hypercritical point8. 

 

 

Tmin 

Pmin 

Pmax 

T 

P 
1 Phase 

2 Phase 

0 

 
Figure 4: Schematic master curve of polymer solution phase behavior in pressure-

temperature space.  The curve represents the spinodal or binodal curve of the system.  

The gray area denotes two-phase states whereas the white region denotes single-phase 

states.  Dashed lines indicate phase boundaries lacking definitive experimental 

confirmation.   
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1.1.2. Physics of the LCST 

The LCST can be viewed superficially as an inverse of the UCST in that it is 

characterized by a chain collapse or phase separation with increasing temperature.  

However, the physical basis of the LCST transition is quite different from that of the 

UCST.  Whereas UCST phase separation is driven by attractive enthalpic considerations, 

the LCST phase separation is driven by entropy.  In particular, above the LCST, the 

separation is actually entropically favorable.  This reversal of the usual role of entropy 

can be understood, depending on the system, as stemming either from so-called ‘equation 

of state’ (EOS) effects or from specific interactions such as hydrogen bonding.   

The entropically driven nature of the LCST was rigorously demonstrated for a 

two component mixture by Sanchez in the following way15.  The limit of stability for a 

two phase mixture is defined by the condition 

 0xxg = , (1.1) 

where g is intensive free energy, and 

 
2

2
,

xx
P x

gg
x

⎛ ⎞∂
≡ ⎜ ⎟∂⎝ ⎠

, (1.2) 

and where x is a composition fraction conjugate to the definition of the intensive free 

energy.  Since the two-component condition for stability is  

 , (1.3) 0xxg >

xxg  is negative within the spinodal and positive without it.  By definition of the LCST 

and UCST we then have that  

 
,

0 at a UCST
0 at an LCST

xx

P x

g
T

>⎧∂⎛ ⎞ = ⎨⎜ ⎟ <∂⎝ ⎠ ⎩
. (1.4) 

Applying the definition of entropy, 

 
,P x

gs
T

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
,  (1.5) 
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and inverting the order of differentiation in equation (1.4) reveals that xxs  is always 

positive at an LCST and negative at a UCST.  At the spinodal  

 0xx xx xxg h Ts= − = , (1.6) 

where h is intensive enthalpy.  Consequently, at the LCST xxs  are xxh  are both positive; 

thus for the LCST entropics are universally destabilizing and the phase separation is 

purely entropically driven.  This is in contrast to the UCST, at which entropics are 

universally stabilizing and the phase separation is driven purely and universally by 

enthalpics.   

More recently, Sanchez also demonstrated formally that solution compressibility 

is always destabilizing (ie. a compressible solution is always less stable than the 

corresponding incompressible solution) and that this effect is a central element of the 

LCST transition15.  This fact is shown simply by separating the free energy into 

incompressible and compressible parts: 

 2
xx xx T vg a v aκ= − x , (1.7) 

where v is intensive volume, a is the intensive Helmholtz free energy, and  is the 

isothermal compressibility.  The first term is the constant volume contribution to the 

stability, and the second term is the compressible contribution.  Since the second term is 

always positive, and remembering equation 

Tκ

(1.3) for binary stability, solution 

compressibility always detracts from system phase stability.  This is the thermodynamic 

origin of the so-called ‘equation of state effects’. 

The physics of the above arguments are shown at a thermodynamic level in 

Figure 5 for a system above the LCST.  In particular, the inclusion of equation of state 

effects can reveal a local minimum in the mixture entropy.  Since the curvature of the 

entropy will become positive in this region, this typically yields an unstable region of 

negative curvature in the free energy, leading to phase separation.  Put another way, the 

maximum system entropy will be obtained by phase separation into two partially 

demixed states.   
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Figure 5:  Qualitative schematic of mixture entropy of as a function of composition for a 

system above the LCST.  The dotted straight line denotes the unmixed entropy.  The 

curved dashed line denotes the mixture entropy neglecting equation of state effects.  The 

solid curve represents the actual mixture entropy, with equation of state effects.  

From a molecular standpoint, equation of state effects emerge from differences in 

size and packing between solution components.  In essence, for mixtures of components 

that differ greatly in interaction and/or size, there can be a densification on mixing that is 

entropically unfavorable. A simple example of this effect can be seen in a system of two 

types of hard spheres of greatly differing diameters.  In this case, the smaller spheres can 

pack easily in the spaces between the larger spheres, yielding a densification and overall 

loss of free volume.  This, in turn, yields an unfavorable contribution to the free energy of 

mixing.   

In addition to the compressibility-related origin of the LCST, the LCST can also 

emerge from strong directional interactions such as hydrogen bonding.  As in the 

compressibility origin, this mechanism is entropically driven.  In this case, the entropic 

loss emerges from the reduction in degrees of freedom with hydrogen bond formation.  
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Above some temperature, it becomes more favorable for the system to phase separate in 

order to reduce this penalty.  This second class of LCST is particularly relevant in the 

aqueous ‘smart’ polymer systems that are of great interest in biological settings.  For 

example, a hydrogen-bonding-based LCST transition near physiological temperatures 

drives the stimuli-responsive behavior of Poly(N-isopropylacrylamide) (PNIPAAM), 

making it an excellent candidate for use in biological systems. 

The above distinctions between the LCST and UCST initially emerged from the 

inability of the Flory-Huggins lattice fluid model to capture LCST behavior.  Because 

this model included no vacancies, it did not allow for variable density and hence had no 

equation of state and could not predict the LCST.   In response to this limitation, Flory 

and associates developed a simple mean field theory that qualitatively predicted the 

presence of an LCST via the introduction of equation of state effects in the form of 

variable density16-18.  Some years later, Sanchez and Lacombe incorporated equation of 

state effects into the original Flory-Huggins lattice framework by introducing vacant 

lattice sites5, 19, 20.  The Sanchez-Lacombe lattice fluid model semi-quantitatively 

predicted LCST transitions for a wide range of polymer solutions and became the gold 

standard for this purpose.  This model accordingly provides the basis for much of the 

theoretical development in the present study.   However, although this model effectively 

addresses compressibility driven LCST phenomenon, it does not in its original form 

reproduce the hydrogen bonding-driven LCST.  Some more recent extensions of this 

model will thus be invoked in order to allow consideration of aqueous systems. 

1.2. The Coil-Globule Transition 

A parallel issue to that of polymer solution phase behavior is that of polymer 

spatial conformation.    In particular, how does the conformation of an isolated chain in 

solution below the chain crossover concentration reflect phase transitions in the 

analogous semi-dilute or concentrated solution?  Flory began to address this question 

from a theoretical standpoint with the observation that there should be a ‘theta’ condition 
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at which the solvent quality is such that the polymer’s attractive and excluded volume 

interactions exactly cancel out.  Flory argued that in this state the chain would assume the 

ideal Gaussian Configuration of a random flight21, 22, with its radius scaling as the root of 

chain length23.  Under solvent conditions better than this theta condition, he argued that 

the chain would assume a more extended configuration in which its radius scales as the 

chain length to the three fifths power23.  Stockmayer later noted24 that all chains should 

assume a collapsed conformation when their effective self interaction becomes strong 

enough; such a collapse occurs for solvent conditions significantly poorer than the theta 

condition, with the collapsed globule radius scaling as chain length to the one third 

power.   

It has since been shown that although the second virial coefficient vanishes as 

expected at the theta point, the chain conformation is perturbed by the retention of a 

nonzero third virial coefficient25.  It has likewise been argued that ternary interactions 

cannot be neglected at the theta point and that it thus does not strictly correspond to the 

ideal chain state26.  Nevertheless, for many purposes the chain configuration can be 

treated as essentially ideal in the dilute theta state.  Indeed, this essential concept that 

emerged from Flory’s work – a coil-to-globule transition (CGT) as the solvent quality 

drops through the Theta point – forms the basis of the present investigations regarding 

single-chain conformational behavior near the LCST. 

The above picture of the CGT immediately suggests a strong link with phase 

transition behavior; in particular, both the UCST and associated cooling-induced CGT 

(CCGT) occur at or near the Flory theta condition.  Similarly, in 1979, Sanchez pointed 

out that there should be a heating induced CGT (HCGT) closely related to the LCST27.  

Based on this close correspondence, the qualitative form of the master phase diagram 

shown in Figure 4 for weak polymers can likely be applied to the CGT as well, as shown 

in Figure 6.  In this conception, an HCGT locus lies between high pressure and low 

pressure hypercritical points Pmax and Pmin, while CCGT loci are found at temperatures 

outside of these points.  In fact, simulation28, 29 and experimental30 studies of oligomers in 
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supercritical solvents that have suggested the presence of a high-temperature CCGT at 

temperatures above the HCGT, and drawing this parallel between conformation and 

phase behavior thus lends further support for the existence of a high temperature UCST 

in polymers. 
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Figure 6:  Schematic proposed master curve for pressure- temperature behavior of the 

CGT.  The white region corresponds to a coil state, the gray to a globule state, and the 

curve to the CGT itself.  Points to the left of Pmin and to the right of Pmax correspond to a 

CCGT, while points between Pmin and Pmax correspond to an HCGT.   

Possibly as a result of its relative tractability, the CCGT to the left of Pmin has 

long been the focus of theory31-35, experiment36-44, and simulation45, 46.   However, the 

HCGT has recently received increased attention, particularly due to its connection with 

the functionality of biological macromolecules.  Early studies in this area indicated that 

CGTs are of relevance in the functionality of DNA47, 48.  More recent results have 
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confirmed the presence of a coil-globule transition in DNA49-51 and have demonstrated a 

relationship between protein coil-globule transitions and folding52-55.  Numerous studies 

have also documented high pressure denaturation or conformational changes in 

proteins56-58 that can be understood as a pressure induced CGT.  Computer simulation28, 

29, 59-62 and experiment63-65 have confirmed the existence of this ‘inverse’ collapse 

transition, and further studies have suggested that it may be the dominant mechanism in 

many applications.  Indeed, Urry argued that the LCST “transition provides a 

fundamental mechanism whereby proteins fold and function and whereby the energy 

conversions that sustain living organisms can occur at constant temperature.” 66  Within 

the context of many dilute biological systems, this crucial LCST mechanism must take 

the form of an HCGT. 

In addition to direct applications in single molecule systems, the CGT has useful 

parallels with the swelling behavior of polymer networks.  Flory commented that, despite 

quantitative differences between the two, the single chain case “may quite properly be 

regarded as a submicroscopic prototype” of polymer networks, and that “qualitatively…, 

the two situations are strikingly similar.”  In particular, both types of system are subject 

to the essential forces that would otherwise drive phase separation, but they are 

covalently restricted from doing so.  Many proposed applications for synthetic stimuli 

responsive polymers seek to harness these underlying physics.  The LCST-driven 

behavior of PNIPAAM, for example, is commonly applied as a swelling transition that 

can be triggered ay physiological temperatures67-71.  Via this mechanism, such materials 

have been proposed for use in controlled drug delivery due to their ability to release an 

absorbed drug in response to physiological triggers72.  Their utility has likewise been 

demonstrated as prototype sensors73, actuators, and micro-scale valves74 for use in micro-

fluidic systems. 

  Recently, a limited model for an HCGT has been developed for the case of a 

symmetric solvent—one in which the solvent-polymer interaction, the polymer self 

interaction, and the solvent self interaction are all equal.75  However, to our knowledge 
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no general model exists that predicts HCGT temperature and behavior for arbitrary 

combinations of polymer and solvent.  A more general model, however, is available for 

the CCGT.  Sanchez, in 1979, showed that a lattice based model for a polymer chain in 

vacuum could predict the gyration radius of the chain given the experimental CCGT 

temperature27.  The present work on dilute chain conformational behavior centers on 

extensions of this model to the HCGT.  

1.3. Charges in Solution 

1.3.1. Effects on stability: the lyotropic series 

The presence of free salt has been shown to strongly affect76-80 and even induce81-

84 phase and swelling transitions both in biological85 and synthetic polymers.  To 

complicate matters, differing salts, even among those with equal valencies, have been 

shown to produce qualitatively different affects on the solubility of macromolecules.  

Certain salts have a monotonic salting out effect, whereas other salts exhibit a ‘salting in’ 

effect at low concentrations and a ‘salting out effect’ at high concentrations.  The 

lyotropic (or Hofmeister’s) series ranks ions in terms of relative salting-out effect.  For 

example, the lyotropic series for the anions fluorine, chlorine, bromine, and iodine is 

typically F C 86.  This series is demonstrated by l Br I> > >− − − − Figure 7 from early work 

by Florin and associates on the cloud point of PEO in the presence of various salts80.  A 

central observation regarding this behavior is that in most cases the lyotropic series for 

anions contains far more variation of behavior than that for cations; put another way, the 

effect of a salt on solution stability is typically controlled much more strongly by it’s 

anion than cation.  This experimental result has formed the basis for much of the 

investigation of the underlying physics of the lyotropic series.   
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Figure 7:  Plot from work by Florin et. al.80 showing early experimental results for the 

lyotropic series.  Points denote cloud-point measurements for PEO / water solutions with 

varying concentrations of salts.  Triangles correspond to data with KI, circles to KBr, 

squares to KCl, and diamonds to KF.  Curves are simply a visual aid.   

At the simplest level, the salting out behavior observed in the lyotropic series 

could be ascribed to occupation by ions of water sites needed for macromolecule 

hydration.  In this vein, Park and Hoffman have argued81, based on experiments with 

PNIPAAM, that direct interactions between the cation and the polymer chain drive the 

lyotropic series in at least some systems.  Such explanations are recommended by their 

simplicity in that they consider only binary interactions.  However, they do not clearly 
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explain the salting-in effect of some salts, and it has been argued that they also do not 

explain the dominance of anion identity in determining salt effects86. 

An alternative set of models have focused on ions’ effects on hydrophobic 

hydration of the macromolecule.  Melander and Horvath have developed a highly cited 

such theory based on salt-induced changes in solvent surface tension and on electrostatic 

interactions, which they argue naturally yields a theoretical lyotropic series85.  

Alternatively, Inomata and associates have noted an excellent correlation between the B 

coefficient of viscosity for the anion and the temperature depression of the LCST for a 

small range of selected salts, and on this basis they and others78 argue that varying effects 

of anions on the ‘icelike’ hydration structure of water are responsible77.  The B 

coefficient of viscosity is a fitting parameter for highly dilute salt solutions that is a 

constant of the solute molecule and is understood to relate to the ion-water interaction78, 

87, 88.  In particular, anions with a positive B coefficient (typically small and/or polyvalent 

ions) are understood to augment icelike water structure formation and therefore 

strengthen the hydrophobic interaction between the polymer and itself.  On the other 

hand, those with negative B coefficients (typically large and/or monovalent ions) are 

understood to interfere with such structure formation and stabilize hydrophobic 

hydration.   

In a third approach, Satoh and associates have argued that, for at least some 

systems, salt effects are determined by their role in hydrogen bonding hydration rather  

than in hydrophobic hydration of polymers86.  In particular, they argue that the ability of 

water molecules to hydrogen bond to the polymer is modified by their concurrent 

hydration of ions.  In this mechanism, hydration of an anion is taken to decrease the 

positive charge on the water’s hydrogen atoms and increase the negative charge on the 

water’s oxygen.  This, in turn, increases water’s ability to act as a hydrogen bond proton 

acceptor and decreases its ability to act as a hydrogen bond proton donor.  Hydration of a 

cation is taken to have the opposite effect.  As a consequence, the hydrophilic hydration 

of a polymer that is a proton acceptor will be weakened by anions and strengthened by 
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cations, with the reverse holding true for a proton donating polymer.  The balance of 

these effects is then said to control the effect of the salt on solution stability. 

At this time, none of these approaches appears to have been strongly 

demonstrated to fully account for the experimental lyotropic effect.  It seems likely that 

all of these mechanisms may play a role in various systems: straightforward occupation 

of hydrogen bonding hydration sites by ions; modification of hydrogen-bonding affinities 

as a consequence of ion hydration; and modification of hydrophobic hydration induced 

by ion-driven changes in the ice-like structure of solvating water.  The first mechanism 

follows simply from binary interactions, whereas the latter two would seem to require the 

consideration of ternary or higher order interactions. 

1.3.2. The Debye-Huckel model 

At a far simpler level than the above, the most essential behavior of ions in 

electrolyte solution was captured by the early and still highly useful Debye-Huckel model 

for charge screening89.  At its core, the model constitutes a first order series expansion of 

the spherically symmetric Poisson-Boltzmann equation for an ion in a sea of charges.  

The central physical conclusion of the model is that any such ion will be surrounded by a 

relative scarcity of coions and relative glut of counterions, peaking at a screening length 

1 κ , given by 

 2 8 BIlκ π=  (1.8) 

where I is ionic strength and lB is the Bjerrum length, corresponding to the charge 

separation at which electrostatic energy equals thermal energy.  This is given by 

 
2

04B
r

ql β
πε ε

= , (1.9) 

where 1 Bk Tβ = , q is the elementary charge, 0ε  is the permittivity of free space, rε  is 

the dielectric constant of the medium, kB is Boltzmann’s constant, and T is temperature.  

The screened electrostatic potential Uij through which any two charges of type i and j in 
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solution will interact at distances greater than the screening length is then shown to be 

given by 

 ( )exp
B i j

r
U l z z

r
κ

β
−

= , (1.10) 

where zk is the valency of ion k and r is the spacing between the ions.  The electrostatic 

free energy ui of any particular free ion of type i is likewise shown to be given by 

 2 1
1i i B I

i

u z lβ κ
κσ

= −
+

, (1.11) 

where I
iσ  is the ionic diameter of an ion of species i.  Equation (1.11) may then be 

summed over all ions to yield the total electrostatic energy of the solution, and the 

activity of each ion species may likewise be obtained. 

The Debye-Huckel model is effective only within significant limitations.  First, it 

is restricted to fairly low charge densities, above which a first order solution of the 

Poisson-Boltzmann equation becomes inadequate.  This limit can be stretched by using a 

higher order solution at the cost of significantly increased complexity.  On the other hand, 

the approach fundamentally fails to address phenomena related to strong correlations 

between ions such as ion bridging; similarly, it fails to properly address multivalent ion 

behavior.  Several studies have indicated that such phenomena can play a strong role in 

polyelectrolyte phase and conformational behavior90-92.  Finally, it can be inadequate in 

the presence of closely fixed charges as such arrangements render invalid the assumption 

of spherical symmetry on which the above solution is based.  This last limitation in 

particular has led to the development of ion distribution models for the special case of 

polyelectrolyte systems, to be discussed in the following section. 

1.3.3. Polyelectrolytes 

Polyelectrolyte phase and conformational behavior present unique challenges 

relative to that of uncharged polymers.  The underlying origin of these challenges is the 

presence of charges, both free in solution and fixed on the polymer chains themselves.  
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The long range nature of the Coulombic interactions between these charges yields 

behavior qualitatively different from that of polymer solutions without charges.   In an 

excellent review paper93, Dobynin and Rubinstein have given a modern view of many of 

the relevant issues.   

Phase and conformational behavior 

The introduction of charges to the chain backbone introduces a rich array of 

conformational behavior not seen in uncharged polymers.  Extensive theoretical attention 

has been focused over the course of several decades on the electrostatic persistence 

length and modifications of chain stiffness with addition of charges to a chain94-100.  

Moreover, it has long been understood that Coulombic self-repulsion can cause 

polyelectrolyte chains to assume a more expanded conformation than the equivalent 

neutral chain101. As early as 1952 Hill further noted that such interactions may in fact 

distort the chain from a spherical shape102.  More recently, Dobrynin, Rubinstein, and 

Obukhov have shown that sufficiently charged polyelectrolyte chains in poor solvent will 

assume a ‘bead necklace’ conformation consisting of multiple spherical globules attached 

by strings of polymer103, 104.  Both conformations are essentially adaptations to maintain 

the local collapsed globular conformation demanded by the solvent quality while 

progressively increasing the average distance between like charges on the polymer 

backbone so as to reduce the associated unfavorable interaction energy.  A recent 

simulation study105 by Ulrich and coworkers has demonstrated these and other 

conformational behaviors, as shown in Figure 8.  At high effective charges, the chain 

assumes a highly extended conformation for good solvents and a bead necklace 

conformation for poor solvents.  At intermediate charge fractions, a ‘cigar’ conformation 

is found.  Finally, as expected, at low effective charge fractions the standard uncharged 

globule and coil conformations are observed.   However, it is important to note that 

Figure 8 omits an expected high temperature transition back to a collapsed globule as the 

LCST is encountered at low ionization fraction.  
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Figure 8:  Conformational diagram of a weak polyelectrolyte based on Monte-Carlo 

simulations105.  The x-axis, εvdW, is the van der Waals interaction in units of kBT and is 

thus an inverse temperature axis.  Yellow spheres denote charged monomers whereas 

blue sphere denote uncharged monomers.   

As suggested by Figure 8, the inclusion of charges on the polymer causes its 

phase and conformational behavior to become sensitive to qualitatively new 

environmental stimuli.  For example, dissociable subunits such as acrylic and methacrylic 

acid have been copolymerized with PNIPAAm in order to yield a pH sensitive LCST106-

108.   This mechanism has been proposed for use in controlled pH triggered drug 

delivery72 as well as in pH based sensors73.  For polyelectrolytes that are polyacids or 

polybases, the mechanism of this sensitivity is actually counterion dissociation 

equilibrium.  As a separate issue, solution ionic strength affects polyelectrolyte behavior 

due to charge screening.  Furthermore, electrical fields have also been shown to induce 

conformational changes in polyelectrolytes109, 110, and such effects have been proposed 

for use in drug delivery111, artificial pumps and muscles112, and so on.   

Relative to an uncharged polymer, the inclusion of charges in the chain may either 

stabilize or destabilize the solution, and this effect is determined by the balance of several 

mechanisms.  Perhaps the most intuitive such mechanism is that of Coulombic repulsion 

between like charges on the chain.  Such repulsions are typically expected to lead to 
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enhanced solution stability as the polymer imbibes more solvent in order to increase the 

separation between charges.  With increasingly unfavorable electrostatics, this effect is 

expected to result in more expanded chain conformations exhibiting the emergence of 

non-isometry and longer range order.  However, this mechanism may be mitigated by 

charge screening, and it may not be the dominant mechanism at low polymer charge 

densities or high screening.  Furthermore, at high counterion concentrations, the 

backbone charges may be effectively neutralized, eliminating this effect entirely. 

A second mechanism for modulation of solution stability is then altered chain 

hydration.  In particular, fixed ions on the charge backbone are expected to be 

hydrophilic and to increase the net interaction between the chain and water.  However, it 

has been shown that this effect can be reversed if the relevant counterion concentration is 

sufficiently high so as to lead to a low dissociation fraction of ionizable groups on the 

chain113, 114.  For example, in random copolymers of N-isopropylacrylamide and acrylic 

acid, the solution is destabilized relative to the neutral polymer at low pH115.  This effect 

is attributed to intrachain hydrogen bonding113 or attractive interactions between the 

proton acceptor sites on the isopropylacrylamide subunits and the non-dissociated acidic 

sites on the acrylic acid subunits115.  Furthermore, this explanation is qualitatively 

consistent with theoretical116 and simulation117 results pinpointing counterion 

condensation and ensuing intramolecular interactions as an origin of chain collapse. 

Free ion distribution 

A key element of the behavior of charges in solution is the balance between 

dissociated and associated ions, characterized by the ionization fraction.  For weak 

electrolytes, this balance is given at infinite charge dilution by the commonly tabulated 

dissociation constant .  However, at finite charge concentrations, which are present 

almost by default in the case of a polyelectrolyte wherein dissociable groups are 

covalently connected, the actual ionization fraction 

0pK

kα  is altered by electrostatic 

interactions, such that105, 118-120  
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where elg  is the intensive electrostatic free energy of the system and where 0K  is called 

the intrinsic dissociation constant, corresponding to the value of the dissociation constant 

in the limit of zero charge density.  In general, pH here is the negative base ten logarithm 

of the relevant counterion concentration rather than simply of the hydrogen cation 

concentration.  Equation (1.12) can be understood as a modified Henderson-Hasselbalch 

equation that accounts for long-range electrostatic interaction between charge.  In 

principle, this equation is all that is needed to rigorously calculate the ionization fraction 

of charges in a polyelectrolyte.  However, determining elg f∂ ∂  exactly can be quite 

challenging, particularly in the case where the Debye-Huckel approach is inadequate. A 

number of alternative approaches to determining ion distribution vis-à-vis a 

polyelectrolyte chain have thus been developed. 

One of the earliest and most influential such attempts was the Manning 

condensation model121.  As in the Debye-Huckel case, this model employs the Poisson-

Boltzmann equation, but it replaces the spherical symmetry of that earlier approach with 

a cylindrical geometry centered on a charged rod-like chain. Its key conclusion is that 

there is a critical linear charge density upon a rodlike polymer above which counterions 

condense into the immediately surrounding region to neutralize some of its effective 

charge.  For monovalent counterions and monovalent dissociable groups upon the chain, 

this limit is at the point where the Bjerrum length equals the mean distance between 

charges.  The practical effect of this phenomenon is to render the effective charge of 

highly ionized polymers significantly less than would be predicted from intrinsic 

dissociation constants alone.   

Recently, more advanced models for ion distribution about the chain have been 

proposed.  A three domain extension of the Manning model has been devised which 

establishes three phases of counterion behavior122.  The principle of this model is that a 

Manning-like cylindrical region around a stiff polymer chain is further embedded within 
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a much larger spherical region.  Despite such improvements, however, the application of 

a model based on a rodlike polymer to flexible chains clearly presents certain limitations.  

In order to address this problem, Muthukumar has more recently proposed a model for 

counterion distribution around flexible polyelectrolytes123, and has shown that the 

behavior in this case is qualitatively different than that predicted by the Manning model.  

Furthermore, he and Kundagrami more recently demonstrated that the dielectric 

mismatch between the bulk solvent and the domain immediately surrounding the 

polyelectrolyte may have a strong effect in biasing counterions toward the condensation 

on the chain124.  Several studies have also indicated the importance of counterion valency 

in counterion and polyelectrolyte behavior, with evidence of ion bridging by multivalent 

salts91, 92, 124, 125. 

1.4. Approaches to the Chemical Potential 

There are two general statistical mechanical approaches to obtaining the chemical 

potential of a component in solution.  The most common method is to begin by 

calculating the Gibbs partition function Ω or Gibbs free energy G of the system.  The 

chemical potential of a component k is then the derivative of the free energy with respect 

to the number of molecules of k: 
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≠
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, (1.13) 

where T is temperature, P is pressure, and { }j kN ≠   denotes the number of molecules of 

all species other than k.  

A second approach to the chemical potential, initially developed by Benjamin 

Widom in 1963126, is the insertion method.   The key to this approach is the separation of 

the contribution of one particle within the configurational partition function.  For a one-

component fluid of N particles, the configuration partition function may be written as 

 ( ) 1expN N
V V

Q W d Ndβ τ τ= −∫ ∫… … , (1.14) 
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where  is the interaction energy of the N particles within volume V, and NW β  is the 

inverse of the product of Boltzmann’s constant and temperature. Separating out the Nth 

particle gives 
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where ψ  is the interaction energy of the one selected particle with all the remaining N-1 

particles as a function of their position.  The brackets denote an average over all possible 

positions of this particle.  The activity ai of the particle of species i is then given by 
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, (1.16) 

where iρ  is the number density of species i.  The chemical potential can then be written 

as 
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where iλ  is the thermal wavelength and  is called the insertion parameter and is given 

by 

iB

 ( )expi iβψ= 〈 −B 〉 . (1.18) 

For systems with a hard core repulsion, the above may be simplified.  For any inserted 

position at which the particle overlaps with another, the interaction energy iψ  will be 

infinite and the contribution of these configurations thus will be zero.  It follows that 

equation (1.18) can be written for hard spheres as 

 ( )expi i iβψ= 〈 −B P 〉 . (1.19) 

This may be rewritten exactly as 

 ( ) ( )exp expi i i i iβ ψ β ψ ψ⎡ ⎤= − 〈 〉 〈 − − 〈 〉 〉⎣ ⎦B P . .(1.20) 

Within a mean field approximation, the latter factor in equation (1.20) is neglected, 

obtaining 

 24



 ( )expi i iβ ψ= − 〈 〉B P  (1.21) 

for a hard sphere fluid within a mean field model.  Furthermore, Sanchez, Truskett, and 

in ‘t Veld showed127 in 1999 that equation (1.21) may be applied even to non-hard sphere 

fluids under most circumstances by taking acceptable insertions to be only those resulting 

in a negative interaction energy.   

Although in principle both of these approaches will yield valid component 

properties in any system, in practice one or the other often offers considerable 

simplification.  Furthermore, they often yield different and even contradictory results as a 

consequence of differences in the way conceptually equivalent approximations play out 

in each approach.  For example, the mean field approximation used in the insertion 

approach may yield quantitatively and even qualitatively different results than a mean 

field approximation used in directly calculating the system partition function.  As a result, 

the choice of approach can be quite important, and attempts to mix results stemming from 

the two approaches may be problematic.   
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Chapter 2. The Lower Critical Solution Temperature 

A model for the LCST of charge-containing aqueous polymer solutions is needed 

in order to facilitate understanding and design of such systems in a variety of 

applications.  Such a model must encompass several physical interactions: excluded 

volume interactions; weak van der Waals interactions including dispersion forces and 

fixed dipole interactions; hydrogen bonding; ion-dipole interactions, and ion-ion 

interactions.  Furthermore, it should account for competition and cooperation between the 

ion-ion, ion-dipole, and hydrogen bonding interactions, so as to reproduce and elucidate 

the physics of the lyotropic series of salts as described in section 1.3.1. 

The hydrogen bonding lattice fluid model128 for the LCST incorporates the 

excluded volume, van der Waals, and hydrogen bonding interactions from the above list.  

The present development extends this model to interactions involving charge, subject to 

several limitations.  The first such limitation is that, with one exception, only binary 

interactions will be considered.  As discussed in section 1.3.1, this may omit some 

proposed mechanisms for the lyotropic effect that rely upon ternary or higher 

interactions.  Secondly, the extension will focus on monovalent salts and will not be 

directly amenable to treating many of the phenomena, such as ion bridging, that are 

believed to occur with higher valency salts.  In fact, these two limitations are related, and 

a framework developed for treatment of ternary interactions could possibly be modified 

to achieve better treatment of multivalent ions.  For the present, however, the primarily 

binary approach is recommended by its relative simplicity, and it should facilitate a 

useful investigation of the extent to which binary interactions play a role in establishing 

lyotropic behavior.   

An extension to polyelectrolytes is offered that addresses the basic physics by 

which incorporation of charges into the polymer backbone introduces new sensitivities of 

the LCST to environmental properties.  Consideration is made of the unfavorable 

Coulombic interactions between polymer charges that can stabilize the system at 
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sufficiently high polymer charge density and low screening.  Enhanced hydration of 

polymer chains with addition of charges is explicitly addressed. Furthermore, a 

framework is provided for treating interactions between non-dissociated charges on the 

polymer with each other and with the chain backbone; such interactions are posited to 

drive destabilization of polyelectrolyte solutions at high counterion concentration. 

2.1. Review 

Two existing models provide many of the underpinnings for the current 

development of the LCST.  The Sanchez-Lacombe (SL) lattice fluid (LF) model5, 19, 20, 128 

provides the basic mean field approach for predicting the LCST in weakly interacting 

polymers.  The hydrogen bonding lattice fluid (HBLF) model extends this approach to 

treat hydrogen bonds via Veytsmann statistics129. A brief recapitulation of these models 

follows. 

2.1.1. Lattice fluid model 

Consider a mixture consisting of t components with  molecules of each 

component k, at temperature T and pressure P.  Further consider the system to be divided 

into a lattice of Nr sites.  Each molecule of species k occupies rk such sites, with each site 

occupying  volume in the pure state.  The total number of sites occupied is 

kN

*
kv

 , (2.1) 
1

t

k k
k

Nr N r
=

≡ ∑

leaving N0 sites unoccupied such that the total number of sites is 

 0rN Nr N= + . (2.2) 

The fraction of occupied sites is then given by 

 
0

Nr
Nr N

ρ =
+

. (2.3) 

The volume fraction occupied by species k in the mixture is then defined as 
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 k k k
k

r N rx
rN r

φ ≡ = k , (2.4) 

where k kx N N≡  is the mole fraction of species k.  Similarly, component surface 

fractions may be defined as 

 
1

t

k k k j j k k
j

s s sθ φ φ φ
=

= =∑ s , (2.5) 

where  is a surface to volume ratio characteristic of the molecule, equal to the number 

of contact sites per segment of molecule k.  This ratio was treated as unity in the original 

development of the lattice fluid model; however, it is included here in the interest of 

consistency with recent work and results in the literature.  The average interaction energy 

of a site of species k in its pure state is 

ks

 *

2
k

k
s

kkε ε= , (2.6) 

where kkε  is the interaction energy between two adjacent sites of species k. 

The following mixing rules are applied: 

 *

1

t

k k
k

v *vφ
=

= ∑ ; (2.7) 

 *

1 12

t t

k l kl
k l

sε θ θ ε
= =

= ∑∑ ; (2.8) 

and a Berthelot-type rule is applied for the cross-interaction terms, given by 

 ( )1 2
kl kl kk llε ξ ε ε= , (2.9) 

where klξ  is a dimensionless parameter expected to have value close to one.  The 

combination of equations (2.8) and (2.9) indicates that only ratios rather than absolute 

values of sk’s are important.  Furthermore, both sk’s and klξ ’s have been taken to be unity 

successfully in a number of applications15, 19, 20, 127.  

The system volume is 

 , (2.10) *V rNv v=
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where v  is the reduced volume, which is the inverse of  the reduced density ρ .  

Similarly, the total energetic contribution from physical interactions is given by 

 *
PE rNρε= − . (2.11) 

The physical partition function is then given by128 

 ( ) ( ) ( ) (0 *
0

1

, , 1 expk
t

N NN
P k k k

k

Q T N N rN )ρ ρ ω φ β ρε−

=

= − ∏ , (2.12) 

where kω  is the number of configurations available to a chain of species k in the close 

packed state.  This is treated as a constant of the molecule and will drop out in 

calculations of phase stability.  

The Gibbs partition function is given by 

 . (2.13) { }( ) { }( ) (
0

0
0

, , , , expk P k
N

T P N Q T N N PVβ
∞

=

Ψ = −∑ )

The Gibbs free energy is related to the Gibbs partition function by 

 lnG kT= Ψ . (2.14) 

The maximum term approximation may be applied to the Gibbs partition function as 

usual; the equivalent minimization condition on the free energy is 

 ( ) { }, ,
0

kT P N
G v∂ ∂ = . (2.15) 

The free energy of the system is then given by 

 ( )
1

11 1 ln 1 ln ln
t

k k

k k k

G rN T P T
r r

φ φβ ρ ρ ρ ρ ρ
ω=

⎡ ⎤⎛ ⎞
= − + − − − + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑  ,  (2.16) 

where 

  * *
BT k TT

T ε
= = , (2.17) 

and 

 
*

* *
P v PP
P ε

= = .  (2.18) 

From equations (2.15) and (2.16), the equation of state (EOS) of the system is 
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 ( )2 1ln 1 1 0P T
r

ρ ρ ρ⎧ ⎛ ⎞+ + − + − =⎨ ⎜ ⎟
⎝ ⎠⎩ ⎭

⎫
⎬ . (2.19) 

The chemical potential of component k from equation (2.16) is 

 
( )
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1 1 1

1 1ln 1 1 ln 1 lnk k
k k k

k k k
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i j i i

r Pr
r T T r

sr X X
s

ρβμ φ ρ
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ρ
⎡ ⎤⎛ ⎞
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⎝ ⎠⎣ ⎦

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦
∑ ∑∑

, (2.20) 

where  is the Flory χ parameter modified to account for the surface to volume ratio 

parameters included in this version of the lattice-fluid model: 

ijX

  
1 2

* * 2i i
ij i j ij

j j

s sX
s s

*β ε ε ε
⎛ ⎞⎛ ⎞
⎜= + − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎟

k

k

. (2.21) 

2.1.2. Hydrogen bonding lattice fluid model 

Consider a mixture consisting of t components with  molecules of each 

component k, at temperature T and pressure P.  The system contains md types of proton 

donors and ma types of proton acceptors.  Each molecule of species k contains  such 

donor sites of type i and 

kN

id

ja  such acceptor sites of type j.  The total number of donors of 

type i is then  

 , (2.22) 
1

t
i
d k

k

N N
=

= ∑ k
id

k
ja

while the total number of acceptors of type j is 

 . (2.23) 
1

t
j

a k
k

N N
=

= ∑

The configurational partition function of the system is then assumed to be 

factorable.  One factor, HBQ , considers only hydrogen bonding interactions.  A second 

factor, PQ , considers only ‘physical’ interactions such as excluded volume, induced 
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dipole, and weak polar interactions.  Each factor explicitly ignores the presence of the 

interactions captured in the other factors, although they are linked implicitly.  The 

canonical partition function can thus be written as 

 HB PQ Q Q= . (2.24) 

This decoupling of interactions is clearly an approximation; however, its success has 

been demonstrated in a number of papers128-131.  In fact, a recent work has further 

decoupled the above approach in the charge free case by splitting the ‘physical’ 

contribution into random and nonrandom contributions in order to facilitate a quasi-

chemical approach to the physical interactions130.    

The physical contribution to the partition function of this system is given by the 

lattice fluid model, above.  The hydrogen bonding contribution is given as follows. The 

system will contain a number of bonds between donors of type i and acceptors of type j 

equal to . The total number of unbonded donors of type i and unbonded acceptors of 

type j, respectively, are then given by 

ijN

ij 0
1

m
i

i d
j

N N N
=

= − ∑  (2.25) 

and 

 0
1

n
j

j a
i

N N N
=

= − ij∑ . (2.26) 

The total number of hydrogen bonds in the system is 

 
1 1

n m

HB
i j

N
= =

= ijN∑∑ . (2.27) 

The hydrogen bonding partition function will have several contributions. The first, ,HB CQ , 

is an entropic combinatorial factor accounting for the number of possible ways of 

forming  bonds for all i-j pairs.  This has been shown via the Veytsman approach, 

which is based on straightforward combinatorial considerations128, to be given by 

ijN

 ,
1 10 0

! ! 1
! !

d a d am m m mi j
d a

HB C
i j i ji j

N NQ
N N N= =

= ∏ ∏ ∏∏ !ij

. (2.28) 
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The second contribution to the hydrogen bonding partition function, ,HB GQ , is a geometric 

probability factor accounting for the probability that each of the pairs considered in the 

combinatoric factor ,HB CQ  are actually spatially proximate to one another.  Equivalently, 

this term can be understood to account for the loss of translational entropy with bond 

formation.  For any particular pair, this contribution will scale as the ratio of the volume 

of an ion to the volume of an entire system; there is one such factor for each association 

pair in the system.  In terms of lattice fluid parameters, this factor is thus 

  ,

ijN

HB GQ
rN
ρ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. (2.29) 

The third contribution to the hydrogen bonding partition function, ,HB SQ , will be an 

entropic loss factor accounting for the loss of rotational degrees of freedom with bond 

formation and for local steric considerations.  Alternatively, it may be understood as the 

probability that all pairs are correctly oriented and aligned to form hydrogen bonds.  It 

may be written in terms of an entropy change of hydrogen bond formation  as 0
ijS

 ( )0
,

ijN

HB S ijQ TSβ= . (2.30) 

The final contribution, ,HB EQ , will be an energetic factor accounting for the energy of 

formation of all associative bonds in the system.  It may be written in terms of the energy 

of hydrogen bond formation 0
ijE  as 

 ( )0
,

ijN

HB E ijQ Eβ= . (2.31) 

Combining equations (2.28) through (2.31) yields 

 
( )0
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ij
ijd a d a

N Nm m m mi j
ijd a
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i j i ji j ij

FN NQ
N N N rN

β ρ
= =
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⎝ ⎠

∏ ∏ ∏∏ , (2.32) 

where 

 . (2.33) 0 0
ij ij ijF E TS= − 0
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The Gibbs free energy is obtained as in the lattice fluid model, with the 

modification that the Gibbs partition function is now given by 

 { }( )
{ }( )
{ } { }( ) (

0

0

0 0

, ,
, , exp

, , ,

P k

k
N HB k ij

Q T N N
T P N PV

Q T N N N
β

∞

=

⎡ ⎤
⎢ ⎥Ψ = −
⎢ ⎥
⎣ ⎦

∑ )

0

B

, (2.34) 

and the system volume is now  

 . (2.35) *

1 1

d am m

ij ij
i j

V rNv v N V
= =

= + ∑∑

It follows that the Gibbs free energy may also be partitioned into contributions from each 

of the above groups: 

 P HG G G= + . (2.36) 

The physical contribution to free energy is given by equation (2.16) from the lattice fluid 

model.  The hydrogen bonding contribution is: 

 00 0

1 1 1 10 0

1 ln ln ln
d a d am m m m

ij ji ji
HB ij ij d ai j
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where , and 0 0
ij ij ijG F PV= + 0

i
i d
d

Nv
rN

= , 0
0

i
i

Nv
rN

= , ij
ij

N
v

rN
= , and so on. 

The free energy minimization condition on the density is essentially the same as 

that in the lattice model: 

 ( ) { } { }, , ,
0

k ijT P N N
G v∂ ∂ = . (2.38) 

However, an additional set of free energy minimization conditions now constrain the 

hydrogen bonding numbers: 

 ( ) { } { }, , , ,
0

k lu ij
ij T P v N N

G N
≠

∂ ∂ =  (2.39) 

for all i and j.  From equation (2.38), the density equation of state is now given by 

 ( )2 1ln 1 1 0P T
r

ρ ρ ρ⎧ ⎛ ⎞+ + − + − =⎨ ⎜ ⎟
⎝ ⎠⎩ ⎭

⎫
⎬ , (2.40) 

where 
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Note that equation (2.40) is of the same functional form as the density EOS for the pure 

lattice fluid EOS, given by equation (2.19).  The effect of hydrogen bonding on the 

density equation of state is simply to modify the effective average molecular size.  

However, there is now an additional set of equations of state on the hydrogen bond 

numbers, deriving from equations (2.39): 

 0
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ln 0ij
ij

i j

v
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v v
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The chemical potential of component k is in general given by 
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However, by applying the minimization conditions of equations (2.38) and(2.39), 

equation (2.43) may be reduced to 
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The physical contribution to chemical potential is given by the lattice fluid result of 

equation (2.20).  The hydrogen bonding contribution is given by 

 00
,

1 1 1 1

ln ln
n m n m

jk ki
k HB k ij i ji

i j i jd a

vvr v d a
v v
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2.2. Theory 

2.2.1. Aqueous polymers in the presence of free salt 

Model description 

As discussed in the introduction, it is well known that the LCST of aqueous 

polymers may be considerably altered by the presence of modest concentrations of free 

salt.  A significant limitation of the hydrogen bonding lattice fluid model is its inability to 

account for this effect.  The present model remedies this deficiency through a simple 

approach.  The electrostatic interactions characteristic of ions are divided into two types: 

short range ion-dipole interactions (exe. ion hydration), and long range ion-ion 

interactions.   The long range interactions will be addressed by including an electrostatic 

factor in the partition function based on the Debye-Huckel approximation. The short 

range interactions will be addressed by applying Veytsman129 statistics to the combined 

network of ion-dipole and hydrogen bonds.  Note that ionic bonding is not considered in 

this model; hence it is not applicable to solutions containing weak electrolytes.  The later 

model for polyelectrolytes presented in section 2.2.2 specifically considers ionic bonding 

and could be applied in a simplified form to non-polyelectrolytic systems containing 

weak free salts. 

As in the hydrogen bonding lattice fluid model, the system partition function is 

treated as factorable.  A factor PQ  will account for physical interactions as before.  A 

second factor,  Q , will replace A HBQ  and will account for specific ‘associating’ 

interactions including hydrogen bonding and ion-dipole interactions.  A final factor, EQ , 

accounts for long range electrostatic interactions between ions.  The canonical partition 

function can thus be written as 

 E A PQ Q Q Q= . (2.46) 
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Physical partition function 

In general, the physical partition function may be based on any number of 

theories.  As noted above, for example, a quasi-chemical approach has recently been 

applied for physical interactions in the charge-free case130.  However, as in the hydrogen 

bonding lattice fluid model128  and in the interest of simplicity, the present development 

is based upon the lattice fluid model, above.  The physical partition function is then given 

as before by equation (2.16).   

Associating partition function 

The associating partition function follows the same development as that for the 

hydrogen bonding lattice fluid model, albeit with alterations to account for ion-dipole 

interactions.  Namely, hydrogen and ion-dipole bonds are ‘lumped together’ as 

‘association bonds’.  As such, md and ma express the number of ‘association’ donors and 

acceptors rather than simply the number of types of hydrogen bond donors and acceptors.  

Each molecule of species k then contains  such association donor sites of type i and k k
id ja  

such association acceptor sites of type j.   

Other than these changes of definition, the derivation for the hydrogen bonding 

partition function applies exactly.  Equations (2.22) and (2.23) apply for the total number 

of association donors and acceptors, respectively.  The number of association bonds 

between donors of type i and acceptors of type j is equal to , where ion-dipole 

interactions are now included in the 

ijN

{ }ijN .  The total number of association bonds is then 

given by 

 
1 1

d am m

A ij
i j

N
= =

= N∑∑ . (2.47) 

The associating partition function is of the same form as that of the hydrogen bonding 

contribution in the prior model: 
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where 

 . (2.49) 0 0
ij ij ijF E TS= − 0

Electrostatic partition function 

The dimensionless ionic strength of the present system is given in lattice fluid 

terms by 

 * 2
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= =
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where kz  is the charge valency of species k and I is dimensional ionic strength. For 

sufficiently low ionic strengths, the interaction energy  of any selected free ion of type 

l with the surrounding cloud of free ions is given by the Debye-Huckel theory89: 

lu

 
23

8 1
l

l I
l

zu
I

κβ
π κσ

= −
+

, (2.51) 

where I
lσ  is the diameter of the ion and κ  is a dimensionless Debye-Huckel inverse 

screening length, given in lattice-fluid terms by 

 ( )
1 233 23 * 3

*8 Blv I
v

κ κ π
⎛ ⎞

≡ = ⎜ ⎟
⎝ ⎠

, (2.52) 

where  is the usual Debye-Huckel inverse screening length,  is the Bjerrum length, q 

is the electron charge, 

κ Bl

0ε  is the vacuum permittivity,  and rε  is the dielectric constant of 

the medium.  The ion’s diameter I
lσ  may be based upon its van der Waals radius or, as 

an approximation, upon its pure state lattice spacing *1 3
lv .  In general, the dielectric 

constant is a function of composition, density, and temperature: 

 { }, ,r r k Tε ε ρ φ⎡ ⎤= ⎣ ⎦ . (2.53) 
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However, this development will neglect the density and composition dependencies of the 

dielectric constant.  

The electrostatic potential energy is simply the sum of the per-ion electrostatic 

energy given in equation (2.51) over all ions in the system, halving to prevent double-

counting: 

 
1

1
2

t

E
k

E N
=

= ∑ k ku . (2.54) 

Combining equations (2.51) and (2.54) gives the contribution to potential energy from 

electrostatic interactions: 
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= − , (2.55) 

where Iκ  can be understood as a screening-adjusted ionic strength, given by 
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It then follows from equation (2.55) that the electrostatic partition function is given by 
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Note also that the component mole numbers are constrained by the requirement of 

electrical neutrality: 

 
1

0
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l
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=
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Free energy 

The Gibbs free energy is obtained as in equation (2.14).  The Gibbs partition 

function is now given by 
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where V is given by equation (2.35), with the modification that  now applies to 

formation of ion-dipole bonds as well as hydrogen bonds.  As in the HBLF model, it 

follows that the Gibbs free energy may also be partitioned into contributions from each of 

the above groups: 

0
ijV

 P AG G G GE= + + . (2.60) 

The physical contribution to free energy is given by equations (2.16) from the SL model.  

The associating contribution is of the same form as equation (2.37) from the HBLF 

model, albeit with the altered variable definitions described above.  The electrostatic 

contribution is given, from equation (2.57), by 
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8E
IG rN
I
κκβ

πρ
= − . (2.61) 

Equations of state 

The minimization conditions on free energy, as in the HBLF model, are given by 

equations (2.38) and (2.39).  The associating equations of state are given by equation 

(2.42) from the HBLF model.  The density equation of state is now  
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where 

 
( )

2

2 2*1 3 *1 31

1
2 1

It
k k k

Ik k k

zI
r v v

κ
φ κσρ

κσ=

=
+

∑ , (2.63) 

and where r  is given by equation (2.41) as in the HBLF model.  Note that equation 

(2.62) is of the same functional form as that of the lattice fluid and hydrogen bonding 

lattice fluid models, albeit with an additional term for Coulombic interactions between 

free ions.  Furthermore, the electrostatic term will be negligibly small at most charge 

concentrations of interest and can thus usually be neglected.   This result emerges from 

the  scaling of this interaction, which in essence is the cube of the ratio of the lattice 

spacing to the Debye-Huckel screening length.  As the lattice spacing is of the length 

3κ
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scale of atoms and the screening length is considerably larger for modest charge 

concentrations, the order of this term is much less than one.   

Chemical potential 

As before, the chemical potential may be divided into contributions from the 

various partition function factors: 

 { } { }, , , ,

, , ,

l k ij

k
k T P N v N

k P k A k E

G
N

μ

μ μ μ
≠

⎞∂
= ⎟∂ ⎠

= + +

. (2.64) 

The physical and associating contributions are given by equations (2.20) and (2.45) from 

the LF and HBLF models.  The electrostatic contribution is given by 

 ( )
3 *

2 2
, 2 *

1 1
16 1 2

k k
k E k

k

I Iz I r vI
I a I

κ κ
κ κ

κβμ
π κ

⎛ ⎞⎛ ⎞−
= − + − −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠vρ

. (2.65) 

Note that for uncharged species, the electrostatic contribution to chemical potential 

reduces to 
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, 2 *16
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Furthermore, as in the density equation of state, for most cases the contribution to 

chemical potential from electrostatics will be negligible due to its 3κ  scaling. 

Heat of mixing 

The heat of mixing is given by the difference in energies between the components 

in the pure states and the mixture.  For covalent components such as solvents and 

polymers, the pure state energies may be calculated consistently via this model.  

However, for free ions for which the pure state is a crystalline ionic lattice, it is necessary 

to call upon some other theoretical or experimental data in order to determine the ionic 

lattice energy  of the pure state solid.  Given this quantity, the energy of mixing is  ,L iE
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 , (2.67) 
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where 0
kρ  is the reduced density of component k in its pure state and  denotes 

association counts in pure component k.  The sum of k over covalent species indicates a 

sum over components whose pure state is not an ionic crystal.  The summation over salts 

is a summation over electrically neutral salt species, such as NaCl or HCl (rather than a 

summation over dissociated ion species such as Na, Cl, and H as other species sums in 

this paper are).  Thus, 

0k
ijN

,s iN  is the number of salt molecules of type i necessary to provide 

the ions present in solution, and is related to the ’s of the ion species by stoichiometric 

considerations.   For example, in a simple system containing ions dissociated from only a 

single salt species, 

kN

,s iN  would be given by 

 
,

ion species
,

,
ion species

k k i
k

s i
k i

k

N n
N

n
=

=

=
∑
∑

  (2.68) 

where  is the number of ions of species k per molecular unit of salt molecule i.  For 

example,  for chlorine in NaCl or 2 for chlorine in MgCl2.   

,k in

, 1k in =

Equation (2.67) for the heat of mixing provides an approach to obtaining 

associating parameters for ion hydration.  Such an approach first requires an independent 

determination of lattice fluid parameters for ions, in order to obtain a physically 

meaningful separation of physical and associating interactions.  Atomic ions’ lattice fluid 

parameters may be obtained by approximating their physical interactions to be equal to 

those of a hypothetical Noble gas of equal van der Waals radius.  The properties of this 

hypothetical Noble gas can, in turn, be determined via interpolation with respect to the 

van der Waals radius of real Noble gases.  Once lattice fluid parameters are determined 

via this approach, the only remaining parameters are those for association interactions.  
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These can then be obtained by a best fit to heat of mixing data over a range of 

temperature and pressure.   

The major hurdle in fitting ion association parameters to salt heats of solvation 

based on a single salt solution is that there is no basis for the establishment of 

independent parameters for the salt’s constituent ions.  This problem can be surmounted 

by simultaneously fitting to heat of solvation for four separate water-salt systems in 

which each cation and anion appears exactly twice.  An ideal such set of systems would 

contain only strong 1:1 salts.  One example reasonably satisfying these requirements 

would consist of the systems water-NaCl, water-HCl, water-HBr and water-NaBr.  The 

effect of fitting all four ions contained in this set to all four systems at once would be to 

distinguish each ion from any particular ion pairing.  Once parameters for these ions were 

established, they could be used to establish those of other ions by fitting to heat of 

solvation data for a salt consisting of one of these ions and the new desired ion. 

An informative test of this model would be whether ion hydration parameters 

obtained from a heat of solvation optimization such as the one above are also able to 

yield LCSTs in agreement with experiment.  Success in such a test would indicate that 

the model consistently captures the physics of both ion hydration and solution stability.   

2.2.2. Polyelectrolytes 

Model description 

Two modifications must be made to the above model in order to treat 

polyelectrolytes.  First, the electrostatic term must be modified to account for long range 

Coulombic interactions involving the charges fixed on the chain.  Second, whereas the 

above model does not consider ionic bonding, many polyelectrolytes of interest only 

partially ionize at experimental pH, and it is thus necessary to incorporate this interaction 

explicitly.    
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Consider a system containing t species, in which there are  molecules of each 

species k.  Of these species, tp are polymeric or macromolecular and ts are small 

molecules.  All dissociable ionic species are considered to be fully dissociated into their 

constituent ions for the purpose of these counts.  Each molecule of species k contains  

cationic sites of type l and 

kN

k

k

lC

uA  anionic sites of type u; the system contains  types of 

such cationic sites and  types of such anionic sites.  The total number of cationic sites 

of type l is then 

Cm

Am

k
lC

k

 , (2.69) 
1

t
l
C k

k

N N
=

= ∑

and the total number of anionic sites of type u is 

 
1

t
u
A k u

k

N N
=

= ∑ A . (2.70) 

Of these,  pairs of a cationic group of type l and an anionic group of type u will be in 

a bound state.  Each cationic site of type l has a charge valency 

I
luN

C
lz and an ionic radius 

, and each anionic site of type u has a charge valency C
la A

uz  and an ionic radius A
ua . 

The system also contains  types of association bond donor sites and  

association bond acceptor sites, where ‘association bonds’ include hydrogen bonds and 

ion hydration or ion-dipole type bonds, and optionally may include some strong dipole-

dipole bonds.  Association donors include hydrogen bond proton donors and hydration 

sites on cationic sites and on some partial positive poles of dipoles.  Association 

acceptors include hydrogen bond proton acceptors and hydration sites on anionic sites 

and some on partial negative poles of dipoles.  Each molecule of species k presents  

association bond donors sites of type i and  association bond acceptor sites of type j 

that are not associated with an ionic site.  Furthermore, each charged site is associated 

uniquely with a single type of association site which by convention shall have the same 

index as the charged site type.  Thus each cationic site of type i exhibits  association 

dm am

k

k

C

id

ja

id
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donor sites of type i, and each anionic site of type j exhibits  association acceptor sites 

of type j.   

A

lu

1

I lu
i

u =
∑

1

I lu
j

u
a

=
∑

ja

Finally, bound pairs of a cation of type l with an anion of type u may exhibit  

association donors of type i and  association acceptors of type j; this represents dipole-

dipole interactions between bound ion pairs and other dipoles and can often be neglected.  

However, note that, for bound ion pairs on a polyelectrolyte, this class of interactions has 

been posited to drive solution destabilization with respect to the neutral polymer at high 

counterion concentration113, 115.  Omission of such interactions may thus omit some 

polyelectrolyte physics.  Furthermore, note that this contribution represents the 

introduction of a limited class of ternary interactions into the model; specifically, it 

accounts for ion-ion-dipole ternary interactions.  This approach could be further extended 

to account for ternary interactions more generally.  For example, water’s hydrogen 

bonding-energy to the polymer could be modified if the water is also hydrating an ion. 

The ion-ion-dipole ternary interaction has been selected for special treatment in this 

model simply because the energy of ion pairing is so high as to be expected to have a far 

more significant ternary effect.   

lu
id

ja

The total number of association donors of type i is 

 , (2.71) 
1 1

C Am mt
i k C C i
d k i i i C lu

k l
N N d d N N dα

= =

= + +∑ ∑

and the number of association acceptors of type j is 

 , (2.72) 
1 1

C Am mt
j k A A j

a k j j j A lu
k l

N N a a N Nα
= =

= + +∑ ∑

where C
iα  and A

jα  denote cation and anion ionization fractions, respectively, defined as 

 
1

11
Am

C
l l

uC

N
N

α
=

= − I
lu∑  (2.73) 

and 
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1

11
Cm

A
u u

lA

N
N

α
=

= − I
lu∑ . (2.74) 

The requirement of charge neutrality provides a constraint upon the molecule numbers: 

 
1 1

0
C Am m

l C u A
C l A u

l u
N z N z

= =

+ =∑ ∑ . (2.75) 

As in previous models the partition function of this system is considered to be 

factorable.  The first factor, , accounts for ‘physical’ interactions between molecules: 

excluded volume interaction, dispersion forces, and most dipole-dipole interactions.  A 

second factor, 

PQ

IQ , accounts for ionic bonding.  The third factor, , accounts for 

associating interactions such as hydrogen bonds, ion-dipole bonds, and some strong 

dipole-dipole bonds.  The final factor, Q , accounts for long range electrostatic 

interactions.  The canonical partition function may thus be written as 

AQ

E

 P I A EQ Q Q Q Q= . (2.76) 

As in the previous model, the lattice fluid model result given by equation (2.12) will be 

used for the physical partition function.  Similarly, equation (2.48) for associating 

interactions will be used for the associating partition function. 

Ion-binding partition function 

The ionic bonding partition function will follow the same development as the 

associating partition function.  The number of unbonded cationic groups of type l and 

number of unbonded anionic groups of type u are 

 0
1

Am
I l C l
l C l C

u
N N N Nα

=

= = − I
lu∑  (2.77) 

and 

 0
1

Cm
I u A u
u A u A

l
N N N Nα

=

= = − I
lu∑ . (2.78) 
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As in the association contribution, this leads to an ionic bonding partition function 

of 

 
( )

1 1 1 10 0

! !
! ! !

I
Ilu
luC CA A

NI Nm mm ml u
luC A

I I I I
l u l ul u lu

FN NQ
N N N rN

β ρ
= = = =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∏ ∏ ∏∏ , (2.79) 

where 

 , (2.80) I I
lu lu luF E TS= + I

and where  and  are the energy and entropy, respectively, of pair formation 

between a cationic group of type l and an anionic group of type u. 

I
luE I

luS

Electrostatic partition function 

For simplicity, note that the total number of types of ionic groups in the system is 

given by 

 I Cm m mA≡ + . (2.81) 

Then define the number of ionic groups of type l per molecule of type k  such that k
lΙ

 
C

k
lk

l k
l m C

C l mC

A l m−

⎧ ≤⎪Ι ≡ ⎨ >⎪⎩
. (2.82) 

Similarly, 

  

 , (2.83) 
C

C
l
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l m C

l m
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α
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 , (2.84) 
C

C
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and 

 , (2.85) 
C

C
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l m C
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σ
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The ionic strength of this system may now be defined in dimensionless form as 
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The contribution from free ions to I  is 

 *
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1
2

I

p
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kk 2

f f
k t lk

l l lI I v z
r
φρ α

= + =

≡ = Ι∑ ∑ , (2.87) 

where the sum from   to t denotes a sum over small molecules only.   1pt +

There will be two distinct types of long range electrostatic interactions.  The first 

type includes interactions involving free ions (those on small molecules).  Due to their 

small size, the spatial distribution of such ions is expected to be dominated by their 

electrostatic interactions, and these interactions are thus modeled via the Debye-Huckel 

theory.  Within this framework, the interaction energy of any ion with the surrounding 

cloud of free ions is given by89 

 
23

*1 38 1
f l

l I
f l

zu
I v

κβ
π κσ

= −
+

, (2.88) 

where  

 ( )
1 233 23 3 *

*8 B
f

lv I
v

κ κ π
⎛ ⎞

≡ = ⎜ ⎟
⎝ ⎠

, (2.89) 

and where  is the Debye-Huckel inverse screening length and  is the Bjerrum length, 

defined as usual by 

κ Bl

 
2

04B
r

ql β
πε ε

≡ . (2.90) 

The second type of Coulombic interaction includes only those between fixed ions (those 

on macromolecules).  The spatial distribution of such ions is taken to be dominated by 

considerations of the chain backbone rather than by electrostatics, and the charges thus do 

not participate in Debye-Huckel screening.  They are however, still screened by the free 

ions, such that the interaction between two such fixed ions is given the Debye-Huckel 

screened pair interaction energy: 
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 (expbb Blu
r

)rβ κ= − . (2.91) 

Integrating equation (2.91) over all space (considering all other fixed charges) yields for 

the interaction energy  of a fixed charge of type l with all other fixed charges b
lu

 
p

b l I
l

f

zu
I
ρβ = , (2.92) 

where p
Iρ  is the total dimensionless charge density of fixed polymeric charges: 
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The total electrostatic energy of the system is the sum of equations (2.88) and (2.92) over 

all applicable ions, halving as necessary to prevent double-counting: 
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where Iκ  is a screened ionic strength, given by 
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and pI κ  is the contribution from polymeric charges to this screened ionic strength, given 

by 
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The electrostatic contribution to the partition function is then 

 ( ) (
32
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8

p
E I p

f

rNQ
I κ κ

κρ
ρ π )I I

⎡ ⎤⎡ ⎤
= − − +⎢ ⎥⎢ ⎥
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. (2.97) 

For modest salt concentrations, both terms in equation (2.97) with be considerably less 

than one and will thus be negligible relative to the physical, associating, and ion-binding 

contributions. 
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Free energy 

The Gibbs partition function is given by 

 { }( )
{ }( ) { } { } { }( )
{ } { }( ) { } { }( )
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where the system volume V is given by 

  , (2.99) * 0
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and where  is the volume change of association formation between a donor of type i 

and an acceptor of type j and  is the volume change of ionic bond formation between a 

cationic group of type of type l and an anionic group of type u.  

0
ijV

I
luV

 As before, the Gibbs free energy is given by equation (2.14) and the free energy 

may be segregated into the same contributions as the partition function: 

 P A IG G G G GE= + + + . (2.100) 

The physical and associating contributions to free energy are given by equations (2.16) 

and (2.37), respectively, as in the HBLF model.  The electrostatic contribution to free 

energy is given by 
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The ionic bonding contribution is given by 
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where  and I I
lu lu luG F PV= +

l
l C
C

Nv
rN

= , 0
0

I
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= , 
I

I lu
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Nv
rN

= , and so on. 

Extra care must be taken in determining the maximum term of the partition 

function due to complications arising from interactions between the associating and 
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ionic-bonding contributions to the partition function.  In particular, the maximum term is 

equivalent to minimizing the Gibbs free energy with respect to  and each of the  and v N

I

ij

luυ , where 
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I I
I lu lu
lu l u l u
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N v

N N v v
υ = =  (2.103) 

Minimizing with respect to a non-intensive measure of ionic bonding or to an intensive 

measure which is asymmetric for anions and cations results in a model that is not 

thermodynamically self consistent.  In particular, for such a model the system free energy 

is not correctly recovered from the chemical potential.  Accordingly, the correct 

minimization conditions are 
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for all i  and j and all l and u for which  and , respectively, are not identically zero 

due to the system definition (i.e. pairings of ions comprising a strong electrolyte). 

ijN I
luN

Equations of state 

The associating equations of state are given by equation (2.42) as in earlier 

models.  Equation (2.104) yields the density EOS for the system: 
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where  
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Note that long range electrostatic interactions do not play a significant role in the density 

equation of state of modest charge density solutions.  This surprising conclusion emerges 

from two predictions.  The first prediction, as in the previous model, is that the energy of 

Coulombic interactions involving free ions is negligible at most salt concentrations of 

interest.   The second prediction is that the energy of Coulombic interactions between 

fixed charges is constant with respect to density.  This emerges from the fact that as 

density drops, distances between fixed charges increase but charge screening decreases at 

the same rate, with the two effects cancelling exactly.  Despite these conclusions, 

however, it is important to note that the presence of charges still significantly effects the 

density equation of state via the contribution of ionic bonds and of ion-dipole 

associations.  Accordingly, discarding the electrostatic term gives for the density equation 

of state: 

 ( )2 1ln 1 1 0P T
r

ρ ρ ρ⎧ ⎛ ⎞+ + − + − =⎨ ⎜ ⎟
⎝ ⎠⎩ ⎭

⎫
⎬ , (2.111) 

which is the same as that for the hydrogen bonding lattice fluid model, albeit with an 

additional contribution to account for ionic bonding. 

Equation (2.106) yields the set of ionic bonding equations of state: 
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where s
Cyf  and s

Azf  are the fraction of cations of type y and anions of type z, respectively, 

that are on small molecules: 
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Similarly, p
Cyf  and p

Azf are the fractions of cations of type y and anions of type z, 

respectively, found on polymer molecules: 
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and 
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Note that for most cases, (2.113) through (2.116) will have values of either zero or one as 

the same type of charged group by definition will generally not be found on both a small 

and large molecule.  Note also that equation (2.112) may be considerably simplified in 

the limit that long range electrostatics may be neglected. 
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Chemical potential 

As in earlier models, the chemical potential may be separated into contributions 

from the various partition function factors: 
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The physical contribution to chemical potential is given by equation (2.20) from the 

lattice fluid model.  The associating contribution is: 
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The ionic bonding contribution is: 
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The electrostatic contribution is: 
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where [ ]H x  is the Heaviside step function, given by 

 [ ] 1 if 0
0 if 0

x
H x

x
≥⎧

= ⎨ <⎩
 (2.121) 

Note that the relation 

 
1

t

k k
k

G N μ
=

= ∑  (2.122) 

properly recovers the system free energy, as it should.  Also note that in the absence of 

polyelectrolytes, equation (2.120) reduces exactly to equation (2.65) from the prior, 

polyelectrolyte free, model.  

2.2.3. Solution Stability 

The above models will entail systems with at least four components (polymer, 

solvent, cation, and anion), with the electroneutrality condition constraining one of the 

component mole numbers. It is thus useful to develop in a general way the spinodal of a 
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multicomponent system under additional constraints.  The development will differ 

depending upon whether the constraint is on composition fractions only, or upon mole 

numbers and composition fractions, as in the present case.  For completeness and 

comparison, the composition fraction only case is addressed first. 

Spinodal with a constraint on the composition fractions 

For a t component mixture, in general the system composition will be described 

by t-1 independent composition variables.  An appropriate gradient operator with respect 

to composition may be defined in vector form as 

   
1 2 1

1 2 1j j j t
tφ φ φ

φ φ φ
≠ ≠ ≠ −

−

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂
∇ ≡ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (2.123) 

In general, the limit of stability (spinodal) for the system with respect to composition is 

defined by 

 ( )det 0g∇ ⊗ ∇ = , (2.124) 

where g is the intensive system free energy and ∇ ⊗ ∇  denotes the outer product of the 

gradient vector with itself.  The type of intensive free energy (molar, volumetric, etc.) 

should be chosen to be conjugate to the composition variable chosen.  Several 

composition variables are of the form 

 

1

u u u u
u t

k k
k

r N r N
rNr N

φ

=

= =

∑
, (2.125) 

where ru is some species-specific property of component u on which the composition 

variable is based. For example, for the mole fraction  is identically one, and for the 

volume fraction  is some measure of molecular size. 

ur

ur

In many cases, it is convenient to frame the spinodal in terms of chemical 

potentials rather than in terms of free energy, both because the chemical potential is a 

commonly calculated quantity and because this form sometimes allows the 

straightforward use of free energy minimization conditions, such as equations (2.104) 
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through (2.106), in simplifying the spinodal.  The chemical potential is given at constant 

temperature and pressure in terms of system free energy by 

 
{ }j k

k
k N

G
N

μ
≠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

. (2.126) 

In terms of intensive free energy and the composition variable form given by equation 

(2.125), chemical potential is 
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 (2.127) 

Applying the chain rule (see appendix A.2.1 for more detail), the general expression for 

second order derivatives of intensive free energy with respect to composition is then 

 
{ } { }

{ }

{ } { }

,

,
,

,
,

1

1

1
1

j l t

j k t
j l t

j u t
j l t

k

k l

t
l k k

u
u k l u

r
g

g

φ

φ
φ

φ
φ

μ
φ

φ φ φ
φ

φ φ

≠

≠
≠

≠
≠

−

≠

⎡ ⎤⎛ ⎞∂
⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎛ ⎞⎛ ⎞∂ ∂ ⎢ ⎥⎜ ⎟ =⎜ ⎟ ⎛ ⎞⎢ ⎥⎜ ⎟∂ ∂ − ⎛ ⎞∂ ∂⎝ ⎠ ⎜ ⎟⎝ ⎠ ⎢ ⎥+ ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑
, (2.128) 

where all composition derivatives are taken with all other composition fractions except 

the dependent one held constant. 

For a two component system equation (2.128) reduces to a single equation and the 

spinodal is simply 
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However, for a ternary system equation (2.128) yields a set of three equations: 
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where 
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This set of equations may be solved through straightforward linear algebra, yielding 

explicit equations for the klg  in terms of composition derivatives of the component 

chemical potentials.  These expressions may then be substituted into equation (2.124) to 

yield the spinodal in terms of chemical potentials.   

Spinodal with a constraint on the mole numbers 

A complication in the above approach emerges when the system is also subject to 

a constraint on the mole numbers, such as the electroneutrality condition in the present 

models.  Such a constraint will always also impose an associated constraint on the 

composition fractions, and it is at first tempting to simply apply the above development 

on this basis.  However, equation (2.128) becomes incorrect if a mole number constraint 

is applied to the free energy before the spinodal is calculated.  In this case, it is necessary 

to account for the altered meaning of the chemical potential, as follows. 

 In general, the free energy is a function of all mole numbers: 

 { }( )k tG G N ≤= . (2.134) 

However, when there is a constraint on the mole numbers, the mole number of one of the 

components (component p) is a dependent function of the other mole numbers such that 

 { }( )t t k pN N N ≠= . (2.135) 

The free energy can then be expressed as 

 { } { }( )( ),k p t k pG G N N N≠ ≠= . (2.136) 
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Furthermore, via substitution of this constraint into the free energy, a new form  may 

be arrived at for the free energy which is equivalent to the original form but which has no 

explicit dependence upon : 

Ĝ

tN

 { }( )ˆ
k pG G N ≠= . (2.137) 

Throughout this derivation, hats on variables will similarly indicate their form with the 

substitution of equation (2.135) having already been made.  By equating mole number 

derivatives of equations (2.136) and (2.137), the chemical potential ˆkμ  as determined 

based on  is then related to the fundamental chemical potential Ĝ kμ  based on G via 
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where 

 
{ }

ˆ
ˆ

j k

k
k N

G
N

μ
≠

⎛ ⎞∂
≡ ⎜ ⎟⎜ ⎟∂⎝ ⎠

. (2.139) 

As noted above, equation (2.135) will yield a corresponding constraint on the 

composition fractions: 

 { }( )t t k pφ φ φ ≠= . (2.140) 

In general, as in the form given by equation (2.125), the composition fractions are a 

function of all the mole numbers such that 

 { }( )k k k pNφ φ ≠= . (2.141) 

However, as in the free energy applying equation (2.125) yields an alternate form that is 

not an explicit function of the dependent mole number: 

 { }( )ˆ
k k k pNφ φ ≠= . (2.142) 

Equation (2.125) may be rewritten in this form as  

 ˆ
ˆˆ

k k
k

r N
rN

φ = . (2.143) 
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In terms of intensive free energy, the substituted form of chemical potential ˆkμ  may now 

be written as 

 
{ } { }

ˆˆ ˆˆ ˆ
j kj k
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, (2.144) 

which is comparable to equation (2.127) in the former development.  Second derivatives 

of intensive free energy with respect to composition may then be show via the chain rule 

to be given by 
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. (2.145) 

Furthermore, in this case the gradient vector from equation (2.123) will exclude the 

derivative with respect to Np.  For a quaternary system, equation (2.145) yields the triad 

of simultaneous equations: 
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and 
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It is important to note that equation (2.138) must be applied in order to obtain equations 

in terms of standard chemical potentials.      
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2.3.  Applications, Results, and Discussion 

Numerical solution of the above models focuses on the base system of 

polyethylene oxide (PEO) in water.  This provides an experimentally relevant model 

system for which hydrogen-bonding parameters are already available in the literature.  

Furthermore, it has previously been shown that predictions from the HBLF model 

provide excellent quantitative agreement with experiment for the pure binary water-PEO 

system131.  All numerical results shown in the below sections are for PEO molecular 

weight  grams per mole, with lattice fluid and hydrogen bonding parameters for 

PEO and water taken from a recent study fitting these parameters to the water-PEO 

binary system131.  Furthermore, for simplicity, all ions are taken to have a hydration 

coordination number of six. 

5

1 1

2

3

4

6 10×

2.3.1. Neutral polymer in aqueous salt solution 

System definition 

Consider a system of polyethylene and water containing a strong monovalent free 

salt.  Water, PEO, cations, and anions will be considered components 1, 2, 3, and 4 

respectively.  Each molecule of water contains two association donors (the hydrogen 

atoms) and two association acceptors (free electron pairs on the oxygen atom), 

corresponding to  and , respectively.  Each polymer chain contains one 

acceptor site (the oxygen atom) per monomer, so that to  is equal to the degree of 

polymerization of the polymer (from a physical standpoint, it is debatable whether the 

correct number of acceptors per PEO oxygen is one or two, but one has been used 

successfully in the literature131).  Each cation has some number of hydration sites which 

serve as association donors, with this number given by .  Similarly each anion has a 

number of acceptor sites given by .  These groups will form five types of association 

bonds: 1-1 (water-water); 1-2 (water-PEO); 1-3 (water-anion); 2-1 (cation-water); and 2-

2 (cation-PEO).  Associations between anions and cations are neglected on the basis that 

1 2d = 1 2a =

2a

2d

3a
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a strong salt will be almost entirely dissociated.  Finally, the ratio 1 2 1.3424s s =

1.0472

 based 

on a hard sphere model, and 12ξ =  has been shown to provide a good fit with 

experimental data.  All other Berthelot parameters will be taken to have a value of unity 

and all the other { }ks  will be taken to have a value equaling that of water.   

One density equation of state and five associating equations of state characterize 

the system’s state.  The electroneutrality constraint from equation (2.58) becomes 

 3 3 4 4 0N z N z+ = , (2.149) 

and the volume fractions are likewise constrained: 

 3 4
3 4

3 4

0z z
r r
φ φ

+ = . (2.150) 

It then follows from section 2.2.3 that the spinodal condition is given by the determinant 

of a two-by-two matrix, and equations (2.146) through (2.148) may be applied to write 

the condition in terms of chemical potentials rather than free energies.   

The above system is solved for the spinodal in the following way.  The system of 

equations of state is first solved over a grid of temperature, polymer volume fraction, and 

anion volume fraction.  The resulting data is then interpolated and numerically 

differentiated to yield necessary equation of state derivatives with respect to 

compositions.  The locus of points satisfying the spinodal condition is then determined 

numerically.  Further details of this approach, including Mathematica code, may be found 

in appendix A.3.1.   

Results 

As shown by Figure 9, predicted phase behavior is characterized by an LCST-

type spinodal curve which at higher temperatures curves back over into a UCST type 

spinodal to form a closed immiscibility loop.  With the addition of free salt, the LCST 

shifts either upward or downward in temperature, corresponding to salting-in or salting-

out, depending on salt properties.  This shift of the spinodal curve can also be understood 
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as corresponding to an isothermal ionic strength-triggered transition, as shown by Figure 

10.  Figure 10 is essentially a parallelogram-shaped cutout of the overall water-PEO-salt 

ternary phase diagram, as shown by Figure 11. 
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Figure 9:  Spinodal curves for aqueous PEO in the presence of salt at various 

concentrations.  Salt properties have been manually adjusted to approximate experimental 

results for the LCST of PEO with KI.  Numbers on curves are salt occupied volume 

fraction corresponding to that curve.  Note that the apparent meeting point of the three 

curves is not truly a single point upon closer inspection. 
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Figure 10:  Cutout of isothermal ternary phase diagram for water-PEO-salt system, 

shown in Figure 11.  Curves denote spinodals at indicated temperatures.  The vertical axis 

corresponds to anion occupied volume fraction while the horizontal axis corresponds to 

polymer occupied volume fraction.  Salt properties have been manually adjusted to 

approximate experimental results for the LCST of PEO with KBr. Numbers on curves 

denote the system temperature for that curve.  Dashed line denotes an isothermal salt-

induced LCST transition at 370 K. 
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Figure 11: The ternary phase diagram for the present system.  The white region 

corresponds to the region shown in Figure 10.  Results have not been obtained for the 

grey region, and the present model would likely be inappropriate for treatment of the 

region corresponding to higher salt concentration due to breakdown of the Debye-Huckel 

model. 

There are three mechanisms in this model by which the addition of salt alters 

solution stability, corresponding to electrostatic, physical and associating contributions.  

As suggested in the theory development, for these modest charge concentrations the 

electrostatic effect is quite small and plays little role in affecting stability.  In contrast, , 

the effect of salt physical interactions on phase stability is typically one of pronounced 

destabilization.  For normal Berthelot parameters (near one) it is a good rule of thumb for 

the lattice fluid model that the addition of a third component is energetically unfavorable 

and tends to lead to destabilize a mixture.  

The effect of salt associating interactions is somewhat more complicated and can 

consist of either stabilization or destabilization of the solution, depending on salt 

properties.  As shown by Figure 12, the central associative interaction that compatibilizes 

the mixture is the PEO-water hydrogen bond.  Cation-PEO and anion-water ion-dipole 
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interactions compete with this interaction and thus tend to destabilize the mixture.  In 

contrast, the cation-water interaction competes only with the solution-destabilizing water-

water hydrogen bond, thereby stabilizing the mixture.  The balance of these effects 

determines the associating contribution to system stability: when cation-PEO and anion-

water interactions dominate, they tend to destabilize the solution; when cation-water 

interactions dominate, it tends to stabilize the solution.  The predicted salting-in effect 

can thus actually be understood as a ‘salting-out’ of water from water. 

O 
A- 

C+ 

O 
H H 

O 
H H 

 
Figure 12:  Schematic of possible associations in PEO-water-free salt system.  Heavy 

dashed lined denote hydrogen bond types, which are present in the absence of free ions.  

Light dashed lines denote ion-dipole bond types.  Bonds that share a locus compete with 

one another for use of that type of site.  The heavy curve denotes a PEO chain, with a 

particular oxygen site note.  C+ and A- denote free cation and anion, respectively.  

The above physics permit the model to reproduce aspects of the lyotropic series of 

salts.  By tuning the above balance of ion-binding interactions towards stabilization or 

destabilization, it is possible to obtain theoretical salts along a spectrum of salting in and 

salting out behavior.  As shown in Figure 13 for aqueous PEO, the model is capable of at 
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least semi-quantitative matches with experiment for a variety of salts.  Note that since 

experimental data in this figure is from cloud-point experiments and predictions are for 

the LCST, an exact quantitative match is not expected.  Furthermore, predicted curves are 

produced by a manual ‘best-fit’ of salt parameters, and numerically optimized best fits 

presently underway are expected to yield improved agreement.  However, interaction 

parameters for each ion are allowed to differ depending on their counterion; an important 

future test of the model will be whether a fit comparable to that shown in Figure 13 is 

possible while using consistent ion parameters for each system.   
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Figure 13:  Experimental cloud points80 (points) and manual LCST fits (curves) based on 

the above theory, for aqueous PEO as a function of salt concentration for various salts.  

Black curve and points correspond to the LCST in the presence of KI, green to KBr, blue 

to NaCl, and red to KF.  The purple line demonstrates a typical salting-in case as 

predicted by this model for a hypothetical salt characterized by a strong favorable cation-

water hydration interaction and weak anion-water and cation-polymer interactions. 
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As expected, due to the neglect of ternary interactions, the present model does not 

capture the more extreme lyotropic behavior that is characterized by pronounced salting-

in at low salt concentrations followed by salting out at higher.  Furthermore, it is not clear 

that the model is consistent with the observation that salt’s anion controls its behavior.  

Despite these expected shortcomings, it is notable that the model is able to reproduce 

much of the range of the lyotropic series with binary interactions only.  This result 

bolsters the contention, for example by Park and Hoffman 81, that binary ion-dipole 

interactions play a significant role in the Lyotropic series.  Furthermore, a framework for 

extension of the present model to incorporate ternary hydration interactions has been 

described in section 2.2.2, and such an extension would be expected to address these 

shortcomings. 

2.3.2. Polyelectrolyte 

System definition 

In order to study a polyelectrolytic system, the above PEO-water-salt system is 

modified by replacing the hydrogen bonding site on a small fraction fI of PEO monomers 

with a negatively charged group.  The counterion of this charged group is taken to be the 

same species as the cation of the free salt.  As described in the theory section above, this 

system requires more complex variable sets and indexing conventions than the neutral 

polymer case.  Furthermore, polyelectrolytes of the low charge density sort addressed 

here are in reality copolymers of charged and uncharged monomers of different types.  

However, for low polymer charge fractions the effect of differences in the van der Waals 

interactions of the substituted monomers should be small enough to be neglected, as they 

are here.  Finally, in order to establish the basic behavior of this model with the minimum 

number of interaction parameters, interactions involving ion pairs will be neglected (i.e. 

 and lu lu
id ja  will be treated as zero for all ion pairs). 

For this model, PEO, water, cations, and anions will be considered components 1, 

2, 3, and 4 respectively (note the reversal of PEO and water with respect to the above 
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system).  Each chain of PEO will contain a number of anionic groups 1
1A  equal to fI times 

the degree of polymerization of the chain.  Each such anionic group will have 1
Aa  

hydration sites that function as association acceptors. The polymer chain will furthermore 

contain  acceptor sites (oxygen atoms) equal to 11
4a If−  times the degree of 

polymerization.   Each free anion molecule will correspond to one anion group, such that 

.  Each group will present 4
2 1A = 2

Aa  hydration sites that serve as association acceptors. 

Similarly, each free cation molecule will correspond to one cation group, such that 

, and each such group will present  association donors.  Finally, as in the prior 

model each water molecule will contain two donors and two acceptors, such that 

3 C

2

1 1C = 1d

2 2d =  

and .  The ionic groups will form one type of ion bond: 1-1, which corresponds to 

a polyelectrolyte-cation bond.  The associating groups will form six types of association 

bonds:1-3 (cation-water); 1-4 (cation-PEO oxygen); 2-1 (water-polyelectrolyte anion); 2-

2 (water-free anion); 2-3 (water-water); and 2-4 (water-PEO oxygen).  Values of sk and 

the Berthelot parameters shall be as in the neutral PEO model.     

2
3 2a =

In this case, one density equation of state and six hydrogen bonding equations of 

state characterize the system’s state.  The electroneutrality constraint from equation 

(2.75) becomes 

 3 1 43 1 4
1 1 1 1 2 2

3 1 4

0C A AC z A z A z
r r r
φ φ φ

+ + =  (2.151) 

As in the neutral polymer case, the spinodal condition is given by the determinant of a 

two-by-two matrix, and the necessary relations to write this condition in terms of 

chemical potentials are given by equations (2.146) through (2.148).  Numerical solution 

methodology for this system is essentially the same as that for the neutral polymer case, 

albeit with the necessary alterations to parameter and variable definitions. 

Finally, for any particular combination of associating and ion-binding parameters, 

the polymer dissociable groups may be characterized by a pC which is the negative base 
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ten logarithm of the counterion concentration and is the same as pH when the counterion 

is hydrogen.   

For simplicity, the salt used in generating the below results has lattice fluid 

parameters based upon NaCl, and all ion-dipole interactions are taken to have energies of 

formation 0
ijE  equal to about two thirds that for the water-water hydrogen bond while   

and entropies of ion-dipole bond formation  are taken to be about the same as that for 

water-water hydrogen bond formation.   

0
ijS

Results 

The addition of charges to the polymer chain stabilizes the system, increasing the 

LCST temperature, as shown by Figure 14 for polymers with up to 1% substitution of 

electrolytic groups.  The electrostatic interactions are calculated to play only a small role 

in such cases, and stabilization is instead driven by enhanced chain hydration.  This is 

consistent with the scaling observation made in the above theoretical development to the 

effect that the electrostatic term in the free energy is quite small relative to other 

contributions at small to modest charge concentrations.   
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Figure 14:  Effect of fraction of electrolytic monomers on PEO LCST, for monomers 

with a very low pK0 corresponding to a strong electrolyte, in 0.05 molar aqueous salt 

solution.  The properties of the salt do not correspond exactly to any real salt but fall 

within the range of lyotropic salting-out behavior. 

The addition of free salt to the solution counters this effect, destabilizing the 

solution and lowering the LCST.  Two mechanisms drive this trend.  The first is ionic 

bonding of counterions to the polymer charged groups, which reduces the ionization 

fraction of the polymer.  Figure 15 demonstrates this mechanism for a PEO chain with 

1% of its monomers replaced with dissociable ionic groups.  As the pK0 of the dissociable 

groups is increased through the solution pC at fixed salt concentration, there is a steplike 

reduction in LCST temperature that is driven by the reduction in unbound ions on the 

polymer.  Note that for high pK0 the solution is destabilized with respect to the neutral 

solution, in qualitative agreement with experimental results. 
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Figure 15:  LCST of aqueous PEO with electrolytic subunits substituted for 0.1% of its 

monomers, as a function of the pK0 of the electrolyte subunits.  The vertical dashed line 

indicates the pC of the solution (the negative base ten logarithm of the counterion 

concentration) in solution.  The free ions do not correspond to any real salt, but are 

hypothetical ions constructed to fall into the typical range of salting out behavior 

described above. 

In the present results, the drop in LCST with bonding of counterions at high pK0 

results simply from the reduction in potential hydration sites on the chain.  Because 

ternary interactions between ion pairs and dipoles are not considered, these sites 

effectively ‘disappear’ upon ion binding.  At the molecular level, this mechanism differs 

from that proposed for experimental systems, namely, favorable interactions between 

bound ion pairs on the chain with each other and with other sites on the chain.  However, 

at a thermodynamic level the two mechanisms are comparable: as ion pairs form, 

 71



favorable interactions with water become dominated by favorable self-interactions, and 

the system is destabilized.   

A second mechanism for reversal of the polyelectrolyte stabilization effect is that 

of lyotropic salting out, discussed in section 1.3.1 and for the neutral chain model in 

section 2.3.1.  This effect is not strictly related to the charges on the chain; rather it 

represents a ‘swamping out’ of the polyelectrolyte stabilization by lyotropic 

destabilization.  In other words, whereas the addition of charges to the chain enhances 

hydration by adding ion hydration sites, the lyotropic effect in this model diminishes 

hydration by occupying hydrogen-bonding hydration sites.  This effect can be isolated 

from the counterion effect for charged PEO chains with a very low pK0, as such chains do 

not become significantly de-ionized as the free charge concentration increases.  Results 

for such a system can be seen in Figure 16.  Despite the unaltered presence of charges on 

the chain, there is a pronounced salting out with increased system charge that is 

comparable to that demonstrated for neutral chains in section 2.3.1.  
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Figure 16:  LCST of PEO with strong electrolytic subunits substituted for 0.1% of its 

monomers, as a function of anion volume fraction.  The equivalent range of salt molarity 

is zero to about 0.7. 
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2.4. Conclusions 

The LCST transition of uncharged aqueous polymers in the presence of salt is 

shown to be amenable to a two part approach that combines a mean field lattice fluid 

model with a combinatorial method for strong pair interactions.  This approach is an 

extension of the earlier hydrogen bonding lattice fluid model128, and its key addition is 

the treatment of ion-dipole interactions in the same manner as hydrogen bonding.  A 

competition results between ion hydration and hydrogen bonding hydration, through 

which salting-in and salting-out effects emerge.  Solution destabilization results from 

dominance of ion dipole-interactions that are in competition with water-polymer 

hydrogen bonding.  Conversely, stabilization emerges from dominance of ion-dipole 

interactions that compete with water-water hydrogen bonding. 

Via manual tuning of ion-dipole interaction parameters, this model is shown to 

produce results in semi-quantitative agreement with experimental cloud point data for 

PEO in various salts.  Results preliminarily suggest that it is possible to reproduce 

important experimental aspects of the lyotropic series by considering only binary 

interactions.  However, further work is necessary in order to demonstrate that this result 

is possible while retaining identical parameters for each ion in differing systems.  

Furthermore, the apparent inability of this binary-only approach to reproduce more 

extreme lyotropic behavior, characterized by both salting in and salting out at different 

salt concentrations, bolsters that argument that ternary or higher interactions are central in 

producing the full lyotropic series.  By explicitly incorporating such ternary interactions 

into this model, it seems probable a more complete theory for lyotropic behavior could be 

produced.  A method of doing so is offered as part of the development of a model for 

polyelectrolytes.  Application of this extended approach to the lyotropic series would 

likely be a fruitful avenue of future research.  Beyond potentially offering a quantitative 

model for the lyotropic series, it could help resolve the question of whether salt effects on 

hydrophobic hydration or hydrogen-bonding hydration are dominant in modulating 

solution stability. 
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An extension of this model is employed in order to model lightly charged 

polyelectrolytes.  In addition to the combinatorial approach to hydrogen bonding and ion-

dipole interactions, a second, parallel combinatorial network is established to treat ionic 

bonding.  The model predicts that addition of charges to a chain stabilizes the solution 

(raises the LCST) as a result of enhanced chain hydration, consistent with qualitative 

experimental observation.  It further predicts that there is a step-like reduction in the 

LCST as the polyelectrolye pK0 becomes greater than the pH of the solution, in 

qualitative agreement with experiment.   

In both of the above models, future work should include optimization of charge 

interaction parameters with respect to various experimental results.  Ideally, experimental 

properties such as heats of mixing and ion dissociation constants could be used to avoid 

fitting directly to phase behavior.  Such an approach would broaden the number of 

systems for which parameters could be rapidly obtained and would establish a greater 

predictive (rather than merely interpolative) capacity of the model. 
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Chapter 3. Single Chain Conformational Behavior 

In highly dilute solution, the analogue of the thermally induced phase separation 

addressed above is expected to be a thermally induced chain collapse.  This mechanism is 

believed to drive the functionality of many biopolymers66 and is relevant to the design of 

synthetic polymer systems in a variety of applications.  However, prior to this work no 

model was available in the literature with a broad ability to semi-quantitatively predict 

this transition.   

In addition to the physics present in models for the lower critical solution 

temperature (LCST) transition, the treatment of the single chain conformation mainly 

requires the addition of intrachain excluded volume interactions.  From a statistical 

thermodynamic standpoint, this amount to counting the number of non-self intersecting 

chain conformations rather than simply all conformation.  As demonstrated by a 

successful model27 for the coil-globule transition (CGT) that is associated with the upper 

critical solution temperature (UCST), the Widom insertion parameter approach to the 

chemical potential provides a far simpler calculation of this quantity than that possible by 

calculation of the system partition function.  The present work follows this approach 

within both lattice fluid and scaled particle theory frameworks.  The lattice fluid approach 

offers the advantage of greater simplicity.  However, unpublished results by Sanchez132 

suggest that pure component parameters for the SPT model have a much closer link to 

component molecular characteristics, offering a stronger link to underlying physics and 

potentially greater predictive power.   
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3.1. Theory 

3.1.1. General model 

Consider a polymer-solvent system at infinite dilution.  In such a system, the 

polymer chains do not interact, and each will independently pervade a volume 

characterized by a gyration radius R.  Within this domain the polymer chain will occupy a 

volume fraction pη , which scales as 

 
3

3~ p
p

r
R
σ

η , (3.1) 

where rp is a measure of chain length and 3σ  is a measure of chain occupied volume per 

length. Furthermore, within the pervaded volume sN  solvent molecules will occupy 

volume fraction sη .  Accounting for vacant space, the total occupied volume fraction 

within this domain, given by p sρ η η= + , will in general be less than one.  At any given 

thermodynamic state, two equilibrium conditions will describe the chain and its 

immediate surroundings.  The first is an equilibrium condition on the gyration radius or 

occupied volume fraction of the chain.   The second is an equilibrium condition on the 

occupied volume fraction of the solvent within the pervaded volume 

The equilibrium gyration radius corresponds to the mean value of the partition 

function with respect to R.  In the thermodynamic limit such a condition is typically 

determined by simply finding the minimum of the free energy (or maximum of the 

partition function) with respect to the variable of interest.  However, the partition 

function Q of an ideal chain is known to be skewed with respect to gyration radius.  On 

this basis the equilibrium chain gyration radius for the above system is given in terms of 

free energy G by the Hermans-Overbeek approximation27: 

 
( )

{ }, , ,

ln
0

s ij

p

T P v

R G N
R

η

β⎛ ⎞∂ +
⎜ ⎟ =
⎜ ⎟∂⎝ ⎠

, (3.2) 
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where pN  is the number of such isolated polymer chains in the system. 

The second equilibrium condition is that the solvent occupied volume fraction 

must satisfy equality of chemical potential with respect to the bulk solvent: 

 B
s sμ μ= , (3.3) 

where sμ  is the chemical potential of the solvent in the pervaded volume and B
sμ  is the 

chemical potential of the solvent in the bulk.  This constraint may be used to simplify the 

minimization in equation (3.2), as follows.  

 The system free energy may be written in terms of chemical potentials as 

 ( )B T
p p p s s s s sG N N N N Bμ μ μ μ= + − + , (3.4) 

where pμ  is the polymer chemical potential, pN  is the total number of polymer chains in 

the system, and T
sN  is the total number of solvent molecules in the system.  Since the 

system is at infinite dilution, B
sμ  must be constant with respect to all properties of the 

chain and thus equation (3.2)  reduces to 

 
, ,

1 0
s

p

T PR R η

μ
β

∂⎛ ⎞
+ =⎜ ⎟∂⎝ ⎠

. (3.5) 

The polymer chemical potential may be calculated via the calculated via the Widom 

insertion parameter: 

 
( )

3

0

ln p
p

pP R
ρ λ

βμ
⎛ ⎞

= ⎜⎜
⎝ ⎠B

⎟⎟ , (3.6) 

where pρ  is the number density of polymer in the entire system volume and λ  is the 

thermal wavelength, both of which are constant with respect to chain gyration radius and 

may be neglected for the purposes of this model.  ( )0P R  is the ideal chain gyration radius 

distribution function and pB  is the insertion parameter for the polymer chain.    The ideal 

chain gyration radius is well approximated by the modified Flory-Fisk distribution: 

 77



 ( ) 6
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7~ exp
2 p p

aP R dR R
r η

⎛ ⎞
−⎜⎜

⎝ ⎠
⎟⎟ , (3.7) 

where pr  is a measure of chain length.  

It follows from equations (3.5) and (3.6) that the condition for the equilibrium 

chain gyration radius is 

 
( )( )0

, ,

ln1 0
s

p

T P

P R dR
R R

η

β
⎛ ⎞∂
⎜ ⎟−
⎜ ⎟∂⎝ ⎠

B
= . (3.8) 

Since the CGT is defined as the point at which the chain is in its ideal state, the 

contributions to equation (3.8) that apply to the ideal state are zero at the CGT by 

definition.  This leaves simply 

 1

, ,

ln
0

s

p

T P
R

α

η

=
⎛ ⎞∂
⎜ ⎟− =
⎜ ⎟∂⎝ ⎠

B
 (3.9) 

as the condition for the CGT, where 2α  is known as the expansion factor and is a 

dimensionless square gyration radius defined with respect to the ideal chain state: 

 2 2 2
0R Rα ≡ 〈 〉 , (3.10) 

where  is the mean square gyration radius of an ideal chain.  For such a chain, 2
0R〈 〉

2
0 ~ p

2R r σ〈 〉 , and combining equations (3.10) and (3.1) yields a relationship between the 

expansion factor and polymer occupied volume fraction within the pervaded volume: 

 2
1 3 2 3

p p

a
r

α
η

= , (3.11) 

where a is some dimensionless constant.  Most importantly, by definition of the CGT, 

 . (3.12) 2

1 collapsed globule
1 CGT (ideal coil

1 expanded coil
α

<<⎧
⎪= ⎨
⎪>>⎩

)

Thus at the CGT itself, 
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p

a
r

η = . (3.13) 

It is important to note that the chain occupied volume fraction is thus zero in the limit of 

an infinite chain at the CGT. 

The insertion parameter, required by equations (3.8) and (3.9), is given by 

 [ ]expk k kβ ψ= − 〈 〉B P , (3.14) 

where  is the hard-core insertion probability of a molecule of species k and kP kψ〈 〉  is the 

average interaction energy of the molecule upon insertion.  In general, the hard core 

insertion probability of the chain may be related to the insertion probability ,p jP  of a 

chain subunit by taking the product of ,p jP  over all subunits, accounting for the 

increasing occupied volume fraction as the chain is inserted: 

 , (3.15) 
1

,
0

pr

p
j

−

=

= ∏P Pp j

where rp is the number of subunits and where short range chain correlations have been 

neglected. 

Up until this point, no particular model for the chain or fluid have been required.  

Furthermore, no explicit definition has been provided for “the number of chain subunits”. 

Thus, two alternate models for the mixture will be applied in order to obtain ,p jP  and 

pψ〈 〉 , as well as the bulk solvent properties.   These models will also provide explicit 

definitions for the number of chain subunits.  The first model is the lattice fluid model, 

and the second is a scaled particle model.   

3.1.2. Lattice model 

Within a lattice-fluid framework, each molecule of species k occupies rk lattice 

sites, each of volume v*.  In these variables the polymer occupied volume fraction is 

related to the gyration radius by 
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*

3
p

p

r v
R

η = . (3.16) 

Furthermore, ,p jP  is simply the fraction of unoccupied sites: 

 , 1p j s p
p

j
r

η η= − −P , (3.17) 

where j is the number of previously inserted chain subunits.  Adjacent sites occupied by 

molecules of species i and j interact with a characteristic energy of ijε .  Simply by 

summing over the average number of interactions per site, the chain interaction energy is 

then given by 
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where 

 *

2
ij

ij

zε
ε =  (3.19) 

is a characteristic interaction energy between species i and species j and where z is the 

coordination number of the lattice.   Substitution of the insertion probability and energy 

above into equation (3.14) yields 
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Equation (3.6) then yields the polymer chemical potential: 
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. (3.21) 

The equilibrium gyration radius may now be obtained from equation (3.8): 

 ( ) ( ){2 *7 1 ln 1
3 p pp pr }α βε η ϕ ϕ ϕ⎡− = − + − +⎣ ⎤⎦ , (3.22) 
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where 

 1
1

p

s

η
ϕ

η
≡ <

−
. (3.23) 

As noted above, sη is determined by equating solvent chemical potential in the 

pervaded volume and the bulk.  The solvent chemical potentials are obtained in a similar 

fashion to that of the polymer, through the insertion parameter, albeit without an ideal 

chain gyration radius contribution.  Within the pervaded volume, the insertion parameter 

for the solvent is given by 

 ( ) ( )* *1 exp 2sr

s p s s ss s sprη η β ε η ε η p
⎡ ⎤= − − +⎣ ⎦B . (3.24) 

In the bulk, it is given by 

 ( ) *1 expsrB B
S s s ssr B

sη β ε η⎡ ⎤= − ⎣ ⎦B . (3.25) 

where B
sη  is the bulk solvent density.  Equations (3.24) and (3.25) yield the chemical 

potential equality constraint on the solvent density in the pervaded volume: 

 ( )( *1
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s s ss sB
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η η

η ρ β ε η η ε η
η

− −⎛ ⎞ )*B
s sp p
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. (3.26) 

At the CGT itself, equation (3.22) is simplified in accordance with equation (3.9) 

to yield the condition for the CGT: 

  ( )
*

,0 0 0 0ln 1 0pp
pk

ε
η ϕ ϕ ϕ⎡ ⎤+ − + =⎣ ⎦Θ

, (3.27) 

where ‘0’ subscripts denote values at the CGT, where 2 1α〈 〉 = .  Also, it has been 

previously shown27 that for this model ( )1 319 27a = , which is needed to determine ,0pη  

via equation (3.13) at the CGT.  Expanding the logarithmic term in equation (3.27) gives  
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where * *
p ppT ε= k  is a characteristic temperature of the polymer and Θ  is the CGT 

temperature.  In the limit of infinite molecular weight, , r → ∞ 0 0φ〈 〉 → , Bρ ρ→ , and 

from eq. (3.28), the coil-globule transition temperature is given by the simple equation: 

 ( )*2 1 B
p sT η⎡ ⎤Θ = − Θ⎣ ⎦ . (3.29)   

The first order correction δΘ to this transition temperature for a chain of finite length is 

obtained from eq. (3.28) and yields 

 0*

4
3pT

δ
φ

Θ
= ~ 1 2r− , (3.30) 

where ( ) ( )rδΘ = Θ − Θ ∞ .  Furthermore, in the infinite chain length limit the polymer 

volume fraction goes to zero within the pervaded volume.  This follows from the fact that 

at the coil-globule transition the chain is in its ideal state and the gyration radius scales as 
1 2

pR r∼ , and thus  1 2
p prη −∼ , which goes to zero as chain length goes to infinity.  Thus 

the solvent in the pervaded volume is effectively in its pure state and equation (3.26) for 

solvent chemical potential equality reduces to equality of solvent density in the pervaded 

volume and the bulk. 

For the bulk solvent, the most self-consistent approach would be to use an 

equation of state derived based on the solvent insertion parameter above.  However, this 

is not strictly necessary – all that is required is a relation for solvent density as a function 

of temperature and pressure.  The Sanchez-Lacombe (S-L) equation of state is based up 

on the same general physical approach as the present one, albeit via the overall partition 

function as opposed to the Widom Insertion Parameter as described in the introduction.  

Furthermore, parameters for the S-L model are tabulated for a wide variety of common 

polymers and solvents.  Therefore the S-L EOS will be used to obtain the density of the 

bulk solvent.  This is given by 

 ( ) ( ) ( )2
ln 1 1 1 0B B

s s sP T rρ ρ⎡+ + − + − =⎣
Bρ ⎤

⎦ , (3.31) 
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where T  and  are the solvent reduced temperature and pressure P *
sT T  and *

sP P .  The 

appropriate equation of state parameters (Ts
*, Ps

*, rs) for many solvents have been 

tabulated15.  The reduced solvent density Bρ  is also related to equation of state 

parameters by * * */     with    ( / ) /B *
s s sM r P kTρ ρ ρ ρ= = . 

By combining equation (3.29) for the CGT and equation (3.31) for bulk solvent 

density, it is possible to obtain an equation directly relating the temperature and pressure 

of the CGT: 

 ( ) ( )( )2
1 2 ln 1 1 1s sP ζ r⎡ ⎤− = − Θ + Θ Θ + − − Θ⎣ ⎦ , (3.32) 

 where *2 pTΘ ≡ Θ  and the parameter * *
p sT Tζ ≡  is the ratio of characteristic 

temperatures of the polymer and solvent and characterizes the relative strength of their 

self-interactions.  Alternatively, for the case of a finite chain, a numerical result for the P-

T behavior of the CGT may be obtained via simultaneous solution of equations (3.26), 

(3.27), and (3.31).  An additional value of interest is the slope of the P-T curve at zero 

pressure.  From equation (3.32), the slope 
0P

P
=

∂Θ ∂  of the CGT for an infinite chain is 

given by 
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, (3.33) 

where 0 0P=
Θ = Θ .  Obtaining a numerical result for equation (3.33) requires solving 

equation (3.32)  for temperature at zero pressure and substituting the result into equation 

(3.33).  For a finite chain 
0P

P
=

∂Θ ∂  may be obtained numerical via simultaneous 

solution of equations (3.26), (3.27), and (3.31) followed by numerical determination of 

the slope at P = 0.  An equation for the temperature of Pmax of an infinite chain can be 

established through a similar approach. From equation (3.32), this maximum must satisfy 

the condition 

 83



 1 10 2 1 2 1 1 2 lns

s s

P
r r

ζ ζ
⎧ ⎫⎡ ⎤⎛ ⎞ ⎡∂ ⎪ ⎪= = + Θ − − − − + Θ⎨ ⎬⎢ ⎥⎜ ⎟

⎤
⎢ ⎥∂Θ ⎝ ⎠ ⎣⎪ ⎪⎣ ⎦⎩ ⎭⎦

. (3.34) 

 

3.1.3. Scaled particle theory 

Consider the more general case in which the system may, in addition to the 

polymer chain of interest, contain multiple solvent species.  Let molecules of each 

species k in such a solution be represented by a hard sphere or chain of  hard spheres, 

each of diameter 

kr

kσ .  The volume fraction kη  occupied by a species k is then given by 

 
3

6
k k k

k
r N

V
π ση = . (3.35)  

It follows that the total occupied volume fraction is 

 

3

6

k k k
k

k
k

r N

V

π σ
ρ η= =

∑
∑ . (3.36) 

In the general case of multiple solvent species, this can be separated into two 

contributions, one accounting only for the polymer chain and the other accounting for all 

solvent species: 

 p sρ η η= + , (3.37) 

where the solvent occupied volume fraction is 

 

3

6

k k k
k p

s k
k p

r N

V

π σ
η η≠

≠

= =
∑

∑ , (3.38) 

and the polymer occupied volume fraction is 

 
3

6
p p p

p

r N
V

π σ
η = . (3.39) 

Once the entire chain is inserted, it will occupy a volume fraction within the pervaded 

volume of 
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38
p p

p

r
R
σ

η = . (3.40) 

Upon insertion of the jth monomer the polymer occupied volume fraction will be 

 ,p j p
p

j
r

η η= , (3.41) 

which is of the same form as that for the lattice model.  It follows that the total occupied 

volume fraction upon insertion of the jth monomer will be 

 j p
p

j
r sρ η η= + . (3.42) 

For the purpose of calculating the insertion probability of any one hard sphere 

into such a solution, the connectivity of the hard spheres constituting the solution may be 

neglected.  The insertion probability of a single such sphere has then been shown to be132, 

133: 

  ( )
( )

( )

2 3
1 2 3

,1 2 2 3 3 3 2
1 1 2 1

3 3
ln ln 1

9 2 3 3

k k k

k

k k

y y
ky y

σ σ σ σ σ σ

σ σ σ σ σ σ σ

− − −

− − − −

⎡ ⎤+ +
⎢ ⎥− = + +
⎢ ⎥+ + +⎣ ⎦

P ,  (3.43) 

where ( )1y ρ ρ= − , and where 

 li
l

i
i

ησ σ
ρ

−
− ≡ ∑ . (3.44) 

Equation (3.43) may then be cast in a form that is explicitly dependent upon j and 

combined with equation (3.15) to yield the insertion probability for the entire chain (see 

appendix A.2.2 for more details).   

The interaction energy of a sphere of type i with surrounding spheres of type j is 

given by132 

 

6
2

*

4

2

ij

ij
ij ij j

ij j

x dx
xσ

σ
ψ πε ρ

ε η

∞ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
= −

∫ , (3.45) 

where 
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3

* 2
3

ij
ij ij

jj

σπε ε
σ

⎛ ⎞
≡ ⎜ ⎟⎜ ⎟

⎝ ⎠
. (3.46) 

Equation (3.45) is of the same form as that for the lattice fluid model.  Thus the average 

insertion energy of the chain is of the same form as that for the lattice fluid model: 

 *
p p pp p ip

i p
r *

iβ ψ β ε η ε η
≠

⎛ ⎞
− 〈 〉 = +⎜

⎝ ⎠
∑ ⎟ , (3.47) 

noting that equation (3.46) rather than (3.19) now applies and the Berthelot rule thus 

gives 

 ( )
3

1 2* ij
ij ij i j

j

σ
ε ξ ε ε

σ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

* *

i

, (3.48) 

where * *
i iε ε≡ .   

Applying equations (3.43) and (3.47) for a sufficiently long chain, equation (3.8) 

for the equilibrium gyration radius now yields the condition 
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where 
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Similarly, equation (3.9) for the CGT yields 

 

( )
( )

( )( )

( ) ( ) ( )

* 3
1,1

1,1 2,2 3,3 4,4

3 21 2
1 2 3 1 1 1 2

1,2 3 2

2
1 1 2

1,3

ln 1 11 ln
1

7 22 24 93 3

5
15 6 3 323 3

1 1 2 1 1

3 23
1

s pp 1 1
s

p p p p

p s s s s

p

r r r r

r

r

ϕ ϕ ςβ η ϕε ϕ ϕ
ϕ ϕ η

ϕ ϕ ϕ ϕ

ς ςς ς ς ς ς ς ςϕ
η η η η

ς ς ςϕ
η

⎡ ⎤+ − ⎛ ⎞⎣ ⎦− − − + + − +⎜ ⎟−⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ − + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎡ ⎤+⎢ ⎥+ + +

+ − + + +⎢ ⎥− − − −⎢ ⎥
⎣ ⎦

+
+ −

−( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3 2
1 1

2 3 2

2
1 2 1 1

2,3 2

3
1 1

1,4 2,4 3,43

3
1 1

14 23 1 3 3
1 1 1

9 27 27 0
11

s s p s

p s s s

p sp s

r

r

rr

ς ς
η η

ς ς ς ςϕ
η η η

ς ςϕ ϕ ϕ
ηη

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟− −⎝ ⎠

⎡ ⎤+
− + + +⎢ ⎥

− − −⎢ ⎥⎣ ⎦

− − − =
−− . (3.53) 

However, in the infinite chain length limit, this reduces to the much simpler expression: 

 ( )

( ) ( ) ( )( )
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. (3.54) 

If all molecular diameters are the same, it further reduces to 

 ( )4

* 2

1
4 2

s

p s s sT
η

η η η
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=
− + − 3 2

. (3.55) 
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As in the lattice fluid case, an equation of state for the solvent is necessary.  In 

this case, the insertion parameter approach yields an equation of state consistent with the 

above model, for which parameters are available in a limited range of polymer and 

solvents.  An equation of state can be directly derived from the insertion parameter via 

 
0

11 ln lnPz
ρ

dβ ρ
ρ ρ

= = − + ∫B B , (3.56) 

where for a multicomponent mixture in which self-interactions are not explicitly 

considered as they are for the CGT: 

 ln ln kr
k k

k
x= ∑B B . (3.57) 

This has been shown132 to give for the equation of state: 

 ( ) ( )* 3 2
3 1 2 1 33 3 1 1s s sPv kT y y y r P vσ σ σ σ σ η η β− − − − −= + + − − − 2 * * . (3.58) 

Furthermore, for a finite length chain, it is necessary to obtain equations for the 

chemical potential of the solvent in the pervaded volume and in the bulk in order to 

implement chemical potential equality.   The chemical potential of any component for 

which self interaction need not be explicitly considered may be calculated simply by 

scaling equation (3.43) appropriately with the number of beads comprising a molecule of 

the component..  The chemical potential has thereby been shown132 to be given by 
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where 

 * 3 6k iv πσ= , (3.60) 

and 
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 88



For a pure bulk solvent, equation (3.59) reduces to 

 ( ) 2 3
*

15ln 1 7 3 2
2

B
B B B B Bs *B
s s s

s s

r y y y y r
r v
η

s sβμ β⎡ ⎤= + + + + + −⎢ ⎥⎣ ⎦
η ε

)

, (3.62) 

where (1B B By ρ ρ= − .  Within the pervaded volume, equation (3.59) is not subject to 

simplification. 

3.2. Results 

3.2.1. Overall pressure-temperature behavior 

Typical conformational behavior as predicted by equation (3.32) for the lattice 

fluid approach is consistent with the high temperature behavior predicted in the literature 

as shown in Figure 6.  As shown in Figure 17, it is characterized by an HCGT that 

smoothly passes into negative pressure at low temperatures and curves over into a 

maximum and a CCGT at high temperatures.  Furthermore, for an infinite chain the 

pressure of the CCGT approaches zero as the system approaches the theoretical 

vapor/liquid critical temperature of the chain ( ).  As shown in *

Θ =

2 pT Figure 18 for the CGT 

behavior of polyisobutylene in n-pentane, the SPT model likewise qualitatively conforms 

to the behavior predicted by Figure 6.  One additional interesting, if experimentally 

unpractical, observation is that as the solvent size goes to infinity, the CGT pressure 

actually reaches a minimum at  so that this point represents a theoretical 

hypercritical point rather than a CCGT. 

1

 The SPT and LF models are in reasonable agreement with each other and with 

experiment at temperatures well below the high pressure hypercritical point.  As shown in 

Figure 19, the P-T behavior of the CGT in this region as predicted by the LF model is in 

good quantitative agreement with experimental results for several systems for which such 

data are available.  The SPT model is in somewhat weaker but still reasonable 

quantitative agreement with the same experimental results.  However, the LF and SPT 

models quantitatively diverge as the high pressure hypercritical point is approached.  In 
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particular, the SPT model typically predicts the hypercritical point to be at much higher 

pressure and temperature than the LF model.  Given the fact that equation of state 

parameters for both models are by necessity fit to the extant data in the lower temperature 

region, it is unsurprising that they differ in the higher temperature region where behavior 

is purely extrapolated.  Due to the lack of experimental data for polymers in this higher 

temperature domain, it is presently difficult to establish whether the difference emerges 

simply from a poor fit of the parameters to this region or from some more fundamental 

weakness in one or both of the models.  As additional data for the CGT or LCST in very 

high pressure high temperature systems become available in the literature, it may become 

possible to better resolve this discrepancy.   
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Figure 17:  Plot of dimensionless CGT pressure versus temperature as predicted by 

equation (3.32) for an infinite chain in solution with rs = 10 and * * 2.0P ST Tζ = = .  

Because ( )*

1
2 2p pT T

α =
Θ ≡ Θ = , the scaling of the temperature axis is such that the 

temperature value given for any point on the curve corresponds to the value of  at that 

pressure.  The solid square denotes the critical point of the solvent.   Values to the left of 

Θ
~

 90



the hypercritical point maxP correspond to an HCGT while values to the right correspond 

to a CCGT.  
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Figure 18:   Plot of CGT of polyisobutylene in n-pentane.  The solid line is the lattice 

fluid prediction, while the blue line is the scaled particle theory prediction. 
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Figure 19:  P-T plot of the HCGT of polyisobutylene (Mw = 1.66 × 106 g/mol) in various 

solvents.  Solid lines correspond to predictions based upon equation (3.32) for the lattice 

fluid model for an infinite chain.  Dashed lines correspond to predictions based upon 

equation (3.54) for the SPT model for an infinite chain.  Points correspond to 

experimental data11.    

3.2.2. Physics of the transition 

The predicted transitions can best be understood physically by examining 

equation (3.22), which has a straightforward interpretation.  The LHS is the chain elastic 

force that is balanced at equilibrium by the thermodynamic driving forces on the RHS.  

The RHS is the sum of 2 terms: a negative term corresponding to the attractive energy of 

the chain with itself and a positive term corresponding to the excluded volume interaction 

of the chain with itself and with solvent.  The self interaction energy term always favors 

chain collapse, while the excluded volume term always favors chain expansion.  

Equivalently, a positive net driving force corresponds to an expanded coil, a negative net 

driving force to a collapsed globule, and a zero net driving force to a coil-globule 

transition.  The qualitative contributions of these two thermodynamic forces are shown in 

Figure 20.  As can be seen there, the derivative of the net driving force with temperature 

will be positive at a CCGT and negative at a HCGT; this provides an additional 

mathematical means of distinguishing between the two.  By rearranging equation (3.54), 

it can be shown that these same physical arguments apply to the SPT model.   

The collapsed states associated with both transitions are characterized by 

dominance of self interaction energy over excluded volume.  Since the polymer self-

interaction effect is the only thermodynamic driving force that favors the globule state, 

this model predicts that a chain with no attractive self interactions will have no 

equilibrium globule state.  This represents a limitation of this model that is also 

characteristic of the S-L model, which does not predict an LCST in the absence of 

attractive interactions.  In contrast, simulation studies have predicted a CGT in the 

absence of attractive interactions60, 61. 
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Figure 20: Qualitative contributions by excluded volume and polymer self-interaction 

energy to the RHS of equation (3.22) as a function of temperature for a system in which 

the polymer S-L characteristic temperature is greater than the solvent S-L characteristic 

temperature.  Coil-globule transitions occur when the sum of these contributions is zero. 

Both the LF and SPT models make the qualitative prediction that for similar 

interaction energies (and thus similar characteristic temperatures), higher bulk solvent 

occupied volume fractions will yield warmer HCGTs and cooler CCGTs.  For the lattice 

fluid model, this can be seen by noting the series expansion of equation (3.22) shown in 

equation (3.28).  Since all contributions to the excluded volume scale as ( )1 x
sη− − ,where 

x is an integer, the excluded volume always increases with increased solvent occupied 

volume fraction.   By rearranging equation (3.54), it can be straightforwardly shown that 

the same holds true for the SPT model.  Since, as argued above, the excluded volume 

interaction always contributes to the expanded coil state, such an increase in the excluded 

volume will tend to expand the temperature range of the globule state, increasing the 

HCGT temperature and lowering the CCGT temperature. 
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 Since the characteristic density of each solvent is different, this trend cannot be 

expected to be exactly true in terms of dimensional density.  Nevertheless, as most 

solvent characteristic densities fall within a reasonably narrow range, it is expected to be 

a good rule of thumb that increased solvent density will typically correlate with an 

elevated HCGT temperature.  As shown in Figure 21 for polyisobutlyene in various 

solvent, this prediction is reasonably born out both in numerical results of these two 

theories as well as in experimental LCST results, with some aberrations where interaction 

energies greatly differ.  As will be shown later in Table 1, this trend is even more 

apparent when solvents are grouped by carbon number.   
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Figure 21:  LCST and CGT data for polyisobutylene in various solvents as a function of 

solvent density.   
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3.2.3. The high pressure hypercritical point 

Via numerical solution, equation (3.34) yields an estimate for the dimensionless 

temperature Θ  of the high pressure hypercritical point for the LF model (the SPT 

model cannot be reduced to two parameters and thus it is not possible to make a 

comparably universal two dimensional plot for this model).  This is of particular interest 

because systems with relatively low values of  are expected to be most likely to 

exhibit and experimentally accessible high temperature UCST.   As shown in 

maxP

Θ

maxPΘ

Figure 22 

for long chains,  generally decreases with increasing ζ and rs.    Solvents associated 

with the lowest values of  tend to be small, symmetric molecules with relatively 

weak self interactions; for example, as shown in 

maxPΘ

maxPΘ

Figure 22, carbon dioxide, nitrogen, and 

methane (as well as oxygen and ethylene, not shown) yield values of  considerably 

below the more typical range offered by larger organic solvents such as propane, 

benzene, and hexanes.    However, as shown in 

maxPΘ

Figure 17, Pmax is typically well into the 

solvent supercritical region, which can present additional experimental challenges.  Since 

solutions of polymer in supercritical carbon dioxide in particular are presently an area of 

active study, they might provide a convenient system in which to begin a search for a 

high temperature UCST.  The CO2 – polystyrene system in particular has a particularly 

low value of  for this solvent and could be of particular interest for this purpose. maxP

 95



0

1

2

3

4

5

6

1 1
n-

H
ex

an
e

C
yc

lo
he

xa
ne

Be
nz

en
e

CO2

P
ro

pa
ne

CH4 

N2 

.880
.704

.792

.616
.528

.400

.352

ζ

0
 

Figure 22:  Contour plot of temperature  at the high pressure hypercritical point as 

a function of interaction ratio 

maxPΘ

ζ  and solvent size sr , for the LF model in the limit of 

infinite chain legnth.  The numbered lines indicate the value of  along that contour.  

White points indicate the position of various polymer / solvent systems.  Each vertical 

triplet of points corresponds, from top to bottom, to polystyrene, polyisobutylene, and 

PDMS in the labeled solvent.  

maxPΘ

sr

3.2.4. The CGT near the solvent vapor pressure 

As suggested above, a point of particular interest that is the focus of Table 1 is the 

CGT at or near the vapor pressure of the solvent, which is nearly at zero pressure.  In 

general, such a CGT may theoretically occur either in the gas phase or the liquid phase.  
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This behavior may be elucidated in the following way.  By combining equation (3.29) 

with the S-L equation of state, it is possible to arrive for the LF model at a form of the 

dimensionless CGT temperature *
sTΘ  that for an infinite chain is dependent only upon 

rs and the ratio of the polymer and solvent characteristic temperatures defined as 
* *
p sT Tζ ≡ .  As noted above, it is not possible to obtain a similar two parameter 

reduction of the SPT model, and this investigation will therefore focus on the LF model 

alone.  

 The behavior of the transition temperature as a function of these LF parameters is 

shown in Figure 23.  These plots can be understood in the following way.  Within a P-T  

plot such as Figure 17, follow the vapor pressure curve of the solvent to its critical point, 

and then follow an isobaric line to higher temperature.  The curves in Figure 23 denote 

the  CGT transitions that are encountered while travelling this path, as a function of ζ  as 

a given rs.  As shown in these plots, for any given rs there will be a critical value ζc at 

which the transition will occur at the liquid-vapor critical point of the solvent.  Based on 

the S-L equations for critical temperature and density of the solvent this value can be 

shown to be ( )1c s srζ = + r  for an infinite chain, so that it goes to unity as rs goes to 

infinity and one half as rs approaches unity.  Furthermore, the temperature of this unique 

point will be also given by ( ), 1c CGT s srΘ = + r .  For ζ > ζc, there will be an HCGT in 

the solvent liquid state and a CCGT in the solvent supercritical state at higher 

temperature.  For ζ  significantly less than ζc, there will be only a CCGT in the solvent 

gas phase.  However, from a practical standpoint, there is no polymer in the solvent gas 

phase, and as such ζc represents an effective minimum condition at which a CGT will 

occur.   
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  Figure 23a Figure 23b 

Figure 23: Quantitative plot of dimensionless transition temperature vs. the ratio of the S-

L characteristic temperatures of the polymer and solvent for infinite chain length.  The 

vertical axis is the dimensionless transition temperature Θ .  Figure 23a is for infinite rs 

while Figure 23a is for rs equal to 10.   The point marked in red on each plot is the liquid-

vapor critical point of the solvent.  The green curve denotes the critical point of the 

solvent as a function of ζ. Each branch from the critical point corresponds to a coil 

globule transition for a chain in a different solvent phase, as labeled on the plots.  Note 

that in the limit of infinite rs (Figure 23b) both the gas and supercritical phases are at zero 

solvent density.  Sub-critical data is at the solvent saturated vapor pressure while 

supercritical data is at the solvent critical pressure.   

Numerical solutions of equation (3.29)  for the lattice fluid model and equation 

(3.54) for the SPT model yield good correspondence between predicted HCGT 

temperatures and experimental and S-L LCST temperatures, as shown in Table 1.  

Furthermore, theoretical predictions of 
0P

T P
=

∂ ∂ , as shown in Table 2 for a variety of 

systems, exhibit a generally good match with experimental results, albeit with a moderate 

bias towards under-prediction, as shown in Figure 24.    
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Table 1:  Comparison of theoretical HCGT temperatures at solvent vapor pressure with 

experimental and theoretical LCSTs for polyisobutylene in various solvents.  Solvents are 

grouped by carbon number.  SPT results are unavailable for some solutions due to present 

limitations on parameter availability for this model. 

  LCST, oC HCGT,  oC 
Polyisobutylene/ 

Density 
ρ, 25 oC 
(kg/m3) 

Reduced 
Density 

 ρ/ρ∗,      
25 oC Exp. Theory LF SPT 

Pentanes         

Neopentane 585 0.786 
Immiscible 

at 25 oC -40 42 - 
Isopentane 614 0.802 54 53 60 87 
n-Pentane 619 0.82 75 72 82 90 

Cyclopentane 746 0.86 188 157 147   
Hexanes         

2,2-Dimethylbutane 644 0.833 103 7 101 - 
2,3-Dimethylbutane 657 0.841 131 64 114 - 

n-Hexane 660 0.852 128 99 134 120 
Cyclohexane 783 0.868 243 189 168 177 

Other         
n-Heptane 691 0.864 168 136 163 151 
n-Octane 713 0.875 180 162 194 167 
Benzene 877 0.882 260 224 198 240 
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Table 2: Comparison of theoretical and experimental results for 
0P

P
=

∂Θ ∂  for various 

systems.  For the LF model, theoretical calculations are based on polymer molecular 

weights chosen to match those associated with each experimental result.  For the SPT 

model, calculations are at infinite molecular weight, which is expected to cause little 

error due to the large size of the chain.  SPT results are unavailable for some solutions 

due to present limitations on parameter availability for this model.  

0P
P

=
∂Θ ∂  (°C / bar) 

Polymer Solvent 
Experiment LF Theory SPT Theory 

Tert-butyl acetate134 0.68 0.50 - Polystyrene 

Methyl cyclohexane135 0.80 0.65 - 

Methyl acetate136 0.47 0.22 - 

Polyisobutylene11 Propane 0.33 0.23 .27 

n-Butane 0.37 0.27 .32 

n-Pentane 0.45 0.36 .37 

n-Hexane 0.61 0.47 .42 
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0P
P

=
∂Θ ∂Figure 24:  Plot of theoretical vs experimental values of  for systems shown in 

Table 2.  Black diamonds denote LF-CGT results while blue squares denote SPT-CGT 

results.   The 45 degree line indicates the locus of points along which theoretical and 

experimental values would agree.  

 
 

3.2.5. Chain conformation through the CGT 

Chain collapse or expansion will occur any time the system crosses the CGT 

curve in Figure 6 (or equivalently Figure 17) through any combination of pressure and 

temperature changes.  The two CGT transitions of particular interest are the cases of an 

isobaric thermally triggered CGT and an isothermal pressure triggered CGT.  The 

 101



isobaric CGT will typically be nearly the same as a third case of interest, which is a CGT 

triggered along the vapor pressure curve of the solvent.   

Equation (3.22) can be used to solve for the Lattice-Fluid gyration radius and 

chain mer density around an isobaric HCGT transition, yielding results such as those 

shown in Figure 25 and Figure 26 for a polyisobutylene / n-pentane system.  As expected, 

the coil state is predicted at temperatures below the transition while the globular state is 

predicted at temperatures above the transition.  Numerical fitting of results shows that 
1 3~ pR r in the globule state and 3 5~ pR r  in the coil state, consistent with Flory’s 

predicted scaling.  In addition, the chain occupied volume fraction ηp is an appropriate 

order parameter that is bounded between zero and unity.  As shown in Figure 26, as the 

chain approaches infinite density there is a discontinuity at the transition in the slope of 

ηp but not in ηp itself.  This is consistent with a second order thermodynamic transition.   

Figure 27 shows typical results from the LF model for the expansion factor of the 

chain through isothermal CGTs at temperatures near solvent vapor-liquid equilibrium.  

The transition is qualitatively similar to experimental results for pressure induced 

swelling of aqueous polymer networks137.  As expected, an increase in pressure triggers 

expansion of the chain.  This can be equivalently understood as a pressure induced shift 

of the CGT temperature upward through the system temperature.  In addition, it is 

apparent that for the small differences in temperature shown in this figure, the P-T 

relationship is approximately linear, which is consistent with experimental results over 

small temperature ranges.  
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Figure 25: Expansion factor as a function of temperature for various molecular weights of 

polyisobutylene in n-pentane near the HCGT.  The red line corresponds to a molecular 

weight of 106, the blue to a molecular weight of 107, and the black to a molecular weight 

of 108. 
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Figure 26:  Polymer volume fraction as a function of temperature for various molecular 

weights of polyisobutylene in n-pentane near the HCGT.  The red line corresponds to a 

molecular weight of 106, the blue to a molecular weight of 107, and the black to a 

molecular weight of 108. 
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Figure 27:  Typical plot of chain expansion factor through the pressure induced globule-

to-coil transition as predicted by this model, shown as calculated for the system 

polyisobutylene / n-pentane.  Curves correspond to different temperatures.  From leftmost 

to rightmost curve, corresponding temperatures are 353 K, 354 K, 355 K, 356 K, and 357 

K.   

3.3. Conclusions 

Proposed lattice fluid (LF) and scaled particle theory (SPT) models for single 

chain conformational behavior with pressure and temperature offer semi-quantitative 

agreement with experiment without the use of adjustable mixture parameters.  Coil-

globule transition (CGT) pressures and temperatures are well predicted for a variety of 

polymer / solvent systems, and important aspects of a proposed3 master phase boundary 

for weakly interacting polymers are reproduced.  Predicted slopes of the CGT with 

pressure exhibit reasonable agreement with experimental results, albeit with a tendency 

towards under prediction.  

Qualitatively, predicted behavior is characterized by a heating induced coil-to-

globule transition (HCGT) that smoothly passes into negative pressure at low 
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temperatures and curves over into a maximum and a cooling induced coil-to-globule 

transition (CCGT) at high temperatures.  The behavior of the predicted transitions is 

consistent with a second order thermodynamic transition.  The maximum at which the 

CCGT and HCGT meet corresponds to a high pressure hypercritical point Pmax in the 

polymer / solvent phase behavior10.  This behavior is often experimentally inaccessible 

due to polymer degradation; however, results suggest that solutions of polymer in very 

small molecule supercritical solvents such as O2, CO2, N2, and CH4 may exhibit a Pmax at 

sufficiently low temperatures to allow observation.    

The single chain lattice fluid approach predicts a critical polymer/solvent 

interaction energy ratio ( )1c s srζ = + r , significantly below which no experimental 

CGT will be found for most systems.  For systems with ζ > ζc it predicts two CGTs: an 

HCGT in the solvent liquid phase and a CCGT in the solvent supercritical phase.  Within 

both models, the collapsed states associated with both the CCGT and HCGT are 

characterized by dominance of polymer self interaction energy over excluded volume 

effects.  All else being equal, solvents with higher reduced density yield warmer HCGTs 

and cooler CCGTs due to greater excluded volume effects.  Conversely, increasing chain 

length correlates with cooler HCGTs and warmer CCGTs due to reduction of the 

excluded volume effect.   

Results from the LF model appear to compare to experiment similarly or even 

slightly better than those for the SPT model.  Furthermore, the governing equations for 

the LF model are far simpler than those for the SPT model.  This outcome emphasizes the 

surprising success of the lattice fluid model in obtaining good quantitative correlation 

with experiment.  However, one outstanding point favors the SPT model.  In the LF 

model, it is very difficult to relate component parameters in any direct way to underlying 

molecular properties of the substance.  In contrast, preliminary results indicate that there 

is often quantitative or semi-quantitative agreement132 between SPT parameters and 

molecular properties.  As a consequence, the SPT model may offer a more direct 

connection to the underlying physics of the system than the LF model, and 
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correspondingly may provide prediction of the CGT based upon a narrower range of 

experimental data. 
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Chapter 4. Towards a Model for the Aqueous CGT 

As suggested in the introduction, the CGT is of particular relevance in an aqueous 

setting.  Many biomolecules are believed to possess a CGT which is relevant to their 

function, and CGT-driven stimuli-responsive polymers of interest in biological settings 

must by necessity exhibit their swelling behavior in an aqueous environment.  A 

seemingly ideal theoretical approach to this phenomenon would straight-forwardly 

combine the combinatoric hydrogen bonding approach of Chapter 2 with the CGT model 

of Chapter 3.   However, such an approach is complicated by the fact that the former 

results from a system partition function approach while the latter results from an insertion 

parameter approach.  As noted in section 1.4, such combinations may be problematic at 

best due to sometimes contradictory outcomes of these two approaches.  Nevertheless, 

such an attempt is described below in an attempt to establish groundwork towards the 

development of a successful model for this phenomenon.   

4.1. CGT with Veytsman Statistics 

Consider a polymer-solvent system at infinite dilution.  In such a system, the 

polymer chains do not interact, and each will independently pervade a volume 

characterized by a gyration radius R.  Within this domain the polymer chain will occupy a 

volume fraction sNpη  and  solvent molecules will occupy a cumulative volume 

fraction sη ρ.  Accounting for vacancies, the total occupied volume fraction p sη η= +  

within this domain will in general be less than one.   Furthermore, hydrogen bonding 

within the system will be characterized by the set of variables { }ijv , where  is an 

intrinsic measure of the number of hydrogen bonds between proton donors of type i and 

proton acceptors of type j.    

ijv

The partition function Q of an ideal chain is known to be skewed with respect to 

gyration radius, and on this basis the equilibrium chain gyration radius for the above 
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system is given in terms of free energy G by the Hermans-Overbeek approximation27, as 

in the above models: 

( )
{ }ˆ, , ,

ln
0

s ijT P v

R G
R

φ

β⎛ ⎞∂ +
=⎜ ⎟∂⎝ ⎠

 (3.63)  

The system free energy may be written in terms of chemical potentials as 

( )B T
p p p s s s s sG N N N N Bμ μ μ μ= + − +  (3.64) 

sμpμ  and where  are polymer and solvent chemical potential within the pervaded 

volume, respectively, B
sμ pN is the solvent chemical potential within the bulk,  is the 

total number of polymer chains in the system, and T
sN  is the total number of solvent 

molecules in the system.  Throughout this development, “B” superscripts on any variable 

will denote its bulk value.  Furthermore, the solvent within the pervaded volume must 

satisfy equality of chemical potential with the bulk solvent, such that 
B

s sμ μ=  (3.65) 

Making use of the fact that the bulk solvent chemical potential at infinite polymer 

dilution is not a function of chain gyration radius, equation (3.2) now reduces to 

{ }ˆ, , ,

1 0
s ij

p
p

T P v

N
R R φ

μ
β

∂⎛ ⎞
+ =⎜ ⎟∂⎝ ⎠

 (3.66)  

As in the hydrogen bonding lattice fluid model (HBLF) described in section 2.1.2, the 

partition function will taken as factorable into separate contributions from hydrogen 

bonding (QHB) and physical interactions, such as excluded volume and van Der Waals 

forces (QP): 

P HBQ Q Q= . (3.67)  

The free energy will, as in the HBLF model, likewise be separable into corresponding 

contributions, such that 

P HBG G G= + , (3.68)  

 108



as will the chemical potential of any component k (k being s for solvent or p for 

polymer): 

 , ,k k P k HBμ μ μ= + . (3.69) 

4.1.1. Physical contribution 

The physical contribution to the chemical potential is given as in the CGT model 

of Chapter 3.  It follows from that development that the physical contribution to polymer 

chemical potential is given by 

( )

( )
, *

* *
4 3 2 3

11 ln 1 ln 1
1

2 72 ln
2

ps
s p

p s

p P p
p

pp p sp s
p p p p

r
r v a

r r

ηη η η
η η

βμ

β ε η ε η
η η

⎡ ⎤⎛ ⎞−
+ − − − −⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥

= ⎢ ⎥⎛ ⎞⎢ ⎥− + − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 . (3.70) 

The physical contribution to the solvent chemical potential is similarly calculated via the 

Widom insertion parameter: 
3

, ln s
s P

s

kT ρ λμ
⎛

= ⎜
⎝ ⎠B

⎞
⎟ . (3.71) 

Within the pervaded volume, this is given by 

( ) ( )( )* *
, ln ln 1 exp 2sr

s P s p s s ss s sp prβμ ρ η η β ε η ε η⎡ ⎤≅ − − − +⎣ ⎦ . (3.72) 

Within the bulk, it is 

( ) *
, ln ln 1 expsrB B B B

s P s s ssrβμ ρ ρ β ε ρ⎡ ⎤⎡ ⎤= − − ⎣ ⎦⎢ ⎥⎣ ⎦
 . (3.73) 

4.1.2. Hydrogen bonding contribution 

Based on the HBLF model, the contribution to free energy from hydrogen 

bonding, within the pervaded volume is 

00 0

1 1 1 10 0

1 ln ln ln
d a d am m m m

ij jPV i ji
HB ij ij d ai j

i j i ji j d a

v vvG rN v G v v
v v v v

β β
ρ= = = =

⎡ ⎤⎛ ⎞
= + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑∑ ∑ ∑ , (3.74) 
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ij
ij

N
v

rN
=0

0
i

i
Nv
rN

=
i

i d
d

Nv
rN

=where , and 0 0 0
ij ij ij ijG E TS PV= − + 0 , , , and so on.  Similarly for 

the bulk solvent: 

00 0

1 1 1 10 0

1 ln ln ln
d a d aB Bm m m mB

ij jB B B Bi ji
HB s s ij ij d aB B B Bi Bj

i j i ji j d a

v vvG r N v G v v
v v v v

β β
ρ= = = =

⎡ ⎤⎛ ⎞
= + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑∑ ∑ ∑ .(3.75) 

The contribution to the overall system free energy from hydrogen bonding is then given 

by 
B PV

HB HB pG G N Gβ β β= + HB . (3.76) 

It follows that the hydrogen bonding contribution to the polymer chemical potential is  

00 0
,

1 1 1 10 0

00 0

1 1 1 10 0

1 ln ln ln

1 ln ln ln

d a d a

d a d a

B Bm m m mB
p s ij jB Bi i

p HB ij ij d aB B B Bi Bj
i j i jp i j d

m m m m
ij ji ji

ij ij d ai j
i j i ji j d a

r v vv G v v
v v v v

v vvrN v G v v
v v v v

η
βμ β

η ρ

β
ρ

= = = =

= = = =

⎡ ⎤⎛ ⎞
= − + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
+ + + + +⎢ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎣

∑∑ ∑ ∑

∑∑ ∑ ∑ ⎥
⎥⎦

j

a

v

 .

 (3.77) 

The hydrogen bonding contribution to solvent chemical potential in the pervaded volume 

is 

00
,

1 1 1 1

ln ln
n m n m

js si
s HB s ij i ji

i j i jd a

vvr v d a
v v

βμ
= = = =

= + +∑∑ ∑ ∑ j  (3.78) 

and in the bulk is 

00
, ,

1 1 1 1
ln ln

BBn m n m
jB B s si

s HB s ij i jB i B j
i j i jd a

vvr v d a
v v

βμ
= = = =

= + +∑∑ ∑ ∑ , . (3.79) 

4.1.3. Chain gyration radius and coil-globule transition 

Substitution of equations (3.70)and (3.77) into equation (3.66) yields as a 

condition for the equilibrium gyration radius: 
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∑ ∑
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j

( )* 2

0

1 7 1ln 1 1 1
1 3

ps
pp p

j p s pv r
ηη βε η α

η η
⎛ ⎞−

+ − + + = −⎜ ⎟−⎝ ⎠

. (3.80) 

The chain coil-globule transition is defined as the condition at which the chain gyration 

radius is equal to that of an ideal chain, such that  

1
CGT

α = . (3.81) 

Thus at the CGT equation (3.80) reduces to the condition 

1 1
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ln

d a

d a

d

m m
p B

ij ij
i j s

s

Bm mBp p pi Bi j ji i
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φ φ φ
φ φ
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=

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞
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⎞
⎟
⎟
⎠
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ˆˆ1 ˆln ln 1 1 0ˆ ˆ1
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a Tv
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φφ φ
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⎛ ⎞−
+ − + + =⎜ ⎟⎜ ⎟ Θ−⎝ ⎠

∑

, (3.82) 

where is the CGT temperature.  Note that in the absence of hydrogen bonding, 

equation and for an infinite chain, equation 

Θ

(3.82) reduces to  

( )*2 1pT sηΘ = −   (3.83) 

which is the same result as that given by the lattice fluid CGT model.   

However, a crucial problem arises in the presence of hydrogen bonding 

interactions within this model.  As the chain length goes to infinity, the physical terms in 

equations (3.80) and (3.82) go to zero faster than the hydrogen bonding terms.  Thus, this 

model indicates that in the infinite chain length limit hydrogen bonding alone determines 

the chain conformation.  This is a clearly aphysical result that likely results from 

discrepancies between the system partition function and insertion parameter approaches.  

In this case, the contribution of physical interactions (including excluded volume) has 
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been calculated via the insertion parameter, whereas the contribution of hydrogen 

bonding interactions has been calculated from the system partition function.  A model for 

this phenomenon thus appears to require either an insertion parameter model for 

hydrogen bonding or a computation of the system partition function that accounted 

explicitly for polymer intramolecular interactions. 

4.2. Basis for a Consistent Approach 

A self-consistent insertion parameter approach that would satisfy this requirement 

could be developed in the following way.  Begin with equation (1.19) for the insertion 

parameter, in which insertions resulting in a repulsive interaction (corresponding to 

overlapping bodies in the hard sphere case) have already been separated out in the form 

of an insertion probability: 

( )expi i iβψ= 〈 −B P 〉 . (3.84) 

Now note that the interaction energy of insertion can be separated into physical and 

hydrogen bonding contributions: 

( )( ), ,expi i i P i HBβ ψ ψ= 〈 − + 〉B P , (3.85) 

or equivalently 

( ) ( ),exp expi i i P i HBβψ βψ= 〈 − − 〉B P , . (3.86) 

Recall that in the hydrogen bonding lattice fluid model, the partition function was taken 

to be separable into explicitly independent factors: one accounting for physical 

interactions and ignoring hydrogen bonding, and one accounting for hydrogen bonding 

and ignoring physical interactions.  An equivalent separation may be implemented in the 

insertion parameter by separating the average over a product of Boltzmann factors in 

equations (3.86) into the product of two averages, one including only hydrogen bonding 

interactions and the other including only physical interactions. 

( ) ( ),exp expi i i P i HBβψ βψ= 〈 − 〉〈 − 〉B P , . (3.87) 

Without approximation, this is equivalent to 
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( ) ( )
( )( ) ( )( )

, ,

, , , ,

exp exp

exp exp

i i P i HB

i
i P i P i HB i HB

β ψ β ψ

β ψ ψ β ψ ψ

⎡ ⎤− 〈 〉 − 〈 〉
⎢ ⎥=
⎢ ⎥〈 − − 〈 〉 〉〈 − − 〈 〉 〉⎣ ⎦

P
B . (3.88) 

Under a mean field approximation, the latter two factors are neglected, yielding 

( ) ( ),

, ,

exp expi i i P i HB

i P i HB

β ψ β ψ= − 〈 〉 − 〈

=

B P

B B
, 〉

. (3.89)  

( ), ,expi P i i Pβ ψ= − 〈 〉B PThe physical contribution to the insertion parameter  is then 

given in exactly the same way as in section 4.1.1.   

The hydrogen bonding contribution to the insertion parameter 

( ), expi HB i HBβ ψ= − 〈B , 〉

k

k

 requires a new treatment recasting Veytsman statistics in a single 

molecule basis.  A framework for such in approach is as follows.  As in the hydrogen 

bonding lattice fluid model, consider a system containing md types of proton donors and 

ma types of proton acceptors.  Each molecule of species k contains  such donor sites of 

type i and 

id

ja  such acceptor sites of type j.  Such a molecule may in general participate in 

both intramolecular bonds and in inter-molecular bonds as both donor and receiver.  The 

number of bonds between a donor i on the molecule and an acceptor j on a different 

molecule will be denoted . Likewise, the number of bonds between an acceptor j on 

the molecule and a donor i on a different molecule will be denoted .  The number of 

intramolecular bonds participated in by the molecule will be denotes as .  If the energy 

of formation of a hydrogen bond between a donor of type i and an acceptor of type j is 

given by 

k

k

k

0

ijd

ija

ijb

ijE , the hydrogen bonding interaction energy of the molecule in any particular 

state is given by 

(0
,

1 1

1 2
2

n m
k k k

i HB ij ij ij ij
i j

)E d a bψ
= =

= +∑∑ + .  (3.90) 

The hydrogen bonding contribution to the insertion parameter is then, trivially 
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( )0
,

1 1

1exp 2
2

n m
k k k

i HB ij ij ij ij
i j

E d a bβ
= =

⎛ ⎞
= − + +⎜⎜

⎝ ⎠
∑∑B ⎟⎟ . (3.91) 

Physically, the average over insertion energies is typically taken to be over all 

possible particle positions for which the interaction energy is negative.  However, for the 

hydrogen bonding insertion energy, it is appropriate to treat this average as being over all 

possible hydrogen bond states of the system.   
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Chapter 5. Conclusions 

The novel theoretical approaches presented herein have the potential to extend 

understanding and prediction of behavior of LCST-driven stimuli responsive polymers. 

The approaches address the LCST phenomenon on two scales: the macroscopic scale, at 

which overlapping chains in semi-dilute solution experience a phase transition at the 

LCST; and the nano-scale, at which isolated chains in dilute solution exhibit a coil-

globule transition (CGT) near the LCST.   With modest further development, the models 

have great potential to guide development of stimuli responsive polymers for a variety of 

applications.  For example, the lattice fluid model for polyelectrolytes could be 

quantitatively fit to Poly(N-isopropylacrylamide) in order to allow targeted design of 

PNIPAAM copolymers via inclusion of charged groups in order to control the LCST.  

Such a model would facilitate design of PNIPAAM based drug delivery systems, among 

other applications. 

Of additional interest would be the development of a model for the single chain 

LCST-driven CGT of aqueous polymers and low charge polyelectrolytes.  However, a 

straightforward combination of the single chain lattice fluid model with the hydrogen 

bonding model described above has been shown to fail due to inconsistencies between 

insertion parameter and system partition function approaches.  A framework has thus 

been described for the development of a self-consistent model via calculation of the 

hydrogen bonding contribution to the Widom insertion parameter.  Such a model could 

be further extended to address the behavior of aqueous polyelectrolytes, including 

swelling transitions of smart synthetic polymers, elements of protein cold denaturation, 

and aspects of DNA conformational behavior.  Finally, by incorporating crosslinks, the 

models could be generalized to quantitatively treat network polymers. 
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Appendix 1. Nomenclature 

 

 number of anionic sites of type u on a molecule of species k k
uA

a intensive Helmholtz free energy 
A
ja  in the polyelectrolyte model, the number of association acceptors of type j on 

an anion of type j 
k
ja  number of association acceptors of type j on a molecule of species k; in the 

model for polyelectrolytes this excludes ion hydration sites 
lu
ja  number of association acceptors of type j on an ion pair consisting of a 

cationic group of type l and an anionic group of type u 

kB  insertion parameter of a molecule of species k 

 number of cationic sites of type l on a molecule of species k k
lC

 in the polyelectrolyte model, the number of association donors of type i on a 
cation of type i 

C
id

 number of association donors of type i on a molecule of species k; in the 
model for polyelectrolytes this excludes ion hydration sites 

k
id

 number of association donor sites of type i on an ion pair consisting of a 
cationic group of type l and an anionic group of type u 

lu
id

0
ijE  energy of formation of association bond between donor of type i and acceptor 

of type j 

 energy of formation of ionic bond between cation of type l and anion of type u I
luE

 ionic lattice energy of salt i ,L iE

0
ijF  Helmholtz free energy of formation of association bond between donor of 

type i and acceptor of type j 

 Helmholtz free energy of formation of ionic bond between cation of type l and 
anion of type u 

I
luF

If  fraction of dissociable subunits in a polyelectrolyte chain 
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 fraction of anions of type u that are on polymeric molecules p
Auf

 fraction of cations of type l that are on polymeric molecules p
Clf

 fraction of anions of type u that are on small molecules s
Auf

 fraction of cations of type l that are on small molecules s
Clf

G  extensive free energy 

 intensive free energy g

AG  associating contribution to extensive free energy 

EG  electrostatic contribution to extensive free energy 

HBG  hydrogen bonding contribution to extensive free energy 

IG   ion-binding contribution to extensive free energy 

PG  physical contribution to extensive free energy 

0
ijG  Gibbs free energy of formation of association bond between donor of type i 

and acceptor of type j 

 Gibbs free energy of formation of ionic bond between cation of type l and 
anion of type u 

I
luG

[ ]H x  Heaviside step function 

 ionic strength I

I  dimensionless ionic strength 

fI  dimensionless contribution to ionic strength from free ions 

pI κ  dimensionless contribution from ions fixed on polymer to screened ionic 
strength 

Iκ  dimensionless screened ionic strength 

Bk  Boltzmann’s constant 

Bl  Bjerrum length 

Am  number of types of anionic sites in system 

am  number of types of association acceptor sites in system 
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Cm  number of types of cationic sites in system 

dm  number of types of association donor sites in system 

Im  number of types of ions in system 

N  total number of molecules of all species 

0N  unoccupied lattice sites 

kN  molecules of component k 

 total number of cationic sites of type l l
CN

 total number of anionic sites of type u u
AN

 number of association bonds between donor of type i and acceptor of type j ijN

0iN  number of unbonded association donors of type i 

 number of unbonded association acceptors of type j 0 jN

I
ijN  number of ionic bonds between a cation of type l and an anion of type u 

 number of unbonded cationic sites of type l 0
I
lN

 number of unbonded anionic sites of type u 0
I
uN

P pressure 

P  reduced pressure 

kP  reduced pressure based on characteristic pressure of species k 

kP  insertion probability of a molecule of species k 

 characteristic temperature of species k *
kP

Q system partition function 

AQ  associating contribution to system partition function 

EQ  electrostatic contribution to system partition function 

HBQ  hydrogen bonding contribution to system partition function 

IQ   ion-binding contribution to system partition function 

PQ  physical contribution to system partition function 

q elementary charge 
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R gyration radius 

r number average molecular size parameter 

kr  molecular size parameter: lattice sites per molecule in lattice theory; hard 
spheres per molecule in scaled particle theory 

0
ijS  entropy of formation of association bond between donor of type i and acceptor 

of type j 

 entropy of formation of ionic bond between cation of type l and anion of type 
u 

I
luS

s lattice fluid hard core volume fraction mixture average surface to volume ratio 
parameter; also intensive system entropy 

ks  in lattice fluid model, surface to volume ratio parameter for species k 

T absolute temperature 

T  reduced temperature 

kT  reduced temperature based on characteristic temperature of species k 

 characteristic temperature of species k *
kT

t number of mixture components 

 number of polymeric mixture components pt

 number of small-molecule mixture components st

V  extensive volume 
0

ijV  volume change of formation of association bond between donor of type i and 
acceptor of type j 

 volume change of formation of ionic bond between cation of type l and anion 
of type u 

I
luV

v intensive volume 

 number of association bonds between a donor of type i and an acceptor of type 
j per lattice site 

ijv

I
ijv  number of ionic bonds between a cation of type l and an anion of type u per 

lattice site 

 number of unbonded association acceptors of type j per lattice site 0 jv

0iv  number of unbonded association donors of type i per lattice site 
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 number of unbonded anionic groups of type u per lattice site 0
I
uv

 number of unbonded cationic groups of type l per lattice site 0
I
lv

 number of anionic sites of type u per occupied lattice site u
Av

 number of cationic sites of type l per occupied lattice site l
Cv

 mixture average volume per r *v

 pure state volume of component k per . kr
*
kv

v  intensive reduced volume 

 equivalent to chi-interaction parameter, modified to include surface to volume 
ratio parameters 

ijX

x degree of polymerization 

kx  mole fraction of component k 

kz  in the hydrogen bonding with free salt lattice fluid model, charge valency of 
component k; in the polyelectrolyte mode, charge valency of ionic group of 
type k 

2α  polymer chain expansion factor 

lα  ionization fraction of ionic sites of type l 

 ionization fraction of anionic sites of type u A
uα

 ionization fraction of cationic sites of type l C
lα

β  inverse of thermal energy 

0ε  permittivity of free space 

rε  dielectric constant 

 interaction energy between a site of component i and component j ijε

 ratio of polymer to solvent characteristic temperatures ζ

cζ  critical ratio of polymer to solvent characteristic temperatures 

kη  occupied volume fraction of component k 

Θ  coil-globule transition temperature 
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Θ  dimensionless coil-globule transition temperature 

maxPΘ  dimensionless coil-globule transition temperature at the high pressure 
hypercritical point 

kθ  surface fraction of component k 

 number of ionic groups of type l on a molecule of type k k
lΙ

κ  Debye-Huckel inverse screening length 

κ  dimensionless Debye-Huckel inverse screening length 

Tκ  isothermal compressibility 

iλ  thermal wavelength 

kμ  chemical potential of component k 

,k Aμ  associating contribution to chemical potential of component k 

,k Eμ  electrostatic contribution to chemical potential of component k 

,k HBμ  hydrogen bonding contribution to chemical potential of component k 

 ion bonding contribution to chemical potential of component k ,k Iμ

,k Pμ  physical contribution to chemical potential of component k 

ρ  reduced density; equivalently, total occupied volume fraction 

kρ  number density of species k 

 characteristic density of species k *
kρ

 total dimensionless charge density of polymeric charges p
Iρ

kσ  in the scaled particle theory, the diameter of a hard sphere of species k 

 hard core volume fraction mixture average of nth order inverse hard sphere 
diameter 

nσ−

  ionic diameter of a cationic group of type l A
lσ

 ionic diameter of an anionic group of type u C
uσ

 in the hydrogen bonding with salt lattice fluid model, ionic diameter of an ion 
of species i; in the polyelectrolyte model, ionic diameter of an ionic group of 
type i 

I
iσ
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 volume fraction mixture average of nth power of polymer sphere diameter to 
solvent sphere diameter ratio   

nς

I
luυ  intrinsic measure of extent of ionic bonding between cationic groups of type l 

and anionic groups of type u 

 ratio of polymer occupied volume fraction to total unoccupied volume fraction Φ

ϕ  ratio of polymer occupied volume fraction to volume fraction that is not 
occupied by solvent 

kφ  hard-core occupied volume fraction of component k 

 Gibbs partition function Ψ

kψ〈 〉  position-average insertion energy of a molecule of component k, for 
successful insertions 
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Appendix 2. Extended Derivations 

A.2.1. Solution Stability  

In section 2.2.3, equation (2.128) is stated to follow from equation (2.127) via the 

chain rule.  An extended development of this statement follows.  In general, 

{ }( )kG G N= . (A2.1) 

Equivalently, 

{ }( ){ } { }( ){ }( )( ,k t k t k t kG G N Nφ φ φ≠ ≠= ) , (A2.2) 

where the tth composition fraction has been separated out.  Composition fractions are in 

general constrained by the condition that 

1

1
t

k
k

φ
=

=∑ , (A2.3)  

so that the tth composition fraction can be written as a function of the other t-1 fractions.  

The free energy may then be written with this substitution having been made: 

{ }( ){ }( )ˆ k t kg g Nφ ≠= , (A2.4) 

where the hat denotes the form of g in which the constraint (A2.3) has been applied to 

explicitly eliminate the tth composition fraction.  Hence 

{ } { },

ˆ

l k l k t
k k

g g

φ φ
φ φ

≠ ≠

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 , (A2.5) 

which yields 

{ }

{ }( ){ }( )
{ } { } { },

1

1

ˆ

j k j u t j k
j k

tk t k u

uk k uN N
N

g Ng g
N N

φ

φ φ
φ

≠ ≠ ≠
≠

−≠

=

⎛ ⎞∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

kN
∂

. (A2.6)  

Then pulling the kth term out of the summation in equation (A2.6) gives  

{ } { } { } { } { }, ,

1

j k j u t j k j u t j k

t
k u

u kk k k u kN N

g g g
N N

φ φ

φ φ
φ φ

≠ ≠ ≠ ≠

−

≠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ 
N

N
≠

. (A2.7) 
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Recalling the form of the composition variable given by equation (2.125), 

{ }
(1

j k

k k
k

k N

r
N rN
φ )φ

≠

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

 , (A2.8) 

and 

{ }j k

u k k
u

k N

r
N r
φ

N
φ

≠

≠⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

. (A2.9)  

Combining equations (A2.7) through (A2.9) then yields 

{ }
( )

{ } { }, ,

1

1
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t
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k u
u kk kN

r rg g
N rN rN

φ φ

φ φ
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∑
u

g

≠

∂
∂

 , (A2.10) 

and substitution of equation (A2.10) into equation (2.127) gives 

{ } ( ) { }, ,

11
1

j k t j u t

t

k k k u
u kk k k u

g gr g r
r

φ φ

μ φ
φ φ φ

≠ ≠

−

≠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥= − +⎜ ⎟ ⎜ ⎟∂ − ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ . (A2.11) 

Differentiating equation (A2.11) with respect to a second composition variable lφ  then 

yields equation (2.128). 

 

A.2.2. Scaled Particle Theory Coil-Globule Transition 

As given by equation (3.43) the general SPT insertion probability for a single 

sphere is given by 

( )
( )

( )

2 3
1 2 3

2 2 3 3 3 2
1 1 2 1

3 3
ln ln 1

9 2 3 3

k k k

k

k k

y y
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σ σ σ σ σ σ

σ σ σ σ σ σ σ

− − −

− − − −

⎡ ⎤+ +
⎢ ⎥− = + +
⎢ ⎥+ + +⎣ ⎦

P . (A2.12) 

As given by equation (3.15), the overall insertion probability of the chain is given by   
1

0

pr

p
j

−

=

= j∏P P , (A2.13) 
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jPwhere  is the insertion probability of segment j of the chain and is a function of the 

number of previously inserted segments.  Combining equations (A2.12) and (A2.13) 

yields 

( )

( ) ( )
( )

1 1

, ,
00

2 31
1 2 3
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3 3
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 (A2.14) 

In order to implement the summation in equation (A2.14), it is useful to split all variables 

into contributions that are and are not functions of j. 
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where 

,p j p
p

j
r

η η= , (A2.16)  

,j p j sρ η η= + , (A2.17)  

1
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j
j

y
ρ

ρ
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−
, (A2.18)  

and  

,
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ησ σ
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= ∑ , (A2.19) 

so that 
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, , ,
1 k

k j s s k p j p
j

σ η σ η σ
ρ

−
− −⎡ ⎤= +⎣ ⎦ . (A2.20) 

1
1 jρ−

The only factors in equation (A2.15) that are a function of j are now , ,p jη , and j 

itself.  Equation (A2.15) can thus be rewritten as 
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 . (A2.24) 

For a sufficiently long chain, the summations in equation (A2.21) can be approximated as 

integrals: 
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Equation (A2.25) then becomes  
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The chain interaction energy is given by (3.47) as explained in that section.  Applying 

this along with (A2.26) to yield the insertion parameter and then applying equation (3.8) 

for the gyration radius and equation (3.9) for the CGT yields equations (3.49) and (3.53), 

respectively. 
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Appendix 3. Mathematica code 

A.3.1. LCST in Aqueous Solution with Salt 

The numerical method for calculation of the LCST of uncharged polymers in salt 

solutions is as follows.  The solution density and hydrogen bond counts are first 

calculated from the equations of state as a function of polymer and anion volume 

fractions over a range of temperature.  The equations of state are often very sensitive to 

guess values, and several tactics are thus employed to obtain correct results.  Firstly, as 

EOS calculation proceeds over the grid of compositions and temperatures, previous EOS 

results are used as guesses via finite-difference-like extrapolation methods.  During this 

process, any gridpoint for which a numerical problem is encountered is flagged.  Once 

this initial solving process is complete, a series of smart algorithms then attempt to find a 

correct solution to the equations of state at these gridpoints by attempting better guesses 

based upon interpolation or extrapolation of nearby successful gridpoints.  Three 

dimensional plots are then produced of EOS results in order to enable the user to visually 

determine whether any points are still flagged as incorrect and repeat the above 

correction process as necessary.   

Once the equations of state are solved over composition and temperature grids, 

the results are interpolated in isothermal planes using Mathematica’s built-in 

interpolation function.  Numerical derivatives of these data sets are then taken with 

respect to polymer and anion volume fractions. These interpolation objects are fed into 

the governing spinodal equation for the solution, yielding an interpolated spinodal curve 

at each temperature.  Spinodal data is then re-interpolated in the temperature-polymer 

volume fraction plane in order to be consistent with the usual T-x phase diagram plane.  

The LCST itself is then determined as a function of salt concentration by finding the 

minimum of the spinodal with temperature over a range of salt concentration. 

Representative Mathematica code employing this approach follows: 
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A.3.2. Lattice Fluid CGT 

Pressure-temperature behavior of the lattice fluid coil-globule transition of a finite 

chain is numerically determined as described in section 3.1.2 via straightforward 

numerical solution of equations (3.26), (3.27), and (3.31) over a range of temperatures.  

Representative code follows: 
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