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Cartesian space path planning involves generating the position and orientation 

trajectories for a manipulator end-effector. Currently, much of the literature in motion 

planning for robotics concentrates on topics such as obstacle avoidance, dynamic 

optimizations, or high-level task planning. The focus of this research is on operator-

generated motions. This will involve analytically studying the effects of higher-order 

properties (such as curvature and torsion) on the shape of spatial Cartesian curves. A 

particular emphasis will be placed on developing physical meanings and graphical 

visualization for these properties to aid the operator in generating geometrically complex 

motions. 

This research begins with a brief introduction to the domain of robotics and 

manipulator motion planning. An overview of work in the area of manipulator motion 

planning will demonstrate a lack of research on generating geometrically complex spatial 

paths. To pursue this goal, this report will then provide a review of the theory of 

algrebraic curves and their higher-order properties. This involves an evaluation of several 

different representations for both planar and spatial curves. Then, a survey of interactive 



 vii

curve generation techniques will be performed, which will draw from fields outside of 

robotics such as Computer Graphics and Computer-Aided Design (CAD).  

In addition to the reviewed methods, a new method for describing and generating 

spatial curves is proposed and demonstrated. This method begins with the study of a 

finite set of local geometric motion shapes (circular arcs, cusps, helices, etc). The local 

geometric shapes are studied in terms of their geometric parameters (curvature and 

torsion), analyzed to give physical meaning to these parameters, and displayed 

graphically as a family of curves based on these controlling parameters. This leads to the 

development of path constraints with well-defined physical meaning.  Then, a curve 

generation method is developed that can convert these geometric constraints into 

parametric constraints and blend between them to form a complete motion program 

(cycle) of smooth paths connecting several carefully developed local curve properties. Up 

to ten distinct local curve shapes were developed in detail and one curve cycle 

demonstrated how all this could be combined into a full path planning scenario. Finally, 

the developed methods are packaged together into existing software and applied to an 

example demonstration. 
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1. CHAPTER ONE 

Introduction 

This research is contained in the broad domain of manipulator motion planning 

with an emphasis on the geometry of Cartesian space paths. Much of the past and current 

research in this area is focused on manipulator system topics such as obstacle avoidance, 

dynamic optimizations, and high-level task planning. However, little work has been done 

in studying and generating complex geometries for manipulator path plans. As the tasks 

required for robotic systems become increasingly complex, a better understanding of the 

geometry of spatial curves and how this relates to motion planning will be required. The 

goal of this work is to create for describing and generating geometrically complex paths 

with well understood physical meaning. 

This chapter will first introduce the domain of robotics by describing basic 

geometry and modeling techniques for serial manipulators. Then, a review of common 

techniques for joint and Cartesian space planning will be provided with an emphasis on 

complex Cartesian motions. This review will demonstrate a need for a more geometric 

based approach to planning these motions. Finally, the last section of this chapter will 

discuss the structure of the rest of this work. 

1.1. MANIPULATOR MODELING 

In order to understand the mathematics behind motion planning, it is important to 

understand the geometry of serial robotic systems.  Serial robotic manipulators are made 

up of a series of controllable variable joints.  These joints are usually either prismatic (P) 

or revolute (R).  A prismatic joint provides linear motion along an axis, and a revolute 
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joint provides rotation about an axis.  The degrees of freedom (DOF) of a serial robot is 

defined to be the number of active variable joints (i.e. each joint is driven). 

The current configuration of a serial system is a function of the current joint 
positions.  This is shown in Equation (1.1) where { }, , , , ,x y zx y z ψ ψ ψ  represents the 

position and orientation of the manipulator end-effector.  The joint position 
vector,{ }1 2, , , nφ φ φ , is the input to the system (where n is the degrees of freedom), and 

the manipulator end-effector position and orientation is the output.  
( )
( )
( )
( )
( )
( )

1 2

1 2

1 2

1 2

1 2

1 2

, , ,
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 (1.1) 

The joint position vector is usually defined as a function of time.  This means that 

the joint velocities and accelerations can be easily obtained by differentiating, as shown 

in Equation (1.2). 
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= =

= =
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 (1.2) 

1.1.1. DH Parameters 

Denavit-Hartenberg (DH) parameters are one of the most common methods for 

describing the geometry of serial manipulators. This method was developed by Denavit 
and Hartenberg [13] in 1955. It involves defining a set of four parameters ( ), , ,a dα θ  that 

represent the coordinate transformations from one joint axis to the next.  In each of these 

transformations, some of the parameters are variable and others are fixed.  For a revolute 

joint, the θ  parameter is usually defined to be variable.  For a prismatic joint, the d  
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parameter is usually defined to be variable.  For a serial robot, the number of variable 

parameters will be equal to the DOF.  A visual representation of these parameters is 

shown in Figure 1.1.   

 
Figure 1.1  DH Parameters and link frames.  Craig [13] 

 
The DH Parameters are defined as [13]: 

• ia  =  the distance from ˆ
iZ  to 1

ˆ
iZ +  measured along ˆ

iX  

• iα  =  the angle between ˆ
iZ  and 1

ˆ
iZ +  measured about ˆ

iX  

• id  =  the distance from 1
ˆ

iX −  to ˆ
iX  measured along ˆ

iZ  

• iθ  =  the angle between 1
ˆ

iX −  and ˆ
iX  measured about ˆ

iZ  

Each transformation between consecutive joints is treated individually as a 4x4 

transformation matrix.  A transformation matrix represents a spatial transform 

(translation and rotation) between two coordinate frames.  The transformation matrix [13] 
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to move from a frame attached to joint i to a frame attached to joint i-1 is shown in 

Equation (1.3). 
1

1 1 1 11

1 1 1 1

cos sin 0
sin cos cos cos sin sin
sin sin cos sin cos cos
0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

a
d

T
d

θ θ
θ α θ α α α
θ α θ α α α

−

− − − −−

− − − −

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (1.3) 

The total transformation from the fixed base frame to the variable end-effector 

(EE) frame is the combination of the transformation matrices for each consecutive joint 

pair.  For an n-DOF serial system, this is shown in Equation (1.4) where 0
nT  is the 

transformation from the base frame to the EE frame. 
0 0 1 2 1

1 2 3
n

n nT T T T T−⎡ ⎤= ⎣ ⎦  (1.4) 

1.1.2. End-Effector Representations  

The modeling method described in the previous section defines the location of the 

EE as a transformation from the base frame into the EE frame.  This transformation 

matrix has the form shown in Equation (1.5).  The parameter A
BP represents a 3x1 vector 

of the x, y, and z positions of the EE, and A
B R is a 3x3 rotation matrix that rotates the base 

frame into the tool frame. While this provides a good interpretation of the position, it is 

difficult to visualize and control the orientation of the EE from a 3x3 rotation matrix 

representation. This section will describe several other methods for describing spatial 

orientations. 

0 0 0 1

A A
B BR P⎡ ⎤

⎢ ⎥
⎣ ⎦

 (1.5) 
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1.1.2.1. Fixed XYZ Angles 

Fixed XYZ angles are one of the most common methods for describing EE 

orientation.  This representation will describe the orientation as a 3x1 vector of angles 

{ }, ,α β γ .  These angles represent three rotations around the fixed world frame (i.e. one 

rotation about the fixed x-axis, one rotation about the fixed y-axis, and one rotation about 

the fixed z-axis).  While this leads to a compact description of the EE in a 3x1 vector, it is 

often difficult to visualize how a rotation around one of the fixed frame axes will change 

the EE when controlling a robot.  Further information can be found in [13]. 

1.1.2.2. Euler Angles 

Euler angles are similar to Fixed XYZ and are also represented in a 3x1 vector 

{ }, ,α β γ .  However, they are relative to the rotating frame.  For example, Euler XYZ 

angles will represent a rotation about the fixed x-axis followed by a rotation around the 

new y-axis followed by a rotation about the new z-axis.  Euler angles can be defined as 

rotations around any order of the x, y, and z axes as long as no two consecutive axes are 

the same.  For example, Euler XYZ and Euler ZYZ are valid representations, but Euler 

ZZX is not.    Euler angles suffer from many of the same problems as Fixed XYZ angles, 

but they allow for direct control over rotation about one of the EE frame’s axes.  For 

example, changing the γ  value in an Euler XYZ representation will cause a rotation 

about the EE’s z-axis.  Fixed XYZ and Euler angles are often stored along with the 

position of the EE in a 6x1 vector called a handpose.  Further information can be found in 

[13]. 

1.1.2.3. Equivalent Axis 

 Another common representation is the Equivalent-Axis.  This defines the 

orientation as a rotation about a single axis in space. This representation consists of a 3x1 
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vector and an angle ( )ˆ ,R θn .  The rotation matrix to describe the orientation can be 

determined from Equation (1.6) [13].  Equivalent Axis rotations can be useful for 

interpolating between initial and final orientations, however; this representation is not 

very useful for visualizing an EE’s orientation. 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 cos cos 1 cos sin 1 cos sin
1 cos sin 1 cos cos 1 cos sin
1 cos sin 1 cos sin 1 cos sin

x x x y z x z y

x y z y y y z x

x z y z x z z

n n n n n n n n
n n n n n n n n
n n ny n n n n n

θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

⎛ ⎞− + − − − +
⎜ ⎟

− + − + − −⎜ ⎟
⎜ ⎟− − − + − +⎝ ⎠

 (1.6) 

 

1.1.2.4. Quaternions 

Quaternions are commonly used in industry to represent spatial orientations and 
are similar to Equivalent axes.  A quaternion is a 4x1 vector ( )ˆ ˆ ˆi j kq w x y z= + + +  that 

contains a 3x1 vector (x, y, z) representing an axis in space and a scalar value (w) 

representing the cosine of the half-angle of rotation about this axis [41].  Quaternions, 

like equivalent axes, are often used for interpolation between two orientations.  The 

Spherical Linear Interpolation (SLERP) method, shown in Equation (1.7), is the most 

common method used for interpolation.  The θ in this equation is the angle between the 
initial and final quaternions given by ( )1

0 1cos q q− ⋅ .  This method provides a constant 

angular velocity with respect to the independent parameter t.   

( ) ( )( ) ( ) [ ]0 1sin 1 sin
, 0,1

sin
q t q t

q t t
θ θ
θ

− +
= ∈  (1.7) 

 

1.1.3. Kinematics Model 

Thomas and Tesar [47] developed a kinematics model for serial manipulators 

based on generalized influence coefficients.  These coefficients represent a direct 

geometric mapping between input and output parameters.  This model is generalized and 

can be used on a wide variety of systems ranging from complex hyper-redundant 
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manipulators to simple planar systems.  The next few sections will describe the analytic 

development of this model. 

1.1.3.1. First Order Influence Coefficients 

A generalized method for mapping the time derivatives of the input and output 

parameters of a manipulator was developed by Thomas and Tesar [51].  This method 

relies on defining kinematic influence coefficients that are functions only of the current 

geometry of the system.  Let the output position vector be described by 

{ }, , , , ,x y zx y z ψ ψ ψ=P .  The time derivative of this position is shown in Equation (1.8). 

pd d G
dt dt φ

φ φ
φ
∂ ⎡ ⎤= = = ⎣ ⎦∂

P PP  (1.8) 

The pGφ⎡ ⎤⎣ ⎦  in this equation represents a matrix containing the first order influence 

coefficients, or G functions, relating the input joint velocities to the output EE velocities.  

Each individual G function maps a certain input to a certain output.  For example, a G 

function mapping the effect of the first joint on the x position of the output would look 
like 

1 1

x xGφ φ
∂⎡ ⎤ =⎣ ⎦ ∂ .  The entire matrix of G functions is shown in Equation (1.9).  This 

matrix relates the input joint velocities to the manipulator’s EE velocities.  It is often 

referred to as the Jacobian matrix [13]. 

1 2

1 2

1

n

p

z z

n

x x x

y y
Gφ

φ φ φ

φ φ

ψ ψ
φ φ

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥⎡ ⎤ ∂ ∂=⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 (1.9) 
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1.1.3.2. Second Order Influence Coefficients 

Similarly, the second order influence coefficients can be derived that relate the 

input accelerations to the output accelerations.  Equation (1.10) shows the second 

derivative with respect to time of the output position vector, P. 
2 2

2
2 2

d d d
dt dt dt

φ φ φ
φ φ φ

⎛ ⎞∂ ∂ ∂
= = = +⎜ ⎟∂ ∂ ∂⎝ ⎠

P P P PP  (1.10) 

It is interesting to note that the first order influence coefficient, 
φ
∂
∂
P , appears in 

this derivation.  This term relates the effect of joint accelerations on output accelerations 

while the second term relates centripetal and Coriolis effects on the output accelerations.  

Equation (1.11) shows this equation in terms of influence coefficients, where 
2

2
pH

dφφ φ
∂⎡ ⎤ =⎣ ⎦

P . 

p T uG Hφ φφφ φ φ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦P  (1.11) 

The pHφφ⎡ ⎤⎣ ⎦  represents the second order influence coefficients or H functions.  In 

Equation (1.11), the H functions are grouped together into a tensor known as the Hessian.  

This tensor contains as many planes as the system output DOFs. 

1.1.4. Dynamic Model 

The influence coefficients derived in the previous section can be further expanded 

to create a generalized dynamic model of manipulators.  This dynamic model will be 

briefly discussed here; a more detailed derivation can be found in Thomas and Tesar [51].  

Equation (1.12) shows the formulation of the joint torques resulting from system inertia. 
* *I T

n I Pφφ φφφτ φ φ φ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  (1.12) 

The *Iφφ⎡ ⎤⎣ ⎦  term in this equation is the effective inertia matrix and represents the 

effects of mass and moment of inertia on each of the active reference joint parameters iφ .  
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Its formulation is shown in Equation (1.13).  The jkM  term represents the link centroidal 

masses, and the jk⎡ ⎤∏⎣ ⎦  represents the link rotary inertias. 

{ }*

1

N T Tj c j c jk jk jk
jk

j
I M G G G Gφφ φ φ φ φ

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + Π⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑  (1.13) 

The *Pφφφ⎡ ⎤⎣ ⎦  in Equation (1.12) is the inertial power array.  This includes 

centripetal and Coriolis effects from the inertia.  The formulation for *Pφφφ⎡ ⎤⎣ ⎦  is shown in 

Equation (1.14). 

( )
( ) ( )( )

( )

*

1
{

}

n
j c j c

jk
i

j c jk jk

T Tjk jk jk jk

P M G H

G H

G G P G

φφφ φ φφ

φ φφ

φ φ φ

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ Π⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑

 (1.14) 

Equation (1.12) represents all of the torques resulting from system inertia (i.e. 

system movement).  However, it does not include torques resulting from gravity effects 
or external forces.  Equation (1.15) includes these effects where i cgGφ⎡ ⎤⎣ ⎦  represents the 

vertical G function to the center of gravity of the ith link, ,g iL represents the load due to 

gravity, i eGφ⎡ ⎤⎣ ⎦ is the G function of the ith link about the EE, and eL  is the EE load. 

* *
,

1

n
total T i cg i e

g i e
i n

I P G Gφ φφ φφφ φ φτ φ φ φ
=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ L L  (1.15) 

1.2. MOTION PLANNING 

Motion Planning involves the generation of time-based trajectories for robotic 

manipulators. This can be done in joint space or Cartesian space. In joint space, the 

motion of each joint axis is programmed independently. This is sufficient for moving 

between two positions when the end-effector path between the two positions is not 

important. However, Cartesian space trajectories are necessary for performing more 

complex tasks and are the focus of this research. The next section provides a brief 
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description of joint space planning. Then, a review of some common Cartesian space 

planning methods is presented. 

1.2.1. Joint Space Planning 
In joint space planning, each actuator is treated like a one degree of freedom 

(DOF) system, and their trajectories are computed individually.  Thus, in a 10-DOF 

robot, ten trajectories will be computed.  There are many different methods for 

computing a smooth trajectory for 1-DOF.  Most of these methods involve a smooth 

ramp-up to a maximum velocity at the beginning of the trajectory, and a smooth ramp-

down to zero velocity at the end.  Some of the popular trajectory generation methods 

include: polynomial, sinusoidal, and trapezoidal.  A more thorough examination of them 

can be found in [38]. 

Joint space planning has many advantages.  First, joint space planning is simple 

mathematically and can be calculated quickly.  Second, since robotic systems take joint 

angles as inputs, it is convenient to generate trajectories with respect to joint angles.  

Also, harm to individual actuators is reduced, because a smooth motion is planned for 

each joint.  This will allow for increased performance and less repairs. However, joint 

space planning does not allow for control over the EE during its motions.  This makes it 

unsuitable for use in generating trajectories for complex tasks. 

1.2.2. Cartesian Space Planning 

Cartesian space planning involves developing the position and orientation 

trajectories for the manipulator end-effector. The description of the end-effector in space 

has six degrees of freedom (DOF) and each of these must be controlled. These end-

effector positions are then converted into joint positions at discrete instances in time and 

sent to the robot controller. In the past, there have been numerous different approaches to 

Cartesian space planning. This section will highlight some of the major areas to 

demonstrate a need for a more geometric approach. 
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One of the main problems with Cartesian space motions is that a smooth end-

effector motion may provide an undesirable motion at the joint level. One way this 

problem has been addressed is to approximate the Cartesian path with a smooth joint 

trajectory.  This is done by dividing a given end-effector path into a set of n knot points. 

Then, the joint position at each knot point is determined by inverse kinematics and a 

curve can be fit through these positions for each joint. A variety of methods have been 

used for generating this curve including cubic splines [28], B-splines [52], and 

trigonometric splines [45]. While these methods are adequate for generating smooth joint 

trajectories that approximate Cartesian paths, they still produce errors and anomalies in 

the higher-order properties in the path that may not be tolerable for high-performance 

tasks. 

Another popular method of Cartesian space planning is to “blend” multiple path 

segments together. An early method of this was introduced by Paul [34] for smoothly 

transitioning between multiple straight-line trajectories. Later, these techniques were 

generalized and formalized for more complicated motions [29][54]. The basic idea of 

these techniques is to transition from one specified trajectory to another using a form 
similar to ( ) ( ) ( ) ( )( ) ( )2 11X t t X t t X tα α= + − . The blending function, ( )tα , must be 

chosen carefully to meet initial and final constraints. For example, using the polynomial 

( ) 5 4 36 15 10t t t tα = − +  will satisfy initial and final velocity and acceleration constraints. 

Figure 1.2 shows an example of a trajectory blend. The choice of the blending function 

and the size of the blend will have an impact on the final shape of the trajectory. 

However, these techniques do not offer a great deal of control over the shape of the 

velocity and acceleration profiles in the blending interval. 
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Figure 1.2. Blended Trajectory 

Surface following is another useful area of research. This involves planning the 

trajectory for a robot manipulator based on a defined surface (e.g. a part to be machined). 

This surface can be provided as a parametric description or sometimes as a CAD-model. 

A general survey of surface tracing can be found in [40]. Two different techniques of 

automating a spray-painting system based on surface following can be found in [12] and 

[46]. In these techniques, the motion of the end-effector along the surface is designed to 

apply an equal coating of paint across the entire surface. These techniques are useful for 

specific applications, but they do not provide a way to define general motions. 

A popular method for planning the orientation trajectory of the end-effector is to 

base the orientation on the geometry of the curve. This is done by planning rotations 

relative to the Frenet Frame [3][57][58]. The Frenet Frame consists of three orthogonal 

vectors: the tangent vector, the normal vector, and the bi-normal vector. These vectors are 

defined by the shape of the curve, and the frame will move along the curve continuously 
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as long as the curvature and torsion are continuous. One example of how these techniques 

could be used would be to define a constant velocity around the normal vector on the 

surface in a surface tracing task. These methods are very useful in coupling the rotational 

motion of the manipulator with the geometry of the spatial curve and will be revisited 

later in discussions on rotational motion planning. However, these methods assume the 

geometry of the path is already provided. 

The differential properties of ruled surfaces have also been used to study 

manipulator end-effector motions. One of the first methods of doing this was presented 

by Ryuh and Pennock [39]. A ruled surface can be defined as shown in Equation 1.1 
where u is an independent parameter defining motion along curves ( )ur and ( )uR  and 

υ  defines a point on the line between the two curves. In a manipulator, ( )ur  (often 

called the Directrix) defines the motion of the end-effector tool tip, and ( )uR  (often 

called the Indicatrix) defines the motion of a point along the tool axis line. Thus, the ruled 

surface becomes the surface traced by a vector aligned along the tool axis. The geometric 

properties of this surface are then used to define the time-based motion of the 

manipulator end-effector. More recent works in using ruled-surface properties for 

generating manipulator motions can be found in [59][60][61][62]. 

( ) ( ) ( ),u u uυ υ= +X r R  1.1 

The above survey of work shows that there has been ample research in generating 

time-based trajectories from provided geometries. However, the literature has been less 

focused on actually generating the geometry of paths. These paths are generally assumed 

to come from some CAD-based model or some basic interpolating scheme (polynomial 

curves, Bezier curves, B-Splines, NURBS, etc). Thus, the focus of this research is on 

studying and generating the geometry of spatial curves with emphasis on local properties.  
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1.3. RESEARCH OBJECTIVES 

This work will concentrate on studying and generating trajectories based on the 

intrinsic physical properties of spatial curves: curvature and torsion. This differs from the 

traditional spline-based methods in that those methods tend to be defined in terms of 

some independent parameter with little physical meaning. The main hypothesis of this 

research is that focusing on the higher-order properties of spatial curves will provide a 

more intuitive method of generating complex motions. This section of the report will go 

into more detail on the specific research plans for this work. As mentioned earlier, the 

end goal of this research is the development of an intuitive method for generating 

complex spatial paths. The main motivation for this work is to provide an alternative way 

of looking at spatial trajectory planning by generating spatial curves based on the higher-

order properties of curvature and torsion whose values correlate closely with the physical 

nature of a family of curves based on those values.  

1.3.1. Motivation 

This research draws motivation from the techniques used for developing coupler 

curves for mechanisms as these techniques also emphasized the geometry of a path in the 

planning phase. The desired motion curve for a planar mechanism can be specified in 

terms of a series of Multiply Separated Positions (MSP). A generalized algebraic solution 

to this problem was developed in [47][48][49]. MSPs are defined as a combination of 

Finitely Separated Positions (FSP) and Infinitesimally Separated Positions (ISP). Two 

FSPs are designated as (P-P), and two ISPs are designated as (PP). So, three Multiply 

Separated Positions could be defined as PPP, PP-P, or P-P-P. An FSP is simply a discrete 

position in the plane as shown in Figure 1.3. The position of point A in frame Σ can be 
found using Equation 1.2. In general, ( ), fα β φ=  with φ  being the independent 
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parameter. Thus, a P-P-P motion specification would simply define three discrete points 

on the plane for the motion curve to pass through. 

 
Figure 1.3. Finitely Separated Position 

 
cos sin
sin cos

X x y
Y x y

φ φ α
φ φ β

= − +
= + +

 1.2 

 

 
Figure 1.4. Zero Order Contact 

To understand the concept of ISPs, the idea of order of contact should be defined. 

Two curves are said to have zero-order contact if they intersect at a single point as shown 

in Figure 1.4. In this case, the curves share a position but no higher-order properties. 

In first order contact, two curves share two infinitesimally separated points. 

Consider the two curves shown in Figure 1.5 with two intersections. As the distance 

between these two intersections approaches zero, the two curves share a common point 

and a common tangent. Thus, specifying a PP MSP is equivalent to specifiying a position 

and a tangent for the curve. 
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Figure 1.5. 1st Order Contact 

For second order contact, two curves share three infinitesimally separated points. 

Consider the two curves shown in Figure 1.6. As the distances 01S∆  and 12S∆  approach 

zero, the two curves share a common point, tangent, and curvature. It can be similarly 

shown that 3rd order contact involves an additional shared first derivative of curvature 

(κ′ ). 

 
Figure 1.6. 2nd Order Contact 

Once the motion constraints have been specified, the coupler curve and 

mechanism constraints can be determined algebraically. It should be noted that the 

number of MSPs that can be specified is limited by the mechanism. However, a robot can 

be reprogrammed to follow any path that is within its workspace, and the design of the 

path can be decoupled from the physical system in terms of generating the shape of the 

path. This allows more freedom in the design of the curve for manipulators. Thus, while 

the actual procedure developed in this research is much different from coupler curve 

design, the underlying motivation is the same: designing curves based on geometric 

constraints. 
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1.4. CONCLUSIONS 

This chapter began by describing the basic domain of robotics and motion 

planning. Then, a brief review of some of the areas of research for manipulator motion 

planning demonstrated a lack of focus on the geometric design of curves. Thus, to pursue 

the goals of this research, we will begin by studying of the theory of Algebraic Curves in 

Chapter 2. 

This study will focus on the basic descriptions, representations and properties of 

Algebraic Curves. Four different representations will be explored: Implicit, Parametric, 

Arc-Length Parameterization, and Curvature/Torsion profiles. For each representation, 

the formulations for the intrinsic properties of curvature and torsion will be investigated. 

Then, the various advantages and disadvantages of these representations will be 

summarized. This chapter should supply the reader with the necessary mathematic 

background to understand the formulations developed in later chapters. 

In Chapter Three, various curve generation techniques from other disciplines (e.g. 

Computer-Aided Design and Computer Graphics) are explored. These include fairly 

simple methods such as Bezier Curves and B-Splines as well more involved methods 

such as Beta-Splines and A-Splines. While all of these methods provide adequate ways to 

produce visually pleasing curves, the goal of this research is on developing more 

physically-based curve constraints. 

This goal is pursued in Chapter 4 by further studying the intrinsic properties of 

curvature and torsion and their affects on the local geometry of curves. This starts with a 

study of very simple planes shapes (parabolas, circles, ellipses, etc). For each shape, 

variable parameters are identified that can be used to generate families of curves. Then, 

closed-form solutions for curvature in terms of these parameters are formulated to better 

develop the relationships between this property and simple planar shapes. Then, a similar 
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analysis is pursued for more complex spatial shapes. In this case, it becomes increasingly 

difficult to directly relate parametric/implicit forms of curves with the geometric 

properties. Thus, to study these properties, a method to directly generate curves based on 

curvature/torsion values is presented. This method is used to develop local surfaces 

defined by families of curves to illustrate the local affect of curvature and torsion on the 

geometry of spatial curves. 

Once a physical understanding of curvature and torsion has been developed, 

Chapter 5 then shows how to convert these geometric constraints into parametric 

constraints that can be used to generate spatial curves. This involves a step-by-step 

formulation for developing these constraints up to the fourth order, and specific examples 

are included at each step that demonstrate how this process can be used. The end result is 

a method wherein a user/operator can provide geometric constraints (i.e. constraints 

based on curvature and torsion) at a set of frames, and the resulting parametric constraints 

can be calculated. An introduction to several potential methods for blending between 

these constraints (polynomial, trapezoidal, etc) is also introduced and elaborated in 

Appendix B. 

Chapter Six then takes this method for developing the geometric shape of a curve 

and implements it inside of a manipulator controller. First, the basic software framework 

for a Motion Planner previously designed at the RRG will be presented. Then, specific 

integration issues, such as defining the motion along the curve and rotational planning 

methods, are discussed. This provides a useful, robot independent testbed that can easily 

be used and expanded in future work. Finally, Chapter Seven will present a summary of 

this work as well as suggestions for future work in this area. This will also demonstrate 

how the techniques developed in this work may be applied to specific manipulator tasks. 
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2. CHAPTER TWO 

Algebraic Curves 

This chapter will introduce some of the necessary mathematical background for 

this research, which involves looking at the various different representations for algebraic 

curves and their properties. In the first section, implicit forms for algebraic curves will be 

discussed (i.e. ( ) 0, =yxf ). These curves are basically defined to be the set of all points 

(x,y) that are a solution to the given algebraic equation. Next, the standard parametric 

form for algebraic curves will be discussed. In this form, the x, y, and z coordinates are 
defined as functions of some independent parameter ( ( ) ( ) ( ), ,x f u y f u z f u= = = ). For 

defining motion, this independent parameter u is often taken to be time t or some function 

of time. A special case of this form where the independent parameter is arc length will 

also be studied. Finally, a method of defining a spatial curve in terms of its curvature and 

torsion profiles will be developed. The advantages and disadvantages of these 

representations will then be compared with an emphasis on application to interactive path 

planning for physical systems (i.e. end-effector motion for programmable robot 

manipulators). The mathematics introduced in this chapter will be analyzed in more depth 

in later chapters. 

2.1. IMPLICIT FORMS OF PLANAR ALGEBRAIC CURVES    

An implicit planar curve is defined as the zero of a bivariate function ( ) 0, =yxf . 

An algebraic curve is simply the case where the function ( ),f x y  is a polynomial in x 

and y with scaling coefficients aij. A degree n algebraic curve is thus defined as shown in 

Equation 2.1 where n=i+j. Then, the curve represents the set of all points (x,y) that are 
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solutions to this equation. For example, Figure 2.1 shows a curve represented by the 
equation ( )2 1 1 0y x + − = . 

( ), 0
n

i j
ij

i j
f x y a x y

+

= =∑  2.1 
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Figure 2.1. Implicit Algebraic Curve 

2.1.1.  Basic Properties of Implicit Curves 

This section will discuss two simple, but important, properties of implicit planar 

curves: curvature and inflection points. Curvature is the reciprocal of the local radius of 

curvature. Thus, it is basically a measure of how much the curve is “bending”. A 

curvature of zero would mean that the curve is a locally a straight line, and a high 

curvature would indicate a sharp bend in the curve. In the limit, when the curvature is 

infinite, the curve becomes a cusp. The equation for curvature of an implicit planar curve 
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is shown in Equation 2.2 where x
ff
x
∂

=
∂

, y
ff
y
∂

=
∂

, 
2

2xx
ff

x
∂

=
∂

, 
2

2yy
ff

y
∂

=
∂

, and 

2

xy
ff

x y
∂

=
∂ ∂

.  

( )
( )

2 2

3
2 2 2

2
, xx y xy x y yy x

x y

f f f f f f f
x y

f f
κ

− +
=

+
 2.2 

An inflection point is closely related to curvature and occurs whenever the sign of 

curvature changes. This represents the curve changing direction. Another way to think of 

curvature is to examine how the tangent of the curve is changing as the curve is traced. 

The tangent will rotate in the counter-clockwise direction if the curvature is positive and 

in the clockwise direction if the curvature is negative. Thus, the tangent vector will “cut” 

the curve at an inflection point [16]. For example, in Figure 2.2, the curve on the right 

contains an inflection point at the origin while the curve on the left does not. 
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Figure 2.2. Example of an Inflection Point 

2.1.2. Genus and Singular Points 

An important categorization of an algebraic curve is its genus. The genus of an 

algebraic curve of degree n is given by Equation 2.3 and will always be greater than or 

equal to zero. Thus, a quadratic curve (n=2) will have no singular points, and a cubic 



 22

(n=3) will have at most one. An important result relating to genus is that an algebraic 

curve will have a rational parameterization if and only if the genus is equal to zero [55]. 

This is an important result as a parameterization allows for easier definition of motion 

along a curve. A basic procedure for obtaining this parameterization will be presented in 

the following section on parametric curves. 
( )( )2 1

singularities
2

n n
genus

− −
= −∑  2.3 

It not becomes necessary to expand on the meaning of singularities on algebraic 

curves. A singularity on an algebraic curve is defined to be any point on the curve where 

the both first derivatives vanish ( ( , ) ( , ) 0f x y f x y
x y

∂ ∂
= =

∂ ∂
). Note that these points must 

still lie on the curve. For example, the curve 3 3 1 0x y+ − =  does not contain any 

singularities even though (0,0) (0,0) 0f f
x y

∂ ∂
= =

∂ ∂
, because the point x=0, y=0 does not lie 

on the curve. 

Now, to study a few of the most common types of singularities, we will consider 

the algebraic curve given by the equation 2 2 3y ax x= + . It is easy to see that for all values 

of a, there will be a singular point at the origin. We will consider three cases (a<0, a=0, 

a>0) that will lead to the three different types of singularities. 

2.1.2.1. Double Point 

In the first case, we choose a to be a positive value. This leads to a double point. 

At a double point, the curve crosses itself but does not share tangents between the 

crossing branches. An example of a double point is shown in Figure 2.3. 
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Figure 2.3. A Double Point in the curve: 2 3 23y x x= +  

 

Another condition for a double point is that the determinant of the Hessian matrix 

of second derivatives will be negative definite at the singular point. For a curve in two 

variables, the Hessian matrix is shown in Equation 2.4. The calculation of the 

determinant of this matrix can be found be plugging in the partial derivative values as 
shown in Equation 2.5. Plugging in the singular point ( ) ( ), 0,0x y = , the determinant of 

this matrix for this curve at the singular point is -4a, which will be negative for all 

positive values of a. 
2 2

2

2 2

2

f f
x x y
f f

y x y

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂
⎜ ⎟
∂ ∂ ∂⎝ ⎠

 2.4 
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2 6 0
4 12

0 2
a x

a x
− −

= − −  2.5 

2.1.2.2. Cusp 

A cusp occurs in this curve when a is set to zero. At a cusp, two branches of the 

curve meet with a shared tangent, and the determinant of the Hessian matrix is zero. The 

deriviative of the Hessian will be the same as before (-4a) but with a=0 this time. Figure 

2.4 shows an example of a cusp. 
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Figure 2.4. A cusp in the curve: 2 3y x=  

2.1.2.3. Isolated Point 

Another kind of singularity is known as an isolated point. This occurs when the 

equation of the curve has a point that is disconnected from the rest of the curve. Consider 

the case when a=-3 shown in Figure 2.5. 
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Figure 2.5. Isolated Point on curve: 2 3 23y x x= −  

As seen in this plot, most of the curve lies to the right of the origin. However, it is 

clear the point x=0, y=0 is also a solution to the algebraic equation. This leads to an 

isolated point. At an isolated point, the determinant of the Hessian matrix will be positive 

definite. Once again, the determinant of the Hessian will be -4a. However, since a is now 

negative, this will always be a positive value. 

2.1.2.4. Other Singularities 

For higher degree curves, singular points are often a form of one of the types of 

singularities previously discussed but with a higher multiplicity. For example, the degree 

four curve shown in Figure 2.6 has a triple point at its origin. It should also be noted that 



 26

not all singular points have an obvious geometric feature; it is also possible for a curve to 

look smooth at a singularity. 

( )22 2 2 33 0x y x y y+ + − =
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Figure 2.6. Degree Four Curve with a Triple Point 

2.1.3. Implicit Spatial Curves 

This section has so far focused on planar forms of implicit curves. A spatial curve 

in implicit form is defined as the intersection of two implicit surfaces (i.e. 

( ) ( ), , 0 , , 0f x y z g x y z= ∩ = ). A simple example of this is shown in Equation 2.6 where 

a curve is defined by a unit sphere intersecting with the z=0 plane. Thus, this curve is 

simply a unit circle in the xy plane. Defining a curve in this manner is important for many 

applications, such as looking at the curves resulting from intersecting two complex 

surfaces. However, in general, it is difficult to define a desired curve shape (useful for 

motion planning) in this manner. 
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2 2 2 1 0
0

x y z
z
+ + − =
=

 2.6 

2.1.4. Summary 

Algebraic curves defined in implicit forms can provide a good mathematical 

understanding of the curve and have a wealth of historical literature and research 

associated with them. However, they have several disadvantages in terms of curve 

generation as it can be difficult to describe a motion along the curves in terms of their 

point parameters. This problem becomes even more difficult when trying to describe 

spatial motions. For this reason, implicit curves are often converted to parametric form. 

The next section will describe a basic procedure for doing this for planar curves and then 

go into more depth on the properties of parametric curves. 

2.2. STANDARD PARAMETRIC CURVES 

A planar parametric curve involves defining the x and y coordinates with respect 

to some independent parameter over a certain range as shown in Equation 2.7. Curves 

defined in this manner are in general easier to work with than implicit curves. Thus, 

implicit curves are often converted into a parametric form for the purposes of rendering 

or defining a motion along the curve. The basic procedure for this conversion is 

introduced for low degree curves in the following section.  
( )
( )

[ ], ,
x f u

u a b
y f u

= ⎫⎪ ∈⎬
= ⎪⎭

1 2.7 

2.2.1. Implicit to Parametric Conversion 

As mentioned in the Section 2.1.2, a curve must have a genus of 0 for a rational 

parameterization to exist. Thus, a rational parameterization will always exist for a 

                                                 
1 This notation means the independent parameter u is defined on some interval a to b. 
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quadratic curve, and a cubic curve will require the curve to have one singular point. For 

these simple curves of low degree, a parameterization can be found by computing the 

intersection of the curve with a “family of lines” passing through a point on the curve. 

For example, consider the simple quadratic curve which passes through the origin given 

by 2 0y x yx− − = . Now, take the family of lines passing through the origin y=tx and 

substitute it into the equation. The resulting parameterization is shown in Equation 2.8. 

( )

( )

2

2 2

2

0
0
0

1 0
1

1

y x yx
tx x tx
x t x tx

tt x t x
t

ty tx y
t

− − =

− − =

− − =

− + = ⇒ =
+

= ⇒ =
+

 
2.8 

Now, consider the cubic curve with a double point (singularity) that was 

introduced in Section 2.1.2.1. The parameterization of this curve is shown in Equation 

2.9. 

( )

2 3 2

2 2 3 2

2 2 2 2

3

3 0
3 0

3 0 3 0 3

3

y x x
y tx t x x x

x t x t x x t

y tx y t t

− − =

= ⇒ − − =

− − = ⇒ − − = ⇒ = −

= ⇒ = −

 2.9 

This curve was also generated by taking the family of lines passing through the 

singularity at the origin. From Figure 2.3, it is clear that these lines must pass through the 

origin as any other point on the curve will lead to multiple intersection points. Thus, the 

singularity actually allows the rational parameterization to be defined. Figure 2.7 shows 

two more examples of implicit versus parametric curves. 
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Figure 2.7. Two Examples of Implicit vs. Parameteric Representations 

As the degree of an implicit curve gets higher, it becomes more difficult both to 

find curves of genus 0 and to find the rational parameterization of these curves. For 

example, a quartic curve (n=4) will require 3 singular points, and a family of curves 

instead of lines will often be needed to find the parameterizations. A generalized method 

of finding parametric description of algebraic plane curves is presented in [1]. This is 

further generalized to spatial curves defined as the intersection of two implicit surfaces 

[2]. Higher degree curves are also often approximated with piecewise segments [5]. 

While this research will mainly focus on curves in parametric form, it is important to 

recognize that methods of converting between these representations exist. Thus, implicit 

forms can be used when needed. 

2.2.2. Spatial Parametric Curves 

Parametric curves can easily be extended from planar forms to spatial forms as 

shown in Equation 2.10.  In this form, each point on the curve can be uniquely defined by 
its position vector [ ], ,x y z=r  measured from the origin. Likewise, a curve can be defined 

as a real vector function ( )u=r r  where each component of r is also a function of the 

independent parameter u for some parameter range. This provides a mapping from 
3R R→ . For generating motion along paths, this independent parameter is often taken to 
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be time t. Figure 2.8 shows two examples of spatial parametric curves along with their 

equations. 
( )
( )
( )

[ ], ,

x f u

y f u u a b

z f u

= ⎫
⎪

= ∈⎬
⎪= ⎭
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Figure 2.8. Example Spatial Parametric Curves 

2.2.3. Parametric Curve Properties 

This section will introduce some basic physical properties of spatial parametric 

curves: curvature, torsion, and the Frenet Frame. The basic physical meanings behind 

these properties will be introduced here and described in more detail in later sections. 

2.2.3.1. Curvature 

In a spatial parametric curve, curvature can be calculated as shown in Equation 
2.11 where dxx du′ =  [26]. If the z terms in this equation were removed, the equation 

reduces to a similar form to the curvature provided earlier for planar parametric curves. 

As in a planar curve, this value is the local reciprocal of curvature and gives an indication 

of the bending in a curve. Thus, a zero value represents a straight line. This expression 
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contains derivatives up to the second order which must be defined for curvature to have 

meaning. 

( )
( ) ( ) ( )

( )

2 2 2

3
2 2 2 2

y z y z z x x z x y y x
u

x y z
κ

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
=

′ ′ ′+ +
 2.11 

One thing to notice in the equation of curvature for a parametric curve is that the 

curvature value will always be positive as opposed to being a signed value as in the 

planar case. This is because a spatial curve can technically bend in an infinite number of 

directions as opposed to just two directions in a planar curve. This can be illustrated by 

examining the planar curve in Figure 2.9. As the curve is traversed, the tangent vector can 

either move in the clockwise or counter-clockwise directions, and these two directions 

correspond to positive and negative curvature. However, in a spatial curve, the tangent 

vector can rotate in any direction. Thus, curvature is defined as the magnitude of the 

bending without a directions, and an inflection point in a spatial curve can not be 

described as a point where the sign of curvature changes. 

 
Figure 2.9. Tangent Vector Changing as Curve is Traversed. 
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2.2.3.2. Torsion 

Torsion τ is another property of curves in space.  It measures the tendency of a 

curve to twist out of the plane (a planar curve will have a zero torsion).  Because the 

torsion of a planar curve is zero, τ  is a strictly a property of spatial curves. The 

calculation for torsion is shown in Equation 2.12 for a curve in parametric form [26]. 

Unlike curvature, torsion has a signed value for spatial curves. 

( ) ( ) ( ) ( )
( ) ( ) ( )2 2 2

y z x y z x z x y x z y x y z y x z
u

y z y z z x x z x y y x
τ

′ ′′ ′′′ ′′ ′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′− + − + −
=

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
 2.12 

2.2.3.3. Frenet Frame 

The Frenet Frame is a coordinate frame attached to the curve that helps describe 

the geometry of the curve. It consists of three orthogonal unit vectors: the tangent, 

normal, and bi-normal. The equation for the unit tangent vector is shown in Equation 

2.13 [26]. This vector points along the tangent of a curve and represents the “heading” of 

the curve.   

( ) [ ]
2 2 2

ˆ x y z
u

x y z

′ ′ ′
=

′ ′ ′+ +
T  2.13 

The unit normal vector is orthogonal to the tangent vector and tends to point in 

the direction of the bending of the curve. Thus, when the curvature of a curve is positive, 

the curve will tend to move in the direction of the normal vector. The equation for the 

unit normal is shown in Equation 2.14 [26]. The final vector in the Frenet Frame, the bi-

normal vector, can be calculated as the cross product of the tangent and normal as shown 

in Equation 2.15 [26]. It will be shown later that local motion in the bi-normal direction is 

related to a curve’s torsion.  Figure 2.10 shows the Frenet Frame moving along a spatial 

curve. 
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( )

ˆ

ˆ
ˆ

d
duu
d
du

=

T

N
T

 2.14 

( ) ( ) ( )ˆ ˆ ˆu u u= ×B T N  2.15 

 
Figure 2.10. Frenet Frame on a Spatial Curve 

2.2.4. Parametric Surfaces 

While the main focus of this research is on the generation of curves for path 

planning, a brief introduction to parametric surfaces and their relationship to parametric 

curves is presented here. The study of algebraic surfaces is of interest in motion planning, 

because many robotic tasks involve interaction with surfaces (surface polishing, spray 

painting, etc).  In parametric form, a surface can be defined as shown in Equation 2.16 

where the x, y and z coordinates are defined as functions of two independent parameters. 
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( )
( )
( )

,

,

,

x f s t

y f s t

z f s t

=

=

=

 2.16 

In a parametric form, a surface can easily be broken down into curves that run 

along its surface.  This can be done by setting one of the independent variables to a 
constant value (e.g. { } ( )0, , ,x y z f s t=  or { } ( )0, , ,x y z f s t= ).  A tangent plane can be 

defined at any point [s,t] by calculating the tangent vectors of each of these curves. The 

cross product of these two vectors will represent the surface normal at a given point.  For 

example, consider the surface shown in Figure 2.11 parametrically defined as 

( )( ) [ ] [ ], , cos , 1,1 , 1,1s t s t s t+ ∈ − ∈ − . 

 
Figure 2.11. Example of a Parametric Surface 

The dark line at the edge of this plot represents a parametric curve represented by 

( )( ) [ ]1, ,cos 1 , 1,1t t t− − ∈ − .  This curve is generated by setting s=-1 in the surface 

definition and creating a parametric equation with one independent variable.  The vertical 
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lines on the plot represent the surface normal at any given point along this curve.  This 

vector is calculated by taking the cross product of the two tangent vectors defined as 

1 , ,x y z
s s s
∂ ∂ ∂⎡ ⎤= ⎢ ⎥∂ ∂ ∂⎣ ⎦

T  and 2 , ,x y z
t t t
∂ ∂ ∂⎡ ⎤= ⎢ ⎥∂ ∂ ∂⎣ ⎦

T .  For this particular surface, these tangent 

vectors are ( )1 0,1, sin s t= − +⎡ ⎤⎣ ⎦T  and ( )2 1,0, sin s t= − +⎡ ⎤⎣ ⎦T .  These calculations could 

be useful for developing motion plans for certain tasks where the end-effector orientation 

is a function of the geometry of the surface such as spray-painting or grinding.  While 

this research will focus on spatial curves, it is useful to see that the same analytics apply 

to parametric surfaces. 

2.3. ARC LENGTH PARAMETERIZATION 

Spatial curves that are parameterized with respect to their arc length, s, are of 

particular interest.  In these curves, the position vector and each of its components is 
defined to be a function of the distance traveled along the curve, ( )s=r r .  As well as 

providing a better physical meaning to the independent parameter, curves defined in this 

manner have many interesting properties. Equation 2.17 shows the formulation of arc 

length [26].  This equation simply integrates the distance along the curve to determine the 

arc length.  Likewise, we can write the arc length as a function of u as shown in Equation 

2.18. The arc length s is often called the natural parameter. 
2 2 2

b

a

s x y z du′ ′ ′= + +∫  2.17 

( )
o

u

u

s u du′ ′= ⋅∫ r r  2.18 

In some special cases, a closed-form analytic solution for an arc length 

parameterization can be found.  For example, consider a circular helix described by the 
equation ( ) ( )cos , sin ,u r u r u c=r .  For this curve, 2 2r c′ ′⋅ = +r r  is a constant, and the 

integral in Equation 2.18 does not need to be computed for every value.  However, most 



 36

curves cannot be easily converted into an arc length parameterization, and a numerical 

method is needed. 

2.3.1. Arc Length Parameterization Properties 

This section will show how the physical properties of spatial curves can be 

calculated for arc length parameterized curves. Several useful relationships can be 

developed from this parameterization. 

2.3.1.1. Frenet Frame 

As described in the previous section, the Frenet Frame is a moving coordinate 

frame attached to a curve consisting of three unit vectors: the tangent, the normal, and the 

bi-normal. The unit tangent vector can also be easily calculated from an arc length 

parameterization.  This is shown in Equation 2.19. 

ˆ
d d d

dx dy dzdu du du
dsd ds ds ds
dudu

⎡ ⎤= = = = ⎢ ⎥′ ′⋅ ⎣ ⎦

r r r

T
r r r

 2.19 

Likewise, the unit normal vector can also be easily calculated as before.  This is 

shown in Equation 2.20.  The unit bi-normal can be calculated as before by taking the 

cross product of the unit tangent and unit normal (Equation 2.21). This provides the three 

vectors that make up the Frenet Frame.   
ˆ ˆˆ d d

ds ds
=

T TN  2.20 

ˆ ˆ ˆ= ×B T N  2.21 

2.3.1.2. Curvature 

The curvature κ  can now be calculated from Equation 2.22 [26]. This shows that 

the curvature is a measure of how quickly the unit tangent is moving with respect to 

distance along the curve.  Physically, this represents “bending” in the curve.  The 
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reciprocal of curvature is called the radius of curvature, 1ρ
κ

= .  Another interesting 

relationship is shown in Equation 2.23. This shows that the unit normal vector is related 

to the curvature and second derivative with respect to arc length. The physical meaning 

behind this is that the curvature is the magnitude of the change in direction of the tangent 

along the curve. Thus, when the curvature is zero, the tangent vector will not change and 

the curve will continue in a straight line. On the other hand, a high curvature will result in 

the tangent vector rapidly changing direction. An infinite curvature, as in the case of a 

cusp, thus represents a discontinuity in the tangent vector along the curve. 
2 2

2 2

ˆd d d
ds ds ds

κ = = ⋅
T r r  2.22 

2 2

2 2

1ˆ d d
ds ds

ρ
κ

= =
r rN  2.23 

2.3.1.3. Torsion 

Physically, torsion is a measure of the rate of change of the osculating plane 

relative to the governing parameter u. The osculating plane is defined as the plane 

spanned by the curve tangent and normal vectors.  Thus, a constant zero torsion means 

that a curve will never leave the osculating plane and will be planar. This is shown in 

Figure 2.12. 
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Figure 2.12. Osculating Plane of a Spatial Curve 

As is shown in this plot, the bi-normal vector is perpendicular to the osculating 

plane.  Equation 2.24 [26] shows that if the bi-normal vector is not changing, then the 

torsion is zero.  This makes sense, because the bi-normal vector will change if the 

osculating plane rotates (i.e., it does not purely translate).  If the bi-normal vector is not 

changing, this means the curve is a planar curve staying in the plane formed by the 

tangent and normal vectors.  Torsion has a sign convention that “right-handed” curves are 

given positive torsion. 
ˆˆ d

ds
τ = − ⋅

BN  2.24 

Torsion can also be related in terms of the original curve, r.  This is done by 

taking the determinant of the matrix shown 2.25.  This formulation is similar to the one 

shown before in Section 2.2.3.2.   
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2.3.1.4. Serret-Frenet Formulas 

Another useful property for curves parameterized by arc length is the Serret-

Frenet formulas.  These formulas show the derivatives with respect to arc length of the 

Frenet frame as a function of the current Frenet Frame, curvature and torsion. Thus, the 

local geometry of a curve is fully described by its position (i.e. Frenet Frame) and its 

curvature and torsion.  These relationships are a classic result and are shown in Equation 

2.26 [26]. 
ˆ

ˆ0 0ˆ ˆ0
ˆ0 0ˆ

d
ds
d
ds
d
ds

κ
κ τ

τ

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

T

T
N N
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 2.26 

Darboux [26] studied the rotational motion of the Frenet frame as a curve is being 

traversed.  He derived a formula for the rotation vector of the Frenet frame moving along 
a curve at unit speed ( )1s =  as ˆ ˆτ κ= +D T B .  This is known as the Darboux vector.  In a 

planar curve, the first term will drop out and the Frenet frame will rotate around the 

binormal vector with an angular velocity ω κ= .  This formulation is useful for studying 

the rotational motions of a rigid body attached to the Frenet frame moving along a curve.  

The Serret-Frenet formulas can also be rewritten as shown in Equation 2.27.  
ˆ ˆ ˆˆ , ,d d d

ds ds ds
= × = × = ×

T N BD T D N D B  2.27 
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2.3.2. Motion Along a Curve 

Because the independent parameter in arc length parameterized curves has clear 

physical meaning, the motion along a curve can be easily examined. Suppose you have a 

curve described with respect to arc length as shown in Equation 2.28.  Now, suppose that 
a motion program then defines the arc length as a function of time (i.e. ( )s f t= ).   

( ) ( ) ( ){ }, ,x f s y f s z f s= = =  2.28 

Let [ ], ,x y z=P  be a vector describing a point along this curve.  The velocity of 

this point, pv , is given by d
dt

P .  This leads to the relationship shown in Equation 2.29.  

p
d ds d s
ds dt ds

= =
P Pv  2.29 

Next, the acceleration of the point along the curve can be calculated by taking the 

derivative with respect to time of Equation 2.29.  This is shown in Equation 2.30.  

( )
2

2
2p p

d d d ds d ds s
dt dt ds dt ds ds

⎛ ⎞= = = +⎜ ⎟
⎝ ⎠

P P Pa v  2.30 

From algebraic curve theory, the acceleration along a curve is given by Equation 

2.31.  By comparing Equation 2.30 and Equation 2.31, some interesting relationships are 

revealed.  The first is ˆ d
ds

=
PT , and the second is 

2

2
ˆ d

ds
κ =

PN . 

( ) 2ˆ ˆt s sκ= +a T N  2.31 

The first of these relationships shows a correlation between the unit tangent vector 

and the first derivative d
ds
P  with respect to arc length s.  To understand this relationship, 

one must recognize that the magnitude of  d
dt

P  is s .  This leads to the description 

shown in Equation 2.32.  

ˆ
d ddt
ds dsdt

= = =
PP PT

P
 2.32 
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The second part of the equation shows a relationship among the curvature, the 

unit normal, and the second derivative with respect to arc length.  This highlights the fact 

that the curvature is equal to the magnitude of the derivative of the tangent vector 
2

2

ˆd d
ds ds

κ
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

T P , a result first introduced in Section 2.3.1.2. 

An important area of research involves how to define motion along a curve that is 

parameterized with respect to an arbitrary independent parameter of the type discussed in 
Section 0 (e.g. ( ) ( ) ( ), ,x u y u z u ). In these curves, the independent parameter does not 

have a well-defined physical meaning as in arc length parameterized curves. This means 

a constant speed of the parameter u does not lead to constant spatial speed. The process 

of converting these representations into suitable arc length representations is often 

referred to as rectification. One simple way to approximate a spatial speed along a 
parametric curve is shown in Equation 2.33 [63]. In this equation, ( )v t  represents some 

desired velocity profile (constant, trapezoidal, etc) and t∆  is the time step. Thus, at each 

time step, a parameter value u can be calculated that approximates the desired velocity. 

This relationship will be elaborated on in Chapter 6. 
( )

1 2 2 2k k

v t t
u u

dx dy dz
du du du

+

∆
= +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 
2.33 

2.4. CURVATURE AND TORSION PROFILES 

The last curve representation that will be explored in this chapter is to define a 

curve by a curvature and torsion profile. This representation provides good physical 

meaning to the geometric shape of the curve as curvature and torsion are well understood. 

The following section will describe how to define and generate these curves and provide 

a few simple examples. 
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2.4.1. Formulation and Generation 

As mentioned earlier, this research will study the use of curvature and torsion in 

designing spatial motions. The key to developing path plans based on curvature and 

torsion profiles are the Serret-Frenet formulas shown in Equation 2.34. These equations 

demonstrate that the geometric shape of a spatial curve depends entirely on its curvature 

and torsion profiles.  
ˆ

ˆ0 0ˆ ˆ0
ˆ0 0ˆ

d
ds
d
ds
d
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⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
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N N
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A numerical interpretation of these formulae is shown in Equation 2.35. Using 

these equations, a spatial curve can be generated provided an initial position and 

orientation (i.e. Frenet Frame).  

1i i i sκ+ = + ∆T T N  

1i i i sτ+ = − ∆B B N  

1 1 1i i i+ + += ×N B T  

1 1i i i s+ += + ∆P P T  
 

2.35 

Thus, a Frenet Frame can be positioned and oriented as desired and the spatial 

curve can be generated using the curvature and torsion profiles. It should be noted that 

identical curvature and torsion profiles will always generate the same geometric shape, 

but this shape must still be positioned and oriented in space. 
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2.4.2. Geometric meaning 

One good way to examine the effect of curvature and torsion on the local shape of 

a curve is to take a Taylor’s expansion as ( ) ( ) ( ) ( )
3

3

1

0
0

!

nn

n
n

dss s
n ds=

= + +∑
x

x x o  [26]. This 

function approximation is shown in Equation 2.36 where the x1, x2, and x3 axes 

correspond to the tangent, normal, and bi-normal directions respectively.  
( )

( )

( )

1

2
2

3
3

0

0
2

0
6

x s

x s

x s

κ

κτ

=

=

=

 2.36 

These relationships show several things. First, if curvature and torsion are both 

zero, the curve will move in its tangent direction in a straight line. Likewise, if curvature 

is nonzero and torsion is zero, the curve will stay in the plane formed by the tangent and 

normal vectors (called the osculating plane). An important aspect of spatial curves is that 

curvature is always defined to be positive whereas torsion has a signed value. From the 

above equations, this means a spatial curve will always bend in the plane in the direction 

of the normal vector and will tend to leave the plane in either the positive or negative 

direction of the bi-normal vector depending on the torsion value. 

As mentioned earlier, curvature is always defined as positive for spatial curves. 

This presents a problem when trying to define a spatial inflection point. In planar curves, 

an inflection point is a point where the sign of the curvature changes; this makes the 

curve begin to bend in the other direction. In a parametrically defined spatial curve, the 

normal vector will flip directions at an inflection point. Thus, the curve will begin to bend 

in a different direction but will still follow the normal vector. 
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2.4.3. Example 

Figure 2.13 shows a simple helical curve generated using curvature and torsion 

profiles. In this case, the curvature and torsion value are just taken to be constant values.  

 

 
Figure 2.13. Example Helical Curve 

More complicated curvature and torsion profiles can also be used to generate 

curves. Consider the curvature and torsion profiles shown in Figure 2.14. These plots 

represent the curvature and torsion values at any point along the curve as it is being 

traversed. Then, starting at some initial frame, the next point can be calculated using the 

relationships shown in 2.35 and the current value of curvature and torsion. A plot of this 

curve is shown in Figure 2.15.  

( )
( )

[ ]
2

0,5
2

s
s

s

κ

τ

= ⎫⎪ ∈⎬
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Figure 2.15. Curve Generated from Curvature and Torsion Profiles 

 

2.4.4. Conclusions 

This section described a different way of defining spatial curves by their curvature 

and torsion profiles. This method has several advantages. First, curvature and torsion 
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have clear physical meanings that could be useful in motion programming. Second, a 

curvature/torsion profile fully describes the geometry of a motion regardless of its 

position or orientation. Thus, a shape can be well defined and understood geometrically 

and then positioned in space as desired. However, it is difficult to meet global position-

based constraints using this representation, so this form is best for defining local shapes 

and understanding the effects of higher-order properties. 

2.5. COMPARISON OF REPRESENTATIONS 

In this section, the various representations presented in this chapter will be 

compared based on their advantages and disadvantages. It should be noted that where 

possible it is always preferable to preserve as many representations for a curve or shape 

as possible. Table 2.1 summarizes the four representations presented in this chapter.  

 Planar Spatial 

Implicit ( ), 0f x y =  ( ) ( ), , 0 , , 0f x y z g x y z= ∩ =  

Standard Parametric 
( )
( )

[ ],
x f u

u a b
y f u

⎫= ⎪ ∈⎬
= ⎪⎭

 
( )
( )
( )

[ ],

x f u

y f u u a b

z f u

⎫=
⎪

= ∈⎬
⎪= ⎭

 

Arc Length Parametric 
( )
( )

[ ],
x f s

s a b
y f s

⎫= ⎪ ∈⎬
= ⎪⎭

 
( )
( )
( )

[ ],

x f s

y f s s a b

z f s

⎫=
⎪

= ∈⎬
⎪= ⎭

 

Curvature/Torsion 

Profile 

( )
0
f sκ

τ

=

=
 

( )
( )

f s

f s

κ

τ

=

=
 

Table 2.1. Curve Representations 

 

 Advantages Disadvantages 

Implicit 
• Good mathematical 

understanding of singularities 

• Becomes increasingly complex 

as curve degree gets larger 
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(double points, cusps, etc) 

• Historical literature and 

research 

• Difficult to represent in spatial 

form 

• Difficult to describe an actual 

motion along its arc length 

Standard 

Parametric 

• Provides a one-to-one 

mapping from 3R R→  

• Easy to define in a finite 

interval as for piecewise 

segments 

• Easy to define in spatial form 

• Lack of physical meaning in 

term of the independent 

parameter 

• Some loss of mathematical 

understanding compared to 

implicit forms 

Arc Length 

Parametric 

• Provides good physical 

meaning to independent 

parameter 

• Easy to define physical 

motion along curve 

• Calculation of some curve 

properties becomes easier 

• Difficult to find closed-form 

solutions for most curves 

• Numerical techniques needed 

Curvature/ 

Torsion 

Profile 

• Defines curve based on 

higher-order properties 

• Geometric shape is 

independent of 

position/orientation  

• Difficult to define global 

motions 

• Best used for defining local 

geometry 

Table 2.2. Comparison of Curve Representations 

As Table 2.2 shows, each representation for algebraic curves has its advantages 

and disadvantages depending on the specific application. Standard parametric form is the 
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easiest representation to deal with and the representation most often used in current 

literature and applications. However, it is important to understand and preserve the 

mathematical understanding provided by some of the other curve representations. In the 

course of this research, we will attempt to provide descriptions of curves and shapes 

using as many representations as possible. 
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3. CHAPTER THREE 

Interactive Curve Design 

In the last chapter, the basic mathematics of algebraic curves was introduced. This 

chapter will focus on methods of interactive curve design that build on this mathematics. 

The majority of these methods come from the disciplines of Computer Graphics and 

Computer-Aided Design. While some of these methods may not be directly applicable to 

motion planning for physical systems, it is an important starting point in evaluating 

methods for operator-defined path plans. The first section will describe the need for 

piecewise curves and introduce the concept of continuity. Next, a few basic but important 

curve designing schemes will be described: Bezier curves and B-Splines. Then, a few 

more complex methods that build on these methods will be introduced. It should be noted 

that these methods will presented only in terms of their basic formulations and results. 

For more complete derivations of these methods, the provided references can be 

consulted. Finally, these methods will be evaluated based on their application to 

manipulator motion planning. 

3.1. INTRODUCTION TO PIECEWISE CURVES 

Curve design involves generating a mathematical description of a curve (or set of 

curves) that satisfies a set of given constraints. In its simplest form, this involves 

generating a curve that passes through a set of defined points. However, to meet n 

position constraints, an n-1 degree curve would be required. This may be adequate for 

meeting a small number of constraints, but high-degree polynomials will lead to 

undesirable behavior such as overshoots and oscillations. This is shown in Figure 3.1 for 

a curve defined to pass through seven points. 
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Figure 3.1. High Degree Polynomial Curve 

To get around this problem, the shape of the entire curve is usually broken into 

smaller segments. This allows for the desired constraints to be met with a set of smaller 

degree curves. For example, each segment between two successive points could be 

defined as a simple cubic curve as shown in Equation 3.1. This would allow an additional 

first derivative constraint to be defined at the start and end of each segment. These curves 

segments can then be pieced together to form the overall shape of the curve. An 

important concept in piecewise curves such as this is continuity, which is basically a 

measure of the smoothness of the transition between segments. This concept will be 

introduced in the following section. 

( ) 2 3
0 1 2 3p u a a u a u a u= + + +  3.1 
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3.1.1. Continuity 

As mentioned above, continuity is basically a measure of the smoothness of a 

piecewise curve at its joining points. There are several different notions of continuity. In 

this section, three types will be defined: Parametric, Geometric, and Frenet Frame. 

3.1.1.1. Parametric 

The simplest, but most restrictive, type of continuity is known as Parametric 

Continuity, denoted as Cn for nth order continuity. Two parametric curves meet with Cn  

continuity at a point if the nth derivative (and all lower derivatives) are exactly equal. For 
example, consider a curve defined by a set of curve segments ( ) ( ) ( )( )0 1, , , nu u up p p  

all normalized such that [ ]0,1u∈ . The ith join point is said to be C0 continuous (i.e. 

position continuous) if ( ) ( )11 0i i+=p p  and C1 continuous if ( ) ( )11 0i id d
du du

+=
p p

, etc. In 

Figure 3.2, the curve segments on the left meet with C0 continuity, and the curve 

segments on the right meet with C1 continuity. 
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Figure 3.2. C0 and C1 Continuous Piecewise Curves 

3.1.1.2. Geometric 

Geometric continuity (denoted as Gn) is a less restrictive notion of continuity that 

measures the smoothness of a curve’s intrinsic properties at join points. An intrinsic 
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property, as defined by Barsky and DeRose in [7], is defined as a property that is shared 

by all equivalent parameterizations of a curve. To understand this, consider the two 

parametric lines shown in Equation 3.2.  
( ) ( ) [ ]
( ) ( ) [ ]

1

2

2 , , 0,1

4 2,2 1 , 0,1

u u u u

v v v v

= ∈

= + + ∈

p

p
 3.2 

It should be clear that these curve segments meet with C0 continuity 
( ( ) ( )1 21 0=p p ) but not C1 continuity ( ( ) [ ] ( ) [ ]1 1

1 21 2,1 , 0 4, 2= =p p ). However, it is easy 

to see that the unit tangent vector is continuous even though the first derivative vector is 

not, because the lines are collinear. Thus, the unit tangent vector is an intrinsic property 

and the curves are still considered G1 continuous even though there is a jump in the first 

derivative vector. Likewise, G2 continuity is a measure of smoothness in curvature rather 

than just the second derivative vector.  

Geometric continuity is popular in the field of Computer Graphics because it will 

lead to visually smooth curves even if the parametric curves (and their higher derivatives) 

are not equal. This would appear to make this concept inadequate for planning motions 

for physical systems where jumps in the higher derivatives can lead to undesired shocks 

in the system. However, this is not necessarily true. As mentioned in the last chapter, the 

best way to study or define the physical motion along a curve is to look at curves that are 

parameterized by arc length2, and a property of arc length parameterized curves is that 

parametric continuity and geometric continuity are equivalent. This means that if a curve 

is transversed at some constant or smoothly defined speed, it is the intrinsic properties 

that define the smoothness of the motion. Thus, in terms of defining a physical motion 

along a curve, geometric continuity actually provides better physical meaning as well as 

being less restrictive. 

                                                 
2 A method for defining motions along standard parametric curves was also introduced. 
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3.1.1.3. Frenet Frame 

The last notion of continuity explored here is Frenet Frame continuity, denoted as 

Fn for nth order continuity. Frenet Frame continuity is based on the continuity of a curve’s 

generalized curvatures [22]. For a curve in R3 with arc length parameterization, the unit 

tangent vector can be written as ( ) ( ) ( )1
1 s s=t p . From the relationship 

2

2

1ˆ d
dsκ

=
pN , the 

unit normal can be written as ( )
( ) ( )
( )

1
1

2
1

s
s

sκ
=

t
t  where ( )1 sκ  is the curvature. Finally, from 

the Frenet-Serret formulae the unit bi-normal can be written as 

( )
( ) ( ) ( ) ( )

( )

1
2 1 1

3
2

s s s
s

s
κ

κ
+

=
t t

t  where ( )2 sκ  is the torsion. Here, ( )1 2 3, ,t t t  are the 

generalized curvature vectors in R3. Thus, in R3, F1 continuity is continuity of the unit 

tangent, F2 relates to continuity of the unit normal, and F3 relates to continuity of the bi-

normal vector. For a curve lying in Rd, the generalized curvatures 
( ) ( ) ( )( )1 2, , , ds s st t t  can be found using Equation 3.3.  

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1
1

0

1
1 1

1

0

i i i
i

i

s s

s

s s s
k s

κ

κ − −
+

=

=

+
=

t p

t t
t

 
3.3 

Frenet Frame continuity is often used for defining curves in higher dimensions. 

However, it is very similar to geometric continuity for lower dimension curves. This is 

because Gn and Fn continuity is equivalent for n=1 and n=2. Also, a curve in Rd that is Fd 

will also be trivially Fi for all i d≥  [22].  

3.2. BASIC SPLINE TECHNIQUES 

In this section, two simple curve design techniques will be introduced: Bezier 

Curves and B-Splines. The basic mathematical constructions and properties of these 
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curves will be discussed. Some of the material developed here is also used later as a 

framework for more complicated curve generation schemes. 

3.2.1. Bezier Curves 

A Bezier Curve is a classic curve design technique that is specified by a set of 

control vertices (sometimes called a control polygon or scaffold). The curve will 

interpolate the first and last point on the polygon and will follow the general shape of the 

polygon in a smooth fashion. Figure 3.3 shows an example Bezier curve where the dotted 

lines represent the control polygonal and the solid line represents the resulting curve. 
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Figure 3.3. Example Bezier Curve 
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3.2.1.1. Formulation 

The basic formulation for a parametric Bezier Curve is shown in Equation 3.4 

where d is the degree of the curve, bi are the control vertices, and Bi are the Bernstein 

basis polynomials (shown in Equation 3.5 for one dimension). The Bernstein basis 
polynomials are an alternative to the standard power basis ( )21, , , , du u u  and have the 

property of partition of unity (the basis polynomials sum to unity at any point over the 

range). 

( ) ( ) [ ]
0

, 0,1
n

n
i i

i
u B u u

=

= ∈∑p b  3.4 

( ) ( ) ( ) ( )!1 1
! !

n i n in i i
i

n nB u u u u u
i i n i

− −⎛ ⎞
= − = −⎜ ⎟ −⎝ ⎠

 3.5 

From the above equations, it can be seen that for a control polygon with d vertices 

the degree of the curve will be d-1. For example, we can expand Equation 3.4 and write 

the parametric description of a cubic curve as shown in Equation 3.6. Additionally, each 

individual Bernstein polynomial can be plotted as shown in Figure 3.4. 
( )

( ) ( ) ( )
0 0 1 1 2 2 3 3

3 2 2 3
0 1 2 31 3 1 3 1

u B B B B

u u u u u u

= + + +

= − + − + − +

p b b b b

b b b b
 3.6 
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Figure 3.4. Bernstein Basis Polynomials 
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From this plot, the value of B0 at u=0 is 1, and the value of B3 at u=1 is 1. This 

means the curve will interpolate the control points b0 and b3. Also, it should be noted that 

with the exception of the end points, all of the Bernstein polynomials are non-zero 

throughout the range. This means that moving any point on the control polygon will 

affect the shape of the entire curve. 

3.2.1.2. Properties 

Bezier Curves have several important properties that deserve mention here: 

• Convex Hull Property 

• Variation-Diminishing Property 

The convex hull property states that the entire curve will lie inside the convex hull 

of the control polygon. This provides a simple bounding-box that can be used to 

constraint the boundaries of the curve. The Variation-Diminishing Property basically 

states that the resulting Bezier Curve is as well-behaved as its control polygon. More 

specifically, a given line will intersect the curve at no more points than it will intersect 

the control polygon. This means that even for higher-degree Bezier Curves there will not 

be any unpredictable oscillations as with standard polynomials. 

3.2.1.3. Example 

Figure 3.5 shows two example Bezier Curves. The curve on the left is a simple 

degree 3 curve. The curve on the left is of degree six with seven specified vertices. 

Despite the higher degree, the curve is still well-behaved inside the control polygon. 
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Figure 3.5. Two Example Bezier Curves 

This section has so far focused on planar curves because they are easier to 

visualize. However, the Bezier Curve formulation is extendable to any number of 

dimensions. Figure 3.6 shows a helical shaped spatial Bezier Curve. 
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Figure 3.6. Spatial Bezier Curve 
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3.2.2. B-Splines 

3.2.2.1. Formulation 

B-Splines are specified in much the same way as Bezier Curves by defining a 
control polygon. Given a set of control points [ ]0 1, , , nb b b , a B-Spline is defined as 

shown in Equation 3.7 where Ni,k are the B-Spline basis functions. Unlike in a Bezier 

Curve where the degree of the curve is determined by the number of control points, the 

degree can be specified in a B-Spline and is equal to k-1. 

( ) ( ),
1

n

i i k
i

t N u
=

= ∑P b  3.7 

The B-Spline basis functions are defined recursively as shown in Equation 3.8. In 

the special case that k=1, the basis function is defined in Equation 3.9. This condition 

stops the recursion. The ui values referenced in the above equation represent values in a 

B-Spline knot vector of size n+k. In general, a B-Spline does not interpolate any of its 

control vertices. However, the knot vector can be formulated in such a way that the curve 

interpolates the first and last end point as in a Bezier Curve. This involves repeating 

values at the beginning and end of the vector to force interpolation. Figure 3.7 shows a 

simple B-Spline curve along with its knot vector. 

( ) ( )( )
( )

( )( )
( )

, 1 1, 1
,

1 1

i k i i k i k
i k

i k i i k i

N u u u N u u u
N u

u u u u
− + − +

+ − + +

− −
= +

− −
 3.8 

[ ]1
,1

1, ,
0, otherwise

i i
i

u u u
N +⎧ ⎫∈⎪ ⎪= ⎨ ⎬

⎪ ⎪⎩ ⎭
 3.9 
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Figure 3.7. B-Spline along with Knot Vector 

3.2.2.2. Local Control Property 

In addition to the variation-diminishing and convex hull properties, B-Splines also 

exhibit local control. As shown in Equation 3.9, each of the B-Spline basis functions is 

only non-zero for a specific range. This means that moving the control vertices will only 

affect the shape of the B-Spline in the local area around that point. This can be seen by 

plotting the individual basis functions as in Figure 3.8.  
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Figure 3.8. B-Spline Basis Functions 
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3.2.2.3. Example 

Figure 3.9 shows two different degree 3 B-Splines defined by eight control points. 

They both share the first six points with the last two differing. This plot shows the 

property of local control as both curves are identical until the last portion.  
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Figure 3.9. Two Example B-Spline Curves 

3.3. BETA-SPLINES 

Beta-splines are geometrically continuous piecewise curves based on the concept 

of Beta-constraints (also called shape parameters) [9][14]. These curves use the extra 

degrees of freedom gained from relaxing parametric continuity to geometric continuity as 

design parameters. This section will first demonstrate how to build piecewise Bezier 

Curves with parametric continuity. Then, the concept of Beta-constraints will be 

introduced, and it will be shown how these can be used to create more options in curve 
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design. Only the basics of these formulations will be introduced in this section. More 

detail on the theory and derivation of these curves can be found in [10]. 

3.3.1. Parametric Continuity for Bezier Curves 

This section will briefly introduce how to form parametrically continuous (Cn) 
piecewise Bezier Curves. Consider two Bezier curves, ( )0 uP  and ( )1 uP , defined by 

control vertices 0,1 0,2 0,, , , d⎡ ⎤⎣ ⎦b b b  and 1,0 1,1 1,, , , d⎡ ⎤⎣ ⎦b b b , respectively. Now, parametric 

continuity needs to be enforced at the at the join point between these two segments 
( 0, 1,0d =b b ). A sketch of these two control polygons meeting is shown in Figure 3.10. 

b0,d-2

b0,d-1
b0,d= b1,0 b1,1

b1,2

 
Figure 3.10. Two Joined Bezier Control Polygons 

For C0 continuity, it is obvious that the last vertex of the first polygon must be 

equal to the first vertex of the second polygon because the two segments will interpolate 

these points. It can be shown that the first derivatives of these two curves can be written 

in terms of their control vertices as shown in Equation 3.10. This relationship shows that 

the last edge of the first polygon and the first edge of the second polygon must be 

collinear and equal length to enforce C1 continuity. 
( ) ( ) ( )
( ) ( ) ( )

1
0 0, 0, 1

1
1 1,1 1,0

1

0

d dd

d

−= −

= −

P b b

P b b
 3.10 

Similarly, the second derivative can be written in terms of the control vertices as 

shown in Equation 3.11. This shows that to enforce C2 continuity constraints must be 

applied to the three vertices closest to the join point. However, since the the two closest 

points are already constrained to enforce C0 and C1 continuity, this becomes a constraint 
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on the points 0, 2d−b and 1,2b . This means that for two cubic Bezier curves to meet with C2 

continuity all interior control vertices become constrained. As the order of continuity 

desired goes up, constraints must be applied to additional vertices. Later in this section, it 

will be shown that by relaxing to geometric continuity (which is a more intrinsic form) 

more degrees of freedom can be attained. 
( ) ( ) ( )( )
( ) ( ) ( )( )

2
0 0, 2 0, 1 0,

1
1 1,0 1,1 1,2

1 1 2

0 1 2

d d dd d

d d

− −= − − −

= − − −

P b b b

P b b b
 3.11 

3.3.2. Geometric Continuity for Bezier Curves 

An important concept relating to geometric continuity and the construction of 

Beta-splines is Beta-constraints. These are constants that can be used to determine if 

curve segments meet with Gn continuity. The Beta-constraint equation for G1 continuity 

is shown Equation 3.12 where β1 is greater than zero to retain directionality. This just 

shows that the first derivative vectors can be scaled by some constant value while still 

having the same unit tangent vector (i.e. heading). The Beta-constraint equations for G2  

and G3 continuity are shown Equations 3.13 and 3.14. Because β1 can be defined to be 

any positive number, this actually leads to some design choices in how to define the 

curve segments while still keeping geometric continuity.  
( ) ( ) ( ) ( )1 1

1 11 0i iβ +=p p  3.12 

( ) ( ) ( ) ( ) ( ) ( )2 1 22
1 2 11 1 0i i iβ β ++ =p p p  3.13 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 1 33
1 1 2 3 11 3 1 1 0i i i iβ β β β ++ + =p p p p  3.14 

Now, a general algorithm for using these constraints to design geometrically 

continuous Bezier curves can be developed. The details and derivation of this method can 

be found in [10]. First, start with one segment of the curve defined by a set of control 
vertices 0,1 0,2 0,, , , d⎡ ⎤⎣ ⎦b b b . Now, the constrained vertices of the second control polygon 
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can be determined by the steps shown in Equation 3.15 where β1 and β2 are user-defined 

design parameters. Figure 3.11 shows two cubic Bezier curves meeting with G2 

continuity for varying values of β2. 
( )( )

( )( )
1

2 1 1

1 1
1 1

d
d

β
γ

β β β
− +

=
+ − +

 

1,0 0,d=b b  

( )1,1 1,0 1 0, 0, 1d dβ −= + −b b b b  

( )2
0, 1 1 0, 1 0, 2d d dβ γ− − −= + −T b b b  

( )1,2 1,1 1,1
1
γ

= + −b b b T  

3.15 
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Figure 3.11. Geometrically Continuous Bezier Curves 
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3.3.3. Beta-spline Formulation 

Beta-splines build on the concepts of geometric continuity and beta-constraints to 

offer even more options for designing a curve. This section will describe one method of 

creating G2 continuous cubic Beta-Splines [9]. However, it should be noted that these 

concepts can be expanded for more complicated curves [7][14]. A Beta-spline is defined 

once again by a set of control vertices as well as set of β1 and β2 values. The original 

control polygon is then divided into several interior control polygons as shown in Figure 

3.12. Then, a set of Bezier curves can be drawn using these subdivided polygons. These 

interior vertices are calculated with respect to the β1 and β2 values in order to ensure G2 

continuity inside the curve. The calculation of these interior vertices is shown in Equation 

3.16. 
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Figure 3.12. Subdivided Control Polygon 
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=
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Now, the β1 and β2 values can be used as degrees of freedom to change the 

interior local shape of the curve. Figure 3.13 shows the effect of varying the β1 parameter 

on the shape of the interior curve. This shows that, by increasing this value, the curve 

tends to favor the tangent line coming off the original control vertices. This makes sense, 

because the β1 parameter is basically increasing the parametric value of the first 

derivative. This parameter is often also called bias. 
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Figure 3.13. Effect of β1 on the shape of a Beta-spline 

Figure 3.14 shows the effect of varying the β2 parameter on the shape of the 

interior curve. By increasing this value, the curve tends to more closely follow the 

original control polygon. This parameter is often also called tension.  
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Figure 3.14. Effect of β2 on the shape of a Beta-spline 

3.3.4.  Conclusions 

Beta-splines provide a way of using the extra degrees of freedom attained by 

relaxing the continuity of piecewise curves as a design tool. As discussed in Section 

3.1.1, geometric continuity is a more natural way of representing the continuity at join 

points because it focuses on the continuity of the intrinsic properties of curves. In terms 

of motion along a curve, this is a superior way of defining smoothness. Thus, Beta-

splines are a useful formulation to study in terms of curve generation. However, the 

physical meanings of the control parameters, β1 and β2, are difficult to quantify and 

designing curves in this style would require much trial-and-error. 



 67

3.4. ALGEBRAIC SPLINES 

A-Splines (Algebraic Splines) are real algebraic curve segments that are defined 

in tensor Bernstein-Bezier form [5]. These splines are defined as the zero contour of a 

function defined in a triangular polygon in barycentric coordinates and allow for a higher 

degree of geometric continuity while still maintaining some degrees of freedom for curve 

design. This section will describe the basic formulation of A-Splines and how they can be 

applied to curve design.  

3.4.1. Barycentric Coordinates 

Barycentric coordinates defined on a triangle provide a local coordinate system 

defined with respect to the vertices of the triangle. Consider the triangle shown in Figure 

3.15. The trilinear set of barycentric coordinates are defined as shown in Equation 3.17. 

This shows that the three coordinates are ratios of the areas of the interior triangles 

defined by the point p. These coordinates also have the constraints that 1iα ≤  and 

1 2 3 1α α α+ + = .  

p1 p2

p3

p

 
Figure 3.15. Triangular Coordinate System 

 

( ) ( )
( )

( )
( )

( )
( )

2 3 1 3 1 2
1 2 3

1 2 3 1 2 3 1 2 3

, , , , , ,
, , , ,

, , , , , ,
area area area
area area area

α α α
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

p p p p p p p p p
p p p p p p p p p

 3.17 
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The barycentric coordinates can be mapped back to x and y coordinates as shown 

in Equation 3.18. From this mapping, it is easy to see that 1iα =  translates to point pi. 

1
1 2 3

2

3

1 1 1
1

x
p p p

y
α
α
α

⎡ ⎤⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 3.18 

3.4.2. Formulation 

An A-Spline can now be defined in Bernstein-Bezier form as shown in Equation 

3.19 where ( )1 2 3 1 2 3
!, ,

! ! !
n i j k
ijk

nB
i j k

α α α α α α= . The bijk coefficients are scalar quantities 

defined at points on the triangle. The number of coefficients depends on the degree of the 

A-Spline. For example, a cubic A-spline would have the Bezier coefficients as shown in 
Figure 3.16. Then, the curve is defined as the set of all ( )1 2 3, ,α α α  that provide zero 

values from Equation 3.19.  
( ) ( )1 2 3 1 2 3, , , , 0n

ijk ijk
i j k n

F b Bα α α α α α
+ + =

= =∑  3.19 

p1 p2

p3

b300 b210 b120 b030

b021

b111b201

b102 b012

b003

 
Figure 3.16. Bezier Coefficients for a Cubic A-Spline 
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In order to find a solution to this equation, the following constraint must first be 

applied to the bijk coefficients: there must be one and only one sign change on the 

coefficients running along the p1p3 and p2p3 line segments. Basically, this ensures that 

the resulting curve will intersect both of these line segments once and only once. Then, 
we can take the family of lines of the form ( )( ) ( )( ) ( )1 2 3, , 1 ,1 ,0 0,0,1t t tα α α β β= − − +  

for [ ]0,1β ∈ . This is the family of lines running from p3 to the line segment p1p2. 

Substituting this into the original formulation (Equation 3.19), we arrive at Equation 3.20. 

For degree 4d ≤  curves, a closed form solution to this equation can be found. For higher 

degree curves, this equation can be solved with a simple root-finding technique.  

( ) ( ) ( )! 1 1 0
! ! !

i j jk i
ijk

i j k n

nB t b t t
i j kβ β β+

+ + =

= − − =∑  3.20 

3.4.3. Piecewise A-Splines 

A-Splines are often used to interpolate data points or approximate polygonal 

chains. One advantage of A-Splines over analogous techniques is that they can in general 

achieve G2d-3 [5] continuity while still maintaining some degree of freedom over the 

shape of the curve.  Basically, constraints can be set on the bijk coefficients such that the 

desired conditions are met at the join points of the curve segments. Then, the 

unconstrained coefficients can be used to alter the shape of the curve. 

A simple example of this is designing G1 continuous (unit tangent continuous) 

piecewise A-Splines. It can be easily shown that by setting 300 030 0b b= =  the curve will 

interpolate p1 and p2. Similarly, by setting 201 021 0b b= = , the curve will be tangent to the 

lines p1p3 and p2p3. In order to maintain one sign change along the edges, we additionally 

constraint 102 012 003, , 0b b b <  and 201 120, 0b b > . The coefficient b111 is a completely free 

parameter. Thus, G1 continuity can be achieved by lining up the edges of adjacent 

triangles, and the unconstrained and semi-constrained values can be used to generate 
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varying families of curves within each segment. An example of this for varying b111 

values is shown in Figure 3.17. 
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Figure 3.17. Families of G1 Continuous A-Splines 

3.4.4. Implicit Representations 

Another interesting application for A-Splines is in representing implicit forms of 
curves ( ( ), 0f x y = ). Because an A-Spline itself is an implicit equation in barycentric 

coordinates, they are able to capture this representation naturally. This can be done by 

inverting the relationship given in Equation 3.18 to come up with the relationships 

( ) ( )1 2 3, , ,f x yα α α = . Then, these equation can be plugged into Equation 3.19, and the 

bijk coefficients can be determined such that the original polynomial in x and y is 

recovered. 
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For example, take the cusp 2 3 0y x− =  discussed in Chapter Two. First a  

triangular scaffolding around the area of interest is constructed as shown in Figure 3.18. 

For this curve, two triangles are used to avoid having a singular point inside of the 

triangle. Now, the coefficients can be calculated as 003 1b = − , 012 1b = − , 021
2
3

b = − , 

012
1
3

b = , and all other coefficients zero. A full derivation of this result can be found in 

Appendix A. 
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Figure 3.18. A-Spline Representation of a Cusp 

There are many advantages of capturing implicit forms of curves in this manner. 

As mentioned in Chapter 2, implicit forms of curves are very good at providing 

mathematical insight. However, they are difficult to actually define a motion along and 

must be converted (when possible) to parametric forms. By defining them in this manner, 
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the curves can be easily traced while still taking advantage of the mathematical meaning 

of the implicit representation. Also, by describing the curve based on its local geometry 

inside a triangle, the curve can easily be translated or rotated to different locations while 

maintaining the same intrinsic properties.  

3.4.5. Conclusions 

This section discussed the basic formulations for Algebraic Splines and their 

applications. In general, A-Splines provide a higher degree of geometric continuity, and 

thus more degrees of freedom, than the other curve generation techniques discussed in 

this chapter. Additionally, they provide methods for capturing implicit descriptions of 

curves. 

3.5. SUMMARY 

The review of curve generation techniques performed in this chapter is by no 

means exhaustive. However, this subset of techniques provides an overview into how 

interactive curve generation has been traditionally approached. First, the desired 

constraints are defined (position, tangent, curvature or 2nd derivative, etc). Then, a curve 

is developed to meet these constraints, and the extra degrees of freedom are identified 

and quantified as design parameters. 

The approach taken in this research is similar. However, the emphasis in this 

research is the actual definition of the constraints rather than the design of the curve 

between these constraints. This is relevant in the field of robotics as it is important to 

define intuitive constraints with well-defined physical meanings (e.g. curvature). 

However, the techniques described in this chapter may be applicable to the process of 

blending between sets of constraints or even helping to define these constraints. 
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4. CHAPTER FOUR 

Geometric Shapes and Properties: Physical Meaning 

4.1. INTRODUCTION 

In Chapter Two, the necessary mathematical background for understanding the 

various properties and representations of curves was introduced. Then, Chapter Three 

described a variety of methods for interactive curve design and demonstrated a need for 

an ability to define curve constraints that have more physical meaning. This is important 

in robotic systems where the curve must be defined with constraints that have physical 

meaning. This chapter will focus on developing clear physical understanding of the 

higher-order properties of curves (i.e. curvature and torsion). This will start with an 

examination of simple shapes such as lines and circles and then move into more complex 

spatial geometries. It will be shown how the properties of these shapes can be changed to 

generate families of curves that could be useful for path design. The relationships 

between these families of curves and the properties that define them will provide useful 

insight into the definition of constraints based on curvature and torsion for path planning. 

Then, in the next step of this research, these constraints based on curvature and torsion 

can be converted into constraints on the parametric description of the curve (e.g. 

, , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

) that can be more easily blended together into a complete 

path plan. 
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4.2. LINEAR SHAPES 

4.2.1. Straight Line 

The simplest geometric shape is a line. A line is a degree 1 curve that can be 

represented in its implicit form as shown in Equation 4.1. This is often written in the 

slope-intercept form as y mx b= +  where m is the slope of the line and b is the 

intersection point on the y-axis. Thus, m=0 corresponds to a horizontal line, and m=∞ 

corresponds to a vertical line. Figure 4.1 shows the effect of varying slope parameter m to 

generate a family of lines.  
0ax by c+ + =  4.1 

 
Figure 4.1. Family of Planar Lines 
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In parametric form, a generalized line can be written as shown in Equation 4.2. If 

a1 is set to 1 and b1 is set to 0, this yields a form that is very similar to the implicit form 

described above. 
( )
( )

1 1

2 2

x u a u b

y u a u b

= +

= +
 4.2 

A more common way to represent a parametric line segment is shown in Equation 

4.3. In this form, pi and pf represent initial and final position vectors of any dimension 

(e.g. 2 for planar, 3 for spatial). Then, the line will be at pi for u=0 and pf for u=1. This 

generalized form is often used to define an interpolation between two points.  

( ) ( ) [ ], 0,1i f iu u u= + − ∈p p p p  4.3 

Finally, a line will have a zero curvature and torsion. This was described in 

Section 2.2.3.1 where curvature was first defined. A zero curvature represents an infinite 

radius of curvature which translates to a line. 

4.3. PLANAR GEOMETRIC SHAPES 

This section will begin to explore the properties and representations for simple 

planar curve shapes. This analysis will begin by defining implicit forms of these shapes 

and defining parameters that can be used to generate families of curves. Then, closed-

form solutions for higher-order properties such as curvature in terms of these parameters 

will be presented. While manipulator path planning is generally concerned with spatial 

paths, analysis of simple planar shapes should provide good (and necessary) building 

blocks towards more complex motions.  
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4.3.1. Parabola 

A parabola is a simple degree 2 curve that can be described by the implicit 

equation 2 0y ax− = 3. It should be noted that a more generalized form of this parabola 

could be written as ( )2( ) 0c cy y a x x− − − =  that is centered at the point ( ),c cx y  instead 

of the origin. However, the higher-order (intrinsic) properties of the curve are our main 

interest, and these properties remain constant through any translation or rotation of the 

curve in the reference frame. Thus, for this analysis, it is sufficient to assume these 

shapes pass through the origin. 

Now, a closed-form solution for the curvature of a parabola can be obtained. 

Equation 4.4 (first introduced in Section 2.1.1) shows the calculation of curvature for an 

implicitly defined curve. The individual terms in the equation can be easily calculated 
from the original equation of the parabola as: 2xf ax= − , 1yf = , 2xxf a= − , 

0yy xyf f= = . 

( )
( )

2 2

3
2 2 2

2
, xx y xy x y yy x

x y

f f f f f f f
x y

f f
κ

− +
=

+
 4.4 

Plugging these values into Equation 4.4, the curvature can be formulated as 

shown in Equation 4.5. This equation shows that, even for a simple degree 2 curve like a 

parabola, a closed-form equation for curvature can become complex. However, this 

equation can still provide some useful insight. Because the quantity 2 24a x  will always be 

positive, the maximum curvature will always occur at the point x=0 (i.e. the origin) and 

will have a value of -2a. Thus, the local shape of a curve could be defined as a parabola 

using this constraint. Figure 4.2 shows a set of parabolas with varying values of a. 

Finally, the resulting equations and maximum curvatures for this family of parabolas are 

                                                 
3 An analogous curve 2 0x ay− =  could also be defined with the same analysis. 



 77

shown in Table 4.1. As discussed above, the maximum curvature for each of these curves 

is located at the origin. 

( )
( )

3
2 2 2

2,
1 4

ax y
a x

κ −
=

+
 4.5 
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Figure 4.2. Family of Parabolas 

 

a Implicit Equation Parametric Equation maxκ (κ at origin) 

0.05 20.05y x−  
( )
( ) 20.05

x u u

y u u

=

=
 0.1 

1 2y x−  
( )
( ) 2

x u u

y u u

=

=
 2 

5 25y x−  
( )
( ) 25

x u u

y u u

=

=
 10 

25 225y x−  
( )
( ) 225

x u u

y u u

=

=
 50 

Table 4.1. Curve Parameters for Family of Parabolas 
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4.3.2. Circle 

A circle of radius r centered at the origin is represented by the implicit equation 

shown in Equation 4.6. The curvature can once again be calculated by finding the partial 
derivatives and substituting them into Equation 4.4: 2xf x= , 2yf y= , 2xx yyf f= = , 

0xyf = . Once these values are substituted, the result is a constant value of 1
rκ = . This 

result is expected, because the radius of curvature should be constant along a circle. 

Figure 4.3 further shows the relationship between radius and curvature. As the curvature 

of the curves passing through the origin increases, the radius of the circles becomes 

smaller. This represents a sharper bend in the curve. 
2 2 2 0x y r+ − =  4.6 
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Figure 4.3. Effects of Varying Curvature 
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The simplest way to write a parametric description of a circle is to use sine and 

cosine functions as shown in Equation 4.7. However, this is not technically an algebraic 

(i.e. polynomial) description. A rational parameterization can be derived as shown in 

Equation 4.8.  Note that this description requires the independent parameter u to go 

infinite to fully trace the circle.  
( ) ( )
( ) ( )

[ ]
cos

, 2 ,2
sin

x u r u
u

y u r u
π π

⎫= ⎪ ∈ −⎬
= ⎪⎭

 4.7 

( ) ( )

( )
[ ]

2

2

2

1
1 , ,
2

1

r u
x u

u u
ury u
u

⎫−
⎪= ⎪+ ∈ −∞ ∞⎬
⎪= ⎪+ ⎭

 4.8 

4.3.3. Ellipse 

An ellipse can be thought of as a more general description of a circle. The general 

equation for an ellipse centered at the origin is given in Equation 4.9. In this equation, a 

and b describe the focal lengths of the ellipse as shown in Figure 4.4. If a>b, the major 

axis will be the x-axis. If a<b, the major axis will be the y-axis. In the case that a=b, this 

simplifies to the equation of a circle.  
2 2

2 2 1 0x y
a b

+ − =  4.9 
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Figure 4.4. Ellipse Centered at the Origin 

As before, the curvature along the ellipse can be calculated by substituting the 

partial derivatives back into implicit equation for curvature. The resulting curvature 
equation is shown in Equation 4.10 where 2

1A a= and 2
1B b= . Once again, this 

closed-form solution ends up being very complex. However, it still provides the ability to 

define the local shape of an ellipse at any point in terms of curvature. 

( )
( )

3
2 2 2 2 2

8,
4 4

ABx y
A x B y

κ =
+

 4.10 

Finally, the parametric forms of the equation can be formulated. Equation 4.11 

shows a simple formulation using sine and cosine functions. Equation 4.12 shows an 

algebraic parameterization. 
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( ) ( )
( ) ( )

cos

sin

x u a u

y u b u

=

=
 4.11 

( ) ( )
2

2

2 2
2 2 2 2

2 1

,
1 1 1 1

bu u
b b ax u y u

u u
a b a b

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠= =
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 4.12 

4.3.4. Cusp 

As mentioned in Section 2.1.2.2, a cusp is a singular point where two branches of 

a curve meet with a shared tangent. Another condition at this point is the determinant of 

the Hessian matrix will be zero (as described in Section 2.1.2.2). Because the cusp is also 

a singularity (or critical point), this yields three conditions for the existence of a cusp: 

(i) ( ), 0f x y = , (ii) 0f f
x y
∂ ∂

= =
∂ ∂

, (iii) 
2 2 2

2 2 0f f f
x y x y

⎛ ⎞∂ ∂ ∂
− =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

. The cusp explored in 

Section 2.1.2.2 can be rewritten as 2 3 0ay x− =  with the parameter a used to generate a 

family of curves. This family of curves is shown in Figure 4.5.  
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Figure 4.5. Family of Cusps 

Using the same procedure as before, the curvature of this curve can be calculated 

as shown in Equation 4.13. This equation shows that the curvature would go to infinity at 

the singular point (0,0). Another useful way to look at a cusp is to examine its tangent 
vector. For an implicit curve, the tangent vector is given as ,y xf f⎡ ⎤−⎣ ⎦  or 22 ,3ay x⎡ ⎤−⎣ ⎦  for 

this curve. From this equation for the tangent vector, the x component of the tangent will 

flip directions when the y axis is crossed.  

( )
( )

4 2 2

3
4 2 2 2

18 24,
9 4

ax a xyx y
x a y

κ −
=

+
 4.13 

The parametric form of this curve can easily be derived as shown in Equation 

4.14. The tangent vector of the parametric form can be formulated 
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as 2, 2 ,3x y au au
u u
∂ ∂⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦

. From this equation for the tangent vector, it can be seen that 

the x component again flips directions when the u parameter crosses zero. Thus, the two 
parameter ranges [ ]0,u∈ ∞  and [ ]0,u∈ −∞  trace the two branches of the curve. Table 

4.2 summarizes the various curve parameters for the family of cusps described in this 

section. 
( )
( )

[ ]
2

3
, ,

x u au
u

y u au

⎫= ⎪ ∈ −∞ ∞⎬
= ⎪⎭

 4.14 

 

a Implicit 

Equation 

Parametric 

Equation 

maxκ (κ at 

origin) 

0.05 2 30.05 0y x− =
( )
( )

2

3

0.05

0.05

x u u

y u u

=

=
 ∞ 

1 2 3 0y x− =  
( )
( )

2

3

x u u

y u u

=

=
 ∞ 

5 2 35 0y x− =  
( )
( )

2

3

5

5

x u u

y u u

=

=
 ∞ 

25 2 325 0y x− =  
( )
( )

2

3

25

25

x u u

y u u

=

=
 ∞ 

Table 4.2.  Curve Parameters for Family of Cusps 

 

To further illustrate the behavior of curvature at a cusp point, Figure 4.6 shows 
the curvature profiles for the different values of a across the parameter range [ ]1,1u∈ − . 

This plot shows that the curvature values approach infinity as the parameter u approaches 

zero. However, it is hard to define a clear physical meaning to an infinite curvature. Thus, 

it is hard to define a simple constraint based on curvature that defines the shape of a cusp. 
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A more geometrically intuitive way to think of this kind of cusp is as a point where the 

unit tangent vector switches direction. 
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Figure 4.6. Curvature Profiles for Family of Cusps 

Section 3.4.4 introduced a method for capturing implicit forms of curves in 

barycentric A-Spline representations. To deal with singular points such as cusps, this 

method will simply break the curve into two branches at the singular point. This allows 

for the curve to be rendered/traced without dealing with the mathematics at the singular 

point. For this case, the coefficients can be calculated in terms of the cusp parameter a as 

003 1b = − , 012 1b = − , 021 1
3
ab = − + , 030 1b a= − + , 120 3

ab = and all other coefficients zero. 

While this formulation is not a focus of this research, it remains an interesting and 

potentially useful method for generating complex planar curves for path planning. Figure 

4.7 shows the cusp being generated with the use of A-Splines. 
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Figure 4.7. Family of Cusps in A-Spline Representation 

4.3.5. Inflection Point 

Unlike the previous examples that described geometric shapes, an inflection point 

is a completely local phenomenon. In planar curves, an inflection point occurs whenever 

the sign of the curvature changes. Thus, the condition 0κ =  is necessary but not 

sufficient. Figure 4.8 illustrates this point. All three of these curves have 0κ =  at the 

origin, but only the middle one has an inflection point while the other two curves just 

have local minima and maxima. 
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Figure 4.8. Curves with Zero Curvature 

Another way to look at an inflection point is to observe the tangent and normal 

vectors along a curve. At an inflection point, the normal vector will flip directions while 

the tangent vector will not. Figure 4.9 shows a plot of the curve 3 0y x− =  along with its 

tangent and normal vectors. This shows the normal vector switching directions as it 

crosses the origin and represents the curve beginning to bend in the opposite direction. 
This curve can also be represented parametrically as ( ) ( ) 3,x u u y u u= = . Table 4.3 

shows the values of the tangent and normal vectors for several values of u along the 

curve. This table shows numerically that the normal vector switches directions (i.e. 

inverts) as u crosses from negative to positive. 

u x y T̂ 4 N̂ 4 

-0.5 -0.5 -0.125 [0.8  0.6] [0.6  -0.8] 

-0.1 -0.1 -0.001 [0.9996  0.03] [0.03  -0.9996] 

0.1 0.1 0.001 [0.9996  0.03] [-0.03  0.9996] 

0.5 0.5 0.125 [0.8  0.6] [-0.6  0.8] 
Table 4.3. Curve Parameters around an Inflection Point 

                                                 
4 These values represent the x and y directions for the tangent and normal vectors. 
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Figure 4.9. Planar Curve with an Inflection Point 

4.4. SPATIAL GEOMETRIC SHAPES  

This section will begin to explore more complex spatial geometries. When 

moving to the spatial domain, it becomes more difficult to deal directly with implicit and 

parametric forms of curves. Thus, a different approach is presented in this section. This 

approach involves studying the effects of curvature and torsion on the local geometry of a 

curve by generating curves based on their curvature and torsion values. Curvature and 

torsion are high-order properties of curves as shown in Equations 4.15 and 4.16 and fully 

define the local geometry of a curve. Once these properties are well understood 
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physically, the parametric constraints shown on the right side of Equations 4.15 and 4.16 

can be defined. Then, these parametric constraints can be blended together to form an 

overall path plan. 
2 2 2

2 2 2, , , , ,dx dy dz d x d y d zf
du du du du du du

κ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 4.15 

2 2 2 3 3 3

2 2 2 3 3 3, , , , , , , ,dx dy dz d x d y d z d x d y d zf
du du du du du du du du du

τ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 4.16 

Before specific geometric shapes are explored, a brief description of how to define 

curves in terms of curvature and torsion is presented (first introduced in Section 2.4). 

These curves are defined locally relative to a fixed Frenet Frame. For the purposes of this 

research, this frame is placed at the origin with the tangent, normal, and bi-normal 

vectors lined up with the x, y, and z axes respectively. However, this frame could be 

placed at any location and orientation, and the geometry of the curve relative to the frame 

will remain the same. Figure 4.10 shows the effect of various curvature values with zero 

torsion. Because the torsion is zero, the curve remains in the osculating plane (xy plane in 

this example), and the curvature values affect how sharply the curve bends around the 

frame of interest. 
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Figure 4.10. Local Effects of Curvature 

Figure 4.11 shows a curve with varying torsion and a constant curvature5 ( 1κ = ). 

There a few things to note from this figure. First, torsion has an effect on the movement 

of the curve in the bi-normal direction. Thus, because the torsion is positive when both 

approaching and leaving the local frame, the curve moves in the positive z direction. 

Also, torsion is a signed value (unlike curvature which is always defined to be positive), 

and a negative torsion will result in movement in the opposite direction of the bi-normal 

as in Figure 4.12. Finally, the scale of the changes in the z direction is much smaller than 

changes in the osculating plane. Thus, numerically, torsion has a smaller effect on the 

shape of the curve than an equivalent numeric value of curvature. 

                                                 
5 When curvature is zero, torsion is undefined. Thus, whenever a nonzero value of torsion is provided, a 
non-zero value of curvature is also needed. 
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Figure 4.11. Local Effects of Torsion 
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Figure 4.12. Positive vs. Negative Torsion 
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Another important aspect of the local effects of curvature and torsion is the 

coupling between them. In terms of the motion relative to the osculating plane, the effect 

of curvature dominates, and torsion has smaller influence. This can be observed locally in 

Figure 4.11 and Figure 4.12 where the varying torsion has an effect mainly on the 

movement in the z direction. Thus, holding a constant curvature and varying the torsion 

will only change how fast the curve is moving in the bi-normal direction. However, 

holding torsion constant and varying the curvature has a much different effect as shown 

in Figure 4.13. Thus, torsion mainly affects the motion relative to the bi-normal direction, 

while curvature has a strong influence on the motion of the curve in all directions. 

1κ =
2κ =

 
Figure 4.13. Varying Curvature with Constant Torsion 
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4.4.1. Helix 

A helix is a spatial geometry with a constant radius and pitch. The curve can be 

thought of running along the surface of a cylinder with the helix radius being the cylinder 

radius and the pitch being the distance travelled along the cylinder’s axis for each full 

revolution. An example of this is shown in Figure 4.14. One simple parametric 

representation for a helix is shown in Equation 4.17. 
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Figure 4.14. Helical Curve with Defined Radius and Pitch 

( ) ( )
( ) ( )

( )

cos

sin

2

x u r u

y u r u
hz u u
π

=

=

=

 4.17 

The geometry of a helix can also be described in terms of the curve’s curvature 

and torsion. For a helix, the curvature and torsion will both be constant and non-zero. 
These relationships are shown in Equation 4.18 and Equation 4.19 [26] where 2

hl π= . 
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Thus, the desired radius and pitch for a helical motion can be entirely defined in terms of 

curvature and torsion constraints. 

2 2

r
r l

κ =
+

 4.18 

2 2

l
r l

τ =
+

 4.19 

The inverse relationships can also be easily derived and are shown in Equation 

4.20 and 4.21. 

2 2r κ
κ τ

=
+

 4.20 

2 2l τ
κ τ

=
+

 4.21 

As mentioned before, a helix can be thought of as a curve running along the 

surface of a cylinder, and this interpretation is a good way of visualizing the effects of 

curvature and torsion on a shape of a helix. Figure 4.15 shows three helices with varying 

values for curvature running along the surfaces of cylinders. Table 4.4 shows the relevant 

curve parameters for these helices as well as an equivalent parametric representation. 

This data shows that as curvature increases both the radius and pitch of the helix 

decreases. However, the pitch decreases at a faster rate than the radius. This is consistent 

with both Equations 4.20 and 4.21 as well as the curves in Figure 4.15. 
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κ  τ  2 2κ τ+ r l Parametric Equation 

1 1 2 0.5 0.5 
( ) ( )
( ) ( )
( )

0.5cos

0.5sin

0.5

x u u

y u u

z u u

=

=

=

 

2 1 5 0.4 0.2 
( ) ( )
( ) ( )
( )

0.4cos

0.4sin

0.2

x u u

y u u

z u u

=

=

=

 

5 1 26 0.1923 0.0385
( ) ( )
( ) ( )
( )

0.1923cos

0.1923sin

0.0385

x u u

y u u

z u u

=

=

=

 

Table 4.4. Curve Parameters for Helices of Varying Curvature 
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Figure 4.15. Effect of Varying Curvature on a Helix 
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Now, the effect of varying the torsion of the helix can be visualized as in Figure 

4.16. The relevant curve parameters are tabulated in Table 4.5. The results are similar to 

the results of varying curvature except this time the radius decreases at a faster rate than 

the pitch. The result is a curve that twists at faster rate. For extremely high values of 

torsion, this would approximate a straight line with the Frenet Frame rotating around it. 

Now, using the results of this section, a helical curve can be defined by its radius and its 

pitch which provides a good physical understanding. Then, Equation 4.18 and 4.19 can 

be used to convert the radius and pitch into constraints on the curvature and torsion. 
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Figure 4.16. Effect of Varying Torsion on a Helix 
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κ  τ  2 2κ τ+  r l Parametric Equation 

1 1 2 0.5 0.5 
( ) ( )
( ) ( )
( )

0.5cos

0.5sin

0.5

x u u

y u u

z u u

=

=

=

 

1 2 5 0.2 0.4 
( ) ( )
( ) ( )
( )

0.2cos

0.2sin

0.4

x u u

y u u

z u u

=

=

=

 

1 5 26 0.0385 0.1923
( ) ( )
( ) ( )
( )

0.0385cos

0.0385sin

0.1923

x u u

y u u

z u u

=

=

=

 

Table 4.5. Curve Parameters for Helices of Varying Torsion 

4.4.2. Spatial Cusp 

Geometrically, a cusp in a spatial curve is similar to a cusp in a planar curve. 

However, it is much more difficult to define mathematically, because the curve cannot be 

defined in implicit form. In a spatial curve with a polynomial or rational 

parameterization, a necessary condition for a cusp is that the first derivative vector is 

undefined [30][31]. This results in a discontinuity in the unit tangent vector. Consider the 

curve defined by Equation 4.22. The first derivative vector can be calculated as 
4 3 415 ,20 ,5u u u⎡ ⎤⎣ ⎦ , and it can be seen that this vector vanishes (i.e. [0,0,0]) at the point 

u=0. Further, the first derivative vector shows that the y direction of the tangent will flip 

as u passes from positive to negative due to the u3 term. Figure 4.17 shows a plot of this 

cusp. 
( )
( )
( )

5

4

5

3

5

x u u

y u u

z u u

=

=

=

 4.22 
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Figure 4.17. Spatial Cusp 

However, the main geometric significance of a cusp for the purpose of path 

planning is that the tangent vector switches direction. Thus, this information can be used 

to generate a cusp at a specific point, and the higher-order properties of curvature and 

torsion can be used to generate the shape of the curve approaching and leaving the cusp 

area. This leads to a more intuitive geometric understanding of a cusp. Figure 4.18 shows 

a simple cusp with varying curvature values, and a torsion of zero. In this example, the 

curve remains in the osculating plane, and the increasing values of curvature define how 

sharply the curve bends around the tangent vector. 
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Figure 4.18. Planar Cusp Defined with Varying Curvatures 

 

Figure 4.19 shows the effect of varying curvatures with non-zero torsion. This 

shows that the increasing value of curvature affects both the movement in the osculating 

plane as well as how quickly the curve twists out of this plane in the bi-normal direction. 

It should be noted that the rest of this chapter will concentrate on the effects of curvature 

and torsion on the local geometry of curves. It will be shown how to use these properties 

to develop parametric constraints for curves in the next chapter. 
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Figure 4.19. Cusp with Constant Torsion and Varying Curvature 

 

Figure 4.20 shows the effect of a constant curvature with a varying torsion. As 

this plot once again shows, higher values of torsion result in faster motions out of the 

osculating plane and in the direction of the bi-normal. Figure 4.21 shows a similar plot 

that uses negative torsion. Thus, a cusp can be defined geometrically as a point where the 

tangent vector inverts. Then, constraints based on curvature and torsion can be used to 

define the local geometry of the curve around the cusp. 
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Figure 4.20. Spatial Cusp with τ >0 Approaching and τ >0 Leaving 
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Figure 4.21. Spatial Cusp with τ <0 Approaching and τ >0 Leaving 

 

4.4.3. Spatial Saddle Point 

A spatial saddle point occurs when the torsion of the curve is zero. This represents 

a point where the shape of the curve is instantaneously planar. Non-zero higher-order 

derivatives of torsion ensure that the curve will not remain in the plane and also dictate 
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the shape of the curve in the region approaching and leaving the saddle point. Figure 4.22 

shows an example of one type of spatial saddle where d
ds
ττ ′ = .  
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Figure 4.22. Saddle Point 1 

 

Figure 4.23 shows the torsion profile around the point of interest. The center of 

this graph represents the torsion at the defined frame (i.e. the saddle point). Then, the 

values on the left represent the torsion as the curve is approaching the frame, and the 

values on the right represent the torsion as the curve is leaving the frame. This plot shows 

that the torsion is negative with a positive τ ′  during the approach, and the torsion crosses 

zero and becomes positive on the leaving side. 
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Figure 4.23. Torsion Profile for Saddle Point 

 

A similar type of saddle point is shown in Figure 4.23 that shows the effect of a 

negative τ ′ . The torsion profile for this saddle is shown in Figure 4.24. This shows the 

torsion will be positive both approaching and leaving the frame. Thus, the curve moves in 

the positive z direction into and out of the plane. 
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25τ ′ = −

1τ ′ = −

15τ ′ = −

10τ ′ = −

5τ ′ = −

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

25τ ′ = −

1τ ′ = −

15τ ′ = −

10τ ′ = −

5τ ′ = −

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

Above xy plane

Below xy plane

 
Figure 4.24. Saddle Point 2 
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0τ >

0τ >

0
d
ds
τ
<

0
d
ds
τ
>

 
Figure 4.25.  Saddle Point 2 Torsion Profile 

4.4.4. Spatial Inflection Point 

A description of planar inflection points was introduced in Section 4.3.5 of this 

chapter. As stated before, an inflection point in a planar curve occurs when the sign of the 

curvature changes. However, by definition, curvature is always positive in spatial curves. 

Thus, an inflection point cannot be defined simply by enforcing a constraint of 0κ =  at 

the desired location. Section 4.3.5 also showed that at an inflection point the normal 

vector flips direction (i.e. inverts). This provides a good geometric description of what 

occurs at an inflection point. Because a curve tends to bend in the direction of the normal 

vector, an inflection point represents a point where the curve begins to bend in a different 



 106

direction. For example, by flipping the direction of the normal vector at the local frame, a 

spatial saddle could be created as in Figure 4.26. Similarly, Figure 4.27 shows another 

kind of saddle point created using an inflection point. These plots differ from the saddle 

points shown before in Figure 4.22 and Figure 4.24 in that the approaching branch bends 

in the opposite direction of the normal vector. Thus, an inflection point can be used as an 

additional constraint on top of curvature and torsion to control the direction of bending in 

the osculating plane. 
25τ ′ =

1τ ′ =

15τ ′ =

10τ′ =

5τ′ =

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

25τ ′ =

1τ ′ =

15τ ′ =

10τ′ =

5τ′ =

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

Above xy plane

Below xy plane

 
Figure 4.26. Spatial Saddle with an Inflection Point 
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1τ ′ = −

25τ ′ = −

15τ ′ = −

10τ ′ = −

5τ ′ = −

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

Above xy plane

 
Figure 4.27. Spatial Saddle II with an Inflection Point 

4.5. SUMMARY 

This chapter presented a study of the relationship between geometric shapes and 

their higher-order properties. This began with an investigation of simple planar shapes 

such as circles, parabolas, and ellipses. This analysis began by defining these shapes in 

their implicit forms and defining parameters to describe families of curves. Then, closed-

form solutions for curvature were developed in terms of these parameters. While these 

solutions were often complex, they will allow a user to define the local shape of these 

geometries at any point in terms of curvature.  
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Then, an investigation of the properties of spatial curves was presented. Due to 

the complex nature of spatial curves, this analysis looked at the effects of curvature and 

torsion on spatial curves by actually generating the local geometry of curves in terms of 

curvature and torsion values. This provides a unique perspective on these higher-order 

properties. Then, several example spatial geometric shapes were presented and studied 

with the goal of defining curvature and torsion based constraints. 

The next step in this research is to develop a curve generation technique that can 

utilize these constraints based on curvature and torsion. This will involve two main steps. 

First, constraints based on curvature and torsion need to be formulated as constraints on 

parametric descriptions of curves (e.g. , , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

). Once these 

constraints have been formulated, methods of trajectory blending (such as trapezoidal 

motion profiles) can be investigated to generate the overall motions. 



 109

5. CHAPTER FIVE 

Path Generation using Geometric Constraints 

In the previous chapter, the intrinsic geometric properties of curvature and torsion 

were examined. This was done by studying the affect of these properties on the local 

geometry of a curve to better understand their physical meanings. This chapter will build 

on this understanding by showing how to convert these geometric constraints into 

parametric constraints ( , , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

) that can be used to define 

trajectories. Once these constraints have been formulated, the individual trajectories for 
( ) ( ) ( ), ,x u y u z u⎡ ⎤⎣ ⎦  can be developed.  

This process will first begin by defining coordinate frames in space (a position 

and orientation). This approach makes sense for robotic motion planning for several 

reasons. First, simulation environments and CAD models will come with attached frames 

at key points of interest (potential interaction points). An example of a surgical work cell 

with defined coordinate frames is shown in Figure 5.1. The frames in this work cell are 

sometimes attached to specific objects (e.g. approach and grab points for tools or surgical 

trays) and sometimes used for defined way points for global motions. Second, a 

coordinate frame provides a natural extension to rotational motion planning. After a 

frame has been defined, the geometric constraints based on trajectory curvature and 

torsion can be defined at each point. Then, these geometric constraints can be converted 

into parametric constraints. These parametric constraints can then be blended together 

using a variety of techniques. The following section will provide a brief description of 

how these parametric constraints could be blended to form spatial curves. Then, the 

following sections will describe the mathematical formulations of these constraints. 
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Figure 5.1. Robotic Workcell with Defined Frames of Interest 

5.1. INTRODUCTION 

As stated before, the main goal of this chapter is to convert geometric constraints 

into parametric constraints. However, it is useful to first introduce how these parametric 

constraints can be used as the following sections contain several examples. Suppose the 

parametric constraints for the x coordinate shown in Table 5.1 were provided. There are 

many different methods to interpolate between these higher-order constraints. For 

example, Figure 5.2 show these constraints being met using a 3rd order trapezoidal 

profile. This method basically starts by defining a trapezoid in some higher-derivative 

and then integrating up to meet the various constraints. A more detailed description of 



 111

this formulation as well as comparisons between various blending techniques can be 

found in [38][50].  

1x  1dx
du

 
2

1
2

d x
du

3
1

3

d x
du

2x  2dx
du

2
2

2

d x
du

3
2

3

d x
du

 

-1.0 -6.0 -30.0 0.0 2.0 3.0 -20.0 0.0 
Table 5.1. Sample Parametric Constraints 

x
dx
du

3

3
d x
du

2

2
d x
du

 
Figure 5.2. Trapezoidal Specification 

Thus, all three coordinates (x, y, z) can be planned individually and then combined 

for the overall path trajectory (Equation 5.1). It should be noted that in this research the 

main focus is to define/meet these higher-order constraints at the points of interest (i.e. 

the local geometry of the curves) and little control or optimization over the overall path is 

provided. However, this motion planning is an important topic for future work. Appendix 

B includes an initial exploration of this topic. 

( ) ( ) ( ) ( )u x u y u z u⎡ ⎤= ⎣ ⎦p  5.1 
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5.2. FIRST-ORDER PROPERTIES 

As mentioned before, this method begins by defining a point (x, y, z) and a frame 

( ˆ ˆ ˆ, ,T N B ). To define a first-order parametric constraint, the equation of the unit tangent 

vector (Equation 5.2) can be used.  

( )ˆ u

d
du
d
du

=

p

T
p

 5.2 

The first-order constraint ( d
du
p ) can be easily solved for as shown in Equation 5.3. 

This equation shows that the geometric constraint can be met for any magnitude of the 

vector d
du
p  as long as it is in the same direction as the unit tangent.  This allows for a 

degree of freedom in defining the first-order parametric constraints. 

( )ˆ ud d
du du

=
p p T  5.3 

For example, Table 5.2 shows the various constraints for several different 

magnitudes of d
du
p 6. A plot of the resulting curves is shown in Figure 5.3. In this figure, 

the curves with a higher magnitude of d
du
p  tend to have a bias towards the tangent vector 

on that end.  

 
d
du
p  1x  1y  1dx

du
 1dy

du
 2x  2y  2dx

du
 2dy

du
 

2T̂  0.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 

2
ˆ2T  0.0 0.0 1.0 0.0 1.0 1.0 0.0 2.0 

2
ˆ5T  0.0 0.0 1.0 0.0 1.0 1.0 0.0 5.0 

Table 5.2. First-Order Constraints Example 

                                                 
6 Planar curves are used here for better visualization, but the same concept extends to the spatial domain as 
well. 
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1T̂

2T̂

1N̂

2N̂

2
2

ˆd
du

=
p

T

2
2

ˆ2
d
du

=
p

T

2
2

ˆ5
d
du

=
p

T

 
Figure 5.3. First-Order Constraints Example 

Table 5.3 shows another set of example constraints, and Figure 5.4 shows the 

resulting curves. This plot shows similar behavior to the previous example. For the 

remainder of this chapter, this tangent scale is assumed to be 1.0 for simplicity, and thus 
d
du
p  will always be a unit vector. However, it will be shown later how this parameter can 

provide an important degree of freedom to the curve design. 
d
du
p  1x  1y  1dx

du
 1dy

du
 2x  2y  2dx

du
 2dy

du
 

2T̂  0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 

2
ˆ2T  0.0 0.0 1.0 0.0 1.0 1.0 2.0 0.0 

2
ˆ5T  0.0 0.0 1.0 0.0 1.0 1.0 5.0 0.0 

Table 5.3. First-Order Constraints Example II 
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1T̂

2T̂

1N̂

2N̂

2
2

ˆd
du

=
p

T
2

2
ˆ2

d
du

=
p

T

2
2

ˆ5
d
du

=
p

T

1N̂

1T̂

1N̂

2T̂

1T̂

1N̂

2N̂

2T̂

1T̂

1N̂

 
Figure 5.4. First-Order Constraints Example II 

5.3. SECOND-ORDER PROPERTIES 

Next, the second-order constraints (
2

2

d
du

p ) can be formulated based on the second-

order geometric constraints: curvature (Equation 5.4) and the unit normal vector 

(Equation 5.5). 

( )

2

2

3

d d
du du

u
d
du

κ
×

=

p p

p
 5.4 

( )

ˆ

ˆ
ˆ

d
duu
d
du

=

T

N
T

 5.5 
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Now, to better define the unit normal vector, the derivative 
ˆd

du
T  can  be calculated 

analytically. Using the chain rule, the first step of this derivation is shown in Equation 

5.6.  
2

2ˆ 1
d d

d d d ddu du
d d ddu du du du
du du du

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎜ ⎟ ⎜ ⎟= = +
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

p p
T p

p p p
 5.6 

Now, the derivative in the second term can be expanded using the quotient rule as 

in Equation 5.7. Finally, the derivative of the magnitude p
du
d  can be evaluated as in 

Equation 5.8. 

1

2
1

d p
d d d du du

ddu du du p
du du

−
⎛ ⎞
⎜ ⎟
⎜ ⎟ = = −
⎜ ⎟
⎜ ⎟
⎝ ⎠

d
p

p d
 5.7 

2
1 1

2 22 2

2

1 2
2

d d
d d d d d d d d d du du

ddu du du du du du du du du
du

−⎡ ⎤ ⋅⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= ⋅ = ⋅ ⋅ =⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

p p
p p p p p p p

p
 5.8 

Plugging all of these results back into the original equation, the equation for 
ˆd

du
T  

can be formulated as in Equation 5.9. 
2 2 2

2 2

3

ˆ
d d d d d
du du du du dud

du d
du

⎛ ⎞
− ⋅⎜ ⎟
⎝ ⎠=

p p p p p
T

p
 5.9 

Now, this equation can be related back to curvature using the relationship (from 

the Serret-Frenet formulas) 
ˆ ˆd d

du du
κ=

T p N . To further simplify this relationship, d
du
p  and 

2

2

d
du

p  can be assumed to be perpendicular, so that the right-hand side of Equation 5.9 



 116

becomes equal to zero. This leads to the expression for the second-order parametric 

constraints (
2

2

d
du

p ) in terms of curvature and unit normal vector shown in Equation 5.10.  

22

2
ˆd d

du du
κ=

p p N  5.10 

Now, using this relationship, a curve can be defined to pass through a point with a 

given curvature. For example, consider a path plan that is provided that must pass 

through three points with a specified curvature at the middle point ( 2 2,x y ). Table 5.4 

shows how the first and second derivatives could be defined to satisfy three different 

values for curvature. A plot of these three curves is shown in Figure 5.5. As expected, the 

higher values of curvature generate a sharper bend (locally) around the second point. As 

before, the overall shape of the curve is not being controlled as this work is focused on 

defining the local geometry. 

 

 2x  2y  2dx
du

2dy
du

2
2

2

d x
du

2
2

2

d y
du

 

1κ =  1.0 1.0 0.0 1.0 1.0 0.0 

5κ =  1.0 1.0 0.0 1.0 5.0 0.0 

15κ =  1.0 1.0 0.0 1.0 15.0 0.0 
Table 5.4. Curvature Constraints Example 
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2N̂

3T̂

1T̂
1N̂

3N̂

2T̂
15κ =

1κ =

5κ =

 
Figure 5.5. Curvature Constraints Example 

Another set of example constraints is shown in Table 5.5, and the resulting set of 

curves is shown in Figure 5.6. Once again, the higher values of curvature lead to sharper 

bending. Also, this curve illustrates that curvature will always cause a curve to bend 

around its normal vector. 

 

 2x  2y  2dx
du

 2dy
du

 
2

2
2

d x
du

 
2

2
2

d y
du

 

1κ =  1.0 1.0 0.707 0.707 -0.707 0.707 

5κ =  1.0 1.0 0.707 0.707 -3.5339 3.5339 

15κ =  1.0 1.0 0.707 0.707 -10.6018 10.6018 
Table 5.5. Curvature Constraints Example II 
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2N̂

3T̂

1T̂
1N̂

3N̂

2T̂

15κ = 1κ =

5κ =

 
Figure 5.6. Curvature Constraints Example II 

5.4. THIRD-ORDER PROPERTIES 

With d
du
p  and 

2

2

d
du

p  now defined by the unit tangent, unit normal, and curvature, 

the third-order parametric constraints (
3

3

d
du

p ) can be defined. The first third-order 

property to be looked at is torsion, shown in vector form in Equation 5.11. This equation 

shows that torsion involves coupling between the first, second, and third order parametric 

constraints. However, the first and second order properties are already defined and can be 

considered known. Thus, this equation need only be solved for 
3

3

d
du

p . 



 119

( )

2 3

3

22

2

d d d
du du du

u
d d
du du

τ

⎛ ⎞
× ⋅⎜ ⎟

⎝ ⎠=

×

p p p

p p
 5.11 

Expanding this equation out in terms of the individual components leads to 

Equation 5.12. Then, by collecting like terms, the individual third-order properties can be 

isolated as shown in Equation 5.13.  

( ) ( ) ( ) ( )
( ) ( ) ( )2 2 2

y z x y z x z x y x z y x y z y x z
u

y z y z z x x z x y y x
τ

′ ′′ ′′′ ′′ ′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′− + − + −
=

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
 5.12 

  

( ) ( ) ( ) ( )
( ) ( ) ( )2 2 2

x y z y z y x z x z z x y x y
u

y z y z x z x z x y x y
τ

′′′ ′ ′′ ′′ ′ ′′′ ′′ ′ ′ ′′ ′′′ ′ ′′ ′′ ′− + − + −
=

′ ′′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′′ ′− + − + −
 5.13 

However, because the first and second-order properties have already been 

defined, everything except x′′′ , y′′′ , and z′′′  in this equation can be considered constant. 

This equation can then be rewritten as shown in 5.14 where a0, b0, and c0 are constants 

defined by the first and second order parametric constraints. This leads to a simple linear 

system that can be solved for x′′′ , y′′′ , and z′′′ . The results in this chapter are obtained by 

performing a pseudo-inverse to determine the value of torsion. 

( ) 0 0 0u a x b y c zτ ′′′ ′′′ ′′′= + +  5.14 

Now, parametric constraints can be developed up to the third-order using 

geometric constraints on both curvature and torsion. Consider the example constraints 

shown in Table 5.6. These constraints involve passing through three frames with a 

defined curvature and torsion at each. Using the process described above, the parametric 

constraints can be calculated as shown in Table 5.7.  

 

 



 120

 x  y  z  T̂  N̂  B̂  κ  τ  

1p  0.0 0.0 0.0 [1,0,0] [0,1,0] [0,0,1] 0.0 0.0 

2p  2.0 1.0 1.0 [0,0.707,-0.707] [-1,0,0] [0,0.707,0.707] 1.0 10.0

3p  1.0 3.0 -1.0 [0,1,0] [-1,0,0] [0,0,1] 0.0 0.0 
Table 5.6. Example Geometric Constraints with Torsion 

 
 
 

i ix  iy  iz  idx
du

 idy
du

 idz
du

 
2

2
id x

du

2

2
id y

du

2

2
id z

du

3

3
id x

du
 

3

3
id y

du
 

3

3
id z

du
 

1 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 2.0 1.0 1.0 0.0 0.707 -.707 -1.0 0.0 0.0 0.0 7.0679 7.0679

3 1.0 3.0 -1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Table 5.7. Example Calculated Parametric Constraints 

 
Once these constraints are defined, the individual trajectories for ( )x u , ( )y u , 

and ( )z u  can be calculated. Figure 5.7 shows the overall spatial trajectory using the 

calculated values. Figure 5.8 and Figure 5.9 show the curvature and torsion profiles for 

this trajectory. It can be seen that the curvature and torsion have the correct values at the 

defined point; however, there is little control over these parameters in between the 

defined points. 
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1p

2p

3p
0, 0κ τ= =

1, 10κ τ= =

0, 0κ τ= =

0u =

1u =

2u =

 
Figure 5.7. Spatial Trajectory with Torsion Constraints 

 

 
Figure 5.8. Curvature Profiles 
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Figure 5.9. Torsion Profile 

 

Another property that depends on the third-order parametric constraints is the 

derivative of curvature as shown in Equation 5.15 [58]. Because the first and second 

order properties have been defined to be perpendicular, the second term in the numerator 

will disappear and this equation will reduce to Equation 5.16. 
42 3 2

2
2 3 2

6

3d d d d d d d
du du du du du du dud

du d
du

κ
κ

κ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
× ⋅ × − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠=

p p p p p p p

p
 5.15 

2 3

2 3

6

d d d d
du du du dud

du d
du

κ

κ

⎛ ⎞ ⎛ ⎞
× ⋅ ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=

p p p p

p
 5.16 
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Now, the values of x′′′ , y′′′ , and z′′′  need to be isolated, so that their values can be 

calculated. First, the term 
2

2

d d
du du

⎛ ⎞
×⎜ ⎟

⎝ ⎠

p p  can be replaced with constant values, because 

these terms have already been defined as shown in 5.17.  
( )
( )
( )

12

22

3

y z z y C
d d x z x z C
du du

Cx y y x

′ ′′ ′ ′′⎡ ⎤− ⎡ ⎤
⎢ ⎥⎛ ⎞ ⎢ ⎥′′ ′ ′ ′′× = − =⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥ ⎢ ⎥′ ′′ ′ ′′− ⎣ ⎦⎣ ⎦

p p  5.17 

Then, the entire expression can be expanded and Equation 5.18 can be reached by 

collecting the third-order terms. 

( ) ( ) ( )
2 3

2 3 3 1 1 22 3

d d d d x C z C y y C x C z z C y C x
du du du du

⎛ ⎞ ⎛ ⎞
′′′ ′ ′ ′′′ ′ ′ ′′′ ′ ′× ⋅ × = − + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

p p p p  5.18 

Finally, the above equation can be combined with Equation 5.16 to come up with 

the final result shown in Equation 5.19 where a1, b1, and c1 can be considered constants. 

[ ]
6

1 1 1

x
d d a b c y
du du

z

κ κ
′′′⎡ ⎤

⎢ ⎥′′′= ⎢ ⎥
′′′⎢ ⎥⎣ ⎦

p  5.19 

Now, this constraint for d
du
κ  can be combined with the torsion constraint defined 

before in Equation 5.14 to create the system of linear equations shown in Equation 5.20. 

With two constraints and three unknowns, this system can be solved to yield solutions7 

for 
3

3

d
du

p  that can satisfy constraints on both torsion and the derivative of curvature. 

0 0 06

1 1 1

x
a b c

yd d a b c
zdu du

τ

κ κ

′′′⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥′′′= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ′′′⎢ ⎥⎣ ⎦⎣ ⎦

p  5.20 

An example path description is shown in Table 5.8. This path plan defines a 

trajectory through three points with constraints defined on the curvature, derivative of 

curvature, and torsion at the second point. Table 5.9 shows the parametric constraints 

                                                 
7 As before, a pseudo-inverse is used to evaluate this equation. 
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calculated from these values. The resulting path is shown in Figure 5.10. Plots of the 

higher-order properties can be seen in Figure 5.11, Figure 5.12, and Figure 5.13. 

 x  y  z  T̂  N̂  B̂  κ  
d
du
κ  τ  

1p  0.0 0.0 0.0 [1,0,0] [0,1,0] [0,0,1] 0.0 0.0 0.0 

2p  1.0 1.0 1.0 [0,0.707,0.707] [-1,0,0] [0,-0.707,0.707] 3.0 -20.0 -10.0

3p  1.5 2.0 0.0 [0,1,0] [-1,0,0] [0,0,1] 0.0 0.0 0.0 
Table 5.8. Geometric Constraints with Torsion and Derivative of Curvature 

 

i ix  iy  iz  idx
du

 idy
du

 idz
du

 
2

2
id x

du

2

2
id y

du

2

2
id z

du

3

3
id x

du
 

3

3
id y

du
 

3

3
id z

du
 

1 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 1.0 1.0 1.0 0.0 0.707 0.707 -3.0 0.0 0.0 19.994 21.204 -21.204

3 1.5 2.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Table 5.9. Example Calculated Parametric Constraints 
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Figure 5.10. Spatial Trajectory with τ and κ’ Constraints 
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Figure 5.11. Curvature Profile 

 
Figure 5.12. Torsion Profile 
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Figure 5.13. Derivative of Curvature Profile 

5.5. FOURTH-ORDER PROPERTIES 

Finally, the fourth order property of τ ′  can be examined. The parametric equation 

for τ ′  [58] is shown in Equation 5.21. This equation shows that τ ′  is a function of the 

first, second, third, and fourth order parametric derivatives. However, the first through 

third order constraints have already been defined. Thus, the fourth-order derivative must 

be isolated and solved. Equation 5.22 shows the “constant” values moved to the left-hand 

side of the equation.  
2 4 2 3

2 4 2 3

22

2

2d d d d d d d
du du du du du du dud

du d d
du du

τ
τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
× ⋅ − × ⋅ ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠=

×

p p p p p p p

p p
 5.21 

22 2 3 2 4

2 2 3 2 42d d d d d d d d d d
du du du du du du du du du du
τ τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
× + × ⋅ × = × ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

p p p p p p p p p  5.22 
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Now, the 
2

2

d d
du du

⎛ ⎞
×⎜ ⎟

⎝ ⎠

p p  can once again be considered constant, which leads to 

another simple linear system as shown in Equation 5.23.  

( ) ( ) ( )
22 2 3

4 4 4
0 0 02 2 32d d d d d d d a x b y c z

du du du du du du du
τ τ

⎛ ⎞ ⎛ ⎞
× + × ⋅ × = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

p p p p p p  5.23 

Now, a path plan that meets constraints κ , κ′ , τ , and τ ′  can be defined by 

calculating parametric constraints up the fourth-order. For example, consider the 

geometric constraints shown in Table 5.10. Using the techniques developed in this 

chapter, these constraints can be mapped to the parametric constraints shown in Table 

5.11. Then, the x, y, and z trajectories can be developed independently and combined 
together to retrieve the desired spatial curve ( ) ( ) ( ) ( )( )u x u y u z u⎡ ⎤= ⎣ ⎦p . 

 x  y  z  T̂  N̂  B̂  κ  
d
du
κ  τ  

d
du
τ  

1p  0.0 0.0 0.0 [1,0,0] [0,-1,0] [0,0,-1] 0.0 0.0 0.0 0.0 

2p  1.0 1.0 1.0 

0.707
0.3536
0.6124

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.0
0.866
0.5

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

0.707
0.3536
0.6124

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

3.0 -10.0 -5.0 25.0 

3p  2.0 -2.0 -0.5 [0,-1,0] [-1,0,0] [0,0,-1] 0.0 0.0 0.0 0.0 
Table 5.10. Geometric Constraints 

i 1 2 3 i 1 2 3 i 1 2 3 

ix  0.0 1.0 2.0 iy  0.0 1.0 -2.0 iz  0.0 1.0 0.5
idx

du
 1.0 0.0 0.0 

idy
du

 0.0 0.707 -1.0
idz

du
 0.0 -0.707 0.0

2

2
id x

du
 0.0 0.0 0.0 

2

2
id y

du 0.0 -2.598 0.0 
2

2
id z

du 0.0 1.5 0.0
3

3
id x

du
 0.0 -10.606 0.0 

3

3
id y

du 0.0 13.962 0.0 
3

3
id z

du 0.0 4.183 0.0
4

4
id x

du
 0.0 123.745 0.0 

4

4
id y

du 0.0 -61.861 0.0 
4

4
id z

du 0.0 -107.142 0.0
Table 5.11. Parametric Constraints 
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Figure 5.14 shows the resulting spatial curve. As before, it can be difficult to 

visualize how this curve is moving spatially in a 2D representation. However, this 

research is more concerned with meeting the defined geometric constraints (i.e. the local 

geometry around each frame of interest) than the overall shape of the curve. These local 

geometries were presented visually in the previous chapter. Then, this chapter has shown 

how to convert these into mathematic constraints that can be used to generate spatial 

curves. Figure 5.15 through Figure 5.18 show the various geometric properties along the 

length of the spatial curve. Once again, these properties are shown to interpolate the 

correct values at their defined points, but are not controlled or well-behaved along the 

entire path.  
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Figure 5.14. Spatial Trajectory 
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Figure 5.15. Curvature Profile 

 
Figure 5.16. Torsion Profile 
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Figure 5.17. Derivative of Curvature Profile 

 
Figure 5.18. Derivative of Torsion Profile 
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5.6. SPECIAL CASES 

In addition to the general shapes that could be generated using curvature and 

torsion explored in the previous chapter, two special cases were also introduced: cusps 

and inflection points. In these cases, the geometry of the coordinate frame changes at the 

point of interest. In the case of an inflection point, the normal vector switches direction. 

In the case of a cusp, the tangent vector switches directions. This section will describe 

how to incorporate these special cases into the same procedure presented earlier in this 

chapter.  

5.6.1. Inflection Point 

As discussed before in Sections 4.3.5 and 4.4.4, the normal vector inverts at an 

inflection point. This represents the curve beginning to bend in a different direction. 

Mathematically, a necessary (but not sufficient) condition for the existence of an 

inflection point is a curvature of zero. However, when the curvature is zero, the higher-

order geometric properties become undefined, and thus the higher-order parametric 

constraints become indeterminate (i.e. unfixed). One way around this problem is to use 

the geometric interpretation of an inflection point (the unit normal vector inverting) to 

induce an inflection point at the desired point. This simply involves using a different 

normal vector on the approaching and leaving ends of the desired coordinate frame as in 

Figure 5.19. This curve uses the same exact geometric constraints as the curve in Figure 

5.6 except that the middle point is also defined to be an inflection point. This causes the 

curve to bend in the opposite direction on either side of the frame.  



 132

2
ˆ

aN

3T̂

1T̂
1N̂

3N̂

2 /
ˆ

a bT

15κ =

1κ = 5κ =

2
ˆ

bN

 
Figure 5.19. Planar Curve with an Inflection Point 

To further visualize this, Figure 5.20 shows a zoomed in view of the inflection 

point. This plot shows the curve begin to bend in the opposite direction at the frame with 

the curvature dictating how “sharp” the bending is. Thus, the physically meanings of the 

geometric properties can still be used with this method while still capturing the geometric 

significance of an inflection point (switching the direction of the curve bending). Table 

5.12 and Table 5.13 show the parametric constraints for the approaching and leaving end 

of the frame, respectively. 
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Figure 5.20. Close-up of Inflection Point 

 

 2ax  2ay 2adx
du

 2ady
du

 
2

2
2

ad x
du

 
2

2
2

ad y
du

 

1κ =  1.0 1.0 0.707 0.707 -0.707 0.707 

5κ =  1.0 1.0 0.707 0.707 -3.536 3.536 

15κ =  1.0 1.0 0.0 1.0 -10.607 10.607 
Table 5.12. Parametric Constraints Approaching Inflection Point 
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 2bx  2by 2bdx
du

 2bdy
du

 
2

2
2

bd x
du

 
2

2
2

bd y
du

 

1κ =  1.0 1.0 0.707 0.707 0.707 -0.707 

5κ =  1.0 1.0 0.0 -1.0 3.536 -3.536 

15κ =  1.0 1.0 0.0 -1.0 10.607 -10.607 
Table 5.13. Parametric Constraints Leaving Inflection Point 

5.6.2. Cusp 

As discussed in Section 4.4.2, a necessary condition for a cusp is that the first 

derivative vector vanishes (i.e. [ ]0,0,0d
du

=
p ). However, as in the case of an inflection 

point, this causes the higher-order geometric properties to either go infinite or be 

undefined. Thus, this mathematical description is not helpful in defining the parametric 

constraints needed to define the spatial curve. Thus, this method will concentrate on the 

main geometric significance of a cusp: the inversion of the unit tangent vector. Similar to 

the method used for an inflection point, this method will simply invert the unit tangent at 

the desired cusp point8. An example of this is shown in Figure 5.21. This figure shows a 

cusp point with three different curvatures defined around it. 

                                                 
8 The unit normal vector may also be inverted at this point depending on the desired direction of bending 
for the curve. 
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Figure 5.21. Planar Path with a Cusp 

A close-up of the cusp point is shown in Figure 5.22. This shows the behavior of 

the local geometry of the curve around the cusp point for varying values of curvature. 

Using this method, the effects of curvature on the local geometry of a curve are the same 

as those described in Sections 4.3.4 and 4.4.2. Thus, the physical meaning of the 

geometric constraints is retained in a form that allows easy conversion to parametric 

constraints. While this method does not describe a cusp in the strictest mathematical 

sense, it does allow for defining the geometric interpretation of a cusp. Table 5.14 and 

Table 5.15 show the parametric constraints for this cusp example. 
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15κ =
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Figure 5.22. Close-up of Cusp Point 

 

 2ax  2ay 2adx
du

2ady
du

2
2
2

ad x
du

2
2
2

ad y
du

 

1κ =  1.0 1.5 0.0 1.0 -1.0 0.0 

5κ =  1.0 1.5 0.0 1.0 -5.0 0.0 

15κ =  1.0 1.5 0.0 1.0 -15.0 0.0 
Table 5.14. Parametric Constraints Approaching Cusp Point 

 

 2bx  2by 2bdx
du

2bdy
du

2
2
2

ad x
du

2
2
2

ad y
du

 

1κ =  1.0 1.0 0.0 -1.0 -1.0 0.0 

5κ =  1.0 1.0 0.0 -1.0 -5.0 0.0 

15κ =  1.0 1.0 0.0 -1.0 -15.0 0.0 
Table 5.15. Parametric Constraints Leaving Cusp Point 
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5.7. SUMMARY 

This chapter described a procedure for formulating the geometric properties 

studied in the last chapter into parametric constraints that can be used to define spatial 

parametric curves. The main steps behind this process are: 

• First, a set of spatial coordinate frames (positions and orientations) is defined. 

These would most likely come from a simulation or CAD environment and would 

not have to be defined by an operator. 

• The desired geometric properties at each frame are defined (κ , κ′ , τ , and τ ′ ). 

• The first order parametric constraint ( d
du
p ) is defined using the unit tangent vector 

as ( )ˆ ud d
du du

=
p p T  

• The second order parametric constraint (
2

2

d
du

p ) is defined using the unit normal 

vector and desired curvature as 
22

2
ˆd d

du du
κ=

p p N  

• The third order parametric constraint (
3

3

d
du

p ) is defined using the desired torsion 

and derivative of curvature as 0 0 06

1 1 1

x
a b c

yd d a b c
zdu du

τ

κ κ

′′′⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥′′′= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ′′′⎢ ⎥⎣ ⎦⎣ ⎦

p  

• The fourth order parametric constraint (
3

3

d
du

p ) is defined using the derivative of 

torsion as ( ) ( ) ( )
22 2 3

4 4 4
0 0 02 2 32d d d d d d d a x b y c z

du du du du du du du
τ τ

⎛ ⎞ ⎛ ⎞
× + × ⋅ × = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

p p p p p p  

• Once the parametric constraints (
4 4 4

4 4 4, , , , , ,dx dy dz d x d y d z
du du du du du du

) have been 

defined, the x, y, and z trajectories are calculated independently using some 

trajectory planning technique (polynomial, trapezoidal, etc). A comparison of 

Polynomial vs. Trapezoidal planning is include in Appendix B. 



 138

• The individual trajectories are combined together to produce a parametric 
description of the desired spatial curve ( ) ( ) ( ) ( )u x u y u z u⎡ ⎤= ⎣ ⎦p  

This procedure provides a good starting point for defining parametric spatial 

curves based on geometric constraints. It should be noted that, once the parametric 

constraints have been defined, any number of curve generation techniques could be used 

for blending between these constraints. However, there are still many potential areas for 

future work on this technique. Some possible extensions to this technique include: 
• How best to define ( )u f t=  to define a smooth motion along the defined 

parametric curve 

• A better way of controlling the shape of the curve and its geometric properties 

between frames 

• The application of theses geometric constraints to specific physical tasks 
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6. CHAPTER SIX 

Motion Planner Implementation 

In the previous two chapters, a new method of generating the geometry for spatial 

curves was presented. Chapter Four focused on developing an understanding of the 

physical meanings of the intrinsic properties of curvature and torsion. Then, Chapter Five 

presented a technique for converting these properties into parametric constraints that 

could be used to generate spatial paths. Now, this chapter will explore how these methods 

can be used in an actual manipulator motion planner. This will be done by integrating this 

technique into a previously designed motion planning software developed at the Robotics 

Research Group (RRG). This software package was built using the Operational Software 

Components for Advanced Robotics (OSCAR) software libraries. The next section will 

provide a brief background on OSCAR. Then, a description of the overall architecture of 

the existing Motion Planner will be presented. Then, specific issues involved in 

integrating this technique into this architecture will be explored such as defining motion 
along a curve ( ( )u f t= ) as well as defining the rotational motion.  

6.1. OPERATIONAL SOFTWARE COMPONENTS FOR ADVANCED ROBOTICS 

OSCAR is a set of C++ libraries that can be used for modeling and control of 

serial manipulators. OSCAR contains two main layers: the support layer and the 

operational layer. The support layer includes low-level modules such as Base (used for 

error-handling), Math (linear algebra, vector/matrix operations), and Communications 

(TCP/IP connections). The operational layer includes higher-level modules used for 

operations such as Forward/Inverse Kinematics, Decision-Making and Motion Planning. 
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A simple schematic of this framework is shown in Figure 6.1. A much more detailed 

description of this framework can be found in [23][24].  

 
Figure 6.1. OSCAR Architecture Overview 

6.2. OSCAR-BASED MOTION PLANNER 

The OSCAR-based Motion Planner (MP) is a generalized motion controller 

designed to package Cartesian and Joint trajectory generation with OSCAR's existing 

generalized framework for Kinematics and Decision-Making. This includes 

implementation of Point-to-Point (PTP) motions as well as “jogging” motions for 

teleoperation. The MP is implemented as a C++ component using OSCAR modules and 

is robot independent. An overview of the MP framework is shown in Figure 6.2. First, a 

set of generalized manipulator parameters is provided to create an MP for a specific 
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robot. Then, a user interface (i.e. API) provides the ability to define joint/Cartesian 

motions. Once a motion has been defined, the MP will provide joint set points at a 

specified sample rate that can be sent to a servo interface or simulation. The MP will 

internally perform Inverse Kinematics when necessary for Cartesian moves as well as 

checking for joint position and velocity limits. The following sections will briefly 

describe some of the core functionality of the MP to provide better insight into how the 

methods developed in this work were integrated.  

MP API

Trajectory 
Generator

Kinematics & 
Redundancy

Manipulator 
Parameters

Joint Position, Speed & 
Acceleration Limits

Servo Interface/ 
Simulation

,c cθ θ,a aθ θ

 
Figure 6.2. Basic Motion Planner Framework 
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6.2.1. Manipulator Parameters 

The manipulator parameters are the robot parameters used to initialize the MP for 

a specific application. A summary of these parameters is shown in Table 6.1. This table 

shows that a manipulator-specific MP can be defined with a very simple representation of 

the system. This allows the MP to be easily applied to a variety of systems. 

Manipulator Parameter Description 

DH Parameters 

Used to describe the spatial geometry of a specific 

serial manipulator. This information is used by OSCAR 

for performing the Forward/Inverse Kinematics 

Joint Position Limits 

Defines the travel limits for each individual joint of the 

manipulator. These limits are used for error-checking 

during trajectory calculation/execution. 

Joint Velocity Limits 

Defines the velocity limits for each individual joint in 

the manipulator. These limits are used in the generation 

phase of Joint interpolated moves to ensure the fastest 

move time based on physical capabilities of the system. 

Joint Acceleration Limits 

Defines the acceleration limits for each individual joint 

in the manipulator. These limits are used in the 

generation phase of Joint interpolated moves to ensure 

the fastest move time based on physical capabilities of 

the system.. 

Cartesian Velocity Limits 
Cartesian space velocity limits used for teleoperation. 

Cartesian Acceleration Limits 
Cartesian space acceleration limits used for 

teleoperation. 

Table 6.1. Basic Manipulator Parameters 
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6.2.2. Point-to-Point Motions 

6.2.2.1. Joint Interpolated 

In joint interpolated motions, a desired target joint configuration is provided to the 

MP. Then, a trajectory for each individual joint is calculated based on the provided joint 

velocity and acceleration limits to ensure the fastest move time based on system 

capabilities. This involves an acceleration (i.e. “ramp-up”) period, a constant velocity 

period, and a deceleration (i.e, “ramp-down”) period. Then, the longest move time for all 

joints is determined, and the other trajectories are scaled to complete in the same time 

period. One example velocity profile is shown in Figure 6.3. 

 
Figure 6.3. Example Velocity Profile 
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6.2.2.2. Cartesian Interpolated 

For Cartesian interpolated moves, a target position and orientation is provided as 

well as a time to complete the move. The position trajectory is calculated as shown in 
Equation 6.1 where [ ], ,x y z=p  and T is the provided move time. As with the joint 

interpolated motion, the Cartesian motion also involves an acceleration period, a constant 

velocity period, and a deceleration (i.e, “ramp-down”) period. However, in the case of the 

Cartesian interpolated motions, the velocity profile is based on the distance and move 

time instead of the velocity/acceleration limits.  

( ) ( ) [ ]0 1 0 , 0,tt t T
T

= + − ∈p p p p  6.1 

For the rotational motion, a quaternion spherical interpolation (SLERP) technique 

is used as shown in Equation 6.2 where q0 and q1 are quaternions representing the 

orientation for the beginning and ending points. This type of interpolation provides a 

smooth angular velocity profile [41]. 

( )
( )

[ ]
0 11 sin

, 0,
sin

tq q t
Tq t t T

θ θ

θ

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= ∈  
6.2 

6.2.3. Teleoperation 

In teleoperation, a set of “delta” values scaled between -1 and 1 is provided to the 

MP. For joint teleoperation, there will be one delta value for each individual joint. For 

Cartesian teleoperation, these values represent the x, y, and z translational directions and 
the xθ , yθ , and zθ  Euler angles. The MP will then use its current position/velocity and 

ramp-up/ramp-down to its set velocity using the provided Cartesian and joint velocity and 

acceleration limits. For example, if a particular axis is stationary and a delta value of 0.5 

is provided, it will ramp-up to 50% of its maximum velocity. The teleoperation 

functionality of the MP has been tested on actual hardware using a variety of input 
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devices such as a PC keyboard, a Logitech Magellan Spacemouse, and a Phantom Omni 

Haptic Device. 

6.2.4. Motion Execution 

Once a motion has been requested, the MP will provide discrete joint set points at 

a fixed sampling rate. For a joint interpolated motion, this just means calculating a new 

joint position based on the motion parameters at a set rate. For Cartesian motions, an end-

effector position is calculated at each point and converted into a joint position using 

Inverse Kinematics. Figure 6.4 shows a simple example of the MP interface. In this 

example, a Cartesian move to a specified End-Effector position (finalHand) is requested 

for a specific move time (moveTime). Then, the MP is polled until the trajectory is 

complete. In a physical system, the GetJointPosition() method would be placed inside a 

real-time loop running at a specified sample rate (e.g. 100 hz). However, it is simply 

placed inside a loop in this example to demonstrate the concept. A full API for the MP is 

include in Appendix C. 

 
Figure 6.4. Example MP Code 

 

moveTime=10.0; 
if (!motionPlanner.PlanMove( 

currentJoints,finalHand,CartesianInterpolated,moveTime)) 
  { 
    DisplayError(motionPlanner.GetError()); 
    return false; 
  } 
   
  do{ 
   if(!motionPlanner.GetJointPosition(currentJoints,jointVel,state)){ 
      DisplayError(motionPlanner.GetError()); 
      break; 
    } 
    SetJoints(currentJoints); 
  }while(state != TrajectoryGenerator::TrajectoryComplete); 
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6.2.5. Configuration Parameters 

In addition to the core functionality, the MP contains several configuration 

parameters that can be used to further customize its operation.  

Configuration Parameter Description 

RampTime Changes the % of the velocity to profile to use for the 

acceleration/deceleration periods for Cartesian interpolated 

motions (see Figure 6.3). 

CoordinateMode Can be used to toggle between using World and Tool frame 

coordinates for Cartesian jogging. 

TrajectoryShape Can be used to toggle between Trapezoidal and S-Curve 

velocity profiles. S-Curve trajectories provide a smoother 

motion but longer move times. 

SpeedScale Used to slow trajectory execution for debugging purposes. 

For example, a SpeedScale of 0.5 will cause all trajectories 

to be executed on 50% speed. 
Table 6.2. Example Configuration Parameters 

6.2.6. Example Applications 

The OSCAR-based MP has been implemented and integrated with several 

physical systems. A few of the applications for which the MP has been used include: 

• DARPA TraumaPod – The MP was used for motion control of a Scrub Nurse 

System (SNS) used for delivering supplies and changing tools inside a surgical 

workcell. This included the standard operations described in this chapter 

(Kinematics, Cartesian/Joint motions, etc) as well as integration with Obstacle 

Avoidance and Collision Detection. 
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• Microsoft Robotics Studio – The MP was integrated with MSRS (Microsoft 

Robotics Studio) to demonstrate how it could be implemented within a service-

based communications architecture. 

• Mobile Manipulator – The MP was used for motion control for a mobile 

manipulation system developed with Idaho National Laboratory. 

• LWA3 Teleoperation Demo – The MP was used to control a 7-DOF LWA3 

manipulator using a variety of teleoperation input devices. 

6.3. GEOMETRIC-BASED TRAJECTORY GENERATION 

Now that the general framework for the OSCAR-based MP has been described, 

the implementation of the techniques developed as part of this research can be explored. 

First, a simple task will be defined for demonstration. Then, an exploration on how to 
define a time-based motion along the geometric trajectory (i.e. how to define ( )u f t= ). 

will be presented. Then, an introduction to rotational motion will be provided. 

6.3.1. Task Description 

To examine the specific details of implementing the path generation techniques 

developed in this work, a simple example task was chosen. This task involves passing 

through a waypoint with a specified curvature in route to a final position (Figure 6.5). 

Located at the waypoint position is a sphere with a radius of 0.05 meters. Thus, a 

curvature value of 20κ =  ( 1κ
ρ

= ) will make the local shape of the curve at the waypoint 

identical to the sphere. While this is a very basic example, it provides a good geometric 

visualization of the generated spatial curve. The same methods developed to interpolate 

this curve can also be applied to more complex examples. 
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Initial Position

Final Position

Waypoint

 
Figure 6.5. Sample Task Example 

6.3.2. Translational Motion Along a Curve 

The first step in this implementation is how to describe the translational motion 
along a curve (i.e. ( )u f t= ). As mentioned earlier in the chapter, the Motion Planner 

works by providing joint set positions at a specified sample rate. Thus, the task here is to 

figure out how to sample points on the curve to provide a desirable motion. This comes 

down to determining how to increment the geometric parameter u. A basic schematic of 
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the process that will need to be computed at each sampling point9 is shown in Figure 6.6. 

The following sections will go into more detail of how this process is realized. 

Inverse 
KinematicsCalculate u

Calculate
( )
( )
( )

x f u

y f u

z f u

=

=

=

Servo Interface/ 
Simulation

ui
xi,yi,zi iθ

 
Figure 6.6. Basic Schematic of MP Curve Interpolator 

6.3.2.1. Effect of Tangent Scale 

In Section 5.2, it was shown that the first-order parametric properties could be set 

by scaling the unit tangent vector (i.e. ˆd tangScale*
du

=
p T  where tangScale is some scalar 

value). Because Chapter 5 mainly focused on the higher-order properties, this parameter 

was not fully explored. Figure 6.7 shows the affects of this parameter as applied to the 

current task. This shows that this parameter has a large affect on the overall shape of the 

curve while still allowing the geometric constraints to be met at the end points. Basically, 

as the value of tangScale increases the curve tends to develop large overshoots. For lower 

values, the curve will become more “taut”. The exact affect of this parameter on a curve 

will be dependant on both the scale (e.g. meters vs. millimeters) as well as the values of 

the higher-order properties. Thus, first the local geometric properties can be defined, and 

then this parameter can be tweaked to find a desirable overall curve shape. 

                                                 
9 This schematic only shows the translational component of the position and not the orientational. For now, 
the orientation can be thought of as a constant along the path. 
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0.25tangScale =

0.75tangScale =

0.5tangScale =

 
Figure 6.7. Effect of varying Tangent Scale 

 

Using a value of tangScale=0.3, the geometry of the path can now be defined. 

The resulting curve is shown in Figure 6.8. This figure shows that the curve passes 

through the waypoint while locally tracing the surface of the sphere as expected. Now 

that the geometry has been defined, the next sections will describe how to define a 

motion along this geometry. 
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Figure 6.8. Resulting Spatial Curve 

6.3.2.2. Linear Parametric Interpolation 

The simplest method of interpolating the geometric parameter u would be to 

linearly interpolate it with respect to the time. This is shown in Equation 6.3 where T is 
the total time to complete the move. From this equation, it is easy to see that ( )0 iu u=  

and ( ) fu T u= . This simple method was implemented into the MP and the output 

Cartesian velocity along the path was measured by calculating the distance between 
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consecutive set points provided by the MP and dividing by the sample time. The results 

of the simulation are shown in Figure 6.9.  

( ) ( ) [ ], 0,T
Ti f i
tu t u u u t= + − ∈  6.3 

 
Figure 6.9. Velocity Profile for Linear u Interpolation 

 

The above velocity profile shows that this leads to a smooth but uncontrolled 

velocity in the middle of the trajectory. However, the trajectory also has a finite 

initial/final velocity which will lead to large accelerations and undesirable motions.  

6.3.2.3. Smooth Parametric Interpolation 

A simple extension to the linear parametric interpolation is to use a smooth 

function to interpolate the parameter. One simple example of this is shown in Equation 
6.4. This function will satisfy the conditions ( )0 0p =  and ( ) 1p T =  with both the initial 
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and final velocity and acceleration beginning zero. This will ensure a smooth starting and 

ending motion for the trajectory.  

( ) [ ]
3 4 5

10 15 6 , 0,t t tp t t T
T T T
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + ∈⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 6.4 

Then, the geometric parameter u can be defined as a function of time as shown in 
Equation 6.5 where ( )0 iu u=  and ( ) fu T u= . Once again, the resulting Cartesian 

velocity is calculated and plotted in Figure 6.10. This plot shows that the initial and final 

velocities are indeed zero now (providing a smooth start and finish), but the interior 

velocity profile (peak magnitude) is still not controlled. Thus, a more detailed 

examination between the geometry and motion of the curve is needed. This is presented 

in the following section. 

( ) ( )( ) [ ], 0,i f iu t u p t u u t T= + − ∈  6.5 

 
Figure 6.10. Velocity Profile for Smooth u Interpolation 
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6.3.2.4. Velocity Approximation Formulation 

In Section 2.3.2, an introduction to motion along a curve parameterized by arc 

length, s, was presented. In curves parameterized by arc length, developing relationships 

between geometry and motion is simple as the value dss
dt

=  is the Cartesian speed (i.e. 

magnitude of the velocity). However, in this case, the curve is defined not by arc length 

but by a geometric parameter u. In this section, a method will be described to move along 

a parametric curve with a prescribed velocity profile. This method is based off a real-time 

interpolator developed for CNC machines by Zhang and Greenway [63]. 
The first step is to take a Taylor expansion of the function ( )u t  as shown in 

Equation 6.6 where t∆  is the time between sampling periods (e.g. 0.01 seconds for 100 

hz). Using this formulation, the next value of u can be calculated at each sampling period 

by using the current value of u as well as the higher-order derivatives of u with respect to 

time. Thus, these higher-order derivatives of u with respect to time must be formulated. 

This will first be done for a first-order approximation and then expanded to a second-

order approximation. 
22

1 2 H.O.T
2

i i
i i

du d utu u t
dt dt+

∆
= + ∆ + + +  6.6 

For a first-order approximation, the value of du
dt

 must be found. First, the 

relationship shown in Equation 6.7 is developed. This relates the physical motion along 

the curve to the geometric parameter. 
ds ds duv s
dt du dt

= = =  6.7 

Now, we can substitute in the relationship d ds
du du

=
p . This yields the formulation 

for du
dt

 shown in Equation 6.8. 
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( )v tdu
ddt
du

=
p

 
6.8 

This shows that the value for du
dt

can be found at any point along the curve given 

the current desired velocity. Substituting this into Equation 6.6 will yield the relationship 

shown in Equation 6.9. Thus, at each sample time, a new value of u can be calculated. 
( )

1i i
i

v t t
u u

d
du

+

∆
= +

p
 

6.9 

Now that a method for determining u has been developed, the velocity profile v(t) 

must be defined. For the purposes of testing this formulation, a simple trapezoidal 

velocity profile will be defined as shown in Figure 6.11. 

 
Figure 6.11. Example Velocity Profile 
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Before we can calculate the function v(t), the total distance travelled along the 

curve must be calculated. This arc length can be found using Equation 6.10. A simple 

way of computing this integral is to sample u across its interval and sum up the distances 

between consecutive points (x,y,z). 
2 2 2f f

i i

u u

u u

d d dx dy dzs du du
du du du du du

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫

p p  6.10 

Now that the total travel distance has been computed, the coasting velocity and 

ramp-up acceleration can be calculated using Equation 6.11 and 6.12. 

max
b

sv
T t

=
−

 6.11 

max
max

b

va
t

=  6.12 

The entire velocity function can be described as shown in Equation 6.1310. Now, 

this method for defining motion along a curve can be tested as before. The resulting 

velocity profile is shown in Figure 6.12. From this plot, the first-order approximation 

does a decent job of tracking the velocity profile with the exception of one small area 

where the curvature is large. As mentioned in [63], the first-order approximation is only 

reliable in curves with small values of curvature. However, since the technique described 

in this work depends on defining curvatures that may in some cases be large, a higher-

order approximation is required. 

( )
max

max

max max

,
,

,

b

b b

b

a t t t
v t v t t T t

v a t T t t T

<⎧ ⎫
⎪ ⎪= < < −⎨ ⎬
⎪ ⎪− − < <⎩ ⎭

 6.13 

                                                 
10 A similar formulation could be created where desired velocity/acceleration are the inputs and T/tb are 
calculated values. 
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Figure 6.12. First-Order Velocity Approximation 

To define a second-order approximation, the value of 
2

2

d u
dt

 must be formulated. 

This can be done by simply taking the derivative of du
dt

 as shown in Equation 6.14. Then 

the overall method of interpolating the geometric parameter u is shown in Equation 6.15. 

The resulting velocity profile is shown in Figure 6.13. This shows that a second-order 

approximation tracks the desired velocity profile almost exactly. 

( ) ( ) ( )
2

2
22

42

d dv t
v t a t du dud u d
d ddt dt d
du du du

⎛ ⎞⎛ ⎞ ⋅⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟= = −
⎜ ⎟
⎜ ⎟
⎝ ⎠

p p

p p p
 6.14 
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( ) ( ) ( )
2

2
22

1 42i i
i

d dv t
v t a t du dutu u t
d d d

dudu du

+

⎛ ⎞⎛ ⎞⎛ ⎞ ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ∆ ⎝ ⎠⎜ ⎟⎜ ⎟= + ∆ + −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

p p

p p p
 6.15 

 
Figure 6.13. Second-Order Velocity Approximation 

6.3.2.5. Special Cases 

The method described in the previous section assumes that a nonzero velocity 

profile is desired along the entire manipulator trajectory. This is a decent assumption for 

most cases as the curve generation method developed in this work is in general smooth 

over the whole trajectory. However, in certain special cases, a discontinuity is 

purposefully inserted into the trajectory. For example, consider the trajectory with a cusp 

shown in Figure 6.14. In this example, the manipulator is commanded to move into a tray 

dispenser to pick up a tray and then on to a final position. 
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Figure 6.14. Example Trajectory with a Cusp 

In the above trajectory, it is easy to see that the curve switches directions at the 

cusp point. Thus, if the manipulator is simply commanded to traverse the curve at a 

constant speed, the motion of the trajectory will instantaneously switch directions at this 

point causing high shocks in the physical system. The simplest method of getting around 

this is to define a different velocity profile for each portion of the curve with the velocity 

being zero at the actual cusp point. An example of this is shown in Figure 6.15. It should 
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be noted that depending on the application, a zero velocity could be desired even at 

positions where the parametric description remains smooth.  

 
Figure 6.15. Example Velocity Profile 

6.3.2.6. Conclusions 

This section explored methods of generating a time-based motion along a 

parametrically defined spatial curve. This is necessary for implementing the proposed 

methods on an actual physical system. First, it was shown that a simple approach of 

defining u=t would not lead to desirable or controllable output velocities. Then, a method 

that used the geometric properties of the curve in combination with a defined velocity 

profile was presented. This was first done for a first-order approximation that tracked the 

velocity profile nicely in areas of low curvature. This was then expanded to a second-

order approximation that leads to a good, controllable velocity along the geometric path. 
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This technique is applicable to any parametrically defined spatial curve as long as the 

first and second order properties are available. Thus, if different methods of defining the 

blending between end constraints are developed in the future, this same process remains 

useful. 

6.3.3. Rotational Motion 

This research has mainly been focused on the generation of spatial curves for the 

purposes of translational path planning. However, to fully define the motion of a robot 

manipulator, the orientation of the end-effector must be defined as well as the position. In 

this section, an introductory look at rotational motion planning will be presented.  

6.3.3.1. Orientation-to-Orientation Interpolation 

The simplest form of rotational motion planning is defining an interpolation 

between an initial and final frame. For example, for the simple task described earlier in 

the chapter, the orientations may be defined as shown in Figure 6.16. In this rotational 

description, the manipulator is commanded to pass through the waypoint with an 

orientation normal to the sphere and then return to its original orientation. This section 

will explore some of the basic ways to describe this motion. 

1 2 3
 

Figure 6.16. Sample Orientation Descriptions 
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One of the most commonly used descriptions for an orientation is Euler Angles 

(introduced in Section 1.1.2.2). With Euler Angles, each orientation (i.e. rotation matrix) 
is converted into a set of three angles [ ], ,α β γ  that represent three consequence rotations 

to reach the final desired orientation. The interpolation between two sets of Euler Angles 

can then be performed as in Equation 6.16 where the Euler Angles can be converted into 

a rotation matrix at each instance of t. While this provides a simple way of describing the 

rotational motion, Euler Angles suffer from many problems. First, they are prone to 

singularities such as gimbal lock. Second, they do not necessarily provide a controllable 

angular velocity along their trajectory. 

( ) ( )

( ) ( )

( ) ( )

[ ], 0,

i f i

i f i

i f i

tt
T
tt t T
T
tt
T

α α α α

β β β β

γ γ γ γ

⎫= + − ⎪
⎪
⎪= + − ∈⎬
⎪
⎪= + − ⎪⎭

 6.16 

For this reason, rotational motions are often described using Equivalent Axis 

formulations. The basic Equivalent Axis formulation (as first described in Section 
1.1.2.3) has the form ( )ˆ ,R θn  where n̂  describes a spatial vector and θ  describes the 

angle with which to rotate around that axis. Now in the simple case where a rotational 

motion from the rotational identity matrix to some desired frame needs to be generated, 

the rotation along the trajectory can simply be defined as [ ]ˆ , , 0,tR t T
T
θ⎛ ⎞ ∈⎜ ⎟

⎝ ⎠
n . Thus, a 

rotation matrix can be calculated at each time instance t. Because this representation is 

simply a rotation about a fixed axis, the quantity θ  can be controlled providing a much 

better physical understanding of the angular motion. Now, suppose this method needs to 

be used to interpolate between two arbitrary frames A and B as shown in Figure 6.17. 
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Frame A

Frame B

 
Figure 6.17. Example Rotational Interpolation 

First, we calculate the rotation matrix TR A B=  which basically describes the 

relative rotation between A and B. Then, Equivalent Axis and Angle for this rotation are 

calculated. Then, this rotation is transformed back into Frame A and the final motion can 

be defined as ˆ , tAR
T
θ⎛ ⎞

⎜ ⎟
⎝ ⎠
n . Thus, a smooth rotation with a controllable angular velocity 

is defined between two arbitrary frames. 

Another representation for orientations that is similar to Equivalent Axis is 

quaternions (first introduced in Section 1.1.2.4). Quaternions are defined as a four-

dimensional vector representing an axis and rotation in space. They can be defined from 

an Equivalent Axis formulation as shown in Equation 6.17 [21].  

0

1 1

2 2

3 3

cos
2

sin
2

sin
2

sin
2

q

q n

q n

q n

θ

θ

θ

θ

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 6.17 
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Mathematically, quaternions can be thought of as positions on a 4-dimensional 

unit hypersphere and interpolation between quaternions can be thought of as curves 

running along the surface of these spheres. While these interpretations can be difficult to 

visualize, they provide a powerful way of defining orientation-based curves. For 

example, consider the simple Spherical Linear Interpolation (SLERP) shown in Equation 

6.18. This represents a minimum arc length curve between two points on the sphere. 

( ) ( )( ) [ ]12 12
12 1 2

12 12

sin 1 sin , 0,1
sin sin

t tq t q q t
θ θ

θ θ
−

= + ∈  6.18 

Hanson [21] further shows how these relationships can be nested to generate 

orientation “curves” with multiple control points. An example of this is shown in 
Equation 6.19 for a curve through three quaternions where ( ) ( ) ( )( )1

12 23cost q t q tθ −= ⋅ . 

While quaternions are mathematically complex and somewhat difficult to visualize, they 

remain an important area of research due to their widespread use in animation, graphics, 

and robotics.  

( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) [ ]123 12 23

sin 1 sin
, 0,1

sin sin
t t t t

q t q t q t t
t t
θ θ

θ θ
−

= + ∈  6.19 

6.3.3.2. Geometric or Task-based Rotational Motions 

One popular method of defining rotational motion is to tie it to the geometry of a 

curve or surface. For a curve, this can be done by defining the orientation of the end-

effector relative to the Frenet Frame [3][57][58]. For example, consider the rotation 

matrix shown in Equation 6.2011. This would align the x, y, and z axes of the manipulator 

end-effector frame (i.e. tool frame) with the tangent, normal, and bi-normal vectors of the 

Frenet Frame, respectively. Normally, the z axis of the manipulator end-effector is 

aligned with the tool axis. So, it is often useful to describe the orientation as in Equation 

                                                 
11 This is a valid rotation matrix, because the unit tangent, normal, and bi-normal vectors are orthogonal. 
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6.21 to align the tool axis with the tangent vector. The first column of this rotation matrix 

is negated to preserve a right-handed coordinate system. 

( ) ˆ ˆ ˆR u ⎡ ⎤= ⎣ ⎦T N B  6.20 

( ) ˆ ˆ ˆR u ⎡ ⎤= −⎣ ⎦B N T  6.21 

There are several advantages to defining the rotational motion in this fashion. 

First, for certain tasks, this is a natural way to define the orientation. Second, the Frenet-

Serret formulas (shown in Equation 6.22 and first introduced in Section 2.3.1.4) provide 

an intuitive (physical meaning) method for defining the rotational motion as the 

translational path is transversed. 
ˆ

ˆ0 0ˆ ˆ0
ˆ0 0ˆ

d
ds
d
ds
d
ds

κ
κ τ

τ

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

T

T
N N

BB

 6.22 

This shows that the same geometric constraints that were used to define the 

translational path can be useful in defining the rotational motion as well. Hanson [19][21] 

showed that a similar formulation can be created using quaternions as shown in Equation 

6.23. Thus, the movement of the quaternion (aligned with the Frenet Frame) along a 

parametric curve can be defined in terms of the intrinsic properties of curvature and 

torsion.  
0

01

1

2 2

3

3

0 0
0 01

0 02
0 0

dq
ds

qdq
qds

dq q
ds q
dq
ds

τ κ
τ κ

κ τ
κ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥ − − ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

 6.23 



 166

Another important result related to the Frenet-Serret formulas is the Darboux 

vector: ˆ ˆτ κ= +D T B  [26]. This is a rotation vector defining the instantaneous axis and 

magnitude of rotational motion (analogous to an instantaneous screw motion). The axis 

defined by D is simply the rotational axis and the magnitude of this vector is the angular 

velocity ω . From this equation, if 0κ =  and 0τ = , this will lead to no rotational motion 

as the curve is simply a straight line. Similarly, if 0τ =  and curvature has some positive 

non-zero value, the frame will simply rotate about the bi-normal axis (i.e. stay in the 

osculating plane). Thus, the instantaneous rotation around the curve can be calculated at 

any point from the local curvature and torsion. 

However, there are some disadvantages to defining a global motion based on the 

Frenet Frame with the current path planning method. Because the properties of curvature 

and torsion are only being constrained at key frames, the Frenet Frame is free to spin 

around the path during motions. This leads to joint position and/or velocity limits being 

violated in a serial manipulator. However, it may be possible to use these geometric 

properties to define the local rotational motion about a specific frame. 

An analogous method to the Frenet Frame description can be used to define the 

rotational motion along a parametric surface. For example, consider the paraboloid (i.e. 

parabolic surface) described by Equation 6.24. 
( )
( )
( ) ( )2 2

,

,

,

x u v u

y u v v

z u v h u v

=

=

= +

 6.24 

To define a rotation relative to the surface, we first calculate the principal tangent 

directions as shown in Equation 6.25 and 6.26. These are simply calculated by taking the 

partial derivatives of the parametric description with respect to the two independent 

parameters. 
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[ ]1 , , 1, 0, 2x y z uh
u u u
∂ ∂ ∂⎡ ⎤= =⎢ ⎥∂ ∂ ∂⎣ ⎦

T  6.25 

[ ]2 , , 0, 1, 2x y z vh
v v v
∂ ∂ ∂⎡ ⎤= =⎢ ⎥∂ ∂ ∂⎣ ⎦

T  6.26 

Then, the normal to the surface can be computed by taking the cross product of 

the two principal tangent directions. This is shown in Equation 6.27. Now, as the surface 

is traversed (as in Figure 6.18) the normal vector can be calculated as a function of u and 

v and the end-effector tool axis can be aligned along this direction.  

( ) 1 2,u v = ×N T T  6.27 

 
Figure 6.18. Tracing a Parabolic Surface 
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6.4. SOFTWARE INTEGRATION 

The previous sections dealt with some of the specific implementation issues 

involved with the techniques developed in this research. This section will discuss the 

overall structure of the software integration. The first part of this implementation is to 

define the interface for specifying the geometric constraints. This is done by creating a 

CurveParameter object as shown in the source code in Figure 6.19. Basically, the desired 

frame (position and orientation) is set by a 4x4 transformation matrix, and the desired 

geometric constraints are supplied as numerical values. Then, any number of 

CurveParameter objects can be strung together to form an overall path. For example, two 

of these objects would represent a one segment curve, and three of these objects would 

define a two segment curve. The orientationMode parameter defines how the rotational 

motion will be defined. The available options in this implementation are shown in Table 

6.3. 

 
Figure 6.19. Example Code for setting Constraints 

Mode Description 
Fixed End-effector orientation will remain fixed during this 

trajectory segment. 
FrameBased Orientation will smoothly interpolate to a frame 

defined by the next Frenet Frame description. 
CustomOrient Orientation will smoothly interpolate to a custom 

rotational frame provided by the user. 
FrenetBased Orientation will be aligned with the Frenet Frame as 

the curve is transversed. 
Table 6.3. Orientation Interpolation Modes 

  vector<CurveParameter> ctrlPoints; 
  CurveParameter viaPoint; 
  viaPoint.frame=finalHand; 
  viaPoint.kappa=20; 
  viaPoint.tau=0.0; 
  viaPoint.dkappa=0.0; 
  viaPoint.dtau=0.0; 
  viaPoint.orientationMode = FrameBased; 
  viaPoint.isCusp = false; 
  viaPoint.inflection = false; 
  ctrlPoints.push back(viaPoint);
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Once the geometric constraints for the various frames have been defined, a 

manipulator motion can be commanded in a similar way to the methods described in 

Section 6.2.4 earlier in this chapter. An example of this is shown in Figure 6.20. 

 
Figure 6.20. Example Code for Executing a Trajectory 

In the above code, it can be seen that the execution of the MP has two main 

functions: PlanMoveViaGeometric(…) and GetJointPosition(…). In the first function, all 

of the computationally complex calculations for defining the curve take place. Then, the 

GetJointPosition(…) simply computes and returns the next joint position. The 

calculations are separated in this way to ensure that the GetJointPosition(…) can execute 

at a real-time rate. Specifically, the steps taken inside the PlanMoveViaGeometric(…) are 

as follows: 
 

1. The provided geometric constraints ( ( ), , ,κ κ τ τ′ ′  are converted into parametric 

constraints , , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for each trajectory segment using 

the techniques developed in Chapter 5. There will be n-1 segments for n defined 

via points. 

  double moveTime=5.0; 
  if (!motionPlanner.PlanMoveViaGeometric(currentJoints, 
                                          ctrlPoints,  
                                          moveTime)){ 
    DisplayError(motionPlanner.GetError()); 
    return 0; 
  } 
 
  do{ 
    if (!motionPlanner.GetJointPosition(currentJoints,  
                                        jointVel, 
                                        state)){ 
      DisplayError(motionPlanner.GetError()); 
      break; 
    } 
    SetJoints(currentJoints); 
 
  }while(state != TrajectoryGenerator::TrajectoryComplete); 
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2. For each individual coordinate, the necessary coefficients are calculated to 

produce ( ) ( ) ( )x u y u z u⎡ ⎤⎣ ⎦ . This fully describes the geometry of the path. 

3. The arc length for the entire spatial curve is calculated by discretely sampling the 

curve and summing the distances between points. 

4. This arc length along with the desired trajectory execution time can be used to 

define the desired velocity profile as discussed earlier in this chapter. 

The above steps define the pre-calculations done at the beginning of a trajectory 

generation and do not need to be placed inside of any kind of real-time loop. This is 

necessary as some of these calculations (such as computing the arc length) are 

computationally complex. Then, using the descriptions above, at each sample period (i.e. 

GetJointPosition(…) call), the following steps take place: 
1. The current commanded velocity, ( )v t , can be calculated from the defined 

velocity profile. 

2. The value of the geometric parameter u can be calculated using Equation 6.15. 

3. The positional coordinates (x, y, z) can then be found as they are functions of u 
( ( ) ( ) ( )x u y u z u⎡ ⎤⎣ ⎦ ). 

4. The orientation coordinates can then be defined based on the orientation 

interpolation scheme (Table 6.3). 

5. The desired end-effector position (translational and rotational components) are 

sent to the Inverse Kinematics routines to convert them into a joint position. This 

joint position can then be sent to the manipulator controller or simulator. 

In addition to the trajectory definition/execution described above, the MP also has 

low-level functionality for checking joint limit violations. Thus, if a joint position or 

velocity limit is approached, the MP will return an error and stop the trajectory execution. 

The full API for the MP is included in Appendix C. 
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6.5. SUMMARY 

This chapter dealt with the details of implementing the path generation techniques 

developed in this work onto a physical system. This began by describing the framework 

for an already existing OSCAR-based Motion Planner. Then, methods for defining a 

speed-controlled interpolation along a parametrically defined geometric path were 

presented. The results of this study showed that a second-order approximation was 

adequate to provide good control over the speed of the trajectory. Finally, an introduction 

to rotational motion planning was provided. This study showed several different methods 

for rotational interpolation that can be currently used inside the MP as well as an 

introduction to a more geometric-based approach that will be an important part of future 

work.  

These techniques were all successfully integrated into the existing OSCAR-based 

Motion Planner software. This MP provides a generalized, robot independent architecture 

for providing basic motion planning for any serial manipulator. This integration provides 

a useful test bed for future work in that the techniques developed in this work can be 

directly applied and tested on a variety of robotic systems. However, there remain a 

number of improvements that can be made both to the low-level curve generation 

techniques as well as the high-level software implementation. In the next chapter, the 

results of this work will be summarized and then suggestions for future work will be 

presented. 
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7. CHAPTER SEVEN 

Summary and Future Work 

In this report, a new method for describing spatial paths for manipulator motions 

was developed using the geometric properties of curvature and torsion. This began by 

looking at the basic mathematics of algebraic curves. Then, a brief review of some 

current interactive curve generation techniques from other disciplines was presented. 

Next, a thorough study of the affects of curvature on the local geometry of a curve was 

conducted by creating local surfaces with families of curves. Then, a curve generation 

technique was developed to utilize these properties. This works by converting the 

geometric constraints (curvature, torsion, and their derivatives) into parametric 

constraints up to the fourth order 
4 4 4

4 4 4, , , , , ,dx dy dz d x d y d z
du du du du du du

⎛ ⎞
⎜ ⎟
⎝ ⎠

  that can be more 

easily blended together because of their Cartesian nature. Finally, these techniques were 

integrated into an existing motion planning software architecture built using OSCAR. 

This chapter will provide a summary of the work described above as well as a 

demonstration of its use. Finally, suggestions for future work and applications of this 

research will be presented.. 

7.1. SUMMARY 

7.1.1. Algebraic Curves 

As mentioned in the previous section, this research began with a study of the 

basic mathematics of algebraic curves. This was done by examining four different 

possible representations for curves: implicit, standard parametric, arc-length parametric, 

and curvature/torsion profiles. Table 7.1 shows a summary of these four different 



 173

representations. Then, a list of the advantages and disadvantages of each is shown in 

Table 7.2. 

 Planar Spatial 

Implicit ( ), 0f x y =  ( ) ( ), , 0 , , 0f x y z g x y z= ∩ =  

Standard Parametric 
( )
( )

[ ],
x f u

u a b
y f u

⎫= ⎪ ∈⎬
= ⎪⎭

 
( )
( )
( )

[ ],

x f u

y f u u a b

z f u

⎫=
⎪

= ∈⎬
⎪= ⎭

 

Arc Length Parametric 
( )
( )

[ ],
x f s

s a b
y f s

⎫= ⎪ ∈⎬
= ⎪⎭

 
( )
( )
( )

[ ],

x f s

y f s s a b

z f s

⎫=
⎪

= ∈⎬
⎪= ⎭

 

Curvature/Torsion 

Profile 

( )
0
f sκ

τ

=

=
 

( )
( )

f s

f s

κ

τ

=

=
 

Table 7.1. Curve Representations 
 

 Advantages Disadvantages 

Implicit 

• Good mathematical 

understanding of singularities 

(double points, cusps, etc) 

• Historical literature and 

research 

• Becomes increasingly complex 

as curve degree gets higher 

• Difficult to represent in spatial 

form 

• Difficult to describe an actual 

motion along its arc length 

Standard 

Parametric 

• Provides a one-to-one 

mapping from 3R R→  

• Easy to define in a finite 

interval as for piecewise 

segments 

• Easy to define in spatial form 

• Lack of physical meaning in 

term of the independent 

parameter 

• Some loss of mathematical 

understanding compared to 

implicit forms 
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Arc Length 

Parametric 

• Provides good physical 

meaning to independent 

parameter 

• Easy to define physical 

motion along curve 

• Calculation of some curve 

properties becomes easier 

• Difficult to find closed-form 

solutions for most curves 

• Numerical techniques needed 

Curvature/ 

Torsion 

Profile 

• Defines curve based on 

higher-order properties 

• Geometric shape is 

independent of 

position/orientation  

• Difficult to define global 

motions 

• Best used for defining local 

geometry 

Table 7.2. Comparision of Curve Representations 

The table presented above shows that every form of curve representation has 

certain advantages depending on the application. Thus, an effort was put forth in this 

work to retain as many representations as possible. For example, Figure 7.1 shows two 

simple planar curves represented both implicitly and parametrically. 

( ) 322 aaxy =+
21 t

a
y

atx

+
=

=
23 axy =

2

3

t
a

y

t
ax

=

=

 
Figure 7.1. Examples of Algebraic Curves 
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However, the representation most commonly used, in this work as well as the 

literature, is the standard parametric form. Thus, it is worth further summarizing this 

representation (see Section 2.2 for full discussion). In this form, the curve is defined as 

function of some independent parameter represented12  here by the symbol u . A curve is 
then defined on some finite interval [a,b] of u as ( ) ( ) ( ) ( ) [ ], ,u x u y u z u u a b⎡ ⎤= ∈⎣ ⎦p .  

Thus, each scalar value of u maps to a spatial point location [ ], ,x y z . The curvature of a 

parametic curve can then be defined as in Equation 7.1, where dxx du′ = . This equation 

shows that curvature is a function of the first and second order derivatives of the 

parametric description.  

( )
( ) ( ) ( )

( )

2 2 2

3
2 2 2 2

y z y z z x x z x y y x
u

x y z
κ

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
=

′ ′ ′+ +
 7.1 

The next important property of spatial curves is torsion. The definition of torsion 

is shown in Equation 7.2. This equation shows that torsion is a function of the first, 

second, and third order derivatives. 

( ) ( ) ( ) ( )
( ) ( ) ( )2 2 2

y z x y z x z x y x z y x y z y x z
u

y z y z z x x z x y y x
τ

′ ′′ ′′′ ′′ ′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′− + − + −
=

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
 7.2 

Another important property of spatial parametric curves is the Frenet Frame. This 

is a three dimensional orthogonal frame defined by the local geometry of the curve. It 

consists of three vectors: the unit tangent, unit normal, and unit bi-normal. The unit 

tangent basically represents the “heading” of the curve and is calculated as shown in 

Equation 7.3. 

( ) [ ]
2 2 2

ˆ x y z
u

x y z

′ ′ ′
=

′ ′ ′+ +
T  7.3 

                                                 
12 The independent parameter is often represented as t in mathematics literature. However, in this work, the 
variable t is reserved to represent time. 



 176

Then, the unit normal can be calculated by taking the derivative of the unit-

tangent as shown in Equation 7.4. Finally, the bi-normal is calculated by taking the cross 

product of the tangent and normal (Equation 7.5). 

( )

ˆ

ˆ
ˆ

d
duu
d
du

=

T

N
T

 7.4 

( ) ( ) ( )ˆ ˆ ˆu u u= ×B T N  7.5 

A useful mathematic relationship can be developed from the Frenet Frame known 

as the Frenet-Serret formulas (Equation 7.6). This shows that the motion of the Frenet 

Frame along the curve can be defined locally in terms of the curve curvature and torsion. 

This relationship can thus be integrated to define curves in terms of curvature and torsion. 

This result is used later in this work to help provide a more physical understanding of 

these properties. 
ˆ

ˆ0 0ˆ ˆ0
ˆ0 0ˆ

d
ds
d
ds
d
ds

κ
κ τ

τ

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

T

T
N N

BB

 7.6 

In this section, the basic properties of parametric curves were presented. These 

properties and their physical meanings are more thoroughly investigated in the later 

portions of this research. However, the descriptions in this section provide a useful 

starting point for understanding the rest of this work. 

7.1.2. Interactive Curve Generation Techniques 

After a basic understanding of algebraic curves has been reached, a look into 

some of the techniques from other disciplines (such as Computer-Aided Design and 
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Computer Graphics) was provided (see Chapter 3). In this summary, a few of these 

techniques will be described and then discussed. One of the simpler representations 

discussed in this review was B-Splines. B-Splines are described by a set of control points 

and the B-Spline basis functions. The basic equation for a B-Spline is shown in Equation 
7.7 where the basis functions ( ),i kN u  are calculated recursively as shown in Equation 

7.8.  

( ) ( ),
1

n

i i k
i

u N u
=

= ∑p b  7.7 

( ) ( )( )
( )

( )( )
( )

, 1 1, 1
,

1 1

i k i i k i k
i k

i k i i k i

N u u u N u u u
N u

u u u u
− + − +

+ − + +

− −
= +

− −
 7.8 

An example of a B-Spline is shown in Figure 7.2. This shows that the shape of the 

B-Spline loosely follows the shape of its control polygon. Thus, interactively, B-Splines 

are often generated by moving around or adding/deleting control points to generate the 

desired curve geometry. 
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Figure 7.2. Example B-Spline Curves 
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In addition to providing a good way to intuitively design curves, B-Splines have 

several additional advantageous properties: convex hull, variation diminishing, and local 

control. These properties basically ensure that the B-Spline curve is “well-behaved” 

although its higher-order properties may be less controllable. A more detailed description 

of this technique and its properties was presented in Section 3.2.2. 

Another method of curve design studied in this work is Algebraic Splines (A-

Splines) [5][6]. A-Splines are defined implicitly using barycentric coordinates as shown 

in Equation 7.7 where ( )1 2 3 1 2 3
!, ,

! ! !
n i j k
ijk

nB
i j k

α α α α α α= . By using barycentric coordinates, 

the A-Splines are able to define a higher level of geometric continuity (managed higher-

order properties) with more degrees of freedom. An example of a family of G1 

continuous A-Splines is shown in Figure 7.3. 
( ) ( )1 2 3 1 2 3, , , , 0n

ijk ijk
i j k n

F b Bα α α α α α
+ + =

= =∑  7.9 
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Figure 7.3. A-Spline Curve Example 
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As mention in Section 3.4, A-Splines have several advantages. First, they offer a 

higher degree of freedom for creating/designing curves. Second, they offer the ability to 

capture both parametric and implicit forms of curves. However, they require numerical 

techniques to trace (i.e. describe a motion along) for higher orders, and it is difficult to 

describe spatial curves/motions. 

The techniques described in this review can provide powerful and intuitive 

methods for designing visually pleasing curves. However, the main focus of this research 

is on defining local geometric constraints with a well-understood physical meaning. 

Thus, the next step in this research is to further examine the relationships between 

curvature/torsion and the local geometry of curves. However, in the future, it may be 

possible to adapt the methods described in this section for the purposes of blending 

between these local constraints. The benefit of this merging of techniques would be to 

generate curves with well-defined properties (e.g. Convex Hull or Variation 

Diminishing). This will be briefly explored in the section on future work. 

7.1.3. Geometric Shapes and Properties 

In order to study the physical meaning of curvature/torsion and their derivatives, 

specific geometric shapes were analyzed. This study began with simple planar shapes 

such as lines, circles, and parabolas. This involved developing both the implicit and 

parametric forms of these curves and identifying parameters that could be used to 

generate families of curves. Then, closed-form solutions for curvature13 were found in 

terms of these parameters. For example, consider the simple parabola described by 

Equation 7.10. The parameter a can then be varied to provide a family of curves as shown 

Figure 7.4. 

                                                 
13 By definition, torsion is always zero for a planar curve. Thus, for planar curves, only curvature was 
studied. 
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Figure 7.4. Family of Parabolas 

Now, this implicit equation can be substituted into the equation for curvature to 

calculate a closed-form solution for curvature in terms of the parameter a. This is shown 

in Equation 7.11. From this equation, it is easy to see that the maximum curvature occurs 

at the origin and has a magnitude of 2a. This is intuitive from the above plot as the 

maximum bending can be seen to occur at the origin. Table 7.3 summarizes the results of 

Figure 7.4. While this example is very simple, it provides some insight into the 

relationship between curvature and simple geometric shapes. 

( )
( )

3
2 2 2

2,
1 4

ax y
a x

κ −
=

+
 7.11 
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a Implicit Equation Parametric Equation maxκ (κ at origin) 

0.05 20.05y x−  
( )
( ) 20.05

x u u

y u u

=

=
 0.1 

1 2y x−  
( )
( ) 2

x u u

y u u

=

=
 2 

5 25y x−  
( )
( ) 25

x u u

y u u

=

=
 10 

25 225y x−  
( )
( ) 225

x u u

y u u

=

=
 50 

Table 7.3. Summary of Family of Parabolas 

 

A similar analysis was conducted for a variety of planar shapes. In each case, the 

implicit and parametric forms of the equation were presented. Parameters were identified 

that could be used to generate families of these curves. Then, curvature was solved for in 

terms of these parameters. This provides insight into the relationship between these 

simple shapes and the intrinsic property of curvature. A summary of these results is 

shown in Table 7.4. 
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Shape 
Implicit 

Equation 
Parametric Equation ( )κ x, y  

Line 0ax by c+ + =  
( )
( )

1 1

2 2

x u a u b

y u a u b

= +

= +
 0.0 

Parabola 2 0y ax− =  
( )
( ) 2

x u u

y u au

=

=
 ( )

3
2 2 2

2

1 4

a

a x

−

+
 

Circle 2 2 2 0x y r+ − =  
( ) ( )

( )

2

2

2

1

1
2

1

r u
x u

u
ury u
u

−
=

+

=
+

 1/r 

Ellipse 
2 2

2 2 1 0x y
a b

+ − =  

( )

( )

2
2 2

2
2

2
2 2

2

1 1

1

1 1

u
bx u

u
a b

bu
b ay u

u
a b

⎛ ⎞−⎜ ⎟
⎝ ⎠=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

( )
( )

3
2 2 2 2 2

8,
4 4

ABx y
A x B y

κ =
+

Cusp 2 3 0ay x− =  
( )
( )

2

3

x u au

y u au

=

=
 ( )

( )
4 2 2

3
4 2 2 2

18 24,
9 4

ax a xyx y
x a y

κ −
=

+
 

Table 7.4. Summary of Properties of Planar Shapes 

The next step of this analysis involved expanding this study into the spatial 

domain. One of the most basic spatial shapes is the helix. A helix is defined by a constant 

curvature and torsion along its path. A good way to visualize these curves is to show 

them running along the surface of a cylinder. This is shown in Figure 7.5 for three sets of 

curvature/torsion values. 
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Figure 7.5. Constant Curvature/Torsion Curves 

 

The above plot shows that as the curvature increases the radius of the cylinder 

decreases and the distance travelled along each wrap around (i.e. the “pitch”) becomes 

smaller. In fact, the relationship between curvature/torsion and radius/pitch can be 

directly solved and is shown in Equations 7.12 [26]. These relationships can be easily 

inverted to solve for r and l in terms of curvature and torsion as shown in Equation 7.13 

(see Section 4.4.1). Table 7.5 provides a summary of these results. 

2 2

r
r l

κ =
+

, 2 2

l
r l

τ =
+

 7.12 

2 2r κ
κ τ

=
+

, 2 2l τ
κ τ

=
+

 7.13 
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κ  τ  2 2κ τ+  r l Parametric Equation 

1 1 2 0.5 0.5 
( ) ( )
( ) ( )
( )

0.5cos

0.5sin

0.5

x u u

y u u

z u u

=

=

=

 

2 1 5 0.4 0.2 
( ) ( )
( ) ( )
( )

0.4cos

0.4sin

0.2

x u u

y u u

z u u

=

=

=

 

5 1 26 0.1923 0.0385
( ) ( )
( ) ( )
( )

0.1923cos

0.1923sin

0.0385

x u u

y u u

z u u

=

=

=

 

Table 7.5. Properties of Helical Curves 
 

However, not all spatial shapes can be easily described in terms of curvature and 

torsion. Thus, a main part of the study of spatial curves in this research was achieved by 

directly generating curves based on their local curvature and torsion values. This allows 

the values of curvature and torsion to be modified to generate local families of curves 

based on these parameters. These curves are based on integrating the Frenet-Serret 

formulas to generate the local shape of a curve around a provided frame. To perform this, 

a frame is first placed at the origin with the x, y, z axes lined up with the tangent, normal, 

and bi-normal directions respectively. Then, given a provided curvature/torsion profile, a 

curve can be generated in the “forward” and “reverse” direction around the local frame 

by using the formulation shown in Equation 7.14 (see Section 4.4). It should be noted that 

the position/alignment of the frame is arbitrary as a given curvature/torsion will always 

produce the exact same motion relative to the frame.  
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1i i i sκ+ = + ∆T T N  

1i i i sτ+ = − ∆B B N  

1 1 1i i i+ + += ×N B T  

1 1i i i s+ += + ∆P P T  
 

7.14 

A simple example of this is shown in Figure 7.6 for varying curvature and zero 

torsion. This shows that the curve will remain in the plane defined by the tangent/normal 

vectors (the xy plane in this example), and the higher curvature values will result in a 

sharper bend around the normal vector. It remains symmetric in the y-z plane. 

1κ =

10κ =
15κ =

2κ =

5κ =

 
Figure 7.6. Local Effect of Varying Curvature 

A similar set of figures can be developed to describe the local effects of torsion. 

This is shown in Figure 7.7 and Figure 7.8. Unlike curvature, which is always defined to 

be positive, torsion can be either positive or negative. Locally, the sign of this value 
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dictates whether the curve leaves the plane in the direction of the bi-normal vector or its 

inverse direction. For example, in Figure 7.7, the curve approaches and leaves the local 

frame while moving in the positive z directions. On the other hand, in Figure 7.8, the 

curve changes directions with respect to the z axis at the frame. Another thing to note 

about the affects of torsion is that the scale of the z axis in these plots is much smaller 

than the x and y axes. This is because, numerically, torsion has a smaller effect on the 

shape of the curve than an equivalent value of curvature. 
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Figure 7.7. Varying Positive Torsions 
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Figure 7.8. Varying Negative Torsions 

Once a basic understanding of these properties is reached, this research showed 

how they can be used to generate spatial shapes such as cusps (Figure 7.9) and saddle 

points (Figure 7.10). This varies from the approach taken to planar shapes in that instead 

of describing the shapes based on implicit/parametric equations and then calculating 

curvature, the curves are actually described in terms of curvature and torsion. Then, the 

next step of this research is to convert these properties back into a parametric form that 

can be used to create spatial curves bounded by these local constraint parameters (end-of-

motion specifications). This is the focus of the next section. 
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Figure 7.9. Local Cusp 
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Figure 7.10. Local Saddle Point 

7.1.4. Path Generation with Geometric Constraints 

As mentioned in the previous section, the next step of this work focuses on 
converting the geometric constraints ( ), , ,κ κ τ τ′ ′  into parametric constraints 

4 4 4

4 4 4, , , , , ,dx dy dz d x d y d z
du du du du du du

⎛ ⎞
⎜ ⎟
⎝ ⎠

 that can be used to formally generate spatial curves. 

This section will present the main results/process of doing this. The full derivations of 

these results are presented in Chapter 5. The main steps behind this process are: 
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1. First, a set of spatial coordinate frames (positions and orientations) is defined. 

These would most likely come from a simulation or CAD environment and would 

not have to be defined by an operator. 

2. The desired geometric properties at each frame are defined (κ , κ′ , τ , and τ ′ ). 

3. The first order parametric constraint ( d
du
p ) is defined using the unit tangent vector 

as ( )ˆ ud d
du du

=
p p T  where d

du
p  is a controllable parameter 

4. The second order parametric constraint (
2

2

d
du

p ) is defined using the unit normal 

vector and desired curvature as 
22

2
ˆd d

du du
κ=

p p N  

5. The third order parametric constraint (
3

3

d
du

p ) is defined using the desired torsion 

and derivative of curvature as 0 0 06

1 1 1

x
a b c

yd d a b c
zdu du

τ

κ κ

′′′⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥′′′= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ′′′⎢ ⎥⎣ ⎦⎣ ⎦

p  

6. The fourth order parametric constraint (
4

4

d
du

p ) is defined using the derivative of 

torsion as ( ) ( ) ( )
22 2 3

4 4 4
0 0 02 2 32d d d d d d d a x b y c z

du du du du du du du
τ τ

⎛ ⎞ ⎛ ⎞
× + × ⋅ × = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

p p p p p p  

7. Once the parametric constraints (
4 4 4

4 4 4, , , , , ,dx dy dz d x d y d z
du du du du du du

) have been 

defined, the x, y, and z trajectories are calculated independently using some 

trajectory planning technique (polynomial, trapezoidal, etc) 

8. The individual trajectories are combined to produce a parametric description of 
the desired spatial curve ( ) ( ) ( ) ( )u x u y u z u⎡ ⎤= ⎣ ⎦p  

For example, suppose the geometric constraints shown in Table 7.6 were 

provided. Using the above process, these can be converted into the parametric constraints 

shown in Table 7.7. Then, the overall spatial path can be developed as in Figure 7.11. It 
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should be noted that here we are just verifying the mathematic formulations, and a more 

detailed examination of the physical meaning of this process will be presented in Section 

7.2. 

 x  y  z  T̂  N̂  B̂  κ  τ  

1p  0.0 0.0 0.0 [1,0,0] [0,1,0] [0,0,1] 0.0 0.0 

2p  2.0 1.0 1.0 [0,0.707,-0.707] [-1,0,0] [0,0.707,0.707] 1.0 10.0

3p  1.0 3.0 -1.0 [0,1,0] [-1,0,0] [0,0,1] 0.0 0.0 
Table 7.6. Example Geometric Constraints 

 

i ix  iy  iz  idx
du

 idy
du

 idz
du

 
2

2
id x

du

2

2
id y

du

2

2
id z

du

3

3
id x

du

3

3
id y

du
 

3

3
id z

du
 

1 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 2.0 1.0 1.0 0.0 0.707 -.707 -1.0 0.0 0.0 0.0 7.0679 7.0679

3 1.0 3.0 -1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Table 7.7. Calculated Parametric Constraints 

1p

2p

3p

0, 0κ τ= =

1, 10κ τ= =

0, 0κ τ= =
0u =

1u =

2u =

 
Figure 7.11. Generated Spatial Curve 
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7.1.5. Motion Planner Implementation 

The last few sections have described the mathematical process for generating a 

spatial curve based on geometric properties. Once this framework was developed, the 

results were integrated into an OSCAR-based Motion Planner software package. A 

schematic overview of this is shown in Figure 7.12.  

MP API

Trajectory 
Generator

Kinematics & 
Redundancy

Manipulator 
Parameters

Joint Position, Speed & 
Acceleration Limits

Servo Interface/ 
Simulation

,c cθ θ,a aθ θ

 
Figure 7.12. Motion Planner Schematic 

One of the main issues in implementing the results of this research into an actual 
manipulator Motion Planner was determining how best to define ( )u f t= . This is 

necessary in order to accurately control the spatial velocity along a parametrically defined 

path. In Chapter 6, a method that was structured in terms of an interpolater previously 
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designed for CNC machines [63] was described. This method uses both the geometric 

properties of the curve as well as the physical motion properties (velocity and 

acceleration) to determine a value of the geometric parameter u at every sample period. 

This formulation is shown in Equation 7.15. This equation shows how u can be stepped 

forward at each sampling period using the first and second order parametric values along 

with the desired velocity and acceleration. A more detailed description of this 

formulation can be found in Section 6.3.2.4. The resulting output velocity profile is 

shown in Figure 7.13.  

( ) ( ) ( )
2

2
22

1 42i i
i

d dv t
v t a t du dutu u t
d d d

dudu du

+

⎛ ⎞⎛ ⎞⎛ ⎞ ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ∆ ⎝ ⎠⎜ ⎟⎜ ⎟= + ∆ + −
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

p p

p p p
 7.15 

 
Figure 7.13. Resulting Velocity Profile 
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Once a good method for describing the motion along a curve was defined, this 

method, along with the low-level curve generation, was integrated into the existing 

Motion Planner architecture. This allows a user to quickly and easily use the methods 

generated in this work and apply them to a variety of mechanical systems. A small 

example of sample code used to generate a motion using this software is shown in Figure 

7.14. This code has two main functions: PlanMoveViaGeometric() and 

GetJointPosition(). In PlanMoveViaGeometric(), the parameters and coefficients 

necessary to build a parametric description of the curve based on the geometric 

constraints are calculated. Then, GetJointPosition() can be called to find the joint 

positions that will step the manipulator along the calculated path. 

 
Figure 7.14. Example MP Code 

7.2. DEMONSTRATION 

7.2.1. Introduction 

The first part of this chapter described the development and implementation of a 

new method for defining spatial motions. This work had three basic steps. First, the local 

geometric properties of curvature and torsion were studied in detail to provide a better 

  double moveTime=5.0; 
  if (!motionPlanner.PlanMoveViaGeometric(currentJoints, 
                                          ctrlPoints,  
                                          moveTime)){ 
    DisplayError(motionPlanner.GetError()); 
    return 0; 
  } 
 
  do{ 
    if (!motionPlanner.GetJointPosition(currentJoints,  
                                        jointVel, 
                                        state)){ 
      DisplayError(motionPlanner.GetError()); 
      break; 
    } 
    SetJoints(currentJoints); 
 
  }while(state != TrajectoryGenerator::TrajectoryComplete); 
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physical understanding. Then, a method to convert these properties into parametric 

constraints that can be used to define a spatial curve was developed. Finally, the resulting 

curve generation method was implemented inside an OSCAR-based Motion Planner. 

Now, this section will demonstrate how these methods can all be used to plan spatial 

motions for manipulators. First, a simple simulation environment will be described. Then, 

it will be shown how (and why) the various geometric constraints (i.e. curve parameters) 

can be modified to affect the local geometry at key frames of interest. Then, an example 

of how to string these together into an overall path plan will be shown. Finally, the affects 

of different velocity profiles on the motion of the manipulator will be explored. 

7.2.2. Simulation Environment 

The simulation environment used for this demonstration is shown in Figure 7.15. 

This shows a 7-DOF Mitsubish PA-10 manipulator and four key frames of interest. These 

frames are: 

1. Initial manipulator configuration (i.e. home position) 

2. A frame attached to a spherical object 

3. A frame attached to a tray pick-up point 

4. Final manipulator configuration (before returning to Position 1) 

Thus, frames 2 and 3 are attached to specific objects (geometries) while frames 1 

and 4 are not. The position and orientation of these frames must be defined carefully as 

the geometric constraints developed in this work always work relative to these frames. 

For example, the normal vector at frame 2 is defined to be pointing into the sphere to 

allow curvature to control the motion along the sphere’s surface. Similarly, the tangent 

vector at frame 3 is defined to be pointing into the tray pick-up point to allow a cusp to be 

defined around this tangent. It should be noted that the positioning of these frames would 

most likely be done by the engineer designing the various components and would be 
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provided to the operator. The positions and orientations of these frames are shown in 

Table 7.8. 
Frame p  T̂  N̂  B̂  

1 [ ]0.106, 0.0, 0.975 [ ]1, 0, 0  [ ]0, 1, 0− [ ]0, 1, 0−  

2 [ ]0.4, 0.15, 0.5  [ ]0, 1, 0− [ ]0, 0, 1− [ ]1, 0, 0  

3 [ ]0.5, 0.3, 0.525−  [ ]1, 0, 0  [ ]0, 1, 0  [ ]0, 0, 1  

4 [ ]0.2, 0.5, 0.6−  [ ]0, 1, 0− [ ]0, 0, 1− [ ]1, 0, 0  
Table 7.8. Key Frame Positions and Orientations 

1

2 3
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T̂

B̂

N̂

T̂

B̂

( )N̂ T̂

B̂

N̂

T̂

B̂

N̂

 
Figure 7.15. Simulation Environment 
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7.2.3. Tangent Scaling 

As mentioned in Section 5.2 and 6.3.2.1, the simplest parameter that can be used 

to affect the shape of the curve is the tangent scale. This parameter basically shows that 

the first-order properties d
du

⎛ ⎞
⎜ ⎟
⎝ ⎠

p  can be multiplied by any positive scalar while still 

maintaining the same geometric tangent. Thus, the first order parametric constraints are 

defined based on this value as ( )ˆ ud scale
du

= ×
p T . For example, suppose all of the higher-

order geometric parameters were set to zero ( )0κ τ κ τ′ ′= = = = and only the tangent 

scale was changed. In this case, the first order parametric constraints for three different 

values could be calculated as shown in Table 7.9 with the higher-order parametric 

constraints all being set to zero. The resulting family of curves is shown in Figure 7.16 

for these three values. From this plot, the curve is moving relative to each frame only in 

the direction of the unit tangent vector. This is expected, because the higher-order 

geometric properties are all zero. This parameter can be useful in changing the overall 

shape of a curve without affecting the local higher-order geometric constraints at the 

frames. For the rest of this demonstration, a tangent scale of 0.25 is used to highlight the 

other parameters.  

 scale 
1d

du
p  2d

du
p  3d

du
p  4d

du
p  

Path A 0.25 [0.25, 0.0, 0.0] [0.0, -0.25, 0.0] [0.25, 0.0, 0.0] [0.0, -0.25, 0.0]

Path B 0.50 [0.50, 0.0, 0.0] [0.0, -0.50, 0.0] [0.50, 0.0, 0.0] [0.0, -0.50, 0.0]

Path C 0.75 [0.75, 0.0, 0.0] [0.0, -0.75, 0.0] [0.75, 0.0, 0.0] [0.0, -0.75, 0.0]
Table 7.9. Parametric Constraints with Varying Tangent Scale 
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2T̂
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Figure 7.16. Effect of Varying Tangent Scale 

One other important physical property of this parameter is that it is very 

dependent on the scale of the environment. For example, the points and curves defined in 

this demonstration are in meters and thus relatively small (i.e. < 1.0). However, if these 

points were instead defined in millimeters, these points would be much larger (up to 

~1000). In this case, the tangent scale would need to be increased by a magnitude of 1000 

as well in order to provide the same relative motion. Thus, the order of magnitude used 

for varying this parameter will be very dependant on the specific environment. Now, the 

next sections will show how the higher-order geometric parameters can be used to define 

the local shape around the desired frames. 
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7.2.4. Curvature 

The simplest geometric constraint described in this research is curvature, κ . 

Curvature represents the reciprocal of the local radius of curvature. Thus, increasing 

curvature will increase the bending around the desired frame of interest. Curvature 

defines the second-order parametric constraint by the relationship 
22

2
ˆd d

du du
κ=

p p N  (see 

Section 5.3). For example, Table 7.10 shows the parametric constraints calculated for 

three different values of curvature, and Figure 7.17 shows the resulting curves around 

frame 2. This clearly shows that increasing the curvature value increases the bending in 

the curve. Locally, this bending will occur within the osculating plane and around the unit 

normal vector. Thus, the placement of the frame is important. Here, the unit normal is 

simply defined to be normal to the surface of the object facing inside as can be seen in 

Figure 7.15. As the curvature increases, the curve appears to more closely match the 

shape of the sphere. However, if the curvature value gets too high (greater than 1/r), the 

curve will bend at a sharper rate locally than the sphere and cause undesired collisions. 

Thus, the maximum value of curvature allowed at an interaction point is constrained by 

the geometry of the part. 

 κ  2dx
du

2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

 

Path A 1.0 0.0 -0.25 0.0 0.0 0.0 -0.0625 

Path B 10.0 0.0 -0.25 0.0 0.0 0.0 -0.625 

Path C 20.0 0.0 -0.25 0.0 0.0 0.0 -1.25 
Table 7.10. Parametric Constraints with Varying Curvature at Frame 2 
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B
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C

 
Figure 7.17. Varying Curvature at Frame 2 

A similar analysis can be done at frame 2. Table 7.11 shows the calculated 

parametric constraints for three different values of curvature at a cusp, and Figure 7.18 

shows the resulting curves. Once again, the larger values of curvature represent a larger 

bending. At a point such as this where an insertion/extraction task is taking place, it is 

probably desirable to have a lower value for curvature to create a “straighter” approach to 

the tray pickup point. For a free space task (such as picking an item off a conveyor), a 

larger curvature value may be useful. It should be noted that we use the geometric 

interpretation of a cusp here (unit tangent vector inverting) instead of the mathematical 

interpretation (κ = ∞ ). This is done because an infinite curvature leads to undefined or 

uncontrollable parametric constraints. 
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 κ  3dx
du

3dy
du

3dz
du

2
3

2

d x
du

2
3

2

d y
du

 
2

3
2

d z
du

 

Path A 1.0 0.25 0.0 0.0 0.0 0.0625 0.0 

Path B 10.0 0.25 0.0 0.0 0.0 0.625 0.0 

Path C 20.0 0.25 0.0 0.0 0.0 1.25 0.0 
Table 7.11. Parametric Constraints with Varying Curvature at Frame 3 
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Figure 7.18. Varying Curvature at Frame 3 
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7.2.5. Torsion 

The next geometric constraint studied in this work is torsion. As mentioned in the 

earlier studies of these properties, curvature basically defines the motion in the osculating 

plane while torsion defines the motion out of the plane (i.e. the bi-normal direction). 

Also, as mentioned earlier, torsion has less of an effect on the shape of the curve than 

curvature for similar numerical values. Thus, higher values of torsion are required to have 

noticeable effects. Torsion is used to define the third-order parametric constraints. To do 

this, the parametric equation is written as shown in Equation 7.16.  

( ) ( ) ( ) ( )
( ) ( ) ( )2 2 2

x y z y z y x z x z z x y x y
u

y z y z x z x z x y x y
τ

′′′ ′ ′′ ′′ ′ ′′′ ′′ ′ ′ ′′ ′′′ ′ ′′ ′′ ′− + − + −
=

′ ′′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′′ ′− + − + −
 7.16 

Because the first and second-order parametric constraints have already been 

defined, these values can be considered constants in this equation. Then, solving for the 

third-order parametric constraints becomes equivalent to solving the simple linear system 

shown in Equation 7.17 (see Section 5.4 for full derivation). 

( ) 0 0 0u a x b y c zτ ′′′ ′′′ ′′′= + +  7.17 

For example, Table 7.12 shows the parametric constraints for varying torsions at 

frame 2, and Figure 7.19 shows the resulting curves. Another thing to note is that, unlike 

curvature which is always positive, torsion is a signed value. Thus, the positive values of 

torsion cause the curve to bend in the direction of the bi-normal vector, and the negative 

values cause it to bend in the opposite direction of the bi-normal vector. Increasing the 

magnitude of torsion also increases the amount of bending in this direction. 
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 κ  τ  2dx
du

 2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

3
2

3

d x
du

 
3

2
3

d y
du

 
3

2
3

d z
du

Path A 20 50 0.0 -0.25 0.0 0.0 0.0 -1.25 15.625 0.0 0.0 

Path B 20 100 0.0 -0.25 0.0 0.0 0.0 -1.25 31.25 0.0 0.0 

Path C 20 -50 0.0 -0.25 0.0 0.0 0.0 -1.25 -15.625 0.0 0.0 

Path D 20 -100 0.0 -0.25 0.0 0.0 0.0 -1.25 -31.25 0.0 0.0 
Table 7.12. Parametric Constraints for Varying Torsion at Frame 2 
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Figure 7.19. Varying Torsion at Way Point 1 with κ = 20  

Now, it is useful to look at this family of curves from several points of view to 

fully understand the physical effects of these parameters on the curve. Figure 7.20 shows 

the same family of curves shown above from a slightly different angle. From this angle, it 

can be seen that these curves also have motion outside of the plane defined by the tangent 
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and bi-normal vectors (i.e. the view shown in Figure 7.19). This makes sense, because 

these curves also have values for curvature14 which should generate some motion in the 

osculating plane (the tangent-normal plane). 

( )N̂
T̂

B̂

 
Figure 7.20. Varying Torsion at Frame 2 from a different perspective 

Figure 7.21 shows this family of curves as viewed along the bi-normal vector (i.e. 

the osculating plane). This shows that locally the behavior of these curves is identical in 

this plane. This follows since as the curvature fully defines the motion in this plane, and 

all of these curves have identical values of curvature.   

                                                 
14 In fact, these curves must have positive values of curvature, because torsion is undefined for zero 
curvature. 



 205

T̂

( )N̂

 
Figure 7.21. Varying Torsion from perspective of Osculating Plane 

One other physical property of torsion is that the motion in the bi-normal 

direction is affected both by curvature and torsion. Thus, by lowering the value of 

curvature at a point, the relative effects of torsion also become smaller. For example, 

consider the same values of torsion as before with smaller values for curvature as shown 

in Table 7.13. The resulting family of curves is shown in Figure 7.22. Thus, if a curve is 

being designed by simply modifying these properties, a desirable value of curvature 

should be found first.  

 κ  τ  2dx
du

 2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

 
3

2
3

d x
du

 
3

2
3

d y
du

 
3

2
3

d z
du

Path A 5 50 0.0 -0.25 0.0 0.0 0.0 -.3125 3.9063 0.0 0.0 

Path B 5 100 0.0 -0.25 0.0 0.0 0.0 -.3125 7.8125 0.0 0.0 

Path C 5 -50 0.0 -0.25 0.0 0.0 0.0 -.3125 -3.9063 0.0 0.0 

Path D 5 -100 0.0 -0.25 0.0 0.0 0.0 -.3125 -7.8125 0.0 0.0 
Table 7.13. Parametric Constraints for Varying Torsion at Frame 2 
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Figure 7.22. Varying Torsion at Way Point 1 with κ = 5  

As before, we can also view this family of curves along the bi-normal vector to 

examine the motion in the osculating plane. This is shown in Figure 7.23. As expected, 

this family of curves has a much smaller motion in the osculating plane than the curves 

shown in Figure 7.21 due to the smaller values of curvature. However, the motion 

relative to osculating plane is still identical locally. 
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T̂

( )N̂

 
Figure 7.23. Perspective on Osculating Plane 

These physical results can be further explained using the relationships shown in 

Equation 7.18 (first presented in Section 2.4.2). These relationships approximate the local 

motion of a curve in terms of curvature and torsion where the x1, x2, and x3 axes 

correspond to the Tangent, Normal, and Bi-normal directions [26]. These equations show 

that curvature is the dominant factor in motion along the normal vector (in the osculating 

plane) while both curvature and torsion affect the motion in the bi-normal direction (out 

of the osculating plane). Also, because these relationships are only valid in a local sense, 

the values of s would be very small for the relevant local region. Thus, s2 would be much 

larger than s3. This further explains why torsion values must be higher than curvature 

values to have much effect on the local shape of a curve. 
( )

( )

( )

1

2
2

3
3

0

0
2

0
6

x s

x s

x s

κ

κτ

= +

= +

= +

 7.18 
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A similar family of curves with varying torsion is shown for the second frame in 

Figure 7.24. The parametric constraints for these curves are shown in Table 7.14. As 

before, positive/negative torsion is used to define the motion approaching and leaving the 

cusp point. Here, the motion is relative to the z axis as that is the direction the bi-normal 

vector is pointing (see Table 7.8). 

 κ  τ  3dx
du

 3dy
du

3dz
du

2
3

2

d x
du

2
3

2

d y
du

2
3

2

d z
du

3
3

3

d x
du

 
3

3
3

d y
du

 
3

3
3

d z
du

 

Path A 20 50 0.25 0.0 0.0 0.0 1.25 0.0 0.0 0.0 15.625 

Path B 20 100 0.25 0.0 0.0 0.0 1.25 0.0 0.0 0.0 31.25 

Path C 20 -50 0.25 0.0 0.0 0.0 1.25 0.0 0.0 0.0 -15.625

Path D 20 -100 0.25 0.0 0.0 0.0 1.25 0.0 0.0 0.0 -31.25 
Table 7.14. Parametric Constraints with Varying Torsion at Frame 3 
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Figure 7.24. Varying Torsion at Way Point 1 
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7.2.6. Higher-Order Properties 

The last two sections described the effects of curvature and torsion on the local 

geometry of a curve and showed how these parameters could be varied to produce 

familes of local curves. However, it was shown in Chapter 5 how to formulate parametric 

constraints for d
du
κ  and d

du
τ  as well. While these parameters can also affect the shape of 

the local geometry of a curve, the influences of curvature and torsion are much larger 

(relatively). Thus, larger magnitudes must be provided for these constraints to have much 

effect on the local geometry of the curve. For example, Table 7.15 shows the parametric 

constraints for three differing values of d
du
κ  (see Section 5.4 for derivation), and Figure 

7.25 shows a family of curves created by varying this parameter. From this plot, it can be 

seen that these curves do not vary greatly despite the large magnitudes for d
du
κ  (0, 200, 

and 400). 

 κ  κ′  2dx
du

 2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

 
3

2
3

d x
du

 
3

2
3

d y
du

 
3

2
3

d z
du

 

Path A 10 0 0.0 -0.25 0.0 0.0 0.0 -0.625 0.0 0.0 0.0 

Path B 10 200 0.0 -0.25 0.0 0.0 0.0 -0.625 0.0 0.0 -12.50

Path C 10 400 0.0 -0.25 0.0 0.0 0.0 -0.625 0.0 0.0 -25.00
Table 7.15. Parametric Constraints for Varying Derivative of Curvature at Frame 2 

The best way to understand the physical meaning of derivative of curvature is to 

think of its relationship to the actual curvature value (i.e. reciprocal of local radius of 

curvature). The derivative of curvature represents how fast the curvature value is 

changing at a particular point. Thus, if a zero value is provided, this represents a local 

minima or maxima in the curvature profile at the point. This will result in a better match 

for this constraint at the given point. A large value for d
du
κ  means that the curvature is 

rapidly changing at the given point. For example, a large positive value for this parameter 
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means that the curvature is rapidly increasing at the desired point. This means that the 

curvature approaching the point will be much smaller than the curvature leaving the 

point. This can be seen in Path C in Figure 7.25 ( 400d
du
κ
= ). This curve approaches the 

point with a fairly straight trajectory and leaves with sharper bending. For a value of zero, 

the bending is symmetric around the specified point. 

B

A

C

B
A

C

10κ =

 
Figure 7.25. Varying Derivative of Curvature 

Similarly, a good way to understand the physical meaning of d
du
τ  is to relate it to 

torsion. Derivative of torsion represents how fast the value of torsion is changing at some 

particular point. Thus, for example, a large positive value of d
du
τ  would mean that the 

torsion approaching the point is much smaller than the torsion leaving the point. This was 

used along with a constraint of 0τ =  to create spatial saddle points in Section 4.4.3. The 

concept is that by setting 0τ =  and d
du
τ  to some large positive value the torsion 

approaching the point will be negative and leaving the point will be positive. Thus, the 



 211

curve will switch directions in its motion relative to the bi-normal vector. The opposite 

result will occur when specifying a large negative value of d
du
τ . 

For example, consider the geometric/parametric constraints shown in Table 7.16 

(see Section 5.5 for full derivation). This shows three path specifications with 0τ =  and 

varying values for d
du
τ  (with 10κ =  and 0κ′ = ). As with torsion relative to curvature, 

the derivative of torsion requires larger values relative to the derivative of curvature to 

have noticeable effects on the geometry of the curve. The resulting family of curves is 

shown in Figure 7.26. As expected, the larger values of d
du
τ  lead to a sharper bend around 

the bi-normal vector. Thus, physically, this parameter is useful to describing motions 

where the curve needs to change directions relative to the bi-normal vector at a particular 

point. 

 
 Path A Path B Path C 
κ  10 10 10 
κ′  0 0 0 
τ  0 0 0 
τ ′  1000 5000 10000 

d
du
p  [0.0, -0.25, 0.0] [0.0, -0.25, 0.0] [0.0, -0.25, 0.0] 

2

2

d
du

p  [0.0, 0.0, -0.625] [0.0, 0.0, -0.625] [0.0, 0.0, -0.625] 

3

3

d
du

p  [0.0, 0.0, 0.0] [0.0, 0.0, 0.0] [0.0, 0.0, 0.0] 

4

4

d
du

p  [156.25, 0.0, 0.0] [781.25, 0.0, 0.0] [1562.5, 0.0, 0.0] 

Table 7.16. Parametric Constraints with Varying Derivative of Torsion at Frame 2 
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Figure 7.26. Varying Derivative of Torsion 

7.2.7. Summary of Geometry Parameters 

In the last sections, each geometric parameter developed in this research was 

discussed, and the local effects of these parameters were examined. These parameters 

represent degrees of freedom that a user or operator can utilize in designing the geometry 

of spatial curves. These parameters can be used either to interactively modify the 

geometry of a curve or to define a specific physical constraint on the curve (e.g. matching 

the radius of curvature of a spherical object). Table 7.17 provides a summary of these 

geometric parameters as discussed in the previous sections. 
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Table 7.17. Summary of Geometric Parameters 

Geometric 

Constraint 
Symbol Description Example Results 

Tangent Scale scale 

This parameter controls the “bias” towards 
the unit tangent vector. Physically, it is 
important for adjusting for the scale of the 
environment (e.g. meters vs. millimeters, 
etc). It also allows for some interactive 
control over the global shape of the spatial 
curve (without affecting the local 
geometric parameters). 

• Table 7.9 shows the effect on the first-order 

parametric constraints ( )d
du

p  for three different 

values for the tangent scale (0.25, 0.5, 0.75) 
• Figure 7.16 illustrates visually how this parameter 

influences the local geometry along the unit 
tangent 

Curvature κ  

Used to define the local reciprocal of radius 
of curvature. A zero value corresponds to a 
straight line while an infinite value 
corresponds to a discontinuity in the unit 
tangent vector. Interactively, this parameter 
can be used to control the local “bending” 
around a frame. Physically, this can be 
used to match the geometry of an object or 
task with a desired radius. 

• Table 7.10 shows the influence of curvature on the 

second-order parametric constraints 
2

2
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p  for 

varying values of curvature (1, 10, 20) at a 
spherical object.  

• Figure 7.17 provides a visual illustration of 
varying curvature at the spherical object. As the 
curvature increases, the curve follows the surface 
of the sphere more closely. 

• Table 7.11 shows the second-order parametric 

constraints 
2

2
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p  of varying values of 

curvature (1, 10, 20)  at a cusp point 
• Figure 7.18 demonstrates visually the effects of 

varying curvature at the cusp point. Smaller values 
of curvature provide a straighter approach to the 
point, and larger values create more open cusp. 
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Torsion τ  

Used to control the motion in the direction 
of the bi-normal vector (i.e. motion out of 
the osculating plane). A positive value will 
make the curve locally move in the bi-
normal direction and a negative value will 
make the curve locally move in the inverse 
of the bi-normal direction. Torsion can also 
be coupled with curvature to describe 
specific physical spatial shapes (e.g. 
helices). 

• Table 7.12 shows the relationships between torsion 
and the third-order parametric constraints 

3

3
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p  for four values of torsion (50, 100, -50, 

-100) with a value of 20κ = . These numeric 
values must be large relative to curvature to 
provide similar geometric effect. 

• Figure 7.19 illustrates visually the effect of this 
parameter on motion in the bi-normal direction. As 
the magnitudes get larger, the motion in the bi-
normal direction becomes more pronounced. Also, 
positive and negative values are used to define the 
motion in either the bi-normal or inverse bi-normal 
directions. 

• Figure 7.20 and Figure 7.21 show this family of 
curves from different points of view to further 
illustrate the local effect of torsion. This 
demonstrates that curvature controls motion 
relative to the osculating plane and torsion controls 
motion outside of the osculating plane. 

• Table 7.13 shows the relationships between torsion 
and the third-order parametric constraints 

3

3
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p  for four values of torsion (50, 100, -50, 

-100) with value of 5κ = . 
• Figure 7.22 shows the resulting family of curves. 

This plot demonstrates the coupling of curvature 
and torsion by showing a much smaller effect 
compared to the earlier result with 20κ = . 

Table 7.17 (cont.) 
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• Table 7.14 and Figure 7.24 show the parametric 
constraints and resulting family of curves for 
varying torsion values (50, 100, -50, -100) at a 
cusp point. As before, this plot shows that torsion 
has an effect on the local motion in the bi-normal 
direction. 

Derivative of 
Curvature κ′  

Controls the rate of change of the curvature 
around a point. This can be useful for 
altering the behavior of the curvature 
around a specific frame. For example, a 
large positive value will make the curve 
“flatter” when approaching a point than 
leaving the point. A zero value will force a 
local minima or maxima in the curvature 
profile that will lead to a better match for 
the desired curvature. 

• Table 7.15 demonstrates the influence of 
derivative of curvature on the 3rd order parametric 

constraints 
3

3
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p  at a spherical object for 

three values (0,200,400).  
• Figure 7.25 shows the geometric effect of this 

parameter on the curve. With a zero value, the 
curve closely matches the curvature both 
approaching and leaving the specified point. For 
larger positive values, the bending leaving the 
point will be greater than approaching.  

Derivative of 
Torsion τ ′  

Controls the rate of change of the torsion 
around a point. This parameter can be used 
to change the direction of motion along the 
bi-normal vector. For example, a zero value 
for torsion and a large positive value for τ ′  
will force the torsion to be negative when 
approaching a point and positive when 
leaving the point. A zero value will force a 
local minima or maxima in the torsion 
profile that will lead to a better match for 
the desired torsion. 

• Table 7.16 demonstrates the effect of derivative of 
torsion on the 4th order parametric constraints 

4

4
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p  for three values of τ ′  (1000, 5000, 

10000).  
• Figure 7.26 shows a family of spatial saddles 

points generated by varying derivative of torsion. 
This shows that the motion of the curve in the bi-
normal switches at the defined position. 

 

Table 7.17 (cont.) 
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7.2.8. Full Motion Specification 

In the previous sections, it has been shown how the local geometric properties at 

each frame can be used to define the motion relative to that frame. In this section, it will 

be shown how these various local constraints can be blended together into an overall 

motion plan. For this example, the geometric constraints at the first and last frame are 

assumed to be zero (i.e. only a tangent specification) as these frames are sitting freely in 

space rather than being attached to a physical geometry. Then, the curvature and torsion 

are varied at frames 2 and 3 to produce different overall motions. Derivative of curvature 

( )κ ′  and torsion ( )τ ′  are also set to zero in this demonstration as the local effects of 

these parameters are difficult to visualize relative to the overall motion. The geometric 

constraints used for frames 2 and 3 are shown in Table 7.18. 

 
 Frame 2 Frame 3 
 κ  τ  κ τ  

Path A 5 -50 1 0 

Path B 10 -50 10 100 

Path C 20 -50 10 -100
Table 7.18. Local Geometric Constraints 

As before, these geometric constraints are converted into parametric constraints to 

define the overall curve geometry using the process described in Section 7.1.4. The 

calculated parameteric constraints for frame 2 and 3 are shown in Table 7.19 and Table 

7.20, respectively. 
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 2dx
du

 2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

 
3

2
3

d x
du

 
3

2
3

d y
du

 
3

2
3

d z
du

Path A 0.0 -0.25 0.0 0.0 0.0 -0.3175 -3.9063 0.0 0.0 

Path B 0.0 -0.25 0.0 0.0 0.0 -0.625 -7.8125 0.0 0.0 

Path C 0.0 -0.25 0.0 0.0 0.0 -1.25 -15.625 0.0 0.0 
Table 7.19. Parametric Constraints at Frame 2 

 

 3dx
du

 3dy
du

 3dz
du

2
3

2

d x
du

2
3

2

d y
du

 
2

3
2

d z
du

3
3

3

d x
du

3
3

3

d y
du

 
3

3
3

d z
du

 

Path A 0.25 0.0 0.0 0.0 0.0625 0.0 0.0 0.0 0.0 

Path B 0.25 0.0 0.0 0.0 0.625 0.0 0.0 0.0 15.625 

Path C 0.25 0.0 0.0 0.0 0. 625 0.0 0.0 0.0 -15.625
Table 7.20. Parametric Constraints at Frame 3 

 

Now, these parametric constraints can be blended together to form the overall 

path geometry as shown in Figure 7.27. While the exact effects of the geometric 

constraints can be difficult to interpret, the relative effect of these constraints can be seen 

at each frame. For example, Path A appears to have the least bending at the Frame 2 

while Path C has the sharpest bending. This is the expected behavior based on the 

assigned curvature values. At Frame 3, the effects of the assigned torsion values can be 

seen. Path B approaches and leaves the cusp point moving in the positive z direction (i.e. 

the bi-normal direction) due to its positive torsion value while the opposite behavior can 

be seen in Path C due to its negative torsion. Thus, the behavior of the local geometry 

around each frame is in line with the physical understanding of curvature and torsion 

outlined in the previous sections (7.2.1-7.2.7) of this report. 
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Figure 7.27. Overall Motion Trajectory 

7.2.9. Motion Profiles 

The previous section showed how to define the local geometry of the spatial path. 
Now, a spatial motion must be defined on top of this geometry ( )( )u f t=  to provide a 

continuous path function through the desired points. As mentioned before, this involves 

defining a desired velocity profile and then using a 2nd order approximation to determine 

the correct value of u at every sampling period (100 hz in this example). This velocity 

profile, as defined in Section 6.3.2.4, is created by specifying a move time and then 

calculating the required spatial velocity and acceleration based on the total arc length of 

the path. This profile will also come to a stop (i.e. zero velocity) at any cusp points to 

prevent an instantaneous change in direction. Thus, a smooth velocity profile is internally 
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defined15 in the MP and the resulting output velocities can be measured to see how well 

the approximation worked. For example, the output velocity profiles for the three paths 

specified in the previous section are shown in Figure 7.28 for a motion time for each of 

10 seconds. 

 
Figure 7.28. Velocity Profiles 

These output (i.e. “measured”) velocity profiles look almost identical from these 

plots. However, there are slight differences that can be difficult to see. First, the peak 

velocity increases slightly from Path A to Path C. This is because the overall arc length of 

the curve increases, and the velocity must also increase to complete the motion in the 

specified time. Also, though it is difficult to see in these graphs, there is some noise in the 

velocity profile. This error is at its largest at frame 2 where the curvature value is large. 

This computational error is summarized in Table 7.21 for each of the three motion 

specifications. This table shows that the maximum error will increase as the higher-order 

geometric properties get larger. It should be noted that this is not a problem at Frame 3, 

because the velocity around this point is small. 

 
                                                 
15 This velocity profile used is not optimal as the main goal here is to measure how accurately the 
approximation method can follow a provided profile. A more in-depth evaluation and comparison of 
various motion profiles can be found in [33][38][50]. 
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 Maximum Velocity Maximum Velocity
Error % Velocity Error 

Path A 0.1855 0.0007 0.3929 
Path B 0.1899 0.0015 0.8135 
Path C 0.1918 0.0026 1.3387 

Table 7.21. Velocity Profile Errors 

Now, the effect of changing the relative move time on the velocity profiles will be 

explored. Figure 7.29 shows the velocity profiles for Path C for three different move 

times: 5, 10, and 15 seconds.  

5s

10s

15s

 
Figure 7.29. Velocity Profiles for Varying Move Times 

As expected, the peak velocities decrease as the overall motion time becomes 

larger. Also, a noticeable error can be seen in the five second profile. This error occurs in 

the constant velocity portion of the first trapezoid and corresponds to the motion at frame 

2 (where the curvature is large). A summary of these errors is shown in Table 7.22. This 

shows that errors will occur in the proposed velocity approximation method (i.e. 

( )u f t= ) at points with large higher-order geometric properties (especially curvature) 

and/or large velocities. There are several potential ways to improve this approximation 
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method. First, a higher-order approximation could be formulated. Also, the errors may be 

lessened by increasing the sampling rate so that there is less distance between sampled 

points. However, the limitations of the actual physical system must be accounted for here 

as well. 
Move  
Time Maximum Velocity Maximum Velocity 

Error % Velocity Error 

5s 0.4658 0.0197 4.2384 
10s 0.1918 0.0026 1.3387 
15s 0.1208 0.0008 0.6355 

Table 7.22. Velocity Profile Errors for Varying Move Times 

7.2.10. Conclusions 

The above sections described how to use the geometric parameters studied in this 

work to create different local geometries for spatial curves. This method is similar to 

some of the methods described earlier in Chapter 3 in that it provides variable parameters 

that can be used to to change and adjust the shape of the spatial curve. However, in this 

work, these variable parameters (i.e. geometric constraints) have clear physical meaning 

that should be useful in defining physical tasks and interactions. These techniques have 

also been packaged into a robot-independent software architecture. This allows for the 

motion along a curve defined by geometric constraints to be easily programmed for a 

variety of physical systems and manipulators. The next section of this report will describe 

future improvements to the techniques developed in this work as well as describe some 

potential future application areas. 

7.3. FUTURE WORK 

In this section, several suggestions for future extension and application of this 

research will be presented. First, a number of improvements that can be made to the 

existing framework will be suggested. This involves the low-level curve generation 
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mathematics, rotational motion specification, and the actual software implementation. 

Then, a number of future applications and areas of potential research will be described.  

7.3.1. Curve Generation Techniques 

The main focus of this research has been on the understanding and definition of 

physical constraints for manipulator path planning. This started with a thorough study of 

curvature and torsion in Chapter 4, and then these geometric constraints were converted 

into parametric constraints in Chapter 5. While several curve generation techniques such 

as polynomials and trapezoids (see Appendix B for a further description) were briefly 

examined, curve generation schemes have not been a priority. This section will present 

several possibilities for future work in this area. 

One of the main goals of most curve generation schemes is to keep the curve of as 

low order as possible to prevent unpredictable behavior. However, the methods 

developed in this work require parametric constraints to be defined up to the fourth order. 

Thus, by necessity, high order curves must be defined to meet these constraints. Along 

these lines, one of the simplest ways to improve this scheme would be to keep the order 

of the curve as low as possible. This can be easily done by only utilizing the required end 

constraints to define a curve. For example, if only a curvature constraint needs to be 

defined at an end point, parametric constraints need only be defined up to the second 

order. This simple improvement may produce better behavior between end constraints. 

Another important area of future work is the application/comparison of different 

curve generation techniques. While this research focused on the generation of parametric 

end constraints for curves, some of the methods reviewed in Chapter 3 can now be used 

to meet these constraints. For example, consider the nth order Bezier curve defined by 
Equation 7.19 where ib  represent a set of control points and ( )n

iB u  represent the Bezier 

basis functions. 
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( ) ( ) [ ]
0

, 0,1
n

n
i i

i
u B u u

=

= ∈∑p b  7.19 

Now, the parametric derivatives of this curve at the end points can be easily 

calculated [10]. Equation 7.20 shows the first-order derivatives, and Equation 7.21 shows 

the second-order derivatives. As mentioned in Chapter 3, Bezier curves are often 

designed by interactively moving the control points ( ib ) to form the desired visual curve. 

However, these equations show that the same geometric based constraints developed in 

this work can be used to define the location of these control points. Thus, the same local 

phenomena can be described using Bezier curves. An example of this for varying 

curvature at a specific point is shown in Figure 7.30. 
( ) ( )

( ) ( )

1 0

1

0

1
n n

d
n

du
d

n
du −
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= −
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1κ =

5κ =

15κ =

 
Figure 7.30. Bezier Curves with Curvature Specification 

Similarly, higher-order parametric derivatives can be defined to satisfy higher-

order geometric constraints. It is useful to look into these curve generation techniques as 

the resulting curves come with several positive properties (Convex Hull, Variation 

Diminishing, etc) that provide some determination of curve behavior. Likewise, some of 

the other techniques discussed in Chapter 3 (such as B-Splines, Beta Splines, and A-

Splines) could be solved to meet specific parametric constraints. This allows for the same 

physical meanings defined as part of this work to be formulated into other existing curve 

generation schemes. A more thorough comparison of these techniques as well as 

Polynomial and Trapezoidal specifications could be an interesting area for future 

research. 
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7.3.2. Rotational Motion Specification 

While Chapter 6 provided a brief overview of some different ways to describe 

rotational motions, a more in-depth look at this problem is needed. This section will 

provide several potential areas of future work. One potentially interesting area of work 

discussed in Section 6.3.3.2 was using the motion of the Frenet Frame along the curve to 

define the rotational motion. However, this method has some drawbacks. For one, it is 

difficult to predict how the frame will vary along a curve with large higher-order 

properties. Second, the frame can hit singularities and points where it is undefined (as in 

when curvature vanishes). One potential way to avoid this problem while still relating the 

rotational motion to the geometry of the curve is using parallel transport frames [11][19]. 

These frames take advantage of the fact that only the unit tangent vector is 
actually attached to the geometry of the curve. Then, a set of vectors { }1 2

ˆ ˆ,N N  

perpendicular to the tangent can be defined to vary smoothly along the curve (Equation 

7.22). This will lead to a non-singular rotational motion along the curve since the tangent 

vector should never vanish. A full algorithm for how to develop these curves is provided 

in [19] and analogous methods for quaternion frames are shown in [20][21]. 

1 2
1

1 1

2 2
2

ˆ

ˆ0ˆ ˆ0 0
ˆ00ˆ

d
ds k k
d k
ds

k
d
ds

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

T

T
N N

NN

 7.22 

While in many applications (such as pick and place operations) it may be 

desirable to base rotational motion on the translational geometry, it is often better to plan 

rotational motions independent of the translation. Several methods for performing 

orientation-to-orientation interpolation were demonstrated in Chapter 6 as well as one 
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method for describing a motion through multiple quaternions. However, it may also be 

possible to develop a method for rotational planning analogous to the translational work 

done in this report. 

This could be accomplished by defining local rotational motions at frames of 

interest. This would probably involve defining the instantaneous velocities in either the 
world frame { }, ,x y zθ θ θ  or the local frame (frenet or tool) { }, ,T N Bθ θ θ . Another 

possibility is to define an axis and angular velocity (as in an Equivalent Axis 

formulation). This will allow local rotational motion to be described around a specific 

axis. This axis could once again be defined either in the world frame or some local frame. 

Then, these rotational positions and velocities can be blended together in a number of 

ways. 

7.3.3. Software Implementation 

As the software implementation is mainly meant as a testbed for this research, the 

main improvements that can be made would be to include any of the additional methods 

described in the last few sections. For example, the choice of low-level curve generation 

method (polynomial, trapezoidal, Bezier, etc) could be specified by the user. This would 

allow for an easier comparison between different methods. Also, the velocity profiles 

currently implemented are very simple and could be improved. However, with the 

implementation of more complex profiles, the approximation scheme for interpolating the 

geometric parameter u (Equation 7.15) may also need to be improved.  

7.3.4. Future Applications 

In the last section, a number of improvements that can be made to the existing 

framework were suggested. However, a more important area of future work is to apply 

these results to actual physical systems and tasks. This will hopefully allow for a better 
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understanding of the physical capabilities at both a task level and a manipulator level. 

The following sections will briefly introduce some possible application areas. 

7.3.4.1. Task-Based Planning 

One potential area of future work will be to relate the geometric properties of 

curves to physical task-based properties. For example, the relationship shown in Equation 

7.23 was first developed in Section 2.3.2. This equation shows that the acceleration of a 

particle along a curve can be defined by its current frame (the tangent and normal 

vectors), its current speed/acceleration ( /s s ) and its curvature κ . Thus, if the end-

effector is moving at a constant speed, the magnitude of its centripetal acceleration would 

be 2sκ . Thus, this magnitude can be plotted as function of curvature and speed as shown 

in Figure 7.31. While this relationship is quite simple, it shows that the geometric 

properties of curves can be related to actual physical phenomena. 

( ) 2ˆ ˆt s sκ= +a T N  7.23 

Another simple example of this is to use the Darboux vector as described in 

Section 6.3.3.2. The magnitude of this vector ( 2 2κ τ+ ) gives the magnitude of the 

angular velocity of the Frenet Frame as it moves along a curve. Thus, if the rotational 

motion of the end-effector is based on the geometric path (e.g. as in surface polishing), 

the angular velocity can be directly calculated based on the geometric properties of 

curvature and torsion. A visual representation of this is shown in Figure 7.32. 
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Figure 7.31. Centripetal Acceleration Plot 

 
Figure 7.32. Angular Velocity Plot 
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The two examples above are very simple and intuitive. However, they could still 

be of use. For example, if a task requires a certain velocity and has a maximum 

acceleration at a particular point, a maximum allowable curvature can be defined. This 

then becomes a constraint on the geometric parameters. Thus, by studying the physical 

demands and properties required for a variety of tasks, constraints can be developed on 

the geometric parameters. For some tasks, specific values of these parameters will be 

required at particular points. In other tasks, a range of allowable values may be developed 

that gives the operator or user some degree of freedom in the curve specification. 

7.3.4.2. G and H Parameters 

In the last section, it was shown how the geometric properties of spatial curves 

can affect the physical task-level properties. Now, a further extension of this to the 

system-level properties will be presented. These relationships were first developed in an 

earlier work at the RRG [32]. This model consists of kinematic influence coefficients 

which are based only on the geometry of the system [51] (first presented in Section 

1.1.3).  The relationships between input and output velocities and accelerations that 

resulted from this work are shown in Equations 7.24 and 7.25. 

p pG φ⎡ ⎤= ⎣ ⎦v  7.24 

T
p p pH Gφ φ φ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦a  7.25 

The first of these equations shows the relationship between the output velocities at 

the end-effector and the input velocities at the joints.  These are related by the first order 

influence coefficients, where p
p n

n

G
φ
∂

⎡ ⎤ =⎣ ⎦ ∂

v
.  The relationship between the accelerations 

is shown in Equation 7.25.  For this, the second-order influence coefficients are also 

needed, where ( );jk jkm n n
m

H G
φ
∂⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∂

. 
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By substituting these equations into the results the equations for motion along a 

spatial curve, the relationships between the input parameters of a serial manipulator and 

curve properties can be expressed. For example, using the relationship p
d ds d s
ds dt ds

= =
p pv  

with Equation  7.24  leads to Equation 7.26. 

p p
dG s
ds

φ⎡ ⎤= =⎣ ⎦
pv  7.26 

By moving the s  to the left hand side of this equation, the unit tangent vector can 

be expressed in terms of the G functions and input joint velocities as shown in Equation 

7.27. 

ˆ
pG

s
φ⎡ ⎤= ⎣ ⎦T  7.27 

Similarly, a representation for the Normal Vector, N, can be found (note that this 

is not the Unit Normal, N̂ ).  This is shown in Equation 7.28.  Also, , we know that the 

magnitude of Equation 7.28 is equal to the curvature, κ. Thus, the curvature can be 

completely defined by the input parameters of the system. 
2

2 2

2 2 2

T
p p p

d d s H G G sd dt ds s
ds s s

φφ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= = =

p p
pN  

7.28 

Using Equations 7.27 and 7.28, the Bi-Normal vector can also be described in 

terms of input parameters as shown in Equation 7.29.  This allows for the entire Frenet 

Frame as well as the curvature to be described in terms of input parameters. 
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The fomulations provided in this section show a beginning of how to relate 

geometric properties to the actually physical system inputs. There is still a lot of possible 

work in this area. For one, the relationships developed above only take into account the 

translational (and not rotational) motion along a curve. For the cases where rotation is 

planned completely independent of translation, these relationships should be easy to 

define. However, for rotational motions that are tied to some specific geometry, this may 

become more difficult. Also, not all of the geometric properties studied in this research 

have been formulated in terms of system inputs. However, a more important first step of 

potential research in this area is to demonstrate that these relationships can be used in the 

planning phase to develop geometric paths that meet system capabilities. 

7.4. CONCLUDING REMARKS 

The research presented in this report provides a geometric framework for 

describing spatial curves based on constraints with physical meaning (curvature, torsion, 

and their derivatives). This differs from most current techniques in that these methods 

often involve interactively tweaking control points or parameters to create a visually 

pleasing shape. The benefit of the method presented in this report is that these physical 

constraints provide a better relationship to the physical motion of a manipulator. While 

only the geometric framework for describing these curves was developed in this work, it 

is hoped that future work built on this foundation will lead to a better way of defining 

manipulator motions that can take into account both the task and manipulator 

performance.
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APPENDIX A 

Calculation of A-Spline Coefficients 
First, the scaffold for the section of the curve ( 2 3 0y x− = ) to be captured is chosen as 

[ ]1 0,0p = , [ ]2 1,1p = , and [ ]3 1,0p = . Then, the relationship given in Equation 3.18 is 

inverted to determine ( ) ( )1 2 3, , ,f x yα α α =  as shown in Equation A.1. 
1

1
1 2 3

0 1 1 1
0 1 0

1 1 1
1 1 1 1 1

x x x
p p p

y y y
x y

−
− −⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦

 A.1 

Then, these values for α  (in terms of x and y) can be plugged into Equation 3.19 to 

determine the basis fuctions. For this case, these basis functions are as shown in Equation 

A.2. 

( )3 3 2 2 3
003 , 3 3B x y x x y xy y= − + −  

( )3 2 2 3
012 , 3 6 3B x y x y xy y= − +  

( )3 2 3
021 , 3 3B x y xy y= −  

( )3 3
030 ,B x y y=  

( )3 3 2 2 2 2
102 , 3 6 3 3 6 3B x y x x y xy x xy y= − + − + − +  

( )3 2 2 2
111 , 6 6 6 6B x y x y xy xy y= − + + −  

( )3 2 2
120 , 3 3B x y xy y= − +  

( )3 3 2 2
201 , 3 3 6 6 3 3B x y x x y x xy x y= − − + + −  

( )3 2
210 , 3 6 3B x y x y xy y= − +  

( )3 3 2
300 , 3 3 1B x y x x x= − + − +  

 

A.2 

Now, the coefficients of these polynomials can be extracted and represented as shown in 

Equation A.3 
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( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

3
003

3
012

3
021

3
030

3
102

3
111

3
120

3
201

3
210

3
300

,
1 1 0 3 3 0 0 0 0 0,
0 3 3 6 0 0 0 0 0 0

, 0 3 0 3 0 0 0 0 0 0
, 0 1 0 0 0 0 0 0 0 0
, 3 0 6 3 3 3 6 0 0 0

0 0 6 6 0 0 6 6 0 0,
0 0 0 0 6 6 0 6 6 0,
0 0 0,

,

,

B x y

B x y

B x y

B x y

B x y

B x y

B x y

B x y

B x y

B x y

⎡ ⎤
⎢ ⎥ − −
⎢ ⎥
⎢ ⎥
⎢ ⎥ −
⎢ ⎥
⎢ ⎥
⎢ ⎥ − − −⎢ ⎥ =
⎢ ⎥ − −
⎢ ⎥ − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

3

3

2

2

2

2

3 0 3 0 0 0 0
0 0 3 0 0 0 6 0 3 0
1 0 0 0 3 0 0 3 0 1 1

x
y
x y
xy
x
y
xy
x
y

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎢ ⎥⎣ ⎦

 A.3 

Now, the desired combination for the polynomial basis functions of the original implicit 

equation are determined. In this case, the 2y  term is 1 and the 3x  term is -1. Now, a 

system of linear equations can be solved to determine the bijk coefficients.  
003

012

021

030

102

111

120

201

210

300

1 0 0 0 3 0 0 3 0 1
1 3 3 1 0 0 0 0 0 0
3 3 0 0 6 6 0 3 3 0
3 6 3 0 3 6 3 0 0 0
0 0 0 0 3 0 0 6 0 3
0 0 0 0 3 6 3 0 0 0
0 0 0 0 6 6 0 6 6 0
0 0 0 0 0 0 0 3 0 3
0 0 0 0 0 0 0 3 3 0
0 0 0 0 0 0 0 0 0 1

b
b
b
b
b
b
b
b
b
b

⎡ ⎤ − −⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −
⎢ ⎥ ⎢ − − −⎢ ⎥ ⎢
⎢ ⎥ ⎢ −
⎢ ⎥ = ⎢

−⎢ ⎥ ⎢
⎢ ⎥ ⎢ − −⎢ ⎥
⎢ ⎥ −
⎢ ⎥ −⎢ ⎥
⎢ ⎥ ⎣⎣ ⎦

1 1
0
0
0
0
1
0
0
0
0

− −⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎦ ⎣ ⎦

 A.4 

Solving this equation yields the result from before that 003 1b = − , 012 1b = − , 021
2
3

b = − , 

120
1
3

b = , and all other coefficients are zero. It should be noted that this system of 

equations can be used to solve any 0d ≤  implicit curve laying in the same domain (same 

p1, p2, and p3).  



 234

APPENDIX B 

Evaluation of Trajectory Blending Techniques 

B.1. Introduction 

This appendix will examine more closely two methods for generating trajectories 

between the parametric constraints ( , , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

) developed in 

Chapter 5: polynomial and trapezoidal. First, the basic formulations of these methods will 

be described. Then, these techniques will be compared on their ability to control the high-

order properties (parametric and geometric) through an example. While these methods do 

not represent every possible way of meeting the developed parametric constraints, they 

provide a good starting point for examining this problem. 

B.2. Polynomial Trajectory Formulation 

Polynomial trajectories are one of the most basic formulations to use as a 

parametric curve generation tool. A generalized form of a 1-DOF parametric polynomial 

is shown in Equation B.1 where n is the order of the polynomial.  For example, an 

expanded third-order (cubic) polynomial is shown in B.2 

( )
0

n
i

i
i

p u a u
=

= ∑  B.1 

( ) 2 3
0 1 2 3p u a a u a u a u= + + +  B.2 

The coefficients { }0 1, , , na a a of the parametric polynomial can be solved by 

providing n+1 constraints for the function. For example, a cubic could be defined that 
meets four different function values { }0 1 2 3, , ,p p p p  at four different parameter values 

{ }0 1 2 3, , ,u u u u . The coefficients for this can be solved using the system of linear equations 

shown in Equation B.3. All of the values in these equations are specified except for the 
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coefficients { }0 1 2 3, , ,a a a a . Thus, the square matrix can be inverted and moved to the 

other side of the equation to solve for the coefficients. 
2 3

0 0 00 0
2 3

1 1 1 1 1
2 3

2 22 2 2
2 3

3 33 3 3

1

1

1

1

u u up a
p u u u a
p au u u
p au u u

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 B.3 

However, a more relevant way to use this method is shown in Equation B.4. In 

this system of equations, the four available constraints are used to satisfy values of the 

function as well as its first derivative at two parameter values.  
0 2 3

0 0 0 00
2

0 0 1
2 3

21 1 1 1
2

31 1 1

1

0 1 2 3

1

0 1 2 3

p
u u u adp

u u adu
ap u u u
adp u u

du

⎡ ⎤
⎡ ⎤⎢ ⎥ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

 B.4 

A more generalized form of this equation is shown in Equation B.5. This shows 

that to meet constraints up to the nth derivative at both ends of a trajectory will require a 

polynomial of order 2n+1. In most applications, the trajectory is broken into smaller 

pieces to allow lower order polynomials to fit the constraints. However, in this research, 

constraints have been developed all the way to the 4th derivative. Thus, using a higher-

order polynomial is unavoidable.  
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( )
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0 0 0 10

2
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0 1 2 3 2 1
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0 1 2 3 2 1
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n
n

n

n

n

n

n

n

p
dp
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u u u u a
u u n u ad p

adu
ap u u u u

dp u u n u
du a

d p
du

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 B.5 

B.2. Trapezoidal Trajectory Formulation 

Trapezoidal specification is another method for generating smooth 1-DOF 

trajectories.  This method involves defining one of the derivatives of the parametric curve 

to have a trapezoidal shape using piece-wise singularity functions (Equation B.6). These 

singularity functions allow for the shape of the trapezoid to be defined in small pieces.  

For example, Figure B.1 shows a trapezoidal profile defined at the third derivative, where 

{ }0 1 2 7, , , ,u u u u  are known as the breakpoints.  The shape of the trajectory profile is 

defined differently in each segment between consecutive breakpoints. This trapezoidal 

shape can then be integrated to solve for the lower-order derivatives. 
0,
1,

i
i

i

u u
u u

u u
<⎧

− = ⎨ ≥⎩
 B.6 
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3

3
d p
du

0u 6u1u 7u2u
3u

5u
4u

 
Figure B.1. Example Trapezoidal Specification 

A generalized method for defining trapezoidal profiles was developed by Tesar 

and Matthews[50] for use in generating cam trajectories. Equation B.7 shows the 

generalized formulation of a trapezoidal method of generic order. The n parameter in this 

equation is the order of the profile (the derivative that the trapezoidal shape is defined in) 

and the i parameter defines the derivative to be evaluated. For example, for a third-order 
(n=3) system, setting i=3 would solve for the position function. The ijθ  values are 

calculated using the breakpoints and singularity functions as shown in Equation B.8.     

( ) ( ) ( )

0

1 1! 1 !

n k
i k

n i i nn k j
ijn i

k j

d p u Ad p duu
du i k i

θ

−
−

− −

−
= =

= +
− +∑ ∑  B.7 

1 1 1 1

2 2 2 1 2 2 1

2 1 2 2 2 1 2

i i i i

j j j j
ij

j j j j

u u u u u u u u
u u u u

θ
+ + + +

− − +

− − +

⎡ ⎤− − − − − −
⎢ ⎥= −
⎢ ⎥− −
⎣ ⎦

 
B.8 
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As mentioned before, the breakpoints { }0 1 2 2 1, , , , nu u u u + can be defined by the 

user and provide some control over the shape of the profile. The coefficients Aj are 

calculated based on the initial and final conditions as shown in Equation B.9. A more 

detailed derivation of these equations can be found in Tesar and Matthews[50]. 

( )
( ) ( )

11
01

1 1 1

2

1 0

1

2 2

1 !
1 !

!

nn

n n

ij
n i n i

i k
i nn n in i

k

d pd pA
du duA

d p d p uiA
dudu i

i k

θ

−−

− −

− −
−

−−

=

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ +⎢ ⎥

−⎢ ⎥⎣ ⎦
∑

 B.9 

B.3. Example Trajectory 

Now, these trajectory generation methods can be applied to an example trajectory 

specification and the higher-order parametric and geometric properties along the curve 

can be examined. As in Chapter 5, first the geometric constraints ( , , ,κ κ τ τ′ ′ ) for the 

motion are specified. Then, these constraints are formulated into parametric constraints 

( , , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

). Finally, both polynomial and trapezoidal methods will 

be used to develop individual x, y, and z trajectories that satisfy these constraints. A 

sample set of geometric constraints for this example is shown in Table B.1. This is a 

simple trajectory plan that specifies a value for curvature and torsion at the middle point. 

 x  y  z  T̂  N̂  B̂  κ  
d
du
κ  τ  

d
du
τ  

1p  0.0 0.0 0.0 [1,0,0] [0, 1,0] [0,0, 1] 0.0 0.0 0.0 0.0 

2p  2.0 1.0 1.0 

0.0
0.707
0.707

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

[-1,0,0]

0.0
0.707
0.707

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5.0 0.0 1.0 0.0 

3p  1.0 3.0 -1.0 [0,1,0] [-1,0,0] [0,0,1] 0.0 0.0 0.0 0.0 
Table B.1. Example Geometric Constraints 



 239

Table B.2 shows the calculated parametric constraints. The 4th order constraints 

for this specification are all zero because 0τ ′ = . This somewhat simplifies the end 

constraints; however, the emphasis of this analysis is on the trajectory between the end 

points. 
 

i 1 2 3 i 1 2 3 i 1 2 3 

ix  0.0 2.0 1.0 iy  0.0 1.0 3.0 iz  1.0 3.0 -1.0
idx

du
 1.0 0.0 0.0 

idy
du

 0.0 0.707 1.0
idz

du
 0.0 -0.707 0.0 

2

2
id x

du
 0.0 -4.9985 0.0 

2

2
id y

du 0.0 0.0 0.0
2

2
id z

du 0.0 0.0 0.0 
3

3
id x

du
 0.0 0.0 0.0 

3

3
id y

du 0.0 3.5339 0.0
3

3
id z

du 0.0 3.5339 0.0 
4

4
id x

du
 0.0 0.0 0.0 

4

4
id y

du 0.0 0.0 0.0
4

4
id z

du 0.0 0.0 0.0 
Table B.2. Calculated Parametric Constraints 

Now, the individual trajectories can be developed. As mentioned earlier, the 

trapezoidal specification allows for some control over the shape of the trajectory through 

the breakpoints. For the first iteration of this example, these breakpoints were simply 

chosen to be spread between 0 and 1 uniformly as shown in Equation B.1016. Figure B.2 

shows the higher-order parametric plots along the trajectory, and Figure B.3 and Figure 

B.4 show the curvature and torsion values, respectively. The plots of the parametric 

derivatives show that the two methods follow each other very closely with the trapezoidal 

profile having slightly higher peak values. The plots of curvature and torsion are also 

very similar with the polynomial trajectory having slightly higher peaks in the curvature 

plot, and the trapezoidal profile having slightly higher peaks in the torsion profile. 

{ }iu = 0, 0.111, 0.222, 0.333, 0.444, 0.556, 0.667, 0.778, 0.889, 1.00  B.10 

                                                 
16 This same configuration is used for the second half of the trajectory ( [ ]1,2u∈ ). 
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Figure B.2. Polynomial vs. Trapezoidal Specification Example I 
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Figure B.3. Curvature Profiles I 

 
Figure B.4. Torsion Profiles I 
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Next, the breakpoints for the trapezoidal motion were manually modified in an 

attempt to lower the peak values of the parametric derivatives. This was done by moving 

the breakpoints that determine the ramp-up and ramp-down portions of the trapezoid 

closer together (as shown in B.11). This will decrease the magnitude of the peak value 

because it will increase the amount of time that it will stay at this value. Figure B.5 shows 

the resulting plots of the parametric derivatives. These plots show that the peak values of 

the trapezoidal profile are much closer to the polynomial profile though they are still 

slightly higher. Given a few more iterations of optimizing the breakpoint positions, these 

peaks could probably be brought even lower. The resulting curvature and torsion profiles 

are shown in Figure B.6 and Figure B.7. These plots show that the curvature results 

remain approximately the same while the peak value of the torsion plot of the trapezoidal 

profile decreased considerably from the last example. Thus, optimizing the breakpoint 

placement to decrease the peak values of the parametric derivatives appears to have some 

affect on the geometric properties (as expected). However, the high level coupling 

between the x, y, and z coordinates still makes this process difficult to predict. 

{ }iu 0, 0.02, 0.24, 0.26, 0.49, 0.51, 0.74, 0.76, 0.98, 1.00=  B.11 
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Figure B.5. Polynomial vs. Trapezoidal Specification Example II 
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Figure B.6. Curvature Profiles II 

 
Figure B.7. Torsion Profiles II 



 245

As seen in the last two examples, the trapezoidal profile contained a higher peak 

value in the torsion profile. Thus, the last step of this iteration process is an attempt to 

manually modify the positions of the breakpoints to reduce this peak value. Equation 

B.12 shows the parametric equation for torsion. This shows that for any parameter value 

u the torsion is a function of the first, second, and third derivatives. Thus, the torsion may 

be reduced by altering where the peak values of these various derivatives are for each 

individual coordinate ( , ,x y z ). 

( )

2 3

3

22

2

d d d
du du du

u
d d
du du

τ

⎛ ⎞
× ⋅⎜ ⎟

⎝ ⎠=

×

p p p

p p
 B.12 

This was attempted using different breakpoints for each individual coordinate as 

shown in Equation B.13. This equation shows that the breakpoints of the x, y, and z 
directions are staggered at the beginning of the [ ]1,2u∈  trajectory (where the torsion 

peak occurs. This will keep the peak values of the parametric derivatives of each 

coordinate staggered as well and result in a lower value of torsion. Figure B.8 shows the 

parametric derivatives, and Figure B.9 and Figure B.10 show the curvature and torsion 

plots. The plot of torsion shows that this technique did lower the peak value of torsion at 

the desired point in the trajectory. However, it also created an extra smaller peak towards 

the end of the trajectory. 
{ }
{ }
{ }

x
i

y
i

z
i

u 1.0, 1.02, 1.34, 1.36, 1.69, 1.71, 1.84, 1.86, 1.98, 2.00

u 1.0, 1.02, 1.24, 1.26, 1.49, 1.51, 1.74, 1.86, 1.98, 2.00

u 1.0, 1.02, 1.14, 1.16, 1.39, 1.41, 1.74, 1.86, 1.98, 2.00

=

=

=

 B.13 
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Figure B.8. Polynomial vs. Trapezoidal Specification Example III 
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Figure B.9. Curvature Profiles III 

 
Figure B.10. Torsion Profiles III 
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B.4. Summary 

This appendix examined two different methods of generating trajectories to 

satisfy parametric constraints: polynomial and trapezoidal. In the nominal case, these 

methods appear to be very similar. However, the ability to specify and modify the 

breakpoints in trapezoidal profiles allows for more control over the interior shape of the 

trajectory. This added control was demonstrated on a specific example to show how it 

could be used to lower the peak value of torsion. However, this method requires a high 

level of understanding of the underlying mathematics as well as a good amount of 

tweaking/iterating. This, as it is, this method is probably not suitable to be used for 

trajectory modification. However, techniques to optimize or automate this kind of process 

could be a useful area for future research. 
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APPENDIX C 

 

Motion Planner Class Documentation 
OSCAR::MotionPlanner Class Reference 
Current Functionality: MotionPlanner is a class for performing Kinematics and 
generating trajectories for generic manipulators. The manipulator is defined through its 
DH Paramters, offsets, and limits. This class will then generate trajectories in either Joint 
Space or Cartesian space that satisfy the provided velocity and acceleration constraints.  
Author: 

Peter S. March  
 

Public Methods 
• MotionPlanner (const DHData &robotData, const Vector &jointOffsets, JointVector 

&initialJoints, Matrix &jointLimits, Vector &velLimits, Vector &accLimits, Vector 
&handVelLimits, Vector &handAccLimits, OSCARError 
&err=DUMMY_ERROR(noError)) 

• ~MotionPlanner () 
• bool PlanMove (const JointVector currentJoints, const JointVector targetJoints, 

MPTrajectoryType trajType, double &moveTime) 
• bool PlanMove (const JointVector currentJoints, const Xform targetHand, 

MPTrajectoryType trajType, double &moveTime) 
• bool PlanMoveJogJoint (const JointVector &currentJoints, const JointVector 

&currentVelocity, const std::vector< double > directions) 
• bool PlanMoveJogCartesian (const JointVector &currentJoints, const JointVector 

&currentVelocity, std::vector< double > directions) 
• bool PlanMoveVia (const JointVector _currentJoints, std::vector< Vector > viaPoints) 
• bool PlanMoveVia (const JointVector _currentJoints, std::vector< Xform > viaPoints, 

double moveTime, MPViaType viaType=FlyThrough) 
• bool PlanMoveViaGeometric (const JointVector _currentJoints, std::vector< 

CurveParameter > viaPoints, double moveTime) 
• bool Stop (const JointVector &currentJoints, const JointVector &currentVelocity, 

bool fastest=true) 
• bool GetJointPosition (JointVector &jointPosVector, JointVector &currentVelocity, 

TrajectoryGenerator::TrajectoryState &state) 
• bool GetHandPosition (JointVector &joints, Xform &handPosition) 
• bool GetHandPosition (Xform &handPosition) 
• bool SetJointPosition (const JointVector &joints) 
• bool SetToolPose (const Xform &toolPose) 
• bool SetBasePose (const Xform &basePose) 
• bool SetCycleRate (double rate) 
• bool SetTrajectoryShape (TrajectoryShapeType shape) 
• bool SetRampTime (double rampTime) 
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• bool SetCartesianControlMode (CartesianCoordinateMode _coordMode) 
• bool SetSpeedScale (double scale) 
• bool SetVelocityScale (double scale) 
• bool SetAccelerationScale (double scale) 
• bool ComputeHandVelocity (const JointVector &currentVelocity, HandPose 

&handVel) 
 
Protected Methods 
• bool checkLimits (const JointVector &joints, bool checkVelocity=true) 
• double estimateMoveTime (const Vector &start, const Vector &end) 
• bool getJointPosition (std::vector< Vector > &jointPosBuffer, 

TrajectoryGenerator::TrajectoryState &state) 
• bool cancelMotion () 
 
Protected Attributes 
• IDNewtonEuler * idnPtr 
• IDSANewtonEuler * idsaPtr 
• FKJacobian * fkjPtr 
• JointVector currentJoints 
• JointVector prevJoints 
• JointVector prevJoints2 
• JointVector currentVelocity 
• JointVector prevVelocity 
• JointVector currentAcceleration 
• JointVector targetJoints 
• JointVector tempJointPosVector 
• JointVector tempJointPosVector2 
• std::list< Vector > finalBuffer 
• std::string robotName 
• TrajectoryGenerator::TrajectoryState prevState 
• GeneralKinematicsHandler * kinPtr 
• PathPlanner * ppPtr 
• unsigned int DOF 
• Vector velLimits 
• Vector accLimits 
• Vector handVelLimits 
• Vector handAccLimits 
• Vector minVelLimits 
• Vector minAccLimits 
• TrajectoryShapeType trajShape 
• CartesianCoordinateMode coordMode 
• double cycleRate 
• double velScale 
• double accScale 
• double rampTime 
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• double maxLinVel 
• double timeScale 
 
 
Constructor & Destructor Documentation 
 

OSCAR::MotionPlanner::MotionPlanner (const DHData & robotData, const 
Vector & jointOffsets, JointVector & initialJoints, Matrix & jointLimits, Vector & 
velLimits, Vector & accLimits, Vector & handVelLimits, Vector & 
handAccLimits, OSCARError & err = DUMMY_ERROR(noError)) 
 
Parameters: 

dhData A DHData object that defines the DH parameters for the robot. The units of 
angles in the DHData should be Degrees. The robot DOF is determined from dhData.  
offset A vector whose size should match the DOF defined in the dhData parameter. The 
values of offset should define the offset between the zero position of the robot as defined 
by the DH parameters and as represented by the physical robot zero position. Offset 
should be defined in Degrees for all joints that are revolute. If the DH paramater defined 0 
position is the same as the real robot zero position, then all offsets will be zero.  
jointLimits A Limits object that defines the position travel limits of the robot arm. The size 
of the limits object should be the same as the DOF defined in the dhData parameter. The 
limits should also be expressed in the robot coordinates instead of the DH parameter 
coordinates. For all revolute joints, the limits should be expressed in Degrees.  
initialJoints The initial joint state of the manipulator. These joints will be used to initialize 
the Kinematics of the manipulator and must be a valid joint position. For all revolute 
joints, the initial position should be express in Radians.  
velLimits The absolute value of the maximum joint velocities for each joint. These 
velocities should be express in Radians/s.  
accLimits The absolute value of the maximum joint accelerations for each joint. These 
accelerations should be express in Radians/s^2.  
handVelLimits The absolute value of the maximum cartesian velocities. The translational 
elements should be in mm/s and the rotational in Radians/s. These limits are used for 
teleoperation only.  
handAccLimits The absolute value of the maximum cartesian accelerations. The 
translational elements should be in mm/s^2 and the rotational in Radians/s^2. These 
limits are used for teleoperation only.  
err An OSCARError object that on return will hold the value of any errors that were 
generated during the constructor call. If err is not equal to 'noError' you can call 
GetError() to get the details of the error code.  

 
Exceptions: 

argumentSizeIncorrect #argumentSizeIncorrect. This error is generated when the size of 
the input parameter offset and limits does not match the DOF defined by the dhData 
parameter.  

 
 

OSCAR::MotionPlanner::~MotionPlanner () 
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Member Function Documentation 
 
bool OSCAR::MotionPlanner::GetHandPosition (Xform & handPosition) 

Use this to retrieve the internal Cartesian handpose state. This method will return the internal 
Cartesian state of the MotionPlanner. No calculations are performed. 
Parameters: 

handPosition The resulting hand position.  
Returns: 

True if no error. False if an error. Call GetError() for detailed error information.  
 
bool OSCAR::MotionPlanner::GetHandPosition (JointVector & joints, Xform 
& handPosition) 

Use this to calculate the hand position for a given joint configuration. This method can be 
used to perform the forward kinematics to retrieve a hand position for a provided joint 
configuration. This method does not change the internal state of the MotionPlanner. 
Parameters: 

joints The desired joint configuration.  
handPosition The resulting hand position.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::GetJointPosition (JointVector & 
jointPosVector, JointVector & currentVelocity, 
TrajectoryGenerator::TrajectoryState & state) 

Use this method to retrieve the current joint position/velocity. This method is used to 
continually get the current joint position and velocity state. By design, this method should be 
called repeatedly inside a loop running at the sample rate designated in SetCycleRate(). All 
computed velocities and accelerations are assuming the joint positions are being updated at 
this rate. 
Parameters: 

jointPosVector The current joint state of the manipulator in Radians.  
currentVelocity The current velocity state of the manipulator in Rad/s.  
state This returns the current state of the MotionPlanner. The valid values are: 
 Inactive - The manipulator is currently idle. In this state, the MotionPlanner will be just 
returning the current position over and over. 
 Active - The manipulator is current moving either through a point-to-point trajectory or 
through teleoperation. 
 TrajectoryComplete - The manipulator has just complete a point-to-point trajectory  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::PlanMove (const JointVector currentJoints, 
const Xform targetHand, MPTrajectoryType trajType, double & moveTime) 
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Generates a Trajectory to a target EEF position. This method will generate a trajectory to a 
target Joint Position. This trajectory can be either JointInterpolated or CartesianInterpolated. 
Parameters: 

currentJoints This is the current position of the manipulator in Radians.  
targetHand An Xform containing the target hand position for the manipulator.  
trajType This is set to either JointInterpolated or CartesianInterpolated. In the case of 
JointInterpolated, the final joint position is calculated from the final hand position  
moveTime This parameter contains the move time for the trajector. If this move time is 
positive, a JointInterpolated move will return true/false based on if the trajectory can be 
completed without violating constraints while CartesianInterpolated move will will simply 
generate a trajectory for the given time (in this case, constraint errors will be found during 
execution). If the move time is 0.0, a JointInterpolated move will complete the move using 
the max velocity/acceleration constraints while a CartesianInterpolated move will 
estimate a fastest move time.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::PlanMove (const JointVector currentJoints, 
const JointVector targetJoints, MPTrajectoryType trajType, double & 
moveTime) 

Generates a Trajectory to a target Joint Position This method will generate a trajectory to a 
target Joint Position. This trajectory can be either JointInterpolated or CartesianInterpolated. 
Parameters: 

currentJoints This is the current position of the manipulator in Radians.  
targetJoints The target joint position for the manipulator.  
trajType This is set to either JointInterpolated or CartesianInterpolated. In the case of 
CartesianInterpolated, the final hand position is calculated from the final joint position  
moveTime This parameter contains the move time for the trajector. If this move time is 
positive, a JointInterpolated move will return true/false based on if the trajectory can be 
completed without violating constraints while CartesianInterpolated move will will simply 
generate a trajectory for the given time (in this case, constraint errors will be found during 
execution). If the move time is 0.0, a JointInterpolated move will complete the move using 
the max velocity/acceleration constraints while a CartesianInterpolated move will 
estimate a fastest move time.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::PlanMoveJogCartesian (const JointVector & 
currentJoints, const JointVector & currentVelocity, std::vector< double > 
directions) 

Use this method to perform a Cartesian jog. This method can be used to jog the EEF as in 
teleoperation. When an axis is set to jog, it accelerates to its maximum velocity and coasts 
until another PlanMoveJogCartesian() or a Stop() is called. 
Parameters: 

currentJoints The current joint state of the manipulator in Radians.  
currentVelocity The current velocity state of the manipulator in Rad/s.  
directions A vector of length 6. The 6 values indiciate the x,y,z axes and the three angles 
in a FixedXYZ orientation description. The valid values are -1 to 1. If the value is 
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negative, the axis will decelerate from its current velocity to a  of its maximum negative 
velocity. For example, a value of -0.5 will decelerate to 50% of the maximum velocity in 
the negative direction. If the value is positive, the axis will accelerate from its current 
velocity to a  of its maximum positive velocity. For example, a value of 0.5 will accelerate 
to 50% of the maximum velocity in the positive direction. If the value is 0, the axis will 
decelerate to a zero velocity.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::PlanMoveJogJoint (const JointVector & 
currentJoints, const JointVector & currentVelocity, const std::vector< 
double > directions) 

Use this method to jog the joints. This method can be used to jog the joints as in 
teleoperation. When a joint is set to jog, it accelerates to its maximum velocity and coasts 
until another PlanMoveJogJoint() or a Stop() is called. 
Parameters: 

currentJoints The current joint state of the manipulator in Radians.  
currentVelocity The current velocity state of the manipulator in Rad/s.  
directions A vector of length DOF. The valid values are -1 to 1 with each value 
corresponding to one joint. If the value is negative, the axis will decelerate from its current 
velocity to a  of its maximum negative velocity as determined by the velocity limits and 
velocity scale. For example, a value of -0.5 will decelerate to 50% of the maximum 
velocity in the negative direction. Similarly, a positive value will accelerate to a  of its 
maximum positive velocity (once again determined by hardware limits and velocity scale). 
If the value is 0, the axis will decelerate to a zero velocity.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::PlanMoveVia (const JointVector 
_currentJoints, std::vector< Xform > viaPoints, double moveTime, 
MPViaType viaType = FlyThrough) 

Generates a Via Trajectory through multiple End-Effector positions. This method will generate 
a trajectory through a number of target End-Effector positions. 
Parameters: 

currentJoints This is the current position of the manipulator in Radians.  
viaPoints A vector of Xform Via Positions.  
moveTime The move time to complete the motion.  
viaType Determines the method of interpolation through the via points. Options are FlyBy 
or FlyThrough. In FlyBy mode, straight line trajectories will be calculated between each 
via point, and then the transitions between two straight lines will be blended (i.e. "cutting 
the corner"). In FlyThrough mode, the generated trajectory will pass through each via 
point, but will also generate some overshoots. Default value is FlyThrough.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::PlanMoveVia (const JointVector 
_currentJoints, std::vector< Vector > viaPoints) 
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Generates a Via Trajectory through multiple joint positions. This method will generate a 
trajectory through a number of target joint positions. 
Parameters: 

currentJoints This is the current position of the manipulator in Radians.  
viaPoints A vector of Joint Via Positions (in Radians). The generated path will pass 
through these positions.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::PlanMoveViaGeometric (const JointVector 
_currentJoints, std::vector< CurveParameter > viaPoints, double 
moveTime) 

Generates a Via Trajectory through multiple End-Effector positions using geometric-based 
constraints. This method will generate a trajectory through a number of target End-Effector 
positions with defined geometric constraints. 
Parameters: 

currentJoints This is the current position of the manipulator in Radians.  
viaPoints A vector of CurveParameter objects defining the desired geometric constraints.  
moveTime The move time to complete the motion.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::SetAccelerationScale (double scale) 

Use this to set the Acceleration Scale for the MotionPlanner. This value sets the  of max 
hardware accelerations (as set in the constructor) to use for planning trajectories. This 
applies to the joint limits for both point-to-point and teleoperation motions. For Cartesian 
motions, this will affect the hand acceleration limits provided in the constructor that are used 
for jogging. 
Parameters: 

scale The desired acceleration scale. This value must be greater than 0 and less than or 
equal to 1. A value of 1 will use the maximum hardware acceleration in trajectory 
planning. The default value is 0.5.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::SetBasePose (const Xform & basePose) 
[inline] 

Use this to set the base pose of the manipulator. 
Parameters: 

basePose The desired manipulator base pose.  
Returns: 

True if no error. False if an error. Call GetError() for detailed error information.  
 
bool OSCAR::MotionPlanner::SetCartesianControlMode 
(CartesianCoordinateMode _coordMode) [inline] 
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Use this method to set the Cartesian Coordinate mode for teleoperation. This method can be 
used to switch between controlled the EEF in World coordinates or Tool coordinates for 
teleoperation using the PlanMoveJogCartesian() method. Note: this method will not change 
the way point-to-point moves are performed. 
Parameters: 

_coordMode This can be set to World or Tool.  
Returns: 

True if no error. False if an error. Call GetError() for detailed error information.  
 
 

bool OSCAR::MotionPlanner::SetCycleRate (double rate) [inline] 
Use this to set the cycle rate of the manipulator controller. 
Parameters: 

rate The desired cycle rate in hz. The default value is 100. This value can be changed 
anytime the trajectory status is Inactive.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::SetJointPosition (const JointVector & joints) 
[inline] 

Use this to set the current joint/Cartesian states of the robot. This method will update all 
internal kinematics using the provided joint configuration. For revolute joints, the values 
should be in radians. For prismatic joints, the values should be in the same units as the DH 
parameters. 
Parameters: 

joints The desired manipulator joint configuration.  
Returns: 

True if no error. False if an error. Call GetError() for detailed error information.  
 
bool OSCAR::MotionPlanner::SetRampTime (double rampTime) 

Use this method to set the ramp time for Cartesian motions. This method sets the  of the 
trajectory time to use for the acceleration/deceleration motions for Cartesian . As this value 
increases, the start-up/slow-down will become smoother but the coast velocity will increase. 
Parameters: 

rampTime Valid range is 0-0.5. The default setting is 0.15.  
See also: 

SetTrajectoryShape()  
Returns: 

True if no error. False if an error. Call GetError() for detailed error information.  
 
bool OSCAR::MotionPlanner::SetSpeedScale (double scale) [inline] 

Use this to set the Speed Scale for the MotionPlanner. This method can be used to slow 
down the motions for debugging/testing purposes. When the speed scale is set, all 
subsequent motions (both point-to-point and teleoperation) will be scaled slower based on 
this value. For example, if the speed scale is set to 0.5, all subsequent motions will execute in 
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exactly twice the time. Note: this value works on top of the velocity/acceleration scales set in 
SetVelocityScale(float scale) and SetAccelerationScale(float scale). It is mainly designed for 
testing new trajectories at slower, safer speeds. 
Parameters: 

scale The desired speed scale. This value must be greater than 0 and less than or equal 
to 1. A value of 1 represents a full-speed motion.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
 

bool OSCAR::MotionPlanner::SetToolPose (const Xform & toolPose) 
[inline] 

Use this to set the tool pose of the manipulator. 
Parameters: 

toolPose The desired manipulator tool pose.  
Returns: 

True if no error. False if an error. Call GetError() for detailed error information.  
 
bool OSCAR::MotionPlanner::SetTrajectoryShape (TrajectoryShapeType 
shape) 

Use this method to switch between Trapezoidal and S-Curve velocity profiles. This method 
changes the shape of the velocity profile during the acceleration period. Trapezoid uses a 
constant acceleration profile while SCurve uses a smoother acceleration profile. For joint 
interpolated motions, the amount of time used to acceleration/deceleration is based on 
provided limits data. For Cartesian interpolated motions, the amount of time used for 
acceleration/deceleration can be set using the SetRampTime() method.  

 
Parameters: 

shape This can be set to Trapezoid or SCurve. The default setting is Trapezoid.  
See also: 

SetRampTime()  
Returns: 
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True if no error. False if an error. Call GetError() for detailed error information.  
 
bool OSCAR::MotionPlanner::SetVelocityScale (double scale) 

Use this to set the Velocity Scale for the MotionPlanner. This value sets the  of max 
hardware velocities (as set in the constructor) to use for planning trajectories. This applies to 
the joint limits for both point-to-point and teleoperation motions. For Cartesian motions, this 
will affect the hand velocity limits provided in the constructor that are used for jogging. 
Parameters: 

scale The desired velocity scale. This value must be greater than 0 and less than or 
equal to 1. A value of 1 will use the maximum hardware velocity in trajectory planning. 
The default value is 0.95.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
bool OSCAR::MotionPlanner::Stop (const JointVector & currentJoints, 
const JointVector & currentVelocity, bool fastest = true) 

Use this method to stop the manipulator motion. This method will decelerate each individual 
axis to a velocity of 0. If called during a Cartesian move, the robot will not continue in a 
straight line motion. If called during a jogged move, the robot will stop its motion and return a 
TrajectoryComplete. 
Parameters: 

currentJoints The current joint state of the manipulator in Radians.  
currentVelocity The current velocity state of the manipulator in Rad/s.  
fastest If set to true, the manipulator will ignore the Speed Scale value and stop the 
manipulator as fast as possible. If set set to false, the manipulator will coast to a slower 
stop if the Speed Scale value is less than 1.  

Returns: 
True if no error. False if an error. Call GetError() for detailed error information.  

 
 

Motion Planner File Documentation 
MotionPlanner.h File Reference 
#include "Math/Vector.h" 
#include "InverseKinematics/IKJacobian.h" 
#include "InverseKinematics/KinematicsHandler.h" 
#include "PathPlanning/PathPlanner.h" 
#include "MotionPlanning/MotionPlanningErrors.h" 
#include "Dynamics/IDSANewtonEuler.h" 
 
Include dependency graph for MotionPlanner.h: 
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Namespaces 
• namespace OSCAR 
 
 
Enumeration Type Documentation 
enum MPTrajectoryType 

Enumeration values:  
JointInterpolated   
CartesianInterpolated   
JointInterpOrientation   

 
enum MPViaType 

Enumeration values:  
FlyBy   
FlyThrough   
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