

Copyright

by

Peter Setterlund March

2008

The Dissertation Committee for Peter Setterlund March Certifies that this is the

approved version of the following dissertation:

Geometric-based Spatial Path Planning

Committee:

Delbert Tesar, Supervisor

Chandrajit Bajaj

Ronald Barr

Richard Crawford

Chetan Kapoor

Geometric-based Spatial Path Planning

by

Peter Setterlund March, B.S.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2008

Dedication

I dedicate this work to my parents for always encouraging me to pursue difficult goals,

and to Samantha for all of her support.

 v

Acknowledgements

I would like to thank Dr. Tesar, Dr. Kapoor, and Dr. Pryor for all of their help and

guidance over the course of my research. The opportunities and resources provided to me

over the course of my time at the Robotics Research Group have given me a rich and

rewarding graduate student experience as well as preparing me for future challenges.

 vi

Geometric-based Spatial Path Planning

Publication No._____________

Peter Setterlund March, Ph.D

The University of Texas, 2008

Supervisor: Delbert Tesar

Cartesian space path planning involves generating the position and orientation

trajectories for a manipulator end-effector. Currently, much of the literature in motion

planning for robotics concentrates on topics such as obstacle avoidance, dynamic

optimizations, or high-level task planning. The focus of this research is on operator-

generated motions. This will involve analytically studying the effects of higher-order

properties (such as curvature and torsion) on the shape of spatial Cartesian curves. A

particular emphasis will be placed on developing physical meanings and graphical

visualization for these properties to aid the operator in generating geometrically complex

motions.

This research begins with a brief introduction to the domain of robotics and

manipulator motion planning. An overview of work in the area of manipulator motion

planning will demonstrate a lack of research on generating geometrically complex spatial

paths. To pursue this goal, this report will then provide a review of the theory of

algrebraic curves and their higher-order properties. This involves an evaluation of several

different representations for both planar and spatial curves. Then, a survey of interactive

 vii

curve generation techniques will be performed, which will draw from fields outside of

robotics such as Computer Graphics and Computer-Aided Design (CAD).

In addition to the reviewed methods, a new method for describing and generating

spatial curves is proposed and demonstrated. This method begins with the study of a

finite set of local geometric motion shapes (circular arcs, cusps, helices, etc). The local

geometric shapes are studied in terms of their geometric parameters (curvature and

torsion), analyzed to give physical meaning to these parameters, and displayed

graphically as a family of curves based on these controlling parameters. This leads to the

development of path constraints with well-defined physical meaning. Then, a curve

generation method is developed that can convert these geometric constraints into

parametric constraints and blend between them to form a complete motion program

(cycle) of smooth paths connecting several carefully developed local curve properties. Up

to ten distinct local curve shapes were developed in detail and one curve cycle

demonstrated how all this could be combined into a full path planning scenario. Finally,

the developed methods are packaged together into existing software and applied to an

example demonstration.

 viii

TABLE OF FIGURES XIV

TABLE OF TABLES XVIII

1. CHAPTER ONE 1

Introduction..1
1.1. Manipulator Modeling ...1

1.1.1. DH Parameters ...2
1.1.2. End-Effector Representations ..4

1.1.2.1. Fixed XYZ Angles..5
1.1.2.2. Euler Angles..5
1.1.2.3. Equivalent Axis...5
1.1.2.4. Quaternions ...6

1.1.3. Kinematics Model..6
1.1.3.1. First Order Influence Coefficients7
1.1.3.2. Second Order Influence Coefficients............................8

1.1.4. Dynamic Model ...8
1.2. Motion Planning...9

1.2.1. Joint Space Planning ..10
1.2.2. Cartesian Space Planning...10

1.3. Research Objectives...14
1.3.1. Motivation..14

1.4. Conclusions..17

2. CHAPTER TWO 19

Algebraic Curves ...19
2.1. Implicit Forms of Planar Algebraic Curves ...19

2.1.1. Basic Properties of Implicit Curves20
2.1.2. Genus and Singular Points ...21

2.1.2.1. Double Point ...22
2.1.2.2. Cusp ..24

 ix

2.1.2.3. Isolated Point ..24
2.1.2.4. Other Singularities ..25

2.1.3. Implicit Spatial Curves ..26
2.1.4. Summary ..27

2.2. Standard Parametric Curves...27
2.2.1. Implicit to Parametric Conversion27
2.2.2. Spatial Parametric Curves..29
2.2.3. Parametric Curve Properties ..30

2.2.3.1. Curvature...30
2.2.3.2. Torsion ..32
2.2.3.3. Frenet Frame ...32

2.2.4. Parametric Surfaces ...33
2.3. Arc Length Parameterization ...35

2.3.1. Arc Length Parameterization Properties............................36
2.3.1.1. Frenet Frame ...36
2.3.1.2. Curvature...36
2.3.1.3. Torsion ..37
2.3.1.4. Serret-Frenet Formulas ...39

2.3.2. Motion Along a Curve ...40
2.4. Curvature and Torsion Profiles..41

2.4.1. Formulation and Generation ..42
2.4.2. Geometric meaning..43
2.4.3. Example ...44
2.4.4. Conclusions..45

2.5. Comparison of Representations ...46

3. CHAPTER THREE 49

Interactive Curve Design ...49
3.1. Introduction to Piecewise Curves ..49

3.1.1. Continuity ..51
3.1.1.1. Parametric ...51

 x

3.1.1.2. Geometric..51
3.1.1.3. Frenet Frame ...53

3.2. Basic Spline Techniques ..53
3.2.1. Bezier Curves...54

3.2.1.1. Formulation...55
3.2.1.2. Properties ..56
3.2.1.3. Example ..56

3.2.2. B-Splines..58
3.2.2.1. Formulation...58
3.2.2.2. Local Control Property ...59
3.2.2.3. Example ..60

3.3. Beta-Splines ...60
3.3.1. Parametric Continuity for Bezier Curves...........................61
3.3.2. Geometric Continuity for Bezier Curves62
3.3.3. Beta-spline Formulation...64
3.3.4. Conclusions..66

3.4. Algebraic Splines ...67
3.4.1. Barycentric Coordinates...67
3.4.2. Formulation..68
3.4.3. Piecewise A-Splines...69
3.4.4. Implicit Representations ..70
3.4.5. Conclusions..72

3.5. Summary ..72

4. CHAPTER FOUR 73

Geometric Shapes and Properties: Physical Meaning ...73
4.1. Introduction..73
4.2. Linear Shapes...74

4.2.1. Straight Line...74
4.3. Planar Geometric Shapes ...75

4.3.1. Parabola..76

 xi

4.3.2. Circle..78
4.3.3. Ellipse ..79
4.3.4. Cusp ...81
4.3.5. Inflection Point...85

4.4. Spatial Geometric Shapes ..87
4.4.1. Helix...92
4.4.2. Spatial Cusp ...96
4.4.3. Spatial Saddle Point ...101
4.4.4. Spatial Inflection Point ..105

4.5. Summary ..107

5. CHAPTER FIVE 109

Path Generation using Geometric Constraints...109
5.1. Introduction..110
5.2. First-Order Properties ..112
5.3. Second-Order Properties..114
5.4. Third-Order Properties...118
5.5. Fourth-Order Properties ...126
5.6. Special Cases ...131

5.6.1. Inflection Point...131
5.6.2. Cusp ...134

5.7. Summary ..137

6. CHAPTER SIX 139

Motion Planner Implementation ..139
6.1. Operational Software Components for Advanced Robotics..............139
6.2. OSCAR-Based Motion Planner ...140

6.2.1. Manipulator Parameters ...142
6.2.2. Point-to-Point Motions...143

6.2.2.1. Joint Interpolated ..143
6.2.2.2. Cartesian Interpolated ...144

6.2.3. Teleoperation ...144

 xii

6.2.4. Motion Execution...145
6.2.5. Configuration Parameters ..146
6.2.6. Example Applications..146

6.3. Geometric-Based Trajectory Generation ...147
6.3.1. Task Description ..147
6.3.2. Translational Motion Along a Curve148

6.3.2.1. Effect of Tangent Scale...149
6.3.2.2. Linear Parametric Interpolation151
6.3.2.3. Smooth Parametric Interpolation152
6.3.2.4. Velocity Approximation Formulation.......................154
6.3.2.5. Special Cases ..158
6.3.2.6. Conclusions...160

6.3.3. Rotational Motion ..161
6.3.3.1. Orientation-to-Orientation Interpolation...................161
6.3.3.2. Geometric or Task-based Rotational Motions164

6.4. Software Integration...168
6.5. Summary ..171

7. CHAPTER SEVEN 172

Summary and Future Work..172
7.1. Summary ..172

7.1.1. Algebraic Curves ...172
7.1.2. Interactive Curve Generation Techniques176
7.1.3. Geometric Shapes and Properties179
7.1.4. Path Generation with Geometric Constraints189
7.1.5. Motion Planner Implementation192

7.2. Demonstration..194
7.2.1. Introduction..194
7.2.2. Simulation Environment ..195
7.2.3. Tangent Scaling ...197
7.2.4. Curvature..199

 xiii

7.2.5. Torsion ...202
7.2.6. Higher-Order Properties...209
7.2.7. Summary of Geometry Parameters..................................212
7.2.8. Full Motion Specification ..216
7.2.9. Motion Profiles ..218
7.2.10. Conclusions..221

7.3. Future Work ...221
7.3.1. Curve Generation Techniques..222
7.3.2. Rotational Motion Specification225
7.3.3. Software Implementation...226
7.3.4. Future Applications..226

7.3.4.1. Task-Based Planning ..227
7.3.4.2. G and H Parameters ..229

7.4. Concluding Remarks..231

APPENDIX A 232

APPENDIX B 234

APPENDIX C 249

REFERENCES 260

VITA 266

 xiv

TABLE OF FIGURES

Figure 1.1 DH Parameters and link frames. Craig [13] .. 3
Figure 1.2. Blended Trajectory ... 12
Figure 1.3. Finitely Separated Position... 15
Figure 1.4. Zero Order Contact... 15
Figure 1.5. 1st Order Contact... 16
Figure 1.6. 2nd Order Contact.. 16
Figure 2.1. Implicit Algebraic Curve.. 20
Figure 2.2. Example of an Inflection Point... 21
Figure 2.3. A Double Point in the curve: 2 3 23y x x= + ... 23
Figure 2.4. A cusp in the curve: 2 3y x= ... 24
Figure 2.5. Isolated Point on curve: 2 3 23y x x= − ... 25
Figure 2.6. Degree Four Curve with a Triple Point .. 26
Figure 2.7. Two Examples of Implicit vs. Parameteric Representations.......................... 29
Figure 2.8. Example Spatial Parametric Curves ... 30
Figure 2.9. Tangent Vector Changing as Curve is Traversed... 31
Figure 2.10. Frenet Frame on a Spatial Curve .. 33
Figure 2.11. Example of a Parametric Surface ... 34
Figure 2.12. Osculating Plane of a Spatial Curve... 38
Figure 2.13. Example Helical Curve... 44
Figure 2.14. Curvature and Torsion Profiles .. 45
Figure 2.15. Curve Generated from Curvature and Torsion Profiles 45
Figure 3.1. High Degree Polynomial Curve ... 50
Figure 3.2. C0 and C1 Continuous Piecewise Curves.. 51
Figure 3.3. Example Bezier Curve.. 54
Figure 3.4. Bernstein Basis Polynomials .. 55
Figure 3.5. Two Example Bezier Curves.. 57
Figure 3.6. Spatial Bezier Curve... 57
Figure 3.7. B-Spline along with Knot Vector ... 59
Figure 3.8. B-Spline Basis Functions ... 59
Figure 3.9. Two Example B-Spline Curves .. 60
Figure 3.10. Two Joined Bezier Control Polygons... 61
Figure 3.11. Geometrically Continuous Bezier Curves .. 63
Figure 3.12. Subdivided Control Polygon .. 64
Figure 3.13. Effect of β1 on the shape of a Beta-spline .. 65
Figure 3.14. Effect of β2 on the shape of a Beta-spline .. 66
Figure 3.15. Triangular Coordinate System.. 67
Figure 3.16. Bezier Coefficients for a Cubic A-Spline... 68
Figure 3.17. Families of G1 Continuous A-Splines .. 70
Figure 3.18. A-Spline Representation of a Cusp .. 71
Figure 4.1. Family of Planar Lines ... 74
Figure 4.2. Family of Parabolas.. 77

 xv

Figure 4.3. Effects of Varying Curvature ... 78
Figure 4.4. Ellipse Centered at the Origin .. 80
Figure 4.5. Family of Cusps.. 82
Figure 4.6. Curvature Profiles for Family of Cusps.. 84
Figure 4.7. Family of Cusps in A-Spline Representation ... 85
Figure 4.8. Curves with Zero Curvature ... 86
Figure 4.9. Planar Curve with an Inflection Point .. 87
Figure 4.10. Local Effects of Curvature ... 89
Figure 4.11. Local Effects of Torsion... 90
Figure 4.12. Positive vs. Negative Torsion... 90
Figure 4.13. Varying Curvature with Constant Torsion ... 91
Figure 4.14. Helical Curve with Defined Radius and Pitch.. 92
Figure 4.15. Effect of Varying Curvature on a Helix ... 94
Figure 4.16. Effect of Varying Torsion on a Helix... 95
Figure 4.17. Spatial Cusp.. 97
Figure 4.18. Planar Cusp Defined with Varying Curvatures .. 98
Figure 4.19. Cusp with Constant Torsion and Varying Curvature 99
Figure 4.20. Spatial Cusp with τ >0 Approaching and τ >0 Leaving 100
Figure 4.21. Spatial Cusp with τ <0 Approaching and τ >0 Leaving 101
Figure 4.22. Saddle Point 1... 102
Figure 4.23. Torsion Profile for Saddle Point... 103
Figure 4.24. Saddle Point 2... 104
Figure 4.25. Saddle Point 2 Torsion Profile .. 105
Figure 4.26. Spatial Saddle with an Inflection Point .. 106
Figure 4.27. Spatial Saddle II with an Inflection Point... 107
Figure 5.1. Robotic Workcell with Defined Frames of Interest 110
Figure 5.2. Trapezoidal Specification... 111
Figure 5.3. First-Order Constraints Example.. 113
Figure 5.4. First-Order Constraints Example II .. 114
Figure 5.5. Curvature Constraints Example.. 117
Figure 5.6. Curvature Constraints Example II .. 118
Figure 5.7. Spatial Trajectory with Torsion Constraints... 121
Figure 5.8. Curvature Profiles... 121
Figure 5.9. Torsion Profile.. 122
Figure 5.10. Spatial Trajectory with τ and κ’ Constraints .. 124
Figure 5.11. Curvature Profile .. 125
Figure 5.12. Torsion Profile.. 125
Figure 5.13. Derivative of Curvature Profile .. 126
Figure 5.14. Spatial Trajectory ... 128
Figure 5.15. Curvature Profile .. 129
Figure 5.16. Torsion Profile.. 129
Figure 5.17. Derivative of Curvature Profile .. 130
Figure 5.18. Derivative of Torsion Profile.. 130
Figure 5.19. Planar Curve with an Inflection Point .. 132
Figure 5.20. Close-up of Inflection Point ... 133

 xvi

Figure 5.21. Planar Path with a Cusp.. 135
Figure 5.22. Close-up of Cusp Point... 136
Figure 6.1. OSCAR Architecture Overview... 140
Figure 6.2. Basic Motion Planner Framework.. 141
Figure 6.3. Example Velocity Profile ... 143
Figure 6.4. Example MP Code.. 145
Figure 6.5. Sample Task Example .. 148
Figure 6.6. Basic Schematic of MP Curve Interpolator.. 149
Figure 6.7. Effect of varying Tangent Scale ... 150
Figure 6.8. Resulting Spatial Curve.. 151
Figure 6.9. Velocity Profile for Linear u Interpolation... 152
Figure 6.10. Velocity Profile for Smooth u Interpolation... 153
Figure 6.11. Example Velocity Profile ... 155
Figure 6.12. First-Order Velocity Approximation.. 157
Figure 6.13. Second-Order Velocity Approximation ... 158
Figure 6.14. Example Trajectory with a Cusp .. 159
Figure 6.15. Example Velocity Profile ... 160
Figure 6.16. Sample Orientation Descriptions.. 161
Figure 6.17. Example Rotational Interpolation... 163
Figure 6.18. Tracing a Parabolic Surface.. 167
Figure 6.19. Example Code for setting Constraints.. 168
Figure 6.20. Example Code for Executing a Trajectory ... 169
Figure 7.1. Examples of Algebraic Curves... 174
Figure 7.2. Example B-Spline Curves .. 177
Figure 7.3. A-Spline Curve Example.. 178
Figure 7.4. Family of Parabolas.. 180
Figure 7.5. Constant Curvature/Torsion Curves ... 183
Figure 7.6. Local Effect of Varying Curvature... 185
Figure 7.7. Varying Positive Torsions .. 186
Figure 7.8. Varying Negative Torsions... 187
Figure 7.9. Local Cusp.. 188
Figure 7.10. Local Saddle Point.. 189
Figure 7.11. Generated Spatial Curve... 191
Figure 7.12. Motion Planner Schematic ... 192
Figure 7.13. Resulting Velocity Profile .. 193
Figure 7.14. Example MP Code.. 194
Figure 7.15. Simulation Environment... 196
Figure 7.16. Effect of Varying Tangent Scale .. 198
Figure 7.17. Varying Curvature at Frame 2.. 200
Figure 7.18. Varying Curvature at Frame 3.. 201
Figure 7.19. Varying Torsion at Way Point 1 with κ = 20 .. 203
Figure 7.20. Varying Torsion at Frame 2 from a different perspective.......................... 204
Figure 7.21. Varying Torsion from perspective of Osculating Plane 205
Figure 7.22. Varying Torsion at Way Point 1 with κ = 5 .. 206
Figure 7.23. Perspective on Osculating Plane .. 207

 xvii

Figure 7.24. Varying Torsion at Way Point 1... 208
Figure 7.25. Varying Derivative of Curvature.. 210
Figure 7.26. Varying Derivative of Torsion ... 212
Figure 7.27. Overall Motion Trajectory.. 218
Figure 7.28. Velocity Profiles... 219
Figure 7.29. Velocity Profiles for Varying Move Times.. 220
Figure 7.30. Bezier Curves with Curvature Specification .. 224
Figure 7.31. Centripetal Acceleration Plot ... 228
Figure 7.32. Angular Velocity Plot... 228

 xviii

TABLE OF TABLES

Table 2.1. Curve Representations ... 46
Table 2.2. Comparison of Curve Representations .. 47
Table 4.1. Curve Parameters for Family of Parabolas .. 77
Table 4.2. Curve Parameters for Family of Cusps... 83
Table 4.3. Curve Parameters around an Inflection Point .. 86
Table 4.4. Curve Parameters for Helices of Varying Curvature....................................... 94
Table 4.5. Curve Parameters for Helices of Varying Torsion .. 96
Table 5.1. Sample Parametric Constraints.. 111
Table 5.2. First-Order Constraints Example ... 112
Table 5.3. First-Order Constraints Example II ... 113
Table 5.4. Curvature Constraints Example ... 116
Table 5.5. Curvature Constraints Example II ... 117
Table 5.6. Example Geometric Constraints with Torsion... 120
Table 5.7. Example Calculated Parametric Constraints.. 120
Table 5.8. Geometric Constraints with Torsion and Derivative of Curvature................ 124
Table 5.9. Example Calculated Parametric Constraints.. 124
Table 5.10. Geometric Constraints ... 127
Table 5.11. Parametric Constraints... 127
Table 5.12. Parametric Constraints Approaching Inflection Point 133
Table 5.13. Parametric Constraints Leaving Inflection Point... 134
Table 5.14. Parametric Constraints Approaching Cusp Point .. 136
Table 5.15. Parametric Constraints Leaving Cusp Point .. 136
Table 6.1. Basic Manipulator Parameters ... 142
Table 6.2. Example Configuration Parameters ... 146
Table 6.3. Orientation Interpolation Modes.. 168
Table 7.1. Curve Representations ... 173
Table 7.2. Comparision of Curve Representations ... 174
Table 7.3. Summary of Family of Parabolas .. 181
Table 7.4. Summary of Properties of Planar Shapes .. 182
Table 7.5. Properties of Helical Curves .. 184
Table 7.6. Example Geometric Constraints .. 191
Table 7.7. Calculated Parametric Constraints... 191
Table 7.8. Key Frame Positions and Orientations .. 196
Table 7.9. Parametric Constraints with Varying Tangent Scale..................................... 197
Table 7.10. Parametric Constraints with Varying Curvature at Frame 2........................ 199
Table 7.11. Parametric Constraints with Varying Curvature at Frame 3........................ 201
Table 7.12. Parametric Constraints for Varying Torsion at Frame 3.............................. 203
Table 7.13. Parametric Constraints for Varying Torsion at Frame 3.............................. 205
Table 7.14. Parametric Constraints with Varying Torsion at Frame 3 208
Table 7.15. Parametric Constraints for Varying Derivative of Curvature at Frame 2.... 209
Table 7.16. Parametric Constraints with Varying Derivative of Torsion at Frame 2..... 211
Table 7.17. Summary of Geometric Parameters... 213

 xix

Table 7.18. Local Geometric Constraints ... 216
Table 7.19. Parametric Constraints at Frame 2... 217
Table 7.20. Parametric Constraints at Frame 3... 217
Table 7.21. Velocity Profile Errors... 220
Table 7.22. Velocity Profile Errors for Varying Move Times.. 221

 1

1. CHAPTER ONE

Introduction

This research is contained in the broad domain of manipulator motion planning

with an emphasis on the geometry of Cartesian space paths. Much of the past and current

research in this area is focused on manipulator system topics such as obstacle avoidance,

dynamic optimizations, and high-level task planning. However, little work has been done

in studying and generating complex geometries for manipulator path plans. As the tasks

required for robotic systems become increasingly complex, a better understanding of the

geometry of spatial curves and how this relates to motion planning will be required. The

goal of this work is to create for describing and generating geometrically complex paths

with well understood physical meaning.

This chapter will first introduce the domain of robotics by describing basic

geometry and modeling techniques for serial manipulators. Then, a review of common

techniques for joint and Cartesian space planning will be provided with an emphasis on

complex Cartesian motions. This review will demonstrate a need for a more geometric

based approach to planning these motions. Finally, the last section of this chapter will

discuss the structure of the rest of this work.

1.1. MANIPULATOR MODELING

In order to understand the mathematics behind motion planning, it is important to

understand the geometry of serial robotic systems. Serial robotic manipulators are made

up of a series of controllable variable joints. These joints are usually either prismatic (P)

or revolute (R). A prismatic joint provides linear motion along an axis, and a revolute

 2

joint provides rotation about an axis. The degrees of freedom (DOF) of a serial robot is

defined to be the number of active variable joints (i.e. each joint is driven).

The current configuration of a serial system is a function of the current joint
positions. This is shown in Equation (1.1) where { }, , , , ,x y zx y z ψ ψ ψ represents the

position and orientation of the manipulator end-effector. The joint position
vector,{ }1 2, , , nφ φ φ , is the input to the system (where n is the degrees of freedom), and

the manipulator end-effector position and orientation is the output.
()
()
()
()
()
()

1 2

1 2

1 2

1 2

1 2

1 2

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

n

n

n

x n

y n

z n

x f

y f

z f

f

f

f

φ φ φ

φ φ φ

φ φ φ

ψ φ φ φ

ψ φ φ φ

ψ φ φ φ

=

=

=

=

=

=

 (1.1)

The joint position vector is usually defined as a function of time. This means that

the joint velocities and accelerations can be easily obtained by differentiating, as shown

in Equation (1.2).

() () () (){ }
() () (){ }
() () (){ }

1 2

1 2

1 2

, , ,

, , ,

, , ,

n

n

n

f t t t t

d t t tdt
d t t tdt

φ φ φ φ

φφ φ φ φ

φφ φ φ φ

= =

= =

= =

 (1.2)

1.1.1. DH Parameters

Denavit-Hartenberg (DH) parameters are one of the most common methods for

describing the geometry of serial manipulators. This method was developed by Denavit
and Hartenberg [13] in 1955. It involves defining a set of four parameters (), , ,a dα θ that

represent the coordinate transformations from one joint axis to the next. In each of these

transformations, some of the parameters are variable and others are fixed. For a revolute

joint, the θ parameter is usually defined to be variable. For a prismatic joint, the d

 3

parameter is usually defined to be variable. For a serial robot, the number of variable

parameters will be equal to the DOF. A visual representation of these parameters is

shown in Figure 1.1.

Figure 1.1 DH Parameters and link frames. Craig [13]

The DH Parameters are defined as [13]:

• ia = the distance from ˆ
iZ to 1

ˆ
iZ + measured along ˆ

iX

• iα = the angle between ˆ
iZ and 1

ˆ
iZ + measured about ˆ

iX

• id = the distance from 1
ˆ

iX − to ˆ
iX measured along ˆ

iZ

• iθ = the angle between 1
ˆ

iX − and ˆ
iX measured about ˆ

iZ

Each transformation between consecutive joints is treated individually as a 4x4

transformation matrix. A transformation matrix represents a spatial transform

(translation and rotation) between two coordinate frames. The transformation matrix [13]

 4

to move from a frame attached to joint i to a frame attached to joint i-1 is shown in

Equation (1.3).
1

1 1 1 11

1 1 1 1

cos sin 0
sin cos cos cos sin sin
sin sin cos sin cos cos
0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

a
d

T
d

θ θ
θ α θ α α α
θ α θ α α α

−

− − − −−

− − − −

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (1.3)

The total transformation from the fixed base frame to the variable end-effector

(EE) frame is the combination of the transformation matrices for each consecutive joint

pair. For an n-DOF serial system, this is shown in Equation (1.4) where 0
nT is the

transformation from the base frame to the EE frame.
0 0 1 2 1

1 2 3
n

n nT T T T T−⎡ ⎤= ⎣ ⎦ (1.4)

1.1.2. End-Effector Representations

The modeling method described in the previous section defines the location of the

EE as a transformation from the base frame into the EE frame. This transformation

matrix has the form shown in Equation (1.5). The parameter A
BP represents a 3x1 vector

of the x, y, and z positions of the EE, and A
B R is a 3x3 rotation matrix that rotates the base

frame into the tool frame. While this provides a good interpretation of the position, it is

difficult to visualize and control the orientation of the EE from a 3x3 rotation matrix

representation. This section will describe several other methods for describing spatial

orientations.

0 0 0 1

A A
B BR P⎡ ⎤

⎢ ⎥
⎣ ⎦

 (1.5)

 5

1.1.2.1. Fixed XYZ Angles

Fixed XYZ angles are one of the most common methods for describing EE

orientation. This representation will describe the orientation as a 3x1 vector of angles

{ }, ,α β γ . These angles represent three rotations around the fixed world frame (i.e. one

rotation about the fixed x-axis, one rotation about the fixed y-axis, and one rotation about

the fixed z-axis). While this leads to a compact description of the EE in a 3x1 vector, it is

often difficult to visualize how a rotation around one of the fixed frame axes will change

the EE when controlling a robot. Further information can be found in [13].

1.1.2.2. Euler Angles

Euler angles are similar to Fixed XYZ and are also represented in a 3x1 vector

{ }, ,α β γ . However, they are relative to the rotating frame. For example, Euler XYZ

angles will represent a rotation about the fixed x-axis followed by a rotation around the

new y-axis followed by a rotation about the new z-axis. Euler angles can be defined as

rotations around any order of the x, y, and z axes as long as no two consecutive axes are

the same. For example, Euler XYZ and Euler ZYZ are valid representations, but Euler

ZZX is not. Euler angles suffer from many of the same problems as Fixed XYZ angles,

but they allow for direct control over rotation about one of the EE frame’s axes. For

example, changing the γ value in an Euler XYZ representation will cause a rotation

about the EE’s z-axis. Fixed XYZ and Euler angles are often stored along with the

position of the EE in a 6x1 vector called a handpose. Further information can be found in

[13].

1.1.2.3. Equivalent Axis

 Another common representation is the Equivalent-Axis. This defines the

orientation as a rotation about a single axis in space. This representation consists of a 3x1

 6

vector and an angle ()ˆ ,R θn . The rotation matrix to describe the orientation can be

determined from Equation (1.6) [13]. Equivalent Axis rotations can be useful for

interpolating between initial and final orientations, however; this representation is not

very useful for visualizing an EE’s orientation.
() () ()
() () ()
() () ()

1 cos cos 1 cos sin 1 cos sin
1 cos sin 1 cos cos 1 cos sin
1 cos sin 1 cos sin 1 cos sin

x x x y z x z y

x y z y y y z x

x z y z x z z

n n n n n n n n
n n n n n n n n
n n ny n n n n n

θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

⎛ ⎞− + − − − +
⎜ ⎟

− + − + − −⎜ ⎟
⎜ ⎟− − − + − +⎝ ⎠

 (1.6)

1.1.2.4. Quaternions

Quaternions are commonly used in industry to represent spatial orientations and
are similar to Equivalent axes. A quaternion is a 4x1 vector ()ˆ ˆ ˆi j kq w x y z= + + + that

contains a 3x1 vector (x, y, z) representing an axis in space and a scalar value (w)

representing the cosine of the half-angle of rotation about this axis [41]. Quaternions,

like equivalent axes, are often used for interpolation between two orientations. The

Spherical Linear Interpolation (SLERP) method, shown in Equation (1.7), is the most

common method used for interpolation. The θ in this equation is the angle between the
initial and final quaternions given by ()1

0 1cos q q− ⋅ . This method provides a constant

angular velocity with respect to the independent parameter t.

() ()() () []0 1sin 1 sin
, 0,1

sin
q t q t

q t t
θ θ
θ

− +
= ∈ (1.7)

1.1.3. Kinematics Model

Thomas and Tesar [47] developed a kinematics model for serial manipulators

based on generalized influence coefficients. These coefficients represent a direct

geometric mapping between input and output parameters. This model is generalized and

can be used on a wide variety of systems ranging from complex hyper-redundant

 7

manipulators to simple planar systems. The next few sections will describe the analytic

development of this model.

1.1.3.1. First Order Influence Coefficients

A generalized method for mapping the time derivatives of the input and output

parameters of a manipulator was developed by Thomas and Tesar [51]. This method

relies on defining kinematic influence coefficients that are functions only of the current

geometry of the system. Let the output position vector be described by

{ }, , , , ,x y zx y z ψ ψ ψ=P . The time derivative of this position is shown in Equation (1.8).

pd d G
dt dt φ

φ φ
φ
∂ ⎡ ⎤= = = ⎣ ⎦∂

P PP (1.8)

The pGφ⎡ ⎤⎣ ⎦ in this equation represents a matrix containing the first order influence

coefficients, or G functions, relating the input joint velocities to the output EE velocities.

Each individual G function maps a certain input to a certain output. For example, a G

function mapping the effect of the first joint on the x position of the output would look
like

1 1

x xGφ φ
∂⎡ ⎤ =⎣ ⎦ ∂ . The entire matrix of G functions is shown in Equation (1.9). This

matrix relates the input joint velocities to the manipulator’s EE velocities. It is often

referred to as the Jacobian matrix [13].

1 2

1 2

1

n

p

z z

n

x x x

y y
Gφ

φ φ φ

φ φ

ψ ψ
φ φ

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥⎡ ⎤ ∂ ∂=⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 (1.9)

 8

1.1.3.2. Second Order Influence Coefficients

Similarly, the second order influence coefficients can be derived that relate the

input accelerations to the output accelerations. Equation (1.10) shows the second

derivative with respect to time of the output position vector, P.
2 2

2
2 2

d d d
dt dt dt

φ φ φ
φ φ φ

⎛ ⎞∂ ∂ ∂
= = = +⎜ ⎟∂ ∂ ∂⎝ ⎠

P P P PP (1.10)

It is interesting to note that the first order influence coefficient,
φ
∂
∂
P , appears in

this derivation. This term relates the effect of joint accelerations on output accelerations

while the second term relates centripetal and Coriolis effects on the output accelerations.

Equation (1.11) shows this equation in terms of influence coefficients, where
2

2
pH

dφφ φ
∂⎡ ⎤ =⎣ ⎦

P .

p T uG Hφ φφφ φ φ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦P (1.11)

The pHφφ⎡ ⎤⎣ ⎦ represents the second order influence coefficients or H functions. In

Equation (1.11), the H functions are grouped together into a tensor known as the Hessian.

This tensor contains as many planes as the system output DOFs.

1.1.4. Dynamic Model

The influence coefficients derived in the previous section can be further expanded

to create a generalized dynamic model of manipulators. This dynamic model will be

briefly discussed here; a more detailed derivation can be found in Thomas and Tesar [51].

Equation (1.12) shows the formulation of the joint torques resulting from system inertia.
* *I T

n I Pφφ φφφτ φ φ φ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ (1.12)

The *Iφφ⎡ ⎤⎣ ⎦ term in this equation is the effective inertia matrix and represents the

effects of mass and moment of inertia on each of the active reference joint parameters iφ .

 9

Its formulation is shown in Equation (1.13). The jkM term represents the link centroidal

masses, and the jk⎡ ⎤∏⎣ ⎦ represents the link rotary inertias.

{ }*

1

N T Tj c j c jk jk jk
jk

j
I M G G G Gφφ φ φ φ φ

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + Π⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ (1.13)

The *Pφφφ⎡ ⎤⎣ ⎦ in Equation (1.12) is the inertial power array. This includes

centripetal and Coriolis effects from the inertia. The formulation for *Pφφφ⎡ ⎤⎣ ⎦ is shown in

Equation (1.14).

()
() ()()

()

*

1
{

}

n
j c j c

jk
i

j c jk jk

T Tjk jk jk jk

P M G H

G H

G G P G

φφφ φ φφ

φ φφ

φ φ φ

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ Π⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑

 (1.14)

Equation (1.12) represents all of the torques resulting from system inertia (i.e.

system movement). However, it does not include torques resulting from gravity effects
or external forces. Equation (1.15) includes these effects where i cgGφ⎡ ⎤⎣ ⎦ represents the

vertical G function to the center of gravity of the ith link, ,g iL represents the load due to

gravity, i eGφ⎡ ⎤⎣ ⎦ is the G function of the ith link about the EE, and eL is the EE load.

* *
,

1

n
total T i cg i e

g i e
i n

I P G Gφ φφ φφφ φ φτ φ φ φ
=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ L L (1.15)

1.2. MOTION PLANNING

Motion Planning involves the generation of time-based trajectories for robotic

manipulators. This can be done in joint space or Cartesian space. In joint space, the

motion of each joint axis is programmed independently. This is sufficient for moving

between two positions when the end-effector path between the two positions is not

important. However, Cartesian space trajectories are necessary for performing more

complex tasks and are the focus of this research. The next section provides a brief

 10

description of joint space planning. Then, a review of some common Cartesian space

planning methods is presented.

1.2.1. Joint Space Planning
In joint space planning, each actuator is treated like a one degree of freedom

(DOF) system, and their trajectories are computed individually. Thus, in a 10-DOF

robot, ten trajectories will be computed. There are many different methods for

computing a smooth trajectory for 1-DOF. Most of these methods involve a smooth

ramp-up to a maximum velocity at the beginning of the trajectory, and a smooth ramp-

down to zero velocity at the end. Some of the popular trajectory generation methods

include: polynomial, sinusoidal, and trapezoidal. A more thorough examination of them

can be found in [38].

Joint space planning has many advantages. First, joint space planning is simple

mathematically and can be calculated quickly. Second, since robotic systems take joint

angles as inputs, it is convenient to generate trajectories with respect to joint angles.

Also, harm to individual actuators is reduced, because a smooth motion is planned for

each joint. This will allow for increased performance and less repairs. However, joint

space planning does not allow for control over the EE during its motions. This makes it

unsuitable for use in generating trajectories for complex tasks.

1.2.2. Cartesian Space Planning

Cartesian space planning involves developing the position and orientation

trajectories for the manipulator end-effector. The description of the end-effector in space

has six degrees of freedom (DOF) and each of these must be controlled. These end-

effector positions are then converted into joint positions at discrete instances in time and

sent to the robot controller. In the past, there have been numerous different approaches to

Cartesian space planning. This section will highlight some of the major areas to

demonstrate a need for a more geometric approach.

 11

One of the main problems with Cartesian space motions is that a smooth end-

effector motion may provide an undesirable motion at the joint level. One way this

problem has been addressed is to approximate the Cartesian path with a smooth joint

trajectory. This is done by dividing a given end-effector path into a set of n knot points.

Then, the joint position at each knot point is determined by inverse kinematics and a

curve can be fit through these positions for each joint. A variety of methods have been

used for generating this curve including cubic splines [28], B-splines [52], and

trigonometric splines [45]. While these methods are adequate for generating smooth joint

trajectories that approximate Cartesian paths, they still produce errors and anomalies in

the higher-order properties in the path that may not be tolerable for high-performance

tasks.

Another popular method of Cartesian space planning is to “blend” multiple path

segments together. An early method of this was introduced by Paul [34] for smoothly

transitioning between multiple straight-line trajectories. Later, these techniques were

generalized and formalized for more complicated motions [29][54]. The basic idea of

these techniques is to transition from one specified trajectory to another using a form
similar to () () () ()() ()2 11X t t X t t X tα α= + − . The blending function, ()tα , must be

chosen carefully to meet initial and final constraints. For example, using the polynomial

() 5 4 36 15 10t t t tα = − + will satisfy initial and final velocity and acceleration constraints.

Figure 1.2 shows an example of a trajectory blend. The choice of the blending function

and the size of the blend will have an impact on the final shape of the trajectory.

However, these techniques do not offer a great deal of control over the shape of the

velocity and acceleration profiles in the blending interval.

 12

Figure 1.2. Blended Trajectory

Surface following is another useful area of research. This involves planning the

trajectory for a robot manipulator based on a defined surface (e.g. a part to be machined).

This surface can be provided as a parametric description or sometimes as a CAD-model.

A general survey of surface tracing can be found in [40]. Two different techniques of

automating a spray-painting system based on surface following can be found in [12] and

[46]. In these techniques, the motion of the end-effector along the surface is designed to

apply an equal coating of paint across the entire surface. These techniques are useful for

specific applications, but they do not provide a way to define general motions.

A popular method for planning the orientation trajectory of the end-effector is to

base the orientation on the geometry of the curve. This is done by planning rotations

relative to the Frenet Frame [3][57][58]. The Frenet Frame consists of three orthogonal

vectors: the tangent vector, the normal vector, and the bi-normal vector. These vectors are

defined by the shape of the curve, and the frame will move along the curve continuously

 13

as long as the curvature and torsion are continuous. One example of how these techniques

could be used would be to define a constant velocity around the normal vector on the

surface in a surface tracing task. These methods are very useful in coupling the rotational

motion of the manipulator with the geometry of the spatial curve and will be revisited

later in discussions on rotational motion planning. However, these methods assume the

geometry of the path is already provided.

The differential properties of ruled surfaces have also been used to study

manipulator end-effector motions. One of the first methods of doing this was presented

by Ryuh and Pennock [39]. A ruled surface can be defined as shown in Equation 1.1
where u is an independent parameter defining motion along curves ()ur and ()uR and

υ defines a point on the line between the two curves. In a manipulator, ()ur (often

called the Directrix) defines the motion of the end-effector tool tip, and ()uR (often

called the Indicatrix) defines the motion of a point along the tool axis line. Thus, the ruled

surface becomes the surface traced by a vector aligned along the tool axis. The geometric

properties of this surface are then used to define the time-based motion of the

manipulator end-effector. More recent works in using ruled-surface properties for

generating manipulator motions can be found in [59][60][61][62].

() () (),u u uυ υ= +X r R 1.1

The above survey of work shows that there has been ample research in generating

time-based trajectories from provided geometries. However, the literature has been less

focused on actually generating the geometry of paths. These paths are generally assumed

to come from some CAD-based model or some basic interpolating scheme (polynomial

curves, Bezier curves, B-Splines, NURBS, etc). Thus, the focus of this research is on

studying and generating the geometry of spatial curves with emphasis on local properties.

 14

1.3. RESEARCH OBJECTIVES

This work will concentrate on studying and generating trajectories based on the

intrinsic physical properties of spatial curves: curvature and torsion. This differs from the

traditional spline-based methods in that those methods tend to be defined in terms of

some independent parameter with little physical meaning. The main hypothesis of this

research is that focusing on the higher-order properties of spatial curves will provide a

more intuitive method of generating complex motions. This section of the report will go

into more detail on the specific research plans for this work. As mentioned earlier, the

end goal of this research is the development of an intuitive method for generating

complex spatial paths. The main motivation for this work is to provide an alternative way

of looking at spatial trajectory planning by generating spatial curves based on the higher-

order properties of curvature and torsion whose values correlate closely with the physical

nature of a family of curves based on those values.

1.3.1. Motivation

This research draws motivation from the techniques used for developing coupler

curves for mechanisms as these techniques also emphasized the geometry of a path in the

planning phase. The desired motion curve for a planar mechanism can be specified in

terms of a series of Multiply Separated Positions (MSP). A generalized algebraic solution

to this problem was developed in [47][48][49]. MSPs are defined as a combination of

Finitely Separated Positions (FSP) and Infinitesimally Separated Positions (ISP). Two

FSPs are designated as (P-P), and two ISPs are designated as (PP). So, three Multiply

Separated Positions could be defined as PPP, PP-P, or P-P-P. An FSP is simply a discrete

position in the plane as shown in Figure 1.3. The position of point A in frame Σ can be
found using Equation 1.2. In general, (), fα β φ= with φ being the independent

 15

parameter. Thus, a P-P-P motion specification would simply define three discrete points

on the plane for the motion curve to pass through.

Figure 1.3. Finitely Separated Position

cos sin
sin cos

X x y
Y x y

φ φ α
φ φ β

= − +
= + +

 1.2

Figure 1.4. Zero Order Contact

To understand the concept of ISPs, the idea of order of contact should be defined.

Two curves are said to have zero-order contact if they intersect at a single point as shown

in Figure 1.4. In this case, the curves share a position but no higher-order properties.

In first order contact, two curves share two infinitesimally separated points.

Consider the two curves shown in Figure 1.5 with two intersections. As the distance

between these two intersections approaches zero, the two curves share a common point

and a common tangent. Thus, specifying a PP MSP is equivalent to specifiying a position

and a tangent for the curve.

 16

Figure 1.5. 1st Order Contact

For second order contact, two curves share three infinitesimally separated points.

Consider the two curves shown in Figure 1.6. As the distances 01S∆ and 12S∆ approach

zero, the two curves share a common point, tangent, and curvature. It can be similarly

shown that 3rd order contact involves an additional shared first derivative of curvature

(κ′).

Figure 1.6. 2nd Order Contact

Once the motion constraints have been specified, the coupler curve and

mechanism constraints can be determined algebraically. It should be noted that the

number of MSPs that can be specified is limited by the mechanism. However, a robot can

be reprogrammed to follow any path that is within its workspace, and the design of the

path can be decoupled from the physical system in terms of generating the shape of the

path. This allows more freedom in the design of the curve for manipulators. Thus, while

the actual procedure developed in this research is much different from coupler curve

design, the underlying motivation is the same: designing curves based on geometric

constraints.

 17

1.4. CONCLUSIONS

This chapter began by describing the basic domain of robotics and motion

planning. Then, a brief review of some of the areas of research for manipulator motion

planning demonstrated a lack of focus on the geometric design of curves. Thus, to pursue

the goals of this research, we will begin by studying of the theory of Algebraic Curves in

Chapter 2.

This study will focus on the basic descriptions, representations and properties of

Algebraic Curves. Four different representations will be explored: Implicit, Parametric,

Arc-Length Parameterization, and Curvature/Torsion profiles. For each representation,

the formulations for the intrinsic properties of curvature and torsion will be investigated.

Then, the various advantages and disadvantages of these representations will be

summarized. This chapter should supply the reader with the necessary mathematic

background to understand the formulations developed in later chapters.

In Chapter Three, various curve generation techniques from other disciplines (e.g.

Computer-Aided Design and Computer Graphics) are explored. These include fairly

simple methods such as Bezier Curves and B-Splines as well more involved methods

such as Beta-Splines and A-Splines. While all of these methods provide adequate ways to

produce visually pleasing curves, the goal of this research is on developing more

physically-based curve constraints.

This goal is pursued in Chapter 4 by further studying the intrinsic properties of

curvature and torsion and their affects on the local geometry of curves. This starts with a

study of very simple planes shapes (parabolas, circles, ellipses, etc). For each shape,

variable parameters are identified that can be used to generate families of curves. Then,

closed-form solutions for curvature in terms of these parameters are formulated to better

develop the relationships between this property and simple planar shapes. Then, a similar

 18

analysis is pursued for more complex spatial shapes. In this case, it becomes increasingly

difficult to directly relate parametric/implicit forms of curves with the geometric

properties. Thus, to study these properties, a method to directly generate curves based on

curvature/torsion values is presented. This method is used to develop local surfaces

defined by families of curves to illustrate the local affect of curvature and torsion on the

geometry of spatial curves.

Once a physical understanding of curvature and torsion has been developed,

Chapter 5 then shows how to convert these geometric constraints into parametric

constraints that can be used to generate spatial curves. This involves a step-by-step

formulation for developing these constraints up to the fourth order, and specific examples

are included at each step that demonstrate how this process can be used. The end result is

a method wherein a user/operator can provide geometric constraints (i.e. constraints

based on curvature and torsion) at a set of frames, and the resulting parametric constraints

can be calculated. An introduction to several potential methods for blending between

these constraints (polynomial, trapezoidal, etc) is also introduced and elaborated in

Appendix B.

Chapter Six then takes this method for developing the geometric shape of a curve

and implements it inside of a manipulator controller. First, the basic software framework

for a Motion Planner previously designed at the RRG will be presented. Then, specific

integration issues, such as defining the motion along the curve and rotational planning

methods, are discussed. This provides a useful, robot independent testbed that can easily

be used and expanded in future work. Finally, Chapter Seven will present a summary of

this work as well as suggestions for future work in this area. This will also demonstrate

how the techniques developed in this work may be applied to specific manipulator tasks.

 19

2. CHAPTER TWO

Algebraic Curves

This chapter will introduce some of the necessary mathematical background for

this research, which involves looking at the various different representations for algebraic

curves and their properties. In the first section, implicit forms for algebraic curves will be

discussed (i.e. () 0, =yxf). These curves are basically defined to be the set of all points

(x,y) that are a solution to the given algebraic equation. Next, the standard parametric

form for algebraic curves will be discussed. In this form, the x, y, and z coordinates are
defined as functions of some independent parameter (() () (), ,x f u y f u z f u= = =). For

defining motion, this independent parameter u is often taken to be time t or some function

of time. A special case of this form where the independent parameter is arc length will

also be studied. Finally, a method of defining a spatial curve in terms of its curvature and

torsion profiles will be developed. The advantages and disadvantages of these

representations will then be compared with an emphasis on application to interactive path

planning for physical systems (i.e. end-effector motion for programmable robot

manipulators). The mathematics introduced in this chapter will be analyzed in more depth

in later chapters.

2.1. IMPLICIT FORMS OF PLANAR ALGEBRAIC CURVES

An implicit planar curve is defined as the zero of a bivariate function () 0, =yxf .

An algebraic curve is simply the case where the function (),f x y is a polynomial in x

and y with scaling coefficients aij. A degree n algebraic curve is thus defined as shown in

Equation 2.1 where n=i+j. Then, the curve represents the set of all points (x,y) that are

 20

solutions to this equation. For example, Figure 2.1 shows a curve represented by the
equation ()2 1 1 0y x + − = .

(), 0
n

i j
ij

i j
f x y a x y

+

= =∑ 2.1

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

X

Y

Figure 2.1. Implicit Algebraic Curve

2.1.1. Basic Properties of Implicit Curves

This section will discuss two simple, but important, properties of implicit planar

curves: curvature and inflection points. Curvature is the reciprocal of the local radius of

curvature. Thus, it is basically a measure of how much the curve is “bending”. A

curvature of zero would mean that the curve is a locally a straight line, and a high

curvature would indicate a sharp bend in the curve. In the limit, when the curvature is

infinite, the curve becomes a cusp. The equation for curvature of an implicit planar curve

 21

is shown in Equation 2.2 where x
ff
x
∂

=
∂

, y
ff
y
∂

=
∂

,
2

2xx
ff

x
∂

=
∂

,
2

2yy
ff

y
∂

=
∂

, and

2

xy
ff

x y
∂

=
∂ ∂

.

()
()

2 2

3
2 2 2

2
, xx y xy x y yy x

x y

f f f f f f f
x y

f f
κ

− +
=

+
 2.2

An inflection point is closely related to curvature and occurs whenever the sign of

curvature changes. This represents the curve changing direction. Another way to think of

curvature is to examine how the tangent of the curve is changing as the curve is traced.

The tangent will rotate in the counter-clockwise direction if the curvature is positive and

in the clockwise direction if the curvature is negative. Thus, the tangent vector will “cut”

the curve at an inflection point [16]. For example, in Figure 2.2, the curve on the right

contains an inflection point at the origin while the curve on the left does not.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

Figure 2.2. Example of an Inflection Point

2.1.2. Genus and Singular Points

An important categorization of an algebraic curve is its genus. The genus of an

algebraic curve of degree n is given by Equation 2.3 and will always be greater than or

equal to zero. Thus, a quadratic curve (n=2) will have no singular points, and a cubic

 22

(n=3) will have at most one. An important result relating to genus is that an algebraic

curve will have a rational parameterization if and only if the genus is equal to zero [55].

This is an important result as a parameterization allows for easier definition of motion

along a curve. A basic procedure for obtaining this parameterization will be presented in

the following section on parametric curves.
()()2 1

singularities
2

n n
genus

− −
= −∑ 2.3

It not becomes necessary to expand on the meaning of singularities on algebraic

curves. A singularity on an algebraic curve is defined to be any point on the curve where

the both first derivatives vanish ((,) (,) 0f x y f x y
x y

∂ ∂
= =

∂ ∂
). Note that these points must

still lie on the curve. For example, the curve 3 3 1 0x y+ − = does not contain any

singularities even though (0,0) (0,0) 0f f
x y

∂ ∂
= =

∂ ∂
, because the point x=0, y=0 does not lie

on the curve.

Now, to study a few of the most common types of singularities, we will consider

the algebraic curve given by the equation 2 2 3y ax x= + . It is easy to see that for all values

of a, there will be a singular point at the origin. We will consider three cases (a<0, a=0,

a>0) that will lead to the three different types of singularities.

2.1.2.1. Double Point

In the first case, we choose a to be a positive value. This leads to a double point.

At a double point, the curve crosses itself but does not share tangents between the

crossing branches. An example of a double point is shown in Figure 2.3.

 23

-4 -3 -2 -1 0 1 2
-3

-2

-1

0

1

2

3

X

Y

Figure 2.3. A Double Point in the curve: 2 3 23y x x= +

Another condition for a double point is that the determinant of the Hessian matrix

of second derivatives will be negative definite at the singular point. For a curve in two

variables, the Hessian matrix is shown in Equation 2.4. The calculation of the

determinant of this matrix can be found be plugging in the partial derivative values as
shown in Equation 2.5. Plugging in the singular point () (), 0,0x y = , the determinant of

this matrix for this curve at the singular point is -4a, which will be negative for all

positive values of a.
2 2

2

2 2

2

f f
x x y
f f

y x y

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂
⎜ ⎟
∂ ∂ ∂⎝ ⎠

 2.4

 24

2 6 0
4 12

0 2
a x

a x
− −

= − − 2.5

2.1.2.2. Cusp

A cusp occurs in this curve when a is set to zero. At a cusp, two branches of the

curve meet with a shared tangent, and the determinant of the Hessian matrix is zero. The

deriviative of the Hessian will be the same as before (-4a) but with a=0 this time. Figure

2.4 shows an example of a cusp.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y

Figure 2.4. A cusp in the curve: 2 3y x=

2.1.2.3. Isolated Point

Another kind of singularity is known as an isolated point. This occurs when the

equation of the curve has a point that is disconnected from the rest of the curve. Consider

the case when a=-3 shown in Figure 2.5.

 25

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

X

Y

Figure 2.5. Isolated Point on curve: 2 3 23y x x= −

As seen in this plot, most of the curve lies to the right of the origin. However, it is

clear the point x=0, y=0 is also a solution to the algebraic equation. This leads to an

isolated point. At an isolated point, the determinant of the Hessian matrix will be positive

definite. Once again, the determinant of the Hessian will be -4a. However, since a is now

negative, this will always be a positive value.

2.1.2.4. Other Singularities

For higher degree curves, singular points are often a form of one of the types of

singularities previously discussed but with a higher multiplicity. For example, the degree

four curve shown in Figure 2.6 has a triple point at its origin. It should also be noted that

 26

not all singular points have an obvious geometric feature; it is also possible for a curve to

look smooth at a singularity.

()22 2 2 33 0x y x y y+ + − =

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y ()22 2 2 33 0x y x y y+ + − =

Figure 2.6. Degree Four Curve with a Triple Point

2.1.3. Implicit Spatial Curves

This section has so far focused on planar forms of implicit curves. A spatial curve

in implicit form is defined as the intersection of two implicit surfaces (i.e.

() (), , 0 , , 0f x y z g x y z= ∩ =). A simple example of this is shown in Equation 2.6 where

a curve is defined by a unit sphere intersecting with the z=0 plane. Thus, this curve is

simply a unit circle in the xy plane. Defining a curve in this manner is important for many

applications, such as looking at the curves resulting from intersecting two complex

surfaces. However, in general, it is difficult to define a desired curve shape (useful for

motion planning) in this manner.

 27

2 2 2 1 0
0

x y z
z
+ + − =
=

 2.6

2.1.4. Summary

Algebraic curves defined in implicit forms can provide a good mathematical

understanding of the curve and have a wealth of historical literature and research

associated with them. However, they have several disadvantages in terms of curve

generation as it can be difficult to describe a motion along the curves in terms of their

point parameters. This problem becomes even more difficult when trying to describe

spatial motions. For this reason, implicit curves are often converted to parametric form.

The next section will describe a basic procedure for doing this for planar curves and then

go into more depth on the properties of parametric curves.

2.2. STANDARD PARAMETRIC CURVES

A planar parametric curve involves defining the x and y coordinates with respect

to some independent parameter over a certain range as shown in Equation 2.7. Curves

defined in this manner are in general easier to work with than implicit curves. Thus,

implicit curves are often converted into a parametric form for the purposes of rendering

or defining a motion along the curve. The basic procedure for this conversion is

introduced for low degree curves in the following section.
()
()

[], ,
x f u

u a b
y f u

= ⎫⎪ ∈⎬
= ⎪⎭

1 2.7

2.2.1. Implicit to Parametric Conversion

As mentioned in the Section 2.1.2, a curve must have a genus of 0 for a rational

parameterization to exist. Thus, a rational parameterization will always exist for a

1 This notation means the independent parameter u is defined on some interval a to b.

 28

quadratic curve, and a cubic curve will require the curve to have one singular point. For

these simple curves of low degree, a parameterization can be found by computing the

intersection of the curve with a “family of lines” passing through a point on the curve.

For example, consider the simple quadratic curve which passes through the origin given

by 2 0y x yx− − = . Now, take the family of lines passing through the origin y=tx and

substitute it into the equation. The resulting parameterization is shown in Equation 2.8.

()

()

2

2 2

2

0
0
0

1 0
1

1

y x yx
tx x tx
x t x tx

tt x t x
t

ty tx y
t

− − =

− − =

− − =

− + = ⇒ =
+

= ⇒ =
+

2.8

Now, consider the cubic curve with a double point (singularity) that was

introduced in Section 2.1.2.1. The parameterization of this curve is shown in Equation

2.9.

()

2 3 2

2 2 3 2

2 2 2 2

3

3 0
3 0

3 0 3 0 3

3

y x x
y tx t x x x

x t x t x x t

y tx y t t

− − =

= ⇒ − − =

− − = ⇒ − − = ⇒ = −

= ⇒ = −

 2.9

This curve was also generated by taking the family of lines passing through the

singularity at the origin. From Figure 2.3, it is clear that these lines must pass through the

origin as any other point on the curve will lead to multiple intersection points. Thus, the

singularity actually allows the rational parameterization to be defined. Figure 2.7 shows

two more examples of implicit versus parametric curves.

 29

() 322 aaxy =+
21 t

a
y

atx

+
=

=
23 axy =

2

3

t
a

y

t
ax

=

=

Figure 2.7. Two Examples of Implicit vs. Parameteric Representations

As the degree of an implicit curve gets higher, it becomes more difficult both to

find curves of genus 0 and to find the rational parameterization of these curves. For

example, a quartic curve (n=4) will require 3 singular points, and a family of curves

instead of lines will often be needed to find the parameterizations. A generalized method

of finding parametric description of algebraic plane curves is presented in [1]. This is

further generalized to spatial curves defined as the intersection of two implicit surfaces

[2]. Higher degree curves are also often approximated with piecewise segments [5].

While this research will mainly focus on curves in parametric form, it is important to

recognize that methods of converting between these representations exist. Thus, implicit

forms can be used when needed.

2.2.2. Spatial Parametric Curves

Parametric curves can easily be extended from planar forms to spatial forms as

shown in Equation 2.10. In this form, each point on the curve can be uniquely defined by
its position vector [], ,x y z=r measured from the origin. Likewise, a curve can be defined

as a real vector function ()u=r r where each component of r is also a function of the

independent parameter u for some parameter range. This provides a mapping from
3R R→ . For generating motion along paths, this independent parameter is often taken to

 30

be time t. Figure 2.8 shows two examples of spatial parametric curves along with their

equations.
()
()
()

[], ,

x f u

y f u u a b

z f u

= ⎫
⎪

= ∈⎬
⎪= ⎭

 2.10

-1 0 1
00.5

1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

XY

Z

-3 -2
-1 0

0
2

4

-14

-12

-10

-8

-6

-4

-2

0

2

YX

Z

()

()
[]2

3

() 1,1

x u u

y u u u

z u u

⎫=
⎪⎪

= ∈ −⎬
⎪= ⎪⎭ ()

()
[]

2

2

4

3

() 0, 2

x u u u

y u u u

z u u u

⎫= −
⎪⎪

= ∈⎬
⎪= − ⎪⎭

Figure 2.8. Example Spatial Parametric Curves

2.2.3. Parametric Curve Properties

This section will introduce some basic physical properties of spatial parametric

curves: curvature, torsion, and the Frenet Frame. The basic physical meanings behind

these properties will be introduced here and described in more detail in later sections.

2.2.3.1. Curvature

In a spatial parametric curve, curvature can be calculated as shown in Equation
2.11 where dxx du′ = [26]. If the z terms in this equation were removed, the equation

reduces to a similar form to the curvature provided earlier for planar parametric curves.

As in a planar curve, this value is the local reciprocal of curvature and gives an indication

of the bending in a curve. Thus, a zero value represents a straight line. This expression

 31

contains derivatives up to the second order which must be defined for curvature to have

meaning.

()
() () ()

()

2 2 2

3
2 2 2 2

y z y z z x x z x y y x
u

x y z
κ

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
=

′ ′ ′+ +
 2.11

One thing to notice in the equation of curvature for a parametric curve is that the

curvature value will always be positive as opposed to being a signed value as in the

planar case. This is because a spatial curve can technically bend in an infinite number of

directions as opposed to just two directions in a planar curve. This can be illustrated by

examining the planar curve in Figure 2.9. As the curve is traversed, the tangent vector can

either move in the clockwise or counter-clockwise directions, and these two directions

correspond to positive and negative curvature. However, in a spatial curve, the tangent

vector can rotate in any direction. Thus, curvature is defined as the magnitude of the

bending without a directions, and an inflection point in a spatial curve can not be

described as a point where the sign of curvature changes.

Figure 2.9. Tangent Vector Changing as Curve is Traversed.

 32

2.2.3.2. Torsion

Torsion τ is another property of curves in space. It measures the tendency of a

curve to twist out of the plane (a planar curve will have a zero torsion). Because the

torsion of a planar curve is zero, τ is a strictly a property of spatial curves. The

calculation for torsion is shown in Equation 2.12 for a curve in parametric form [26].

Unlike curvature, torsion has a signed value for spatial curves.

() () () ()
() () ()2 2 2

y z x y z x z x y x z y x y z y x z
u

y z y z z x x z x y y x
τ

′ ′′ ′′′ ′′ ′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′− + − + −
=

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
 2.12

2.2.3.3. Frenet Frame

The Frenet Frame is a coordinate frame attached to the curve that helps describe

the geometry of the curve. It consists of three orthogonal unit vectors: the tangent,

normal, and bi-normal. The equation for the unit tangent vector is shown in Equation

2.13 [26]. This vector points along the tangent of a curve and represents the “heading” of

the curve.

() []
2 2 2

ˆ x y z
u

x y z

′ ′ ′
=

′ ′ ′+ +
T 2.13

The unit normal vector is orthogonal to the tangent vector and tends to point in

the direction of the bending of the curve. Thus, when the curvature of a curve is positive,

the curve will tend to move in the direction of the normal vector. The equation for the

unit normal is shown in Equation 2.14 [26]. The final vector in the Frenet Frame, the bi-

normal vector, can be calculated as the cross product of the tangent and normal as shown

in Equation 2.15 [26]. It will be shown later that local motion in the bi-normal direction is

related to a curve’s torsion. Figure 2.10 shows the Frenet Frame moving along a spatial

curve.

 33

()

ˆ

ˆ
ˆ

d
duu
d
du

=

T

N
T

 2.14

() () ()ˆ ˆ ˆu u u= ×B T N 2.15

Figure 2.10. Frenet Frame on a Spatial Curve

2.2.4. Parametric Surfaces

While the main focus of this research is on the generation of curves for path

planning, a brief introduction to parametric surfaces and their relationship to parametric

curves is presented here. The study of algebraic surfaces is of interest in motion planning,

because many robotic tasks involve interaction with surfaces (surface polishing, spray

painting, etc). In parametric form, a surface can be defined as shown in Equation 2.16

where the x, y and z coordinates are defined as functions of two independent parameters.

 34

()
()
()

,

,

,

x f s t

y f s t

z f s t

=

=

=

 2.16

In a parametric form, a surface can easily be broken down into curves that run

along its surface. This can be done by setting one of the independent variables to a
constant value (e.g. { } ()0, , ,x y z f s t= or { } ()0, , ,x y z f s t=). A tangent plane can be

defined at any point [s,t] by calculating the tangent vectors of each of these curves. The

cross product of these two vectors will represent the surface normal at a given point. For

example, consider the surface shown in Figure 2.11 parametrically defined as

()() [] [], , cos , 1,1 , 1,1s t s t s t+ ∈ − ∈ − .

Figure 2.11. Example of a Parametric Surface

The dark line at the edge of this plot represents a parametric curve represented by

()() []1, ,cos 1 , 1,1t t t− − ∈ − . This curve is generated by setting s=-1 in the surface

definition and creating a parametric equation with one independent variable. The vertical

 35

lines on the plot represent the surface normal at any given point along this curve. This

vector is calculated by taking the cross product of the two tangent vectors defined as

1 , ,x y z
s s s
∂ ∂ ∂⎡ ⎤= ⎢ ⎥∂ ∂ ∂⎣ ⎦

T and 2 , ,x y z
t t t
∂ ∂ ∂⎡ ⎤= ⎢ ⎥∂ ∂ ∂⎣ ⎦

T . For this particular surface, these tangent

vectors are ()1 0,1, sin s t= − +⎡ ⎤⎣ ⎦T and ()2 1,0, sin s t= − +⎡ ⎤⎣ ⎦T . These calculations could

be useful for developing motion plans for certain tasks where the end-effector orientation

is a function of the geometry of the surface such as spray-painting or grinding. While

this research will focus on spatial curves, it is useful to see that the same analytics apply

to parametric surfaces.

2.3. ARC LENGTH PARAMETERIZATION

Spatial curves that are parameterized with respect to their arc length, s, are of

particular interest. In these curves, the position vector and each of its components is
defined to be a function of the distance traveled along the curve, ()s=r r . As well as

providing a better physical meaning to the independent parameter, curves defined in this

manner have many interesting properties. Equation 2.17 shows the formulation of arc

length [26]. This equation simply integrates the distance along the curve to determine the

arc length. Likewise, we can write the arc length as a function of u as shown in Equation

2.18. The arc length s is often called the natural parameter.
2 2 2

b

a

s x y z du′ ′ ′= + +∫ 2.17

()
o

u

u

s u du′ ′= ⋅∫ r r 2.18

In some special cases, a closed-form analytic solution for an arc length

parameterization can be found. For example, consider a circular helix described by the
equation () ()cos , sin ,u r u r u c=r . For this curve, 2 2r c′ ′⋅ = +r r is a constant, and the

integral in Equation 2.18 does not need to be computed for every value. However, most

 36

curves cannot be easily converted into an arc length parameterization, and a numerical

method is needed.

2.3.1. Arc Length Parameterization Properties

This section will show how the physical properties of spatial curves can be

calculated for arc length parameterized curves. Several useful relationships can be

developed from this parameterization.

2.3.1.1. Frenet Frame

As described in the previous section, the Frenet Frame is a moving coordinate

frame attached to a curve consisting of three unit vectors: the tangent, the normal, and the

bi-normal. The unit tangent vector can also be easily calculated from an arc length

parameterization. This is shown in Equation 2.19.

ˆ
d d d

dx dy dzdu du du
dsd ds ds ds
dudu

⎡ ⎤= = = = ⎢ ⎥′ ′⋅ ⎣ ⎦

r r r

T
r r r

 2.19

Likewise, the unit normal vector can also be easily calculated as before. This is

shown in Equation 2.20. The unit bi-normal can be calculated as before by taking the

cross product of the unit tangent and unit normal (Equation 2.21). This provides the three

vectors that make up the Frenet Frame.
ˆ ˆˆ d d

ds ds
=

T TN 2.20

ˆ ˆ ˆ= ×B T N 2.21

2.3.1.2. Curvature

The curvature κ can now be calculated from Equation 2.22 [26]. This shows that

the curvature is a measure of how quickly the unit tangent is moving with respect to

distance along the curve. Physically, this represents “bending” in the curve. The

 37

reciprocal of curvature is called the radius of curvature, 1ρ
κ

= . Another interesting

relationship is shown in Equation 2.23. This shows that the unit normal vector is related

to the curvature and second derivative with respect to arc length. The physical meaning

behind this is that the curvature is the magnitude of the change in direction of the tangent

along the curve. Thus, when the curvature is zero, the tangent vector will not change and

the curve will continue in a straight line. On the other hand, a high curvature will result in

the tangent vector rapidly changing direction. An infinite curvature, as in the case of a

cusp, thus represents a discontinuity in the tangent vector along the curve.
2 2

2 2

ˆd d d
ds ds ds

κ = = ⋅
T r r 2.22

2 2

2 2

1ˆ d d
ds ds

ρ
κ

= =
r rN 2.23

2.3.1.3. Torsion

Physically, torsion is a measure of the rate of change of the osculating plane

relative to the governing parameter u. The osculating plane is defined as the plane

spanned by the curve tangent and normal vectors. Thus, a constant zero torsion means

that a curve will never leave the osculating plane and will be planar. This is shown in

Figure 2.12.

 38

Figure 2.12. Osculating Plane of a Spatial Curve

As is shown in this plot, the bi-normal vector is perpendicular to the osculating

plane. Equation 2.24 [26] shows that if the bi-normal vector is not changing, then the

torsion is zero. This makes sense, because the bi-normal vector will change if the

osculating plane rotates (i.e., it does not purely translate). If the bi-normal vector is not

changing, this means the curve is a planar curve staying in the plane formed by the

tangent and normal vectors. Torsion has a sign convention that “right-handed” curves are

given positive torsion.
ˆˆ d

ds
τ = − ⋅

BN 2.24

Torsion can also be related in terms of the original curve, r. This is done by

taking the determinant of the matrix shown 2.25. This formulation is similar to the one

shown before in Section 2.2.3.2.

 39

2 3

2 3

2 3
2

2 3

2 3

2 3

dx d x d x
ds ds ds
dy d y d y
ds ds ds
dz d z d z
ds ds ds

τ ρ= 2.25

2.3.1.4. Serret-Frenet Formulas

Another useful property for curves parameterized by arc length is the Serret-

Frenet formulas. These formulas show the derivatives with respect to arc length of the

Frenet frame as a function of the current Frenet Frame, curvature and torsion. Thus, the

local geometry of a curve is fully described by its position (i.e. Frenet Frame) and its

curvature and torsion. These relationships are a classic result and are shown in Equation

2.26 [26].
ˆ

ˆ0 0ˆ ˆ0
ˆ0 0ˆ

d
ds
d
ds
d
ds

κ
κ τ

τ

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

T

T
N N

BB

 2.26

Darboux [26] studied the rotational motion of the Frenet frame as a curve is being

traversed. He derived a formula for the rotation vector of the Frenet frame moving along
a curve at unit speed ()1s = as ˆ ˆτ κ= +D T B . This is known as the Darboux vector. In a

planar curve, the first term will drop out and the Frenet frame will rotate around the

binormal vector with an angular velocity ω κ= . This formulation is useful for studying

the rotational motions of a rigid body attached to the Frenet frame moving along a curve.

The Serret-Frenet formulas can also be rewritten as shown in Equation 2.27.
ˆ ˆ ˆˆ , ,d d d

ds ds ds
= × = × = ×

T N BD T D N D B 2.27

 40

2.3.2. Motion Along a Curve

Because the independent parameter in arc length parameterized curves has clear

physical meaning, the motion along a curve can be easily examined. Suppose you have a

curve described with respect to arc length as shown in Equation 2.28. Now, suppose that
a motion program then defines the arc length as a function of time (i.e. ()s f t=).

() () (){ }, ,x f s y f s z f s= = = 2.28

Let [], ,x y z=P be a vector describing a point along this curve. The velocity of

this point, pv , is given by d
dt

P . This leads to the relationship shown in Equation 2.29.

p
d ds d s
ds dt ds

= =
P Pv 2.29

Next, the acceleration of the point along the curve can be calculated by taking the

derivative with respect to time of Equation 2.29. This is shown in Equation 2.30.

()
2

2
2p p

d d d ds d ds s
dt dt ds dt ds ds

⎛ ⎞= = = +⎜ ⎟
⎝ ⎠

P P Pa v 2.30

From algebraic curve theory, the acceleration along a curve is given by Equation

2.31. By comparing Equation 2.30 and Equation 2.31, some interesting relationships are

revealed. The first is ˆ d
ds

=
PT , and the second is

2

2
ˆ d

ds
κ =

PN .

() 2ˆ ˆt s sκ= +a T N 2.31

The first of these relationships shows a correlation between the unit tangent vector

and the first derivative d
ds
P with respect to arc length s. To understand this relationship,

one must recognize that the magnitude of d
dt

P is s . This leads to the description

shown in Equation 2.32.

ˆ
d ddt
ds dsdt

= = =
PP PT

P
 2.32

 41

The second part of the equation shows a relationship among the curvature, the

unit normal, and the second derivative with respect to arc length. This highlights the fact

that the curvature is equal to the magnitude of the derivative of the tangent vector
2

2

ˆd d
ds ds

κ
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

T P , a result first introduced in Section 2.3.1.2.

An important area of research involves how to define motion along a curve that is

parameterized with respect to an arbitrary independent parameter of the type discussed in
Section 0 (e.g. () () (), ,x u y u z u). In these curves, the independent parameter does not

have a well-defined physical meaning as in arc length parameterized curves. This means

a constant speed of the parameter u does not lead to constant spatial speed. The process

of converting these representations into suitable arc length representations is often

referred to as rectification. One simple way to approximate a spatial speed along a
parametric curve is shown in Equation 2.33 [63]. In this equation, ()v t represents some

desired velocity profile (constant, trapezoidal, etc) and t∆ is the time step. Thus, at each

time step, a parameter value u can be calculated that approximates the desired velocity.

This relationship will be elaborated on in Chapter 6.
()

1 2 2 2k k

v t t
u u

dx dy dz
du du du

+

∆
= +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2.33

2.4. CURVATURE AND TORSION PROFILES

The last curve representation that will be explored in this chapter is to define a

curve by a curvature and torsion profile. This representation provides good physical

meaning to the geometric shape of the curve as curvature and torsion are well understood.

The following section will describe how to define and generate these curves and provide

a few simple examples.

 42

2.4.1. Formulation and Generation

As mentioned earlier, this research will study the use of curvature and torsion in

designing spatial motions. The key to developing path plans based on curvature and

torsion profiles are the Serret-Frenet formulas shown in Equation 2.34. These equations

demonstrate that the geometric shape of a spatial curve depends entirely on its curvature

and torsion profiles.
ˆ

ˆ0 0ˆ ˆ0
ˆ0 0ˆ

d
ds
d
ds
d
ds

κ
κ τ

τ

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

T

T
N N

BB

 2.34

A numerical interpretation of these formulae is shown in Equation 2.35. Using

these equations, a spatial curve can be generated provided an initial position and

orientation (i.e. Frenet Frame).

1i i i sκ+ = + ∆T T N

1i i i sτ+ = − ∆B B N

1 1 1i i i+ + += ×N B T

1 1i i i s+ += + ∆P P T

2.35

Thus, a Frenet Frame can be positioned and oriented as desired and the spatial

curve can be generated using the curvature and torsion profiles. It should be noted that

identical curvature and torsion profiles will always generate the same geometric shape,

but this shape must still be positioned and oriented in space.

 43

2.4.2. Geometric meaning

One good way to examine the effect of curvature and torsion on the local shape of

a curve is to take a Taylor’s expansion as () () () ()
3

3

1

0
0

!

nn

n
n

dss s
n ds=

= + +∑
x

x x o [26]. This

function approximation is shown in Equation 2.36 where the x1, x2, and x3 axes

correspond to the tangent, normal, and bi-normal directions respectively.
()

()

()

1

2
2

3
3

0

0
2

0
6

x s

x s

x s

κ

κτ

=

=

=

 2.36

These relationships show several things. First, if curvature and torsion are both

zero, the curve will move in its tangent direction in a straight line. Likewise, if curvature

is nonzero and torsion is zero, the curve will stay in the plane formed by the tangent and

normal vectors (called the osculating plane). An important aspect of spatial curves is that

curvature is always defined to be positive whereas torsion has a signed value. From the

above equations, this means a spatial curve will always bend in the plane in the direction

of the normal vector and will tend to leave the plane in either the positive or negative

direction of the bi-normal vector depending on the torsion value.

As mentioned earlier, curvature is always defined as positive for spatial curves.

This presents a problem when trying to define a spatial inflection point. In planar curves,

an inflection point is a point where the sign of the curvature changes; this makes the

curve begin to bend in the other direction. In a parametrically defined spatial curve, the

normal vector will flip directions at an inflection point. Thus, the curve will begin to bend

in a different direction but will still follow the normal vector.

 44

2.4.3. Example

Figure 2.13 shows a simple helical curve generated using curvature and torsion

profiles. In this case, the curvature and torsion value are just taken to be constant values.

Figure 2.13. Example Helical Curve

More complicated curvature and torsion profiles can also be used to generate

curves. Consider the curvature and torsion profiles shown in Figure 2.14. These plots

represent the curvature and torsion values at any point along the curve as it is being

traversed. Then, starting at some initial frame, the next point can be calculated using the

relationships shown in 2.35 and the current value of curvature and torsion. A plot of this

curve is shown in Figure 2.15.

()
()

[]
2

0,5
2

s
s

s

κ

τ

= ⎫⎪ ∈⎬
= ⎪⎭

 45

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1
C

ur
va

tu
re

Arc Length(s)
0 0.5 1 1.5 2

-10

-5

0

5

10

To
rs

io
n

Arc Length(s)
Figure 2.14. Curvature and Torsion Profiles

0
0.5

1
1.5

2
2.5

0
2

4
6

8

x 10
-3

0

0.01

0.02

0.03

0.04

0.05

XY

Z

Figure 2.15. Curve Generated from Curvature and Torsion Profiles

2.4.4. Conclusions

This section described a different way of defining spatial curves by their curvature

and torsion profiles. This method has several advantages. First, curvature and torsion

 46

have clear physical meanings that could be useful in motion programming. Second, a

curvature/torsion profile fully describes the geometry of a motion regardless of its

position or orientation. Thus, a shape can be well defined and understood geometrically

and then positioned in space as desired. However, it is difficult to meet global position-

based constraints using this representation, so this form is best for defining local shapes

and understanding the effects of higher-order properties.

2.5. COMPARISON OF REPRESENTATIONS

In this section, the various representations presented in this chapter will be

compared based on their advantages and disadvantages. It should be noted that where

possible it is always preferable to preserve as many representations for a curve or shape

as possible. Table 2.1 summarizes the four representations presented in this chapter.

 Planar Spatial

Implicit (), 0f x y = () (), , 0 , , 0f x y z g x y z= ∩ =

Standard Parametric
()
()

[],
x f u

u a b
y f u

⎫= ⎪ ∈⎬
= ⎪⎭

()
()
()

[],

x f u

y f u u a b

z f u

⎫=
⎪

= ∈⎬
⎪= ⎭

Arc Length Parametric
()
()

[],
x f s

s a b
y f s

⎫= ⎪ ∈⎬
= ⎪⎭

()
()
()

[],

x f s

y f s s a b

z f s

⎫=
⎪

= ∈⎬
⎪= ⎭

Curvature/Torsion

Profile

()
0
f sκ

τ

=

=

()
()

f s

f s

κ

τ

=

=

Table 2.1. Curve Representations

 Advantages Disadvantages

Implicit
• Good mathematical

understanding of singularities

• Becomes increasingly complex

as curve degree gets larger

 47

(double points, cusps, etc)

• Historical literature and

research

• Difficult to represent in spatial

form

• Difficult to describe an actual

motion along its arc length

Standard

Parametric

• Provides a one-to-one

mapping from 3R R→

• Easy to define in a finite

interval as for piecewise

segments

• Easy to define in spatial form

• Lack of physical meaning in

term of the independent

parameter

• Some loss of mathematical

understanding compared to

implicit forms

Arc Length

Parametric

• Provides good physical

meaning to independent

parameter

• Easy to define physical

motion along curve

• Calculation of some curve

properties becomes easier

• Difficult to find closed-form

solutions for most curves

• Numerical techniques needed

Curvature/

Torsion

Profile

• Defines curve based on

higher-order properties

• Geometric shape is

independent of

position/orientation

• Difficult to define global

motions

• Best used for defining local

geometry

Table 2.2. Comparison of Curve Representations

As Table 2.2 shows, each representation for algebraic curves has its advantages

and disadvantages depending on the specific application. Standard parametric form is the

 48

easiest representation to deal with and the representation most often used in current

literature and applications. However, it is important to understand and preserve the

mathematical understanding provided by some of the other curve representations. In the

course of this research, we will attempt to provide descriptions of curves and shapes

using as many representations as possible.

 49

3. CHAPTER THREE

Interactive Curve Design

In the last chapter, the basic mathematics of algebraic curves was introduced. This

chapter will focus on methods of interactive curve design that build on this mathematics.

The majority of these methods come from the disciplines of Computer Graphics and

Computer-Aided Design. While some of these methods may not be directly applicable to

motion planning for physical systems, it is an important starting point in evaluating

methods for operator-defined path plans. The first section will describe the need for

piecewise curves and introduce the concept of continuity. Next, a few basic but important

curve designing schemes will be described: Bezier curves and B-Splines. Then, a few

more complex methods that build on these methods will be introduced. It should be noted

that these methods will presented only in terms of their basic formulations and results.

For more complete derivations of these methods, the provided references can be

consulted. Finally, these methods will be evaluated based on their application to

manipulator motion planning.

3.1. INTRODUCTION TO PIECEWISE CURVES

Curve design involves generating a mathematical description of a curve (or set of

curves) that satisfies a set of given constraints. In its simplest form, this involves

generating a curve that passes through a set of defined points. However, to meet n

position constraints, an n-1 degree curve would be required. This may be adequate for

meeting a small number of constraints, but high-degree polynomials will lead to

undesirable behavior such as overshoots and oscillations. This is shown in Figure 3.1 for

a curve defined to pass through seven points.

 50

-80

-60

-40

-20

0

20

40

60

80

100

120

0 1 2 3 4 5 6

Figure 3.1. High Degree Polynomial Curve

To get around this problem, the shape of the entire curve is usually broken into

smaller segments. This allows for the desired constraints to be met with a set of smaller

degree curves. For example, each segment between two successive points could be

defined as a simple cubic curve as shown in Equation 3.1. This would allow an additional

first derivative constraint to be defined at the start and end of each segment. These curves

segments can then be pieced together to form the overall shape of the curve. An

important concept in piecewise curves such as this is continuity, which is basically a

measure of the smoothness of the transition between segments. This concept will be

introduced in the following section.

() 2 3
0 1 2 3p u a a u a u a u= + + + 3.1

 51

3.1.1. Continuity

As mentioned above, continuity is basically a measure of the smoothness of a

piecewise curve at its joining points. There are several different notions of continuity. In

this section, three types will be defined: Parametric, Geometric, and Frenet Frame.

3.1.1.1. Parametric

The simplest, but most restrictive, type of continuity is known as Parametric

Continuity, denoted as Cn for nth order continuity. Two parametric curves meet with Cn

continuity at a point if the nth derivative (and all lower derivatives) are exactly equal. For
example, consider a curve defined by a set of curve segments () () ()()0 1, , , nu u up p p

all normalized such that []0,1u∈ . The ith join point is said to be C0 continuous (i.e.

position continuous) if () ()11 0i i+=p p and C1 continuous if () ()11 0i id d
du du

+=
p p

, etc. In

Figure 3.2, the curve segments on the left meet with C0 continuity, and the curve

segments on the right meet with C1 continuity.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 3.2. C0 and C1 Continuous Piecewise Curves

3.1.1.2. Geometric

Geometric continuity (denoted as Gn) is a less restrictive notion of continuity that

measures the smoothness of a curve’s intrinsic properties at join points. An intrinsic

 52

property, as defined by Barsky and DeRose in [7], is defined as a property that is shared

by all equivalent parameterizations of a curve. To understand this, consider the two

parametric lines shown in Equation 3.2.
() () []
() () []

1

2

2 , , 0,1

4 2,2 1 , 0,1

u u u u

v v v v

= ∈

= + + ∈

p

p
 3.2

It should be clear that these curve segments meet with C0 continuity
(() ()1 21 0=p p) but not C1 continuity (() [] () []1 1

1 21 2,1 , 0 4, 2= =p p). However, it is easy

to see that the unit tangent vector is continuous even though the first derivative vector is

not, because the lines are collinear. Thus, the unit tangent vector is an intrinsic property

and the curves are still considered G1 continuous even though there is a jump in the first

derivative vector. Likewise, G2 continuity is a measure of smoothness in curvature rather

than just the second derivative vector.

Geometric continuity is popular in the field of Computer Graphics because it will

lead to visually smooth curves even if the parametric curves (and their higher derivatives)

are not equal. This would appear to make this concept inadequate for planning motions

for physical systems where jumps in the higher derivatives can lead to undesired shocks

in the system. However, this is not necessarily true. As mentioned in the last chapter, the

best way to study or define the physical motion along a curve is to look at curves that are

parameterized by arc length2, and a property of arc length parameterized curves is that

parametric continuity and geometric continuity are equivalent. This means that if a curve

is transversed at some constant or smoothly defined speed, it is the intrinsic properties

that define the smoothness of the motion. Thus, in terms of defining a physical motion

along a curve, geometric continuity actually provides better physical meaning as well as

being less restrictive.

2 A method for defining motions along standard parametric curves was also introduced.

 53

3.1.1.3. Frenet Frame

The last notion of continuity explored here is Frenet Frame continuity, denoted as

Fn for nth order continuity. Frenet Frame continuity is based on the continuity of a curve’s

generalized curvatures [22]. For a curve in R3 with arc length parameterization, the unit

tangent vector can be written as () () ()1
1 s s=t p . From the relationship

2

2

1ˆ d
dsκ

=
pN , the

unit normal can be written as ()
() ()
()

1
1

2
1

s
s

sκ
=

t
t where ()1 sκ is the curvature. Finally, from

the Frenet-Serret formulae the unit bi-normal can be written as

()
() () () ()

()

1
2 1 1

3
2

s s s
s

s
κ

κ
+

=
t t

t where ()2 sκ is the torsion. Here, ()1 2 3, ,t t t are the

generalized curvature vectors in R3. Thus, in R3, F1 continuity is continuity of the unit

tangent, F2 relates to continuity of the unit normal, and F3 relates to continuity of the bi-

normal vector. For a curve lying in Rd, the generalized curvatures
() () ()()1 2, , , ds s st t t can be found using Equation 3.3.

() () ()
()

() () () ()
()

1
1

0

1
1 1

1

0

i i i
i

i

s s

s

s s s
k s

κ

κ − −
+

=

=

+
=

t p

t t
t

3.3

Frenet Frame continuity is often used for defining curves in higher dimensions.

However, it is very similar to geometric continuity for lower dimension curves. This is

because Gn and Fn continuity is equivalent for n=1 and n=2. Also, a curve in Rd that is Fd

will also be trivially Fi for all i d≥ [22].

3.2. BASIC SPLINE TECHNIQUES

In this section, two simple curve design techniques will be introduced: Bezier

Curves and B-Splines. The basic mathematical constructions and properties of these

 54

curves will be discussed. Some of the material developed here is also used later as a

framework for more complicated curve generation schemes.

3.2.1. Bezier Curves

A Bezier Curve is a classic curve design technique that is specified by a set of

control vertices (sometimes called a control polygon or scaffold). The curve will

interpolate the first and last point on the polygon and will follow the general shape of the

polygon in a smooth fashion. Figure 3.3 shows an example Bezier curve where the dotted

lines represent the control polygonal and the solid line represents the resulting curve.

-1 0 1 2 3 4 5
-0.5

0

0.5

1

1.5

X

Y

Figure 3.3. Example Bezier Curve

 55

3.2.1.1. Formulation

The basic formulation for a parametric Bezier Curve is shown in Equation 3.4

where d is the degree of the curve, bi are the control vertices, and Bi are the Bernstein

basis polynomials (shown in Equation 3.5 for one dimension). The Bernstein basis
polynomials are an alternative to the standard power basis ()21, , , , du u u and have the

property of partition of unity (the basis polynomials sum to unity at any point over the

range).

() () []
0

, 0,1
n

n
i i

i
u B u u

=

= ∈∑p b 3.4

() () () ()!1 1
! !

n i n in i i
i

n nB u u u u u
i i n i

− −⎛ ⎞
= − = −⎜ ⎟ −⎝ ⎠

 3.5

From the above equations, it can be seen that for a control polygon with d vertices

the degree of the curve will be d-1. For example, we can expand Equation 3.4 and write

the parametric description of a cubic curve as shown in Equation 3.6. Additionally, each

individual Bernstein polynomial can be plotted as shown in Figure 3.4.
()

() () ()
0 0 1 1 2 2 3 3

3 2 2 3
0 1 2 31 3 1 3 1

u B B B B

u u u u u u

= + + +

= − + − + − +

p b b b b

b b b b
 3.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

B0(u)

B1(u) B2(u)

B3(u)

Figure 3.4. Bernstein Basis Polynomials

 56

From this plot, the value of B0 at u=0 is 1, and the value of B3 at u=1 is 1. This

means the curve will interpolate the control points b0 and b3. Also, it should be noted that

with the exception of the end points, all of the Bernstein polynomials are non-zero

throughout the range. This means that moving any point on the control polygon will

affect the shape of the entire curve.

3.2.1.2. Properties

Bezier Curves have several important properties that deserve mention here:

• Convex Hull Property

• Variation-Diminishing Property

The convex hull property states that the entire curve will lie inside the convex hull

of the control polygon. This provides a simple bounding-box that can be used to

constraint the boundaries of the curve. The Variation-Diminishing Property basically

states that the resulting Bezier Curve is as well-behaved as its control polygon. More

specifically, a given line will intersect the curve at no more points than it will intersect

the control polygon. This means that even for higher-degree Bezier Curves there will not

be any unpredictable oscillations as with standard polynomials.

3.2.1.3. Example

Figure 3.5 shows two example Bezier Curves. The curve on the left is a simple

degree 3 curve. The curve on the left is of degree six with seven specified vertices.

Despite the higher degree, the curve is still well-behaved inside the control polygon.

 57

-1 0 1 2 3 4
-0.5

0

0.5

1

1.5

X

Y

-1 0 1 2 3 4 5

-2

-1

0

1

X

Y

b0

b1 b2

b3

b0

b1 b2

b3b5

b6

b4

Figure 3.5. Two Example Bezier Curves

This section has so far focused on planar curves because they are easier to

visualize. However, the Bezier Curve formulation is extendable to any number of

dimensions. Figure 3.6 shows a helical shaped spatial Bezier Curve.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

1

2

3

4

5

6

XY

Z

Figure 3.6. Spatial Bezier Curve

 58

3.2.2. B-Splines

3.2.2.1. Formulation

B-Splines are specified in much the same way as Bezier Curves by defining a
control polygon. Given a set of control points []0 1, , , nb b b , a B-Spline is defined as

shown in Equation 3.7 where Ni,k are the B-Spline basis functions. Unlike in a Bezier

Curve where the degree of the curve is determined by the number of control points, the

degree can be specified in a B-Spline and is equal to k-1.

() (),
1

n

i i k
i

t N u
=

= ∑P b 3.7

The B-Spline basis functions are defined recursively as shown in Equation 3.8. In

the special case that k=1, the basis function is defined in Equation 3.9. This condition

stops the recursion. The ui values referenced in the above equation represent values in a

B-Spline knot vector of size n+k. In general, a B-Spline does not interpolate any of its

control vertices. However, the knot vector can be formulated in such a way that the curve

interpolates the first and last end point as in a Bezier Curve. This involves repeating

values at the beginning and end of the vector to force interpolation. Figure 3.7 shows a

simple B-Spline curve along with its knot vector.

() ()()
()

()()
()

, 1 1, 1
,

1 1

i k i i k i k
i k

i k i i k i

N u u u N u u u
N u

u u u u
− + − +

+ − + +

− −
= +

− −
 3.8

[]1
,1

1, ,
0, otherwise

i i
i

u u u
N +⎧ ⎫∈⎪ ⎪= ⎨ ⎬

⎪ ⎪⎩ ⎭
 3.9

 59

Figure 3.7. B-Spline along with Knot Vector

3.2.2.2. Local Control Property

In addition to the variation-diminishing and convex hull properties, B-Splines also

exhibit local control. As shown in Equation 3.9, each of the B-Spline basis functions is

only non-zero for a specific range. This means that moving the control vertices will only

affect the shape of the B-Spline in the local area around that point. This can be seen by

plotting the individual basis functions as in Figure 3.8.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

B0

B1 B2

B3 B4
B5 B6

B7

Figure 3.8. B-Spline Basis Functions

 60

3.2.2.3. Example

Figure 3.9 shows two different degree 3 B-Splines defined by eight control points.

They both share the first six points with the last two differing. This plot shows the

property of local control as both curves are identical until the last portion.

-1 0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

X

Y

Figure 3.9. Two Example B-Spline Curves

3.3. BETA-SPLINES

Beta-splines are geometrically continuous piecewise curves based on the concept

of Beta-constraints (also called shape parameters) [9][14]. These curves use the extra

degrees of freedom gained from relaxing parametric continuity to geometric continuity as

design parameters. This section will first demonstrate how to build piecewise Bezier

Curves with parametric continuity. Then, the concept of Beta-constraints will be

introduced, and it will be shown how these can be used to create more options in curve

 61

design. Only the basics of these formulations will be introduced in this section. More

detail on the theory and derivation of these curves can be found in [10].

3.3.1. Parametric Continuity for Bezier Curves

This section will briefly introduce how to form parametrically continuous (Cn)
piecewise Bezier Curves. Consider two Bezier curves, ()0 uP and ()1 uP , defined by

control vertices 0,1 0,2 0,, , , d⎡ ⎤⎣ ⎦b b b and 1,0 1,1 1,, , , d⎡ ⎤⎣ ⎦b b b , respectively. Now, parametric

continuity needs to be enforced at the at the join point between these two segments
(0, 1,0d =b b). A sketch of these two control polygons meeting is shown in Figure 3.10.

b0,d-2

b0,d-1
b0,d= b1,0 b1,1

b1,2

Figure 3.10. Two Joined Bezier Control Polygons

For C0 continuity, it is obvious that the last vertex of the first polygon must be

equal to the first vertex of the second polygon because the two segments will interpolate

these points. It can be shown that the first derivatives of these two curves can be written

in terms of their control vertices as shown in Equation 3.10. This relationship shows that

the last edge of the first polygon and the first edge of the second polygon must be

collinear and equal length to enforce C1 continuity.
() () ()
() () ()

1
0 0, 0, 1

1
1 1,1 1,0

1

0

d dd

d

−= −

= −

P b b

P b b
 3.10

Similarly, the second derivative can be written in terms of the control vertices as

shown in Equation 3.11. This shows that to enforce C2 continuity constraints must be

applied to the three vertices closest to the join point. However, since the the two closest

points are already constrained to enforce C0 and C1 continuity, this becomes a constraint

 62

on the points 0, 2d−b and 1,2b . This means that for two cubic Bezier curves to meet with C2

continuity all interior control vertices become constrained. As the order of continuity

desired goes up, constraints must be applied to additional vertices. Later in this section, it

will be shown that by relaxing to geometric continuity (which is a more intrinsic form)

more degrees of freedom can be attained.
() () ()()
() () ()()

2
0 0, 2 0, 1 0,

1
1 1,0 1,1 1,2

1 1 2

0 1 2

d d dd d

d d

− −= − − −

= − − −

P b b b

P b b b
 3.11

3.3.2. Geometric Continuity for Bezier Curves

An important concept relating to geometric continuity and the construction of

Beta-splines is Beta-constraints. These are constants that can be used to determine if

curve segments meet with Gn continuity. The Beta-constraint equation for G1 continuity

is shown Equation 3.12 where β1 is greater than zero to retain directionality. This just

shows that the first derivative vectors can be scaled by some constant value while still

having the same unit tangent vector (i.e. heading). The Beta-constraint equations for G2

and G3 continuity are shown Equations 3.13 and 3.14. Because β1 can be defined to be

any positive number, this actually leads to some design choices in how to define the

curve segments while still keeping geometric continuity.
() () () ()1 1

1 11 0i iβ +=p p 3.12

() () () () () ()2 1 22
1 2 11 1 0i i iβ β ++ =p p p 3.13

() () () () () () () ()3 2 1 33
1 1 2 3 11 3 1 1 0i i i iβ β β β ++ + =p p p p 3.14

Now, a general algorithm for using these constraints to design geometrically

continuous Bezier curves can be developed. The details and derivation of this method can

be found in [10]. First, start with one segment of the curve defined by a set of control
vertices 0,1 0,2 0,, , , d⎡ ⎤⎣ ⎦b b b . Now, the constrained vertices of the second control polygon

 63

can be determined by the steps shown in Equation 3.15 where β1 and β2 are user-defined

design parameters. Figure 3.11 shows two cubic Bezier curves meeting with G2

continuity for varying values of β2.
()()

()()
1

2 1 1

1 1
1 1

d
d

β
γ

β β β
− +

=
+ − +

1,0 0,d=b b

()1,1 1,0 1 0, 0, 1d dβ −= + −b b b b

()2
0, 1 1 0, 1 0, 2d d dβ γ− − −= + −T b b b

()1,2 1,1 1,1
1
γ

= + −b b b T

3.15

-1 0 1 2 3 4 5 6 7
-5

-4

-3

-2

-1

0

1

2

X

Y

b0,0

b0,1 b0,2

b0,3=b1,0

b1,1

b1,2

b1,3

Increasing β2

Figure 3.11. Geometrically Continuous Bezier Curves

 64

3.3.3. Beta-spline Formulation

Beta-splines build on the concepts of geometric continuity and beta-constraints to

offer even more options for designing a curve. This section will describe one method of

creating G2 continuous cubic Beta-Splines [9]. However, it should be noted that these

concepts can be expanded for more complicated curves [7][14]. A Beta-spline is defined

once again by a set of control vertices as well as set of β1 and β2 values. The original

control polygon is then divided into several interior control polygons as shown in Figure

3.12. Then, a set of Bezier curves can be drawn using these subdivided polygons. These

interior vertices are calculated with respect to the β1 and β2 values in order to ensure G2

continuity inside the curve. The calculation of these interior vertices is shown in Equation

3.16.

0 1 2 3

-1

-0.5

0

0.5

1

0 1 2 3

-1

-0.5

0

0.5

1

Figure 3.12. Subdivided Control Polygon

()

()
2 1 1

2 2 1 1 1
i

i
i i i

β
γ

β β β
+

=
+ +

()2
1 1 1

,1 2
1 1

1 1

1 1
i i i i i

i
i i i

β γ γ

γ β γ
+ + +

+ +

+ +
=

+ +

b b
W

()2
1 1 1

,2 2
1 1

1 1
1 1

i i i i i
i

i i i

β γ γ
γ β γ

+ + +

+ +

+ +
=

+ +
b b

W

3.16

 65

Now, the β1 and β2 values can be used as degrees of freedom to change the

interior local shape of the curve. Figure 3.13 shows the effect of varying the β1 parameter

on the shape of the interior curve. This shows that, by increasing this value, the curve

tends to favor the tangent line coming off the original control vertices. This makes sense,

because the β1 parameter is basically increasing the parametric value of the first

derivative. This parameter is often also called bias.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

Increasing ß1

Figure 3.13. Effect of β1 on the shape of a Beta-spline

Figure 3.14 shows the effect of varying the β2 parameter on the shape of the

interior curve. By increasing this value, the curve tends to more closely follow the

original control polygon. This parameter is often also called tension.

 66

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

Increasing ß2

Figure 3.14. Effect of β2 on the shape of a Beta-spline

3.3.4. Conclusions

Beta-splines provide a way of using the extra degrees of freedom attained by

relaxing the continuity of piecewise curves as a design tool. As discussed in Section

3.1.1, geometric continuity is a more natural way of representing the continuity at join

points because it focuses on the continuity of the intrinsic properties of curves. In terms

of motion along a curve, this is a superior way of defining smoothness. Thus, Beta-

splines are a useful formulation to study in terms of curve generation. However, the

physical meanings of the control parameters, β1 and β2, are difficult to quantify and

designing curves in this style would require much trial-and-error.

 67

3.4. ALGEBRAIC SPLINES

A-Splines (Algebraic Splines) are real algebraic curve segments that are defined

in tensor Bernstein-Bezier form [5]. These splines are defined as the zero contour of a

function defined in a triangular polygon in barycentric coordinates and allow for a higher

degree of geometric continuity while still maintaining some degrees of freedom for curve

design. This section will describe the basic formulation of A-Splines and how they can be

applied to curve design.

3.4.1. Barycentric Coordinates

Barycentric coordinates defined on a triangle provide a local coordinate system

defined with respect to the vertices of the triangle. Consider the triangle shown in Figure

3.15. The trilinear set of barycentric coordinates are defined as shown in Equation 3.17.

This shows that the three coordinates are ratios of the areas of the interior triangles

defined by the point p. These coordinates also have the constraints that 1iα ≤ and

1 2 3 1α α α+ + = .

p1 p2

p3

p

Figure 3.15. Triangular Coordinate System

() ()
()

()
()

()
()

2 3 1 3 1 2
1 2 3

1 2 3 1 2 3 1 2 3

, , , , , ,
, , , ,

, , , , , ,
area area area
area area area

α α α
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

p p p p p p p p p
p p p p p p p p p

 3.17

 68

The barycentric coordinates can be mapped back to x and y coordinates as shown

in Equation 3.18. From this mapping, it is easy to see that 1iα = translates to point pi.

1
1 2 3

2

3

1 1 1
1

x
p p p

y
α
α
α

⎡ ⎤⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 3.18

3.4.2. Formulation

An A-Spline can now be defined in Bernstein-Bezier form as shown in Equation

3.19 where ()1 2 3 1 2 3
!, ,

! ! !
n i j k
ijk

nB
i j k

α α α α α α= . The bijk coefficients are scalar quantities

defined at points on the triangle. The number of coefficients depends on the degree of the

A-Spline. For example, a cubic A-spline would have the Bezier coefficients as shown in
Figure 3.16. Then, the curve is defined as the set of all ()1 2 3, ,α α α that provide zero

values from Equation 3.19.
() ()1 2 3 1 2 3, , , , 0n

ijk ijk
i j k n

F b Bα α α α α α
+ + =

= =∑ 3.19

p1 p2

p3

b300 b210 b120 b030

b021

b111b201

b102 b012

b003

Figure 3.16. Bezier Coefficients for a Cubic A-Spline

 69

In order to find a solution to this equation, the following constraint must first be

applied to the bijk coefficients: there must be one and only one sign change on the

coefficients running along the p1p3 and p2p3 line segments. Basically, this ensures that

the resulting curve will intersect both of these line segments once and only once. Then,
we can take the family of lines of the form ()() ()() ()1 2 3, , 1 ,1 ,0 0,0,1t t tα α α β β= − − +

for []0,1β ∈ . This is the family of lines running from p3 to the line segment p1p2.

Substituting this into the original formulation (Equation 3.19), we arrive at Equation 3.20.

For degree 4d ≤ curves, a closed form solution to this equation can be found. For higher

degree curves, this equation can be solved with a simple root-finding technique.

() () ()! 1 1 0
! ! !

i j jk i
ijk

i j k n

nB t b t t
i j kβ β β+

+ + =

= − − =∑ 3.20

3.4.3. Piecewise A-Splines

A-Splines are often used to interpolate data points or approximate polygonal

chains. One advantage of A-Splines over analogous techniques is that they can in general

achieve G2d-3 [5] continuity while still maintaining some degree of freedom over the

shape of the curve. Basically, constraints can be set on the bijk coefficients such that the

desired conditions are met at the join points of the curve segments. Then, the

unconstrained coefficients can be used to alter the shape of the curve.

A simple example of this is designing G1 continuous (unit tangent continuous)

piecewise A-Splines. It can be easily shown that by setting 300 030 0b b= = the curve will

interpolate p1 and p2. Similarly, by setting 201 021 0b b= = , the curve will be tangent to the

lines p1p3 and p2p3. In order to maintain one sign change along the edges, we additionally

constraint 102 012 003, , 0b b b < and 201 120, 0b b > . The coefficient b111 is a completely free

parameter. Thus, G1 continuity can be achieved by lining up the edges of adjacent

triangles, and the unconstrained and semi-constrained values can be used to generate

 70

varying families of curves within each segment. An example of this for varying b111

values is shown in Figure 3.17.

-1 0 1 2 3 4 5 6 7 8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y

Figure 3.17. Families of G1 Continuous A-Splines

3.4.4. Implicit Representations

Another interesting application for A-Splines is in representing implicit forms of
curves ((), 0f x y =). Because an A-Spline itself is an implicit equation in barycentric

coordinates, they are able to capture this representation naturally. This can be done by

inverting the relationship given in Equation 3.18 to come up with the relationships

() ()1 2 3, , ,f x yα α α = . Then, these equation can be plugged into Equation 3.19, and the

bijk coefficients can be determined such that the original polynomial in x and y is

recovered.

 71

For example, take the cusp 2 3 0y x− = discussed in Chapter Two. First a

triangular scaffolding around the area of interest is constructed as shown in Figure 3.18.

For this curve, two triangles are used to avoid having a singular point inside of the

triangle. Now, the coefficients can be calculated as 003 1b = − , 012 1b = − , 021
2
3

b = − ,

012
1
3

b = , and all other coefficients zero. A full derivation of this result can be found in

Appendix A.

-0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p1

p2

p3

p2

Figure 3.18. A-Spline Representation of a Cusp

There are many advantages of capturing implicit forms of curves in this manner.

As mentioned in Chapter 2, implicit forms of curves are very good at providing

mathematical insight. However, they are difficult to actually define a motion along and

must be converted (when possible) to parametric forms. By defining them in this manner,

 72

the curves can be easily traced while still taking advantage of the mathematical meaning

of the implicit representation. Also, by describing the curve based on its local geometry

inside a triangle, the curve can easily be translated or rotated to different locations while

maintaining the same intrinsic properties.

3.4.5. Conclusions

This section discussed the basic formulations for Algebraic Splines and their

applications. In general, A-Splines provide a higher degree of geometric continuity, and

thus more degrees of freedom, than the other curve generation techniques discussed in

this chapter. Additionally, they provide methods for capturing implicit descriptions of

curves.

3.5. SUMMARY

The review of curve generation techniques performed in this chapter is by no

means exhaustive. However, this subset of techniques provides an overview into how

interactive curve generation has been traditionally approached. First, the desired

constraints are defined (position, tangent, curvature or 2nd derivative, etc). Then, a curve

is developed to meet these constraints, and the extra degrees of freedom are identified

and quantified as design parameters.

The approach taken in this research is similar. However, the emphasis in this

research is the actual definition of the constraints rather than the design of the curve

between these constraints. This is relevant in the field of robotics as it is important to

define intuitive constraints with well-defined physical meanings (e.g. curvature).

However, the techniques described in this chapter may be applicable to the process of

blending between sets of constraints or even helping to define these constraints.

 73

4. CHAPTER FOUR

Geometric Shapes and Properties: Physical Meaning

4.1. INTRODUCTION

In Chapter Two, the necessary mathematical background for understanding the

various properties and representations of curves was introduced. Then, Chapter Three

described a variety of methods for interactive curve design and demonstrated a need for

an ability to define curve constraints that have more physical meaning. This is important

in robotic systems where the curve must be defined with constraints that have physical

meaning. This chapter will focus on developing clear physical understanding of the

higher-order properties of curves (i.e. curvature and torsion). This will start with an

examination of simple shapes such as lines and circles and then move into more complex

spatial geometries. It will be shown how the properties of these shapes can be changed to

generate families of curves that could be useful for path design. The relationships

between these families of curves and the properties that define them will provide useful

insight into the definition of constraints based on curvature and torsion for path planning.

Then, in the next step of this research, these constraints based on curvature and torsion

can be converted into constraints on the parametric description of the curve (e.g.

, , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

) that can be more easily blended together into a complete

path plan.

 74

4.2. LINEAR SHAPES

4.2.1. Straight Line

The simplest geometric shape is a line. A line is a degree 1 curve that can be

represented in its implicit form as shown in Equation 4.1. This is often written in the

slope-intercept form as y mx b= + where m is the slope of the line and b is the

intersection point on the y-axis. Thus, m=0 corresponds to a horizontal line, and m=∞

corresponds to a vertical line. Figure 4.1 shows the effect of varying slope parameter m to

generate a family of lines.
0ax by c+ + = 4.1

Figure 4.1. Family of Planar Lines

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

X

Y

m

b

Increasing m

 75

In parametric form, a generalized line can be written as shown in Equation 4.2. If

a1 is set to 1 and b1 is set to 0, this yields a form that is very similar to the implicit form

described above.
()
()

1 1

2 2

x u a u b

y u a u b

= +

= +
 4.2

A more common way to represent a parametric line segment is shown in Equation

4.3. In this form, pi and pf represent initial and final position vectors of any dimension

(e.g. 2 for planar, 3 for spatial). Then, the line will be at pi for u=0 and pf for u=1. This

generalized form is often used to define an interpolation between two points.

() () [], 0,1i f iu u u= + − ∈p p p p 4.3

Finally, a line will have a zero curvature and torsion. This was described in

Section 2.2.3.1 where curvature was first defined. A zero curvature represents an infinite

radius of curvature which translates to a line.

4.3. PLANAR GEOMETRIC SHAPES

This section will begin to explore the properties and representations for simple

planar curve shapes. This analysis will begin by defining implicit forms of these shapes

and defining parameters that can be used to generate families of curves. Then, closed-

form solutions for higher-order properties such as curvature in terms of these parameters

will be presented. While manipulator path planning is generally concerned with spatial

paths, analysis of simple planar shapes should provide good (and necessary) building

blocks towards more complex motions.

 76

4.3.1. Parabola

A parabola is a simple degree 2 curve that can be described by the implicit

equation 2 0y ax− = 3. It should be noted that a more generalized form of this parabola

could be written as ()2() 0c cy y a x x− − − = that is centered at the point (),c cx y instead

of the origin. However, the higher-order (intrinsic) properties of the curve are our main

interest, and these properties remain constant through any translation or rotation of the

curve in the reference frame. Thus, for this analysis, it is sufficient to assume these

shapes pass through the origin.

Now, a closed-form solution for the curvature of a parabola can be obtained.

Equation 4.4 (first introduced in Section 2.1.1) shows the calculation of curvature for an

implicitly defined curve. The individual terms in the equation can be easily calculated
from the original equation of the parabola as: 2xf ax= − , 1yf = , 2xxf a= − ,

0yy xyf f= = .

()
()

2 2

3
2 2 2

2
, xx y xy x y yy x

x y

f f f f f f f
x y

f f
κ

− +
=

+
 4.4

Plugging these values into Equation 4.4, the curvature can be formulated as

shown in Equation 4.5. This equation shows that, even for a simple degree 2 curve like a

parabola, a closed-form equation for curvature can become complex. However, this

equation can still provide some useful insight. Because the quantity 2 24a x will always be

positive, the maximum curvature will always occur at the point x=0 (i.e. the origin) and

will have a value of -2a. Thus, the local shape of a curve could be defined as a parabola

using this constraint. Figure 4.2 shows a set of parabolas with varying values of a.

Finally, the resulting equations and maximum curvatures for this family of parabolas are

3 An analogous curve 2 0x ay− = could also be defined with the same analysis.

 77

shown in Table 4.1. As discussed above, the maximum curvature for each of these curves

is located at the origin.

()
()

3
2 2 2

2,
1 4

ax y
a x

κ −
=

+
 4.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

a=0.05

a=1

a=5
a=25

Figure 4.2. Family of Parabolas

a Implicit Equation Parametric Equation maxκ (κ at origin)

0.05 20.05y x−
()
() 20.05

x u u

y u u

=

=
 0.1

1 2y x−
()
() 2

x u u

y u u

=

=
 2

5 25y x−
()
() 25

x u u

y u u

=

=
 10

25 225y x−
()
() 225

x u u

y u u

=

=
 50

Table 4.1. Curve Parameters for Family of Parabolas

 78

4.3.2. Circle

A circle of radius r centered at the origin is represented by the implicit equation

shown in Equation 4.6. The curvature can once again be calculated by finding the partial
derivatives and substituting them into Equation 4.4: 2xf x= , 2yf y= , 2xx yyf f= = ,

0xyf = . Once these values are substituted, the result is a constant value of 1
rκ = . This

result is expected, because the radius of curvature should be constant along a circle.

Figure 4.3 further shows the relationship between radius and curvature. As the curvature

of the curves passing through the origin increases, the radius of the circles becomes

smaller. This represents a sharper bend in the curve.
2 2 2 0x y r+ − = 4.6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y

r=1/

Increasing κ

κ

Figure 4.3. Effects of Varying Curvature

 79

The simplest way to write a parametric description of a circle is to use sine and

cosine functions as shown in Equation 4.7. However, this is not technically an algebraic

(i.e. polynomial) description. A rational parameterization can be derived as shown in

Equation 4.8. Note that this description requires the independent parameter u to go

infinite to fully trace the circle.
() ()
() ()

[]
cos

, 2 ,2
sin

x u r u
u

y u r u
π π

⎫= ⎪ ∈ −⎬
= ⎪⎭

 4.7

() ()

()
[]

2

2

2

1
1 , ,
2

1

r u
x u

u u
ury u
u

⎫−
⎪= ⎪+ ∈ −∞ ∞⎬
⎪= ⎪+ ⎭

 4.8

4.3.3. Ellipse

An ellipse can be thought of as a more general description of a circle. The general

equation for an ellipse centered at the origin is given in Equation 4.9. In this equation, a

and b describe the focal lengths of the ellipse as shown in Figure 4.4. If a>b, the major

axis will be the x-axis. If a<b, the major axis will be the y-axis. In the case that a=b, this

simplifies to the equation of a circle.
2 2

2 2 1 0x y
a b

+ − = 4.9

 80

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

X

Y a

b

Figure 4.4. Ellipse Centered at the Origin

As before, the curvature along the ellipse can be calculated by substituting the

partial derivatives back into implicit equation for curvature. The resulting curvature
equation is shown in Equation 4.10 where 2

1A a= and 2
1B b= . Once again, this

closed-form solution ends up being very complex. However, it still provides the ability to

define the local shape of an ellipse at any point in terms of curvature.

()
()

3
2 2 2 2 2

8,
4 4

ABx y
A x B y

κ =
+

 4.10

Finally, the parametric forms of the equation can be formulated. Equation 4.11

shows a simple formulation using sine and cosine functions. Equation 4.12 shows an

algebraic parameterization.

 81

() ()
() ()

cos

sin

x u a u

y u b u

=

=
 4.11

() ()
2

2

2 2
2 2 2 2

2 1

,
1 1 1 1

bu u
b b ax u y u

u u
a b a b

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠= =
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 4.12

4.3.4. Cusp

As mentioned in Section 2.1.2.2, a cusp is a singular point where two branches of

a curve meet with a shared tangent. Another condition at this point is the determinant of

the Hessian matrix will be zero (as described in Section 2.1.2.2). Because the cusp is also

a singularity (or critical point), this yields three conditions for the existence of a cusp:

(i) (), 0f x y = , (ii) 0f f
x y
∂ ∂

= =
∂ ∂

, (iii)
2 2 2

2 2 0f f f
x y x y

⎛ ⎞∂ ∂ ∂
− =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

. The cusp explored in

Section 2.1.2.2 can be rewritten as 2 3 0ay x− = with the parameter a used to generate a

family of curves. This family of curves is shown in Figure 4.5.

 82

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

a=0.05
a=1

a=5

a=25

2 3 0ay x− =

0u

⎫
⎪
⎪
⎪

>⎬
⎪
⎪
⎪
⎭

0u

⎫
⎪
⎪
⎪

<⎬
⎪
⎪
⎪
⎭

Figure 4.5. Family of Cusps

Using the same procedure as before, the curvature of this curve can be calculated

as shown in Equation 4.13. This equation shows that the curvature would go to infinity at

the singular point (0,0). Another useful way to look at a cusp is to examine its tangent
vector. For an implicit curve, the tangent vector is given as ,y xf f⎡ ⎤−⎣ ⎦ or 22 ,3ay x⎡ ⎤−⎣ ⎦ for

this curve. From this equation for the tangent vector, the x component of the tangent will

flip directions when the y axis is crossed.

()
()

4 2 2

3
4 2 2 2

18 24,
9 4

ax a xyx y
x a y

κ −
=

+
 4.13

The parametric form of this curve can easily be derived as shown in Equation

4.14. The tangent vector of the parametric form can be formulated

 83

as 2, 2 ,3x y au au
u u
∂ ∂⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦

. From this equation for the tangent vector, it can be seen that

the x component again flips directions when the u parameter crosses zero. Thus, the two
parameter ranges []0,u∈ ∞ and []0,u∈ −∞ trace the two branches of the curve. Table

4.2 summarizes the various curve parameters for the family of cusps described in this

section.
()
()

[]
2

3
, ,

x u au
u

y u au

⎫= ⎪ ∈ −∞ ∞⎬
= ⎪⎭

 4.14

a Implicit

Equation

Parametric

Equation

maxκ (κ at

origin)

0.05 2 30.05 0y x− =
()
()

2

3

0.05

0.05

x u u

y u u

=

=
 ∞

1 2 3 0y x− =
()
()

2

3

x u u

y u u

=

=
 ∞

5 2 35 0y x− =
()
()

2

3

5

5

x u u

y u u

=

=
 ∞

25 2 325 0y x− =
()
()

2

3

25

25

x u u

y u u

=

=
 ∞

Table 4.2. Curve Parameters for Family of Cusps

To further illustrate the behavior of curvature at a cusp point, Figure 4.6 shows
the curvature profiles for the different values of a across the parameter range []1,1u∈ − .

This plot shows that the curvature values approach infinity as the parameter u approaches

zero. However, it is hard to define a clear physical meaning to an infinite curvature. Thus,

it is hard to define a simple constraint based on curvature that defines the shape of a cusp.

 84

A more geometrically intuitive way to think of this kind of cusp is as a point where the

unit tangent vector switches direction.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-20

-15

-10

-5

0

5

10

15

20

u

C
ur

va
tu

re

a=0.05

a=1

a=5 a=25

Figure 4.6. Curvature Profiles for Family of Cusps

Section 3.4.4 introduced a method for capturing implicit forms of curves in

barycentric A-Spline representations. To deal with singular points such as cusps, this

method will simply break the curve into two branches at the singular point. This allows

for the curve to be rendered/traced without dealing with the mathematics at the singular

point. For this case, the coefficients can be calculated in terms of the cusp parameter a as

003 1b = − , 012 1b = − , 021 1
3
ab = − + , 030 1b a= − + , 120 3

ab = and all other coefficients zero.

While this formulation is not a focus of this research, it remains an interesting and

potentially useful method for generating complex planar curves for path planning. Figure

4.7 shows the cusp being generated with the use of A-Splines.

 85

-0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

Increasing a

Figure 4.7. Family of Cusps in A-Spline Representation

4.3.5. Inflection Point

Unlike the previous examples that described geometric shapes, an inflection point

is a completely local phenomenon. In planar curves, an inflection point occurs whenever

the sign of the curvature changes. Thus, the condition 0κ = is necessary but not

sufficient. Figure 4.8 illustrates this point. All three of these curves have 0κ = at the

origin, but only the middle one has an inflection point while the other two curves just

have local minima and maxima.

 86

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X
Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

4 0y x− =

3 0y x− = 4 0y x+ =

0κ <

0κ >

0κ <

0κ >

0κ <

0κ >

Figure 4.8. Curves with Zero Curvature

Another way to look at an inflection point is to observe the tangent and normal

vectors along a curve. At an inflection point, the normal vector will flip directions while

the tangent vector will not. Figure 4.9 shows a plot of the curve 3 0y x− = along with its

tangent and normal vectors. This shows the normal vector switching directions as it

crosses the origin and represents the curve beginning to bend in the opposite direction.
This curve can also be represented parametrically as () () 3,x u u y u u= = . Table 4.3

shows the values of the tangent and normal vectors for several values of u along the

curve. This table shows numerically that the normal vector switches directions (i.e.

inverts) as u crosses from negative to positive.

u x y T̂ 4 N̂ 4

-0.5 -0.5 -0.125 [0.8 0.6] [0.6 -0.8]

-0.1 -0.1 -0.001 [0.9996 0.03] [0.03 -0.9996]

0.1 0.1 0.001 [0.9996 0.03] [-0.03 0.9996]

0.5 0.5 0.125 [0.8 0.6] [-0.6 0.8]
Table 4.3. Curve Parameters around an Inflection Point

4 These values represent the x and y directions for the tangent and normal vectors.

 87

Figure 4.9. Planar Curve with an Inflection Point

4.4. SPATIAL GEOMETRIC SHAPES

This section will begin to explore more complex spatial geometries. When

moving to the spatial domain, it becomes more difficult to deal directly with implicit and

parametric forms of curves. Thus, a different approach is presented in this section. This

approach involves studying the effects of curvature and torsion on the local geometry of a

curve by generating curves based on their curvature and torsion values. Curvature and

torsion are high-order properties of curves as shown in Equations 4.15 and 4.16 and fully

define the local geometry of a curve. Once these properties are well understood

 88

physically, the parametric constraints shown on the right side of Equations 4.15 and 4.16

can be defined. Then, these parametric constraints can be blended together to form an

overall path plan.
2 2 2

2 2 2, , , , ,dx dy dz d x d y d zf
du du du du du du

κ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 4.15

2 2 2 3 3 3

2 2 2 3 3 3, , , , , , , ,dx dy dz d x d y d z d x d y d zf
du du du du du du du du du

τ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 4.16

Before specific geometric shapes are explored, a brief description of how to define

curves in terms of curvature and torsion is presented (first introduced in Section 2.4).

These curves are defined locally relative to a fixed Frenet Frame. For the purposes of this

research, this frame is placed at the origin with the tangent, normal, and bi-normal

vectors lined up with the x, y, and z axes respectively. However, this frame could be

placed at any location and orientation, and the geometry of the curve relative to the frame

will remain the same. Figure 4.10 shows the effect of various curvature values with zero

torsion. Because the torsion is zero, the curve remains in the osculating plane (xy plane in

this example), and the curvature values affect how sharply the curve bends around the

frame of interest.

 89

1κ =

10κ =
15κ =

2κ =

5κ =

Figure 4.10. Local Effects of Curvature

Figure 4.11 shows a curve with varying torsion and a constant curvature5 (1κ =).

There a few things to note from this figure. First, torsion has an effect on the movement

of the curve in the bi-normal direction. Thus, because the torsion is positive when both

approaching and leaving the local frame, the curve moves in the positive z direction.

Also, torsion is a signed value (unlike curvature which is always defined to be positive),

and a negative torsion will result in movement in the opposite direction of the bi-normal

as in Figure 4.12. Finally, the scale of the changes in the z direction is much smaller than

changes in the osculating plane. Thus, numerically, torsion has a smaller effect on the

shape of the curve than an equivalent numeric value of curvature.

5 When curvature is zero, torsion is undefined. Thus, whenever a nonzero value of torsion is provided, a
non-zero value of curvature is also needed.

 90

25τ =

10τ =

2τ =

15τ =

25τ =

5τ =

2τ =
5τ =

10τ =
15τ =

Above xy plane

Below xy plane

Figure 4.11. Local Effects of Torsion

25τ = −

2τ =
5τ =

10τ = −

15τ = −

25τ =

2τ = −

10τ =

15τ =

5τ = −
Above xy plane

Figure 4.12. Positive vs. Negative Torsion

 91

Another important aspect of the local effects of curvature and torsion is the

coupling between them. In terms of the motion relative to the osculating plane, the effect

of curvature dominates, and torsion has smaller influence. This can be observed locally in

Figure 4.11 and Figure 4.12 where the varying torsion has an effect mainly on the

movement in the z direction. Thus, holding a constant curvature and varying the torsion

will only change how fast the curve is moving in the bi-normal direction. However,

holding torsion constant and varying the curvature has a much different effect as shown

in Figure 4.13. Thus, torsion mainly affects the motion relative to the bi-normal direction,

while curvature has a strong influence on the motion of the curve in all directions.

1κ =
2κ =

Figure 4.13. Varying Curvature with Constant Torsion

 92

4.4.1. Helix

A helix is a spatial geometry with a constant radius and pitch. The curve can be

thought of running along the surface of a cylinder with the helix radius being the cylinder

radius and the pitch being the distance travelled along the cylinder’s axis for each full

revolution. An example of this is shown in Figure 4.14. One simple parametric

representation for a helix is shown in Equation 4.17.

-1
-0.5

0
0.5

1
1.5

-1
0

1
2

3
0

0.5

1

1.5

2

2.5

3

XY

Z

r

h

Figure 4.14. Helical Curve with Defined Radius and Pitch

() ()
() ()

()

cos

sin

2

x u r u

y u r u
hz u u
π

=

=

=

 4.17

The geometry of a helix can also be described in terms of the curve’s curvature

and torsion. For a helix, the curvature and torsion will both be constant and non-zero.
These relationships are shown in Equation 4.18 and Equation 4.19 [26] where 2

hl π= .

 93

Thus, the desired radius and pitch for a helical motion can be entirely defined in terms of

curvature and torsion constraints.

2 2

r
r l

κ =
+

 4.18

2 2

l
r l

τ =
+

 4.19

The inverse relationships can also be easily derived and are shown in Equation

4.20 and 4.21.

2 2r κ
κ τ

=
+

 4.20

2 2l τ
κ τ

=
+

 4.21

As mentioned before, a helix can be thought of as a curve running along the

surface of a cylinder, and this interpretation is a good way of visualizing the effects of

curvature and torsion on a shape of a helix. Figure 4.15 shows three helices with varying

values for curvature running along the surfaces of cylinders. Table 4.4 shows the relevant

curve parameters for these helices as well as an equivalent parametric representation.

This data shows that as curvature increases both the radius and pitch of the helix

decreases. However, the pitch decreases at a faster rate than the radius. This is consistent

with both Equations 4.20 and 4.21 as well as the curves in Figure 4.15.

 94

κ τ 2 2κ τ+ r l Parametric Equation

1 1 2 0.5 0.5
() ()
() ()
()

0.5cos

0.5sin

0.5

x u u

y u u

z u u

=

=

=

2 1 5 0.4 0.2
() ()
() ()
()

0.4cos

0.4sin

0.2

x u u

y u u

z u u

=

=

=

5 1 26 0.1923 0.0385
() ()
() ()
()

0.1923cos

0.1923sin

0.0385

x u u

y u u

z u u

=

=

=

Table 4.4. Curve Parameters for Helices of Varying Curvature

1
1

κ
τ
=
=

2
1

κ
τ
=
=

5
1

κ
τ
=
=

Figure 4.15. Effect of Varying Curvature on a Helix

 95

Now, the effect of varying the torsion of the helix can be visualized as in Figure

4.16. The relevant curve parameters are tabulated in Table 4.5. The results are similar to

the results of varying curvature except this time the radius decreases at a faster rate than

the pitch. The result is a curve that twists at faster rate. For extremely high values of

torsion, this would approximate a straight line with the Frenet Frame rotating around it.

Now, using the results of this section, a helical curve can be defined by its radius and its

pitch which provides a good physical understanding. Then, Equation 4.18 and 4.19 can

be used to convert the radius and pitch into constraints on the curvature and torsion.

1
5

κ
τ
=
=

1
2

κ
τ
=
=

1
1

κ
τ
=
=

Figure 4.16. Effect of Varying Torsion on a Helix

 96

κ τ 2 2κ τ+ r l Parametric Equation

1 1 2 0.5 0.5
() ()
() ()
()

0.5cos

0.5sin

0.5

x u u

y u u

z u u

=

=

=

1 2 5 0.2 0.4
() ()
() ()
()

0.2cos

0.2sin

0.4

x u u

y u u

z u u

=

=

=

1 5 26 0.0385 0.1923
() ()
() ()
()

0.0385cos

0.0385sin

0.1923

x u u

y u u

z u u

=

=

=

Table 4.5. Curve Parameters for Helices of Varying Torsion

4.4.2. Spatial Cusp

Geometrically, a cusp in a spatial curve is similar to a cusp in a planar curve.

However, it is much more difficult to define mathematically, because the curve cannot be

defined in implicit form. In a spatial curve with a polynomial or rational

parameterization, a necessary condition for a cusp is that the first derivative vector is

undefined [30][31]. This results in a discontinuity in the unit tangent vector. Consider the

curve defined by Equation 4.22. The first derivative vector can be calculated as
4 3 415 ,20 ,5u u u⎡ ⎤⎣ ⎦ , and it can be seen that this vector vanishes (i.e. [0,0,0]) at the point

u=0. Further, the first derivative vector shows that the y direction of the tangent will flip

as u passes from positive to negative due to the u3 term. Figure 4.17 shows a plot of this

cusp.
()
()
()

5

4

5

3

5

x u u

y u u

z u u

=

=

=

 4.22

 97

0u =

Figure 4.17. Spatial Cusp

However, the main geometric significance of a cusp for the purpose of path

planning is that the tangent vector switches direction. Thus, this information can be used

to generate a cusp at a specific point, and the higher-order properties of curvature and

torsion can be used to generate the shape of the curve approaching and leaving the cusp

area. This leads to a more intuitive geometric understanding of a cusp. Figure 4.18 shows

a simple cusp with varying curvature values, and a torsion of zero. In this example, the

curve remains in the osculating plane, and the increasing values of curvature define how

sharply the curve bends around the tangent vector.

 98

1κ = 2κ =

5κ = 10κ =

15κ =

Figure 4.18. Planar Cusp Defined with Varying Curvatures

Figure 4.19 shows the effect of varying curvatures with non-zero torsion. This

shows that the increasing value of curvature affects both the movement in the osculating

plane as well as how quickly the curve twists out of this plane in the bi-normal direction.

It should be noted that the rest of this chapter will concentrate on the effects of curvature

and torsion on the local geometry of curves. It will be shown how to use these properties

to develop parametric constraints for curves in the next chapter.

 99

1κ =
2κ =

5κ =

10κ =
15κ =

1κ =
2κ =

5κ =

10κ =

15κ =

1τ =

1τ =

1τ =

1τ =

1κ =
2κ =

5κ =

10κ =
15κ =

1κ =
2κ =

5κ =

10κ =

15κ =

1τ =

1τ =

1τ =

1τ =

Above xy plane

Below xy plane

Figure 4.19. Cusp with Constant Torsion and Varying Curvature

Figure 4.20 shows the effect of a constant curvature with a varying torsion. As

this plot once again shows, higher values of torsion result in faster motions out of the

osculating plane and in the direction of the bi-normal. Figure 4.21 shows a similar plot

that uses negative torsion. Thus, a cusp can be defined geometrically as a point where the

tangent vector inverts. Then, constraints based on curvature and torsion can be used to

define the local geometry of the curve around the cusp.

 100

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

Above xy plane

Below xy plane

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ = 1κ =

1κ =

Above xy plane

Below xy plane

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

Above xy plane

Below xy plane

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ = 1κ =

1κ =

Above xy plane

Below xy plane

Figure 4.20. Spatial Cusp with τ >0 Approaching and τ >0 Leaving

 101

10τ = −

2τ = −

15τ = −

25τ = −

5τ = −
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =

10τ = −

2τ = −

15τ = −

25τ = −

5τ = −
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =

Above xy plane

Figure 4.21. Spatial Cusp with τ <0 Approaching and τ >0 Leaving

4.4.3. Spatial Saddle Point

A spatial saddle point occurs when the torsion of the curve is zero. This represents

a point where the shape of the curve is instantaneously planar. Non-zero higher-order

derivatives of torsion ensure that the curve will not remain in the plane and also dictate

 102

the shape of the curve in the region approaching and leaving the saddle point. Figure 4.22

shows an example of one type of spatial saddle where d
ds
ττ ′ = .

1κ =

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

Above xy plane

Figure 4.22. Saddle Point 1

Figure 4.23 shows the torsion profile around the point of interest. The center of

this graph represents the torsion at the defined frame (i.e. the saddle point). Then, the

values on the left represent the torsion as the curve is approaching the frame, and the

values on the right represent the torsion as the curve is leaving the frame. This plot shows

that the torsion is negative with a positive τ ′ during the approach, and the torsion crosses

zero and becomes positive on the leaving side.

 103

0τ <

0τ >

0
d
ds
τ
>

0
d
ds
τ
>

Figure 4.23. Torsion Profile for Saddle Point

A similar type of saddle point is shown in Figure 4.23 that shows the effect of a

negative τ ′ . The torsion profile for this saddle is shown in Figure 4.24. This shows the

torsion will be positive both approaching and leaving the frame. Thus, the curve moves in

the positive z direction into and out of the plane.

 104

25τ ′ = −

1τ ′ = −

15τ ′ = −

10τ ′ = −

5τ ′ = −

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

25τ ′ = −

1τ ′ = −

15τ ′ = −

10τ ′ = −

5τ ′ = −

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

Above xy plane

Below xy plane

Figure 4.24. Saddle Point 2

 105

0τ >

0τ >

0
d
ds
τ
<

0
d
ds
τ
>

Figure 4.25. Saddle Point 2 Torsion Profile

4.4.4. Spatial Inflection Point

A description of planar inflection points was introduced in Section 4.3.5 of this

chapter. As stated before, an inflection point in a planar curve occurs when the sign of the

curvature changes. However, by definition, curvature is always positive in spatial curves.

Thus, an inflection point cannot be defined simply by enforcing a constraint of 0κ = at

the desired location. Section 4.3.5 also showed that at an inflection point the normal

vector flips direction (i.e. inverts). This provides a good geometric description of what

occurs at an inflection point. Because a curve tends to bend in the direction of the normal

vector, an inflection point represents a point where the curve begins to bend in a different

 106

direction. For example, by flipping the direction of the normal vector at the local frame, a

spatial saddle could be created as in Figure 4.26. Similarly, Figure 4.27 shows another

kind of saddle point created using an inflection point. These plots differ from the saddle

points shown before in Figure 4.22 and Figure 4.24 in that the approaching branch bends

in the opposite direction of the normal vector. Thus, an inflection point can be used as an

additional constraint on top of curvature and torsion to control the direction of bending in

the osculating plane.
25τ ′ =

1τ ′ =

15τ ′ =

10τ′ =

5τ′ =

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

25τ ′ =

1τ ′ =

15τ ′ =

10τ′ =

5τ′ =

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

Above xy plane

Below xy plane

Figure 4.26. Spatial Saddle with an Inflection Point

 107

1τ ′ = −

25τ ′ = −

15τ ′ = −

10τ ′ = −

5τ ′ = −

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

Above xy plane

Figure 4.27. Spatial Saddle II with an Inflection Point

4.5. SUMMARY

This chapter presented a study of the relationship between geometric shapes and

their higher-order properties. This began with an investigation of simple planar shapes

such as circles, parabolas, and ellipses. This analysis began by defining these shapes in

their implicit forms and defining parameters to describe families of curves. Then, closed-

form solutions for curvature were developed in terms of these parameters. While these

solutions were often complex, they will allow a user to define the local shape of these

geometries at any point in terms of curvature.

 108

Then, an investigation of the properties of spatial curves was presented. Due to

the complex nature of spatial curves, this analysis looked at the effects of curvature and

torsion on spatial curves by actually generating the local geometry of curves in terms of

curvature and torsion values. This provides a unique perspective on these higher-order

properties. Then, several example spatial geometric shapes were presented and studied

with the goal of defining curvature and torsion based constraints.

The next step in this research is to develop a curve generation technique that can

utilize these constraints based on curvature and torsion. This will involve two main steps.

First, constraints based on curvature and torsion need to be formulated as constraints on

parametric descriptions of curves (e.g. , , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

). Once these

constraints have been formulated, methods of trajectory blending (such as trapezoidal

motion profiles) can be investigated to generate the overall motions.

 109

5. CHAPTER FIVE

Path Generation using Geometric Constraints

In the previous chapter, the intrinsic geometric properties of curvature and torsion

were examined. This was done by studying the affect of these properties on the local

geometry of a curve to better understand their physical meanings. This chapter will build

on this understanding by showing how to convert these geometric constraints into

parametric constraints (, , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

) that can be used to define

trajectories. Once these constraints have been formulated, the individual trajectories for
() () (), ,x u y u z u⎡ ⎤⎣ ⎦ can be developed.

This process will first begin by defining coordinate frames in space (a position

and orientation). This approach makes sense for robotic motion planning for several

reasons. First, simulation environments and CAD models will come with attached frames

at key points of interest (potential interaction points). An example of a surgical work cell

with defined coordinate frames is shown in Figure 5.1. The frames in this work cell are

sometimes attached to specific objects (e.g. approach and grab points for tools or surgical

trays) and sometimes used for defined way points for global motions. Second, a

coordinate frame provides a natural extension to rotational motion planning. After a

frame has been defined, the geometric constraints based on trajectory curvature and

torsion can be defined at each point. Then, these geometric constraints can be converted

into parametric constraints. These parametric constraints can then be blended together

using a variety of techniques. The following section will provide a brief description of

how these parametric constraints could be blended to form spatial curves. Then, the

following sections will describe the mathematical formulations of these constraints.

 110

Figure 5.1. Robotic Workcell with Defined Frames of Interest

5.1. INTRODUCTION

As stated before, the main goal of this chapter is to convert geometric constraints

into parametric constraints. However, it is useful to first introduce how these parametric

constraints can be used as the following sections contain several examples. Suppose the

parametric constraints for the x coordinate shown in Table 5.1 were provided. There are

many different methods to interpolate between these higher-order constraints. For

example, Figure 5.2 show these constraints being met using a 3rd order trapezoidal

profile. This method basically starts by defining a trapezoid in some higher-derivative

and then integrating up to meet the various constraints. A more detailed description of

 111

this formulation as well as comparisons between various blending techniques can be

found in [38][50].

1x 1dx
du

2

1
2

d x
du

3
1

3

d x
du

2x 2dx
du

2
2

2

d x
du

3
2

3

d x
du

-1.0 -6.0 -30.0 0.0 2.0 3.0 -20.0 0.0
Table 5.1. Sample Parametric Constraints

x
dx
du

3

3
d x
du

2

2
d x
du

Figure 5.2. Trapezoidal Specification

Thus, all three coordinates (x, y, z) can be planned individually and then combined

for the overall path trajectory (Equation 5.1). It should be noted that in this research the

main focus is to define/meet these higher-order constraints at the points of interest (i.e.

the local geometry of the curves) and little control or optimization over the overall path is

provided. However, this motion planning is an important topic for future work. Appendix

B includes an initial exploration of this topic.

() () () ()u x u y u z u⎡ ⎤= ⎣ ⎦p 5.1

 112

5.2. FIRST-ORDER PROPERTIES

As mentioned before, this method begins by defining a point (x, y, z) and a frame

(ˆ ˆ ˆ, ,T N B). To define a first-order parametric constraint, the equation of the unit tangent

vector (Equation 5.2) can be used.

()ˆ u

d
du
d
du

=

p

T
p

 5.2

The first-order constraint (d
du
p) can be easily solved for as shown in Equation 5.3.

This equation shows that the geometric constraint can be met for any magnitude of the

vector d
du
p as long as it is in the same direction as the unit tangent. This allows for a

degree of freedom in defining the first-order parametric constraints.

()ˆ ud d
du du

=
p p T 5.3

For example, Table 5.2 shows the various constraints for several different

magnitudes of d
du
p 6. A plot of the resulting curves is shown in Figure 5.3. In this figure,

the curves with a higher magnitude of d
du
p tend to have a bias towards the tangent vector

on that end.

d
du
p 1x 1y 1dx

du
 1dy

du
 2x 2y 2dx

du
 2dy

du

2T̂ 0.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0

2
ˆ2T 0.0 0.0 1.0 0.0 1.0 1.0 0.0 2.0

2
ˆ5T 0.0 0.0 1.0 0.0 1.0 1.0 0.0 5.0

Table 5.2. First-Order Constraints Example

6 Planar curves are used here for better visualization, but the same concept extends to the spatial domain as
well.

 113

1T̂

2T̂

1N̂

2N̂

2
2

ˆd
du

=
p

T

2
2

ˆ2
d
du

=
p

T

2
2

ˆ5
d
du

=
p

T

Figure 5.3. First-Order Constraints Example

Table 5.3 shows another set of example constraints, and Figure 5.4 shows the

resulting curves. This plot shows similar behavior to the previous example. For the

remainder of this chapter, this tangent scale is assumed to be 1.0 for simplicity, and thus
d
du
p will always be a unit vector. However, it will be shown later how this parameter can

provide an important degree of freedom to the curve design.
d
du
p 1x 1y 1dx

du
 1dy

du
 2x 2y 2dx

du
 2dy

du

2T̂ 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0

2
ˆ2T 0.0 0.0 1.0 0.0 1.0 1.0 2.0 0.0

2
ˆ5T 0.0 0.0 1.0 0.0 1.0 1.0 5.0 0.0

Table 5.3. First-Order Constraints Example II

 114

1T̂

2T̂

1N̂

2N̂

2
2

ˆd
du

=
p

T
2

2
ˆ2

d
du

=
p

T

2
2

ˆ5
d
du

=
p

T

1N̂

1T̂

1N̂

2T̂

1T̂

1N̂

2N̂

2T̂

1T̂

1N̂

Figure 5.4. First-Order Constraints Example II

5.3. SECOND-ORDER PROPERTIES

Next, the second-order constraints (
2

2

d
du

p) can be formulated based on the second-

order geometric constraints: curvature (Equation 5.4) and the unit normal vector

(Equation 5.5).

()

2

2

3

d d
du du

u
d
du

κ
×

=

p p

p
 5.4

()

ˆ

ˆ
ˆ

d
duu
d
du

=

T

N
T

 5.5

 115

Now, to better define the unit normal vector, the derivative
ˆd

du
T can be calculated

analytically. Using the chain rule, the first step of this derivation is shown in Equation

5.6.
2

2ˆ 1
d d

d d d ddu du
d d ddu du du du
du du du

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎜ ⎟ ⎜ ⎟= = +
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

p p
T p

p p p
 5.6

Now, the derivative in the second term can be expanded using the quotient rule as

in Equation 5.7. Finally, the derivative of the magnitude p
du
d can be evaluated as in

Equation 5.8.

1

2
1

d p
d d d du du

ddu du du p
du du

−
⎛ ⎞
⎜ ⎟
⎜ ⎟ = = −
⎜ ⎟
⎜ ⎟
⎝ ⎠

d
p

p d
 5.7

2
1 1

2 22 2

2

1 2
2

d d
d d d d d d d d d du du

ddu du du du du du du du du
du

−⎡ ⎤ ⋅⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= ⋅ = ⋅ ⋅ =⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

p p
p p p p p p p

p
 5.8

Plugging all of these results back into the original equation, the equation for
ˆd

du
T

can be formulated as in Equation 5.9.
2 2 2

2 2

3

ˆ
d d d d d
du du du du dud

du d
du

⎛ ⎞
− ⋅⎜ ⎟
⎝ ⎠=

p p p p p
T

p
 5.9

Now, this equation can be related back to curvature using the relationship (from

the Serret-Frenet formulas)
ˆ ˆd d

du du
κ=

T p N . To further simplify this relationship, d
du
p and

2

2

d
du

p can be assumed to be perpendicular, so that the right-hand side of Equation 5.9

 116

becomes equal to zero. This leads to the expression for the second-order parametric

constraints (
2

2

d
du

p) in terms of curvature and unit normal vector shown in Equation 5.10.

22

2
ˆd d

du du
κ=

p p N 5.10

Now, using this relationship, a curve can be defined to pass through a point with a

given curvature. For example, consider a path plan that is provided that must pass

through three points with a specified curvature at the middle point (2 2,x y). Table 5.4

shows how the first and second derivatives could be defined to satisfy three different

values for curvature. A plot of these three curves is shown in Figure 5.5. As expected, the

higher values of curvature generate a sharper bend (locally) around the second point. As

before, the overall shape of the curve is not being controlled as this work is focused on

defining the local geometry.

 2x 2y 2dx
du

2dy
du

2
2

2

d x
du

2
2

2

d y
du

1κ = 1.0 1.0 0.0 1.0 1.0 0.0

5κ = 1.0 1.0 0.0 1.0 5.0 0.0

15κ = 1.0 1.0 0.0 1.0 15.0 0.0
Table 5.4. Curvature Constraints Example

 117

2N̂

3T̂

1T̂
1N̂

3N̂

2T̂
15κ =

1κ =

5κ =

Figure 5.5. Curvature Constraints Example

Another set of example constraints is shown in Table 5.5, and the resulting set of

curves is shown in Figure 5.6. Once again, the higher values of curvature lead to sharper

bending. Also, this curve illustrates that curvature will always cause a curve to bend

around its normal vector.

 2x 2y 2dx
du

 2dy
du

2

2
2

d x
du

2

2
2

d y
du

1κ = 1.0 1.0 0.707 0.707 -0.707 0.707

5κ = 1.0 1.0 0.707 0.707 -3.5339 3.5339

15κ = 1.0 1.0 0.707 0.707 -10.6018 10.6018
Table 5.5. Curvature Constraints Example II

 118

2N̂

3T̂

1T̂
1N̂

3N̂

2T̂

15κ = 1κ =

5κ =

Figure 5.6. Curvature Constraints Example II

5.4. THIRD-ORDER PROPERTIES

With d
du
p and

2

2

d
du

p now defined by the unit tangent, unit normal, and curvature,

the third-order parametric constraints (
3

3

d
du

p) can be defined. The first third-order

property to be looked at is torsion, shown in vector form in Equation 5.11. This equation

shows that torsion involves coupling between the first, second, and third order parametric

constraints. However, the first and second order properties are already defined and can be

considered known. Thus, this equation need only be solved for
3

3

d
du

p .

 119

()

2 3

3

22

2

d d d
du du du

u
d d
du du

τ

⎛ ⎞
× ⋅⎜ ⎟

⎝ ⎠=

×

p p p

p p
 5.11

Expanding this equation out in terms of the individual components leads to

Equation 5.12. Then, by collecting like terms, the individual third-order properties can be

isolated as shown in Equation 5.13.

() () () ()
() () ()2 2 2

y z x y z x z x y x z y x y z y x z
u

y z y z z x x z x y y x
τ

′ ′′ ′′′ ′′ ′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′− + − + −
=

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
 5.12

() () () ()
() () ()2 2 2

x y z y z y x z x z z x y x y
u

y z y z x z x z x y x y
τ

′′′ ′ ′′ ′′ ′ ′′′ ′′ ′ ′ ′′ ′′′ ′ ′′ ′′ ′− + − + −
=

′ ′′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′′ ′− + − + −
 5.13

However, because the first and second-order properties have already been

defined, everything except x′′′ , y′′′ , and z′′′ in this equation can be considered constant.

This equation can then be rewritten as shown in 5.14 where a0, b0, and c0 are constants

defined by the first and second order parametric constraints. This leads to a simple linear

system that can be solved for x′′′ , y′′′ , and z′′′ . The results in this chapter are obtained by

performing a pseudo-inverse to determine the value of torsion.

() 0 0 0u a x b y c zτ ′′′ ′′′ ′′′= + + 5.14

Now, parametric constraints can be developed up to the third-order using

geometric constraints on both curvature and torsion. Consider the example constraints

shown in Table 5.6. These constraints involve passing through three frames with a

defined curvature and torsion at each. Using the process described above, the parametric

constraints can be calculated as shown in Table 5.7.

 120

 x y z T̂ N̂ B̂ κ τ

1p 0.0 0.0 0.0 [1,0,0] [0,1,0] [0,0,1] 0.0 0.0

2p 2.0 1.0 1.0 [0,0.707,-0.707] [-1,0,0] [0,0.707,0.707] 1.0 10.0

3p 1.0 3.0 -1.0 [0,1,0] [-1,0,0] [0,0,1] 0.0 0.0
Table 5.6. Example Geometric Constraints with Torsion

i ix iy iz idx
du

 idy
du

 idz
du

2

2
id x

du

2

2
id y

du

2

2
id z

du

3

3
id x

du

3

3
id y

du

3

3
id z

du

1 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 2.0 1.0 1.0 0.0 0.707 -.707 -1.0 0.0 0.0 0.0 7.0679 7.0679

3 1.0 3.0 -1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table 5.7. Example Calculated Parametric Constraints

Once these constraints are defined, the individual trajectories for ()x u , ()y u ,

and ()z u can be calculated. Figure 5.7 shows the overall spatial trajectory using the

calculated values. Figure 5.8 and Figure 5.9 show the curvature and torsion profiles for

this trajectory. It can be seen that the curvature and torsion have the correct values at the

defined point; however, there is little control over these parameters in between the

defined points.

 121

1p

2p

3p
0, 0κ τ= =

1, 10κ τ= =

0, 0κ τ= =

0u =

1u =

2u =

Figure 5.7. Spatial Trajectory with Torsion Constraints

Figure 5.8. Curvature Profiles

 122

Figure 5.9. Torsion Profile

Another property that depends on the third-order parametric constraints is the

derivative of curvature as shown in Equation 5.15 [58]. Because the first and second

order properties have been defined to be perpendicular, the second term in the numerator

will disappear and this equation will reduce to Equation 5.16.
42 3 2

2
2 3 2

6

3d d d d d d d
du du du du du du dud

du d
du

κ
κ

κ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
× ⋅ × − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠=

p p p p p p p

p
 5.15

2 3

2 3

6

d d d d
du du du dud

du d
du

κ

κ

⎛ ⎞ ⎛ ⎞
× ⋅ ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=

p p p p

p
 5.16

 123

Now, the values of x′′′ , y′′′ , and z′′′ need to be isolated, so that their values can be

calculated. First, the term
2

2

d d
du du

⎛ ⎞
×⎜ ⎟

⎝ ⎠

p p can be replaced with constant values, because

these terms have already been defined as shown in 5.17.
()
()
()

12

22

3

y z z y C
d d x z x z C
du du

Cx y y x

′ ′′ ′ ′′⎡ ⎤− ⎡ ⎤
⎢ ⎥⎛ ⎞ ⎢ ⎥′′ ′ ′ ′′× = − =⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥ ⎢ ⎥′ ′′ ′ ′′− ⎣ ⎦⎣ ⎦

p p 5.17

Then, the entire expression can be expanded and Equation 5.18 can be reached by

collecting the third-order terms.

() () ()
2 3

2 3 3 1 1 22 3

d d d d x C z C y y C x C z z C y C x
du du du du

⎛ ⎞ ⎛ ⎞
′′′ ′ ′ ′′′ ′ ′ ′′′ ′ ′× ⋅ × = − + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

p p p p 5.18

Finally, the above equation can be combined with Equation 5.16 to come up with

the final result shown in Equation 5.19 where a1, b1, and c1 can be considered constants.

[]
6

1 1 1

x
d d a b c y
du du

z

κ κ
′′′⎡ ⎤

⎢ ⎥′′′= ⎢ ⎥
′′′⎢ ⎥⎣ ⎦

p 5.19

Now, this constraint for d
du
κ can be combined with the torsion constraint defined

before in Equation 5.14 to create the system of linear equations shown in Equation 5.20.

With two constraints and three unknowns, this system can be solved to yield solutions7

for
3

3

d
du

p that can satisfy constraints on both torsion and the derivative of curvature.

0 0 06

1 1 1

x
a b c

yd d a b c
zdu du

τ

κ κ

′′′⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥′′′= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ′′′⎢ ⎥⎣ ⎦⎣ ⎦

p 5.20

An example path description is shown in Table 5.8. This path plan defines a

trajectory through three points with constraints defined on the curvature, derivative of

curvature, and torsion at the second point. Table 5.9 shows the parametric constraints

7 As before, a pseudo-inverse is used to evaluate this equation.

 124

calculated from these values. The resulting path is shown in Figure 5.10. Plots of the

higher-order properties can be seen in Figure 5.11, Figure 5.12, and Figure 5.13.

 x y z T̂ N̂ B̂ κ
d
du
κ τ

1p 0.0 0.0 0.0 [1,0,0] [0,1,0] [0,0,1] 0.0 0.0 0.0

2p 1.0 1.0 1.0 [0,0.707,0.707] [-1,0,0] [0,-0.707,0.707] 3.0 -20.0 -10.0

3p 1.5 2.0 0.0 [0,1,0] [-1,0,0] [0,0,1] 0.0 0.0 0.0
Table 5.8. Geometric Constraints with Torsion and Derivative of Curvature

i ix iy iz idx
du

 idy
du

 idz
du

2

2
id x

du

2

2
id y

du

2

2
id z

du

3

3
id x

du

3

3
id y

du

3

3
id z

du

1 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 1.0 1.0 1.0 0.0 0.707 0.707 -3.0 0.0 0.0 19.994 21.204 -21.204

3 1.5 2.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table 5.9. Example Calculated Parametric Constraints

1p

2p

3p

0, 0
0

κ τ
κ
= =
′ =

3, 10
20

κ τ
κ
= =−
′ =−

0, 0
0

κ τ
κ
= =
′ =

2u =

0u =1u =

Figure 5.10. Spatial Trajectory with τ and κ’ Constraints

 125

Figure 5.11. Curvature Profile

Figure 5.12. Torsion Profile

 126

Figure 5.13. Derivative of Curvature Profile

5.5. FOURTH-ORDER PROPERTIES

Finally, the fourth order property of τ ′ can be examined. The parametric equation

for τ ′ [58] is shown in Equation 5.21. This equation shows that τ ′ is a function of the

first, second, third, and fourth order parametric derivatives. However, the first through

third order constraints have already been defined. Thus, the fourth-order derivative must

be isolated and solved. Equation 5.22 shows the “constant” values moved to the left-hand

side of the equation.
2 4 2 3

2 4 2 3

22

2

2d d d d d d d
du du du du du du dud

du d d
du du

τ
τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
× ⋅ − × ⋅ ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠=

×

p p p p p p p

p p
 5.21

22 2 3 2 4

2 2 3 2 42d d d d d d d d d d
du du du du du du du du du du
τ τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
× + × ⋅ × = × ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

p p p p p p p p p 5.22

 127

Now, the
2

2

d d
du du

⎛ ⎞
×⎜ ⎟

⎝ ⎠

p p can once again be considered constant, which leads to

another simple linear system as shown in Equation 5.23.

() () ()
22 2 3

4 4 4
0 0 02 2 32d d d d d d d a x b y c z

du du du du du du du
τ τ

⎛ ⎞ ⎛ ⎞
× + × ⋅ × = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

p p p p p p 5.23

Now, a path plan that meets constraints κ , κ′ , τ , and τ ′ can be defined by

calculating parametric constraints up the fourth-order. For example, consider the

geometric constraints shown in Table 5.10. Using the techniques developed in this

chapter, these constraints can be mapped to the parametric constraints shown in Table

5.11. Then, the x, y, and z trajectories can be developed independently and combined
together to retrieve the desired spatial curve () () () ()()u x u y u z u⎡ ⎤= ⎣ ⎦p .

 x y z T̂ N̂ B̂ κ
d
du
κ τ

d
du
τ

1p 0.0 0.0 0.0 [1,0,0] [0,-1,0] [0,0,-1] 0.0 0.0 0.0 0.0

2p 1.0 1.0 1.0

0.707
0.3536
0.6124

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.0
0.866
0.5

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

0.707
0.3536
0.6124

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

3.0 -10.0 -5.0 25.0

3p 2.0 -2.0 -0.5 [0,-1,0] [-1,0,0] [0,0,-1] 0.0 0.0 0.0 0.0
Table 5.10. Geometric Constraints

i 1 2 3 i 1 2 3 i 1 2 3

ix 0.0 1.0 2.0 iy 0.0 1.0 -2.0 iz 0.0 1.0 0.5
idx

du
 1.0 0.0 0.0

idy
du

 0.0 0.707 -1.0
idz

du
 0.0 -0.707 0.0

2

2
id x

du
 0.0 0.0 0.0

2

2
id y

du 0.0 -2.598 0.0
2

2
id z

du 0.0 1.5 0.0
3

3
id x

du
 0.0 -10.606 0.0

3

3
id y

du 0.0 13.962 0.0
3

3
id z

du 0.0 4.183 0.0
4

4
id x

du
 0.0 123.745 0.0

4

4
id y

du 0.0 -61.861 0.0
4

4
id z

du 0.0 -107.142 0.0
Table 5.11. Parametric Constraints

 128

Figure 5.14 shows the resulting spatial curve. As before, it can be difficult to

visualize how this curve is moving spatially in a 2D representation. However, this

research is more concerned with meeting the defined geometric constraints (i.e. the local

geometry around each frame of interest) than the overall shape of the curve. These local

geometries were presented visually in the previous chapter. Then, this chapter has shown

how to convert these into mathematic constraints that can be used to generate spatial

curves. Figure 5.15 through Figure 5.18 show the various geometric properties along the

length of the spatial curve. Once again, these properties are shown to interpolate the

correct values at their defined points, but are not controlled or well-behaved along the

entire path.

1p

2p

3p

3, 5
20, 25

κ τ
κ τ
= = −
′ ′= − =

0, 0
0, 0

κ τ
κ τ
= =
′ ′= =

0, 0
0, 0

κ τ
κ τ
= =
′ ′= =

2u =

1u =

0u =

Figure 5.14. Spatial Trajectory

 129

Figure 5.15. Curvature Profile

Figure 5.16. Torsion Profile

 130

Figure 5.17. Derivative of Curvature Profile

Figure 5.18. Derivative of Torsion Profile

 131

5.6. SPECIAL CASES

In addition to the general shapes that could be generated using curvature and

torsion explored in the previous chapter, two special cases were also introduced: cusps

and inflection points. In these cases, the geometry of the coordinate frame changes at the

point of interest. In the case of an inflection point, the normal vector switches direction.

In the case of a cusp, the tangent vector switches directions. This section will describe

how to incorporate these special cases into the same procedure presented earlier in this

chapter.

5.6.1. Inflection Point

As discussed before in Sections 4.3.5 and 4.4.4, the normal vector inverts at an

inflection point. This represents the curve beginning to bend in a different direction.

Mathematically, a necessary (but not sufficient) condition for the existence of an

inflection point is a curvature of zero. However, when the curvature is zero, the higher-

order geometric properties become undefined, and thus the higher-order parametric

constraints become indeterminate (i.e. unfixed). One way around this problem is to use

the geometric interpretation of an inflection point (the unit normal vector inverting) to

induce an inflection point at the desired point. This simply involves using a different

normal vector on the approaching and leaving ends of the desired coordinate frame as in

Figure 5.19. This curve uses the same exact geometric constraints as the curve in Figure

5.6 except that the middle point is also defined to be an inflection point. This causes the

curve to bend in the opposite direction on either side of the frame.

 132

2
ˆ

aN

3T̂

1T̂
1N̂

3N̂

2 /
ˆ

a bT

15κ =

1κ = 5κ =

2
ˆ

bN

Figure 5.19. Planar Curve with an Inflection Point

To further visualize this, Figure 5.20 shows a zoomed in view of the inflection

point. This plot shows the curve begin to bend in the opposite direction at the frame with

the curvature dictating how “sharp” the bending is. Thus, the physically meanings of the

geometric properties can still be used with this method while still capturing the geometric

significance of an inflection point (switching the direction of the curve bending). Table

5.12 and Table 5.13 show the parametric constraints for the approaching and leaving end

of the frame, respectively.

 133

15κ =

1κ =

5κ =

15κ =

1κ =

5κ =
2

ˆ
aN

2 /
ˆ

a bT

2
ˆ

bN

Figure 5.20. Close-up of Inflection Point

 2ax 2ay 2adx
du

 2ady
du

2

2
2

ad x
du

2

2
2

ad y
du

1κ = 1.0 1.0 0.707 0.707 -0.707 0.707

5κ = 1.0 1.0 0.707 0.707 -3.536 3.536

15κ = 1.0 1.0 0.0 1.0 -10.607 10.607
Table 5.12. Parametric Constraints Approaching Inflection Point

 134

 2bx 2by 2bdx
du

 2bdy
du

2

2
2

bd x
du

2

2
2

bd y
du

1κ = 1.0 1.0 0.707 0.707 0.707 -0.707

5κ = 1.0 1.0 0.0 -1.0 3.536 -3.536

15κ = 1.0 1.0 0.0 -1.0 10.607 -10.607
Table 5.13. Parametric Constraints Leaving Inflection Point

5.6.2. Cusp

As discussed in Section 4.4.2, a necessary condition for a cusp is that the first

derivative vector vanishes (i.e. []0,0,0d
du

=
p). However, as in the case of an inflection

point, this causes the higher-order geometric properties to either go infinite or be

undefined. Thus, this mathematical description is not helpful in defining the parametric

constraints needed to define the spatial curve. Thus, this method will concentrate on the

main geometric significance of a cusp: the inversion of the unit tangent vector. Similar to

the method used for an inflection point, this method will simply invert the unit tangent at

the desired cusp point8. An example of this is shown in Figure 5.21. This figure shows a

cusp point with three different curvatures defined around it.

8 The unit normal vector may also be inverted at this point depending on the desired direction of bending
for the curve.

 135

2
ˆ

aN

3T̂1T̂
1N̂ 3N̂

2
ˆ

aT

15κ =

1κ = 5κ =

2
ˆ

bN

2
ˆ

bT

Figure 5.21. Planar Path with a Cusp

A close-up of the cusp point is shown in Figure 5.22. This shows the behavior of

the local geometry of the curve around the cusp point for varying values of curvature.

Using this method, the effects of curvature on the local geometry of a curve are the same

as those described in Sections 4.3.4 and 4.4.2. Thus, the physical meaning of the

geometric constraints is retained in a form that allows easy conversion to parametric

constraints. While this method does not describe a cusp in the strictest mathematical

sense, it does allow for defining the geometric interpretation of a cusp. Table 5.14 and

Table 5.15 show the parametric constraints for this cusp example.

 136

15κ =

1κ =

5κ =

Figure 5.22. Close-up of Cusp Point

 2ax 2ay 2adx
du

2ady
du

2
2
2

ad x
du

2
2
2

ad y
du

1κ = 1.0 1.5 0.0 1.0 -1.0 0.0

5κ = 1.0 1.5 0.0 1.0 -5.0 0.0

15κ = 1.0 1.5 0.0 1.0 -15.0 0.0
Table 5.14. Parametric Constraints Approaching Cusp Point

 2bx 2by 2bdx
du

2bdy
du

2
2
2

ad x
du

2
2
2

ad y
du

1κ = 1.0 1.0 0.0 -1.0 -1.0 0.0

5κ = 1.0 1.0 0.0 -1.0 -5.0 0.0

15κ = 1.0 1.0 0.0 -1.0 -15.0 0.0
Table 5.15. Parametric Constraints Leaving Cusp Point

 137

5.7. SUMMARY

This chapter described a procedure for formulating the geometric properties

studied in the last chapter into parametric constraints that can be used to define spatial

parametric curves. The main steps behind this process are:

• First, a set of spatial coordinate frames (positions and orientations) is defined.

These would most likely come from a simulation or CAD environment and would

not have to be defined by an operator.

• The desired geometric properties at each frame are defined (κ , κ′ , τ , and τ ′).

• The first order parametric constraint (d
du
p) is defined using the unit tangent vector

as ()ˆ ud d
du du

=
p p T

• The second order parametric constraint (
2

2

d
du

p) is defined using the unit normal

vector and desired curvature as
22

2
ˆd d

du du
κ=

p p N

• The third order parametric constraint (
3

3

d
du

p) is defined using the desired torsion

and derivative of curvature as 0 0 06

1 1 1

x
a b c

yd d a b c
zdu du

τ

κ κ

′′′⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥′′′= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ′′′⎢ ⎥⎣ ⎦⎣ ⎦

p

• The fourth order parametric constraint (
3

3

d
du

p) is defined using the derivative of

torsion as () () ()
22 2 3

4 4 4
0 0 02 2 32d d d d d d d a x b y c z

du du du du du du du
τ τ

⎛ ⎞ ⎛ ⎞
× + × ⋅ × = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

p p p p p p

• Once the parametric constraints (
4 4 4

4 4 4, , , , , ,dx dy dz d x d y d z
du du du du du du

) have been

defined, the x, y, and z trajectories are calculated independently using some

trajectory planning technique (polynomial, trapezoidal, etc). A comparison of

Polynomial vs. Trapezoidal planning is include in Appendix B.

 138

• The individual trajectories are combined together to produce a parametric
description of the desired spatial curve () () () ()u x u y u z u⎡ ⎤= ⎣ ⎦p

This procedure provides a good starting point for defining parametric spatial

curves based on geometric constraints. It should be noted that, once the parametric

constraints have been defined, any number of curve generation techniques could be used

for blending between these constraints. However, there are still many potential areas for

future work on this technique. Some possible extensions to this technique include:
• How best to define ()u f t= to define a smooth motion along the defined

parametric curve

• A better way of controlling the shape of the curve and its geometric properties

between frames

• The application of theses geometric constraints to specific physical tasks

 139

6. CHAPTER SIX

Motion Planner Implementation

In the previous two chapters, a new method of generating the geometry for spatial

curves was presented. Chapter Four focused on developing an understanding of the

physical meanings of the intrinsic properties of curvature and torsion. Then, Chapter Five

presented a technique for converting these properties into parametric constraints that

could be used to generate spatial paths. Now, this chapter will explore how these methods

can be used in an actual manipulator motion planner. This will be done by integrating this

technique into a previously designed motion planning software developed at the Robotics

Research Group (RRG). This software package was built using the Operational Software

Components for Advanced Robotics (OSCAR) software libraries. The next section will

provide a brief background on OSCAR. Then, a description of the overall architecture of

the existing Motion Planner will be presented. Then, specific issues involved in

integrating this technique into this architecture will be explored such as defining motion
along a curve (()u f t=) as well as defining the rotational motion.

6.1. OPERATIONAL SOFTWARE COMPONENTS FOR ADVANCED ROBOTICS

OSCAR is a set of C++ libraries that can be used for modeling and control of

serial manipulators. OSCAR contains two main layers: the support layer and the

operational layer. The support layer includes low-level modules such as Base (used for

error-handling), Math (linear algebra, vector/matrix operations), and Communications

(TCP/IP connections). The operational layer includes higher-level modules used for

operations such as Forward/Inverse Kinematics, Decision-Making and Motion Planning.

 140

A simple schematic of this framework is shown in Figure 6.1. A much more detailed

description of this framework can be found in [23][24].

Figure 6.1. OSCAR Architecture Overview

6.2. OSCAR-BASED MOTION PLANNER

The OSCAR-based Motion Planner (MP) is a generalized motion controller

designed to package Cartesian and Joint trajectory generation with OSCAR's existing

generalized framework for Kinematics and Decision-Making. This includes

implementation of Point-to-Point (PTP) motions as well as “jogging” motions for

teleoperation. The MP is implemented as a C++ component using OSCAR modules and

is robot independent. An overview of the MP framework is shown in Figure 6.2. First, a

set of generalized manipulator parameters is provided to create an MP for a specific

 141

robot. Then, a user interface (i.e. API) provides the ability to define joint/Cartesian

motions. Once a motion has been defined, the MP will provide joint set points at a

specified sample rate that can be sent to a servo interface or simulation. The MP will

internally perform Inverse Kinematics when necessary for Cartesian moves as well as

checking for joint position and velocity limits. The following sections will briefly

describe some of the core functionality of the MP to provide better insight into how the

methods developed in this work were integrated.

MP API

Trajectory
Generator

Kinematics &
Redundancy

Manipulator
Parameters

Joint Position, Speed &
Acceleration Limits

Servo Interface/
Simulation

,c cθ θ,a aθ θ

Figure 6.2. Basic Motion Planner Framework

 142

6.2.1. Manipulator Parameters

The manipulator parameters are the robot parameters used to initialize the MP for

a specific application. A summary of these parameters is shown in Table 6.1. This table

shows that a manipulator-specific MP can be defined with a very simple representation of

the system. This allows the MP to be easily applied to a variety of systems.

Manipulator Parameter Description

DH Parameters

Used to describe the spatial geometry of a specific

serial manipulator. This information is used by OSCAR

for performing the Forward/Inverse Kinematics

Joint Position Limits

Defines the travel limits for each individual joint of the

manipulator. These limits are used for error-checking

during trajectory calculation/execution.

Joint Velocity Limits

Defines the velocity limits for each individual joint in

the manipulator. These limits are used in the generation

phase of Joint interpolated moves to ensure the fastest

move time based on physical capabilities of the system.

Joint Acceleration Limits

Defines the acceleration limits for each individual joint

in the manipulator. These limits are used in the

generation phase of Joint interpolated moves to ensure

the fastest move time based on physical capabilities of

the system..

Cartesian Velocity Limits
Cartesian space velocity limits used for teleoperation.

Cartesian Acceleration Limits
Cartesian space acceleration limits used for

teleoperation.

Table 6.1. Basic Manipulator Parameters

 143

6.2.2. Point-to-Point Motions

6.2.2.1. Joint Interpolated

In joint interpolated motions, a desired target joint configuration is provided to the

MP. Then, a trajectory for each individual joint is calculated based on the provided joint

velocity and acceleration limits to ensure the fastest move time based on system

capabilities. This involves an acceleration (i.e. “ramp-up”) period, a constant velocity

period, and a deceleration (i.e, “ramp-down”) period. Then, the longest move time for all

joints is determined, and the other trajectories are scaled to complete in the same time

period. One example velocity profile is shown in Figure 6.3.

Figure 6.3. Example Velocity Profile

 144

6.2.2.2. Cartesian Interpolated

For Cartesian interpolated moves, a target position and orientation is provided as

well as a time to complete the move. The position trajectory is calculated as shown in
Equation 6.1 where [], ,x y z=p and T is the provided move time. As with the joint

interpolated motion, the Cartesian motion also involves an acceleration period, a constant

velocity period, and a deceleration (i.e, “ramp-down”) period. However, in the case of the

Cartesian interpolated motions, the velocity profile is based on the distance and move

time instead of the velocity/acceleration limits.

() () []0 1 0 , 0,tt t T
T

= + − ∈p p p p 6.1

For the rotational motion, a quaternion spherical interpolation (SLERP) technique

is used as shown in Equation 6.2 where q0 and q1 are quaternions representing the

orientation for the beginning and ending points. This type of interpolation provides a

smooth angular velocity profile [41].

()
()

[]
0 11 sin

, 0,
sin

tq q t
Tq t t T

θ θ

θ

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= ∈
6.2

6.2.3. Teleoperation

In teleoperation, a set of “delta” values scaled between -1 and 1 is provided to the

MP. For joint teleoperation, there will be one delta value for each individual joint. For

Cartesian teleoperation, these values represent the x, y, and z translational directions and
the xθ , yθ , and zθ Euler angles. The MP will then use its current position/velocity and

ramp-up/ramp-down to its set velocity using the provided Cartesian and joint velocity and

acceleration limits. For example, if a particular axis is stationary and a delta value of 0.5

is provided, it will ramp-up to 50% of its maximum velocity. The teleoperation

functionality of the MP has been tested on actual hardware using a variety of input

 145

devices such as a PC keyboard, a Logitech Magellan Spacemouse, and a Phantom Omni

Haptic Device.

6.2.4. Motion Execution

Once a motion has been requested, the MP will provide discrete joint set points at

a fixed sampling rate. For a joint interpolated motion, this just means calculating a new

joint position based on the motion parameters at a set rate. For Cartesian motions, an end-

effector position is calculated at each point and converted into a joint position using

Inverse Kinematics. Figure 6.4 shows a simple example of the MP interface. In this

example, a Cartesian move to a specified End-Effector position (finalHand) is requested

for a specific move time (moveTime). Then, the MP is polled until the trajectory is

complete. In a physical system, the GetJointPosition() method would be placed inside a

real-time loop running at a specified sample rate (e.g. 100 hz). However, it is simply

placed inside a loop in this example to demonstrate the concept. A full API for the MP is

include in Appendix C.

Figure 6.4. Example MP Code

moveTime=10.0;
if (!motionPlanner.PlanMove(

currentJoints,finalHand,CartesianInterpolated,moveTime))
 {
 DisplayError(motionPlanner.GetError());
 return false;
 }

 do{
 if(!motionPlanner.GetJointPosition(currentJoints,jointVel,state)){
 DisplayError(motionPlanner.GetError());
 break;
 }
 SetJoints(currentJoints);
 }while(state != TrajectoryGenerator::TrajectoryComplete);

 146

6.2.5. Configuration Parameters

In addition to the core functionality, the MP contains several configuration

parameters that can be used to further customize its operation.

Configuration Parameter Description

RampTime Changes the % of the velocity to profile to use for the

acceleration/deceleration periods for Cartesian interpolated

motions (see Figure 6.3).

CoordinateMode Can be used to toggle between using World and Tool frame

coordinates for Cartesian jogging.

TrajectoryShape Can be used to toggle between Trapezoidal and S-Curve

velocity profiles. S-Curve trajectories provide a smoother

motion but longer move times.

SpeedScale Used to slow trajectory execution for debugging purposes.

For example, a SpeedScale of 0.5 will cause all trajectories

to be executed on 50% speed.
Table 6.2. Example Configuration Parameters

6.2.6. Example Applications

The OSCAR-based MP has been implemented and integrated with several

physical systems. A few of the applications for which the MP has been used include:

• DARPA TraumaPod – The MP was used for motion control of a Scrub Nurse

System (SNS) used for delivering supplies and changing tools inside a surgical

workcell. This included the standard operations described in this chapter

(Kinematics, Cartesian/Joint motions, etc) as well as integration with Obstacle

Avoidance and Collision Detection.

 147

• Microsoft Robotics Studio – The MP was integrated with MSRS (Microsoft

Robotics Studio) to demonstrate how it could be implemented within a service-

based communications architecture.

• Mobile Manipulator – The MP was used for motion control for a mobile

manipulation system developed with Idaho National Laboratory.

• LWA3 Teleoperation Demo – The MP was used to control a 7-DOF LWA3

manipulator using a variety of teleoperation input devices.

6.3. GEOMETRIC-BASED TRAJECTORY GENERATION

Now that the general framework for the OSCAR-based MP has been described,

the implementation of the techniques developed as part of this research can be explored.

First, a simple task will be defined for demonstration. Then, an exploration on how to
define a time-based motion along the geometric trajectory (i.e. how to define ()u f t=).

will be presented. Then, an introduction to rotational motion will be provided.

6.3.1. Task Description

To examine the specific details of implementing the path generation techniques

developed in this work, a simple example task was chosen. This task involves passing

through a waypoint with a specified curvature in route to a final position (Figure 6.5).

Located at the waypoint position is a sphere with a radius of 0.05 meters. Thus, a

curvature value of 20κ = (1κ
ρ

=) will make the local shape of the curve at the waypoint

identical to the sphere. While this is a very basic example, it provides a good geometric

visualization of the generated spatial curve. The same methods developed to interpolate

this curve can also be applied to more complex examples.

 148

Initial Position

Final Position

Waypoint

Figure 6.5. Sample Task Example

6.3.2. Translational Motion Along a Curve

The first step in this implementation is how to describe the translational motion
along a curve (i.e. ()u f t=). As mentioned earlier in the chapter, the Motion Planner

works by providing joint set positions at a specified sample rate. Thus, the task here is to

figure out how to sample points on the curve to provide a desirable motion. This comes

down to determining how to increment the geometric parameter u. A basic schematic of

 149

the process that will need to be computed at each sampling point9 is shown in Figure 6.6.

The following sections will go into more detail of how this process is realized.

Inverse
KinematicsCalculate u

Calculate
()
()
()

x f u

y f u

z f u

=

=

=

Servo Interface/
Simulation

ui
xi,yi,zi iθ

Figure 6.6. Basic Schematic of MP Curve Interpolator

6.3.2.1. Effect of Tangent Scale

In Section 5.2, it was shown that the first-order parametric properties could be set

by scaling the unit tangent vector (i.e. ˆd tangScale*
du

=
p T where tangScale is some scalar

value). Because Chapter 5 mainly focused on the higher-order properties, this parameter

was not fully explored. Figure 6.7 shows the affects of this parameter as applied to the

current task. This shows that this parameter has a large affect on the overall shape of the

curve while still allowing the geometric constraints to be met at the end points. Basically,

as the value of tangScale increases the curve tends to develop large overshoots. For lower

values, the curve will become more “taut”. The exact affect of this parameter on a curve

will be dependant on both the scale (e.g. meters vs. millimeters) as well as the values of

the higher-order properties. Thus, first the local geometric properties can be defined, and

then this parameter can be tweaked to find a desirable overall curve shape.

9 This schematic only shows the translational component of the position and not the orientational. For now,
the orientation can be thought of as a constant along the path.

 150

0.25tangScale =

0.75tangScale =

0.5tangScale =

Figure 6.7. Effect of varying Tangent Scale

Using a value of tangScale=0.3, the geometry of the path can now be defined.

The resulting curve is shown in Figure 6.8. This figure shows that the curve passes

through the waypoint while locally tracing the surface of the sphere as expected. Now

that the geometry has been defined, the next sections will describe how to define a

motion along this geometry.

 151

Figure 6.8. Resulting Spatial Curve

6.3.2.2. Linear Parametric Interpolation

The simplest method of interpolating the geometric parameter u would be to

linearly interpolate it with respect to the time. This is shown in Equation 6.3 where T is
the total time to complete the move. From this equation, it is easy to see that ()0 iu u=

and () fu T u= . This simple method was implemented into the MP and the output

Cartesian velocity along the path was measured by calculating the distance between

 152

consecutive set points provided by the MP and dividing by the sample time. The results

of the simulation are shown in Figure 6.9.

() () [], 0,T
Ti f i
tu t u u u t= + − ∈ 6.3

Figure 6.9. Velocity Profile for Linear u Interpolation

The above velocity profile shows that this leads to a smooth but uncontrolled

velocity in the middle of the trajectory. However, the trajectory also has a finite

initial/final velocity which will lead to large accelerations and undesirable motions.

6.3.2.3. Smooth Parametric Interpolation

A simple extension to the linear parametric interpolation is to use a smooth

function to interpolate the parameter. One simple example of this is shown in Equation
6.4. This function will satisfy the conditions ()0 0p = and () 1p T = with both the initial

 153

and final velocity and acceleration beginning zero. This will ensure a smooth starting and

ending motion for the trajectory.

() []
3 4 5

10 15 6 , 0,t t tp t t T
T T T
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + ∈⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 6.4

Then, the geometric parameter u can be defined as a function of time as shown in
Equation 6.5 where ()0 iu u= and () fu T u= . Once again, the resulting Cartesian

velocity is calculated and plotted in Figure 6.10. This plot shows that the initial and final

velocities are indeed zero now (providing a smooth start and finish), but the interior

velocity profile (peak magnitude) is still not controlled. Thus, a more detailed

examination between the geometry and motion of the curve is needed. This is presented

in the following section.

() ()() [], 0,i f iu t u p t u u t T= + − ∈ 6.5

Figure 6.10. Velocity Profile for Smooth u Interpolation

 154

6.3.2.4. Velocity Approximation Formulation

In Section 2.3.2, an introduction to motion along a curve parameterized by arc

length, s, was presented. In curves parameterized by arc length, developing relationships

between geometry and motion is simple as the value dss
dt

= is the Cartesian speed (i.e.

magnitude of the velocity). However, in this case, the curve is defined not by arc length

but by a geometric parameter u. In this section, a method will be described to move along

a parametric curve with a prescribed velocity profile. This method is based off a real-time

interpolator developed for CNC machines by Zhang and Greenway [63].
The first step is to take a Taylor expansion of the function ()u t as shown in

Equation 6.6 where t∆ is the time between sampling periods (e.g. 0.01 seconds for 100

hz). Using this formulation, the next value of u can be calculated at each sampling period

by using the current value of u as well as the higher-order derivatives of u with respect to

time. Thus, these higher-order derivatives of u with respect to time must be formulated.

This will first be done for a first-order approximation and then expanded to a second-

order approximation.
22

1 2 H.O.T
2

i i
i i

du d utu u t
dt dt+

∆
= + ∆ + + + 6.6

For a first-order approximation, the value of du
dt

 must be found. First, the

relationship shown in Equation 6.7 is developed. This relates the physical motion along

the curve to the geometric parameter.
ds ds duv s
dt du dt

= = = 6.7

Now, we can substitute in the relationship d ds
du du

=
p . This yields the formulation

for du
dt

 shown in Equation 6.8.

 155

()v tdu
ddt
du

=
p

6.8

This shows that the value for du
dt

can be found at any point along the curve given

the current desired velocity. Substituting this into Equation 6.6 will yield the relationship

shown in Equation 6.9. Thus, at each sample time, a new value of u can be calculated.
()

1i i
i

v t t
u u

d
du

+

∆
= +

p

6.9

Now that a method for determining u has been developed, the velocity profile v(t)

must be defined. For the purposes of testing this formulation, a simple trapezoidal

velocity profile will be defined as shown in Figure 6.11.

Figure 6.11. Example Velocity Profile

 156

Before we can calculate the function v(t), the total distance travelled along the

curve must be calculated. This arc length can be found using Equation 6.10. A simple

way of computing this integral is to sample u across its interval and sum up the distances

between consecutive points (x,y,z).
2 2 2f f

i i

u u

u u

d d dx dy dzs du du
du du du du du

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫

p p 6.10

Now that the total travel distance has been computed, the coasting velocity and

ramp-up acceleration can be calculated using Equation 6.11 and 6.12.

max
b

sv
T t

=
−

 6.11

max
max

b

va
t

= 6.12

The entire velocity function can be described as shown in Equation 6.1310. Now,

this method for defining motion along a curve can be tested as before. The resulting

velocity profile is shown in Figure 6.12. From this plot, the first-order approximation

does a decent job of tracking the velocity profile with the exception of one small area

where the curvature is large. As mentioned in [63], the first-order approximation is only

reliable in curves with small values of curvature. However, since the technique described

in this work depends on defining curvatures that may in some cases be large, a higher-

order approximation is required.

()
max

max

max max

,
,

,

b

b b

b

a t t t
v t v t t T t

v a t T t t T

<⎧ ⎫
⎪ ⎪= < < −⎨ ⎬
⎪ ⎪− − < <⎩ ⎭

 6.13

10 A similar formulation could be created where desired velocity/acceleration are the inputs and T/tb are
calculated values.

 157

Figure 6.12. First-Order Velocity Approximation

To define a second-order approximation, the value of
2

2

d u
dt

 must be formulated.

This can be done by simply taking the derivative of du
dt

 as shown in Equation 6.14. Then

the overall method of interpolating the geometric parameter u is shown in Equation 6.15.

The resulting velocity profile is shown in Figure 6.13. This shows that a second-order

approximation tracks the desired velocity profile almost exactly.

() () ()
2

2
22

42

d dv t
v t a t du dud u d
d ddt dt d
du du du

⎛ ⎞⎛ ⎞ ⋅⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟= = −
⎜ ⎟
⎜ ⎟
⎝ ⎠

p p

p p p
 6.14

 158

() () ()
2

2
22

1 42i i
i

d dv t
v t a t du dutu u t
d d d

dudu du

+

⎛ ⎞⎛ ⎞⎛ ⎞ ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ∆ ⎝ ⎠⎜ ⎟⎜ ⎟= + ∆ + −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

p p

p p p
 6.15

Figure 6.13. Second-Order Velocity Approximation

6.3.2.5. Special Cases

The method described in the previous section assumes that a nonzero velocity

profile is desired along the entire manipulator trajectory. This is a decent assumption for

most cases as the curve generation method developed in this work is in general smooth

over the whole trajectory. However, in certain special cases, a discontinuity is

purposefully inserted into the trajectory. For example, consider the trajectory with a cusp

shown in Figure 6.14. In this example, the manipulator is commanded to move into a tray

dispenser to pick up a tray and then on to a final position.

 159

Figure 6.14. Example Trajectory with a Cusp

In the above trajectory, it is easy to see that the curve switches directions at the

cusp point. Thus, if the manipulator is simply commanded to traverse the curve at a

constant speed, the motion of the trajectory will instantaneously switch directions at this

point causing high shocks in the physical system. The simplest method of getting around

this is to define a different velocity profile for each portion of the curve with the velocity

being zero at the actual cusp point. An example of this is shown in Figure 6.15. It should

 160

be noted that depending on the application, a zero velocity could be desired even at

positions where the parametric description remains smooth.

Figure 6.15. Example Velocity Profile

6.3.2.6. Conclusions

This section explored methods of generating a time-based motion along a

parametrically defined spatial curve. This is necessary for implementing the proposed

methods on an actual physical system. First, it was shown that a simple approach of

defining u=t would not lead to desirable or controllable output velocities. Then, a method

that used the geometric properties of the curve in combination with a defined velocity

profile was presented. This was first done for a first-order approximation that tracked the

velocity profile nicely in areas of low curvature. This was then expanded to a second-

order approximation that leads to a good, controllable velocity along the geometric path.

 161

This technique is applicable to any parametrically defined spatial curve as long as the

first and second order properties are available. Thus, if different methods of defining the

blending between end constraints are developed in the future, this same process remains

useful.

6.3.3. Rotational Motion

This research has mainly been focused on the generation of spatial curves for the

purposes of translational path planning. However, to fully define the motion of a robot

manipulator, the orientation of the end-effector must be defined as well as the position. In

this section, an introductory look at rotational motion planning will be presented.

6.3.3.1. Orientation-to-Orientation Interpolation

The simplest form of rotational motion planning is defining an interpolation

between an initial and final frame. For example, for the simple task described earlier in

the chapter, the orientations may be defined as shown in Figure 6.16. In this rotational

description, the manipulator is commanded to pass through the waypoint with an

orientation normal to the sphere and then return to its original orientation. This section

will explore some of the basic ways to describe this motion.

1 2 3

Figure 6.16. Sample Orientation Descriptions

 162

One of the most commonly used descriptions for an orientation is Euler Angles

(introduced in Section 1.1.2.2). With Euler Angles, each orientation (i.e. rotation matrix)
is converted into a set of three angles [], ,α β γ that represent three consequence rotations

to reach the final desired orientation. The interpolation between two sets of Euler Angles

can then be performed as in Equation 6.16 where the Euler Angles can be converted into

a rotation matrix at each instance of t. While this provides a simple way of describing the

rotational motion, Euler Angles suffer from many problems. First, they are prone to

singularities such as gimbal lock. Second, they do not necessarily provide a controllable

angular velocity along their trajectory.

() ()

() ()

() ()

[], 0,

i f i

i f i

i f i

tt
T
tt t T
T
tt
T

α α α α

β β β β

γ γ γ γ

⎫= + − ⎪
⎪
⎪= + − ∈⎬
⎪
⎪= + − ⎪⎭

 6.16

For this reason, rotational motions are often described using Equivalent Axis

formulations. The basic Equivalent Axis formulation (as first described in Section
1.1.2.3) has the form ()ˆ ,R θn where n̂ describes a spatial vector and θ describes the

angle with which to rotate around that axis. Now in the simple case where a rotational

motion from the rotational identity matrix to some desired frame needs to be generated,

the rotation along the trajectory can simply be defined as []ˆ , , 0,tR t T
T
θ⎛ ⎞ ∈⎜ ⎟

⎝ ⎠
n . Thus, a

rotation matrix can be calculated at each time instance t. Because this representation is

simply a rotation about a fixed axis, the quantity θ can be controlled providing a much

better physical understanding of the angular motion. Now, suppose this method needs to

be used to interpolate between two arbitrary frames A and B as shown in Figure 6.17.

 163

Frame A

Frame B

Figure 6.17. Example Rotational Interpolation

First, we calculate the rotation matrix TR A B= which basically describes the

relative rotation between A and B. Then, Equivalent Axis and Angle for this rotation are

calculated. Then, this rotation is transformed back into Frame A and the final motion can

be defined as ˆ , tAR
T
θ⎛ ⎞

⎜ ⎟
⎝ ⎠
n . Thus, a smooth rotation with a controllable angular velocity

is defined between two arbitrary frames.

Another representation for orientations that is similar to Equivalent Axis is

quaternions (first introduced in Section 1.1.2.4). Quaternions are defined as a four-

dimensional vector representing an axis and rotation in space. They can be defined from

an Equivalent Axis formulation as shown in Equation 6.17 [21].

0

1 1

2 2

3 3

cos
2

sin
2

sin
2

sin
2

q

q n

q n

q n

θ

θ

θ

θ

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 6.17

 164

Mathematically, quaternions can be thought of as positions on a 4-dimensional

unit hypersphere and interpolation between quaternions can be thought of as curves

running along the surface of these spheres. While these interpretations can be difficult to

visualize, they provide a powerful way of defining orientation-based curves. For

example, consider the simple Spherical Linear Interpolation (SLERP) shown in Equation

6.18. This represents a minimum arc length curve between two points on the sphere.

() ()() []12 12
12 1 2

12 12

sin 1 sin , 0,1
sin sin

t tq t q q t
θ θ

θ θ
−

= + ∈ 6.18

Hanson [21] further shows how these relationships can be nested to generate

orientation “curves” with multiple control points. An example of this is shown in
Equation 6.19 for a curve through three quaternions where () () ()()1

12 23cost q t q tθ −= ⋅ .

While quaternions are mathematically complex and somewhat difficult to visualize, they

remain an important area of research due to their widespread use in animation, graphics,

and robotics.

() () () ()()
() () ()

() []123 12 23

sin 1 sin
, 0,1

sin sin
t t t t

q t q t q t t
t t
θ θ

θ θ
−

= + ∈ 6.19

6.3.3.2. Geometric or Task-based Rotational Motions

One popular method of defining rotational motion is to tie it to the geometry of a

curve or surface. For a curve, this can be done by defining the orientation of the end-

effector relative to the Frenet Frame [3][57][58]. For example, consider the rotation

matrix shown in Equation 6.2011. This would align the x, y, and z axes of the manipulator

end-effector frame (i.e. tool frame) with the tangent, normal, and bi-normal vectors of the

Frenet Frame, respectively. Normally, the z axis of the manipulator end-effector is

aligned with the tool axis. So, it is often useful to describe the orientation as in Equation

11 This is a valid rotation matrix, because the unit tangent, normal, and bi-normal vectors are orthogonal.

 165

6.21 to align the tool axis with the tangent vector. The first column of this rotation matrix

is negated to preserve a right-handed coordinate system.

() ˆ ˆ ˆR u ⎡ ⎤= ⎣ ⎦T N B 6.20

() ˆ ˆ ˆR u ⎡ ⎤= −⎣ ⎦B N T 6.21

There are several advantages to defining the rotational motion in this fashion.

First, for certain tasks, this is a natural way to define the orientation. Second, the Frenet-

Serret formulas (shown in Equation 6.22 and first introduced in Section 2.3.1.4) provide

an intuitive (physical meaning) method for defining the rotational motion as the

translational path is transversed.
ˆ

ˆ0 0ˆ ˆ0
ˆ0 0ˆ

d
ds
d
ds
d
ds

κ
κ τ

τ

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

T

T
N N

BB

 6.22

This shows that the same geometric constraints that were used to define the

translational path can be useful in defining the rotational motion as well. Hanson [19][21]

showed that a similar formulation can be created using quaternions as shown in Equation

6.23. Thus, the movement of the quaternion (aligned with the Frenet Frame) along a

parametric curve can be defined in terms of the intrinsic properties of curvature and

torsion.
0

01

1

2 2

3

3

0 0
0 01

0 02
0 0

dq
ds

qdq
qds

dq q
ds q
dq
ds

τ κ
τ κ

κ τ
κ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥ − − ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

 6.23

 166

Another important result related to the Frenet-Serret formulas is the Darboux

vector: ˆ ˆτ κ= +D T B [26]. This is a rotation vector defining the instantaneous axis and

magnitude of rotational motion (analogous to an instantaneous screw motion). The axis

defined by D is simply the rotational axis and the magnitude of this vector is the angular

velocity ω . From this equation, if 0κ = and 0τ = , this will lead to no rotational motion

as the curve is simply a straight line. Similarly, if 0τ = and curvature has some positive

non-zero value, the frame will simply rotate about the bi-normal axis (i.e. stay in the

osculating plane). Thus, the instantaneous rotation around the curve can be calculated at

any point from the local curvature and torsion.

However, there are some disadvantages to defining a global motion based on the

Frenet Frame with the current path planning method. Because the properties of curvature

and torsion are only being constrained at key frames, the Frenet Frame is free to spin

around the path during motions. This leads to joint position and/or velocity limits being

violated in a serial manipulator. However, it may be possible to use these geometric

properties to define the local rotational motion about a specific frame.

An analogous method to the Frenet Frame description can be used to define the

rotational motion along a parametric surface. For example, consider the paraboloid (i.e.

parabolic surface) described by Equation 6.24.
()
()
() ()2 2

,

,

,

x u v u

y u v v

z u v h u v

=

=

= +

 6.24

To define a rotation relative to the surface, we first calculate the principal tangent

directions as shown in Equation 6.25 and 6.26. These are simply calculated by taking the

partial derivatives of the parametric description with respect to the two independent

parameters.

 167

[]1 , , 1, 0, 2x y z uh
u u u
∂ ∂ ∂⎡ ⎤= =⎢ ⎥∂ ∂ ∂⎣ ⎦

T 6.25

[]2 , , 0, 1, 2x y z vh
v v v
∂ ∂ ∂⎡ ⎤= =⎢ ⎥∂ ∂ ∂⎣ ⎦

T 6.26

Then, the normal to the surface can be computed by taking the cross product of

the two principal tangent directions. This is shown in Equation 6.27. Now, as the surface

is traversed (as in Figure 6.18) the normal vector can be calculated as a function of u and

v and the end-effector tool axis can be aligned along this direction.

() 1 2,u v = ×N T T 6.27

Figure 6.18. Tracing a Parabolic Surface

 168

6.4. SOFTWARE INTEGRATION

The previous sections dealt with some of the specific implementation issues

involved with the techniques developed in this research. This section will discuss the

overall structure of the software integration. The first part of this implementation is to

define the interface for specifying the geometric constraints. This is done by creating a

CurveParameter object as shown in the source code in Figure 6.19. Basically, the desired

frame (position and orientation) is set by a 4x4 transformation matrix, and the desired

geometric constraints are supplied as numerical values. Then, any number of

CurveParameter objects can be strung together to form an overall path. For example, two

of these objects would represent a one segment curve, and three of these objects would

define a two segment curve. The orientationMode parameter defines how the rotational

motion will be defined. The available options in this implementation are shown in Table

6.3.

Figure 6.19. Example Code for setting Constraints

Mode Description
Fixed End-effector orientation will remain fixed during this

trajectory segment.
FrameBased Orientation will smoothly interpolate to a frame

defined by the next Frenet Frame description.
CustomOrient Orientation will smoothly interpolate to a custom

rotational frame provided by the user.
FrenetBased Orientation will be aligned with the Frenet Frame as

the curve is transversed.
Table 6.3. Orientation Interpolation Modes

 vector<CurveParameter> ctrlPoints;
 CurveParameter viaPoint;
 viaPoint.frame=finalHand;
 viaPoint.kappa=20;
 viaPoint.tau=0.0;
 viaPoint.dkappa=0.0;
 viaPoint.dtau=0.0;
 viaPoint.orientationMode = FrameBased;
 viaPoint.isCusp = false;
 viaPoint.inflection = false;
 ctrlPoints.push back(viaPoint);

 169

Once the geometric constraints for the various frames have been defined, a

manipulator motion can be commanded in a similar way to the methods described in

Section 6.2.4 earlier in this chapter. An example of this is shown in Figure 6.20.

Figure 6.20. Example Code for Executing a Trajectory

In the above code, it can be seen that the execution of the MP has two main

functions: PlanMoveViaGeometric(…) and GetJointPosition(…). In the first function, all

of the computationally complex calculations for defining the curve take place. Then, the

GetJointPosition(…) simply computes and returns the next joint position. The

calculations are separated in this way to ensure that the GetJointPosition(…) can execute

at a real-time rate. Specifically, the steps taken inside the PlanMoveViaGeometric(…) are

as follows:

1. The provided geometric constraints ((), , ,κ κ τ τ′ ′ are converted into parametric

constraints , , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for each trajectory segment using

the techniques developed in Chapter 5. There will be n-1 segments for n defined

via points.

 double moveTime=5.0;
 if (!motionPlanner.PlanMoveViaGeometric(currentJoints,
 ctrlPoints,
 moveTime)){
 DisplayError(motionPlanner.GetError());
 return 0;
 }

 do{
 if (!motionPlanner.GetJointPosition(currentJoints,
 jointVel,
 state)){
 DisplayError(motionPlanner.GetError());
 break;
 }
 SetJoints(currentJoints);

 }while(state != TrajectoryGenerator::TrajectoryComplete);

 170

2. For each individual coordinate, the necessary coefficients are calculated to

produce () () ()x u y u z u⎡ ⎤⎣ ⎦ . This fully describes the geometry of the path.

3. The arc length for the entire spatial curve is calculated by discretely sampling the

curve and summing the distances between points.

4. This arc length along with the desired trajectory execution time can be used to

define the desired velocity profile as discussed earlier in this chapter.

The above steps define the pre-calculations done at the beginning of a trajectory

generation and do not need to be placed inside of any kind of real-time loop. This is

necessary as some of these calculations (such as computing the arc length) are

computationally complex. Then, using the descriptions above, at each sample period (i.e.

GetJointPosition(…) call), the following steps take place:
1. The current commanded velocity, ()v t , can be calculated from the defined

velocity profile.

2. The value of the geometric parameter u can be calculated using Equation 6.15.

3. The positional coordinates (x, y, z) can then be found as they are functions of u
(() () ()x u y u z u⎡ ⎤⎣ ⎦).

4. The orientation coordinates can then be defined based on the orientation

interpolation scheme (Table 6.3).

5. The desired end-effector position (translational and rotational components) are

sent to the Inverse Kinematics routines to convert them into a joint position. This

joint position can then be sent to the manipulator controller or simulator.

In addition to the trajectory definition/execution described above, the MP also has

low-level functionality for checking joint limit violations. Thus, if a joint position or

velocity limit is approached, the MP will return an error and stop the trajectory execution.

The full API for the MP is included in Appendix C.

 171

6.5. SUMMARY

This chapter dealt with the details of implementing the path generation techniques

developed in this work onto a physical system. This began by describing the framework

for an already existing OSCAR-based Motion Planner. Then, methods for defining a

speed-controlled interpolation along a parametrically defined geometric path were

presented. The results of this study showed that a second-order approximation was

adequate to provide good control over the speed of the trajectory. Finally, an introduction

to rotational motion planning was provided. This study showed several different methods

for rotational interpolation that can be currently used inside the MP as well as an

introduction to a more geometric-based approach that will be an important part of future

work.

These techniques were all successfully integrated into the existing OSCAR-based

Motion Planner software. This MP provides a generalized, robot independent architecture

for providing basic motion planning for any serial manipulator. This integration provides

a useful test bed for future work in that the techniques developed in this work can be

directly applied and tested on a variety of robotic systems. However, there remain a

number of improvements that can be made both to the low-level curve generation

techniques as well as the high-level software implementation. In the next chapter, the

results of this work will be summarized and then suggestions for future work will be

presented.

 172

7. CHAPTER SEVEN

Summary and Future Work

In this report, a new method for describing spatial paths for manipulator motions

was developed using the geometric properties of curvature and torsion. This began by

looking at the basic mathematics of algebraic curves. Then, a brief review of some

current interactive curve generation techniques from other disciplines was presented.

Next, a thorough study of the affects of curvature on the local geometry of a curve was

conducted by creating local surfaces with families of curves. Then, a curve generation

technique was developed to utilize these properties. This works by converting the

geometric constraints (curvature, torsion, and their derivatives) into parametric

constraints up to the fourth order
4 4 4

4 4 4, , , , , ,dx dy dz d x d y d z
du du du du du du

⎛ ⎞
⎜ ⎟
⎝ ⎠

 that can be more

easily blended together because of their Cartesian nature. Finally, these techniques were

integrated into an existing motion planning software architecture built using OSCAR.

This chapter will provide a summary of the work described above as well as a

demonstration of its use. Finally, suggestions for future work and applications of this

research will be presented..

7.1. SUMMARY

7.1.1. Algebraic Curves

As mentioned in the previous section, this research began with a study of the

basic mathematics of algebraic curves. This was done by examining four different

possible representations for curves: implicit, standard parametric, arc-length parametric,

and curvature/torsion profiles. Table 7.1 shows a summary of these four different

 173

representations. Then, a list of the advantages and disadvantages of each is shown in

Table 7.2.

 Planar Spatial

Implicit (), 0f x y = () (), , 0 , , 0f x y z g x y z= ∩ =

Standard Parametric
()
()

[],
x f u

u a b
y f u

⎫= ⎪ ∈⎬
= ⎪⎭

()
()
()

[],

x f u

y f u u a b

z f u

⎫=
⎪

= ∈⎬
⎪= ⎭

Arc Length Parametric
()
()

[],
x f s

s a b
y f s

⎫= ⎪ ∈⎬
= ⎪⎭

()
()
()

[],

x f s

y f s s a b

z f s

⎫=
⎪

= ∈⎬
⎪= ⎭

Curvature/Torsion

Profile

()
0
f sκ

τ

=

=

()
()

f s

f s

κ

τ

=

=

Table 7.1. Curve Representations

 Advantages Disadvantages

Implicit

• Good mathematical

understanding of singularities

(double points, cusps, etc)

• Historical literature and

research

• Becomes increasingly complex

as curve degree gets higher

• Difficult to represent in spatial

form

• Difficult to describe an actual

motion along its arc length

Standard

Parametric

• Provides a one-to-one

mapping from 3R R→

• Easy to define in a finite

interval as for piecewise

segments

• Easy to define in spatial form

• Lack of physical meaning in

term of the independent

parameter

• Some loss of mathematical

understanding compared to

implicit forms

 174

Arc Length

Parametric

• Provides good physical

meaning to independent

parameter

• Easy to define physical

motion along curve

• Calculation of some curve

properties becomes easier

• Difficult to find closed-form

solutions for most curves

• Numerical techniques needed

Curvature/

Torsion

Profile

• Defines curve based on

higher-order properties

• Geometric shape is

independent of

position/orientation

• Difficult to define global

motions

• Best used for defining local

geometry

Table 7.2. Comparision of Curve Representations

The table presented above shows that every form of curve representation has

certain advantages depending on the application. Thus, an effort was put forth in this

work to retain as many representations as possible. For example, Figure 7.1 shows two

simple planar curves represented both implicitly and parametrically.

() 322 aaxy =+
21 t

a
y

atx

+
=

=
23 axy =

2

3

t
a

y

t
ax

=

=

Figure 7.1. Examples of Algebraic Curves

 175

However, the representation most commonly used, in this work as well as the

literature, is the standard parametric form. Thus, it is worth further summarizing this

representation (see Section 2.2 for full discussion). In this form, the curve is defined as

function of some independent parameter represented12 here by the symbol u . A curve is
then defined on some finite interval [a,b] of u as () () () () [], ,u x u y u z u u a b⎡ ⎤= ∈⎣ ⎦p .

Thus, each scalar value of u maps to a spatial point location [], ,x y z . The curvature of a

parametic curve can then be defined as in Equation 7.1, where dxx du′ = . This equation

shows that curvature is a function of the first and second order derivatives of the

parametric description.

()
() () ()

()

2 2 2

3
2 2 2 2

y z y z z x x z x y y x
u

x y z
κ

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
=

′ ′ ′+ +
 7.1

The next important property of spatial curves is torsion. The definition of torsion

is shown in Equation 7.2. This equation shows that torsion is a function of the first,

second, and third order derivatives.

() () () ()
() () ()2 2 2

y z x y z x z x y x z y x y z y x z
u

y z y z z x x z x y y x
τ

′ ′′ ′′′ ′′ ′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′ ′′′− + − + −
=

′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− + − + −
 7.2

Another important property of spatial parametric curves is the Frenet Frame. This

is a three dimensional orthogonal frame defined by the local geometry of the curve. It

consists of three vectors: the unit tangent, unit normal, and unit bi-normal. The unit

tangent basically represents the “heading” of the curve and is calculated as shown in

Equation 7.3.

() []
2 2 2

ˆ x y z
u

x y z

′ ′ ′
=

′ ′ ′+ +
T 7.3

12 The independent parameter is often represented as t in mathematics literature. However, in this work, the
variable t is reserved to represent time.

 176

Then, the unit normal can be calculated by taking the derivative of the unit-

tangent as shown in Equation 7.4. Finally, the bi-normal is calculated by taking the cross

product of the tangent and normal (Equation 7.5).

()

ˆ

ˆ
ˆ

d
duu
d
du

=

T

N
T

 7.4

() () ()ˆ ˆ ˆu u u= ×B T N 7.5

A useful mathematic relationship can be developed from the Frenet Frame known

as the Frenet-Serret formulas (Equation 7.6). This shows that the motion of the Frenet

Frame along the curve can be defined locally in terms of the curve curvature and torsion.

This relationship can thus be integrated to define curves in terms of curvature and torsion.

This result is used later in this work to help provide a more physical understanding of

these properties.
ˆ

ˆ0 0ˆ ˆ0
ˆ0 0ˆ

d
ds
d
ds
d
ds

κ
κ τ

τ

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

T

T
N N

BB

 7.6

In this section, the basic properties of parametric curves were presented. These

properties and their physical meanings are more thoroughly investigated in the later

portions of this research. However, the descriptions in this section provide a useful

starting point for understanding the rest of this work.

7.1.2. Interactive Curve Generation Techniques

After a basic understanding of algebraic curves has been reached, a look into

some of the techniques from other disciplines (such as Computer-Aided Design and

 177

Computer Graphics) was provided (see Chapter 3). In this summary, a few of these

techniques will be described and then discussed. One of the simpler representations

discussed in this review was B-Splines. B-Splines are described by a set of control points

and the B-Spline basis functions. The basic equation for a B-Spline is shown in Equation
7.7 where the basis functions (),i kN u are calculated recursively as shown in Equation

7.8.

() (),
1

n

i i k
i

u N u
=

= ∑p b 7.7

() ()()
()

()()
()

, 1 1, 1
,

1 1

i k i i k i k
i k

i k i i k i

N u u u N u u u
N u

u u u u
− + − +

+ − + +

− −
= +

− −
 7.8

An example of a B-Spline is shown in Figure 7.2. This shows that the shape of the

B-Spline loosely follows the shape of its control polygon. Thus, interactively, B-Splines

are often generated by moving around or adding/deleting control points to generate the

desired curve geometry.

-1 0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

X

Y

b7

b8

b8

b7

b1

b2 b3

b5

b6

b4

Figure 7.2. Example B-Spline Curves

 178

In addition to providing a good way to intuitively design curves, B-Splines have

several additional advantageous properties: convex hull, variation diminishing, and local

control. These properties basically ensure that the B-Spline curve is “well-behaved”

although its higher-order properties may be less controllable. A more detailed description

of this technique and its properties was presented in Section 3.2.2.

Another method of curve design studied in this work is Algebraic Splines (A-

Splines) [5][6]. A-Splines are defined implicitly using barycentric coordinates as shown

in Equation 7.7 where ()1 2 3 1 2 3
!, ,

! ! !
n i j k
ijk

nB
i j k

α α α α α α= . By using barycentric coordinates,

the A-Splines are able to define a higher level of geometric continuity (managed higher-

order properties) with more degrees of freedom. An example of a family of G1

continuous A-Splines is shown in Figure 7.3.
() ()1 2 3 1 2 3, , , , 0n

ijk ijk
i j k n

F b Bα α α α α α
+ + =

= =∑ 7.9

-1 0 1 2 3 4 5 6 7 8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y

Figure 7.3. A-Spline Curve Example

 179

As mention in Section 3.4, A-Splines have several advantages. First, they offer a

higher degree of freedom for creating/designing curves. Second, they offer the ability to

capture both parametric and implicit forms of curves. However, they require numerical

techniques to trace (i.e. describe a motion along) for higher orders, and it is difficult to

describe spatial curves/motions.

The techniques described in this review can provide powerful and intuitive

methods for designing visually pleasing curves. However, the main focus of this research

is on defining local geometric constraints with a well-understood physical meaning.

Thus, the next step in this research is to further examine the relationships between

curvature/torsion and the local geometry of curves. However, in the future, it may be

possible to adapt the methods described in this section for the purposes of blending

between these local constraints. The benefit of this merging of techniques would be to

generate curves with well-defined properties (e.g. Convex Hull or Variation

Diminishing). This will be briefly explored in the section on future work.

7.1.3. Geometric Shapes and Properties

In order to study the physical meaning of curvature/torsion and their derivatives,

specific geometric shapes were analyzed. This study began with simple planar shapes

such as lines, circles, and parabolas. This involved developing both the implicit and

parametric forms of these curves and identifying parameters that could be used to

generate families of curves. Then, closed-form solutions for curvature13 were found in

terms of these parameters. For example, consider the simple parabola described by

Equation 7.10. The parameter a can then be varied to provide a family of curves as shown

Figure 7.4.

13 By definition, torsion is always zero for a planar curve. Thus, for planar curves, only curvature was
studied.

 180

2 0y ax− = 7.10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

a=0.05

a=1

a=5
a=25

Figure 7.4. Family of Parabolas

Now, this implicit equation can be substituted into the equation for curvature to

calculate a closed-form solution for curvature in terms of the parameter a. This is shown

in Equation 7.11. From this equation, it is easy to see that the maximum curvature occurs

at the origin and has a magnitude of 2a. This is intuitive from the above plot as the

maximum bending can be seen to occur at the origin. Table 7.3 summarizes the results of

Figure 7.4. While this example is very simple, it provides some insight into the

relationship between curvature and simple geometric shapes.

()
()

3
2 2 2

2,
1 4

ax y
a x

κ −
=

+
 7.11

 181

a Implicit Equation Parametric Equation maxκ (κ at origin)

0.05 20.05y x−
()
() 20.05

x u u

y u u

=

=
 0.1

1 2y x−
()
() 2

x u u

y u u

=

=
 2

5 25y x−
()
() 25

x u u

y u u

=

=
 10

25 225y x−
()
() 225

x u u

y u u

=

=
 50

Table 7.3. Summary of Family of Parabolas

A similar analysis was conducted for a variety of planar shapes. In each case, the

implicit and parametric forms of the equation were presented. Parameters were identified

that could be used to generate families of these curves. Then, curvature was solved for in

terms of these parameters. This provides insight into the relationship between these

simple shapes and the intrinsic property of curvature. A summary of these results is

shown in Table 7.4.

 182

Shape
Implicit

Equation
Parametric Equation ()κ x, y

Line 0ax by c+ + =
()
()

1 1

2 2

x u a u b

y u a u b

= +

= +
 0.0

Parabola 2 0y ax− =
()
() 2

x u u

y u au

=

=
 ()

3
2 2 2

2

1 4

a

a x

−

+

Circle 2 2 2 0x y r+ − =
() ()

()

2

2

2

1

1
2

1

r u
x u

u
ury u
u

−
=

+

=
+

 1/r

Ellipse
2 2

2 2 1 0x y
a b

+ − =

()

()

2
2 2

2
2

2
2 2

2

1 1

1

1 1

u
bx u

u
a b

bu
b ay u

u
a b

⎛ ⎞−⎜ ⎟
⎝ ⎠=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

()
()

3
2 2 2 2 2

8,
4 4

ABx y
A x B y

κ =
+

Cusp 2 3 0ay x− =
()
()

2

3

x u au

y u au

=

=
 ()

()
4 2 2

3
4 2 2 2

18 24,
9 4

ax a xyx y
x a y

κ −
=

+

Table 7.4. Summary of Properties of Planar Shapes

The next step of this analysis involved expanding this study into the spatial

domain. One of the most basic spatial shapes is the helix. A helix is defined by a constant

curvature and torsion along its path. A good way to visualize these curves is to show

them running along the surface of a cylinder. This is shown in Figure 7.5 for three sets of

curvature/torsion values.

 183

1
1

κ
τ
=
=

2
1

κ
τ
=
=

5
1

κ
τ
=
=

Figure 7.5. Constant Curvature/Torsion Curves

The above plot shows that as the curvature increases the radius of the cylinder

decreases and the distance travelled along each wrap around (i.e. the “pitch”) becomes

smaller. In fact, the relationship between curvature/torsion and radius/pitch can be

directly solved and is shown in Equations 7.12 [26]. These relationships can be easily

inverted to solve for r and l in terms of curvature and torsion as shown in Equation 7.13

(see Section 4.4.1). Table 7.5 provides a summary of these results.

2 2

r
r l

κ =
+

, 2 2

l
r l

τ =
+

 7.12

2 2r κ
κ τ

=
+

, 2 2l τ
κ τ

=
+

 7.13

 184

κ τ 2 2κ τ+ r l Parametric Equation

1 1 2 0.5 0.5
() ()
() ()
()

0.5cos

0.5sin

0.5

x u u

y u u

z u u

=

=

=

2 1 5 0.4 0.2
() ()
() ()
()

0.4cos

0.4sin

0.2

x u u

y u u

z u u

=

=

=

5 1 26 0.1923 0.0385
() ()
() ()
()

0.1923cos

0.1923sin

0.0385

x u u

y u u

z u u

=

=

=

Table 7.5. Properties of Helical Curves

However, not all spatial shapes can be easily described in terms of curvature and

torsion. Thus, a main part of the study of spatial curves in this research was achieved by

directly generating curves based on their local curvature and torsion values. This allows

the values of curvature and torsion to be modified to generate local families of curves

based on these parameters. These curves are based on integrating the Frenet-Serret

formulas to generate the local shape of a curve around a provided frame. To perform this,

a frame is first placed at the origin with the x, y, z axes lined up with the tangent, normal,

and bi-normal directions respectively. Then, given a provided curvature/torsion profile, a

curve can be generated in the “forward” and “reverse” direction around the local frame

by using the formulation shown in Equation 7.14 (see Section 4.4). It should be noted that

the position/alignment of the frame is arbitrary as a given curvature/torsion will always

produce the exact same motion relative to the frame.

 185

1i i i sκ+ = + ∆T T N

1i i i sτ+ = − ∆B B N

1 1 1i i i+ + += ×N B T

1 1i i i s+ += + ∆P P T

7.14

A simple example of this is shown in Figure 7.6 for varying curvature and zero

torsion. This shows that the curve will remain in the plane defined by the tangent/normal

vectors (the xy plane in this example), and the higher curvature values will result in a

sharper bend around the normal vector. It remains symmetric in the y-z plane.

1κ =

10κ =
15κ =

2κ =

5κ =

Figure 7.6. Local Effect of Varying Curvature

A similar set of figures can be developed to describe the local effects of torsion.

This is shown in Figure 7.7 and Figure 7.8. Unlike curvature, which is always defined to

be positive, torsion can be either positive or negative. Locally, the sign of this value

 186

dictates whether the curve leaves the plane in the direction of the bi-normal vector or its

inverse direction. For example, in Figure 7.7, the curve approaches and leaves the local

frame while moving in the positive z directions. On the other hand, in Figure 7.8, the

curve changes directions with respect to the z axis at the frame. Another thing to note

about the affects of torsion is that the scale of the z axis in these plots is much smaller

than the x and y axes. This is because, numerically, torsion has a smaller effect on the

shape of the curve than an equivalent value of curvature.

25τ =

10τ =

2τ =

15τ =

25τ =

5τ =

2τ =
5τ =

10τ =
15τ =

Above xy plane

Below xy plane

Figure 7.7. Varying Positive Torsions

 187

25τ = −

2τ =
5τ =

10τ = −

15τ = −

25τ =

2τ = −

10τ =

15τ =

5τ = −
Above xy plane

Figure 7.8. Varying Negative Torsions

Once a basic understanding of these properties is reached, this research showed

how they can be used to generate spatial shapes such as cusps (Figure 7.9) and saddle

points (Figure 7.10). This varies from the approach taken to planar shapes in that instead

of describing the shapes based on implicit/parametric equations and then calculating

curvature, the curves are actually described in terms of curvature and torsion. Then, the

next step of this research is to convert these properties back into a parametric form that

can be used to create spatial curves bounded by these local constraint parameters (end-of-

motion specifications). This is the focus of the next section.

 188

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

Above xy plane

Below xy plane

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ = 1κ =

1κ =

Above xy plane

Below xy plane

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

Above xy plane

Below xy plane

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ =

1κ =
1κ =

10τ =

2τ =

15τ =

25τ =

5τ =

10τ =

2τ =

15τ =

25τ =

5τ = 1κ =

1κ =

Above xy plane

Below xy plane

Figure 7.9. Local Cusp

 189

25τ ′ = −

1τ ′ = −

15τ ′ = −

10τ ′ = −

5τ ′ = −

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

25τ ′ = −

1τ ′ = −

15τ ′ = −

10τ ′ = −

5τ ′ = −

25τ ′ =

1τ ′ =

15τ ′ =

10τ ′ =

5τ ′ =

Above xy plane

Below xy plane

Figure 7.10. Local Saddle Point

7.1.4. Path Generation with Geometric Constraints

As mentioned in the previous section, the next step of this work focuses on
converting the geometric constraints (), , ,κ κ τ τ′ ′ into parametric constraints

4 4 4

4 4 4, , , , , ,dx dy dz d x d y d z
du du du du du du

⎛ ⎞
⎜ ⎟
⎝ ⎠

 that can be used to formally generate spatial curves.

This section will present the main results/process of doing this. The full derivations of

these results are presented in Chapter 5. The main steps behind this process are:

 190

1. First, a set of spatial coordinate frames (positions and orientations) is defined.

These would most likely come from a simulation or CAD environment and would

not have to be defined by an operator.

2. The desired geometric properties at each frame are defined (κ , κ′ , τ , and τ ′).

3. The first order parametric constraint (d
du
p) is defined using the unit tangent vector

as ()ˆ ud d
du du

=
p p T where d

du
p is a controllable parameter

4. The second order parametric constraint (
2

2

d
du

p) is defined using the unit normal

vector and desired curvature as
22

2
ˆd d

du du
κ=

p p N

5. The third order parametric constraint (
3

3

d
du

p) is defined using the desired torsion

and derivative of curvature as 0 0 06

1 1 1

x
a b c

yd d a b c
zdu du

τ

κ κ

′′′⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥′′′= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ′′′⎢ ⎥⎣ ⎦⎣ ⎦

p

6. The fourth order parametric constraint (
4

4

d
du

p) is defined using the derivative of

torsion as () () ()
22 2 3

4 4 4
0 0 02 2 32d d d d d d d a x b y c z

du du du du du du du
τ τ

⎛ ⎞ ⎛ ⎞
× + × ⋅ × = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

p p p p p p

7. Once the parametric constraints (
4 4 4

4 4 4, , , , , ,dx dy dz d x d y d z
du du du du du du

) have been

defined, the x, y, and z trajectories are calculated independently using some

trajectory planning technique (polynomial, trapezoidal, etc)

8. The individual trajectories are combined to produce a parametric description of
the desired spatial curve () () () ()u x u y u z u⎡ ⎤= ⎣ ⎦p

For example, suppose the geometric constraints shown in Table 7.6 were

provided. Using the above process, these can be converted into the parametric constraints

shown in Table 7.7. Then, the overall spatial path can be developed as in Figure 7.11. It

 191

should be noted that here we are just verifying the mathematic formulations, and a more

detailed examination of the physical meaning of this process will be presented in Section

7.2.

 x y z T̂ N̂ B̂ κ τ

1p 0.0 0.0 0.0 [1,0,0] [0,1,0] [0,0,1] 0.0 0.0

2p 2.0 1.0 1.0 [0,0.707,-0.707] [-1,0,0] [0,0.707,0.707] 1.0 10.0

3p 1.0 3.0 -1.0 [0,1,0] [-1,0,0] [0,0,1] 0.0 0.0
Table 7.6. Example Geometric Constraints

i ix iy iz idx
du

 idy
du

 idz
du

2

2
id x

du

2

2
id y

du

2

2
id z

du

3

3
id x

du

3

3
id y

du

3

3
id z

du

1 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 2.0 1.0 1.0 0.0 0.707 -.707 -1.0 0.0 0.0 0.0 7.0679 7.0679

3 1.0 3.0 -1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table 7.7. Calculated Parametric Constraints

1p

2p

3p

0, 0κ τ= =

1, 10κ τ= =

0, 0κ τ= =
0u =

1u =

2u =

Figure 7.11. Generated Spatial Curve

 192

7.1.5. Motion Planner Implementation

The last few sections have described the mathematical process for generating a

spatial curve based on geometric properties. Once this framework was developed, the

results were integrated into an OSCAR-based Motion Planner software package. A

schematic overview of this is shown in Figure 7.12.

MP API

Trajectory
Generator

Kinematics &
Redundancy

Manipulator
Parameters

Joint Position, Speed &
Acceleration Limits

Servo Interface/
Simulation

,c cθ θ,a aθ θ

Figure 7.12. Motion Planner Schematic

One of the main issues in implementing the results of this research into an actual
manipulator Motion Planner was determining how best to define ()u f t= . This is

necessary in order to accurately control the spatial velocity along a parametrically defined

path. In Chapter 6, a method that was structured in terms of an interpolater previously

 193

designed for CNC machines [63] was described. This method uses both the geometric

properties of the curve as well as the physical motion properties (velocity and

acceleration) to determine a value of the geometric parameter u at every sample period.

This formulation is shown in Equation 7.15. This equation shows how u can be stepped

forward at each sampling period using the first and second order parametric values along

with the desired velocity and acceleration. A more detailed description of this

formulation can be found in Section 6.3.2.4. The resulting output velocity profile is

shown in Figure 7.13.

() () ()
2

2
22

1 42i i
i

d dv t
v t a t du dutu u t
d d d

dudu du

+

⎛ ⎞⎛ ⎞⎛ ⎞ ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ∆ ⎝ ⎠⎜ ⎟⎜ ⎟= + ∆ + −
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

p p

p p p
 7.15

Figure 7.13. Resulting Velocity Profile

 194

Once a good method for describing the motion along a curve was defined, this

method, along with the low-level curve generation, was integrated into the existing

Motion Planner architecture. This allows a user to quickly and easily use the methods

generated in this work and apply them to a variety of mechanical systems. A small

example of sample code used to generate a motion using this software is shown in Figure

7.14. This code has two main functions: PlanMoveViaGeometric() and

GetJointPosition(). In PlanMoveViaGeometric(), the parameters and coefficients

necessary to build a parametric description of the curve based on the geometric

constraints are calculated. Then, GetJointPosition() can be called to find the joint

positions that will step the manipulator along the calculated path.

Figure 7.14. Example MP Code

7.2. DEMONSTRATION

7.2.1. Introduction

The first part of this chapter described the development and implementation of a

new method for defining spatial motions. This work had three basic steps. First, the local

geometric properties of curvature and torsion were studied in detail to provide a better

 double moveTime=5.0;
 if (!motionPlanner.PlanMoveViaGeometric(currentJoints,
 ctrlPoints,
 moveTime)){
 DisplayError(motionPlanner.GetError());
 return 0;
 }

 do{
 if (!motionPlanner.GetJointPosition(currentJoints,
 jointVel,
 state)){
 DisplayError(motionPlanner.GetError());
 break;
 }
 SetJoints(currentJoints);

 }while(state != TrajectoryGenerator::TrajectoryComplete);

 195

physical understanding. Then, a method to convert these properties into parametric

constraints that can be used to define a spatial curve was developed. Finally, the resulting

curve generation method was implemented inside an OSCAR-based Motion Planner.

Now, this section will demonstrate how these methods can all be used to plan spatial

motions for manipulators. First, a simple simulation environment will be described. Then,

it will be shown how (and why) the various geometric constraints (i.e. curve parameters)

can be modified to affect the local geometry at key frames of interest. Then, an example

of how to string these together into an overall path plan will be shown. Finally, the affects

of different velocity profiles on the motion of the manipulator will be explored.

7.2.2. Simulation Environment

The simulation environment used for this demonstration is shown in Figure 7.15.

This shows a 7-DOF Mitsubish PA-10 manipulator and four key frames of interest. These

frames are:

1. Initial manipulator configuration (i.e. home position)

2. A frame attached to a spherical object

3. A frame attached to a tray pick-up point

4. Final manipulator configuration (before returning to Position 1)

Thus, frames 2 and 3 are attached to specific objects (geometries) while frames 1

and 4 are not. The position and orientation of these frames must be defined carefully as

the geometric constraints developed in this work always work relative to these frames.

For example, the normal vector at frame 2 is defined to be pointing into the sphere to

allow curvature to control the motion along the sphere’s surface. Similarly, the tangent

vector at frame 3 is defined to be pointing into the tray pick-up point to allow a cusp to be

defined around this tangent. It should be noted that the positioning of these frames would

most likely be done by the engineer designing the various components and would be

 196

provided to the operator. The positions and orientations of these frames are shown in

Table 7.8.
Frame p T̂ N̂ B̂

1 []0.106, 0.0, 0.975 []1, 0, 0 []0, 1, 0− []0, 1, 0−

2 []0.4, 0.15, 0.5 []0, 1, 0− []0, 0, 1− []1, 0, 0

3 []0.5, 0.3, 0.525− []1, 0, 0 []0, 1, 0 []0, 0, 1

4 []0.2, 0.5, 0.6− []0, 1, 0− []0, 0, 1− []1, 0, 0
Table 7.8. Key Frame Positions and Orientations

1

2 3

4

T̂

B̂

N̂

T̂

B̂

()N̂ T̂

B̂

N̂

T̂

B̂

N̂

Figure 7.15. Simulation Environment

 197

7.2.3. Tangent Scaling

As mentioned in Section 5.2 and 6.3.2.1, the simplest parameter that can be used

to affect the shape of the curve is the tangent scale. This parameter basically shows that

the first-order properties d
du

⎛ ⎞
⎜ ⎟
⎝ ⎠

p can be multiplied by any positive scalar while still

maintaining the same geometric tangent. Thus, the first order parametric constraints are

defined based on this value as ()ˆ ud scale
du

= ×
p T . For example, suppose all of the higher-

order geometric parameters were set to zero ()0κ τ κ τ′ ′= = = = and only the tangent

scale was changed. In this case, the first order parametric constraints for three different

values could be calculated as shown in Table 7.9 with the higher-order parametric

constraints all being set to zero. The resulting family of curves is shown in Figure 7.16

for these three values. From this plot, the curve is moving relative to each frame only in

the direction of the unit tangent vector. This is expected, because the higher-order

geometric properties are all zero. This parameter can be useful in changing the overall

shape of a curve without affecting the local higher-order geometric constraints at the

frames. For the rest of this demonstration, a tangent scale of 0.25 is used to highlight the

other parameters.

 scale
1d

du
p 2d

du
p 3d

du
p 4d

du
p

Path A 0.25 [0.25, 0.0, 0.0] [0.0, -0.25, 0.0] [0.25, 0.0, 0.0] [0.0, -0.25, 0.0]

Path B 0.50 [0.50, 0.0, 0.0] [0.0, -0.50, 0.0] [0.50, 0.0, 0.0] [0.0, -0.50, 0.0]

Path C 0.75 [0.75, 0.0, 0.0] [0.0, -0.75, 0.0] [0.75, 0.0, 0.0] [0.0, -0.75, 0.0]
Table 7.9. Parametric Constraints with Varying Tangent Scale

 198

0.25

0.50

0.75

1T̂

4T̂

2T̂

3T̂

Figure 7.16. Effect of Varying Tangent Scale

One other important physical property of this parameter is that it is very

dependent on the scale of the environment. For example, the points and curves defined in

this demonstration are in meters and thus relatively small (i.e. < 1.0). However, if these

points were instead defined in millimeters, these points would be much larger (up to

~1000). In this case, the tangent scale would need to be increased by a magnitude of 1000

as well in order to provide the same relative motion. Thus, the order of magnitude used

for varying this parameter will be very dependant on the specific environment. Now, the

next sections will show how the higher-order geometric parameters can be used to define

the local shape around the desired frames.

 199

7.2.4. Curvature

The simplest geometric constraint described in this research is curvature, κ .

Curvature represents the reciprocal of the local radius of curvature. Thus, increasing

curvature will increase the bending around the desired frame of interest. Curvature

defines the second-order parametric constraint by the relationship
22

2
ˆd d

du du
κ=

p p N (see

Section 5.3). For example, Table 7.10 shows the parametric constraints calculated for

three different values of curvature, and Figure 7.17 shows the resulting curves around

frame 2. This clearly shows that increasing the curvature value increases the bending in

the curve. Locally, this bending will occur within the osculating plane and around the unit

normal vector. Thus, the placement of the frame is important. Here, the unit normal is

simply defined to be normal to the surface of the object facing inside as can be seen in

Figure 7.15. As the curvature increases, the curve appears to more closely match the

shape of the sphere. However, if the curvature value gets too high (greater than 1/r), the

curve will bend at a sharper rate locally than the sphere and cause undesired collisions.

Thus, the maximum value of curvature allowed at an interaction point is constrained by

the geometry of the part.

 κ 2dx
du

2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

Path A 1.0 0.0 -0.25 0.0 0.0 0.0 -0.0625

Path B 10.0 0.0 -0.25 0.0 0.0 0.0 -0.625

Path C 20.0 0.0 -0.25 0.0 0.0 0.0 -1.25
Table 7.10. Parametric Constraints with Varying Curvature at Frame 2

 200

B
A

C

Figure 7.17. Varying Curvature at Frame 2

A similar analysis can be done at frame 2. Table 7.11 shows the calculated

parametric constraints for three different values of curvature at a cusp, and Figure 7.18

shows the resulting curves. Once again, the larger values of curvature represent a larger

bending. At a point such as this where an insertion/extraction task is taking place, it is

probably desirable to have a lower value for curvature to create a “straighter” approach to

the tray pickup point. For a free space task (such as picking an item off a conveyor), a

larger curvature value may be useful. It should be noted that we use the geometric

interpretation of a cusp here (unit tangent vector inverting) instead of the mathematical

interpretation (κ = ∞). This is done because an infinite curvature leads to undefined or

uncontrollable parametric constraints.

 201

 κ 3dx
du

3dy
du

3dz
du

2
3

2

d x
du

2
3

2

d y
du

2

3
2

d z
du

Path A 1.0 0.25 0.0 0.0 0.0 0.0625 0.0

Path B 10.0 0.25 0.0 0.0 0.0 0.625 0.0

Path C 20.0 0.25 0.0 0.0 0.0 1.25 0.0
Table 7.11. Parametric Constraints with Varying Curvature at Frame 3

B

A

C

Figure 7.18. Varying Curvature at Frame 3

 202

7.2.5. Torsion

The next geometric constraint studied in this work is torsion. As mentioned in the

earlier studies of these properties, curvature basically defines the motion in the osculating

plane while torsion defines the motion out of the plane (i.e. the bi-normal direction).

Also, as mentioned earlier, torsion has less of an effect on the shape of the curve than

curvature for similar numerical values. Thus, higher values of torsion are required to have

noticeable effects. Torsion is used to define the third-order parametric constraints. To do

this, the parametric equation is written as shown in Equation 7.16.

() () () ()
() () ()2 2 2

x y z y z y x z x z z x y x y
u

y z y z x z x z x y x y
τ

′′′ ′ ′′ ′′ ′ ′′′ ′′ ′ ′ ′′ ′′′ ′ ′′ ′′ ′− + − + −
=

′ ′′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′′ ′− + − + −
 7.16

Because the first and second-order parametric constraints have already been

defined, these values can be considered constants in this equation. Then, solving for the

third-order parametric constraints becomes equivalent to solving the simple linear system

shown in Equation 7.17 (see Section 5.4 for full derivation).

() 0 0 0u a x b y c zτ ′′′ ′′′ ′′′= + + 7.17

For example, Table 7.12 shows the parametric constraints for varying torsions at

frame 2, and Figure 7.19 shows the resulting curves. Another thing to note is that, unlike

curvature which is always positive, torsion is a signed value. Thus, the positive values of

torsion cause the curve to bend in the direction of the bi-normal vector, and the negative

values cause it to bend in the opposite direction of the bi-normal vector. Increasing the

magnitude of torsion also increases the amount of bending in this direction.

 203

 κ τ 2dx
du

 2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

3
2

3

d x
du

3

2
3

d y
du

3

2
3

d z
du

Path A 20 50 0.0 -0.25 0.0 0.0 0.0 -1.25 15.625 0.0 0.0

Path B 20 100 0.0 -0.25 0.0 0.0 0.0 -1.25 31.25 0.0 0.0

Path C 20 -50 0.0 -0.25 0.0 0.0 0.0 -1.25 -15.625 0.0 0.0

Path D 20 -100 0.0 -0.25 0.0 0.0 0.0 -1.25 -31.25 0.0 0.0
Table 7.12. Parametric Constraints for Varying Torsion at Frame 2

B̂T̂

BA

C

D

Figure 7.19. Varying Torsion at Way Point 1 with κ = 20

Now, it is useful to look at this family of curves from several points of view to

fully understand the physical effects of these parameters on the curve. Figure 7.20 shows

the same family of curves shown above from a slightly different angle. From this angle, it

can be seen that these curves also have motion outside of the plane defined by the tangent

 204

and bi-normal vectors (i.e. the view shown in Figure 7.19). This makes sense, because

these curves also have values for curvature14 which should generate some motion in the

osculating plane (the tangent-normal plane).

()N̂
T̂

B̂

Figure 7.20. Varying Torsion at Frame 2 from a different perspective

Figure 7.21 shows this family of curves as viewed along the bi-normal vector (i.e.

the osculating plane). This shows that locally the behavior of these curves is identical in

this plane. This follows since as the curvature fully defines the motion in this plane, and

all of these curves have identical values of curvature.

14 In fact, these curves must have positive values of curvature, because torsion is undefined for zero
curvature.

 205

T̂

()N̂

Figure 7.21. Varying Torsion from perspective of Osculating Plane

One other physical property of torsion is that the motion in the bi-normal

direction is affected both by curvature and torsion. Thus, by lowering the value of

curvature at a point, the relative effects of torsion also become smaller. For example,

consider the same values of torsion as before with smaller values for curvature as shown

in Table 7.13. The resulting family of curves is shown in Figure 7.22. Thus, if a curve is

being designed by simply modifying these properties, a desirable value of curvature

should be found first.

 κ τ 2dx
du

 2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

3

2
3

d x
du

3

2
3

d y
du

3

2
3

d z
du

Path A 5 50 0.0 -0.25 0.0 0.0 0.0 -.3125 3.9063 0.0 0.0

Path B 5 100 0.0 -0.25 0.0 0.0 0.0 -.3125 7.8125 0.0 0.0

Path C 5 -50 0.0 -0.25 0.0 0.0 0.0 -.3125 -3.9063 0.0 0.0

Path D 5 -100 0.0 -0.25 0.0 0.0 0.0 -.3125 -7.8125 0.0 0.0
Table 7.13. Parametric Constraints for Varying Torsion at Frame 2

 206

B̂T̂

B
A

C

D

Figure 7.22. Varying Torsion at Way Point 1 with κ = 5

As before, we can also view this family of curves along the bi-normal vector to

examine the motion in the osculating plane. This is shown in Figure 7.23. As expected,

this family of curves has a much smaller motion in the osculating plane than the curves

shown in Figure 7.21 due to the smaller values of curvature. However, the motion

relative to osculating plane is still identical locally.

 207

T̂

()N̂

Figure 7.23. Perspective on Osculating Plane

These physical results can be further explained using the relationships shown in

Equation 7.18 (first presented in Section 2.4.2). These relationships approximate the local

motion of a curve in terms of curvature and torsion where the x1, x2, and x3 axes

correspond to the Tangent, Normal, and Bi-normal directions [26]. These equations show

that curvature is the dominant factor in motion along the normal vector (in the osculating

plane) while both curvature and torsion affect the motion in the bi-normal direction (out

of the osculating plane). Also, because these relationships are only valid in a local sense,

the values of s would be very small for the relevant local region. Thus, s2 would be much

larger than s3. This further explains why torsion values must be higher than curvature

values to have much effect on the local shape of a curve.
()

()

()

1

2
2

3
3

0

0
2

0
6

x s

x s

x s

κ

κτ

= +

= +

= +

 7.18

 208

A similar family of curves with varying torsion is shown for the second frame in

Figure 7.24. The parametric constraints for these curves are shown in Table 7.14. As

before, positive/negative torsion is used to define the motion approaching and leaving the

cusp point. Here, the motion is relative to the z axis as that is the direction the bi-normal

vector is pointing (see Table 7.8).

 κ τ 3dx
du

 3dy
du

3dz
du

2
3

2

d x
du

2
3

2

d y
du

2
3

2

d z
du

3
3

3

d x
du

3

3
3

d y
du

3

3
3

d z
du

Path A 20 50 0.25 0.0 0.0 0.0 1.25 0.0 0.0 0.0 15.625

Path B 20 100 0.25 0.0 0.0 0.0 1.25 0.0 0.0 0.0 31.25

Path C 20 -50 0.25 0.0 0.0 0.0 1.25 0.0 0.0 0.0 -15.625

Path D 20 -100 0.25 0.0 0.0 0.0 1.25 0.0 0.0 0.0 -31.25
Table 7.14. Parametric Constraints with Varying Torsion at Frame 3

B

A
C

D B

A
C

D

Figure 7.24. Varying Torsion at Way Point 1

 209

7.2.6. Higher-Order Properties

The last two sections described the effects of curvature and torsion on the local

geometry of a curve and showed how these parameters could be varied to produce

familes of local curves. However, it was shown in Chapter 5 how to formulate parametric

constraints for d
du
κ and d

du
τ as well. While these parameters can also affect the shape of

the local geometry of a curve, the influences of curvature and torsion are much larger

(relatively). Thus, larger magnitudes must be provided for these constraints to have much

effect on the local geometry of the curve. For example, Table 7.15 shows the parametric

constraints for three differing values of d
du
κ (see Section 5.4 for derivation), and Figure

7.25 shows a family of curves created by varying this parameter. From this plot, it can be

seen that these curves do not vary greatly despite the large magnitudes for d
du
κ (0, 200,

and 400).

 κ κ′ 2dx
du

 2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

3

2
3

d x
du

3

2
3

d y
du

3

2
3

d z
du

Path A 10 0 0.0 -0.25 0.0 0.0 0.0 -0.625 0.0 0.0 0.0

Path B 10 200 0.0 -0.25 0.0 0.0 0.0 -0.625 0.0 0.0 -12.50

Path C 10 400 0.0 -0.25 0.0 0.0 0.0 -0.625 0.0 0.0 -25.00
Table 7.15. Parametric Constraints for Varying Derivative of Curvature at Frame 2

The best way to understand the physical meaning of derivative of curvature is to

think of its relationship to the actual curvature value (i.e. reciprocal of local radius of

curvature). The derivative of curvature represents how fast the curvature value is

changing at a particular point. Thus, if a zero value is provided, this represents a local

minima or maxima in the curvature profile at the point. This will result in a better match

for this constraint at the given point. A large value for d
du
κ means that the curvature is

rapidly changing at the given point. For example, a large positive value for this parameter

 210

means that the curvature is rapidly increasing at the desired point. This means that the

curvature approaching the point will be much smaller than the curvature leaving the

point. This can be seen in Path C in Figure 7.25 (400d
du
κ
=). This curve approaches the

point with a fairly straight trajectory and leaves with sharper bending. For a value of zero,

the bending is symmetric around the specified point.

B

A

C

B
A

C

10κ =

Figure 7.25. Varying Derivative of Curvature

Similarly, a good way to understand the physical meaning of d
du
τ is to relate it to

torsion. Derivative of torsion represents how fast the value of torsion is changing at some

particular point. Thus, for example, a large positive value of d
du
τ would mean that the

torsion approaching the point is much smaller than the torsion leaving the point. This was

used along with a constraint of 0τ = to create spatial saddle points in Section 4.4.3. The

concept is that by setting 0τ = and d
du
τ to some large positive value the torsion

approaching the point will be negative and leaving the point will be positive. Thus, the

 211

curve will switch directions in its motion relative to the bi-normal vector. The opposite

result will occur when specifying a large negative value of d
du
τ .

For example, consider the geometric/parametric constraints shown in Table 7.16

(see Section 5.5 for full derivation). This shows three path specifications with 0τ = and

varying values for d
du
τ (with 10κ = and 0κ′ =). As with torsion relative to curvature,

the derivative of torsion requires larger values relative to the derivative of curvature to

have noticeable effects on the geometry of the curve. The resulting family of curves is

shown in Figure 7.26. As expected, the larger values of d
du
τ lead to a sharper bend around

the bi-normal vector. Thus, physically, this parameter is useful to describing motions

where the curve needs to change directions relative to the bi-normal vector at a particular

point.

 Path A Path B Path C
κ 10 10 10
κ′ 0 0 0
τ 0 0 0
τ ′ 1000 5000 10000

d
du
p [0.0, -0.25, 0.0] [0.0, -0.25, 0.0] [0.0, -0.25, 0.0]

2

2

d
du

p [0.0, 0.0, -0.625] [0.0, 0.0, -0.625] [0.0, 0.0, -0.625]

3

3

d
du

p [0.0, 0.0, 0.0] [0.0, 0.0, 0.0] [0.0, 0.0, 0.0]

4

4

d
du

p [156.25, 0.0, 0.0] [781.25, 0.0, 0.0] [1562.5, 0.0, 0.0]

Table 7.16. Parametric Constraints with Varying Derivative of Torsion at Frame 2

 212

B

A

C
B

A

C
B̂

T̂

Figure 7.26. Varying Derivative of Torsion

7.2.7. Summary of Geometry Parameters

In the last sections, each geometric parameter developed in this research was

discussed, and the local effects of these parameters were examined. These parameters

represent degrees of freedom that a user or operator can utilize in designing the geometry

of spatial curves. These parameters can be used either to interactively modify the

geometry of a curve or to define a specific physical constraint on the curve (e.g. matching

the radius of curvature of a spherical object). Table 7.17 provides a summary of these

geometric parameters as discussed in the previous sections.

 213

Table 7.17. Summary of Geometric Parameters

Geometric

Constraint
Symbol Description Example Results

Tangent Scale scale

This parameter controls the “bias” towards
the unit tangent vector. Physically, it is
important for adjusting for the scale of the
environment (e.g. meters vs. millimeters,
etc). It also allows for some interactive
control over the global shape of the spatial
curve (without affecting the local
geometric parameters).

• Table 7.9 shows the effect on the first-order

parametric constraints ()d
du

p for three different

values for the tangent scale (0.25, 0.5, 0.75)
• Figure 7.16 illustrates visually how this parameter

influences the local geometry along the unit
tangent

Curvature κ

Used to define the local reciprocal of radius
of curvature. A zero value corresponds to a
straight line while an infinite value
corresponds to a discontinuity in the unit
tangent vector. Interactively, this parameter
can be used to control the local “bending”
around a frame. Physically, this can be
used to match the geometry of an object or
task with a desired radius.

• Table 7.10 shows the influence of curvature on the

second-order parametric constraints
2

2
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p for

varying values of curvature (1, 10, 20) at a
spherical object.

• Figure 7.17 provides a visual illustration of
varying curvature at the spherical object. As the
curvature increases, the curve follows the surface
of the sphere more closely.

• Table 7.11 shows the second-order parametric

constraints
2

2
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p of varying values of

curvature (1, 10, 20) at a cusp point
• Figure 7.18 demonstrates visually the effects of

varying curvature at the cusp point. Smaller values
of curvature provide a straighter approach to the
point, and larger values create more open cusp.

 214

Torsion τ

Used to control the motion in the direction
of the bi-normal vector (i.e. motion out of
the osculating plane). A positive value will
make the curve locally move in the bi-
normal direction and a negative value will
make the curve locally move in the inverse
of the bi-normal direction. Torsion can also
be coupled with curvature to describe
specific physical spatial shapes (e.g.
helices).

• Table 7.12 shows the relationships between torsion
and the third-order parametric constraints

3

3
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p for four values of torsion (50, 100, -50,

-100) with a value of 20κ = . These numeric
values must be large relative to curvature to
provide similar geometric effect.

• Figure 7.19 illustrates visually the effect of this
parameter on motion in the bi-normal direction. As
the magnitudes get larger, the motion in the bi-
normal direction becomes more pronounced. Also,
positive and negative values are used to define the
motion in either the bi-normal or inverse bi-normal
directions.

• Figure 7.20 and Figure 7.21 show this family of
curves from different points of view to further
illustrate the local effect of torsion. This
demonstrates that curvature controls motion
relative to the osculating plane and torsion controls
motion outside of the osculating plane.

• Table 7.13 shows the relationships between torsion
and the third-order parametric constraints

3

3
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p for four values of torsion (50, 100, -50,

-100) with value of 5κ = .
• Figure 7.22 shows the resulting family of curves.

This plot demonstrates the coupling of curvature
and torsion by showing a much smaller effect
compared to the earlier result with 20κ = .

Table 7.17 (cont.)

 215

• Table 7.14 and Figure 7.24 show the parametric
constraints and resulting family of curves for
varying torsion values (50, 100, -50, -100) at a
cusp point. As before, this plot shows that torsion
has an effect on the local motion in the bi-normal
direction.

Derivative of
Curvature κ′

Controls the rate of change of the curvature
around a point. This can be useful for
altering the behavior of the curvature
around a specific frame. For example, a
large positive value will make the curve
“flatter” when approaching a point than
leaving the point. A zero value will force a
local minima or maxima in the curvature
profile that will lead to a better match for
the desired curvature.

• Table 7.15 demonstrates the influence of
derivative of curvature on the 3rd order parametric

constraints
3

3
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p at a spherical object for

three values (0,200,400).
• Figure 7.25 shows the geometric effect of this

parameter on the curve. With a zero value, the
curve closely matches the curvature both
approaching and leaving the specified point. For
larger positive values, the bending leaving the
point will be greater than approaching.

Derivative of
Torsion τ ′

Controls the rate of change of the torsion
around a point. This parameter can be used
to change the direction of motion along the
bi-normal vector. For example, a zero value
for torsion and a large positive value for τ ′
will force the torsion to be negative when
approaching a point and positive when
leaving the point. A zero value will force a
local minima or maxima in the torsion
profile that will lead to a better match for
the desired torsion.

• Table 7.16 demonstrates the effect of derivative of
torsion on the 4th order parametric constraints

4

4
d

du
⎛ ⎞
⎜ ⎟
⎝ ⎠

p for three values of τ ′ (1000, 5000,

10000).
• Figure 7.26 shows a family of spatial saddles

points generated by varying derivative of torsion.
This shows that the motion of the curve in the bi-
normal switches at the defined position.

Table 7.17 (cont.)

 216

7.2.8. Full Motion Specification

In the previous sections, it has been shown how the local geometric properties at

each frame can be used to define the motion relative to that frame. In this section, it will

be shown how these various local constraints can be blended together into an overall

motion plan. For this example, the geometric constraints at the first and last frame are

assumed to be zero (i.e. only a tangent specification) as these frames are sitting freely in

space rather than being attached to a physical geometry. Then, the curvature and torsion

are varied at frames 2 and 3 to produce different overall motions. Derivative of curvature

()κ ′ and torsion ()τ ′ are also set to zero in this demonstration as the local effects of

these parameters are difficult to visualize relative to the overall motion. The geometric

constraints used for frames 2 and 3 are shown in Table 7.18.

 Frame 2 Frame 3
 κ τ κ τ

Path A 5 -50 1 0

Path B 10 -50 10 100

Path C 20 -50 10 -100
Table 7.18. Local Geometric Constraints

As before, these geometric constraints are converted into parametric constraints to

define the overall curve geometry using the process described in Section 7.1.4. The

calculated parameteric constraints for frame 2 and 3 are shown in Table 7.19 and Table

7.20, respectively.

 217

 2dx
du

 2dy
du

 2dz
du

2
2

2

d x
du

2
2

2

d y
du

2
2

2

d z
du

3

2
3

d x
du

3

2
3

d y
du

3

2
3

d z
du

Path A 0.0 -0.25 0.0 0.0 0.0 -0.3175 -3.9063 0.0 0.0

Path B 0.0 -0.25 0.0 0.0 0.0 -0.625 -7.8125 0.0 0.0

Path C 0.0 -0.25 0.0 0.0 0.0 -1.25 -15.625 0.0 0.0
Table 7.19. Parametric Constraints at Frame 2

 3dx
du

 3dy
du

 3dz
du

2
3

2

d x
du

2
3

2

d y
du

2

3
2

d z
du

3
3

3

d x
du

3
3

3

d y
du

3

3
3

d z
du

Path A 0.25 0.0 0.0 0.0 0.0625 0.0 0.0 0.0 0.0

Path B 0.25 0.0 0.0 0.0 0.625 0.0 0.0 0.0 15.625

Path C 0.25 0.0 0.0 0.0 0. 625 0.0 0.0 0.0 -15.625
Table 7.20. Parametric Constraints at Frame 3

Now, these parametric constraints can be blended together to form the overall

path geometry as shown in Figure 7.27. While the exact effects of the geometric

constraints can be difficult to interpret, the relative effect of these constraints can be seen

at each frame. For example, Path A appears to have the least bending at the Frame 2

while Path C has the sharpest bending. This is the expected behavior based on the

assigned curvature values. At Frame 3, the effects of the assigned torsion values can be

seen. Path B approaches and leaves the cusp point moving in the positive z direction (i.e.

the bi-normal direction) due to its positive torsion value while the opposite behavior can

be seen in Path C due to its negative torsion. Thus, the behavior of the local geometry

around each frame is in line with the physical understanding of curvature and torsion

outlined in the previous sections (7.2.1-7.2.7) of this report.

 218

A

C B

A

C

B

1

2

3 4

Figure 7.27. Overall Motion Trajectory

7.2.9. Motion Profiles

The previous section showed how to define the local geometry of the spatial path.
Now, a spatial motion must be defined on top of this geometry ()()u f t= to provide a

continuous path function through the desired points. As mentioned before, this involves

defining a desired velocity profile and then using a 2nd order approximation to determine

the correct value of u at every sampling period (100 hz in this example). This velocity

profile, as defined in Section 6.3.2.4, is created by specifying a move time and then

calculating the required spatial velocity and acceleration based on the total arc length of

the path. This profile will also come to a stop (i.e. zero velocity) at any cusp points to

prevent an instantaneous change in direction. Thus, a smooth velocity profile is internally

 219

defined15 in the MP and the resulting output velocities can be measured to see how well

the approximation worked. For example, the output velocity profiles for the three paths

specified in the previous section are shown in Figure 7.28 for a motion time for each of

10 seconds.

Figure 7.28. Velocity Profiles

These output (i.e. “measured”) velocity profiles look almost identical from these

plots. However, there are slight differences that can be difficult to see. First, the peak

velocity increases slightly from Path A to Path C. This is because the overall arc length of

the curve increases, and the velocity must also increase to complete the motion in the

specified time. Also, though it is difficult to see in these graphs, there is some noise in the

velocity profile. This error is at its largest at frame 2 where the curvature value is large.

This computational error is summarized in Table 7.21 for each of the three motion

specifications. This table shows that the maximum error will increase as the higher-order

geometric properties get larger. It should be noted that this is not a problem at Frame 3,

because the velocity around this point is small.

15 This velocity profile used is not optimal as the main goal here is to measure how accurately the
approximation method can follow a provided profile. A more in-depth evaluation and comparison of
various motion profiles can be found in [33][38][50].

 220

 Maximum Velocity Maximum Velocity
Error % Velocity Error

Path A 0.1855 0.0007 0.3929
Path B 0.1899 0.0015 0.8135
Path C 0.1918 0.0026 1.3387

Table 7.21. Velocity Profile Errors

Now, the effect of changing the relative move time on the velocity profiles will be

explored. Figure 7.29 shows the velocity profiles for Path C for three different move

times: 5, 10, and 15 seconds.

5s

10s

15s

Figure 7.29. Velocity Profiles for Varying Move Times

As expected, the peak velocities decrease as the overall motion time becomes

larger. Also, a noticeable error can be seen in the five second profile. This error occurs in

the constant velocity portion of the first trapezoid and corresponds to the motion at frame

2 (where the curvature is large). A summary of these errors is shown in Table 7.22. This

shows that errors will occur in the proposed velocity approximation method (i.e.

()u f t=) at points with large higher-order geometric properties (especially curvature)

and/or large velocities. There are several potential ways to improve this approximation

 221

method. First, a higher-order approximation could be formulated. Also, the errors may be

lessened by increasing the sampling rate so that there is less distance between sampled

points. However, the limitations of the actual physical system must be accounted for here

as well.
Move
Time Maximum Velocity Maximum Velocity

Error % Velocity Error

5s 0.4658 0.0197 4.2384
10s 0.1918 0.0026 1.3387
15s 0.1208 0.0008 0.6355

Table 7.22. Velocity Profile Errors for Varying Move Times

7.2.10. Conclusions

The above sections described how to use the geometric parameters studied in this

work to create different local geometries for spatial curves. This method is similar to

some of the methods described earlier in Chapter 3 in that it provides variable parameters

that can be used to to change and adjust the shape of the spatial curve. However, in this

work, these variable parameters (i.e. geometric constraints) have clear physical meaning

that should be useful in defining physical tasks and interactions. These techniques have

also been packaged into a robot-independent software architecture. This allows for the

motion along a curve defined by geometric constraints to be easily programmed for a

variety of physical systems and manipulators. The next section of this report will describe

future improvements to the techniques developed in this work as well as describe some

potential future application areas.

7.3. FUTURE WORK

In this section, several suggestions for future extension and application of this

research will be presented. First, a number of improvements that can be made to the

existing framework will be suggested. This involves the low-level curve generation

 222

mathematics, rotational motion specification, and the actual software implementation.

Then, a number of future applications and areas of potential research will be described.

7.3.1. Curve Generation Techniques

The main focus of this research has been on the understanding and definition of

physical constraints for manipulator path planning. This started with a thorough study of

curvature and torsion in Chapter 4, and then these geometric constraints were converted

into parametric constraints in Chapter 5. While several curve generation techniques such

as polynomials and trapezoids (see Appendix B for a further description) were briefly

examined, curve generation schemes have not been a priority. This section will present

several possibilities for future work in this area.

One of the main goals of most curve generation schemes is to keep the curve of as

low order as possible to prevent unpredictable behavior. However, the methods

developed in this work require parametric constraints to be defined up to the fourth order.

Thus, by necessity, high order curves must be defined to meet these constraints. Along

these lines, one of the simplest ways to improve this scheme would be to keep the order

of the curve as low as possible. This can be easily done by only utilizing the required end

constraints to define a curve. For example, if only a curvature constraint needs to be

defined at an end point, parametric constraints need only be defined up to the second

order. This simple improvement may produce better behavior between end constraints.

Another important area of future work is the application/comparison of different

curve generation techniques. While this research focused on the generation of parametric

end constraints for curves, some of the methods reviewed in Chapter 3 can now be used

to meet these constraints. For example, consider the nth order Bezier curve defined by
Equation 7.19 where ib represent a set of control points and ()n

iB u represent the Bezier

basis functions.

 223

() () []
0

, 0,1
n

n
i i

i
u B u u

=

= ∈∑p b 7.19

Now, the parametric derivatives of this curve at the end points can be easily

calculated [10]. Equation 7.20 shows the first-order derivatives, and Equation 7.21 shows

the second-order derivatives. As mentioned in Chapter 3, Bezier curves are often

designed by interactively moving the control points (ib) to form the desired visual curve.

However, these equations show that the same geometric based constraints developed in

this work can be used to define the location of these control points. Thus, the same local

phenomena can be described using Bezier curves. An example of this for varying

curvature at a specific point is shown in Figure 7.30.
() ()

() ()

1 0

1

0

1
n n

d
n

du
d

n
du −

= −

= −

p
b b

p
b b

 7.20

() ()()

() ()()

2

0 1 22

2

2 12

0
1 2

1
1 2n n n

d
n n

du
d

n n
du − −

= − − +

= − − +

p
b b b

p
b b b

 7.21

 224

1κ =

5κ =

15κ =

Figure 7.30. Bezier Curves with Curvature Specification

Similarly, higher-order parametric derivatives can be defined to satisfy higher-

order geometric constraints. It is useful to look into these curve generation techniques as

the resulting curves come with several positive properties (Convex Hull, Variation

Diminishing, etc) that provide some determination of curve behavior. Likewise, some of

the other techniques discussed in Chapter 3 (such as B-Splines, Beta Splines, and A-

Splines) could be solved to meet specific parametric constraints. This allows for the same

physical meanings defined as part of this work to be formulated into other existing curve

generation schemes. A more thorough comparison of these techniques as well as

Polynomial and Trapezoidal specifications could be an interesting area for future

research.

 225

7.3.2. Rotational Motion Specification

While Chapter 6 provided a brief overview of some different ways to describe

rotational motions, a more in-depth look at this problem is needed. This section will

provide several potential areas of future work. One potentially interesting area of work

discussed in Section 6.3.3.2 was using the motion of the Frenet Frame along the curve to

define the rotational motion. However, this method has some drawbacks. For one, it is

difficult to predict how the frame will vary along a curve with large higher-order

properties. Second, the frame can hit singularities and points where it is undefined (as in

when curvature vanishes). One potential way to avoid this problem while still relating the

rotational motion to the geometry of the curve is using parallel transport frames [11][19].

These frames take advantage of the fact that only the unit tangent vector is
actually attached to the geometry of the curve. Then, a set of vectors { }1 2

ˆ ˆ,N N

perpendicular to the tangent can be defined to vary smoothly along the curve (Equation

7.22). This will lead to a non-singular rotational motion along the curve since the tangent

vector should never vanish. A full algorithm for how to develop these curves is provided

in [19] and analogous methods for quaternion frames are shown in [20][21].

1 2
1

1 1

2 2
2

ˆ

ˆ0ˆ ˆ0 0
ˆ00ˆ

d
ds k k
d k
ds

k
d
ds

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

T

T
N N

NN

 7.22

While in many applications (such as pick and place operations) it may be

desirable to base rotational motion on the translational geometry, it is often better to plan

rotational motions independent of the translation. Several methods for performing

orientation-to-orientation interpolation were demonstrated in Chapter 6 as well as one

 226

method for describing a motion through multiple quaternions. However, it may also be

possible to develop a method for rotational planning analogous to the translational work

done in this report.

This could be accomplished by defining local rotational motions at frames of

interest. This would probably involve defining the instantaneous velocities in either the
world frame { }, ,x y zθ θ θ or the local frame (frenet or tool) { }, ,T N Bθ θ θ . Another

possibility is to define an axis and angular velocity (as in an Equivalent Axis

formulation). This will allow local rotational motion to be described around a specific

axis. This axis could once again be defined either in the world frame or some local frame.

Then, these rotational positions and velocities can be blended together in a number of

ways.

7.3.3. Software Implementation

As the software implementation is mainly meant as a testbed for this research, the

main improvements that can be made would be to include any of the additional methods

described in the last few sections. For example, the choice of low-level curve generation

method (polynomial, trapezoidal, Bezier, etc) could be specified by the user. This would

allow for an easier comparison between different methods. Also, the velocity profiles

currently implemented are very simple and could be improved. However, with the

implementation of more complex profiles, the approximation scheme for interpolating the

geometric parameter u (Equation 7.15) may also need to be improved.

7.3.4. Future Applications

In the last section, a number of improvements that can be made to the existing

framework were suggested. However, a more important area of future work is to apply

these results to actual physical systems and tasks. This will hopefully allow for a better

 227

understanding of the physical capabilities at both a task level and a manipulator level.

The following sections will briefly introduce some possible application areas.

7.3.4.1. Task-Based Planning

One potential area of future work will be to relate the geometric properties of

curves to physical task-based properties. For example, the relationship shown in Equation

7.23 was first developed in Section 2.3.2. This equation shows that the acceleration of a

particle along a curve can be defined by its current frame (the tangent and normal

vectors), its current speed/acceleration (/s s) and its curvature κ . Thus, if the end-

effector is moving at a constant speed, the magnitude of its centripetal acceleration would

be 2sκ . Thus, this magnitude can be plotted as function of curvature and speed as shown

in Figure 7.31. While this relationship is quite simple, it shows that the geometric

properties of curves can be related to actual physical phenomena.

() 2ˆ ˆt s sκ= +a T N 7.23

Another simple example of this is to use the Darboux vector as described in

Section 6.3.3.2. The magnitude of this vector (2 2κ τ+) gives the magnitude of the

angular velocity of the Frenet Frame as it moves along a curve. Thus, if the rotational

motion of the end-effector is based on the geometric path (e.g. as in surface polishing),

the angular velocity can be directly calculated based on the geometric properties of

curvature and torsion. A visual representation of this is shown in Figure 7.32.

 228

Figure 7.31. Centripetal Acceleration Plot

Figure 7.32. Angular Velocity Plot

 229

The two examples above are very simple and intuitive. However, they could still

be of use. For example, if a task requires a certain velocity and has a maximum

acceleration at a particular point, a maximum allowable curvature can be defined. This

then becomes a constraint on the geometric parameters. Thus, by studying the physical

demands and properties required for a variety of tasks, constraints can be developed on

the geometric parameters. For some tasks, specific values of these parameters will be

required at particular points. In other tasks, a range of allowable values may be developed

that gives the operator or user some degree of freedom in the curve specification.

7.3.4.2. G and H Parameters

In the last section, it was shown how the geometric properties of spatial curves

can affect the physical task-level properties. Now, a further extension of this to the

system-level properties will be presented. These relationships were first developed in an

earlier work at the RRG [32]. This model consists of kinematic influence coefficients

which are based only on the geometry of the system [51] (first presented in Section

1.1.3). The relationships between input and output velocities and accelerations that

resulted from this work are shown in Equations 7.24 and 7.25.

p pG φ⎡ ⎤= ⎣ ⎦v 7.24

T
p p pH Gφ φ φ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦a 7.25

The first of these equations shows the relationship between the output velocities at

the end-effector and the input velocities at the joints. These are related by the first order

influence coefficients, where p
p n

n

G
φ
∂

⎡ ⎤ =⎣ ⎦ ∂

v
. The relationship between the accelerations

is shown in Equation 7.25. For this, the second-order influence coefficients are also

needed, where ();jk jkm n n
m

H G
φ
∂⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∂

.

 230

By substituting these equations into the results the equations for motion along a

spatial curve, the relationships between the input parameters of a serial manipulator and

curve properties can be expressed. For example, using the relationship p
d ds d s
ds dt ds

= =
p pv

with Equation 7.24 leads to Equation 7.26.

p p
dG s
ds

φ⎡ ⎤= =⎣ ⎦
pv 7.26

By moving the s to the left hand side of this equation, the unit tangent vector can

be expressed in terms of the G functions and input joint velocities as shown in Equation

7.27.

ˆ
pG

s
φ⎡ ⎤= ⎣ ⎦T 7.27

Similarly, a representation for the Normal Vector, N, can be found (note that this

is not the Unit Normal, N̂). This is shown in Equation 7.28. Also, , we know that the

magnitude of Equation 7.28 is equal to the curvature, κ. Thus, the curvature can be

completely defined by the input parameters of the system.
2

2 2

2 2 2

T
p p p

d d s H G G sd dt ds s
ds s s

φφ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= = =

p p
pN

7.28

Using Equations 7.27 and 7.28, the Bi-Normal vector can also be described in

terms of input parameters as shown in Equation 7.29. This allows for the entire Frenet

Frame as well as the curvature to be described in terms of input parameters.

2

2

2

0 [] []

[] 0 []

[] [] 0

T x x x

z y

T y y y

z x

T z z zy x

H G G s
s

sG G
s s

H G G s
sG G

s s s

H G G sG G
ss s

s

φφ φ φ

φ φ

φφ φ φφ φ

φ φ φφ φ φ

⎛
⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −⎜ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎜⎛ ⎞⎜−⎜ ⎟⎜⎜ ⎟ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟
= × = −⎜ ⎟

⎜ ⎟
⎜ ⎟ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −−⎜ ⎟ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ ⎠

⎝

B T N

⎞
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

 7.29

 231

The fomulations provided in this section show a beginning of how to relate

geometric properties to the actually physical system inputs. There is still a lot of possible

work in this area. For one, the relationships developed above only take into account the

translational (and not rotational) motion along a curve. For the cases where rotation is

planned completely independent of translation, these relationships should be easy to

define. However, for rotational motions that are tied to some specific geometry, this may

become more difficult. Also, not all of the geometric properties studied in this research

have been formulated in terms of system inputs. However, a more important first step of

potential research in this area is to demonstrate that these relationships can be used in the

planning phase to develop geometric paths that meet system capabilities.

7.4. CONCLUDING REMARKS

The research presented in this report provides a geometric framework for

describing spatial curves based on constraints with physical meaning (curvature, torsion,

and their derivatives). This differs from most current techniques in that these methods

often involve interactively tweaking control points or parameters to create a visually

pleasing shape. The benefit of the method presented in this report is that these physical

constraints provide a better relationship to the physical motion of a manipulator. While

only the geometric framework for describing these curves was developed in this work, it

is hoped that future work built on this foundation will lead to a better way of defining

manipulator motions that can take into account both the task and manipulator

performance.

 232

APPENDIX A

Calculation of A-Spline Coefficients
First, the scaffold for the section of the curve (2 3 0y x− =) to be captured is chosen as

[]1 0,0p = , []2 1,1p = , and []3 1,0p = . Then, the relationship given in Equation 3.18 is

inverted to determine () ()1 2 3, , ,f x yα α α = as shown in Equation A.1.
1

1
1 2 3

0 1 1 1
0 1 0

1 1 1
1 1 1 1 1

x x x
p p p

y y y
x y

−
− −⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦

 A.1

Then, these values for α (in terms of x and y) can be plugged into Equation 3.19 to

determine the basis fuctions. For this case, these basis functions are as shown in Equation

A.2.

()3 3 2 2 3
003 , 3 3B x y x x y xy y= − + −

()3 2 2 3
012 , 3 6 3B x y x y xy y= − +

()3 2 3
021 , 3 3B x y xy y= −

()3 3
030 ,B x y y=

()3 3 2 2 2 2
102 , 3 6 3 3 6 3B x y x x y xy x xy y= − + − + − +

()3 2 2 2
111 , 6 6 6 6B x y x y xy xy y= − + + −

()3 2 2
120 , 3 3B x y xy y= − +

()3 3 2 2
201 , 3 3 6 6 3 3B x y x x y x xy x y= − − + + −

()3 2
210 , 3 6 3B x y x y xy y= − +

()3 3 2
300 , 3 3 1B x y x x x= − + − +

A.2

Now, the coefficients of these polynomials can be extracted and represented as shown in

Equation A.3

 233

()
()
()
()
()
()
()
()
()
()

3
003

3
012

3
021

3
030

3
102

3
111

3
120

3
201

3
210

3
300

,
1 1 0 3 3 0 0 0 0 0,
0 3 3 6 0 0 0 0 0 0

, 0 3 0 3 0 0 0 0 0 0
, 0 1 0 0 0 0 0 0 0 0
, 3 0 6 3 3 3 6 0 0 0

0 0 6 6 0 0 6 6 0 0,
0 0 0 0 6 6 0 6 6 0,
0 0 0,

,

,

B x y

B x y

B x y

B x y

B x y

B x y

B x y

B x y

B x y

B x y

⎡ ⎤
⎢ ⎥ − −
⎢ ⎥
⎢ ⎥
⎢ ⎥ −
⎢ ⎥
⎢ ⎥
⎢ ⎥ − − −⎢ ⎥ =
⎢ ⎥ − −
⎢ ⎥ − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

3

3

2

2

2

2

3 0 3 0 0 0 0
0 0 3 0 0 0 6 0 3 0
1 0 0 0 3 0 0 3 0 1 1

x
y
x y
xy
x
y
xy
x
y

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎢ ⎥⎣ ⎦

 A.3

Now, the desired combination for the polynomial basis functions of the original implicit

equation are determined. In this case, the 2y term is 1 and the 3x term is -1. Now, a

system of linear equations can be solved to determine the bijk coefficients.
003

012

021

030

102

111

120

201

210

300

1 0 0 0 3 0 0 3 0 1
1 3 3 1 0 0 0 0 0 0
3 3 0 0 6 6 0 3 3 0
3 6 3 0 3 6 3 0 0 0
0 0 0 0 3 0 0 6 0 3
0 0 0 0 3 6 3 0 0 0
0 0 0 0 6 6 0 6 6 0
0 0 0 0 0 0 0 3 0 3
0 0 0 0 0 0 0 3 3 0
0 0 0 0 0 0 0 0 0 1

b
b
b
b
b
b
b
b
b
b

⎡ ⎤ − −⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −
⎢ ⎥ ⎢ − − −⎢ ⎥ ⎢
⎢ ⎥ ⎢ −
⎢ ⎥ = ⎢

−⎢ ⎥ ⎢
⎢ ⎥ ⎢ − −⎢ ⎥
⎢ ⎥ −
⎢ ⎥ −⎢ ⎥
⎢ ⎥ ⎣⎣ ⎦

1 1
0
0
0
0
1
0
0
0
0

− −⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎦ ⎣ ⎦

 A.4

Solving this equation yields the result from before that 003 1b = − , 012 1b = − , 021
2
3

b = − ,

120
1
3

b = , and all other coefficients are zero. It should be noted that this system of

equations can be used to solve any 0d ≤ implicit curve laying in the same domain (same

p1, p2, and p3).

 234

APPENDIX B

Evaluation of Trajectory Blending Techniques

B.1. Introduction

This appendix will examine more closely two methods for generating trajectories

between the parametric constraints (, , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

) developed in

Chapter 5: polynomial and trapezoidal. First, the basic formulations of these methods will

be described. Then, these techniques will be compared on their ability to control the high-

order properties (parametric and geometric) through an example. While these methods do

not represent every possible way of meeting the developed parametric constraints, they

provide a good starting point for examining this problem.

B.2. Polynomial Trajectory Formulation

Polynomial trajectories are one of the most basic formulations to use as a

parametric curve generation tool. A generalized form of a 1-DOF parametric polynomial

is shown in Equation B.1 where n is the order of the polynomial. For example, an

expanded third-order (cubic) polynomial is shown in B.2

()
0

n
i

i
i

p u a u
=

= ∑ B.1

() 2 3
0 1 2 3p u a a u a u a u= + + + B.2

The coefficients { }0 1, , , na a a of the parametric polynomial can be solved by

providing n+1 constraints for the function. For example, a cubic could be defined that
meets four different function values { }0 1 2 3, , ,p p p p at four different parameter values

{ }0 1 2 3, , ,u u u u . The coefficients for this can be solved using the system of linear equations

shown in Equation B.3. All of the values in these equations are specified except for the

 235

coefficients { }0 1 2 3, , ,a a a a . Thus, the square matrix can be inverted and moved to the

other side of the equation to solve for the coefficients.
2 3

0 0 00 0
2 3

1 1 1 1 1
2 3

2 22 2 2
2 3

3 33 3 3

1

1

1

1

u u up a
p u u u a
p au u u
p au u u

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 B.3

However, a more relevant way to use this method is shown in Equation B.4. In

this system of equations, the four available constraints are used to satisfy values of the

function as well as its first derivative at two parameter values.
0 2 3

0 0 0 00
2

0 0 1
2 3

21 1 1 1
2

31 1 1

1

0 1 2 3

1

0 1 2 3

p
u u u adp

u u adu
ap u u u
adp u u

du

⎡ ⎤
⎡ ⎤⎢ ⎥ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

 B.4

A more generalized form of this equation is shown in Equation B.5. This shows

that to meet constraints up to the nth derivative at both ends of a trajectory will require a

polynomial of order 2n+1. In most applications, the trajectory is broken into smaller

pieces to allow lower order polynomials to fit the constraints. However, in this research,

constraints have been developed all the way to the 4th derivative. Thus, using a higher-

order polynomial is unavoidable.

 236

()

()

0

0

2 3 2 1
0 0 0 0 0

2 2
0 0 0 10

2
2 3 2 1

31 1 1 1 1
2 2

1 1 1 1

2 1

1

1

0 1 2 3 2 1

1

0 1 2 3 2 1

n

n
n

n

n

n

n

n

n

p
dp
du

u u u u a
u u n u ad p

adu
ap u u u u

dp u u n u
du a

d p
du

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 B.5

B.2. Trapezoidal Trajectory Formulation

Trapezoidal specification is another method for generating smooth 1-DOF

trajectories. This method involves defining one of the derivatives of the parametric curve

to have a trapezoidal shape using piece-wise singularity functions (Equation B.6). These

singularity functions allow for the shape of the trapezoid to be defined in small pieces.

For example, Figure B.1 shows a trapezoidal profile defined at the third derivative, where

{ }0 1 2 7, , , ,u u u u are known as the breakpoints. The shape of the trajectory profile is

defined differently in each segment between consecutive breakpoints. This trapezoidal

shape can then be integrated to solve for the lower-order derivatives.
0,
1,

i
i

i

u u
u u

u u
<⎧

− = ⎨ ≥⎩
 B.6

 237

3

3
d p
du

0u 6u1u 7u2u
3u

5u
4u

Figure B.1. Example Trapezoidal Specification

A generalized method for defining trapezoidal profiles was developed by Tesar

and Matthews[50] for use in generating cam trajectories. Equation B.7 shows the

generalized formulation of a trapezoidal method of generic order. The n parameter in this

equation is the order of the profile (the derivative that the trapezoidal shape is defined in)

and the i parameter defines the derivative to be evaluated. For example, for a third-order
(n=3) system, setting i=3 would solve for the position function. The ijθ values are

calculated using the breakpoints and singularity functions as shown in Equation B.8.

() () ()

0

1 1! 1 !

n k
i k

n i i nn k j
ijn i

k j

d p u Ad p duu
du i k i

θ

−
−

− −

−
= =

= +
− +∑ ∑ B.7

1 1 1 1

2 2 2 1 2 2 1

2 1 2 2 2 1 2

i i i i

j j j j
ij

j j j j

u u u u u u u u
u u u u

θ
+ + + +

− − +

− − +

⎡ ⎤− − − − − −
⎢ ⎥= −
⎢ ⎥− −
⎣ ⎦

B.8

 238

As mentioned before, the breakpoints { }0 1 2 2 1, , , , nu u u u + can be defined by the

user and provide some control over the shape of the profile. The coefficients Aj are

calculated based on the initial and final conditions as shown in Equation B.9. A more

detailed derivation of these equations can be found in Tesar and Matthews[50].

()
() ()

11
01

1 1 1

2

1 0

1

2 2

1 !
1 !

!

nn

n n

ij
n i n i

i k
i nn n in i

k

d pd pA
du duA

d p d p uiA
dudu i

i k

θ

−−

− −

− −
−

−−

=

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ +⎢ ⎥

−⎢ ⎥⎣ ⎦
∑

 B.9

B.3. Example Trajectory

Now, these trajectory generation methods can be applied to an example trajectory

specification and the higher-order parametric and geometric properties along the curve

can be examined. As in Chapter 5, first the geometric constraints (, , ,κ κ τ τ′ ′) for the

motion are specified. Then, these constraints are formulated into parametric constraints

(, , , , , ,
n n n

n n n

dx dy dz d x d y d z
du du du du du du

). Finally, both polynomial and trapezoidal methods will

be used to develop individual x, y, and z trajectories that satisfy these constraints. A

sample set of geometric constraints for this example is shown in Table B.1. This is a

simple trajectory plan that specifies a value for curvature and torsion at the middle point.

 x y z T̂ N̂ B̂ κ
d
du
κ τ

d
du
τ

1p 0.0 0.0 0.0 [1,0,0] [0, 1,0] [0,0, 1] 0.0 0.0 0.0 0.0

2p 2.0 1.0 1.0

0.0
0.707
0.707

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

[-1,0,0]

0.0
0.707
0.707

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5.0 0.0 1.0 0.0

3p 1.0 3.0 -1.0 [0,1,0] [-1,0,0] [0,0,1] 0.0 0.0 0.0 0.0
Table B.1. Example Geometric Constraints

 239

Table B.2 shows the calculated parametric constraints. The 4th order constraints

for this specification are all zero because 0τ ′ = . This somewhat simplifies the end

constraints; however, the emphasis of this analysis is on the trajectory between the end

points.

i 1 2 3 i 1 2 3 i 1 2 3

ix 0.0 2.0 1.0 iy 0.0 1.0 3.0 iz 1.0 3.0 -1.0
idx

du
 1.0 0.0 0.0

idy
du

 0.0 0.707 1.0
idz

du
 0.0 -0.707 0.0

2

2
id x

du
 0.0 -4.9985 0.0

2

2
id y

du 0.0 0.0 0.0
2

2
id z

du 0.0 0.0 0.0
3

3
id x

du
 0.0 0.0 0.0

3

3
id y

du 0.0 3.5339 0.0
3

3
id z

du 0.0 3.5339 0.0
4

4
id x

du
 0.0 0.0 0.0

4

4
id y

du 0.0 0.0 0.0
4

4
id z

du 0.0 0.0 0.0
Table B.2. Calculated Parametric Constraints

Now, the individual trajectories can be developed. As mentioned earlier, the

trapezoidal specification allows for some control over the shape of the trajectory through

the breakpoints. For the first iteration of this example, these breakpoints were simply

chosen to be spread between 0 and 1 uniformly as shown in Equation B.1016. Figure B.2

shows the higher-order parametric plots along the trajectory, and Figure B.3 and Figure

B.4 show the curvature and torsion values, respectively. The plots of the parametric

derivatives show that the two methods follow each other very closely with the trapezoidal

profile having slightly higher peak values. The plots of curvature and torsion are also

very similar with the polynomial trajectory having slightly higher peaks in the curvature

plot, and the trapezoidal profile having slightly higher peaks in the torsion profile.

{ }iu = 0, 0.111, 0.222, 0.333, 0.444, 0.556, 0.667, 0.778, 0.889, 1.00 B.10

16 This same configuration is used for the second half of the trajectory ([]1,2u∈).

 240

Figure B.2. Polynomial vs. Trapezoidal Specification Example I

 241

Figure B.3. Curvature Profiles I

Figure B.4. Torsion Profiles I

 242

Next, the breakpoints for the trapezoidal motion were manually modified in an

attempt to lower the peak values of the parametric derivatives. This was done by moving

the breakpoints that determine the ramp-up and ramp-down portions of the trapezoid

closer together (as shown in B.11). This will decrease the magnitude of the peak value

because it will increase the amount of time that it will stay at this value. Figure B.5 shows

the resulting plots of the parametric derivatives. These plots show that the peak values of

the trapezoidal profile are much closer to the polynomial profile though they are still

slightly higher. Given a few more iterations of optimizing the breakpoint positions, these

peaks could probably be brought even lower. The resulting curvature and torsion profiles

are shown in Figure B.6 and Figure B.7. These plots show that the curvature results

remain approximately the same while the peak value of the torsion plot of the trapezoidal

profile decreased considerably from the last example. Thus, optimizing the breakpoint

placement to decrease the peak values of the parametric derivatives appears to have some

affect on the geometric properties (as expected). However, the high level coupling

between the x, y, and z coordinates still makes this process difficult to predict.

{ }iu 0, 0.02, 0.24, 0.26, 0.49, 0.51, 0.74, 0.76, 0.98, 1.00= B.11

 243

Figure B.5. Polynomial vs. Trapezoidal Specification Example II

 244

Figure B.6. Curvature Profiles II

Figure B.7. Torsion Profiles II

 245

As seen in the last two examples, the trapezoidal profile contained a higher peak

value in the torsion profile. Thus, the last step of this iteration process is an attempt to

manually modify the positions of the breakpoints to reduce this peak value. Equation

B.12 shows the parametric equation for torsion. This shows that for any parameter value

u the torsion is a function of the first, second, and third derivatives. Thus, the torsion may

be reduced by altering where the peak values of these various derivatives are for each

individual coordinate (, ,x y z).

()

2 3

3

22

2

d d d
du du du

u
d d
du du

τ

⎛ ⎞
× ⋅⎜ ⎟

⎝ ⎠=

×

p p p

p p
 B.12

This was attempted using different breakpoints for each individual coordinate as

shown in Equation B.13. This equation shows that the breakpoints of the x, y, and z
directions are staggered at the beginning of the []1,2u∈ trajectory (where the torsion

peak occurs. This will keep the peak values of the parametric derivatives of each

coordinate staggered as well and result in a lower value of torsion. Figure B.8 shows the

parametric derivatives, and Figure B.9 and Figure B.10 show the curvature and torsion

plots. The plot of torsion shows that this technique did lower the peak value of torsion at

the desired point in the trajectory. However, it also created an extra smaller peak towards

the end of the trajectory.
{ }
{ }
{ }

x
i

y
i

z
i

u 1.0, 1.02, 1.34, 1.36, 1.69, 1.71, 1.84, 1.86, 1.98, 2.00

u 1.0, 1.02, 1.24, 1.26, 1.49, 1.51, 1.74, 1.86, 1.98, 2.00

u 1.0, 1.02, 1.14, 1.16, 1.39, 1.41, 1.74, 1.86, 1.98, 2.00

=

=

=

 B.13

 246

Figure B.8. Polynomial vs. Trapezoidal Specification Example III

 247

Figure B.9. Curvature Profiles III

Figure B.10. Torsion Profiles III

 248

B.4. Summary

This appendix examined two different methods of generating trajectories to

satisfy parametric constraints: polynomial and trapezoidal. In the nominal case, these

methods appear to be very similar. However, the ability to specify and modify the

breakpoints in trapezoidal profiles allows for more control over the interior shape of the

trajectory. This added control was demonstrated on a specific example to show how it

could be used to lower the peak value of torsion. However, this method requires a high

level of understanding of the underlying mathematics as well as a good amount of

tweaking/iterating. This, as it is, this method is probably not suitable to be used for

trajectory modification. However, techniques to optimize or automate this kind of process

could be a useful area for future research.

 249

APPENDIX C

Motion Planner Class Documentation
OSCAR::MotionPlanner Class Reference
Current Functionality: MotionPlanner is a class for performing Kinematics and
generating trajectories for generic manipulators. The manipulator is defined through its
DH Paramters, offsets, and limits. This class will then generate trajectories in either Joint
Space or Cartesian space that satisfy the provided velocity and acceleration constraints.
Author:

Peter S. March

Public Methods
• MotionPlanner (const DHData &robotData, const Vector &jointOffsets, JointVector

&initialJoints, Matrix &jointLimits, Vector &velLimits, Vector &accLimits, Vector
&handVelLimits, Vector &handAccLimits, OSCARError
&err=DUMMY_ERROR(noError))

• ~MotionPlanner ()
• bool PlanMove (const JointVector currentJoints, const JointVector targetJoints,

MPTrajectoryType trajType, double &moveTime)
• bool PlanMove (const JointVector currentJoints, const Xform targetHand,

MPTrajectoryType trajType, double &moveTime)
• bool PlanMoveJogJoint (const JointVector ¤tJoints, const JointVector

¤tVelocity, const std::vector< double > directions)
• bool PlanMoveJogCartesian (const JointVector ¤tJoints, const JointVector

¤tVelocity, std::vector< double > directions)
• bool PlanMoveVia (const JointVector _currentJoints, std::vector< Vector > viaPoints)
• bool PlanMoveVia (const JointVector _currentJoints, std::vector< Xform > viaPoints,

double moveTime, MPViaType viaType=FlyThrough)
• bool PlanMoveViaGeometric (const JointVector _currentJoints, std::vector<

CurveParameter > viaPoints, double moveTime)
• bool Stop (const JointVector ¤tJoints, const JointVector ¤tVelocity,

bool fastest=true)
• bool GetJointPosition (JointVector &jointPosVector, JointVector ¤tVelocity,

TrajectoryGenerator::TrajectoryState &state)
• bool GetHandPosition (JointVector &joints, Xform &handPosition)
• bool GetHandPosition (Xform &handPosition)
• bool SetJointPosition (const JointVector &joints)
• bool SetToolPose (const Xform &toolPose)
• bool SetBasePose (const Xform &basePose)
• bool SetCycleRate (double rate)
• bool SetTrajectoryShape (TrajectoryShapeType shape)
• bool SetRampTime (double rampTime)

 250

• bool SetCartesianControlMode (CartesianCoordinateMode _coordMode)
• bool SetSpeedScale (double scale)
• bool SetVelocityScale (double scale)
• bool SetAccelerationScale (double scale)
• bool ComputeHandVelocity (const JointVector ¤tVelocity, HandPose

&handVel)

Protected Methods
• bool checkLimits (const JointVector &joints, bool checkVelocity=true)
• double estimateMoveTime (const Vector &start, const Vector &end)
• bool getJointPosition (std::vector< Vector > &jointPosBuffer,

TrajectoryGenerator::TrajectoryState &state)
• bool cancelMotion ()

Protected Attributes
• IDNewtonEuler * idnPtr
• IDSANewtonEuler * idsaPtr
• FKJacobian * fkjPtr
• JointVector currentJoints
• JointVector prevJoints
• JointVector prevJoints2
• JointVector currentVelocity
• JointVector prevVelocity
• JointVector currentAcceleration
• JointVector targetJoints
• JointVector tempJointPosVector
• JointVector tempJointPosVector2
• std::list< Vector > finalBuffer
• std::string robotName
• TrajectoryGenerator::TrajectoryState prevState
• GeneralKinematicsHandler * kinPtr
• PathPlanner * ppPtr
• unsigned int DOF
• Vector velLimits
• Vector accLimits
• Vector handVelLimits
• Vector handAccLimits
• Vector minVelLimits
• Vector minAccLimits
• TrajectoryShapeType trajShape
• CartesianCoordinateMode coordMode
• double cycleRate
• double velScale
• double accScale
• double rampTime

 251

• double maxLinVel
• double timeScale

Constructor & Destructor Documentation

OSCAR::MotionPlanner::MotionPlanner (const DHData & robotData, const
Vector & jointOffsets, JointVector & initialJoints, Matrix & jointLimits, Vector &
velLimits, Vector & accLimits, Vector & handVelLimits, Vector &
handAccLimits, OSCARError & err = DUMMY_ERROR(noError))

Parameters:

dhData A DHData object that defines the DH parameters for the robot. The units of
angles in the DHData should be Degrees. The robot DOF is determined from dhData.
offset A vector whose size should match the DOF defined in the dhData parameter. The
values of offset should define the offset between the zero position of the robot as defined
by the DH parameters and as represented by the physical robot zero position. Offset
should be defined in Degrees for all joints that are revolute. If the DH paramater defined 0
position is the same as the real robot zero position, then all offsets will be zero.
jointLimits A Limits object that defines the position travel limits of the robot arm. The size
of the limits object should be the same as the DOF defined in the dhData parameter. The
limits should also be expressed in the robot coordinates instead of the DH parameter
coordinates. For all revolute joints, the limits should be expressed in Degrees.
initialJoints The initial joint state of the manipulator. These joints will be used to initialize
the Kinematics of the manipulator and must be a valid joint position. For all revolute
joints, the initial position should be express in Radians.
velLimits The absolute value of the maximum joint velocities for each joint. These
velocities should be express in Radians/s.
accLimits The absolute value of the maximum joint accelerations for each joint. These
accelerations should be express in Radians/s^2.
handVelLimits The absolute value of the maximum cartesian velocities. The translational
elements should be in mm/s and the rotational in Radians/s. These limits are used for
teleoperation only.
handAccLimits The absolute value of the maximum cartesian accelerations. The
translational elements should be in mm/s^2 and the rotational in Radians/s^2. These
limits are used for teleoperation only.
err An OSCARError object that on return will hold the value of any errors that were
generated during the constructor call. If err is not equal to 'noError' you can call
GetError() to get the details of the error code.

Exceptions:

argumentSizeIncorrect #argumentSizeIncorrect. This error is generated when the size of
the input parameter offset and limits does not match the DOF defined by the dhData
parameter.

OSCAR::MotionPlanner::~MotionPlanner ()

 252

Member Function Documentation

bool OSCAR::MotionPlanner::GetHandPosition (Xform & handPosition)

Use this to retrieve the internal Cartesian handpose state. This method will return the internal
Cartesian state of the MotionPlanner. No calculations are performed.
Parameters:

handPosition The resulting hand position.
Returns:

True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::GetHandPosition (JointVector & joints, Xform
& handPosition)

Use this to calculate the hand position for a given joint configuration. This method can be
used to perform the forward kinematics to retrieve a hand position for a provided joint
configuration. This method does not change the internal state of the MotionPlanner.
Parameters:

joints The desired joint configuration.
handPosition The resulting hand position.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::GetJointPosition (JointVector &
jointPosVector, JointVector & currentVelocity,
TrajectoryGenerator::TrajectoryState & state)

Use this method to retrieve the current joint position/velocity. This method is used to
continually get the current joint position and velocity state. By design, this method should be
called repeatedly inside a loop running at the sample rate designated in SetCycleRate(). All
computed velocities and accelerations are assuming the joint positions are being updated at
this rate.
Parameters:

jointPosVector The current joint state of the manipulator in Radians.
currentVelocity The current velocity state of the manipulator in Rad/s.
state This returns the current state of the MotionPlanner. The valid values are:
 Inactive - The manipulator is currently idle. In this state, the MotionPlanner will be just
returning the current position over and over.
 Active - The manipulator is current moving either through a point-to-point trajectory or
through teleoperation.
 TrajectoryComplete - The manipulator has just complete a point-to-point trajectory

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::PlanMove (const JointVector currentJoints,
const Xform targetHand, MPTrajectoryType trajType, double & moveTime)

 253

Generates a Trajectory to a target EEF position. This method will generate a trajectory to a
target Joint Position. This trajectory can be either JointInterpolated or CartesianInterpolated.
Parameters:

currentJoints This is the current position of the manipulator in Radians.
targetHand An Xform containing the target hand position for the manipulator.
trajType This is set to either JointInterpolated or CartesianInterpolated. In the case of
JointInterpolated, the final joint position is calculated from the final hand position
moveTime This parameter contains the move time for the trajector. If this move time is
positive, a JointInterpolated move will return true/false based on if the trajectory can be
completed without violating constraints while CartesianInterpolated move will will simply
generate a trajectory for the given time (in this case, constraint errors will be found during
execution). If the move time is 0.0, a JointInterpolated move will complete the move using
the max velocity/acceleration constraints while a CartesianInterpolated move will
estimate a fastest move time.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::PlanMove (const JointVector currentJoints,
const JointVector targetJoints, MPTrajectoryType trajType, double &
moveTime)

Generates a Trajectory to a target Joint Position This method will generate a trajectory to a
target Joint Position. This trajectory can be either JointInterpolated or CartesianInterpolated.
Parameters:

currentJoints This is the current position of the manipulator in Radians.
targetJoints The target joint position for the manipulator.
trajType This is set to either JointInterpolated or CartesianInterpolated. In the case of
CartesianInterpolated, the final hand position is calculated from the final joint position
moveTime This parameter contains the move time for the trajector. If this move time is
positive, a JointInterpolated move will return true/false based on if the trajectory can be
completed without violating constraints while CartesianInterpolated move will will simply
generate a trajectory for the given time (in this case, constraint errors will be found during
execution). If the move time is 0.0, a JointInterpolated move will complete the move using
the max velocity/acceleration constraints while a CartesianInterpolated move will
estimate a fastest move time.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::PlanMoveJogCartesian (const JointVector &
currentJoints, const JointVector & currentVelocity, std::vector< double >
directions)

Use this method to perform a Cartesian jog. This method can be used to jog the EEF as in
teleoperation. When an axis is set to jog, it accelerates to its maximum velocity and coasts
until another PlanMoveJogCartesian() or a Stop() is called.
Parameters:

currentJoints The current joint state of the manipulator in Radians.
currentVelocity The current velocity state of the manipulator in Rad/s.
directions A vector of length 6. The 6 values indiciate the x,y,z axes and the three angles
in a FixedXYZ orientation description. The valid values are -1 to 1. If the value is

 254

negative, the axis will decelerate from its current velocity to a of its maximum negative
velocity. For example, a value of -0.5 will decelerate to 50% of the maximum velocity in
the negative direction. If the value is positive, the axis will accelerate from its current
velocity to a of its maximum positive velocity. For example, a value of 0.5 will accelerate
to 50% of the maximum velocity in the positive direction. If the value is 0, the axis will
decelerate to a zero velocity.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::PlanMoveJogJoint (const JointVector &
currentJoints, const JointVector & currentVelocity, const std::vector<
double > directions)

Use this method to jog the joints. This method can be used to jog the joints as in
teleoperation. When a joint is set to jog, it accelerates to its maximum velocity and coasts
until another PlanMoveJogJoint() or a Stop() is called.
Parameters:

currentJoints The current joint state of the manipulator in Radians.
currentVelocity The current velocity state of the manipulator in Rad/s.
directions A vector of length DOF. The valid values are -1 to 1 with each value
corresponding to one joint. If the value is negative, the axis will decelerate from its current
velocity to a of its maximum negative velocity as determined by the velocity limits and
velocity scale. For example, a value of -0.5 will decelerate to 50% of the maximum
velocity in the negative direction. Similarly, a positive value will accelerate to a of its
maximum positive velocity (once again determined by hardware limits and velocity scale).
If the value is 0, the axis will decelerate to a zero velocity.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::PlanMoveVia (const JointVector
_currentJoints, std::vector< Xform > viaPoints, double moveTime,
MPViaType viaType = FlyThrough)

Generates a Via Trajectory through multiple End-Effector positions. This method will generate
a trajectory through a number of target End-Effector positions.
Parameters:

currentJoints This is the current position of the manipulator in Radians.
viaPoints A vector of Xform Via Positions.
moveTime The move time to complete the motion.
viaType Determines the method of interpolation through the via points. Options are FlyBy
or FlyThrough. In FlyBy mode, straight line trajectories will be calculated between each
via point, and then the transitions between two straight lines will be blended (i.e. "cutting
the corner"). In FlyThrough mode, the generated trajectory will pass through each via
point, but will also generate some overshoots. Default value is FlyThrough.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::PlanMoveVia (const JointVector
_currentJoints, std::vector< Vector > viaPoints)

 255

Generates a Via Trajectory through multiple joint positions. This method will generate a
trajectory through a number of target joint positions.
Parameters:

currentJoints This is the current position of the manipulator in Radians.
viaPoints A vector of Joint Via Positions (in Radians). The generated path will pass
through these positions.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::PlanMoveViaGeometric (const JointVector
_currentJoints, std::vector< CurveParameter > viaPoints, double
moveTime)

Generates a Via Trajectory through multiple End-Effector positions using geometric-based
constraints. This method will generate a trajectory through a number of target End-Effector
positions with defined geometric constraints.
Parameters:

currentJoints This is the current position of the manipulator in Radians.
viaPoints A vector of CurveParameter objects defining the desired geometric constraints.
moveTime The move time to complete the motion.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetAccelerationScale (double scale)

Use this to set the Acceleration Scale for the MotionPlanner. This value sets the of max
hardware accelerations (as set in the constructor) to use for planning trajectories. This
applies to the joint limits for both point-to-point and teleoperation motions. For Cartesian
motions, this will affect the hand acceleration limits provided in the constructor that are used
for jogging.
Parameters:

scale The desired acceleration scale. This value must be greater than 0 and less than or
equal to 1. A value of 1 will use the maximum hardware acceleration in trajectory
planning. The default value is 0.5.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetBasePose (const Xform & basePose)
[inline]

Use this to set the base pose of the manipulator.
Parameters:

basePose The desired manipulator base pose.
Returns:

True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetCartesianControlMode
(CartesianCoordinateMode _coordMode) [inline]

 256

Use this method to set the Cartesian Coordinate mode for teleoperation. This method can be
used to switch between controlled the EEF in World coordinates or Tool coordinates for
teleoperation using the PlanMoveJogCartesian() method. Note: this method will not change
the way point-to-point moves are performed.
Parameters:

_coordMode This can be set to World or Tool.
Returns:

True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetCycleRate (double rate) [inline]
Use this to set the cycle rate of the manipulator controller.
Parameters:

rate The desired cycle rate in hz. The default value is 100. This value can be changed
anytime the trajectory status is Inactive.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetJointPosition (const JointVector & joints)
[inline]

Use this to set the current joint/Cartesian states of the robot. This method will update all
internal kinematics using the provided joint configuration. For revolute joints, the values
should be in radians. For prismatic joints, the values should be in the same units as the DH
parameters.
Parameters:

joints The desired manipulator joint configuration.
Returns:

True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetRampTime (double rampTime)

Use this method to set the ramp time for Cartesian motions. This method sets the of the
trajectory time to use for the acceleration/deceleration motions for Cartesian . As this value
increases, the start-up/slow-down will become smoother but the coast velocity will increase.
Parameters:

rampTime Valid range is 0-0.5. The default setting is 0.15.
See also:

SetTrajectoryShape()
Returns:

True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetSpeedScale (double scale) [inline]

Use this to set the Speed Scale for the MotionPlanner. This method can be used to slow
down the motions for debugging/testing purposes. When the speed scale is set, all
subsequent motions (both point-to-point and teleoperation) will be scaled slower based on
this value. For example, if the speed scale is set to 0.5, all subsequent motions will execute in

 257

exactly twice the time. Note: this value works on top of the velocity/acceleration scales set in
SetVelocityScale(float scale) and SetAccelerationScale(float scale). It is mainly designed for
testing new trajectories at slower, safer speeds.
Parameters:

scale The desired speed scale. This value must be greater than 0 and less than or equal
to 1. A value of 1 represents a full-speed motion.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetToolPose (const Xform & toolPose)
[inline]

Use this to set the tool pose of the manipulator.
Parameters:

toolPose The desired manipulator tool pose.
Returns:

True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetTrajectoryShape (TrajectoryShapeType
shape)

Use this method to switch between Trapezoidal and S-Curve velocity profiles. This method
changes the shape of the velocity profile during the acceleration period. Trapezoid uses a
constant acceleration profile while SCurve uses a smoother acceleration profile. For joint
interpolated motions, the amount of time used to acceleration/deceleration is based on
provided limits data. For Cartesian interpolated motions, the amount of time used for
acceleration/deceleration can be set using the SetRampTime() method.

Parameters:

shape This can be set to Trapezoid or SCurve. The default setting is Trapezoid.
See also:

SetRampTime()
Returns:

 258

True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::SetVelocityScale (double scale)

Use this to set the Velocity Scale for the MotionPlanner. This value sets the of max
hardware velocities (as set in the constructor) to use for planning trajectories. This applies to
the joint limits for both point-to-point and teleoperation motions. For Cartesian motions, this
will affect the hand velocity limits provided in the constructor that are used for jogging.
Parameters:

scale The desired velocity scale. This value must be greater than 0 and less than or
equal to 1. A value of 1 will use the maximum hardware velocity in trajectory planning.
The default value is 0.95.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

bool OSCAR::MotionPlanner::Stop (const JointVector & currentJoints,
const JointVector & currentVelocity, bool fastest = true)

Use this method to stop the manipulator motion. This method will decelerate each individual
axis to a velocity of 0. If called during a Cartesian move, the robot will not continue in a
straight line motion. If called during a jogged move, the robot will stop its motion and return a
TrajectoryComplete.
Parameters:

currentJoints The current joint state of the manipulator in Radians.
currentVelocity The current velocity state of the manipulator in Rad/s.
fastest If set to true, the manipulator will ignore the Speed Scale value and stop the
manipulator as fast as possible. If set set to false, the manipulator will coast to a slower
stop if the Speed Scale value is less than 1.

Returns:
True if no error. False if an error. Call GetError() for detailed error information.

Motion Planner File Documentation
MotionPlanner.h File Reference
#include "Math/Vector.h"
#include "InverseKinematics/IKJacobian.h"
#include "InverseKinematics/KinematicsHandler.h"
#include "PathPlanning/PathPlanner.h"
#include "MotionPlanning/MotionPlanningErrors.h"
#include "Dynamics/IDSANewtonEuler.h"

Include dependency graph for MotionPlanner.h:

 259

Namespaces
• namespace OSCAR

Enumeration Type Documentation
enum MPTrajectoryType

Enumeration values:
JointInterpolated
CartesianInterpolated
JointInterpOrientation

enum MPViaType

Enumeration values:
FlyBy
FlyThrough

 260

REFERENCES
[1] Abhyankar, S. S, and Bajaj, C. L., “Automatic Parameterization of Rational Curves

and Surfaces III: Algebraic Plane Curves”, ACM Transactions on Graphics, Vol. 5,

1988.

[2] Abhyankar, S. S, and Bajaj, C. L., “Automatic Parameterization of Rational Curves

and Surfaces IV: Algebraic Space Curves”, ACM Transactions on Graphics, Vol. 8,

No. 4, October 1989.

[3] Angeles, J., Rojas, A., and Lopez-Cajun, C. S., “Trajectory Planning in Robotics

Continuous-Path Applications”, IEEE Journal of Robotics and Automation, August

1988.

[4] Bahr, B., and Xiao, X., and Krishnan, K., “A Real-Time Scheme of Cubic

Parametric Curve Interpolations for CNC Systems”, Computers In Industry, Vol.45,

2001.

[5] Bajaj, C. L. and Xu, G., “A-splines: local interpolation and approximation using Gk-

continuous piecewise real algebraic curves”, Computer Aided Geometric Design,

18:3(2001), 149-173.

[6] Bajaj, C. L. and Xu, G., “Regular algebraic curve segments (III) – applications in

interactive design and fitting”, Computer Aided Geometric Design, 16:6(1999),

557-578.

[7] Barsky, B. A. and Beatty, J. C., “Local Control of Bias and Tension in Beta-

splines”, ACM Transactions on Graphics, Vol. 2, No. 2, April 1983.

[8] Barsky, B. A and DeRose, T. D., “Geometric Continuity of Parametric Curves:

Three Equivalent Characterizations”, IEEE Computer Graphics and Applications,

v.9 n.6, p.60-68, November 1989.

[9] Barsky, B. A and DeRose, T. D., “Geometric Continuity of Parametric Curves:

Constructions of Geometrically Continuous Splines”, IEEE Computer Graphics and

Applications, v.10 n.1, 1990.

[10] Barsky, B.A., "Parametric Bernstein/Bezier Curves and Tensor Product Surfaces,"

EECS Department, University of California, Berkeley, Tech. Rep. UCB/CSD-90-

571, Aug. 1990.

 261

[11] Bishop, R. L., “There is more than one way to frame a curve.” Amer. Math.

Monthly, 82(3):246-251, March 1975.

[12] Chen, H., Sheng, W., Ning, X., et al., “Automated Robot Trajectory Planning for

Spray Painting of Free-Form Surfaces in Automative Manufacturing, “ Proceedings

of IEEE International Conference on Robotics and Automation, 2002.

[13] Craig, J. J., 1989, Introduction to Robotics, Addison Wesley, Massachusetts.

[14] DeRose, T. D. and Barsky, B. A., “Geometric Continuity, Shape Parameters, and

Geometric Constructions for Catmull-Rom Splines”, ACM Transactions on

Graphics, Vol. 7, No. 1, January 1988.

[15] Dyllong, E., and Visioli, A., “Planning and Real-Time Modification of a Trajectory

Using Spline Techniques”, Robotica, Vol. 21, 2003.

[16] Frost, P., 1973, An Elementary Trestise on Curve Tracing, Fifth Edition, Chelsea

Publishing Company, New York.

[17] Gallier, J., 2000, Curves and Surfaces in Geometric Modeling: Theory and

Algorithms, Morgan Kaufmann Publishers, San Francisco, California.

[18] Griffiths, P. A., 1989, Introduction to Algebraic Curves, American Mathematics

Society, Providence, RI.

[19] Hanson, Andrew, “Parallel Transport Approach to Curve Framing”, Indiana

University Computer Science Department, 1995.

[20] Hanson, Andrew, “Quaternion Frenet Frames”, Technical Report 407, Indiana

University Computer Science Department, 1994.

[21] Hanson, Andrew, Visualizing Quaternions, Morgan-Kaufmann/Elsevier, 2006.

[22] Hofmeyer, M. E. and Barsky, B., “Rational Continuity: Parametric, Geometric, and

Frenet Frame Continuity of Rational Curves”, ACM Trans. on Graphics, vol 8, 4,

1989.

[23] Kapoor, C. and Tesar, D., 1996, “A Reusable Operational Software Architecture for

Advanced Robotics,” Ph. D. Dissertation, University of Texas at Austin.

[24] Kapoor, C. and Tesar, D. 1998, “A Reusable Operation Architecture for Advanced

Robotics,” Proceedings of the Twelfth CISM-IFToMM Symposium on the Theory

and Practice of Robots and Manipulators.

 262

[25] Kim, J.-H., Ryuh, B.-S., and Pennock, G. R., “Development of a trajectory

generation method for a five-axis NC machine”, Mechanism and Machine Theory,

Vol. 36, 2001.

[26] Kreyszig, Erwin, Differential Geometry, New York, Dover Publications, 1991.

[27] Lambert, J. M., Mantegh, I., and Perron, C., “3D Path Planning and Real-Time

Simulation for Robot Manipulators with Applications to Aerospace

Manufacturing”, Proceedings of DETC 2004.

[28] Lin, C-S., Chang, P-R.; Luh, J.Y.S., “Formulation and optimization of cubic

polynomial joint trajectories for mechanical manipulators”, IEEE Conference on

Design and Control, 1982.

[29] Lloyd, J. and Hayward, V., “Real-Time Trajectory Generation Using Blend

Functions”, IEEE International Conference on Robotics and Automation, 1991.

[30] Manocha, D., “Regular Curves and Proper Parameterizations”, Proceedings of the

international symposium on Symbolic and algebraic computation, 1990.

[31] Manocha, D. and Canny, J., “Detecting Cusps and Inflection Points in Curves”,

Computer Aided Geometric Design, 1992.

[32] March, P. S., “Criteria-Based Path Planning”, MS Thesis, The University of Texas

at Austin, 2004.

[33] Mujtaba, M. S., “Discussion of Trajectory Calculation Methods”, Stanford

University, Artificial Intelligence Laboratory, AIM 285.4, 1977.

[34] Paul, R.P., “Manipulator Cartesian path control,” IEEE Transactions on Systems,

Man, and Cybernetics, Nov. 1979.

[35] Pauluszny, M., and Patterson, R. R., “Geometric Control of G2-cubic A-splines”,

Computer Aided Geometric Design, Vol. 15, 1998.

[36] Pfeiffer, F, and Johanni, R., “A Concept for Manipulator Trajectory Planning”,

IEEE Journal of Robotics and Automation, April 1987.

[37] Plessis, L. J. and Snyman, J. A., “Trajectory Planning through Interpolation by

Overlapping Cubic Arcs and Cubic Splines”, Internation Journal for Numerical

Methods in Engineering, Vol. 57, 2003.

 263

[38] Rajan, Ratheesh. “Foundation Studies for an Alternate Approach to Motion

Planning of Dynamic Systems”, MS Thesis, 2001.

[39] Ryuh, B. S. and Pennock, G. R., “Accurate Motion of a Robot End-Effector using

the Curvature Theory of Ruled Surfaces”, ASME Journal Mech., Transm., Autom.

Des., Vol. 110, 1986.

[40] Samuel, A. E., and Burvill, C. R., “Tracing Surfaces with a Robot Manipulator”,

Proceedings of IEEE International Conference on Advanced Robotics, 1991.

[41] Shoemake, Ken. “Animating Rotation with Quaternion Curves”, ACM

SIGGRAPH 19, 3, 245-254.

[42] Shin, K., and McKay, N. D., “Minimum-Time Control of Robotic Manipulators

with Geometric Path Constraints”, ”, IEEE Transactions on Automatic Control,

1985.

[43] Shin, K., and McKay, N. D., “Selection o f Near-Minimum Time Geometric Paths

for Robotics Manipulators”, IEEE Transactions on Automatic Control, 1986.

[44] Siedel, H.-P., “Polar Forms for Geometrically Continuous Spline Curves of

Arbitrary Degree”, ACM Transactions on Graphics (TOG), v.12 n.1, p.1-34, Jan.

1993.

[45] Simon, D., and Isik C., “Efficient Cartesian Path Approximation for Robots Using

Trigonometric Splines”, Proceedings of the American Control Conference, June

1994.

[46] Suh, S.-H., Woo, I.-K., and Noh, S.-K., “Development of An Automatic Trajectory

Planning System (ATPS) for Spray Painting Robots”, Proceedings of IEEE

International Conference on Robotics and Automation, 1991.

[47] Tesar, D., The Generalized Concept of Three Multiply Separated Points in Coplanar

Motion. J. Mechanisms, 1967.

[48] Tesar, D., The Generalized Concept of Four Multiply Separated Points in Coplanar

Motion. J. Mechanisms, 1967.

[49] Tesar, D. and Sparks, J. W., The Generalized Concept of Five Multiply Separated

Points in Coplanar Motion. J. Mechanisms, 1968.

 264

[50] Tesar, D., and Matthew, G., “The Dynamic Synthesis, Analysis, and Design of

Modeled Cam Systems,” Lexington Books, D. C. Heath & Company, 1976.

[51] Thomas, M. and Tesar, D. 1982 “Dynamic Modeling of Serial Manipulator Arms,”

Journal of Dynamic Systems, Measurement, and Control, Vol. 102, pp. 218-228.

[52] Thompson, S.E.; Patel, R.V., “Formulation of joint trajectories for industrial robots

using B-splines.” IEEE Transactions on Industrial Electronics, 1987.

[53] Ting, K.-L., Zhang, Y., and Bunduwongse, R., “Characterization and Coordination

of Point-line Trajectories”, ASME Journal of Mechanical Design, Vol. 127, May

2005.

[54] Volpe, R., “Task Space Velocity Blending for Real-Time Trajectory Generation”,

IEEE Interation Conference on Robotics and Automation, 1993.

[55] Walker, R. J., Algebraic Curves, Princeton University Press, 1950.

[56] Watanabe, K., “Application of Natural Equations to Synthesis of Path Generating

Mechanisms”, Mechanism and Machine Theory, Vol. 27, 1992.

[57] Wu, C.-H., and Jou, C.-C., “Design of a Controlled Spatial Curve Trajectory for

Robot Manipulators”, Proceedings of IEEE 27th Conference on Decision and

Control, 1988.

[58] Wu, C.-H., and Jou, C.-C., “Planning and Control of Robot Orientional Path”, IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, 1989.

[59] Zha, X. F., “A New Approach to Generation of Ruled Surfaces and its Applications

in Engineering”, International Journal of Advanced Manufacturing Technology,

1997.

[60] Zha, X. F., “Optimal Pose Trajectory Planning for Robot Manipulators”,

Mechanism and Machine Theory 37, 2002.

[61] Zha, X. F., and Chen, X. Q., “Trajectory Coordination Planning and Control for

Robot Manipulators in Automated Material Handling and Processing”, International

Journal of Advanced Manufacturing Technology, 2004.

[62] Zha. X. F. and Du, H., “Generation and Simulation of Robot Trajectory in a Virtual

CAD-Based Off-Line Programming Environment”, International Journal of

Advanced Manufacturing Technology 17, 2001.

 265

[63] Zhang, Q. G., and Greenway, R. B., “Development and implementation of a

NURBS curve motion interpolator”, Robotics and Computer-Integrated

Manufacture, Vol. 14, 1998.

 266

VITA

Peter Setterlund March was born in Worcester, Massachusetts on February 21st ,

1978. After graduating from Maryville High School in Maryville, Tennessee, he enrolled

in the Georgia Institute of Technology in Atlanta, GA. He received his Bachelors of

Science in Mechanical Engineering in August, 2001. He then enrolled in the graduate

program at the University of Texas at Austin where he accepted a Graduate Research

Assistantship with the Robotics Research Group. In August 2004, he completed his

Masters of Science in Engineering at The University of Texas at Austin.

Permanent Address: 3205 Knobdale Road

 Nashville, Tennessee 37214

This thesis was typed by the author.

