
 

 

 

 

 

 

 

 

 

Copyright 

by 

Wurong Yu 

2008 

 

 



 
The Dissertation Committee for Wurong Yu Certifies that this is the approved 

version of the following dissertation: 

 

 

Development of a Three-Dimensional Anthropometry System for 

Human Body Composition Assessment 

 

 

 

 

 
Committee: 
 

Bugao Xu, Supervisor 

Alan C. Bovik 

Kenneth R. Diller 

Stephen D. Hursting 

Mia K. Markey 



Development of a Three-Dimensional Anthropometry System for 

Human Body Composition Assessment 

 

 

 

by 

Wurong Yu, B.S., M.S. 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

August 2008 



 

 

 

 

 

Dedicated to my parents and Shujuan



 v

Acknowledgements 

It has been a long journey towards the completion of my Ph.D. study. I could have 

never reached the destination without the support and assistance of many individuals. 

I would like to express my sincerest gratitude to my advisor, Dr. Bugao Xu, for 

the sound guidance and consistent support he has provided me throughout this research. 

His trust, encouragement and understanding helped me overcome many hard times. 

I am deeply indebted to my committee members, Dr. Alan C. Bovik, Dr. Kenneth 

R. Diller, Dr. Stephen D. Hursting and Dr. Mia K. Markey. Without their valued advice 

and constructive criticism, the completion of this dissertation would not have been made 

possible. 

I am very grateful to Dr. Jeanne H. Freeland-Graves and her students for 

experimental design and implementation. Particularly, Reese Pepper assisted me in 

writing the IRB proposal, recruiting subjects and collecting data. Brenna Wozniak and 

Katherine Bontrager also helped conduct the study. Special thanks go to the anonymous 

volunteers for their contribution to this study. 

I am very thankful to my current and former colleagues, Ming Yao, Xun Yao, 

Qingguan Li, Yan Wan, Yaxiong Huang, Yueqi Zhong and Tong Chen, for discussions 

and help. My heartfelt thanks also go to friends in Paul and Judith’s Sunday classes for 

their friendship and encouragement. 

I would like to thank my parents for bearing, raising, shaping and loving me. 

Likewise, I am grateful to my parents-in-law for their love and moral support. I miss all 

my family members in China, and wish I could have spent more time with them. Last but 

not least, I would like to thank my wife, Shujuan, for her love, patience, support and 

understanding.  



 vi

Development of a Three-Dimensional Anthropometry System for 

Human Body Composition Assessment 

 

Publication No._____________ 

 

 

Wurong Yu, Ph.D. 

The University of Texas at Austin, 2008 

 

Supervisor:  Bugao Xu 

 

The prevalence of obesity has made it necessary to develop a convenient, reliable 

and safe tool for timely assessing and monitoring this condition in public health. We 

suggest that three-dimensional (3D) anthropometry can provide a convenient, 

accommodating and comprehensive means to body composition assessment. 

A 3D anthropometry system based on stereo vision technology is developed. To 

make it more portable and affordable, the system is reduced to a two-stance design and 

only uses off-the-shelf components. The system is calibrated in two separate stages: 

camera calibration and 3D registration. The first stage is relatively complicated, but there 

is no need to repeat frequently. Therefore, only 3D registration is required when the 

system is transported. This property contributes to the portability and also reduces cost of 

maintenance. In this system, image acquisition can be completed in 200 ms, which is 

important in reducing artifacts caused by slight body movement. 

However, the computation in stereo vision is complex and intensive, and is still a 

challenge. A two-phase stereo matching algorithm is developed. In the first phase, the 
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foreground is accurately segmented with the help of a predefined virtual interface, and a 

coarse disparity map is generated with block matching. In the second phase, local least 

squares matching is performed in combination with global optimization within a 

regularization framework, so as to ensure both accuracy and reliability. 

To make the 3D data more interpretable and manageable, it is essential to convert 

the raw 3D data to a surface model. For our system, a unique challenge is that there are 

large gaps in the data caused by occlusions. An effective surface reconstruction algorithm 

based on subdivision surface representation is developed. It has been verified that the 

algorithm is reliable in gap closing, accurate in representation, and efficient in data 

compression. 

To make the 3D anthropometry system ready for practical use, a body 

measurement system dedicated to body composition assessment is developed based on an 

earlier system that was designed for applications in apparel fitting. The functions of 3D 

measurement are enhanced by taking advantage of modern graphics hardware. The 

overall performance of the presented system has been evaluated on mannequins and 

human subjects. It has been shown that the measurements are highly repeatable. The 

feasibility of 3D anthropometry in body fat assessment has been demonstrated in 

comparison to air displacement plethysmography and bioimpedance analysis. 
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Chapter 1 
 

Introduction 

1.1 GOALS AND MOTIVATION 

The importance of human body composition research has increased due to the 

prevalence of obesity. Obesity, a chronic disease characterized by an abnormally high 

proportion of body fat, has emerged rapidly as a global epidemic [1]. The spread of 

obesity is not restricted to Western industrialized nations, but also occurring across large 

parts of the developing world. The major concern of obesity is its associated health 

conditions. It has been well established that overweight and obesity increase the risk of 

some serious diseases including Type 2 diabetes, hypertension, coronary heart disease, 

stroke, sleep apnea, osteoarthritis, gallbladder disease, and certain cancers [2, 3]. Obesity 

is also associated with an increased risk of premature death [4]. 

The main aim of assessing body composition in obese is to evaluate the 

proportion of body fat. Obesity can usually be recognized by the overall appearance of 

the body, which means the size and shape of the body provide rich information on the 

degree of adiposity and associated health risk. For example, the body mass index (BMI), 

which is calculated by dividing body weight (in kilograms) by height (in meters) squared, 

is a widely used indicator of body fatness, and adopted by the World Health Organization 

(WHO) to classify obesity [1]. However, we need to realize that BMI is a crude measure 

of total body fat, because the relationship between BMI and fatness varies with 

muscularity, age, gender and ethnicity [2]. In addition to the total amount of fat, the 

distribution of fat is also an important factor in accessing health risk. It is believed that 

excessive abdominal adipose tissue is associated with increased risk of cardiovascular 
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disease and insulin resistance [5, 6]. Thus, with the same BMI, “apple-shaped” obese 

individuals have a higher risk of metabolic disorders than “pear-shaped” ones. For 

abdominal obesity, waist circumference gives a better predictor than BMI [7]. 

To improve screening for obesity, various techniques have been used for more 

direct measurements of the amount and distribution of body fat. For instance, 

Densitometry methods including underwater weighing [8] and air displacement 

plethysmography [9] are accepted as “gold standards” for body density estimate, but their 

accuracy in predicting percent body fat is limited by the two-component (fat and fat-free 

mass) model. Additionally, underwater weighing can be time consuming and 

uncomfortable for the subject. Bioelectrical impedance analysis [10] is a rapid, safe and 

inexpensive method to estimate body fat, but its accuracy depends on the hydration status 

of the subject, and dehydration will result in overestimate of fat mass. Dual-energy X-ray 

absorptiometry [11], X-ray computed tomography [12] and magnetic resonance imaging 

[13] are more sophisticated and reliable techniques, but their significant expense and low 

portability make them almost exclusive to medical setting and clinical research. 

Furthermore, X-ray is ionizing radiation and thus poses the potential risk of cancer from 

repeated scans. Details of these techniques will be reviewed in Chapter 2. 

Considering the prevalence of obesity, a convenient, reliable, safe, and relatively 

inexpensive device is necessary for timely assessing and monitoring fatness in public 

health. Recent studies have shown that three-dimensional (3D) body surface imaging is a 

potential alternative to assess body fat or predict risk of metabolic syndrome [14]. This 

kind of imaging device, commonly called a body scanner, captures the surface geometry 

of the human body by using non-contact optical techniques. Theoretically, body scanning 

can take the place of densitometry since the body volume and thus the body density can 

be readily obtained from 3D body surface data. Nevertheless, body scanning is more 
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convenient and accommodating compared to current densitometry techniques. In 

addition, the variables measured in body scanning are not limited to the whole body 

volume, and actually, numerous other anthropometric measures can be extracted 

automatically from a 3D model, such as waist and hip circumferences, sagittal abdominal 

diameter, segmental volumes, body surface area, and so on. Therefore, body scanning can 

be regarded as a comprehensive anthropometry technique. We refer to body measurement 

performed on 3D data as 3D anthropometry. 

Body scanning technologies are maturing, but the application of 3D 

anthropometry for body composition assessment is still in its infancy. The reason is 

multifold. First, body scanning has been widely used in other areas such as clothing and 

animation industries [15, 16], but its potential and value have not been realized by most 

body composition researchers. Secondly, various body scanners are commercially 

available, but their high price and bulky size make them inappropriate for field studies. 

Finally, software systems capable of body composition assessment are rarely available. 

For this reason, there is a need to promote 3D anthropometry for body composition 

research. As a step towards this direction, the purpose of this study was to develop a 

portable, relatively inexpensive 3D anthropometry system that would be readily 

accessible to body composition researchers.  

1.2 STRUCTURES AND CONTRIBUTIONS OF THE DISSERTATION 

The remainder of the dissertation is divided into five chapters. Chapter 2 provides 

background for this research. Obesity and its classification criteria as well as the 

associated complications are reviewed. Current body composition techniques for fat 

assessment are explored. Then the potential and advantages of 3D anthropometry for 

body composition research are discussed. 
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Chapter 3 describes the design of a 3D body scanning system after reviewing 

current major techniques of 3D surface imaging. The system is based on stereo vision 

technology. To reduce the cost of hardware, it is made up of inexpensive off-the-shelf 

components including digital cameras, projectors, and a personal computer. The design 

takes portability into account. A two-stage system calibration method is presented, which 

involves camera calibration and 3D registration. 

The major challenge of the system is to compute 3D surface points from acquired 

images. The problem is called stereo matching and is addressed in Chapter 4. A novel 

two-step stereo matching algorithm is presented. In the first step, the foreground object is 

segmented and a rough disparity map is created simultaneously. In the second step, the 

disparity map is refined within a regularization framework to reach sub-pixel accuracy. 

 Chapter 5 deals with the problem of surface reconstruction. A subdivision 

surface-based algorithm is presented to reconstruct a smooth 3D surface model of the 

human body from incomplete and noisy data. 

In Chapter 6, a body measurement system is developed to estimate the size and 

shape of the reconstructed human body and use the measures to assess body fat. 

Numerous anthropometric parameters can be extracted automatically. The parameters 

include lengths, circumferences, whole body volume and surface area, and segmental 

volumes. A pilot study is carried out to test the accuracy and precision of the system. 

Chapter 7 offers a conclusion and discussion of future study. 
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Chapter 2 
 

Background 

2.1 INTRODUCTION 

For the first time in human history, the population of overweight is greater than 

the population of malnutrition in the world [17]. Thus, it is not surprising that body fat 

assessment has become the primary focus of body composition researchers. Body fat 

assessment plays an important role in weight management and obesity monitoring in 

public health. In this chapter, we first give a brief review on overweight and obesity and 

associated risks of health complications. Then we examine current methods of body fat 

assessment. Finally, we propose 3D anthropometry as a potential alternative technique 

for body fat assessment. 

2.2 OVERWEIGHT AND OBESITY 

2.2.1 Classification and Epidemiology    

Since precise measure of body fatness is difficult, body mass index (BMI) has 

been traditionally used as a surrogate to classify overweigh and obesity. According to the 

criteria recommended by the World Health Organization (WHO) [1], a BMI of at least 25 

kg/m2 is defined as overweight, and a BMI of at least 30 kg/m2 as obesity. BMI has been 

used as a general guide to monitor trends in the population. The prevalence of obesity is 

high and continuing to increase in industrialized countries. Take the U.S. as an example. 

In 2003-2004, among adults age 20–74 years, 67% of Americans are overweight, and 

34% are obese, according to data from the National Health and Nutrition Examination 

Survey (NHANES) [18], as shown in Figure 2.1. The data also indicate that the 

prevalence of obesity has increased significantly over last three decades considering that 



 6

only 15% of adults were obese in the period of 1976 to 1980, while the overweight but 

not obese population is relatively stable. The proportion of overweight has also increased 

significantly in children since the 1970s. With economic growth and urbanization, the 

prevalence of overweight and obesity is soaring rapidly in the developing world as well, 

and has joined malnutrition and infectious diseases as major public health problems. 

Today, among the world population of 6.6 billion, more than 1.1 billion adults are 

overweight and 312 million of them are obese, and 10% of children are overweight or 

obese [19]. 

 

Figure 2.1: The prevalence of overweight and obesity in the U.S. Reprinted from [18].  
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2.2.2 Health Risks 

Essential fat is important for maintaining normal functions of the body, but excess 

fat caused by undesirable positive energy balance can increase health risks for numerous 

diseases including hypertension, Type 2 diabetes and coronary heart disease [2, 3, 20-26]. 

In addition, the distribution of fat is as important as total fat amount in determining the 

risks associated with obesity. It has been well established that excess abdominal fat is a 

strong, independent risk factor for metabolic complications [5, 6]. The measurement of 

waist circumference provides a simple and convenient method for assessing abdominal 

obesity (also called central obesity) and associated risks [7]. But populations differ in the 

amount of abdominal fat at a particular waist circumference, so a universal cutoff point 

for risk prediction does not exist. The sex-specific cutoff points adopted by WHO are 102 

cm for men and 88 cm for women in Caucasians [1]. Different criteria should be used for 

distinct racial groups. The relative disease risks associated with BMI and waist 

circumference are listed in Table 2.1, which is used in the clinical guidelines released by 

the National Institutes of Health (NIH) [2]. NIH uses the same classification system of 

overweight and obesity as WHO does, except it refers to overweight as a BMI between 

25.0 and 29.9 kg/m2 while WHO’s definition of overweight includes obesity. 

We give a brief review of obesity-related health consequences, which range from 

increased risk of premature death to serious chronic diseases that reduce overall quality 

of life. Here details of underlying pathophysiologic mechanisms are ignored since they 

are beyond the scope of this dissertation. The risk of premature death elevates with the 

increasing level of BMI in obese people. The risk of mortality increases by 30% at a BMI 

above 30 kg/m2, and by at least 100% at a BMI above 40 kg/m2, compared to people with 

a healthy weight [27]. Each year, about 300,000 deaths in the U.S. are related to obesity 
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Table 2.1: Classification of overweight and obesity by BMI, waist circumference and 
associated disease risk in Caucasian adults. 

 
Disease risk* relative to normal 
weight and waist circumference 

 
BMI (kg/m2) Obesity 

Class 
Men ≤ 102 cm 

Women ≤ 88 cm 
> 102 cm 
> 88 cm 

Underweight < 18.5  — — 

Normal† 18.5–24.9  — — 

Overweight 25.0–29.9  Increased High 

Obesity 30.0–34.9 I High Very high 

 35.0–39.9 II Very high Very high 

Extreme obesity ≥ 40 III Extremely high Extremely high 

* Disease risk for Type 2 diabetes, hypertension, and cardiovascular disease. 

† Increased waist circumference can also be a marker for increased risk even in persons 

of normal weight. 

Adapted from [2]. 

 

[27, 28]. Obesity, especially central or visceral obesity, is strongly associated with 

increased insulin resistance and glucose intolerance, which are precursors to Type 2 

diabetes. It has been estimated that over 80% of people with diabetes are overweight or 

obese [27]. Overweight individuals are particularly prone to have hypertension and 

hyperlipidemia, which can lead to coronary heart disease and stroke. It has been 

estimated that more than 85% of hypertension cases arise in individuals with overweight 

or obesity [29]. Additionally, obesity is also associated with an increased incidence of 

respiratory problems (sleep apnea and asthma), reproductive complications, and some 

types of cancer including endometrial, colon, gall bladder, prostate, kidney, and 

postmenopausal breast cancer [2, 29]. 
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2.3 CURRENT METHODS FOR BODY COMPOSITION ASSESSMENT 

BMI plays an important role in screening and monitoring overweight and obesity 

in adults at population level, but it should be used with caution when evaluating an 

individual’s adiposity [2]. BMI may not reflect actual body fat, because it cannot 

distinguish body fat from muscle mass. In addition, the relationship between BMI and 

body fatness varies between men and women, but the classification based on BMI is not 

sex-specific. Further, a given BMI may not correspond to the same adiposity among 

different racial groups. Therefore, to better assess health risks associated with obesity, 

body composition methods should be used to estimate body fatness more directly. 

2.3.1 Body Composition Models 

Prior to investigating current techniques for body composition assessment, we 

first examine body composition models. 

The central model in body composition research is the five-level model in which 

all components of the body mass are organized at each of the five levels—atomic, 

molecular, cellular, tissue-organ, and whole body [30]. Within the five levels, the 

molecular level is especially important since it is the basis of various methods for body 

composition assessment. Body composition at this level is described in Figure 2.2. At the 

molecular level, major components of the body mass include fat, water, protein, 

carbohydrates, and minerals. Total body water can be further divided into extracellular 

and intracellular water, and minerals can be further classified into soft tissue minerals and 

bone minerals. The sum of all components except fat is called fat-free mass. The 

remainder is conventionally called lean soft tissue when the component of bone minerals 

is separated from fat-free mass. 
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Figure 2.2: Body composition at the molecular level. Adapted from [30]. 

 

At this point, the definition of fat should be emphasized. Fat, lipid and adipose 

tissue are sometimes used interchangeably, but they are distinct [31]. In body 

composition studies, fat specifically refers a group of molecules called triglycerides. Yet 

lipids encompass not only triglycerides, but also fatty acids and their derivatives as well 

as cholesterol. So the definition of lipid is broader than that of fat. Fat is also different 

from adipose tissue; the latter is a concept at the tissue-organ level. The major component 

of adipose tissue is fat, but adipose tissue is also made up of other molecules including 

proteins, minerals, water and nonfat lipids. On the other hand, although fat exists 
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primarily in adipose tissue, it is also found somewhere else such as liver and skeletal 

muscle.     

2.3.2 Underwater Weighing 

Underwater weighing (UWW) [8], also called hydrodensitometry (HD) is a means 

to estimate body density (Db) by measuring total body volume from the water displaced 

by the body when it is fully submerged. According to Archimedes’s principle, the weight 

of displaced water is equal to the loss of body weight in water. Thus, the body volume, 

which equals the volume of displaced water, can be calculated by 

 ( ) wwa DWWBV −= , (3.1) 

where aW  and wW  are the body weight in air and water, respectively. The effect of lung 

volume should be accounted. If the underwater weight is measured after a maximal 

expiration, then the residual lung volume (RV) should be measured. RV can be measured 

simultaneously with UWW using the oxygen dilution technique [32]. Additionally, the 

volume of gas in the gastrointestinal tract (VGI) is taken into account. VGI is small and 

usually approximated with a constant value (100 ml) [33]. Then the body density is 

calculated as 

 ( )GI

a
b VRVBV

W
D

+−
= . (2.2)  

If we assume the body is composed of fat and fat-free mass (FFM) and their 

densities are constant, then the percentage of body fat (%BF) can be calculated by 

 100% ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= B

D
ABF

b

,  (2.3) 

where A  and B  are derived from the assumed fat density ( FD ) and FFM density 

( FFMD ). FD  is relatively stable and usually set as 0.9 kg/L. But slightly different values 

of FFMD  appear in the literature. In Siri’s equation [34], 



 12

 10050.495.4% ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

bD
BF , (2.4) 

where 1.1=FFMD kg/L is used. The other commonly used equation was proposed by 

Brozek [35], 

 100412.4570.4% ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

bD
BF . (2.5) 

A limitation of the two-component-based equations is that they assume the FFMD  

remains a constant, but in fact there is considerable interindividual variation [31]. The 

principle of UWW is simple, but this technique is not convenient, is stressful to the 

participant, and is difficult for certain populations such as small children, very old or sick 

people to perform. 

2.3.3 Air Displacement Plethysmography 

Recently, air displacement plethysmography (ADP) [9], commercially available 

as the BodPod (Life Measurements Instrument, Concord, CA), has been introduced as an 

alternative to UWW for body volume measurement. The BodPod is a closed dual-

chamber plethysmography filled with air. While the subject is sitting in the test chamber, 

a moving diaphragm between the two chambers oscillates to induce pressure 

perturbations in both chambers, and then the air volume of the test chamber is determined 

by measuring changes in pressure. The body volume of the subject can be calculated by 

subtraction of the chamber volume when it is empty. However, additional corrections are 

required for the body volume since air close to skin and in the thoracic channel (under 

isothermal conditions) is more compressible than the rest of air in the chamber (under 

adiabatic conditions). The thoracic gas volume can be measured using a breathing tube 

attached to the BodPod or estimated by sex-specific prediction equations [36]. The 
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artifact caused by air close to skin is adjusted by estimating the body surface area from 

the Dubois formula [37]. 

Once body volume is obtained, body density can be calculated, and percent body 

fat can be estimated from the same equations as used in UWW. ADP is more convenient 

and accommodating than UWW, but the expense limits its use.  

2.3.4 Anthropometry 

The skinfold (SKF) method [38, 39] assumes there are interrelationships among 

subcutaneous fat, internal fat, and whole body density. Percentage body fat is estimated 

by measuring skinfold thickness at several sites. 

Anthropometry [40-43] predicts percentage body fat from circumferences, 

segment lengths and, in some cases, skeletal diameters, in addition to height and weight. 

SKF measures can be used in combination with anthropometry, but the predictive 

accuracy of anthropometric equations is not greatly improved by adding SKF measures. 

Moreover, anthropometric equations using only circumferences estimate body fatness 

more accurately than SKF in obese adults [44]. 

2.3.5 Bioimpedance Analysis 

Bioimpedance analysis (BIA) [10, 45, 46] applies the principle of contrast of 

electric impedance of different tissues. Lean soft tissue is a good conductor because it 

contains a large amount of water and dissolved electrolytes, whereas fat and bone have 

relatively poor conductance properties. BIA usually works at a single frequency (50 Hz), 

but also at multiple frequencies [47]. FFM or percentage body fat is estimated using 

population-specific prediction equations that take into account measured impedance as 

well as body weight, height and age. BIA is relatively inexpensive, portable and easy to 
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use, but it is sensitive to hydration status and body geometry (in which water distribution 

differs), thus limiting its usefulness in severe obesity [48]. 

2.3.6 Dual-Energy X-Ray Absorptiometry 

Dual-energy X-ray absorptiometry (DEXA) [11, 49] is based on the fact that the 

attenuations of X-ray through bone, lean soft tissue, and fat are different, and the 

differences in the attenuation properties for tissues decrease with increasing photon 

energy. The amount of different tissues can be estimated by the transmittance rates of X-

ray at dual energies, typically 40 and 70 keV [11]. It is sometimes considered as a three-

component method. The image of a whole-body scan is analyzed by a computer to 

estimate the proportions of bone, fat and lean soft content in two steps [50]. First, the 

proportions of bone and soft tissue are derived at pixels that contain bone. Secondly, 

pixels containing bone are excluded to differentiate fat and lean soft mass.  

2.3.7 Computed Tomography and Magnetic Resonance Imaging 

X-ray computed tomography (CT) [12, 51] and magnetic resonance imaging 

(MRI) [13, 52] estimate body composition by imaging internal body structures. CT 

measures the differences in the attenuation of X-ray through different tissues, whereas 

MRI measures the abundance of hydrogen nuclei in different tissues. CT and MRI are 

capable of measuring both total body fat and regional fat distribution. One of the 

important applications of CT and MRI is in abdominal obesity research since they can 

effectively differentiate visceral adipose tissues from subcutaneous adipose tissues [31]. 

2.3.8 Comparison of Methods to Assess Body Composition 

Depending on whether energy intervention with tissues in the body is involved, 

the aforementioned techniques can be classified into two types. The first type includes 

HD, ADP, SKF and anthropometry, where no energy intervention is used. The second 
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type includes BIA, DEXA, CT and MRI, which apply electromagnetic energy such as 

electric field, X-ray, or magnetic field. Among Type II techniques, DEXA, CT and MRI 

provide relatively direct measurements of percentage body fat and fat distribution and are 

the most reliable methods. However, limited availability and high cost make them 

impractical for widespread use. On the other hand, BIA devices are portable and 

inexpensive, but their accuracy has been questioned. Among Type I techniques, HD and 

ADP are accepted as “gold standards” for measuring Db, and they give similar accuracy 

in predicting percentage body fat, where the accuracy is mainly limited by the two-

component body model. SKF and anthropometry are widely used in clinic and field 

studies because they are very simple and inexpensive, but their accuracy depends on the 

prediction equations. 

2.4 3D ANTHROPOMETRY FOR BODY COMPOSITION ASSESSMENT 

The 3D anthropometry technique developed in this work is closely related to Type 

I methods. Based on current development in computer vision technology, the 3D surface 

model of a person in tight undergarments can be reconstructed from several images 

captured by digital cameras [53-55]. Then anthropometric variables can be automatically 

extracted from the 3D model by using dedicated algorithms. The measures include 

height, circumferences, segment lengths, total volume, segmental volumes and surface 

areas. Wells et al. [14] offered a review of the potential of 3D anthropometry in obesity 

research. The technique will provide a more efficient, more objective and more 

comprehensive means to body measurement than conventional tape anthropometry. 

Additionally, it is totally non-contact and non-invasive. Further, the 3D model is 

reusable, so new measures can be extracted if they are required by an anthropometrist 

later on. It also covers densitometry because body volume can be calculated from the 3D 

model, but it is more convenient and accommodating than HD and AP techniques [56, 
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57]. SKF is not considered here because a 3D model cannot give any SKF information, 

but we note that it has been reported that anthropometric prediction equations are better 

than SKF equations for estimating body composition of individuals who are obese [44]. 

3D measurement can be regarded as a generalized anthropometric technique. Its 

relationship with BMI, densitometry and conventional anthropometry is shown in Figure 

2.3. 

 

 

 

Figure 2.3: The relationship of 3D anthropometry with BMI, densitometry and 
traditional anthropometry 
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The proposed technique can also be integrated into some Type II methods and 

will improve their prediction outcome. For example, in current BIA, it is assumed that the 

body is composed of several cylindrical components and their lengths are estimated from 

body height. Obviously, this treatment is oversimplified. But if we take into account the 

actual body size and shape with 3D measurement, a more accurate circuit model can be 

established and thus the prediction equations can be improved. In another example, the 

general procedures of DEXA need measures of body height, weight, and sagittal 

abdominal diameter (SAD) [58]. SAD is a measure of anteroposterior thickness of the 

abdomen at the umbilical level. Research indicates that SAD is an excellent indirect 

measure of visceral fat [59, 60]. With 3D measurement, SAD can be easily obtained. Far 

beyond that, the thickness over the whole body can be computed from a 3D model. If the 

thickness map of the body can be registered with its DEXA image, it can be expected that 

more accurate body fat distribution will be predicted. 

2.5 CONCLUSION 

The prevalence and associated health risks of obesity have been discussed in this 

chapter. Some general concepts related to methods for body composition assessment have 

been reviewed. We have also demonstrated the prospects of 3D anthropometry as a 

comprehensive technique for obesity assessment. 

In the following chapters, a 3D anthropometry system based on stereo vision 

technology will be presented. 
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Chapter 3 
 

Framework Design of a Stereo Vision System 

3.1 INTRODUCTION 

In this dissertation, 3D anthropometry is defined as the study of human body 

measurement using 3D surface imaging techniques. 3D anthropometry has been explored 

since the 1950s. Hertzberg et al. [61] first realized the potential of close-range 

photogrammetry as an anthropometric tool. In the 1970s, researchers worked on the 

Skylab of NASA [62, 63] developed a photogrammetric system to detect the changes in 

body size and shape of astronauts after a flight. The method was called biostereometric 

analysis. Later on, Sheffer and others [64, 65] applied biostereometrics to breast volume 

measurement. However, these earlier photogrammetric systems used film cameras and 

analysis was not automatic. After development, the films were manually analyzed on a 

stereo-plotter to get 3D data points. The manual process was cumbersome and time-

consuming. 

With the development of semiconductor and computing technologies, fully 

automated body surface imaging systems have emerged since the 1980s. These systems 

are commonly called body scanners. One of the earliest body scanners was delivered by 

Cyberware [66] for head scanning. The scanning unit is composed of a laser line 

projector and a camera. It is rotated around 360 degrees to capture a 3D image of the 

subject’s head in about 15 seconds. Later, Cyberware also developed a whole body model 

that consists of four vertically moving scanning units. The LASS scanner is one of the 

first whole body scanners [67]. It uses white light projection instead of laser projection. 

Four vertical lines are projected onto the subject simultaneously and the images are 
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captured by multiple cameras. The system is rotated horizontally to cover the whole body 

in about 60 seconds. To reach whole body scanning, an alternative means is to make the 

subject rotate continuously over 360 degrees while keeping the scanning unit still [68]. 

The body scanner commercially available from TC2 is based on structured light 

projection [69]. The configuration of the original version forms a triangle and is 

composed of six sensors. The latest model NX16 consists of 16 sensors and every four 

sensors are stacked at each corner of the cubic scanning booth to cover partial of the 

body. Each sensor consists of a projector and a camera. The projector casts a sinusoidal 

stripe pattern onto the body. The stripes of the pattern are shifted and multiple images of 

the scene are acquired. The phase at each pixel can be calculated from these images and 

thus depth is determined. A complete scan takes about eight seconds. Similar principles 

have been applied in other systems, such as the body scanners from InSpeck [70]. 

Compared to laser scanning, the most significant advantage of structured light is that no 

moving components are involved in the system since mechanical scanning process has 

been avoided. The major challenge of structured light is that ambiguity can arise if the 

phase difference between the adjacent pixels is larger than π2 , which usually occurs at 

discontinuities of the surface [71]. To resolve the ambiguity, multiple patterns of various 

levels of stripe density are usually used. 

The other category of body scanners is based on the same principle of 

photogrammetry as we mentioned before, but the computation of 3D data is fully 

automatic. For example, Siebert and Marshall [72] described a photogrammetric system 

called C3D with applications in facial, head and breast imaging. 3D data are calculated 

with a multi-resolution correlation-based image matching algorithm. Human skin is not 

rich in texture, which would make image matching fail, so artificial speckle texture is 

projected onto the body with a white light projector to facilitate image matching. A 
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similar strategy has been utilized in the photogrammetric systems commercialized by the 

3dMD company [73]. The strength of this technique is that image acquisition can be as 

fast as within several milliseconds. 

Today, numerous body scanners have appeared on the market, the majority of 

which are based on laser scanning and structured light technologies. According to a 

recent report [74], there are over 20 companies around the world that are delivering 

whole body scanners. Some review articles offer more detailed discussion of body 

scanning technologies. Daanen and van de Water [55] provided an overview of eight 

whole body scanning systems. Istook and Hwang [15] reviewed major body scanning 

systems with focus on applications in apparel industry. 

3D body scanning encompasses a wide range of applications, such as virtual try-

on and mass customization in the clothing industry [15, 74-76], animation in movies and 

computer games [16, 77], breast and facial imaging for the planning and evaluation of 

plastic surgery [78, 79], and body surface area measurement for the determination of 

medication dosage [80]. Body scanning is convenient, rapid, and non-contact, so it is 

suitable for population studies. For example, the CAESER (Civilian American and 

European Surface Anthropometry Resource) project has been undertaken with a goal to 

design better fitting clothes, more comfortable seats in public transportation and more 

ergonomic cars [81]. It was an international anthropometric survey joined by the U.S., 

Canada, Italy and Netherlands, and scanned 8,000 subjects. The SizeUK study scanned 

approximately 11,000 subjects in the U.K. with an intention to improve the sizing system 

[82]. A similar study called SizeUSA is being carried out in the U.S. to obtain scan data 

of at least 12,000 American adults [83]. For a large-scale study, the use of body scanning 

can greatly reduce cost and save time when compared to conventional manual 

measurement [84]. 
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The application of body scanning is still unappreciated as a 3D anthropometry 

method in body composition study. But its success in sizing survey for the clothing 

industry has inspired researchers to consider its potential applications in body 

composition—especially, obesity—research [14]. However, to make body scanning 

accessible to public health, there is a need to develop less expensive and more portable 

body scanners that are suitable for routine use in clinical settings and health clubs. First, 

the cost of whole body scanners has dropped dramatically, but is still relatively high. For 

example, the NX16 model from TC2 costs $40,000 [85], and the WBX model from 

Cyberware costs $200,000 [86]. A body scanner is still a big investment for small 

business. Secondly, portable body scanners are available at present, but they are only 

capable of scanning part of the body, such as head and torso, so the portability of whole 

body scanners still needs improvement. Portability means not only a small size, but also 

the ease of disassembling and assembling as well as the ease of calibration and 

maintenance. Finally, most of current body scanners only output 3D data points, and do 

not provide software for body surface reconstruction and measurement. Even though 

some systems offer built-in functions of body measurement, they are usually designed for 

clothing industry. For body composition analysis and health risk assessment, some 

special measures may be required. For example, body volume measure is rarely 

considered in apparel design, but it is important in body fat assessment.         

In this chapter, we describe the framework of a stereo vision system we have 

developed for 3D anthropometry. Following a brief review of basic principles underlying 

current body scanning techniques, we will present the setup and calibration of our 

system. 
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Figure 3.1: Schematic illustration of laser scanning. 

 

3.2 BASIC PRINCIPLES OF 3D SURFACE IMAGING 

3.2.1 Laser Scanning 

A laser scanning sensor [87, 88] typically includes a laser projector and a camera. 

As shown in Figure 3.1, the laser projector emits a laser beam (plane of light) onto the 

object, and a stripe is formed by intersection of the plane of light with the object surface. 

The image of the laser stripe is captured by a camera. The deformation of the profile 

determines the depth of surface points. The calculation of 3D coordinates is illustrated in 

Figure 3.2. The distance between the laser projector and the camera, b , is called the 

baseline length. If we assume the focal length of the camera is f , and the tilt angle of the 

projector is θ , then the 3D coordinates of an object point ( )ZYXP ,,  can be derived from 

its image coordinates ( )yxp ,  using similarity of triangles [87], 

Laser projector Camera

Image 
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Figure 3.2: Triangulation geometry in laser scanning. Adapted from [87]. 
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The principle is called optical triangulation. 

In laser scanning, in order to cover the full range of an object, a mechanical 

scanning process is needed to sweep the laser stripe across the object. It can be realized 

by moving the whole sensor with a step motor or redirect the laser beam with a rotating 

mirror. 

3.2.2 Structured Light 

As opposed to laser scanning where only a single profile of the surface can be 

obtained at each time, we can project multiple stripes simultaneously onto the object to 

get denser data. This is called structured light [89], as illustrated in Figure 3.3. But 
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multiple stripes would cause ambiguity, to reduce which a sequence of different stripe 

patterns should be used. In Figure 3.3, a binary pattern of eight stripes is used. If we use 0 

to represent a black stripe, and 1 to a white stripe, then we can represent the pattern 

shown in Figure 3.3 as 01010101. If we project sequentially two additional stripe patterns 

with bits 00110011 and 00001111 respectively, then we can find that each stripe can be 

coded with a unique binary number. In this case, only three patterns are needed to code 

eight stripes. In general, n2log  binary patterns are required to code n  stripes. An 

alternative code is called Gray code that is more robust than binary code for structured 

light analysis [90]. For the simple example of eight stripes, the three patterns with Gray 

coding are 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

00001111
00111001
01100011

. We can see that successive numbers of the Gray code differs 

exactly in one bit, so wrong decoding with one bit misread will only cause a 

misplacement of one stripe interval. 

 

 

Figure 3.3: Schematic illustration of structured light. 
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Figure 3.4: Schematic illustration of stereo vision. 

 

For binary or Gray coded pattern projection, the resolution is limited by the 

number of stripes. To overcome this issue, the patterns can be replaced by or used 

together with sinusoid patterns of shifting phases [91]. Often, patterns at different levels 

of resolution are projected. Coarse patterns are used to reduce ambiguity and fine patterns 

to increase accuracy. 

Structured light follows the same triangulation principle as in laser scanning 

except that the tilt angle θ  in Equation (3.1) is obtained from the order of stripes or the 

phase. 

3.2.3 Stereo Vision 

Stereo vision [92, 93] works similar in concept to human binocular vision. As 

shown in Figure 3.4, a second camera is used to replace the projector in structured light. 

Since the two cameras observe the object from slightly different views, the captured left  

Left camera Right camera 

Right imageLeft image 
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Figure 3.5: Basic principle of stereo vision. 

 

and right images are not exactly the same. The relative displacement of the object in the 

two images is called the disparity, which is used to calculate the depth. It is not surprising 

that the underlying principle is still optical triangulation. The basic principle is shown in 

Figure 3.5. As a convention adopted in this dissertation, we use subscripts “ l ” and “ r ” to 

denote the left and right camera, respectively. The position of an object point P  can be 

determined by intersecting two rays c
ll pO  and c

rr pO , where lO  and rO  are called the 

principal points of the left and right cameras, and c
lp  and c

rp  are the projections of P  in 

the corresponding image planes c
lΠ  and c

rΠ . In practice, to simplify the computation, we 

can rectify the images by re-projecting to the specific image planes lΠ  and rΠ  which 

are parallel and equidistant to the baseline rlOO . In this case, the new projections lp  and 

rp  of P  are located in the same horizontal scanline. If the focal length f  and the 

baseline length (distance between the two cameras) b  are known, then the depth of P  

relative to the cameras can be obtained by triangulation based on the geometry illustrated 
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in Figure 3.6. If the origin of the 3D coordinate system is set at the left principal point 

lO , then it follows 
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with a magnification coefficient 

 
rl xx

b
d
bN

−
=−= , (3.3) 

where lr xxd −=  is defined as disparity, and lx  and rx  are relative to the image centers 

lC  and rC , respectively. 

 

 

Figure 3.6: Triangulation geometry in parallel-axis stereo vision. 
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Table 3.1: Comparison of three types of optical triangulation technique. 

 Laser scanning Structured light Stereo vision 

System complexity Moving part Dedicated lighting Relatively simple 

Acquisition speed Slow Fast Very fast 

Computation Easy Intermediate Intensive 

Accuracy Very good Good Good 

 

3.2.4 Comparison of Optical Triangulation Techniques 

We have examined three types of optical triangulation: laser scanning, structured 

light and stereo vision. They share the same fundamental principle: the 3D position of an 

object point is obtained by intersecting two optical rays. It is necessary to compare their 

strengths and limitations so as to choose a proper method for our system. The advantage 

of laser scanning is its high accuracy originated from the sharpness of laser stripes, 

although the accuracy is limited by speckle noise. However, laser scanning requires 

moving parts, so the system is more complex and expensive than the other two types. 

Additionally, a system involving a mechanical moving component is usually less durable 

and more difficult to maintain. Structured light needs dedicated lighting, which makes the 

hardware relatively more complex than stereo vision. In principle, stereo vision is a 

passive method, which means no light source is required. The major challenge in stereo 

vision is that the computation of disparity is hard for a textureless surface. Unfortunately, 

human skin is not rich in texture. Therefore, artificial texture projection is usually applied 

in a practical system. However, the texture projection does not need to be sophisticated 

patterns as in structured light. Data acquisition in stereo vision is very fast because only a 
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pair of images needs to be captured. In contrast, a sequence of images needs to be 

captured in synchronization with pattern projection in structured light. In the case of 

whole body scanning, the speed of image acquisition in structured light can be further 

slowed down, because multiple sensing units in the system cannot work simultaneously, 

otherwise pattern projections from different units may interfere with each other. Rapid 

data acquisition is critical to reduce artifacts caused by body movement. A slight body 

movement of a subject may induce unacceptable inaccuracy in some measures such as 

body volume. Based on the above analysis, we have chosen stereo vision for our 3D 

anthropometry system. A major disadvantage of stereo vision is the computation is 

complex and intensive. A summary of the comparison of the three types of optical 

triangulation technique is offered in Table 3.1. 

3.3 SYSTEM SETUP 

A prototype stereo vision system has been developed in this study. In this section, 

we describe its hardware design. The engineering factors of our major concern are cost, 

portability, and accuracy. To reduce the cost and shorten the duration of development, we 

have used off-the-shelf components including cameras and projectors. The basic unit of 

the system is a stereo head that consists of a pair of cameras and a projector. The 

projector is used to shed artificial texture onto the body. Multiple stereo heads are needed 

for full body imaging. The previous work on a rotary laser scanner indicates that full 

body reconstruction can be made from two scanning units that are placed in front and 

back of the subject, respectively [94].  A similar construction has been used in the study. 

However, two stereo heads are needed to cover each side of the body, due to the limited 

field of view of the cameras and projectors. Therefore, there are a total of four stereo 

heads in the system. The configuration is illustrated in Figure 3.7. The four stereo heads 

are mounted on two steady stands. Compared to some existing whole body scanners, our 
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system is more compact and portable. For instance, the NX16 body scanner from TC2 

consists of 16 scanning units [85]. 

 

 

Figure 3.7: Schematic illustration of the system setup. 

 

A more specific description of the system is given here. We used four pairs of 

monochromatic CMOS cameras (Videre Design, Menlo Park, CA) with a resolution of 

1280 × 960. The focal length of the cameras is 12 mm. The baseline length is set as 9 

mm. The throw ratio was the most important specification to be considered when 

choosing the projectors. The throw ratio of a projector is defined as the projection 

distance divided by the image size. A shorter projection distance for a specific image size 

Camera Projector
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(a smaller throw ratio) means the two stands can be put closer so as to reduce the size of 

the system. We used NEC 575VT LCD projectors (NEC Corp., Tokyo, Japan) since they 

were one of the few types of portable ultra-short throw projector on the market at the 

initiation of this project. At a projection distance of 2.3 m, the image size is 1.5 m × 1.15 

m. Hence, when two such projectors are used together with a slight overlap, the field of 

view can be as large as 1.5 m × 2.0 m, which is large enough for the majority of 

population. 

 

 

Figure 3.8: The prototype stereo vision system. 
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A personal computer with an AMD Athlon™ 2.0 GHz dual-core CPU and 1.0 G 

RAM is used to control the cameras and projectors. The cameras communicate with 

computer via IEEE 1394 Firewire. An NVIDIA GeForce 6500 dual-port graphics card is 

used to send a texture pattern to the projectors through a VGA hub (Gefen Inc., 

Woodland Hills, CA). All components are off-the-shelf and readily available. 

3.4 SYSTEM CALIBRATION 

System calibration includes two phases: camera calibration and 3D registration. In 

camera calibration, we need to estimate the internal parameters of the cameras and 

determine the relative position and orientation between the two cameras in each stereo 

head. In 3D registration, each camera coordinate system is registered to a common world 

coordinate system. 

3.4.1 Camera Calibration 

Camera calibration is a procedure of determining the intrinsic and extrinsic 

camera parameters. The intrinsic parameters correct the distortion induced in each 

individual camera by imperfect lens and lens displacement. The extrinsic parameters 

describe the position and orientation of the each individual camera in a reference 

coordinate system. Based on the extrinsic parameters of the two cameras of a stereo head, 

their relative position and orientation can be determined. The Small Vision System (SVS) 

shipped with the cameras provides standard procedures for camera calibration. Details of 

the implementation are not available, but the principles of camera calibration are 

described in the manual [95]. The intrinsic camera model is closely related to Tsai’s and 

Heikkila and Silven’s models [96, 97]. The intrinsic parameters include the effective 
horizontal and vertical focal lengths ( xf , yf ) of the lens, the principal point ( xc , yc ) 

which describes the decentering of the lens, the radial lens distortion coefficients ( 1κ , 2κ , 
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3κ ), and the tangential lens distortion coefficients ( 1τ , 2τ ). The description of the 

parameters is similar to that in Bouguet’s Calibration Toolbox [98]. The extrinsic 

parameters can be described by a rotation matrix R  and a translation vector t . It 

involves four steps of transformation from the 3D world coordinate to the 2D computer 

image coordinate. 

1. Rigid body transformation from the 3D world coordinates ( )www ZYX ,,  to the 3D 

camera coordinates ( )ZYX ,, , 
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2. Transformation from the 3D camera coordinates ( )ZYX ,,  to the 2D undistorted, 

normalized image coordinates ( )uu yx ,  using perspective projection with pinhole 

camera geometry, 

 ⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

Y
X

Zy
x

u

u 1 . (3.5) 

3. Transformation from the 2D undistorted image coordinates ( )uu yx ,  to the 2D 

distorted image coordinates ( )dd yx , ,  
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where ( ))()( , r
y

r
x DD  describes the radial lens distortion, 
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and ( ))()( , t
y

t
x DD  describes the tangential lens distortion, 

 ( )
( )⎥⎦

⎤
⎢
⎣

⎡
++
++=⎥

⎦

⎤
⎢
⎣

⎡
22

12

22
21

)(

)(

22
22

uuu

uuu
t

y

t
x

yryx
xryx

D
D

ττ
ττ , (3.8) 

where 22
uu yxr += . 
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Figure 3.9: A set of images for camera calibration. 

 

4. Transformation from the 2D distorted image coordinates ( )dd yx ,  to the 2D 

digital image coordinates ( )ff yx , , 
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where the effective focal lengths ( xf , yf ) and the principal point ( xc , yc ) are 

expressed in pixels.  

To make a target for calibration, a checkerboard pattern was plotted and 

impressed to a planar board. The manufacture error was controlled under 0.5 mm. The 

checkerboard pattern includes 9 × 7 blocks, and the size of each block is 61 mm × 61 

mm. The 48 internal corners are used as feature points. Based on our experience, at least 

5 images need to be taken in order to get good results. The target should be placed at 
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different positions and orientations. A set of images captured by one of the cameras are 

shown in Figure 3.9. The SVS system is capable of automatic feature extraction and 

calibration. The calibration error is around 0.15 pixels. The plane-based calibration 

technique was originally proposed by Zhang [99]. 

Once the cameras are calibrated, the image planes can be rectified to follow the 

parallel-axis stereo geometry as shown in Figure 3.6.  The focal length f  and the 

baseline length b  in Equation (3.2) are determined as well. 

3.4.2 3D Registration 

The above camera calibration procedure is performed separately on each 

individual stereo head, and each stereo head has its own camera coordinate system. The 

goal of 3D registration is to transform each camera coordinate system to a common world 

coordinate system so that 3D data from each view can be merged. This transformation 

follows the rigid body model since it does not change the Euclidean distance between any 

points. To determine a rigid body transformation, three non-collinear points are 
sufficient. Let { }3 2, ,1|, =iicX  and { }3 2, ,1|, =iiwX  be the coordinates of three non-

collinear points in the camera and world coordinate systems, respectively. We are looking 

for a transformation of the form 

 tXRX += iciw ,,  , (3.10) 

from the camera to the world coordinate system, where R  is a rotation matrix, and t  is a 

translation vector. It should be clarified that we have abused the notations, and the R  and 

t  are different from that in Equation (3.4). Because there are measurement errors, we can 

only find an optimum solution that will minimize 

 ( )∑
=

+−
3
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2
,,  

i
iciw tXRX . (3.11) 
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Horn [100] presented a closed-form solution to this problem, which is outlined as 

follows. 

1. Refer the points to the centroids, 

 cicic XXX −=′ ,, , (3.12) 

 wiwiw XXX −=′ ,, , (3.13) 

 where cX  and wX  are the centroids of the points in the camera and world 

coordinate systems, respectively. Now the new centroids of the points are 0  in 

both coordinate systems. 

2. Rotate the plane containing the points in the camera coordinate system to make it 

coincidence with the plane containing the points in the world coordinate system. 

 icic ,1,  XRX ′=′′ , (3.14) 

 where 1R  is the rotation matrix that can be determined from the normals of the 

two plane. 

3. Find an in-plane rotation 2R  that we wish to minimize 

 ∑
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′′−′
3

1

2
,2,  

i
iciw XRX . (3.15) 

4. Then, it follows 

 12 RRR = , (3.16) 

 and 

 cw XRXt  −= . (3.17) 

We have designed a target for 3D registration. There are six dots on each side of 

the rig as show in Figure 3.10, and each stereo head needs only three of them. The world 

coordinates of the centers of the dots were manually measured with accuracy higher than 
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Figure 3.10: The target for 3D registration. 

0.5 mm. The images of the target are first rectified, and then the dots are identified and 

sorted. Next, the centers of the dots are estimated. The camera coordinates of each point 

can be calculated by Equation (3.2). 

  3.5 DISCUSSION 

The technology of 3D body scanning is maturing after over 20 years’ 

development. However, there is still a need to make the technology more portable and 

affordable. In this study, a stereo vision-based body scanner has been developed in an 

effort to achieve this goal. The framework of the proposed body scanner has been 

described in this chapter. We have set up a prototype using off-the-shelf components. 

Compared to most commercial body scanners, the construction of our system is relatively 
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simple, since it doesn’t need moving parts and dedicated lighting system. The system can 

be easily disassembled, transported and reassembled. A two-step system calibration 

method has been accomplished. The parameters of each stereo head can remain stable if 

locking lenses are used, so there is no need to repeat camera calibration frequently. 

Hence, we only need to redo the procedure of 3D registration when the system is 

relocated. The 3D registration only requires a very simple target and is easy to operate. 

This property improves the portability of the system and reduces the cost of maintenance. 

It is worthy noting that the size of the prototype is constrained mainly by the throw ratio 

of the projectors. However, we can expect that the system will take less room when 

projectors with shorter throw distance are available. 
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Chapter 4 
 

Stereo Matching 

4.1 INTRODUCTION 

Stereo matching solves the correspondence problem in stereo vision [92, 93]. As 

the most challenging process in a stereo vision system, it has been intensively 

investigated over the last three decades. Lots of progress has been made in this area, but 

the research is still far from complete yet. On the one hand, there still doesn’t exist a 

stereo matching algorithm that is general enough to be applicable under most 

circumstances. On the other hand, stereo vision is an application-oriented problem, and 

objectives and requirements may vary across different systems. Thus, for a specific 

application, we need to choose or develop algorithms that best suit its characteristics and 

requirements, which include the smoothness of the surface, the desired level of geometric 

details, the texture properties of the scene, the required density of data, and the time 

efficiency. 

For the stereo vision system developed in this study, high accuracy is required for 

the purpose of 3D anthropometry. Based on the system setup described in the last 

chapter, a stereo matching algorithm with sub-pixel accuracy is needed to reach the 

quality of 3D data demanded by body measurement. Additionally, because the system has 

been designed to capture the front and back views of the body only, some portions of the 

body are invisible to the cameras. To deal with this issue, we have developed a surface 

reconstruction algorithm (to be presented in the next chapter) that is capable of filling in 

the gaps in 3D data caused by occlusions. However, if the boundaries of the body in each 

view cannot be accurately located, it will be difficult to recover the surface from 
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incomplete data. Therefore, in addition to high accuracy in matching, the algorithm 

should be able to accurately segment the body from the background. In this chapter, we 

present a sub-pixel stereo matching algorithm that can accurately recover the boundaries 

of foreground objects. 

The remainder of the chapter is structured as follows. Section 4.2 provides a brief 

literature review on stereo matching algorithm. Section 4.3 describes details of the 

proposed algorithm. Experimental results are given in Section 4.4. We conclude in 

Section 4.5 with some discussions.  

4.2 REVIEW ON STEREO MATCHING ALGORITHMS 

A large number of stereo matching algorithms have been developed during the 

last three decades, but we only intend to conduct a brief survey of some representative 

methods to demonstrate some basic principles. Interested readers are referred to an early 

review [92] and more recent ones [93, 101]. 

Traditionally, stereo matching algorithms are classified into two categories, i.e., 

area-based and feature-based. But this classification has been insufficient to subsume 

many algorithms developed in recent years. Actually, area-based algorithms only include 

a small class of techniques which measure correlation between patches in the images. 

Instead, we will distinguish an algorithm from two aspects: matching primitives and 

matching strategy.  

4.2.1 Matching Primitives 

We divide matching primitives into two types: dense primitives and sparse 

primitives. Dense primitives are located at every pixel, and include such as image 

intensities [102], intensity gradients [103], phases or filter-bank responses [104-106], and 

so on. Sparse primitives are symbolic features extracted from intensity images, and 



 41

include points of interest [107], edge points [108], edge segments [109], and contours 

[110], to name a few. For dense primitives, local matching costs can be measured by 

squared differences, absolute differences or correlation. For sparse primitives, local 

matching costs are measured by simple comparisons between feature descriptors. The 

algorithms based on sparse primitives only produce sparse disparity maps, and thus 

interpolation is usually required as a post-process to get dense data fields. It is interesting 

to notice that most algorithms in the early review [92] are associated with sparse 

primitives, while most of the modern algorithms covered in the recent surveys [93, 101] 

are based on dense primitives. Such a trend can be explained by the fact that the early 

applications were focused on robot navigation which usually only needs depth 

information from surface contours, while nowadays applications in image-based 

rendering and scene synthesis are receiving more attentions. 

4.2.2 Matching Strategies       

Like many other inverse problems, stereo matching is under-constrained and ill-

posed [111], which means that the solution from local matching between primitives is not 

unique. To obtain a physically plausible solution, a set of a priori assumptions have been 

proposed to impose constraints on the solution space. Some of the commonly used 

assumptions are summarized as follows. 

1. Uniqueness constraint: Correspondence should be unique, which means that each 

primitive should have at most one match. But this is not valid for transparent 

objects. 

2. Continuity constraint: The disparity map is assumed to be piecewise smooth 

except at surface boundaries. 

3. Epipolar constraint: Matching primitives must lie on the corresponding epipolar 

lines that are coincident with scanlines for rectified images. 
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4. Ordering constraint: A left-right relationship of primitives in the left image should 

hold for their correspondences in the right image. But for narrow occlusions, this 

assumption may be violated. 

It is essential to a matching algorithm to effectively utilize these constraints to 

achieve a globally consistent solution, which is called a matching strategy in this 

dissertation. We shall briefly introduce some typical matching strategies. 

Perhaps correlation is the simplest matching strategy which has been used in what 

are traditionally called area-based methods. Such methods assume constant disparities 

within a window centered on a pixel in each image and measure similarity by correlation 

or cross-correlation of image intensities between windows. The disparity with the highest 

similarity will be selected for each pixel. It is critical to choose a suitable window size. A 

large window size is needed to make the solution robust to noise, but a small window size 

is preferred to produce a detailed disparity map. Thus, some methods [112, 113] employ 

a variable window size to adapt to local variations of intensity and disparity. It is obvious 

that disparities are measured locally in this strategy. 

Cooperative algorithms are among the earliest methods motivated by Marr and 

Poggio’s computational theory of human stereopsis [114]. In such algorithms, 

computations are performed by iteratively diffusing support among neighboring match 

values and inhibiting values along similar lines of sight under the continuity and 

uniqueness assumptions. A more globally consistent solution can be obtained by 

diffusing within a 3D local support area defined in the disparity space [115]. 

Stereo matching can also be formulated by minimizing global energy functions 

defined in the disparity space [116]. These energy functions usually include two terms, 

i.e., a data term and a smoothness term. The data term measures how well the disparity 

map agrees with the input images, while the smoothness term imposes the smoothness 
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constraint on the solution. But typically, these energy functions have many local minima, 

and to search for the global minimum is a combinatorial explosion problem which cannot 

be solved in practice. For example, simulated annealing [117] can be used to achieve the 

global minimum in theory, but its practical implementations are very slow. Many 

optimization techniques have been published to approximate the global minimum. 

Although global optimization over the whole image is not practical for current 

computers, its implementation along a single scanline is practically feasible. Dynamic 

programming [118] is such a technique in which matching is performed by searching for 

a path with minimum cost in a matching space subject to ordering and uniqueness 

constraints, where the matching space is defined as a two-dimensional (2D) space with 

axes representing the corresponding left and right scanlines. But the major drawback of 

dynamic programming is that inter-scanline consistency cannot be guaranteed. Several 

techniques have been presented to alleviate this problem. For example, vertical 

discontinuities were taken into account by iterations [102]; a two-stage dynamic 

programming technique was reported in [119]. 

In contrast to 1D-optimization of DP, graph-cuts/maximum-flow [120-122] and 

belief propagation [123, 124] are two state-of-the-art approaches that perform 

optimization in 2D. In graph-cuts, the matching costs and smoothness constraints are 

associated to edges in a flow graphs as capacities, and stereo matching is converted into a 

maximum-flow/minimum-cut problem. In belief propagation (BP), stereo matching is 

formulated as a Bayesian inference problem where the maximum a posteriori (MAP) 

estimate is obtained by iterative message propagation in a network. For loopy networks 

such as Markov random fields, BP can only give approximate solutions [125], and Pearl’s 

algorithm [126] is widely used. The results given by graph-cuts and BP are comparable, 
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and are more globally consistent than those by dynamic programming, but they have a 

much more extensive computation. 

The genetic algorithm (GA) [127] is also a popular global optimization technique 

which simulates the mechanisms of natural evolution. In GA-based stereo matching 

algorithms [128, 129], disparity maps are coded as 2D chromosomes with fitness values 

inversely proportional to their energy. Then the set of chromosomes evolves with genetic 

operators including mating, chromosome crossover, gene mutation and natural selection. 

When the process converges, the best fit chromosome will be selected as the desired 

disparity map. 

4.3 METHODOLOGY 

4.3.1 Overview 

In this study, the developed stereo matching algorithm involves two major phases. 

In the first phase, foreground objects are accurately segmented from the background of 

the scene, and meanwhile, a disparity map with integer-pixel accuracy is computed. In 

the second phase, the disparity map is iteratively refined to reach sub-pixel accuracy. 

4.3.2 Matching Cost 

In developing a matching algorithm, it is critical to choose a proper matching 

metric (similarity or dissimilarity measure between two corresponding pixels). Let 

( )yxI l ,  and ( )yxI r ,  be the left and right intensity images, respectively, and the left 

image is taken as the reference image. At this point, we suppose the images are perfectly 

rectified, i.e., the epipolar lines coincide with the scanlines and disparities only exist in 

the horizontal direction. If we assume the surface is Lambertian and the images are 

corrupted with uniform white Gaussian noise, then the cost function (dissimilarity 

measure) associated with a match can be defined as 
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 ( ) ( ) ( )( )( )2,,,,, yyxdxIyxIdyxc rl +−= , (4.1) 

which would give a maximum likelihood solution to the disparity function d . 

But in practice, the above cost function may fail due to unbalanced exposure, gain 

and contrast of the camera pair as observed in our experiments. We thus will use a more 

robust method, normalized cross-correlation (NCC), as the similarity measure, which is 

defined as 
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where ( )yxW ,  is a correlation window around ( )yx,  with a total pixel number N , and 

( )yxI l ,  ( ( )yxI r , ) and ( )yxl ,σ  ( ( )yxr ,σ ) are the local mean and standard deviation of 

intensity for the left (right) image. The normalization in the local mean and standard 

deviation makes NCC insensitive to photometric distortions [119, 101]. Based on 

( )dyx ,,ρ , the cost function can be defined by 

 ( ) ( )dyxdyxC ,,1,, ρ−= . (4.3) 

Since ( ) 1,,1 ≤≤− dyxρ , we have ( ) 2,,0 ≤≤ dyxC . ( )dyxC ,,  is defined in the whole 

image space and at each possible disparity; this trivariate function is usually called the 

disparity space image (DSI) [93]. For the sake of conciseness, we will also denote the 
cost function as ( )dC p  with p  being a pixel. 

4.3.3 Foreground Segmentation 

In this study, foreground segmentation is related to a class of matching algorithms 

called layered stereo [130-132], which has received attention lately because it is more 

effective in dealing with occlusions and discontinuities in the scene. Nevertheless, these 

existing methods almost exclusively rely on color segmentation. For our application, the 

natural appearance of the scene is eclipsed by the projection of artificial texture, which 
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makes it difficult to perform segmentation from color, contrast, or texture. However, we 

can take advantage of enhanced stereo cues, since artificial texture would reduce 

ambiguity in stereo matching. 

4.3.3.1 Definition of the Energy Function 

The problem of foreground segmentation can be formalized in the framework of 

energy minimization. Let P  denote the pixel set of the reference image. We define 

{ }BFL ,=  as a label set with F and B  representing the foreground and background, 

respectively. Then the goal is to find a segmentation (or labeling) ( ) LPf a  that 

minimizes an energy function ( )fE  defined on a given stereo image pair lI  and rI . 

The energy function ( )fE  usually consists of two terms [120], 
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,

, , , (4.4) 

where PPN ×⊂  is the set of all neighboring pixel pairs. ( )pp fD  is derived from the 

input images that measures the cost of assigning the pf  to the pixel p . ( )qpqp ffV ,,  

imposes the spatial coherence of the labeling between the neighboring pixels p  and q . 

Here we derive ( )pp fD  from the disparity space image ( )dCp . First, we assume 

the disparity space can be divided into two subspaces: the foreground space and the 

background space that contain the object and the background, respectively, as shown in 

Figure 4.1. We assume there exists a virtual interface between the two subspaces, which 
is denoted by ( )Pd * . Now we define ( )dCC p

ddd

F
p

p
*

min

min
≤≤

= , ( )dCC p
ddd

B
p

p max
*
min

≤<
= , and thus 

( )PC F  and ( )PC B  represent the minimum surfaces in the foreground and background 

spaces, respectively. If B
p

F
p CC < , then we can expect that there is a good chance that the 

pixel p  belongs to the foreground. The same applies to F
p

B
p CC <  and the background. 

Therefore, we can define ( )pp fD  by 
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Figure 4.1: Partition of the disparity space by a virtual interface. 
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However, the above definition is invalid for pixels that cannot be matched. It 

usually occurs at occlusions, but can also happen in textureless regions that are usually 

caused by shadows in our system. For the unmatched pixels, we assign constants to the 
( )pp fD , 
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Here we set F
O

B
O CC <  to favor the background, since we assume that occlusions and 

shadows exist in the background. 
Now the problem becomes to compute the disparity space image ( )dCp , to 

determine the virtual interface ( )Pd * , and to detect unmatched pixels. The computation 
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of the ( )dCp  is straightforward and can be expedited by the box filtering [119] or 

running sum algorithm [133], both of which has a time complexity that is independent of 

the size of matching window. 

In most cases, the ( )Pd *  is not available, since we usually lack the prior 

knowledge about the structure of the scene. But fortunately, for our body imaging system, 

the virtual interface can be well defined based on the system construction, which will be 

described in the next subsection. For the moment, we assume that the ( )Pd *  has been 

determined. 

To detect unmatched pixels, we use some conventional methods based on block 

matching. In block matching, the disparity for each pixel is obtained by searching the 

minimum in the DSI, i.e., 

 ( )dCd p
d

p  minarg=  , (4.7) 

which is equivalent to searching the correlation peak according to Equation 4.3. 

However, false matches can occur, because disparities are undefined at occlusions, and 

matching also may fail in other regions due to image noise, geometric distortion, or 

insufficient texture. We will take the false matches as unmatched. Three criteria are used 

for deciding a good match. First, the variation of intensity in the matching window should 

be above a threshold tσ , otherwise the definition of NCC (and thus the matching cost) is 

unstable. Secondly, the correlation value should be greater than a threshold tρ . Thirdly, 

the match should pass the left-right check, which means it is also related to a correlation 

peak if we take the right image as the reference. There is a tradeoff in setting the 

parameters tσ  and tρ : the larger they are, the more confident we are in decided good 

matches, but the chance of missing good matches will also increase. Ideally, tσ  should 

be set above the noise level of image, and tρ  should be determined by such factors as 

noise level, degree of perspective distortion, size of matching window, and accuracy of 
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image rectification. But in practice, it is hard to optimize these parameters by 

incorporating the above-mentioned factors, so in our experiments, they are set 

empirically. 

Now we consider the spatial coherence term in Equation 4.4. Since there are only 

two states in the label space L , the Potts model [120] can be used, i.e., 
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qpqp
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,
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. (4.8) 

In the 8-neighborhood system, we set 0, ββ =qp  if p  and q  are horizontal or vertical 

neighbors, and 
2
0

,
ββ =qp  if they are diagonal neighbors. 

4.3.3.2 Virtual Interface 

The success of the segmentation technique depends on a correct definition of the 

virtual interface that partitions the disparity space into the foreground and background 

subspaces. Here we describe how to determine the virtual interface for the developed 

stereo vision system based on the effective imaging volume. 

The effective imaging volume of the stereo vision system is defined as the volume 

in which the body can be fully captured by the stereo heads. It is located in between the 

two imaging stands as shown in Figure 3.7. According to the optical geometry of the 

system and the body sizes of the majority of population, the dimensions of the effective 

imaging volume is set as 1200 mm × 2000 mm × 800 mm (width × height × depth), as 

illustrated in Figure 4.2. The origin of the world coordinate system, wO , is at the center 

of the floor plane of the volume, and the positive wZ -axis points to the frontal stereo  

heads. The space within the volume should be clear except the subject during imaging, 

and any external object should be ignored by the matching algorithm. Thus, we can use 

the virtual walls of the volume to divide the 3D space into the foreground and 

background. In practice, the two side walls are not required because objects beyond them 
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are invisible to the cameras. The necessary floor, roof, front and rear walls are indexed 

from 0 to 3 in Figure 4.2. For each stereo head, three of them are applied to segment the 

foreground from the background. For example, the floor, roof and rear walls are used for 

the frontal stereo heads. 

 

 

Figure 4.2: The effective imaging volume of the proposed stereo vision system. 
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map of a 3D plane. We will show that a 3D plane actually induces a homography [134, 

135] between the two image planes in stereo vision. 

In Figure 4.3, two camera coordinate systems with the parallel-axis stereo 

geometry are defined. The 3D plane Π  is defined in the left camera coordinate system 

with the normal n  and the perpendicular distance from the origin s . Let lX  and rX  be 

the left and right camera coordinates respectively of an arbitrary point P  in Π . We 

assume the transformation between the two camera coordinate systems are known,  

 tXRX += lr  . (4.9) 

Since sl =XnT , i.e., 11 T =ls
Xn , it yields 

 

 

Figure 4.3: A 3D plane induces a homography between the image planes in stereo 
vision. 
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which is the homograph matrix associated with Π . Specifically, for the parallel-axis 

stereo geometry, 3IR = , 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
=

0
0
b

t , and thus we have 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −−−

=

100

010

1 zyx n
d
bn

d
bn

d
b

H . (4.12) 

Denote 
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⎥
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rx~ , which are the homogeneous coordinates of the 

projections of the point P  in the left and right image planes, respectively. Then 

according to the perspective projection, we obtain lll Xx =~λ , and rrr Xx =~λ , where lλ  

and rλ  are scalar values. In addition, we have rl λλ =  for the parallel-axis stereo 

geometry. Then by replacing lX  and rX  in Equation 4.10, we obtain 

 lr xHx ~ ~ = . (4.13) 

By combining Equations (4.12) and (4.13), we get 
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zyxlr s
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nnn
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As a result, we can compute the disparity by 

 l
T

lr s
bxxd xn ~−=−= . (4.15) 
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Table 4.1: Planes of the effective imaging volume defined in the world coordinate 
system. 

 n̂  ŝ  (mm) 

Plane 0 (floor) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

0
1
0

 5 

Plane 1 (roof) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

0
1
0

 2000 

Plane 2 (front) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

1
0
0

 400 

Plane 3 (rear) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−1
0
0

 400 

 

In practice, it is more convenient to define the plane Π  in the global world 

coordinate system, so we need to transform it to each individual camera coordinate 

system. We assume the plane equation in the world coordinate system is 

 sw ˆˆ T =Xn , (4.16) 

and the transformation between the camera and world coordinate systems are 

 tXRX ˆ ˆ += cw , (4.17) 

where we assume the camera coordinate system is defined on the left camera, i.e., 

lc XX = . Then by inserting Equation (4.17) to Equation (4.16), we obtain 

 ( ) tnXRn ˆˆˆˆˆ TT −= sc . (4.18) 

By comparing to sc =XnT , we obtain the plane parameters in the camera coordinate 

system, 
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 Rnn ˆˆ T= ,  (4.19) 

and 

 tn ˆˆˆ T−= ss . (4.20) 

The planes of the effective imaging volume in Figure 4.2 are defined in Table 4.1. 

The floor plane has been slightly offset by 5 mm so as to separate the body from the 

floor. 

4.3.3.3 Energy Minimization 

Belief propagation [123, 124] and graph-cuts [120-122] are among the state-of-

the-art methods to solve labeling problems in computer vision. However, belief 

propagation can only provide approximate solution when there are loops in the graph 

(such as a 2D image), even if the label space is binary [125]. In contrast, exact minimum 

of the energy can be obtained by graph-cuts for a binary segmentation problem [136]. 

Thus, we use graph-cuts to perform the energy minimization of Equation 4.4. 
Let EVG ,=  be a weighted graph. The set V contains the nodes that correspond 

to the pixel set P  and two additional nodes called terminals (the source s  and the sink 

t ). The nodes are connected by the edges in the set E . 

In construction of the graph for our application, we let s  represent the foreground 

( F ), and t  be the background ( B ). As shown in Figure 4.4, for each node that is 

associated to a pixel, say p , we connect it to s  and t , and denote the edges as s
pe  and 

t
pe , respectively. For each pair of neighboring pixels, say ( ) Nqp ∈, , we connect the 

corresponding nodes and denote the edge as qpe , . The edges are assigned weights (costs) 

as follows: ( ) ( )FDec p
s
p = , ( ) ( )BDec p

t
p = , and ( ) qpqpec ,, β= . A cut TS |  is defined as a 

partition of the nodes in V  into two disjoint sets S  and T , subject to Ss∈  and Tt∈ . 

The cost of TS |  is the sum of costs of all edges that go from S  to T , 



 55

 

Figure 4.4: Graph construction. 

 

 ( ) ( ) ( ) ( )∑ ∑∑
∈ ∈∈∈

++=
Sp TqSp

qp
t
p

Tp

s
p ecececTSc

,
,| . (4.21) 

It is easy to see that the sum of the first two terms in ( )TSc |  corresponds to the 

first term of the energy function in Equation 4.4, and the third term in ( )TSc |  

corresponds to the second term of the energy function. Therefore, the cut TS |  is 

equivalent to a labeling f , and ( ) ( )fETSc =| . As a result, to minimize the energy 

function is equivalent to searching for a cut with the minimum cost. According to the 

theorem of Ford and Fulkerson [137], the minimum cut problem can be solved by 

computing the maximum flow from the source to the sink. Some implementations of the 

maximum flow algorithms with polynomial complexities are available [120, 121].  

s

t

p q
qpe ,  

s
pe  

t
pe  
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Once the foreground is segmented, its pixels are assigned a disparity based on 

Equation 4.7. However, the obtained disparity map can be noisy. A median filter [138] is 

used to quench the impulse noise. Furthermore, morphological close and open operators 

[139] are used to smooth the contour.  

4.3.4 Disparity Refinement 

So far, the disparity map takes discrete values, which is not sufficient to recover 

geometric details. A disparity refinement process is needed to achieve sub-pixel 

accuracy. One of the standard methods is fitting a curve (e.g., parabolic [119] or Gaussian 

curve [140]) to the matching costs defined at discrete values. However, the curve fitting 

technique suffers from systematic error called “pixel-locking” effect in which disparity 

values are pulled towards integers [140]. Some research efforts have been made to 

address this problem. For example, Shimizu and Okutomi [141] attempted to reduce the 

bias by performing additional curve fitting on matching costs defined at half-pixel 

locations. Nehab et al. [142] suggested symmetric refinement by fitting a parametric 

surface over a 2D neighborhood of the matching cost function. Stein et al. [143] proposed 

an iterative refinement method that is essentially based on Lucas-Kanade algorithm 

[144]. 

It should be noted that the aforementioned improvements are all focused on 

reducing the “pixel-locking” effect and make disparity refinement on each individual 

pixel independently. However, in practice, like all other local methods, the refined 

disparity map is prone to be noisy. Thus, it is necessary to take into account spatial 

coherence during disparity updating. 

Here we have developed a method that iteratively performs disparity refinement 

at a global level within a regularization framework [111, 116]. There are two steps in 

each iteration: local estimation and global optimization. For the first step, the amount of 
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update is estimated locally for each pixel. The estimation can be made by minimizing the 

matching cost function defined in Equation 4.3, 

 ( ) ( )ddyxddyxCd
dd

δρδδ
δδ

+=+= ,,maxarg,,minarg , (4.22) 

where d  is the current disparity value, and dδ  is the amount to be updated. However, the 

process is difficult since the correlation function ρ  is highly nonlinear. Although it is 

possible to perform linearization of  ρ  with first-order approximation, the computation is 

still extensive. So instead, we will apply the sum of squared differences (SSD) as the 

matching cost as in Lucas-Kanade algorithm [144]. If the SSD takes into account the gain 

and bias factors between cameras, it is essentially equivalent to normalized cross-

correlation. Now the matching cost is defined as 

 ( ) ( ) ( )( )( )
( ) ( )
∑
∈

+−+=
yxWvu

lrSSD bvuaIvduIdyxC
,,

2,,,, , (4.23) 

where a  and b are the gain and bias factors, respectively. Here we assume the disparity 

is constant within the matching window W . But this assumption is generally not true 

except for frontal-parallel surfaces. To allow the disparity to vary within the window, we 

first warp the right image based on the current disparity map, 

 ( ) ( )( )yyxdxIyxI rr ,,,ˆ += . (4.24) 

To estimate dδ , a  and b , we define an error function with rÎ  based on the SSD, 

 ( ) ( ) ( )( )( )
( ) ( )
∑
∈

+−+=
yxWvu

lr bvuaIvduIyxbade
,,

22 ,,ˆ,;,, δδ . (4.25) 

With a first-order approximation, we get 

 ( ) ( ) ( ) ( )( )( )
( ) ( )
∑
∈

+−+=
yxWvu

lrxr bvuaIdvuIvuIyxbade
,,

22 ,,ˆ,ˆ,;,, δδ , (4.26) 

where 
x
II r

rx ∂
∂

=
ˆ

ˆ  is the intensity gradient of the warped right image. 

Let [ ]Tbadδ=p , [ ]T1 1−−= II rxa , then a concise form of Equation 4.26 

is 
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 ( ) ( )∑ +=
22

r
T Ie pap . (4.27) 

This is a classic least squares problem. To minimize ( )p2e  is equivalent to solve the 

normal equations, 

 bAp = , (4.28) 

where ∑= aaA T , and ∑−= ab rI . 

 We have described how to estimate dδ  at each pixel. Now we show how to 

update the disparity map at a global level. First, an energy function is defined by  

 ( ) ( ) ( )( ) ( )∫∫∫∫ ++−= dxdydddxdyyxdyxddE yx
222

,~, λ , (4.29) 

where d~  is the local estimate of the disparity, and xd , yd  are the disparity gradients. 

The first term in the equation measures the consistency with the local estimation, and the 

second term imposes smoothness constraints on the solution. λ  is called the 

regularization parameter that weighs the smoothness term. 

For the n-th iteration, we set nnn ddd δ+= −1~ . Then the discrete form of ( )dE  

can be expressed as 

 ( ) ( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( )( )∑
∈

− −++−+++−=
Iji

nnnnnnn jidjidjidjidjidjidjiddE
),(

2221 ,1,,,1,,, λδ , 

  (4.30) 

where ( )ji,  is the discrete coordinates of a pixel in the image plane I , and the discrete 

gradients are computed using the forward difference. Minimizing the energy function 

yields  

 ( )
( )

n
p

n
p

pNq

n
q

n
pp ddddk δλλ +=−+ −

∈
∑ 11  (4.31) 

for each pixel p  whose number of neighboring pixels is ( )pNk p = . Then we can 

establish a linear system 
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 hdP = , (4.32) 

where [ ] λppp k+= 1,P , [ ] ( )
⎩
⎨
⎧ ∈−=

≠ otherwise       ,0
    ,

,
pNq

qp
qp

λP , [ ] n
pp d=d , and [ ] n

p
n
pp dd δ+= −1h . 

Since P  is a sparse, positive, symmetric matrix, the solution can be searched efficiently 

using the conjugate gradient method [145]. 

4.5 RESULTS 

The stereo matching algorithm has been tested on images of static objects and 

human subjects captured by our system. The cameras were carefully calibrated using the 

techniques described in the last chapter, and the images were rectified prior to performing 

matching. The same set of parameters was used throughout the test, as listed in Table 4.2. 

The virtual interface in the disparity space was created for each stereo head according to 

its calibration parameters, and the results are shown in Figure 4.5. The disparities are 

coded with the standard cold-to-hot color mapping that corresponds to “far-to-close” to 

the cameras. The results on a mannequin and a human subject are shown in Figures 4.6–

4.9. For each figure, the image pair is shown in (a); the coarse and refined disparity maps 

are shown in (b) and (c), respectively; and to better evaluate the performance of object 

segmentation, the refine disparity map has been overlaid onto the reference (left) image 

as shown in (d). The results show that the algorithm is effective in both foreground 

segmentation and sub-pixel matching, and is promising for our application. 

The test was carried out on a personal computer with an AMD Athlon™ 2.0 GHz 

dual-core CPU and 1.0 G RAM. Because, in principle, the computation for the four stereo 

heads can been undertaken in parallel, we can take advantage of the multithreading 

function of a multi-core CPU to improve the time efficiency. In our system, two pairs of 

images can be matched simultaneously, and it takes about 80 s to complete the 

computation for a full set (four pairs) of images. 
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Table 4.2: Parameters for the test of stereo matching. 

Parameter Description 

55×=NCCW  Window size of NCC 

0.1=tσ  Threshold of the variation of intensity for detecting unmatched 
pixels 

6.0=tρ  Threshold of NCC for detecting unmatched pixels 

0.1=F
OC  Cost of assigning an unmatched pixel to the foreground 

2.0=B
OC  Cost of assigning an unmatched pixel to the background 

0.10 =β  Parameter in the Potts model 

2121×=MedianW  Window size of the median filter for reducing noise in the coarse 
disparity map 

3.3=STEr  Radius of the circular structural element in the morphological 
close operator for smoothing the contours of foreground objects 

15=IterN  Number of iterations in disparity refinement 

1111×=SSDW  Window size of SSD in disparity refinement 

0.10=λ  Regularization parameter in disparity refinement 

 

4.6 DISCUSSION 

For our application, the projection of artificial texture makes it difficult to use 

color or contrast for segmentation. Fortunately, we can make use of the stereo cues and 

prior knowledge on the structure of the scene by defining a virtual interface between the 

foreground and background. Based on the method, an initial disparity map can be 

obtained with accurate foreground segmentation. Then disparity refinement is performed 
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on the foreground pixels. The latter process involves local least-squares matching and 

global optimization. High accuracy can be reached by the least-squares matching, but 

stability is maintained and potential errors are corrected by the global optimization in a 

regularization framework. 

 

 

 

Figure 4.5: Virtual interface defined in the disparity space for the (a) front-top, (b) 
front-bottom, (c) back-top, and (d) back-bottom stereo heads.  

 

(a) (b)

(c) (d)
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Figure 4.6: Results on a mannequin for the front-top stereo head. (a) Rectified image 
pair; (b) foreground segmentation and coarse disparity map; (c) refined 
disparity map; and (d) the refined disparity map is overlaid onto the 
reference image.  

 

 

(a)

(b) (c)

(d)



 63

 

Figure 4.7: Results on a mannequin for the front-bottom stereo head. (a) Rectified 
image pair; (b) foreground segmentation and coarse disparity map; (c) 
refined disparity map; and (d) the refined disparity map is overlaid onto the 
reference image.  

(a)

(b) (c)

(d)
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Figure 4.8: Results on a human subject for the front-top stereo head. (a) Rectified image 
pair; (b) foreground segmentation and coarse disparity map; (c) refined 
disparity map; and (d) the refined disparity map is overlaid onto the 
reference image.  

 

(a)

(b) (c)

(d)
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Figure 4.9: Results on a human subject for the front-bottom stereo head. (a) Rectified 
image pair; (b) foreground segmentation and coarse disparity map; (c) 
refined disparity map; and (d) the refined disparity map is overlaid onto the 
reference image.  

 

(a)

(b) (c)

(d)
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Chapter 5 
 

Surface Reconstruction 

5.1 INTRODUCTION 

The raw data acquired with a typical body scanner are usually comprised of 

hundred thousands of scattered 3D points, from which it is hard to read and handle the 

desired information directly. Body modeling, the focus of this chapter, is a process that 

accurately fits the scan data with a more manageable representation so that the data can 

be manipulated and interpreted more easily for some specific applications. Since, in 

general, such a representation is in the form of 3D surface, the process is also called body 

surface reconstruction. 

In developing a surface reconstruction algorithm, first we need to choose a proper 

surface representation. One of the most common representations is the B-spline surface 

representation due to its attractive properties such as piecewise smoothness, local 

support, and the same differentiability as with the basis functions [146]. But B-spline 

patches require cylindrical or quadrilateral topology, and intricate boundary conditions 

are needed to zipper patches together to represent a more complex surface. In contrast, a 

piecewise smooth subdivision surface resulted from iteratively refining a control mesh of 

arbitrary topology gives a more flexible representation [147]. In this chapter, we present 

an effective body surface reconstruction algorithm, which is based on subdivision surface 

representation, for the developed stereo vision system. 

5.2 RELATED WORK 

With the advances of body scanning technology, a number of research efforts 

have also been made on body surface reconstruction. Since the human body has a specific 
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branching structure, the topological information of the overall shape can be used to 

facilitate the modeling process. For example, the algorithm developed by Douros et al. 

[147] segments the body into several parts so that each of which has a cylindrical 

topology and can be modeled through B-spline surface interpolation, but it needs to 

devise boundary conditions at branches to join the surfaces smoothly. The algorithm was 

later improved by using a number of small B-spline patches to perform local interpolation 

on the data, so as to get better segment joining [148]. In our previous study [149], we first 

resampled the data on a regular grid and then applied B-spline surface approximation 

instead of interpolation to fit each body segment, and made the density of control mesh 

adaptable to a given error bound. Allen et al. [150] described a template-based scheme 

which creates morphable body models by fitting template meshes to body scans with 

sparse 3D marks. It is noticeable that the main drawback of the shape-specific methods is 

that body segmentation or mark detection is required. 

Some general-purpose surface reconstruction algorithms may also be considered 

for body modeling. One of the most remarkable algorithms was proposed by Hoppe et al. 

[151, 152]. The algorithm determines the topology of the surface and produces an initial 

estimate of the geometry by estimating the signed distance function of the surface, and 

then fits a piecewise smooth subdivision surface to the data. Although the method can 

deal with arbitrary topologies, it requires a uniform sampling and is not robust to noise. 

Since the scan data are usually subject to gaps and holes due to occlusions, and are not 

noise-free, Hoppe’s algorithm is not applicable to this study. However, we have 

borrowed its idea of subdivision surface fitting when developing our new algorithm. One 

of the nice characteristics of subdivision surface modeling is that it makes possible the 

representation of the whole human body with a single surface, so body segmentation is 

no longer necessary.  
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Figure 5.1: Original scan data of a mannequin in the anterior (a) and lateral (b) views. 
Data points from the front (back) stereo heads are in red (green). 

5.3 METHODOLOGY 

As described in Chapter 3, the developed body scanner is made up of four stereo 

heads mounted on two stands that are placed in front and back of the subject, and thus the 

scan data can be grouped into two sets that correspond to the front and back views, 

respectively. The advantage of this kind of construction lies in its portability and low 

cost. However, it leaves large gaps between the two views due to occlusions. As an 

example, the raw scan data of a mannequin is shown in Figure 5.1. The mannequin data 

will be used throughout the description of the algorithm. The scan data comprises of 

around 910,000 scattered 3D points. The data are noisy, incomplete, non-uniformly 

distributed, and have outliers. The objective of surface reconstruction is to create an 

accurate, smooth, complete and compact 3D surface model which will be used in 

applications such as 3D body measurement. A desirable reconstruction technique should 

x 

y y

z
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not only be able to produce a surface that is a good approximation to the original data, but 

also be capable of filling the holes and gaps and smoothing out noise. We will show that 

the goals can be reached by the proposed subdivision surface reconstruction algorithm. 

The basic idea of the method is described here. First, we resample the original 3D data 

points on a regular grid and use the explicit neighborhood information of the resampled 

data to create an initial dense mesh. Secondly, the initial dense mesh is simplified to 

produce an estimate of the control mesh. Finally, the control mesh is optimized by fitting 

its subdivision surface to the original data, and accordingly, the body model is 

reconstructed. 

In summary, the algorithm consists of four steps: (1) data resampling; (2) initial 

mesh generation; (3) mesh simplification; and (4) mesh subdivision and optimization. 

Details are described in the following subsections. 

 5.3.1 Data Resampling 

The first challenge of this algorithm is to generate an initial mesh from the raw 

data, but this is not a trivial process, especially when the data are noisy, incomplete and 

irregularly distributed. To facilitate the generation of an initial mesh, the data are 

resampled on a regular grid and thus explicit neighborhood information can be easily 

extracted. 

The data set of both the front and back views can be regarded as samples on a 

bivariate surface defined in the frontal projection plane, i.e., the x-y plane in the (x, y, z) 

Cartesian coordinates as shown in Figure 5.1. The projections of the data in the x-y plane 

have irregular distributions across the body. Data resampling is a procedure which 

reorganizes the data on a regular grid defined in the x-y plane. First, we need to select the 

grid density, i.e., the sampling intervals in the x and y directions. A good sampling 

interval should be considerably larger than the system resolution but not too large to 
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separate different body segments. We select the sampling intervals as mm 3=∆=∆ yx , 

considering the system resolution is about 1 mm in the x and y directions. For each grid, 

we collect all points falling in it, and then take the mean or median z value of the points 

as the z value of the grid point. This method is computationally effective. Some 

geometric details may be lost after resampling, but fortunately, geometric accuracy is not 

important in initial mesh generation. 

Another important issue raised up to this point is how to merge data from 

different stereo heads in each view. Since in either the front or the back view, the data are 

from two stacked stereo heads, a deviation from a perfect alignment may occur due to 

imperfect system calibration. In each view, the upper and lower point clouds are partially 

overlapped. If direct averaging is applied in this region, the resampled data will appear 

rough due to the misalignment. To tackle the problem, data are weighted prior to 

resampling to reach a seamless blend.  As illustrated in Figure 5.2, let ay  and by  be the 

minimum y  value of the upper data set and the maximum y  value of the lower data set, 

respectively, and the overlap means we have ab yy > . By denoting 
ab

a

yy
yyt

−
−

= , the 

weighting function for the upper data set is defined by 

 ( )
⎩
⎨
⎧

>
≤≤−

=
1                    ,1

10    ,23 32

 t
t tt

ywU , (5.1) 

where 0≥t . Similarly, the weighting function for the lower data set is 

  ( ) ( )⎩
⎨
⎧

≤≤−−
<

=
10    ,231

0                          ,1
32 t tt

 t
ywL , (5.2) 

where 1≤t . Because the S-shaped function 32 23 tt −  is of the first-order continuity, 

smooth merge of the data sets can be obtained by the proposed weighted averaging. 

Additionally, by using these weighting functions, the weight of a point decreases with the 

distance from the center of the data set, which is favorable since the distortion caused by 
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imperfect camera calibration is usually more obvious in the peripheral regions than at the 

center of an image and thus we should put less confidence in peripheral data. 

 

Figure 5.2: Smooth merge of the upper and lower data sets in each view.    

5.3.2 Initial Mesh Generation 

Prior to mesh generation, we need preprocess the resampled data to fill holes and 

remove outliers. First, we define a mask for each view. The mask is actually a binary 

version of the range image; 1s are assigned to the occupied grid points, and 0s to the 

empty points. Then the front and back masks are combined by a logical OR operation. 

Small blobs in the combined mask are removed as outliers, and only the largest 

connected region is kept as the body. If there are holes in the remaining region, they are 

filled by flooding. The combined mask will serve as a reference in the following 

triangulation process. 

The neighborhood information is explicit in a range image, and a triangle mesh 

can be produced by triangulation between adjacent rows of data. But a problem arises 
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when we try to merge the front and back meshes to form a complete one, because the 

mesh contours are so irregular that some conventional tiling algorithms (e.g., [153]) 

would fail. To tackle this problem, a technique called Add-Delete is developed in this 

study. First, some points are padded to both range images according to the combined 

mask so that their contours have the same projection in the x-y plane. The z values of the 

added points are set by interpolating their nearest neighbors. With this procedure, holes 

are also filled. Then triangulation is performed separately on both modified range images. 

To merge the two triangle meshes, the modified contours are tiled by simply connecting 

corresponding points. When the meshes are merged, a vertex collapse algorithm can be 

used to delete these added points. In vertex collapse, a vertex is removed, and its adjacent 

vertices are re-triangulated to form a new mesh. However, an improved method is used in 

this work. We assign a small weight to the added points, and consequently, these points 

will tend to be deleted first in the following mesh simplification phase. This “soft 

deletion” strategy can avoid sharp edges that may occur in direct vertex collapse and re-

triangulation. 

Another issue raised up to this point is that the webbing effect can occur when 

different body segments are in close proximity or even in touching. It typically occurs in 

the crotch area and the armpits, especially for overweight subjects. To deal with this 

issue, we have developed an interactive edit tool with which the user can manually mark 

an area where the webbing affect is likely to occur. Original data points in the marked 

area will be temporarily discarded for initial mesh generation stage, but will be used in 

the mesh optimization stage for surface fitting. 

An example of mesh triangulation is shown in Figure 5.3. We can see the frontal 

projections of the front and back meshes completely overlap after padding some points.  
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Figure 5.3: Triangulation of the leg. (a) Resampled and padded (in red) data points. (b) 
The front and back meshes are merged by tiling the modified contours (in 
blue). Frontal projections of the modified front and back contours, 
corresponding to the region marked with a dashed green box in (a), are 
shown in (c) and (d), respectively. 

 

Figure 5.4: Generation of the initial mesh. Shaded models of the mesh before (a) and 
after (b) closing the gaps. 

(a) (b)

(a) (b) (c) (d) 
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The generated initial mesh of the whole body is shown in Figure 5.4. Gaps are closed 

after merging the contours. 

5.3.3 Mesh Simplification 

The purpose of mesh simplification is to reduce the number of triangles and create 

a control mesh for the model. The simplification algorithm devised by Garland [154] is 

employed in this work. This algorithm can produce high-quality approximations by using 

quadric error metrics. It is realized by edge collapse as shown in Figure 5.5, where the 

new vertex v  is evaluated by minimizing the weighted sum of its squared distances (the 

cost of contraction) to all triangles around vertices iv  and jv . An edge with the smallest 

cost of contraction will be collapsed first. 

 

Figure 5.5: Edge collapse. A new vertex v  is created by collapsing the edge jivv . 

The quadric measure of the distance of a point v  to a plane determined by a point 

p  and a unit normal n  is given by 

 ( )( ) ( ) pnnpvpnnvnnvnpvv TTTTTT2T2 2)( +−=−=D .  (5.3) 

Here we have adopted the convention that the 3D coordinates of a point is expressed as 

the same letter but in bold typeface. 

If we define TnnA = , pnnb T= , and pnnp TT=c , then the quadric error metric 

can be expressed in this form 

iv  
jv  v
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 cQ +−= vbAvvv TT 2)( , (5.4) 

where the quadric Q  is defined as a triple 

 ( )cQ ,,bA= . (5.5) 

The quadric for a given vertex v  in the original mesh can be expressed as a 

weighted sum of the fundamental quadrics of its adjacent faces, 

 ∑=
k

kkQwQ , (5.6) 

where kQ  is the quadric of the k-th adjacent face, and the associated weight kw  is set as  

the face area.  
For an edge to be collapsed, such as the edge ( )ji vv ,  in Figure 5.5, the quadric is 

ji QQQ += , and the cost of contraction is )()()( vvv ji QQQ += , where v  is the new 

vertex after collapse. By minimizing the function, we can get the optimal position of v , 

 bAv 1−= , (5.7) 

and the cost 

 cQ +−= − bAbv 1T)( . (5.8) 

In implementation, all candidate edges are sorted in a heap based on costs. At 

each step, the edge with minimum cost is removed from the heap and collapsed, and then 

the heap is updated. This procedure is iteratively repeated until enough simplification is 

achieved. It is worth noting that, to realize the aforementioned “soft deletion” strategy, 

the cost for an artificially added vertex should be scaled down, so that its associated 

edges will move upwards in the heap and gain a higher priority for collapse. 

An example for mesh simplification is shown in Figure 5.6, where the mesh was 

obtained by collapsing 96% edges of the model in Figure 5.4(b). The mesh will serve as a 

control mesh for the surface subdivision described below. 
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Figure 5.6: A simplified mesh (a) and its shaded model (b). 

5.3.4 Mesh Subdivision and Optimization 

So far, we have obtained a raw model which can be taken as the control mesh for 

further surface refinement. A piecewise smooth mesh can be produced by surface 

subdivision techniques. We use Loop’s subdivision algorithm [155] by which a 2C  

smooth surface can be obtained in the limit of infinite numbers of subdivisions. This 

algorithm is based on edge split, as shown in Figure 5.7. At each level of subdivision, 

each edge is split into two, and thus each face is split into four. The surface obtained by 

an infinite refinement process is called the limit surface of the control mesh. For our 

applications, a single level of subdivision is enough to obtain a sufficiently dense mesh 

that will be used to approximate the limit surface. The refined mesh includes two types of 

points. The first type is called vertex points which are the displacements of the control 

vertices. The other type is called edge points which are the inserted points on edges. One 

(a) (b)
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of the advantages of Loop’s subdivision scheme is that the limit positions of these points 

can be explicitly evaluated by some rules. 

  

Figure 5.7: Mesh subdivision by edge split. 

The evaluation rule for a vertex point p  with a valence of n  as shown in Figure 

5.8 is given by 

 
n

nn

ccc
ccc

+++
+++

=
L

L

10

1100 vvv
p , (5.9) 

where nvv ,,0 L  are control vertices, )(
8
3

0 nanc =  with ( )( )
64

2cos23
8
5)(

2nna π+
−= , 

and 11 === ncc L . 

According to the Loop’s subdivision rules, the evaluation of an edge point will 

involve all 2-neighborhood vertices. For an edge point in an ordinary mesh with a 

valence of six for each vertex, the number of 2-neighborhood vertices is 14, as shown in 

Figure 5.9. In our work, to simplify computation, especially in mesh traversal, we only 

consider 1-neighborhood vertices, which are highlighted in red in Figure 5.9. Our results 

show that this simplification still provides a good approximation. The approximate 

evaluation rule for an edge point p  is given by 

4321

44332211

cccc
cccc

+++
+++

=
vvvv

p , (5.10) 
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Figure 5.8: Illustration of Loop’s evaluation rule for a vertex point. 

 

Figure 5.9: Illustration of the modified Loop’s evaluation rule for an edge point. 

 

where 1531 == cc , and 3242 == cc . 

Loop’s subdivision algorithm is an approximating scheme, which indicates the 

limit surface does not pass through the control vertices. In our case, it means the resulting 

model will pull away from the original scanner data. Therefore, the control vertices 

should be optimized so that the final model can more accurately approximate the original 
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1v  

2v  3v  

4v  

5v  

nv  
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1v  

2v  
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data. This optimization process can be realized by minimizing the distance between the 

limit surface and the original data. The idea is similar to that in Hoppe et al.’s work [152]. 

The distance can be represented by an energy function as defined by 

 ( )∑ −=
i

iiiwE 2pq , (5.11) 

where iq  is an original data point with iw  as its weight calculated from Equation (5.1) or 

(5.2), and ip  is its closest point on the limit surface. We can derive that ip  is a weighted 
combination of the control vertices, i.e., ∑=

j
jjii l vp , , where the coefficients jil ,  are 

determined by the projection of iq  on the limit surface and the said evaluation rules. 

Thus, the energy function can be rewritten as 

 ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑−=

i j
jjiliiwE

2

, vq . (5.12) 

It can also be expressed in matrix form with the Frobenius norm, 

 ( ) 2

F
E LVQW −= , (5.13) 

where [ ]T21 NqqqQ K=  is the data vector with N  data points assumed, W  is the 

NN ×  diagonal weighting matrix with iw  as the i-th diagonal element, 

[ ]T21 KvvvV K=  is the vertex vector with K  control vertices assumed, and L  is 

the KN ×  evaluation matrix with jil ,  as the ),( ji -th element. Then the minimization of 

E  is a least squares problem in nature, and equivalent to solving the linear equations 

( ) ( ) ( ) WQWLVWLWL T T= . Since ( ) ( )WLWL T  is symmetric, positive-definite and 

sparse, the equations can be solved efficiently by the conjugate gradient method [145]. 

As a result, the optimization of V  can be achieved by iteratively minimizing E . It 

should be pointed out that least squares minimization is optimal on Gaussian noise, but is 

sensitive to outliers, so we should reject those data points which are far away from the 

limit surface. It should also be noted that, in practice, a regularization term (such as a 
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spring model) is usually required in the energy function to guarantee a stable solution, 

and we refer the interested reader to [152] for details. 

As an example, an optimized subdivision mesh is shown in Figure 5.10. It was 

created by optimizing the control mesh in Figure 5.6 with the original data in Figure 5.1. 

 

 

Figure 5.10: An optimized control mesh (a), and its subdivision mesh (b) and the shaded 
model (c). 

5.4 RESULTS 

We have demonstrated that a body model has been successfully reconstructed 

through the steps described above. To evaluate its performance, we have tested the 

algorithm on numerous scan data of subjects with various body shapes and sizes. In 

addition to the model shown in Figure 5.10, more reconstructed body models are 

presented in Figure 5.11. All of the models were obtained by iteratively performing mesh 

optimization 10 times. The data size and running time on a 2.0 GHz PC for each model 

(a) (b) (c)
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are listed in Table 5.1, where the model in Figure 5.10 is labeled as 1, and the models in 

Figure 5.11 are labeled as 2–6. Since we only need to store the control mesh, and the final 

model can be recovered by using the evaluation rules of subdivision surfaces, the data 

compression ratio (which is defined as the ratio of the size of original data to the size of 

control mesh) is up to 260. The running times for steps 1 & 2, step 3, and step 4 are 

shown separately. The algorithm is computationally efficient with an approximately 

linear complexity. The total running time is about 30 s per 1 million original data points, 

and the last step takes most of it. The convergence of mesh optimization is demonstrated 

in Figure 5.12. The modeling accuracy is measured by fitting error which equals 

∑
i

iw
E

2 , where E  is the energy defined in Equation 5.11, and ∑
i

iw2  is the sum of 

squared weights of original data. After 10 iterations, the optimization process has already 

been very close to convergence, and the fitting error is less than 1.2 mm. 

 

 

Figure 5.11: Reconstructed body models of subjects with various shapes and sizes. 
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Table 5.1: Data sizes and running times for the presented models. 

 

0 5 10 15 20 25 30
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Iterations

Fi
tti

ng
 E

rro
r (

m
m

)

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

 

Figure 5.12: Performance of mesh optimization.  

Number of points Time (s) 
Model 

Original Resampled Control Final 1&2 3 4 Total 

1 909,182 82,246 3,291 13,158 0.89 7.47 18.47 26.83 

2 1,205,410 111,544 4,463 17,846 1.25 10.06 25.97 37.28 

3 1,409,440 129,770 5,192 20,762 1.34 11.89 30.45 43.68 

4 1,817,015 164,848 6,595 26,374 1.70 15.67 39.36 56.73 

5 1,328,199 124,516 4,982 19,922 1.33 11.64 29.64 42.61 

6 1,157,952 110,162 4,408 17,626 1.12 9.88 25.12 36.12 
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To demonstrate that the algorithm is capable of hole and gap filling, some close-

up views of the model of a subject are shown in Figure 5.13. We can see the gap under 

the armpit has been completed and the holes at the sole have been filled. It can also be 

observed that the original data are noisy, but the reconstructed surface is smooth. The 

foot is one of the most difficult areas to be reconstructed, due to the missing data and 

high noise, but our result is acceptable.  

 

Figure 5.13: Close-up views of gap and hole filling: (a) the armpit; and (b) the foot.     

5.5 DISCUSSION 

We have presented a surface reconstruction algorithm for human body modeling 

from 3D scanner data. It represents the body with a single subdivision surface, so body 

segmentation can be avoided during the modeling process. In addition to the human 

body, it is also applicable to other objects as long as the scan data satisfy the basic 

assumption: the data can be separated into two views, and each view can be regarded as 

samples on a bivariate surface defined in a common projection plane. 

(a) (b)
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For some general-purpose surface reconstruction algorithms, a plausible solution 

often depends on accurate estimation of the surface normals, which is not only time-

consuming, but also sensitive to defects in the data. In contrast, the proposed method 

does not need normal estimation, so it is more robust and computationally more efficient. 

For a two-view scanner, large gaps are inevitable due to the limited field of view, 

but our experiments have shown that the proposed method is capable of repairing the 

gaps automatically. For occlusion areas where the surface viewed on the sagittal plane is 

almost flat and featureless, the method can realistically restore smooth and natural body 

shapes. Nevertheless, it cannot recover detailed features in regions where the data are 

largely incomplete. Therefore, the two-view system is not proper for applications where 

high resolution of details is needed, whereas it might be highly suitable for an 

anthropometric survey to collect basic body dimensions. The model with a relatively 

small number of data points makes it suitable for effective storage and online 

transmission. 

In spite of the promise of the proposed method, much further work should be 

done to improve the current system. For example, the mannequin-like appearance of the 

surface in some areas (such as the hand and foot) was caused by not only the defects of 

the original data, but also the smoothness property of subdivision surfaces, and thus the 

algorithm needs to be improved so as to construct more accurate and feature-preserving 

surfaces from sparse and noisy data. 
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Chapter 6 
 

Body Measurement and System Evaluation 

6.1 INTRODUCTION 

This chapter serves two purposes. First, we describe how to perform body 

measurement on the reconstructed body model. Second, we present methods and results 

on the evaluation and validation of the developed 3D anthropometry system. For the 

latter, the system was tested on mannequins and human subjects to evaluate its accuracy 

and repeatability and validate its feasibility in body fat assessment. 

6.2 BODY MEASUREMENT 

6.2.1 Related Work 

With the development of body scanning technologies, segmentation and 

measurement on scanned data has also received attention from researchers. Pargars et al. 

[157] developed software tools that allow the user to take manual measurements from 

sliced scan data. Dekker et al. [158] described a model-based approach in which the slice 

data in each body segment are binned into sectors about the centroid and analyzed to 

automatically detect landmarks. They also measured the body volume by integrating over 

the slices and compared the results to that from densitometry. Ju et al. [159] proposed a 

method that is also based on the information of slices. The body is first segmented into 

the head and torso, arms, and legs according to slice settings, and then the girth profiles 

of individual body parts are used to locate the neck, shoulders, waist, elbows, wrists, 

knees and ankles. Xiao et al. [160] used geodesic distance to segment the body into 

primary parts. The advantage of this method is that geodesic distance is independent of 

body postures.  Leong et al. [161] proposed an algorithm in which the torso data is 
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transformed to cylindrical coordinates and then converted into a 2D depth map so that 

image processing techniques can be used to extract features. Interested readers are 

referred to a recent review by Werghi [162] on segmentation and modeling of human 

body from 3D scan data. 

6.2.2 3D Measurement Using Graphics Hardware 

In the previous work of our lab, Zhong and Xu [163] developed a body 

segmentation and measurement system that works on triangular meshes with a primary 

aim for virtual apparel fitting. In this method, key landmarks are searched in some target 

zones that are predefined based on the proportions relative to the stature. The armpits and 

neck are searched with the criterion of minimum inclination angle between neighboring 

triangles. The crotch is detected by observing the transition of cusps along successive 

horizontal contours. Once the key landmarks have been located, the body is segmented 

into the torso, head, arms and legs, as shown in Figure 6.1, where the models were 

captured by the developed stereo vision system. Then various measures including 

circumferences and lengths are extracted. However, this system is not sufficient for body 

composition research. For example, it provides limited capability in body volume 

measurement. To accurately estimate whole body volume, it needs to section the body 

parts into dense slices and divide each slice into dense line segments. The procedure 

involves extensive computation of plane-plane and line-line intersections. 

Here we present an extension to the previous system. New functions are provided 

to measure circumferences, areas and volumes. Most of the measurements can be realized 

by taking advantage of the computational power of modern graphics hardware. 
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Figure 6.1: Body segmentation. 

6.2.2.1 Volume Measurement 

For our application, volume measurement can be efficiently performed using the 

depth buffer of the graphics hardware. In modern computer graphics, the depth buffer, 

also called the z-buffer, records a depth value for each rendered pixel. With 3D APIs 

such as OpenGL [164], we can switch the z-buffer to keep track of the minimum or 

maximum depth (distance to the viewport) for each pixel on the screen. To measure the 

body volume, the 3D body model is rendered twice in the anterior view. During the two 

renderings, we choose the z-buffer to record the minimum and maximum depth of each 

pixel, respectively. Then the two depth maps read from the z-buffer correspond to the 

front and back surfaces of the body, respectively. As a result, we can get a thickness map 

of the body from the difference between the two depth maps. An example is shown in 

Figure 6.2. Finally, the body volume is calculated by integrating over the thickness map 

based on the known pixel scale. It is worthy noting that orthographic projection should be 
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used to reflect the actual size of the body. In principle, the z-buffering method is 

equivalent to resampling the surface data on a regular grid, so the size of the viewport 

that determines the sampling interval may affect the measure accuracy. However, we 

found that a moderate size of the viewport such as 500 × 500 is sufficient to reach high 

accuracy. In our system, it takes about 50 ms to render a typical model (a triangular mesh 

of about 15,000 vertices), so this technique is extremely efficient in time cost compared 

to the slice-based methods. 

For segmental volume measurement, we only need to render each individual 

segment and employ the same z-buffering method. 

 

Figure 6.2: Body volume measurement. (a) A 3D body model rendered in the anterior 
view; and (b) its thickness map. 

6.2.2.2 Circumference Measurement 

 The z-buffering method can also be applied for circumference measurement. It is 

especially convenient for manual measurement. When the user marks a contour by 

drawing a line in the rendered image, the 3D data for the contour can be obtained 

(a) (b)
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instantaneously from the depth maps. Then, the circumference as well as the breadth and 

depth of the contour can be calculated. An example is demonstrated in Figure 6.3. A 

contour is marked on the body model as shown in Figure 6.3(a), and then its 

circumference, breadth and depth are calculated as shown in Figure 6.3(b). 

    

Figure 6.3: Measurements on a contour. (a) The contour is marked on the body model. 
(b) Circumference, breadth and depth measurements. (d) Cross-sectional 
area measurement. 

6.2.2.3 Area Measurement 

When a contour has been extracted in circumference measurement, its cross-

sectional area can be estimated by redrawing the contour with its plane coincident with 

the screen plane. The image of the contour can be read from the depth buffer or the color 

buffer. The area is calculated by counting the pixels inside the contour. An example is 

shown in Figure 6.3(c), where the shaded pixels are counted to get the cross-sectional 

area. 

Breadth

Depth

(a) (b) (c) 
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Figure 6.4: Illustration of the body measurement system. (a) Results on two subjects. (b) 
Body segments used for the abdomen-hip volume measurement.  

 

The body surface area can be estimated by summing up the areas of all triangles 

in the mesh. In this case, the graphics hardware is not used. 

To illustrate the output of the body measurement system, results on two subjects 

are shown in Figure 6.4. The measured parameters include circumferences and cross-

sectional areas of a number of locations (such as the chest, waist, abdomen, hip, upper 

thigh and so on), whole body volume, segmental volumes (such as the abdomen-hip 

volume and the upper thigh volume), and body surface area. 

(a) (b) 
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6.3 SYSTEM EVALUATION 

To evaluate the accuracy and repeatability of the prototype 3D anthropometry 

system, we have tested it on some mannequins whose dimensions can be measured 

manually. The system was also tested on human subjects for the measurement of body 

volume and dimensions. To validate its feasibility in body fat assessment, the system was 

compared to other methods including air displacement plethysmography (ADP) and 

bioimpedance analysis (BIA). 

6.3.1 Subjects and Methods 

6.3.1.1 Mannequins and Measurements 

Three mannequins with different sizes (size 8, 10, and 12) were used to evaluate 

the reliability and accuracy of the system. A MyoTape body tape measure (AccuFitness, 

LLC, Greenwood Village, CO) was used to measure circumferences, and an 

anthropometer (Lafayette Instrument Company, Lafayette, IN) was used to measure the 

depth and breadth of the waist. Each mannequin was imaged 10 times with repositioning 

in a given hour period. Waist and hip circumferences, waist breadth and depth, and total 

volume were measured on 3D data automatically. The coefficient of variance (CV) was 

computed to estimate repeatability. To evaluate the accuracy on circumference, breadth 

and depth measurements, the results were compared to those obtained with 

anthropometric methods. 

To estimate the longitudinal day-to-day repeatability of the system, the size-12 

mannequin was imaged in 10 trials with no more than 3 trials on a single day. For each 

trial, the measurements were repeated 5 times. The between-trial variance or standard 

deviation (SD) was estimated. 
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6.3.1.2 Human Subjects and Measurements 

Twenty adult subjects (10 males and 10 females) were recruited in this research. 

The subjects were aged 24-51 yrs, with weights 47.9-169.5 kg, heights 156.0-193.0 cm, 

and BMI 18.9-47.8 kg/m2.  The study was approved by the Institutional Review Board of 

The University of Texas at Austin. An informed written consent was obtained from each 

subject at the visit. 

The subjects were wearing tight-fitting underwear and a swim cap during the test. 

First, height, weight, waist and hip circumferences, and waist breadth and depth were 

measured with conventional anthropometric methods. The same tape and anthropometer 

were used as in mannequin measurement.  

The subjects were imaged with normal breathing by the 3D anthropometry 

system. During imaging, the subjects were asked to stand still in a specific posture with 

the legs slightly spread, the arms abducted from the torso, and the hands made into fists. 

The imaging was repeated 10 times for each subject. The subjects were repositioned 

between scans. The subjects were also assessed for body fat by ADP (BodPod; Life 

Measurement Inc, Concord, CA) and leg-to-leg BIA (TBF-300A; Tanita, Tokyo, Japan). 

The body volume obtained from the 3D anthropometry system should be corrected for 

thoracic gas volume (TGV) that equals functional residual capacity plus half of tidal 

volume. In this study, TGV was measured or predicted by the BodPod. 

The subjects were instructed to fast at least three hours, stay hydrated, and avoid 

excessive sweating, heavy exercise, and caffeine or alcohol use before all procedures 

were performed. 

6.3.1.3 Statistical Analysis 

Repeatability was determined by computing the intra-class correlation coefficient 

(ICC) and the coefficient of variance (CV) from the table of one-way random effects 
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ANOVA. The comparisons of measurement by different methods were performed using t 

tests and linear regression analysis. 

Percent body fat was calculated from whole body volume measured by 3D 

anthropometry and ADP using Siri’s Equation (Equation 2.4). Percent body fat estimates 

determined by ADP and BIA were compared to that obtained by the 3D anthropometry 

system using paired-sample t tests and linear regression. In addition, Bland and Altman 

analysis [165] was used to assess agreement of percent body fat across methods; a 95% 

agreement was estimated by the mean difference ± 1.96 SD. For all analyses, statistical 

significance was P < 0.05. The statistical calculations were performed using SPSS 16.0 

(SPSS Inc., Chicago, IL). 

6.3.2 Results 

6.3.2.1  Mannequins 

An example of the measurement on one of the mannequins is demonstrated in 

Figure 6.5. The results of repeatability test on the three mannequins are shown in Table 

6.1. The CVs were < 0.2% for volume and waist and hip circumferences. The CVs 

increased to around 0.5% for waist breadth and depth due to the relatively small values of 

these two measures. ICCs were not calculated due to the limited number of subjects. The 

results of longitudinal repeatability test are given in Table 6.2. The between-trial variance 

was comparable to the within-trial variance. 

The comparison between 3D anthropometry and manual methods on measuring 

the size-12 mannequins is shown in Table 6.3. Although there were significant 

differences in three of the four measures, the differences were small. The difference in 

hip circumference was relatively large because it was difficult to determine the location 

consistently. The reference value of volume was unknown, so volume was not compared. 



 94

 

Figure 6.5: Automatic measurement on a mannequin model. 

 

Table 6.1: Repeatability test on three mannequins. 

 Mean MSw MSb SDw SDb CV 

WC (mm) 675.7 1.3 8806.3 1.2 29.7 0.17 

HC (mm) 939.4 1.7 4199.9 1.3 20.5 0.14 

Breadth (mm) 231.8 1.7 886.2 1.3 9.4 0.57 

Depth (mm) 188.5 0.8 1423.6 0.9 11.9 0.48 

Volume (L) 50.752 0.008 47.422 0.092 2.178 0.18 

Note: WC, waist circumference; HC, hip circumference. The torso breadth and depth 
are measured at the waist level. MSw, within-subject mean square error (MSE); MSb, 
between-subject MSE; SDw, within-subject SD; SDb, between-subject SD. 
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Table 6.2: Longitudinal repeatability test on the size-12 mannequin. 

 Mean MSw MSb SDw SDb 

Volume (L) 52.304 0.009 0.051 0.095 0.091 

Note: MSw, within-trial MSE; MSb, between-trial MSE; SDw, within-trial SD; SDb, 
between-trial SD. 

 

Table 6.3: Dimensions of  the size-12 mannequin measured by manual methods and the 
3D anthropometry system. 

 Tape or 
anthropometer 3D-A Difference P 

WC (mm) 704.6 ± 0.8 705.8 ± 1.3 1.2 ± 1.6 0.027 

HC (mm) 966.5 ± 1.2 958.9 ± 1.7 -6.6 ± 2.1 < 0.001 

Breadth (mm) 238.9 ± 0.1 239.9 ± 1.6 1.0 ± 1.6 0.086 

Depth (mm) 201.1 ± 0.0 202.2 ± 0.8 1.1 ± 0.8 0.002 

Note: The P-values were from t tests. 

 

6.3.2.2  Human Subjects 

The overall age and anthropometric characteristics of the 20 human subjects are 

listed in Table 6.4. Eight subjects were of BMI ≥ 25.0 kg/m2, and 4 were of BMI ≥ 30.0 

kg/m2. 

The repeatability of the measurements is given in Table 6.5. All ICCs were > 

0.99, and all CVs were < 1.0% except the measurement of waist depth. The highest 

precision was reached in body volume partially due to the fact there was no ambiguity to 
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calculate whole body volume for a 3D model. However, it was difficult to locate 

precisely the waist and hip, especially waist in overweight subjects. 

The accuracy of 3D anthropometry with reference to tape, anthropometer and 

ADP measurements is shown in Table 6.6. 3D anthropometry was significantly different 

from tape (anthropometer) measure in hip circumference and waist depth. The 

 

Table 6.4: Characteristics of the human subjects 

 Mean SD Range 

Age (y) 32.2 6.2 24-51 

Height (cm) 171.7 8.4 156.0-193.0 

Weight (kg) 79.5 31.3 47.9-169.5 

BMI (kg/m2) 26.6 8.5 18.9-47.8 

 

Table 6.5: Repeatability test on 20 human subjects. 

 Mean MSw MSb SDw SDb CV ICC 

WC (mm) 880.3 45.2 495886.7 6.7 222.7 0.76 0.9991

HC (mm) 1065.4 32.8 313843.0 5.7 177.1 0.54 0.9990

Breadth (mm) 305.4 9.0 40913.8 3.0 64.0 0.98 0.9978

Depth (mm) 237.4 19.9 53657.9 4.4 73.2 1.88 0.9963

Volume (L) 80.122 0.156 10523.455 0.394 32.440 0.49 0.9999

Note: WC, waist circumference; HC, hip circumference. The torso breadth and depth 
are measured at the waist level. MSw, within-subject MSE; MSb, between-subject 
MSE; SDw, within-subject SD; SDb, between-subject SD. 
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Table 6.6: Comparison of dimensions and volume measured by 3D anthropometry, and 
tape, anthropometer or ADP in human subjects. 

 Tape, anthropometer 
or ADP 3D-A Difference P 

WC (mm) 884.3 ± 217.6 880.2 ± 222.5 -4.1 ± 29.4 0.543 

HC (mm) 1051.2 ± 180.4 1065.1 ± 176.8 13.9 ± 29.2 0.046 

Breadth (mm) 314.8 ± 79.2 306.3 ± 65.7 -8.5 ± 24.9 0.152 

Depth (mm) 227.0 ± 83.3 240.1 ± 74.5 13.1 ± 25.5 0.038 

Volume (L) 76.834 ± 32.445 76.669 ± 32.284 -0.165 ± 0.692 0.300 

Note: The P-values were from paired-sample t tests. 

 

Table 6.7: Linear regression analysis on dimensions and volume measured by 3D 
anthropometry, and tape, anthropometer or ADP in human subjects. 

 a b r2 SEE 

WC (mm) 1.014 16.351 0.9827 30.0 

HC (mm) 0.967 48.210 0.9739 29.3 

Breadth (mm) 0.795 55.954 0.9179 19.4 

Depth (mm) 0.854 46.332 0.9097 23.0 

Volume (L) 0.995 0.233 0.9996 0.690 

Note: The prediction equations are expressed as baxy += . SEE, standard error of the 
estimate. 
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differences were not significant in body volume, and waist circumference and breadth. 

The degrees of agreement were also characterized by linear regression analysis as shown 

in Table 6.7. A relatively high correlation was observed between 3D anthropometry and 

tape (anthropometer) measure in body dimensions with r2 > 0.90, but SEEs were 

relatively high with the order of 20-30 mm. A very good agreement was reached in body 

volume as comparing 3D anthropometry to ADP (r2 = 0.9996, SEE = 0.690 L). The body 

volumes are plotted with the regression line in Figure 6.6. The regression line was not 

significantly different from the line of identity. 
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Figure 6.6: Scatter plot of body volume measured by 3D anthropometry (3D-A) and air 
displacement plethysmography (ADP). 

 

Siri’s equation (Equation 2.4) was used to predict body fat for both 3D 

anthropometry and ADP. The percent body fat (%BF) estimated by these two techniques 

in shown in Figure 6.7. The prediction equation was obtained from linear regression with 

ADP as the reference method: y = 0.891 x + 1.917, r2 = 0.9093, SEE = 4.002. As a 

y=0.995x+0.233
r2=0.9996, SEE=0.690L 
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comparison, the %BF estimated by BIA and ADP is shown in Figure 6.8, where the 

prediction line is y = 0.838 x + 2.984, r2 = 0.8174, SEE = 5.631. It was observed that 3D 

anthropometry and ADP were more closely correlated than BIA and ADP. The %BF 

estimated by 3D anthropometry and BIA is given in Figure 6.9. The three techniques 

were also compared using Bland-Altman analysis, as shown in Figures 6.10-12. The bias 

and SD of difference between each pair of the methods are given in Table 6.8. Paired-

sample t tests were also performed and showed that these methods were not significantly 

different from each other in %BF measurement. However, the limits of agreement 

demonstrated again that the agreement between 3D anthropometry and ADP was higher 

than that between BIA and ADP. 
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Figure 6.7: Scatter plot of percent body fat (%BF) by 3D anthropometry (3D-A) and air 
displacement plethysmography (ADP). 
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Figure 6.8: Scatter plot of percent body fat (%BF) by bioimpedance analysis (BIA) and 
air displacement plethysmography (ADP). 
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 Figure 6.9: Bland-Altman plot of percent body fat (%BF) by 3D anthropometry (3D-A) 
and air displacement plethysmography (ADP). 
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Figure 6.10: Bland-Altman plot of percent body fat (%BF) by bioimpedance analysis 
(BIA) and air displacement plethysmography (ADP). 
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Figure 6.11: Bland-Altman plot of percent body fat (%BF) by 3D anthropometry (3D-A) 
and bioimpedance analysis (BIA). 
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Table 6.8: Bland-Altman analysis on percent body fat. 

 Bias SD Limits of agreement P 

(3D-A) – ADP -0.789 4.178 ± 8.189 0.409 

BIA – ADP -1.040 5.923 ± 11.609 0.442 

(3D-A) – BIA 0.251 6.177 ± 12.107 0.858 

Note: Limits of agreement is defined as ± 1.96 SD. The P values were from paired-
sample t tests. 

 

6.4 DISCUSSION 

We have presented an automatic body measurement system, which is an extension 

to its earlier version and dedicated to the needs of body composition assessment. The 

functions of 3D measurement can be enhanced by taking advantage of modern graphics 

hardware. 

The overall performance of the developed 3D anthropometry system has been 

evaluated. The measurements were highly repeatable both in mannequins and human 

subjects. Relatively large differences were observed for circumferences, breadth and 

depth in human subjects. Most likely, the errors mainly originated from the inconsistence 

of locating the landmarks between different methods. For example, the level of waist is 

usually the narrowest part of the torso for individuals of normal weight. However, the 

location of waist in obese is not well defined. For manual measurement, we can 

determine waist as midway between iliac crest and lowest rib margin [166]. But we 

cannot take advantage of this skeletal information when performing measurement on a 

3D body model. The error in the waist depth measurement was larger than that in the 
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waist breadth for human subjects, perhaps due to the fact that breathing had a greater 

effect on the depth. Once the uncertainties had been minimized, as in the measurements 

of mannequins, high accuracy could be reached. 

The body volumes measured by 3D anthropometry and ADP were highly 

correlated, which was essential to effective body fat assessment. In body fat estimate, 3D 

anthropometry and ADP had closer agreement than BIA and ADP. However, we need to 

realize that the estimation of percent body fat is very sensitive to the accuracy of body 

volume measurement in the two-component body composition model. For example, Siri’s 

equation (Equation 2.4) yields 

 ( )
W

VBF ∆
=∆

495% , (6.1) 

where W  is the body weight in kg, and V∆  is the error of body volume measurement in 

L. If we assume 60=W kg, then an error of 0.5 L in V∆  would lead to an over 4% 

difference in %BF. A small error in body volume measurement can readily result from 

inaccuracy of lung volume estimate or a slight movement of the body during imaging. 

However, body volume is only one of a number of variables that can be measured from a 

3D anthropometry system. Its combination with other variables may offer better 

prediction of body fat. 
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Chapter 7 
 

Conclusions and Future Work 

7.1 SUMMARY OF THE DISSERTATION 

The prevalence of obesity has made it necessary to develop a convenient, reliable 

and safe tool for timely assessing and monitoring obesity in public health. After 

reviewing current techniques for body composition analysis, we suggested that 3D 

anthropometry can provide a convenient, accommodating and comprehensive means to 

body composition assessment. 

A 3D anthropometry system based on stereo vision technology was developed. To 

make it more affordable and portable, the system was reduced to a two-stance design that 

is the minimum configuration required for whole body imaging. The system is calibrated 

in two stages: camera calibration and 3D registration. The first stage is relatively 

complicated, but it doesn’t need to be repeated frequently. The relative position of two 

cameras in a stereo head can be readily fixed and intrinsic camera parameters can be 

stabilized using locking lenses. Therefore, only 3D registration needs to be redone when 

the system is transported. This property contributes to the portability of the system and 

also reduces cost of maintenance. 

The hardware requirements of stereo vision are relatively low in comparison with 

laser scanning and structured light, the most popular technologies in body scanning. 

Additionally, fast image acquisition can be reached in stereo vision. However, the 

computation in stereo vision is complex and intensive, and is still a big challenge. In this 

study, we proposed a two-phase stereo matching algorithm. In the first phase, foreground 

is accurately segmented with the help of a predefined virtual interface, and a coarse 
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disparity map is generated with block matching. In the second phase, local least squares 

matching is combined to global optimization within a regularization framework, so both 

high accuracy and reliability can be reached. 

To make the 3D data more interpretable and manageable, it is essential to convert 

the raw 3D data to a body surface model. For our system, a unique challenge is that there 

are large gaps in the data caused by occlusions. An effective surface reconstruction 

algorithm based on subdivision surface representation was developed. The algorithm 

consists of four steps. First, the data is resampled on a regular grid. Second, the sampled 

data are triangulated to create an initial mesh with gap closure. Third, the initial mesh is 

simplified to generate an approximate control mesh. Finally, the control mesh is 

optimized and subdivided to obtain a smooth model. Our results demonstrated the 

algorithm is reliable in gap closing, efficient in data compression, and accurate in 

representation. 

To make the 3D anthropometry system ready for practical use, automatic body 

measurement is indispensable. A body measurement system dedicated to body 

composition assessment was developed based on an earlier system that was designed for 

applications in apparel fitting. The functions of 3D measurement were enhanced by 

taking advantage of modern graphics hardware. The measurable parameters include 

circumferences, frontal and sagittal diameters, whole body volume, segmental volumes, 

cross-sectional areas, and body surface area. 

The overall performance of the presented system was evaluated. The 

measurements were highly repeatable. The feasibility of 3D anthropometry in body fat 

assessment was demonstrated in comparison to ADP and BIA. The results showed that 

the agreement between 3D anthropometry and ADP was higher than that between BIA 

and ADP 
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7.2 SUGGESTIONS ON FUTURE WORK 

The current dimensions and portability of the system are constrained by the field 

of view of the projectors. The system can be made more compact if projectors with 

shorter throw distance are available. Furthermore, true portability can be realized if the 

need of projectors can be eliminated. In an unreported study, we have successfully 

applied a variant of our stereo matching algorithm to human face imaging using 10-

megapixel consumer digital cameras without texture projection. However, we need to 

increase considerably the number of cameras for whole body imaging since each camera 

can only cover a limited field view under which skin texture is sufficient for reliable 

stereo matching. Here the major challenge is that the computation cost will increase 

dramatically due to the large image size and number of cameras. In addition, it will 

become more difficult to control the systematic error caused by imperfect calibration 

when more cameras are involved. 

There is still room for improvement on the algorithms developed in this study. For 

example, our stereo matching algorithm is effective in foreground segmentation, but a 

slight “foreground fattening” effect is still noticeable in some regions. As for surface 

reconstruction, some features of the body are over smoothed, so it is preferred to make 

the algorithm more adaptive to local geometry. 

The potential of the applications of 3D anthropometry in public health is 

enormous. For example, it will be of great value if we can develop new indexes for 

estimating the distribution of body fat or more directly predicting health risks. This 

technology is also ideal for tracing changes in body size and shape and monitoring related 

health conditions. 
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