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Automation is a powerful tool, which may be used to increase the throughput of 

many otherwise laborious manual manipulations.  Aptamer and deoxyribozyme 

selections are prime examples of processes, which require substantial amounts of time at 

the bench, but which are amenable to automation.  Double-stranded DNA binding sites 

that bound with high affinity to the nuclear factor kappa B (NFκB) p50 homodimer were 

selected using a Tecan Genesis workstation.  This was followed by selections against 

whole cell lysates.  The resultant sequences represented an array of transcription factor 

binding sites within the E. coli genome.  Finally, a Biomek2000 was used to perform a 

deoxyribozyme ligase selection, which formed an unnatural phosphorothioate linkage. 
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Chapter 1:  Introduction 

 

IN VITRO SELECTIONS 

Aptamers are nucleic acid species, which bind a target molecule with both high 

affinity and specificity.  The nucleic acids can be either DNA or RNA, double stranded or 

single stranded.  The target for binding can be anything.  Aptamers that bind specifically 

have been selected against everything from ions to small organics, peptides, proteins, 

viruses and tissues.  (Famulok and Mayer, 1999; Brody and Gold, 2000; Hesselberth et 

al., 2001).   

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are composed of sugar 

phosphate backbones and a series of nucleobases.  The difference between the two is that 

DNA bears a hydrogen at the 2’ carbon on the sugar moiety while RNA bears a hydroxyl 

in this position, and RNA utilizes uracil instead of thymine, which contains a methyl 

group on the five carbon of the base.  Adenine and Guanine are purines, which have a 

bicyclic structure.  Pyrimidines, thymine, cytosine, and uracil, have a a single six member 

ring as their basic structure.  In a double stranded form, the highly charged phosphate 

backbone is primarily what is exposed on the surface of the molecule.  However, in the 

single stranded form an array of polar and nonpolar surfaces are available to participate in 

the formation of secondary and tertiary structures.  This provides a host of possibilities 

for binding surfaces.  Single stranded DNA and RNA also fold into structures that place 

specific functional groups at precise locations to allow optimal target binding properties.  

The 2’ hydroxyl, which is present in RNA gives these molecules additional binding 

functionality, however is also makes them more susceptible to degradation. 
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Figure 1: Double stranded DNA.  

(http://web.mit.edu/esgbio/www/lm/nucleicacids/dna.html)  
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Figure 2: Structure of ssDNA aptamer bound to thrombin.  (www.pdb.org)  Thrombin is 

shown as a ribbon structure in blue.  The ssDNA aptamer is shown as a stick 

structure in yellow and green. 

Aptamers are selected through a cyclic process of binding species isolation 

followed by amplification.  They can be selected from random sequence populations.  

Oligonucleotides are synthesized that contain a random sequence region of 30 to 200 

residues, flanked by constant regions required for amplification via the polymerase chain 

reaction (PCR).  Chemically synthesized single-stranded DNA pools can be converted 

into double-stranded DNA pools through PCR, while RNA pools and modified RNA 

pools can be generated by inclusion of a T7 RNA polymerase promoter in one of the 

constant regions and in vitro transcription.  Nucleic acid pools typically contain from 1013 

to 1015 different sequences.  Functional species are separated from non-functional species 

by immobilization.  For example, aptamers are typically captured by affinity 

chromatography or filtration partition, while catalytic nucleic acids (ribozymes, 

deoxyribozymes) can be captured following the addition of an activated substrate (e.g., a 
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biotinylated oligonucleotide) to themselves.  Following isolation, functional species can 

be amplified by a combination of reverse transcription, PCR, and in vitro transcription, as 

is necessary to regenerate the pool.  Multiple cycles of selection and amplification result 

in the preferential enrichment of those binding or catalytic species with the highest 

affinities or activities. 

 

Figure 3:  General Selection Scheme.  Target molecules are shown as orange circles and 

nucleic acids are shown as double blue lines. 

Aptamers have been selected against a wide variety of proteins, including both 

nucleic acid binding proteins, such as T4 DNA polymerase and HIV-1 Rev, and a 

surprising number of non-nucleic acid binding proteins.  In general, anti-protein aptamers 
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recognize basic patches on protein surfaces.  For example, the arginine-rich motifs 

(ARMs) of many viral proteins are recognized by aptamers (Ellington et al., 1996), the 

phosphate-binding pockets of both kinases (Conrad et al., 1994) and phosphatases (Bell 

et al., 1998).  Aptamers also have an affinity for pockets on protein surfaces, such as the 

combining sites of antibodies (Tsai et al., 1992) or the active sites of enzymes (Tuerk et 

al., 1992).  Most importantly, aptamers recognize their targets with high specificity, and 

can typically discriminate between protein targets that are highly homologous (Conrad et 

al., 1994; Hirao et al., 1998).  There are numerous examples of aptamers that discriminate 

strongly between proteins that are greater than 95% similar in sequence, and some that 

differ by only a few amino acids (Conrad et al, 1994; Hicke et al., 2001).   

Aptamers can not only be selected against purified targets or antigens, but also 

against complex targets, such as whole cells.  In one of the most intriguing examples to 

date, Homann and Goringer (1999) were able to select aptamers against whole 

trypanosomes; these were eventually found to bind to the variant surface glycoprotein.  

(Lorger et al., 2003).  Another example is a selection that was carried out against red 

blood cell (RBC) membranes, and a series of aptamers specific to different targets on the 

RBC membrane surface were identified (Morris et al., 1998).  Minimized versions of 

some of the aptamers were as small as 22 nucleotides, yet retained high affinity (Kd = 

1.6nM) and specificity for their target ligand.  Similarly, Pan et al. (1995) generated both 

RNA and modified nuclease-resistant RNA aptamers to Rous sarcoma virus (RSV).   

Aptamers can be applied in target identification as substitutes for antibodies or 

other staining reagents.  For example, aptamers have been adapted to sandwich assays ( 

‘ELONAs,’ for enzyme-linked oligonucleotide assay) and were able to sensitively 

quantitate target proteins (Drolet et al., 1996).  Later adaptations of the sandwich assay 
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even allow the detection and quantitation of physiological concentrations of proteins in 

extracts (Rye and Nustad, 2001).  Fluorescent aptamers have even been used to label cells 

in flow cytometry (Davis et al., 1996). 

 

Aptamers have proven to be valuable both as therapeutic and diagnostic agents.  

Aptamers against potential therapeutic targets including IgE, thrombin, PTPase, and 

others have shown efficacy in tissue culture experiments and some have even been 

successful in animal models.  An anti-thrombin aptamer was used in place of heparin for 

anti-coagulation during heart bypass surgery in canines (DeAnda et al., 1994).  In another 

animal model, aptamers against inflammation factor human neutrophil elastase (hNE) 

were shown to significantly reduce lung inflammation in rats and had better specificity 

for their target than an anti-elastase IgG control (Bless et al., 1997).  An aptamer that 

inhibits vascular endothelial growth factor (VEGF) was introduced into humans for the 

treatment of macular degeneration, making it the first aptamer to reach clinical trials 

(Tucker et al., 1999). 

 

Despite the many useful attributes of aptamers, there are some drawbacks.  The 

two most notable are the large amount of time required to select them and the importance 

of specific selection conditions.  To obviate these difficulties, robots can be used to 

perform the selections.  Instead of several weeks to complete a selection, the robots can 

complete them several hours (Cox et al., 2002).  In addition, parallel selections may be 

performed under different buffer conditions.  The robots can therefore more quickly 

identify aptamers and the optimal conditions under which they should be selected. 
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LIQUID HANDLING ROBOTICS 

Beckman Biomek 2000 

The Biomek 2000 (Figure 4) was introduced by Beckman Coulter.  It is run using 

Bioworks software which has a very object oriented interface.  The machine has 

detachable tools which hold one or eight pipetting channels.  Each of the pipetting heads 

has an optimum volume range and uses a particular set of tips.  The Biomek also has a 

detachable gripper tool which can be used for moving microplates and tip boxes around 

the worksurface.  Third party devices such as MJ Research thermal cyclers, Dynal auto-

96 magnetic bead separators, and Beckman stacker carousels may also be integrated 

using special drivers.  Custom devices were also constructed by Tim Riedel including an 

“enzyme cooler” which will keep contents of a microplate at -20C and a “refrigerator 

plate” which will keep the contents of a microplate at 4C.  
 

 
 
 
 
 

 

 

 

Figure 4: Biomek2000 

(http://www.beckman.com/products/instrument/automatedsolutions/biomek/

biomek2000_inst_dcr.asp)  

Beckman Biomek FX 
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The Biomek FX in our lab is a one pod system.  This pod contains a fixed 96 

channel pipetting head and with a gripper tool.  The gripper tool may be used to move 

microplates and tip boxes around the worksurface, but it cannot reach off the 

worksurface.  The Biomek FX has an integrated stacker carousel and an integrated solid 

phase extraction device, thermal plate, and shaker plate.  We have been unable to 

integrate third party devices such as a Dynal auto-96 or an MJ Research thermal cycler 

with this unit.  The software is very user friendly.  For the average user, the learning time 

is minimal compared to other robots.  The interface is very object oriented and it does 

much of the “thinking” for the programmer.  This robot is optimal for serial dilutions and 

aliquotting solutions from reservoirs into plates. 
 

 

 

 
 
 
 

 

 

 

 

 

Figure 5: BiomekFX  

(http://www.beckman.com/products/instrument/automatedsolutions/biomek/

biomekfx_inst_dcr.asp)   
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Tecan Genesis Workstation 200 

The most advanced automated workstation available to us is the Tecan Genesis 

Workstation 200 (Figure 6).  The Tecan has two pods, a liquid handling pod and a robotic 

manipulator arm.  The liquid handling pod is composed of eight, independently 

controlled pipetting tips that have liquid sensing capabilities and can accurately pipette 

between 0.5 and 1000µL into plates with 1 – 384 wells.  The robotic manipulator arm can 

move items on and off the worksurface, allowing access to additional equipment to the 

side of the workstation.  The worksurface also contains a number of different carriers and 

devices; for example, temperature control units are available for buffer and enzyme 

storage, incubators are present for temperature-controlled microplate storage, and a 

vacuum filtration unit and a centrifuge can be interfaced with various purification tasks or 

kits, such as those from Qiagen, Promega, or Millipore.  Successful integration between 

centrifugation and liquid-handling robots is rare, and we are one of the few academic labs 

to have accomplished this.  An integrated Tecan Columbus plate washer and MJ 

Research thermal cycler are essential for automated panning selections.  The custom 

integration of an Invitrogen 96-well agarose gel system has facilitated high throughput 

visualization of PCR products, and a Safire microplate reader has been integrated for 

rapid sample screening. 
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Figure 6:  Tecan Genesis   (http://www.tecan-us.com/us-index/com-pr-in/com-pr-in-

ro_li_entry-3/com-pr-in-ro_li-genesis_rsp.htm)   
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Chapter 2:  Nuclear Factor kappa B selection 

INTRODUCTION 

Double-Stranded DNA Aptamers 

Double-stranded DNA (dsDNA) aptamer selections have proven to yield accurate in vivo 

binding sequences for dsDNA binding proteins.  For example, manual selections against 

the NFκB p50 homodimer have produced the in vivo binding site (Kunsch et al, 1992).  

Benbrook and Jones performed selections against CREB1, CREB2, and the CREB2/cJun 

heterodimer (1994).  All of the selected sequences varied from the known in vivo binding 

sequence by three or less nucleotides out of the 10bp binding site.  Selections have also 

been used to successfully identify unknown binding sites, for example, the HspR binding 

site in H. pylori (Delany et al.  2002).  Selection experiments yielded two binding sites 

which were later confirmed by DNA footprinting.   

 A number of different selections have been performed against protein targets in 

lysates (Pollock and Treisman, 1990; Benbrook and Jones, 1994)  Blackwell and 

Weintraub performed selections against MoyD and E2A homo- and heterodimers (1990).  

They found that the different dimers recognized a consensus CANNTG, but varied on the 

two internal residues according to which dimer was being selected against.  These 

proteins were purified for the selection experiments and were later tested for their in vivo 

activation abilities (Huang et al, 1996).  Interestingly, optimal in vitro binding sites were 

inactive in vivo while other selected sites exhibited binding activity similar to naturally 

occurring promoters.  Also, manual selections against both purified myogenin and 

myogenin in nuclear extracts produced the known in vivo binding sequence (Wright et al 
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1991; Funk and Wright, 1992).  The significance of this is that the selection in the lysate 

allowed the myogenin target to be a natural complex of proteins instead of a single 

purified protein.   

In general, the sequence data from in vitro selection experiments corresponds to 

identified, natural binding sites and hence can be matched to promoter regions within 

genomes and used to identify genes that may be regulated by a transcription factor.  

There are a number of programs and databases that are available to assist with 

transcription factor binding site identification.  For example, TRANSFAC, The 

Transcription Factor Database, is a compilation of known transcription factor binding 

sites, and EPD, the Eukaryotic Promoter Database, is a collection of eukaryotic 

promoters for which the transcriptional start sites have been experimentally determined.  

There is also software, such as SiteSeer (Boardman et al., 2003), that can interface 

directly with the TRANSFAC database and can aid in binding site identification.   

Double-stranded DNA selections have been used to not only define DNA-binding 

sites for proteins, but also to determine the relative contributions of individual residues 

within a site to interactions with the target protein (Roulet et al., 2002).  For example, 

after four rounds of in vitro selection against the CTF/NFI transcription factor, Bucher 

and co-workers sequenced over 10,000 possible binding sites and constructed a binding 

model based on the sequence distribution. The binding model was used to predict natural 

binding sites, which were subsequently experimentally verified.   

With the availability of structural and sequence data for transcription factors, 

selections are now not the only means of identifying binding sites.  Statistical weighting 

algorithms (Sinha and Tompa, 2002; 2003) can assist in the identification of new sites or 

subtle alterations in specificity.  He and coworkers performed a selection against MetJ 
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and successfully identified the in vivo holo-repressor and apo-repressor binding sites.  Liu 

and coworkers used known binding and selection data from MetJ to devise a model for 

predicting transcription factor binding sites.  This model was used to identify additional, 

previously unknown, MetJ binding sites within the genome.  (Liu et al, 2001).   

In one of few examples, Church and co-workers have constructed a phage display 

library that expressed a variety of mouse Zif268 zinc finger domains and analyzed the 

specificities of individual fingers using a double-stranded DNA microarray (Bulyk et al., 

2001).  Newman and Keating (2003) examined the partnering specificities of all possible 

dimeric interactions between human leucine zipper transcription factors, using a protein 

(as opposed to double-stranded DNA) array.  In addition, some transcription factor 

microarrays are commercially available (www.clontech.com; www.panomics.com).   

We have established an automated selection protocol that targets double-stranded 

DNA binding proteins.  The Tecan Genesis liquid handling robot was used to automate 

double-stranded DNA aptamer selections (Figure 6).  The Tecan robot was chosen for 

this work, as opposed to the Beckman platforms, because its plate washer and versatile 

robotic arm enabled the implementation of high-stringency panning selections.   
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Figure 7: NFKB bound to DNA  (www.pdb.org) 

The in vitro selection process for dsDNA aptamers is known by a variety of 

names, inlcuding: CASTing (cyclic amplification and selection of targets)(Wright et al., 

1991), SELEX (systematic evolution of ligands by exponential enrichment)(Tuerk and 

Gold, 1990), SAAB (selected and amplified binding site)(Blackwell and Weintraub, 

1990), and TDA (target detection assay)(Thiesen and Bach, 1990).  Regardless of the 

name, the selection process is essentially the same.  As diagramed in Figure 8, a “pool” 

of oligonucleotides is synthesized with a randomized core region which ranges in size 

from 20 to 100 bases (Wright and Funk, 1993).  Constant regions at the 5’ and 3’ ends of 

the DNA serve as the necessary priming areas for the polymerase chain reaction (PCR).  

The single-stranded pool is converted into double-stranded DNA  via PCR, and the 

resultant product is purified.  The initial dsDNA pool containing 1013 to 1015 different 

sequences is then incubated with a target protein or protein complex.  Non-binding 
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species are partitioned away and the binding species are amplified via the polymerase 

chain reaction (PCR).  The product is purified and subjected to additional rounds of 

selection for a total of four to eight rounds.  The resultant pool is composed of the species 

which bind the target with the highest affinity.  Following selection, the individual DNA 

species are sequenced.  One or several families of sequences are typically present.     

 

 

Figure 8: General in vitro dsDNA selection scheme.  Nucleic acids are shown as parallel 

blue lines and target molecules are shown as orange circles. 
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Double-stranded DNA aptamer selections are typically used to identify the 

sequence of a binding site for a protein that binds dsDNA.  This application is unlike 

typical aptamer applications.  Single-stranded DNA and RNA aptamers are capable of 

folding into complex secondary and tertiary structures.  The surfaces of these species are 

composed of both hydrophobic and hydrophilic regions.  In contrast, dsDNA aptamers 

are linear.  The negatively charged phosphodiester backbone is exposed to the 

environment while the bases reside within the double helix.  As a result, dsDNA aptamers 

are not well suited for binding to a wide variety of targets (Figure 1).  The proteins 

containing sites specific for binding dsDNA are, on the other hand, excellent selection 

targets.   

Cellular functions are composed of a complex network of signals.  In order to 

better understand how cells operate, it is important to understand which proteins control 

the expression of which genes.  To this end, a variety of methods have been employed.  

DNA footprinting is one example.  A protein is incubated with genomic DNA and then 

DNAse is added.  All exposed DNA is digested, while the DNA that is protected by the 

protein remains intact.  An alternative method is dsDNA aptamer selection.  Families of 

binding sequences will be isolated.  This is advantageous because there may be slight 

variations in promoter sequences in vivo, however sequences which bind but are not 

present in promoters may also be identified.  Current literature shows that dsDNA 

aptamer selections typically yield species that are highly homologous to known promoter 

regions.  When coupled with automation, a large number of transcription factor/promoter 

pairs can be identified in a short amount of time.  Genome sequences can then be 

searched for the selected promoter sequences, and regulatory networks can be mapped.  

The identification of multiple transcription factor binding sites by a combination of 
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selection, sequence analysis, and database mining can potentially lead to the construction 

of a full description of the regulatory pathways in a cell.  Unfortunately, the in vitro 

selection process can be extremely time-consuming.   

A number of selections have been performed in extracts to identify double-

stranded DNA sequences that bind to either specific proteins or protein complexes, 

including estrogen receptors (Medici et al., 1999); CRE (Benbrook and Jones, 1994); 

serum response factor and Fos (Pollock and Treisman, 1990); p53 (Funk et al., 1992), 

myogenin (Wright et al., 1992; Funk and Wright, 1992), and retinoblastoma-containing 

complexes (Oulette et al., 1992).   

Manual selection methods have previously yielded binding sequences for a 

variety of transcription factors, including NFκB (Kunsch, 1992), estrogen receptor 

(Medici et al., 1999); p53 (Funk et al., 1992), myogenin (Wright et al., 1991; Funk and 

Wright, 1992), and CTF/NFI (Roulet et al., 2002).  Binding sites have been identified not 

only for purified proteins, but also for protein complexes (Wright et al, 1991; Funk and 

Wright, 1992).  For example, selections against purified myogenin and myogenin in 

nuclear extracts each yielded the same sequence families.  The selected protein binding 

sites corresponded to natural sequences known to bind to the myogenin homodimer. 

The first double-stranded DNA selection was performed in vivo in 1986, prior to 

the widespread use of PCR (Horwitz and Loeb, 1986).  A nineteen base pair random 

region was inserted at the -35 promoter region of the tetracycline resistance gene (tetr) on 

a pBR322 plasmid.  Escherichia coli was transformed with the plasmid to produce a 

library of about 1000 bacteria.  The bacteria were then plated on Luria-Bertani (LB) 

media containing tetracycline.  If RNA polymerase could recognize the sequence in the 

randomized region, the gene for tetracycline resistance would be transcribed and the 
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bacterium would survive.  Conversly, if RNA polymerase could not recognize the 

randomized region as a promoter, tetr would not be transcribed and the bacterium would 

die.  E. coli  which survived and formed colonies had the randomized region of their 

plasmid sequenced.  Those sequences shared some homology with the -35 promoter 

region they had replaced.     

To facilitate high-throughput binding site identification, we have attempted to 

automate the selection of transcription factor binding sites.  The NFκB p50 homodimer 

was chosen as an initial target for the development of automated selection methods.  This 

transcription factor is well-known to bind double-stranded DNA (Muller et al., 1995; 

Ghosh et al., 1998; Ghosh and Karin, 2002), and has previously been a target for manual 

selection experiments (Kunsch et al., 1992).  In addition, a Tecan Genesis workstation 

was chosen for this project; the flexibility of the Tecan allowed the implementation of 

high-stringency panning and the separation of high-affinity binding sites from non-

specific binding sequences.   

 

MATERIALS AND METHODS 

Liquid Handling Robot 

A Tecan Genesis workstation 200 was used as the platform for the automation of 

double-stranded DNA binding site selections.  This robot has two pods, a liquid handling 

(LiHa) pod and a robotic manipulator (RoMa) arm.  The LiHa is composed of eight, 

independently-controlled pipetting tips that have liquid sensing capabilities and can 

accurately pipette between 0.5 and 1000uL.  The RoMa arm can reach off of the 

worksurface, which was essential for integrating the auxiliary equipment necessary for 

automated selection. 
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The Tecan Genesis worksurface holds a number of items (all from Tecan, unless 

otherwise indicated), including a twelve position microplate carrier (MP-12), a solid-

phase extraction unit (SPE) with an adapter for Qiagen (Valencia, CA) kits, a two 

position orbital shaker, a 4°C cooled microplate carrier with a recirculating temperature 

bath (Julabo, Allentown, PA), a -20°C cooled microplate carrier (Mecour, Groveland, 

MA) with a recirculating temperature bath (Neslab, Waltham, MA), disposable tips 

(DiTi’s), and reservoirs for buffers, reagents, and other solutions.  Items off the 

worksurface but accessible by the RoMa arm included a thermal cycler (MJ Research, 

Waltham, MA), Tecan microplate hotels, and a Tecan 16-channel Columbus plate 

washer.  The plate washer was essential to the success of the selection, and its operation 

is described here in some detail.  The Columbus washes two columns of eight wells in 

parallel, 16 total wells.  Two needles are inserted into each well: an aspiration needle and 

a dispense needle.  A defined volume of liquid flows out of one of the four solution 

reservoirs and into the microplate well through the dispense needle.  The liquid remains 

in the well for a defined time and is then removed by the aspiration needle.  All liquid is 

finally deposited in a solution waste reservoir. 

Tecan null modem cable for integration of MJ thermal cycler. 

In order to integrate the MJ Research thermal cycler to the Tecan workstation, a 

null modem cable was required.  The cable pinouts are diagramed in Figure 9.   

 

 

 

 

 



22 
 

 

 

 

A) Standard  B) Null Modem  C) Tecan 

DB9 ---- DB9  DB9 ---- DB9   DB9 ---- DB9 

1 -------- 1      1 -------- 7   

 2 -------- 2  2 -------- 3   2 -------- 3 

3 -------- 3  3 -------- 2   3 -------- 2 

4 -------- 4  4 -------- 1,6   4 ------- 6,8 

5 -------- 5  5 -------- 5   5 -------- 5 

6 -------- 6  1,6 ------ 4   6,8 ------ 4 

7 -------- 7  7 -------- 8   7 -------- 1 

8 -------- 8  8 -------- 7   9 -------- 9 

D) 

1) Carrier Detect 

2) Receive Data 

3) Transmit Data 

4) Data Terminal Ready 

5) System Ground 

6) Data Set Ready 

7) Request to Send 

8) Clear to Send 

Figure 9: Pinout configuration for 9-pin RS-232 cables.  A) Standard cable, B) 

Standard null modem cable, C) Null modem cable used to connect the Tecan 
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Genesis workstation with the MJ Research thermal cycler, D) Pin 

designations. 

 

Oligonucleotides 

The N30 pool contains 30 random nucleotides between a 5’ constant region (5’ 

GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC) and a 3’ 

constant region (5’ TTCACTGCAGACTTGACGAAGCTT; Bell et al., 1998).  

Following amplification, the double-stranded N30 pool (1013 molecules) was used in the 

first round of selection.  A positive control for the double-stranded DNA selection was 

constructed by inserting a NFκB p50 homodimer-binding sequence (5’ 

TGACTGATTGGGGGATTCCCGAAGCTTATC; Kunsch et al, 1992) between the two 

constant regions.   

Target Plate Preparation 

Target plates were prepared by hydrophobic immobilization of NFκB p50 

homodimer protein (0.3µg per well; Sigma, St. Louis, MO) in wells in TopYield 

microtitre plates (Nunc, Rochester, NY).  The NFκB was dissolved in 100uL of 1X 

selection buffer (20mM HEPES, pH 7.9, 100mM KCl, 0.2mM EDTA, 5mM DTT).  The 

solution was added to wells, the wells were sealed, and the plates were incubated without 

agitation at 4°C for approximately 18 hours.  Following incubation, the solution was 

removed and the wells were washed with a casein blocking solution (Pierce, Rockford, 

IL).  Remaining hydrophobic sites were blocked by incubation with casein solution at 

4°C for greater than three hours.  Plates used for negative selections were prepared in an 

identical manner except that NFκB was not added to the selection buffer.   
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Figure 10: NFκB bound to TopYield plates and probed with antibodies. 

 

Automated Selection 

The selection process is diagramed in Figure 11 and the details of the selection 

cycles are provided in Table 1.  The negative selection plate and the target plate were 

placed on the MP-12 microplate carrier on the Tecan work surface.  The casein blocking 

solution was removed from the negative plate and the plate was rinsed with 175µL 

selection buffer.  The Round 0 double-stranded DNA pool (100µL; 1.5µg; 1013 molecules 

was spiked with 109 molecules NFκB p50 homodimer-binding sequence positive control.  

The spiked pool was transferred from the 4°C cooled microplate carrier to the negative 

selection plate.  The negative selection plate was transferred to the orbital shaker where it 
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underwent four cycles of alternating incubations (three minutes at 500 rpm and then five 

minutes stationary), and was then moved back to the MP-12.  The casein blocking 

solution was removed from the target plate which was transferred to the Columbus plate 

washer and sequentially washed with 1.5mL selection buffer and 300µL dH2O.  The 

spiked pool in the negative selection plate was transferred to the target plate, which was 

in turn transferred to the orbital shaker.  After one to four cycles of alternating 

incubations (as described above), the target plate was transferred to the Columbus  plate 

washer.  The microtitre plate wells were washed with seven or eleven wash cycles 

(10.5mL or 16.5mL total) of selection buffer, then 300µL dH2O.  The target plate was 

moved back to the MP-12, and PCR master mix (100µL; 10mM Tris, pH 8.4; 50mM 

KCl; 2.5mM MgCl2; 0.2mM dNTPs; 0.4µM each of the 41.30 5’ primer and the 24.30 3’ 

primer) and 5U Taq polymerase were added.  The target plate was transferred to the 

thermal cycler and 15 or 20 cycles of PCR amplification (denaturation for 10 min. at 

90°C, then cycled for 90 sec. at 90°C, 30 sec. at 60°C, and 90 sec. at 72°C; final 

extension for 3 min at 72°C) were carried out.  During the thermal cycling procedure, the 

Columbus probes were cleaned with 6mL of a 7M urea solution followed by 6mL of 

dH2O.  Following DNA amplification, the plate was returned to the MP-12 and 15µL 3M 

sodium acetate (pH 5.2) was added to the well to lower the pH of the solution to pH 6-7.  

The PCR solution was then added to 345µL Qiagen Buffer PM in a 2mL deepwell plate 

on the MP-12 worksurface.  The contents were mixed and transferred to the Qiagen filter 

plate on the SPE.  A 500 mbar vacuum was applied for 5 minutes to pull the solution 

through the filter.  Then 900µL of Qiagen Buffer PE were added, followed again by 

application of a vacuum.  The final wash was an addition of 900µL of Buffer PE.  

Following filtration the filter was dried (as required by the protocol), and 120µL of 
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selection buffer was added to the well.  For the collection of the DNA eluate, the RoMa 

arm transferred the SPE block to the second position on the manifold, and a vacuum of 

500mbar was applied for 5 minutes.  The purified PCR product was ultimately eluted into 

a Qiagen deepwell plate, and then the SPE block was transferred back to the first position 

on the manifold by the RoMa arm.  The final 100µL of the DNA was then transferred 

from the SPE to a negative selection microtitre plate to begin the next round of selection 

and amplification.  Following the negative selection, the pool was transferred to a new 

well coated with the target.    

 

Table 1: Selection conditions and stringency.  In order to modulate the stringency of 

the selection through successive rounds, four different conditions were 

varied:  length of incubation time for negative and positive selections, wash 

volumes, and the number of PCR cycles.  Each of these variables is 

described in greater detail in Materials and Methods. 
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Sequencing 

The double-stranded DNA pools from Rounds 0, 3, and 6 were cloned into TOPO 

TA vectors (Invitrogen, Carlsbad, CA) and transformed into Top 10 (Invitrogen) 

competent cells.  Following transformation, cells were plated on Luria-Bertoni media 

(LB) plates supplemented with 50 µg/mL kanamycin and 1600 µg X-gal per plate.  The 

  Negative Selection  Positive Selection  Selection  
Buffer Wash 

 # PCR 
cycles 

 Round 1  4 shaking/stationary 
incubation cycles 

 4 shaking/stationary 
incubation cycles 

 10.5mL  20 

 Round 2  4 shaking/stationary 
incubation cycles 

 4 shaking/stationary 
incubation cycles 

 10.5mL  20 

 Round 3  4 shaking/stationary 
incubation cycles 

 + 1 hour stationary 
incubation 

 3 shaking/stationary 
incubation cycles 

 10.5mL  20 

 Round 4  4 shaking/stationary 
incubation cycles 

 + 1 hour stationary 
incubation 

 2 shaking/stationary 
incubation cycles 

 10.5mL  20 

 Round 5  4 shaking/stationary 
incubation cycles 

 + 24 hours stationary 
incubation 

 1 shaking/stationary 
incubation cycles 

 10.5mL  15 

 Round 6  4 shaking/stationary 
incubation cycles 

 + 24 hours stationary 
incubation 

 1 shaking/stationary 
incubation cycles 

 16.5mL  15 
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plates were incubated at 37°C until small colonies were visible.  White colonies were 

picked and used to inoculate 1.5mL cultures of LB containing 50 µg/mL ampicillin in a 

2mL 96-well deepwell plate (Corning, Acton, MA).  The antibiotics used for growth were 

changed between plates and media in order to ensure that the transformants were derived 

from the original TOPO TA vector.  Cell cultures were grown overnight at 37°C with 

shaking, and 2µL of cells were used directly as templates for PCR reactions.  The 2µL of 

cells were boiled at 100°C in 78µL dH2O for 10 minutes, then 19µL of PCR master mix 

(final concentrations 10mM Tris, pH 8.4; 50mM KCl; 2.5mM MgCl2; 0.2mM dNTPs; 

0.4µM each of the M13(-40)F and M13R primers) and 1µL (5U) of Taq polymerase were 

added.  Following fifteen thermal cycles (denaturation for 3 min. at 95°C, then cycled 45 

sec. at 95°C, 30 sec. at 45°C, and 90 sec. at 72°C; final extension for 3 min. at 72°C), 

PCR products were purified with a Millipore (Billerica, MA) PCR clean-up kit and 

sequenced with Big Dye v3.0 mix (ABI, Foster City, CA) (Harkey, 2003).  Sequencing 

reactions were analyzed on an ABI 3700 automated sequencer.   

RESULTS AND DISCUSSION 

The process of in vitro selection was automated by converting molecular biology 

steps that were normally carried out at the bench to steps that could be carried out by an 

automated workstation (Figure 1).  In order to carry out selection experiments a PCR 

machine, orbital shaker, solid phase extraction device (SPE), plate washer, and 

microplate carriers that maintained reagents at 4°C and -20°C had to be introduced on or 

adjacent to the worksurface.    
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Figure 11: Automated panning protocol for in vitro, double-stranded DNA selections. 

This figure is a simple schematic of the protocol described in Materials and Methods.  In 

short, first a negative selection of a double-stranded DNA library (dual lines) is carried 

out against a microtitre plate well containing only a casein block (yellow).  Those DNA 

molecules that do not stick to the block or to the plate are then transferred to a different 

microtitre plate well containing target protein (orange circles).  Loosely or non-

specifically bound DNA species are washed away.  PCR mix is added directly to the well 

and any remaining DNA molecules are amplified.  The amplified products are purified 

and then added to a new negative selection well to begin the next cycle of selection and 

amplification. 

PCR 

PCR 
clean-up 

Begin next 
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Transfer pool 
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As a test of the automated system, a double-stranded DNA selection was initiated 

against the transcription factor NFκB p50 homodimer.  Binding sites for this transcription 

factor had previously been identified by both the examination of promoter sequences and 

by manual selection experiments (Kunsch et al, 1992).  In order to determine whether the 

automated selection could potentially yield a NFκB p50 homodimer binding site a 

previously selected high-affinity site (5’ 

TGACTGATTGGGGGATTCCCGAAGCTTATC) was doped into a double-stranded 

DNA pool that contained a similar sized random sequence region (N30).  The high-

affinity site was included at a molar proportion of 1 to 10,000. 

As with most molecular biology protocols, the primary steps in the automated 

selection protocol involved liquid handling.  Initially, the DNA pool was moved from the 

4°C microplate carrier to the MP-12 microplate carrier.  Following incubation in the 

microtitre plates coated with NFκB p50 homodimer, unbound aptamers were removed via 

a panning protocol.  The advantage of using panning relative to other selection methods, 

such as filtration, is that the majority of the selection process (binding, washing, and 

PCR) could occur in the same well, reducing the number of liquid handling steps and 

manipulations, and decreasing the possibility that rare binding sequences might be lost.  

Additionally, the amount of protein used to coat the microplate well in each round (0.3µg 

for the NFκB p50 homodimer) is less than the amount that would be used in a round of a 

typical manual selection protocol (4.5µg).  One potential disadvantage of using a panning 

protocol is that nucleic acid sequences might be selected that would bind to the 

hydrophobic surface of the plates, rather than to the immobilized target; for example, 

nucleic acids that bind to hydrophobic nitrocellulose filters frequently arise during 

filtration selections (Tuerk et al., 1992).  To reduce the hydrophobic surface area that 
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nucleic acids would be exposed to, the wells in the Top Yield plates were blocked 

following the immobilization of the NFκB target.  A wide variety of blocking agents 

were tested for their ability to reduce background binding, and Pierce Casein block was 

ultimately selected.  To help prevent the selection of matrix-binding sequences, a 

negative selection was first carried out using blocked microtitre plates that did not 

contain NFκB.  Any nucleic acids that bound via non-specific hydrophobic interactions 

should have been lost from the selection at an early round.  Such non-specific interactions 

would have been much more likely in the course of a single-stranded DNA selection, as 

the hydrophobicity of single-stranded DNA is much greater than that of double-stranded 

DNA.  

Following the negative selection, the DNA solution was transferred to wells 

containing NFκB and thoroughly mixed via an orbital shaker.  Stringency was varied by 

increasing the time allowed for plate-binding during the negative selection and 

decreasing the time allowed for target-binding during the positive selection (Table 1).  

Non-binding DNA species in solution were removed from the binding species 

immobilized on the surface of the plate.  In manual selections this is one of the most 

critical but also one of the most tedious steps.  In our panning protocol, a plate washer 

was used to rapidly wash the wells with 10.5mL to 16.5mL of buffer.  In contrast, wash 

steps for bead- or filter-based selections typically rely upon repeatedly washing 

immobilized complexes with buffer aliquots of around 300µL.  This slows the overall 

procedure and frequently results in researchers carrying out far less stringent selections 

than would otherwise be possible.  While panning with the plate washer proved to be 

extremely efficient, one problem that was initially encountered was that pool DNA could 

stick to the aspiration needles on the plate washer, leading to cross-contamination 
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between wells washed by the same needles.  This problem was eliminated by washing the 

needles with 7M urea after each use. 

In order to amplify bound sequences, PCR reagents were added directly to the 

microtitre wells after the wash step.  The PCR master mix was stored at 4°C and the Taq 

polymerase was stored at -20°C on the surface of the robot in cooled carriers connected 

to recirculating temperature baths.  This allowed the automated selection to run 

essentially autonomously without the need for the addition of reagents at each step.  

Following reagent addition, the RoMa arm transfers the microtitre plate to the integrated 

thermal cycler, where the lid closes and a pre-set amplification program runs.  The 

template DNA was conveniently eluted off of the target protein during the initial 

denaturation step of the PCR program.  The number of thermal cycles required for 

amplification was determined by separating PCR products on agarose gels.  After an 

initial optimization, it was determined that 15 to 20 thermal cycles would generally yield 

PCR products that could be carried forward into the next round.  Following cycling, the 

plate was held at 4°C for 30 minutes to reduce aerosol formation, and then the lid of the 

PCR machine opens and the plate is transferred by the RoMa arm to the worksurface for 

the PCR product purification step.   

While automation of selection procedures helps to ensure reproducibility and 

increases throughput, consistency and attention to fine detail are essential for successful 

method development.  As an example, one problem that initially arose was the cross-

contamination of PCR products between different wells or cycles during or following 

amplification.  In order to successfully integrate the thermal cycler and eliminate this 

problem, four separate optimizations were required.  First, an MJ Research Microseal ‘P’ 

adhesive-backed sealing pad was manually placed on the inside of the thermal cycler’s 
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motorized Power Bonnet lid prior to the selection, and the height of the lid was adjusted 

so that seals were formed around the top of each well.  If the height was not adjusted 

properly, the PCR product was found to evaporate out of the well.  Secondly, a heated lid 

was used to keep the PCR product from condensing on the lid.  Third, an MJ Research 

Microseal 96 Plate Lifter was modified and placed in the thermal cycler so as to slightly 

lift the plate out of the unit when the lid of the thermal cycler opened.  Without the Plate 

Lifter the lid pressed down on the plate so hard that it proved impossible for the RoMa 

arm to transfer the plate back to the Tecan work surface.  The lid and Plate Lifter were 

adjusted until the plate was consistently available to the RoMa arm.  Fourth, a slight 

vacuum was sometimes created in the wells during the heating and cooling process of the 

PCR program, causing the plate to stick to the lid of the thermal cycler when it opened.  

A final incubation at 4°C for 30 minutes not only minimized aerosol formation but also 

helped eliminate vacuum formation.  All four of these optimizations were intertwined; for 

example, setting the Plate Lifter too high led to a greater probability of the plate sticking 

to the lid of the thermal cycler.  These various improvements had to be iteratively 

implemented and tested in order to ensure that the final program would operate smoothly.  

As a standard of performance, if liquid was found to accumulate anywhere except in the 

microplate wells during a selection, the selection was terminated and the program was 

further modified.   

Once amplification was completed and the microtitre plate transferred to the 

Tecan worksurface, the PCR products were purified with a Qiagen kit.  In order to 

automate this process, the two position SPE unit was equipped with an adapter that fit the 

Qiagen filter plate.  The pure product was eluted into selection buffer, and was ready to 

initiate the next round of selection.  Automation of the selection process provides a 
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significant increase in throughput.  While roughly the same amount of time is spent on 

reagent preparation and sequencing for manual and automated selections, there is a large 

difference in the time required for the selection process itself.  Manual selections employ 

time-consuming techniques such as ethanol precipitation and purification via gel 

electrophoresis.  While these precautions can help to avoid the accumulation of 

amplification artefacts, they also typically extend a manual round of selection to several 

days, as opposed to the few hours required for an automated round.  The total time 

savings over 6 to 18 cycles of selection (the number of rounds typically required for the 

purification of binding species) is therefore considerable, the difference between days and 

weeks. 

Six rounds of automated selection were carried out, with the only human 

intervention being addition of PCR reagents to the target plate (although it should also be 

possible to automate this step, as well).  The double-stranded DNA pool from Rounds 0, 

3, and 6 were cloned and sequenced.  The number of recognizable NFκB binding sites 

progressively increased (Figure 2).  The results from the automated selection experiment 

were similar to those obtained from manual selection experiments.  Rosen and co-

workers identified a consensus, 10 base-pair (bp) NFκB p50 homodimer binding 

sequence (5’ GGGGATYCCC; Kunsch et al., 1992).  While the selected Rounds 0 and 3 

did not contain the consensus NFκB p50 binding sequence, it was present in 10% of the 

sequences by Round 6 (Figure 2(A)).   Gorenstein and coworkers have suggested a more 

general consensus binding sequence (Figure 2(B)) (5’ GGGRNNYYCC; King et al., 

2002).  By Round 6 recognizable NFκB binding sites were present in 93% of the 

sequenced clones (Figure 2(F)).   
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Figure 12:  Frequencies of selected binding sequences.   

A variety of different NFκB binding sequences were known prior to the start of the 

selection, and were recovered by the automated selection procedure.  (A) represents the 

frequency of a core NFκB p50 homodimer binding site.  (B) represents the frequency of a 

more general representation of the NFκB family binding site.  (C-D) represent the 

frequency of the general NFκB family binding sites that utilize either the 5’ or 3’ 

(respectively) constant regions from the original N30 pool.  (E) represents the frequency 

of species which contain dimeric binding sites.  The values in (E) are not included in the 

other tallies (A-D).  (F) represents the total frequency of species with selected NFκB p50 

homodimer binding sequences, both core and more general family.  In each instance, the 

white bar represents the 33 sequences derived from Round 0, the stippled bar represents 
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the 21 sequences derived from Round 3, and the solid bar represents the 69 sequences 

derived from Round 6.  Values in (A-E) sum to the value in (F). 

In addition to identifying NFκB p50 homodimer binding sequences that 

corresponded to consensus binding sites, more subtle sequence contributions to protein 

recognition could also be discerned.  For example, Kunsch et al. (1992) had observed that 

the guanosine triplet at the 5’ end of the 10 bp consensus NFκB p50 homodimer binding 

sequence was essential for binding, while variations at the 3’ cytidine doublet were 

tolerated.  Similarly, we have found that additional sequence variations can occur in the 

3’ portion of this motif (5’ GGGRNNYY*C, GGGRNNYYC*, and GGGRNNYY**, 

Figure 2(B)).  Indeed, by Round 6, 62% of the binding sequences contained mutations in 

one or both of the 3’ terminal cytidines.  Kunsch et al. (1992) also observed that there 

was frequently an additional guanine present at the 5’ end of the consensus binding sites 

and an additional cytosine present at the 3’ end (5’ gGGGGATYCCCc).  Similarly, all of 

the selected binding sites from Round 6 that contained the 10 bp consensus NFκB p50 

homodimer binding sequence also contained one or both of these additional 5’ or 3’ 

bases.  Overall, 68% of the selected binding sites from Round 6 contained one or both of 

the additional bases; that is the core decamer binding site had apparently expanded to 

either a undecamer or dodecamer binding site.  

The expansion of the previously determined core decamer binding site that is 

predicted by our selection experiments has recently been confirmed by other studies.  The 

undecamer (5’ GGGGATTCCCc) is palindromic about the central thymidine residue and 

is identical to the high affinity human major histocombatibility complex H-2 binding site 

for NFκB (Angelov et al., 2003).  Crystal structures and DNA-protein crosslinking 

studies have shown that there are in fact specific base contacts between the NFκB p50 
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homodimer and all four guanosine residues at the 5’ end of the decamer core binding site 

sequence (Angelov et al., 2003).  The palindromic undecamer therefore of necessity 

contains a guanosine quadruplet in each strand that each monomer of the homodimer can 

bind to. 

Interestingly, selected DNAs that contained two NFκB binding sites comprised 

14% of the population by Round 6 (Figure 12(E)).  The spacing between the two sites 

varied from zero (the core 10 bp consensus sites touched one another) to 22 nucleotides.  

Since selected DNAs that contained dimeric sites predominated only in the later rounds 

of selection, it seems likely that the presence of two sites resulted in a competitive 

advantage, by allowing multiple opportunities for interactions with the protein target.   

The control sequence added to the pool did not take over the selection, as planned.  

Instead, the constant sequences in the N30 pool contributed to numerous NFκB p50 

homodimer binding sites (Figure 13).  Seven of the ten bases in the NFκB family general 

consensus sequence were present in the 5’ constant region, therefore only three bases 

were needed to complete the sequence.  The probability of this was 1 / 43 or 1 in every 64 

molecules.  Likewise, only five to six bases were needed to complete the consensus 

sequence utilizing the 3’ constant region.  The selection of N30 binding sites was also 

assisted by the previously mentioned sequence flexibility allowed at the 3’ end of the 

consensus site, and again should have resulted in 1 in every 64 molecules containing a 

NFκB binding site.  Interestingly, by Round 6, utilization of the 5’ and 3’ constant 

regions to form NFκB binding sites was equal (20 instances each), as predicted (Figure 

12(C-D)).  In contrast, the control sequences that were spiked (1 in 10,000 molecules) 

into the pool was much less populous than the binding sequences that occurred by chance 

in the N30 pool, and this helps to explain why they were not found by the conclusion of 
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the selection.  This tendency for selections, automated or manual, to utilize the most 

common, functional motifs has previously been observed and is known as the ‘tyranny of 

small motifs’ (Ellington, 1994).  The fact that constant regions sometimes participate in 

binding sequences suggests that it may sometimes be desirable to compare the results of 

selection experiments with different pools, in order to more fully examine the range of 

binding sites that are possible.  

 

Figure 13:   Utilization of constant regions in selected binding sequences.   

The original N30 pool is shown as a double-stranded DNA molecule.  Superimposed on 

the pool are the locations of potential NFκB binding sequences that utilize the 5’ or 3’ 

constant regions.  These sequences correspond to the frequencies shown in Figure 12(C-

D). 

Nonetheless, it should be noted that the same consensus NFκB p50 homodimer 

binding site that was present on the control (5’ GGGGATTCCC) was also recovered 

from the completely random region alone (Figure 12(A)).  This site would have been 

present in the population at roughly the same frequency as the positive control (taking 

into account multiple possible registers), but by the conclusion of the selection it was 

present in 10% of the population.  However, as we discussed above, many of the NFκB 

binding sites that were recovered from the selection likely formed even more contacts 

with the protein than did the previously identified core decamer binding site, and thus 

would have enjoyed a selective advantage relative to the control.  Therefore, our results 

actually highlight the extraordinary potential of robotic selection experiments to 

overcome even the tyranny of small motifs (in this instance, both degenerate but 

                                                      GGGRNNYY*C 
                                                     GGGRNNYYC* 
5’GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC---N30------TTCACTGCAGACTTGACGAAGCTT 
  CTATTATGCTGAGTGATATCCCTTACCTAGGTGTAGATGCTTAAG---N30------AAGTGACGTCTGAACTGCTTCGAA 5’ 
                                        *CYYNNRGGG 
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populous binding motifs and the positive control).  That is, with additional rounds of 

robotic selection, the best sequences can be culled from a population, even though they 

may be only incrementally better than a majority sequence. 

CONCLUSIONS 

Double-stranded DNA aptamer selections against the NFκB p50 homodimer were 

successfully automated using a Tecan Genesis workstation.  The consensus DNA binding 

site for NFκB was isolated from a pool of 1013 double-stranded, random sequence 

oligonucleotides.  Although the consensus binding sequence that was originally spiked 

into the pool did not rise to the fore in the automated selection, the fact that an 

unanticipated but more likely set of binding sequences was ultimately chosen was also 

proof that the automated method worked well.  Moreover, the fact that variations 

observed between individual selected sequences could be largely explained based on the 

binding propensities of known NFκB p50 homodimer binding sites indicated that the 

automated selection method should be capable of fully describing binding sites for other 

transcription factors.  A significant increase in throughput was achieved, from several 

days for a round of manual selection to four hours for a round of automated selection.   
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Chapter 3:  Cell Lysate Selections 

INTRODUCTION 

As new genomes are identified, methods are necessary for the high-throughput 

identification of transcription factor binding sites and other regulatory sequences.  Few 

lysate selections are present in the literature.  Although cellular lysates are a popular 

blocking agent, the lysate itself has not been a popular target.  One example of a lysate 

selection was a phage display antibody selection against the lysate of hair cells found in 

the sensory receptors of a bull frog’s inner ear (Cyr and Hudspeth, 2000).  The resultant 

antibodies recognized a single protein that was found to be expressed in the inner ear.  

The general lack of enthusiasm for lysate selections is understandable considering the 

wide possibility for binding targets within the cell extract.  Furthermore it would be 

difficult to determine what had been selected for at the conclusion of the experiment.  By 

performing double-stranded DNA aptamer selections against cellular lysates, the 

selection is biased toward dsDNA binding proteins and other positively charged species 

within the lysate.  With the availability of modern computing power, it is possible to do 

sequence searches for known binding species.  These two factors allowed us to perform 

selections against two different cellular lysates and then search the selection products for 

known cellular protein DNA binding sites.    

        

For double stranded DNA aptamer background, refer to the introduction of 

chapter 2. 
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MATERIALS AND METHODS  

Liquid Handling Robot 

A Tecan Genesis workstation 200 was used to automated the selection process against 

cellular lysates.  This robot has both a liquid handling pod and a pod containing a robotic 

manipulator arm.  The liquid handling pod contains eight independently controlled 

pipette tips which are capable of pipetting between 0.5 and 1000uL.  The tips are also 

capable of fine liquid sensing.  The RoMa arm can reach off of the worksurface and can 

apply 7.5 newtons of force to carry an object.  These capabilities were essential for 

integrating additional equipment to the Tecan workstation.  By reaching off the 

worksurface, a tremendous amount of space became available for integration of 

additional equipment. 

 

The Tecan Genesis worksurface holds a variety of equipment (all from Tecan, unless 

otherwise indicated), including a twelve position microplate carrier, a solid-phase 

extraction unit with an adapter for Qiagen (Valencia, CA) kits, a two position orbital 

shaker, a 4°C cooled microplate carrier with a recirculating temperature bath which holds 

1.5mL tubes (Julabo, Allentown, PA), a -20°C cooled microplate carrier (Mecour, 

Groveland, MA) with a recirculating temperature bath (Neslab, Waltham, MA), 

disposable tips, and reservoirs for other reagents.  Items off the worksurface but 

accessible by the RoMa arm include a thermal cycler (MJ Research, Waltham, MA) and a 

Tecan 16-channel Columbus plate washer. 

 

Oligonucleotides 



45 
 

The LS.N65 pool contains 56 random nucleotides between a 5’ constant region (5’ 

GATAATACGACTCACTATAGCTTA) and a 3’ constant region (5’ 

ACGTCTCGTCAAGTCTGCAATGTA).  Following amplification, the double-stranded 

N56 pool was purified using a Qiagen PCR clean up kit (Qiagen, Valencia, CA) and 1013 

molecules were used in the first round of selection.   

 

Target Plate Preparation 

Cell lysate was prepared from two different cell lines.  The first was BL21(DE3) cells 

from Novagen (San Diego, CA) containing pACYC(CAM), a plasmid which 

overexpressed LacI (Novagen, San Diego, CA).  The second was BL21(DE3) cells from 

Novagen containing pASK-IBA3, a plasmid which overespressed TetR (IBA, St.Louis, 

MO).  One liter cultures containing chloramphenicol were grown for each cell line.  The 

cultures were grown to saturation and spun down at 4000g for 15 minutes.  The pellets 

were washed with 5mL of selection buffer and spun down again.  Then the pellets were 

transferred to 50mL conicals where 5mL of selection buffer and 800uL of Roche 

Complete protease inhibitor cocktail (Roche, Indianapolis, IN) were added.  Each pellet 

was resuspended and sonicated on ice for ten minutes with alternating 10 second intervals 

of sonication at 13% and resting.  Following sonication, the tubes were spun at 10,000g.  

The supernatant was removed and used to prepare the target plates. 

 

Target plates were prepared by hydrophobic immobilization of cell lysate in wells of 

TopYield microtitre plates (Nunc, Rochester, NY).  100uL of lysate and 200uL of 

selection buffer were added to each well.  The wells were sealed with a microplate seal, 

and the plates were incubated without agitation at 4°C for approximately 18 hours. 
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Automated Selection 

The selection process is diagramed in Figure 14 and the details of the selection cycles are 

provided in Table 2.  The target plate was placed on the twelve position microplate 

carrier on the Tecan work surface.  The lysate solution was removed from the plate and it 

was rinsed with 175µL selection buffer.  The Round 0 double-stranded DNA pool 

(100µL; 1.5µg; 1013 ) was transferred from the 4°C cooled microplate carrier to the 

selection plate.  The selection plate was transferred to the orbital shaker where it 

underwent varied cycles of alternating incubations (three minutes at 500 rpm and then 

five minutes stationary), and was then moved to the Columbus  plate washer.  The 

microtitre plate wells were washed with varied amounts of selection buffer then dH2O.  

The target plate was moved back to the twelve position microplate carrier, and PCR 

master mix (100µL; 10mM Tris, pH 8.4; 50mM KCl; 2.5mM MgCl2; 0.2mM dNTPs; 

0.4µM each of the 5.24.N56 5’ primer and the 3.24.N56 3’ primer) and 5U Taq 

polymerase were added.  The target plate was transferred to the thermal cycler and a 

varied number of cycles of PCR amplification (denaturation for 10 min. at 90°C, then 

cycled for 90 sec. at 90°C, 30 sec. at 49°C, and 90 sec. at 72°C; final extension for 3 min 

at 72°C) were carried out.  During the thermal cycling procedure, the Columbus probes 

were cleaned with 6mL of a 7M urea solution followed by 6mL of dH2O.  Following 

DNA amplification, the program was paused and a 4% agarose gel was run to make sure 

that an appropriate number of PCR cycles had been performed.  Additional reagents for 

the next round were also added at this time.  Following the agarose gel, the plate was 

returned to the twelve microplate carrier on the worksurface and 15µL 3M sodium 

acetate (pH 5.2) was added to the well to lower the pH of the solution to pH 6-7.  The 
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PCR solution was then added to 345µL Qiagen Buffer PM in a 2mL deepwell plate on 

the MP-12 worksurface.  The two were mixed and transferred to the Qiagen filter plate on 

the solid phase extraction device.  A 500 mbar vacuum was applied for 5 minutes to pull 

the solution through the filter on the Qiagen plate.  Then 900µL of Qiagen Buffer PE 

were added, followed again by application of a vacuum.  The final wash was an addition 

of 900µL of Buffer PE from Qiagen.  Following filtration the filter was dried (as required 

by the protocol), and 120µL of selection buffer was added to the well.  For the collection 

of the DNA eluate, the robotic manipulator arm transferred the block of the solid phase 

extraction device to the second position on the manifold, and a vacuum of 500mbar was 

applied for 5 minutes.  The purified PCR product was finally eluted into a Qiagen 

deepwell plate, and then the block was transferred back to the first position on the 

manifold by the robotic manipulator arm.  The final 100µL of the DNA was then 

transferred from the solid phase extraction position to a freshly washed, lysate coated 

microtitre plate to begin the next round of selection and amplification.   
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FIGURE 14:  Automated panning protocol for in vitro, double-stranded DNA selections.  
This figure is a simple schematic of the protocol described in Materials and Methods.  In 
short, a double-stranded DNA library (dual lines) is transferred to a microtitre plate well 
containing target lysate (grey circles).  Loosely or non-specifically bound DNA species 
are washed away.  PCR mix is added directly to the well and any remaining DNA 
molecules are amplified.  The amplified products are purified and then added to a new 
selection well to begin the next cycle of selection and amplification. 
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TABLE 2:  Selection conditions and stringency.  To modulate the stringency of the 
selection through successive rounds, three different conditions were varied:  length of 
incubation time for the selections, wash volumes, and the number of PCR cycles.  Each 
of these variables is described in greater detail in Materials and Methods. 

 

  Binding incubation Washes PCR cycles 

Round 1 4 shake/stand 2 SXN 10 

   2 H2O   

Round 2 4 shake/stand 2 SXN 11 

    2 H2O   

Round 3 4 shake/stand 2 SXN 12 

   2 H2O   

Round 4 2 shake/stand 2 SXN  10* 

   2 H2O   

Round 5 1 shake/stand 4 SXN 10 

   2 H2O   

Round 6 1 shake/stand cycle 4 SXN 10 

 with no shaking 2 H2O   

Round 7 1 shake 6 SXN 13 

   2 H2O   

Round 8 1 shake 6 SXN 11 

   2 H2O   

*Tet- sample cycled an additional 4 times   
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Sequencing 

A standard automated sequencing protocol was used to sequence the pools from these 

selections.  The double-stranded DNA pools from Rounds 0 and Rounds 5 and 8 of both 

LacI overexpressing lysates and TetR overexpressing lysates were cloned into TOPO TA 

vectors (Invitrogen, Carlsbad, CA) and transformed into Top 10 (Invitrogen) competent 

cells.  Following transformation, cells were plated on Luria-Bertoni media (LB) plates 

supplemented with 50 µg/mL kanamycin and 1600 µg X-gal per plate.  The plates were 

incubated at 37°C until small colonies were visible.  White colonies were picked and 

used to inoculate 1mL cultures of LB containing 50 µg/mL ampicillin in a 2mL 96-well 

deepwell plate (Corning, Acton, MA).  Cell cultures were grown overnight at 37°C with 

shaking, and 2µL of cells were used directly as templates for 100uL PCR reactions.  The 

PCR reaction was constructed as follows: the 2µL of cells were first boiled at 100°C in 

78µL dH2O for 10 minutes, then 19µL of PCR master mix (final concentrations 10mM 

Tris, pH 8.4; 50mM KCl; 2.5mM MgCl2; 0.2mM dNTPs; 0.4µM each of the M13(-40)F 

and M13R primers) and 1µL (5U) of Taq polymerase were added.  Following fifteen 

thermal cycles (denaturation for 3 min. at 95°C, then cycled 45 sec. at 95°C, 30 sec. at 

45°C, and 90 sec. at 72°C; final extension for 3 min. at 72°C), PCR products were 

purified with a Millipore (Billerica, MA) PCR clean-up kit and sequenced with Big Dye 

v3.0 mix (ABI, Foster City, CA) (Harkey, 2003).  Sequencing reactions were analyzed on 

an ABI 3700 automated sequencer.   

 

Sequence Analysis 

 The selected sequences from each of the five pools were analyzed using a series 

of Perl scripts (Phil Shannon).  The programs read in the sequences from each pool along 
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with the set of known E. coli  transcription factor binding sequences, obtained online 

from Regulon DB (http://www.cifn.unam.mx/Computational_Genomics/regulondb/) 

(Salgado et al., 2004), or with a randomized set of sequences.  The randomized sets of 

sequences contained the same number of sites of each length-class as the known set, only 

the base contents were varied.  One randomized set matched the base content of the 

Round 0 pool (A 30.66%, C 26.06%, G 19.48%, T 23.80%), while a second randomized 

set contained equimolar amounts of the four bases.  Each binding site was then broken 

into hexamer registers for both the forward and reverse strands.  The script looked for 

each register within all of the aptamers in each pool.  When a match was found, the script 

extracted a sequence from the aptamer which corresponded to the alignment between the 

transcription factor binding site and the aptamer, starting at the identified hexamer.  Once 

the transcription factor-like sequences were extracted from the aptamers, the scripts were 

then able to tabulate a variety of statistics:  the greatest similarity match for each binding 

site (or randomized site) from each pool; the number of times each pool showed better 

similarity to a known sequence over a randomized sequence; and a ‘quality score’ that 

was defined as the greatest percent similarity multiplied by the greatest number of 

matching bases in each length-class of binding site. 

 Another series of Perl scripts was developed to analyze the sequences using an 

approach that had previously been employed to identify Medline abstracts that discussed 

protein-protein interactions (Marcotte et al, 2001)(Phil Shannon). In adapting this 

technique, the set of known binding sites, again from RegulonDB, was used as the 

“training set” and the entire E. coli  K-12 genome from Genbank acted as the background 

“dictionary.” The frequency of individual hexamer “words” in the binding sites, genome, 

and aptamer pools was determined. Based on whether the frequency ni for a given 
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hexamer i in the aptamer pool with total hexamers N more closely resembled that 

hexamer’s frequency in the binding sites fI,i or the genome fI,i, we can generate a score 

indicating whether the pool is more closely related to the genome in general or the 

binding sites in particular. By summing these scores for all the hexamers in the training 

set, we calculate a log likelihood score S for the whole pool: 
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The value of S is positive for pools enriched for the binding sites and negative for pools 

closely tied to the genome. 

 

Results and Discussion 

 Selection of DNA sequences that bind to cellular lysates. 

 Initially, we chose to select double-stranded DNA molecules from a N30 pool that 

could bind to lysates from two different derivatives of the same parental E. coli  strain.  

One strain (BL21(DE3) (Novagen, San Diego, CA)) contained the pACYC(CAM) 

plasmid (Novagen, San Diego, CA), which overexpressed the LacI protein, and the other 

strain (BL21(DE3) (Novagen, San Diego, CA)) contained the plasmid pASK-IBA3 (IBA, 

St. Louis, MO), which overexpressed the TetR protein. 

 

 The selection procedure itself was relatively straightforward.  E. coli  lysates were 

incubated in hydrophobic microplates.  Varied species within the lysate bound to the 

microplate wall through hydrophobic interactions.  The wells were then rinsed with 

selection buffer to remove any non-bound species.  A double-stranded DNA library 

(N30) with 1013 species was incubated in the wells in 100uL of selection buffer.  Species 

that bound to the target lysate remained behind when the plate was washed with 1.8mL to 



53 
 

5.6mL of selection buffer and 600uL of water.  The captured double-stranded DNA 

binding species were then eluted in 100uL of selection buffer and amplified via the 

polymerase chain reaction (PCR).  At this point, the robot was paused while a 4% 

agarose gel was run to check for the presence of product.  Following confirmation that a 

band of the correct size had been obtained, the PCR product was purified with a Qiagen 

PCR clean-up kit and used for additional rounds of selection and amplification.   

 

 Analysis of selected sequences. 

 It seemed unlikely that selected binding sites would be perfect replicas of 

genomic DNA binding sites for several reasons.  First, previous selection experiments 

had shown that double-stranded DNA molecules selected to bind individual DNA-

binding proteins did not perfectly mimic genomic binding sites (Sooter and Ellington, 

2004; Kunsch et al, 1992; Shultzaberger and Schneider, 1999).  For example, 

Shultzaberger and Schneider found that SELEX experiments identified the binding site 

for a probable dimeric or trimeric form of Lrp, while in vivo the Lrp monomer bound an 

alternate site.  Kunsch and co-workers identified many binding sites for p50 homodimers.  

These sites could generally be put into families such as GGGRNNYYCC, but the vast 

majority did not exactly match the strong in vivo binding sequence of GGGGATTCCC.  

Second, the selection conditions were not particularly stringent, compared to selections 

that targeted individual DNA-binding proteins.  The use of non-stringent selection 

conditions meant that sequences that targeted proteins that were relatively rare or that had 

relatively low binding affinities would be retained during the selection.  However, this 

also meant that many, non-canonical variants of higher affinity binding sites would also 

be retained in the population.  Finally, given that each selected binding sequence was 
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exposed to a variety of targets during each round of selection, those sequences that could 

bind to multiple, different targets might ultimately predominate.  Such chimeric binding 

sequences would obviously not necessarily resemble a single genomic binding site.   

 

 For these reasons, we initially decided to determine whether the selection had 

been successful by analyzing whether short sequences (hexamers) within the selected 

molecules were found in greater prevalence in the known set of E. coli  protein-binding 

DNA sites, relative to hexamers in unselected molecules (Figure 15).  For each selected 

pool, there is clearly a statistically significant increase in the number of hexamers 

corresponding to genomic, protein-binding DNA sites, relative to the starting pool.   
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Figure 15:  Transcription factor binding sites found in individual pools. 
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In order to determine to what extent this increase in information content in the 

selected pool faithfully represented the complement of genomic binding sites, we further 

analyzed the data relative to the sizes of genomic protein-binding DNA sites (Figure 16) 

and also determined whether the selected hexamers more completely and accurately 

represented genomic protein-binding ‘space’ than did the random sequence pool (Figure 

16).  As can be seen, in general selected sequences contained more protein-binding DNA 

site hexamers than did the original random sequence pool, over virtually every size class.  

While there were some differences between the selected sequences from Round 5 and 

Round 8, and between sequences selected from lysates that contained either LacI or TetR, 

these differences were much less significant than the overall differences between selected 

pools and random pools.  
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Figure 16:  Number of hexamers found in transcription factor binding sites. 

 Finally, we needed to investigate how relevant the selected sequences were to the 

E. coli  genome.  Selected sequences were found to match transcription factor binding 

sites in the E. coli genome more frequently than non-selected sequences.   
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Figure 17:  Score of seaches of E. coli genome and transcription factor binding sites. 
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Chapter 4:  Deoxyribozyme Ligase 

INTRODUCTION 

Functional nucleic acid species can be selected from random sequence libraries, 

and in many instances have been shown to have attributes that rival those of proteins. For 

example, selected nucleic acid binding species (aptamers) frequently interact with their 

targets with affinities and specificities that rival those of monoclonal antibodies (Osborne 

and Ellington, 1997; Famulok and Jenne, 1998; Famulok and Mayer, 1999), while 

selected allosteric nucleic acid catalysts (aptazymes) have been shown to have activation 

parameters far in excess of those normally observed in allosteric protein enzymes 

(Soukup and Breaker, 2000).  

Methods for automation of nucleic acid selections have been successfully 

developed. The selection of aptamers has been successfully automated using a Biomek 

2000 workstation. Several binding species with nanomolar affinities were isolated from 

diverse populations. Automation of a deoxyribozyme ligase selection has also been 

completed. The development of automated selections of nucleic acid catalysts has proven 

to be very challenging. In order to make catalyst selections as amenable to automation as 

possible, many changes were necessary.  The process requires eleven times more robotic 

manipulations than an aptamer selection. The random sequence pool contained a 5’ 

iodine residue and the ligation substrate contained a 3’ phosphorothioate.  Several 

difficulties were encountered during the automation of DNA catalyst selection, including 

effectively washing bead-bound DNA, pipetting 50% glycerol solutions, purifying single 

strand DNA, and monitoring the progress of the selection as it is performed. Nonetheless, 
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automated selection experiments for deoxyribozyme ligases were carried out starting 

from a naive pool.  

The process of in vitro selection was automated by converting molecular biology 

steps that were normally carried out at the bench to steps that could be carried out by an 

automated workstation.  As with most molecular biology protocols, the primary steps 

involved liquid handling, and therefore we initially chose a robust automated workstation 

for liquid handling, the Beckman Biomek 2000.  The work surface of this robot could 

also be readily manipulated, and we were therefore able to integrate a PCR machine with 

the liquid handling system.  We also adapted an enzyme cooler and other devices to the 

surface, ultimately converting the Biomek 2000 to a selection robot.   

The most difficult problem that had to be resolved was nucleic acid purification.  

The Biomek (and, indeed, almost any robotic system) is incapable of such common 

molecular biology procedures as gel electrophoresis, centrifugation, and so forth.  

Therefore, we attempted to design selection experiments that would require little or no 

purification of nucleic acids.  We limited the number of amplification cycles that were 

carried out by the robot so that we would in turn limit the accumulation of DNA 

templates that had folded back on themselves and amplified via a single primer (so called 

‘one-primer artefacts,’ see also Green et al., 1991).  In the end, these precautions allowed 

us to readily carry out selections that produced amplicons of discrete sizes throughout the 

course of a selection experiment.   

The final automated selection system can carry out 4 rounds of selection in a 24 

hour period without the need of human intervention.  An entire selection typically takes 

from 8 to 12 cycles (from 2 to 3 days).  The progress of the selection is monitored by 

carrying out activity assays during the selection.   
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MATERIALS AND METHODS 
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 FIGURE 18: Automated method with “selective” and “regenerative” PCR steps. 
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Figure 19:  Automated selection with only regenerative PCR. 
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The various manual manipulations that are typically performed during in vitro 

selection experiments are straightforward, but their adaptation to a robotic workstation 

nonetheless proved difficult (reported more completely in Cox et al., 1998, and Cox and 

Ellington, 2001). In particular, the workstation is currently incapable of gel isolation and 

ethanol precipitation, and this necessitated the development of methods that either 

required alternative purification or no purification. This facet of experimental design is 

especially important given that the workstation cannot monitor the success of each cycle 

of selection and amplification, and thus the input into standard PCR reactions will vary as 

the selection progresses.  The partitioning of selected species is also different on a robotic 

workstation than it is for a human experimentalist.   

 

Integration of the MJ thermal cycler required the use of a null modem cable with 

the following pinout configuration. 

A) Standard  B) Null Modem  C) Biomek2000 

DB9 ---- DB9  DB9 ---- DB9   DB9 ---- DB9 

1 -------- 1         

 2 -------- 2  2 -------- 3   2 -------- 3 

3 -------- 3  3 -------- 2   3 -------- 2 

4 -------- 4  4 -------- 1,6   4 -------- 6 

5 -------- 5  5 -------- 5   5 -------- 5 

6 -------- 6  1,6 ------ 4   6 -------- 4 
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7 -------- 7  7 -------- 8   7 -------- 8 

8 -------- 8  8 -------- 7   8 -------- 7 

 

D) 

1) Carrier Detect 

2) Receive Data 

3) Transmit Data 

4) Data Terminal Ready 

5) System Ground 

6) Data Set Ready 

7) Request to Send 

8) Clear to Send 

Figure 20:  Pinout configuration for 9-pin RS-232 cables.  A) Standard cable, B) 

Standard null modem cable, C) Null modem cable used to connect the 

Biomek2000 workstation with the MJ Research thermal cycler, D) Pin 

designations. 

 

 

Automated Selection of Nucleic Acid Catalysts 

Given that it proved possible to select deoxyribozyme ligases from random 

sequence pools, we immediately attempted to adapt the selection procedure to the 

automated workstation. The automated schema is shown in Figure 18, and differs from 

the previously described manual selection procedure in several important ways. First, the 

substrate for the reaction was biotinylated. Following reaction with the DNA pool, ligated 
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species were captured on magnetic beads bearing streptavidin. This allowed the facile 

separation of reacted and unreacted DNA species via the integrated magnetic bead 

separator (MPC-auto96, Dynal, Oslo, Norway). Second, in the manual selection 

procedure unreacted DNA molecules were removed using 80 ml of wash buffer. To 

decrease the volume of washes required while maintaining the stringency of separation, 

the magnetic beads were washed with 7 M urea five times (200 µl) followed by fifteen 

washes with 10 mM Tris (pH 7.8, 200 µl). Retained, reacted DNA molecules were 

amplified directly on beads (a ‘selective’ amplification step). The Taq polymerase 

solution (50% glycerol) proved difficult for the Biomek to pipette, and a special transfer 

step involving a slow aspiration was introduced.  While some of the amplified DNA 

products likely remained bound to the streptavidin beads, the remaining amplified DNA 

was captured on a second set of magnetic beads and the non-biotinylated strand was 

removed by alkaline denaturation and neutralization. Several methods of single-strand 

DNA purification were initially explored: heat, urea, sodium hydroxide, heat and urea, 

and heat and sodium hydroxide. Double-stranded, biotinylated PCR product radiolabeled 

with [32P]-dATP was incubated with streptavidin coated magnetic beads. The beads were 

washed and then incubated for varying amounts of time with one of the five denaturing 

conditions. Afterwards, the solutions were separated from the beads and run on an 

acrylamide gel. Phosphoimage analysis revealed that sodium hydroxide, with or without 

heat, was the most effective denaturant. In additional experiments, incubation times and 

temperatures were systematically varied. Following separation, single-stranded products 

were incubated with substrate (KS.S.3) and a splint oligonucleotide (KA.T.1.18) for 24 

hours at 24 °C.  
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B-GATCTAGTCGATCGTAGAGCACC-S I-TCATACAGTCAGCGAGTCAT- N60 -GCTGATGACGCTCGGACTAC

GATCTAGTCGATCGTAGAGCACC

I-TCATACAGTCAGCGAGTCAT

CGACTACTGCGAGCCTGATG-B

5I.20.60

5B.3.20.60

KS.SP.3.23

GATCTAGTCGATCGTAGAGCACC-S
5B.KS.S.3.23

KS.S.3

ACTGTATGAGGTGCTTAG
KA.T.1.18

 

Figure 21:  N60 pool and all oligos used. 

 

The splint brings the pool and substrate into close proximity and should allow efficient 

ligation.  Of course, if no 5’ iodine moiety is present, ligation will not occur. The optimal 

combination of single strand separation and 5’ iodine moiety retention was achieved with 

a sodium hydroxide wash at room temperature.  The remaining, biotinylated strand was 

then amplified using a second set of primers that restored the original form of the 

deoxyribozyme, including the 5’ iodine moiety (a ‘regenerative’ amplification step). 

Single-stranded DNA was purified via alkaline denaturation and neutralization.  The 

selected, single-stranded pool was then subjected to further rounds of selection and 

amplification.  Overall, a single round of automated deoxyribozyme selection requires 11 

000 individual, programmed movements of the robot. To gauge the complexity of the 

procedure, it should be realized that the automated aptamer selections which have only 

recently been successfully implemented require only 1000 movements per round. 

The automated selection procedure was attempted with a new pool, N60. After the 

first cycle of selection and amplification, deoxyribozyme ligase activity appeared to have 

accumulated, but was lost in subsequent cycles. In order to better gauge whether the loss 

of ligase activity was due to the automated procedure or was somehow a function of the 
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new pool, a second automated selection experiment was set up involving the 

deoxyribozyme pool from round 8 of a manual selection.  Again, after one cycle of 

selection and amplification, deoxyribozyme ligase activity improved, but was lost in 

subsequent rounds (Figure 22).   
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Figure 22: Deoxyribozyme ligase selection with both “selective” and “regenerative” 

PCR 

A close examination of the PCR products that accumulated during both the 

‘selective’ and ‘regenerative’ steps revealed a series of bands, indicating that mis-priming 

was a serious problem during amplification reactions.  (Figure 23) 
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Figure 23:  PCR cycle course using N60 pool. 

  

Cycle-course reactions that mimicked the automated ‘selective’ and ‘regenerative’ 

amplifications also showed the accumulation of higher molecular weight bands after nine 

PCR amplification cycles (Figure 23).  It seems likely that the pools that were used for 

deoxyribozyme selection may be prone to the accumulation of amplification artifacts. 

There are several possible solutions to this problem. First and most obviously, the N60 

pool can be re-designed with alternative constant regions that are potentially less prone to 

the accumulation of amplification artifacts. Second, fewer rounds of amplification can be 

used during both the PCR amplification steps. However, this latter alternative points up 

the single most important problem with robotic selection: in its current form it tends to be 

blind. Rounds of selection and amplification can be carried out, but until the machine has 

completed its run there is no way to ascertain how well the selection is progressing.  
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Ultimately, the “selective” PCR step was removed from the process and only the 

“regenerative” PCR step was used.  (See Figure 18 vs. Figure 19) 

Results and Discussion 

 

Selection and Amplification Procedures 

The selection begins with the incubation of a single-stranded DNA pool and 

biotinylated substrate in a thermal cycler (PTC-200, MJ Research, Waltham, USA) held 

at 24 °C. Following the incubation, the solution is transferred to a well in the magnetic 

bead separator (Dynal) containing streptavidin coated magnetic beads in 2× binding 

buffer (10 mM Tris, 2 M NaCl, pH 7.5). A bead binding incubation occurs with mixing, 

and then the beads undergo a stringent wash with five 200 µl washes of 7 M urea and 

fifteen 200 µl washes of 10 mM Tris, pH 7.5. This co-immobilizes the species in the pool 

that have successfully ligated to the substrate.  The beads are resuspended in a ‘selective’ 

PCR (sPCR) mixture and transferred to the thermal cycler where the immobilized DNA 

molecules serve as amplification templates. Fifteen µl of a 50% glycerol solution 

containing five units of Taq polymerase (Display Systems Biotech) are transferred from a 

homemade enzyme cooling unit and the thermal cycler automatically performs 10 PCR 

amplification cycles. The amplified DNA molecules are then transferred to the Dynal 

magnetic bead separator and the biotinylated double strands are captured on a new set of 

streptavidin beads. Following capture, the beads undergo a stringent wash with 7 M urea 

and 10 mM Tris as before. The beads are then incubated with 0.3 N NaOH to denature 

the double-stranded DNA, releasing the non-biotinylated single strands. The solution 

containing single-stranded DNA is removed and discarded, and the beads are returned to 

a neutral pH with 3 M sodium acetate (NaOAc), pH 5.2.  The beads bearing biotinylated, 
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single-stranded DNA are washed with wash buffer (5 mM Tris-HCl, 1 M NaCl, pH 7.5) 

and used as the template for a ‘regenerative’ PCR (rPCR) reaction; 10 PCR amplification 

cycles are performed. This solution is transferred to the magnetic bead separator where 

the beads are captured, and the supernatant is transferred to a fresh set of streptavidin 

beads. Bead binding and stringent washing are followed by a single strand separation 

using 100 microliters of 0.3 N NaOH. The alkaline solution is transferred to a new well 

on the magnetic bead separator and neutralized with 60 µl of 3 Msodium acetate, pH 5.2.  

This solution contains the regenerated, iodinated, single stranded DNA pool that will be 

used in the next round of selection. 

In order to simplify the procedure, the “selective” PCR step was removed.  With 

this modification, fewer PCR steps were required and therefore the pool had fewer 

opportunities to form artifacts.  This change allowed the successful selection of 

deoxyribozyme ligases.   
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Figure 24:  Ligation of pool to substrate over a time course. 
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Figure 25:  Ligation of pool to substrate over 24 hour period. 
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Appendix 1: Cell Surface Display Selection 
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Automated Method: 

 

The process will begin with target preparation.  The target is immobilized on the surface 

of a 96-well microplate via hydrophobic interactions.  First the Biomek FX workstation 

will transfer the protein targets into specific target 96well microplates.  Target incubation 

will occur for off the robot for 18 hours at 4C.  The wells will be washed with blocking 

solution by robotically pipetting the buffer in and out of the wells.  Then blocking agent 

will be allowed to incubate in the wells for at least two hours at room temperature.  

Following the blocking wash, the wells will be washed with buffer to remove any non 

bound target or blocking agent.  While the target microplates are being blocked, the cell 

library must be blocked as well.  This step helps prevent cells which preferentially bind 

background from being carried through to subsequent rounds of selection.  After the 

target plates have been prepared, the blocked cell library is added directly to the target 

plate.  The microplate is placed on a room temperature shaker for one hour, and then the 

cell solution is removed.  The plate is washed with buffer to remove any non-bound cells 

and then hydrochloric acid is added to elute the cells.  Following neutralization of the 

solution, the cells are transferred to warm, rich media and allowed to grow overnight.  

Following the growth period, an aliquot of the cell culture is diluted in blocking solution 

and added to a new target well 
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Appendix 2: Quantitation and Normalization Software 

Quantitation and normalization software was designed for the Tecan Genesis 

workstation using the Tecan Gemini software, Visual Basic Script, and Excel.  The 

purpose of this software is to take a number of samples, all of different concentration, and 

dilute them so that they are all the same concentration. 

First, the samples are placed in an optically clear microplate and the A260 or 

A280 value is read.  The output data is placed in an Excel spreadsheet where the 

concentration of the sample and the necessary dilutions are calculated.  A visual basic 

script then takes these numbers, assigns variable names to them, and inputs them into the 

Tecan Gemini software.  The Tecan then pipettes according to the variable values and 

dilutes all of the samples to the same concentration. 

Below is the online guide to using the software and setting up the Tecan for a run. 

 

Quantitation and Normalization on the Tecan Genesis Workstation 

 

Carefully go through this list every time you run the Tecan.  If you forget 

ANYTHING, even the tinest detail, the Tecan will not run properly. 
 
The Tecan is located in ESB 445.  The doors are always locked, so plan accordingly. 
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The consumables are as follows: 
 
dilution MJ Hardshell plate (HSP-9601) Empty 

sample Costar UV transparent plate (3635) Contains samples to be diluted 

db Tecan 100mL reservoir Contains dilution buffer 

DiTi200 Tecan 200uL barrier tips  
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The worksurface layout is as follows: 
 

 
 
 

 
 

samples

dilution
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Once you have all of your solutions aliquotted into your plates, work through the 
following checklist: 
 
 

1. Make sure that the Tecan is on (The switch is on the far right side of the top front 
of the machine.  A green light is on when the machine is on).   

2. Open Excel and Gemini.  There are two forms of Gemini: Gemini and Gemini 
Simulation.  Make sure you open Gemini.  The software will operate normally, 
but the robot will not run under Gemini Simulation.  Another way to double check 
this is to look at the bottom right-hand area of the screen.  If it says “REAL 
MODE” then the robot will run.  If it says “SIMULATION” you must shut down 
the program and open Gemini. 

 
 
 
 
 

3. Open the Q&N program in Gemini (such as ‘dsDNA_5ug_dilution’).  Open the 
Excel file with the corresponding name (i.e. ‘dsDNA_5ug_dilution’).  Icons for 
both programs are on the desktop. 

 
 
 
 

My Computer    C:    Q&N    dsDNA_for_sequencing.xls 
 

My Computer    C:    Gemini    Data    Q&N    
dsDNA_for_sequencing.gem 

 
 
 
 
 
 

4. Make sure the worksurface is clean.  If you see any dirt or splatters, clean the 
worksurface with water and alconox.   

 
5. Check that the positions of the carriers on the worksurface match the position of 

the carriers in the program.  Double check that the area immediately in front of 
the Safire is clear. 
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6. Place the racks on the worksurface (plates, reservoirs, and tips), and make sure 
that the position of the racks on the worksurface match the position of the racks in 
the program. 

7. Adjust all racks so that they sit as far back and to the left as they can go (towards 
the A1 position). 

8. Drop all DiTi’s, even if there are no DiTi’s mounted. 
a. Execute --> Drop DITIs 

 
 
 
 
 
 
 
 
 
 

b. The following window should appear.  Click ‘OK’. 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. Flush Instrument.  If you do not do this and remove the air bubbles from the lines, 
the pipetting will not be accurate.  If one run of ‘Flush Instrument’ does not 
remove all of the air bubbles, do it again until none remain. 

a. Execute --> Flush Instrument 
b. The following window should appear.  Click ‘OK’. 
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10. Set DiTi Position 
a. Execute --> Set DITI position 
b. The following window should appear.  Make sure everything matches this 

figure.   
i. The upper tip rack is highlighted in yellow on the worksurface 

layout.  If it is not, just click on it and it should highlight it. 
ii. The “Next DITI position” should read “DiTi200, 96 Tips, new 

tray” 
iii. The “Position in rack” should read “1” 
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You should now be ready to run the program.   
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Click on the green ‘play’ arrow up in the rows of shortcut icons, stand back, and keep 
your fingers crossed.   
 
Do not touch the robot while it is running.   
Stay behind the caution tape. 
The Tecan is a powerful piece of machinery.  Even if you push as hard as you can, you 
cannot stop the pods from moving.  It will poke, pinch, puncture, and cut and keep right 
on going. 
 
After the program has finished.  Remove both plates, the reservoir, and the plastic tip 
holders from the worksurface.  Check for any spills or splatters and clean them up if you 
see any. 
 
Close Gemini.   

DO NOT SAVE ANY CHANGES!!! 
 
Save the Excel file under a new name and close Excel.   

DO NOT SAVE ANY CHANGES TO THE 
CURRENT EXCEL FILE!!! 
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Appendix 3:  Lego Arm 

 

 

 
 
 A robotic arm was constructed out of a Lego Mindstorms kit in order to transfer 
microplates from the robotic worksurface into the trash can.  Commercial robotic arms 
such as the Hudson plate crane and the Twister arm cost approximately $30,000.  The 
Legos cost $300.  The Mindstorms control brick was placed on the Tecan worksurface 
and the Tecan picked up a tip and used it to press the “on” and “go” buttons on the 
control brick.  The result was that the Lego robotic arm picked up a microplate off of a 
custom designed platform, turned 90 degrees, and dropped the microplate into a trash 
can.     
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