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ABSTRACT

BINARY ADDERS

by

THOMAS WALKER LYNCH, M.S.E.

THE UNIVERSITY OF TEXAS AT AUSTIN, 1996

SUPERVISOR: Dr. Earl E. Swartzlander, Jr.

This thesis focuses on the logical design of binary adders. It covers topics

extending from cardinal numbers to carry skip optimization. The conventional

adder designs are described in detail, including: carry completion, ripple carry,

carry select, carry skip, conditional sum, and carry lookahead. We show that

the method of parallel prefix analysis can be used to unify the conventional

adder designs under one parameterized model. The parallel prefix model also

produces other useful configurations, and can be used with carry operator vari

ations that are associative. Parallel prefix adder parameters include group

sizes, tree shape, and device sizes. We also introduce a general algorithm for

group size optimization. Code for this algorithm is available on the World

v



Wide Web1. Finally, the thesis shows the derivation for some carry operator

variations including those originally given by Majerski and Ling.

http://devil.ece.utexcis.edu/ lynch
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Chapter 1

Introduction

1.1 Aspects of Addition

Since 1960 there have been over 700 papers written with something about

addition in them. In an effort to narrow the topic we note that these papers

often focus on one of the following aspects:

characteristics of the physical substrate,

model for a logic element or fundamental operation,

number system,

logical configuration of the adder,

efficient mapping of the configuration to the substrate.

For instance, substrates have included things as unusual as organic molecules

in solution and super cold alloys. Practical substrates have included various

things such as cams and gears, air passages and valves, relays, tubes, silicon,

Gallium Arsenide, etc.

The logic model is the bridge between symbolic logic design and the phys

ical substrate. Some common logic models include RTL, resistor transistor

1
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logic; DTL, diode transistor logic; TTL, transistor transistor logic; ECL, emit

ter coupled logic; NMOS, N-type metal oxide semiconductor; and CMOS, com

plementarymetal oxide semiconductor. These can be broken down further into

static, dynamic domino, complementary voltage switch logic (CVSL), pseudo

NMOS, etc.

Many number systems have been used, the most common being the base

two Arabic system, which we just call binary. Some of the more esoteric include

the signed digit, residue, and logarithmic number systems. Negative numbers

in the Arabic system have typically been handled with variations called two's

complement, one's complement, and sign magnitude.

The conventional logic configurations for adders are carry completion, rip

ple carry, carry skip, carry select, conditional sum, and carry lookahead.

The problem of mapping adder configurations to the substrate (i.e, the

problem of optimally using the logic model) has been embodied in a carry skip

optimization algorithm. According to carry skip optimization, the configua-

tion is fixed to a multilevel carry tree made of variable length modules. The

optimizer then finds the best number of levels, number of blocks, and sizes for

the blocks. An improved approach to optimization also sizes the buffers which

drive critical speed carry signals.

This thesis narrows the field of study to those logical configurations which

would not be unusual to find in CMOS implementations. It further limits the

scope to binary adders which would be implemented in either static or dynamic

domino gates.
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1.2 The Role of Binary Adders in Microprocessors

The need to identify optimum adder designs for a modern microprocessor

initiated this study. Adders often appear in the integer execution unit, and

sometimes in the address generation path. If a floating-point unit is present

they appear in the significand adder, at the base of multiplier array, and in

the divider. Smaller adders appear in the exponent manipulation circuitry for

multiply and divide. Incrementers and comparators are also forms of adders,

and they appear in various places. Hence, the identification of an appropriate

adder generator is a high leverage tool for creating an efficient design.

Adder design requirements vary. For example in some cases it is desirable

for the execution unit adder to be very flexible, leaving speed and area as

secondary constraints. The Intel 80486 execution unit adder was designed to

naturally produce carries on 8, 16, or 32 bit boundaries since these are the

native data types [1] for that architecture. In the high end Alpha [2] the large

word width, fine grain pipe, and high clock speed, conspire to make speed the

primary requirement.

Outside of the execution units of the integer and floating-point cores there

are few adders in a RISC processor. Indeed one of the advantages of RISC

architecture is the removal of adders from the critical paths such as address

generation. However, not all processors are RISC designs. The x86 architecture

requires a four operand adder for address generation1 .

Often instruction mixes show addition to be the most common arithmetic

segment + base + index + displacement
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instruction. However, there are many stages involved in the execution of any

instruction, so the significance of the evaluation time of the adder circuit, which

dominates only the excution stage, is not always obvious[3, 4]. In the remainder

of this section we will describe when adder circuit evaluation time is important.

In all but the least sophisticated processors, instructions are pipelined

through fetch, decode, and execution stages. In modern processors there is

also fine grain parallelism in the form of multiple execution units which run in

parallel. Hence, the focus of the processor is to keep the execute units busy

doing useful work, and to the extent this is possible, the speed of the execution

units is important. Factors/features that effect keeping the execute units busy

include:

an efficient operating system that allocates sufficient resources

instruction level parallelism and locality in the code

a large enough decode window to take advantage of the parallelism

large enough caches to take advantage of locality

successful branch prediction to decrease the penalty of branches

low penalty on misprediction of branches

register renaming to remove false dependencies

out of order issue and execution so that stalled instructions do not stop

the pipe.

result forwarding to reduce latency in dependent sequences
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an instruction set (architecture) that facilitates the above goals

These items places a large burden on the operating system, the compiler,

the memory system, and the decoder. When this burden is met - performance

may be strongly determined by adder latency. That is to say, when instructions

can be provided at a maximum rate with maximum parallelism, execution

speed is determined soley by serially dependent instruction steps for which add

instructions are common [5, 6]. Most machines can approach this ideal only in

specialized applications.

1.3 Survey

Perhaps it is reasonable to say that adders have gone through three major

stages of development. Initially philosophers/mathematicians grappled with

the problem of conceptualizing how an abstract operation such as addition

could be performed via an incarnate machine. Then, once addition machinery

was common place, the focus moved on to a sort of competition among ad hoc

procedures for generating faster sums. Most recently progress has been in the

area of optimization of free variables, such as block widths and driver sizes, on

an otherwise determined structure.

The remainder of the sections in this introduction, and subsequent chap

ters in this thesis, follow the evolutionary steps hypothesized in the previous

paragraph. The discussion in chapter 2 develops from the practical use of car

dinal numbers to the realization of a mechanical ripple carry adder. Chapters

3 and 4 cover strategies for configuring logic. Chapters 5 and 6 show how

generalized carry hierarchies can be created and parameterized. Chapter 7 dis-
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cusses optimizing the parameters in a constrained design in order to maximize

performance. Chapter 8 covers a side issue of how the unconventional carry

recursions that some authors have proposed fit into the general fco scheme {fco

is introduced in chapter 3 and developed in chapter 6).

1.3.1 Conceptual

Developing a history of adders could be thesis in itself; here we endeaver

only to give some perspective. Randell places the oldest known mechanical

adder with Hero of Alexandria [7]. During the renaissance some astronomers

built machines to model events in the heavens - no doubt some of these embod

ied addition operations. In the 17th century Blaise Pascal built a calculating

machine, not much later so did Gottfried Leibniz. In the late 19th century

Charles Babbage made the first modern computer architecture, his drawings

showed mechanisms which performed carry skip addition [7, 8, 9].

Some of these machines used rotating wheels organized in a fashion similar

to mechanical odometers. Such machines perform operations in direct analogy

to the structure of the Arabic number representation, a concept described in

more detail in chapter 2.

Calculating machines prospered along with the industrial revolution; per

haps culminating with the 'Mark' series of machines built by Howard Aiken and

associates. 'Mark F which was delivered in 1944 occupied a small room and had

a main axle speed of about 200 r.p.m. [9]. Two years later Ekert and Machley

had a completely electronic machine based on digital pulse trains, ENIAC [10].

ENIAC's internal architecture was based on circular shift registers made from
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vacuum tube circuits in analogy to indexed mechanical gears [11]. ENIAC had

an axle speed equivalent of about 45000 r.p.m.

1.3.2 Strategies and Logic

In the late 1930s Claude Shannon combined a propositional calculus (which

traces its roots to Leibniz), with the binary valued algebra of George Boole,

and the electrical characteristics of electonic relays, and produce the method

of logic design as we know it today [12]. Shannon's work allowed the question

of what is the most appropriate logic configuration for an adder to be asked.

Shannon gave the first logic design for a ripple carry adder, and thus supplied

the conceptual bridge leading from mechanical to logic based adders.

In Germany, Konrad Zuse and his associates independently developed a

propositional calculus into a method for logic design. They implemented a

programmable relay based computer in the mid 1940s [13] at about the same

time Howard Aiken's work. In the United States the work of Shannon was

applied to a programmable machine by Burks, Goldstine, and Von Neumann

[14, 15, 16] in the vacuum tube based EDSAC.

Shortly after this change in paradigm many of the conventional adder

circuits were introduced into the literature. Faster or smaller adders were

celebrated. We will call these the conventional logic designs:

ripple carry

carry completion

carry skip
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carry select

conditional sum

carry lookahead

All of these, except possibly carry completion, are discussed in common

texts on the subject [17, 18, 19, 20, 21].

Carry Completion

It was noted by Von Neumann [16], and later refined by Briley, Glass, and

Varshavskii [22, 23, 24, 25], that given uniformly distributed random operands,

the average length of the longest carry propagation chain is proportional to

the log of the width of the adder. Hence, there is a performance advantage

in detecting the event of a carry propagation completing, and then using the

sum immediately. A quintessential carry completion circuit is that of Gilchrist,

Pomerene, and Wong [26].

Perhaps there are two reasons that the carry completion scheme is uncom

mon today. One is that asynchronous architectures never became common. The

other reason, which may also have contributed to the demise of asynchronous

machines, is that other adder circuits also reach log time performance.

The fastest theoretical addition time reported is that of the conditional

sum adder with carry completion logic. This is reported to add in an average

of fi log log N time [27] where N is the word size, il is used here to indicate that

this is reasonable approximation of the addition time - bounded from below. If

this is a tight bound, then this adder is faster than 0(log TV).
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Carry Skip

In [28] Lehman and Burla summarized the purpose of carry skip addition:

In their contribution to the IEE Discussion Meeting on New Digital

Computer Techniques, Morgan and Jarvis [29] describe a binary skip
circuit. The technique is based on the detection and by-passing of

those stages of a parallel binary adder in which, during a given addi

tion (X+Y), there exists the condition for carry-propagation. That

is, the carry signal is enabled to by-pass those stages of carry circuits

for which X{ ^ yi. An alternative criterion which does not differen

tiate between propagated and generated carries, but which is more

efficient in the skip circuit is Xi V yi.

Lehman and Burla found the optimum number of equal size groups for

a carry skip adder, and suggested that variable block sizes would be helpful.

They suggested that succeeding groups should increase in width, until near the

middle of the adder, and then the groups should decrease. Indeed they also

suggested that multiple levels of skip would be advantageous. This paper set

the stage for much of the work to come on the subject.

Majerski [30] published the formulas necessary for accomplishing the vari

able block size optimization. He also extended the work and gave formulas for

two level adders. As significant as this work is to the evolution of adder design,

it fails to help in the modern engineering of optimum adders. Majerski assumed

in one of his adders that the bitwise exclusive-or of the operands was available

upon input. He also used wired OR logic. Wire delays and nonrestoring logic

were not considered. Nor were a derivations given for the formulas.

Oklobdzija and Barnes [31] published a proven optimum scheme for de

termining one level and two level carry skip adder group lengths. Previous
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optimization schemes were heuristic. They assumed that the time necessary

for skipping a block was constant; which because of significant metal delays in

MOS processes, was not ideal. Guyot, Hochet, and Muller [32] improved this

result by allowing the rate of increase and decrease in group size to be set from

a ratio between the ripple speed and the skip speed.

The evolution of carry skip adders, more so than work on other adders

types, has pushed the mapping of technology back onto logical structure. The

optimization engine drives this mapping. Oklobdzija published another paper

[33] showing that a well designed carry skip adder was faster than other com

mon types implemented in the same technology, including carry lookahead and

hybrid parallel prefix adders. Included in this paper was a description of the

linear increase in gate delay with increasing fan-in (with constant fan-out), and

a linear increase in gate delay within increasing fan-out (with constant fan-in).

However, this paper did not give an algorithm for integrating the technology

parameters into the adder design beyond those already known.

Turrini published a heuristic search algorithm capable of producing carry

skip adders with arbitrary numbers of levels [34]. Although this approach was

potentially less encumbered by specific process data, the presentation did not

include the integration of more process information, nor were the adders prov-

ably optimum. Also, the algorithm appears to require a large amount of exe

cution time.

Chan and Shlag published some solid work [35] which successfully inte

grated second order CMOS technology parameters into one level carry skip
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optimization. They analyzed RC models of the Manchester carry chain2 and

reasoned that ripple delay is proportional to the square of the length of the

block, that skip delay is linearly related to the length of the block, and that

there is a constant restoring delay between stages. They then assembled carry

life time equations, based on a carry being generated in the first block, and

then skipping, and being absorbed by the last block. They minimized this

path, while making sure no other paths were longer. Also, the material pre

sented in this paper does assist in the design of multiple levels of skip.

Carry Lookahead

For the sake of maintaining consistent nomenclature, we use the term

Carry Lookahead exclusively to describe the adders of the form shown in figure

1.1. In this circuit each carry is calculated independently from propagate and

generate signals (propagate and generate are described in chapter 3). The more

significant the carry, the larger the fan-in of the carry lookahead logic. Early

on engineers realized that the carry lookahead adder was limited to only four

or five bits [37], so they began to build tree structures from carry lookahead

modules.

Swartzlander [18] cites Weinberger and Smith's paper [38] as the seminal

work on carry lookahead trees. Weinberger showed that carry lookahead mod

ules can be connected together in shallow trees to form a composite adder.

Weinberger's adders produce all of the carries in one pass through the tree.

2The Manchester carry chain was originally described by Kilburn, Edwards, and Aspinall

[361.
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MacSoreley [39], presented what is the most commonly recognized carry

lookahead adder. This structure cleverly conserves devices by using two passes.

First the tree is used for calculating carries at indices of powers of the module

size. Second, these carries are used to initialize the module inputs in the tree

so that re-evaluation produces carries instead of group generate signals. The

two steps typically flow together without any clock boundaries.

Davis [40] describes the carry lookahead adder used in ILLIAC IV.

In 1971 Texas Instruments introduced two TTL chips for building Mac

Soreley style carry lookahead tree adders, the 74181 and the 74182. The 74181

contains the base adder, while the 74182 is a carry lookahead module. It is

probably the availability of these chips which made this style of adder com

monplace.

In [41] Weinberger showed a PLA based carry lookahead adder with some

interesting variations on the carry lookahead equation. Four years later he

published yet another ripple carry module based carry lookahead adder. In

this adder the ripple carry module was implemented with a pass gate version

of the Manchester carry chain [42] .

Bechade and Hoffman [43] published a static NMOS based module, along

with a comparison between carry lookahead and ripple carry adder performance

in their NMOS implementations. Rhyne [37] published an often cited work on

the fan-in and fan-out limitations of carry lookahead modules, but certainly

by this time the problem was already well understood. Crawley [44] published

a representative paper on pipelining a carry lookahead adder. Hwang [45]

published a reconfigurable carry lookahead adder which may have been the
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basis of [1].

Fagin [46] published an interesting paper with a summary of fan-in/fan-out

restrictions. He tied into the parallel prefix work (surveyed in section 1.3.3),

and he pointed out that with constant time communication delay it is possible

to obtain the theoretical log time performance described by Winograd [47] and

Ofman[22].

Lee, Park, and Kyung [48] published a clever paper with the corrected

version of the CMOS static carry lookahead module that was erroneously por

trayed inWeste and Eshraghian's book [19]3. They also showed how the module

can be modified to return prefix functions. Normally prefix functions are only

directly obtained with Manchester carry chains.

Carry Select

For the sake of maintaining consistent nomenclature, we use the term

Carry Select Adder exclusively to describe the circuit of the form shown in

figure 1.2. This figure shows the sum output from two adder modules, one

with a carry-in of one, the other with a carry-in zero, going into a multiplexer.

The select line of the multiplexer chooses between the two sums based on the

actual carry-in. Unless otherwise stated, the adder modules are ripple carry

adders.

Bedrij introduced the "carry select adder" in [49]. This paper shows a

circuit where carry select modules are used at the base of a carry lookahead

3first edition only, page 323
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Figure 1.2: Carry Select Adder

tree instead of the expected carry lookahead style modules. In this adder

sparsely separated carries are assembled going up the tree, these carries are

then folded back into the tree, and upon arriving at the bottom they form

carries on every module boundary. The module boundary carries are then used

select the appropriate sum.

To the extent that higher fan-out is not a problem, this configuration

is faster than what would have been achieved with a MacSoreley type carry

lookahead adder tree, because of the last step. In Bedrij 's adder there is only

one multiplexer delay after all the carries are generated, instead of a carry

lookahead module delay followed by an exclusive-OR. Variations which would

sacrifice some speed, would also reduce the number of devices.

Lynch and Swartzlander improved upon this approach by taking advan

tage of parallel prefix methods and the idempotency of the carry combining

operator to obtain the select carries on small groups in one pass through the

tree [50, 51]. Kantabutra [52] improved upon Lynch and Swartzlander's adder

[51] configuration by using variable sized modules. This approach is related to
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the block carry lookahead optimizations. Even more recently, Nigaglioni and

Swartzlander have developed further improvments [53].

Bedrij 's adder is often not what is refered to by the term carry select adder.

His adder might more aptly be described as a hybrid carry lookahead carry

select. Commonly the term carry select adder refers to carry select modules

hooked up in series, as in [20].' In the series scheme the width of carry select

modules may be adjusted to improve the speed as is done for carry skip adders.

As noted, a carry select module multiplexes between two module sums

which were created as a result of different constant carry inputs. If these

modules are in turn implemented with smaller carry select adders (as explained

in chapter 5), the result is the conditional sum adder. Sklansky introduced the

conditional sum adder in [54].

The conditional sum adder has logarithmic performance like the carry

lookahead adder, but it does not fold carries back into the tree, and therefore

potentially has fewer levels of logic from input to output. This adder requires

many more devices than either Bedrij 's carry select adder, or Weinberger or

MacSoreley's carry lookahead tree adders. The extra devices are probably so

cumbersome that in practice the adder will be slower than the other configu

rations.

A pipelined version of the conditional sum adder was presented by Hallin

in 1972 [55]. A carry lookahead style circuit which propagated conditional

propagate and generate signals (i.e. one set for carry-in of zero, and one for

carry-in of 1) was presented by Tyagi in 1990 [56]. There is little advantage

in this configuration since the usual group propagate and generate signals can
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already be locally combined to produce the same signals, as shown in chapter

8.

1.3.3 Structured Technology Mapping

Both carry skip adders and parallel prefix adders were the first to be

defined in terms of free parameters which could be optimized to fit technology

constraints. As we show in chapter 6, the parallel prefix method is a general

approach which can encompasses carry skip addition. Commonly optimized

parameters have included block widths, tree configuration, and driver sizes.

Block width optimization was surveyed with carry skip adders, and will be

discussed in more detail in chapter 7. Tree configurations for binary carry

lookahead nodes, and driver sizing for them are surveyed in this section.

After studying the arithmetic implementation problems on ILLIAC IV,

Kogge and Stone [57] observed that carry propagation has the form of a parallel

prefix calculation. The ripple carry formula for calculating cn is

cn = pgo fco pgi fco ... fco pgn_3 fco pgn_2 fco pgn_x (1.1)

The longest proper prefix of this sequence of operations,

Cn-i = pgo fco pgx fco ... fco pgn_3 fco pgn_2 (1.2)

calculates cn_i, etc. Accordingly, the problem of fast carry propagation, is

equivalent to the problem of calculating all the prefixes to equation 1.1 as

quickly as possible. Kogge and Stone identified the carry operator, which we

call fco, and showed how to take advantage of its associativity to create log

time adders.
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Unger [58] showed many variations on folded4 carry lookahead networks

with varying performance. This work was not tied directly into Kogge's work,

but does indirectly demonstrate the flexibility of the carry operator method.

Ladner and Fisher [59] used the parallel prefix notation to show direct

tradeoffs between the number of carry combining operations used and the num

ber of carry operations along the critical speed path.

Brent and Kung [60] showed a parallel prefix adder which uses a tree

followed by an inverse tree to limit the fan-out of each node to just two other

devices. Furthermore they showed how the tree can be efficiently layed out on

a grid, where each node either contains a carry operator or a buffer.

In [61] Montoye introduced CMOS technology parameters instead of speak

ing of just fan-in and fan-out. He considered drive strengths and capacitances

and related them to performance and cost. However, he considered only a

limited form of parallel prefix adder.

Ngai and Irwin [62] showed that parallel prefix adders can be efficiently

layed out in a square instead of a long strip.

Chen and Wei [63, 64, 65, 66] reiterated a parallel prefix adder with some

driver sizes left as free parameters for optimization. They also discussed recur

sive methods for generating Brent and Kung's and Ladner and Fisher's parallel

prefix adders.

Han and Carlson [67] reviewed the more salient parallel prefix adder con

figurations and discussed a method for building adders with performance and

4MacSoreley style carry lookahead tree
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complexity between that suggested by Kogge and Stone, and that of Brent and

Kung. They continued the study of fixed fan-in and fan-out adders in [68].

Sugla and Carlson [69] pointed out that the area/time tradeoffs in par

allel prefix addition on constant fan-in/fan-out circuits is peculiar in that the

area rises disproportionally as evaluation time is reduced. Lee and Oklobdzija

[70, 71] later suggested this was due to not assigning optimum variable carry

lookahead module lengths.

Fishburn discussed the algorithm used by a program to reduce the depth

in Ladner and Fisher's parallel prefix adders [72]. In the same vein Hsu and

Bair discuss a compiler for generating fast adders [73].

In [51] Lynch and Swartzlander presented a parallel prefix adder based on

four bit Manchester carry chain modules. By taking advantage of the idempo

tency property of the carry operator the tree was able to produce carries on all

8 bit boundaries. Also the use of 4 bit modules in the tree lead to more ideal

device input to output load rations and thus faster evaluation than that of a 2

bit module based tree.

As we discuss in chapters 5 and 6, the parallel prefix method is general

enough to encapsulate all of the conventional adder designs. For example, when

ripple carry modules are used in a folded tree the adder is called a carry skip

adder. If these ripple modules are built out of Manchester carry chains, and

all of the modules are the same length, the adder is commonly known as a

Manchester carry lookahead adder. If the modules are of various lengths, and

the tree has N + 1 levels, then the adder is called an N level carry skip adder.

Finally, when carry lookahead modules are used, but the modules are varied in
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size, the adder is conventionally called a block carry lookahead adder.



Chapter 2

Prom Cardinal Numbers to Mechanical Adder

2.1 The Representation ofCardinal Numbers and Unary
Addition

A flock of four sheep and a grove of four trees are related to each other

in a way in which neither is related to a pile of three stones or a grove
of seven trees. Although the words for numbers have been used to

state this truism on the printed page, the relationship to which we

refer underlies the concept of cardinal number. S.C.Kleene [74].

Herders have counted animals going out to graze by marking on sticks, or

by putting rocks in a pile. This fundamental arithmetic is tied to an abstract

system by recognizing that such a rock used for counting represents a counting

symbol. The individuality of the rocks is not significant for purposes of counting,

so there is only one symbol in the abstract system. Hence such a system is called

unary. Each pile of stones thusly created represents the abstraction we call a

number. Like the represented counting symbols, the represented numbers have

no important distinguishing characteristics -

beyond the fact that they embody

the placed stones. It follows that piles have no internal organization.

The term instantiation refers to the act of choosing a random stone from

outside the system, and then placing it in the pile as a counting object. In

stantiation of a symbol provides a step away from direct manipulation of bulky

physical objects towards the manipulation of less bulky physical objects which

21
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may be as simple as ink on paper. That is to say, instantiation is the mechanism

that facilitates abstraction. Instantiated objects originate from a disorganized

pool of objects and are then placed into an environment organized into piles.

Hence, instantiation requires a quanta to be placed into the system, and it

reduces the entropy of the environment system combination.

In this system the operation of combining piles is addition. The movement

of an object from one location to another of equivalent potential energy requires

no net input of energy, so combining the rock piles does not appear to require

that more energy is placed into the system. However, from an entropy point

of view, combining piles disorganizes the system, since there is less knowledge

about the location of the stones after the operation is performed. Hence, it

is not possible to start with a combined pile and then "reverse add" into two

piles without employing some knowledge about the original piles. This classical

"requires no energy" versus the thermodynamic "requires energy" is the same

essential contradiction captured by the Maxwell's daemon problem.

The answer may be found in an analogous quantum mechanical problem.

Here, the piles are like containing boxes, and the stones are like indistinguish

able particles with unknown locations in the boxes. Unary addition is the

process of coercing the contents of two boxes into one box. This problem is

analyzed using quantum mechanics in [75], and it is demonstrated that limit

ing the bounding volume of an otherwise free quantum particle is analogous

to compressing an ideal gas, independent of how the particle's boundaries of

travel are reduced (daemon or no). Hence, the quantum mechanical part of

this mostly classical system of stones requires some consumption of energy.
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This reasoning is applicable to electronic computing also. In an electronic

computer electron clouds are moved across busses to be deposited in registers

etc. To the extent that operations are not reversible, the computation will

require the equivalent of compressing the electron cloud.

2.2 Higher Number Systems

In the system we have described, a represented number is a physical struc

ture which can be created by counting the objects in a set. A number is an

abstraction of the represented number. According to our example, a herd of

animals forms a set, so one can speak of the number of animals out grazing,

or equivalently, the cardinality of the herd. Adding the representations for the

cardinality of individual sets produces a representation for the cardinality of

the union of those sets. Hence, addition is useful in that it provides a short cut

around having to form a union and counting the resultant elements.

Definition 1 (addition) Addition is an operation which produces a represen
tation for the cardinality of the union of sets from only the representations for
the cardinality of the individual sets.

Unary manipulation becomes unwieldy when the magnitude of numbers

extends into the 100s. The inclusion of more counting symbols leads to a more

powerful system. For example, symbols for groups of units reduces the number

of necessary instantiations - in other words the amount of energy placed into

the calculation. The Roman numeral system uses this approach by including

the symbols V, X, L, C to stand for five, ten, fifty, and one hundred Is, where

I is the unit symbol.
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When performing operations such as subtracting II from V, the higher

valued symbol is converted to unit equivalence IIIII, and the unary rule for

subtraction is applied to produce the result III. Alternatively, all the values for

the addition and subtraction of interesting operands can be memorized (listed

in a table). Table lookup is almost always used in multiplication.

The Roman representation, though usable for accounting into the tens of

thousands, does not lend itself to scientific computation. The Arabic system

contains an important structural adjunct not well developed in the Roman

system: a count is recorded not as a single lumped 'pile' of instantiated symbols,

but as an organized array of instantiated symbols occupying 'digit positions'.

The unit equivalence of an instantiated symbol is determined by its value, and

by its 'digit position'. This system has two advantages, it further reduces the

amount of writing to the point that representing scientific numbers becomes

feasible, and it allows counting to progress in an elegant domino fashion.

The mechanical odometer is a physical definition of the Arabic number

system. For the benefit of those not familiar with the odometer, and don't

have one available to examine, we describe it here: An odometer is a series of

wheels with the ten symbols, 0 through 9, printed on their circumference of

each wheel. A window in the front of the odometer shows which symbol has

been instantiated in each digit. The odometer may be incremented repeatedly

by rotating the wheel at the far right a unit at a time until all of the symbols

have been used once, then bumping the wheel to the left one place for a carry.

After all of the symbols in the second wheel have been used, a third wheel is

bumped up one unit, etc.



25

2.3 Ripple Carry Addition in the Arabic System

Two numbers coded on separate odometers may be added by coupling the

odometer axles via meshing gears, and then turning the axle so that one of

the odometers is turned back to zero; the other odometer will then read the

sum, figure 2.1. This is the rotational equivalent to combining the stone piles.

However, this method is slow. If the shafts were turned by hand at 10 r.p.m.,

adding two five digit numbers of all 9s would require about 17 hours.

One way to make an adder faster is to use ripple carry addition. Accord

ingly, the digit wheels are made into gears. The procedure is to first contact

the unit gears and roll the units wheel on the first odometer back to zero -

thus causing the units wheel on the second odometer to increase. The second

odometer's unit wheel may roll past 9 causing a carry to ripple up the odometer

in the usual way. Then, the 10s gears are placed into contact and the procedure

and the axle is again rotated, perhaps causing a carry. This is repeated until

all of the digits on the first odometer have been, one by one, rolled back to

zero. Adding five digit numbers of 9s in this fashion requires five rotations, one

for each pair of wheels. At 10 r.p.m. this is 30 seconds. The Mark I, which

ran at 200 r.p.m., would, if it used ripple carry addition, add these numbers

in 1.5 seconds. ENIAC, running at lOOkhz, or 600,000 r.p.m. ,
could add such

numbers, using ripple carry addition, in 0.5 milliseconds.
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0 0 0

10 1

Figure 2.1: Adding with Odometers



Chapter 3

Conventional Addition Algorithms

This chapter looks at the conventional methods for adding in binary as

though they are algorithms that can be followed step by step. The algorithms

are specified such that each serial step contains a maximum number of parallel

substeps. A central question will be the growth in the number of serial steps

for increasing operand lengths, as this sets the performance limits for circuits.

A circuit which implements an algorithm can do no better than perform all the

given parallel substeps simultaneously while going forward one serial step after

another.

3.1 Serial

Following the steps in the algorithm for serial addition generates the sum

one bit at a time, starting from the least significant bit. This is the familiar

hand method but done using the binary number system. This is also the fast

algorithm for mechanical addition described in the previous chapter. This

algorithm was described using Boolean algebra by Shannon [12]:

27
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1. initialization

s0 = a0&0 -Vco

ci = majority(a0,60,co)

2,. . .

,
JV. calculate for bit i = 1, 2, 3, ... AT - 1

sz- = aibi c{

ct+i
= majority(at-,6t-,ct)

N+l. set the last sum bit

sN =
cN

Here, the input operands are of equal length, N, bits. Hence, N 1 is the

index of the most significant bit. The input operands are A and B, where a, is

the ith bit of A, etc. Each sum bit is st-, while the carry-out is ct+i.

Figure 3.1 shows the result of performing these three steps with two three

bit operands. The operands are 3 (Oil) added to 2 (010) to yield 5 (101). The

operands are in large bold face. The carry values are shown underneath the

dotted line. The dotted line is used to signify that the carries are generated

separately from the original operands, but that they are still added in as though

they form a third operand. The solid line separates the sum from the carries.

Addition proceeds from the right to the left.

The usual implementation of serial addition contains a parallel compo

nent since both sums and carries are generated simultaneously in each column.

0 1 1

0 1 0

2b i'b

10 0 carries

3 2a 1a

"J0 1 sums

Figure 3.1: Serial Addition
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However, the algorithm is serial in the sense that the columns are processed

sequentially starting from the least significant bit. The serial steps in figure

3.1 are numbered consecutively, while letters are used to distinguish among the

steps that may occur in parallel or in any order. For example, step 1 shows that

the carry into the second column (carry lb) may be generated before, after, or

at the same time as the sum in column one (sum la). The lettered cases will be

performed simultaneously in maximally parallel implementations. In the worst

case, there are N + 1 steps to perform, so this algorithm is order N. Although,

N = 3 in 3.1 there 3 and not 4 steps because there is no carry-out.

0(serial(any operands)) = N (3-1)

3.2 Ripple Carry

Ripple carry addition is similar to serial addition. The principal difference

is that ripple carry addition is asynchronous while serial addition is clocked. In

ripple carry addition all of the domino style carry chains start simultaneously,

as shown for the example case in figure 3.2. Because of the overlapping calcu

lations, signals in the ripple carry adder can transition multiple times1. The

vacillation is denoted in the example with crossed out bits.

In the following algorithm, each Si denotes the time delay function through

cell i. The e denotes a small timing margin. This algorithm describes a con

tinuous update cellular automaton. It is a precise description, but not very

At most one carry will pass through any bit.
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intuitive, so we are lead to develop a more comprehensible replacement.

The ripple carry algorithm:

1. Stop after ^2q Si + e time.

Continuously add the two least significant bits to produce a sum bit

of the same significance, and a carry output bit of one greater signif
icance. Post the results after time So.

Continuously, for bits i = 1,2, . . . N 1, add the two operand bits

and the carry bit of significance i, to produce a sum bit of the same

significance, and a carry bit of one greater significance. Post results

changes Si time after the input operand transition that caused the

change.

Continuously set the last sum bit sn = c/v- Post a completed result

after Sjy + e time.

Although the ripple carry algorithm refers to continuous updates, the updates

only propagate when they cause transitions. This is analogous to the moving

object effects in cellular automata; however we want to use a simplermodel than

a cellular automata. Some signal propagations are not important because they

are overwritten, or because they do not lead to an output. These unimportant

paths are 'transients'. We will focus on the non-transient paths in the remainder

of this chapter.

Following themostly the non-transient information path through the ripple
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carry adder produces the following algorithm:

Simultaneously add the three bits in each column without propagating
carries. Sums which would later be rewritten can be skipped.

Locate the beginning of all the carry strings. The carry strings start at

the rightmost carry generation. Simultaneously, for each carry string, until

reaching the end of the longest carry string:

1. Add the bits and propagate the carry.

2. Move to the left one bit.

Figure 3.2 shows the salient events for an example add: the generation of two

carries, the carries propagating across the adder, and then later one path run

ning over the other in the upper four bits. More specifically, when assuming

that the adder starts with all zero carries, the first step in the algorithm pro

duces the sums in columns 0 and 3, and the carries for columns 1 and 4. The

sum calculations for the other columns are later rewritten. The second step

produces the results for column 1 and 4, etc. Carry propagation from step 3 is

used to recalculate the carry into column 3. This makes the previous column 3

calculation invalid, so it must be redone, which causes a new carry to be prop

agated into column 4. Re-doing the column 4 calculation produces a different

5 4 3 2 1 0 columns

0

0

1

1

1

0

1

1

1

1

1
operands

0

2d

1

Id 4b

01
/ 3b 2b

1

1b

0 0 carries

3

1
/2c 5a

J6 1

tc 4a

fo
3a

1

2a

0

1a

"| sums

Figure 3.2: Ripple Carry Addition
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sum bit, but does not produce a different carry bit, so the algorithm finishes

after 5 steps. Note that the correct most significant sum bit was produced in

3 steps, yet the addition was not finished for two more steps because of the

changes in lower significant bits.

3.3 Carry Select

This method is a divide and conquer strategy which hedges bets on the

outcome of intermediate carries. The length of ripple propagate chains must be

reduced somehow in order to speed up addition. If we assum at any particular

point in the adder that the carry would always be zero, then the adder could

be broken at that point into separate parallel processes, and the sum could be

completed sooner. However, the assumption would be wrong 50% of the time.

We can hedge bets on the outcome of such a carry calculation by start

ing two upper half adds, each with a different assumption about the value of

the particular carry-out. Figure 3.3 shows an example of adding 01011111 to

01010110. The upper four bits of the add is duplicated, the top version has

the carry input bit set, while the bottom version does not. In the first serial

step six items are calculated simultaneously. These include the first column

sum bits in each of the three additions, and the first column carry-out bits.

The three additions continue on independently as in ripple carry addition until

the carry emanating from the least significant four bits causes the selection of

the correct upper four bits, 1011 in the last step. This carry select addition

requires only five serially dependent steps to add 8 bit operands. Ripple carry

addition of the same length operands would require 8 serially dependent steps.
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Figure 3.3: Carry Select Addition
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The carry select algorithm is then:

1. perform three ripple carry adds simultaneously:

(a) One add with the lower half bits.

(b) Two adds with the upper half bits.

i. One with the carry-in set to one.

ii. One with the carry-in set to zero.

2. Pick the correct upper half.

Although the number of series steps for performing this type of addition is

approximately half the number for ripple carry addition, constant factors do

not change the order of growth, and the performance is still linear:

0(Carry Select(worst_operands)) = N (3.2)

3.4 Ripple Carry Select

Another conventional algorithm for addition is made by breaking ripple

carry addition into a larger number of pieces than the two pieces of the carry

select method. For example, the 8 bit addition from the previous example

can be broken into four 2 bit pieces, as shown in figure 3.4. Each of the 2

bit pieces contains duplicated 2 bit adders: one copy adds with an assumed

carry-in of one, and the other with an assumed carry-in of zero. The correct

pieces are selected in ripple fashion: the bottom 2 bit add selects among the

correct second section add, and the correct second section add then provides

the correct carry for the third section, which provides the correct carry for the

fourth section. This adder still has order N performance.
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3.5 Conditional Sum

The previous section showed how the carry select algorithm can be applied

in a series to produce a ripple carry select hybrid add to reduce the number

of serially dependent steps. However this reduction did not change the order

of the number of serially dependent steps (measured against operand width).

This section explains how the carry select algorithm can be applied recursively

to produce a tree configuration with a logarithmic number of serially dependent

steps.

Figure 3.5 shows an example of conditional sum addition. This example

and the one from the previous section differ on the third step. In this new adder,

the first section carry still selects the correct sum and carry from the second

section, but now the third section also picks among the fourth section sums.

There are four possible combinations of results from the combined third and

fourth sections: the top sum of the fourth section concatenated to the top sum

of the third section, the top of the fourth section concatenated to the bottom

of the third section, the bottom of the fourth section concatenated to the top of

the third section, and the two bottoms concatenated together. However, after

the second step in the algorithm the carry outputs from the two third section

adds are known, so it is possible to narrow the four possible upper half sums

to two possibilities. These two possibilities are called conditional sums; they

are written down as part of the third step. On the fourth step the carry from

the bottom two sections, which is shown at the upper left corner of the box, is

used to select among the two possible upper half adds to form the completed

sum.
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Conventionally the application of carry select is repeated until only one

bit adds are left, instead of the two bit adds as we showed in the example. The

conditional sum algorithm is:

1 . Break the add in half resulting in three adds half the size and a multiplexer.

2. perform the addition for each of the three adders in one of two ways.

(a) if the add is larger than one bit, recurse by going back to step one.

(b) if the add is one bit wide, then use a half adder to get the sum and

carry.

3. finish the sum for the three subadder group by performing the multiplex

operation.

There are two serial steps per level of recursion in this algorithm. At each level

of recursion the problem is broken in half, so the order of performance is:

0(Conditional Sum(worst .operands))
= log N (3.3)

3.6 Propagate Generate Class of Adders

The method of propagate and generate partitions an addition into three

serially dependent steps:

1. Calculate two Boolean vectors called propagate (p) and generate (g) from

the input operands by bitwise exclusive-or-mg for propagate, and bitwise

and-mg for generate.

2. Calculate the carries (c) from the propagate and generate vectors.
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3. Given the propagate vector and the carry vector calculate the sum vector

(s).

The logic equations for propagate and generate add are:

For all i between 0 and N 1 inclusive:

9%
= a>ibi (3.4)

p%
= a,ibi (3.5)

ci+1
= fco(< gi, p{ >,cj) (3.6)

(a + b)i = aPi (3.7)

Where (a + b)i = Si.

The concept embedded in these equations is the basis for a large number

of fast and efficient adders. In the first equation, the operands are transformed

into propagate and generate vectors by component-wise exclusive-or-ing and

and-mg. In the third equation, the fco function produces a carry from propagate

generate signals and a carry input. The fourth equation shows how the carry

together with propagate can be used to produce a sum bit. The carry operation

is defined as:

fco(< gi,p{ >, Ci)
=

Cip{ V g{ <-> ci+1 (3.8)

The first and third steps in the algorithm are constant time operations. Only

the carry evaluation step has operand dependent timing. From this point of

view, the carry select and conditional sum algorithms contain unnecessary steps
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for partitioning the calculation of sums. It is not the sum calculations which

need to be accelerated, it is the carry calculations.

Bit propagate can also be defined with the or of the operands instead

of exclusive-or. The exclusive-or version of propagate is false when a carry

is generated. An or version would be true when a carry is generated. Either

way a carry appears at the output of the column, so the behavior of the adder

is the same. The next set of equations are based on the assumption that a

carry is propagated when one is generated. In order to keep the two types of

propagates distinct we will call this or version 'transfer', t.

For all i between 0 and N 1 inclusive:

gi
= ctibi (3.9)

U = caVbi (3.10)

c,-+i
= fco(< gi,U >,ct) (3.H)

(a + b)i = Ciaibi (3.12)

fco(< gi, U >, Ci)
= CiU V gi <-? ct+i (3.13)
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3.6.1 Propagate Generate Ripple Carry

1. Form the propagate vector by component-wise exclusive-or-ing the input

operands, and form the generate vector by component-wise and-mg.

2. Starting at the right most one in the generate vector perform the fco

function by:

(a) Move to the next column and set the carry to one

(b) If there is a one in the propagate vector for this column, go back to

the previous step and repeat.

Continue scanning to the left looking for set generate bits, if one is found

repeat this step.

3. Copy the propagate vector into the sum row, exclusive-or all bits which

have a carry above them.

Figure 3.6 shows a propagate generate style ripple carry adder. In the

first step the propagate and generate vectors are formed. In the second step,

a one is placed in the carry vector for column 2. Since the propagation bit is

set, another carry is placed in column 3, again the propagation bit above this

carry is set, so a carry is placed in column 4. This time the propagation bit in

column 4 is not set, so the carry is not propagated into column 5. Scanning

to the left from column 4 there are no more generate bits set, so the algorithm

proceeds to the final step where the sum is formed by copying the propagate

vector into the sum column with the bits 2,3, and 4 flipped.

The propagate signal is set in a bit column when a carry into that column

causes a carry output. The generate signal is true for a column when a carry

output leaves the column independent of a carry in. There is a third possibility,

and that is the case where no carry leaves a particular column independent of

the carry-in. This is the case of 'carry kill'. Carry kill is identical to 'not
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columns

1 0 1 1 1 1
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1f 1e 1d 1c 1b 1a

1 0 1 1 0 1 propagates

4 3 2

1 1 1 carries

5f 5e 5d 5c 5b 5a

1 1 0 0 0 1 sums

Figure 3.6: A Propagate Generate Version of Ripple Carry Addition

transfer', or p A g. The propagate, generate, and kill bits are only functions

of the two operand bits with the same significance (and not of the carries), so

they can be calculated in constant time.

The carry strings will always start one column to the left of a generate

and continue leftwards until a column with a carry kill condition is found. This

observation can be used to write the carry strings down directly by inspection.

Hence, propagate generate ripple carry addition is a useful method for adding

long binary numbers by hand. Note that the performance of this method of

addition is still linear.

ci+1
= fco(< gi,pi >, Ci) (3.14)

This implies that the fco function is to perform:

Ci+i
= g%y PiCi (3.15)

The same applies for ripple carry addition based on transfer:

Ci+i
=

gi VUci (3.16)
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An interesting property of the transfer equation is that:

(*.- = 0) -> (gi = 0) (3.17)

A transfer bit equal to zero implies that the corresponding generate bit is zero.

This follows since transfer is the or of the input operand bits, and generate

is the and of the same bits. This implication does not hold for the propagate

formulation. From this implication we can deduce:

ct+i
= gicl V Uci (3.18)

This is the 2:1 multiplexor equation. Hence transfer-generate ripple carry ad

dition can optionally be performed using multiplexers instead of the usual and-

or gate combination:

1. Form the propagate vector by component-wise exclusive-or-ing the input

operands, and form the generate vector by component-wise and-mg.

2. Starting at the right most one in the generate vector perform the fco

function by:

(a) Move to the next column and set the carry to one.

(b) Copy the transfer bit as the carry into the next column. Move to

the next column, if the carry is set, go back to the previous step and

repeat.

Continue scanning to the left looking for set generate bits, if one is found

repeat this step.

3. exclusive-or the operand bits and the carries in each column to form the

sum bits.

Figure 3.7 shows the previous example using transfers in place of propagates.



44

0 columns

1 0 1 1 1 1
operands

0 0 0 0 1 0

11 1k 1j 1i 1h ig

0 0 0 0 1 0 generates

1f 1e 1d 1c 1b 1a

1 0 1 1 1 1 transfers

4 3 2

1 1 1 carries

5f 5e 5d 5c 5b 5a

1 1 0 0 0 "\ sums

Figure 3.7: A Transfer Generate Version of Ripple Carry Addition

The complete equation for the carry leaving the zth bit of a ripple carry

add can be found by applying equation 3.16 once per bit position. If the first

column of the ripple carry add is j, and the last column is i, then:

Ci+i
= giVUci (3.19)

c{ =

gi-i V U-iCi-i (3.20)

Cj+i
=

gj V tjCj (3.21)

By recursively substituting for the carry we obtain:

Ci+i
=

gi V Ugi-i V UU-igi-2 V V tt-*,-_i . . . tjCj (3.22)

Since equation 3.16 has the same form as equation 3.15, this last result applies

to the propagate form also:



45

Ci+i
=

gi V pigi-i V PiPi-igi-2 V V piPi-x . . .pjCj (3.23)

For example, the carry-out of a 4 bit wide ripple carry addition extending from

bit position 0 to bit position 3 is described by:

c4 = #3 V t3g2 V t3t2gi V t3t2t1g0 V M2M0C0 (3.24)

3.6.2 Carry Skip

Since only the carry logic needs to be duplicated for performance, repeating

the calculation of sum bits in the redundant blocks of a carry select adder is not

efficient. A carry skip adder can be obtained by moving the summation logic

out of the parallel part of the algorithm, and then calculating sums serially

after the carries are obtained. After the sum logic is deleted from the ripple

carry select, each of the blocks only produces two conditional carries, except

the bottom block, which produces an actual carry.

The carry-out from the bottom block selects from the two conditional

carry-outs from the second block, and these select among the conditional car

ries from the third block, etc. The carry select adder uses multiplexers, so the

correct signal to use is transfer, as shown in equation (3.18). The multiplexers

are gone from the sum path in the carry skip adder. Also, the carry propa

gation optionally can be done with an and / or gate combination instead of

multiplexer. In this later case, propagate could be used in place of transfer.

Two carry calculations are still required per section: one while assuming a

carry-in of one, and one while assuming a carry-in of zero. However, the carry
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calculations are easier to perform than complete additions. Since the calcula

tion of carries for the ripple carry adder example in the previous section did

not use the sum values, that method can be used to find the carry conditioned

on a zero carry input. The carry output for the case of a carry input of one

is found simply by and-mg all of the carry transfers for the block. Hence, the

equations for the conditional carries are:

c+1 = gi V Ugi-x V tA-i#-2 V V Mt-i tj+igj (3-25)

ci+1
= trfi-i . . . tj+itj (3.26)

Here the superscripts 0 and 1 stand for the case of a carry-in of zero and

of one respectively.

A carry conditioned on a carry-in of zero is the same as group generate,

while carry conditioned on a carry-in of one is the same as group transfer.

< flfcj, U.j >=< ci+1,c}+1 > (3.27)

The algorithm for carry skip addition follows that for ripple carry select,
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except the formation of the sums is left until the end:

1. for each block perform both steps simultaneously:

(a) Form the zero conditional carry by (group generate) calculating the

carry-out according to the ripple carry algorithm while holding the

carry- in at zero.

(b) Form the one conditional carry by (group transfer) conjunct-ing (ant

ing) all of the transfer bits together.

2. Take the carry-out from the bottom block, and select the correct carry-out
for the next block, continue until the top block has a correct carry-in.

3. Perform ripple carry additions in each block to form the final sums.

Figure 3.8 shows an 8 bit carry skip add composed of four two bit blocks. The

first two rows show the operand bits. The third two rows show the conditional

carries derived from the ripple carry algorithm. The next row shows the actual

block carry outputs. The 0 conditional carry output of the bottom block is an

actual carry so this value is just copied from an higher row. The other block

outputs are selected in series. The next to last row shows the intermediate

carries for the blocks, which are produced in ripple carry fashion. The bottom

row shows the sums which are found by column-wise exclusive-or-'mg the two

operand bits and the carry bit.

The level of performance of this algorithm is linear since the carries ripple

serially across N/n blocks, where n is the constant number of bits per block.2

2We use the variable N for adder widths. Small adders can be arrayed to make larger

adders; hence an adder of width nz- is a member of such an array. Conventionally block

widths are signified with k instead of n.
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Figure 3.8: Carry Skip Addition

3c

0

11

0(carry_skip (worst .operands)) N (3.28)

3.6.3 Carry Lookahead

Carry Lookahead addition is perfomed by following these steps:

1. Calculate bit generates and propagates /transfers.

2. Evaluate each carry equation in parallel.

3. Use the carries and propagates to calculates the sums.

Carry lookahead is based on the fact that Boolean logic equations can

always be evaluated in two stages of logic.

ci
=

go + PoCo (3.29)
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c2 =

gi-r Pigo + Pizoco (3.30)

C3 =

g2 + P2#l + ^2:1^0 + #2:00) (3.31)

(3.32)

O(carry_lookahead(worst_operands)) = C (3.33)

Where C is a constant.

Such calculations based on two level and-or evaluation with unlimited

fan-in/fan-out ignore several real effects. This isn't the issue however, as all

adder models which show less than linear order evaluation time are ignoring real

effects3. The issue is whether the model appropriately predicts dominate device

effects for the size of problem of interest. In the case of the carry lookahead

adder, this is only the case for N oi a few bits.

3the very propagation of information over a distance is at best linear time.



Chapter 4

Gate Delay Models for the Conventional Adders

. . . during my study of the adder unit I got the idea of solving vir

tually all statements - today we speak of data or information - with

yes/no values. We realized that this principle could be applied to all

computingmachine components, especially to the control device, and

led to switching algebra with the aid of propositional calculus.
- K.

Zuse.

In this chapter we show logical gate implementations of algorithms dis

cussed in the previous chapter. After obtaining a net list for an algorithm, we

derive the worst case path lengths through the net lists1.

A gate level net list is often an ASCII file which contains a list of all

the gate instances with their input and output pins labeled, along with a list

of the named connections (nets) between the pins. Various attributes of the

circuit can be attached to the nodes, pins, and nets, so the net list typically

holds physical circuit information, such as device sizes, connection lengths, and

even parasitics. The connection information in the net list can be interpreted

formally as a graph. Hence, the net list of an adder is the nexus of its logical

topology, gate implementation, and physical parameters. Apparently the net

list is the appropriate place to start our study of adder implementations.

xBy gate level we mean that all of the instantiated objects in the net list are macros

for the common gates such as nand and nor. Such macros would be expanded out to the

transistor implementation for the gates when needed.

50
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According to the graph interpretation, a gate delay count is simply the

length of a path through the net list.2 Because net lists are computer based

representations, functions for describing net list properties such as path lengths

can be implemented as computer programs. The functions in this chapter have

a syntax akin to a procedure call and accept as input or produce as output

objects such as net lists, nets, pins, and numbers.

In general, the longest path through a net list can not be assumed to be the

slowest to evaluate since evaluation time is also a function of the device physics

and geometries involved, but in the case of the conventional adder circuits, it

is a reasonable heuristic. It was apparent from the previous chapter that the

rate limiting sequence of steps is the propagation of the carries. Propagate,

generate, and sum formation were simple constant time operations. In general

carry path lengths are not directly proportional to actual evaluation times,

since gate delays are not all the same.

The approach of looking at path lengths for determing evaluation time can

be improved upon by using device sizes and loads along with a simple timing

model. This refinement is necessary when optimizing multiple carry paths.

To obtain reasonably accurate estimates of the worst case evaluation time,

the slowest among the paths recognized by such an improved timing model3

should be extracted from layout with parasitics, and simulated with SPICE.

The worst result obtained from SPICE is typically an acceptable worst case

2In actuality, gate delay counts are expressions of path lengths through the dual graph of

the net list, since counts are of the nodes crossed instead of arcs traversed.

3Of course there must exist a combination of inputs which activate the paths.
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evaluation time estimate.

Note, there are five distinct usages of and in this thesis (the other logical

operators are analogous). There is the gramatical version in text, 'and'. The

propositional logic operator, 'A'. The word for refering to the operation, 'and\

The word for refering to the gate which performs this operation 'and'. Finally,

the name of the macro function called out in the net list, 'AND'. All of these

forms carry unique information. We have endevored to use them consistently;

however there were some ambigous situations. For example, when a schematic

was used to show how a net list was implemented.

4.1 Ripple Carry

Figure 4.1 shows three variations on the logic for creating transfer and

generate, or propagate and generate signals, xor gates cause two delays in

the worst case, according to the implementations shown in Figure 4.2. The

variations in Figure 4.1 are all based on:

ab= (aV6)(a5) (4.1)

Figure 4.3 shows the implementation of two and three input NOR and

NAND macros along with the three input OR-NAND, and AND-NOR macros.

In general, gates with higher fan-in are slower. The delay is roughly related

to the number of series transistors between the output and the power supply

rails; this measure is known as the "stack height".

Hence, the performance of the OR-NAND and AND-NOR is comparable
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Figure 4.1: Generate and Propagate Logic Blocks

o
>
D~

5>

Figure 4.2: XOR and XNOR Blocks
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to a 2-NOR for falling edges, and comparable to a 2-NAND for rising edges,

except that they will have more internal capacitance. In [76] a simplification

of the AND-NOR macro is shown to switch faster. The macro shown turns

out to be equivalent to using the Ling recursion (see chapter 8). Also, this

observation on stack heights suggests that the three input nor based recursion

used by Majerski [77] might be disadvantageous when implemented in CMOS.

In this chapter, the AND-NOR and OR-NAND macros will be counted as

single gate delays.

Figure 4.4 shows a 4 bit ripple carry adder. (A clearly portrayed example

implementation of such a ripple carry adder is in given in [78].) The blocks on

the left transform the a and b inputs into t and g inputs. The block labeled

'i?(4)' then propagates the carries. The carries are shown leaving at the right.

The xor logic is not shown.

Figure 4.5 shows variations of three input xor gates implemented efficiently

by using the t and g signals instead of the operand bits. These variations were

created using DeMorgan's law and the following equation:

ab = tg (4.2)

'i?' is a special function which returns the net list of a ripple carry path.

A net list contains a list of the blocks, pins, and nets used in a circuit. Blocks

contain logical functions, pins are the terminals on the blocks, and nets are

the connections between the pins. Figure 4.6 shows the net list of two series

inverters with input A, an unnamed intermediate node, and output C:
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Figure 4.4: 4 Bit Ripple Carry
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Figure 4.5: 3 Bit xor Gates

Functions can be used to manipulate or to return information about net

lists. For example, the 'D' function returns the path length of the longest path

between nodes.4 When applied to the 'Invlnv' example above it yields:

>(lnvlnv, A, C) = 2 (4.3)

This equation says that starting from the A pin of the Invlnv block and

traversing over the longest path to the C pin, one passes through two gates. It

is easy to imagine how such a gate counting program could be written by using

conventional graph traversal algorithms, and in fact popular CAD programs

4Sometimes it returns the longest 'interesting' path. Defining 'interesting' is one of the

bothersome problems in designing such tools. Certainly the ability to turn the path on makes

the path more interesting.
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1. block declarations:

(a) inverter

i. pins:

A. I

B. 0

ii. function: 0 = not I

2. blocks:

(a) invl = inverter

(b) inv2 = inverter

3. nets:

(a) netl = (A,invl.I)

(b) net2 = (invl.O, inv2.I)

(c) net3 = (inv2.I, C)

Figure 4.6: Net List of Two Series Inverters
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typically have such a facility. Often a list of the nodes in the path is also

returned so that the path can be inspected and simulated in more detail.

The three input xor is made from a nand or nor gate and a two input

xor as shown in Figure 4.5.

D(XOR3, C,S) = 2 (4.4)

D(XOR3,T,S) = 3 (4.5)

The net list generating function 'i?' accepts one operand: the adder width.

This is why the ripple carry block in Figure 4.4 is labeled #(4). The resulting

net list always contains one carry-in pin, N t input pins, N g input pins, N

sum output pins, and one carry-out pin. R, GT, XGT, and GP are all net

list generating functions. Net list generating functions are also called 'macros'.

Note the R function is conceptually different from the fco function discussed

earlier. The fco function is a Boolean function which operates on ordered pairs

of Boolean values; the implementation of the fco function may vary between

adder designs. In contrast, the R function returns a net list for a specific

implementation of the fco functions; namely the ripple carry implementation

under consideration.

fl(2)(c0,G1:o,T1:o)^<72:0 (4.6)

Equation 4.6 states that a 2 bit ripple carry adder is created, and that

the signals c0, G\.q,T\.q are provided as input, and after the circuit evaluates,

the output is comprised of the signals C^o- Here the capital letters are used in

the classical way to indicate vectors. Whereas gi:o represents one signal which
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contains summary information over the bits zero and one, Gi:o is a vector of

two signals, < g0,gi >.

The delay from carry input to carry output of a ripple carry adder is:

D(R(N),co,cN) = N (4.7)

When the critical delay path starts at the operand input instead of the carry

input, an extra two gate delays are required to go through the GT block.

^(ripple, a0, cN) = D(R(N),p0, cN) + Z>(ripple, a0,p0) = N + 2 (4.8)

It may be important to know the time delay (path length) from introduc

tion of the carry-in, or the operands, to the emergence of the most significant

sum bit. The carry used in creating the last sum bit appears one gate delay

before the carry-out:

D(R(N),c0,cN.1) = N-l (4.9)

After this carry is setup, the isolating inverter and the XOR macro take up

three more gate delays, for a total time of N+ 2. If the path starts at ao instead

of Co an additional two delays would be incurred:

D(ripple, c0, sN) = D(R(N), c0, cat-i) + ^(ripple, cat-i, sjv-i)

= N + 2 (4.10)

>(ripple, a0, sN) = Z)(ripple, a0, p0)

+ D{R(N),Po,cN-i)

+ D(ripple,Civ_i,57v_i)

= N + i (4.11)
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All of the propagate generate style adders have the same propagate-generate

and xor summation logic implementations in common, therefore each adder is

characterized only by its carry path. In the case of the ripple carry adder:

D{R{N),co,cN) = N (4.12)

D(R(N),co,cN^) = N-l (4.13)

D(R(N),g0,cN) = N (4.14)

IWV),Sb,CAr_i) = N-l (4.15)

Application of our 'A' (area) operator to a net list returns the total number

of gates in the net list. For the ripple carry adder:

N N

A(ripple(AO) - -^A(GT) + A(XGT) + A(R(N)) + NA(XOR) (4.16)

The bit cells which use the XGT block require another inverter in the

XOR macro to give the correct logic sense. (The GT blocks already have extra

inverters.) Hence, the average gate count for the 3 bit XOR macro is 3.5 gates.

The GT block requires four gates per bit position, the XGT block requires two,

and the carry logic requires one. Hence the total area of the ripple carry adder

is 7. 5AT; however, the carry-in signal to the block fans out to three separate

gates inside the block.

The bit cells in the ripple carry adder are full adders. Each one accepts two

operand bits and a carry-in, then produces one sum bit and a carry-out (i.e.,

each corresponds to a single column in addition algorithm). Combining the

input OR with the gates inside the XOR eliminates another gate, but causes

a violation of the three input fan-in limit. Also, there should be an inverter



62

:m

-fe

:i+1

Figure 4.7: Three Full Adder Variations
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between the carry path and the xor logic in order to isolate the load caused by

feeding two gates inside the XOR macro. This isolated carry variation of the

full adder will be used for analysis in this section. The complete full adders are

are shown in Figure 4.7. The total area is:

A(ripple(AO) = 8.5N (4.17)

4.2 Carry Skip

Figure 4.8 shows a carry skip module from which all carry skip adders

are made. The string of nand and nor gates which run through the block

calculates the group transfer signal. This signal is always faster than the group

generate signal, so it will be ignored. Group generate is derived, as explained

earlier, by setting the initial carry into the ripple carry block to zero. (Hence

this adder must be initialized with the carries set to zero.) The ripple carry

block gets used twice, first to calculate group generate from a carry-in of zero,

and then later after the carry input becomes valid, to calculate the block's

carries.

The K(n) macro is used to create a net list for a ripple carry adder and

the string of gates needed for calculating group transfer. The carry pins on

all K blocks are labeled from Cq to cn_i (for example if n is 3: Co,ci,C2).

When multiple K blocks are used there is a signal name ambiguity on the

top level net list. To avoid this ambiguity we rename the top level nets. The

names become effective at the block boundaries at points called "pins". It is

conventional to also adapt a hierarchical naming convention, where the signal

in a particular block is distinguished by prepending the block name onto the
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signal name; hence, c2 of macro Bl would be called Bl.c2. We will sometimes

rely on context to disambiguate the names. Usually context eliminates any

ambiguity.

D(K{N),co,cN) = 1 (4.18)

(#(#),<*>,<*_!) = JV-1 (4.19)

D(K(N),g0,cN) = N + l (4.20)

D{K(N),g0,cN^) = N-l (4.21)

The node count of the carry skip adder carry chain is only slightly larger

than that of the ripple carry adder chain:

A(K(N)) = 9.5N + 1 (4.22)

The longest path length through the carry skip block is potentially much

shorter than the path from carry-in to carry-out through a ripple carry block.

However, the carry skip block has a slightly longer path from the least signifi

cant < g,t > input to carry output. Hence, this adder will only be faster when

skipping groups makes up for the extra gate overhead accumulated by going

from generate/transfer to carry-out. The maximum path length through a one

block wide carry skip adder is the same as through a ripple carry adder, since

the bottom block in a skip adder is a ripple carry (the bottom block cannot

be skipped). A two block carry skip adder is again the same as ripple carry

adder, except the carry comes out one gate later. A three block wide carry

skip adder (figure 4.9) is potentially faster because carries can skip the middle
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section. Usually more than three blocks will be necessary to have significant

speedup.

All one level carry skip adders are uniquely defined by their block length

parameters, n0, ni, n2, . . .; therefore, all of the following equations will be stated

in terms of these parameters. Later, we will find that it is necessary to find an

optimum set of parameters to produce the fastest carry skip adder. This is the

subject of chapter 7.

The latest carry will always appear at the end of one of the skip blocks.

This follows because the carry chain inside the carry skip block is a ripple carry

chain, R(n), so it evaluates serially with the most significant carry appearing

last in the slowest case addition, as discussed in the algorithm chapter (chapter

2). Since we don't know in advance which block will produce the latest among

the slow end carries, we will refer to this latest carry indirectly as
cjag+. The

value of last for the three block carry skip adder will be one of n0 1
, n\ -f n0 1

,

or ri2 + n\ + n0 1 (for a 12 bit wide adder composed of 4 bit wide blocks, last

is either 3, 7, or 11). cjag^. is used to compose a sum bit on the end of one the

blocks. Hence, we are considering the case where the longest path begins with

the least significant operand bit and ends at the sum bit calculated from ci + .

There are two paths leading to the end carry of each K block (the end

carry is cn_i, cn is the carry-out). One path starts from the least significant

operand bit, go of the K block, and the other starts from the carry-in of the

particular K block. Signal names in the D calls are given relative to the macro

passed in as the first operand.
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D(skip3,a0,clast) = Max(do,dud2)

d0 = D{GT)^D{R{no),go,cno.1)

e0 = D(GT) + D(R(n0),go,cno)

d1 = Mzx(e0 + DiKin^^o^n^^iGT)-^ DiKin^^o,^.!))

ei = M<ix(e0 + DiKim), c0, cni),D(GT) + D(K(ni), g0, cni))

d2 = ^^{ei + D{K{n2),co,cn2^),D{GT) + DiK^^o^n,^))

The three variables d0,di,d2 represent the path lengths to the end carry on

each block. d0 is the worst case path length to the least significant block's (i.e.

block BO's) end carry, cno_i. e0 is the path length to the least significant block's

carry-out, cno. There are two ways to make the block Bl's end carry, di, and

the maximum of the two path lengths is the one with the longest path. This is

true in general for skipped blocks. One path goes through the skip logic, while

the other goes through the group generate logic. Since we are not considering

the delay to carry-out from the adder, there is no e2 equation.

Since the middle block equation is the same for any skipped block, the

carry skip equation for any number of blocks can be written down in general

with three equations, where the second equation is iterated for N 2 times.

Among the following equations, the first is for the least significant block, it is

special because it cannot be skipped. The third is special because it does not

produce a carry output. We introduced M which is equal to N 1 to make

the subscripts legible.

(4.23)
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where 0 < j < M : >(skip3, a0, qast) = Max(^) (4.24)

For the bottom block:

d0 = D(GT) + D(R(n0),go,cno_i) (4.25)

e0 = D{GT) + D{R(n0),go,cno) (4.26)

Where 1 < i < (Af
-

1),:

di = Max(e,_1 + D(K(ni),c<hcni-1),D(GT) + D(K(m),go,cnt.i)) (4.27)

d = Max(et_! + D(K(m),c0,cnt),D(GT) + D(K(m),go,cni)) (4.28)

For the most significant block:

dM = Max(eM_i + D(K(nM),c0,cnM-1), D(GT) + D(K(nM),go,cnM^1))

(4.29)

As noted earlier, the two operands in the Max function come from the two

sources for a carry: a generate from the skip block, or a propagate over the skip

block. In the case of the path to end carry of the skip block, the carry-in and

the carry generate path coincide. Hence the carry-in to end carry will always

be later than the operand bit end carry. The above equations are simplified to:

For the bottom block:

d0 = D(GT) + Z?(/?(n0),fl6,Cno-i) (4.30)

e0 - D(GT) + D(R{n0),go,cno) (4.31)
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Where 1 < i < (M
-

1):

d{ = e,_! + D(K(m), co, cnt_!) (4.32)

e{ = Max(ct-_1 + D(K{m),c0,cnt),D{GT) + D{K{m),go,cni)) (4.33)

For the most significant block:

dM = eM-i + D(K(nM), c0, cnM_i) (4.34)

These equations were derived without any restrictions on device behavior

or connectivity - they are only topological description of paths which are tra

versed. Hence, many device and connectivity models can be placed into them.

We will continue from this point to use the gate delay relationships listed in

equations 4.18 through 4.21 for the skip blocks, and equations 4.12 through

4.15 for the ripple block. The skip path equations then reduce to the following

gate delay equations:

where 0 < j < M : D(skip3, a0, qast) = Max(^) (4.35)

For the bottom block:

d0 = n0 (4.36)

e0 = n0 + 1 (4.37)

Where 0 < i < M, and M is the number of blocks minus 1.

d{ = a-i -\-rii-l (4.38)

ct- = Max(e,-_i + 1, n{ + 2) (4.39)
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For the most significant block:

dM = eM-i + nM
- 1 (4.40)

With the exceptions of the conditional sum adder, and some of the sur

veyed adders, we have not yet discussed hierarchical adder structures. For

example, it is possible to implement carry skip adders, where instead of using

R{rii) inside the K(ni) module, another carry skip is used. For large adders

carry skip is faster than ripple carry, so doing this will result in a faster mod

ule. The topic of carry select nesting is discussed in Chapter 5, while the topic

of carry operation nesting is discussed in chapter 6. Chapter 9 gives relative

performance of the adders.



Chapter 5

cso Operator Based Adders

This is the first of two chapters on unifying adder designs. The basic

idea is that the different adder configurations can be created by changing the

associativity of an associative carry operator. Hence, a generic optimized adder

generator would accept a timing constraint and then adjust the associativities

to be as linear as possible while still making speed. Faster adders tend towards

trees.

This chapter explores the implications of the associativity of the carry

select operator. The carry select operator multiplexes both sums and carries.

The next chapter expands on the potentially more powerful principle of multi

plexing only the carries.

5.1 One Level Structure - Ripple Carry

In order to illustrate the principles of this chapter, it will be necessary to

use a diagram capable of packing more bits into a figure, so we have adopted

the dot diagrams found in many articles on the parallel prefix problem. Figure

5.1 shows a ripple carry adder. The darkened nodes are fco operations while

the Xed nodes are xor gates.

Generate 7 and the associated fco operation are omitted since they are not

needed for calculating the 8th sum bit. The nodes in these graphs represent

71
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Figure 5.1: Ripple Carry Adder

fco delays, and not gate delays. Also the paths start at propagate generate and

lead to carry.

(ripple(A0) = N (5.1)

The total number of nodes is also measured in fco counts. The logic for

producing propagate, generate, and the sum is not included.

A(ripple(AO) = N (5.2)

The metric columns gives the number of vertical fco tracks required to

layout the adder. Because some adders have a peculiar shape which leave

behind holes in the layout which are difficult to utilize, the columns count may

be more indicative of required VLSI real estate than the number of nodes in

the graph.
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columns(ripp\e(N)) = 1 (5-3)

5.2 Two Level Structure - Carry Select

An adder with a shorter D can be created by partitioning the ripple carry

adder into two smaller adders. It follows from the definition of weighted binary

code

n

a:m
= 53 2i<li (5-4)

i=m

(where n and m are a range in the components of the bit vector used to represent

the number a) that numbers can be broken into the sum of separate digit

groups:

Vj|ra < j < n : an:m =

an:j + aj_i:m (5.5)

From this it follows that the sum of two bit vectors can be decomposed

into the sum of two smaller sums:

an:m + K:m = {^nij + K:j) + {^j-lim + bj-i:m) (5.6)

Which is littlemore than saying the bottom bits and top bits can be added

separately and the resulting two sums then added together. A simplification

is possible here, the final sum can almost be formed with the computationally

cheap operation of concatenating the two short sums:
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0>n:m + K:m ^ (a>n:j + K:j) O (aj-l:m + &j-l:m) (5.7)

However, this fails when the least significant sum carries. We can imagine

another operator which also has computational advantages over that of general

addition which still takes the carry case into account:

an:m + bn:m = (an:j + bn:j) csoj (aj_1:m + 6j_i:m) (5.8)

This carry select operator, cso, chooses between two possible concatena

tions, one of just the two short sums, and one of the most significant short sum

+ 1, and the least significant short sum - 2J, as shown in the example adder in

figure 5.2. In this adder, the trapezoids are used to symbolize 2:1 multiplexers.

One can see in the graph that the ripple carry adder from figure 5.1 has been

broken in half, and the upper half has been duplicated, once with a carry in

of zero, and once with a carry in of one. The carry in of one performs the

increment. This splitting action on the graph corresponds to the cso operation

in equation 5.8.

Compared to addition the cso operator is rather ugly as it is nonlinear, not

commutative, requires a third operand to indicate where to locate the carry

(which we will omit from the equations for brevity), and the subscripts on

the adjoining operands to be added must be aligned (as j and j
'

1 above).

However, a most important quality is preserved, cso is associative:

((an:j + bn:j) cso (aj-1:k + bj-lzk)) cso (ak-i:m + bk-i:m)
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= (Any + &n:j) CSO ((aj-i^ + &j_l:Jfe) CSO (a]fc_i:m + 6jfe_i:m)) (5.9)

Just as was done for ripple carry addition, we define a function which

returns the graph of a carry select adder, select. The operands to this function

are two adders which must be combined with the cso operator. For example,

the adder on the left hand side of equation 5.9 is described by:

select(select(ripple(n j + l),ripple(j fc)),ripple(fc m)) (5.10)

The adder on the right hand side is:

select (ripple(n j + 1)), select(ripple(j k), ripple(fc ra)) (5.11)

If we count the final selector as one processor delay the delay caused by

using cso to evenly split an adder is:
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Z)(select(ripple(ni), ripple(n0)) = max(n0, ni) + 1 (5.12)

It follows that to optimally split a ripple carry adder in two with a cso

operator, n0 must equal nx, and that the total delay is
1
is nearly cut in half

from that of ripple carry:

N/2 + 1 (5.13)

The area resulting from applying one carry select operator to a ripple carry

adder is:

A(select(ripple(ni),ripple(720)) = n0 + 3rci (5.14)

The n0 comes from the lower ripple carry adder, one of the 3ni comes from

the upper adder with carry-in equal to zero, another from the upper adder with

carry-in equal to one, and the third from the n\ selector processors required at

one per bit.

columns(select(ripple(ni),ripple(n0)) = 2 (5.15)

The cso operator can be applied many times in series as shown in the

adder in figure 5.3. This adder still only requires two columns. By carefully

selecting the block sizes it is possible to produce a polynomial time adder. This

for an odd value of N, add one more delay
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Figure 5.3: Ripple Carry Select Adder
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is done by setting each block to the maximum size it can be without making

the carry select wait for the sum data to arrive. If the first block is set to one

bit wide, then the next block can be two bits wide without creating a speed

path, since the carry will be delayed by one fco operation in the first block.

The carry in the second block is again delayed by one as it travels through the

second fco operation etc. Each block can be one larger than the previous block,

until running off the end of the adder. For such an adder the sum of the bits in

the groups must be equal to number of bits in the adder. The last group may

be cut short, hence:

9

min g such that ^2ni ^ (5.16)
i

li we say that M is the smallest value that fits the pattern of the J2 (i-e-

1, 3, 6, 10, 15, . . . bits), and is greater than or equal to N, then

M =>, = g(g + l)/2 (5.17)
i

We solve for g using the quadratic formula. Without considering the prob

lems caused by the large fan out of some of the multiplexer select lines, there

is one delay element per group, so:

^(optimum ripple carry select) = (5.18)
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5.3 N Level Structures

It is well known that the shortest delay in evaluating an expression made

from associative operators is when the operators are grouped in a tree. Ac

cordingly, in the following adder all possible pairs are first calculated - because

this is the most that can be done in parallel with a binary operator such as

cso. Then these results from these pairings are paired again, since, once again,

this is the most that can be done in parallel, etc. The equation for a maximum

speed 8 bit carry select based adder is:

(((a7ob7)o(a6ob6))o((a5ob5)o(a4ob4)))o(((a3ob3)o(a2ob2))o((aiobi)o(aoobo)))

(5.19)

Here o is a short form of cso.

The corresponding graph is generated by:

s(s(s(s(r, r), s(r, r)), s(s(r, r), s(r, r))), s(s(s(r, r), s(r, r)), s(s(r, r), s(r, r))))

(5.20)

Where s is used for select and r is used for ripple(\). The adder is shown

in figure 5.4. Whenever the cso operator is used to recursively break down an

adder to one bit ripple blocks in this way, the adder is called a Conditional

Sum Adder.

The following equations are the conditional sum adder parameters, when

N is a power of 2.
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D(conditionaLsum(N)) = log2 N + 1 (5.21)

A{conditionaljsum{N)) = N(\og2 N + I) + N (5.22)

columns(conditionalsum(N)) log2 Af + 1 (5.23)

The delay number is equal to the levels in the tree, plus one level for the

final select based on carry in. The log2 N + 1 term in the area equation is the

number of levels in the adder. Each level has TV 2:1 multiplexers, so the log

term is multiplied by N. The N summed in at the end is the number of fco

operations required for propagating the carry.

The conditional sum adder for 7 bits (or 8 bits without a carry input) is

quite a bit simpler, as is apparent from figure 5.5.

These are the parameters for the simplified adder. Here N is a power of

two and is the number of bits in the adder without a carry in:

D (conditional -sum(N)) = log2 N (5.24)

columns(conditionalsum(N)) = log2 N (5.25)

3 1

A(conditionaLsum(N)) = (-N
-

1) log2 N + -N (5.26)

In summary this section showed how a property of the binary number

representation lead to an associative operator which could be used to build

adders which have anywhere from linear to logarithmic growth in the number

of circuit elements in the longest delay path, when measured as a function of
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the operand length. These same adders had an order of growth between linear

and Nlog N total number of nodes in the circuit graph.



Chapter 6

fco Operator Based Adders

This chapter completes the unification of adder designs by demonstrating

that changing the associativity on the carry multiplexing operator yields the

remaining conventional designs, and most of the recent designs.

6.1 One Pass fco Trees

As described earlier, addition operands can be normalized by applying

these operations:

gi
= aiAbi (6.1)

Pi
= aib{ (6.2)

(6.3)

The gi and pi signals contain all the information needed from the operands,

and they give direct logical information on how to propagate the carry:

Ci+i
=

gi V PiC{ (6.4)

The propagate and generate signals are collected using an operator, fco.

This operator combines propagate and generate information about smaller

84
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groups into propagate generate information for a larger group:

Pn:m
=

Pn:j A Pj-l:m (6.5)

gn:m
=

gn:j V pn:jffi-l:m (6.6)

The colon notation used in the subscripts indicates that the group prop

agate and generate signals are being used, as was described in chapter 3. For

example, pn:rn is a single signal which is true when a carry into bit m would

propagate through the block, and appear as a carry-out from bit n. Similarly

ft-i,m is a single signal which would be true if a carry could be generated in

the block of bits between bit j 1 and bit m, inclusive. It follows that:

Cn+1 gn:m V Pn:mCm (6-'j

When the generate signal is asserted, the circuit outputs a carry. The

converse may not be true. That is, if the generate signal is not asserted there

may still be a carry due to propagation.

Note, equations 6.4, 6.5, and 6.7 all have the same form.

Just as for the cso operator, the fco operator is associative. Because it is

associative, it can be applied in series to make ripple structures:

Cn+l
= ( ((C0 fcO (pi.gi)) fco (p2,g2)) fco (pn,gn)) (6.8)

Or nested to produce an order log time sum:
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cn+i
= ( ((c0 fco (pi,gi)) fco ((p2,g2) fco (p3,g3))) . . .) (6.9)

To make all of the sum bits, all of the carries must be known. In equation

6.8 each prefix of the equation is an equation of the same form as the whole

equation. Hence it is obvious that all of the carries are generated. However

it is not obvious that all the carries can be gotten directly from implementing

equation 6.9. In fact, they cannot. Supplemental logic must be put in place to

calculate the remaining carries.

Figure 6.1 from Brent and Kung [60] conveys both electrical and layout

information. Each white cell in the graph is an inverting buffer, and each

black cell is an appropriate polarity fco function. The graph also shows a

limited amount of timing information as there is one fco delay per column in

the graph. The adder shown requires

delay(BK(N)) = 21og2(A)
- 1 (6.10)

fco delays for creating the carries 1. Producing the propagate and generate

signals requires another delay element, as does producing the sums from the

carries.

The Kogge and Stone adder removes the multiplying factor of 2 and the

" 1" in equation 6.10. Their adder is shown in figure 6.2. Han and Carlson

[68, 67] observed that Kogge and Stone's adder required a great number of metal

1
Brent and Kung's adder can be collapsed by one column when non-inverting logic cells

are used. This action increases the fanout of the middle right tree cell (in row c7).
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tracks for group propagate and generate signals, so they created an efficient

hybrid between the Brent and Kung's adder and the Kogge and Stone adder.

This adder is shown in figure 6.3. As Han and Carlson discuss, it is possible to

make adders with anywhere from linear to logarithmic time performance.

Becker and Kolla [79] suggested implementing the fco operation with mul

tiplexers. As we explained in an earlier in chapter 3, this is an equivalent fco

operation. Becker and Kolla also stated that they were seeking an adder which

had a higher base in the logarithm.

6.2 Folded fco Trees
- Conventional Adders

In this section we introduce a parallel prefix graph operation called folding.

Armed with this extra tool it becomes possible to write parallel prefix graphs

for all of the adders. We demonstrated the principle with carry skip. There

have been many hints that such a thing was possible. In their paper on carry

Figure 6.3: Han & Carlson Adder
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skip, Lehman and Burla refer to a carry lookahead adder as an extreme type

of carry skip adder. We showed in chapter 2 (Algorithms) that conditional

carries are the same as group propagate and transfer signals, hence collapsing

carry select and carry skip. It is also apparent from this thesis that the carry

path from the conditional sum adder is the same as the tree part of Brent and

Kung's parallel prefix adder. Lee and Oklobdzija even showed how carry skip

optimization could be applied to carry lookahead adders.

The ripple carry adder which forms the building blocks of other kinds of

adders has the simplest parallel prefix form as it is a just linear sequence of fco

operators.

A 16 bit carry skip adder is shown in figure 6.4. In this graph, the columns

represent time, and not layout. This carry skip adder with equal size blocks

requires only one more fco delay over Brent and Kung's adder; however, Brent

and Kung's adder has better load balancing.

The carry skip adder has the unusual property of using the block logic

twice. The diagonal string of fco operations going off the right side are not

actually implemented. Instead the diagonal strands shown on the left are reused

as shown in Figure 6.5. We call this reuse folding. The tree part and inverse

tree part of the prefix graph must be symmetric for folding to be possible.

Because the latter diagram loses the property of having the columns mark

the number of fco delays we will prefer the first diagram, with notes marking

when logic is reused.
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Neither of figures 6.4 and 6.5 corresponds to probable layout. This is

shown in Figure 6.6 where the cells have been packed to the left.

This example carry skip adder has equal block sizes. A faster adder can

be created by varying the block sizes. Figure 6.7 shows the time diagram view

of an optimum one level carry skip adder. There is one fewer fco delay in the

speed path here than in the worst case path through Brent and Kung's adder.

Note, we have simplified figure 6.7 by not darkening the circles where the fco

logic is. It is apparent from context which cells contain fco logic. The shared

logic chains are marked with identical letters (A,B,C, or D).

Many adders are made from a hybrid of different technologies. CMOS

Manchester carry chains are nonrestoring dynamic circuits which are combined

together with restoring inverter stages. Hence, it may be useful to generalize

the prefix graphs by placing time on the x axis and N (bits) on the y axis.

Figure 6.8 shows a square law based generalized prefix graph for the carry skip

adder.

For figure 6.8 we assumed that evaluation time of the Manchester carry

chain blocks is x2, while the skip time is 3x, where x is the "width" of the

MCC block. Thus, the skipped carry is seen traveling accross the adder in

linear time, while the carry generates are parabolic. For example, at time 6ns

we see that block a has just finished evaluating for the second time, block c is

evaluting on its first pass, and a worst case carry would be between the third

and fourth bits.
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Figure 6.8: Manchester Carry Skip Adder - Real Evaluation Time



Chapter 7

Optimization

7.1 Definition of the Carry Skip Optimization Problem

Given a net list generator which produces adders implementations from a

set of parameters:

A(N,P) (7.1)

where N is the length of the adder to be generated, and P is the list of param

eters which guide the generation of the net list. For example, pi P may give

the device size placed on the ith transistor. Another example of parameters is

the block lengths in a carry skip adder. In previous chapters we often made

the parameters implicit, hence we said K(N) instead of K(N, nO, n\, n, . . .).

Optimization is performed relative to ranges of values for some of the pa

rameters, while other parameters remain fixed or set by implicit rules. This

defines the domain, X, over which optimization is applied. Optimization prob

lems also require that some function is minimized or maximized. This function

is the cost function, C(X).

In this chapter the goal is to minimize the worst case sum time through

a carry skip adder by adjusting the block lengths. Hence, we will drive the

optimization from the point of view of block widths; it is implicit that the
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devices in the blocks will have optimum sizing for the choices made. Other

parameters will be set via fixed functions defined over the same domain as that

for the cost function. Now the optimization problem can be written as:

{ mm (d(A,{c0,a,b},s^test)),X,po(X),pi(X), . . .} (7.2)

where

X = {rc0,rci,n2,...} (7.3)

rii e [0, N] (7.4)

ni are the block lengths, and the pi functions are additional parameters.

Little d is a function which returns the actual time through the slowest

path. This differs from D we used in the previous chapters, since D measured

the distance through the circuit graph of the net list. More specifically, d

returns a value in seconds, and D returns a value in node count. The gate

delay model makes the supposition that

d = kD (7.5)

which often leads to interesting results. The useful property of this mapping

is that the longest path and slowest path are the same, so searches over the

circuit graph which discover the longest length path also provide the slowest

path.

Other models are more accurate. However, more accurate models in gen

eral do not guarantee that the longest path and the slowest path are the same.
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In the following sections we develop a method for carry skip optimization based

on d, not D, and we then show successful results from a partial implementation

of our method.

7.2 Weak Monotonicity in the Delay to Sum Function

Theorem 1 An optimum adder's delay function, d(A(N),{c0,a,b},sia^es^)} is

always weakly monotonic.

By substituting in the definition of weakly monotonic we obtain the equiv

alent statement:

Given two optimum adders, say Ai(ni) and A2(n2)^ where ni is the

width of adder Ai and n2 is the width of adder A2. If n2 > rai, then

the worst case sum time from operands or carry-in of A2 is not faster

than that for A\.

That is to say a wider optimum adder is never faster then a narrower

optimum adder.

The proof is based on showing that exceptions to the rule are absurd:

Suppose an adder AT2(ra2) was proposed to be both faster and wider then the

optimum adder Ki{ni). It would follow that Ki(ni) cannot be an optimal

adder, since a third faster adder can be created, K3(n\), where K3 is identical

to K2 except that the upper bits are ignored.
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7.3 Weak Reciprocal Relationship between Partitions

A carry skip adder can always be partitioned into two adders by drawing

the partition between two top level modules such that only the carry lines

cross it. The two adders on each side of such a partition have an interesting

reciprocal relationship with both size and timing. Given that the width of the

first partition is ra0 and the width of the second partition is rai :

N = n0 + n1 (7.6)

Also if the width of the first partition is increased, the speed of the first

partition either remains the same, or becomes slower (theorem 1). Because

of equation 7.6, the second partition becomes smaller, and therefore becomes

faster or remains the same speed.

7.4 Optimum Carry Skip Algorithm

We start by making the first partition the first module, and the second

partition the rest of the adder. Accordingly, the carry-out from the module

is the carry into the rest of the adder. We will call the part of the adder on

the left of the partition the prefix adder, and the adder on the right the suffix

adder.

The first module is set to be an optimal 1 bit adder, so its implementation

is known. The exact implementation of the suffix adder is not known, but

according to the design scheme under consideration, it's general form is known.

For example, for one level carry skip adders it is known the adder is made from
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a series of ripple carry adder modules.

Adder evaluation starts at time zero. Given the arrivl time for carry input,

and the operands, the carry-out of the first module will be found to occur at

some absolute time called d(ci).

The second step is to perturb the first module by expanding it to a total

length of two bits. In the case of optimizing a multilevel carry skip adder,

this step may cause recursion into the design of the optimum module. The

carry-out from the module now occurs at d(c2).

As a response to increasing the size of the prefix adder, that adder may

have become slower. Also, the suffix adder receives its carry input at d(c2),

instead of at time d(ci), but the remaining adder is one bit smaller. According

to theorem 1, d(c2) is greater than or equal to d(ci). Hence, the size decrease

and the belated carry are complementary effects.

These effects of increasing the module size can be quantified. If the prefix

adder containing the module does not grow to contain the critical speed path,

and the time increase caused by the belated carry into the suffix adder does

not outweigh the time decrease due to having a smaller suffix adder; then the

module can safely be made larger.

These effects can be partially quantified without knowledge of the im

plementation of the modules. The first partial finite difference in function /

relative to the variable x is defined as:

A(l,f,x) = f(x + l)-f(x) (7.7)
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Suppose that the partition is located just after bit p, and just before bit

p + 1. Then the module growth perturbation on the suffix adder is:

A(!. ^latest. ^.OIp-^^.O),!)!, (7-8)

The left hand term is the difference between producing Ci and Ci+i eval

uated at the partition. The right side is the difference in time from carry-in

to the latest sum, also evaluated at the partition point. The right hand side

lumps together the carry and size effects into one relation on the time the latest

sum arrives. When this quantity is less than zero, growth in the module is a

good thing.

Because of the weak monotonicity guaranteed by theorem 1
,
we can build

a finite difference descent program (i.e. finite difference version of gradient

descent) which is always directed by the rule: make the blocks bigger until

equation 7.8 becomes negative. We have written the finite difference descent

program based on various circuit models, which we have used to generate values

for the examples in this paper. Such programs have an advantage over solving

the equations when working with contemporary CMOS models since the device

equations cannot be solved directly.

Such a program, based on growing modules and reducing a global sum

time, and subject to the constraints discussed in the next two sections, is

available at http://devil.ece.utexas.edu/lynch. This program uses the following

algorithm:

1. grow the module just to the left of the partition as much as possible
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without violating a simplified form of equation 7.8, and without violating

the global sum time, S.

2. move the partition over to the next 1 bit module.

3. repeat the previous two steps until all N bits are used up.

7.5 Module Parameters

The current optimization program uses module parameters to characterize

the timing of left side of the partition modules. In retrospect, this approach

should have been used only in the internal implementation of the module carry

time calculation. Only three functions need to be defined in order to build an

optimum carry skip adder.

generate(n, e)

skip(n, c, e)

sum(n, c, e)

These are independent of how the modules are implemented. Ripple carry

sections are traditional for carry skip adders. Carry lookahead modules can be

used, as in [71]. Or, for a multilevel structure, the modules may also be made

from carry skip adders.

generate(n, e) is the worst case time required for the module to produce

an independent carry, ra is the width of the module in bits, e is an environment

function which for simple models is not needed, but more sophisticated modules

need to know about output loads. We did not extend our program to adders
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where drivers would iteratively be resized, so e was not needed. The result

of this function is considered to be an absolute time, so if the generate path

starts at a time other than zero, that information also needs to be passed to

the function.

skip(n, c,e) is the worst case time for a skipped carry to appear from the

module, c is the carry input arrival time. The value of the function is again an

absolute time. The skip logic is considered to be part of the module.

sum(n, c, e) is the worst case time for the generation of the sum given the

module width and the carry arrival time.

As an example, consider the functions implemented for optimizing the gate

based carry skip adder from chapter 4, the generate time is:

generate(n) = 1 + (ra
-

1)2 + 1 (7.9)

The first 1 is for the AND gate which produces the bit generate in the

least significant bit, then generate is propagated through (ra 1) fco delays,

and ORed into the skip logic.

The skip delay for the chapter 4 gate model is:

skip(n, c) = max(n, c) + 2 (7-10)

Here the maximum is taken between the group propagate signal arriving

at the skip logic (1 delay per bit according to this implementation), or the carry

arriving. Since times are absolute, this may be a race for the least significant

blocks.
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The sum bit comes from either the propagate/generate logic, or from the

carry:

sum(n, c) = max(6, generate(n) + c + 3) (7-H)

In our C++ program, models for modules must be inherited from the

following:

class adder;

class model-[

public:

model ( ) {levels=l ; } ;

int levels;

model *skipl_model;

virtual double propagate (int i, int n, adder *a)

virtual double set_skip(int i, int n, adder *a)

virtual double generate(int i, int n, adder *a)

virtual double skip(int i, int n, double c_i, adder *a) ;

virtual double sum(int i, int n, double c_i, adder *a) ;

virtual void info();

virtual double initial_guess(int i, int n, adder *a) ;

virtual double resolutionO ;

protected:

};

Set skip is the constant restoring stage delay; it is added into the skip of a

multilevel carry skip adder. For one level adders it can be built into the other

functions. info() prints a message out about the model. sum() is the time

to produce a sum. Typically this the is maximum of the path coming from
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the operands and that path coming from the carry input. initial_guess() and

resolution() are used to control setting of the global sum constraint, S.

Modules are classified as either:

carry dominated

sum dominated

end dominated

depending on the test that failed to allow further block growth. The

module is carry dominated if it was the carry test given in equation 7.8. The

module is sum dominated if it was the global sum time constraint that would

be violated. And, the module is end dominated if the width constraint, N,

would be violated.

7.6 Optimization Program Assumptions

Although the optimization method we have presented is completely gen

eral, the program we have developed is uses some simplifying assumptions.

Even with these assumptions, the program is capable of producing multilevel

carry skip adders which take into account real number gate delay times, metal

loading, fan-out, and fan-in etc. It is only a question of implementing the

correct module parameter functions. The results from this program are sat

isfactory, and show a proof of principle. However, there is a lot of room for

improvement should we take up development of a second version.

The carry-out time from a module is calculated by the optimizing program

to be the maximum of the skipped carry time and the generated carry time.
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The program assumes that carry skip per bit is faster than carry ripple per

bit. This assumption is fundamental to carry skip addition. Roughly, if this

were not true, then skip adders would be slower than ripple adders. However,

it may be that skipping is slower in special cases. In versions of our program

skipping one bit blocks is not allowed so as to avoid the extra overhead logic

needed to change a ripple carry block into a skip block. In another case, running

a skip line a long distances without buffering may slow it past the point that

it is faster than rippling.

Based on certain assumption, the skip optimization program can, without

further knowledge of the remaining part adder's behavior, make a block larger

if the carry is delayed by skipping and not by generating. Hence the program

increases the size of the module until the generate path and the skip path

produce a carry-out at the same time. If the block was made larger, then the

carry would be delayed by one ripple delay. This would effect all the skip blocks

'upstream', and though the remaining adder is one bit smaller, only one of the

modules in the remaining adder will benefit and actually be one bit smaller.

As a consequence of the late carry, the other modules will probably produce a

later sum. Hence, under our assumptions, it can not be beneficial to increase

the block size beyond this point.

The equations presented by Majerski [30] can be derived by solving for

equal path lengths between generate and carry skip, without violating a global

sum time.
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7.7 Optimization Program Examples

The following shows the transcript from running the optimizing program

with no arguments. Doing this just invokes the usage message:

bash$ skip

usage: skip <width> <levels> <adder> [-cin <time>]

or: skip <width> <levels> table <directory> [-cin <time>]

cin.time defaults to 0

adder is one of: fundamental -

thesis, chapter three skip adder

Majerski_Sl
- SI adder from Majerski's paper

Chan_Schlag_3
- section 3 adder example from Chan and Schlag

The program is called skip. The first parameter is the width of the desired

adder, the second parameter is the number of levels, and the third parameter is

the adder type. The adder type is either specified as one built into the program,

or it is supplied in the form of an ASCII table of parameters. The tables must

be placed in a directory, and that directory name is specified after the key word

table. Optionally a carry input time may be given. The verbose option gives

more information about the adder.

This produces a 256 bit 1 level carry skip adder based on the chapter 4

model, K:

bash$ skip 256 1 fundamental

width:256 cin: 0.000e+00 sum: 6.400e+01 cout: 6.300e+01

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1)

This optimization program has been used to reproduce the results from

Majerski[30] and Chan and Schlag [80].
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Majerski's adders can be produced by a simple command:

bash$ skip_test 41 1 Majerski_Sl

width:41 cin: 0.000e+00 sum: 1.200e+01 cout: 1.100e+01

(1234566543 2)

Which is identical to the entry in Majerski's figure 3. Multilevel optimization

can also be done by specifying more than one level on the command line.

Chan and Schlag suggested using the equations:

R(x) = x2 (7.12)

S(x) = 3a: + 2 (7.13)

S = 1 (7.14)

where R(x) + 6 is the generate delay, S(x) + 1 is the skip delay, and R(x) is

equal to the delay from carry-in to the carry used to make the most latest sum

bit - which we will go ahead and assume is the most significant sum bit in the

module. Hence the delay through an M group adder is:

M-l

(R(no) + 1) + E (Sfa) + !) + R(um) (7.15)
i=l

According to their model, there is no carry input, and skipping up to 3

bits is slower than rippling. This breaks two of the assumptions. However, we

can force our program to follow this model by setting our carry-in to -4. This

forces the output of the first module to appear when it should, had the first

module been a ripple carry adder instead of a carry skip adder. Also, since

only the first module is in danger of breaking the skip assumption this problem
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is also avoided. Hence, we duplicate the result in their example 1, and show a

24 bit adder with delay of 81:

bash$ skip.test 24 1 Chan_Schlag_3 -cin -4

width: 24 cin: -4.000e+00 sum: 8.100e+01 cout: 8.600e+01

(246642)

Chan and Schag's example 2 shows a 64 bit adder with a maximum delay of

216, (2,4,5,7,8,10,8,7,6,4,2). Our optimizer, using the same model and counting

delay the same way, did a little better and found a 64 bit adder with delay of

215:

bash$ skip.test 64 1 Chan_Schlag_3 -cin -4

width: 64 cin: -4.000e+00 sum: 2.150e+02 cout: 2.180e+02

(2 4 6 8 10 10 9 7 5 3)

Also, our optimizer appears to be faster, it calculated the previous result

in about 60 milliseconds while using 24% of the cpu on a 486 lap top.

bash$ time skip.test 64 1 Chan_Schlag_3 -cin -4

width: 64 cin: -4.000e+00 sum: 2.150e+02 cout: 2.180e+02

(2 4 6 8 10 10 9 7 5 3)

0.03user 0.03system 0:00.25elapsed 24'/,CPU



Chapter 8

Alternative Carries

8.1 Relationship between Carry, Propagate, and Gen

erate

Most adders can be drawn as a sequence of constrained bit modules. Such

modules can always be placed such that the operands come from the left, and

the sums leave at the right, as in figure 8.1. Also, the modules may talk to

one another, hence there may be inputs other than just the operands bits.

We will call these gamma signals.1 When the adder is drawn as in figure 8.1,

these gamma signals will always cross the horizontal line that separates the bit

modules.

Because the carry input to the lsb of a module is exclusive-or -ed with

propagate to make the sum, the value of the carry is always significant, there are

no don't care states. The carry-in/propagate partitioning of the sum function

is interesting in that propagate is a function only of the input operands to the

bit cell, while the carry-in is not a function of these bits. It is only a function

of the lower significance bits. It follows that carry-in must be derivable from

the gamma signals described above.

In the case shown in figure 8.1 the input signals crossing the partition line

xit is possible for a lower significance operand bit to be passed as a gamma signal

108
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Figure 8.1: Carry Lookahead with Partition
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are, gi,go,co,pi,p0. The carry-in is c2 and this can be expressed as:

C2 = g\ V g0pi V copipo (8.1)

The following is a list of relationships between propagate, generate, and

transfer will be useful in the ensuing discussion.

where,

Pi9i
= 0 (8.2)

ci+1Ti = 0 (8.3)

9i
= Ci+ipl (8.4)

9i
= tiPl (8.5)

9i
= 9iU (8.6)

ki = U (8.7)

ki = 9lPl (8.8)

Pi
= giki (8.9)

(8.10)

(8.11)

(8.12)

(8.13)

ki is carry kill. Carries do not propagate past a bit with a carry kill. All of

these identities fall out of Boolean algebra manipulations on the operand bits.

ti z= ai V bi

Pi
= aibi

gi
= CLibi

rCi = Oibi
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Based on these identities there are several variations on the conventional

carry propagate formula:

ci+1
= giM pic{ (8.14)

Ci+i
= giVt&i (8.15)

Ci+i
= ti(giVa) (8.16)

ci+i
= giciV Uci (8-17)

Ci+i
= giVpiCi (8.18)

Each of the carry equations 8.14 - 8.14 is maximally local in that all

information needed on the previous bits is coalesced into the carry signal, and

all information from the current bit is encapsulated in either < pi,gi > or

< Ui9% >

The completion of the carry can also be procrastinated; so that partial

information, as in the case of the carry lookahead adder, can be propagated

between bits (i.e. the locality can be reduced further). This leads to a class of

adders which includes the conventional carry lookahead adder, and both Ling's

and Majerski's variations which are discussed below.

Equation 8.14 is the standard propagate generate equation. In Manchester

carry chains, carries are prevented frommoving backwards down the carry chain

by the exclusive nature of pi and gi.

Equation 8.14 is a variation which allows the case of generated carries

to overlap with the case of transfered carries. This is also the carry select

adder form since generate is equivalent to the zero conditioned carry c and the

transfer is equivalent to the conditional one conditioned carry c\ . As explained
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in chapter 3, a logically equivalent way of writing equation 8.14 is equation

8.14, since U = zero implies that gi is zero. In general then:

9i
= ci (8.19)

U = c\ (8.20)

Pi
= c\&{ (8.21)

Equation 8.14 allows the AND and OR functions to be reversed. Since

9%U = gi-> multiplying through by U changes the equation 8.14 to that of 8.14.

Equation 8.14 is the half adder equation. Obaidat and Irshid [81] used a

half adder tree to build a interesting, but expensive, ripple carry adder which

has one two input gate delay per bit. The use of exclusive-or in this equation

is logically the same as using or, because the two sum terms can never both be

true.

In place of propagating a carry signal, one can propagate not carry:

QTT = TiNglci (8.22)

c^T = ki\l~gi~c~i (8.23)

c^j~f = ki V pi~c~i (8.24)

The third equation is derived from the second, based on the fact that gi

includes the case of carry kill, which is redundant. Hence, by identity 8.2 gj

can be replaced with pi .
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An adder circuit can take advantage of any of the above properties, and

others, to gain maximum advantage in the technology of implementation. As

described in chapters 6 and 7, these carry combining equations can be used to

produce adders of many different configurations ranging from ripple carry to

variable block sized carry lookahead trees.

8.2 Majerski's nor Gate Ripple Carry Adder

Majerski [77] showed how procrastinating the or-ing together of the piCi

with gi, and using equation 8.22 can be used to create a single nor gate per

stage ripple carry adder. This is advantageous in technologies where wired

or is an essentially free function.

This is true in CMOS where parallel N-channel pull downs are faster than

pulling through a series of transistors; however, to make a sequence of nor gates

probably requires that alternating stages use a series of transistors in the pull

down path.

1. procrastinate combining p^i and gi

2. use c and c in alternating stages

Instead of propagating c,-, Majerski's adder propagates either

<<fc,7+i> (8-25)

or,

<9i,lli> (8-26)
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where

7+i =

PiCi (8.27)

ll+i =

PiCi (8.28)

The carry can be recovered by:

C-+1
=

gi V 7?+1 (8.29)

c^T = k V 7^ (8.30)

Equation 8.27 and 8.27 can be turned into a recursive formula by substi

tuting equations 8.29 and 8.29 for ct and cj respectively:

7?+i =

Pii equation 8.27

7+1 = Piiki-x V7/) substitute 8.29

7t+i
= PiV h-i V 7/ DeMorgan's Theorem

(8.31)

7*+1 =

p^i equation 8.27

Ji+i
= Pi(gi-iVli) substitute 8.29 (8.32)

7/+1
~

Pi^ 9i-i v 7? DeMorgan's Theorem

These manipulations are shown graphically in figure 8.2.

These manipulations reduce the carry path to one three input nor gate per

stage, as shown in equations 8.31 and 8.32. Majerski's paper [77] shows that at

the expense of one more input, the device count for the bit propagate can be

reduced; it also employs a clever scheme for deriving the sum from the carries

with few devices. Also the fan-in can be reduced to two inputs by combining

the bit local terms separate from the carry.
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Figure 8.2: Transforming Standard Ripple to Majerski Style Ripple
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Although it is possible to apply Majerski's recursion in a tree because it

is associative (see chapters 7 and 8) a complication is that the group p,k, and

g signals are still required. The adder can be simplified by using t in place of p

in the carry path, then k is no longer needed as it is just t, but the requirement

for group g remains.

8.3 Ling's Adder

Ling suggested using the fco variant given in equation 8.14, and then pro

crastinating the final and. In Ling's paper the subscripts go in the opposite

direction, and do not follow the same initial value for carry. In the form con

sistent with the rest of the thesis we find:

Hi+i = (giVa) (8.33)

and then the pieces to make the carry must be propagated between bits:

<ti,Hi+i > (8.34)

The carry can be recovered by assembling the pieces:

Ci+i
= UHi+i (8.35)

8.4 Other Adders

Reed, et al. [82] presented an adder nearly identical to Majerski's, where

the gamma signals were inverted to produce a circuit based on nand instead

of nor.
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Vassiliadis [83, 84, 85] also explored Ling's adder and some variations.

One can imagine procrastinating any one or more of the final operations

in the carry operation from any of the carry equation variations, and then

propagating the partial information in a multitude of signals. When one step

is procrastinated in such a way that only signals in bits i and i + 1 are needed,

the signals display distance one locality. Doran [86] reported on a study of all

possible ways to send pieces of partial carry information while using two signals

and distance one locality.

As a point of reference it is important to note that the conventional prop

agate generate approach can be used to obtain ripple carry adders of all nor, all

nand, or carry lookahead adders with reduced fan-in. Figure 8.3 shows how the

fco operation can be used to create a ripple carry adder which has one nand gate

delay per bit in the carry path. Accordingly, the group propagate and generate

signals are created for adjacent 2 bit blocks, then the carry is propagated across

the blocks. Since each fco operation requires an and/or function, and there is

one fco operation per 2 bit group, there is a net of one nand gate delay per

bit. This approach is equivalent to building a carry skip adder which has 2

bit groups. A carry skip adder with optimum block sizes would be a further

improvement.
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Figure 8.3: nand per Stage Ripple Carry Adder



Chapter 9

Performance

This chapter gives worst case path lengths for various adders as a method

for gauging relative performance. This summarizes the path length discussion

which was started in chapter 4, continued in chapter 6 where hierarchical struc

tures were added, and finalized in chapter 7 where the necessary work on carry

skip optimization was done. Although path length measures give a first order

approximation to speed, finding actual evaluation times requires sample layout

and spice simulations.

9.1 Worst Case Path Lengths

The following equations summarize the path length information for various

adders discussed in this thesis. The B&K, K&S, and L&S adders are those of

Brent and Kung, Kogge and Stone, and Lynch and Swartzlander, respectively.

D(ripple(AO,a0,slast) = N + 2 (9.1)

D(CLA(N),a0,slast) = 4 riog4 TV] + 2 (9.2)

JD(ConditionalSum(A'), a0, 5jas^) = riog2 N] + 2 (9.3)

D(BkK(N),a0,slast) = 2riog2iVl+3 (9.4)

D(KkS(N),a0,slast) = [log2l + 4 (9.5)

119
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D(LkS(N),a0,slast) = 2riog4Ar]+2 (9.6)

The ripple carry path length equation was given earlier. The delay through

the CLA is derived in [39], and is also apparent from material in chapter 6:

D(CLA(N),pg0,slhst) = 2rioggs N]
-

l)>(Module(gs)) + D{(XOR)) (9.7)

If we allow a fan-in of six gates, two gate delays are required for a signal

to pass through the 4 bit module, one more gate delay to make the bitwise

propagate and generate, and 3 gate delays to make the sum from carry-out.

An optimized circuit may be able to hide the large fan-in.

The conditional sum adder algorithm was described in detail in the chap

ters 3, and was revisited in chapter 5. It became apparent in chapter 6 that

the carry delay through the adder is the same as for a binary prefix tree. The

sum delay is just one later, provided that a very large multiplexor select is one

delay.

For comparison we chose to show one and four level carry skip adders. The

carry skip times come from our optimization program using a variation on the

K(N) model, i.e., short ripple carry blocks are sometimes faster than a carry

skip module, so we allowed for ripple carry blocks. These are signified in the

output as a series of width one blocks.

The results for the one level carry skip adder given in Table 9.1 were

generated by looping on the following command, where $w is replaced with the

width of the adder:
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Table 9.1: Evaluation Time for One Level Skip Adders

width time to sum distribution

3 6 (111)
5 7 (112 1)
7 8 (1122 1)
10 9 (1123 2 1)
13 10 (112 332 1)
17 11 (112 343 2 1)
21 12 (112 3443 2 1)
26 13 (112345432 1)
31 14 (1123455432 1)
37 15 (11234565432 1)
43 16 (112345665432 1)
50 17 (1123456765432 1)
57 18 (11234567765432 1)
65 19 (112345678765432 1)

skip $w 1 fundamental

The results for a 4 level carry skip adder optimization (given in Table 9.2)

were generated by looping on the following command, where $w is replaced

with the width of the adder:

skip $w 4 fundamental

The delays through the Kogge & Stone adder, and the Brent &, Kung

adder were given in chapter 6. Here we have added an appropriate number

of gate delays for propagate generate formation and for sum formation. The

Lynch and Swartzlander adder is based on dynamic Manchester carry chains

which have large fan-in. Since these chains have the same functionality as the

CLA block, we assigned them two gate delays.
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Table 9.2: Evaluation Time for Four Level Skip Adders

width time to sum

3 6

6 7

10 8

15 9

22 10

32 11

distribution

((i)(i i))

((ixi ix(i i)(i)))

((1)((1)(1))(1 2 1)(2 1))

((1)((1)(1 1))(1 1 2)((1 2 1)(2 1)))

((1)((1)(11))((11)(111))(112 1)(3 2)(2 1))

((1)((1)((1)(1 1)))((1)(1 1)(1 1 1))(1 2 3 2)(2 3 2)(3 2 1))

The worst case path lengths are compared in Table 9.3.

Experience has shown that the devices in any of the log time adders can

be sized to evaluate quickly. Although in the limit, one of the adders will have

superior performance, the question really is which adder is the smallest while

still evaluating fast enough. Here, the carry skip adder has an advantage.

This is not surprising since the number of levels, group size, and driver size

parameters can be set to imitate any of the folded adders.

Table 9.3: Worst Case Path Lengths Through Various Adders

Bits Cond L&S KfeS skip-4 CLA B&K skip-1

4 4 4 6 7 6 7 7

8 5 7 8 9 9

16 6 6 8 10 10 11 11

32 7 9 11 13 15

64 8 8 10 13 14 15 19



Chapter 10

Conclusion

This thesis has delt with fundamental concepts of addition and optimiza

tion.

We presented a number of interesting results. In chapter 2 we showed

how mechanical addition follows from the rules for manipulating cardinal num

bers. In this chapter we also gave a foundation for studying the fundamental

physics of addition by showing the connection between addition and a quantum

'particle in a box' problem.

In chapter 3 we gave maximually parallel algorithms for conventional adder

designs. In chapter 4 we formalized the idea of counting gate delays by intro

ducing operators on a net lists. In chapter 9 we used this information for a

first order approximation of relative performance of the adders.

In chapters 5 and 6 we unified the conventional adder designs by identifying

an associative adder partitioning operator, and an associative carry operator.

The carry operator was the part of the adder partitioning that handled the

carry signals. In chapter 6 we demonstrated how all the propagate generate

adder designs can be built by varing the associativity of the carry operator.

This chapter finalized the argument that adder designs can be reduced to a

generalized structure and a set of optimization parameters which determine

the specific structure.
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In chapter 7 we showed a solution to the optimization problem. The code

for the carry skip optimization algorithm we developed is freely available on

the world wide web (http://devil.ece.utexas.edu/ lynch).

In chapter 8 we discussed variations of the carry operator used in chapter

7. We discovered that the conventional carry can always be recovered from

signals which cross a partition line which divides an adder into two parts.

Since the equation for this carry can always be written in the recognized form

as a function of the local bit propagate and generate and the global previous

carry, there is fundamentally one carry operator. This operator can work with

information in redundant form, or the logic for it can be partioned in different

ways, resulting in variations such as those of Ling and Majerski.

An area of further work is expanding the optimization program to net

works which are not folded (folding is described in chapter 6). The simplifying

assumptions should also be removed. Finally, more work needs to be done with

actual technology data; although the program supports technology tables, the

potential here was not been fully explored. Such an improved program could

be the basis of a useful optimum adder generator.
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