

Copyright

by

Ju Long

2004

The Dissertation Committee for Ju Long Certifies that this is the approved version

of the following dissertation:

Understanding the Creation and Adoption of Information Technology
Innovations: the Case of Open Source Software Development and the

Diffusion of Mobile Commerce

Committee:

Andrew B. Whinston, Supervisor

Kerem Tomak, Co-Supervisor

John Mote

Rajagopal Raghunathan

Gautam Ray

Understanding the Creation and Adoption of Information Technology
Innovations: the Case of Open Source Software Development and the

Diffusion of Mobile Commerce

by

Ju Long, MSW, MBA, BA

Dissertation
Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
December, 2004

 iv

Acknowledgements

I wish to thank a number of people for giving me invaluable advice and help in

the years to complete the Ph.D. program and write the dissertation. First and foremost, I

am sincerely grateful for my advisors Andrew B. Whinston and Kerem Tomak. Their

insights and support in all these years play a critical role in my intellectual development.

Dr. Whinston not only introduced me to so many wonderful research topics. He also

patiently guided me through these topics and make sure I am on the right track. Without

Dr. Whinston, this dissertation would be a much lesser work. Dr. Tomak has given me

many insights, oftentimes from his own experiences, that help me to survive the difficult

times of the Ph.D. study. His trust and support have kept me motivated. I am also grateful

for the other members of my dissertation committee: Dr. John Mote, Dr. Rajagopal

Raguhunathan and Dr. Gautam Ray. Their constant support and encouragement have

been very important in the dissertation writing process.

I also want to thank other faculty members from the MSIS department. During

these years, Dr. Prabhudev Konana, Dr. Huseyin Tanriverdi, Dr. Reuben McDaniel, Dr.

Tom Shively, Dr. Eleanor Jordan, Professor Linda Bailey, Professor Elota Patton and Dr.

Sharon Dunn all have generously provided their help and encouragement to me. I also

benefited a lot from the interactions with my fellow students from the CREC center.

I thank my family for always being there for me. I am grateful for Juntao’s love

and support in all these years, which makes all these efforts worthwhile. I also thank my

parents and brother for their love through good and bad times.

 v

Understanding the Creation and Adoption of Information Technology
Innovations: the Case of Open Source Software Development and the

Diffusion of Mobile Commerce

Publication No._____________

Ju Long, Ph.D.

The University of Texas at Austin, 2004

Supervisors: Andrew B. Whinston, Kerem Tomak

This dissertation studies several aspects of creation and adoption of information

technology (IT) innovation. In particular, my research focuses on two brand-new

phenomena in IT innovation: Open Source software development model and mobile

commerce. Open source is a radically new model to develop software. My dissertation

explores the sustainability of open source software development model. In my research, I

collect detailed empirical data of successful and less successful open source projects. I

identify several important factors that may determine the success or failure of an open

source project. These factors include the vital roles of core developers and the importance

of publicizing a project, which have not been given adequate attention in existing

literature. My work could provide a better understanding of the survival and viability of

open source software development model. I also explore a more and more important

business model in open source software development: enterprise open source. Unlike

conventional open source development model, which depends on voluntary contributions

 vi

from the developers in the community, enterprise open source is invested, developed and

managed by for-profit firms. I use mathematical modeling combined with empirical case

studies as the research method to study various profit models of enterprise open source.

The conclusions I get are supported by the empirical data. One main implication of the

research is: enterprise open source will become the main propelling force in developing

open source software. It can also pose serious challenges to proprietary software

development model. Having studied open source as a new way to generate IT innovation,

I study how these innovations could be applied in various industries. I focus on how

innovations in wireless technology can be applied in healthcare, marketing and financial

services industries. I discussed in detail the available technologies and how these

technologies can revolutionize the practices in the above industries. My work could be of

particularly great value to business practitioners in the mobile commerce field.

 vii

Table of Contents

List of Tables ..xi

List of Figures... xii

Introduction ...1

Chapter 1 Are all open source projects created equal? Understanding the
sustainability of open source software development model4

1. Introduction...4

1.1. Open Source: A Disruptive Paradigm...4

1.1.1. Concept of Open Source Software4
1.1.2. Adoption of the OSS Paradigm...5

1.2. Romanticized picture of Open Source software development6

1.2.1. The Glamorous Few ...6
1.2.2. The Lackluster Majority ...6

1.3. Research motivation...7

2. Related theories ...8

2.1. Developers from the community ..8
2.2. Core developers ...10

3. Data Collection, Model Building and Empirical Analysis11

3.1. Data Collection Process ...11

3.1.1. SourceForge.Net as the data collection site11
3.1.2. Sampling Procedure..12

3.2. Description of Variables...12

3.2.1. Characteristics of the projects: ..12

3.2.2. Characteristics of the program development activities: ...13
3.3. Empirical Analysis...15

3.3.1. Data Transformation...15

3.3.2. Data reduction – factor analysis......................................16

3.3.3. Regression analysis ..19

 viii

4. Discussion of the Results and Conclusion..20

4.1. Importance of the developers’ contribution from the community20
4.2. Importance of the core developers..20

4.3. Crucial role of promoting the projects ..21

4.4. Contributions of this research...21

4.5. Future research directions ..22

Chapter 2 Enterprise Open Source..23

1. Introduction...23

2. The enterprise open source ..25

2.1. Starting new projects..26
2.2. Sponsoring existing projects...27

2.3. Providing services and support...28

3. Enterprise OSS vendors...29

3.1. Open Source externality ...29
3.2. The free rider problem..31

3.3. Model construction ..32

3.4. Discussion..34

4. Enterprise Open Source software users ..34
4.1. Reduce the risk...35

4.2. Model Construction..36

4.3. Discussion..38

5. Conclusions...39

Chapter 3 Exploring new innovations in mobile computing: applications of wireless
technology in financial services, health case and marketing industry41

1. Secure Financial Services: Challenges and Solutions in the New Information
Age...41

1.1.Introduction ..41

1.2. New Information Technologies for Future Financial Services42
1.2.1. Wireless Information Technology...................................43

1.2.2. Web Services..43

 ix

1.3. Security Challenges..44

1.3.1. General Security Requirements.......................................44
1.3.2. Special Security Issues for Wireless Financial Market46

1.3.3. Special Security Issues for Integrated Financial Markets.47

1.4. Security Protocols ..48

1.4.1. Secure Communication...48
1.4.2. Authentication and Authorization49

1.4.3. Wireless Security..50

1.5. Conclusion...53

2. Use Wireless Web Services to Improve Patient Compliance in Clinical Drug
Trials ..53

2.1. Patient Compliance and Monitoring in Clinical Drug Trials53

2.1.1. Compliance to Dosing Instructions55

2.1.2. Compliance to symptom report diaries and surveys57
2.2. Boost Compliance with Wireless Technologies58

2.2.1. Wireless devices as a proactive monitoring tool..............58

2.2.2. Wireless devices as a subjective data collecting tool59

2.2.3. Pervasive user interfaces...60
2.3. Back end Services and Infrastructure..62

2.3.1. Smart back end services..62

2.3.2. Interoperable web services..63

2.3.3. Web Services Networks..64
2.4. Security..64

2.4.1. Authentication and Authorization65

2.4.2. End-to-End security through secure XML.......................66
2.4.3. Wireless security ..67

2.5. Conclusions ...68

3. Calling All Customers ...69

3.1. Innovative Data Collection...70
3.2. Potential Applications ..72

 x

3.3. Implementation Procedure..76

3.4. Challenges. ..77
3.5. Endless Opportunities ..77

Appendix for Chapter 1..78

Appendix for Chapter 3..85

References ...89

Vita ..93

 xi

List of Tables

Table 1.1: Frequency table before data transformation....................................78

Table 1.2: Frequency table after data transformation.......................................79

Table 1.3: Extraction communalities table ..80

Table 1.4: ANOVA ..82

Table 1.5: ANOVA 2 ...82

Table 1.6: Coefficient of ANOVA..83

Table 1.7: Collinearity test..84

Table 3.1: Comparison between Smart Client and WAP Client.......................86

 xii

 List of Figures

Figure 1.1: Histogram of number of download before log-transformation78

Figure 1.2: Histogram of number of download after log-transformation79

Figure 1.3: Scree plot...81

Figure 1.4: Latent variables and manifest variables ..82

Figure 1.5: Scatter plot matrix of the component scores82

Figure 3.1. Kerberos based financial services market. Financial services are divided

into security realms..85

Figure 3.2: Proxy servers make the WAP based wireless network and XML based

web services network transparent to each other.85

Figure 3.3: The wireless front end. Components in the dashed line box can be

separate devices or combined into one single hub device................87

Figure 3.4: Mix voice and graphics user interfaces in the same multimodal wireless

application. ..88

Figure 3.5: The complex web services architecture at the back end.88

 1

Introduction

In my dissertation, I focus on several aspects of creation and adoption of

information technology innovations. There have been quite a few literature in this field.

However, my research focus on two brand-new phenomenon: Open Source software

development model and mobile commerce.

Open source model as a radically new software development model has begun in

the middle 1990. In just less than 10 years, this new model to create software has been

acknowledged as one of the most influential innovation in the IT industry. Many software

created by open source model have been widely adopted and used in mission critical

tasks in many industries. These software are reliable, customizable, sophisticated and

above all, very cost-efficient. Many industry leaders are investing a large amount of

money to adopt this new model.

However, since open source phenomenon is very new, a lot of questions are not

very clear to researchers. A most puzzling question is: why there are only a few open

source projects succeed, while the majority of projects never do. In the first chapter of my

dissertation, I examine the factors that may influence the performance of the open source

projects. I collect data from 300 open source projects and identify several major factors

that decide the open source project’s fate. Among them, two factors are often ignored by

the open source development community as well as the researchers, including the role of

core developers and the importance of advocating and promoting the projects. I focus on

these factors. The research could be of value to the theoretical research on open source

sustainability. It could also provide useful suggestions to open source project community

on how to make the project successful. Finally, to the industry investors, the factors we

 2

identified in the researchers could be used in predicting which projects are more likely to

succeed and plan the investment accordingly.

This leads to our next chapter in the dissertation. Industry investors and

commercial firms are another important player in the open source model. Commercial

firms (enterprises) have contributed significantly to major open source software (OSS)

projects through hiring OSS developers and contributing to the marketing and support

efforts. However, it is still poorly understood why a for-profit firm would invest in the

common good and how it avoids the free rider problem in OSS. In this paper, we explore

the economic incentives and strategies for firms to invest in OSS. To our knowledge, this

research is the first one to examine in detail the motivations and consequences of the

enterprise open source players. We first use some of the most influential OSS projects as

cases to illustrate the roles firms can play in OSS.

We then divide enterprise OSS contributors into two categories: software vendors

and users. We identify that network externality and reduced future integration cost are the

incentives for software vendors and users to invest in OSS respectively. Using simple

economic models, we conclude that the vendors with larger market shares have more

incentives to invest in the OSS. For enterprise OSS users, the decision to feedback to the

community is easier reached for commodity software and fast growing experimental

projects.

In the third Chapter, I focus on another new information technology innovation:

mobile computing and its diffusion in various industries. This chapter is divided to three

stand-alone but also interconnected parts. In part 1, I examined how wireless technology

application can be applied in the financial services area and revolutionize the industry. In

part 2, I studies how wireless technology can be used in health care industry and

drastically improve patient compliance rate. In part 2, I propose using wireless

 3

technology in marketing research and improve the data’s validity and accuracy. These

research will be of value to practitioners in multiple industry sectors. It could also

contribute to the academic research in mobile commerce.

 4

Chapter 1 Are all open source projects created equal? Understanding
the sustainability of open source software development model

“It is a weirdo competitor. There is no company behind it. You don’t know
exactly who build it. It is free. I prefer to say: ‘Look, what we have here is a small
price disadvantage.’ It’s the first time we’ve had a price disadvantage.” -Steve
Ballmer, CEO, Microsoft, On the threat to Microsoft from Linux

1. INTRODUCTION

1.1. Open Source: A Disruptive Paradigm

1.1.1. Concept of Open Source Software

Compared with traditional proprietary software development model, the open

source software (OSS) model is a radically new paradigm to develop software (Raymond,

1997; Moody, 2001; Sharma, et al. 2002). In the OSS development process, software

source code is freely available for anyone to view, download, modify and re-distribute as

long as it is under the same open source license (http://www.opensource.org).

Most open-source software projects rely entirely on the voluntary efforts of a

community of developers to develop and the bug reports and patch reports from the end

users to improve, although some projects are coordinated and led by commercial entities

(Please refer to Chapter 2 in my dissertation for detailed discussion). Such a voluntary

community process keeps the cost of development and testing low. The nearly zero total

cost of ownership gives open source software a strong edge in the competition in the

software industry. Furthermore, the concept of open source promotes the benefits of

collaborative development process by ensuring that developers are able to obtain and

improve the software source code, and that the software can be freely modified and

expanded to meet the needs of its end users. Because of such extensive collaborations

 5

within a large scale community (including thousands of developers and end-users), open

source software could achieve a higher standard of quality, compared to closed source

proprietary software, and helps to ensure the long-term viability of both data and

applications. In effect, in a recent study that compared the quality of the closed source

software and open source software, after examining more than 6 million lines of code and

tracking several programs over time, researchers find that the quality of open source

software appears to be at least equal and sometimes better than the quality of closed

source software code implementing the same functionality (Samoladas et al. 2004).

1.1.2. Adoption of the OSS Paradigm

Industry practitioners are increasingly acknowledging that open source software

are as highly sophisticated, reliable and customizable as many of their proprietary

counterparts. Major firms across industries are confident enough to run mission critical

functions on open source software. For instance, in a November 2002 CIO survey of 375

information executives, 54 percent CIOs said that within five years, open source

programs would be their dominant server platforms.

In the competition to benefit from the revolutionary OSS Paradigm, and also to

profit from the open source movement, industry leaders, such as IBM, Oracle and Sun,

have already invested tremendous amount of money in open source projects or rolled out

their own open source initiatives. HP has already generated more than 2.5 billion dollars

revenue from open source related services in the year 2003. Sun Microsystems is

considering converting its entire package of middleware (known as the Java Enterprise

System) to open source. BEA Systems, the biggest pure middleware company, has

already turned one of its products over to the open-source community for further

development. JBOSS, an open source project, recently has secured 10 million dollars

venture capital to develop their software. IBM has also invested in more than 1 billion

 6

dollars to support open source project development. Even open source movement’s most

outspoken critic, Microsoft, has started to experiment with open source-like ideas such as

“shared source”.

1.2. Romanticized picture of Open Source software development

1.2.1. The Glamorous Few

A few projects initiated in open source community, such as GNU, Linux, Apache,

MySQL and PHP, have achieved extraordinary success and are among the most

prominent software used in the technology industry. Take Apache and Linux as

examples: Apache, a powerful server side software, runs more than 60 percent of all

websites in the world; while In the personal computer operating system market,

International Data Corporation recently estimates that the open source program Linux has

between seven to twenty-one million users worldwide, with a 200% annual growth rate.

In August 2004, HP announced that all its lap top will be preinstalled with Linux. Many

observers believe that Linux probably would be the only serious threat to Microsoft

Windows’ monopoly in the desktop operation system market.

1.2.2. The Lackluster Majority

However, a myth, often held by OS developers themselves, is that every open

source project could achieve the great success just as the glamorous few OSS projects

did. The reality is far different. Most OS projects never get off the ground. Many die at

inception, while others survive, but with little momentum behind them. (Thomas and

Hunt, 2004)

In a complete survey of source forge projects, where almost all of the open source

projects are hosted, researchers find that among all the 46,356 projects, the median

number of developers is 1, which means that there is no participation of any other

 7

developer in the project; the median number of CVS (concurrent version system, an

important indicator of project activeness) is 0 and more than 90% CVS is less than 100

(Healy and Schussman, 2003). In another word, except for a few truly spectacular

successful projects, the majority of the open source projects are lackluster, with no active

developing activity at all.

However, the extant research on open source software has a tendency to focus just

on the atypically glamorous few. There are several case studies on Apache, Linux Kernel

and GNOME but no such similar studies that examine the failed projects. Therefore,

without understanding the whole ecosystem that includes the vast majority of failed

projects, extant research created a romanticized picture about open source. Some of the

important issues, such as the sustainability of open source development in economics

terms, are left unexplored.

1.3. Research motivation

Why some of the open source projects could achieve success while most of the

open source projects cannot? What are the factors that could influence the success or

failure of the open source projects? Our research is set to address those questions.

Our research is based on a very detailed sample of 300 open source projects. The

strength of our empirical data is that we include both the leading and successful projects

as well as those that are less successful. To our knowledge, very few research has done a

comparison study on the successful projects and lack-luster projects. Our study is one of

the first to examine the projects from both realms side by side.

The rest of the paper are organized as follows: in section 2, we review the existing

theories on open source software development, especially those based on organizational

theories, to decide potential factors that could influence the success of the project. In

 8

section 3, we discuss the empirical study and data analysis results. In section 4, we

conclude our paper and examine the future research topics.

2. RELATED THEORIES

Compared with traditional software development model, open source model has

very distinctive organizational structure, development process and culture. In the

traditional proprietary software development, there is only one development entity – the

software developers, while in open source development, there are two development

groups: a small number of core developers (usually less than 15 people) and a large

number of anonymous and volunteer developers from the community at large. In order to

identify the factors that may influence the success or failure of an open source software

project, we divide our discussion according to these two main development entities. We

study the division of labor, co-ordination mechanisms, distribution of decision-making

authority, organizational boundary and development process between these entities.

These dimensions of organization have been widely used to analyze traditional

organizations in organizational theories (March and Simon, 1958; Mintzberg, 1971;

Nohria, 1995, Srinarayan, et al. 2002).

2.1. Developers from the community

Open source projects are drastically different from traditional software

development projects mainly because they rely on a large number of anonymous

developers from the community to make voluntary effort in developing the projects.

These developers are organized into a very loosely centralized and networked community

- a “Bazaarr” (Raymond, 1997, Tirole and Lerner, 2002). There is no formal development

plan or schedule to follow strictly ((Mockus et al. 2000; Schmidt and Porter, 2001). The

developers choose the projects they are interested in, decide by themselves how much

 9

effort they want to put into the development, and work according to their own schedule.

This open organizational structure encourages new contributors to participate in the

projects. By remaining open to new contributors, the project could have an unlimited

supply of innovative ideas (Fielding, 1999; Raymond, 2001).

However, because of this uniquely open structure, attracting enough developers

and keep their motivated in participating in the project becomes a crucial factor in

deciding the fate of the project. This is especially important in the early stages of the

development before the number of the project’s developers could reach the critical mass.

Several studies have discussed how to motivate open source developers (Hars and

Or 2002, Lerner and Tirole, 2002, Slaughter et al. 2003). A very important motivational

factor is that developers value reputation highly (Perkins, 1999; Markus et al., 2000;

Raymond, 2001). Open source community is based on meritocracy (Fielding,

1999;Masum, 2001; Raymond, 2001; Schmidt and Porter, 2001). Reputation and higher

status in the open source community can not only be emotionally rewarding. It can also

bring some other tangible rewards, such as new promotion and employment opportunities

or learning new marketable skills (Lerner & Tirole,2000). Reputation is established

through quality contributions on a consistent basis that can lead to recognition, and is the

only basis of authority in the community. Therefore, creating an effective reputation

mechanism that can keep developers motivated is vital to the project’s survival and

success.

In the open source software development process, there is not a central decision

maker. Developers in the community make judgment on what tasks to do and how to do

it (Fielding, 1999; Markus et al., 2000; Mockus et al., 2000). However, developers from

the community use E-mail lists and online forums as the essential communication

channels to reach a consensus. Therefore, to have and maintain an active email-list and

 10

online forums are crucial to keep the communication channels open for the developers at

large.

2.2. Core developers

An important feature of open source software development projects is their self-

governance (Markus et al., 2000; Cook, 2001; Raymond, 2001). Compared with the open

source projects, most corporate projects have much stronger belief in central planning.

Open source projects are different. They almost always start with a single person at their

center. If, after the first couple of releases, they start to grow, people might volunteer to

join (Thomas and Hunt, 2004).

It might appear at first sight that the unconstrained, quasi-anarchistic nature of the

open source process leaves little scope for a leadership. This, however, is incorrect. As

we discussed in the previous section, to attract as many developers from the community

to participate in the project, and to keep them motivated and active is very critical for the

project’s success. The core developers are the ones who can ensure an effective

leadership. First, the leadership sets a vision. If the leader is credible and/or the vision is

compelling, this vision helps attract more developers to join in. Second, projects are

partitioned by core developers into manageable units/modules and handled by individuals

or teams. Coordination of developement is the responsibility of core developers. Third,

the core developers need to constantly attract other programmers by advocating and

promoting their projects in the community. Core developers are also responsible for new

project releases and distribution.

Because the volunteer developers for each project could come from all over the

world, with very diverse skills and motivations, the coordination mechanisms require an

emphasis on decentralized and asynchronous communication (Fielding, 1999; Mockus et

 11

al., 2000; Asundi,2001). It is very critical for the core developers to provide broad

oversight of the strategic direction for these volunteer developers.

More specifically, core developers involves in every stage of the development

process (O’Reilly, 1999; Mockus et al., 2000; Scacchi, 2001; Schmidt and Porter, 2001).

First, core developers identify the projects that they will work on. It is discussed

through the developers E-mail group and forums. Then a development agenda is created

to coordinate the project development. Therefore, the core developers are crucial in the

initial stage of the project development.

Second, core developers need to find volunteers whose experiences and interests

fit the projects and encourage these developers to participate in the project.

Third, after the developers submit their report and solution to the projects, the

core developers need to identify the best solution among many alternative solutions. This

is very essential for the projects since the quality of the open source projects rely upon

whether the developers can identify the best solutions from many different submissions.

Fourth, after several testing and revising, the core developers decide the final

changes to make on the projects. Each change that core developers make will be managed

and documented using CVS (concurrent version system).

Last, core developers are responsible for releasing the latest version of their

projects. They are also the ones in charge of promoting and publicize the new file release.

3. DATA COLLECTION, MODEL BUILDING AND EMPIRICAL ANALYSIS

3.1. Data Collection Process

3.1.1. SourceForge.Net as the data collection site

Empirical data is collected from SourceForge.net website. SourceForge.Net is the

world's largest open source software development project host site, with the largest

 12

repository of open source projects. SourceForge.net provides a centralized place for open

source developers to control and manage open source software development projects.

There are a total number of 89,103 open source projects hosted in SourceForge.net with

more than 935,651 registered developers (as of 10/17/2004 data). It thus provides us the

best research site to collect empirical data on various open source projects’ performance

and attributes.

3.1.2. Sampling Procedure

Our data sample consists of 300 open source software development projects

hosted in the Sourceforge.Net. They are the first 300 active projects ranked by

Sourceforge.Net. These 300 projects provide a rich data set that includes the most

successful open source projects as well as many less prominent projects. However, unlike

the other projects that are ranked lower, these projects are active enough to provide

usable data on the project activities. If we randomly sample all the open source projects,

the data would be un-usable since the majority of the open source projects do not have

any substantial activity at all (as we have discussed in the introduction section). We

cannot obtain values for important variables such as number of download and number of

bug report. By focusing our sample on the first 300 projects, we could ensure our

sample’s validity as well as its usability.

3.2. Description of Variables

SourceForge provides very detailed information on each project’s activities across

the project’s entire time span. We include most of the major attributes of the projects as

variables in our data analysis. These variables include:

3.2.1. Characteristics of the projects:

These variables reflect the characteristics of the projects.

 13

Development status: by Sourceforge’s criteria, project’s development status is

divided into 7 stages: planning, pre-alpha, alpha, beta, production/stable, mature and

inactive. We excluded those projects in the inactive stage.

Project life span: how long has the project been created.

3.2.2. Characteristics of the program development activities:

Our sample also collects detailed data on project’s development activities. These

variables include:

Number of developers: it shows how many core developers are developing this

project. These core developers are different from those anonymous developers who

download the program, and contribute to the project development by submitting bugs and

patches. As we discussed in the previous section, these core developers are the

developer(s) who develop most of the program and also promote the project in the

community.

Number of messages in the forums: core developers could set up and facilitate

public forums for all the developers from the community to discuss project development.

It is a very important venue for the developers in the community to contribute and

participate in the project development. Many development tasks are assigned through the

forum discussion. Many development decisions are also decided through the forum

discussion process. We use the number of messages posted in the forum as an indicator of

how active the forum is. It is also used to calibrate how active the developers from the

community are.

Number of mailing list: core developers could also set up multiple mailing lists to

communicate with each other. It is an indicator of how active the core developers are.

Number of downloads: Number of downloads is one of the most essential

variables to show how successful the project has been. Generally, the more number of

 14

downloads means a more successful project. In our study, number of downloads is used

as the dependent variable in the model to measure the performance of the projects.

Number of bug report: number of bug report indicates the contributions from the

developers in the open source community. A large number of bug reports generally show

that the project attracts a lot of attention from the developer community. The developers

make significant contributions to improve the project.

Number of patch report: similar to the variable “number of bug reports”, number

of patches reported by the developers in the community is also a very important indicator

on how active the community developers are in the project. We assume that both

variables play a significant role in influencing the project’s performance.

Number of CVS report: concurrent version system (CVS) is an important tool in

coordinating the core developers’ development efforts. By using CVS system, the

changes made by one core developer in the project will not be overwritten by the changes

from another. Every core developers would be able to track the latest version of the

project. The total number of CVS updates accurately indicates how active the core

developers are.

Number of file releases: this variable shows how many times the core developers

update the projects and release a newer version of the project. The more frequent updates

show more effort from the core developers to promote the project in the community.

Frequently updated projects often attract more developers to participate in the projects.

This is simply because developers see the project is very active so they know their efforts

could be valued. New version of files also means new challenges and tasks for the

developers to work on.

Number of news release: Sourceforge.net website allows each project’s core

developers to post news and announcements on the Sourceforge’s main page. Like

 15

releasing new files, broadcasting news is also an important way for the core developers to

keep the project active and attract developers from the community to participate in the

project. Thus the number of news release is an essential indicator of the core developers’

effort in promoting the project in the community.

3.3. Empirical Analysis

3.3.1. Data Transformation

Before we conduct empirical analyses on the data, we need to check the data

quality and see if the assumptions for the statistical procedures are validate. We use the

frequencies procedure to obtain the summaries of each individual variable.

As shown on the frequency table before data transformation (Table 1.1), the mean

is quite different from the median for every variable. A significant discrepancy between

mean and median usually suggests that the distribution of the variable value is

asymmetric. This suspicion is further confirmed by the large positive skewness, which

shows that the distribution has a long right tail. For example, as shown in the histogram

of the distribution of the variable Number of Download (Figure 1.1), the distribution is

asymmetric, with some extreme large values on the left end and a large number of data

values on the lower right end. This is because the data set includes some of the most

popular projects. These popular projects have extremely large number of downloads.

Therefore, the data that indicates these project activities are skewed toward the left hand

side. Because of the same reason, variables, including number of messages posted on the

forum, number of bug report, number of patch report, number of CVS, number of file

release and number of news release, all have the similar skewness in the data distribution.

The large positive skewness could inflate the standard deviation to a point where

it is no longer useful as a measure of the spread of data values. In order to increase the

 16

reliability of the data analysis, we conduct a transformation so that we can bring the

distribution of the variable values closer to normal.

The log transformation is a sensible choice because the variables take only

positive values and are right skewed. Table 1.2 shows the frequency table of the variables

after the log transformation. From the table, we can see that the transformation has

brought the distribution closer to normal: the skewness has greatly reduced, so has the

discrepancies between the mean and median value of the variables. We can also see how

log transformation corrected the skewness from the example of Number of Download

histogram (Figure 1.2)

3.3.2. Data reduction – factor analysis

In our hypotheses development, we set to predict the performance of the projects

based on a set of predictors. However, many of these variables are correlated. Therefore,

after the data transformation, we use factor analysis to conduct data reduction. Factor

analysis is the primarily method used for data reduction. We use factor analysis to

remove redundant and highly correlated variables from the data file, and replace the data

file with a smaller number of uncorrelated variables. During the factor analysis process,

we will also be able to examine the latent variables that are underlying the relationships

between the manifest variables.

To perform factor analysis, the specific method we employ is factor analysis with

principal components extraction. The principal components method of extraction begins

by finding a linear combination of variables (component) that accounts for as much

variation in the original variables as possible. It then finds another component that

accounts for as much of the remaining variation as possible and is uncorrelated with the

previous component. By doing this, we will get a few components that could account for

most of the variation.

 17

The variables we put into factor analysis include the following ones: development

status, number of developers, project life-span, number of messages posted on the forum

(log transformed), number of bug report (log transformed), number of patch report (log

transformed), number of CVS (log transformed), number of file release (log

transformed), number of news release (log transformed) and number of mailing lists,

Extraction communalities table (Table 1.3) demonstrates the estimates of the

variance in each variable accounted for by the components. The Eigen-value shows the

amount of variance in the original variables accounted for by each component. The

percentage of variance shows how each component accounts for the total variance in all

of the variables.

Judging from the table, we extract five components (four of them with eigen-

value larger than 1, and one with eigen-value as .933) and they account for a total of 10

variables. These five components explain nearly 78% of the variability in the original 10

variables. By extracting these five components, we considerably reduce the complexity of

the data set by using these five components, with about 23% loss of information. After

extraction, the variation is now spread more evenly over the components.

We also use scree plot (Figure 1.3) to decide the optimal number of components.

The eigenvalues of each component is plotted. As we can see from the plot, the

significant decrease begins at the fifth component. After the fifth component, by adding

more components to the model would not significantly increase the percentage of

variances explained. Therefore, it supports our decision to extract 5 components in total.

After extracting the components, the rotated component matrix helps us to

determine what the components represent.

 18

The first component is most highly correlated with a number of forum and

number of patch report, and also number of bug report. All these three components are

associated with the activities from the developers in the open source community.

The second component is associated with number of developers, number of CVS

update, as well as number of mailing list. These three variables show the strength of the

core developers of the projects.

The third component is correlated with the number of file release and number of

news release. These two variables mainly describe the core developers’ activities in

promoting and publicizing the project.

The fourth component is associated with one variable: development status. The

fifth component is also associated with one variable only: project life span.

The relationship between these extracted components and their variables are

demonstrated in the Figure 1.4. Note that in the square are the manifest variables and the

latent (extracted components) are in the circle.

For each component, we also compute the component score. It is calculated by

multiplying the original variable values by the component’s score coefficients. We then

use the resulting five component score variables in places of the ten original variables.

Using the saved component score variables is better than using the extracted components

directly because they are not linearly correlated with each other, thus to avoid the

linearity in the regression analysis.

However, we still look at plots of the component scores to check for outliers and

non-linear associations between the components. Judging from the scatter plot matrix of

the component scores (Figure 1.5), we did not see abnormalities in the component scores.

 19

3.3.3. Regression analysis

Linear regression is used to model the value of the dependent variable – success

of the projects - based on its linear relationship to one or more predictors. We assume that

there is a linear relationship between the dependent variable and each predictor.

As we specified before, we use number of download as the indicator of how

successful the project is. Thus, log-transformed number of downloads is the dependent

variable in the model. The distribution of log-transformed downloads is closer to normal

than number of downloads. And the linear regression model works better with normal

variables. The independent variables, i.e. the predictors are the factors we extracted in the

factor analysis. We will use the component score of each factor in the model.

The ANOVA tables (Table 1.4 and Table 1.5) reports a significant F statistic,

indicating that a strong prediction power of the predictors. As a whole, the regression

does a good job of modeling performance of the project. Nearly half of the variation (R

Square=.465) in download times is explained by the model.

To determine whether the predictors are significant ones, we can tell from the

coefficient table (Table 1.6). As we proposed, the contribution from the community, the

core developers’ activities as well as the project promotion all play a significant role in

generating more download and make the project a success. Project’s lifespan is less

significant. The significant value is .169. Project’s development status is quite significant.

This is easy to explain since the more advanced projects usually could be able to attract

more download.

Checking the multicollinearity test (see Table 1.7), we can see that for all

predictors, the values of the partial and part correlation does not drop sharply from the

zero-order correlation, which means that there is not significant multicollinearity.

 20

Checking the tolerance column, the 100% of the variance means that no other predictors

can explain the given predictor’s variance. Therefore, we don’t have multicollinearity.

4. DISCUSSION OF THE RESULTS AND CONCLUSION

4.1. Importance of the developers’ contribution from the community

Our analysis confirmed the importance of the developers’ contribution from the

community in deciding the success or failure of the open source projects. This result is

consistent with the unique organizational structure and culture of open source

development model. Unlike proprietary software development model, the essence of open

source model is to depend on thousands of developers in the community to voluntarily

contribute and develop the projects. Our research not only confirms the importance of the

developers from the community; we also quantitatively measure the importance.

Furthermore, we identify several manifest factors that indicate the activeness of

the developers contributions, including patch report, bug report as well as forum

activities.

4.2. Importance of the core developers

More important in our findings is that we stressed the importance of the core

developers in the projects. In existing research, core developers’ role is often ignored. It

is common among researchers and practitioners to believe that anonymous developers are

the essential part of open source project development, and the core developers play less

important or even marginal roles. However, our analysis demonstrates the crucial role

that the core developers play. It is the second most important factor in deciding whether a

project could success or not.

 21

4.3. Crucial role of promoting the projects

Another important finding of our research is examining the importance of actively

promoting and publicizing open source projects by the core developers. In the open

source development community, thousands of projects are competing for developers’

attention and contribution. For a project to success, the core developers need to actively

promoting their project in the community. It is important for the projects to send signals

to the developers at large to show that the project is active and developing fast. As we

identify in the research, there are two important signals that the core developers could

send to the community: the frequent release of new files and frequent release of the news

about the projects.

4.4. Contributions of this research

This research systematically examine why certain open source projects succeed

while the majority of the projects fail. Our research identified several factors that

influence the performance of the projects, including the often-ignored role of core

developers and the importance of promoting the projects.

First, our research could shed light to the academic research in the open source

field. Our research is one of the first to compare the successful projects with the less

successful ones and to identify a web of factors that could influence the performance of

the projects.

Second, for industry researchers and practitioners, our research could be useful in

predicting which projects have more potential to succeed, and consequently decide which

projects to invest or support.

Third, for open source developers themselves, our research could also be of great

value. Developers could learn from our research that what are the factors that are

important in deciding the fate of their projects. For example, many developers could learn

 22

from our study the crucial role of promoting and publicizing the projects in the

community, and release the project files more often. They could also try to set up a more

efficient reputation system to motivate the developers from the community to participate

in the projects.

4.5. Future research directions

This study is the first stage of a series research in examining sustainability of open

source software development model. The current research is based on cross-sectional

data. In our future research, we plan to design a time series study: we will collection data

through open source projects’ entire life span. We will pay special attention to the factors

that could help a budding project reach a critical mass. This research is based on

secondary objective data only. In the future research, we plan to conduct focus group

interview and survey on open source developers, especially the core developers.

 23

Chapter 2 Enterprise Open Source

1. INTRODUCTION

Open source software (OSS) has become one of the key components in today’s

information technology infrastructure. The rise of the open source movement has

significantly changed the dynamic of the industry and business models of commercial

software firms (Raymond 2001). Although they are generally freely available for

download and redistribution, OSS have become viable alternatives to some of the large

scale commercial software that cost millions of dollars to develop (Koch 2003). In

addition, OSS also have the reputation of being more secure and higher quality than their

commercial counterparts (Halloran and Scherlis 2002; Reasoning Inc. 2003).

Unlike small scale OSS projects that are produced by one-man effort

(Krishnamurthy 2002), enterprise scale OSS require dedicated and skilled developers as

well as disciplined develop processes. In fact, studies have shown that open source

developers are typically experienced professional developers who often have a well

established career in this industry (FLOSS Final Report 2002; Hars and Ou 2002; Hann,

Roberts and Slaughter 2002).

However, it is still unclear how open source developers are motivated and

compensated for their work. The open source development model has two characteristics

(The Open Source Initiative 2004) that diminish the source of immediate financial

compensation for OSS developers:

First, the source code of the software must be freely available. This is a basic

requirement that allows the developer and user community to contribute to open source.

However it enables the anyone to build the software without paying the developer any

licensing fee.

 24

Second, anyone must be allowed to modify the source code and freely re-

distribute the source and the binary executables. This requirement allows the community

to take project to other directions if the developers do not take the feedbacks seriously. It

also ensures that the project life span will never end, even if the original developers

leave, as long as there are interests in the community. However, it also makes is fairly

easy for other parties to free ride over the original developer’s effort and reap any

commercial benefit that is associated with the software without incurring the developing

costs.

Without immediate financial compensation, why do professional developers work

on those projects? The OSS development model is only sustainable if its developers are

properly compensated for the long term. Knowledge of developer motivations allows

managers and policy makers to help build better OSS communities and also better

leverage their products and services.

Some researchers have suggested that OSS developers might be motivated by

non-monetary incentives, such as altruism, joy and learning, as well as the possibility of

increased future compensation (Hars and Ou 2002; Hann, Roberts and Slaughter 2002).

However, those studies have also shown that a large number of OSS developers,

especially those working on large projects that have the greatest influences on the

community, are paid to work on OSS as full time employees of for-profit firms (FLOSS

Final Report 2002; Hars and Ou 2002). This trend is expected to continue as OSS

proliferates in the enterprise world. For those developers, the motivation to contribute to

OSS can be purely economic – to earn a salary. For enterprise sponsored large projects,

the question of developer motivation and incentive is transformed to the firm’s

competitive strategy. The research questions we try to address in this paper are: How do

 25

firms make money from OSS? How do they avoid the free rider problem? What are

factors that determine their involvement and contributions to OSS?

However, past research has paid little attention to firm’s motivation and strategy

in OSS community investment (FLOSS Final Report 2002; Lerner and Tirole 2002). In

this paper, we will investigate the enterprise investment in open source development from

a micro-economic point of view. In the next section, we will first use real world cases to

discuss different ways enterprises can contribute to open source. Then, in the two

sections that follow, we will analyze the economic incentives for enterprises to

participate in the open source community. We found it is useful to distinguish firms that

build business models on OSS (OSS vendors) from those that use OSS in internal IT

projects (OSS users). Based on the models we propose, we will investigate the conditions

and optimal amount of contributions from each firm.

2. THE ENTERPRISE OPEN SOURCE

A typical OSS project has three important development stages in its life cycle: the

start of the project including the development of the first version of the code; the iterative

improvement process based on feedbacks on the pre-release candidates from the user

community; and finally the major release of the software. Of course, the improvement

and release stages can be inter-winded since users of the major release could also

contribute bug fixes and feature enhancements to the project although they are much less

frequent than those from pre-release beta users.

In the following three sections, we will use some of the most influential OSS

projects as cases to show that commercial firms can contribute to OSS projects in all the

above development stages. In addition, we investigate and derive the characteristics of

each type of contribution.

 26

2.1. Starting new projects

Firms can release software that they have developed using their own resources

into the community and start an OSS project around it. Examples of such OSS projects

include the following.

The Eclipse Project. The Eclipse Foundation is one of the largest OSS

development collaboration in the world. More than 50 member firms contribute OSS

code to the projects hosted by it. The flagship product, the Eclipse IDE, is one of the most

popular developer productivity tools and user interface toolkits in the Java community.

The Eclipse Consortium is established in 2001 after a 40 million dollars worth of

software donation from IBM (IBM 2001). After the donation, IBM continues to lead and

support the development of Eclipse OSS by contributing developer time and other

engineering resources. IBM’s commercial developer offerings, the WebSphere Studio

line of products, are built upon the Eclipse platform.

The OpenOffice Project. The OpenOffice Suite is a business productivity suite

similar to the Microsoft Office. It is available for free on Windows, Linux, Solaris and

Mac OS X platforms. It is the most popular MS Office alternatives for corporations that

need to cut software licensing cost or wish to use non-Windows based desktop solutions.

OpenOffice was originally developed as proprietary software. Sun Microsystem bought

the original developer of OpenOffice in 1999 and donated most of the code to establish

the OpenOffice.org open source community. Many of original OpenOffice developers

work on the OSS project as Sun employees after the donation. Sun offers a commercial

version of OpenOffice with proprietary add-ons and support contracts.

Other similar OSS projects started by commercial firms include the NetBeans

tools project from Sun Microsystem, the Beehive project from BEA and the Darwin

 27

project from Apple Computer. Even Microsoft, the most vocal OSS critic, has donated

several of its own small projects to the open source community (Kerner 2004).

The common characteristics of enterprise-initiated OSS projects are that they are

started by a donation from a commercial software vendor, are actively maintained by the

vendor’s paid employees after the donation and are the basis of other commercial

offerings from the vendor.

2.2. Sponsoring existing projects

Firms also involve in open source development by sponsoring existing projects.

The more popular the project grows, the more likely it will attract contributions from

enterprises. The Linux and Apache projects are two examples of such enterprise

involvement.

The Linux Project. The Linux Operating System project was started as a one-man

hobbyist project. As it becomes increasing popular in the late 90’s, many firms start to

contribute to its development. Today, IBM, HP, RedHat, Novell and many other firms

hire core Linux developers to work on Linux full time. Those firms also contribute to

marketing and promoting the Linux brand. IBM alone spent one billion dollar in

promoting Linux related products and services in 2001 (Wilcox 2000). IBM and HP have

both made multi-billion dollar profits on Linux products and services in 2003 (Lyman

2004).

The Apache Project. The Apache project started as academic project for HTTP

web servers. Over the years, it grew into the most popular web server on the Internet. The

Apache Foundation also oversees several dozen sub-projects that have high impacts on

the Internet server technologies. IBM and Sun hire many core Apache developers to work

on Apache open source software. In 2004, IBM donated 85 million dollar worth of

 28

proprietary code in its Java embedded database product, Cloudscape, to the Apache

Foundation (Sherriff 2004).

In addition to large contributions from big firms, OSS projects thrive on

contributions from smaller firms. Projects like Linux and Apache are used in daily

operations in many small to middle sized businesses. IT professionals working in those

smaller firms help to discover bugs, develop patches and enhance features. They work on

improving the open source software in their firm paid time as part of their job.

Firms that contribute to existing OSS projects are typically those who have

product offerings based on the project or those who have used the OSS internally.

2.3. Providing services and support

A successful OSS project itself can spawn for-profit businesses. OSS developers

could form firms to capitalize on the popularity of the software by offering service and

support to its users.

The MySQL Project. The MySQL database project produces the most popular

open source relational database software. It is widely adopted by many enterprise users.

The MySQL Inc. is founded by core developers of the MySQL project to provide 24/7

product support, product customization and training to its users.

The JBoss Project. The JBoss application server is the most popular Java

application server software in use today. The JBoss Inc. hires core developers in the

JBoss community. They offer services, documentation and training to JBoss users.

The ”free software commercial support” model is especially suitable for business

software since their users are risk averse and are more likely to purchase. The income

from commercial services subsides the OSS developer’s salary and other development

costs.

 29

3. ENTERPRISE OSS VENDORS

Although it is not practical to charge a license fee for OSS, commercial software

vendors have developed several business models to make money indirectly from OSS.

Those business models are based on the externalities of OSS and they apply to all three

types of enterprise OSS contribution discussed in the last section. In this section, we will

discuss what are those externalities and how they provide incentives for enterprises to

invest in the public good.

3.1. Open Source externality

Based on their survey results, FLOSS Final Report (2002) indicates that firms can

profit from OSS as a distributor, a retailer, an enabler or a service provider. All those

business models are based on the externality effect of OSS.

OSS is typically part of a complete technology solution. For any particular piece

of OSS, there are additional hardware, software or service packages that can work with it

and make it more useful. That is particularly the case if the OSS is developed by

volunteers, who are not bound by business contracts to fix bugs or provide support after

the software is released. The externality effect between OSS and complimentary services

has been exploited by many technology vendors.

A firm could invest in an OSS project and use the freely available software to

increase their market share in a particular business sector. Then, it can sell the

complementary products to recoup the cost it invested in the OSS project. Based on

previous studies (FLOSS Final Report 2002; Raymond 2001) and our own observations,

we summarize important OSS externality effects in the following list.

Pre-configured hardware and software bundles: Dell, HP and IBM all sell

computers pre-installed and pre-configured with the Linux operation system. The firms

 30

went through the effort to choose and test the compatible hardware components and

offers guarantees on their products.

Packaged software solutions: Linux distribution vendors such as RedHat, Novell

and Sun sell software bundles that include the free Linux operation system and other OSS

or proprietary software developed by themselves or by third parties. In the bundling

process, their employees fix the compatibility bugs between the OSS components and

add important features demanded by their customers. The customers buy the bundle

knowing that it is already tuned and tested for its specific market.

Professional services and customization: JBoss and MySQL hire the core

developer of their flagship OSS to provide premier level services to paid customers.

Those services include: training and technical support by developers with direct

knowledge of the software; and priority handling of bug fixes and feature requests etc.

Add-ons to OSS platforms: As we discussed in the previous section, IBM started

the Eclipse Consortium via a large donation of software to the OSS community. Many

IBM WebSphere software products since then are based on the Eclipse platform with

IBM proprietary add-ons. The same types of proprietary add-ons have been developed by

Sun for the NetBeans platform etc.

Basic research: Firms can use OSS projects to implement the proof-of-concept

systems for research projects. As long as the firm retains the intellectual property of the

research results (e.g., patent protection), the OSS project receives rigorous peer review to

improve the research and promotes the related commercial products at the same time. The

IBM alphaWorks hosts many small research OSS projects from IBM scientists and

engineers.

 31

3.2. The free rider problem

Although the firms that leverage the externality of OSS have strong incentives to

invest in the community, the ”free rider” problem has to be addressed first. Since OSS is

available for anyone to see and study, it is not difficult for a free rider that has not

invested in the development to come up with the same complementary products and sell

them for less. In fact, all the above externality based business models could potentially be

plagued by free riders. The following are some representative free rider scenarios from

real world OSS projects.

The mere fact that there are numerous Linux-based hardware sellers and

numerous Linux distribution providers suggests that some firms might contribute less to

the community and free rides on other firms’ effort in improving the Linux platform.

Both JBoss and MySQL have encountered third party developers who no longer

contribute to the OSS project to set up consulting services that competes with them.

There are numerous small firms specializing in providing Eclipse plugins for

various development tasks. Many of such products directly compete with IBM’s

WebSphere line of products.

In each of the above cases, the OSS contributing firms have competitive edges

over non-contributing firms since they have more technical know-hows and better known

brands.

Although free riding is possible in the OSS world, it might not be the best strategy

for the firm to maximize its profits. One of the strongest incentives for firms to invest in

OSS is to increase the user base and hence create a ”bigger pie” for the externality

market. It might not be a good idea to let your competitors decide the size of your market.

To investigate this question fully, we need an analytical model to calculate the optimal

strategy for each firm.

 32

3.3. Model construction

Without losing generosity, we assume that there are n firms in the externality

market of a particular Open Source project. Every firm sells the exact same

complementary product (e.g., service or add-on) at a unit price p. The market share of

firm i is denoted as

!

S
i
. In this analysis, we take a snapshot of the current market and

ignore the potentially complex relation between

!

S
i
,

!

C
i
 and the nature of the firm. The

Open Source software is being cooperatively designed with firm i contributing

!

C
i
. We

assume that total size of the externality market is a function of the total investment in the
Open Source project

!

f (C j
j=1

n

") . Function f monotonically increases. For each firm i, the

optimal level of investment in the Open Source project

!

C
i

* is determined by maximizing

the following function:

!

j

*

C
max(p " Si " f (C j) #C j

j=1

n

$

The first order condition is:

!

p " Si "
#f (C j)

j=1

n

$
#Ci

%1= 0

Proposition 1: If

!

f is concave, the optimal Open Source investment of each firm

increases with its market share

!

S
i
 and the price of the complementary product p.

Proof: Since

!

C
i
 is the only interesting variable that we are concerned here, we

have

!

"f (C j
j=1

n

)

"Ci

=
"f (C j

j=1

n

)

" C j
j=1

n

#

Since

!

f is concave, we have

!

" 2(p # Si # f (C j) $Ci
j=1

n

%
" 2Ci

= p # Si #
" 2 f (C j)

j=1

n

%

" 2 C j
j=1

n

%
> 0

 33

Hence, the first order condition corresponds to the maximum value of the profit

function. For simplicity, let’s assume that

!

g(C j)
j=1

n

" =
#f (C j

j=1

n

")

C j
j=1

n

"

Solving for the first order condition,

!

g(C j)
j=1

n

" =
1

p # Si

And hence,

!

Ci

*
= g

"1
(
1

p # Si
) " C j

j$1

%

Since the function

!

f is concave, both

!

g and

!

g
"1 are strict decreasing. That

indicates that

!

C
i

* increases with

!

S
i
 and

!

p .

Proposition 2: If

!

f is convex, there is no optimal level of Open Source

investment for any firm.

Proof: Since

!

f is convex, we have

!

" 2(p # Si # f (C j) $Ci
j=1

n

%
" 2Ci

= p # Si #
" 2 f (C j)

j=1

n

%

" 2 C j
j=1

n

%
< 0

Hence, the first order condition corresponds to the minimum value of the profit

function. We cannot maximize the profit function through Open Source investment under

this condition.

Proposition 3: If the function

!

f takes the form

!

f (x)" x
, the firm

!

i only invests

in Open Source when

!

(" #1) $ p $ Si >1.

Proof: In order for a firm to invest in Open Source, its profit must grow as a result

of increasing investment

!

C
i
. Hence, we must have

!

"p# Si #

"Ci

(Cj)
$

j=1
n% &Ci > 0

 34

That directly results in

!

(" #1) $ p $ Si >1.

Lemma 3.1: If

!

" #1, no firm will invest in the Open Source project and all will be

free riders. This is the case when the Open Source project market size actually shrinks

with additional investments.

Lemma 3.2: For

!

" >1, only firms with large market shares will have incentives to

invest in the Open Source project.

Proof: For

!

" >1, the condition in Proposition 3 directly leads to

!

Si >
1

(" #1) $ p

3.4. Discussion

The firm’s strategy in investing in OSS depends greatly on the how the externality

market size responds to investments in the underlying platform. At the beginning of a

popular project, the adoption grows following the power-law with since the larger the

installed base, the wider the word can spread. The externality market size has to respond

to new investments at a powerlaw index

!

" >1 to be sustainable. According to proposition

3, in this stage, the firms with large market share are more likely to benefit from

investment in Open Source and smaller firms are typically free riders.

As the product matures, it will inevitably reach the concave part of the growth

curve since the new investment will have less and less effect on expanding the market. At

this stage, all firms have incentives to invest in the Open Source project and their optimal

level of investment increases with their market share.

4. ENTERPRISE OPEN SOURCE SOFTWARE USERS

FLOSS Final Report (2002) suggested that there are four main motivations for

firms to become OSS users: standardization of software platform; low-cost component;

strategic consideration and enabling compatibility. Archiving those goals depend on the

 35

corporative efforts of the OSS community. Adopting the software is only first step in

building a healthy OSS community. In fact, the OSS development model is most

successful with frequent feedbacks and contributions from a large user community

(Raymond 2001). In the world of OSS, the line between the user and the developer is

blurred. OSS users can feedback to the development process in several ways:

They can participate in the community mailing lists and forums to make

suggestions and help new users.

They can help fix bugs and send in patches to improve the quality of the software.

They can contribute to new features and other enhancements of the software.

Some users can even become part of the core developer team and contribute

significantly to the software development. If a firm uses OSS internally, it is a user

member in the OSS community. The primary incentive for it to make bug fixes, security

patches and feature enhancements (”patches” for the rest of the article) developed by its

internal staff available for free to the community at large is to reduce the maintenance

cost in the future. In this section, we will establish a model to analyze the important

factors that lead the firm to decide whether and when to release their patches.

4.1. Reduce the risk

For modern software development projects, the costs of maintenance and

integration often far exceed the cost for writing the software itself. If a firm develops a

patch for an Open Source software and keep it proprietary, the patch will need expensive

ongoing service for the rest of its proprietary life. Since the developers in the community

are not aware of the inner workings of the proprietary patch, they can often break the

patch functions in the subsequent versions of the software. On the other hand, when a

patch is released to the Open Source community, the developers in the community will be

responsible of keeping it integrated with future versions of the software. The proprietary

 36

patch excludes the firm from leveraging the key strength of the Open Source

development model and could represent a big cost to the firm in the long run.

However, if the patch would allow the firm to gain competitive edges over its

commercial competitors, it is another story. The firm might keep the patch proprietary

and use the additional profit to offset the patch maintenance cost. For example, if a

Internet data archive firm developers a proprietary extension to the Open Source MySQL

database to improve its performance over large datasets, it might keep the patch

proprietary to avoid free riding from competitors.

4.2. Model Construction

Let’s assume that the proprietary patch generates a constant cash flow of m per

unit time until it is released by the firm or independently developed by other developers

in the community. The main version of the software is released at a time interval of ∆t

and the firm has to spend

!

f (n) amount of money to re-integrate the patch into the

software for the nth version released after the patch is developed. The function

!

f (n) is

undefined for non-integer values. The time for the nth software release is

!

t
n
 = n × ∆t. We

assume that function

!

f (n) monotonically increases with n since the integration cost

increases with complexity of the software, which in turn, increases with every release.

The total profit for the firm at the nth release time is

!

p(n) which is described in the

following formula. The firm’s strategy is to find the optimal time

!

t
n
 to release the patch

that will maximize

!

p(n) .

!

p(n) = m " n "#t $ (f (i))
i= 0

n

%

At the initial time, we have

!

f (n) = 0 and

!

p(n) = 0. Based on this simple model,

we can quickly reach three important conclusions.

 37

Proposition 4: Function p is always negative and it monotonically decreases with

n if m × ∆t ≤

!

f (1) .

Proof: For each increase in n from n to n + 1, we have

!

p(n +1) " p(n)= m × ∆t −

!

f (n +1)

Since

!

f (n) is a monotonically increasing function, we have

!

f (n +1) " f (1) ≥ m ×

∆t. That yields

!

p(n +1) " p(n) ≤ 0 and hence

!

p(n +1) " p(n) " p(0) = 0 . Under this

condition, the firm would release the patch to the Open Source community immediately

because as time goes on the negative profit (loss) piles on.

Proposition 5: Function p monotonically increases with n if, for all n values, m ×

∆t ≥

!

f (n) .

Proof: For each increase in n from n to n + 1, we have

!

p(n +1) " p(n)= m × ∆t −

!

f (n +1) " 0

Under this condition, the firm will never release the patch since the profit

generated from the proprietary patch always offsets the integration cost.

Proposition 6: If a

!

n
* value exists such that

!

f (n
*
) < m "#t < f (n

*
+1),

!

p(n
*
) is

the maximum value of p.

Proof: For every n <

!

n
* , we have

!

p(n
*
) " p(n) = (n

* " n) #m #$t " f (i)
i= n+1

n
*

%

That can transform into

!

p(n
*
) " p(n) = (m #$t " f (i))

i= n+1

n
*

%

Since

!

f (n) is monotonically increasing, we have

!

f (i) " f (n
*

+1) " m #$t .

Therefore

!

p(n
*
) " p(n) # 0 for

!

n < n
*.

For every

!

n > n
*, we have

!

p(n
*
) " p(n) = (n

* " n) #m #$t + f (i)

i= n
*

+1

n

%

That can transform into

 38

!

p(n
*
) " p(n) = (f (i) "m #$t)

i= n
*

+1

n

%

Since

!

f (n) is monotonically increasing, we have

!

f (i) " f (n
*

+1) " m #$t .

Therefore

!

p(n
*
) " p(n) # 0 for

!

n > n
*.

Since for all

!

n " n
* values, we have

!

p(n
*
) " p(n) # 0 . Profit

!

p(n
*
) is the

maximum profit the firm can extract from the proprietary patch. Time

!

t
n
* is the optimal

time for the firm to release the patch to the community.

4.3. Discussion

From the above analysis, firms make the decision on whether to release their

patches back to the community based on the type and state of the Open Source project as

well as on how the software is used internally.

If the Open Source software is a widely available commodity (e.g., an operating

system) and the patch is not of importance to the firm’s core business, the profit cash

flow m generated from the proprietary patch might be negligible compared with the re-

integration cost in the future. In this case, the firm releases the patch immediately and

leverages the community to maintain it for future releases. For example, if the firm finds

a flaw in Linux that prevents it to work with some internal applications, the IT staff

would develop a patch and submit it to the Linux developer community to be included in

the next main Linux release. Once the patch is merged into the main Linux source code

repository, other Linux developers will be able to make sure that code changes in future

Linux releases will be compatible with the patch. This is the case for most mature level

Open Source software.

If new versions of the software containing crucial updates are released frequently

(i.e., the ∆t is small, the cost to keep the patch updated might be too high and hence

trigger the firm to release the patch. This is typically the case for software produced in

 39

research projects or in early development stages. In fact, one of the mottos of the Open

Source development methodology is to have rapid release cycles. By innovating rapidly,

the Open Source developer community could encourage the commercial firms to release

their patches earlier in order to keep up with the innovation.

Many Open Source projects started as small projects with limited number of users

and simple usage scenarios in mind. As the project grows and gains popularity, the

original design often proves inadequate for the scalability requirements. It is common for

popular Open Source projects to go through extensive re-architecturing and re-writing

several times before it can stabilize. For example, Linux 2.0 is almost a complete re-write

from Linux 1.x; The Apache web server 2.0 adopts a different internal architecture from

Apache 1.x; Eclipse 3.0 features a different execution kernel and plugin architecture from

Eclipse 2.x. For firms that hold proprietary patches, a major re-design of the software

could force them to spend significant re-integration costs. A major re-write represents a

sharp increase in f(n + 1). According to Proposition 6, it is important for the firm to track

the software roadmap and release the patch before the re-write. That allows developers to

take into account of the patch in the new design.

5. CONCLUSIONS

In this paper, we analyzed the economic incentives for enterprise software

vendors and users to invest in the public good Open Source projects.

For enterprise software vendors, the incentive to invest in Open Source is to

create a ”bigger pie” for the commercial externality market. At the growth stage, the

firms that have the large market shares in the externality market are the ones most likely

to invest. As the project matures, all firms have incentives to invest and the optimal level

of investment grows as the market share increases.

 40

For enterprise software users, the incentive to feedback to the community is to

avoid the cost of maintaining the patch itself for future software versions. They are most

likely to contribute bug fixes for mature commodity software or feature enhancements in

frequently updated software.

 41

Chapter 3 Exploring new innovations in mobile computing: applications
of wireless technology in financial services, health case and marketing

industry

1. SECURE FINANCIAL SERVICES: CHALLENGES AND SOLUTIONS IN THE NEW
INFORMATION AGE

1.1.Introduction
The advances of technology have changed how people do business in the past

century. Every new invention of manufacturing technology has brought changes to the

related industry sector. It is of no surprise that the ongoing revolution of information

technology will also revolutionize how we do business in the information intensive

financial service industry (Fan et al. 2002). For instance, innovative wireless technologies

have been used in financial services and allow users to access market information

irrespective of their locations in a timely manner. As we will discuss in the next section,

such innovation brings profound changes to the financial markets.

However, innovations in information technologies also pose new challenges. One

of the most important challenges in the post-9/11 world is security. Understandably,

security concern is even more pungent in financial services. How can we bring

convenience and easily accessible financial information to consumers while still ensuring

privacy and security? Security technology research in the past several decades have

developed a wide variety of effective algorithms and tools. But how to make these

technologies suitable for financial market’s special needs is a major challenge. For

example, building private secular networks for every application may ensure security, but

such security model will defeat the very goal of financial services, which is to bring

customers access to the financial information from every trading floor of the global

 42

markets. Obviously, the demand for high security creates new business opportunities as

well as new challenges in today’s financial markets. In this article, we address these

unique challenges in securing financial services and also suggest several technology

solutions to meet these challenges.

In the following sections, we first identify the advances of information

technologies in financial markets and discuss the business benefits behind these technical

innovations. We then discuss the security priorities and solutions related to those trends.

The technology sections of this article are mainly introductory and focused on how

various technologies can be used to achieve the security goals we had identified.

1.2. New Information Technologies for Future Financial Services

The Internet has already changed the way most people trade stocks by bringing

up-to-date market information and do-it-yourself trading to average investors. As more

people directly participate in the market activities, information technology has to evolve

to accommodate a variety of new needs. For example, nomadic professional traders want

the opportunity to trade when they are on the way; International brokers want to trade in

multiple markets simultaneously; Diversified investors want to trade bundled portfolios;

High volume traders require high levels of anonymity and security.

To create more secure and flexible financial services to meet these new demands,

new technologies are been leveraged. Two technologies that play essential roles are

wireless information technology and web services technology. These two technologies

offer financial traders unprecedented convenience, choices and speed to access dynamic

financial information and to make real-time decisions. This in turn benefits the whole

market by increasing liquidity and reducing information asymmetry.

 43

1.2.1. Wireless Information Technology

Wireless information technologies allow traders to access financial services

conveniently. Traders can trade at unconventional places and hours. That gives rise to the

possibility of 24/7 continuous financial markets, which can handle larger volumes than the

current 8 hours a day weekday markets. High volume trading could boost market liquidity

and lowers immediacy costs significantly (Fan, et al, 2002, O’Hara, 1997).

Wireless information technologies also allow market information to reach traders

more quickly. As Glosten and Milgrom (1985) pointed out, high-speed information flow

reduces information asymmetry between knowledgeable traders and market makers,

allowing market makers to set more fair bid-ask prices with smaller spreads. It benefits

the whole market as liquidity traders will lose less to knowledgeable traders.

1.2.2. Web Services

Financial traders also ask for more dynamic and flexible services from the server

side to take full advantage of the increased market opportunities. Those services are likely

to come from many competing vendors. One big issue is that how these vendors can talk

with each other to provide useful, integrated services to traders. A very promising

emerging technology on Internet scale service integration is web services. Web services are

self-contained, self-described, dynamically discovered applications with Internet based

interfaces. Web services provide platform neutral reusable distributed software

components. The key to web services is open standards to achieve interoperability among

service providers.

The value of web services technology in financial market is not to establish a

monolith service giant. But rather, loosely coupled web services allow a variety of service

providers to compete and cooperate in a global financial market. For example, in a stock

exchange, the trader needs to go through several steps, including price quote,

 44

authentication, order and payment, to complete a transaction. Each of those steps can be

handled by web services from competing providers. The traders benefit from the

competition among providers at each step.

Web services can talk with each other and dynamically re-configure the behaviors

of peer web services. Such automated web services across multiple markets allow traders

to access financial information of every global market simultaneously. That helps traders

to make informed decisions and capture more trading opportunities. That also helps to

increase trade volumes and the speed of information flow, thus increase liquidity of the

markets.

However, due to the sensitivity of financial data, any new IT application has to

meet very strict security standards. For instance, web services technology champions on

open communication standards and allows everyone to compete. But open systems are

also more vulnerable to security attacks. Obviously, when new information technologies

have radically improved the performance of financial market, they also evoke new

security challenges. One key to the success of financial market is to identify and attack

security problems. In the next section, we discuss security requirements and special needs

for current financial markets.

1.3. Security Challenges

In this section, we will first review general security requirements of financial

services. Then, we will discuss special security challenges when we integrate wireless

technologies with web services.

1.3.1. General Security Requirements

Security is critical to financial markets. Attacks could selectively disable individual

traders or cause denial-of-service (DoS) of the entire market. Attackers could also

 45

intercept or modify critical market information. Results of those attacks are severe: they

could destroy the trustworthy of the entire financial market system. In general, all

financial services, wired or wireless, should meet the following security requirements.

Authentication and Authorization: If a trade execution service receives a trade

order from a trader, it must be able to verify the trader's identity and privileges. On the

other hand, it is equally important that the trader who receives any financial information

can verify that such information is from trusted sources. The authentication check is

usually done by verifying digital certificates issued by trusted agencies or by security

tokens. The service providers can look up access control directories to determine access

privileges for authenticated users.

Prevent Shill Fraud: a trader commits shill fraud if she signs up for multiple

identities and poses as several different traders to manipulate the price (Hidvégi, 2002). In

interoperable authentication services, shill fraud may be prevented by linking electronic

identities with physical identifications (such as driver licenses) or even biometrics

information.

Data Integrity: Financial messages have to travel through multiple routers on the

open network to reach their destinations. We have to make sure that the information is

not modified in the middle of the transmission. The data integrity is usually assured by

cross checking the message with a public key encrypted message digest called digital

signature.

Confidentiality: Financial transaction data is highly confidential. Even a carelessly

leaked intention of large trades could be exploited and causes substantial damage to the

trader (see front running attacks below). The only way to ensure confidentiality on a

public network is through strong encryption.

 46

Nonrepudiation: When a trader submits an order, she wants to confirm that the

broker does receive it. That could save disputation later if the order does not go through

for some reason. Nonrepudiation can be guaranteed through a central authority that

verifies and time stamps digital signatures

Prevent Denial of Service (DoS) Attacks: DoS attacks flood the financial services

or communication channels with enormous amount of useless data and prevent the

system from responding to legitimate requests. For investors, a paralyzed financial

trading network not only means lost opportunities and lost money, but also directly

threatens traders' confidence towards the entire financial market. One especially

devastating kind of DoS attacks is clogging attack. Clogging attack exploits the fact that

public key operation is very slow (1000 times slower than secret symmetric key

operations). The attacker could send a lot of fake public key requests to exhaust the

server's computational resources. DoS attacks, especially in their distributed forms, are

impossible to completely prevent at the application level. The whole network

infrastructure, pricing structure and law enforcement need to be involved to fight against

DoS attacks (Geng and Whinston, 2000) .

Prevent Front Running: Front running usually refers to the illegal practice that a

broker trades before his clients and makes a profit exploiting the information about his

clients' trade intentions. In a broader sense, front-runner can be anyone who can intercept

a trader's order information and insert his own trade order before the other trader's. Front

running creates a security risk for the financial market since traders can no longer trust

that their order information will not be taken advantage of.

1.3.2. Special Security Issues for Wireless Financial Market

Compared with financial market operated in the wired world, wireless financial

markets require even more strict security measures because:

 47

Wireless communications are prone to interception. Recent security flaws in IEEE

802.11 standards (Borisov et al. 2001, Miller, 2001) showed that a determined cracker can

intercept and decrypt a company's entire local wireless network communications in a

matter of hours using a laptop set up in the company's parking lot.

Compared with the wired Internet, the wireless infrastructure is more vulnerable

to DoS attacks due to its centralized base stations and limited radio spectrum.

Wireless devices have very limited CPU processing power and are therefore

vulnerable to clogging attacks.

Due to the above three weakness and large latency in wireless communications,

wireless financial service clients are especially vulnerable to front running attacks.

1.3.3. Special Security Issues for Integrated Financial Markets

Due to the multiple levels of intermediaries involved, security of integrated

financial markets powered by web services technologies can be a very complex issue.

Traditional Internet secure communication channels may not be sufficient to meet new

security requirements.

One crucial component of financial service security is user authentication and

authorization. However, multiple vendor supported financial services could make user

login a nightmare if each single service provider has its own authentication schemes. That

would totally defeat technologies’ benefits of convenience. So, single sign-on schemes that

are secure and friendly to both service providers and consumers are required.

Although web services can create security challenges, it can also be a powerful

tool to provide security solutions. Web services enable us to create security oriented

service intermediaries and offer security services as utilities. That could separate the

business functions of information service providers from security service providers. It

allows users to choose and pay for the security they really need.

 48

In the next section, we survey existing protocols and designs that could meet those

security requirements.

1.4. Security Protocols

1.4.1. Secure Communication

On the Internet, communication security is usually ensured by secure sockets

based on Secure Sockets Layer (SSL) and Transport Layer Security (TLS) (Dierks and

Rescorla, 2002) protocols. In the rest of this article, we refer all SSL/TLS based protocols

as SSL for convenience. The secure HTTP protocol (HTTPS) is based on SSL. Since web

services communicate with each other using XML-over-HTTP, it is natural to choose SSL

to secure financial web services. However, SSL has some serious problems when it comes

to meet the security challenges in today’s financial market.

SSL is based on point-to-point connection sessions and each SSL session is

independent. SSL does not support multiple party or indirect communications very well

(IBM, 2002). But in current financial market, each transaction can involve multiple related

connections simultaneously to multiple parties and several layers of intermediaries. For

example, a stock trade would involve simultaneous connections among brokerage firms,

banks, the stock exchange and infrastructure services from the underlying service grid. In

addition, many financial information services, such as news services and stock quote

services, are based on multicast subscription models. We need to secure the

communication content rather than individual SSL connections to provide end-to-end

security.

SSL indiscriminately encrypts all communication data using the same key strength

regardless of needs. But given the diversity of financial services, some data might need

more protection than others. For example, an account number needs stronger encryption

 49

than a piece of economic news. Using SSL for such tasks creates unnecessary

computational overhead, which makes the system vulnerable to clogging attacks. Also,

without a third party server, SSL cannot provide non-repudiation.

To facilitate more flexible security designs in XML applications, several secure

XML protocols have been proposed. Secure XML protocols provide ways to transport

security meta information with the XML content itself. Most secure XML protocols can

easily bind with SOAP messages by adding special XML elements to the SOAP headers.

The security information includes digital certificates, security tokens, digital signatures,

encrypted data and key references. Those protocols also allow applications to sign or

encrypt only parts of the document. Secure XML greatly simplifies the development

work to provide efficient end-to-end security through multiple intermediaries and

complex network topology. Important secure XML protocols that are being standardized

by W3C include XML Digital Signature (DSIG) (Eastlake, et al, 2002a) which provides

efficient ways to guarantee data integrity; and XML Encryption (Eastlake, et al, 2002b),

which allows encryption of part of the document to provide confidentiality.

On top of those basic protocols, we have to define processes such as the key

exchange and policy negotiation. SeXTP (Secure XML Transport Protocol) glues XML

DSIG and XML Encryption together to form a client/server communication protocol that

could substitute SSL. SeXTP offers a mechanism to support non-repudiation. WS-

Security and WS-Trust (Web Services Security and Trust) specifications (IBM, 2002)

endorsed by IBM and Microsoft attempt to give a complete solution to web services end-

to-end communication security needs.

1.4.2. Authentication and Authorization

As we have discussed, single sign-on is a core security requirement for today’s

financial markets. However, each service provider should be able to implement an

 50

authentication system that meets its own standards. Then, they can decide to accept

authenticated traders from partner realm's authentication servers.

A very promising authentication technology for decentralized single sign-on

solutions is Kerberos (Neuman and Ts'o. 1994). Kerberos is based on shared secrets

(passwords) between the user and the Authentication Server (AS), and among Kerberos

servers in partner realms. The access to a service is granted by a dynamically generated

ticket that expires in a short time. Kerberos servers from different realms (brokerage

firms, markets, banks and information services) can team up so that they can recognize

users authenticated from partner realms. Figure 3.1 illustrates the architecture of Kerberos

based financial web services.

In addition to private key based Kerberos, we can also implement single sign-on

infrastructure using public key technology. Public key certificates can build trust among

parties that have never met before. Digital certificates can be recognized among partner

institutions and automatically authenticate certificate holders.

Single sign-on authentication and authorization can also be implemented using

standard XML protocols. SAML (Security Assertion Markup Language) (OASIS, 2002)

is an XML standard from OASIS (Organization for the Advancement of Structured

Information Standards) for exchanging authentication and authorization information.

SAML elements can contain Kerberos tickets, security tokens and digital certificates.

They can bind with SOAP messages to provide single sign-on services for web services.

IBM and Microsoft's WS-Federation, WS-Authorization and WS-Security protocol

family (IBM, 2002) promotes a single sign-on scheme competing with SAML.

1.4.3. Wireless Security

Wireless devices could bring traders unprecedented convenience to access

opportunities in financial markets. However, wireless devices have very limited

 51

computing power to implement sophisticated cryptography algorithms. To enhance

overall system security, it is essential to select the right wireless client and network

architecture.

On wireless devices, we have two types of client applications to choose from:

WAP/WML (Wireless Application Protocol, WAP Markup Language) (Open Mobile

Alliance, 2003) browsers and smart independent programs.

WAP is a mature and widely used technology to access the Internet from cell

phones and it is already available on millions of phones. Although most WAP browsers

can only display WML pages, they could support general XML driven web services

through a proxy architecture. An Internet proxy server can interact with web services on

behalf of wireless phones. The proxy server keeps track of each wireless phone through

cookies. When a phone needs to access one or a combo of web services, it sends the

request to the proxy in a pre-agreed WML format. The proxy translates the request to

SOAP based service requests to web services. When the web services respond, the proxy

combines the results and creates a WML page for the wireless phone. The proxy servers

make the WAP based wireless network and XML based web services network

transparent to each other (See Figure 3.2). It is relatively cheap for financial institutions

to install proxy servers and start to serve their traders on their existing WAP phones right

away.

By contrast, smart independent programs on wireless devices can access web

services and process XML messages directly. They have rich user interfaces and are easy

to customize. Compared with WAP devices, wireless devices running smart programs are

bigger and more expensive. However, smart programs can be significantly more secure

than WAP applications: (Summarized in Table 3.1)

 52

A smart client can process XML messages directly. Smart clients do not have to

rely on the flawed WAP security model (Miller, 2001). They can utilize secure XML

protocols to interoperate directly with backend Web services and provide end-to-end

security solutions.

A WAP client cannot process application data on its own. All the data storage and

processing are done on the server side. WAP based applications are powerless if the

network connection is lost. That makes them vulnerable to DoS attacks or even normal

traffic congestion. Smart programs allow the wireless device to operate continuously with

local data even when the network is temporarily not available (Yuan and Long, 2002).

The lack of ability to process data on WAP devices makes any complex

transaction long procedure involving multiple connections, which are prone to errors and

security risks (Yuan and Long, 2002). The long latency and multiple connections make

WAP clients vulnerable to front running attacks. A properly designed smart program

should be able to support atomic transactions.

The WAP proxy architecture relies on centralized proxy servers that are subject to

targeted cracking and DoS attacks. If a proxy server is taken out from the network, all the

WAP devices it supports become disconnected. By contrast, smart program clients are

completely decentralized and have much lower risk.

To summarize, the WAP mobile clients require "always-on" connectivity to

function. However, today's wireless networks do not provide that level of reliability and

bandwidth. That was a major factor limiting the adoption of WAP-based mobile

commerce. As a result, the "occasionally connected" application paradigm supported by

smart mobile clients, has become increasingly important for high availability mobile

applications.

 53

Smart clients can run standalone on smart devices and only connect to backend

data source on an as-needed basis (e.g. daily synchronization). Leading smart mobile

client platforms include the Java 2 Micro Edition and Microsoft .NET Compact

Framework.

1.5. Conclusion

Financial service is an information intensive industry and it is being revolutionized

by the fast advanced of information technology. New technologies such as wireless

technology and web services are drastically increasing the trading efficiency for both the

markets and individual traders. The improved efficiency can in turn make the market more

efficient.

However, development in financial market would be hindered if there is no

adequate security measures because the financial market is build upon trust. Wireless web

services are still emerging technologies and security issues have not been thoroughly

discussed. We identified several core security areas including intermediary assisted

communication, single sign-on authentication and authorization, web services security,

and wireless clients security. We then surveyed some security solutions including secure

XML, Kerberos, smart clients and secure application provision. With industry support

on tools and standardization, financial markets will become more secure and benefit every

participant in it.

2. USE WIRELESS WEB SERVICES TO IMPROVE PATIENT COMPLIANCE IN CLINICAL
DRUG TRIALS

2.1. Patient Compliance and Monitoring in Clinical Drug Trials

Advances in information technology have changed the way researchers and

physicians conduct clinical drug trials. Utilizing pervasive computing networks, we are

 54

able to put non-intrusive, always-on, network connected information devices everywhere

in a patient's life. That could especially benefit outpatient clinical drug trials and

therapies conducted in patients' natural settings. Outpatient trials are important because:

They are essential for testing drugs designed to work when the patient interacts

with her natural environment. Examples of those drugs include allergy drugs, pain

relievers and anti-depression drugs;

Patients do not have to stay in the hospital to get the treatments. That could

potentially attract more volunteers to participate in clinical trials. More than 80% of

clinical research trials are being delayed because there aren't enough volunteers

(Lasalandra, 2002);

Since the trials and therapies are conducted at home, there is no need to use

expensive hospital facilities and personnel. The cost can be greatly reduced.

However, compared with inpatient trials, outpatient clinical trials and therapies

have to deal with one special issue: the monitoring of patient compliance. Without a

controlled environment, it is difficult for the physicians and researchers to know if the

patients have followed the trial protocols strictly. In order to evaluate the impact of

noncompliance and even proactively reduce noncompliance, we need to monitor the

patients' activity. Proper monitoring can also reveal early warning signs to improve the

margin of patient safety.

In this article, we will first examine the importance of patient compliance. Then

we investigate how wireless electronic data capture (EDC) technology coupled with the

wireless Internet and web services could make it easier for both patients to comply with

the trial protocols and investigators to monitor the progresses. We will survey current and

emerging technology solutions. The technology sections of this article are introductory

 55

and focused on how various technologies can help us implement secure and pervasive

clinical trial applications.

2.1.1. Compliance to Dosing Instructions

One of the most important aspects of compliance is that the patients need to take

the correct dosage of drugs at specified time. Dosing instruction compliance is critical

because of the following reasons.

Clinical drug trials are designed to test the safety and efficiency of drugs when

investigator's protocols are strictly followed (method effectiveness). The method

effectiveness data is later used as the basis to determine appropriate prescriptions for

general public patients. However, if a trial patient fails to follow the prescriptions, the

individual drug taking pattern would result in a different effectiveness (use effectiveness).

Using use effectiveness as method effectiveness causes errors in determining the safe and

effective amount of drug prescription for the public.

New drug researches need to collect the accurate drug administration and patient

response information to estimate the pharmacokinetic parameters for new drugs (Girard

et al. 1996), which indicate how drugs interact with the body in terms of absorption,

distribution, metabolism, and excretion. That requires patients to follow the instructions

precisely and submit accurate reports on their drug taking patterns.

From the patients' perspective, dosing noncompliance causes undesired outcome

and reduces the margin of safety. Missed dosage can change the pharmacokinetics effects

of the drug. That is especially a problem for some newly developed drugs which have

long dosage intervals designed for convenience (Levy, 1993). Underdose of drugs can

cause relapse of serious diseases and development of drug resistance (Kastrissios and

Blaschke, 1997). On the other hand, overdose can raise safety risks from side effects.

 56

Another important issue in drug trials and therapies is drug interactions. There are

many over-the-counter drugs available in the market. Some of them have undesirable

interactions with the others. Since drug interaction is very complex, the knowledge and

expertise are generally not available to average patients. It is important to track the exact

drugs a patient takes and detect any potential interaction throughout the trials.

Unfortunately, patients often fail to comply with the physician's dosing

instructions in outpatient trials and therapies. They easily forget to take drugs on time,

especially in the afternoon or evening hours. Missed dosage is the most important drug

dosing noncompliance issue in clinical trials and therapies. To make things worse,

patients sometimes make up the missed doses later when they remember. Researches

have shown that up to 80% to 90% of adult patients fail to take drugs at the frequency

prescribed by the physicians. That is even true for patients whose lives are dependent on

drug therapies. For instance, studies show that up to 80% of AIDS patients fail to take

their drugs on time (Kastrissios et al, 1998)

Various methods have been developed to monitor patients drug taking behaviors

in clinical trials. Those methods include patient self reports/diaries, pill counts, special

chemical and physiological markers. Based on the drug taking pattern data collected after

the trials, statistical models can be developed to correct and calibrate use effectiveness to

method effectiveness (Girard, et al. 1998). However, those methods are indirect and only

collect/use statistical patterns averaged over a period of time. Thus, they are neither

accurate nor suitable for pharmacokinetics studies which require the knowledge of the

exact time course of drug exposure and response.

A recent trend is to use EDC devices to monitor the patient's behaviors and record

a timestamp for each drug dose (Kastrissios & T. F. Blaschke, 1997). A simple example

of EDC is to install a long life battery powered smart chip on the pill bottles. The device

 57

is triggered every time the patient opens the bottle. It has proven to be a low cost and

accurate patient monitoring mechanism. However, current EDC solutions mainly use

simple and standalone devices with little real-time communication and re-configuration

capability. They are only passive data collection tools and do not proactively reduce

noncompliance. They can not protect patients from underdose and overdose risks. In this

article, we will investigate how to take advantage of new wireless technologies and back

end information technologies to create dynamic and proactive EDC solutions to not only

monitor but also improve patient compliance.

2.1.2. Compliance to symptom report diaries and surveys

It is often important to get both objective data on patient's physical conditions and

subjective data on self-reported symptoms during drug trials. Perceived symptom relief

reported by the patients is crucial information in evaluating the effectiveness of many

drugs. For example, researchers in anti-depression drugs, allergy drugs and pain relievers

have long used Daily Symptom Report (DSR) and periodic surveys to evaluate drug

effectiveness.

Therefore, it is crucial for the patients to comply with investigator's protocols to

report their symptoms accurately and timely. A lot of research efforts have gone into

designing the right survey questionnaires that best reflect the patient's perceived

symptoms and comfort levels (Wilkie, et al, 2001a). However, these paper and pencil

based surveys are intrinsically difficult for patients to comply with. It is cumbersome for

the patients to bring the questionnaires along and fill out the forms from time to time. To

avoid the trouble, many patients would just fill out the survey at the end of the day. But it

is hard to recall accurately the symptom changes throughout the day.

Experiments have been conducted to use interactive computer devices to monitor

pain symptoms in hospital settings (Wilkie, et al, 2001b). Through dynamic interactive

 58

surveys, physicians can ask patients specific questions about symptoms at real time.

Those devices also enable physicians to gather on-time information on early warning

signs and thus have great potentials to improve trial and therapy safety. But these

computer devices are not suitable for outpatient clinical trials. They are simply too bulky

and inconvenient for patients to carry around. We need new tools that are pervasive and

can integrate into patients' everyday life to monitor symptom changes.

Appropriately applied in outpatient clinical trials, pervasive EDC devices can

monitor both the patients' self-reported symptoms as well as objective vital sign data,

such as pulse and blood pressure anytime from anywhere. With smart back end services,

EDC information devices can automate and streamline the data flow, improve efficiency

and reduce data entry errors. In later sections, we will discuss smart pervasive diary and

survey devices in more detail.

2.2. Boost Compliance with Wireless Technologies

2.2.1. Wireless devices as a proactive monitoring tool

In addition to being a monitoring and reporting tool, wireless information devices

provide dynamic interaction channels between patients and physicians. Physicians can

deliver proactive reminders to patients and thus actively improve compliance rather than

merely compensate for the after-fact effects of non-compliance.

Wireless EDC devices can be pervasive in a patient's life: Embedded devices can

be attached to the pill bottles; Vital sign monitoring devices can be attached to the body;

Diary collecting devices can be carried around as build-in components in cell phones or

PDAs. In a wireless clinical trial application, all those EDC devices can be connected

through a personal hub device, which could be a TV set-top box at home, an automobile

mounted geo-information system in the car or simply an advanced cell phone or PDA

 59

with an extra short range communication module. Short range wireless communication

technologies such as Bluetooth have made this pervasive personal wireless network

possible. Figure 3.3 shows the proposed front end architecture.

If we just want to monitor drug dosing and interactions, the system can be greatly

simplified. Instead of wireless electronic chips, we can attach bar code to drug bottles and

bar code scanners to hub devices (such as a cell phone). The patient just needs to scan the

bottle every time she takes the drug. The patient can also scan the bar codes of other

medicines to get instant information about potential interactions with drugs she is taking.

The bar code solution could reduce the use of the expensive, complex and potentially

insecure local wireless network.

The wireless EDC information hub then communicates with back end services to

report data and get further instructions on what to do next. For example, a back end

program could contact the hub and instruct it to check the device on the drug bottle at

fixed intervals. If the patient missed a dose, the back end service could automatically call

the patient's cell phone to remind her. If the investigator decides to change the trial

protocol, he could simply update the back end through a web interface. The back end

service could then notify the patient and update the monitoring scheme.

2.2.2. Wireless devices as a subjective data collecting tool

Wireless EDC devices can collect more accurate data on the patient symptoms at

real time. Since these symptoms are recorded while patients are interacting with their

natural environment instead of in the hospital or laboratory, they could better reflect "real

life" drug effectiveness. Moreover, wireless EDC devices can improve trial safety by

reacting more quickly to help patients when the first sign of abnormal symptom are

detected.

 60

Unlike dosing information that could be collected automatically, subjective

symptom reports depend on the patients to provide useful data. Pervasive wireless EDC

devices provide the patients multiple ways to dynamically input their responses. They

could ask the patient to describe symptoms in words, or answer multiple choice survey

questions. Those questions need to be interactive and dynamic so as to better fit each

patient's unique experiences and environment. The wireless symptom report program

could send information to back end services whenever a new symptom develops. If any

abnormal symptom occurs, physicians or artificial intelligence programs at the back end

could push a real-time survey to the patient and further probe the abnormal situation.

They can then make informed decisions on whether any action needs to be taken. If

special care is needed, back end services could pull geometric and vital sign data from the

personal EDC hub and dispatch required emergency services.

2.2.3. Pervasive user interfaces

One major advantage of using wireless EDC devices is that they cause few

disruptions to the patients' normal flow of life. For many users, a small wireless

information device can seamlessly melt into their everyday life just like a small notebook

or a pen. However, without carefully designed user interfaces, the small size and limited

processing power of wireless devices might offset their pervasive advantages. In this

section, we will discuss future multimodal mobile applications which combine two types

of user interfaces: graphic/text based interfaces (GUIs) and voice based interfaces.

The success of PDAs has demonstrated that desktop GUIs can be migrated to

small devices with relatively large screens. Messages and questionnaires to patients can

be displayed as text labels or multiple choice boxes on the LCD screens of cell phone and

PDAs. The patient can then make choices or enter text in a text form box using a pen-like

stylus and/or mini-keyboards. The current hand writing recognition software can run on

 61

very small devices and only require minimal training on the user side to write machine

recognizable text. For users who are not comfortable with writing on touch screens, they

can use portable keyboards. However, GUI is not suitable for all occasions in clinical

trials. For example, when a patient needs to fill out dynamically generated symptom

report questions, long text input/output on tiny keyboards and small screens can be time-

consuming and disruptive.

Compared with writing or typing, speech is probably a more efficient way for the

patients to input long answers. A very promising pervasive user interface technology is

speech synthesis and recognition. Although on-device real time speech recognition is still

beyond the computational capability of the current wireless devices, the situation might

change in the next couple years with more advanced algorithms and more powerful

wireless chips. Given the current technology, speech based user interfaces can be

implemented on the server side. Companies have developed speech based information

systems based on VoiceXML (McGlashan et al, 2001). A VoiceXML system has a voice

synthesis and recognition engine installed in a VoiceXML gateway and a number of

VoiceXML servers. VoiceXML pages themselves are authored in text format and can be

dynamically generated from databases. VoiceXML speech recognition and synthesis

engines/gateways are usually hosted by an Application Server Provider. The physicians,

hospitals and clinical trial operators only need to generate necessary VoiceXML pages.

It is common to setup VoiceXML gateways in call centers and support voice-only

applications. However, like any other technology, voice is best fitful for only certain

types of applications. For pervasive computing applications in various clinical trials,

multimodal applications, which mix voice with graphics, text and even stream

video/audio data, are needed. Voice over IP (VoIP) can allow VoiceXML to be fully

integrated with graphic/text based user interfaces in a same application. Figure 3.4

 62

illustrates the structure of a wireless multimodal EDC application with integrated voice

and digital data user interfaces. Multimodal application is a very active research and

development field. Low bandwidth voice data compression algorithms such as IBM's

Recognition Compatible Voice Coder (RECOVC), are currently being developed. W3C

and the SALT (Speech Application Language Tags) forum are in the processes of

standardize markup languages for multimodal applications. So, we anticipate truly

operable multimodal mobile applications will be available to clinical trial practitioners in

the next several years.

2.3. Back end Services and Infrastructure

2.3.1. Smart back end services

As we have seen from the VoiceXML example, wireless devices do not posses

much processing power and they have to delegate a lot of tasks to the back end services.

That frees the wireless EDC information hub to do what it is most needed -- to provide

pervasive front ends.

The complexity and dynamic nature of drug trial and therapy back end services,

as demonstrated in the examples from previous sections, demands a network of services

from different providers. Those services include patient recruit and authentication, 24/7

vital sign data monitoring, real time data analysis, proactive warning, emergence services

coordination and insurance/payment handling. Those application services are built on the

top of infrastructure services such as wireless Internet services, device location services

and VoiceXML gateways. All those services can all be modularized into reusable units

and outsourced to specialized expert vendors. Figure 3.5 is an illustration of a back end

architecture. Many services from many different providers are involved in a

heterogeneous network structure.

 63

A serious challenge we face is how to make those service components work

together. An emerging technology designed to solve Internet level service integration and

interoperation is web services. In the following sections, we introduce web services

technology in the context of clinical trial applications.

2.3.2. Interoperable web services

Web services are self-contained, self-described, dynamically discovered,

interoperable applications with Internet based interfaces.

Distributed computing services have long been able to work with each other

through remote procedure calls and remote object frameworks. However, to build such an

interoperable network on the Internet scale requires industry wide standardization of

communication protocols. There are XML based protocols to standardize web services'

dynamic discovery processes (UDDI), service interfaces (WDSL) and asynchronous and

synchronous messaging (SOAP and XML-RPC). There are many other XML protocols to

support advanced or industry specific functionalities.

Through UDDI and WSDL, web services can automatically discover and interact

with each other without human efforts. Web services communicate with clients and each

other over the open Internet through the HTTP protocol. This XML-over-HTTP model

can decouple service interfaces by adding a new open, robust, human readable abstraction

layer between them. Loosely coupled interfaces are easy to integrate and maintain. Web

services technology allows service providers to develop platform neutral reusable

distributed software components. The key to web services is open standards and

interoperability among service providers.

Under standardized XML interfaces, web services functions are implemented

using popular application server technologies. Java and .NET, the two leading server side

development platforms, both provide excellent support for web services developments.

 64

On the front end, wireless devices must support web services XML protocols. A very

promising wireless development platform is the wireless Java platform. Wireless Java

web services APIs are currently being standardized in the Java Community Process

(Yuan and Long, 2002).

2.3.3. Web Services Networks

The core concept of web services is to allow multiple vendors to compete in a

common market place and therefore give customers the freedom to choose for each

service component. To build a complete integrated pervasive computing environment, we

also need security, transactional reliability and service level agreements supports.

The future application level web services will build on the top of a network of

underlying utility services called the service grid (Hagel and Brown, 2001). Unlike the

traditional Internet's connection based architecture, web services are driven by XML

messages. Messages can be intercepted and processed by multiple intermediaries along

their routes. Those intermediaries are the building blocks of the service grid network. The

topology and implementation of the service grid are still in the experimental stage.

One of the most important services that the underlying grid can provide is

security. Given the importance of security and trust in health care industry, we will

devote the next section to discuss security strategies and how they can be implemented on

both the web services end and the wireless end.

2.4. Security

Today's patients are aware of the importance of privacy of their medical records.

According to a Gallup pool conducted in 2000, 77% Americans said that the privacy of

their personal health information is very important. Yet, according to a 1999 IBM privacy

survey, only 23% Americans trust health providers to handle such information properly.

 65

Government regulations such as the Health Insurance Portability and Accountability Act

(HIPAA) require health care providers to protect patient's private information. Protecting

patient's privacy is equally important in clinical trials. Clinical trial operators and

hospitals must provide adequate authentication and authorization checks before anyone

can access the patient databases. They also need to guarantee that the data remains

confidential when it travels through the open Internet (Hagel and Brown, 2001). In the

following sections, we identify security priorities and survey existing security

technologies for clinical trial applications.

2.4.1. Authentication and Authorization

Patients and physicians have to be authenticated before they can access sensitive

data. After authentication, the system needs to give each individual the appropriate access

privileges. For example, a patient is allowed to check in new data and retrieve history

data from her own records; An investigator is allowed to monitor and send new

instructions to a group of patients participating her trials.

Since most web services are outsourced to independent vendors, it is especially

important that all those service providers adopt a uniform single sign-on authentication

scheme. Patients and physicians do not have to sign in multiple times to access a variety

of integrated services. Furthermore, interoperable single sign-on services present each

patient a single point of entry to manage and take full control of all her medical data

across many vendors. Advanced forms of authentication services should uniquely

identify individuals and automatically authenticate them. For instance, each patient and

physician could have a biometric information scanner embedded into their EDC hubs.

Such device could provide its owner secure and automatic authentication services.

Due to the multiple vendor nature of the back end web services, it is impractical

to let a single company provide centralized authentication services for all parties.

 66

Centralized single sign-on scheme could in fact harm the patients if an untrustworthy

monolithic company controls access to all medical data. Therefore, a viable single sign-

on model needs to allow each vendor to implement its own security protocols. Then,

different vendors can form alliance to accept authentication tokens from partner realms

and eventually create an individually controlled, decentralized authentication network.

Current security technology such as Kerberos can provide robust implementation for such

networks.

2.4.2. End-to-End security through secure XML

Authentication and authorization are only part of the big picture of security issues

in pervasive clinical trials supported by wireless web services technology.

Communication security is one of the biggest unresolved problems in web services.

Unlike traditional COBRA/RMI based remote method calls, web services expose their

interfaces out side the corporate firewalls. Moreover, web services are driven by XML

messages and the messages have to go through multiple intermediaries in the service grid.

For example, a service request to access a patient record has to go through the

authentication and authorization services first; A transaction request for insurance co-pay

has to be recorded and monitored by the underlying transaction assurance services. Due

to the intermediaries involved, traditional Internet secure connections (such as

SSL/TLS/HTTPS) can not be used effectively in the world of web services (Yuan et al,

2002). We need a way to secure XML content itself from end to end rather than securing

individual intermediate communication channels.

Secure XML standards specify how to embed security information inside XML

messages. The security information includes keys, digests, digital signatures, certificates

and security tokens. They accompany XML documents from end point to end point.

 67

Secure XML also allows us to encrypt and digitally sign part of the document and

therefore implement flexible security policies.

Several secure XML standards have been proposed by Internet standard bodies.

W3C's XML Digital Signature and XML Encryption standards provide the basis to store

security information in XML documents; OASIS's SAML (Security Assertion Markup

Language) (OASIS) defines XML presentation of authentication and authorization

information. SAML can contain Kerberos security tokens and be used to support single

sign-on web services. Industry leaders such as IBM and Microsoft have teamed up to

support a complete family of XML security protocols called WS-Security (IBM, 2002).

WS-Security is based on W3C standards but has its own authorization protocol to

compete against SAML.

All those secure XML security protocols can bind to SOAP protocols. For

example, a SOAP message header can contain an XML Digital Signature segment and a

SAML segment to authenticate and authorize itself.

2.4.3. Wireless security

Compared with the wired back end, wireless communications are even more

vulnerable to data interception, manipulation and Denial of Service (DoS) attacks. The

current wireless communication protocols based on private key algorithms have various

security weaknesses. Stronger encryption keys that are longer and slower to compute are

needed. Furthermore, if we want to establish trust between parties that have not met

before, we need to rely on the very slow (up to 1000 times slower) public key algorithms.

However, wireless devices, especially smart card type devices, have too little

battery and processing power to support strong encryption. So, our challenge is to

minimize expensive cryptography, especially public key cryptography, operations while

still maintaining secure wireless communications. Secure XML standards could be used

 68

to meet such challenge. They enable us to implement flexible security policies and use

different algorithms and key strengths for different contents.

As has been pointed out by Geng et al in 2000 (Geng and Whinston, 2000),

wireless devices are vulnerable to Denial of Service (DoS) attacks. In clinical trails, an

attacker can flood the entire wireless spectrum with useless signal and prevent vital sign

and other data from reaching the personal wireless EDC hub device. In addition to

technological, economical and policy solutions proposed by Geng et al., dedicated radio

spectrum can be allocated to medical wireless EDC devices (FCC) to minimize

interference from other home wireless devices and thus makes DoS attacks more

difficult.

2.5. Conclusions

From our analysis, we conclude that using pervasive wireless information

networks to pro-actively monitor patients compliance in drug trials and therapies can

bring a win-win situation to both patients and physicians.

The wireless end consists of EDC devices interconnected through a short range

wireless peer-to-peer network. The hub device with more powerful CPUs and wireless

Internet access communicates with back end services. Wireless EDC devices should

provide multimodal user interfaces to the patients.

The back end consists of a network of interoperable web services built around

standard XML messaging protocols. Web services networks incorporate a variety of

modularized services from competing providers. A major concern for deploying web

services is security -- especially in the tightly regulated health care industry. Web

services related security technologies have gained important industry support and are

developing quickly.

 69

With clear benefits and maturing technology, we might be able to see smart back

end powered EDC solutions widely applied in clinical drug trials and therapies in the near

future.

3. CALLING ALL CUSTOMERS

No marine biologist would study dolphin behaviors just in a fish tank. Why?

Because a fish tank isn't a dolphin's natural habitat, so their behavior in the tank cannot

truly reflect their natural behaviors in the ocean. Studying consumer behaviors in a

laboratory is like studying dolphins in a fish tank. Laboratory environments are unnatural

situations where consumers may behave differently than in the actual shopping and

consumption environments.

To better understand the behaviors of any creature, researchers need to conduct

field studies in natural habitats. However, compared with laboratory experiments, it's

more challenging to do field studies because researchers have to conduct experiments in

much larger environments with much less control over contributing factors. How do

marine biologists study dolphin behaviors in a habitat as big as the ocean? Sophisticated

technologies play an essential role in their research. Electronic tags and hydrophones can

help them observe dolphins' natural behaviors in the ocean more accurately.

Human behaviors, however, are more complex. Simple electronic tags that can

only track motions not only are intrusive to privacy, but they also offer few insights about

human social interaction. More sophisticated methods are clearly needed. For decades,

paper and pencil were the main tools for surveying consumer behavior in the field.

Although these surveys can be relatively cheap, data coding and entry are notoriously

time-consuming and error-prone. These days, researchers use ethnographic research

methods to observe consumer behaviors in their day-to-day lives. Although they can

provide insights on consumers' natural behaviors that may not be gained from laboratory

 70

tests, ethnographic methods are prohibitively expensive and their results are hard to

quantify.

Clearly, the lack of advanced and socially acceptable research techniques have

severely restrained researchers' ability to study consumer behaviors in their natural

environments. However, this situation has begun to change in the past several years.

Many promising new technologies are now available to researchers, such as vastly

improved wireless data networking technology and advanced database technology. The

question is: How do we leverage these technologies to improve consumer research in the

field? To address this question, we propose an innovative way to do marketing field

research-the wireless marketing survey.

3.1. Innovative Data Collection

The wireless marketing survey is a new data collection technique that conducts

marketing surveys on standard wireless phones. In practice, researchers can implement

the survey in text-based or voice-based formats or combine both formats in a multi-modal

survey. In a text-based survey, a respondent can retrieve a questionnaire and display it as

text messages on a cell phone screen. The respondent uses the dial pad to answer survey

questions. Then the answers are sent back to the backend database instantly through the

wireless communication network and the Internet.

In the voice-based survey, a respondent could listen to the questions from her cell

phone and answer the questions by speaking on the phones. All the questions and

answers are processed and analyzed automatically by voice synthesis and recognition

software on voice extensible markup language (VoiceXML) gateway and servers. The

technological implementation of wireless surveys can all be delegated to specialized

companies. Market researchers just need to focus on managing the survey process,

accessing the survey database, and dynamically interacting with respondents in real time.

 71

Compared with other marketing surveys, the unique charm of wireless marketing

survey is its ability to deliver instant answers anytime, anywhere. The pervasive nature of

wireless surveys allows marketing researchers to get data from respondents in the natural

shopping and consumption environments. Its advantages are numerous:

Contemporaneous. Researchers could use wireless survey to record consumers'

real experiences right at the moment of purchase or consumption. To ensure this,

researchers could require respondents to fill the survey at a certain moment of

consumption or decision making.

Mobile. Like a watch, a wireless phone is always with the consumer wherever

they go. It would bring tremendous convenience for the respondents participating in the

survey. Other survey instruments, such as computers or wired telephones, don't have this

"always with the consumer" feature.

Non-intrusive. Researchers would not ring the respondents' cell phones at random

intervals and interrupt the respondents. The respondents have full control of the time and

place to fill out the survey. Even when the research requires respondents to fill the survey

in certain moments, such requirements are agreed upon by the respondents before the

survey and wouldn't be regarded as obtrusive.

Longitudinal. A wireless phone is a personal belonging and can be associated

with each individual. This personal feature makes it easy for researchers to keep track of

each respondent along a period of time, which could make longitudinal studies easier to

implement.

Dynamic. Connecting with the wireless network enables respondents to send

answers to the backend database during the survey. The survey can be programmed to

branch questions automatically based on the respondent's previous answers.

 72

Geographic sensitive. The geographic location of a wireless phone can be located

and tracked in real time. This feature could provide great potential for studying location-

sensitive topics, such as a survey conducted in a certain shopping mall or theme park.

3.2. Potential Applications

Wireless marketing surveys can be used in numerous marketing studies. For

example, Ju Long, Michael Yuan, and colleagues have studied how to use wireless

devices to increase patient compliance in a clinical drug trial, where real-time reporting

of patient symptom changes and drug effects from any location is critical.

The ability to obtain this type of time-sensitive information is one of the key

benefits of wireless surveys. Literature on human cognition and memory has shown that

data collected immediately is more accurate than data collected through retrospective

methods because individuals' memories on feelings and events are often biased and

distorted. For instance, Schwarz and Sudman (1994) suggest that, when subjects are

asked to summarize experience over a time interval, more recent experiences have a

greater influence on recall than more distant ones. Such distortion could create erroneous

results for marketing research. For instance, if we ask a consumer to recall her experience

on a cruise trip to Caribbean, the consumer may only recall those events that happened at

the end of the trip while forgetting events at the beginning of the trip. However, if the

respondent could fill out a wireless survey at the moment of each event, researchers could

have gained a much more accurate understanding of the customer's experiences.

Moment of purchase. How consumers make their decisions at the moment of

purchase still remains a mystery to marketers. Most data gathered from the actual

shopping environment, such as scanner data, are post-purchase data. It only shows what

consumers buy, but not why. This "black-box" perspective is persistent because

researchers didn't have a way to study consumer motivation at the moment of purchase.

 73

Wireless marketing surveys could help researchers open the black-box and better

understand factors that influence consumers' purchase decisions, especially the influences

of situational factors.

As defined by Russell W. Belk (1975), situational factors are factors particular to

a time and place and have a demonstrable and systematic effect on current consumer

behavior. Situational factors' influences are common in consumer decisions. For example,

time since last meal could significantly affect a consumer's purchase decision between a

half-gallon ice cream and a one-pint ice cream.

To measure the influence of situational factors, survey instruments must be

available to respondents in those specific situations. That's where wireless surveys can be

valuable. For instance, marketers could use wireless surveys to study the effect of

background music on buyers' lingering time at a store or how the amount of money

available at the moment of shopping may affect consumers' impulsive buying behavior.

Affective factors of buyer behavior. According to the affective-as-information

framework proposed by Norbert Schwarz (1990), evaluation of the product is not just a

cold, reasoned assessment. In fact, consumers rely heavily on the "how do I feel about

it?" heuristic to make choices. For instance, consumers buy mobile phones not only

because they're useful, but also because they feel cool. The success of Nokia's fashion

designed handset clearly demonstrates the heuristic factors in consumer choices.

Although affective heuristic factors are prevalent in consumer behaviors,

measuring it is difficult. Affective factors are temporal and constructed on the spot.

Hence they are highly susceptible to the context and difficult to recall. Most field surveys

can only rely on retrospective measures, which are often erroneous.

To address such problems, Arthur Stone and colleagues (1999) propose using

moment-to-moment measures and eliminate recall bias by using immediate self-reports.

 74

Wireless surveys exactly fit this proposition. With wireless phone in hand, respondents

don't have to rely on their memories to recall their feelings. For example, marketers can

use wireless surveys to test how a prospective car buyer feels about the car during the test

drive and get the fresh and accurate information on the spot.

Satisfaction at time of consumption. The ultimate goal of marketing professionals

is to make customers happy and satisfied. But is the measurement of customer

satisfaction accurate? Does the data truly reflect the consumer's experiences? Intuitively,

data collected at the moment when the consumers are using the products/services can

more accurately show whether consumers are satisfied or not. Wireless surveys can be

used to do this kind of study. For instance, if you want to know how consumers enjoyed

their visits to Disneyland, you can let selected visitors fill out wireless surveys while they

tour around the park.

In addition, wireless survey can be used to examine the affective factors in

customer satisfaction. Richard Oliver (1993) suggests that disconfirmation of

expectations can't adequately explain the formation of customer satisfaction. Affective

factors during the consumption experience play an equally important role in customer

satisfaction. For example, a new car owner can be satisfied with her car because it feels

trendy even if its gas mileage didn't meet her expectation. Using wireless surveys,

marketing researchers can measure these affective factors more accurately and better

understand consumers' satisfaction formation process.

Longitudinal consumer behavior. Consumer behavior isn't made up of static

phenomena and lone events. Instead, it's a continuous and dynamic process covering the

entire purchasing and consumption time span. Brand loyalty, for example, is not built in a

flash, but arises from trust gained over many transactions. So it's important to integrate

time as a dimension in consumer researches.

 75

However, few consumer behavior studies have adopted longitudinal designs.

Most studies are static and one-shot because keeping track of respondents is a tedious and

costly task. To conduct longitudinal studies on consumer behavior, marketers need a

suitable technique that can track respondents in a timely and non-costly manner. Wireless

surveys are useful in implementing longitudinal studies. The "always on" feature makes it

easy for researchers to keep in touch with the respondents over time.

Interpersonal influence on consumer behavior. The magic power of word of

mouth has long been treasured by marketing professionals. One word from mom is far

more trustworthy than a thousand advertisements. But little is known on how it works.

For instance, does it have a different influence on men and women? How does it affect

customer satisfaction? Answers to these questions will help marketers better understand

and leverage the power of word-of-mouth in marketing campaigns.

During wireless surveys, researchers can initiate wireless communication between

the respondents through voice- or text-based messaging and study how this interpersonal

communication influences consumers' behavior.

Effectiveness of advertisements. The goal of advertising is to have a long-term

impact on consumers, which helps build brand equity. Longitudinal wireless surveys can

be a good way to study advertisements' long-term effectiveness.

Furthermore, wireless surveys can be used to study effectiveness of outdoor

advertising, a long overlooked area in marketing research. According to the Outdoor

Advertising Association of America (OAAA), in 2001, advertisers spent a total of $5.3

billion on outdoor media. Surprisingly, little research has been done on this billion-dollar

market. How effective are those advertisements on highway billboards? Wireless surveys

can help answer those questions because the wireless phone is always available to

respondents on the road.

 76

3.3. Implementation Procedure

Researchers and survey administration software. Wireless surveys fully leverage

the power of the Internet. Using Web-based survey management software, researchers

can design the survey questionnaire, monitor survey processes, and interact with

respondents from anywhere convenient to them. Data also can be transferred, stored, and

analyzed immediately from the Web.

Respondents. All it takes to participate in a survey is a standard Internet-enabled

cell phone. Respondents can either be selected from a consumer panel or sampled from a

larger population. Some basic training may be needed if the respondents don't have

previous experiences using the wireless Internet. Because all wireless phones have

embedded IDs that can't be tampered with, wireless surveys could support automatic user

authentication to prevent fraud. Standardized IDs also make it easy to track the

respondent's long-term behavior.

Application servers and wireless access provisions. The backend application

server processes all the communications between researchers and respondents, stores

data, and executes commands from survey administration software.

Research companies can either host the application server by themselves or

outsource the hosting tasks to an application service provider (ASP). Hosting the server

can give researchers more control over the applications. A wireless data collection

platform needs to be installed on the server. On the other hand, outsourcing to the ASP

will let the ASP take care of all the technological details. It can provide a turnkey

package, including platform development, application development, hosting server, and

wireless access provision to its clients. The researchers only need to know how to use the

survey management software.

 77

3.4. Challenges.

Due to the limited display spaces on the cell phone screens, simple and short

questions are preferred in text-based wireless surveys. In the voice-based survey, the

same rule of thumb also applies. Hence, wireless surveys may not be suitable for research

that involves long questions and answers. Cell phones have limited capacity to handle

graphics, so survey questions should mainly be text-based.

3.5. Endless Opportunities

More companies are starting to realize they can gain a competitive edge by

making sure their products/services fit in consumers' lives. The value of wireless

marketing surveys lies in their ability to develop a rich understanding of consumer

natural behaviors in daily lives. Compared with traditional tools, they can provide

marketing researchers with more accurate and timely information on when, where, and

what consumers buy-and, more important, why they buy. Leveraging these new insights,

marketing professionals can develop more effective marketing strategies for product

development, distribution, pricing, and promotion.

Wireless marketing survey is a brand-new data collection method. With the recent

vast advances in the wireless Internet technologies and VoiceXML technologies, and the

exponentially growing wireless consumer market that provides an expanding respondent

base, we believe the opportunities in wireless marketing survey are unlimited.

 78

Appendix for Chapter 1

Table 1.1: Frequency table before data transformation

Figure 1.1: Histogram of number of download before log-transformation

 Forum Download Bug Patch CVS Release News

N Valid

N Missing

151

149

291

9

299

1

299

1

293

7

273

27

220

80

Mean 577.54 355017.53 212.97 34.02 4071.81 18.34 10.39

Median 114 24545 49 3 1413 12 6

S.D. 1378.12 1839506.96 650.62 189.38 11014.05 21.03 14.77

Skewness 4.39 10.16 7.34 12.12 8.32 2.55 4.24

 79

 Forum Download Bug Patch CVS Release News

N Valid

N Missing

151

149

287

13

290

10

197

103

288

12

272

28

218

82

Mean 4.79 10.32 4 2.28 7.2 2.37 1.82

Median 4.74 10.16 4 2.2 7.29 2.48 1.79

S.D. 1.81 2.12 1.63 1.63 1.54 1.1 1

Skewness 0.21 0.23 0.92 0.51 -0.27 -0.26 0.22

Table 1.2: Frequency table after data transformation.

Figure 1.2: Histogram of number of download after log-transformation

 80

Table 1.3: Extraction communalities table

Compone
nt Initial Eigenvalues

Rotation Sums of Squared
Loadings

 Total
% of
Variance

Cumulativ
e % Total

% of
Variance

Cumulativ
e %

1 3.633 36.330 36.330 2.205 22.047 22.047

2 1.245 12.452 48.781 2.143 21.432 43.479

3 1.113 11.126 59.908 1.262 12.624 56.104

4 .933 9.327 69.235 1.122 11.220 67.324

5 .849 8.493 77.728 1.040 10.404 77.728

6 .700 7.003 84.731

7 .557 5.572 90.303

8 .387 3.866 94.169

9 .359 3.590 97.759

10 .224 2.241 100.000

 81

Figure 1.3: Scree plot

 82

Figure 1.4: Latent variables and manifest variables

Figure 1.5: Scatter plot matrix of the component scores

Table 1.4: ANOVA

Table 1.5: ANOVA 2

Mode
l R R Square

Adjusted R
Square

Std. Error of the
Estimate

1 .682(a) .465 .423 1.53624

Mode
l

Sum of
Squares df

Mean
Square F Sig.

1 Regressio
n 131.077 5 26.215 11.108 .000(a)

 Residual 151.042 64 2.360

 Total 282.119 69

 83

Table 1.6: Coefficient of ANOVA

Model

Unstan
dardize
d
Coeffi
cients

Standardized
Coefficients T

Sig
.

 B
Std.
Error Beta

1 (Constant)

11.071 .184 60.295 .00

0

 Community
Contribution .828 .185 .410 4.480 .00

0

 Core
Developers .745 .185 .368 4.027 .00

0

 Project
Promotion .620 .185 .306 3.350 .00

1

 Project
Lifespan .257 .185 .127 1.391 .16

9

 Developmen
t Status .457 .185 .226 2.469 .01

6

 84

Table 1.7: Collinearity test

Model Correlations
Collinearity
Statistics

Zero-
order

Parti
al

Par
t

Toleranc
e VIF

1 (Constant)

 Communit
y
Contributi
on

.410 .489 .41
0 1.000 1.00

0

 Core
Developer
s

.368 .450 .36
8 1.000 1.00

0

 Project
Promotion .306 .386 .30

6 1.000 1.00
0

 Project
Lifespan .127 .171 .12

7 1.000 1.00
0

 Developm
ent Status .226 .295 .22

6 1.000 1.00
0

 85

Appendix for Chapter 3

Figure 3.1. Kerberos based financial services market. Financial services are divided into
security realms.

Figure 3.2: Proxy servers make the WAP based wireless network and XML based web
services network transparent to each other.

 86

Table 3.1: Comparison between Smart Client and WAP Client

Smart Client WAP Client

Can process secure XML

Enable end to end security
solutions

Have to rely on proxy

Use local process power

Can work continuously

Cannot process data on its
own,

Vulnerable to DoS attacks and
traffic congestion

Support atomic transaction
Multiple round-trips cause
potential data corruption and
long latency

Decentralized

With lower risk

Centralized proxy servers

Subject to DoS attacks and
other attacks

 87

Figure 3.3: The wireless front end. Components in the dashed line box can be separate
devices or combined into one single hub device.

 88

Figure 3.4: Mix voice and graphics user interfaces in the same multimodal wireless
application.

Figure 3.5: The complex web services architecture at the back end.

 89

References

Borisov, N., Goldberg, I. and Wagner, D. 2001. “Intercepting Mobile Communications:
The Insecurity of 802.11”. Proc. 7th Ann. Intl Conf. Mobile Computing and
Networking.

Miller, S. K. 2001. “Facing the Challenge of Wireless Security”. IEEE Computer, July,
34 (7), 16-18.

Neuman, B. C. and Ts'o, T. 1994 “Kerberos: An Authentication Service for Computer
Networks”. IEEE Communications, 32 (9), 33-38.

OASIS. 2002a. Assertions and Protocol for the OASIS Security Assertion Markup
Language (SAML). Committee Specification.

Stanford, V. 2002. "Pervasive Health Care Applications Face Tough Security
Challenges", IEEE Pervasive Computing, Vol. 1, No. 2, 8-12.

Yuan, M.J., Long, J. & Whinston, A.B. 2002, "Secure Financial Web Services for
Wireless Clients", International Journal of Electronic Commerce, under review

O'hara, M. 1997. Market Microstructure Theory. Blackwell Publishers.

OASIS. 2002b. "XML-Based Security Services TC (SSTC) Security Assertion Markup
Language".

IBM Corporation and Microsoft Corporation, 2002. "Security in a Web Services World:
A Proposed Architecture and Roadmap", White Paper, April 7, 2002 Version 1.0

Yuan, M. J. and Long, J. 2002a. Securing Wireless J2ME. IBM developerWorks,

Geng, X. and Whinston, A.B. 2000. "Defeating Distributed Denial of Service Attacks",
IEEE IT Professional, Vol. 2, No. 4, page 36.

Yuan, M. J. and Long, J. 2002b Java readies itself for wireless Web services. JavaWorld,

Federal Communication Commission, 2000. "Amendment of Parts 2 and 95 of the
Commission's Rules to Create a Wireless Medical Telemetry Service", Report and
Order, FCC 00-211.

Dierks, T. and Rescorla, 2002. E. The TLS Protocol. IETF Internet Draft.

 90

Girard, P., Sheiner, L.B., Kastrissios, H. & Blaschke, T.F. 1996. "Do we need full
compliance data for population pharmacokinetic analysis?" J. Pharmacokin.
Biopharm. Vol 24, pp265-282.

Eastlake, D. 2002a. XML-Signature Syntax and Processing. W3C Recommendation

Levy, G. 1993. "A Pharmacokinetic perspective on medicament noncompliance" Clin.
Pharmacol. Ther. Vol 54, pp242-44.

Eastlake, D. 2002b. XML Encryption Syntax and Processing. W3C Candidate
Recommendation

Kastrissios, H. & Blaschke, T.F. 1997. "Medication compliance as a feature in drug
development" Annu Rev Pharmacol Toxicol. Vol 37, pp451-75.

Fan, M., Srinivasan, S., Stallaert, J. and Whinston, A. B. 2002. “Electronic Commerce
and the Revolution in Financial Markets”. Thomson Learning.

Kastrissios, H., Suarez, J.R., Girard, P. Sheiner, L.B. and Blaschke, T.F. 1998.
"Characterizing patterns of drug-taking behavior with a multiple drug regimen in
an AIDS clinical trial." AIDS, vol 12, pp2295-2303

Geng, X. and Whinston, A. B. 2000. Defeating Distributed Denial of Service Attacks.
IEEE IT Professional, 2 (4), 36-42.

Girard, P., Blaschke, T.F., Kastrissios, H. and Sheiner, L.B. 1998. "A Markov mixed
effect regression model for drug compliance." Statist. Med. vol 17, pp2313-2333.

Wilkie, D.J., Huang, H.Y., Reilly, N. and Cain, K.C. 2001. "Nociceptive and neuropathic
pain in patients with lung cancer: a comparison of pain quality descriptors" J.
Pain Symptom Manage. vol 22, pp899-910.

Glosten, L. and Milgrom, P. Bid, 1985. Ask and Transaction Prices in a Specialist Market
with Heterogeneously Informed Traders. Journal of Financial Economics, 14, 71.

Wilkie D.J. 2001, "Cancer symptom control: feasibility of a tailored, interactive
computerized program for patients" Fam Community Health. vol 24, 48-62.

Hidvégi, Z., Wang, W. and Whinston, A. B. 2002. Sequentially Optimal Auctions under
Shill Bidding. CREC Working Paper.

IBM Corporation and Microsoft Corporation. 2002. Security in a Web Services World: A
Proposed Architecture and Roadmap. IBM developerWorks.

 91

McGlashan, S. et al. 2001. "Voice Extensible Markup Language (VoiceXML) Version
2.0", W3C working draft.

Asundi, J., 2001. Software engineering lessons from open source projects. In Making
Sense of the Bazaar: Proceedings of the 1st Workshop on Open Source Software
Engineering. Feller, J., Fitzgerald, B. & van der Hoek, A. (eds).

Belk, Russell. W., 1975, "Situational Variables and Consumer Research," Journal of
Consumer Research, Vol. 2, 157-164.

Fielding, R.Y., 1999. Shared leadership in the Apache project. Communications of the
ACM, 42 (4), 42– 43.

Free/Libre and Open Source Software: Survey and Study, International Institute of
Infonomics, University of Maastricht, The Netherland; Berlecon Research GmbH,
Berlin, Germany, June 2002, http://www.infonomics.nl/FLOSS/report/

Hars and Or, 2002, “Working for Free? Motivation for Participating in Open Source
Projects”, International Journal of Electronic Commerce, Vol. 6, No. 3.

Healy and Schussman, 2003, University of Arizona, Department of Sociology, working
paper

Ioannis S, Ioannis S, Lefteris A, and Apostolos O, 2004, “Open Source Software
Development Should Strive for Even Greater Code Maintainability”,
Communications of the ACM, October, pp. 83-87.

Koch, S; Schneider, G, Effort, co-operation and co-ordination in an open source software
project: GNOME. Information Systems Journal, Jan2002, Vol. 12 Issue 1, p27,
16p [used CVS and forum as electronic communication artifact to show project
development]

Lerner, J, Tirole, J. 2002. “Some Simple Economic of Open Source”, Journal of
Industrial Economics, 50, 197-234.

March, J.G. & Simon, H.A., 1958. Organizations. John Wiley, New York.

Markus, M.L., Manville, B. & Agres, C.E. 2000. What makes a virtual organization
work? Sloan Management Review, Fall, 13–26.

Mintzberg, H. 1972. The Structure of Organizations. Prentice Hall, Englewood Cliffs, NJ.

Mockus, A., Fielding, R.T. & Herbsleb, J. 2000. A case study of open source software
development: the Apache server. Proceedings of the 22nd International
Conference on Software Engineering, 263–279

 92

Moody, G. 2001. Rebel Code: Linux and the Open Source Revolution. Perseus Press
Cambridge, MA.

Nohria, N. 1995. Note on organization structure. Harvard Business School, Reprint no.
9–491–083.

Oliver, R. 1993. "Cognitive, Affective, and Attribute Bases of the Satisfaction
Response", Journal of Consumer Research, Vol. 20, Issue 3, 418-431.

Raymond, E. 1999. The Cathedral and the Bazaar.

Schmidt, D.C. and Porter, A. 2001. Leveraging open source communities to improve the
quality and performance of open source software. In: Making Sense of the
Bazaar: Proceedings of the 1st Workshop on Open Source Software Engineering.
Feller, J., Fitzgerald, B. & van der Hoek, A. (eds).

Schwarz, N. 1990, "Feelings as Information: Informational and Motivational Functions of
Affective States", in E. Tory Higgins and Richard M. Sorrentino (Eds.),
Handbook of Motivation and Cognition, Vol. 2, New York: Guilford, 527-561.

Schwarz, N. and Sudman, S. 1994. Autobiographical Memory and the Validity of
Retrospective Reports, New York: Springer-Verlag.

Sharma, S. Sugumaran, V. Rajagopalan, B, 2002. A framework for creating hybrid-open
source software communities. Information Systems Journal, Vol. 12 Issue 1, p7-
26

Stone, A, Shiffman, S. and DeVries, M.W. 1999. "Ecological Momentary Assessment",
In D. Kahneman, E. Diener, & N. Schwarz (Eds.), Well-being: Foundations of
Hedonic Psychology, New York: Russell-Sage.

Thomas and hunt, 2004, Open Source Ecosystems, IEEE Software 32(1)

Hagel, J. and Brown, J.S, 2001 October. "Your Next IT Strategy", Harvard Business
Review, page 105.

Lasalandra, M. April 14, 2002. “Docs calling all volunteers - Shrinking test pool delays
new drug trials”. Boston Herald, page 9.

Yuan, M.J. and Long, J. 2002 June. "Java readies itself for wireless Web services",
JavaWorld.

 93

Vita

Ju Long was born in Chengdu, Sichuan, People’s Republic of China on July 11,

1974, the daughter of Bangyi Liu and Yongtao Long. After completing her work at Shishi

High School, Chengdu, Sichuan, in 1992, she entered Renmin University in Beijing,

China. She received the degree of Bachelor of Arts from Renmin University in May

1996. She then entered the Graduate School of Renmin University and received the

degree of Master of Business Administration from Renmin University in May 1999.

From 1998 to 2000, she entered the Graduate School of The University of Michigan in

Ann Arbor and received the degree of Master of Social Work in May 2000. In September

2000, she entered the Graduate School of The University of Texas at Austin.

Permanent address: Apartment K, 1628 W 6th Street, Austin, Texas 78703

This dissertation was typed by Ju Long.

