CLARK, GEORGE GREGORY. EVALUATION OF LOADING ON WATER QUALITY ATTRIBUTABLE TO NON-POINT SOURCES : THESIS EVALUATION OF LOADING ON WATER QUALITY ATTRIBUTABLE TO NON-POINT SOURCES APPROVED: EVALUATION OF LOADING ON WATER QUALITY ATTRIBUTABLE TO NON-POINT SOURCES by George Gregory Clark, B.E.S THESIS Presented to the Fauclty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ENGINEERING THE UNIVERSITY OF TEXAS AT AUSTIN August 1973 ACKNOWLEDGMENTS Several people provided valuable support both morally and physically in the preparation of this thesis. Special appreciation is given to Mr. D. E. Winslow of Espey, Huston and Associates in the description and application of the runoff-water quality model. Others who deserve recognition for their assistance include Dr. Joseph F. Malina, Jr., Professor of Environmental Health Engineering, The University of Texas at Austin, Mr. S. L. Johnson, United States Geological Survey, Houston, Texas, Mr. Jack Rawson, United States Geological Survey, Austin, Texas, Mr. Tom Martin, Department of Engineering, Corpus Christi, Texas. This study was financed by Environmental Protection Agency Water Supply and Pollution Control Training Grant, 3T2-183-WP-04. The report was done in conjunction with the Coastal Resources Management Project which was financed by National Science Foundation Grant, GI-34870X and for the Office of the Governor, State of Texas Grant, lAC-(72-73)-806. Special thanks to Kathy Pickens for typing this thesis. July 27, 1973 TABLE OF CONTENTS Page ACKNOWLEDGMENTS iii TABLE OF CONTENTS iv LIST OF TABLES v LIST OF FIGURES vi SUMMARY 1 INTRODUCTION 2 LITERATURE REVIEW 4 METHODOLOGY SELECTED 15 Climate 15 Topography 16 Land Use 16 DESCRIPTION OF STUDY AREA 26 TRIAL AREA AND CORRELATION 33 MODEL APPLICATION 72 DISCUSSION OF RESULTS 76 CONCLUSIONS 80 APPENDIX 81 BIBLIOGRAPHY 126 REFERENCES 129 VITA LIST OF TABLES Table No. Description Page I MODEL UNIT HYDROGRAPH EQUATIONS 17 II { CLASSIFICATION 21 111 WATER QUALITY CONSTITUENTS 23 IV WATER QUALITY EQUATIONS 25 V SUBAREA PARAMETERS 32 VI SUMMARY OF LOADING FROM 2.0 RAINFALL 37 VII MODEL COMPARISON 41 VIII DATA COMPARISON 71 IX RUNOFF LOADINGS FROM .48 INCHES RAINFALL 73 X RUNOFF LOADINGS FROM 2.10 INCH RAINFALL 74 XI VOLUMES OF RUNOFF 75 XII QUALITY COMPARISON 78 XIII QUALITY COMPARISON 79 LIST OF FIGURES Figure No. Description Page 1 Brawner Parkway Channel 19 2 Holly Road Drainage Channel 19 3 Everhardt Road Drainage Channel 20 4 Brawner Parkway Channel 20 5 The Texas Coastal Zone 28 5a Oso Creek Drainage Basin 29 5b Corpus Christi, Texas 30 5c Corpus Christi, Texas 31 6 Actual Runoff Hydrograph 35 7 Predicted Runoff Hydrograph 39 8 Discharge vs. Time 42 9 Suspended Solids (SS) Concentration vs. Time 43 10 Suspended Solids (SS) Load vs. Time 44 11 Total Dissolved Solids (TDS) Concentration vs. Time 45 12 Total Dissolved Solids (TDS) Load vs. Time 46 13 Ammonia Nitrogen Concentration vs. Time 47 14 Ammonia Nitrogen Load vs. Time 48 15 Organic Nitrogen Concentration vs. Time 49 16 Organic Nitrogen Load vs. Time 50 17 Nitrate Nitrogen Concentration vs. Time 51 18 Nitrate Nitrogen Load vs. Time 52 Figure No. Description Page 19 Total Phosphates Concentration vs. Time 53 20 Total Phosphates Load vs. Time 54 21 BOD Concentration vs. Time 55 22 BOD Load vs. Time 56 23 COD Concentration vs. Time 57 24 COD Load vs. Time 58 25 Total Coliform (TOT-COL) Concentration vs. Time 59 26 Total Coliform (TOT-COL) Load vs. Time 60 27 Fecal Coliform (FEC-COL) Concentration vs. Time 61 28 Fecal Coliform (FEC-COL) Load vs. Time 62 29 Fecal Streptococcus Concentration vs. Time 63 30 Fecal Streptococcus Load vs. Time 64 31 Total Insecticides Concentration vs. Time 65 32 Total Insecticides Load vs. Time 66 33 Total Herbicides Concentration vs. Time 67 34 Total Herbicides Load vs. Time 68 SUMMARY The purpose of this study was to evaluate the loadings on the water quality of Corpus Christi Bay which could be attributable to urban runoff. Water quality and quantity models previously developed were utilized and applied to the study area. These models predict the storm runoff hydrograph for a given rainfall and the concentration of 13 different water quality parameters at selected time intervals during the storm. The runoff model was used to predict storm runoff for comparison with actual flow data for the gaging station on Oso Creek. Good results were obtained for two different storm events. The models were then applied to the remaining urban subareas using a ’’maximum” storm of 2.10 inches and the "average” storm of 0.48 inches over a six hour period. Results indicate the strength of the pollution found in urban runoff is somewhat less than the strength of untreated municipal wastewater for Corpus Christi, Texas. However, the loads from the runoff are significant and should be recognized as a source of pollution. INTRODUCTION The increase of urban development in the United States has magnified the importance of considering areal sources as contributors to the deterioration of the quality of the nation’s waters. Although the advance of technology has hurdled some of the problems from point source water pollution (industrial and municipality effluents), the task of cleaning the effluents of sidewalks, streets, gutters, and storm sewers has presented an unanswered challenge to urban planners, hydrologists, engineers, and moreover, the citizens who ultimately desire and pay for better water quality. The effect of non-point source such as agricultural and urban runoff, on the quality of a water body can be potentially greater than the effect from industrial or municipal effluents. Urban runoff can contribute a variety of problems, such as direct pollution of receiving waters, impairment of sewer and catch basin functions and overloading of treatment facilities which were not designed to handle the sporadic but tremendous volumes of water from urban runoff (Sartor 1972). Clearly the mandate of the people is expressed in the recently enacted 1972 Amendments to the Federal Water Pollution Control Act. Section 305 (b)(1)(E) states: Each state shall prepare and submit to the Administrator by January 1, 1975, and shall bring up to date each year thereafter, a report which shall include a description of the nature and extent of non-point sources of pollutants, and recommendations as to the programs which must be undertaken to control each category of such sources, including an estimate of the costs of implementing such programs (Grad 1973). The need to consider non-point source contributions to the pollutional load on the waters is paramount if we are to achieve the water quality desired by the citizens of the country. In order to evaluate the loading on water quality attributable to non-point sources in the Texas Coastal Zone, it was decided to consider and evaluate those constituents of urban runoff that affect the quality of water in the Corpus Christi, Texas area. LITERATURE REVIEW In reviewing the literature, it was apparent that most of the work in this area was relatively recent as compared with the history of municipal and industrial water pollution control. The problems of determining the effects of urban runoff on the quality of a receiving water can only be solved when the types and quantities of pollutants are known. The solution to the problem can be developed by applying a specific methodology established by others but modified to describe the problem area. The pollutional loading can be separated into two aspects, namely the hydrology of urban runoff and the constituents of the urban runoff. On the subject of hydrology most studies concerning urban runoff dealt with the problem of flood control and storm sewer design. Some of those studies show the hydrograph technique as a method of determining the time history of the flow created by rainfall-runoff relationships (Tholin 1959) (Espey, et al. 1966). The effect of non-uniform areal distribution of rainfall upon the flow hydrographs was discussed by Tholin (Tholin 1959). However, Espey, et al. (1966) showed that as a watershed becomes urbanized the amount of runoff is increased. Several factors must be considered in determining urban runoff. Runoff is that portion of rainfall which neither evaporates, nor percolates into the ground (Water Quality Management 1964). Runoff is dependent upon temperature, storm intensity, infiltration rate, vegetation, soil moisture index, topography, previous or antecedent dry period, and land development (Liefeste and Lansford 1968). If each facet of the runoff definition is considered separately, then a better understanding of runoff can be obtained The effects of temperature on runoff include rates of evaporation of the runoff as it proceeds to the receiving waters. Or in the case of winter thaws, the amount of snow melt would depend in part on temperature. t Clearly strom intensity affects the amount of runoff. Rainfall intensity data can be obtained from rain gage information. Tokarski (1970) utilized average rainfall intensity adjusted to obtain "effective” rainfall intensity which might be expected to produce surface runoff. Infiltration rates are dependent on the soil type and surface conditions. Studies should be made from local or regional rainfall statistics, as to the probability of heavy rainfall or frozen ground (Tholin 1959). Vegetation may affect runoff in several ways: (1) the lack of vegetation may permit a larger amount of water to infiltrate the soil; and (2) the soil will have a higher moisture content because of the lack of vegetation demands resulting in a higher rate of surface runoff (Tokarski 1970). The soil moisture index is related to antecedent rainfall and type of soil as well as amount of vegetation. A formula to determine the soil moisture index based on antecedent rainfall, precipitation at that moment, and the time since last rainfall was developed by Linsley (Linsley, et al. 1958). Consideration of the topography and land development is essential in determinations of runoff. The amount of impervious cover will dramatically affect the amount of runoff (Espey, et al. 1966). Each of the points mentioned above needs consideration in ascertaining the amount of runoff from a rainfall event. Selection of a method for determining runoff is dependent upon three basic functions: (1) applicability to the area of concern - which depends on the characteristics of the particular area and the assumptions from which the method was developed; (2) the type and amount of data available - which refers to the length, detail and completeness of the hydrologic records, and may include precipitation and streamflow; (3) the detail and accuracy required in the final answer - which may be limited by cost and any assumptions of the method applied (Merritt 1968). One method for determining runoff is the Rational Method described in Equation (1): Q = CIA CD in which: Q = Peak discharge, cubic feet per second C = Runoff coefficient I = Rainfall intensity, inches per hour A = Drainage area, acres Several assumptions exist for the application of this method, namely the coefficient of runoff remains constant for all storms on a given watershed. This assumption has received criticism because all the complex factors that affect runoff are combined into a single coefficient (Merritt 1968). Still the formula is applicable for fast, approximate solutions and is perhaps the least expensive technique. Still another method often employed in runoff determinations is the unit hydrograph method, developed by Leroy K. Sherman in 1932, and defined as a runoff hydrograph resulting from a ’’unit" storm. A "unit" storm is defined as a storm having practically constant rainfall intensity for its duration, termed a unit period, and a runoff volume of one inch (Merritt 1968). Several key assumptions must be made in applying this method, namely: (1) rainfall intensity is constant for its duration; (2) the effective rainfall is uniform over the entire drainage area; (3) the ordinate of the direct runoff hydrographs of a common base time are directly proportional to the total amounts of direct runoff represented by each hydrograph (Chow 1964). The last noted assumption allows for superposition and enables calculation of the runoff for a storm of any intensity and/or duration. The hydrograph method has wide applicability and gives a more accurate answer in determining runoff than the other methods discussed (Merritt 1968). Whereas the methods employed by others to determine runoff flows and volumes have dealt with basic hydrologic principles and formulas, the resolution of the constituents of the runoff contributing to the pollution of receiving waters lends itself to more varied and diverse techniques. A sophisticated deterministic model entitled, "The Storm Water Management Model," was developed for the Environmental Protection Agency (Franklin Institute 1970). The results of numerous other studies (Shigorinl9s6), (Sylvester 1960), (Akerlinch 1950), (Stander 1961), (Wiebel, et al. 1964), indicate wide variations in the concentrations of runoff biochemical oxygen demand, chemical oxygen demand, suspended solids, and nutrients such as nitrogen and phosphorus Viessman summarized the reported information describing the composition of urban storm drainage and methods of developing water quality models for runoff from urban areas (Viessman 1968). The pollution concentrations and loads from storm water runoff were evaluated in Tulsa, Oklahoma (Avco 1970). The project included a field assessment of the storm water pollution by sampling of runoff in the metropolitan area. An analytical procedure for correlation of storm water pollution with selectively defined variables was developed. Runoff samples were analyzed in terms of quality standards for various parameters including: biochemical oxygen demand, chemical oxygen demand, chlorides, pH, solids, total coliform, and fecal coliform. Selected environmental conditions, drainage and precipitation data, along with storm water pollution factors, provided input data for functional relationships enabling assessment of pollution from storm water runoff (Avco 1970). The American Public Works Association Research Foundation reported the causes and remedies of water pollution from surface drainage in 1967. The environmental pollution factors and potential pollution effects resulting from the water and waste contacts during rainfall and runoff were analyzed based upon collected field data and theoretical calculations. The factors studied included: street refuse and litter, catch basins, chemicals, and solids deposition. The results indicate that street refuse could present a significant pollution load in terms of biochemical oxygen demand (APWA 1967). Sartor and Boyd found that those materials accumulated on street surfaces contribute substantially to urban pollution from runoff. The similarity between the composition of runoff from streets and municipal wastewater was illustrated. Results based on a hypothetical United States city indicate that the runoff from the first hour of a moderate intensity storm contributes more pollutional load than the municipal wastewater during the same period of time. The runoff quality was reported in terms of biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrates, phosphates, total and volatile solids, and a range of pesticides and heavy metals (Sartor 1972). Rainfall pollution generally occurs in three zones: the sky, the ground, and in the drainage system. Pollution of storm water on the ground is paramount in considering urban runoff. Precipitation falling on impervious areas will runoff rather quickly and wash out polluting materials which may have accumulated (APWA 1969). This accumulation of debris which is found in the streets, along the curbs, and in the gutters can be defined as street refuse or litter. Litter contributes to the overall pollutional loading of the runoff. The sources of street litter vary from community to community, season to season, and area to area of the same community (APWA 1969). The sources of materials found or street surfaces vary greatly. However, the bulk of those come from pavement, motor vehicles, atmospheric fallout, vegetation, runoff from adjacent land areas, litter, spills, and antiskid compounds (Sartor 1972). Many of these components are difficult to quantify but deserve mention. The report shows that the solids loading of street refuse varies significantly from city to city and from land use to land use. Attempts to relate indirect factors such as traffic speed, traffic density, and parking density to loading proved futile. Other, more dominant factors such as land use, season, and rainfall frequency had greater effects. The areas of a community can be classified as residential, commercial, and industrial. It is important to note that an area classified as residential or commercial in one section of an urban community is not the same environmentally as another area so classified. For example, in a new middle to upper class subdivision, the general environmental conditions are normally good to excellent. The yards are well kept with no litter or piles of rubble. Furthermore, most residents in these areas keep clean the portion of the street fronting their property. A different section of the same community may have the same zoning, be classified the same, but may have entirely different environmental conditions (Avco 1970). Although there is considerable variation amongst land use categories, when taken all together, streets in industrial areas generally tend to be more heavily loaded than residential streets. Commercial streets tend to be more heavily loaded than industrial (Sartor 1972). Analysis of the results of this study show that some trends are apparent where loading intensities are compared on the basis of land use category (Sartor 1972). Light industry areas tend to be heavily loaded with both BOD and COD and the commercial areas only lightly loaded. Areas such as shopping centers generally receive more frequent street sweeping than industrial areas. This may explain the difference in loading for the two areas. In the industrial areas it was observed that heavy industry was dirtier than light industry (Sartor 1972). The American Public Works Association report indicated dust and dirt to be the major contributors of the street refuse components. Organics and vegetation could affect biochemical oxygen demand (BOD) values but the amounts of such materials were generally less than the amounts of dust and dirt. Paper, wood, and cloth likewise were quantitatively small, however, the potential "aesthetic pollution" caused by these materials is high (APWA 1969). The constituents of urban runoff that contribute to pollutional loading have been established (Avco 1970) (Sartor 1972) (FWPCA 1967) (APWA 1969). The technique of determining amounts of runoff have also been recognized. However, a synthesis of these two components is essential to evaluate the problems of evaluating the loading attributable to urban runoff. Sartor utilized a gage network to obtain runoff volumes and then sampled for constituents (Sartor 1972). In the Chicago studies, quantities of runoff were set and investigations into the constituents of the runoff were conducted (APWA 1969). The results of studies done in the Houston area were used to develop a model to predict runoff volumes and quality of the runoff (Espey, Winslow 1967) (Winslow, Espey 1972). Rainfall and runoff data from eleven urban and six rural watersheds in the Houston area were reduced to thirty minute unit hydrographs (Espey 1967). These data were combined with data observed for twenty-two urban and eleven rural watersheds which had previously been reduced. Multiple linear regression analyses established the equations which describe the thirty minute unit hydrograph for the urban and rural conditions. These equations were compared with previously derived equations to develop the equation of best fit. The equations were expressed in terms of impervious cover, channel vegetation, and secondary drainage facilities resulting from urbanization. These equations were applied to watersheds in Houston, Texas (Espey 1967). Winslow later applied these equations to a planned community near Houston. The effects of different residential settings, soil types, and pervious pavement on the quantity and quality of storm runoff were described by modifying these expressions. These models are used to predict the storm runoff hydrograph for a given rainfall and the concentration of thirteen water quality parameters at intervals during the storm (Winslow 1972). The pollutional load from non-point sources has not been established in sufficient detail. The study of the Houston area represent the only investigation of non-point sources of waste pollution in the Coastal Zone of Texas. However, there exist mathematical models which can be modified and applied to any area in the Coastal Zone. METHODOLOGY SELECTED The Corpus Christi, Texas area was chosen by the Coastal Research Management Project as a study area for determining the effects of economic, environmental, and social policies on future development. Because of the similarities that exist between the Houston area and the Corpus Christi area, the methodology of Winslow and Espey was applied to the study area. A comparison of the two areas shows the similarity of such aspects as climate, topography, geology, and land use. Climate The Corpus Christi and Houston areas are in the coastal plain of the Gulf of Mexico. The climate of the Houston area is characterized by short mild winters, long hot summers, and high humidity. The mean annual tempera ture is about 69°F and average annual rainfall is 45 inches (Johnson 1965). The average annual rainfall of the Corpus Christi area is a little over thirty inches over the last three years (Meterological Data 1970-1972). The average temperature varies from 85°F in August to 58°F in January (Soil Survey Series 1960). The seasons are much the same in both areas. Topography The two areas are on level coastal plains with low permeable clay soils. The slope of the land in the Corpus Christi area rises gently from sea level near the surf of Corpus Christi Bay to about 150 feet at the northwestern part of Nueces County. The Houston area also has a slight rise in elevation that varies from 35 feet to 135 feet. Land Use The effects of the oil refining and petrochemical industries influence the land use. Agriculture conbributes a significant portion of the land use in the two areas. Residential development has dominated both areas in recent years. The methodology consists of a set of empirically derived equations which predict the unit hydrograph. A rainfall-runoff relationship, and water quality. Equations predicting the shape of the thirty minute unit hydrograph for Houston area watersheds were developed by Espey and Winslow (1967). Those equations utilized parameters which effectively define the shape of the hydrograph. The equations presented in Table I were employed in the Corpus Christi area to compute the runoff hydrographs. in which: Tr = Time of rise, minutes Q = Peak discharge, cfs Tg = Base time, minutes Wsq = Time between points on the hydrograph when the discharge is equal to 1/2Q, minutes Wyg = Time between points on the hydrograph when the discharge is equal to 3/4Q, minutes A = Drainage area, square miles J = Urbanization factor L = Channel length, feet S - Channel slope, foot/foot I = Impervious cover, % *from Winslow, Espey (1972). Three parameters are utilized to account for the effect of urbanization, namely the impervious cover (I), the channel improvement factor , and the channel vegetation factor ($2)• The urbanization factor, J, is defined as J = Examples of various urbanization factors are illustrated in Figures 1-4, which show drainage channels in the Corpus Christi area. A rainfall-runoff relationship was developed to predict the runoff hydrograph for a given storm (Winslow, Espey 1972). The following equation was derived and will be used in the Corpus Christi area: Run = 0.325 R 1,23 M 0,23 1 0,067 SI" 0,12 ( 7 ) in which: Run = Total runoff, inches R = Total rainfall, inches M = Soil moisture index I = Percentage of impervious cover SI = Soil index The data used to develop this relationship were obtained from a report by Johnson and Sayre (1973). The other parameters of the equation were derived from various techniques. The soil index (SI), is the maximum permeability of the soil in inches per hour. The soil moisture index (M), is calculated by a procedure similar to that developed by Linsley, et al. (1958). *from Winslow, Espey (1972). The unit hydrograph equations and the rainfall-runoff equation (7) were combined and a computer program which predicts the storm runoff hydrograph for a given drainage basin was written. The necessary inputs include the parameters which describe the basic physiographic characteristics of the area and the rainfall in inches for each thirty minute increment of the storm. The excess rainfall for each thirty minute increment is calculated and applied to the thirty minute unit hydrograph and the resulting runoff hydrographs for each of the thirty minute increments are integrated to yield the total storm runoff hydrograph (Winslow, Espey 1972). The average flow was integrated over the time of the runoff hydrograph to give the volume of the runoff. This method was checked by calculating the product of inches of rainfall and the drainage area. The water quality model yields the concentration of selected constituents at specific times during a given storm and the total load input to the system for each constituent for the entire storm. Thirteen water quality equations for different constituents were developed to describe the pollutional effect of the runoff. The constituents and the units in which the results are displayed appear in Table 111. Total insecticides include chlorinated hydrocarbons and phosphorothiates. *from Winslow, Espey (1972). Total herbicides include chlorinated hydrocarbons such as 2, 4-D, silvex, and 2,4, 5-T (Winslow, Espey 1972). The equations used in the program to calculate the water quality of storm runoff are presented in Table IV. The derivations of these equations were reported by Winslow and Espey (1972). Anomalies of the equations include the prediction of a decrease in several of the constituents as the flow increases. This reduction in concentration occurs when the source of the constituent is limited and the increased flow dilutes the concentration. However, on a loading basis, the load increases as flow increases. The different degrees of urbanization were included in factors which were developed and applied to the equation. The unit hydrograph, rainfall-runoff, and water quality models were combined and expressed in a computer program. This procedure allowed easy use of the method for computing quantities and water quality of runoff from urbanized areas. *from Winslow, Espey (1972). Q = 3.54 x 10 4 A 1,0 T r -1 - 10 (2) T = 16.4 0 j-0.490 g-0.0488 R „• . (3) T b = 3.67 x 10 5 A 1 - 14 Q" 1 - 15 (4) W 5() = 4.14 x 10 4 Al-02 q-1.04 (5) W 75 = 1.34 x 10 4 A 0 - 92 Q-0.94 (6) TABLE I MODEL UNIT HYDROGRAPH EQUATIONS* .$1 Classification 0.6 Extensive channel improvement and storm sewer system, closed conduit channel system. 0.8 Some channel improvement and storm sewers; mainly clearing and enlarging of existing channel. 1.0 Natural channel conditions. $2 Classification 0.0 No channel vegetation 0.1 Light channel vegetation 0.2 Moderate channel vegetation 0.3 Heavy channel vegetation TABLE II f CLASSIFICATION* (1) Suspended Solids mg/1 (2) Dissolved Solids mg/1 (3) Ammonia Nitrogen (N) mg/1 (4) Organic Nitrogen (N) mg/1 (5) Nitrate Nitrogen (N) mg/1 (6) Total Phosphates (P) mg/1 (7) Biochemical Oxygen Demand mg/1 (8) Chemical Oxygen Demand mg/1 (9) Fecal Streptococci 1000 colonies/1000 ML (10) Total Coliform 1000 colonies/1000 ML (11) Fecal Coliform 1000 colonies/1000 ML (12) Total Insecticides /'g/L (13) Total Herbicides /xg/1 TABLE 111 WATER QUALITY CONSTITUENTS* (1) Suspended Solids, mg/1 Suspended Solids, mg/1 = 21.55 + 4.36 Log (Q/A) Q/A < 0.75 37.83 + 134.7 Log (Q/A) (Q/A)>0.75 (2) Dissolved Solids, mg/1 = 155.02 - 40.25 Log (Q/A) (3) Ammonia, mg/1 = 0.465 - 0.078 Log (Q/A) (4) Organic Nitrogen, mg/1 = 0.306 + 0.071 Log (Q/A) (5) Nitrates, mg/1 = 0.188 + 0.148 Log (Q/A) (6) Total Phosphorus, mg/1 = 0.0366 - 0.957 Log (Q/A) Q/A - .305 Total Phosphorus, mg/1 = 0.508 - 0.042 Log (Q/A) Q/A >.305 (7) BOD, mg/1 = 4.11 - 0.282 Log (Q/A) (8) COD, mg/1 = 34.43 + 10.12 Log (Q/A) Q/A 5.6 COD, mg/1 = 46.32 -5.77 Log (Q/A) Q/A >5.6 (9) Fecal Streptococci, 1000 counts/100 ML = 1010 (Q/A) 3 * 24 Q/A * .22 Fecal streptococci, 1000 counts/100 ML 15.35 (Q/A) Q/A (10) Total Coliform, 1000 counts/100 ML s 17.4 (Fecal Strep) 1 - 463 (H) Fecal Coliform, 1000 counts/100 ML = 0.152 (Total Coliform) 0 * 767 (12) Total = 0.269 + 0.11 Log (Q/A) (13) Total = 0.158 + 0.038 Log (Q/A) TABLE IV WATER QUALITY EQUATIONS* DESCRIPTION OF STUDY AREA Corpus Christi is a city of 204,525 people located on the coastal bend of the Texas coast (Texas Almanac 1969). A physiographic description of the Corpus Christi Nueces County area shows the characteristics which would affect the quantity and quality of runoff. The following description is from Soil Conservation Service, "Soil Survey Series," 1960, Number 26: Nueces County is one of several counties that form an almost uniform curve on the western coast of the Gulf of Mexico. This curve is known locally as the Coastal Bend of Texas. Nueces County is in the center of this curve. Its mainland is part of a nearly level coastal plain that is about 40 miles wide and is made up mainly of heavy, blackland soils. The Nueces River flows along the northern boundary of the county and empties into Nueces Bay, which opens into Corpus Christi Bay. Both of these bays lie within the boundaries of the county. In the offshore waters of the county are about five miles of Padre Island and all of Mustang Island. These islands are strips of sand called barrier islands or beaches. They lie about four miles from the southeastern shores of the mainland and extend across the mouth of Corpus Christi Bay. The lagoon between Padre Island and the mainland is less than five feet deep. Boat channels have been dug in the offshore waters. These channels are 12 feet deep or more, but Corpus Christi Channel, which crosses the bay, is 36 feet deep. The offshore islands and tidal lands make up less than ten percent of the land area of the county. About three-fourths of the land area consists of a nearly level, farily smooth coastal terrace that, on the average, falls about three feet in a mile. Only about 17 percent of the county drains northward into the Nueces River and Nueces Bay. Drainage is mainly to the southeast through the shallow, narrow channels of Aqua Dulce, Pintas, and Petronila Creeks. These creeks cross Kleberg County and empty into Baffin Bay. Oso Creek drains the northeastern quarter of the county and enters Corpus Christi Bay at a point southeast of Corpus Christi. Although the county is on the Gulf of Mexico, the climate is intermediate between that of the humid, subtropical coastal area to the northeast and that of the semiarid area to the west and southwest. The average rainfall ranges from about 25 inches to 28 inches per year. The average monthly temperature in Nueces County are farily high throughout the year. Severe tropical storms occur about once in every ten years, and less severe storms occur about once in five years. When storms strike the coast 100 miles to the east or south, Nueces County received beneficial rains and there is little wind. Hurricanes strike chiefly in August and September, though tropical storms have occurred as early as June and as late as October. The urban area of Nueces County was considered in this study. The boundaries of the study area are shown in Figures 5, sa, sb, and sc. FIGURE sb. Corpus Christi, Texas The total area of the study included 136.98 square miles divided into 14 subareas. Physiographic parameters to describe the degree of urbanization of the subareas were employed in conjunction with requirements of the model. The amount of impervious cover was ascertained from discussions with S. L. Johnson of the United States Geological Survey, Mr. Tom Martin of the City of Corpus Cristi, visual observations and photographs as well as information obtained in the literature review. The physiographic characteristics of the subareas are presented in Table V. Subareas 1-13 drain into Corpus Christi Bay while subarea 14 drains into Oso Creek. Subarea 14 represents the entire drainage area for the United States Geological Survey gaging station on Oso Creek. The subareas were derived from the layout of the storm drainage map of Corpus Christi which depicted the main avenues of storm water drainage. The values for channel length (L), channel slope (S), and the size of the subareas were obtained from the United States Geological Survey Maps. ( a )soil Index, SI, obtained from (SCS 1960), equivalent to permeability, inches/hr. \pi, Soil Moisture Index, equivalent to antecedent precipitation Index (Linsley 1958). FIGURE 5. The Texas Coastal Zone FIGURE sa. Oso Creek Drainage Basin FIGURE sc. Corpus Christi, Texas Subarea Number Size Sq Miles Channel Length, Feet Channe1 Slope, feet/foot Impervious Cover, a "0 Urbanization Factor ? Moisture API (b) 1 1.29 7800 .0057 65 1.0 5.0 .0287 2 1.09 8200 .0064 60 0.9 5.0 .0287 3 3.38 11000 .0040 60 0.8 5.0 .0287 4 3.44 14400 .0036 65 1.0 5.0 .0287 5 2.40 12800 .0031 65 0.8 5.0 .0287 6 0.287 2600 .0250 65 0.8 5.0 .0287 7 1.16 9600 .0135 45 •1.1 5.0 .0287 8 1.98 11000 .0043 30 1.0 5.0 .0287 9 6.10 25000 .0023 30 1.2 5.0 .0287 10 7.82 42000 .0009 25 1.3 5.0 .0287 11 3.54 13500 .0057 20 1.3 5.0 .0287 12 2.95 23000 .0026 25 1.3 5.0 .0287 13 11.30 20000 .0013 10 1.3 5.0 0.287 14 90.30 117160 .0008 5 1.3 5.0 0.287 J ■ , 2 TABLE V SUBAREA PARAMETERS TRIAL AREA AND CORRELATION Field data were obtained from the United States Geological Survey and United States Weather Bureau. A gaging station was established on Oso Creek in September 1972. The station is a continuous flow monitoring and periodic quality monitoring site. Included at the site is a rain gage that measures the rainfall on the gage. The gage is located on Oso Creek at the bridge of Farm to Market Road 763, 1.6 miles downstream from the junction of West Oso Creek and Oso Creek. The geographic location of the gate station number 08211520 is latitude 27° 42’ 40", longitude 97° 30’ 6". Data obtained included flow and precipitation measurements on a daily basis from September 8, 1972 to December 13, 1972. Hourly data also were obtained for several days in September when significant storms occurred. In addition daily and hourly rainfall data were obtained from the United States Weather Bureau station at Corpus Christi International Airport for the period under investigation. With actual data available to check the results of the model, the model was then applied to the Oso Creek area or subarea 14. Some limiting factors which must be considered before application of the model include the following: (1) the physiographic characteristics of the watershed should be within the range of the characteristics used to derive the equations; (2) the urban development should be fairly uniformly distributed over the watershed; (3) the unit hydrograph resulting from application of the equation is assumed to have resulted from a uniform rainfall. Under conditions of non-uniform rainfall, the unit hydrograph may change markedly; (4) in predicting future changes in the unit hydrograph, the storage capacity of the secondary drainage system must be considered. If the storage capacity is inadequate, the changes due to urbanization may be less than actually predicted by the equations. An assumption of uniform rainfall is necessary since only two rain gaging stations exist in the area. The physiographic characteristics fall within the range used in the derivation of the equations. For the test area, urban development is scarce and assumed to be uniform. Results of the application of the model to the Oso Creek area establish the fact that the model yields a good approximation of the actual flow and volume for that area. Figure 6 is the actual hydrograph for the Oso Creek basin under study The normal base flow is approximately 2.0 cubic feet per second and the peak discharge shown for the 2.10 inch rainfall was 522.0 cubic feet per second which represents a runoff of 520 cubic feet per second in excess of the base flow. This peak occurred at about 0800 hours on the morning of September 24, 1972. The data from the gage station in the Oso Creek basin indicate that the actual average flow over the duration of the runoff was about 300 cubic feet per second and the volume created from the storm was 580 million gallons (MG) (USGS 1972). The model was modified to fit the characteristics of the Oso Creek area. The physiographic parameters were assigned values which were calculated and determined to be best suited to the area. As seen in Table V, subarea 14 (on the Oso Creek basin under study) is described by an impervious cover (I) of sas per cent and an urbanization faction (J) of 1.3. These values were assigned after close scrutiny of the area. The values for area (A), slope (S), and channel length (L), were obtained from a United States Geological Survey topographic map. The soil indix (SI), was calculated from data supplied by the Soil Conservation Service, United States Department of Interior, Robstown, Texas. The soil moisture index (M or API), was calculated according to the Linsley technique (Linsley, et al. 1958). A listing of the computer program utilizing the Winslow, Espey equations is found in the Appendix. Rainfall increments totaling 2.10 inches were inputed to the model over a six hour period since the actual measured rainfall occurred over a six hour period. A summary of the Results of the computations is presented in Table VI. • Figure 7 shows the predicted runoff hydrograph for the Oso Creek basin. The normal base flow was 2.0 cubic feet per second and the peak flow predicted by the model was 668 cubic feet per second for a net peak runoff of 666 cubic feet per second. The ruhoff volume from the storm predicted by the model was 510 million gallons. The differences existing between the predicted volumes and flows and the actual volume and flows can be attributed to the physiographic parameters assigned to the subarea. The volume was obtained by multiplying the area of the drainage basin by the runoff in inches or alternatively by multiplying the average flow by the total time of the hydrograph. A comparison of the two sets of data, actual and predicted, show that hydrologically the model predicts the runoff of this rainfall incident. The model also predicts the water quality of the runoff in terms 13 parameters previously mentioned. However, no actual data was available. The United States Geological Survey measures water quality only periodically and the quality data may or may not be taken after a rainfall. The sampling program is not continuous nor are samples collected regularly. However, water quality data published in the literature lend support to the effectiveness of this model. The average concentration of some of the parameters obtained by other investigators and the results of the Oso Creek basin are presented in Table VII. Water quality in Oso Creek exhibits similarities to the other areas, especially the Woodlands are where the same model was applied. Graphical representations of the time history of the concentrations of the pollutants and load of the pollutants for a trial run of the model are illustrated in Figures 8 through 34. The equations predict the concentration of some constituents to decrease as the flow increases. This phenomenon occurs when the source of a given constituent is limited, and the increased flow serves as a dilutent. However, an examination of the load graphs indicates that the load increases as flow increases. These data suggest that as the flow increases the total amount of pollutant passing the sampling point increases although in some cases the concentration decreases. The graphic results of the model application illustrate some interesting phenomena. For example, the time history of the concentration of total dissolved solids presented in Figure 11 indicates that the total dissolved solids concentration decreases as the flow increases. As the flow decreases after the peak discharge the concentration increases. This phenomenon may be explained by considering a constant release of salt from the soil through discharge of ground water to the stream. During a rainstorm surface run- off occurs and dilutes the salt content. When the runoff decreases, the discharge of groundwater is the main source of water in the stream and the salt concentration returns to the initial or equilibrium level. The mathematical expression for predicting the total dissolved solids concentration presented in Table IV is such that as the runoff increases the concentration decreases. The graphic results presented in Figures 13, 19, and 21 depict similar phenomena which may be explained by the nature of the mathematical model developed for each of these constituents. Each of the equations for these quality parameters includes a negative term which increases as the flow increases. Therefore, the concentration of each constituent will decrease until the peak runoff and increase slightly as the runoff subsides. After the runoff from a particular rainfall ends the concentration will increase to some equilibrium concentration. The history of the chemical oxygen demand (COD) concentration predicted by the application of the model shows a steep increase as the flow increases then a small drop followed by another peak and finally a steady decline as the flow decreases (Figure 23). The initial flush of the soils contains large amounts of organic material which exerts an immediate oxygen demand and accounts for the steep rise in the COD concentration as the flow increases. The equations for predicting COD concentrations change as the ratio of flow to drainage area reaches 5.6 cfs/sq mile. The fluctuations in the time history of the COD concentration are a result of the application of the different equations as the flow to drainage area ratio reaches 5.6 cfs/ sq mile. A comparison of the peak concentrations of some of the quality parameters predicted by application of the model with the average concentration of those constituents found in municipal wastewater is presented in Table VIII The strength of the runoff is significantly less than that from municipal wastewater. (A) Predicted by model for subarea 14 (B) Average values from (FWPCA 1969). FIGURE 7. Predicted Runoff Hydrograph FIGURES. DISCHARGE VS. TIME FIGURE 9. SUSPENDED SOLIDS ISS) CONCENTRATION VS- TINE FIGURE 10. SUSPENDED SOLIDS (SS) LOAD VS TINE FIGURE 11. TOTAL DISSOLVED SOLIDS (TDS) CONCENTRATION vs. TIM FIGURE 12. TOTAL DISSOLVED SOLIDS (TDS) LOAD VS- TJAE FIGURE 13. ANNONIA NITROGEN CONCENTRATION VS. TINE FIGURE 14. AHNONIA NITROGEN LOAD VS. TINE FIGURE 15. ORGANIC NITROGEN CONCENTRATION VS - TIME FIGURE 16. ORGANIC NITROGEN LOAD VS- TINE FIGURE 17. NITRATE NITROGEN CONCENTRATION VS. TINE FIGURE 18. NITRATE NITROGEN LOAD VS. TIME FIGURE 19. TOTAL PHOSPHATES CONCENTRATION VS. TIME FIGURE 20. TOTAL PHOSPHATES LOAD VS. TIDE FIGURE 21. BOD CONCENTRATION VS ■ TINE FIGURE 22. BOD LOAD VS. TJHE FIGURE 23. COO CONCENTRATION VS- TIHE J FIGURE 24. COD LORD VS. TIME FIGURE 25. TOTAL COLIFORM (TOT-COL) CONCENTRATION VS. TIME FIGURE 26. TOTAL COLIFORM (TOT-COL) LORD VS. TI HE FIGURE 27. FECAL COLIFORM f FEC-COL ) CONCENTRATION VS- TIME FIGURE 28. FECAL COLIFORM (FEC-COL) LOAD VS- TJHE FIGURE 29. FECAL STREPTOCOCCUS CONCENTRATION VS. TINE FIGURE 30. FECAL STREPTOCOCCUS LOAD VS- TIME FIGURE 31. TOTAL INSECTICIDES CONCENTRATION VS. TIME o FIGURE 32. TOTAL INSECTICIDES LOAD VS- TIME ;W- -"r FIGURE 33. TOTAL HERBICIDES CONCENTRATION VS. TINE FIGURE 34. TOTAL HERBICIDES LOAD VS. TIME ■ INDICATES MORE I—• Than one POINT .-1 IS -I-- tn ■ --I- That •- I--- space. •• 1 I. HORIZONTAL "NIT s 1 .9«3E*01 'ERTICaL UNIT = o.49)F*00 00 U IL 5.220E.02 5.125E*02 S.030E*02 *.935E*O2 4.8*0E*02 *.745E»02 4.©5 it* 02 4.5S6E»02 4.461E*02 4.366E*Q2 4.271E*02 4.176E*02 4.081E*02 3.986E*02 3.891E*02 3.796t*02 3.701E*02 3.607E*02 3.512£»02 3.417E*02 3.322E«02 3»227E«02 3«132E*02 3.037E«02 2.942E*02 2.847E«02 2.752E*02 2.657E*02 2.563E*02 2.468t«02 2.373E*02 2»278E*O2 2.183E*02 2.088E«02 1.993E*02 1.89SE»02 1.803E*02 l»708E*02 U613E«02 1.519E*02 l»424E*02 1.329E.02 1.234E*02 1.139E»02 1.044E»02 9.491E*01 8.542E«0l 7.593£*01 6.t>44E*01 5.695£*01 ♦.7<5E»01 3.796E*01 2.847E*01 1.898E«01 9.491E*00 0. TiMt H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H M H H H H H H H H H» X— — • « .1-— 1 — — « • T — * • — I.-.-1 — •-•I I•- T ---- 1 -- ... L - — t — 1 ---- 1----! --I- 1 — — T — .4 H i-< u H H M H -4 H H M H H M Ut N H H H H u .4 M H ► 1 W H H H , I > I 3. 1.983E*02 967t*02 I 7. I 5.9SoE*O2 934M02 1 I 9.917E 1. 19oE*O3 ♦02 I j I 1 ,388F*03 .587E*03 I - —- [ . 1 1.785E*03 ---- T---- 1 l.°«3E*n3 T 2. 1 FIGURE 6. Actual Runoff Hydrograph SUMMARY OF LOADING FROM 2.10 INCH RAINFALL • SUSPENDED SoUlUS 444#44ftftft####<>#ftft444444##*#### MEAN CONCENTRATION * MG/L # S t 8b4345E*vI * # TOTAL LOAD * POUNDS « 1.090707E*b5 * «##«ft4ftftftftftftftftftftftftftftftftftftftftftftft4444ftftft# *44^ft^^ftft^^^^ft4444 ft total dissolved solids #############444#ftftftftftftftft*ftftftft 4 mean concentration • MG/L • 2.501802E+02 * 4 total load « POUNDS • I.736047E*O5 « 44444#4##444#4###444##4444#4##44444444444#4##*444444444 4 AMMUnIA NITROGEN ftftftftftftftft ft ftft ##4###4##4###4«4### ft MEAN concentration • MG/L • 4.37 Q 41 6 E-U1 » ft total load • POUNDS • 4.225698E*u2 « ft ORGANIC NITROGEN ft ft ftft ft ft 44# ftft ftftft ft ftftftftftftftft ft ft# ftft ftft * MEAN CONCENTRATION * MG/L « 2.814044E-U1 * * TOTAL LOAD « POUNDS « 3.411232E*U2 * 4«444####4444444444####440#4##044444##00440444400#4#40ft « nitrate nitrogen 444##444##444444#4###4444444#4 ft mean CONCENTRATION * MG/L « 1.738081E-O1 * ft total LOAD « POUNDS • 2.634003E*02 * ftftftftftftftftftftftftftft4##4ft0««««ftft 44 4 4 4ftft44444 ftft «ft 4ftftftft444ft ftft *ft 4 TOTAL PHOSPHATES ft ft ftft ftftftftftftftft ft «ft ft ftftftftftftftft ftftft ftft « * MEAN CONCENTRATION • MG/L • S.92g223E-01 « 4 TOTAL LOAD * POUNDS • 4.867362E+02 * 44444#4#«444#4#4#444444444ftftftftftftftft 4444444#4###444444444 4 boo ftftftftftftftftftftftftftftftftftftftftftftftftftftftftftft 4 MEAN CONCENTRATION * MG/L « 3,e4 8 2?7E*00 ♦ 4 TOTAL LOAD * POUNDS * 4.9449a5E*U3 * ***«444#«444«44ft#ftftft44444ft4 44*4ftftft#4ftftftftftftftftftftftftftft. ft»«ftft ft COD «»««»«»•«»««•««•»«•«#««•«••••• ft mean concentration * MG/L « 3,144302E*01 * ft TOTAL LOAD « POUNDS • 3.9I0438E+04 * ftftftft ftftftftftftftft ftft ftftftftftftftft ftftftftftftftftftftftftftftftftftftftftft ft ftftft # ftftftftftftft ft total coliform ft mean CONCENTRATION * 1000/100 ml • I.24b256E*03 * ft total load « 1000 COUNTS • I.090887E*16 * ftft ftft ft ftftftftftftftft ftft ftftftftftftftftftftftftftftftftftftftftftftft ftft ftftftftftftftftftftftftftftft ft FEJjAL COLIFORM ft mean CONCENTRATION • 1000/100 ml • 3.300820E+01 * ft TOTAL load • 1000 COUNTS « 2.653555E+14 • ft FECAL STREPTOCOCCUS ftftftftftftftftftftftftftftftftftftftftftftftftftftftftftft ft mean concentration * 1000/100 ML * l e 657532E>01 * w total load * 1000 COUNTS * 1,287795E*14 * »4 ft ft ftft ft ft ft ft ftftft ftftftftftftftft* ftftftftftftftft ft ftft ftft ftftftftftftftft ftftftftftftftft ftft 441 ft total INSECTICIDES ft ft ftftft ftftftftftftftft ftft ft ftft ft ft ftftftftftftftftftft ft MEAN concentration * MICroG/L « 2 0 4b4525E*Ol * ft total load * POUNDS « 3.244004E*»01 * ***ftft*ftftftftftftftftftftftftftftftftftftftftftft#ftftftftftftftftft^H^ft^ftftft ft total HER9ICIUES ###4#ft«ftftftftftftftftftftftftftftft4ftft*ftft44 # mean concentration * MlCROG/L # 1 > 452259E*Q1 * ft TOTAL LOAD * POUNDS * l»768260E*01 * TABLE VI. Parameter (A) (B) (C) (D) (E) BOD, mg/1 17 30 17 3.62 3.84 COD, mg/1 188 29 111 33.6 31.4 SS, mg/1 210 — 227 228 58 PO 4 , mg/1 — — 1.1 0.48 0.59 TDS, mg/1 — 228 128 250 NH^, mg/1 — _ — 0.348 0.430 N 2 , mg/1 — — 0.393 0.280 NO 3 , mg/1 — 0.382 0.120 Hyxg/l — — 0.409 0.245 ™, wxg/1 — — 0.204 0.145 TC, 1000/100 ML — — 0.179 x 10 5 0.0124 x 10 5 FC, 1000/100 ML — — 254 33 (A) Stockholm, Sweden (Aker1inch, 1950). (B) Pretoria, South Africa (Stander, 1961). (C) Cincinnati , Ohio (Weibel, et al. 1964). (D) Woodlands, Texas (Winslow, Espey 1972), Predicted Values (E) Oso Creek Basin, Corpus Christi, Texas, Predicted Values TABLE VII MODEL COMPARISON Parameter Result (A) Raw Municipal Wastewater (B) BOD, mg/1 4.7 85 SS, mg/1 205 200 PO 4 , mg/1 2.5 15 NH 3 , mg/1 0.65 16.8 COD, mg/1 40 238 TABLE VIII DATA COMPARISON MODEL APPLICATION The model was applied to the remainder of the subareas. Since the 2.10 inch rainfall used to check the applicability of the model to this area represents a storm which would occur once in every fifty rainfall occurrences, a more realsitic value to input for rainfall was chosen. Any amount of rainfall can be used as input provided the rainfall event is coded into thirty minute increments. Analysis of available precipitation data published by the United States Meterological Service for the period of January 1970 to December 1972 indicates that the average daily rainfall is 0.48 inches. Days of no measurable precipitation are not included in determining this average (U.S. Meterological Service 1972). Therefore, a rainfall of 0.48 inches over a six hour duration was used to calculate the loadings presented in Table IX. Each of the 14 subareas is characterized by different urbanization factors, impervious cover percentages, soil moisture indices, soil indices, area, and channel length and slope. The total loads for the 14 subareas for a 2.10 inch rainfall are presented in Table X. A 2.10 inch rainfall occurs once in every 50 rainfall occurences and may be used as the ’’maximum" storm. The runoffs resulting from the two rainfall events are listed in Table XI for each of the subareas. RUNOFF LOADINGS from .48 INCH RAINFALL ####*#»*####**#####***#*#*##««*#*##*#### ****** ### #M<*** * SUSPENDED SOLIDS #####*##***#***********##****« * TOTAL LOAD * POUNDS " * «« * # * * * ««» * #####*• «» * « ## * * * * * *# *# * * *# ##* ** * * *#* ## * * * * « 1OT?L DISSOLVED SOLIDS •»•»*«»«»«»**«•»•»»»*«»*»*«#»**«* * TOT A L LOAD * POUNDS « *>.9419UE*0* * «#####«#####«##«*###*«#»#«##«####«#*#»*##«##«####«**#«* « AMMONIA nitrogen ••»««»»«»•»»»««•»»»»«»««•«•»»» * TOTAL LOAD « POUNDS * I.3i72o6E*02 * ******* *tt**######<>*0*#******#*******00*#«♦»««• *0*#*#*** * organic NITROGEN **#**###****#**«##****#*#»*«** * TOTAL load * POUNDS * 9.2794ME + 01 ♦ *###*««»# #####*###*«*#####*«*# ###«*#*#*#*##*#♦*« * NITRATE nitrogen «*«#*♦****«*#******«#*#*#*##** * TOTAL load * pounds * *>.23o873E*oi * ##»#**A**##**##*##*««««»»«#***«##**•*#*«*************** « IOT?L PHOSPHATES * TOTAL load * POUNDS • 1.S56228e*02 • ##****«*#********#*****♦******#«#«*«»**»**«♦*»***#***** * doD #*«»****#**#♦**♦*♦*♦*«******»* * total load * POUNDS ♦ 1.184603E+03 * «###*##«*###**»*«***«#«#*•*•»••«»«*«««*«*««#*«*««»*«•»« * COD ***#*#*****##«**«»««#*#*****#* a Total load * POUNDS ♦ 1.0179i7£4q4 * #«##*•»#«»«#««#«##*»•**«»**««•««#«»*###«»*»##***«««**** • total coliform •«««*••«•••••««••»«•»««••«•««• « TOTAL LOAD • 1000 COUNTS * 2.737815EU5 • #»#»«*«####**#»«»#**•«»**»««**«*<«*•*#««*«*»«*#*«***«** * f£C*L COLIFORM * TOTAL load • 1000 COUNTS * 6.390867E+13 * ####**#**********##♦**#♦♦***#****««*>*♦**#♦♦##«*#«**«** ♦ FEC«L STREPTOCOCCUS ♦tt##*####***#*#*#****####*#**# * tot a l LOAD • 1000 COUNTS 0 3.b86459E*13 ♦ ##«*««**#*»##*««ft****«<**#** # «»««*«»««<«**«*#*«# 4 l # ««*** * total insecticides * Total load • POUNDS • 8.395295E-02 * «#*##**####**###*#<«#«****#* # *#*«*««*«*«t**#*#»# ># « # »«« « total hEkdicides • total load <POUNDS • 4.798054E-02 • «■###«###«»*#######*«»#***«*«#*«««***«#*«**#«*###»«*«**# TABLE IX RUNOFF LOADINGS FROM 2.10 INCH RAINFALL * SUSPENDED solids O 0 Oft OftO OOO# OOOft##ft O ftftft ft ftftft# * TOTAL LOAD * POUNDS * 2.855780E*05 • ftftft Oft ftftftftftft ftftft #ft ftftftftftft ftft ftftftftftft ftft ftftftftftft ft# * total dissolved solids #ftftfto#ftoooft<>ftft# *###*<>### #####* • TOTAL LOAD * POUNDS * 2.589460E*05 * * AMMONIA NITROGEN ♦ «## Oftft O ftft#OO ftO*ft#«»«««0OO ftft#* * total load • POUNDS • 7-140000E*02 • * organic nitrogen ft O O ft ft ft ft ft ft 0 ft ft Oft * ft ft ft OO O ft # <» # O # * * “ TOTAL LOAD * POUNDS * 6.654000E*02 * 0 0 #0 ft# 000 0 0 0 0 O ft ft ft ft O Oft ##### 0 ft ft ft 0 O ft ft ft# ft ft O O ft ft ftftft ft ft * ftftft 0 00 * * NITRATE NITROGEN * TOTAL load * POUNDS * 5.750000E*02 • ftftftftftftOOfto* 4 ##*ft####*ft******#O#«#ftft###*#*#*«*##**«***#* * TOTAL PHOSPHATES #0#ftftftftftftft * TOTAL LOAD * POUNDS * 8.527000E*02 * Oftft«ftftftO«o # *** 0 #*****ft ******* *#*«*<>**##**************#* * HOD * TOTAL LOAD * POUNDS • 6.965600E*03 * ftftoftftftOftfto**##*#*****##*****#«*#*#»**ftft****ft**#«««##««« * COD ftftftftftftftftftftftft*ftft<*ftftft#»ftftft««*ftft* * total load * POUNDS • 7»004300E*04 * ft * O « ft ft ##O * OO ft O* ttO 4* ft ft ft * * ft # 0 ft ft O Oft ft o ft ft ftftft ft O # ftftft ♦ ft ft ft O 0 0 ft ft# # • TOTAL COLIFORM ♦ ftftftftftftftftftftftftftftftftftftftftftftftftftftftft* * ' TOTAL LOAD • 1000 COUNTS * 4.465000E*16 • ftftO###ftftfto**#**##*#**#*******#**«######**«******##***#* • FECAL COLIFORM ft ftftftftftft ftftft ft ftftftft*ftftftft*ftft«ftftft ftftft • total load • 1000 COUNTS » 8«655000E*14 * Oft# ftOft#ftftftft*ftft#«#ftft»###ft«# * FECAL STREPTOCOCCUS ftftftftftftftftftftftftftftftftftftftftftftftftftftftftftft * TOTAL load * 1000 COUNTS • 3«867000E*14 * ftftftftO#ftOftft#*ftft#ftftftftftftft###*#«#ft#ft*ftft##ftft#*ft###*##ftftft#«## * TOTAL INSECTICIDES ft ftftftftftft ft ftftft ft ftftft ftft ftftftftftft ft ft ft ftftft# « TOTAL load * POUNDS • 6»550000E"01 * O*ftOftftOft#o#ftftftftOOftftftft»#######ftft«»Oftft##ftft#«#####«ftft###«# * TOTAL herbicides ft#«»ftftftftftftftftftftft#*ftft####ft###ftft# • TOTAL LOAD * POUNDS * 3.410000E-01 * ft OftftftftftOft ft#*#ft *ftftft<>«ftft##**ft*tt<>«<»<>ftft**-ftft<»*ft ««#♦<»«# ftftft ft ft# TABLE X Rainfall Area Volume, MG 0.48 1 0.630 0.48 2 0.359 0.48 3 1.100 0.48 4 1.520 0.48 5 0.990 0.48 6 0.085 0.48 7 0.610 0.48 8 1.140 0.48 9 4.160 0.48 10 6.160 0.48 11 2.400 0.48 12 2.200 0.48 13 8.810 0.48 14 77.000 TOTAL 107.164 2.10 1 8.25 2.10 2 7.10 2.10 3 22.20 2.10 4 23.40 2.10 5 15.60 2.10 6 1.93 2.10 7 7.20 2.10 8 11.90 2.10 9 38.20 2.10 10 50.00 2.10 11 22.20 2.10 12 18.30 2.10 13 67.00 2.10 14 570.00 TOTAL 803.28 TABLE XI VOLUMES OF RUNOFF DISCUSSION OF RESULTS The application of the model to the Corpus Christi area generates the pollutional load of urban runoff. This load is presented in terms of an oxygen demand, excess nutrients, silt, bacteria, and aesthetics. These pollutants are derived from several sources. The source of nutrients, usually nitrogen and phosphorus, are fertilizers, mineral leaching, and the decomposition of organic material. The oxygen demand is commonly expressed as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC). The sources of this ’’organic pollution” include degradation of vegetation, organic matter, oil and grease, animal excretions, and human waste products. Human waste products and animal excretions also introduce bacteria measured in terms of total coliform, fecal coliform, and fecal streptococcus. Silt presents a problem to some aquatic life. Large amounts of solids from erosion of the land are found in the runoff and settle out in the receiving waters. The total dissolved solids are generated during erosion of cleared land by the runoff, leaching from minerals, and soluble dust and dirt from streets. Suspended solids, clay silica particles and organic matter may be derived from erosion of cleared land, while dust and dirt are flushed from streets, and unimproved drainage channels (Avco 1970). Most of the elements contributing to the pollutional load accumulate in the gutters and streets. The city of Corpus Christi uses a brush type street sweeper that sweeps the curb and gutter areas of the streets. The frequency of sweeping is generally once a month on most streets and once a week on the main thoroughfares. Effective use of street sweeping equipment and frequent flushing of catch basins tend to reduce the shock effect of urban runoff (Sartor 1972) (Avco 1970). A comparison of the loading expressed in terms of pounds per day attributed to untreated and treated municipal wastewater in Corpus Christi with the runoff loadings predicted by the model provides an indication of the significance of the runoff to the water quality. In developing this comparison only one rainfall event was assumed to occur in a twentyfour hour period; therefore, the loadings can be based on a daily basis. Those comparative results are presented in Tables XII and XIII. The data in Table XII indicate that the strength of the urban runoff is less than that reported for untreated municipal wastewater; however, the data listed in Table XIII indicate that the strength of the urban runoff is similar to the strength of the treated effluents. Therefore, the significance of the urban runoff and the impact on quality of the waters of Corpus Christi Bay is obvious. A) 0.48 inch rainfall, or the ’’average" storm B) 2.10 inch rainfall, or the ’’maximum" storm (A) Q4B inch rainfall (B) 2.10 inch rainfall *from Texas State Department of Health for TSS, BOD: Eckenfelder, and Ford for N. Parameter Untreated Municipal Wastewater Urban (A) Runoff (B) SS, Ib/day 57,400 22,178 285,578 BOD, Ib/day 38,200 1,184 6,965 COD, Ib/day 98,500 10,179 70,043 Ib/day 2,860 155 852 N, Ib/day -- 287 1,754 Total Coliform, Counts 2.6 x 10 10 3.74 x 10 15 44.6 x 10 15 TABLE XII QUALITY COMPARISON Parameter Treated Municiapl Wastewater* Runoff (A) (B) TSS, Ib/day 3,200 22,178 285,578 BOD, Ib/day 2,500 1,184 6,965 PO 4 , Ib/day 1,780 155 852 N, Ib/day 6,350 287 1,954 TABLE XIII QUALITY COMPARISON CONCLUSIONS Some conclusions which can be drawn from this study include: (1) The model developed by Winslow and Espey (1972) is applicable to the Corpus Christi area for predicting runoff quality and quantity changes. (2) The estimated pollution load resulting from an "average" rainfall of 0.48 inches is 1184 Ib/day of 155 Ib/day of 132 Ib/day of NH 3 , and 69419 Ib/day TDS. (3) The strength of the urban runoff is less than that reported for untreated municipal wastewater; however, the quality of urban runoff is similar to the quality of biologically treated municipal wastewaters. (4) Volumes of runoff varied with amounts of impervious cover, degree of urbanization, soil moisture, and the topographic features of the area. APPENDIX »TITLE<S) »QT(4) ,QUU(3) *cTITLE(I3. DIMENSION CUNIT(I3,3> *CPT(I3*3) *CP(I3»3) .5U8(13,4)*1D(24) DIMENSION QU(9)*TU(9)»UQ(18U0)»UT(1800),T(l800),Q(1800),R(48) DIMENSION SL(9)*PPT(I3)*CMEAN(I3)*PPD(6)*QR(IBOO).TRIIBOO) DIMENSION X(200*5)*y(200,5) C THIS PROGRAM COMPUTES THE STORM HYDROGRAPH FOR A GIVEN C WATERSHED AND THE RESULTING WATER QUALITY OF THE RUNOFF C BASED ON UNIT HYDROGRAPH EQUATIONS* RAINFALL-RUNOFF AND c water quality relationships developed from usgs data for C HOUSTON TEXAS. READ 2»iDT 2 FORMAT(I3) READ 60»STAR*(TITLE(I)*1*1*5) 60 FORMAT(6A6) READ 61*(QT(I)*1*1*4)*(QUU(l)*l*l*3) 61 FORMAT(AA6*3(2A6*A2)) DO 62 J*l*l3 62 READ 61«(CTITLE(J*I)* I*I,4).(CUNIT(J*I)* I*I*3)•(CPT(J,I),J.l*3) 1 (CP(J*l)•l*l*3) DO 63 J*l«4 63 READ 64v(SUB(J*I)*1*1*4) 64 FORMAT(3A6*A2) dt«idt ND*3O./0t CON*72O•/(5280.**2) C0NN*62.43*86400./10.*«6 tAClwlO.**lo/(0.03531*62.43) FAC2«lO,**-3 12 read i*a,l*s*ai*phi*api,si*famb C A is THE DRAINAGE AREA In SQ. MILES C L IS THE MAIN CHANNEL LENGTH IN FEET C S is THE MAIN CHANNEL SLOPE 1N FT./FT. C I ISTHE PERCENT IMPERVIOUS COVER AS A WHOLE NUMBER. IT MUST NnT C BE EQUAL TO ZERO C PHI IS The CHANNEL IMPROVEMENT FACTOR 1 FORMAT(FIO.2*IT*FS.4*F4,2*4FS.2) I*A I AL»L TU(4)bI6.4*PHI*AL*»O.3I6*AI*«-C.49*S**-0,0488 QU(4)*3S4OO.*A*TU(4)••-!.! Tu(9)*367ooo.*A«*l.l4*Qu(4)••-!.15 Wso«4l4oo.*A**l.o3*QU(4)»•-!.04 W?s*l34oo.*A**o.92*QU(4)«*-0.94 R50«0.28#w50 R75«0.4*W75 QU(1)»O QU(2)*o.s*Qu(4) QU(3)«O.7S*QU(4) QU(S)*QU(3) QU(6)*QU(2) QU(7)*QU(6)/3 QU (8) *QU (7)/3 ®U( 9 )*o TU(1)»O Tu(2)*TU(4)-R5O TU(3)*TU(4)-«75 Tulsi-Tutsi's TU(6)=TU(2)*WSO DIFFa(TU(9)-TU(6))/3« TU(7)= TU(6)+ DIFF TU(B)aTU(7)♦DIFF 10T«0 DO 90 J»l»8 90 TOTaTOT* (QU( J*D *QU< J) ) « (TU < J*D-TU (J) )/2. PRINT 999» A»L»S»AI»PHI»API»SI»FAMB 999 FORMATS 10.2♦17»F5.4»F4.2,4F5.2> TOT’TOT*CON/A DO 150 Ja2,B 150 QU(J)=QU(J)/TOT DO 3 Jal,B 3 SL(J)*(QU(J*I)-QU(J) )/(TU( J*D-TU( J) > N=TU(9)/DT N»N* 1 Jal uUD=O UT (1)=0 DO 4 K=2.N UT (K) aL)T* (K»l) 205 IF(UT(K).LE.TU(J*I)>6O To 14 J=J*l GO TO 205 14 UQ(K)sQU(J)♦(UT(K)-TU(J))«SL(J) 4 CONTINUE N=N*l DO 206 K«Ntl800 206 UQ(K)=O UT(N)»DT*(N-1) C READ IN RAINFALL TO BE APPLIED TO UNIT GRAPH READ 2fNR C NR IS THE NUMBER OF 30 MINUTE RAInFALL INCREMENTS To BE USED READ 5»(R(J)»J»1,NR) C R IS THE ARRAY OF 30 MINUTE RAINFALL INCREMENTS IN INCHES. 5 FORMAT(I2FS.2) Ua(NR-l)*30/DT JaN*J RAINsO DO 152 JX*I»NR 152 RAIN aHAIN*R(JX) RUNaO•32S*RAIN«»I.234*API«»O.23*AI**O•O669*SI**-0•123 RUNRAaHUN/RAIN IF(RUNHA.GT.O.9>RUNRAaO.9 PRINT 151.RAIN»RUNRA 151 FORMAT(2(3X.EI4.4)) DO 6 Kal.J Q(K)aO 6 T(K)aDT*(K-l) DO 7 JaI,NR RUNaRUNRA*R(J) DO 8 K»1«N L»ND*( J-D 8 Q(L*K)«W(L*K)*UQ(K)*RUN 7 continue NN=N*L DO 227 J«NN»1800 227 QN)«0 DO 80 J»l»13 80 FIPOP(J)si•♦O.2O9*(FAMB-1.) DO 75 J s l*l3 75 F I POP (U) sF I POP (J) *(1 ♦0 • 0135* (AI <-1 o.) ) 98 PRINT 13»A,L»S»AI,PHI»DT 13 FORMAT(FIO.4»I7,FIO•4» 2F5,2»F5.D PRINT IU,(TU(J)»JsI,9) PRINT 10,(QU(J)»Jsl*9) PRINT 10,T0T IR’O QMAXsO ICOuNT®! qmean»o DO 11 J«I»NN QMtAN«QMEAN4Q(J) IF(O(J)•LE.QMAX)GO TO 225 QMAXsQ(J) TMAx®T(J) 225 IF(J,NE,ICOUNT)GO TO 11 PRINT 10,T (J),UQ(J),Q( J) IR«IR+1 TR(IR)»T(J) OR(IR)«W(J) ICOUNT»ICOUNT*IS 11 CONTINUE QMEAN®QMEAN/(NN-2) IF(NN.EQ.ICOUNT)GO TO 22e Ir=lr*i TR(IR)s ICOUNT-1 QR (IR)«Q(ICOUNT) PRINT 10,TR(I«> ,UO(ICOUNT)(ICOUNT) 226 PRINT 10,TMAX,QMAX 10 FORMAT(*X»9FI3,7) PRINT 10,QMEAN CALL WQUAL(QR»A,FIPOP»C,IR) DO 99 J“l»13 PPT(J>«O 99 CMEAN(J)«O DO 30 KC«1,1R,6 K=KC LsKC+5 IHL.GT. IR) L»IR LMK«L*I"K PRINT 17 PRINT 16,(STARtIsl,22) 16 FORMAT (2x»2IA6»A4) PRINT 15,(ID(I)»I«lf24) 15 FORMAT (2x,IH*,I2BX,IH*,/,2(2x»1H*,1X»12A6,55x,1H*»/> »2X,IH*»I?R 1 IR*) PRINT 16,(5TAR*1«1,22) PRINT 18,(TITLE(I)»I«1»5),(STAR*I si»15)•(TR(I)•I«K*L) 18 FORMAT (2x*IH**24X.IH*»I3x» IM* »B9X*IH*»/,2X»IH*»IX*2a6»IIX*IH»,I lA6»6x»lß**39x»2A6.3Bx»lH*»/»2X»lH*.24x»lH**l3x»lH**lsA6,/*2X»IH 224X,1H*,13X,1H*,6(4X,F6.0,4X,1H*)) PRINT Ib*(STAR*I»I*22) PRINT 19 19 FORMAT(2X»IH*»24X»IH**I3X»IH«*6(I4X*IH*)) PRINT 20,(QT(I)*I«1»*)•(QUU(I)»I®1*3)•(QR(I),I«K»L) 20 FORMAT(2X»IH*»IX,4A6»2A6.A2»6<IX»EI2.6.IX.IH*)) PRINT 19 PRINT 16.(5TAR»1»1.22) DO 21 J«1,13 1F(J.LT.6.1.0R.J.GT.7.1)GO 10 82 PRINT 17 PRINT 16.(5TAR.1«1,22) 82 FACaI IF(J.LT.B.9)GO TO 40 IF(J,GT.II.I)GO TO 41 FACsFACI GO TO 40 41 FAC=FAC2 40 DO 3j KK=I»LMK KKK=KC-I*KK PPU(KK)=FAC*QR(KKK)*C(J.KKK)*CONN PPT(J)=PPT(J)♦PPD(KK) 31 CMEANCJ) bCMEAN(J)*C(J»KKK) PRINT 22.(CTITLE(J.I)»I=I.4),(STAR.I = 1•18) 22 FORMAT<2x»IH*.IX.4A6» 17AP.A2) PRINT 23,(SUB(1.1),1=1.4)♦(CljNIT (J. I) •1 = 1 .3).(C(J.1).1«K.L) 23 F0RMAT(2x.1H*.5X.3A6»A2.2A6.A2.6(1X.t12.6.1X,1H«)) PRINT 23.(5U8(2.J).1»1.4).(CP(J*I).I»I»3).(PPD(I>♦I=I.LMK) 21 PRINT 16,(5TAR.1=1.22) 30 CONTINUE PRINT 17 PRINT 83. (STAR.Ib1.10) 83 FORMAT(2x.9A6,AI) DO 42 J=1.13 IF(J.LT.IO.I.OR.J.GT.II.I)GU TO 85 PRINT 17 PRINT 83,(STAR»I«l,10) 85 CMEAN(J)=CMEAN(J)/(IH-2) PPT(J)«PPT(J)*IS./1440. PRINT 84,(CTITLE(J.I).1=1,4),(STAR.I«1. 5) 84 F0RMAT (2x.1H«.1X,4A6.4A6,A5) PRINT 23,(SUB(3,I),1=1.4),(CuNlT(J.I)•1=1.3).CMEAN(J) PRINT 23.(5U8(4.1).I=l.4).(tpT(J.J).I=I.3)»PPT(J> 42 PRINT 83. (STAR.Ib1,10) PRINT 17 17 FORMAT(IHI) X(1.1)=0 V(1•1)=0 DO 69 1=2.107 X(1»1)»1R(1-1) *(I•1)=QR(1-1) 69 CONTINUE Call geurge(x.y) £nu DO 1 I*I.NN QA8Q(I)/A IF(QA.L£,O)GO TO 14 QALsALOGIO(QA) IF(QA.GT.O.7S)GOTO 2 C (1» D *21,55*4.36*QAL Go TO 3 2 C(1»1)*37.83*134.7*QAL 3 IF(QA,GT,7,O)GO TO * C(2.1)«2 5 8,53-162.74*QAL GO TO 5 4 C(2,D»155,02-40.25*QAl 5 C(3,D»0.465-O.O7B*QAL C(4,1)»0.306*0.071»QAL C(S,I)sO.IBB*O,I4B*QAL IF(Qa.GT,O,3OS)GO TO 6 C(6»I)«0,0366-0,957*QAL GO TO 7 6 C(6.1)=0.508-0.042«QAL 7 C(7♦I)“4,11-0.282»QAL IF(QA.GT,S.6)GO TO 8 C(8,1)«34.43*10,12*QAL Go TO 9 8 C(8,1)«46.32-5.77*0AL 9 IF(QA,GT,O.22)GO TO 11 C (11,1)«1010.«QA«*3.24 GO TO 12 11 C (11,1)»15,35#QA*«0.472 12 C(12,1)■0.269*0,110*QAL C (13»I)“0.158*0,038*OAL C(9, 1) «17,4*C(11,!)♦*!•463 C (10»1)«0.152*C(9.1)**0,767 DO 16 J-1,13 C(J,I)«C(J,I)*FIPOP(J) IF(C(JtI),LT•0)C(J,I)sO 16 CONTINUE GO TO 1 14 DO 15 J»1,13 15 C(J»I)»O 1 CONTINUE RETURN eno 000004 I?(2OO,S),NOATA(S)»XLINE (5) , Yl. INE (5) ♦ JAREA(I3*S6) .YSCALE(S6)»ISYMBL (5) C PLOT INFORMATION 000004 NDMAX«2OO 000004 ISYMBL(I)=IH* 000006 NF-1 000007 MysU 000010 Mx=o 000010 NLSSS6 000011 NCL=I22 000012 MM=l 000013 LL»I 000014 NOATA(I)xIO6 000016 CALL PLOTT(X*Y»NDATA»NDMAX,ISYMBL.NF»XLINE»MX.YLINL,MY»NLS.NC| ,i ILL•AREA♦YSCALE) 000034 KEIURN 000035 ENU subprogram length 001521 function assignments STATEMENT ASSIGNMENTS Block NAMES ANO LENGTHS VARIABLE ASSIGNMENTS AREA - 0000&4 ISYMBL - 001504 LL - 001520 MM - 001517 MX • 0015)4 MY • 001513 NCL - 001516 NDaTA - 000045 NOMAX - 001511 NF - 001512 NLS - 001515 XLINE - 000052 YLINE - 000057 YSCALE - 001414 START OF CONSTANTS 000040 START OF TEMPORARIES 000043 START OF INOIRECTS 000045 UNUSED COMPILER SPACE 157300 90*30 117160,00085.00 1.30 .03 5.00 I*oo 2.1000 E +OO 1.552 lE-01 ~ 90.3000 77 .0008 5.00 1.30 4.0 0.0000000 268.4255618 372.1641 0 43 548.4731672 812,93676 X 5 1268.5955 0.0000000 1128.9340714 1693.40i1072 2257,8681429 1693.4011072 1128.9340 1.3737937 0.0000000 0.0000000 0.0000000 60.0000000 252.3457298 .8355482 120.0000000 504,6914596 22.9253525 180.0000000 757.0371894 73.5282377 240.0000000 1009.3829192 130.2410688 300.0000000 1300.7383893 193.2466220 360.0000000 1627.2132107 276.6291926 420.0000000 1846.5514092 370.0671910 480.0000000 2038*6460275 460*3501617 5*0.0000000 2230.7406458 534.9904859 600.0000000 2147.6900620 608.9181786 660.0000000 2019.8269831 661.1614821 720.0000000 1891.7639042 664.5638640 78 0 .0000000 1763.7008253 655.5727603 84Q.0000000 1659.8753521 900.0000000 1585.5477616 604.2964793 960.0000000 1511.2201711 570.1772355 1020.0000000 1436.8925806 540.3493Q93 1080.0000000 1362.5649902 510.9417021 1140.0000000 1288.2373997 484.5437528 1200.0000000 1213.9098092 460.3175050 1260.0000000 1139.5822187 436,0912572 1320.0000000 1104.4489135 4U.8650094 1380.0000000 1075.8694740 390.7746874 1440.0000000 1047.2900345 375.2879400 1500.0000000 1018.7105949 361.2923889 156 0 .0000000 990.1311554 348.1528339 1620.0000000 961.5517159 338.2681379 168 0 .0000000 932.9722764 328.9529888 174Q.0000000 9Q4.3928369 319.6378398 1800.0000000 875.8133974 310.3226908 1860.0000000 847.2339579 301.0075417 1920.0000000 818.6545184 291,6923927 1980.0000000 790.0750789 282.3772436 2040.0000000 761.4956394 273.0620946 2100.0000000 732.9161998 263.7489456 2160.0000000 704.3367603 254.4317965 2220.0000000 675.7573208 245.1166475 2280.0000000 647.1778813 235,8014984 2340.0000000 618.5984418 226.4863494 2400.00000*0 590.0190023 217.1712003 2460.0000000 561.4395628 207.8560513 2520.0000000 532.8601233 198.5409023 2580.0000000 5q4.2806838 189.2257532 2640.0000000 475.7012443 179.9106042 2700.0000000 447.1218047 170*5954551 2760.0000000 418.5423652 161.2803061 2820.0000000 389.9629257 151.9651571 2880.0000000 371.3354002 142.8500080 2940.0000000 361.8089203 134.0079862 3000.0000000 352.2824405 127.5595865 3060.0000000 342.7559607 122.4725686 3120.0000000 333.2294808 117.5472293 318Q.0000000 323.7030010 U3.7944q96 3240.0000000 314.1765211 110.6893599 3300.0000000 304.6500413 107.5843102 3380.0000000 295.1235615 104.4792606 3420.0000000 285.5970816 101.3742109 3480.0000000 276.0706018 98.2691612 3540.0000000 266,5441220 95,1641115 3600,0000000 257,0176421 92,0590618 3660,0000000 247,4911623 88,9540122 3720.0000000 237,9646825 85.8489625 3780,0000009 228,4382026 82,7439128 3840.0000000 218.9117228 79,6388631 3900.0000000 209,3852429 76,5338134 3960,0000000 199.8587631 73.4287638 4020.0000000 190.3322833 70.3237141 4080.0000000 180.8058034 67.2186644 4140.0000000 171.2793236 64.1136147 4200.0000000 161.7528438 61.0085650 4260.0000000 152.2263639 57.9035154 4320.0000000 142.6998841 54.7984657 4380.0000000 133.1734Q43 51.6934160 4440.0000000 124.5420217 48.5883663 4500.0000000 119.7787818 45.5435450 4560.0000000 115.0155419 42.9540974 4620*0000000 110*2523q20 4o* 0 597910 4680.0000000 105.4890621 38.8321905 474 0 .0000000 100*(258221 36.9739728 4800*0000000 95.9625822 35.4214480 4860.0000000 91.1993423 33.8689231 4920.0000000 86.4361024 32.3183983 4980.0000000 81.6728625 30.7638734 5040.0000000 76.9096225 29.2113486 5100.0000000 72.1463826 27.6588238 5160.000000$ 67.3631427 26.1062989 5220.0000000 62.6199028 24.5537741 5280.000000$ 57.8566629 23.0012492 5340.0000000 53.0934230 21.4487244 5400.0000000 48.3301830 19.8961996 5460.0000000 43.5669431 18.3436747 5520.0000000 38.8037Q32 16.7911499 5580.000000$ 34.0404633 15.2386250 5640.0000000 29.2772234 13.686i 00 2 5700.0000000 24.5139834 12.1335753 5760.0000000 19.7507435 10* 5 8105q5 5820*0000000 14.9875q36 9.0285257 5880.0000000 10.2242637 7.4760008 5940.0000000 5.4610238 5.9234760 6000.0000000 4.3709511 6060.0000000 0.0000000 2*8184263 6120.000000$ 0.0000000 1.5908800 6180.0000000 0.0000000 .9464122 6240.000000$ 0.0000000 .4589751 6300.0000000 0.0000000 .0599938 1590.0000000 0.0000000 0.0000000 688.0000000 668.6805709 180.4333771 ****»OOO«««** OC*««««««O****O««ttoO«O*C»«O»**«* ♦ • • • « • O*CO*O«O*********«********OC*C*< • • • • ♦ • parameter ♦ UMTS • TIME MINUTES ♦ • ♦ oooooooo•0*00000000000000 00000000**0*00**0*****0 00**0* co0000*0*0 00*00*00 000*0* • « • 0 • 60 • 170 ♦ IrO ♦ 240 ♦ 300 c »HiH»<H>»H»***»*Mt*<H»»»t»Ht»»"*ft*l*****t*"***W*W**ttK O<t*V**<>****4> ***•<> «**«<>*«**<>*** koooooooooooooa • • • • • • • ♦ * DISCHARGE • CFS • o. • 8.355482E-01 • 2.292535E*01 ♦ T.352824E*01 ♦ 1.3o2411€*O2 ♦ 1.932466Eo02 c • • • • • ♦ • ♦ • »«•*••• »**•*•«**< »•« ■o******o*« *********♦•******••♦»•*********•**♦ *******••**»*• • suspended solids .*o*o*ooo****••*•**•*****•••**•*•**♦ »*«***•***•••*• ********* • concentration • MG/L « o. • 1.182689E*01 • 1. 7 6 7*77E*01 • 2.406 8 04Ec01 • 5.525567E*01 • 7.67S03IE+01 c • LOAD • POUNDS/OAY • ®* • 5,3302UE*01 • • 9,545574E*03 • 3,881789E*04 • 8.003295E*04 • .••♦*•*•*•**«••*•****»*•♦***«******•••**♦•**•** * TOTAL DISSOLVED SOLIDS •••••••••••••••••••••••••••I »•« •*•••••«••••« >•♦•*•••*••*••***••*•**•««*****•***•*••*••****• • CONCENTRATION • mg/l • o. • 5.497o59E*O2 # 3.3U299E*02 • 2.5A620oE*02 • 2,169410E*02 • l,909357E*02 * • LOAD • POUNDS/OAY • «. • 2 ( 4774?3E«03 • 4,09«404E*04 • 1.009846E*05 • 1 524041E*05 • 1 990243Ec05 • •»*****o*•*•*«*•*••*•♦*•*••♦••♦*«*•»««»»» *«»•**•*••*♦•«»»»• • AMMONIA NITROGEN ‘♦••*«»* ***********o*******»* **********»•*•*»•» • concentration • MG/L • o. • 5.8153*9E-01 ♦ A.7691ft9E-01 • 4.401029E-01 • 4.220433E-M * 4.O95791E-01 • • LOAD • POUNDS/OAY * ®* • 2.620923E»00 • 5.89747|E*o1 • 1.745482E*02 • 2.964913F*02 • 4.269301E*02 • • ORGANIC NITROGEN ••*••••••••*••••< »•« -<««««« ««««»•« »••••• •••••••» *•«-»••*•«• »**««**«< tOoCOOOOOOOOOOO • CONCENTRATION • mg/l • v. • 1.5069T7E-01 ♦ 2.4592A9E-01 ♦ 2.794371E-0I • 2.958760E-01 • 3.072216E-01 c • LOAD • POUNDS/OAY • ♦ 6.791806E-01 ♦ 3.0410A9E*01 • 1.108269E»02 • 2,078570E+02 • 3.202364E«02 * *••••••*••••••••••••••••< »•••••••••••••< »•#•*••*»•••«•♦«•*♦*•*•»» »<**♦ »»< tcocooooocooooo • NITRATE NITROGEN ••••••••••••••a*' *♦« >««•••••«•*•*< ►••••••♦••••••••••♦••♦••ft*** scoot »Ocoo0000*0 coco • CONCENTRATION • MG/L • V. ♦ 0. • 9.3U275E-0? * 1.629949E-0I • 1.972619E-01 • 2.209U8E-01 * • LOAD • POUNDS/OAY • o. ♦ 0. • 1.1517a 7E*01 • 6.464504E*01 • 1.3 R 5793E*02 * 2.302703E*02 • ► •♦••##*#•♦«••••**■»*•**• OOCOOOC Ct OOOCCOOOOOOOOOO • total phosphates 0000000*00*000 *oooo**o*****o**ooo**••••***•****♦••****♦*♦«***♦** ******* *•**#*< »oo»0*000*00000 • concentration • mg/l • V. • 1.8*9o23E»OO • 5.654407E-01 • 4.772048E-01 • 4.6748C4E-01 * 4,6n7689E-01 * • load • POUNDS/DaY • o. • 8.33337*E*00 • 6.99?1ME*O1 • 1.892 6 32E*02 • 3.2g4116E*02 • A,802 8 85E*02 * (CCCCCCCCCCCCCCCCCCCCOCCCOOCCCCCCOC COCCO c«ococo »••***•♦••»»•♦•••••••*♦«*•••«»»•••»♦**•«•«« «««<***« • bod »»«*»«*«»•»«*•••*#«»«»»«•»*■»«»■»«****•*•*«**»**• • CONCENTRATION ♦ MG/L • 0. • A.3673T1E+00 • 3.989)37E*00 • 3.856O4oF*OO • 3.790748E+00 * 3.745685E*00 « • LOAD • POUNOS/DAY • 0, ♦ 1.968333E*01 * 4.93?897E*02 * 1.529336E*03 * 2.663054E*03 * 3.9o4363E*o3 • • COD »••••«•• ••••••••••••«•••• ••••»•••« ***»«••*«•*««»***•••••*«»*■•»•*• »***•<>*«*«• *•*•**• • concentration • MG/L • 0. • 1.291400E*01 • 2.64^78) E* 0 1 • 3.126389E*01 « 3.360701E*01 • 3.5?2415E*01 • • LOAD • POUNOS/DAY • 0, • 5.820218E*01 • 3,27S3Q9E‘O3 • 1.23995oE*O4 « 2.360940E+04 • 3.671636E*04 « •••*••#•••»♦••••••••♦•*•*•♦••<«•*•**••*»* **••»♦•«•***•*« *•«■»«■»•******•«■»•**« • total colIFoRm • concentration • 1000/100 ML • 0. • 9,23551bE.05 • 3.422544E*02 • 7.653422E*02 • l,135825E*03 • 1.491573E*03 • • LOAD • COUNTS/OAY • 0 t * 1.888203E*06 • 1.919911E*14 • 1.376974E*15 • 3,619724E*15 * 7,052975E*lb • ••••••••«••«••••••••••••••••••»♦•*«»**«*•**««*****••*♦«*«*««***««*«*•*•«»»«»» • FECAL COLIFoRM ••••**••••••••••••*•••* • CONCENTRATION • 1000/100 ML • 0. • 1.2O3O*1E-OA • 1,3140A7E*01 • 2.436066E*01 • 3.297582E*01 * 4.064031E401 • • LOAD • COUNTS/DAY • 0. • 2.459620E*06 • 7.37] 39?E* 12 • 4.38287&E*13 • 1.050896E*J4 • 1,921697E*]4 * • FECAL streptococcus •••••••••••••••••••••••••••••••••••••••••••••••••it ••••***«*••***••***•« ****•**•*•« • CONCENTRATION • 1000/100 ML • 0. • 2.425o99E-O* ♦ 7.4O4484E*00 • 1.299089t*01 • 1.701507E*01 * * • LOAD • COUNTS/OAY • 0, • 4,95B120E*06 • 4.2O4)o8E»12 ♦ 2.33727)E*13 • S.422476E*}3 * 9.692713E*13 * ►•♦«»•***»•*«»<•**♦»•***»••♦**♦* • TOTAL INSECTICIDES •••••••••••••••••••*••• ► #«*••••«*♦«**•*■»♦•«****«•**«*** • CONCENTRATION • MICROG/L • 0. • 4.223405E-02 • l.B9772?E“01 • 2.416894E-01 • 2.671581E-01 * 2.847358E-01 • • LOAD • POUNOS/DAy • 0. • 1.903449E.04 • 2,34669pE-02 • 9.585588E-02 • 1.876823E-01 • 2.967980E-O1 * • •••••if f*****4Kt*<f*O<>***<H>**O**<>*** »•«««««•«««»«««»«»««•«•«««»»««*• • TOTAL herbicides ••••••••••••••••♦••••*• ►♦♦•*♦»••«***•**»*«» «****«•*•*** * concentration • microg/l • 0. • 7.52702GE-02 • 1.26238QE-01 « 1.441730E-01 • 1.529713E-01 * 1.590436E-01 * • LOAD • POUNOS/OAY • 0, • 3.392361E-04 • 1.561037E-02 • 5.718014E-02 • 1.074645E-01 • 1.6578 11E-0 1 • ♦♦♦••**4444*44444*4*4444*44444»***4444*«44*4 4*4****4444444.4**44*4*444*44 4*444444*44444 *************** 44**4*4**4444*4 *o***««««««*•* • • • ft ft • •< ►♦•♦*44***44*****4*****< »#< ► 44 44 4 44 44 44*************** 4** 4* * 4444444444444444444«*44444*44« ft«*0********ft* • • 4 ft • parameter ♦ units • time minutes ft • « ••••••***♦•♦•**4* 4***•*• *4 *4* 4 -44 444444444444444 *************** *4**444*444*444 •«««**«******» • • 4 360 4 ♦20 4 480 4 540 • 600 4 660 ♦ •« ► *♦ *************** «*«*•*•«•••««**«•********•*• 44 444444*44444444 44*4*4***4444*4 ************** • • 4 4 4 4 ♦ 4 * • discharge • CFS • 2,766292E*02 4 3.700672E.02 4 4.60350?E*02 4 5.349905E*02 ♦ 6.089182E*o2 ♦ 6.6H615E*n2 * • • 4 4 4 4 « * * .**••4 **•••*•*•*••« ► 44 >4444444444444 -44 4444444444*4444 4*4*•* 4#******* ******** 4444*4 • suspended solids *< -44444444444444444444444444*444 **4*4*44***44444*44*4*4*4 44*4 • concentration • MG/L 4 *.63Ae25E*0 1 4 1.122229E»02 4 1.2*131§E*02 4 1.323283E*02 * 1.393891E*02 • 1.438794E*02 • • LOAD • POUNOS/OAY 4 I.A37636E+05 4 2.2A0109E«05 4 3,O82317E*O5 4 3.818616E+05 • ♦,578201E*05 * 5 131133E+05 4 •»•***♦»**••**•««»••♦**•*«****•*««««•*♦«*«*• • total DISSOLVED SOLIDS • 4 ►«« .••••••••••••« ► 44 •«»*•****••«« ► 44 »••••«•••••••« ► 44 4****4**44444444**4*4*444*4*444 *44444444444* • concentration • MG/L 4 X,6729<AE*02 • l.A81152E«02 4 1.3372T6E*02 4 1.2382*4E*02 • 1.152938E*o2 • l,121043E*02 ♦ ♦ LOAD • pounds/day 4 2,*9624OE*O5 4 2.9565 6 3E*o5 4 3.32nSO9E*05 4 3.573218E*05 • 3.786798E*n5 * 3.997945E*05 4 •1 »#< »**•••****••< »44 »••••••«•••••« ► 44 >•••«••••*•••< ►4444444 44444 44« ► 44 • ammonia nitrogen **•«**•«*•******»* *** 4* 4»*«♦** •4*4*44*4444*44 • concentration • MG/L 4 3.98240OE-O1 4 3.890556E-01 4 3.a21597E-01 4 3.774132E-01 • 3.733246E-01 * 3.707244E-01 • • LOAD • POUNDS/DAy 4 5.9A2356E*02 4 7,766o34E»O2 4 9,48943*E*02 4 1.089106E»03 • l,226175E»03 * 1,322104E*03 * • ORGANIC nitrogen •••••••••••<*< »♦« 444*4444444444(1 ►*******««*»*»* • CONCENTRATION * MG/L 4 3.175358E-01 4 3.259032E-01 4 3.321802E-0) 4 3.365008E-0 1 • 3.402225E-01 • 3.425893E-0 1 • ♦ LOAD • POUNOS/OAY 4 A.738029E»02 4 6.505a35E*02 4 8.2*R3R9E*02 4 9,710447E*02 • 1.117452E*n3 • 1.221767E*03 * ••*•*****♦*♦••••••♦*•••*»* 1 »4« ► 44 *•«••••••••••« ► ••••••••••• •**»*• ********************* ********* ►««*******# *««* • NITRATE NITROGEN 4*4*4*4444444*****4*4**44*44( '4*44444444444444*444444444444 • concentration • mg/l 4 2.A24119E-01 4 2.598539E-01 4 2.729383E-01 4 2.819446E-01 • 2.897025E-01 • 2.946362E-0 1 • • LOAD • POUNDS/DAY 4 3.617087E«02 4 5.187oO*E*O2 4 6,77738oE 4 O2 4 0.1361UE*O2 • 9.515208E*02 ♦ 1.050753E*03 ♦ ♦ 4 »•< »4« ► 44 -*♦♦*••♦♦•♦♦*< ’4444444444444*44*444444444444 • TOTAL phosphates >4***4*4«***44444** ***4444*44444* *****4*444*4 • CONCENTRATION • MG/L 4 4.546676E-0I 4 ♦.♦97178E-01 4 ♦.♦6n04ZE-01 4 ♦.♦34488E-01 • 4.412473E-01 * ♦.398472E-01 * • LOAD • POUNOS/OAY 4 b.78*2o7E*O2 4 8.976928E*02 4 1.107477E*03 4 1.279666E*03 • 1.449266E*03 * 1.568615E+03 4 •«»«•«»« ****4***»***4********« ** **»«»•«* «»»» BOD H»4**********«***0««*««**4*<H concentration • MO/L • j,704719E*00 • 3.671485E*00 ♦ 3.6A*5S3F*00 * 3.629393E*00 * 3.614611000 • 3.6o521OE*OO LOAD • POUNOS/DAY • b,527902E*03 • 7.3287*lE*03 • 9.0547RlE*03 • 1.047339E+04 • 1.187210E*04 * 1.2«5717E*04 •««»•••••••••• •<••••••••••• •••••«»«44•••••• •«»«4«««« 444444444»»***»*4«4**»«4«»*44»***4«4«4****444»«**««*** COD »4**>a**»4*4» *••»***«•*•*••***«»•**•••••«•«»«•«»« «««»««»«< CONCENTRATION • MG/L • J.669<29E»01 • 3.78B695E<01 • 3.87R1aaE*01 • 3.903609E*01 * 3.873364001 * 3.854129E*01 LOAD • POUNOS/OAY • b.475246E*04 ♦ 7.562708E»04 • 9.629R96E*04 • * 1,272197E*O5 * l,374488E*05 ••••••••••••• TOTAL COLIFORM 444• *4*•»*•*«•«•»«»»•*» *44♦«»*«<» *4*«»•*»»•< concentration • 1OOO/1OO ML • l,910822E*U3 • 2.336103E*03 • • 3.013166E*03 * 3.294883E*03 * 3,4R7593E*03 LOAD • COUNTS/OAY • 1,2934o5E*16 • 2.1j5381E*16 • 3.059R99E*16 • 3.944438E*16 * 4,9o9248E*16 • 5.642211E*16 »*««<**««**«««*«l«*«*«*»***«*««*«<*»«««*O«*<«**«*««*«««*t««««« »«4«««4»4 *««»«•< FECAL COlIFoRM ••••••♦••*••*4 4»4*<t« 44*<444<444444444<H »*4 «*«»*«■»»**•*****■»*•*•***■»' CONCENTRATION • 1000/100 ML • 4,914369E*01 • 5.733307E«01 • 6.43A047E*0 1 • 6.969192E<01 * 7,463716E*01 • 7,7g6308E*01 LOAD • COUNTS/OAY • J.326456E*!* • 5.191607E<14 • 7.249759E*14 • 9.123144E*14 • 1.112065E*15 • 1,2612R3E*15 444444444444444»44»444«444444444444444>444#4<4444444444444444444 4444444444 4444 44444444444444444 444444444 4 ■ FECAL STREPTOCOCCUS ••44444444444444444444444«4*444e444«444«444444444>444444444444444444444< 44444444444444444444444 »»»«•««* concentration • 1000/100 ML • 2.427999E»01 • 2.785a86E<01 • 3.O«78o8E*Ol • 3.31*759E<01 • 3.5?3582E*01 • 3.663176E*01 LOAD • COUNTS/OAY • 1,643473E*1A • 2.522305E414 • 3.47R?noE»14 ♦ 4.339244E*14 * • 5,926269E*14 TOTAL insecticides concentration • M1CROG/L • 3.007155E-01 • 3.136792E-01 • 3.234041E-01 • 3.300979E-01 * 3.358640E-nl * 3.395309E-01 LOAD • POUNOS/OAY • 4.487050E-01 • 6.26U28E-01 • 8.0304A9E-01 • 9.525679E-01 • 1.103137E*00 * l,210860E*00 TOTAL HERBICIDES CONCENTRATION • MlCROG/L • 1.645639E-01 • 1.690422E-01 • 1.724017E-01 • 1.7*71*1E-O1 * 1.767061E-01 • 1.779728E-01 LOAD • POUNOS/OAY • 2.455498E-01 • 3.374?94E-01 • 4.28noi 9E-01 • 5.041749E-01 * 5.803867E-O1 • 6.346997E-01 ••*•**•*•••****«*«*••*< ►••ft******* •••«A*«ft«**ftft«»ft»ft«**««ftft**ft»**ft»»ft»»A»ftftAA»A«ft»*»ft»ft»ft«ft »«»•*•»•*««««»*•«»»*•*»»*»««»«♦•*»*«»• • • 41 parameter • UNITS • TIME MINUTES • * • 720 • 780 • B40 * 900 * 960 • 1020 • ••••♦*«*♦*•♦*«•••***•*< »**A***ft«ft**«ftft«**«««»»ftA****A****ftft*ftft«**»Aft*»»ft»ftftftftAA*ft*»***ftft*ft««*ftftft*«eftft»ft«»»ftft««»**»**»»«ftft»ft*ft***ft • ••••••• discharge • CPs • b,645639E*02 • 6.555728Ea02 • 6.40R6?rE*02 * 6.042965E*02 * 5.7ol772E*o2 * 5,4n3493E*02 * • •••••♦* >•••••••••♦•••••••••••♦< »•••*•**•♦•♦••••••••*•**•••••••••••••••••••••••••••♦••••••a*********** *********ft************************** suspended solids •••••••••*•••*••••••••••••••*•••*•*•••••••••• AAA*»»A*A«****************•*••••***•**•••*•***«*********•*•* CONCENTRATION • MG/L * 1.441S94E*02 • 1.434164E*02 • 1.421528E*02 • 1.389735E+02 • 1.358031E*02 • 1.3?8720E»02 ft LOAD • POUNOS/DAY • 5.167576E*05 ♦ 5.071386E*05 • *.911615E*05 • 4.529905E*05 • 4.1 7 6637E*05 • 3.8 7 2 7 13E*05 • »•••♦•*•♦•*•♦••*•••••••♦•••••••••*••••••••••*♦*•*•♦•••••*•••♦*•••••*••**♦♦•••♦*****»** •»**«***•*•*«**»***• TOTAL dissolved SOLIDS ••••••••••••••••••••••••••*•••••••*•••••••*•••••••••**••••*•••••••••«»«•«••••« »ft»ftft»ftftftftft««»••«««»»•••••• CONCENTRATION • MG/L • I.120206E*02 ♦ 1.122426E*02 • 1.12A202E*02 • 1.15796oE*O2 • l,196263E*02 * 1.231675E*02 • LOAD • POUNDS/OAY • A,015519E*05 • 3.969o*3E*O5 • 3.89]2i3f*o5 • 3.774423€*05 • 3.679117E*05 • 3.5R9864E*05 • »•♦*•♦••••♦•••••♦••♦♦•••••••*•••*•♦*•••*•• ••••••••••» »••• » « »•«•»•••«» ••»••«•»«•»•• «>» « » » » •»»»»» «« • » * ****■» * * AMMONIA nitrogen •ftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftfte••••••»•»••»•««»«»««»»»«««»«»«««»»»»••«»»•«»•«»«»»« concentration * MG/l • 3.705622E-01 • 3.709925E-01 • 3.717?4?E-01 ♦ 3.735652E-01 • 3.754011E-01 « 3.770984E-01 • LOAD • POUNDS/OAY • l,328327E*03 • 1.311877E*O3 • 1.2843A8E*03 • 1.217653E*03 • l,154549F*o3 ♦ 1.099098E*03 * »•••••••••♦••••••♦••♦••*•••♦•*••••••♦••**•»•••*•*•*••••••*♦••«••••**•• *»•••••*** **»«»» ftft ftft ftftftft*•**♦*•* ftft»• ORGANIC nitrogen •••••••••••••ft• •••• ft•«•»«•»••• ftAft»«»••»* ftftftft ft ft*«• ftftft* ft*ft* ft concentration • MG/l • 3.427369E-0I • 3.4234&2E-01 • 3.41A79?E-01 • 3.400034E-O1 • 3.383323E-01 * 3.367874E-0 1 * LOAD • POUNDS/OAY • I ( 2285g3E*03 • 1,210577Ea03 • 1.18n5SGE»03 • 1.108257E*03 • 1.040544E*03 * 9.816066E+02 * »ftftftft*ftAA«ft«ft»ftAft*«****AAft»«*ft*ft*Aftft******Aft*ft»AAftft»AAftAft»Aft**» Aft »*•«■»•«* ftft ft ftftft ft Aft ft ftftft ft Aft eft ftftftftftftftftftft ft »«»ft NITRATE NITROGEN concentration • MG/L • 2.949438E-01 • 2.94I274E-01 • 2.927391E-01 • 2.892459E-01 • 2.857625E-01 ♦ 2.8?5420E-0 1 • LOAD • POUNDS/OAY • l,057263E*03 • 1.040072E*03 • 1.01146?E*03 ♦ 9.428102E*02 • 8.788649E*02 * 8.235019E+02 • ►••••••♦•••••••••••••••■ »♦♦••♦•••••••••••••••••♦••••••••••••••••••*••*•• ft•••••••••••••••••••••••••*••••••«• ft**»ftft»ft»»«*ftftft* ft ftAftOft* TOTAL phosphates •••••• A«««««••••••«••••••••••••••••••••••••••••••••••••••••••••••• A«A»ft• *«ft* ftA•**«*■»•*«**** •**«»*Aft****** CONCENTRATION • MG/L • 4.397599E-01 • 4.399916E-01 • 4.4038S5E-01 * 4.413769E-0I • 4.423654E-01 ♦ 4.432793E-01 • LOAD • POUNOS/DAY • i.576374E*03 • 1.555866£*03 • 1.52160SE*03 • 1.438688E*03 • l,360499E*03 * l,291990E*03 • ••••♦••••♦••••••A* »«**«»«•••••••« Aft a •«•••••••* A«ft••« A AA»«•*«*••• •*«••«***•«•*♦****»*« ftAft* Aft* ftAftAftftft******* bod ******♦*•*•*•*******••******•♦•**•*•*•••*•»•**«*<•**•«••*«<*•««*«•<«»**«»**•*»«««»**#«»«*»#<«•«*#»»*<>»*. concentration * M $ /L * 3.604624E*00 • 3.6061B0E+00 • 3.6088?5E*00 • 3.615481E*00 • 3.622118E*00 ♦ 3,628255E*00 LOAD • POUNDS/OAY • 1,292123E*UA • 1.2751*1E*O4 • 1.24aro9E*O4 • 1.178483E*04 • 1.113986E*04 * 1.057498E*04 *••♦**••**•••***•*«•< *•***••****•♦***•••*••**•*♦**•*•*••••*<»•«•**•*«••«««*«»**«»♦«»*•*••••••««*«*«•*••«« «»»«««»««««««««••««««»»«> COD CONCENTRATION • M6/ E * 3,852930E*01 • 3.8561I3E*01 • 3.86]S?5E*01 • 3.875144E*01 • 3.888725E+01 • 3.901280E*01 LOAD • POUNDS/OAY • 1.381131E*05 • 1.363571E*05 • 1.33422jE*05 • 1.263121E*05 • 1.195981E*o5 • 1.137o74E*o5 TOTAL coliform *•******•*•*••**•****•***•*•♦•*****••*•*♦♦♦••*•♦***••♦*•••***•««*••*•••**•• •••***»«»«*«*•**•»#*»«««*•*« CONCENTRATION • 1000/100 ml • 3,499976E*03 • 3,467209E*03 • 3.41?194E*03 ♦ 3.277594E+03 • 3.148661E+03 « 3,033975E*03 LOAD • COUNTS/OAY • b.691383E*16 • 5.561820E»16 • 5.3482*7E*16 • 4.846422EH6 • 4.392905E*16 • 4.011462E+16 FECAL COlIFoRM ••«#•##••#•••#•###••••♦•♦•#*#############4#»#«»##*#*»#####<# ##«####♦♦####«####♦####♦#♦#♦«##' CONCENTRATION • 1000/100 ML • f,817532E*01 • 7.761335E«01 • 7.66g703E*01 • -.433658E*01 • 7.208324E*01 • LOAD • COUNTS/OAY • 1.271225E*15 • 1.245oUE*15 • 1.2016?3E*15 • 1.09918nE*15 * 1.005681E*15 * 9.263298E»14 FECAL STREPTOCOCCUS *•♦♦**•*•**••****•*••••••••••**•*••*•♦•*•♦***•**•**••**••••*•*••••«•••*• «*«•«••••«**•#»«»••••«•«••»««»»««»•' CONCENTRATION • 1000/100 ML • 3,672061E*01 • 3.648528E»01 • 3.60«857E*01 • 3.510934E*01 • 3.415932E*01 • 3.330389E+01 LOAD • COUNTS/OAY • S.971215EHA • 5,852677E*1< • 5.656496E*14 • 5.191451E+14 • 4,765793E*14 • 4,4()3375E*14 total insecticides concentration • MICROG/L • 3.39/595E-01 • 3.391527E-01 • 3.381209E-01 * 3.3552*6E-01 • 3.32g355E-01 * 3.3n54i9E-01 LOAD ••••••«•••« «•••••••< • POUNDS/OAY • 1.217911E*00 • 1.199287E»00 • 1.16R2*3E*OO ♦ 1.09365eE*00 • l.023946E*00 * 9.634035E-01 *****************•**•#>•***•*<«•••••••«#«•<####«••««#••«»#««•«#•«««#«•###«##««#«#«• «#«««««< total herbicides •♦••••♦♦^•♦•♦♦♦••••♦•♦••••♦••♦•♦♦♦♦♦•••♦♦•♦•♦•♦# ♦♦##♦#•♦••##♦♦♦♦#♦#♦#♦###•#♦•###«♦#####♦♦#« concentration • MlCROG/L • 1.780518E-01 • 1.778<22E.O1 • 1.774857E-01 • 1.765888E-01 • 1.756944E-01 * 1.748675E-01 LOAD • POUNDS/DAY • 6,38249OE»O1 • 6.288727E-01 ♦ 6.132424E-01 * 5.755994E-01 • 5.403497E-01 • 5.096721E-01 • ■»**»«*«»»■ 4 4*♦**♦♦ 4******* *4**44**444*444 4 « *4**44«444444444444444444444«4444444444«4444444444444*44444 ♦ • ♦ 4 * ♦ ••••««4««««**4«*«44«**4*4 444444*444444444 *4444444*4*4444 *4 444444444444444444*444444 «444444444444« 4444444444444***4444 • • • • parameter * UNITS * TIME MINUTES « • • 44>4«♦♦44*4*4*4 ••••••••••••••• • * • • • 1080 • 1140 • 1200 * 1260 • 1320 * 1380 * • 4 444*444444*44444444*444*44444444*44444444444***44*444444444 • discharge • • • * * * * * • ♦ CFS • b,109417E*o2 • 4.845438E<02 • 4.603175E*02 ♦ 4*360913E*02 ♦ 4.1186S0E*02 ♦ 3.907747E*02 ♦ • ♦ • • * * * * 4 ••••••*♦•«**••♦***••*•«* »« • SUSPENDED SOLIOS « ••••««•«*«•«»<•«•««•««•»«•«««»«««««««• ****•*«»*♦•«»• • CONCENTRATION • mg/l * l,298194E*02 • 1.269256E402 • 1.2*127AE*02 * 1.211783E*02 • 1.18O604E+02 • 1.151930E*02 • • LOAD 41 POUNDS/DAy • 3,577815E*05 • 3,317334E»05 * 3.08?00?E*05 • 2,85Q423E*05 • 2,622807E*05 * 2.4?8061E*05 • •1 44 »*•••••••«•« •••••••••••••••a ••••••••••••••• «* ««•*•*•#**•*♦«••#«»«»»»«♦•*•#««»« «« «••»«•«» • total DISSOLVED SOLIDS •••••••«•••••«•••••»«««•••««•«•««««•«««««•»•««»•««»»«•««««« • CONCENTRATION • MG/L • 1.26b557E*02 * 1.303519E*02 • 1.33t3?3E*02 • 1.372955E*02 • 1.41O625E*o2 * 1.445268E*02 • • LOAD 41 POUNDS/OAy • 3,A9613AE*05 • 3,4068«*E*05 • 3.3204noE»05 ♦ 3.229541E+05 • 3.133815E*05 ♦ 3.046365E*05 * • 4 »• ••*•«»««••*•*♦«•♦*•«•*•***«♦«*•«»*«««««*««««*««•»•«**«««»«« • ammonia nitrogen ««4»*«4«*4««4 • CONCENTRATION 41 MG/l • 3.788661E-01 • 3.805418E-01 * 3.821620E-01 * 3.838698E-01 • 3.856753E-01 * 3.873357E-01 * • LOAD • pounds/day • 1.0A4153E*03 • 9.945bG1E*02 * 9.488B16F»02 * 9.029S97E*02 • 8.568085E*02 * 8.164339E*02 • • ••••••*••♦•*••»••*•»«»♦*•*•*•♦»•*••«♦*»** *»*#**•***■»«**■»«• • organic nitrogen * • CONCENTRATION 41 mg/l • 3.351783E-01 • 3.336530E-01 * 3.3217R2E-01 • 3.306236E-01 * 3.289802E-01 ♦ 3.274688E-01 * • LOAD « POUNDS/DAY • 9,237497E*02 • 8.720374E+02 • 8.247753E*O2 • 7,777112E»02 • T.308558E*02 • 6.9o2452E*O2 « NITRATE NITROGEN • * concentration • mg/l • 2.791879E-01 • 2.760083E-01 * 2.729341E-01 • 2.696936E-01 • 2.662679E-01 • 2.631173E-01 • • LOAD * pounos/day • 7,6944q4E*02 * 7.213770E*02 • 6.776764E*02 • 6.343882E*02 * 5.915354E*O2 • S.546039E+02 • • total phosphates «•«»•••»•••••••«•••••*••••••••••««••«••«•«»»« O»4« ft»«»»<»»«•«»«««•««««»•«««•• * concentration • mG/L • 4,44231 IE-01 * 4,45 1334E-0 1 • 4.46C059E-01 • 4.469255E-01 • 4.478976E-01 * 4,4r79]7E-01 * • LOAD * pounds/day * 1.224299E*03 • 1.1634U3E*03 * 1.10740?E*03 • lc051283E*03 • 9.950405E*02 * 9.459721E+02 • ♦♦♦♦•*♦*•♦••♦ 4* ******* 444********4*** 4 *4* *♦** ** ♦4* 4* 4*♦♦ 44 44 ** *4444444*44444 •••••••♦•••••♦••••♦•••••I b« <>««»• *>•«•»«•< »««»»« 4««•«»««»««««»««««»«•««««•«•«««««••«««« • aoo • concentration • MO/L • 3.634646E»00 • 3.640704L*00 • * 3.652736E*00 • 3.659263F*00 • 3.665266E*00 • • LOAD • POUNDS/DAY • 1.001707E*04 • 9.515364E*03 • 9.064 1S9E*03 ♦ 8.592168E*03 * 8.129347E*03 * 7.725722E*03 • * COD • CONCENTRATION • MG/l • 3.914357E*U1 • 3.899156E*O1 • 3.87&138E+01 * 3.855977E*01 • 3.832553E*nl * 3,R11010E*01 * • load • POUNDS/DAY • 1.078795E*05 • 1.019q86E*05 • 9,629l4nE*04 • 9.070243E*04 • 8.514323E*04 * 8.032922E*04 • • TOTAL COLIFORM •••***«****»«««*««**»f«««***»«**»«a«««t***«»«M«*«« ( tt*»**»«**»*«***«»**«««**««««*»«*««*»»«««t«»t*»««*»** • CONCENTRATION • 1000/100 ML • i,918971E*03 • 2.813980E*03 • 2.7U0S7E*03 • 2,616526E*03 • 2.515268E*03 * 2,A25607E*03 * • LOAD • COUNTS/OAY * 3.649364E*16 • 3.33fc338E*16 • 3.05923?E*16 ♦ 2.792020E*16 • 2.534867EM6 * 2.319331E+16 • »•**•♦••**♦♦••**<••**«*♦*»*«*»**««*•♦**•«*•»• • fecal coliform ♦ CONCENTRATION • 1000/100 ML • 0.801473E*Q1 • 6.613037E401 • 6.435806E*01 ♦ 6.2S413oE*Ol • 6.067641E*01 * 5.9nl046E*01 • • LOAD • COUNTS/DAY • 8.503356EH4 • 7.840612E*14 • 7.24«97?E*14 * 6.673602E*14 * 6.114920EM4 * 5.642498E*14 * ♦ fecal streptococcus •*•*••«•«•••••«•••••••••••••••< »»«•••••«•••••••»«»»•»«««««•««»««»«•»»«•««»•• • CONCENTRATION • 1000/100 ML • 3.243575E*01 • 3.163368E401 • 3.087705E*01 * 3.009907E*01 • 2.929793E+01 * 2.857998E*01 * • LOAD • COUNTS/DAY • 4,055190E*14 • 3.750583E*14 • 3.477R37E*14 • 3.2117B5EH4 • 2.952622E+14 • 2.732778EH4 • • total insecticides »••«•••••«•••««»•«««««•««««»«•»»««««««•«»««»• • concentration • MICROG/L • 3.280490E-01 • 3.256859E-01 • 3.234O10E-01 • 3.209925E-01 • 3.184463E-01 • 3.161047E-01 • • load • POUNDS/DAY • 9.041015E-01 • 8.5121*4E-01 • 8.029821E-01 • 7.550563E-01 • 7.074540E-01 • 6.662917E-01 • »♦•»««««••««•«•«••##««««•»««««««««««««« «»#»•• • TOTAL herbicides • concentration • MICROG/L • 1.740063E-01 ♦ 1.731900E-01 • 1.72400AE-01 • 1.715686E-01 • 1.706B90E-01 * 1.6988Q1E-0I • • LOAD • POUNDS/DAY • 4.795606E-01 • ♦.526503E-01 • 4,2805rrE“01 • 4.035732E-0 1 • 3,7 9 1994E-01 • 3. 5rO767E-O 1 • • • • • • Mm * ♦ • Parameter • units **♦•**«•***«* «••*•«••*••«•*»«••»«•«•«» • discharge • cfs • « • • • 1440 3.752879E*02 # • ♦ TIME MINUTES o l & 00 • • 1620 * 1680 « • 3.612924E»02 • 3,4815?rE*02 * 3.382681E*02 • 3.2p9530E*02 * 3.1g6378E»02 • • SUSPENDED SOLIDS • concentrat ion • LOAD • total dissolved solids ♦ concentration • LOAD • ammonia nitrogen • concentration • LOAD • ORGANIC nitrogen • concentration • load • NITRATE nitrogen • CONCENTRATION • LOAD • TOTAL PHOSPHATES • concentration * LOAD • mG/ L • i.!29871E*02 • 1.10913aE*02 • 1.08b9?QE*02 ♦ 1.073217E*02 • l,057985E*n2 « 1.042314E*02 • • POUNOS/DAY • 2,287181E*Q5 • 2.161482E»05 • 2.04<9??E*05 • 1.958195E*05 • 1.877242005 • 1.797o65E*O5 • ««««»•»»«•«••«»<»«•«»«»•»««««• • MG/L • J e 471919E*02 * 1.496967E*02 • 1.5213B3E*02 • 1.540366E*02 • l,558769E*02 * 1.577702E*02 • • POUNDS/DAY • 2.9795b3E*05 • 2.917281E*05 • 2.857035E*05 ♦ 2.8l0555E*05 • 2.765813E*05 * 2,720133E*05 • »»«««»»«««•«•««»«»•«••«»««« • MG/L • 3.886130E-01 • 3.898136E-01 • 3.909B3BE-01 * 3.918936E-01 « 3.927757E-01 • 3.936831E-01 • * POUNOS/DAY • 7,866636E«02 • 7.596663E*02 • 7.3*?362E*02 • 7.150500E*02 • 6.969242E»02 ♦ 6,787535E*02 * •••****«♦**♦**«*♦»•****»•*•*•#***»■»• • MG/L • 3.263060E-01 • 3.252132E-01 • 3.2MA80E-01 • 3.233199E-01 • 3.225169E-01 • 3.2]6910E-01 * • POUNDS/DAY • O,605365E*02 • 6.337735E»02 • 6.087?4QE*02 • 5.899301E*02 • 5.722601E+02 * 5.546310E*f>2 • * MG/l • 2.6O6936E-01 • 2.58*156E-01 • 2.561952E-01 • 2.544689E-01 • 2.527952E-01 • 2.510734E-01 * • POUNDS/DAY • S,277182E*02 • 5.035988E<02 • 4.811140E+02 * 4.643044E*02 • 4,485488E*02 • 4.328785E+02 • ****•*••••••**•***••••*•••**••••*••***••*•*•♦*••*•♦♦•»••*»•*«•**♦**•»•*•*•«•*»«■»*«*»««*»»*♦ •♦««**«»*•»*** • MG/L • 4.494795E-01 • A.501260E-01 • 4.5075ME-01 • 4.512460E-01 • 4.517210E-O1 • 4.5220g6E-01 • • POUNDS/DAY • 9,098747E*02 • 8.772o27E*O2 • 8.4&4B37E*02 • 8.233444E+02 « 8,0]5141E*02 * 7,796596E*02 * ♦ ft •••••••ftftftftftft ftft • ••o»••«••••• ••aoOooooooaooooAOAOAOoaoaaaa** • BOD »««••••••««• ft ft ftft aaaa« 4 4«aaaaaaa»»AA<aaaaaooa ft < • CONCENTRATION • MG/L • J.669S85E*00 • 3.67*225E»00 • 3.67a 4 c;6E*00 • 3.681745E+00 • 3.6s4934€*00 * 3.6R8215E+00 ft • LOAD • POUNDS/OAY • 7.428893E*u3 ♦ 7.160307E«03 • 6.907845E*03 • 6.717720E*03 • 6.538388E*03 * 6.358893E+03 • ••••♦•*••#•*•«•••••«•• ♦ •••' • * 4 ftftftftftftftftftftftftftft • ft »«««««««•»#•••«••• ftftftftftftft•••••••« »• • COD •ftft ftftftftftftftftftftftftftftftftftftftftftftftftftftftftftft • concentration • MG/L • J.794437E*01 • 3.778860E«01 • 3,7676T7E*01 ♦ 3.751873E*01 • 3.740429E*01 ♦ 3.7?8655E*01 • • LOAD • pounds/day • 7,681022E*04 • 7.36*22OE»O4 • 7.067RR4E*04 • 6.84567sE*04 ft 6,636854E»n4 * 6.428616E+04 ft •«•«•••••*••••••••••••••••»••••••••••* 'ft* •ftftftft•••••«•••« ftftftftftftftftftftftftftft ft ftftftftft ft ft ftftftftftftftftft ft ft ft ft ft ft ftftftftftftftft • TOTAl •••••ftftftftftftft•••••*••••••«••« ftftftftftftft ftftftftftftftftftftftft ft ftftftftftft ftftftft • concentration • 1000/100 ML • 2.350812E*U3 • 2.2977UE*03 • 2.239fe78E*03 • 2.195572E*03 ft 2.153641E*Q3 * 2.111342E*03 ft • LOAD • COUNTS/OAy • 2.166077E*16 • 2.031282£*16 • 1.9079?OE*16 • 1,817292E*16 ft 1.733498E*16 • 1.651326E*16 ft ••••••••••••••••A***** a************************************************************ a««*«••**♦•*• • fecal coliform •a•••••••• •••**«•« aaaaaaaaaaaaaaa ■ ft ••••••••••••••«•«•• ftft••»••••••• ft ft««»«»»«««» »• • concentration • 1000/100 ML • b.77600*E*01 • 5,660S*9E*0l • 5.55n908E 4 0l • 5.466871E*01 ft 5.3b6613E*01 * 5.3o5278E*O1 ft ♦ load • COUNTS/DAY • 5.304057Eai4 • 5.00*4 9 *E*lA • 4.72R790EH4 • 4.524973EH4 ft 4.335764E»14 • 4.149372E*14 ft FECal STREPTOCOCCUS • ► ♦ft '••••••••••••a ’•« ®4> • CONCENTRATION • 1000/100 ML • 2,803966E*01 • 2.75*ll*Ea01 ♦ 2.706375E*01 • 2.669831E*01 ft 2.634P74E*01 ♦ 2.599389E*01 ft • LOAD • COUNTS/OAY • 2.57*85aEHA • 2.43*764E*14 • 2.305547E»14 • 2.209841E*l4 ft 2,120S48E*14 ♦ 2.033038E+14 ft •♦♦ftftftftft ftftftftftftftft ft ftft ft*♦•♦♦« ftftftft • TOTAL INSECTICIDES ftftftftftft ft ft ftftftft ftftftftftft ftftftft ftftftft ftftftft • CONCENTRATION • microg/l ♦ 3.1A3033E-01 • 3.126102E-01 • 3.109599E-01 • 3.096768E-01 ft 3.084328E-01 * 3.071531E-01 ft • LOAD • POUNDS/OAY • b,362395E-01 ♦ 6.092128E-01 • 5.839577E-01 • 5.650369E-01 ft 5.472698E-01 • 5.295662E-01 ft •♦♦♦♦•♦♦♦••ft •••••♦**•»••♦♦«« ••••«a»aaaaaaaaaaaaaaaaaaaaaaaaaaaa ft ftftftftftftft ft ft ftftftft ftftftftftft ft ft ftftftft ftftftft • total herbicides • ft • concentration • MICROG/L • 1.692578E-01 • 1 ,686t29£-01 • 1.681028E-01 • 1.676596E-01 ft 1.672298E-01 ♦ 1.6A7878E-01 ft • LOAD • pounds/day • 3.A26261E-01 • 3.287 0 88E-01 • 3.15683$E-01 ♦ 3.059120E-01 ft 2.967254E-01 • 2.875607E-01 ft ♦••ftftftftftftft ftftftft»•««««♦« ftftftftftftft* ••*••••*•*«♦•••*•***•♦•*•• »•••»»«»««»«« a••••••*•«• 000000*0*0000 to 0000000000000 *************** 0 ♦ • 0 0 0 • • ft c * 0«0004«00000a »*0 00#000*0*0*0000*#0*000000«00*00«***00***0*0 0004000040400000« 0 00000000000000 • • • 0 • parameter • UNITS • TIME MINUTES 0 ♦ • 00000 0000000*01 >00000000*000000 **•«*•»**»•**••••*••»»**•«**•» ► 0 • • ♦ 1800 • i860 ♦ 1Q?O • 19r0 • 2 04n 0 2100 0 ••••••••••••••••••••••«•••«••••«•••••••••••«••«•«••••••••«»•••••*•••• 000000000000W04 >000000*00000000 0000000000000000« *«••«»«•««•*« • • • • • 0 « 0 0 ♦ discharge 0 CFS • 3. 103227E*02 • 3.O1OOTSE0O2 ♦ 2.91*9?aE*02 • 2.823772E*02 * 2 e 730621E*02 ♦ 2,637469E*02 0 • • • • • « « 0 0 •••••••••••••«••«•••••• <H 10 »•*••**•*••* 000 ««»«««»»«•««««* 0< t000000000000< • SUSPENDED SOLIDS • •••••••••••••••••••••••••••a** 0••«•••••••••••••••••««•«•• 0000000000000000 1000000 000000 ♦ concentration • MG/L • 1.026180E*02 • 1.009555E*02 • 9.9240A3E*01 • 9.747ol4E*Ol • 9.564025E*01 0 9,374684E*01 0 • LOAD • POUNOS/OAY • l,717688E«05 • 1.639133E*05 • 1.561427E*05 ♦ 1.484596E*05 • l,408670E*05 0 l,333679E*05 0 ♦*•*•*••••••*•*•♦*••••••••••*•*•••**•» *00**0000000000 0000*0********0*0*0*0000**0000*00*0*00**«**«**0*0*00«0«00000*0*0*00******* • TOTAL DISSOLVED solids ••••••••••••••a****************************** ••••••••*•••4 * 0 0 ♦ 0 0 * * * * * 0 ♦ * * 0 0S*************************** • concentration • MG/L • i,597194E*02 • 1.617281E*02 • 1.637999E*02 • 1.659389E*02 • 1.681497E*02 0 1.7o4373E*O2 0 • load • POUNDS/OAY • 2,673489E*05 0 2.625850E*05 • 2.577jR6€*05 • 2.527465E*05 • 2,476650E*p5 0 2,4?4706E*05 0 ••••••«••••••••*••••««*••• 00 0 000000000000 **0000*0**0 0*00000000000000 H000000000000 00 • ammonia NITROGEN 00000«4000000 00 0 000000000000 000 0*000**0*« 0*000*0*000000000 0000000000000000 ***0«0*000000*« »«»*••*•**»**•« • CONCENTRATION • MG/L • 3.94617AE-01 • 3.9558U1E-01 • 3.96R731 E-0 1 • 3.975984E-01 • 3.986580E-01 0 3.997544E-01 0 • LOAD • POUNDS/OAY • O.605365E*UZ • 6,422719E*02 • 6.23QS*iE*02 • 6.055937E*02 • 5.871769E*02 0 5,6R7q59E*02 0 •••««•••••»•••••••••••••••••«••••••••* 000 *000000*000* *00 ••••••••*• 00000 00 0*»0 00 0*0 0000* 0000000 00***00000 00 0 0000*00 00 *00 0** ****** • ORGANIC NITROGEN ♦ 000000000000 000000000000000000 00«0*0***00*« ***** *****<khhhk><kk>********<k>» ft****** »00000000000 000 • CONCENTRATION ♦ mg/l • 3.208405E-U1 • 3,1996*2E-01 • 3.19n603E-01 • 3.18I271E-01 • 3.171626F-01 0 3.161646E-01 0 • LOAD • POUNDS/DAy • b,370440E*U2 • 5.195oO*E*O2 • 5,02n015E*02 ♦ 4.845487E*02 * 4,671436E*02 0 4,497878E*02 0 ••••*•••*•••••****•••«•• 00 00000000*000 000 ••*♦•*•**••• *00 •*•«••••••♦♦•*••*♦••*•*•••*•*« 0****«*00*0000« 000«000000«00000 • nitrate nitrogen • 00«*0000*0«0 000 *000*00*0*0* *00 •«0000*0*00*000 0000000000000*0*0**«0*0**«*0***0 •«•»•«*•«•«»••* «•••«***** 00 • CONCENTRATION • MG/L • 2.493007E-Q 1 • 2.4747*0E-01 • 2.4558QAE-01 • 2.436445E-01 ♦ 2.416340E-01 0 2.3O5536E-01 0 • LOAD • POUNDS/DAY • 4,172959E*02 • *.018038E*02 • 3.864049E*02 • 3.711021E*02 * 3.558988E*02 0 3.4n7982E*02 0 *»*•••**•••••••♦••*«••** »•**••••••♦•*« 000 0000000000000*0 000000* > *000#< 00000000000000 000*0000000 000000000000 000000X ► 0 000000000000000 • total phosphates 0 000000000000 000 ••••••••«••• 0*0 ••••••*•**•*•****••••**•••* ********************************************* 00 • concentration 0 MG/l • A.527126E-01 ♦ A.532310E-01 • 4.5376S7E-01 • 4.54317hE-01 * 4.548883E-01 0 4,5547R7E-01 0 • LOAD • POUNDS/DAY • 7.577801E*Q2 • 7.3567S1E*O2 • 7.13R435E*02 • 6,919847E*02 • 6.699977E+02 0 6,479R15E*02 0 •««•*«••••••••«••••••••«••«•••••*••••••«••••••••»•••• •*00*••*•*«••*••••**»«•***••***«*•*•••*»***•**•••****♦*♦•** *••«*•** ••**••* aaaaaaaaaaaaaa*a*aaaaaaaa« aaaaaaaaaaaaaa aa«aaa»»aaaaaaa» aaaaaaaaaaaaaaaaaaaaaaaa»aaaa« #«»««•«««»««»« taaaaaaaaaaaaaaaa • BOO G#««**#***GGG{ «««««••«««»»»«»«« ••aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa • CONCENTRATION • MG/L • J.691593E*U0 ♦ 3.695o73E*OO ♦ 3,O9ofe^3F aoo • 3.702370E*00 a 3.706201E*00 a 3.710165E*00 • • LOAD • POUNDS/OAY • t>.179230E*03 • 5.999396E*03 • 5.81<J3P4E*03 • 5.63918aE*03 • 5.458803E*03 a 5.278223E*03 a aaa«aaaaaaaaaaaaaaaaaaa aa*aa«aaaaaaaaa« •«*♦•••*♦•• •aaaaaaaaaaaaaa* ••aaaaaaaaaaaaaaa • COD •••«•«*•*•*•< aaaaaaaaaaaaaa •••aaaa»*aaaaaaaaaaaaaaaaaaa*aa»aaa«aaaaaa«aaaa • concentration • MG/l • J.716534E»01 • 3.70*0*3E*0 1 • 3.6911A0F*01 a 3.67785eE*01 • 3.664110Ea01 a 3,649885E*nl a • load • POUNDS/OAY • O.220979E*U4 * 6.0139b9E*04 • 5.80757RE»04 • 5.601853E*04 • 5.396808E*04 a 5.192466E*04 a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa* »aa»«aa»»aaaaaaa« aaaaaaaaaaaaaa »aaaaa«aaaaaaaa»« « TOTAL COlIFoRM aaaaa««aaaaaaaaaa» «♦••*•••••«••• a» t a»aa«a»aaaaaaaaaaa«aaaa •aaaaaaaaaaaaaa •aaaaaaaaaaaaaa* •••aaaaaaaaaaaaaa • concentration • 1000/100 ML • 2.06B658E*03 • 2.025577E»03 • 1.98?0p1E*03 • 1.93al53E*03 • 1.893774Eao3 • 1.848923E*03 a • LOAD * COUNTS/OAY • 1.570791E*16 • l,491908E»16 • 1.414694E*16 • 1.339164E*16 • l,265335Eai6 * l,1932?5Eal6 « aaaaaaaaaaaaaaaaaaaaaaaaa«aaaa«aaaaaaa•• aaaaaaaaaaaaaa aa ••>«<»••••••« •••aaaaaaa*aaaa*aaaaaaaaaa*aa»aa»aaaa«a*a«aaaaaaaaaaa«***aaaa • fecal COLIFORM ,aaa«»«»aaaaaaa»a» ••aaaaaaaaaaaaaaa • CONCENTRATION * 1000/100 ML • B.222820E*01 • 5.1391’OEaOl • 5.054333E*01 a 4.968l92E*01 a 4.880703E*01 a 4,791799E*01 * • LOAD • COUNTS/OAY • J.965835Eal4 • 3.785193E*14 ♦ 3.6O74R9E»14 • 3.432765E*14 • 3.261068E*14 • 3.092446E+14 • aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa • FECAL STREPTOCOCCUS aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa»aaaaa« •aaaaaaaaaaaaaaaaaaaaaaaaaaa aaaa • concentration • 1000/100 ML • 2,563354E*01 • 2.526743E*0l • 2.48952OE*01 ♦ 2«45168?E*01 • 2.413170E*01 a 2,373958E*01 * • LOAD • COUNTS/OAY • 1.946427E*14 • 1.861035E«14 • 1.77A8PJE*14 • 1.693986E*!* • 1,612373E*J4 a l,S32063E*14 a • TOTAL INSECTICIDES aaaaaaaaaaaaaa ,•••»•♦»••••♦••••• a•••••••aaaaaaaaaaaaaaaaaaaaaa ••*••••«»*•« »««•«•«••««»««««»*•»«««« • concentration • MlCROG/L • 3.058356E-01 a 3.044779E-01 • 3.03n775E-01 a 3.016317E-01 a 3.001373E-01 a 2.9859 11E-0 1 a • LOAD • pounds/day • S.H9277E-01 • 4.9435G5E-01 • 4.768545E-01 • 4.594241E-01 a 4.420674E-01 • 4.247872E-01 • aaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa • Total HERBICIDES aaaaaaaa*aa**< »««••••••••••••••« aaa•»»•♦••••»•»»••••••♦•••• aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aa«aaa«a«a«a«aaaa • CONCENTRATION • MICroG/L • 1.663326E-01 • 1.65B636E.01 ♦ 1.6537O8E-01 • 1.648804E>01 a 1.643641E-01 • 1.638300E-01 * • load • POUNDS/OAY • 2.784185E-01 • 2.692995E-01 • 2.60J044F-01 •aaaaaaaaaaaaaa • 2.511341E-01 • 2 r A20893E-01 • 2,330708E-01 * ••aaaa***aaaaaa*aaaaaa*aaaaaaa< aaaaaaaaaaaaaaa «•«•««#««»•««»»«<> «*«•««« • • • • • ««««»«»««««»»« * « • parameter • • • • UNITS • TIME * * 2160 • ?220 • ??80 MINUTES • 2340 « 2400 »« ♦ 2460 ♦ «o««»«•«««««•• • ♦ DISCHARGE * CFS • 2,544318E*02 • 2.4511b6E*02 * 2.35Aoi5F*O2 ♦ ♦ • 2.264863E*02 • * • « 2.O78561E*O2 • ♦ ♦ •«•««««««#««««««»«>««•««»»«««« o »«»«««•««««»•• C 2»« ENTR * T^° N * Me/L * 9.178535E*01 • 8.9750&8E401 • 8.767717F*01 • 8.543847E*01 • 8.314741E401 • 8.0755S9E*01 • • • 1.25965feE*05 • 1.186636E405 • 1.114659E*05 • 1.043765E*05 • 9,739979E*04 • 9,054072E*04 • Z Ta?1 Ve» •••«•♦•• * ••*£ • total dissolved solids ••*•*•••••***♦•*•■••••**♦••••••••••♦••••*•••••••••♦•<»«<♦«« ♦*«♦•*•*»•«*»•****•*****«»■»«»«•«**«**»*«*«**••« 2 CONCENTRATION • MG/L • X.728071E*02 • 1.752653E«02 • 1.7781R8E*02 ♦ 1.804752E*02 • 1.832432E+02 • 1.861325E+02 • • * • 2,371593E*05 ♦ • 2.26]6AjE* 0 5 • 2.204787E*05 * 2,146531E4 0 5 • 2.086854E*05 * • ammonia nitrogen •••••••«•»«••«•«•••••••••••«*»•«••• CONCENTRATION • MG/L • 4. 008902E-0 1 • ♦.020684E-0 1 ♦ 4.03?9?3E-01 • 4.04S655E-01 • 4.058921E-01 * 4.072770E-0I • _-. -m . L ° A0 m • POUNDS/DAY * 5,501789E*02 • 5.315937E*02 ♦ 5.1294«?E*02 • 4.942400E*02 • 4,754665E*02 * 4,566249E*02 • • organic NITROGEN CONCENTRATION • MG/L • 3.1513o7E’O1 ♦ 3.140582E-01 * 3.129442E-01 • 3.117852E-01 • 3.105776E-01 * 3.093171E-0 1 • * LOAD • POUNDS/DAY • 4,324831E*02 * *.i52312E<02 ♦ 3.98n343E 4 02 • 3.808945E*02 • 3,638141E*o2 • 3.467957E*02 • • nitrate NITROGEN •*•*•*••••*••*•*•••••***•♦•*•*•»•**••«••••*•••**•■»*•<»*•*•••*•♦*•••*••*•*•«*• **4**o»*»*»•*•**•»•■»•* »**•»*** CONCENTRATION * MG/L • 2.37398*E-U1 • 2.351629E-01 • 2.32q407E”0 1 • 2.304249E-01 • 2.279076E-01 • 2.25280OE-01 • L0A0 • POUNDS/DAy • 3,258o39E*O2 • 3.109200E»02 ♦ 2.96]5 0 5E*02 • 2.815001E*02 • 2.669735E*o2 * 2 S25761E*02 » ••*•••••**•***••**♦•*•*♦*•«*»«***•*•*•»«•#*«•*•**»*•**•#**«»•«•••«»<#««« • total phosphates ******••*****•*•*•***•••*•*•*•••••**•••••*•••«**«•«*»««***«««»»*»*•••««•*««•**«««•«*»*«•*<*»»*««««*»***»« CONCENTRATION • mG/l • 4.560903E-01 • *.5672*7E-01 • 4.57-»8-»7E-01 • 4.580693E-01 ♦ 4.587837E-01 * 4.595293E-01 * L0 AD • POUNDS/DAy • 6,2593 5 1E*Q2 ♦ 6,038574E*02 • 5,817473E*02 * 5,596o33E*O2 « 5,374242E*o2 • 5,152085E*02 ♦ ************************* 0' 4***4444 4444 4*444 »**44444*4*44 444444*444444 00 0000000000000 4 444 444**4 4444* 44 4 4*444444* *4444 44*4*4 4**4 44*4 ♦ BOq 0 «««««««»•««« 00' 0 00000000 4444*4*444444 0 0 0000000000000 444444444444* 4**44444*444444 *44**4*4*4* «**44< • CONCENTRATION 0 Mb/L « 3,714271E*00 • 3.718531E+00 0 3.7229R6E*00 • 3.727559E + 00 * 3.732355000 • 3.737362E*00 0 • LOAD • POUNDS/DAY • b.Q97440E*03 ♦ A.9164A6E*03 • A.735235E*03 * 4.553796E*03 • 4.372122E*o3 * 4.19020?E*03 0 •*•**•**♦••••*♦*♦*•*4***4 •0' 44*444*4*4*4 r00 0000000000000 ♦ 0 0000000000000 4444*44*4* 4444* 44* 4*44444 444 444444*44*4 4**4 • COO 0 *#**••••**44 >00 0000000000000 '00 0000000000000 44 44444*4 4 44*4 4 4*44* 44 4 * 4 4 4 4*4 44 4444* 444 *4 4 4 < 0 CONCENTRATION 0 MO/L • J.635148E*01 • 3.6198&2E*01 0 3.6039»3E*01 * 3.587464E*01 • 3.570251E*01 • 3.552284E+01 0 • LOAD • POUNDS/DAY 0 *.988852E*v* ♦ A.785991E*04 0 4.5839] 3E*0A * 4.382649E*04 • 4,182232E*n4 • 3,982698E*04 0 •4*44*4444 44*44444*4 44 4 444 •***4«*«4***44 *•••*•*••*******4444*4*****4*4*4«*** 444*44* 4 > 4******* *4*4*44 44 *4* 4*4*44 4***4* 4 4 44*4 4**4 *44 4 • total col iform 0 44444444444444 4 44 444*44444 444*4444 444 444444444444444 ♦44444 444*444 444444444 444444 4444 4444 0 concentration • 1000/100 ML • l,803580E*03 ♦ 1.757720E403 0 1.71131RE*03 * 1.66434*E*03 • 1.616769E*03 • 1.568557E*03 0 • LOAD 0 COUNTS/DAY • 1.122853EH6 ♦ 1.05AJ38E416 0 9.8740n3E*15 ♦ 9.223616E*15 • 8,591444E*15 • 7,977726E*15 0 ***44«44*444444444444444« 0*00000000000000 ■ 4 *4444 44*444*4444 444 444444444 4*44 444444* 4444 4*444 4 4 4 444 444 44 4 4 44 4 44 4 4 44444 • fecal coliform ♦ 444444444444 00 0000000000000000 ■444 444**44 4444444444444 4444*4444 4444444*»*444*44 44 44444 44444*4*4 *4 444 44 444 • CONCENTRATION • 1000/100 ML • *.701405E*01 ♦ ♦.6o94*1E*O1 0 4.515RiRE*01 • 4,420438E*01 • 4.323194E*01 * 4.223968E+01 0 • LOAD • COUNTS/OAY • Z.9269A9E41* ♦ 2.76A630E«14 0 2.60S547EM4 • 2.449759EH4 • 2.297328E*14 • 2,148322E*14 0 44«4«*4*4444*4»4*444 44444 ► 0 >♦« >4*4444*••**♦« •00 44*4* 44444*44***«*44** 44«**»4**4* 444*****4***4****44«*4 4444 • FECAL STREPTOCOCCUS >««*•«••« *4**4*«4****444***4***44 4444444***4 4*4 • CONCENTRATION • 1000/100 ML • • 2.293277E*0l 0 2.251721E*01 * 2.209289E*01 • 2.16592AE401 * 2.121566E*01 0 • LOAD • COUNTS/OAY • i,A530BlE*H • 0 1.299?n3E*14 • 1.224364E*1A • 1.150963E*14 * l,079034E*14 0 t**44«4******« •00 «*4*4444**>«< ►4444**44*4****44****44**444*444 4*44***44*444 *4 • TOTAL INSECTICIDES • 44**«44***«**«**4***«4***«* 444444444444444444444444444444444444444444444444444444444444444444444444444 • concentration • MlCROG/L • t.989893E-01 • 2.953277E-01 0 2.93601 RE-01 • 2.918063E-01 ♦ 2.899353E-01 • 2.879823E-01 0 • LOAD • POUNDS/DAY 0 4.075860E-01 ♦ 3.9QA668E-01 0 3.7343?7E-01 • 3.564870E-01 * 3.396334E-01 * 3.228759E-01 0 44444444444444444444 44444444444444 *444 44 4444444444444444444444*444444 ► • 4 4 ♦ 4 4 444 **44*4* 44 *4*44** 4*4*44 4444 4 444* 4444 * 4 4* 44*44* 4 4 4 00 • TOTAL herbicides 444444*444444 00 0000000000 000000 ► 00 >44*• 444*444 44* 444**444 444*44**44 44 4* 4444*4 *44 444 44 44*** 4 4 00 • concentration • microg/l • 1.632766E-01 • 1.627026E-01 0 1,6210AAE-01 • 1.614861E-01 • 1.608398E-01 * 1.6Q1651E-01 0 • load • pounos/oay • 2.240797E-01 • 2.151169E-01 0 2.061R34E-01 • 1.972806E-01 • 1.884095E-01 • 1.795716E-01 0 444444*44444*44444444444« 444444444444 00 4444444444444 >4**44*****44**« t44444444»4*4« ►4444444444*44*44*44444444*4* 44444444* 444*4*4 00 # «« »««««•»»»«««« »••»»»«»«•• •*»ftft**ft»ft<>«ftonftft»ftft«»»ftfta»ftftftftft»ft «»«««« ♦ • ♦ ♦ 0 0 *«»««««»««««« 0 * « «««*»»»» • PARAMETER • UNITS • time minutes » * . . . * . * * 2520 • 2 5 80 • ?*40 • 2700 • 2760 » 2820 » • DISCHARGE • CFS • 1.9854o9E*U2 • 1.A92258E* 02 • 1.799] a6E*02 • 1.705955E+02 • 1.612R03E + 02 * 1.5]9652E*02 * * ••♦•••*• •••♦••••♦•••••••••••♦♦•♦♦•••••••♦•••••♦••••••••••••••ft************************** ft•*«*«♦««••«•****•**•*** »*««****ft*»»*ft »***,*«*«*** * suspended solids *****••******♦*♦•****♦••*••♦***♦**♦***•*••♦♦•*•***♦«•«#♦«♦*♦♦♦# CONCENTRATION * MG/L * 7,825470E*Ul • 7.563330E<01 • 7.287984E*01 • 6.997935E*01 • 6.691626E*nl * 6.367089E<01 ♦ LOAD • POUNOS/OAY • B t 38045*E*0A • 7.719699E*04 * 7.07?443E*0A • 6.439385E+04 « 5,821301E*04 * 5.219057E+04 * •********»ft**ft**»«*ftft«ft**ft*ftft •«•*•»•••»**•«.**••»**•••••«••»,»•••*•»»»*** ft »ft <> ft <l ftO«ftftftft ft »ft»ft,ftft«ftftftftftftft,ftftft <} ft < , s<s#41o# ft t( ft ft ft 0<> ftft * total dissolved solids «••**•••**•*•••*•••••••••••••••••••«••••••«•«••••••••»•••«•««»••••••«•«»••••»««••»»»««««««•« • CONCENTRATION • MG/L • i.891544E*02 * 1.923215E*02 • 1.9564R5F*02 * 1.991524E*02 * 2.028531F*02 * 2.067740E+02 • • LOAD • POUNDS/DAY • 2,025692E*05 ♦ 1.962976E<05 • 1.89qftipF *Q5 * 1.832568E+05 * 1.764697E*p5 * 1.694912E*o5 • • ammonia nA irogEn ft*********** 1 ************************************************#*******************#****##*********###***#** • CONCENTRATION • Mb/L • 4.087253E-01 ♦ 4.102433E-01 • 4.11«379E-01 * 4.135173E-01 * 4.152910F-01 • 4.171703E-01 * * LOAD * POUNOS/OAY • *.377122E*02 • 4.1872*9E#02 ♦ 3.996595E*02 • 3.805119E*02 * 3.612775E*02 * 3,419515E*O2 * ••ft***#******#**#*****# ##«•••«•##•••« • ORGANIC NITROGEN ***•*«**•**•**•*••«•••**#•**♦»•**♦«**•*•*#•«*«••••****••*••*••**«***«•****•***«**#««*##*»*«#**»**«#•*«#** * CONCENTRATION • Mb/L • 4.079987E-U1 • 3.066170E-01 • 3.051655E-01 • 3.03636 8 E~01 • 3.020222F-O1 « 3.003116E-01 * • LOAD • POUNDS/OAY • 3,298420E*02 • 3.129562E#02 * 2.961415E*02 • 2.794016E*02 • 2.627407E+Q2 • 2.461633E*02 * ••v#****#**#*#**##*#**#***• •••#• *• ••«««**•«•••» # *••«••*••••••••**••••••••*••••«••••••••••*•••«•»**••*•«•«•••««••#««•»««*•*«•***»•* * MTRaTE nITrqGEn *•*♦•*••••♦**«••*•*•••••*••*•••••»•*•*♦•••■•**••«•••»•«♦••<**•••*••*•♦*»*»♦•**»***»«»«*»«»**»»»«*»<«**«»*« ♦ CONCENTRATION « Mb/L • 2.225318E-01 • 2.19651t>E-01 • 2. 16A259E-0 1 * 2.134394E-01 * 2.1Q0738E-O1 * 2.0650R0E-01 » • LOAD • POUNOS/OAY • 2,383138E*02 ♦ 2,241928E*02 • 2,10?201E*02 • 1.964034E*02 • 1 .827513E + 02 • 1.<<92731E<02 * *•***********«♦♦•******♦***«*•••*••***•••■**•**«*•*•****•»♦••••••« **•*»*•♦•••••«•**••**»*«**«*»*•***•«*»»**«■»•*««»»»*»»» *«« • total phosphates «***•«****•*•••o************************************************************************* «»•»««•#*»««»»♦« * CONCENTRATION * MG/L • 4.603092E-01 • 4.611266E-01 • 4.619862E-0 1 • 4.628895E-01 • 4.638446E-01 * 4.648565E-01 * • LOAD • POUNDS/OAY • 4,929544E*02 • 4.706602E<02 • • 4.259434E*02 • 4.035161E*02 * 3.8i0395E*02 * *•*•******♦**«*•*•*«•**♦**•*****•**•«•«•*•****•*•***•**♦**•*••***••****•****« •***•ft********************®**#****##***#**#*««»«•»««• • *•*•••*•*•••«•*••****••*« **♦««*»•♦**■». 444444444444441 ♦ BOn « 4 4 4444444444444 444444444444441 »44 40 4 O »« 0 4 »»««»»*»««•«»»' ♦ concentration 4 mG/l 4 J,742598E*00 * 3.748oBOE*00 4 * 3.759923E*00 4 3.766336F+00 • 3.773130E*00 4 • LOAD • POUNDS/OAY 4 4.008024E+03 * 3.825577E»03 4 3.64?R47E*03 * 4 3.276480E*03 * 3,092807E*03 4 44 4*44 4**•** *4 ♦««»»»«»♦»»«« 44444444444444444 »4 • COD • 44 040 «« »44 • CONCENTRATION • mg/l 4 3.533493E*01 • 3.513798E»01 4 3.49^1n9F*01 • 3.471320E*01 4 3.448307E*01 • 3.423925E+01 4 • load 4 POUNDS/UAY • J,784O08E*u4 • 3,5864**E* 04 4 3.389R15E+04 * 3.194252F*O4 4 2,999814E*Q4 « 2,8n6566E+04 4 »444444«4*444444 4 4 4444444444444 44444444444444444 «»«•« ««»««»»«««<>«»» ♦ total coliform • 4*4*444*4444 44 -4444444444444 444 4« • concentration • 1000/100 ML 4 1.51?672E*03 • 1.470q72E*03 4 1 .A 197 10F*03 • 1.36 8 534E*03 4 1.3164 8 6E*03 * 4 • load • COUNTS/DAY 4 7.382713E»15 • 6.80fe67*E*15 4 6.2*989?E*15 • 5.712671E*15 4 5.195336E+15 0 4.698235E+15 4 4*4*44444444 4 4 ••««••••••••«««••«»»•«•••••«••««•«••«•««••«•««»««•««««••««««»«««««»«««« «4« *4 • FECAl COLIFORM ♦ «««*••»•«»«• 44 4444444444444- '4 4 ••0»04«4«4«««« >44*4444444444 O00O0000000OO0 *4 • concentration • 1000/100 ML 4 4.122627E*01 • A.019023E>01 4 3.91?99?E*01 • 3,80A3A5E*01 ♦ 3.692870E+01 * 3.578323E*01 4 • LOAD • COUNTS/OAY 4 C.0028] 1E*1* ♦ 1.860873E»14 4 1.72?5n9E*14 • 1.5880*7F*14 4 1,457342E*14 • 1.330576E*14 4 K 44 •*«*<>»•••••« 4444444444444444 444444444444444 44444444444444444 • FECAl STREPTOCOCCUS • '44 444444444444444444444444444444 4444444444*444*4 • concentration • 1000/100 ML 4 2 ( 0761a6E*O1 • 2.029585E»01 4 1.981798E»01 • 1.932686E*01 4 1.882136E*nl • 1.830020E*01 4 • LOAD • COUNTS/DAY • 1.008611E*lA • 9.397310E«13 4 8.724332EM3 * 8.067607E*13 4 7.427597E*13 * 6.8n4807E+13 • •1 •••••••••••• #• ••***••*•••**•••*•••••*•*••«**•««••**«♦•*•<••***••**♦#•*•*«***«««*•*«•««♦**♦*««•*****«««' *4 • TOTAL INSECTICIDES • 44444 044 44444444 *4 ♦ concentration • MICROG/L 4 2.859398E-01 • 2.837991E-01 4 2.81S503E-01 ♦ 2.791819E-01 • 2.766805E-01 « 2.740302E-01 4 ♦ LOAD • pounds/day 4 3.062187E-01 • 2.896665E-01 4 2.732246E-01 * 2.568986E-01 4 2.406949E-01 • 2.246206E-01 * 44 4*4*4*444*4*4' 444444444444444444444444444444 4* • TOTAL HERBICIDES • CONCENTRATION • MICROG/L • 1.59459 5E-01 ♦ 1. 5 8 7200E~0 1 ♦ 1.57R431E-01 • 1.571250E-01 4 1.562608E-01 * 1.553453E-01 4 ♦ load 4 POUNDS/OAY 4 I.7076S4E-01 • 1.620015E-01 4 1.532726E-01 • 1.445838E-01 4 1.359373E-nl • 1.273354E-0 1 4 »«•••••«««••»« >4444444444*444 44« ««««»»»•»»»»»« *4 ♦♦•♦♦♦••oooo* *********** O*O«***O**O«* ooo««o»»*o«<HK>eoo oooooooooooooooooooooooooo* **************** o • • « * * ♦ ***•**••{>•*•••*•• ••*O******OO* *****mO********** * **o***«o*«***«*o ♦ • • • * parameter * UNITS • TIME MINUTES * * o o o ***o*o*o*o**o *****o*********** OOOOOOOOOOOOOOO** 0000*00000 ****0**0***00000 o*************** • • o •* 28S °» • 2940 • 3OQ0 ♦ 3060 • 3120 * 3180 * #«••#•»»««••««»« *«••*••• ***************** •«»*««•««*•«»«»«« 000*0000000000000*000*00000 co************** «««»«»««««♦«»»»• ♦ ♦ « • ak • • - o « ♦ DISCHARGE • ChS • 1.426500E*02 • 1.3400 8 0E*02 • ♦ U224726E*02 • 1.175472EO02 » 1.137944E*02 • ♦ • • * • o o « « • ««««*«»««««««««««««««««««««»«««,«<»«««,«« *•*000*0•♦♦*•♦•*• 00*0*000*000 000*0*000*000*0 o*»**o*o****oo** •«*««««»*»«»«*»*« • SUSPENDED SOLIDS •«•»•««««•••« **ooooo*****oo**o 000*00*0***00*0000*00*0*0*0 ***o**o«*****ooo • «■»««■»««««»*«»*«* ♦ concentration * MG/L • b.022017E*01 • 5.681104E*01 • 5.41208?E*01 • 5.190080E*01 ♦ 4.966166E401 « 4.789166E+01 • • LOAD * POUNDS/DAY • 4.633625E*04 • 4.io64 8 7£*O4 • 3.7237R5E*04 • 3.428624E+04 • 3.148768E*n4 * 2.939598E* 04 • «*«««••«••«••••«••»«••••««•««•»«••««••« >e **•*•*••**••*•••* ««•»«««»«•««««»««««•«•»•««• *0*0************ • TOTAL DISSOLVED SOLIDS ♦0***0000**000000*****0»*0*0«*********000»0 >«««««>*««**««««« • CONCENTRATION • MG/l • 2.109431E*02 • 2.150619E*02 • 2.1a3i?jE*02 • 2.209943E+02 • 2.236995E*02 • 2.2583R0E*02 * * LOAD • POUNDS/DAY • 1.623096E*05 ♦ 1.554538E*05 • 1.50?n97E*05 • 1.459913E*05 ♦ 1.418354E*n5 * 1.386197E*o5 * ••»•«««»•»•»«•«•»»»»»»«« ****************0 OoOOOoOO*O*OOOOOo ««»•«««««••«»«««««•«««»«•«» eoeooototoooooos • AMMONIA NITROGEN *•***••••**•• ««»«»«««•«••«•««« 000*0*0000****00**0 ******** »««»«»««»«*««»«« «««««««*«»«»»»«» • concentration * MG/l • 4, 1916r5E~01 • 4.211426E-01 • 4.2270n4E-01 • 4.239859E-01 • 4.252R25E-01 « 4,263075E-0 1 * • LOAD • POUNDS/DAY • 3.225281E*02 • 3.044156E+02 • 2.9OR391E*O2 • 2.800898E*02 « 2.696479E*n2 * 2.616682E*n2 • *0****0000000****00*0*0**00 ooo****o****oo** ♦ organic nitrogen •«•••«#«*«**« *•**•*••***•••*•• 0*0000000000**0*****00***0* ******«**o************o******«o* • CONCENTRATION • MG/l • 2.984928E-0 1 • 2.9669 5 8E-01 • 2.952?7pE-01 • 2.941076E-01 • 2.929274E-01 « 2.919944E-01 « * load * POUNDS/OAY • 2,296744E*02 • 2.144614E402 • 2.031660E*02 • 1.942908E«02 • 1.857289E*n2 * 1 79?266E»02 • •««««««»••*•««•««•««••<• ***************** •oooooooo****************** • NITRATE nitrogen ««•••»«««•«»« ••••*•«•****«••*• *OOOOOO*****O*O*OOOO*Oo*«O* * CONCENTRATION • M&/L • 2.027166E-Q1 ♦ 1.989708E-01 * 1.980isbE-01 * 1.935758E-01 « 1.9iU55E-nl * l,891708E-01 « • LOAD • POUNDS/OAY • i.559797E*02 • 1.438g28E*02 * 1.34RfeR?E*02 ♦ 1.2T8783E*02 • 1.211757E*02 * 1.181133E+02 * ••«•«•••«•»«•«••••««•««««••»«•«»»«»•«««««•«««•«««»«•»« ««««««»»«»«««« **OO*«OOOOO*O****** ******** • total PHOSPHATES ****0***0******* **••00**00*** ••«•««»•••••««««« • CONCENTRATION • MG/L • 4, 659325E-0 1 ♦ ♦.6699S4E-0 1 * 4.67R343E-01 * 4.685265E-01 • 4.692246F-01 * 4. 6q7765E-0 1 * * LOAD * POUNDS/DAY • 3.585105E»02 • 3.3755’5E«02 • 3.21R935E*02 * 3.095138E*02 • 2.975091E*n2 «• 2.8R3496E + 02 « *«**•*••**••*•*•*•••**•«•• ••*O*««**#*#^ # « «««>•««««««»« •««•««•«••••««<«« '**O**O*O***CO*O***O****O**O 44044404444400404404444404000440444404. 4<<4<<<<4<<44 » 0 • 600 0000000000000 • concentration « Mb/L « J,7dO354E*UO • 3, 787aY2E»00 • 3.797]?4E*00 • 3.797771E*00 < 3,802459E*00 O 3.8n6165E<00 0 # LOAD • pounds/day • £,908783E*03 ♦ 2.7377?3E*03 • 2.60b«A0E*03 • 2.5O885oE*O3 < 2.410927E*03 * 2.336230E<03 « 44400404404444444440444 000000000000000 000000000000000040 000000000000000 «»»»««««««*« 444<4<<<444<K<<44< <<9<<<<<<<<<<<<<<<<<<O<<<OO ♦ COD 0000000000000 <<<0O<<<<0OO< <44444<44<44<<4444 4<<<<<4444<44 04040000404000' 00 ♦ concentration • mg/l • 3,397999E*01 • 3,3t2386E*01 * 3.35?i75E*01 • 3.335496E*0l • 3.318673€*01 o 3.305375E+01 0 « LOAD • POUNDS/DAY • 2.614581E<04 • 2.A376?lE*04 * • 2.203466E+04 < 2.104185E+04 o 2.0P8R45E+04 0 44444400444440400440444 000000004000000 <<O0<OOOOOOOO 4<<44444444444<444 4044444444444 00 « total coliform 0000000000004 •••#•«•••««»••»««»«•««•««»»«•««»«««««»•«««««« 0040000440000 0000O0O00OO000- 00 ♦ concentration • 1000/100 ML • 1.209495E*03 • 1.158410E*03 • 1.119625E*03 • 1.088599E*03 < 1.058176E*o3 ♦ 1.034731E*03 0 • LOAD • COUNTS/0AY • 4.22174AE*I5 • 3.798471E*15 • 3.494634EM5 • 3.26229 1 E<15 » 3.043592E*15 * 2 t 8R1140E*15 0 44444404444000444440040 444444000440400 04000000 0000000000000000*00000000 4444444<<4444444444<44444444444 00 • FECAL coliform <44O44444<<<S •40OO0040O0O00000O004000O0OO 00 ♦ concentration • 1000/100 ML ♦ 3,A60A22E*01 • 3.347758E*01 • 3.261448E*01 • 3.191901E*01 < 3.123257EO01 o 3.070042E+01 0 • load • COUNTS/OAY • I.207861E*!* • 1.0977*3E*14 • 1.O179R1E*14 • 9.565424E*13 < 8,983306F*13 o 8,548331E<]3 0 ***««*«**«*«•«*»****»•*•*«•**••••«<*•«•<« 4ft«***4*«***4 ■♦*•*••••••♦*•••***• 00000000 444<<4<44<<444<444 00 • FECal STREPTOCOCCUS '000000*00000000000000000000000000000000000000000 4000000000 ►000000O00OO000 00 • concentration * 1000/100 ML • I.776I88E*O1 • 1.72A5G0E401 * 1,684R«1E»O1 ♦ 1.652825E*01 < 1.621111Eonl ♦ 1.596473E*01 0 ♦ LOAD * COUNTS/DAY • b,199786E*13 • 5.65A901E413 • 5,25A94JE*13 < 4.953153E*13 • 4.662741E*13 ♦ 4_445275E*13 0 4444<<4<<<444<<4444444<4<44444444<<444444<44<44 • TOTAL INSECTICIDES O<<<<0<04<<0<<<<<00<<0<O<<<<9 «««««»«««««»««««»« • concentration • MICROG/L • 2.712123E-01 ♦ 2.68*283E-01 * 2.6623HE-01 < 2.644184E-01 < 2.625899E-0 1 o 2.611444E-0 1 0 • LOAD • POUNDS/DAY • 2,086835E-0 1 ♦ 1.9402 b 7E-01 • 1.831806E-01 • 1.746778E-01 < 1.6f>4936E-ol * 1.602909E-01 0 k#****«O***«* 44<4444444444444444444444<<444444<4<44444<444 00 • TOTAL HERBICIDES 0000000000000000000 00*00000 000000000 000000 04 ««« »««««««<»«»««« K44O<44<4<4O44 00 • concentration * MICroG/L • 1.543718E-U1 • 1.5341U1E-01 • 1.5245] IE-01 • 1.5202A9E-01 • 1.513932E-01 * 1.508938E-01 0 • LOAD • POUNDS/DAY • 1.187810E-Q1 « 1. 108898E-Q 1 • 1.05n317E-01 • 1.00A293E-01 • 9.598996E-02 * 9.2618R8E-n2 0 40404404400000044000000 04 0 400O04440444« 0 40«•••••••••••••«•••••••••• <0<| 4444444444<<44444< 4<444<4OO<<4< K4O4«4444»4« 00 00**0«*0*0*00«. 00000000000 0000000000000, »000000000000000 44444*44*««44«444««»44«44«4444«**«44*4«44444*«* 0*0«0**000*00*0 4*4444***444* ► 0 • ♦ • • 0 0 0 4**4*44*444*44**444444*44 00000000000*0 *00000000*000000 44«444******44444444 4«<>«.«**4*«4«4 444444*444444* 000000000000000 00000000000000 • 0 • 0 0 PARAMETER « UNITS • TIME MINUTES 0 • • *00**00****0000 4444444«»44«»»««*»»«*» #o< «44*4*44444«44«4*«4444 000000000000000 00000000000000 • 0 • 3240 • 3300 • 3?60 * 34-20 • 3480 * 3540 0 4 4 4* * • * • 4* * * 4 4 4 4 4 * * 4 4 * 44 4* * * * * 4 4 4 * * * * 4 ***0**0 * * * ** * *♦* 4444«*4****4*«444444*4*44444444444«4444**444*4* ►0000000000*0000 *444*44444*41 • ♦ « • * 4 • 0 0 • DISCHARGE ♦ CFS • AelO6894E*u2 • 1.0758*3E»02 • 1.044793E+02 • 1.013742E+02 * 9.826916E*nl * 9.51641 lE*nl 0 • ♦ • • 4*4 0 0 »***************«4*****44************* W**UW** 4* 44 44******** *4*** * 44 44* ** 44*44 *4* 44 44 *4 44 444 1 ►0*0000000000000 >444*444*44444* • suspended solids t ********** i, » 0 • CONCENTRATION • MG/L • A.63 8 248E*01 • 4,4 r 3o35E*O1 • 4.323276E*01 • *.15rS9«E*01 * 3.988998E*01 » 3.813 8 50E401 0 • LOAD • pounds/oay • 2.769280E*0A • 2.601526E*04 • 2.436409E*04 • 2.274008E + 04 * 2.114405E404 • 1.957690E + 04 0 '•4»444******4*****4* 4*44444444*4444444444444441 >444*4444444444444444444444444 ♦ TOTAL DISSOLVED SOLIDS •44444444****44*44444444444*44444444444 44*44*44*44*44444444444444 444444*4 4444 • CONCENTRATION ♦ MG/L • 2.276613E*02 • 2.2953G6E*02 ♦ 2.3146A7E*02 * 2.33455)E*02 * 2.355o53E*o2 * 2.376214E*02 0 • LOAD « POUNDS/OAY • 1.359?59E»05 • 1.3320HE»05 • l,304445E*05 • 1.27655oE*O5 * 1,248318E*o5 * 1.219736E*05 0 ••4****«*44444*444*4*4«4*444****4**444 •44 4444*4*444 44444444444444 44 444444 4444 *444444 41 >4*4*4*4***4444, >4444444*4**4 0 0 • AMMONIA nAJROGEN >44444444*44444444444444444444444444444444444444444444444444444«44444444444 00 • concentration • MG/L • ♦.271814E-01 • A.280802E-01 • A.29noS3E-Ol • 4.299583E-01 • 4.309M0E-01 * 4.319552E-01 0 • LOAD * POUNDS/OAY • 2,550500E*02 ♦ 2.48A1G9E»O2 • 2,4176«6E*02 * 2.351045E*02 • 2.284242E*n2 * 2.217272E*02 0 •*••**••**•*****••*••***4* ***•••••**•* ««•«••««•«*•»««•#«#•»«•««»•«««•»«««««««« 0000000000000000 00000< >44444444*4**' • ORGANIC NITROGEN • •»•«••••»••••••••••« 4**********4***************** 444*44 4»****44*4*4**4 444**444 44*4***4 44*44*4 444***444 00 • concentration • MG/L • 2.911989E-U1 • 2.903808E-0 1 • 2.898387F-0 1 • 2.886712E-01 • 2.877768E-01 * 2.868536E-01 0 • LOAD • POUNDS/OAY • 1.738612E*02 • I.6850?3E402 • 1.631713E*02 • 1.578476E*02 * 1.525387E402 * 1,472450E*02 0 ****************4**4* ******4****** 44**** »* 444*4*44***4*44***** 4*******4**** 4444«***4*44***44* 4*4*44*4* 4*4*444*444444 44*4*4 4**4 4*°* ♦ NITRATE nitrogen *44**••••«•••*« *******4 4444*4 44*«•*•••*•• *****4*** 4*44•*♦•*••*•**«•♦*****••********* ******************* 00 • concentration • MG/L • 1.875126E-01 • 1.858072E-01 • 1.84n519E-01 • 1.822436E-01 * 1.803790E-O1 * 1.784546E-01 0 • LOAD * POUNOS/DAY • 1.119550E+02 * I.078248E»02 • 1.037236E+02 • 9.965218E»01 » 9.561156E*fll * 9.160266E401 0 »**********************i »**44«***«**** •••••4*********« >444444*4*4*44444 44 44444444 4444 44444444 4444*444 44444 44 444 4444444 4*4*4 44*4 4 4 00 • total phosphates 44 4 44 444 44 4 44***• *4 4•** 4 44*44 44 4 444*4 44*44 444 44 444 4*** 44444 4 4444*44*4*4*4»4< »4*4«4«44444444< »44*****4**4* 0 0 • concentration * Mb/L • 4.702471E-01 • A.707311E-01 • 4.71?2Q?E-01 * 4.717424E-01 • 4.722715E-01 • 4,7?8176E-nl 0 • load • POUNDS/DAY • 2.807625E*02 • 2.731674E*02 • 2,65S641E*02 * 2.579523E+02 4 2.503318E402 * 2.*270?3E*02 * ••••*•♦••*******«**«* **4 < >*4**4***4***********************4*******»*4**4*4***4444*444444444444*4*4**4- »««<«*«*«««*« *0 «••••••••••••••••«•••••«•••••••«•••••• 6 ••••«••«•••••«••«•»•••••••»«••*««««••«««••»«««••««««» ««*«*•* 444444444444441 >0444444444*44044 • BOD ♦ 4 »««««»««««»«««»« 4 • concentration ♦ MG/L • J.60932AE*00 ♦ 3.R125T*E*00 • 3.8189] 8E*00 4 3.819364E*00 « 3 t 822916E*00 ♦ 3.826583E*00 • ♦ LOAU • POUNDS/DAY • 2.2T4369E*03 • 2.212454E*03 • 2.15n4B4E>03 4 2,088457E*03 * 2.0263?2F*n3 • 1.964??6E*n3 « «« 444< 4444444444444 44 4 • COD #«« • wo******** ■44 4444444444444 44 »«»««»«««»»«»«»«« • CONCENTRATION 4 MG/L • 3.294037E*01 • 3.2823T6E»01 ♦ 3.?T"373E*01 4 3.258008E*? 1 * 3.245259E+01 * 3.232100E*01 4 • LOAD ♦ POUNDS/DAY • 1.966715E*04 ♦ 1.90*778E*04 4 1 .84tq39E*04 • 1.781504E*04 • 1.72O179E+04 • 1.659071E+04 « 44 ' 4 * moliomtototo '«•««««»»«»«»»»' »»»«««**«••»**«•»«« • total coliform • < 44 • CONCENTRATION • 1000/100 ML • 1.015151E«03 • 9.9540U0E*02 • 9.754720E*02 ♦ 9.553599E*02 « 9.350561E*n2 « 9.145529E+02 • LOAD • COUNTS/DAY • 2,749492E*15 • 2.620370E*15 ♦ 2.493796E*15 • 2.369794E+15 • 2,24838feE*15 • 2.129600E*15 # • fecal coliform 4*« • 44 ««««»••«««««« • concentration • 1000/100 ML • 3.025385E*01 • 2.980135E*01 ♦ 2,9342A6E*01 • 2.887752E+01 * 2.840562E*01 ♦ 2.7<?2666E*01 • • LOAD • COUNTS/DAY • 8,194125E*13 4 7.845144E<13 • 7.5014S7E*13 >4444444444444 • 7.163139E*13 < 6.830265E*13 * 6.5n29i6E*13 « •« **«*••*•*♦•♦•♦**•*•♦♦« »•**•••#•••• »••••••••*•••« 44 ••••••*•••••« •44 • « »•»»»»«««»»»«*»«« • fecal STREPTOCOCCUS •4444444444444444444444444444 '•*■»••#***■»»*•»«**#■»«•■#•■»****•»*** « CONCENTRATION # 1000/100 ML « 1.575762E*01 • 1.554741E>01 • l,53339RE*01 • 1.511717E*01 • 1.489682E*nl * 1.467276E+01 4 ♦ LOAD • COUNTS/DAY • 4,267883E*13 • 4.092824EH3 • 3.92ni34E*13 • 3.74985oE*13 • 3.5B2010E+13 » 3.416655E+13 4 **•*«■**«»*•• • TOTAL INSECTICIDES '■»**•*******«***«■»«•*<>•*«»«*****« • CONCENTRATION • MlCROG/L • 2.599120E-01 ♦ 2.5864*5E-01 ♦ 2.57339RE-01 • 2.559958E-01 * 2.546100E-01 * 2.531797E-01 4 • LOAD • POUnOS/DAY • I.S51813E-01 • I.500926E-01 • 1.45n?S4E-01 • 1.399805E-01 • 1.349584E-0 1 • 1.299598E-01 4 >»•••»••«*••»« »•*••««««»««»»« ««««««««•»«•••«< ► 4 • total herbicides •••••••••••• ♦<« »•••••••«••••« »••••••••••••« K« >««••••••••••« **•*•*<#***•«**■« ► 4 ♦ concentration • MlCROG/L • 1.5O46 8 1E-O1 • 1.500302E-01 ♦ • 1.491152E-01 ♦ 1.4 fl 6365F-ol • l,4 A 1424E-01 4 • LOAD • POUNDS/OAY • 8.983744E-02 • 8.706323E-02 • 8.429646E-02 • 8.153735E-02 ♦ 7.878614E-02 * 7,6n4307E-02 • «»»»«»««««»»««»«« *4****4*4****4«*********4 ►*****44***444***44»*4»44444«4ftftft4»**4**444444444»44ft4ft4ft«»44444444*«444*4ft»*4ftftft444«444444*44*4*44444*4*4 ••••***********************************4************44*4***4**44444ftft4*4***ft #<4 44* # ft»»»*44444 44*4**44 4ft»ft*ftft»««444 4 ft*44444444*»»4* • • parameter • • 0 ♦ UNITS • TIME MINUTES * • • 44*************44*»»4«*****44»**4ft*4*4444444*4*444»*4444*4»ft44»«4ft44ftft4444*ft*44*»44ft4««4444 • * • 3600 * 3660 • 3720 * 3780 * 3840 * 3900 « ••••«•«••••••••••••«••••••••••»•«••••••••••«•••••••••••••••«»•*»«•««••••»••••»••«•« ft**»444444«44444444«4*44*444444444444 4*44444444 • • discharge • •••••** • CFS • 9.205906E*01 • 8.8954U1E401 • 8.584ROrE«01 • 8.274391E+01 • 7.963886E*nl * 7.653381E*nl • • ♦< ►•••♦••♦*•♦••••*•••••**< »*****444*«*«**«**4**********4*4»****4*4*****«4*4******»44»4**»»44*4*4**44*44*44ft4ft»444444*4***4**444*4**» • suspended solids •••••• 4«»««••••••••••••••••O4444444444444444444 444444444444444ft 4•••444444 44444 4444444 4•••»««»«»• 444 444 • concentration • MG/l • 3,632892E*0I • 3,m5723E4(H • 3.25] 9 n5E*01 • 3.0509*SE*01 * 2.8*2298E*01 « 2.625352E*01 • ♦ LOAD • POUNDS/DAY • 1.803957E*0* • 1.653305E*04 • l.S0S844E*04 • 1.361688E*0* • 1.220961E*0* • 1.083797E*04 • •1 »•••••••«••««»•••«•• »*****ft«»4*****«•••••••••••••••••••••••••••••••••••** •4»4*444«**4***4»44444«4««*»44444444*444ft***ft 444444 4* • total dissolved solids •••••*•••••••4*•••*•♦♦•♦••*•*•••••*••••***•*• ••••••••••**•44*4 *4*4••** *4•♦••*»*ft* ft*»«*«** ft* 4*•»»*** 44444ft • concentration • MG/L • 2.398077E*02 * 2.420690E*02 ♦ 2.**4107E*02 * 2.468386E*02 • 2.493594E*o2 * 2.519805E*02 • • load • POUNDS/OAY • l,190794E*05 • 1.16U80E*05 • 1.1317«1E*O5 • 1.10168?E*05 « l,O71169E*o5 • 1.040225E*nS • • 4 »••*•*•*•••*••*•♦•*••**< ft* •*•••••*••*•• 4 **» 4 ♦•• 4 ♦*♦****•» ft ♦*•*♦••*»»•* ft ***** ft **»»*♦* ft ft 4 ft ♦•♦•* ft » ft ft ft *» 4 * ft ft ft ft ft ft » ft * ft ft ft ft ft 4 ft ft* ft ft ft ft ft ft 4 4 ft 4 • ammonia nitrogen *••*••*•••••*4* ••••**•*••♦•••**•••••••••••*••***••*•♦*••*4 ••*•**•*♦* ft* 44444444 4444444 4 44444 44«444444 4ft 44 4 • concentration • MG/L • 4.330031E-01 • • 4.35?09?E-01 • 4.363729E-01 ♦ 4.3t5b11E-01 * • • LOAD • POUNDS/OAY • 2,150129E*Q2 • 2.0828U8E402 • 2.01530?E*02 • 1.947605E*02 • 1.879709E*02 • 1.8)1607E+02 * • 4 »**••••*•*••••*•••♦•*••••*•*•••*•••••***••*••••*•**•*•••••**•♦***** *4444444444444 4444444444444444444*4 4444 • ORGANIC NITROGEN ♦•♦a************************************************ ft********44 4*44*4 4*4*44*4 4*4 4444* 4*44*4 4 ft 4 4444444*4* 4 • concentration • MG/L • 2.858997E-01 • 2.849132E-01 • 2.b3 a 916F-01 • 2.828323E-01 • 2.817325E-01 * 2.805r 9 0E-01 * ♦ LOAD • POUNDS/OAY * 1.419670E*02 • 1.367o52E*O2 • i.314603E*02 • 1.262328E*02 • 1.210233E*02 * 1.158327E»n2 * • •••••••••444*******44*444 4»44»****44 4*44**4 44 4*444 *4*4 4 4 444»4* *4*4444 •4444*4*4 4 444 44 4 4 ft* 4444 4 **• *44* *4*4 4 ft 4 4 4 ft 4 4 444 4 4 4 44444 * 4 4 4 4 4 • NITRATE NITROGEN ************* ********** ***4****•♦**♦**♦•**•♦*****••****•♦****•*♦•****♦*•• 4*#* ft4ft***ft 4 ftft 4*4444 *44* 4* *4 ftft ft4 • CONCENTRATION • MG/L • 1.764664E-UI • 1.744 0 99E-01 • 1.7228O3E-01 * 1.700723E-01 4 I.677798E-OI ♦ 1.6S3961E-01 • • LOAD • POUNDS/OAY • 8,T62652E*01 • 8,368424Eft0l • 7.9777niE*01 • 7.590610E*01 • 7.2o7287E*O1 * 6,8?7879E*01 « ft**********************4*******4 *4************4 44*4*******4ft*4 44* **44*4 44*• ft44 ftft44 444 444 44444 444 4 444 44ft 4ft ft • total phosphates •***••******4 4*»•• 44*44ft 4•♦••*•♦•4 4•*••*•••*• *4 ft44*44* ***ft 4*4 4 ftft ftft ft4 ftft* ft4ft ft 44ft* 44» ft4 ft4*4*4 *4 ft* 4*4 ft ft4 4 ftft*4 • CONCENTRATION * MG/l • 4.733818E-01 • A.7396SAE-01 • ♦.745698E-0 1 ♦ 4.751964E-01 • 4.?58469E-01 4 4.765234E-O1 4 • LOAD • POUNDS/OAY • 2,350635E*02 • 2.2?M 5 1E*O2 • 2,19756tE*02 • 2.120881E*02 4 2,044087E*02 • 1.9671B3E+02 * ••••••••••••••••••••••••< ft4 44********** 4*4*************** 44*4****»*4***4 44***444 •* ** 44 4444 4 *4 44 44 4* 44 4 4ft ft4 4ft44 44 44 ft44 4ft 4 44ft ft44 ft4**» •••••♦•♦••♦•••••••••••ft* ••••••••••••••«•••«•»•««••••• 000000000000000 »4«««»««4ft««»ft« • ouu 0 ••«*»••*•••«•••••••••»••••• 000000000000 • CONCENTRATION • Mw/L * 3,830372E»00 ♦ 3.83A2’0E»00 • 3.83O34BE+00 » 3.842555E+00 « 3.846923E*n0 3.85 1465E ♦00 * LOAD • POUNDS/OAY • l,902018E»03 • 1.8397*5E*03 • l,777405E*03 * 1.714996E+03 o 1.652516E*o3 0 1.5h9961E+03 « COD ••♦••••••••••••••••♦••••••ft •♦•••••••••••••••••••••••••••••••♦ftftftftftftjlftftftft. & 0 0 ■ »«•••»«»•••»••• ♦ « ••••••••«••••«•••«•••••••••••••••••••••••« 000000000000000’ »««#00000#O00##. •••••••••••••••••••••••••••••••« ♦ concentration 0 MU/L • 3.218504E*Ul 0 3.20*4*3E«01 • 3.18ORa]E*01 ♦ 3.174783E+01 « 3.159 107E*0 1 0 3.142808E*01 ♦ LOAD 0 POUNDS/DAY • 1.598188E»04 • 1.537535E«04 • 1.477123E*04 * 1.416959E*04 1 .357052E*o4 0 1.2974J3E+04 • ••••000000# # 0 # 000 # «0000000 000 000000000000 000000000000000. 0 0 ' • ••••«»•••<>•«• 0< »ft»ft»ftft»ftftCftftftft • total coliform «»«•»«««•*<><>,« •••«••••••••• 00« 000000*00000 #00000000 000000 O«#0#«##00-O00#0 0 0 • concentration • 1000/100 ML * b.93B415E»02 • 8.729127E»02 * 8.5175AfeE*02 ♦ 8»303623E*02 ♦ 8.087181E*02 0 7.8A8H0E*n2 « load • COUNTS/OAY • 2,013460E*15 • l»899995t*15 ♦ 1.789232EH5 ♦ 1.681201E*15 • 1.575935E*15 0 1.473465E+15 • •••«•*»•*•••«••«••••»»•••••••«••••••••»• ••••*••••••••••« »♦••••••*••• #00000000000000. ••••««•••»••»» 0" 000000000000000 • FECAL coliform • •••»•••••••• *•••••••••••••• 000 000000*0*000 000000000000000. 000000000000000' »« 0' 000000000000000 • concentration • 1000/100 ML • 2.744028E*01 • 2.694613E*01 • 2.644379E*01 ♦ 2.593284E+01 ♦ 2.541278E*01 0 2.488309E+01 * LOAD • COUNTS/DAY • b,181177E*13 • 5. 8 65134E»13 * 5.554 Ra ?E*i3 ♦ 5.25051 R E*13 « 4.952144E*13 0 4.659r69E*13 0 ••••••••♦••••♦••••♦••»•••••■ 0 0 • #0000000000000*. 0 0' 000000000000000000000000000000 • FECAL streptococcus 00000000000000000000000000000000 000000000000000000000000000000 • concentration • 1000/100 ML • i.AA4A82E»01 • 1.421277E»oi • 1.397A41E*01 * l,373549E*01 0 1.348974E*ol 0 1.3?3888E*01 ft load ♦ COUNTS/DAY • 3,2S3828E»13 • 3.093S73E413 • 2.93593fcE*13 * 2.780969E*13 • 2,628722E*13 0 2.479253E+13 • total insecticides •00®00000000000®000 W 0000000' 000000000000000000000000000000 • ♦ ••••••••••••••••••••••••••ft*** «•«••••*••••*•••••••••••••••••••••••••••••. »•••««•••««•»••••••«•••«•»•«•«•• • concentration • MICROG/L • 2,517020E”01 ♦ 2.501735E-01 • 2.48R9n7E-01 • 2.469496E-01 0 2.452457E-M 0 2.434741E-01 ft • LOAD • POUNDS/DAY • i,249857E-01 • 1.2003&7E-01 * l,151137E-01 ♦ 1.102177E-01 ♦ 1.O53498E-01 0 l,0n5109E-01 * ♦ < ►••♦♦•••••••ft •••••*•••• total herbicides ••••••••••••••••••••••••••• »00 ••«••♦•••••• •••••••••••••••••••••••••«••••< 000000000000000' ••»•••••••••••• • ••••••••••••••••••••••••«•••. 000 ••♦•••••••*•■ ••••••••«••••••••••••••••«»•••' »*••«»*••*••••*• 000000000000000 • concentration • MICROG/L • 1.A76319E-01 ♦ l.A?10 3 9E-01 * 1.465571 E-0 1 • 1.459902E-01 0 1.454016E-01 0 1.447895E-01 • LOAD • POUNDS/OAY ft 7.330842E-02 • T.O502*6E-O2 • 6.78R549E-02 * 6.515786E-02 0 6.245989E-02 0 5.977198E-02 * ••••••••••••••••••••••••«• ••••••••••••••••••••••••••ft. •••••••••••♦•••••••••••••••••ft, »<:•••»•«••••••••«••••••••••••••• 000000000000000 «♦*♦♦*•***«•♦•*• 4**•**•*< >*** *4o004**044*4*OO4*o 4*O***< 000000000000000 00 000000*0««*»000000000000000000*0*»*0***0««* 0 * * • 0 * •««««• ••• 000000000000000 40 404444404444444 40*00004000404*04000000*4444 0 •0 ♦ • O 0 ♦ parameter • UNITS • TlMF MINUTES 4 4 ♦ ••00400000**0000**000*4*0*0000 000000000000000 o o 444440444440440 0400000004040000000*044400400 * • « 3960 • 4U/0 • 4080 4 4140 4 4200 0 4260 4 •*•**♦*»*«**•*•******•«*. *00*00***00*0**00***00*****0000 000000000000000 4 4 •00««0000»»0. >4 4 00000»000000< >0000000000*0000 ’* * * • 4 4 0 4 • discharge • • • 7.0323716*01 • 6.72]8*6E*01 4 6.41 1361E + 01 4 6. 1 0 0 R57F * r. 1 * 5.790352E + M 4 • • • 0 0 4 O 0 4 ••••*****•*•**•••*•****•*•**«•* »•*****. »44*44**O44««**4 >0*000000*0*0000 00000*00000*000 • • 40**4444 ««**44* 00000000000*. *0000000000*000* • SUSPENDED SOLIDS •*0***0*****0. »00*0*** 000•**•••••«00*0****«0* 00*00000000*00* 44 44* 000000000000. *0000000000*0*0*0 ♦ CONCENTRATION • mG/l • 2.399419E*U1 * 2.163724E*01 • 1.95?4 16F* 0 1 4 1.949065E*01 • 1,94Q300E*01 * 1.931O76E+01 4 • LOAD • POUNDS/DAY • 9.503410E*03 • 8.207496E*03 ♦ 7,o97OA7E*O3 4 6,74O37oE*O3 4 6.385086E*03 * 6.031308E+03 4 ******0*00000000*00 000*«*« 000*0*00*00* < H0«00»«000»»»»< 4••••••** *•*•««* *4••*••••««*•*• 44 ♦••••••••♦OO< B-44 40*000000*00* **»o*o**o« ****** • total dissolved solids 000000000000*00000000000»0»00000000000000000000000***0*0*0»«' 0*4 ♦o**********- 00**0000000*00*. »4 • CONCENTRATION • mg/l * i.5471olE*O2 • 2.575577E*02 • 2.60R33qE*02 4 2.636509E*02 • 2.66 9 226E*02 * 2.7n3653E*02 4 ♦ LOAD • POUNDS/DAY • l,008833E*05 • 9,769749E*04 0 9,44*2R8E*04 4 9.117727E*04 * 8,783818E*04 * 8,4442886+04 O •«•«••*«•«••••««« 0000***0****** **«•««•, 00000* *00 00**••■ OO*OO*4OOO**O4* *4*4404004****4 4000000*000*. BOO************** • AMMONIA NITROGEN «« »»»»«♦♦•♦»« * • 0 ♦ 0 ♦ * ♦ • 0 • • * • • • • ♦ * 4 • 4 • ♦ * ♦ * * 4 ♦ 0 00000000000*0000* **••0000*0**0** •••••O«»OO**. &O4OOO4*4O*4*OO*O « CONCENTRATION • MG/L • 4.401457E-U1 • 4.4151V5E-01 • 4.42o3 7 6f-01 4 4.44430QE- 01 * 4.45999OF-01 0 4,4 7 6491E-01 4 ♦ LOAD • POUNDS/DAY • 1.743290E*02 • 1.6747b0E*02 • 1,6OR975E*O2 4 1.536957E+02 4 1 t 467681E*n2 * 1.398137E+02 4 **•••**•**•*«*•*• •****•• ♦••••*4O4*****O4****** OOOO*** 000000000*0*000**0000000000000000 •»♦««»••***» 04* 0000*000000*. 00000*00**44****4 ♦ ORGANIC NITROGEN «««<>•««««»»<>« • 44 >000000000000 4«*O4*O*O4OO*** 00000*00000*0**. * CONCENTRATION • MG/L • 2.7939816’01 • 2.781558E-01 * 2.76 q r 7 3E-01 4 2.754975E-01 • 2.7A0701E-01 * 2.7?56r1E-01 4 • LOAD * POUNDS/DAY * 1.106616E+02 • 1.0551UaE*02 • 1,OO3R13E*O2 4 9,S27412E*01 * 9,0J9023E*01 * 8,513086E+01 4 • 4 *«**•***•••••**•**•♦••* ••*•**•••*«•**•••*•• 000000000*000000000000000000000 • 444444444 4*444. •4*»000*00**«**0040000»*»4*0*4< >4 ♦ NITKATE NITROGEN 000000000*0*000* •**O4**4OOO4***« • 4 * •♦♦♦•••♦••♦****4 •000000000000 »»«»*»»«*«»•»»»»« ♦ concentration • mg/l • 1,6291 37E- 0 1 • 1.603241E-01 • 1.57*174E-01 4 1.547827E-01 * 1.518073E-01 * 1.486764E-0 1 4 ♦ load • POUNDS/DAY * 6.452544E*01 • 6.0gl4SbE*01 • 5.714pnlE*01 4 5.352786E*01 « 4.9956348*01 0 4,6435a3E+01 4 ***(**»***«********«*•* »»»«»«♦♦»»»»•»» 000000000000000 ►*•*♦*•*••*** O**O**4*O****4* •**««««•***•**♦< & 4 « TOTAL PHOSPHATES 0 0 0 0 0 00 00• • • 0 000000000000000 4••* 440***•*«***»*« 4***»*4***O« K00000000000000 •««*O**»OOO4OOO 0***040**0**04044 ♦ CONCENTRATION * MG/L • 4,772279E-0 1 • 4.779628E-0 1 • 4.787309E-O1 4 4.795353E-01 * 4.803797E-M * 4.8i2682L-r] 4 ♦ LOAD • POUNDS/DAY • l,89oi62E*O2 * 1.813o21E*O? • 4 1.658357E+02 * 1.580820F*n? * 1.5n3139E+0? * •••««**000***0*0««««•««• 000•«••••««••• 000000000000000 000000000*0*000000*00*00000**00*0*0**00*00«** ►000000000000 00«*0«0*******0 40 a******************************** »»•»»< »•*•*«*•*•»•***« >444444444444444444444444<44444444<>44444444444 •IHHUKKHKf******* • BOD «< »« « »4444444««444 44444444440 *4 00 »»»»«»»»»»«»»»• • concentration • MG/L • J.8B6195E *00 • 3.861129E+00 • 3.86a?P7E*00 ♦ 3.871688E+00 * 3,877357E*00 * 3.8R3323E*00 o • LOAD POUNDS/OAY • i.527328E*03 * 1.464614E+03 • 1.4O1R16E*O3 * 1.338929E*03 • 1.27595OE+03 * l,212873E*03 •**•**•♦***«♦»•*•*«•••*♦ 444 •»»••**•••••**«*♦*•• ♦»«< »»«»«•«•«««•«•«»«••««»««•«•«*«< »»«««««««««««««« ♦ COD 444 •««**«»««***«*« ♦ • concentration « MG/L • J.125834E*01 * 3.108126t*01 * 3.089M8F*01 * 3.070235E*01 * 3.049890E*Ol * 3.028482E+01 • LOAD • POUNDS/OAY • 1.238053E*U4 ♦ 1.178983E.04 • 1.12"? 1 RE* 04 ♦ 1.081766E*04 « 1.003649E*n4 * * • **•♦**♦♦••*•*■»• •****••* 44 • total col.iform 4' »**O«*ft*»<H>***««*»<H>«P«****»««-* • concentration • 1000/100 ML • 7.646270E»02 • 7.421508E*02 • 7. 19?6r?E*02 ♦ 6.962514E*02 • 6.727884E*n2 * 6.489527E*02 •» • LOAD • COUNTS/OAY • 1.373826EH5 • 1.277o&6E»15 • 1.18319?E*15 ♦ 1.092276E+15 « 1.004351E*15 « 9.194825E+14 »444444#00044404444444444044444 >««««««*.«««««»« o • FECAL COlA/ORM a '4444444#444##X <n>ocroo«oo«oo®» o • concentration ♦ 1000/100 ML • 2.434320E*01 • 2.379245E«01 ♦ 2.323O15E*O1 ♦ 2.265548E+01 • 2.206757E+01 * 2.146541E*01 « • LOAD • COUNTS/OAY • 4.373810E*13 ♦ 4,094q67E*13 • 3.82nfi3]E*13 ♦ 3.55418?E*13 • 3.294287E*13 • 3.041306E*13 « « FECAL STREPTOCOCCUS •••••••••«••••••••••••»•••••*•*••♦»•**•*#♦•*••***•**•<**•*•*•••**«********«•**• **»*«♦»*»» • concentration • 1000/100 ML • 1.2?n259E*01 ♦ 1.272o51E*O1 • 1.24S?2rE*01 * 1.217736E*01 « 1.1R9535E*O1 * 1.160565E+01 • LOAD • COUNTS'DAY • 2.332618EM3 • 2.188883E*13 • 2.04«i]?E*13 • 1.910378E*13 * 1.775758E*l3 • 1,644335E*13 444 »••••«••••«•«•»««••«•»««•«»«»«»«»*•«««««««»««••« «*•••«*****♦*« • TOTAL INSECTICIDES »•••••••••••••»••«»•••»•••«•«•«»•« «»*•«■**•***»«*** »*•««****»• • concentration • MICROG/L • 2.416291E-01 * 2.397o*3E-Ol • 2.37A926E-01 ♦ 2.355850E-O1 « 2.333743F-01 * 2.310473E-01 • LOAD ♦ pounds/day 4 M.570232E-02 • 9.092529E-02 • 8.618122E-02 ♦ 8.147162E-02 * 7.679818E-02 * 7.216272E-0? « • total HERBICIDES »««««««««««»««»« • concentration ♦ M1CR0G/L ♦ 1.441522E-01 • 1.434673E-01 • 1.427923E-01 * 1.420645E-01 • 1.413005E-01 * 1.404967E-01 4 • LOAD • P0UN0S/0AY • 5.709453E-02 • 5.442798E-02 • 5.1772R1E-02 * 4.912956E-02 • 4.649879E-02 * 4.388115E-02 4 ****«««*»*•*••*•«« 4« 44« •«••##»»•••••••#••#« 44444 • • • • • • PARAMETER • • • • discharge • • • • • »• • ♦ • »• UMTS •••••••♦♦•••a CFS «' • # • >• • • • >• 4320 • • P.*79847E*01 • • TIME MINUTES 4381) • 4u40 • 4500 • 4560 * 5.1693*2E»91 • 4.85 Rfl 37E*01 • 4.554355E*0i « 4.295410E»01 ♦ • ♦ • « ««««»« 0 90090 09 O « « 99099999099009 4 4 4«444444444444 4620 • # 4 .0r5979E*01 • 4 4444«44#4444«4 • all SrENDED aOLIUS • CONCENTRATION • MG/L • 1.9213a5E»U1 • 1.9110*5E*01 • • 1.888&B0E*01 • 1.878344E»01 • 1.8*>9518 E *01 * • LOAD • POUNDS/OAY • b,679116E»03 • 5.328601E®03 • 4,9798a 3 E*o3 • 4.639726E®03 • 4,35l980E*03 • 4.120339E»03 • «••••***••*••«♦**♦•••«•*•«»«♦»•»»««•««**«•»•«««•««««« • total dissolved solids ♦ CONCENTRATION • MG/L • 2,73997bE*02 • 2.778*23£®02 • 2.«192*9E*02 * 2.861901E®02 • 2.900480E*02 ♦ 2.933424E+02 * • LOAD • POUNOS/OAY • 8,098836E»0A • 7.7a7126E*04 • 7.38A7RpE*04 • 7.030537E*04 • 6,72OI91E*o4 ♦ 6,465142E*04 • «»•«•«•««««•»«»««•»«•«« • AMMONIA NITROGEN • CONCENTRATION • MG/L • 4.4939Q1E-01 ♦ 4.512327E-01 • 4.531895E-01 • 4.55233qE-01 • 4.570829E-01 * 4.586618E-01 ° • LOAD • POUNDS/DAY • 1.328309E*02 • 1.25818oE®O2 • 1. 187734E *02 • 1.118326E*O2 * l,059026E*02 * 1.010871E*02 * ••♦••••••••••••••••••♦•••••••a »*«*♦•••***«• • organic nitrogen • CONCENTRATION • MG/L • 2.709833E-01 • 2.693oG1E-O1 • 2.67S249E-01 • 2.656641E-01 • 2.639810E-01 • 2.625437E-nl • • LOAD • POUNDS/OAY • tt.009733E*01 • 7.509110E®0! • 7.0113bIE*01 ♦ 6.5262 9 6E*01 • 6. 1 16237f ♦ 0 1 * 5.7 B 6351E*01 * •»««•••«••••«••••••««••••••«««««•••«»«»« ♦*»•«««««»»«»•« • NiTRaTe nitrogen • CONCENTRATION • MG/L • I.453730E-01 • 1.418767E-01 • 1.381639E-01 • 1.34285qE-01 • 1.3o7765E-q1 * 1.2778Q5E-01 * • LOAD • POUNDS/DAY • 4,z96938E*0i • 3.955974E»0] • 3.62l044E*0i * 3.29884?E*O1 • 3.0?999iE*01 ♦ 2.8]6?28E»01 * •♦••♦•••••♦•♦•••••♦••••••••a* • total phosphates • CONCENTRATION • MG/L • 4.822056E-01 • 4.831978E-01 * 4.842515E-01 * 4.853522E-01 • 4.863479E-01 • 4.871981E-01 » • LOAD • POUNOS/OAY • 1.4253o5E*O2 • 1.347309E*02 • 1.269142E*02 • 1.192315E*02 • 1.126831E*02 * 1.073764E*02 • «**•*<> **************************** ******************' tt '******* * CONCENTRATION * MG/L • 3.889bi7E*VO • 3.896279t+00 • 3.903383E*00 * 3.910744E+00 * 3.917429E+00 * 3.923138E+O0 • • LOAD • POUNDS/DAY * l,149694E*03 • 1.0864U6E+03 • 1,02i004E*03 * ’.607122E+02 * 9,076384E+p2 * 8.646429E+02 • •••»«*«••****»»«*••«**•<•••«**«««•«**«««••»«**••*«♦«*••••««»•••♦♦**«*«**«•»•«•***•*«•*•************«**********•************•****** • con «***««»****«* < i«**««**«««»**>*»«*»*«»«***«o»»**«»**«*«*«****«**«******' ,> ******* <, *' ,, -*' i> ** <> ******************** ♦ CONCENTRATION * MG/l • 3.005893E*0l • 2.9819B6E+01 * 2.95a59RE*01 ♦ 2.930075E+01 • 2.9o6o85E*M * 2.8R5599E+01 * • LOAD • POUNDS/DAY « e,884827E+03 • 8.314726E+03 * 7.74a 7 R]F+03 * 7.198014E+03 • 6.733175E+03 « 6.359737E+03 « ••••••«••••«••••«•»«•«««•••«••«»«•»•» «««•««* *•••**••••*•<><»•*•••*•••**••******••<><>•»*•*«<> »♦*♦*»••«•»»♦»«♦»»«»•♦••*«♦♦« *«oo«« «*»»««« • TOTAL • CONCENTRATION • 1000/100 ML • 9.247180E*02 • 6.0005*3E+02 • 5.749? 7 5E*02 • 5.498007E+02 * 5.280199E+02 * 5.101053E+02 « • LOAD * COUNTS/OAY • B,376613E*14 • 7.590Q01E+14 • 6.83S36JE*14 • 6.127004E+14 • 5.549718E+14 * 5.100022E+14 » ♦••»#*#*«««<<<«»»»««««»#<«*»**«<***««<»»«»«»«**»««O«*****»*«»******««*«*******««***«*******************«*************************** # fecal colieorm ••••*•*»••••••••••••*••••**••••*»*•♦••••*•****•«♦••**•****♦**••******* •*#•*«*««*• * CONCENTRATION • 1000/100 ML • 2,084786E*01 ♦ 2.0213t>lE + 01 • 1.95m18E*01 • 1.8’0206E+01 • 1.832502E+01 * 1 .7«*625E*01 * • LOAD • COUNTS/OAY • 2.795412EU3 • • 2.325645EM3 * 2.106454E*13 • 1.926Q39E + 13 • 1.784264E+13 • »••<*•«*••»♦•*•**•••♦♦•♦••*♦•••**•••••••»••*•••••*•*•***•**••#•*••*•*•♦***•••••*•♦**••**•*•♦•*•*•********************************* • eecal STREPTOCOCCUS «*•••*•••*•••••*•••*••••••**•♦*•*•*•*•••••*•****•***•♦•*****•*♦**********•****•************************** * CONCENTRATION • 1000/100 ML * 1.1307ft2E*01 • 1.1000 5 *E+01 • 1. 0 6h3^6E ♦0 1 • 1.036215E+01 • 1.O07977E+01 * 9.844 7 43E+00 * • LOAD • COUNTS/OAY • 1.516197E*13 • 1.3914*3E+13 • 1.27m77E*13 • 1.154763E+13 ♦ l,059428E + |3 * 9,842752E+]2 • • total insecticides ********»*••<>***•**••**•••••••••••*••••••••••••••••••••••••••**••••*«*•***•*********•******************** • C0NCENTR4T10N * MlCROG/L • 2.285920E-01 • 2.25993*E-01 • 2.23?33 9 E-01 • 2.203510E-01 * ‘ 2.155165E-01 * • LOAD • POUNDS/DAY • b,756729E-02 • 6.301416E-02 • 5.85n5RRE-02 * 5.413135E-02 • 5,044945E-n2 * 4.749893E-02 •••«*•<*«*««♦»•#••♦<••••*•*••••••*••*«»•»*•••••••«*••*•*•••••••**•***•*»•*•••«*»•*•*♦****♦**************************************** • total herbicides #>#••#»«♦•»••»«»•«»•••*••»*••♦****«••••*♦**••*•*#••••*•♦*••••**«**•*********♦**»************************* • CONCENTRATION ♦ MlCROG/L • 1.396485E-0 1 • 1.3R7508E-0 1 • 1.37797$E-01 • 1.368016E-01 • 1.359007E-01 • • • LOAD • POUNDS/DAY • 4.127733E-02 • 3.868813E-02 • 3.611442E-02 * 3.360663E-02 • 3.148716E-02 * 2.978240E-02 #«#> # « # »<« ## « # » # *« < <«*»«»«««*«#»««*>o« t >«#««**«««»«**««*«*«**»«***»*«»**«**««*»«***»*****' # ****«***************************** ******* **«««»»»««««<>««<> ««»•••««< • • • • » 4 4 4 »•♦♦«•«••«»♦•«•«**««*»*«<♦••«♦•»••«•«•»«•««»**•«•♦•«*•**»••♦••**•••»«**•*••«*»«•**»**»••**•*•**»***«**•****»**«*•**•*******•*•**•• ♦ • 4 4 • parameter • UNITS • TlMf MINUTES * • • «»*<••**»•••*•♦•*••♦<*«•••••♦***•••**•»*••»»»«*«««♦*»• »•«»*••♦**«■«*»««***♦* 4444444444444444 • • • A680 • 4TAO • 4«00 ♦ 4860 • 4920 o 4980 * ••«••••••••••«*•«•«••«•••••••••«•••••«»••••••••••••••••••••••••••••»•••• ••*•♦««•**«**«•«*•***«*•**«« *•««*»**»«•*«« ««««««•«»«*«««•« • M M A * 4 4 4 4 • discharge • CFS • J,88321RE*01 • 3.697397t*01 • 3.5A?i*kE*01 • 3.386892E*01 * 3.23164000 1 • 3.076387E+01 * • A A 4 4 ® w «••»««•««»««•••« • suspended solids **•*«•**■»***•«*• • concentration • MG/L • 1.860531E*01 • 1.8510 ? 3E»O1 • 1.8Aa2o9E*01 • 1.836385E*01 • 1.828100E*01 * 1.8194O6E*O1 • • LOAD • POUNDS/DAY • J, 89 7050 E ♦0 3 • 3.6932$8E*03 • 3.523746E*03 ♦ 3.35A8A3E*03 • 3.186617E*03 • 3. • 4« ►•*•••••«••**•••••«••••••«*••*•••*♦*••••••**«••••••***•*•••••*♦••••••*•••••••«♦•*♦»••***••♦♦*♦**********♦******** • TOTAL DISSOLVED solids ••***••***•*♦***• '4444444444444444 • concentration « MG/L • 2.96G968E*02 • 2.999286E*02 • 3.027557E*02 • 3.057096E*02 • 3.088022E*02 * 3.120470E*02 * • LOAD • POUNDS/DAY • t>.2145RlE*0* • 5.9816 5 0E*0A • 5.784A99E*0A ♦ 5.58A92sE*04 • 5,382826E*04 • 5,178072E*0* • •1 ««>»♦•»<»#•«•«<«»•«••••«•••*••*••••#•••♦••••••*•♦♦•••»•******•***••*********••*****•*******••**•******* • AMMONIA nitrogen «« ••»•••**•***•«•*••»•••••••••<» *••*«««♦***••*•*•♦•***•«•«»**•*********»***** 4 ,»•»»*»««•**«***» • CONCENTRATION • mG/l • A.602696E-01 • 4.61818SE-01 • 4.631736E-01 • 4.645893E-01 * 4.660716E-O1 * 4.676268E-01 * • load * POUNOS/DAY • 9.64O759E*Q1 ♦ 9.210316E*01 • 8.8*946rE*01 • 8.48T45 9 E*01 * 8.12423rE*01 • 7,75 9 745E*01 * *•*•*•«*»••♦•**••••••♦*••••**•***••*••*••••***•**•*♦♦**•*♦**•**•*••**••******•*******************•** * • organic nitrogen ««»«♦<»<«•#♦»»<«•»♦«»»«»♦••**#•••«<•»•••***••*••♦*«•*•♦•**••••*•** ♦********************* < ►•***•»*»*«**«»»* • concentration « MG/L • 2.610802E-01 • 2.596703E-01 • 2.584369E-01 * 2.5T1481E-01 • 2.557989E-01 « 2.543833E-01 • • load • POUNDS/DAY • S,468560E*01 • 5,178756E«01 • 4.93?736E*0I • 4.697771E*01 * 4,458910E*pl • 4,221?07E»01 * «•*•*•«»••**••«••••*••••••*♦*♦••••••*••*••*•*••**•*••••••**••*••*•****♦*****•*♦* ********** ►4444444444444444 • NITRATE NITROGEN ***••**•«•«****••****♦•******•**••* ****** ** * • concentration « MG/l ♦ I.2A7299E-01 • 1.217909E-01 • 1.19?iqrE-01 • 1.165334E-01 • 1.137210E-01 ♦ 1 . 10' 70 11-0; « ♦ load • POUNOS/DAY • 2,612580E*01 • 2.4289*7E*01 • 2.27?R32E*01 • 2.12891RE*01 • 1.9823 06E ♦0 1 * l,838106E*Ol « #< **•»••«*•»••**#•*•••••••*••*•♦•**•*•••♦•••**•*••♦**•*»**•*♦•****•••********•************** ►4444444444444444 • TOTAL phosphates • *•••«»»#«**•<»••••••*♦♦•••**•••*•*••••••••••*••*•**♦**••♦••**•***•****•*•**•***•**•********”*”* ******** • CONCENTRATION • MG/l • 4.880638E-O1 • 4.888979E-01 • 4.896?75E-01 • 4.90389rE-01 * 4.9H880E-01 • A .9?02b4t-0 1 • ♦ LOAD • POUNDS/DAY • 1.022293E*l)2 • 9.7503(5E*01 • 9.3549olE*01 • 8.958802E*01 ♦ 8.562C50E*01 ♦ 8.16A613E*01 * 4' *«*•«••*••*•**•**•••**•«•*•**♦•*•♦•*•**••*•***•*•••*•♦•*•***•*•****♦•**••************************** 0**0000000*00 *•< *000*00*0*000000*000000*00000 0*00000000*00000 00000000000*00000*00 00*000000 0 ♦ HOD • 0*00*0000000000. **0*0***0*000*00*000*000*0000 - 0 ’ 0 • concentration • MU/l • J # 928951E>U0 ♦ 3.9345blt*00 • « 3.944568E+00 0 3,949927F*oo * 3,9s5550E*00 0 ♦ LOAD • POUNDS/OAY • tt t 229539E*02 ♦ 7.8469O4E»02 • 7,526775E*02 * 7.206227E+02 0 6.885240E*02 * 6.563794E*02 0 ♦ 0 000*00000 *00000* *00000 000 00000000 0000 »••*•*«* •«*«««« >0' »««««*«**«■»«•*««*»»*»*«****««« 0 • COD 00000000000000000*00000000000000« 00000000000 • CONCENTRATION • Mb/L • C ,864739E *0 1 • 2.844642E«01 • 2.«2704?E*01 * 2.808693E*01 0 2.789462E+01 * 2.7692«4E*nl 0 • LOAD • POUNDS/OAY • O,000453E»03 • 5.673?3bE*03 ♦ 5.40ia29E*03 * 5.131126E*03 0 4.862397F*n3 * 4.595318E*n3 • 000*00000000*0 0000000000000000- ♦ total colaform • 0000***000*000000000 000000000 000000000000004 ► 0' • CONCENTRATION * 1000/100 ML • • *.76091TE«02 • 4,62 19FpE ♦02 • 4.48U02E*02 0 4.338232E*n2 « 4.193221E*02 0 ♦ LOAD • COUNTS/OAY • 4.6795a9E»14 • A.30727t>E*14 * 4.005976E*14 • 3.71366nE*14 0 3.430455E*14 • 3.156493E+14 0 »*•••******«••••**«**•♦«• 0 *0*0* 000000000. 000000000000000000000000000000000000000000000 • FECAL COlIFoRM * ***0*0***00*000. 0000*00****00000000*0*000*000 ► 0' »»««••«•««««««»» sco»<n>e»«ot»a • CONCENTRATION • 1000/100 ML ♦ 1.73(159E*01 • 1.692624E401 • 1.6546oiE*Ol • 1.615786E401 0 1.576125E*01 • 1.535557E+01 0 • LOAD • counts/day • 1.65O621E*13 • 1.5313*3E*13 • 1.4340A8E*13 • 1.339o64E*13 0 1.246320EM3 * 1.1559o7E*13 0 »4««»««»«««««»« »«>«««««»»«««« • fecal streptococcus • 00000000000000 -000000000000004 0 concentration * 1000/100 ml • *.611057E*00 • 9.391167E*00 • 9.202934E*00 • ■'.010292E*00 0 8.812928E+00 * 8.610492E400 0 • load • COUNTS/OAY • 9.132277E*12 • 8.496337E*12 * • 7.467174E*12 0 6.968819E*12 • 6.4R1641E*12 0 • 4 .•••••••««»««»••••«««««««•«»»«»«»»« •»»«««»<»«•• • total insecticides «**•••*»•••••»• ••«•••••••••••• ♦ concentration * MlCROG/L • 2, 1 32a 9 2E-0 1 • 2.1106*8E-01 • 2.09153PE-01 • 2.071S72E-01 0 2.050669E-O1 * 2.028736E-01 0 « load • POUNDS/OAY * 4.466696E-02 • *.2093«8E-02 • 3.99aj?6E-02 • 3.784500E-02 0 3.574585E-02 • 3.366462E-02 0 0*00*00*00*0000 ••••••••«••••••«««•••••««»•«• -0000000000000000 •««««»««««««»««•»««««»«•»«««« ♦ TOTAL herbicides * 0000000*0000*00. • concentration • MICROG/L • 1.343482E-0 1 • 1.335936E-01 • 1.3203 iSE'D 1 ♦ 1.322437E-01 0 1.315216F-01 • 1.3n7639E-01 0 • LOAD • POUNDS/DAY • 2.81A044E-02 • 2.664335E-02 • 2.539r4rE-02 • 2.415925E-02 0 2.292594E-O2 * 2.169R82E-02 0 000000000000000000000000000000 *• 444444 »«»« 444 «» 444444444 » 44444444444444444444444 « 444444444444 • • • • • •••••••••••••••••••••••••••••if f Of • • ♦ we************************* 0*** <***••*•***•*** w********** • • • * parameter • units 4 TIME MINUTES 4 • • • 50*0 • 5100 • 5180 4 5220 4 5280 4 5340 4 44444444 • DISCHARGE • CFS • 2.921135E*01 • • 2.765882E»01 • 2.6W30E 4 01 4 2.455377E*01 4 2.3001?5E*nl 4 2.144p72E»01 4 4444444444444444444444444444444444444444444444444444444444444 • suspended solids •••••••••••••*•••#♦••••••♦••« 4444444444444444444444444444444444444444 4 »*>•***« 444444444444 • CONCENTRATION • MG/L • i.8l0263E 4 01 • 1.800620E«01 4 l.?904?OE*01 4 l.T79594E*01 4 1.768061E*01 4 1.755r21E*01 4 • LOAD • POUNOS/OAy • 2,852334E*03 • 2.6863S1E*O3 4 2.521200E*03 4 2.356928E*03 • 2,193591E*03 4 2.031254E*03 4 **•»*«•*««»*«««•*•****»•«*•••*•**•*•*<>«« «•*»«** 44444444444444 ♦ TOTAL DISSOLVED SOLIDS • 444444444444444444444444444444444444444444444 4444444444444 444 • CONCENTRATION • MG/l • 3.1S4599E 4 02 • 3.190592E402 * 3.22A665E*02 4 3.269o73E*O2 4 3.312121E*n2 4 3.358178E*n2 • • LOAD • POUNDS/OAY • 4,970S31E 4 0A • ♦.7600 5 *E*0A • 4.5464a6E 4 04 4 *.329621E*04 • 4.109270E*04 4 3.8R5190E*04 * • ammonia NITROGEN »•••»•••••••••••••««•<*•••••««•» 444444444444444444444444444444 • CONCENTRATION • MG/l • ♦.692628E-01 • 4.709877E-01 4 4.72S125E-01 4 4.747492E-01 4 4.768125E-01 4 4.790200E-01 4 • LOAD • POUNOS/OAY • 7.393917E*01 • 7.026662E*01 4 6,65t98?E*01 4 6.287668E*01 4 S,915699E*nl 4 5.541Q44E*01 * • ORGANIC NITROGEN • CONCENTRATION • MG/L • 2.528943E-0I • 2.5132*0E-0l 4 2.49ft63oE-Ol 4 2.479001E-01 4 2.*60?20E-01 4 2.A40126E-01 4 • LOAD • POUNDS/OAY • 3.98*719E»01 • 3. 7 49512E*01 4 3.515657E 4 01 4 3.2s3235E*01 4 3,052336E*01 4 2.fl?3064E*01 4 • NITRATE NITROGEN • CONCENTRATION • MG/L • 1.076663E-U1 • 1.0A3930E-01 4 1.009306E-01 4 9.725575E-02 4 9.334085E-02 4 8.915225E-02 4 • LOAD • POUNDS/OAY • A,696A4OE*U1 » 1.5574*3E*01 4 1.4212A5E*01 4 1.288073E*01 4 l,15805flE*01 4 1.031433E+01 4 t***# 4 ****** 4 ***** 44444 * 4 * 4444 * 444 * 444 * 44 *** 4 *** 444 * 44 * 444444 * • total phosphates t 4 * 44444 # 4 * 44444444444444444444444 * 4444444444444444444444 4444 4 • CONCENTRATION • mG/L • 4.929062E-01 • 4.938351E-01 4 5.15nR3]E-01 4 5.388451E-01 4 5.641598E-M 4 5.912441E-01 4 • LOAD • POUNDS/DAY • 7.766457E*0I • 7.3675**E*01 4 7.2532obE*Ol 4 7,136566E*01 4 6.999397E*01 4 6.840304E»01 4 4444 « 4 » 44 »*» 4 * 4 « 4 »«» 44 »**e 4 > 44 *«* 44444 <»* 4 » 4444 » 44444444444 « 44444444444444 * 4 « 4 * 444444444444444444444444444444444444444444444444444 *•*•♦•*00 00000000*00000000 44*4444 444444 4 *••••«**•••** 00000000000*000 4444*44444444444444*44*44444 ouy 4 444444444*44 4* *00**00*0*0000*0 44 44444444444444*4444444*444*4 <K> ««0««00000U0« CONCENTRATION • MG/l • 3.961464E0OO • 3.967701E*00 * 3.97 a ?QRF*00 * 3.98 13 00* *00 3. 3.996740E»00 4 LOAD 4 POUNOS/OAY 4 b.2*1865E«v2 • 5,919427E*o2 ♦ 5.59a4R ? e«o2 * 5.272908E*02 « 4.948760E*()2 4.623964E*02 4 *00*0*0*** •*••***•**•♦*< COD >4 00**00000000 44 00000400000000000000000004A0. 4 *••• *00*00*0•«••••••••••••••••«•«••«»«•••« *4 »«««««000«00«««»«»«a»000«0»«»» CONCENTRATION • Mb/L • TAflOA 1 E*U I • 2.7256?9E*01 • 2.'0?h03E*01 • 2.6?6875E*01 « 2.650106F*ni 2.621465E+01 4 LOAD 4 POUNOS/OAY • 4.329972E*03 • 4.066«S0E*03 * 3.804RS6E*03 * 3.5A53O4E»O3 « 3.287923F*n3 3.032861E4O3 4 *•***•••***••****•**«♦ 01 >4 44**4444*444 4* • O0*«***«**OO «• m 000000000040 44 TOTAL 44 «««•••••»••••»« »««•«« «««»«<»» '000000000000' • concentration • 1000/100 ML • A.0A5927E*02 • 3.8961«8E*02 • 3.7438?5E*O2 * 3.588629E»02 ♦ 3.430364E40? 3.288756E+02 4 ’ LUAU ••«••••••••••••••««« 0*004 • COUNTS/OAY ••*•••»•«••« • *.891916€*U • •••*••••• •****•* 2.636876E*U • ** 2.391515E*14 • 2.156O7oE»14 • 1.930668E+14 o 1.7]5537E414 000000000400 4 rtVAL CUL*rO"M 4 ****•*••*•** #4 444444 4**444 000004000000' 44 • CONCENTRATION • 1000/100 ML • l.*940HE*01 • 1.451418E*01 • 1.4076r3E*01 • 1.362705E*01 • l,3163fe9E*01 ♦ 1.268537E0O1 4 LOAD COUNTS/OAY • 1.067879E*13 • 9.822959E»12 • 8.99?2n3E*12 * 8,!87216E*12 ♦ 7,4o8754E*12 « 6.657fe45E*12 4 • STREPTOCOCCUS >44444444444444444444444444444*4 ••••*•*•*•**•• 4404 444 • CONCENTRATION • 1000/100 ML • o.A02586E*00 • 8.1887S9E»00 • 7.96 O 497E»00 • 7.741202E*00 • 7.506185F+00 » 7,262633E*00 4 LOAD • counts/day • O.OOS935E*12 • 5.542017E»12 • 5.0?n234EH2 • 4.65096iE*12 • 4.2246HE412 ♦ 3.8ilfe37E*12 4 4444444444444444444444444 >4* 44' •••••••••••••••• *♦••••••••••♦••••♦*••♦•♦••*•**•♦*♦•♦**•**«*••**••** ••«*««»»»««««••••««»»»• • TOTAL INSECTICIDES 00*•000*0000 *• 0 •••••••••••••••it »«< 00000000000000 • concentration • MlCROG/L 4 2.005668E-0I • 1.981339E-01 • 1.95R605E-01 • 1.928292E-01 • 1.899195E-01 • 1.868063E-01 4 LOAD ♦ POUNDS/OAY • J.160223E-02 • 2.955g67E-02 4 2.753RnjE-02 • 2.553a66E-02 • 2.3562r6F-o2 • 2.161226E-02 4 >4>444444444#4444444444444444444444444444*44444444444444 *44444***444 4* »«•*••***■»***«»♦»« 444444444444* 44 • total herbicides 0*000000000*000 ••*•**•••*•• »0*0000*000«*****00****0*0 *00*****0*0«0000000. 444444444444* »4 • concentration • MiCROG/L • 1.299670E-01 • 1.2912&6E-01 • 1.282376E-01 • 1.27294QE-01 • 1.262889E-01 « 1 .252134E-01 4 LUAU * PUUNDS/DAY • 2, 0A7820E-02 • •••••••••••••••• 1.926A**E-02 ♦ *4 1.80R792E-02 • 1.6S590 6 E-02 • l,5 fe 6836F-02 l,448*36E-02 4 »4 0000000000000000 00000000000000000 0000000000000 0 • • • 0 0 • ♦♦♦•0*0*00*0##000000 *0000000000 000000 a00000000000000 00 0 0 00000000*000* 0 • • • 0 ♦ parameter • UNITS • TIME MINUTES 0 • • • 00000000000000 00 *••*•••♦*•*«* 0 0 0000000000000000 000000000000004 »00 0000000000000 • • • 5400 • 5460 • • 5SrO ♦ 5640 0 5700 0 000000000000000000000 0000000000000000000 000000000000000000000000000000 000000000000004 »0000 0000000 000 00 • • • • ♦ • 0 • DISCHARGE • CFS • 1.989620E*01 • 1.8343&7E*01 ♦ 1.679]i?E*01 ♦ 1.5?3A63E*01 ♦ 1.368610E*nl 0 1.2)3358E*nl 0 • • • ♦ • ♦ 0 0 0 00000000000000 00 0000000000000000 00000000000000000 «»«»«««••«»<>« 0 • suspended solids *«*«••••«•••*«• »»•«««»»«»»«« 00000000000000000 0 • concentration • Mb/L • i.742455E*01 • 1.728109E*01 • 1.71?4 Q 4E*oi • 1.695364E*01 • 1.676391E+01 0 1.655131E*01 0 • LOAD • POUNDS/DAY • l,869987E*03 ♦ 1.709876E*03 • 1.551oi7E*O3 • 1.393528E+03 • 1.237548E*03 0 1,083249E*03 0 00000000000000 »«««•««»•••••••• 00 »«•««••••««•»«»« 0 00 «<>»«*«>«*«■»««•• • TOTAL DISSOLVED solids • 00**000*000000 •••*•••••••••••••••••••••••••*•«»•«•«•««••••••»•••«»«»«««»• 000 ««««•««•««»«« ♦ concentration • MG/L • 3.40769RE*02 • 3.4612*3t*02 • 3.519526E*02 * 3.583467E*02 • 0 3.733639E»n2 0 ♦ LOAD • pdunds/day • 3.657H2E»04 • 3.424 7 23E*04 ♦ 3.18?65pE»04 • 2.94548)E*OA * 2.697673E+04 0 2.4435r9E*04 0 00»»«00«000«0«0« «•««««•»«««»«« 0 • AMMOnIA nitrogen • 00000000000000 ■00 00 000000000000 000 «««««««»«»««« '0 • CONCENTRATION • mG/l • 4.813934E-01 • *.8395?8E-01 ♦ 4.8675’?E-01 • 4.898179E-01 • 4.932121E-M 0 4.970155E-01 0 • LOAD * POUNDS/DAY • ♦ 4.788535E*01 • 4.40«556E*01 • 4.026127E*01 < 3.640999E+01 0 3.252863E*01 0 00000000000000 00 **«**»•••««*•«•»**»««««*•*»»••••««*«**»«*•»»•••«****«**#**»»•*•«•**»****• • ORGANIC NITROGEN * *0 0000000000000000000000»0000«00< 0000000000000000 '0 • CONCENTRATION • mg/l • 2.418521E-01 ♦ 2.395161E-01 • 2.369733E-01 • 2.341837E-01 • 2.310940E-01 0 2.276320E-01 0 • LOAD • POUNDS/DAY • 2.595536E*01 • 2.369889E*oi 0 2.146283E*01 • 1.924906E*01 • 1.7 0 5986E*nl 0 1.489RQ4E+01 0 •••••••••••••• 000000000000 0000000000000000 0 • nitrate nitrogen •*••*••**•••*»•*•«*#•*»••••#*•* 0000000000000 000000000000 »««»»»••••«•»««« 00000000000000000 ■00*000000000* ’0 * concentration • MG/L • b,464880E-02 • 7.977928E-02 ♦ 7,4478egE-02 • 6.866388E-02 • 6.222350E-02 0 5,5oO6q3E-o2 0 • LOAD • POUNDS/DAY • 9.084437E*00 • 7.893753E*00 • 6.7456niE*0n ♦ 5.643925E*00 • 4,593473E*t)0 0 3.6o0083E*00 0 ♦ 0 ••••••••••••« 00 «•*••••«•••• •*•»«#•»«•«••«••*••»««»«•«««•««««««»«•«««««*»« • TOTAL PHOSPHATES *•«*♦*•*•••***« 00 000 '0 • concentration • MG/L • 9.203644E-01 • 6.518518E-01 • 6.861 ♦ 7.237264E-01 * 7.653713P-M 0 8.120358E-01 0 • LOAD ♦ POUNDS/DAY ♦ b.657698E*01 ♦ 6.4497*lE*01 • 6.2142«?E*01 • 5.948771E*O1 • 5.650137E*oi 0 5.314606E+01 0 0< **••*»••♦♦*«••**•*♦•*•»•••••«•««••••••••••»• ••«• 00000000000000041 >000000000000000041 000000000 000000 00 0000000 4440 • dOD ♦ ' »«»»» 0 «■ OSO » ♦ concentration ♦ Mb/L • *.0053?lE*00 • 4,014600E»00 0 4.024699? *00 • 4.035779E»00 • 4.048051E+00 « 4.061R01E*00 « • LOAD * POUNDS/DAY * 4.298477E»02 • 3.9722*2E«02 0 3.6*R196E*02 * 3.317266E*02 « 2.988359E*n2 * 2.658365E*n? 0 0000000000000000000000000000 • coo *•***00*0**0000 0000000000000, 00 0000 0000000000 »*«4***«***Oft*4ft 0000000000004 »00000 000000000000000 00000000000 • CONCENTRATION • Mb/L • Z«590671E»01 0 2.557374E*01 0 2.52lTUE*0] • 2.481369E*01 * 2.437330F*nl * 0 • LOAD • POUnDS/DAY • 2.76028AE *u3 0 2.5303 9 lE*03 0 2.2b84n8E*03 • 2.03959bE*03 • l.T99?90E*n3 * 1.562R86E*03 0 • • 000*0000000000 0000000000000000 »0 • total 0 00 0< 000000000000000000000000000 0-4 »••«««*««»«««««« 00 • concentration • 1000/100 ML • 4,1034 8 3E*02 44 Z.11O583E«O2 0 1.3r?8 8 6E*02 • .762552E*0l • 5.265357E+01 ♦ 0 • load « COUNTS/OAY • 1.510899E*14 • 9.4733T8E*13 0 5.70P3O4E ♦ 13 • 3.267326E*13 ♦ i,7fe3269E*13 • 8 834204E+12 0 44 00000*0000000 40 »»<••••••••««• 00000000000000000 »0000*0*0000000000000000000000< 00 • FEJiAl coliform • 0»«»«e«O««4«04 0000*00000*00 0 0 >0000000000*00000 • concentration • 1000/100 ML • 1,219O46E«Q1 • 9.069608E*00 0 6.575931E*00 * 4.621356E*00 ♦ 3.126849E+00 * 2.018340E*00 0 • LOAU • C0UNTS/0AY • b,9348 C 4E*12 • *.070904E*12 0 2,701An3E*12 ♦ 1.723182E*12 • l,047]35F*12 • 5,992376E*11 0 '00000000000000' 0 0 • FECAL STREPTOCOCCUS • *0 ♦ CONCENTRATION • 1000/100 ml • 7.009582E*00 • 5.385644E»00 0 4.04399f)E*00 ♦ 2.953155E*00 • 2.084914E*n0 • 1.411450E*00 0 • LOAD • COUNTS/OAY • 3.A12544EM2 0 2.4173&3E»12 0 l.661495E*12 • 1.101154E*12 • 6.9r2066E*11 • 4.190544E+11 0 ■ *■»«****#«•*****• • TOTAL INSECTICIDES • •••••••••••••• ••••••••••••• • 0 '0' 0 000000 0000 0 04400 0000000*000000000000000000*000' • concentration • MlCROG/L • 1.834592E-0 1 0 l«798399E-ol 0 l.TSoonSE-oi ♦ 1.715785E-01 • 1.667917E-01 • 1.6142R0E-01 0 • LOAD ♦ POUNOS/OAY • l,968868E-02 0 1.779425E-02 0 1.593142E-02 ♦ 1.410314E-02 * 1.231293E-02 * 1.0565 13E-02 * #♦<♦#♦#<#•#44 00 0000000000000000 • TOTAL herbicides « *0 0000000000000*00 «««»«««•»»««»«•« ►0000000000*00* *0 • concentration • MICROG/L • 1.240571E-01 • 1.2280O8E-01 0 1.2144S9E-01 * 1.199529E-01 • 1.182993E-01 « 1.164463E-01 0 • load • POUNOS/OAY • 1.331370E-02 0 1.215111E-02 0 1.09O944E-02 • 9.859697E-03 • 8.733109E-03 • ?.6?H72E-03 0 00 0*0000000000* 00 «•••••••••••»« >0 00000000000*0000 •♦••••••♦♦♦♦♦♦♦♦♦♦♦♦ • • >»«••••••••«• ♦••♦•••♦♦•♦•♦••♦••••♦♦•♦♦♦•♦••♦♦♦♦♦♦♦♦oeeeoee' »«« •♦♦♦♦♦♦♦•♦♦♦ ♦ • • • •*•♦•♦♦♦♦♦♦• 0 • 0 • PARAMETER • UNITS • TIME MINUTES 0 ♦ • • 0 ♦ • 5760 • 5«20 • 5880 • 5940 • 6000 • 6060 ♦ ♦♦♦♦♦♦♦♦>♦•♦♦♦♦♦♦♦♦♦♦♦♦#♦««<♦♦•«♦•« 000000***0 »«« '•««»*»»***•« • • • DISCHARGE • * CFS • 1,O581oSE*U1 • 9«028526E»00 • • • • 7.47aoo1E*OO • 5.92347AE+00 * 4.370951F*00 • • 2.A1R426E+00 ♦ ♦ • SUSPENDED SOLIDS •••••••♦♦♦♦♦•♦♦♦♦♦♦♦♦•••♦••♦♦♦♦♦♦•♦♦ »♦« >•«♦♦♦♦♦♦♦♦♦♦ • « * concentration • MG/L • 1.630956E*01 • 1.602939E»01 • 1.5696?1E*O1 • 1.528520E*01 • 1.474852E*01 • 1,397373E*nl ♦ • LOAD • POUnOS/DAY • 9.3084G7E*02 • 7.806221E*02 • 6.32r52rE«02 • *.883t66E*02 • 3.*77216E*n2 « 2.124350E*02 « •••••••••••♦••••••♦•♦•♦••♦•♦••••♦••a • ictal dissolved SOLIDS •••••••••••••••••••••*•••*•*••* • concentration ♦ LOAD * M ® Z E . • 3.023873E*O2 • 3.9204&OE*O2 • 4.052Ri(jE*C2 • 4.206223E*02 • 4.406541E*02 • 4.695739E*02 • • rVUNDS/UAT • 2.1B2*25E»Q4 ♦ 1.913133E«04 • 1.634303E«04 • 1.343928E*04 « I.038917E*04 ♦ 7.138677E*03 ♦ • ammonia nitrogen • 0 • concentration • mG/L • S.013403E-01 • 5.063527E-01 • 5.123131E-01 • 5. 19666) E-0 1 * 5.292672E-01 • 5.431282E-01 • LOAD • POUNOS/DAY • i.86133AE*01 • 2,465909E«01 * 2.06*91 ?E*01 • 1.66038?E»01 • 1.247837F*M 4 8.256883E*00 ♦ •♦♦♦♦♦♦•♦♦♦♦♦♦•♦♦♦♦♦♦♦♦♦♦♦♦♦••♦♦•♦♦♦♦♦♦♦♦«#«♦««♦ •♦•«•♦«••♦♦• • ORGANIC NITROGEN • CONCENTRATION •••••••••••••••••••♦••••••••••• • mG/L • 2.236 9 53E-01 • 2.191328E-01 • 2.137073E-01 • 2.070142E-01 • 1.9r2747e-o1 • •♦•«•♦♦♦•♦♦• 1.856576E-01 « • load • POUNDS/OAY • l,276711E*01 • I.067164E*01 • 8,617786E*00 • 6.614296E*00 • 4.674664F+00 • 2.822452E+00 • *% • NITRATE NiTROGEN »••••**♦•••••••*• ••«*•**»»»«***•«•«•««»»««••«. 44 e • 0 • CONCENTRATION • MG/L • 4.680075E-U2 • 3.729021E-02 • 2.59B0A4E-02 • 1.202883E-02 * 0. 0 . 44 • LOAD • POUNDS/DAY • C.671091E«00 • 1.816Ol2E*oo • 1.0«7674E*00 * 3.843326E-01 • 0. • 0 . 0 ••••*••••«•#•••••««• • TOTAL PHOSPHATES **•«••*•*••<•**•**••***•••*•••***«•<>»«***»******«««««**»»«»* •♦♦«♦♦♦♦•«♦• • CONCENTRATION • MG/L • O.650981E-01 • 9.265 9 53E-01 • 9.997254E-01 • 1.0899ME + 00 • 1.207739E*00 ♦ 1.377803E+00 4 • LOAD • POUNDS/DAY • 4.937433E*0l • ♦.5124»7E*oi • 4.03141?E*01 • 3.482464E*01 • 2.847449E*nl • 2 094599E401 0 • ♦ #•00000000 0000000 0 000 00 0 • BCD 000000000000000 •ftftftft ftftftftftftft ftftftftftftftftftftftftftftft • ftftftftftftftftftftftft • »•••«•••«••<> 0«00000««0«0««0 t*************** ft ft ooteoe....... * CONCENTRATION • Mb/L • A.077437E*00 * *.0955SYE*00 • 4.11710R€*00 ♦ 4.143692E*00 ft 4, 178403E* 0 0 ♦ • • LOAD • POUNDS/OAY • 2.327143E*u2 • 1.99451*E*92 • 1.66n21?E*02 ♦ 1.323949E*02 ft 9.051297E*O1 • 6,428384E*01 • 00#000 0000000000 000*000000000000 ftftftftftftftftftftftftftftft ftftftftftftftftftftftftftftft »•«««•«»«««»««« 0000000000000000 • COD 000000000000000000000000000000a 00000000••00000000000000000000 •«»••*••««•«««« •O00000000000 0000000000000000 • concentration ♦ Mb/L • 2.331872E*01 • 2.2668*lE*01 • 2.IHRSnflE^O 1 • 2. • 1.969540E*nl * l.789701E*01 0 ♦ load * POUNDS/DAY • 1.330885E*Q3 * 1.103939t»03 • 8.82q ? -siE*o2 • 6.69087iE*02 ft 4.643525E*n2 * 2.7?0786E*02 * •00000000000000000000000 0000000000000000000000»«••••••«• • ftftftftftftftftftftftft ftft 0000000000000000 • TOTAL COLIFORM 0000000000000000000000000000000 • ftftftftftftftftftftftftftft ftftftftftftftftftftftftftftft • ftftftftftftftftftftftft ««0*«»00 OS... 0000000000000000 • CONCENTRATION • 1000/100 ml • l,554945E*01 • • 2.99A5A]E*00 • 9.941035E-01 ft 2.353599E-01 0 2 • • LOAD • COUNTS/OAY • 4.025871EH2 • 1.619187E*12 * 5.48i6i5E*ll • l,440868E*ll ft 2.517239E*1O * 2,O27842E*o9 • ••♦•♦•ftftftftftftft<ft ftft«ftftftft«ft • •if****************** f 000000000004O00 0000000000000000 • EEjfAL COlIFORM 0000 0000«0000 00000000000000 000 ftftft»•••«••»»««« 0000000000000000 * CONCENTRATION • 1000/100 ML * 1.226923E*00 • 6.890900E-01 • 3.470098E-01 • 1.488682E-01 ft 4.930496E-O2 * 1.0C0100E-02 • • LOAD • COUNTS/OAY • J.176596E*11 • 1.522330E*!! • 6.347R56E* 10 • 2.157717E*10 ft 5.273301E*09 * 6.897091E*08 0 00000000000000000000000000000000 0000000000000*0 •••«•«•««»*»»000»00»00»«» ft ftft ft ft ftft ft ftftftftftftftft ♦ fecal streptococcus 0000000000000000000 00000 0000000 •••••• t**.*.**.************...*.**.**.*.*........ ftftftftftftftftftftftftftftftft • concentration • 1000/100 ML • 9.057642E-01 • 5.416771E-01 • 2.93O210E-01 • 1.382580E-01 ft 5.164259E-02 ♦ 1.246131E-H2 * • LOAD • COUNTS/OAY • 2,345093E*ll • 00000000000000000000000000••••«•••»•••••••••••••••••#••« l*1966b7E*H • 5,37A702E*10 * 2,00393|E*10 ft 5.523317E*09 ♦ ♦ * TOTAL INSECTICIDES 0000000000000000 ♦ concentration • MlCROG/L • 1.553289E-01 * 1.482602E-01 • 1.39a54SE-01 • 1.294849E-01 ft 1.159449E-nl • 9.639726E-02 * • LOAD • POUNDS/OAY • B.865190E-03 • 7.2201»9E-03 • 5.63Q658E-03 • 4.137164E-03 ft 2.733598E-O3 • 1.465475E-03 « •**«0*0*000*0000*#00 000000 000000000000 #00000000 00000000000 00000000 000 00 >««»0«00»»0»e«00#00»«4»tt0««00««« • TOTAL herbicides ♦••♦♦♦♦♦•♦♦♦♦•ft ftftftftftftftft ftft ftftft 0000000000000000 • concentration • MICROG/L • l,l*339*E-01 ♦ 1.118975E-01 • 1.089937E-0 1 • 1.054H5E-01 ft 1.OO7340E-01 * 9.398119E-02 0 • LOAD • POUNOS/DAY • 6.525769E-03 • 5.4493*4E-03 * ♦.3951ofE-03 • 3.367996E-03 ft 2.374976E-03 * 1.428745E-n3 • ••••»•••••••«•«••••«•••••••••••• ••♦•••♦•••••••# <•«••*««»*«•« ft«»»•««»«»««» ftftftftftftftftftftftftftftftft • • • • 000000000000000000000000 • ♦ PARAMETER • • 0»»0 0000000000 00000 00000 0 00 00 0 0 0 0 units 0000000000000000000000000000040 0 0 • 6120 • 6180 0000000000000000000400000000000 >0400000000000000000000000000000 >0000000000000000000000000000000 TIME MINUTES 0000000004000000000040000004000 ♦ 6240 • 6300 ♦ 0000000004 0000004004 0000444044 1590 000000 0000 40000004040000000000 0 0 0 0 00000000000000000000 0 00000000000400000000 0 00000000000000000000 -• w 00 0>00 • DISCHARGE • Cfs * I,590rr0E*00 • 9.46A122E-01 • 4.5897ME-01 • 5.999384E-02 » 0. * • ••••••<» • suspended solids • CONCENTRATION • MG/L • i.296393E*01 • 1.20*6 e 9E*01 • 1.07*Q07E*01 • 7.1/6204E*OO *0. « * LOAD * POUNDS/DAY • l,li2*52E*02 ♦ 6.149817E+01 • 2.66A0ARE*01 * 2.322273E*00 * 0. • • total d issol veu solids •••*••*•*•••*•••*•••••••••••♦•••*••••••**•♦•••••••*•***••»•♦« •»•«•«•««♦*«»•••«»#»<> «««.o■»««*«*#■»«*«#»»««««« • CONCENTRATION ♦ MG/L • b.072652E*02 ♦ 5.4149*6E»0? • 5.89lR99E*02 • 7.23293?E»02 *0. * • LOAD • POUNDS/DAY • *.352909E*03 • 2.76*277E*03 • 1.45afesiE*03 • 2.3*0605E*02 • 0. * ******•****•**********•♦•♦••*•*♦*♦••**•••••*•••♦•♦*♦♦*♦<•♦<>♦••*•♦♦•*♦*« «♦*»•»»«••«»*«*•<>*•*•#« • ApMON IA N1 T ROGEN »»•••»«»••«••«•««»««»<> »«•»••«« • CONCENTRATION • MG/L • b.61193*E-01 * 5.775992E-01 * 6.00459PE-01 * 6.6A7339E-01 • 0. * • LOAD • POUNDS/DAY • 4.815673E 4 00 • 2.948588E*00 • 1.A8ASM F*00 * 2.151105E-01 *0. * • ORGANIC NITROGEN ***•••♦♦♦ * 0o 000000000000000 0 04000000 0 *00 0000 000 000 00000 00 000000« • CONCENTRATION * MG/L • I.692137E-01 • 1.5428U1E-01 • I.334717E-01 • 7.496S30E-O2 * 0. * • LOAD • POUNDS/OAY • i,A52045E*00 • 7.875850E-01 • 3.304346E-01 • 2.425906E-02 • 0. » * N ITPATE N ITROGtN •♦•**♦♦♦♦♦♦♦*<>•♦••••♦•***♦♦•••♦♦♦♦••♦♦•♦♦•♦•♦♦<0<*<*00#*««*40*00«»40000#O00#00#4000040000000000000 0000000 • CONCENTRATION * MG/l • U. *0. *0. *0. « 0. * • LOAD • POUNDS/DAY • 0, • 0. *0. *0. * 0. * • TOTAL phosphates 00«000000000000000000«40000 • CONCENTRATION • MG/L • 1.599448E*00 • 1.800736E+O0 ♦ 2.081?lQF*00 • * 0. ♦ * LOAD • POUNDS/DAY • i.372508E*Cl * • 5.15?43]E*00 • 9.206S2oE’-0 1 • 0. * *« 044 >404440440 000000040000 OUU 0004*00000000 4* to00040oo000oo0oo»40o40444oo£ >4440444444 000000000040 concentration • Mb/L • *.2938?9F*uO • *.3531*2E*00 4 ♦ 4.66S16fl€*00 • 0. LOAD • pounos/day • 4.6d4591E*01 • 2.222237E»oi • 1.09fli44E»C1 • 1.510637E*00 * 0. 4 COD concentration ■400444440 000000000000 • • mG/l • X,555318E*O1 • 1.3424b2t.01 444 • »•»»•••«<«•••••••••••«•••»»»«««««««»«•« I • 2,11946oE*OO » 0. >440444440 040040000000 LOAD • POUNDS/OAY • 1.33A638E*02 • 6.853136E*01 ♦ 2.58o246F*01 • 6.858656E-01 * 0. 4 • • total coliform concentration load • < « 00*400000000. 1000/100 ML »*• • *•4044••40440000 400000400000. »*0***0040*000400*OO000O000O 1.9548A0E-03 • 1. 66 7q31E-04 »••••••••••••»«••••••>•»« • 5.3971 ME’Oa • 3.494a5oE-10 «»«»««»«««««»•««»«» • 0. • 000000000000 000000000000 • COUNTS/OAY 4 7.6O965OE*OT • 3.860468E«06 4 * 5.130U8E-01 • 0. 4 • • FEtAL COLIFORM CONCENTRATION •< • 1000/100 ML • 1.250A15E-03 • 1.892355E-0A • 1.36?5?0E-0«> • »»»«••««»•»»« A.3A7629E-09 «»««««««« «««»«•«»»«»« • 0. * LOAD • COUNTS/OAY • A.867518E»07 • *.382268E406 • 1.53ni<?9E*05 • 1.225422E*01 * 0. 4 • FEJrAL STREPTOCOCCUS 00000004 *000000000000004 4444444444444444440444044444444 • CONCENTRATION • 1000/100 ML • 1.953652E-03 • 3.63113AE.04 ♦ 3.A81278E-05 • 4.770979E-08 < 0. 444444440 4 000004400040 04 load I0440O044m4O4440M4a44*a • COUNTS/OAY • 7.605024E*07 • 8.4068®9E»06 • 3.909705E*05 • 7.003743E*01 • 0. 0 w ” ~ w w w Ww W Ww w W W W w w ww total insecticides 00 < »*< 444444440 000040000004 440000000004404000044 CONCENTRATION 0 MICROG/L • 7.092079E-02 • 4.77B427E-02 • 1.5545A5E-02 • 0. • 0. LOAD • POUNDS/OAY • R,085805E-OA • 2.A393*0E-04 4 3.8*afe7jE-05 • 0. • 0. 4 TOTAL herbicides '****00**40*00O000000OO0O000*00000000000000000 040440044004 • MICROG/L concentration « • B.518023E-02 • 7.718761E-02 • 6.60«s070E-02 • 3.473741E-02 • 0. 4 LOAD • POUNDS/OAY • 7.309426E-0* ♦ 3.9403 5 2E-04 0 1.6352UE-04 • 1.12M16E-05 • 0, 0 »*00**0000000< 4444444044444 4444444044 000004000 000000400000 BIBLIOGRAPHY Akerlinch, G., ’’The Quality of Storm Water Flow,” Nordisk Hygienish Tidskrift, Stockholm, 31, 1 (1950). Chow, V. T., "Handbook of Applied Hydrology," McGraw-Hill Book Company, New York (1964). Environmental Protection Agency, "Selected Urban Storm Water Runoff Abstracts, July 1968 - June 1970," Franklin Institute Research Laboratories (July 1970). Espey, W. H., C. W. Morgan, and F. D. Masch, "A Study of Some Effects of Urbanization on Storm Runoff from a Small Watershed," CRWR, Texas Water Development Board Report #23 (August 1966). Espey, W. H., D. E. Winslow, "The Effects of Urbanization on Unit Hydrographs for Small Watersheds," Tracor Document # 68-975-U, submitted to Office of Water Resources Research, U.S. Department of Interior (1967). Grad, Frank, Environmental Law, Matthew Bender, New York, New York (1973). Johnson, S. L., and D. E. Sayre, "Effects of Urbanization on Floods in the Houston, Texas Metropolitan Area," U.S.G.S., Water Resources Investigation 3-73 (April 1973). Johnson, S. L., and R. E. Smith, "Urban Hydrology of the Houston, Texas Metropolitan Area, Compilation of Basic Data, April 1964 to September 1965," U.S.G.S., Water Resources Division, Austin, Texas (1965). Leifeste, D. K., and M. W. Lansford, "Reconnaissance of the Chemical Quality of Surface Waters of the Colorado River Basin, Texas," Texas Water Development Board Report #7l (March 1968). Linsley, R. K., Jr., Max A. Kohlea, Joseph L. H. Paulhus, Hydrology for Engineers, McGraw-Hill Book Comp any, New York (1958). "Meterological Data of the United States, Local Climatological Data," U.S. Department of Commerce, Environmental Science Services Administration, Environmental Data Service, Asheville, N.C. (January 1970 - December 1972). Merritt, F. S., Standard Handbook for Civil Engineers, McGraw-Hill Book Company, New York (1968). Sartor, J. D., and Gail B. Boyd, Water Pollution Aspects of Street Surface Contaminants, Contract #l4-12-921, Project #11034 FUJ, Office of Research and Monitoring, U.S. Environmental Protection Agency, Washington, D. C. (1972). Shigorin, G. G., ’’The Problem of City Surface Runoff Water,” Vodosnabzhenic i Sanitarnaya Teknika, 2, 19 (1956). "Soil Surveys of Nueces County, Texas," U.S. Department of Agriculture, Soil Conservation Service #26 (I 960 Stander, G. J., "Topographical Pollution - The Porblem of the Water and Sanitary Engineer," 40th Annual Conference, Institution of Municipal ENgineers, National Institute for Water Research (1961). "Storm Water Pollution from Urban Land Activity," AVCO Economic Systems Corporation, FWQA Contract #l4-12-187, Probram #11034 FKL (July 1970). Sylvester, R. 0., "An Engineering and Ecological Study for the Rehabilatation of Green Lake," University of Washington, Seattle, Washington (1960). Tholin, A. L., and C. J. Keifer, "The Hydrology of Urban Runoff," JSED ASCE 85, SA-2 (1959). Tokarski, R. P., "The Effect of Land Utilization on Water Quality Variations," Department of Environmental Sciences, Rutgers University (October 1970). "Texas Almanac and State Industrial Guide," Dallas Morning News, Dallas, Texas (1969). United States Geological Survey,Rain Gage Data and Records, unpublished records (1972). Viessman, W., ’’Assessing the Quality of Urban Drainage,’’ Public Works, Vol. 100 #lO (1969). Water Quality Management, U.S. Department of Health Education and Welfare, Robert A. Taft Engineering Center, Cincinnati, Ohio (1964). Water Pollution Aspects of Urban Runoff, U.S. Department of Interior, FWPCA, Pub. # WP-20-15 (January 1967). Water Pollution Aspects of Urban Runoff, American Public Works Association, Contract # WA-66-23, U.S. Govern ment Printing Office (January 1969). Weibel, S. R., R. J. Anderson, and R. L. Woodward, ’’Urban Land Runoff as a Factor in Stream Pollution,” JWPCF 56, 7, 914 (July 1964). Winslow, D. E., and W. H. Espey, Jr., "Storm Runoff Analysis of Residential Settings for the Woodlands," Tracer Document #077-022-01 (September 1972). REFERENCES ’’Storm Water Pollution from Urban Land Activity,” U.S. Department of Interior, FWQA 11034 fkl, Control Number 14-12-187 (July 1970). "Runoff and Erosion Control by Seeded and Natural Vegetation on a Forest Burn," CRWR, U.S., U. DA. FS., Tr. Orr. (1970). "Effects of Watershed Changes on Streamflow," Water Resources Symposium #1 edited by Moore, Morgan., pp. 166, 170, 229. American Public Works Association, 1969, "Water Pollution Aspects of Urban Runoff," report to FWPCA, Water Pollution Control Fesearch Series #WP-20-15. Angino, E. E., L. M. Magnuson, and G. F. Stewart, 1972, "Effects of Urbanization on Storm Water Runoff Quality," (a limited experiment, Naismith Ditch) Lawerence, Kansas: Water Resources Research, V.B, #l, pp. 135-140. Avco Economic Systems Corporation, "Storm Water Pollution from Urban Land Activity," FWQA, Water Pollution Control Research Series, #11045 fkl 07/70. American Society of Civil Engineers, Report presented by the Task Force Committee on Effects of Urban Development on Flood Discharge, presented at ASCE Hydraulic Division Conference, Vicksburg, Miss. (1964). Carter, R. W., "Magnitude and Frequency of Floods in Surburban Areas," U.S. Geological Survey Professional Paper 424-b. Horner, W. W., and F. L. Flynt, "Relations Between Rainfall and Runoff from Small Urban Areas," Transactions ASCE v. 107 (1942). Hoyt, W. G., et al. "Rainfall and Runoff in the U.S." U.S. Geological Survey Water Supply Paper 772 (1936). Van Sickle, Donald, "The Effects of Urban Development on Storm Runoff," The Texas Engineer, v. 32, #l2 (1962). Benzie, W. J., and B. J. Courechaine, "Discharges from Separate Storm Sewers and Combined Sewers," JWPCF v. 38, #3, p. 410 (1966). Black, Crow, and Eidsnena, "Storm and Combined Sewer Pollution Sources and Abatement," Atlanta, Ga., Environmental Protection Agency, Water Pollution Control Research Series, #11024 vlbol/70 (1971). Brownlee, R. C., T. A. Austin, and D. M. Wells, "Variation of Urban Runoff with Duration and Intensity of Storms," Interim Report, Water Resources Center, Texas Tech University (1970). Burm, R. J., and R. D. Vaughan, ’’Bacteriological Comparison between Combined and Separate Sewer Discharges,” JWPCF, v. 38, #3, p. 400 (1966). Burm, R. J., D. R. Krawczyk, and G. L. Harlow, "Chemical and Physical Comparison of Combined and Separate Sewer Discharges," JWPCF, v. 40, #l, p. 112 (1968). Sylvester, R. 0., "Nutrient Content of Drainage Water from Forested, Urban and Agricultural Areas," Transactions, Seminar on Algae and Metropolitan Wastes, R. A. Taft Sanitary Engineering Center, Tr. W6l-3 (1961). Duley, F. L., "The Loss of Soluble Salts in Runoff Water," Soil Science, 21, 401, (1926). Kahnke, H. "Runoff Chemistry: An Undeveloped Branch of Soil Science," Soil Science Society American Proceedings, 6, 492 (1941). "Urban Storm Runoff and Combined Sewer Overflow Pollution," Report to Environmental Protection Agency, Water Pollution Control Fesearch Series, #11024 fkm 12/71 (1971). Judd, John A., "Aspects of Salts from Street Runoff on Benthic Organisms," University of Wisconsin, Milwaukee (1967). Tholin, A. L., and C. J. Keifer, "The Hydrology of Urban Runoff," JSED, ASCE, 85, SA2 (1959). Johnson, R. E., A. J. Rossono, Jr., and R. 0. Sylvester, "Dustfall as a Source of Water Quality Impariment," JSED, ASCE, 92, Sal (1966). Stander, G. J., "Topographical Pollution - The Problems of the Water and Sanitary Engineer," 40th Annual Conference Institution of Municipal Engineers, National Institute for Water Research (1961). United Public Health Service Publication #1246, "Pollutional Effects of Storm Water and Overflows from Combined Sewers System." Hittman Associates, Inc., "The Beneficial Use of Storm Water," Report to the FWPCA, National Technical Information Service, Pub. 95-160 (1968). Yen, B. C., and V. T. Chow, "A Study of Surface Runoff due to Moving Rainstorms," Civil Engineering Studies, Hydraulic Engineering, Ser. #l7, University of Illinois (1968). Carr, J. T., Jr., "The Climate and Phisograph of Texas," Texas Water Development Board Report #53 (1967). APWA Research Foundation, "Urban Drainage Practices, Procedures and Needs," Special Report #3l, Chicago, Illinois (December 1966). U.S. Department of Interior, FWPCA, "Problems of Combined Sewers Facilities and Overflows," WP 20-11, Washington, D. C. (December 1, 1967). Witcla, Sulo W., "Some Aspects of the Effect of Urban and Suburban Development on Runoff," U.S. Geological Survey Open File Report (1961). ASCE Task Force on Effect of Urban Development on Flood Discharges," Preliminary Report (August 1966). "Steps Toward a Better Understanding of Urban Runoff Processes," Water Resources Research 4, (2) (April 1968). "Runoff Estimation for very Small Drainage Areas," Water Resources Research 4, (1), 87-94 (1968). U.S. Geological Survey, 1969-1972, Urban Hydrology Data, Houston, Texas. Viessman, W., "Assessing the Quality of Urban Drainage," Public Works, v. 100, #lO, p. 89-92 (1969). Weibel, S. R., et al. "Urban Land Runoff as a Factor in Stream Pollution," JWPCF, v. 36, #7? p. 914 (1964). The vita has been removed from the digitized version of this document.