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Spacecraft Trajectory Optimization using Many

Embedded Lambert Problems

David Ryan Ottesen, Ph.D.

The University of Texas at Austin, 2022

Supervisor: Ryan P. Russell

Improvement of spacecraft trajectory optimization approaches, methods, and tech-

niques is critical for better mission design. Preliminary low-fidelity analysis precedes

high-fidelity analysis to efficiently explore the space of a problem. The work of this

dissertation extends an embedded boundary value problem (EBVP) technique for

preliminary design in the two-body problem. The EBVP technique is designed

for direct, unconstrained optimization using many, short-arc, embedded Lambert

problems that discretize the trajectory. The short arcs share terminal positions to

implicitly enforce position continuity and the instantaneous velocity discontinuities

in between segments are the control. These coasting arcs and impulsive maneuvers

in between segments are defined collectively as a coast-impulse model, similar to the

well-known Sims-Flanagan model.
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Use of EBVPs is not new to spacecraft trajectory optimization, extensively

used in primer vector theory, flyby-tour design, direct impulsive-maneuver optimiza-

tion, and more. Lack of fast and accurate BVP solvers has prevented the use of the

EBVP technique on problems with more than dozens of segments. For the two-body

problem, a recently-developed Lambert solver, complete with the necessary partials,

enables the extension of the EBVP technique to many hundreds to thousands of seg-

ments and hundreds of revolutions. The use of many short arcs guarantees existence

and uniqueness for the Lambert problem of each segment. Furthermore, short arcs

simultaneously approximate low thrust and eliminates the need to know the struc-

ture of a high-thrust impulsive-maneuver solution. A set of examples show the

EBVP technique to be efficient, robust, and useful. In particular, an example using

256 revolutions, 6143 segments, and a constant flight time per segment, optimizes

in 5.5 hours using a single processor.

After this initial demonstration, the EBVP technique is improved by a func-

tion which enables variable flight time per segment. Guided by the well-known

Sundman transformation, these piecewise Sundman transformation (PST) functions

divide the total flight time of the trajectory into spatially-even arcs, importantly not

modifying the dynamics. Flight-time functions and their dynamical regularization

counterpart are shown to share similar behavior for Keplerian orbit propagation.

The PST functions are also shown to extend the EBVP technique to a large de-

sign space, where a runtime-feasible transfer with 512 revs and 12287 segments

is presented that significantly changes semimajor axis, eccentricity, and inclination.

Moreover, another example is presented that transfers through the numerically chal-

lenging parabolic boundary, i.e. a transfer from a circular to hyperbolic orbit. Both

these examples use an exponent of 3/2 for the PST to enforce the spatially-even

arcs or equal steps in eccentric anomaly.

Lastly, an optimal control problem is formulated to solve a class of many-
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revolution trajectories relevant to the EBVP technique. For transfers that min-

imize thrust-acceleration-squared, primer vector theory enables the mapping of

direct, many-impulsive-maneuver trajectories to the indirect, continuous-thrust-

acceleration equivalent. The mapping algorithm is independent of how the direct

solution is obtained and the mapping computations only require a solver for a BVP

and its partial derivatives. For the two-body problem, a Lambert solver is used.

The mapping is simple because the impulsive maneuvers and co-states share the

same linear space around an optimal trajectory. For numerical results, the direct

coast-impulse solutions are demonstrated to converge to the indirect continuous so-

lutions as the number of impulses and segments increase. The two-body design space

is explored with a set of three many-revolution, many-segment examples changing

semimajor axis, eccentricity, and inclination. The first two examples change either

a small amount of semimajor axis or eccentricity, and the third example is a trans-

fer to geosynchronous orbit. Using a single processor, the optimization runtime is

seconds to minutes for revolution counts of 10 to 100, while on the order of one hour

for examples with up to 500 revolutions. Any of these thrust-acceleration-squared

solutions are good candidates to start a homotopy to a higher-fidelity minimization

problem with practical constraints.
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Chapter 1

Introduction

Earth is a small blue marble in an immense black sea of space. Starting with Sput-

nik in 1957 [1] as the first artificial satellite and Yuri Gagarin in 1961 [2] as the first

person in space, humanity has sought to explore, use, and inhabit space. The design

of a space mission must contend with a plethora of objectives and constraints. De-

pending on the stakeholders, the mission objective can be communication (Sputnik

1 [3]; Telstar [4]; Syncom-2 [5, 6]), reconnaissance (CORONA [7]; Zenit [8, 9]), GPS

[10], exploratory science [11], Earth observation (GOES-R Series [12]), sustained

habitation [13], and more. The space mission analysis and design process must

successfully minimize financial cost while maximizing return by meeting objectives

([14], ch. 1). The process is iterative and contains many different facets. Broadly

speaking, after the objective and constraints are acknowledged, a mission architec-

ture is designed and requirements are defined. The requirements are then allocated

to system elements of the overall mission. After this design phase, the system is

built, flown, and supported until the end of its life cycle.

One critical system element of the mission architecture relevant to this thesis

work is the spacecraft trajectory, profoundly affecting every part of mission devel-

opment and operational support. The design of the trajectory must meet mission
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objectives while minimizing cost, often time or fuel, both of which have financial

impacts. In particular, the research for this thesis improves preliminary and low-

fidelity spacecraft trajectory optimization, used early in the mission life cycle, to

inform mission architecture. The preliminary embedded boundary value problem

(EBVP) technique is described in detail throughout. Briefly, a trajectory is mod-

eled as set of position-continuous segments, where each segment is a solution to

Lambert’s problem [15, 16, 17, 18]. Lambert’s problem is a boundary value prob-

lem using two-body dynamics. Position continuity is enforced by reusing terminal

positions of each segment and the velocity discontinuities between segments are the

control to be minimized. The technique is fast, simple to implement, and robust

to poor initial guesses. The technique is for locally optimal solutions, but some

scenarios explore families of solutions.

Historically, several missions were enabled by trajectory design. Voyager 1

and 2’s trajectory ([19, 20, 21]; [11], pp. 137–145) was called the Grand Tour.

Voyager 1 was able to visit Jupiter (March 5th, 1979), Saturn (November 12th,

1980), and Saturn’s moon Titan with gravity assists. Voyager 2 visited and used

Jupiter (July 9th, 1979), Saturn (August 25th, 1981), Uranus (January 24th, 1986),

and Neptune (August 25th, 1989) for their gravity-assists too. LCROSS (Lunar

Crater Observation and Sensing Satellite), launched together with the LRO (Lunar

Reconnaissance Orbiter) on June 18th, 2009, used a highly inclined 4-3 resonance to

investigate ice water at lunar poles [22, 23, 24]. The 4-3 resonance trajectory means

the Moon and LCROSS orbited Earth four and three times, respectively, before a

kinetic impact of the upper stage into a lunar southern crater. A kinetic impactor

had never been done before. In 2018, the Parker Solar Probe [25], designed and flown

by Johns Hopkins Applied Physics Laboratory (JHUAPL) to study the Sun, was
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able to dramatically improve the scientific value of the mission through trajectory

design. The use of Venus instead of Jupiter for gravity-assists enabled 24 solar

flybys instead of just one. Another JHUAPL mission, MESSENGER [26, 27, 28],

a science mission to Mercury, was made feasible by trajectory design, at least in

part. To successfully orbit Mercury, a significant amount of velocity was lost before

the insertion burn, which followed, in order, one Earth flyby, two Venus flybys, and

three Mercury flybys.

While not exclusively enabled by, complicated satellite constellations in low-

Earth orbit is facilitated by trajectory design and optimization techniques for com-

plete coverage of the Earth and fuel minimization [29]. Some constellations are

for internet access (Iridium, OneWeb, Starlink, and Amazon Kuiper), Internet of

Things (Hiber, Astrocast, Athena, and Myriota), Earth observation (Iceye, Rapid-

Eye, Planet, and Capella Space), autonomous transportation (Pulsar, GeeSpace),

and more.

Optimal trajectory design enables effective use of low-thrust electrical engines

too. Previous approaches for high-thrust trajectory design do not apply because

low-thrust trajectories gradually, instead of quickly, change velocity over relatively

longer flight times. Designing trajectories that assume this gradual change in veloc-

ity is advantageous because it saves fuel. High-specific-impulse low-thrust electrical

engines use less fuel than low-specific-impulse high-thrust chemical engines. More

spacecraft mass can then be used for instrumentation. For example, launched on

October 24th, 1998, Deep Space 1 ([30, 31]; [11], pp. 207–208) was the first space-

craft to use low-thrust ion propulsion instead of high-thrust chemical propulsion.

Some other low-thrust missions include SMART-1, which tested Hall ion thrusters

to transfer from Geosynchronous Transfer Orbit (GTO) to lunar orbit in 2003 [32].
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The DAWN mission [33, 34], launched on September 27th, 2007, was the first NASA

exploratory mission to use ion propulsion, enabling the exploration of two large as-

teroids: Vesta (July 16th, 2011 to September 5th, 2012) and Ceres (March 6th, 2015

to November 1st, 2018). Hayabusa 1 [35] and 2 [36] are both JAXA asteroid sample

return missions using ion thrusters. Hayabusa 1 launched on May 9th, 2003 and the

sample returned in June 13th, 2010. Hayabusa 2 launched on December 3th, 2014

and returned its sample on December 5th, 2020. OSIRIS-REx [37, 38, 39, 40] is a

NASA asteroid sample-return mission to Bennu, launched on September 8th, 2016

and is expected to return its sample on September 24th, 2023. OSIRIS-REx’s en-

gines stand in contrast to the previous sample-return missions, using 28 Hydrazine

monopropellant thrusters, where only two are low-thrust. The navigation of Bennu

consisted of multiple phases: (1) an orbit to characterize the asteroid and select

a landing site, as well as (2) tough-and-go maneuvers to the surface and back to

collect regolith.

Finally, theoretical trajectory design problems push the state of the art of

mission feasibility. New technical insight can find application in practical problems.

The Global Trajectory Optimization Competition (GTOC) [41] is an event that

takes place every one to two years, where teams across the globe have one month

to solve a very difficult trajectory optimization problem. As of 2022, eleven com-

petitions have taken place. Some of the most recent problems are (i) building a

Dyson ring, inspired by the well-known Dyson sphere; (ii) settling the Milky Way in

a quest 90 million years long; (iii) removing 123 pieces of space debris about Earth;

and (iv) building a high-resolution, space-based, very-long-baseline interferometry

system for 420 radio sources. One write up of a fourth-place finish in 2022 by the

team from UT Austin, which includes the thesis author, is found in Ref. 42.
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1.1 Structure of Trajectory Optimization Problems

To determine an optimal spacecraft trajectory to enable a mission, the problem

structure typically has the following form, divided into three main parts: the trajec-

tory model, the formal problem statement, and the solution approach. In general,

after the model and problem statement is defined, the solution approach minimizes

an objective while meeting constraints. The constraints take the form of satisfy-

ing ordinary differential equations, initial and final boundary conditions, continuity

constraints, path constraints, and more. Solution forms include deterministic or

stochastic, as well as analytical and numerical. In the following structure descrip-

tion, special emphasis is given to the preliminary EBVP technique.

1.1.1 Historical Context

Breakwell’s 1959 paper [43] on “The Optimization of Trajectories” presented the

first general theorem to control thrust magnitude, angle of attack, and thrust di-

rection of a rocket, while minimizing time as an objective. Lawden’s 1963 book

“Optimal Trajectories for Space Navigation” [44] was the first dedicated book on

the trajectory optimization of rockets, notably deriving the control law: the primer

vector. Edelbaum’s extensive collection of work [45, 46, 47, 48, 49, 50] in the 1960’s

and 70’s extended the spacecraft trajectory optimization field too, often focusing

on optimal transfers assuming many revolutions (revs) and small orbital element

changes, but not exclusively.

Many surveys have extensively covered the breadth and structure of space-

craft trajectory optimization and optimal control in general. The 1972 survey paper

by Polak [51] covers optimal control algorithms of the last few preceding decades

for continuous ordinary differential equations: gradient methods, Newton-Raphson
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methods, conjugate gradient methods, feedback solutions (dynamic programming),

iterative methods (indirect methods), penalty functions, and discretization. Bryson

[52] in 1996 thoroughly reviews the historical roots of optimal control, starting

with the development of the calculus of variations in the 17th century by Fermat

(1601–1665), Galileo Galilei and the Brachistochrone problem of 1638 ([53], pp.

117-120), as well as some contributions from Newton, Bernoulli [54], Leibniz, and

l’Hospital. Calculus of variations was further developed in the 18th century by

Euler and Lagrange, in the 19th century by Legendre, Jacobi, Hamilton, and Weier-

strass, and in the 20th century by Bolza, Bliss, Pontryagin, and Lawden. Bellman

introduced us to the Hamilton-Jacobi-Bellman theory, or dynamic programming, in

1957. The authors von Stryk and Bulirsch [55] in 1992 divide optimal control prob-

lems into direct and indirect methods, suggesting a hybrid approach between the

two to improve the convergence area of indirect methods with low-accuracy direct

methods. Though this low accuracy of the direct method in this work is more a

function of the resolution of the state and control. The higher the resolution of the

discrete problem, the better it represents the true continuous solution. The Brachis-

tochrone problem and the Apollo reentry problem are presented. A little later in

1998, Betts [56] also divided the spacecraft trajectory optimization field into direct

and indirect methods, acknowledging overlap between the two. He expanded on the

formal problem statement, the nonlinear program (NLP) for the solution, and the

discretization and modeling approaches for both the direct and indirect methods.

A decade later, Rao [57] in 2009 produced a complementary survey for computa-

tional optimal control. Rao covered similar topics as Betts, also stating a formal

optimal control problem, numerical methods to model the dynamics, the Karush-

Kuhn-Tucker [58, 59] (KKT) conditions for the NLP, optimization software, and a
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particular focus on collocation and pseudospectral methods. A few years later in

2012, Conway’s [60] survey focuses on a qualitatively different approach: stochas-

tic evolutionary or heuristic algorithms, instead of the deterministic approach that

discretizes the continuous optimal control problem and converts it to an NLP prob-

lem. The survey by Shirazi et al. [61] in 2018 organizes well and elaborates on the

spacecraft trajectory optimization field by way of models, objectives, approaches,

and solutions. Shirazi’s survey includes updates on new stochastic methods and

a section on state representation (Cartesian, polar, as well as classical and modi-

fied equinoctial orbital elements). In 2021, Malyuta et al. [62] produced a survey

on optimization-based space vehicle control, focusing on convex optimization tech-

niques. Lastly, the excellent survey by Morante et al. [63] on optimal low-thrust

trajectories, includes the typical discussion on the objective function, continuous and

discrete control and dynamics, and the methods and software tools used to solve the

optimization problems. Notably, a few new topics were included, namely the hybrid

nature of low-thrust techniques, differential dynamic programming [64, 65, 66, 67],

and multi-objective optimization.

1.1.2 Trajectory Model

The trajectory model can be generally defined in terms of dynamics, state rep-

resentation, discretization, and control modeling. Low-fidelity approximations are

assumed first and improved later. Fast and robust low-fidelity modeling minimizes

computational and human effort as well as encourages thorough exploration of a

design space.

Popular simplified models for dynamics of the n-body problem are the two-

body problem and three-body problem, where n could be every gravitational body
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in the solar system. The two-body problem (one body plus a spacecraft) first as-

sumes a force model that only includes a gravitating point-mass and mass-less, or

mass-negligible, spacecraft. The work in this thesis uses this simplified two-body

model. Additional two-body perturbations to improve fidelity include spherical har-

monic perturbations such as J2, J3, etc.; third-body effects from the Moon or the

Sun; atmospheric drag; and more. The simplified relative dynamics of the two-

body problem use the Clohessy-Wiltshire (CW) [68] equations of motion. The CW

equations assume close, linearized motion about a spacecraft in a circular orbit.

The three-body problem (primary and secondary body plus spacecraft) includes

two gravitational point-masses and neglects the spacecraft’s mass. The simpler

circular-restricted three-body problem (CR3BP) assumes the gravitating bodies are

in circular orbits and the rotating frame is centered either at one of the bodies or at

the collective center of mass. Increasing fidelity, the bodies could also be in elliptical

orbits [69]. Hill’s approximation [70] is classically a simplification of the CR3BP,

where motion near either the primary or secondary body is perturbed by the other

body. Hill’s approximation models lunar and solar tides.

After the dynamical model is defined, the state of the spacecraft is repre-

sented with either Cartesian, polar, or spherical coordinates, as well as classical or

modified equinoctial orbital elements. The rectangular Cartesian coordinates are

the simplest to understand and do not suffer from singularities. Cartesian coor-

dinates are used in this current thesis work. Polar and spherical coordinates are

slightly more complicated relative to Cartesian coordinates, but more natural for

circular motion about a body. For the classical orbital elements, five are straight-

forward descriptions of the size, shape, and orientation of a spacecraft’s orbit. The

sixth element places the spacecraft on the orbit. One drawback with classical orbital
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elements is they suffer from singularities at eccentricity or inclination equal to zero

[see Lagrange’s planetary equations ([71], sec. 12.3.3) or Gauss’ variational equa-

tions ([71], sec. 12.3.5)]. The modified equinoctial orbital elements ([72]; [73], sec.

6.3.1) solve this orbital element singularity, allowing for an orbit with eccentricity

or inclination equal to zero, but trade some physical intuition with respect to the

classical orbital element set.

The control for spacecraft trajectories is thrust from an engine, either for

translational or rotational motion. The thrusting maneuvers are for short or long

time spans and modeled as continuous or discrete. Classically, short duration ma-

neuvers relative to the total flight time of a transfer are modeled approximately as

instantaneous. In the two-body problem, long Keplerian coasting legs are bounded

by these instantaneous impulsive maneuvers, tying a solution together to be posi-

tion and velocity continuous. Some well-known optimal orbit transfers include the

Hohmann transfer ([74], pp. 529–530; [75], ch. IV, pp. 76–89) and the bi-elliptic

Hohmann transfer ([76], sec. 6.4, pp. 264–268). Impulsive maneuvers can also

be generated by gravity-assists in a particular two-body system. For example, in

the Solar System or the moon system of Jupiter or Saturn, the orbiting bodies

supply a gravity assist by losing (or gaining) a negligible amount of momentum

to speed up (or slow down) a spacecraft. The Sims-Flanagan model [77] was first

to use many sequential impulsive maneuvers and short coasting segments to model

approximate low-thrust. In this thesis work, the EBVP technique is inspired by

this Sims-Flanagan model. Instead of using many solutions to Kepler’s problem to

represent the segments in between impulsive maneuvers, many solutions to Lam-

bert’s problem are used. This discrete, simple model for low-thrust approximates

the continuous-thrust equivalent, similar to how a Riemann sum is approximately
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equivalent to integration. If the control is not discrete, a continuous control law is

used instead to smoothly change the state of a spacecraft on an orbit. The form of

the control law can be optimal or sub-optimal, depending on the dynamics, and a

function of thrust constraints.

1.1.3 Formal Problem Statement

After the trajectory model is defined, the formal problem statement, or optimal

control problem, is defined. The goal is to determine the state x(t) and control u(t)

history to minimize (or maximize) a cost, subject to the constraints (dynamical,

path, and boundary). The cost function is otherwise known as an objective function,

a merit function, or a performance index.

In general, the cost J is

J = Φf (tf , xf ) +

∫ tf

t0

L(t, x(t),u(t))dt

where the final cost Φf is a function of the final time tf and the final state xf =

xf (tf ). The variable L is the integrand of the cost or Lagrangian. The cost J is

subject to the ordinary differential equations, or equations of motion, f as

ẋ(t) = f(t, x(t),u(t))

where ẋ(t) is the time-derivative of x(t); the initial and final boundary conditions,

respectively,

Ψ0 = 0

Ψf = 0
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and the path constraints

cmin ≤ c(t, x(t),u(t)) ≤ cmax

where c(t, x(t),u(t)) is some function bounded by cmin and cmax. For equality con-

straints, cmin = cmax, and for inequality constraints, cmin < cmax.

A vector cost function J, also known as a multi-cost function, also exists

to explore a space with two or more competing values, known as Pareto optimal

solutions [78]. For example, if both the minimization of flight time and fuel is

desirable, then many point solutions can be found with various flight times and fuel

expenditures. The Pareto front of this solution space is the set of solutions where

neither cost can improve without penalizing the other. The thesis work only looks at

single-objective minimization of fuel and energy (see Chapters 3 and 4), and thrust-

acceleration (see Chapter 5). Generally, the problems are unconstrained, where state

continuity is embedded by design through use of many Lambert problems that reuse

terminal position vectors. Though, for a few problems, a total flight-time constraint

is included.

1.1.4 Solution

The solution phase is complex with many different approaches available. Influenced

by the trajectory model and problem statement, the solution process can be catego-

rized as either deterministic or stochastic. Deterministic approaches use predictable,

gradient-based solutions to find an optimal or nearly-optimal solution. Stochastic

approaches use random processes, typically without gradient information, to select,

modify, and improve candidate solutions. A third approach is a hybrid between the

two, where a stochastic algorithm might explore a global space, while the determinis-
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tic algorithm refines a solution found in that space. The deterministic categorization

can be further divided into analytical or numerical, and a more granular stochas-

tic categorization is dependent on the particular technique. Both approaches are

discussed next in further detail.

Deterministic

Deterministic analytical solutions typically trade fidelity for computational speed.

After the initial derivation, which can be complicated, analytical solutions are known

in closed-form without the need for numerical integration. However, analytical so-

lutions are typically based on a set of restrictive assumptions, making them less

general and only applicable to certain scenarios. Nevertheless, analytical solutions

provide fundamental insight to a problem. For example, the early work of Edelbuam

[45] in 1961 explored the space of impulsive-maneuver cost for different orbital ele-

ment changes, assuming circular and quasi-circular orbits in the two-body problem.

The classic Hohmann transfer ([74], pp. 529–530; [75], ch. IV, pp. 76–89) of the

two-body problem is an analytical solution, solving for the optimal transfer between

circular and co-planar orbits. Analytical solutions can also reformulate a problem

such that the independent variable requires no iterative routine, improving speed.

For example, if the independent variable is true anomaly ([79], eq. 2.5-1 and 2.5-4)

or eccentric/hyperbolic anomaly ([71], the two-body problem has a closed-form solu-

tion. If the independent variable is time, an iterative root-solve must be performed,

such as Kepler’s problem ([79], ch. 4) or Lambert’s (or Gauss) problem ([79], ch. 5).

The optimal control problems in this thesis work use many solutions to Lambert’s

problem, where recently a nearly closed-form Lambert solution exists [16, 17, 18],

circumventing the need for a root-solve.
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Numerical solutions are more general, robust to complexity, and often neces-

sary if no closed-form solution exists. The optimal control problem must minimize a

numerical approximation to the cost via discretized state and control that is subject

to dynamics and constraints. This discrete representation is the NLP problem and

the first-order optimality conditions of the NLP problem are known as the KKT

[58, 59] conditions.

The optimal control problem can either be solved directly (direct method)

by minimizing a cost and enforcing constraints with the NLP problem, or indirectly

(indirect method) by forming an equivalent system that augments the cost with

Lagrange multipliers to enforce constraints. This equivalent system of the indirect

method is a two-point boundary value problem that enforces the necessary condi-

tions from the first differential of the augmented cost. The necessary conditions are

satisfied if the optimal control law minimizes the Hamiltonian, the Euler-Lagrange

equations govern the time dependence of the Lagrange multipliers (or co-states),

and the transversality conditions (boundary conditions) are met for the initial and

final values of the Lagrange multipliers.

Direct solutions are often seen as more robust but with many more decision

variables. Indirect solutions usually have fewer decision variables, but trade for in-

creased sensitivity and co-states that are non-intuitive or non-physical. These direct

and indirect approaches are usually coupled to one of two propagation methods: a

shooting method [80] or collocation [81]. The shooting method integrates the state

and control forward in time and continuity is enforced with an optimizer. A collo-

cation method represents the state and control with sets of basis functions, where

continuity of the state and control is typically embedded but dynamical feasibility

must be enforced by an optimizer.
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A third propagation approach for a direct method that connects the state and

control to a cost function is the EBVP technique, the crux of this thesis work. The

EBVP technique discretizes a trajectory with many solutions to EBVPs—namely

Lambert’s problem for two-body dynamics, is always state and control continu-

ous, and is always dynamically feasible. The corresponding NLP can be conve-

niently solved with an unconstrained optimizer. A fourth qualitatively different

approach is differential dynamics programming [64, 65, 66, 67], a method that relies

on the Hamilton-Jacobi-Bellman equation ([82], sec. 7.2) to successively minimize

quadratic approximations of the problem, sweeping forward to compute cost and

partial derivatives and backward to generate a new control sequence.

Stochastic

Stochastic or heuristic approaches generate solutions by simulating improvement

found in nature coupled with a random process. All stochastic approaches must

define the state of the system with a discrete set of parameters. This discrete set can

represent smooth and continuous behavior. Some examples of stochastic approaches

follow: (1) A genetic algorithm mimics evolutionary changes for a sample population.

A fitness function is defined and solutions with good genes breed and pass on their

traits with random mutations mixed in. (2) Simulated annealing [83] comes from

annealing in metallurgy. At each step, the current state and a random neighboring

state is compared, randomly choosing whether or not to move. The move does not

necessarily improve the solution to enable bin hoping and thus exploration of the

global space. (3) Particle swarm optimization [84, 85, 86] mimics the flight of birds.

A set of particles or states are randomly dispersed in the state space. On each

iteration, each particle advances as a function of a weighted average between three
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values: (i) the current velocity of the particle, (ii) its own personal best solution, and

(iii) the best solution of the population. There are many more stochastic approaches

[87, 88, 89] available for the interested reader.

1.2 Outline

The dissertation is organized as follows. The introduction broadly covers the struc-

ture of spacecraft trajectory optimization problems, with an emphasis on the new

EBVP technique. In Section 1.1, the spacecraft trajectory optimization discus-

sion divides the solution process into three main steps: defining a trajectory model

(Section 1.1.2), formalizing the problem statement in terms of a cost function and

constraints (Section 1.1.3), and finally solving the problem with the many possible

approaches, methods, and techniques available (Section 1.1.4). The introduction

also covers this outline and a explicit summary of contributions in Section 1.2 and

Section 1.3, respectively. The descriptions of the chapters are brief, emphasizing

organizational structure and leaving the details of the contributions to Section 1.3

and their respective chapters.

After the introduction, the discretization for the spacecraft trajectory mod-

els, used throughout this work, is covered in Chapter 2. While short, the chapter is

important for clarity. Chapter 3 presents the new direct EBVP technique, rooted

in legacy literature, for preliminary low-fidelity spacecraft trajectory optimization

in the two-body problem. Chapter 4 presents a piecewise function to automatically

vary flight time for each of the segments of the trajectory model. The previous

Chapter 3 uses the simple solution of equal flight time per segment, limiting ap-

plication to transfers that do not significantly change orbital elements. Chapter 5

solves a multi-revolution, low-thrust optimal control problem that minimizes thrust-
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acceleration-squared. The solution approach maps from a direct, discrete, coast-

impulse solution to its indirect, continuous, finite-thrust equivalent. The EBVP

technique is one source of the optimal direct solution, but the mapping of Chap-

ter 5 does not depend on the EBVP technique. The conclusions are in Chapter 6,

summarizing the historical significance, derivation, and application of the EBVP

technique.

1.3 Summary of Contributions

The major contributions to the spacecraft trajectory optimization field are sum-

marized in this section. The contributions span the performance and feasibility

of the EBVP technique, improvements to trajectory discretization, and a mapping

procedure from a direct to indirect method.

• Chapter 3: The main contribution of this body of work is the improvement

and demonstration of the EBVP technique for low-fidelity spacecraft trajec-

tory optimization problems. The EBVP technique uses many solutions to

Lambert’s problem per trajectory, similar to the Sims-Flanagan model which

uses many solutions to Kepler’s problem. The EBVP technique is shown to

be fast and robust. Many trajectory optimization problems use solutions to

boundary value problems, but this dissertation research extends the EBVP

technique to use up to thousands of solutions per trajectory for an optimal

control problem.

• Chapter 3: A comparison of “the many-segment method” vs. “the fewer-

segment method” for high-thrust impulsive-maneuver trajectory optimization.

As the names imply, the fewer-segment method uses only as many segments as
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needed and the many-segment method uses too many intentionally-short seg-

ments. The many-segment method demonstrates utility in finding a solution

without knowing optimal structure.

• Chapter 4: The piecewise Sundman transformation (PST) is defined and ap-

plied to spacecraft trajectory propagation and optimization in the two-body

problem. Importantly, this application of the PST is shown to bestow regu-

larization benefits without modification to the dynamics.

• Chapter 4: The PST enables a comparison to the state-of-the-art Sims-Flan-

agan model. The EBVP technique, using PST flight time functions, is faster af-

ter 72 short segments per a numerical experiment. High segment counts can be

used for trajectories with lower-resolution thrust profiles but with more revolu-

tions, or higher-resolution thrust profiles with less revolutions. Some two-body

examples of lower-rev solutions include gravity-assist problems in the Solar,

Saturn, or Jupiter systems; as well as rendezvous and sample-return asteroid

missions. These lower-rev examples can use high- or low-thrust. Examples of

higher-rev solutions include orbit transfers around a singular gravitating body,

such as a transfer from low-Earth orbit to geosynchronous orbit.

• Chapter 4: The PST also enables transfers that significantly change semimajor

axis and eccentricity. These transfers use an exponent of 3/2 for the PST to

ensure spatially even segments, i.e. approximate equal changes in eccentric

anomaly per segment.

• Chapter 5: Many-rev, low-thrust optimal control problems are solved via a

simple mapping procedure that uses primer vector theory and Lambert’s prob-

lem. The mapping connects the direct and indirect solution methods for a
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class of trajectory optimization problems that minimize thrust-acceleration-

squared. The direct method is discrete, using the coast-impulse model, and

the indirect method uses continuous finite thrust. Importantly, the mapping

is indifferent to the source of the direct model, though the EBVP technique

is used. The mapping is enabled by the thrusting vectors and the co-states

sharing the same linear space around the optimal solution.

• Chapter 5: A cost function is derived and demonstrated that approximates

the finite sum of thrust-acceleration-squared. This finite sum is not the same

as the well-known finite sum for energy, otherwise known as the sum of the

square of impulsive maneuvers.

• Chapter 5: The last contribution is the optimization of low-thrust transfers

with up to 500 revolutions in Cartesian coordinates; similar problems typi-

cally use orbital elements. The multi-shooting solution method, coupled to

the direct-to-indirect mapping procedure, is applied to three transfers that

significantly change semimajor axis, eccentricity, and inclination.

18



Chapter 2

Spacecraft Trajectory Model

Discretization

In this thesis work, the spacecraft trajectories are simply modeled using Keplerian

two-body dynamics. Chapters 3 to 5 all use a “direct trajectory model”, discretizing

the trajectory into many short segments bounded by nodes. Chapter 5 groups these

segments into sets of legs, forming an “indirect trajectory model”. These names are

often shortened to “direct model” and “indirect model”, respectively. The direct

trajectory model is more generally known as the coast-impulse model, where the

segments are coasting arcs and the impulsive maneuvers are at the nodes.

The direct trajectory model takes the transcription form of an initial value

problem (IVP) or an EBVP technique. The IVP technique uses a forward-shooting

method coupled to a Kepler solver for many sequential segments and impulsive ma-

neuvers. If the segments use a solution to a Lambert problem instead, the transcrip-

tion is known as the EBVP technique. Recently, Lambert’s problem is completely

solved with a practically closed-form solution [16, 17, 18]. This Lambert solution

is leveraged to benefit performance of the optimal control problems in this body of

work.
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Fig. 2.1 represents a sub-section of the overall direct trajectory model with

and without impulsive maneuvers (bottom and top, respectively), otherwise known

as controlled and uncontrolled. The following state values at each node i are known:

the values of time, position, velocity, acceleration, and mass. The impulsive maneu-

vers, ∆vi, serve as the low-fidelity thrusting control. This particular portion of a

trajectory is discretized into three nodes and two segments. The entire trajectory

is numbered sequentially with n − 1 segments or n nodes. Segments (i − 1)i or

i(i + 1) have a start and end denoted by i − 1 to i or i to i + 1, respectively. The

segment subscripts should be read left to right for the forward direction in time.

Node i has a before and after denoted as i− and i+ as a subscript, respectively.

Put together, segment (i − 1)i is from node (i − 1)+ to i− and segment i(i + 1) is

from node i+ to (i+1)−. Moreover, since position is assumed continuous at node i,

Figure 2.1: Two representative portions of a spacecraft trajectory are both dis-
cretized into two segments and three nodes. ra(t) (top) and rb(t) (middle) visualize
an uncontrolled and controlled trajectory, respectively. The impulsive maneuvers
for the control of rb(t) are the blue, upwards-pointing arrows. The axis (bottom),
from left to right, points forward in time and illuminates the variable flight times,
∆t(i−1)i and ∆ti(i+1).
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the position is denoted by ri = ri− = ri+. The value ri is simultaneously the

final position of the previous segment (i − 1)i and the initial position of the next

segment i(i+ 1). Likewise, two-body acceleration is continuous because it is only a

function of position and system constants: ai = ai− = ai+. In contrast, the velocity

can discontinuously change at node i due to an impulsive maneuver, written as

vi− + ∆vi = vi+. Finally, node n differs for the EBVP and IVP technique in this

thesis work. The EBVP technique does not need to enforce position or velocity

continuity anywhere by design, but the IVP technique does. Node n of the IVP

technique is not position or velocity continuous at the final state unless enforced

through an optimizer. More details on the IVP technique are reserved for example

2 of Section 4.4.2 where it is used.

The illustration in Fig. 2.2 is a position update of a section of the direct tra-

jectory model. Consider the independent position ri, the primary decision variable

of this model, shown in Fig. 2.2, and the dependent velocities: v(i−1)+,vi−, vi+, and

v(i+1)−. Fig. 2.2 shows the effect of the position update on the velocity vectors of

node i. The plain and new superscript � and �new is the previous and updated

position or velocity, respectively. The solid lines —, the dashed lines - -, and the

dotted lines · · · , are the previous trajectory, the updated trajectory, and the dif-

ferentials between the previous and updated trajectories, respectively. The velocity

vectors are visually consistent in both the left and right sub-figures of Fig. 2.2.

The next discretization explanation is for Chapter 5, where a mapping is

described and analyzed from a direct model, such as the EBVP technique in Chap-

ters 3 and 4, to an indirect model. Importantly, though, the mapping in Chapter 5

is indifferent to the technique of the direct model. An IVP technique could be used.

Thus, the direct and indirect trajectory models of Chapter 5 are distinguished by
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Figure 2.2: Position ri differential for node i and its effect on the neighboring dif-
ferentials of velocity (left side) as well as impulsive maneuvers (right side).

the subscripts D and I, respectively. The direct model is still assumed to be dis-

cretized into n− 1 segments and n nodes, and the indirect model is discretized into

m − 1 legs and 2m − 1 nodes. The direct model nodes can be “continuation” or

“decision state” nodes, where continuity is enforced at continuation nodes and an

optimizer updates the state and control at decision-state nodes. Likewise, indirect

nodes are categorized into m continuation nodes and m − 1 decision-state nodes,

so 2m − 1 in total. Each direct node is associated with a time, precisely notated

by ti,D, where i ∈ [1, n]. For the indirect model, each continuation or decision-state

node is associated with a time tj,I or time tk,I, respectively, where j ∈ [1,m] and

k ∈ [1,m − 1]. For convenience, each indirect leg represents a group of direct seg-

ments with no overlap for a single- or multi-shooting method. Similar to segments

of the direct model, legs are defined by their nodes. For example, leg j(j + 1) is

from continuation node j to j + 1 with a decision node k somewhere in between,

such that tj,I ≤ tk,I ≤ tj+1,I. Accordingly, if relevant, a variable at ti,D, tj,I, or
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tk,I is augmented by the subscripts i, j, or k. Likewise, if a variable is from ti,D

to ti+1,D or tj,I to tj+1,I, then the subscripts i(i + 1) or j(j + 1), respectively, are

used. If a variable does not include an index, i, j, or k, continuous time should be

assumed instead of a discrete time associated with a node. For convenience, Fig. 2.3

shows both the direct model (left) [also shown in more detail in Figs. 2.1 and 2.2]

and indirect model (right) for position vs. time. Notice the index labeling of the

nodes, segments, and legs. The right side of Fig. 2.3 shows both types of nodes,

emphasizing the discontinuity at continuity node j that must be eliminated by an

optimizer. This right subfigure shows two legs for a multi-shooting method, but a

single-shooting method would only need one leg.

Figure 2.3: Visualization of the position discretization of a spacecraft trajectory for
both the direct model (left) and indirect model (right).
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Chapter 3

Unconstrained Direct Optimization of

Spacecraft Trajectories Using Many

Embedded Lambert Problems

3.1 Introduction

Spacecraft trajectory optimization is formulated in terms of models, objectives, ap-

proaches, and solution methods conveniently defined by Shirazi et al.[61]. The nu-

merical approach considered here is a technique that uses a sequence of embedded

boundary value problems (EBVPs), primarily Lambert’s problem, to discretize a

trajectory into many segments. Position continuity is implicitly enforced by reusing

terminal positions between neighboring EBVPs, while velocity continuity is pro-

vided through the addition of an impulsive ∆v maneuver. The advancement of

this EBVP technique to include up to thousands of segments for lower-fidelity, pre-

liminary spacecraft trajectory optimization is the main contribution of this current

work. The implementation of the EBVP technique is simple, using a two-body

model, unconstrained optimization, and a Cartesian coordinate frame. Advancing
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the performance and utility of simpler techniques common in practice facilitates

design. Moreover, the implementation of this EBVP technique uses many short-arc

segments, a defining and differentiating characteristic. For a specified direction of

motion, short segments ensure a unique and smoothly varying solution to the EBVPs

for all transfer angles between 0 and 180◦. For transfer angles at the bounds of 0

and 180◦, solutions encounter singularities; and for angles greater than 360◦, the

solutions may not exist or have up to two solutions. Furthermore, for high-thrust

modeling, using many short segments also helps model minimum fuel solutions with-

out having to guess the number of impulsive ∆v maneuvers or switching structure

if constraints on the thrust are considered. For low-thrust modeling, using many

short segments with many impulsive ∆v maneuvers helps model minimum energy

solutions, analogous to the Sims-Flanagan model[90] proposed in 1999.

Lower-fidelity, impulsive ∆v maneuver models are fast, robust, and useful,

particularly when implemented with an EBVP technique. The motivation of this

current work is to supplement, not replace, existing techniques for higher-fidelity

spacecraft trajectory optimization, such as multi-shooting [91, 92], collocation [57],

or differential dynamic programming [64, 65, 66, 93]. Additionally, other parame-

terizations exist that can enhance the EBVP technique further such as cylindrical

or spherical coordinates. Cartesian coordinates are used in this current work for

simplicity and to help mitigate singularities. Orbital elements are useful too, of-

ten necessary, for many-revolution (many-rev) solutions, particularly when coupled

with orbital averaging techniques [94, 95, 96, 97, 98]. The EBVP technique de-

scribed here is an alternative, direct, unaveraged approach that can be scaled up

to a few hundred revolutions. This scalability represents a significant improvement

over existing direct unaveraged methods, where the curse of dimensionality typically
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limits such methods to a maximum of a few dozen revs at best. Furthermore, these

simple models for two-body dynamics, patched by impulsive ∆v maneuvers, can

be tied together in phases to serve as an initial guess for higher-fidelity problems

[99, 100, 101, 102, 103, 104].

The enabling technology for successfully scaling up the number of segments

for this technique is a predictably fast, provably reliable solution to the EBVPs. For

two-body dynamics, if the flight time is short and the angular displacement of the

transfer is less than a half-revolution, then the classic Lambert problem solution is

guaranteed to have a unique solution. While many fast Lambert solvers exist, the

current approach uses a recently developed interpolation method with a fixed single

iteration for the full domain of interest, is faster than all published approaches, and

is provided with cheap to compute, analytic expressions for the first-order partial

derivatives (partials), necessary for gradient-based optimization [16, 105]. Using

the EBVP technique for optimization problems with a large number of segments

has typically been avoided in the past because of a steep computational cost and

robustness issues. An EBVP for general dynamics requires a numerical iterative

routine to enforce either: dynamical constraints for collocation (see Conway’s [60]

or Jones and Anderson’s [106] surveys), or position continuity for shooting methods

[99, 107]. Successful optimization of the overall trajectory of many segments is

reliant on successful solutions to the EBVPs for every segment at every optimization

iteration. The numerical solutions to many EBVPs at every optimization iteration

are computationally intractable if the EBVP solutions are not guaranteed to exist,

convergence is unstable (see Ch. 3-5 of [108]), or if there is an unpredictable number

of iterations.

Historically, the EBVP numerical technique was first used within an indirect
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method, also known as primer vector theory, by Lion and Handelsman [109] or

Jezewski [110, 111, 112] in 1968-1980, or used in a direct [56] method by D’Amario

[113, 114] in 1979 and 1981. D’Amario’s work [113, 114] did not explicitly mention

primer vector theory. Both methods optimize with positions and times only in

two-body problems that include realistic considerations. For example, Jezewski’s

work in [110] included an Apollo application for a rendezvous problem with a large

plane change and D’Amario’s work in [114] included optimized Galileo satellite tours

containing up to eleven flybys. Today, primer vector theory coupled to EBVPs is

routinely performed. Often the problems include on the order of dozens of EBVP

segments. For a two-body problem that uses the Lambert problem, Landau [115] in

2018 developed an efficient maneuver algorithm to minimize the maneuver design

space for many-rev problems using primer vector theory. The presented examples

include: Jovian and Saturn moon tours that minimize ∆v and time, as well as a

broken plane transfer from Earth to Mars. In particular for these problems, the

highest segment count was for the two Saturn tours, containing 54 and 36 flybys

for the minimum ∆v and time solutions, respectively. For both tours, impulsive

∆v maneuvers are efficiently included between flybys, per primer vector theory,

so the number of conic arcs is slightly more than 54 and 36, respectively. For

three-body problems, some examples include: the work by Davis et al. [116] in

2011 or Bokelmann and Russell [117] in 2019 using at most four and five segments,

respectively, in the circular restricted three-body problem; and the work by Hiday-

Johnston and Howell [118] in 1994 using at most three segments in the elliptical

restricted three-body problem [69].

Other examples that do not use primer vector theory but use EBVPs in-

clude: (i) The optimization work of Marchand et al. [119] in 2007 using about a
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dozen segments for an n-body to ephemeris model to find ballistic or near-ballistic

solutions for approximate periodic orbits. (ii) In 2008, Di Lizia et al. [120] used

a differential algebraic technique to expand a two-point BVP solution in different

dynamical systems using higher-order Taylor polynomials. (iii) And, in the case of

multiple gravity-assist trajectories, a preliminary design can tie together flyby en-

counters with solutions to Lambert’s problem. Some well-known historical missions

are well-modeled this way: Voyager 1 and 2 [19], launched in 1977 to study the outer

solar system; Galileo [121], launched in 1989 as the first spacecraft to orbit Jupiter;

Cassini-Huygens [122, 123, 124] in 2004–2017, studying Saturn and its moons; and

more recently, MESSENGER [27] in 2004–2015, studying Mercury. Among these

missions, MESSENGER’s flight plan contained the most interplanetary gravity as-

sists. MESSENGER’s flight plan from (E)arth to (M)ercury includes (V)enus and is

compactly written from start to finish as EEVVMMMM with five major deep space

maneuvers. Galileo’s moon tour nominally contained ten revs, using moon flybys to

minimize fuel. Ultimately, 34 revs were achieved. Cassini-Huygens’ moon tour had

293 revs total, but in three sequential stages. The primary mission included 75 revs,

and the two mission extensions included, in order, 64 and 154 revs, both designed

in sequential phases [125, 126] that are driven by science objectives. Each phase

contained on the order of dozens of flybys. Finally, set for a launch in 2024, the

Europa Clipper mission [127] will contain 45 Europa, 5 Ganymede, and 9 Callisto

flybys over the course of 3.5 years. The mission will contain five distinct phases for

full coverage of Europa.

Some theoretical, many-rev examples using many Lambert solutions are as

follows: (i) In 2006, the ephemeris model, Mars cycler problem is solved in Ref. [128],

where up to 49 Lambert segments are simultaneously optimized. (ii) Izzo et al. [129]
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in 2007 described a heuristic global optimization algorithm to search among tens of

thousands of solutions for interplanetary problems where the final test cases are on

the order of several segments. (iii) Abdelkhalik and Mortari’s [130] work in 2007 used

a Sims-Flanagan model and one Lambert solution for the last segment. (iv) Vasile et

al. [131] in 2008 worked on globally optimized, gravity-assisted, two-body problems,

defining D’Amario’s technique as a ‘position formulation’. The presented problems

had a few to several segments. (v) In 2014, the Jovian moon tour design by Lynam

[132] contains two Lambert calls, but searches a large parameter space [133] to align

Callisto, Ganymede, and Io for a Jovian orbit capture. Thus, the state of the art and

practice for many-rev, interplanetary and moon tour design is to use on the order of

dozens of segments separated by impulsive ∆v maneuvers and gravity-assists. For

larger many-rev problems, trajectories are sequentially stitched together in phases,

and the resultant ten to hundreds of segments are not simultaneously optimized

[126]. This current work demonstrates the simultaneous optimization of a many-rev

solution with thousands of segments.

The EBVP technique also shares important characteristics with other meth-

ods within spacecraft trajectory optimization field. In this current work, position

continuity is implicitly enforced when using many Lambert solutions. Interpolation

can also embed position continuity, among other constraints, as shown by Mortari

[134] in 2017. This ‘Theory of Connections’ interpolation approach was applied

to an energy optimal spacecraft guidance problem by Furfaro and Mortari [135] in

2020. More generally, collocation embeds constraints at the expense of relaxing oth-

ers. For collocation, dynamics are treated as constraints and state continuity can

be embedded, such as position continuity. Each iteration of a collocation method is

then position continuous but not necessarily dynamically feasible until convergence.
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Shooting methods contrast with collocation in that shooting methods are always

dynamically feasible, but not necessarily position continuous until convergence.

Shape-based methods are similar to the EBVP technique as well. Shape-

based methods produce an independent path and a dependent control to satisfy

this path. For this current work, the trajectory–as a collection of segments, shares

this similar characteristic. The impulsive ∆v maneuvers are dependent on the in-

dependent nodes which define the path. Many functions exist to shape a spacecraft

trajectory including: a logarithmic spiral [136] (the first shape-based method), a

Fourier series [137, 138, 139], a six-coefficient inverted polynomial[140], an exponen-

tial sinusoid [141, 142], a three-dimensional spherical shaping method [143] using

an inverted polynomial and sinusoids, a family of generalized logarithmic spirals

[144], linear plus sinusoid and exponential shaping for pseudoequinoctial elements

[145], and more [146]. The coefficients of these shape-based functions are optimized

to satisfy boundary conditions, and minimize a cost function for the trajectory.

Whereas in this current work, the positions of the EBVP technique are directly op-

timized. This inverted dependency is also known as ‘inverse dynamics’ in robotics

[147], spacecraft attitude dynamics [148], and flight dynamics [149, 150], to name a

few examples.

As mentioned, the enabling EBVP solver for this current work is the Lambert

EBVP solver [16] (ivLam [see Table 3.1]) that includes fast and accurate partials

by the second author. Some other Lambert problem solvers include Battin’s [151],

Gooding’s [152], Izzo’s [153], or Arora and Russell’s [154]. Russell’s Lambert solver

is ideal for the current application because the solution has a fixed single iteration,

leading to predictable runtimes and simplified partials. The other EBVP solvers con-

sidered in the present work are simple Newton-Rhapson shooting methods (rk7sh
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and rk78sh [see Table 3.1]), notably requiring iterations to keep position continuous

during optimization. The rk78sh EBVP solver uses a variable-step, 7(8)th order,

Runge-Kutta integrator while the rk7sh EBVP solver uses a fixed-step, 7th order,

Runge-Kutta integrator. The variable-step rk78sh enables modeling of perturbed

two-body dynamics, but comes at the expense of much slower runtimes. This com-

pute cost simultaneously serves as a reference on performance degradation that has

historically prevented the widespread adoption of the EBVP technique for problems

with more than a few dozen segments. Each integrated EBVP solver (rk7sh or

rk78sh) requires the computation of the variational state transition matrix (STM)

to root-solve on the initial velocity in a shooting method. Thus, for the ordinary dif-

ferential equation (ODE) system of rk7sh or rk78sh, the propagated state is length

6 and the variational STM is an additional 36 components. On the other hand,

Lambert solvers root-solve a single scalar equation, and notably for ivLam, only a

fixed single iteration is needed, practically leading to a closed-form solution.

Table 3.1: Overview of embedded boundary value problem solvers.
# of Iter. # of Dim. of

Name Description Dynamics Variables Iterations ODE Sys.

rk78sh Runge-Kutta 7(8), Variable-Step, General 3 Varies 6 + 36
First-Order Shooting Method

rk7sh Runge-Kutta 7, Fixed-Step, General 3 Varies 6 + 36
First-Order Shooting Method

ivLam Interpolated, Practically Two-Body 1a 1a n/a
Closed-Form Lambert Solver [16]

aTypical Lambert BVP solvers iterate on one variable, and notably, Gooding’s[152] method
uses three fixed iterations.

Overall, the current work presents the successful advancement of the EBVP

technique to include up to several thousand segments, scoped for two-body space-

craft trajectory problems. Furthermore, the transfers in the current study are re-
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stricted to low eccentricity. Previous work by the authors used many EBVPs with a

constrained optimizer for a proof-of-concept [155], then another work demonstrated

regularizing time-of-flight functions, termed the piecewise-constant Sundman trans-

formation [156] that is especially useful for more eccentric trajectory design. In

other words, low eccentricity transfers are only presented within this current work

for simplicity, not because of a limitation inherent to the EBVP technique.

The chapter is outlined as follows. In Section 4.1, the EBVP technique as

it relates to legacy literature was just described. In Section 3.2, an optimal control

problem is formulated for fuel and energy optimal spacecraft trajectories modeled

with impulsive ∆v maneuvers. In Section 3.3, the trajectory discretization of using

many short segments is described and termed the many-segment method. Solutions

using the many-segment method are described, relative and equivalent to, solutions

with fewer segments. The many-segment method is one utility justification for

scaling up the EBVP technique. In Section 3.4, the numerical performance of an

unconstrained optimization algorithm using EBVPs is demonstrated and analyzed.

The examples minimize fuel or energy for local solutions of fixed-state to fixed-state,

or orbit-to-orbit scenarios. In Section 4.5, the many-segment EBVP technique is

summarized. Finally in Section 3.6, the appendix includes an algorithm for the

optimizer, an algorithm for the search direction, and a discussion on partials for the

EBVP technique.

3.2 Problem Formulation

The overview of the problem is
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minimize
∆vi(xd)

cost function J = k
n∑

i=1
∆vi + (1− k)

n∑
i=1

1
2∆v2i

a

subject to dynamics a = − µ
r3

r b

boundary conditions x1− = x1−,s, xn+ = xn+,s
c

x1− = x1−,s(t̃1−), xn+ = xn+,s(t̃n+)
d

path constraints ∆ri = ri+ − ri− = 0 e

afuel plus energy | btwo-body | cfixed-state to fixed-state | dorbit to orbit | eposition continuity

In this section, the formulation of an optimal control problem for uncon-

strained spacecraft trajectory optimization using many EBVPs is described in detail.

The cost function of the optimal control problem minimizes fuel or energy shown

in Eq. (3.1), predominately using time and position decision variables as shown in

Eq. (4.13). The dynamics are two-body for simplicity, though perturbations are fea-

sible to employ. The state x is length six containing Cartesian position and velocity

shown in Eq. (3.2). The boundary conditions for the trajectory using n nodes or

n − 1 segments goes from a fixed-state to fixed-state or orbit-to-orbit. The fixed-

state can be implemented as a fixed-point on an orbit. The path constraint, position

continuity, is not explicitly enforced by the optimizer, but by design through the

use of EBVPs. Finally, mass continuity and approximate thrust are computed after

optimality because the cost is a function of neither.

The cost function J is

J = k
n∑

i=1

∆vi + (1− k)
n∑

i=1

1

2
∆v2i (3.1)

where ∆vi is the magnitude of an impulsive ∆v maneuver at node i, and k is a

homotopy variable between 0 and 1 to emulate minimum fuel (k = 1), minimum

energy (k = 0), or a combination of the two (0 < k < 1). The impulsive ∆v maneu-

vers and their magnitudes at node i are notated as ∆vi and ∆vi, respectively. For
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k = 1, minimizing impulsive ∆v maneuver magnitudes connects to minimizing fuel

through the rocket equation shown in Eq. (3.4). For k = 0, minimum energy implies

minimizing incremental kinetic energy. Strictly speaking, the solution process does

not need to vary k to find a solution. However, a homotopy can be performed, for

example, on a minimum energy solution to transform it to a minimum fuel solution

in the same neighborhood (see example 1.g.). Of note, k = 0.5 does not necessarily

equally weight the fuel and energy components of Eq. (3.1). A good choice of k is

problem dependent, where the goal is to weight both the fuel and energy summation

terms of Eq. (3.1), to be the same approximate order of magnitude. Furthermore,

for emphasis and elaborated on next, the optimal solutions generated by minimizing

the impulsive ∆v maneuvers in Eq. (3.1) are independent of the particular rocket

engine characteristics because they are only functions of position and time. The

thrust and mass histories defined later by Eqs. (3.4) and (3.5) that are dependent

on a rocket engine are computed after optimality.

The magnitudes of the impulsive ∆vi maneuvers are a function of their vector

form written within the cost function as J = J(∆v1 (∆v1) , · · · ,∆vn (∆vn)). The

impulsive ∆vi maneuver is a function of the individual velocities before vi− and

after vi+ node i written as ∆vi = vi+ − vi−. These velocities are a function of

position and time, the independent decision variables of Eq. (4.13), shown here

as vi− = vi−(ri−1, ri, t(i−1)+, ti−) and vi+ = vi+(ri, ri+1, ti+, t(i+1)−). In general,

each node i is characterized by the state xi and time-derivative of the state ẋi

shown later in Eq. (3.2). Node i has a before and after (denoted as a subscript

as i− and i+, respectively) for time, position, velocity, acceleration, and mass.

The illustration in Fig. 2.2 shows a representative section of a trajectory with two

segments and three nodes on the left sub-figure and just one node on the right
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sub-figure. For position, it is assumed continuous before and after node i, so the

position is notated ri = ri− = ri+. The velocity can discontinuously change at

node i due to an impulsive ∆v maneuver written as vi− + ∆vi = vi+. For two-

body dynamics, the accelerations before and after node i are dependent only on the

position: ai− = ai− (ri) and ai+ = ai+ (ri), respectively, and since position continuity

is assumed, the acceleration difference is always zero: ∆ai = ai+ − ai− = 0.

The propagated Cartesian state x of this optimal control problem is

x =

[
rT , vT

]T
(3.2)

where r is position and v is velocity. The propagated state of Eq. (3.2) is not neces-

sarily known for all time, but only at the nodes. Moreover, for two-body dynamics,

time t and mass m are not needed in the propagated state of Eq. (3.2). The nonlin-

ear spacecraft dynamics f(x) are equal to the time-derivative of the propagated state

ẋ, i.e. ẋ = f(x) =
[

ṙT , v̇T
]T

=
[

vT , aT
]T where the time-derivative of position

is equal to velocity, ṙ = v, and the time-derivative of velocity is equal to acceleration

or the natural dynamics of the system, v̇ = a = −(µ/r3)r. Note the control does

not show up in the dynamics over each coasting segment. Instead, the dependent

control is included as impulsive ∆v maneuvers. Although not demonstrated here,

perturbations can also be approximated as impulsive ∆v maneuvers[157].

The decision variables are combined into a decision state xd as

xd =

[
t̃1−, t̃n+, ∆t, rT2 , · · · , rTn−1

]T
(3.3)

The time of flight ∆t is included to represent the single, equal propagation time for

every segment to produce time-free problems. The initial t̃1− and final t̃n+ time-
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like decision variables parameterize the initial and final orbits, respectively, for an

orbit-to-orbit transfer. The total time of flight is the multiplication of ∆t times the

number of segments. Additionally, since unconstrained optimization is assumed, a

specific total time of flight can be achieved by removing ∆t as a decision variable

and setting it to a fixed value. The intermediate positions, r2 to rn−1, in between

the initial and final orbit or terminal fixed-states, are position continuous because

ri is used for both the previous and next segments as shown in Fig. 2.2. For the first

and last positions, r1 and rn are either fixed or vary on the initial and final orbits.

In total, there are 3n−3 decision variables: two time-like variables, t̃1− and t̃n+; one

time of flight ∆t variable; and 3(n− 2) position ri variables where n is the number

of nodes. Even though the decision state can be shortened by two for the fixed-state

to fixed-state case and by another one for fixed time of flight, implementation is

easier to simply set the associated partials to zero instead.

Partials of the cost with respect to the decision variables ∂J/∂xd (termed cost

partials) are derived in the Appendix B using the relationship between the differen-

tial of the decision variables and cost. A gradient-based, nonlinear optimizer uses

these cost partials to update the independent decision variables towards optimality.

Finally, mass mi+ and thrust Ti(i+1) histories are defined by Eq. (3.4) and

Eq. (3.5), respectively, and are computed after optimization, i.e. there are no mass

continuity or a thrust inequality constraints enforced by the optimizer. Mass over

a coasting segment is constant, i.e. m(i−1)+ = mi− or mi+ = m(i+1)−. Each mi

is discontinuous because the rocket equation models the change of mass for a ∆vi

in Eq. (3.4) where c is the exhaust velocity. For reference, Curtis [76] presents the

rocket equation in Section 11.5. The Ti(i+1) approximation assumes a short coast for

each segment. The Ti(i+1) magnitude is forward-approximated for segment i(i+ 1)
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from node i+ to (i+ 1)− in Eq. (3.5).

mi+ = mi−e
−∆vi/c (3.4) Ti(i+1) = mi+

∆vi
∆ti(i+1)

(3.5)

3.3 The Many-Segment Method

The spacecraft trajectories optimized within this current work are discretized into

many segments, termed the many-segment method, affecting the resolution of the

state and control. Higher vs. lower resolution is an important trade-off to consider

when solving any direct optimization problem. Typically, the downside of a higher

resolution is more decision variables, leading to a higher iteration count and longer

runtimes. The upside is higher model fidelity and reduced sensitivity to poor initial

guesses for improved robustness. In particular, when using many short segments

for minimum fuel trajectories, a priori knowledge about where or when to apply

impulsive ∆v maneuvers is not required. In other words, a fuel optimal trajectory

can be discretized into many short segments to represent an equivalent trajectory

using fewer longer segments to approximately model the same physical path with

the same total time of flight.

The following is a representative demonstration of finding a minimum fuel

solution using either two or three impulsive ∆v maneuvers (the count is not known

ahead of time) with both methods (many short segments vs. fewer longer segments).

The EBVP technique is used for this optimal control problem, though the many-

segment could use other techniques. The trajectory is time-free and goes from a

circular-orbit to a circular-orbit. Marec in 1979 presented this problem, leading

to the left sub-figure of Fig. 3.1 reproduced from page 272 of Ref. [158]. For this
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transfer, varying relative inclinations and sizes for the initial and final circular or-

bits determines if two or three impulsive ∆v maneuvers are needed at optimality.

Among the options, either a two-impulse generalized Hohmann transfer is needed

(generalized means not necessarily co-planar with the initial or final orbit), a three-

impulse bi-elliptic transfer, or a two-impulse bi-parabolic transfer (a limiting case).

A many-segment approximation can model both two- or three-impulse scenarios by

driving unneeded impulsive ∆v maneuvers to zero, except for a small mass-leak

(see appendix) at optimality. An alternative, approximately equivalent approach,

is to add one segment (or impulse) at a time using Jezewski and Rozendaal’s[110]

n-impulse method, leveraging primer vector theory.

Two example cases from the left sub-figure of Fig. 3.1 are selected (starred):

a 30◦ and 50◦ inclination change for a circular radius ratio of r0/rf = 0.5. The

middle sub-figure of Fig. 3.1 is for the first case and uses 2 nodes (1 segment) and

a 20-node (19 segments) equivalent solution. The right sub-figure of Fig. 3.1 is

for the second case and uses 3 nodes (2 segments) of unequal flight time and the

same 20-node method for an equivalent solution. Conveniently, the 20-node solution

can be used for both the two- or three-impulse optimal solution depending on the

example without a priori information. The histories of the Cartesian positions and

impulsive ∆v maneuvers are shown in Fig. 3.2 for both examples. Notice the 2-

or 3-node Cartesian histories are approximately equivalent to the 20-node solutions,

and the smallest ∆v is equal to approximately the mass-leak of 10−4 for the 20-node

solutions.

The optimal control problems in this current work use a large number of

segments associated with equal flight times. While the number of decision variables

is increased, the following benefits are introduced. First, as previously mentioned,
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the spacecraft trajectories do not need a priori knowledge for the location and num-

ber of impulsive ∆v maneuvers. Using more segments than needed approximately

models the equivalent solution of fewer segments with varying flight times. Direct

or indirect methods can solve for solutions with fewer segments, while the direct

many-segment method drives unneeded nodes or impulsive ∆v maneuvers to zero.

Second, also as previously mentioned but now in more detail, a large number of

nodes (i) allows for short segments with unique solutions guaranteed for all practi-

cal flight times, (ii) enables approximate low-thrust modeling when minimizing the

sum of the square of the impulsive ∆v maneuvers, and (iii) avoids the 0◦ and 180◦

transfer-plane ambiguities associated with the Lambert problem, assuming lower

eccentricity transfers. The EBVP technique struggles when using free time of flight

for each of the many segments because (i) a ballistic spacecraft trajectory composed

of many segments is non-unique, and (ii) the optimizer will cluster the nodes to

exploit small advantages in the cost function. Automatic equal spacing of the flight

time mitigates both issues and reduces the burden on the optimizer that would oth-

erwise have to enforce a spacing with explicit constraints. Third, the many-segment

method is robust and flexible, succeeding for a wide range of resolutions (defined

as nodes or segments per rev), ranging between at least 3 segments to at most,

approximately 100 segments per rev. Though, 6 to 12 segments is usually a safe

minimum and 24 to 48 segments per rev is sufficient for finer thrust fidelity. The

range provides flexibility for many different initial guesses (see examples 1.e and

1.f in Section 3.4.5) where some revolutions can have more segments than others.

While these aforementioned benefits for the many-segment method trade for higher

optimization runtime, this increased runtime is mitigated by straightforward par-

allelization of the optimization algorithm via both the computation of the EBVPs
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and the linear algebra of the search direction. The trade-off of increased size for

unique and robust solutions is thus more palatable.

3.4 Performance Results

The performance of the unconstrained optimizer, termed FMINUNCUT, is pre-

sented, importantly demonstrating the scaling up of the EBVP technique. As the

name implies, the FMINUNCUT optimizer is designed for unconstrained, gradient-

based, locally optimal solutions. Components of FMINUNCUT are explained within

this section and in the appendix. In particular for FMINUNCUT, performance

curves are presented for runtime and runtime per iteration vs. number of nodes for

the cost, cost plus partials, and search direction function calls. Additionally, while

a single processor is used for these performance curves and all examples, paralleliza-

tion improvements are demonstrated for specific linear algebra functions as well as

the computation of many parallel calls to the interpolated Lambert solver ivLam.

The performance of the examples are consistent with the performance curves in

runtime per iteration. Table 3.2 is an example overview of different optimization

characteristics, using representative fuel and energy optimal examples. The design

space spanned by the examples includes two search directions, two EBVP solvers,

three initial guess schemes, a homotopy between fuel and energy optimal solutions,

and a continuation method to produce long flight time spacecraft trajectories with

many segments. Exact performance numbers are reserved for Tables 3.3 to 3.5 in the

appendix, as well as algorithms for FMINUNCUT for implementation convenience.

The computations are performed on a 64-bit Windows desktop using a single pro-

cessor, the code is compiled with Intel Visual Fortran version 17.0.0.109, and runs

on an Intel Xeon CPU 3.07 GHz processor with 12 GB of memory. Note that a is
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semimajor axis, e is eccentricity, i is inclination, Ω is right ascension of the ascending

node, and ω is the argument of periapse.

Table 3.2: Example overview for comparisons of optimization characteristics.
Search EBVP Initial Optimal # of Boundary

Direction Solver Guess Solution Revs Nodes Conditions
1.a.i BFGS ivLam Lambert Fuel 0 14

Fixed-State
to

Fixed-Statea

1.a.ii HZ
1.b.i BFGS ivLam Shape Energy 7 1201.b.ii HZ
1.c.i BFGS ivLam Lambert Fuel 0 141.c.ii rk78sh
1.d.i BFGS ivLam Shape Energy 7 1201.d.ii rk78sh
1.e.i

BFGS ivLam
Shape

Fuel 0 141.e.ii Manual
1.e.iii Lambert
1.f.i

BFGS ivLam
Shape

Energy 7 1201.f.ii Manual
1.f.iii Lambert
1.g.ic

BFGS ivLam
Optimal Fuel

7 1201.g.iic Solution Hybrid
1.g.iiic of 1.f Energy
2.a to

BFGS ivLam Shape Energy
2α 12 × 2α Orbit

to
Orbitb

2.hc α = 1 → 8
2.i 256 6144
a(rx DU, ry DU, rz DU, vx DU/TU, vy DU/TU, vz DU/TU):

(2.495e−1,9.684e−1,0.000,−9.684e−1,2.495e−1,0.000) to
(2.901,−4.265,−4.064e−1,3.319e−1,2.761e−1,−1.307e−2)

b(a, e, i, Ω, ω): (1.0 DU, 0.0, 30.0◦, 0.0◦, 0.0◦) to (1.5 DU, 0.0, 0.0◦, 0.0◦, 0.0◦)
cThe exhaust velocity used for thrust and mass histories after optimization is c = 0.6325 DU/TU.
Notes: For simplicity of the comparisons, example 1.a.i is 1.c.i is 1.e.iii and 1.b.i is 1.d.i is 1.f.i.

Bolded cells highlight specific comparisons.

3.4.1 Runtime vs. Number of Nodes

The custom-built optimizer FMINUNCUT is validated against the sparse, nonlinear,

gradient-based optimizer SNOPT [159] version 7.2-12.2 by producing similar run-

times for all examples within this work. The FMINUNCUT optimizer contains three

main functions that occur at every major iteration: (1) the cost without partials [see
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Eq. (3.1)] used inside the line search; (2) the cost plus partials used at the beginning

of a new line search [see Eq. (3.1) and Algorithm 2]; and (3) the computation of the

search direction (see Algorithm 3) for the line search. The runtime of these three

main functions are shown in Fig. 3.3 with particular examples. For FMINUNCUT,

the functions for the cost and cost plus partials are called approximately seven and

one times, respectively, for a line search to approximate the minimum with a golden

ratio method, then three of the last four points are chosen to fit a quadratic polyno-

mial. The process is repeated where a new search direction is computed for a new

line search. FMINUNCUT runs until the magnitude of the cost partial is below a

small tolerance. The two other tolerances are a minimum cost difference |Ji − Ji−1|

and an iteration maximum that stops optimization if it has failed or is close to an

optimal solution. An algorithm for FMINUNCUT is in the appendix as Algorithm 2.
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On the left side of Fig. 3.3, the cost and cost plus partials functions grow lin-
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early with respect to node count for both EBVP solvers: ivlam and rk7sh. The rk7sh

BVP solver is approximately 100× or two orders of magnitude slower than ivLam for

all node counts, independent of implementation within an optimizer. Accordingly,

shooting methods to solve EBVPs should only be used when analytic solutions to

the BVPs are not available, such as the case when perturbations are present. Note

also that the rk7sh is reporting an extremely conservative performance. Only three

fixed-steps are used in each segment, and only one iteration is required to solve

a two-body only EBVP. A more general shooting method may require more steps

per segment and will certainly require more iterations. In contrast, one cost call for

ivLam using only two nodes produces a runtime of 6.1×10−7 seconds, which includes

overhead. Note that overhead means other operations within the cost call besides

the ivLam EBVP solver, such as the summation of impulsive ∆v maneuvers, if-else

statements, unpacking of the decision state in Eq. (4.13) into a convenient structure

of arrays, and more. The ivLam function by itself in this work has a runtime of

4.3× 10−7 seconds, consistent with Ref. [16] when using the highest accuracy, fixed

one-step version of the BVP solver.

The right side of Fig. 3.3 illustrates linear and approximate quadratic growth

for the HZ and BFGS search direction computation, respectively. BFGS stands for

the Broyden[160]-Fletcher[161]-Goldfarb[162]-Shanno[163] method and HZ stands

for the Hager-Zhang [164] conjugate gradient method. Conjugate gradient meth-

ods, such as the HZ search direction, are desirable because they are memory effi-

cient due to the lack of an approximate Hessian, important for problems with many

decision variables. However, the BFGS search direction converges to optimality in

less runtime versus these memory efficient search directions for the examples within

this current work. Many[165] other search directions for FMINUNCUT were consid-
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ered, including the steepest descent method (simple but produces intractably large

optimization runtimes), limited-BFGS [166], and the conjugate gradient methods:

Fletcher-Reeves [167] and Polak-Ribiere [168]. BFGS and HZ are the top two per-

forming search directions, and are therefore demonstrated with specific examples

(see examples 1.a and 1.b in Section 3.4.3).

The EBVP solvers ivLam or rk7sh dominate runtime computation for all

node counts if the HZ search direction is utilized. The HZ computation in runtime

per iteration is less than ivLam and rk7sh, and linear in growth on the log-log

scale of the right sub-figure of Fig. 3.3. The BFGS search direction dominates

the runtime after approximately 400 nodes for ivLam and memory runs out before

dominating rk7sh. The runtime per iteration at the crossover point for the ivLam

EBVP and BFGS search direction is approximately 2.1 × 10−3 seconds. As shown

for the representative examples 1.a and 1.b in Section 3.4.3, even if the BFGS

search direction quadratically increases in runtime versus node count, the better

convergence rate produces more desirable, shorter overall runtimes.

The BFGS search direction methods is implemented with either symmetric

or packed BLAS [169] subroutines to produce similar runtime per iteration curves on

a single processor. The packed BLAS subroutines enable larger node counts than

the symmetric BLAS subroutines, however packed storage does not benefit from

parallelization as shown in Section 3.4.2. For this work, the allowable max node

count difference between the packed and symmetric BLAS routines is approximately

4000 nodes. The quadratic growth of the BFGS search direction is dependent on

the BLAS matrix and vector operations, symmetry, and the packed storage for the

approximate inverse Hessian. The O(n2) storage of the approximate inverse Hessian

is the only large memory allocation in FMINUNCUT, enabling large problems on
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the order of thousands of decision variables. Example 2 shows up to 18,429 decision

variables (3× 6144 nodes − 3).

All examples compute the cost, cost plus partials, and search direction about

seven, one, and one times, respectively, for every major iteration that updates the

decision state shown in Eq. (4.13). The actual runtime per iteration of examples

that use either ivLam or rk78sh for the EBVP solver, or BFGS or HZ for the

search direction, are shown as specific points on the right of Fig. 3.3. As expected,

all example points lie close, but above the dominating curves in this log-log plot,

noting the expected runtime per iteration of an example includes the sum of both

curves (“Search Direction” and “7×Cost+1×Cost&Partials”) plus time for auxiliary

calculations. More details on the examples using different search directions and

EBVP solvers follow in Section 3.4.3 and Section 3.4.4, respectively.

The computational runtime of the dynamics has been minimized for smaller

problems below 400 nodes and rendered relatively insignificant above 400 nodes if

a BFGS search direction and ivLam EBVP solver are used. The new bottleneck

is the linear algebra within the BFGS search direction, necessary for minimizing

overall runtime in this current work. Additionally, all ivLam solutions take the

same reliable amount of time because they use a single fixed iteration. In contrast,

numerically integrated shooting methods will vary in runtime per segment and may

not converge at all.

3.4.2 Parallelization Improvements: Speed Up vs. Threads

Spacecraft trajectory optimization using EBVPs is parallelizable for improved per-

formance. FMINUNCUT uses the parallelizable symmetric BLAS functions (dsymv,

dsyr, and syr2) and OpenMP [170] for the ivLam EBVPs. These parallelization
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improvements are especially important for larger problems with thousands of nodes

or segments. As such, Fig. 3.4 shows the speedup as a function of thread count for

symmetric BLAS routines and ivLam EBVPs. The packed BLAS subroutines do

not show a performance speed up vs. thread count so they are not presented here.

Modest performance gains are present above approximately 100 nodes for the linear

algebra of the BLAS functions, while their peak performance remains approximately

less than half the theoretical linear speedup. On the other hand, ivLam finds some

gains even for 10 nodes, and achieves near the theoretical maximum speedups as

the node counts approach and exceed 1000. For simplicity and ease of comparison,

none of the examples from Table 3.2 use parallelization.
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Figure 3.4: Speed up of three symmetric BLAS subroutines and the ivLam EBVP.

3.4.3 Search Direction Demonstration: Examples 1.a and 1.b

For both the fuel (zero-rev) and energy (seven-rev) optimal examples, 1.a and 1.b,

respectively, BFGS outperforms HZ by minimizing total optimization runtime, even

though HZ can be faster per iteration and increases only linearly with respect to
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node count. In Fig. 3.5, examples 1.a and 1.b are time-free transfers from a fixed-

state to fixed-state. The initial guesses for 1.a and 1.b are Lambert 1.e.iii and

shape-based 1.f.i, respectively, shown in Fig. 3.6. Likewise respectively, the optimal

solutions are shown in Fig. 3.7. Example 1.a.i and 1.b.i (BFGS search direction)

converged in 0.0335 and 7.19 seconds, respectively, a significant speed up of 197×

and 157× over 1.a.ii and 1.b.ii (HZ search direction). While only two examples

are presented here, the performance comparisons represent a trend of many other

internally tested examples. The exact performance numbers for examples 1.a and

1.b are in Table 3.3.
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Figure 3.5: Cost vs. runtime for two examples using either the BFGS or HZ search
direction for FMINUNCUT. Total major iteration count is 209, 56336, 8821, and
1314720 for 1.a.i, 1.a.ii, 1.b.i, and 1.b.ii, respectively.

3.4.4 EBVP Solver Demonstration: Examples 1.c and 1.d

Two EBVP solvers are considered: ivLam, a two-body Lambert problem solution

method; and rk78sh, a general dynamics shooting method using only two-body

dynamics for simplicity. Like examples 1.a and 1.b, examples 1.c (minimum fuel,

zero-rev) and 1.d (energy optimal, seven-rev) are time-free transfers from a fixed-
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state to fixed-state. The optimal solutions are also shown in Fig. 3.7 and the initial

guesses for 1.c and 1.d are the Lambert 1.e.iii and shape-based 1.f.i, respectively,

shown in Fig. 3.6. The exact performance numbers are in the appendix in Table 3.3.

For the EBVP solver comparison in terms of total runtime: examples 1.c and 1.d

show a speed up factor for ivLam with respect to rk78sh of 60× and 105×, respec-

tively. As mentioned in Section 4.1, the non-trivial slowdown of rk78sh is due in

part to the dimension of the ODE system, at a minimum 6 for the state and 36 for

the variational STM. Additionally, the runtimes for rk78sh are conservative. While

this EBVP executes with a variable number of steps per segment, it always con-

verges after one iteration because of an exactly correct guess provided by ivLam. In

other words, while this current work only models two-body dynamics for simplicity,

the runtimes of rk7sh or rk78sh demonstrate a baseline of additional cost associ-

ated with solving the EBVPs with numerical integration and a shooting method.

More complicated dynamics, more steps per segment, and more iterations for the

EBVP solution would only increase the runtime. The exact performance numbers

for examples 1.c and 1.d are in Table 3.3.

3.4.5 Initial Guess Demonstration: Examples 1.e and 1.f

FMINUNCUT is robust and performance agnostic to many different initial guesses

shown in Fig. 3.6. Within Fig. 3.6, example 1.e is a zero-rev, minimum fuel tra-

jectory, and example 1.f is a seven-rev, minimum energy trajectory. Both examples

1.e and 1.f are time-free transfers from a fixed-state to fixed-state. In order from

left to right, the shape-based initial guesses are generated using codes described in

Refs. [171] and [141], the manual initial guesses are simple user-defined waypoints,

and the Lambert initial guess utilizes a zero or seven-rev ballistic solution from the
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initial to final position on an orbit discretized into segments with equal times of

flight. All initial guesses converge to the same optimal solutions shown in Fig. 3.7,

i.e. examples 1.e.i, 1.e.ii, and 1.e.iii converge to the left sub-figure of Fig. 3.7 and ex-

amples 1.f.i, 1.f.ii, and 1.f.iii converge to the right sub-figure. Note that in Figs. 3.6

and 3.7, the z-axis is not to scale. Example 1.e.iii is chosen to be the initial guess for

examples 1.a and 1.c, and example 1.f.i is the initial guess for 1.b and 1.d. Both the

minimum fuel (1.e) and minimum energy (1.f) examples perform similar relative to

their different initial guesses. In particular, the runtime per iteration for examples

1.e and 1.f is 0.0002 or 0.008 seconds, respectively, and the total runtimes are ap-

proximately of the same order at tens of milliseconds and seconds for examples 1.e

and 1.f, respectively. The exact performance numbers for examples 1.e and 1.f are in

Table 3.4. Exceptional initial guesses are possible; the intent here is to demonstrate

that converged solutions do not typically require good initial guesses.

3.4.6 Cost Homotopy Demonstration: Example 1.g

For example 1.g shown in Fig. 3.8, a homotopy solution is produced in sequential

stages by adjusting the k variable in Eq. (3.1). First a minimum energy solution is

obtained, next the k variable is adjusted, and then a new optimal solution is found

in the same local neighborhood. Thus, the obtained minimum fuel and hybrid

solutions are similar in revolutions to the minimum energy solution. In particular,

the hybrid solution uses k = 0.025 to equally weight both the minimum fuel and

energy contributions of the cost function in Eq. (3.1) by ensuring both terms are

of the same order of magnitude. Additionally, the k parameter can be tuned to

limit max thrust, producing a smooth thrust profile shown in Fig. 3.9 for example

1.g.ii. Figure 3.9 also shows the mass history. These smooth thrust profiles with
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lower maximum thrust are ideal initial guess candidates for low-thrust trajectory

optimization with a max thrust constraint. The orbital element histories of example

1.g are shown in Figs. 3.10 and 3.11, all showing piecewise-constant behavior that

emphasizes each segment is ballistic. Notice the parallels between the profiles for

each k parameter for both thrust and mass. There are about nine burns for the

minimum fuel, energy optimal, and hybrid cases. The cases do not end at the same

time because the problem is time-free. The minimum fuel solution uses less fuel

compared to the energy optimal solution shown in Fig. 3.9. The minimum fuel
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Figure 3.6: Initial guesses: min fuel, zero-rev: 1.a, 1.c, 1.e (top) and min energy,
seven-rev: 1.b, 1.d, 1.f (bot). z-axis not to scale. Solid blue circles are the nodes.
Blue lines connect the nodes, but are not the integrated segments. Red lines are
impulsive ∆v maneuvers.
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Figure 3.7: Optimal solutions from the initial guesses of Fig. 3.6: min fuel, zero-rev:
1.a, 1.c, 1.e (left) and min energy, seven-rev: 1.b, 1.d, 1.f (right). z-axis not to
scale. Solid blue circles are the nodes. Blue lines connect the nodes, but are not the
integrated segments. Red lines are impulsive ∆v maneuvers.
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Figure 3.8: Optim. solutions: exs. 1.g.i and 1.g.ii from 1.g.iii. z-axis not to scale.
Solid blue circles are the nodes; blue lines connected the nodes, but are not the
integrated segments; the red lines are impulsive ∆v maneuvers.
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solution also converges to the multi-rev Lambert solution, distributing the energy

raising maneuver near the initial orbit over seven revolutions. The orbital element

histories shown in Figs. 3.10 and 3.11 are all consistent with the thrusting maneuvers

of Fig. 3.9. Fuel or energy optimal solutions vary orbital elements more dramatically

or gradually, respectively. Notably for the minimum fuel solution, most of the

inclination change is accomplished with the last burn away from the gravitational

body. Lastly, the exact performance timings are omitted because the runtime per

iteration of 1.g.i and 1.g.ii is similar to the already presented example 1.f.

3.4.7 Large Number of Nodes Demonstration: Example 2

This final example demonstrates a spacecraft trajectory with up to 256 revolutions

and discretized into 6,144 nodes (6,143 segments) or 18,429 decision variables (3×

6144 nodes − 3). The solution is found with FMINUNCUT, leveraging fast ivLam

EBVPs, an unconstrained formulation, and a continuation method. The trajectory

is a transfer from an initial to final orbit, not fixed-state to fixed-state like in the cases
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of example 1. Within the BFGS search direction computation of FMINUNCUT, the

O(n2) operations grow quickly with respect to number of nodes relative to the linear

O(n) growth of the cost and cost plus partials computations as shown in Fig. 3.3.

To mitigate this quadratic growth on runtime, the continuation method doubles the

number of revs and nodes of the previous lower-node and lower-rev optimal solution

to eventually obtain a higher-resolution thrust profile with many revs and nodes.

The doubling stages are defined as α stages, so the node count is n = 12×2α and the

rev count is 2α where α = 1→ 8. The 9th α stage is the final stage at 6,144 nodes

and 256 revs. The corresponding decision variable count is 3n − 3 or 36 × 2α − 3

where α = 1→ 9.

The continuation method description is as follows. First, the initial guess is

shape-based [171, 141] containing 24 nodes and 2 revs for approximately 12 nodes

per rev. The optimal solution of this 24-node case is example 2.a and is shown on

the top left of Fig. 3.12 with its 2D projections. Second, the number of revs and

nodes are doubled eight times with initial guesses from the prior optimal solutions.

Example 2.c is shown in the top right of Fig. 3.12. Third and finally, the node

count is doubled one last time, but the rev count is kept fixed, to produce the

6,144 node, 256 rev, optimal solution as shown on the bottom of Fig. 3.12. The

continuation method produces a total runtime of 5.5 hours vs. 23.5+ hours without

the continuation method (example 2.j)–a significant speed up. In fact, inspection of

Table 3.5 for the performance numbers of example 2 reveals runtime is dominated

by the doubling of the final two stages (2.h and 2.i). Runtime for those are 50.1

minutes and 4.5 hours, respectively, or a total of 97.1% of the total runtime for all

the stages. The runtimes for the other examples 2.a to 2.e take under a minute,

and examples 2.f and 2.g take 1.6 and 7.6 minutes, respectively. This increasing
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runtime per stage trend verifies that the computation of the BFGS search direction

dominates runtime after 400 nodes, also shown in the right figure of Fig. 3.3. In other

words, the smaller problems using a couple dozen to a thousand segments, examples

2.a through 2.g, are particularly fast and thus useful for preliminary solutions in the

two-body problem. For larger node counts up to 6,144, a lower-segment solution

can be augmented with more segments for more revs or for higher-resolution thrust

and mass histories if optimization runtime of hours is tolerable. Additionally, per

Section 3.4.2, solutions with more than 1,000 segments begin to notably benefit

from parallelization improvements. The high-resolution thrust and mass histories

of example 2.i are in Fig. 3.13.

Besides increasing runtime, increasing node count for a given solution can also

decrease the minimum energy cost in Eq. (3.1). In Table 3.5, notice the minimum

energy cost approximately halves for every doubling of nodes and revs. See the

‘Minimized Cost’ row. This shrinking cost can cause the nonlinear optimization

program, FMINUNCUT, to prematurely exit because the impulsive ∆v maneuvers

are already small, but not necessarily optimal. To avoid this numerical issue, the

minimum energy summation in Eq. (3.1) can benefit from scaling by the number of

nodes n or segments n − 1. This scaling was not included in Example 2, but more

complicated problems may benefit from similar tuning efforts.
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The blue-green lines are the trajectory. The grey lines are the 2D projections of
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Fig. 3.13.
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3.5 Conclusions

Direct, spacecraft trajectory optimization using many embedded boundary value

problems, specifically the Lambert problem for two-body dynamics, is advanced rel-

ative to the state of the art. For preliminary design of spacecraft trajectories, this

embedded Lambert problem technique discretizes the path into many short-arc seg-

ments, demonstrated here for trajectories with up to 6,144 nodes (6,143 segments

or 18,429 decision variables) and 256 revolutions. Previous work in primer vector

theory, flyby tours, and direct impulsive ∆v maneuver optimization uses embedded

boundary value problems for on the order of a few dozen segments at most. Prob-

lems with this many revolutions are typically intractable to optimize without using

orbital averaging or indirect methods. The optimization performance is enabled

by the unconstrained formulation and a newly developed Lambert solver, provid-

ing a fixed-computational cost to model the dynamics, a robust global domain of
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convergence, and inexpensive and exact partials. The optimization runtime on a

single processor of the 6,144-node problem is 5.5 hours, serving as a practical upper

limit on node size for this technique. Smaller problems with dozens to up to ap-

proximately a thousand nodes optimize in substantially shorter runtimes at seconds

to minutes, respectively. In other words, the technique is particularly effective at

generating fast, preliminary solutions for these smaller problems. For solutions re-

quiring more short-arc segments for more revs up to and beyond the practical limit

of 6,144 nodes, other techniques can be preferable or even necessary. The computa-

tional runtime of the dynamics and partials for smaller problems is reduced through

the use of embedded Lambert problem solvers and for larger problems this compu-

tation is rendered relatively insignificant. In particular, these larger problems at or

greater than approximately 400 nodes are dominated by any linear algebra required

by the well-known Broyden-Fletcher-Goldfarb-Shanno line search direction compu-

tation. This search direction outperformed a variety of conjugate gradient methods

in total optimization runtime. Besides runtime performance, other strengths of the

technique include insensitivity to poor initial guesses and its unconstrained formu-

lation using Cartesian coordinates, making it simple to implement. The technique

is also parallelizable because of the independence of each segment and the computa-

tion of the linear algebra for runtime speedups. The numerical examples presented

are time-free, fixed-state to fixed-state and orbit-to-orbit that contain no thrust

or mass constraints for both minimum fuel and energy optimal solutions. Future

work will demonstrate perturbation approximations and incorporate the Sundman

transformation into this embedded Lambert problem optimization technique.
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3.6 Appendix

3.6.1 Performance Tables for Examples 1 and 2

The performance tables are for examples 1 and 2 (see Fig. 3.3). Tables 3.3 to 3.5

show total runtime per iteration, total runtimes, number of iterations that update

the decision state, function calls, cost, and optimality tolerances. Function call

counts are for the computation of the cost, the cost plus partials, and the search

direction, respectively.

Table 3.3: Performance of examples 1.a, 1.b, 1.c, and 1.d, comparing search
direction and EBVP solver.

Search Direction BFGS: 1.a.i HZ: 1.a.ii BFGS
EBVP Solver ivLam ivLam: 1.c.i rk78sh: 1.c.ii
Initial Guess Lambert

aMinimum Fuel Ex. 1.a, 1.c
Total Runtime/Iter. sec/iter 0.0002 0.0001 0.0002 0.0093
Total Runtime sec 0.0335 6.6140 0.0335 1.9996
Major Iterations 209 56336 209 216

bFunction Calls 1503, 210, 757731, 56337, 1503, 210, 1604, 217,
209 56336 209 216

Search Direction BFGS: 1.b.i HZ: 1.b.ii BFGS
EBVP Solver ivLam ivLam: 1.d.i rk78sh: 1.d.ii
Initial Guess Shape-Based

aMinimum Energy Ex. 1.b, 1.d
Total Runtime/Iter. sec/iter 0.0008 0000.0009 0.0008 000.0818
Total Runtime sec 7.1900 1132.1470 7.1900 745.1770

(18.9 min) (12.4 min)
Major Iterations 8821 1314720 8821 9113

bFunction Calls 61848, 8822, 15410419, 1314721, 61848, 8822, 63635, 9114,
8821 1314720 8821 9113

aMin. cost for 1.a, 1.c, and 1.e is 0.4777 DU/TU, and 1.b, 1.d, and 1.f is 0.0014 DU2/TU2.
Optimality is less than 10−6 for both 1 and 2. Lastly for simplicity, example 1.a.i is 1.c.i is 1.e.iii and
1.b.i is 1.d.i is 1.f.i.

bFunction calls are for cost only, cost plus partials, and search direction, respectively.
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Table 3.4: Performance of examples 1.e and 1.f for the initial guess
demonstrations.

Search Direction BFGS
EBVP Solver ivLam
Initial Guess Shape-Based: 1.e.i Manual: 1.e.ii Lambert: 1.e.iii

Minimum Fuel Example 1.e
Total Runtime/Iter. sec/iter 0.0002 0.0002 0.0002
Total Runtime sec 0.0632 0.0454 0.0335
Major Iterations 278 186 209
Function Calls 1917, 279, 278 1353, 187, 186 1503, 210, 209

Search Direction BFGS
EBVP Solver ivLam
Initial Guess Shape-Based: 1.f.i Manual: 1.f.ii Lambert: 1.f.iii

Minimum Energy Example 1.f
Total Runtime/Iter. sec/iter 0.0008 0.0008 0.0008
Total Runtime sec 7.1900 7.4670 7.8030
Major Iterations 8821 9085 9593
Function Calls 61848, 8822, 8821 63248, 9086, 9085 66725, 9594, 9593
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Table 3.5: Performance of ex. 2 that demonstrates a continuation method for a large number of nodes.
Search Direction BFGS

EBVP Solver ivLam
Initial Guess Shape-Based: 2.a Prev. Sol’n: 2.b Prev. Sol’n: 2.c Prev. Sol’n: 2.d Prev. Sol’n: 2.e

24 nodes, 48 nodes, 96 nodes, 192 nodes, 384 nodes,
2 revs 4 revs 8 revs 16 revs 32 revs

Minimum Energy Example 2
Total Runtime/Iter. sec/iter 0.0002 0.0003 0.0005 0.0012 00.0035
Total Runtime sec 0.0484 0.1155 0.5573 2.9240 12.6760
Major Iterations 247 441 1119 2458 3628
Function Calls 1728, 248, 2834, 442, 6938, 1120, 15239, 2459, 22269, 3629,

247 441 1119 2458 3628
Minimized Cost DU2/TU2 898.456 466.768 237.003 119.343 059.890

×10−5

Initial Guess Prev. Sol’n: 2.f Prev. Sol’n: 2.g Prev. Sol’n: 2.h Prev. Sol’n: 2.i Lambert: 2.j
768 nodes, 1536 nodes, 3072 nodes, 6144 nodes, 6144 nodes,

64 revs 128 revs 256 revs 256 revs 256 revs

Minimum Energy Example 2
Total Runtime/Iter. sec/iter 00.0156 000.0558 0000.2184 00000.8516 00000.7839
Total Runtime sec 97.3610 456.4620 3003.5550 16218.7830 84660.0492+

(1.6 min) (7.6 min) (50.1 min) (270.3 min, (1411.0+ min
4.5 hr) 23.5+ hr)

Major Iterations 6235 8174 13751 19046 108001+
Function Calls 38712, 6236, 51372, 8175, 90611, 13752, 163889, 19047, 652671+,

6235 8174 13751 19046 108002+,
108001+

Minimized Cost DU2/TU2 030.013 015.033 007.527 003.769 009.058−
×10−5
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Chapter 4

Piecewise Sundman Transformation

for Spacecraft Trajectory Optimization

using Many Embedded Lambert

Problems

4.1 Introduction

A spacecraft trajectory is typically discretized into smaller paths, defined as seg-

ments here, for numerical propagation and for approximate numerical solutions of

continuous optimal control problems. A problem formulation balances the number

of variables and associated problem size against increased computational runtime

to efficiently and accurately capture the system dynamics and control. Conway and

Paris [172] in chapter 3 and Betts [73] in sections 3.5 and 4.5 provide good overviews

of the discretization process for optimal control problems.

Previous spacecraft trajectory optimization work by the authors [173] used a

simple and obvious discretization where each trajectory segment is a short arc that

uses equal times of flight (TOF). Such a scheme works well for low eccentricity, but
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loses efficiency at high eccentricity. Furthermore, this scheme encounters spatial in-

efficiency problems for the segments if continuous thrust significantly changes semi-

major axis and eccentricity (a and e, respectively) of the trajectory. In Ref. [173],

the equal flight time discretization was coupled to an unconstrained optimization

framework that uses many embedded boundary value problems (EBVPs), namely

a Lambert problem solver, to implicitly enforce position continuity—an important

equality constraint in spacecraft trajectory design. Each segment uses two-body

spacecraft dynamics and neighboring impulsive maneuvers to approximate finite

thrust. The optimizer iterates on time and position only as decision variables, re-

moving the need to guess velocity or control. Inverse dynamics formulations in

optimal control similarly iterates on paths rather than controls, e.g. shape-based

spacecraft trajectory design [136, 141, 142, 144]. This EBVP technique motivates

the development of more spatially efficient discretization schemes, expanding the

design space.

A discretization of equal changes in eccentric anomaly (∆E) is an efficient

spatial discretization for spacecraft trajectory design using two-body dynamics.

Equal steps in eccentric anomaly E provides a near-equal spacing and a consis-

tent number of steps per revolution along a Keplerian orbit. Figure 4.1 presents

two representative discretizations for near-circular and eccentric Keplerian orbits.

The black dots are nodes that bound the segments of the discretization. The seg-

ments are propagated with equal times of flight, or regularized times of flight to

produce equal ∆E’s. The two left sub-figures show a discretization that has equal

times of flight and equal ∆E, respectively. Notice these two sub-figures are almost

visually indistinguishable for a near-circular orbit. The two right sub-figures show

the same equal times of flight and ∆E discretization, respectively, emphasizing the
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problem of a spatially inefficient discretization for eccentric orbits that is absent in

near-circular orbits. For eccentric orbits, Kepler’s second law dictates that equal

flight time segments produce spatially shorter distances near the apoapsis or longer

distances near the periapsis.

(a) Eccentric Orbit (e = 0.1) &
Equal TOF

(b) Eccentric Orbit (e = 0.1) &
Equal ∆E

(c) Eccentric Orbit (e = 0.5) &
Equal TOF

(d) Eccentric Orbit (e = 0.5) &
Equal ∆E

Figure 4.1: Discretization of a trajectory into segments bounded by nodes defined
by either equal flight times (a,c) or equal ∆E (b,d) for a near-circular and
eccentric Keplerian orbit.

To achieve equal steps in ∆E for a rev, the regularization of spacecraft trajec-

tory dynamics informed the solution of this current work. In 1908, Cowell’s method

[174] was the first numerical integration routine to more accurately model the Sun-
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perturbed orbit of one of Jupiter’s moons. However, it was noticed a singularity

was approached as the relative distance between two bodies decreased. The now

well-known Sundman transformation ([175], 1913) on the dynamics helped mitigate

this singularity. Furthermore, over the last century, other stabilizing improvements

to avoid this singularity include transforming the equation of motion into a linear os-

cillator (See Ref. [176], Sect. 3.2.3, 2017 for a straight-forward derivation.) through

a coordinate transformation in the complex plane by Levi-Civita ([177], 1906), and

embedding integrals of motion such as energy [178, 179]. The Sundman transfor-

mation has other consequences as it also produces a spatially even discretization for

Keplerian orbits and generalizes Kepler’s equation for all conics (circular, elliptical,

parabolic, and hyperbolic). For example, see the flight time function by Bate et al.

that uses Stumpff functions [79] (p. 196, eq. 4.4-12, 1971) or a similar solution by

Battin that uses universal functions [74] (p. 178, eq. 4.81, 1999). This Sundman

transformation on the continuous dynamics is now referred to as the differential

Sundman transformation (DST). For further historical account, the excellent mono-

graph of Roa [176] (Chapter 2) on regularization is recommended.

The discretization solution for this chapter is a time of flight function [See

Eq. (4.1).] named the piecewise Sundman transformation or PST. This new flight

time function divides the total flight time of a trajectory by generating the individ-

ual flight times of each segment. A spatially even discretization is recovered and is

approximately equivalent to the discretization produced by regularizing the dynam-

ics. All the segments of a trajectory can be equal or near-equal step in ∆E, but

no explicit transformation on the dynamics is applied. Further discussion on what

form of the PST achieves equal or near-equal step in ∆E is throughout, specifically

Sections 4.2.3, 4.3, and 4.4.
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For the outline of this chapter, the PST is discussed and applied in six sec-

tions plus an appendix. This current Section 4.1 describes the motivation, i.e. a

spatially efficient discretization of a spacecraft trajectory is sought, defined as equal

fixed-steps in ∆E, but without a time transformation on the dynamics. For Sec-

tion 4.2, the PST is explicitly defined and related to the DST, density functions, and

the eccentric anomaly differential. In Section 4.3, a comparative numerical study

is performed where an eccentric Keplerian orbit is integrated forward in time using

a set of different differentials and their approximately equivalent flight time func-

tions, notably comparing the DST and PST. In Section 4.4, spacecraft trajectory

optimization problems are formulated using EBVPs and the PST, and then perfor-

mance is analyzed. The examples include the simple modeling of a Keplerian orbit

(example 1), a performance comparison between the EBVP technique and the IVP

technique (example 2), energy optimal transfers that significantly change semima-

jor axis and eccentricity (example 3), and both fuel and energy optimal trajectories

from a circular to hyperbolic orbit (example 4). In particular, the IVP technique

uses a Kepler solver and is a state of the art for low-fidelity, multi-impulsive ma-

neuver trajectory design, directly competing with the alternative EBVP technique.

In Section 4.5, the PST for spacecraft trajectory optimization is summarized. Fi-

nally, the appendix includes a discussion on the partial derivatives (partials) for the

optimization problems in Section 4.4.

4.2 Piecewise Sundman Transformation

The new flight time function, the PST, for a spacecraft trajectory segment is

∆t = rα∗∆τ (4.1)
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where ∆t is the time of flight, ∆τ is the pseudo time of flight, and the piecewise-

constant coefficient is composed of an exponent α and a piecewise-constant position

magnitude r∗. The “piecewise-constant position magnitude” is referred to as “posi-

tion coefficient” for simplicity. This flight time function in Eq. (4.1) is linear in ∆τ

and, if it is used repeatedly for every segment of a trajectory, the ∆τ has the same

value for all segments (or phase in a more complicated multi-phase trajectory). ∆τ

automatically varies time of flight ∆t in a regular, accordion-like fashion via the

scaling position factor r∗ of a segment, where the exponent α controls the relative

spacing.

The position coefficient is a piecewise-constant function of the terminal po-

sitions of a segment, r∗ = r∗(r0, rf ). Only three position coefficients are considered

for simplicity: (i) an initial position coefficient r∗ = r0, (ii) a final position coeffi-

cient r∗ = rf , and (iii) an average position coefficient r∗ = (r0 + rf )/2. Different

α’s enable a fixed-step in ∆τ propagation to be proportional to fixed-steps in dif-

ferent Keplerian orbital anomalies. For α = 0, a fixed-step in ∆τ is proportional

to a fixed-step in mean anomaly (or time), as no Sundman transformation is ap-

plied. For α = 1, 2, and 3/2, a fixed-step in ∆τ is proportional to E, true anomaly,

and the intermediate anomaly [180], respectively. However, for trajectories utiliz-

ing large impulsive maneuvers, neighboring segments can have significantly different

orbital elements. Similarly, segments at the start and end of a trajectory can also

have significantly different orbital elements if many small impulsive maneuvers are

applied over a long total flight time. Therefore, the relationship of r∗ and α to

the discretization for trajectories that include impulsive maneuvers in the two-body

problem is more complicated and is explored with respect to the differential of E in

Section 4.2.3 and in examples 1 and 3 in Section 4.4.2.
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Time of flight functions are a beneficial alternative to a time-transformation

on the dynamics because time, not a time-like variable, remains the independent

propagation variable. This function form decreases implementation difficulty and

maintains the dimension of the state. Alternatively, the approach using transformed

dynamics requires an additional state and more complicated dynamics. During de-

velopment of these flight time functions, other approaches were considered to enforce

efficient discretizations proportional to E: (i) Use a constrained optimizer such as

SNOPT [159] or IPOPT [181] to enforce specific, desirable flight times per seg-

ment as constraints. While feasible, these nonlinear constraints add an unnecessary

numerical burden on the optimizer if a flight time function, such as the PST, is

available to automate flight time selection. See Ref. [172], Ch. 4, Sections 4.5 and

4.6 for an example of explicit flight time constraints on the segments of two Lunar

trajectory missions. (ii) A second option is to modify a solution to the Lambert

problem to receive directly the transformed time-like independent variable, such as

the square of the eccentric anomaly difference z = ∆E2 (see Eq. 4.5-7 in Bate et al.

[79] for a Sundman-related transformation [175] and its relation to semimajor axis).

However, a single z value cannot be used for all segments of a trajectory that tran-

sitions from elliptic to hyperbolic orbits because z is negative for hyperbolic orbits

and positive for elliptical orbits. Additionally, the negative values are not physically

intuitive to guess. (iii) A third solution includes the square root of semimajor axis
√

a as the coefficient of the Sundman transformation instead of the unity value used

in this current work. While shown to be useful by Baù et al. to propagate elliptical

[182, 183] or hyperbolic [184] orbits, or by Roa and Peláez [185] to accurately model

hyperbolic trajectories, or by the authors (unpublished numerical experiments) for

eccentric orbit propagation in perturbed two-body dynamics, this solution cannot
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smoothly transition between elliptic and hyperbolic conics. The transition from

elliptical orbits toward the parabolic boundary approaches infinite semimajor axis

and flight time and thus loses accuracy. For hyperbolic orbits, the negative semi-

major axis under the square root must be handled too, usually with a discontinuous

sign flip or via a complex modeling space. As mentioned, a goal of this current

work is a regularization method that not only works for all conics (circular, elliptic,

parabolic, and hyperbolic), but also transitions through the parabolic boundary. Of

note, a recent work in 2020 by Baú and Roa [186] replaces a simpler Cartesian coor-

dinate representation of position and velocity with eight orbital elements, accurately

propagating a comet near, and transitioning through, the parabolic boundary. The

coefficient of the Sundman transformation used in Ref. [186] is unity.(iv) The fourth

and final option considered uses the time regularization dt = 1
hr

2dτ , where h is

angular momentum and µ = 1.0 DU3/TU2 is assumed. This regularizing solution is

promising for initial value problems because fixed-steps in ∆τ , while proportional

to true anomaly, are proportional to eccentric anomaly on average1 over one period

of a Keplerian orbit. This on-average behavior is also independent of a or e < 1.

However, this regularization solution cannot be applied to BVPs because h is not

known before the BVP is solved.

In the next sub-sections before the numerical studies in Sections 4.3 and 4.4,

the PST is explained relative to (i) the DST, (ii) density functions, and (iii) the

differential of E. Density functions are a regularizing method by another name that

are commonly found in optimal control and other engineering disciplines. The differ-

ential of E helps explain how the PST enables a larger design space for optimization
1Similar to the derivation in Section 4.2.3, Kepler’s equation can be integrated by separation of

variables after substitution of dt = 1
h
r2dτ to get τp =

∫ 2π

0

√
1−e2

1−e cos E
dE = 2π. Divide both sides by

2π to get the average change in τ with respect to E over one period is one, i.e. [dτ/dE]avg =
τp
2π

= 1.
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problems using EBVPs in Section 4.4.

4.2.1 Differential Sundman Transformation

A differential form of the Sundman transformation, or DST, is

dt = rαdτ (4.2)

where dt is the differential of time, dτ is the differential of pseudo time, and, similar

to the definitions of the terms in Eq. (4.1), the coefficient is composed of a position

magnitude r and an exponent α. The differential equation for time can be written

as dt/dτ = rα. Eq. (4.1) is the approximation of Eq. (4.2) where ∆τ is a finite

difference, instead of differential, multiplied by a piecewise-constant r∗ to the power

of an α to produce a finite ∆t for a segment. The PST approaches the DST as

the flight time of a segment approaches zero. The DST is used explicitly in the

trajectory propagation problem of Section 4.3 and the optimization problems of

Section 4.4 (examples 1 and 2).

4.2.2 Density Functions

Density functions are another way to understand the PST. The density function

or related monitor function are a mesh generation tool for segments that enforce

the equidistribution principle: the area under a particular function is the same for

every interval. The PST also generates a convenient mesh, so to speak, for an or-

bital mechanics optimal control problem. The equidistribution concept was first

introduced in 1974 by Burchard [187] for finding variable nodes for optimal spline

approximations. Many engineering and scientific fields have used density functions

for mesh generation techniques, such as Thompson [188, 189, 190], who reviewed
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the solution of partial differential equations (PDEs), and others described density

functions in the finite element method field [191, 192, 193, 194]. More recently,

Baker [195] reviewed the evolution of meshes, demonstrating the critical drivers of

reliable and efficient mesh generators are computational fluid dynamics and aero-

dynamics. Huang and Russell [196] presented mesh adaptivity with emphasis on

time-dependent PDEs. Mitchell and McClain [197] compared several hp-adaptive

versions of the finite element method for solving PDEs that modify the width and

the polynomial degree of the mesh. Optimal control started using monitor func-

tions and density functions when they were first presented by Betts et al. [198]

in 2003 and Zhao and Tsiotras [199, 200] in 2011, respectively. Afterward, a den-

sity function was used in an adaptive mesh-refinement algorithm from Darby et al.

[201, 202] that created an adaptive pseudospectral method to iteratively determine

the number, width, and polynomial degree in each segment given an accuracy. Liu

et al. [203] used a density function inspired by Zhao and Tsiotras to help design a

multi-criterion, hp-adaptive strategy that introduced prior knowledge, intermediate

error, and curvature as useful criteria for adaptive refinement. Peng et al. [204] used

the same curvature-based density function by Zhao and Tsiotras for a symplectic

algorithm in an optimal control problem.

The density function integral or equidistribution mesh for one segment of a

spacecraft trajectory is ∫ tf

t0

ρ(t)dt = ζ (4.3)

where ρ(t) is a general density function integrated from an initial time t0 to final

time tf of a segment and ζ is the constant of the equidistant principle. The ρ(t) can

be a function of other variables besides time t not explicitly shown here. If ρ(t) = ρ̄

is piecewise-constant along a spacecraft trajectory, where the bar means constant,
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then the integral of Eq. (4.3) is significantly simplified to

ρ̄∆t = ζ (4.4)

where ∆t = tf − t0. For a spacecraft trajectory optimization problem, the general

density function ρ̄ and constant ζ can be decision variables of the optimizer. If

ρ̄ = 1/rα∗ , the inverse of a position coefficient, and ζ = ∆τ , the same value for

every segment along a spacecraft trajectory, then Eq. (4.4) is 1
rα∗
∆t = ∆τ , which

is Eq. (4.1) rearranged. In other words, the PST is an approximation of a den-

sity function method, where 1/rα∗ and ∆t vary along a trajectory to regularize the

discretization, while ∆τ is a positive value updated by an optimizer.

4.2.3 Differential of Eccentric Anomaly

The change in eccentric anomaly ∆E and flight time of a segment is related through

Kepler’s equation. For a short Keplerian segment, ∆E is approximately equivalent

to the differential because ∆E = dE + O(d2E) ≈ dE. See Ref. [205], Section 2.2

for the relationship between a Taylor series and the equivalent first order, second

order, etc. differentials that combine to form a total differential. Kepler’s equation

for elliptical orbits is

nt = E − e sinE (4.5)

where the mean motion is n =
√
µ/a3 and the gravitational parameter is µ. Replac-

ing n, the differential of Eq. (4.5) is

√
µ

a3dt = (1− e cosE)dE (4.6)
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Substitute Eq. (4.2) into Eq. (4.6) and the position magnitude, represented as r =

a(1− e cosE) ([76], Eq. 3.22). Rearrange and the eccentric anomaly differential is

dE =
√
µaα−3/2(1− e cosE)α−1dτ (4.7)

Equation (4.7) was first reported in 1980 by Janin and Bond [206] (Eq. 2.5). Each

segment of a trajectory is characterized by a value of ∆E, ideally the same for every

segment. Equation (4.7) shows that ∆E is a function of a, e, E, and α. If the

exponent α = 1 or 3/2, then ∆E is independent of e or a, respectively, for a ballistic

segment. Moreover, Eq. (4.7) can be integrated in closed-form via separation of

variables to find τp for different values of α. The results are reported in Table 4.1

and the derivation is explained in detail by Pellegrini et al. in [207]. Notably, for

α = 0, 1, 3/2, and 2, τp is a function of a only, a only, e only, and both a and e,

respectively.

Now, assuming Eq. (4.1) for the flight time of a segment, it is not possible

to find an α that exactly discretizes a trajectory into equal ∆E if a and e are

changing. Nevertheless, the most efficient discretization is given by α = 3/2. This

discretization is (i) periodic in E, (ii) approximately equal to a constant ∆E for

lower e, (iii) independent of changes in a, and (iv) the decrease in ∆E is practically

limited near the parabolic boundary of e = 1.0. To elaborate, consider τp for the

different Sundman exponents over a practical domain of 10−1 ≤ a ≤ 103 DU and

0 ≤ e ≤ 0.9999, as shown in Fig. 4.2. For the left plot in Fig. 4.2, α = 3/2 is

the only Sundman exponent that maintains a constant period when varying a only.

For the right plot in Fig. 4.2, only minor growth for τp is shown due to varying e

only, considered acceptable for transfers that vary both a and e. In other words, for

α = 3/2, a fixed-step size can efficiently model across a large domain of a and e.
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Note e = 0.0 for α = 3/2 and 2 in the left plot, and a = 1.0 DU for α = 0, 1, and

2 for the right plot. Other fixed values of a or e for Fig. 4.2 produce qualitatively

similar results. Example 3 in Section 4.4 shows this approximately constant segment

count per rev for α = 3/2.

Lastly, the modeling of elliptic and hyperbolic arcs can be related through

a replacement of variables. Kepler’s equation for ellipses shown in Eq. (4.5) is

converted to the equivalent Kepler’s equation for hyperbolas by replacing E with
√
−1H where H is the hyperbolic anomaly. It is also assumed that a > 0 and

a < 0 model ellipses and hyperbolas, respectively. After replacing E and using some

trigonometry identities, multiply Kepler’s equation by
√
−1 to extract the imaginary

part. Kepler’s equation for hyperbolas is thus√
µ

−a3 t = −(H − e sinhH) (4.8)

and the differential of H from Eq. (4.8), after substitution of the DST and r =

a(1− e coshH), is

dH =
√
µ(−a)α−3/2(1− e coshH)α−1dτ

The hyperbolic anomaly is emphasized less in this current work because many seg-

ments over many revs are not needed to model the hyperbolic phase of a solution.

Still, a hyperbolic phase is demonstrated in Example 4 of Section 4.4. Overall,

Eqs. (4.5) and (4.8) and their differential counterparts approximately model the

discretization of the trajectories in this work. Eq. (4.5) in particular is only used as

a post-process step to track the evolution of ∆E in Section 4.3 and examples 1, 2,

and 3 in Section 4.4.
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Table 4.1: Period in τp for Sundman exponents α = 0, 1, 3/2, and 2. The
τp’s are plotted in Fig. 4.2.

α = 0 : τp = 2π
√

a3
µ α = 1 : τp = 2π

√
a
µ

α = 3/2 : τp =
4√

µ(1+e)ELLK

(√
2e
1+e

)
α = 2 : τp = 2π 1√

µa(1−e2)

ELLK(·) is the complete elliptic integral of the first kind.
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Figure 4.2: τp vs. a and e: τp for varying a and e using the expressions in Table 4.1.
For varying a (left), e = 0.0 for α = 3/2 and 2. For varying e (right), a = 1.0 DU
for α = 0, 1, and 2; and the curves for α = 0 and 1 overlap.

4.3 Trajectory Propagation: Piecewise Functions vs.

Differential Transformations

The Sundman transformation is one of many differentials that regularize dynamics

and provide improved discretizations. In this numerical study, an eccentric Kep-

lerian orbit is propagated with numerical integration, comparing these new flight

time functions and the differential equivalents: the PST vs. the DST. The flight

76



time functions enable integration of the Keplerian orbit in time, while regularizing

the dynamics with a differential transformation integrates in pseudo time. These

time of flight functions can use initial values, such as initial position, velocity, or

acceleration of each segment. In contrast, and later in Section 4.4 for trajectory

optimization using EBVPs, initial and final positions are available per segment, as

well as initial and final two-body accelerations, but not velocities. Second-order

contributions to a total differential to motivate other forms of flight time functions

are not considered in this current work for simplicity. This work considers ∆t ≈ dt

only, and not, for example, ∆t ≈ dt+ 1
2d

2t.

For the results in this section and next, Sections 4.3 and 4.4, the Fortran

2008 code is compiled with Microsoft Visual Studio, Community 2015, Version

14.0.25431.01 Update 3, and uses Intel Parallel Studio XE 2017 Composer Edi-

tion for Fortran Windows. The code runs on two quad-core Intel Xeon CPU X5647

2.93 GHz processors, and can access 24 GB of memory. Only the largest problem

of this current work, the third sub-example of example 3 in Section 4.4, makes use

of seven cores and up to approximately 11 GB of memory.

4.3.1 Regularization on Two-Body Dynamics

The regularization on the two-body dynamics is derived as follows. First consider a

six-state x that combines position r and velocity v in a Cartesian space:

x =

[
r
v

]
(4.9)

and its time-derivative

ẋ =

[
ṙ
v̇

]
ẋ can also be written as
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ẋ =
dx
dt

to explicitly show the derivative with respect to time t, i.e. �̇ = d
dt�. Moreover, ẋ

is equal to the dynamics:

ẋ = f(t) =
[

ṙ
v̇

]
=

[
v
a

]
(4.10)

where two-body acceleration a is defined as a = −µ/r3r. Notice no control shows up

in the dynamics. Instead, the control, if needed, is indirectly included as impulsive

maneuvers between segments as seen in Fig. 2.1 and minimized in the optimization

problems of Section 4.4.

To regularize the two-body dynamics of Eq. (4.10), a differential transforma-

tion is applied by multiplying Eq. (4.10) by the DST shown in Eq. (4.2):

x′ = ẋt′ = dx
dτ

=
dx
dt

dt

dτ
= f(t)rα (4.11)

where the derivative with respect to a pseudo time τ is defined as ( )′ = d
dτ ( ). The

independent variable is thus τ when numerically integrating Eq. (4.11) and time t is

a dependent variable, increasing the six-state x in Eq. (4.9) to seven states. In other

words, t is tracked by integrating t′ = rα. Other differential time transformations

on the two-body dynamics shown in Eq. (4.10) are similar to the DST, for example

arc-length defined as dt = v−1dτ .

4.3.2 Propagation Results

Five total differentials are compared to five total equivalent flight time functions.

These regularization scenarios are summarized in Table 4.2 and, in column-order, are

time, three different Sundman transformations, and a generic arc-length transfor-
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mation. The arc-length transformation in this work demonstrates that flight time

functions built from differential regularizations are not limited to the Sundman

transformation. Different applications will benefit from different regularizations.

Also note, for column two, constant steps in E are achieved for α = 1 if a and e are

constant, as is the case for Keplerian orbits.

Table 4.2: Regularization scenarios for the forward propagation of an
orbit. (a, e) = (5.0 DU, 0.5).

Regularization Time Sundman Sundman Sundman Arc-Length
Scenario α = 0 α = 1 α = 3/2 α = 2

Differential dt = dτ adt = rdτ adt = r3/2dτ adt = r2dτ dt = v−1dτ

Piecewise ∆t = ∆τ b∆t = r0∆τ b∆t = r
3/2
0 ∆τ b∆t = r20∆τ ∆t = v−1

0 ∆τ
aDST | bPST

For the representative forward-propagation example, a Keplerian orbit (a =

5.0 DU and e = 0.5) is numerically integrated with a fixed-step, eighth-order Runge-

Kutta method [208]. This orbit is discretized into three different segment quanti-

ties: 12, 24, and 48 segments via both the piecewise and differential transforma-

tions. Thus, there are 30 scenarios to consider, i.e. (‘5 differentials’ + ‘5 piecewise

functions’) × ‘3 discretization quantities’. For all 30 scenarios, the ∆E and en-

ergy are tracked for each segment of the Keplerian orbit. Energy is defined as

E = v2/2 − µ/r, a constant of integration for Keplerian motion, where r and v are

the magnitude of position and velocity, respectively. The performance is measured

for every segment as a deviation from a constant ∆E and a deviation from a constant

E. The ‘energy error’ of a segment is defined as the current E minus the previous E,

both measured at the initial position and velocity of the respective segments. The

energy error increases for longer segments because each segment is just a single fixed

step of the Runge-Kutta integrator.

The flight time functions and the differential equivalents must propagate
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the exact same total flight time for a fair comparison. The DST has an analytic

Keplerian period τp as reported in Table 4.1, so stepping in 12, 24, and 48 equal steps

is straight-forward: simply divide τp by these quantities. For the PST, stepping the

same amount of ∆τ , derived from the DST, produces a slightly different total flight

time. A constraint on total time of flight must be imposed as a pre-process step

for all the DST and PST scenarios: |∆ttotal −∆ttotal,s| < 10−8, where ∆ttotal is the

computed total flight time and the inclusion of subscript s is for specified. Then the

unique ∆τ for each scenario is used for the forward propagation. Otherwise, slight

variations in the final, total time of flight occur between the numerically integrated

solutions, including the DST. Total time of flight is also constrained in examples 1

and 2 for the optimization problems in Section 4.4. Both these examples use the

PST and DST, where α = 1.

For efficient forward propagation of Keplerian orbits in time, the piecewise

functions only need to approximate the differential behavior shown in Figs. 4.3

and 4.4. Figure 4.3 plots the ∆E of each constant ∆τ segment vs. the segment

number as a percentage of the total number of Keplerian orbit segments. For the

24-segment orbit, the right subfigure of Fig. 4.1 is the same spacecraft trajectory

using the DST and α = 1, while visualizations of the other 24-segment trajectories

of Table 4.2 are excluded for brevity. Similar Keplerian orbit discretization visuals

using the Sundman transformation are found in Fig. 1 of Ref. [207]. As expected

in Fig. 4.3, the DST with α = 1 produces a discretization that is proportional to

∆E, while the other differentials produce a discretization that is periodic about

a constant ∆E. The discretizations of the time of flight functions trend (top to

bottom) toward a better approximation to the equivalent differentials as the number

of segments increases. A major goal of a regularizing mechanism in orbital mechanics
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is to achieve a constant level of error across a Keplerian orbit when using fixed steps.

Figure 4.4 shows the poor performance of the time case (no regularization) with a

seven to eight order-of-magnitude variation in the energy error, while the regularized

cases show a two to five order-of-magnitude variation. For columns two through four

in Fig. 4.4, both the PST and DST behave similarly, decreasing the energy error as

segment count increases. Overall, this numerical experiment demonstrates that a

forward propagation can retain time as the independent variable for the dynamics

if flight time functions are used to approximate regularizing behavior.
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4.4 Trajectory Optimization: Piecewise Sundman

Transformation

In this section, a trajectory optimization problem is formulated in Section 4.4.1

and followed by results in Section 4.4.2. The formulation of the optimal control

problem stands to benefit from the PST and is used in four different examples.

The formulation describes (i) the minimized cost function, (ii) the decision vari-

ables, (iii) the inclusion of constraints, (iv) two optimization techniques (EBVP and

IVP)—connecting the decision variables and the cost, (iv) mass and thrust histo-

ries, and (v) a custom-built unconstrained optimizer. The cost and PST partials

are included in the appendix.

The four examples and their solution to the optimal control problem illus-

trate PST behavior. Large-scale problems with many segments are directly solved
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that may otherwise be intractable. All locally optimal solutions are fixed-state to

fixed-state, but orbit-to-orbit scenarios are simple extensions. In example 1, the po-

sition coefficient of the PST varies to model a simple Keplerian orbit. The numerical

analysis is an extension of the previous propagation problem in Section 4.3. The

position coefficient r∗ = (r0 + rf )/2 best approximates the DST by averaging be-

tween the discretization behavior of the initial and final forms: r∗ = r0 and r∗ = rf .

In example 2, a comparison is presented between the EBVP and IVP techniques:

two low-fidelity, impulsive maneuver solution methods for the optimal control prob-

lem. The following technique descriptions are repeated here for convenience. The

IVP technique is a state-of-the-art shooting method, using a Keplerian solver for

sequentially dependent segments and impulsive maneuvers for control. The deci-

sion variables are the impulsive maneuvers. The EBVP technique uses embedded

Lambert problems, independent segments, and positions as decision variables. The

impulsive maneuvers are dependent on the positions. The relatively faster and more

robust performance of the EBVP technique is enabled by the PST. In example 3,

the first two sub-examples vary only a and e, respectively, to demonstrate that the

PST produces a discretization that can approximate equal steps in ∆E in both

cases. Then in the third sub-example, a, e, and inclination i significantly change

for a large problem that contains 12,287 segments (12,288 nodes) and 512 revs. In

example 4, optimal transfers are found from a circular to a hyperbolic orbit using

the same ∆τ for every segment of a solution. For a particular solution, the total

time of flight ∆ttotal,s is fixed and a homotopy is performed from an energy to a fuel

optimal solution.
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4.4.1 Problem Formulation

The overview of the problem is

minimize
∆vi(xd)

cost function J = k
n∑

i=1
∆vi + (1− k)

n∑
i=1

1
2∆v2i

a

subject to dynamics a = − µ
r3

r b

boundary conditions x1− = x1−,s, xn+ = xn+,s
c

path constraints ∆ri = ri+ − ri− = 0 d

afuel plus energy | btwo-body | cfixed-state to fixed-state | dposition continuity

As shown in Eq. (3.1) of Chapter 3 and repeated here for convenience, the

minimized cost J is a weighted sum of impulsive maneuver magnitudes, ∆vi, and

their square, ∆v2i :

J = k

n∑
i=1

∆vi + (1− k)

n∑
i=1

1

2
∆v2i

where the ∆vi are velocity discontinuities between each segment or at each node

from node 1 to n along the spacecraft trajectory, as described in Chapter 2. The

weighted sum using k enables a homotopy where k = 1 corresponds to fuel optimal

trajectories and k = 0 corresponds to energy optimal trajectories. If 0 < k < 1, the

result is a hybrid between the two. When selecting k, it is a fixed quantity for a

particular optimal solution, but can vary for different neighboring optimal solutions.

Fuel optimal trajectories minimize the use of fuel mass through the rocket equation

shown in Eq. (3.4). Energy optimal solutions minimize the additional kinetic energy

of the ∆v’s.

The cost J in Eq. (3.1) is augmented to include constraints. Each constraint

has quadratic form and a penalty coefficient, turning the cost function into a penalty

function. The specified constraints are total time of flight ∆ttotal,s, final position
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rn,s, and final velocity vn,s. The penalty function is

J̃ = J +
1

2
c̃∆t(∆ttotal −∆ttotal,s)

2

+
1

2
c̃r(rn − rn,s)T (rn − rn,s) +

1

2
c̃v(vn+ − vn+,s)

T (vn+ − vn+,s) (4.12)

where c̃∆t, c̃r, and c̃v are the penalty coefficients for total flight time, final position,

and final velocity, respectively. Note rn,s and vn,s are always satisfied at every

iteration when using the EBVP technique. In contrast, the IVP technique must

enforce these constraints: rn,s and vn+,s.

The decision state xd for the EBVP technique is

xd =

[
∆τ, r>2 , · · · , r>n−1

]>
(4.13)

where ∆τ is equal for each segment and position ri is from node 2 to n− 1, not 1 to

n, so the length is 3n−5. The initial position r1 and final position rn are fixed along

with the respective initial velocity v1− and final velocity vn+ for fixed-state to fixed-

state optimal trajectories, i.e. r1 = r1,s, rn = rn,s, v1− = v1−,s, and vn+ = vn+,s. In

other words, the initial and final fixed-states are defined as x1− =
[
r>1 , v>1−

]> and

xn+ =
[
r>n , v>n+

]>, respectively. The decision state xd for the IVP technique is

xd =

[
∆τ, ∆v>1 , · · · , ∆v>n

]>
(4.14)

where ∆τ is still the independent propagation variable, but the impulsive maneuvers,

∆vi, are now independent from node 1 to n. The length is 3n+ 1.

For examples 1–4, the cost function Eq. (3.1) and penalty function in Eq.

(4.12) depend on the decision variables in Eqs. (4.13) and (4.14) through the use of
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the EBVP or IVP technique. The EBVP technique, using Eq. (4.13) as input, uses

a fast, robust, and publicly available [17] Lambert solver [16]. This interpolated

Lambert solver provides a fixed, one iteration solution for unperturbed two-body

dynamics. The partials of this EBVP solver are directly found using the interpo-

lated solution, but the variational state transition matrix and the Lagrange f and g

coefficients can also be used to compute the partials, as illustrated in Ref. [105]. For

example 2 only, the IVP technique uses Eq. (4.14) and an analytic, universal variable

solution to Kepler’s problem [79] (See Sect. 4.3–4.5, pp. 191–212.). No iterative

routine is needed because the independent variable is the universal variable, ∆τ in

this current work, not flight time. The single leg of the IVP technique is comprised

of many sequential, position continuous segments with impulsive maneuvers at each

node. Only the position and velocity continuity at the last node must be enforced

by the optimizer.

Similar to Chapter 3, for the optimization, a custom-built, gradient-based,

unconstrained optimizer (FMINUNCUT) employs a Broyden [160]-Fletcher[161]-

Goldfarb[162]-Shanno[163] (BFGS) search direction, and a line search using a golden

ratio method with quadratic interpolation at every major iteration. FMINUNCUT

takes advantage of fast BLAS [169] matrix and vector operations and the paralleliz-

able EBVPs for examples 3 and 4. Parallelization is not necessary for example 1

because of the short runtime and example 2 does not implement it because the single-

shooting version of the IVP technique is not parallelizable. Multi-shooting IVP

techniques are parallelizable but position and velocity continuity must be enforced.

Examples 1, 3, and 4 satisfy the inequality ||dJ/dxd|| ≤ 10−6. Example 2 satisfies

the following three inequalities (Gill et al. [209], pp. 306–307): (Jprev−J)/(1+|J |) <

10−10, ||xdprev−xd||/(1+ ||xd||) <
√
10−10, and ||dJ/dxd||/(1+ |J |) ≤

3
√
10−10, where
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( )prev means the previous iteration and no subscript means current. For more details

on FMINUNCUT, see Ref. [173].

Finally, as mentioned in Chapter 3, specifically Section 3.2, mass mi+ and

thrust Ti(i+1) histories are defined by Eq. (3.4) and Eq. (3.5), respectively, and are

computed after optimization. The equations are repeated here for convenience.

mi+ = mi−e
−∆vi/c Ti(i+1) = mi+

∆vi
∆ti(i+1)

4.4.2 Optimization Results

Example 1: Effect of the Position Coefficient of the PST

Example 1 is an extension of the previous propagation of an eccentric Keplerian

orbit in Section 4.3. The solution to this BVP is trivial. The fuel optimal solu-

tion is to apply no impulsive maneuvers to model a Keplerian orbit. Importantly

though, analyzing the average position coefficient r∗ = (r0 + rf )/2 of the PST for

a simple Keplerian orbit is only possible with an EBVP technique. Furthermore,

for comparison, the initial and final position coefficients, r∗ = r0 and rf , are also

included using the EBVP technique. The inclusion of the DST from Section 4.3 is

used as a reference, where fixed-steps in ∆τ are proportional to ∆E. See Fig. 4.3,

second column from the left, and in the middle row for this particular DST case.

As a reminder, no optimization is performed for this DST case (or differential in

Fig. 4.5). All four scenarios (3 position coefficients for the PST + 1 DST) use a

Sundman exponent of α = 1 to efficiently model a Keplerian orbit. The initial and

final fixed-states are the same at the true anomaly of 0◦ and 360◦ for a Keplerian

orbit defined by (a, e) = (5.0 DU, 0.5) and discretized into 24 segments. See the

right subfigure of Fig. 4.1 for a similar trajectory.
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As in the propagation problem of Section 4.3, ∆E varies depending on the

form of the discretization. Fig. 4.5 shows the evolution of ∆E for the three different

choices of position coefficients. The observations are (i) the average position coeffi-

cient of the PST, i.e r∗ = (r0+rf )/2, gives a closer approximation to a constant ∆E

than the initial and final position coefficients, (ii) all three position coefficients r∗

are periodic over one orbit, and (iii) the initial and final position coefficients, r∗ = r0

and rf , mirror each other’s behavior. The ∆E of the outbound journey away from

periapsis underestimates and overestimates a constant ∆E for the initial and final

position coefficient, respectively. For the inbound journey towards periapsis, the

reverse is true. The ∆E history of the initial position form of the discretization us-

ing an EBVP technique is similar to the propagation problem. Again, see Fig. 4.3,

second column from the left, and middle row for the PST case where r∗ = r0 and

α = 1. Energy error is not included here because of the mass-leak set to 10−4,

commonly used to avoid singularities in the partials that occur when impulsive ma-

neuvers approach zero (see appendix). The PST using r∗ = (r0 + rf )/2 is used for

examples 2, 3, and 4 hereafter.
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Example 2: Effect of the PST on Optimization Performance

Example 2 compares the optimization performance of two low-fidelity, impulsive ma-

neuver techniques: the IVP vs. EBVP technique. The PST enables the EBVP tech-

nique and IVP techniques are found in state-of-the-art software such as MALTO[90],

GALLOP[210], and PyKEP[211]. For a fair comparison, both techniques use the

same unconstrained FMINUNCUT optimizer, notably using a BFGS search direc-

tion and an unsophisticated penalty function to enforce constraints. The position

coefficient for the PST is r∗ = r0 and both the PST and DST use exponent α = 1.

Defining a stage, the FMINUNCUT optimizer solves one unconstrained problem us-

ing the penalty function Eq. (4.12). Many sequential stages are needed to enforce

the constraints below a small tolerance. After one unconstrained problem is solved

for a stage, the penalty coefficients are each updated by a factor of five if their re-

spective constraint is not satisfied. In particular, the tolerances for total flight time,

final position, and final velocity are |∆ttotal −∆ttotal,s| < 10−3, ||rn − rn,s|| < 10−7,

and ||vn − vn,s|| < 10−4, respectively. These tolerances are slightly more conserva-

tive than 1 s, 1 m, and 1 m/s in metric units if the canonical units are defined as

1 DU = 6,378,000 m and 1 TU = 806.8 s. Additionally, and by design, the first

stage is time-free, but afterwards, the second and later stages enforce a total flight

time that is 10% greater than the time-free flight time. The position and velocity

constraints are implicitly enforced with the EBVP technique but must be enforced

with the IVP technique. Overall, there are seven constraints for the IVP technique

[total flight time (1), final position (3), and final velocity (3)] and one constraint for

the EBVP technique [total flight time (1)].

The energy optimal transfers [k = 0 in Eq. (3.1)] are from a fixed-state

to fixed-state, defined by (a, e) = (1.0 DU, 0.0) to (5.5 DU, 0.6) at true anomaly
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0◦ for both orbits. The number of revs is varied from 1 to 30 where each rev

contains initially 24 segments per rev via a Keplerian orbit as the initial guess:

(a, e) = (4.9 DU, 0.7959). The IVP and EBVP techniques both use as an initial

guess ∆τ = 2π/24 for the propagation variable, but the IVP technique uses zero-

magnitude, impulsive maneuvers for decision variables, while the EBVP technique

uses the position variables of the Keplerian orbit. Importantly, this initial guess

was designed to accommodate the sensitivity of IVP technique. Sometimes when

iterating on the ∆τ variable with the IVP technique, the solution can jump to

a neighboring rev solution without safeguards, namely a good initial guess. The

EBVP technique is generally more robust against bad initial guesses (See Section

4.5 of Ref. [173]).

Fig. 4.6 presents the performance results of this study. The top-left subplot

of Fig. 4.6 shows gradual speed up of runtime per iteration for segment counts up

to approximately 400 segments or about 17 revs. After 400 segments or the kink

in the curve, the cost quadratically increases because of the BFGS search direction,

consistent with previous work [173] (See Fig. 4.). While the runtime per iteration of

the IVP technique is always less than the EBVP technique, the total runtime, shown

in the top-right, is more because more iterations are needed. See bottom-right. In

fact, past about 360 segments or 15 revs, the IVP technique is runtime intractable,

taking minutes to optimize when the EBVP technique takes seconds. Furthermore,

parallelization improvements are available, but not implemented here, for the EBVP

technique because each segment is independent and not sequentially dependent on

previous segments like in the IVP technique. Lastly, the penalty coefficient updates

of the bottom-left subplot of Fig. 4.6 track the number of times a penalty coefficient

is updated by a factor of five until a tolerance in the particular constraint is satisfied.
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The total amount of stages is equal to the max number of penalty coefficient updates

needed overall, accounting for the time-free solution of stage one.

The illustrated example in Figs. 4.7 and 4.8 is one data point of Fig. 4.6.

Fig. 4.7 shows the discretization history of both the IVP and EBVP technique are

approximately equivalent, while Fig. 4.8 reinforces the substantial increase in itera-

tions of the IVP technique relative to the EBVP technique. Notice both techniques

of this 240-segment, or 10-rev, solution need eight stages to satisfy the constraints.

For this set of examples, the final position or total flight time constraint drives the

need for more stages. However, the EBVP technique satisfies the flight time con-

straint in substantially fewer iterations and does not need to enforce position or

velocity continuity explicitly with the optimizer. Also note, at the top of Fig. 4.8,

two magnifications of the last three stages of the cost history are shown for both

the IVP and EBVP technique. Both magnifications show a slight jump in cost as

the penalty coefficients of the constraints are increased.

In all, the EBVP technique, improved by the PST, performs substantially

better than its counterpart, the IVP technique. The EBVP technique is faster for

almost any segment count, save for the 24-72 segment range. This study also helps

motivate example 3, an exploration of more efficient discretizations for transfers

that substantially vary both semimajor axis and eccentricity by varying α. For this

example 2, using exponent α = 1, the PST produces a discretization of fixed-steps

in ∆τ that are not equivalent to equal steps in ∆E.
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Figure 4.7: Example 2: Discretization comparison of the IVP and EBVP technique
for a 240-segment or 10-rev energy optimal solution. The two discretizations of the
trajectory (left) and the plots (right) for ∆E vs. energy and eccentricity are nearly
identical. Energy here is E = −µ/2a. The transfer is defined by (a, e): (1.0 DU,
0.0) to (5.5 DU, 0.6) with a specified 211.0356 TU TOF.
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Figure 4.8: Example 2: Cost and constraints vs. iteration count for a 240-segment
or 10-rev, energy optimal solution using the IVP and EBVP technique. Penalty
stages are labeled and magnifications (top) of the cost for the last three stages are
included. The transfer is defined by (a, e): (1.0 DU, 0.0) to (5.5 DU, 0.6) with a
specified 211.0356 TU TOF.

Example 3: Effect of the Exponent of the PST

By varying the α, example 3 demonstrates how the PST enables a larger design

space for direct spacecraft trajectory optimization problems that use many segments

for the discretization. The first and second sub-examples of example 3 significantly

change a and e in Figs. 4.9 and 4.10, and the third sub-example significantly changes

a, e, and i in Figs. 4.11 to 4.13. All these sub-examples minimize energy [k = 0 in

Eq. (3.1)] and use the EBVP technique.

The first two sub-examples are time-fixed at 220 TU and use 10 revs and

240 segments total. Notably, the rev count is naturally enforced when minimizing

energy, a quadratic cost, if the initial guess is of the same rev count. These two sub-

examples are orbital transfers from a fixed-state to a fixed-state at a true anomaly
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of 0.0◦. The transfers are defined by (a, e) = (1.0 DU, 0.0) to (5.5 DU, 0.0) and (5.5

DU, 0.0) to (5.5 DU, 0.6), respectively. Both sub-examples achieve approximately

equal steps in ∆E (24 steps per rev) if the trajectory approximately changes a only

or e only using α = 3/2 or 1, respectively, for the PST. Moreover, for the second

sub-example that changes e only, α = 3/2 also performs well where the initial to

final segment count per rev is 23 to 26, respectively, noting that the initial and final

segment count per rev of all examples in this work create an approximate range of

possible values. Thus, the use of α = 3/2 benefits transfers changing both a and

e with approximately constant changes in segment count per rev. Other segment

counts of the first and second sub-examples are presented in Table 4.3,

For these optimal control problems, equal steps in ∆E via the PST produces

two notable benefits. First, any trajectory design that significantly varies a and e

with impulsive maneuvers produces a higher-fidelity approximate thrust or control

model over the entire trajectory. Second, a unique problem for spacecraft trajectory

optimization using EBVPs is transfer-plane ambiguity for a single segment. Two

transfer-plane ambiguities that can be encountered are the 0◦ transfer with non-zero

flight time, and the 180◦ transfer. These transfer-plane ambiguities are mitigated

through the use of the PST. For example, and for performance emphasis, the third

sub-example is not feasible without the PST using α = 3/2 and r∗ = (r0 + rf )/2

because the 0◦ and 180◦ transfer-plane ambiguities are encountered if equal steps in

time are used. Equal steps in time encourage 180◦ and 0◦ transfer ambiguities near

and far from the gravitational body, respectively. Similar, potentially problematic

transfer-plane behavior is shown in the top left sub-figure of Fig. 4.9 if fewer segments

were used for this trajectory.

For the final sub-example, the problem is time-free and large, using 12,287
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segments (12,288 nodes) and 512 revs to transfer from a fixed-state to fixed-state at

the periapsis of an initial and final orbit defined by (a, e, i) = (1.0 DU, 0.0, 30◦) to

(5.5 DU, 0.6, 0◦). The ∆E is periodic about approximately 15◦. The segment count

on the first rev is between 23 and 24 (rounded down or up, respectively) and the

segment count on the last rev is between 25 and 26, a 1.09× increase approximately

predicted by dividing the final and initial τp periods: τp,f/τp,0 ≈ 6.82/2π ≈ 1.09×.

The optimization of the final sub-example is performed with a continuation method.

The first optimal solution is from a coasting trajectory on the initial orbit using 12

nodes for 2 revs. The next eight solutions optimize a modified, previously optimal

solution. The modification doubles the rev count from the previous solution, so

the node count and total time of flight double, but not the number of nodes per

rev. The last two solutions double the number of nodes per rev, but keep fixed

the number of revs. Toward the end of the continuation method, Table 4.4 shows

the runtime is dominated by the n2 computations, necessary for a BFGS search

direction calculation. The total runtime is 39.4 hours where 89.4% of it is from the

last doubling. However, inspection of Table 4.4 reveals significantly shorter runtimes

for smaller node (or segment) counts, e.g. 4.2 hours total runtime for a 6144-node

(6143-segment) trajectory. As a final note, conjugate gradient search directions to

avoid the n2 computations of the BFGS search direction are investigated, but found

to be insufficient for this challenging problem, taking more total runtime.
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Table 4.3: Segment count of initial and final rev of example 3 shown in
Figs. 4.9 and 4.10.

Regularization
Scenario

Time Sundman Sundman Sundman
α = 0 α = 1 α = 3/2b α = 2

Orbit Transfer for a Only, (a, e) = (1.0 DU, 0.0) to (5.5 DU, 0.0)
Number of
Segments

Initial Rev 6 16 24 32
Final Rev 73 36 24 16

Segment Ratio 12.2×a 2.3× 1.0× 0.5×

Orbit Transfer for e Only, (a, e) = (5.5 DU, 0.0) to (5.5 DU, 0.6)
Number of
Segments

Initial Rev 24 24 23 22
Final Rev 24 24 26 28

Segment Ratio 1.0× 1.0× 1.1× 1.3×
aSegment ratio is final divided by initial segment count. | bHighlighted for emphasis.
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Table 4.4: Runtimes for the continuation method for the third sub-example of
example 3 in Figs. 4.11 to 4.13.
Case Runtime Case Runtime

Coast → 12n, 2r < 0.1 s Prev. → 768n, 128r 70.7 s (1.2 m)
Prev. → 24n, 4r 0.1 s Prev. → 1536n, 256r 1090.1 s (18.2 m)
Prev. → 48n, 8r 0.2 s Prev. → 3072n, 512r 3704.4 s (61.7 m, 1.0 h)
Prev. → 96n, 16r 0.4 s Prev. → 6144n, 512r 10161.2 s (169.4 m, 2.8 h)
Prev. → 192n, 32r 1.7 s Prev. → 12288n, 512r 126730.5 s (2112.2 m, 35.2 h)
Prev. → 384n, 64r 14.3 s TOTAL 141773.7 s (2362.9 m, 39.4 h)
n is for nodes and r is for revs.

Example 4: Circular to Hyperbolic Orbit Transfer using the PST

A spacecraft trajectory can transfer through the parabolic boundary from a circular

to a hyperbolic orbit using the PST with α = 3/2 for an efficient discretization.

Traversing this boundary with the PST draws a parallel to one of the original pur-

poses of the DST. The DST was a time transformation that produced a universal

anomaly for all Keplerian conics from circular to hyperbolic. See page 191 of Bate

et al. [79]. To demonstrate this transfer, Fig. 4.14 shows the energy cost vs. total

time of flight for different energy optimal trajectories from a circular to hyperbolic

orbit, (a, e) = (1.0 DU, 0.0) to (−2.4142 DU, 1.4142). Each solution for Fig. 4.14 is

characterized by a different number of revs between 1 and 10, and a different time

of flight between 10 and 1000 TU. In particular, a time-free solution is most obvious

near the minimum of the 1-rev curve at approximately 30 TU total time of flight.

Other energy optimal solutions using more than 1000 TU total time of flight are not

shown, nor desirable, because the last rev approaches a a of infinity. Each solution

of Fig. 4.14 contains 240 segments and optimizes in a few seconds. Overall hundreds

of time-fixed solutions are solved in about one hour. One solution, termed ‘plotted

example’, is illustrated in Fig. 4.15 as an energy optimal solution and a homotopy is

99



performed to the fuel optimal solution per Eq. (3.1). For this example, the evolution

of E and e, as well as Ti(i+1) and mi, with respect to ti and node i are shown in

Fig. 4.16 and Fig. 4.17, respectively. Note the straight lines (red) attached to the

trajectory in Fig. 4.15 are the ∆v’s for this solution. The homotopy places the large

∆v’s of the fuel optimal solution (k = 1) in the center of the smaller ∆v’s of the

energy optimal solution (k = 0) for the right-half figures that plot node history. The

squares in Fig. 4.15 are at the initial time of a hyperbolic segment. There are one

and nine hyperbolic segments for the fuel and energy optimal solutions, respectively.
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Figure 4.17: Example 4: t (left) and node i (right) history for the energy and
fuel optimal spacecraft trajectories in Fig. 4.15. The left and right side show the
evolution of T and m, as well as ∆v and m, respectively. Note mn+ = 0.542 and
0.297 MU for k = 1.0 and 0.0, respectively.

4.5 Conclusions

For a trajectory discretized into many segments, a piecewise Sundman transforma-

tion produces flight time functions that approximately model the regularizing behav-

ior of differential transformations, while retaining time as the independent variable

for the dynamics. Two applications use these flight time functions: a forward prop-

agation problem to numerically integrate a Keplerian orbit, and four optimization

problems that use many embedded Lambert boundary value problems for two-body

dynamics. In the propagation problem, the functions either approximate arc-length

or the Sundman transformation. The functions with piecewise-constant coefficients

trend toward the differential transformation as the number of segments of a trajec-

tory increases. In the optimization problems, the piecewise Sundman transformation

improves low-fidelity, spacecraft trajectory optimization. The piecewise transforma-

tion enables the embedded Lambert technique to outperform a state of the art that
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uses an initial value technique. The similar, low-fidelity, initial value technique uses

many solutions to the Kepler problem instead of the Lambert problem for each seg-

ment. The embedded Lambert problem technique is faster for problems larger than

72 segments. In fact, problems bigger than approximately 360 segments are runtime

intractable for the initial value technique. At 360 segments, the embedded Lambert

technique converges in seconds, while the initial value technique takes minutes.

Additionally, in the optimization problems, it is shown spacecraft trajecto-

ries using approximate continuous thrust in a two-body system benefit from an

exponent of 3/2 because the transfers significantly change semimajor axis and ec-

centricity. This 3/2 exponent produces a periodic discretization about a fixed-step

size approximately proportional to eccentric anomaly. Other exponents, particularly

1 and 2, fail to produce a discretization proportional to eccentric anomaly if both

semimajor axis and eccentricity significantly change.

These approximate time of flight functions are not exclusive to the presented

scenarios and are especially practical for applications that require time as the in-

dependent variable. This piecewise Sundman transformation facilitates spacecraft

trajectory optimization that uses the solution to many embedded Lambert prob-

lems, affording solutions to new classes of challenging problems. Besides enabling

trajectories that can significantly vary semimajor axis and eccentricity, the trajecto-

ries can: (i) contain hundreds of revolutions and thousands of segments, (ii) transfer

from circular to hyperbolic orbits, and (iii) be fuel or energy optimal.
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Chapter 5

Direct-to-Indirect Mapping for

Optimal Low-Thrust Trajectories

5.1 Introduction

Low-thrust electric propulsion for spacecraft enables efficient orbital transfers be-

cause of the high-specific-impulse engines [63]. The corresponding trajectories trade

long flight times to minimize fuel. Optimization of these trajectories is difficult.

The optimal control problems can include many unknowns, constraints, revolutions,

non-smooth behavior, and a sensitive design space. Many solution approaches ex-

ist [63] to make low-thrust problems more tractable. One popular approach is to

use an orbital element set for the coordinate system [212]. These approaches often

also use orbital averaging, where the dynamics are simplified by averaging over a

period to find near-optimal solutions. It is common to average the equinoctial el-

ements [99] or the modified equinoctial elements [101, 213, 214, 215, 216], but not

all approaches [103, 104] do. Scheel and Conway [99] in 1994 found minimum-time,

low-thrust, many-rev trajectories around Earth, modeled with equinoctial elements

in a Runge-Kutta parallel-shooting method for the NLP problem. Kluever and Ole-
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son[214] in 1998 found near-optimal, minimum-time, low-thrust transfers too, but

used extremal feedback control to maximize the time rates of averaged modified

equinoctial elements. The research incorporated Earth shadowing, J2, and solar

cell degradation. In 2016, Graham and Rao [103] solved similar minimum-time,

many-rev problems in two types of phases. For the many single-phases, an initial

guess for the trajectory is generated from the geometry of the shadow region. The

total multi-phase optimal control problems use hp-adaptive Legendre-Gauss-Radau

orthogonal collocation to find high-accuracy solutions. In 2020, Shannon et al. [104]

paired a Q-law Lyapunov function with direct collocation, splitting the low-thrust,

many-rev problem into two parts. The model used non-averaged modified equinoc-

tial elements, efficiently finding near-optimal minimum-time or -mass solutions.

These approaches using modified equinoctial elements are fast and useful, but

they are often complex and less physically intuitive. Instead, in this current work,

the solution approach to solve the low-thrust, many-rev, two-body problem uses

the simpler, physically-intuitive, singularity-free, Cartesian coordinates, while im-

portantly maintaining efficiency standards. Furthermore, in this coordinate system,

the solution approach is a mapping from a direct solution to its indirect equivalent.

The mapping is for the class of minimum thrust-acceleration-squared problems gov-

erned by symmetric and skew-symmetric dynamics [217]. The direct solution is a

coast-impulse trajectory and the indirect solution is a continuous-thrust trajectory.

The coast-impulse model uses many Keplerian segments separated by many im-

pulses (impulsive maneuvers) and is otherwise known as the Sims-Flanagan [77, 90]

model.

A qualitative, but accurate visual of the mapping is presented in Fig. 5.1.

Both trajectories are an optimal, thrust-acceleration-squared, Hohmann-like trans-
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fer from two different circular orbits in the two-body problem. While the original

motivation of this current work is to solve low-thrust, many-rev, two-body prob-

lems, this visual provides clarity on form. The impulses of the direct solution are

approximately equivalent to the continuous-thrust profile, both multiplied by ×10

for emphasis. Additionally, for the optimal solution, the direct and magnitude (but

not units) of the thrust-acceleration vectors are exactly the same as the relative

position and velocity vectors of a particular neighboring trajectory. This thrust-

acceleration equivalency to the neighboring path is used for the mapping. In fact,

this discrete, direct model converges to the indirect, continuous model as the num-

ber of segments and impulses increase, similar to how a finite sum is approximately

equal to a continuous integral. This convergence makes the mapping remarkably

Figure 5.1: Hohmann-like transfer for a minimum thrust-acceleration-squared prob-
lem using a direct, coast-impulse model or indirect, continuous-thrust model.
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simple, only needing as input a small set of positions, velocities, and flight times

associated with any one time along the direct solution. The output is the nearly-

optimal state and control for the indirect problem at this same time, efficiently

updated to optimality to complete the mapping.

The direct-to-indirect mapping allows for the benefits of both models. Coast-

impulse models are simple, fast, and reliable, notably implemented in the software

packages MALTO [90], GALLOP [210], PyKEP [211], and EMTG [218, 219, 220],

and Copernicus [221]. Some techniques to find coast-impulse solutions include (1)

multi-shooting that enforces position continuity with either sequentially connected

segments or as a constraint in a NLP; (2) collocation techniques that can be struc-

tured to assume position continuity, but dynamics are enforced with constraints;

(3) differential dynamic programming [64, 222, 65, 66, 67], or (4) an inverse dy-

namics approach that uses many solutions to embedded Lambert problems [16, 17]

and the velocity discontinuities between segments, as demonstrated by the authors

[173, 223]. The mapping is indifferent to the source of the coast-impulse solution.

Furthermore, the convenience and large radius of convergence of the direct model

circumvents the hyper-sensitivity [56, 61] of the indirect model. The indirect model

simultaneously enables the minimization of the size of the NLP problem through a

shooting method [99] and improves the resolution of the state and control history.

The mapping determines the notoriously difficult co-states of the indirect

problem via primer vector theory, where the linear space around an optimal tra-

jectory is used but typically modeled with fewer impulsive maneuvers. Uniquely,

the mapping takes advantage of Lambert’s problem to facilitate the modeling of

the linear space. The first research using a primer vector with only a few impul-

sive maneuvers in a high-thrust application is by Lawden [44] (pp. 5–69) in 1963.
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Prussing [224] in 1969 and Jezewski [111] in 1975 also used primer vector theory

to optimize a spacecraft trajectory using a few impulsive maneuvers. Closer to the

present, in 2012, Hou-yuan and Chang-yin [225] considered a simple optimal control

problem that connects low thrust and the co-states coupled to the use of Lambert

problems. In 2017, Restrepo and Russell [217] worked on a shadow trajectory [158]

approach, leveraging the linear space around an optimal trajectory. In Restrepo

and Russell’s shadow-trajectory work, the forward propagation of the trajectory

is efficiently performed as a low-thrust initial value problem with many sequential

impulsive maneuvers. The initial co-states are connected to the physical linear vari-

ations to produce the optimal thrust direction for problems that assume constant

thrust or bang-bang thrust.

The direct-to-indirect mapping in this research draws a parallel to the rela-

tionship between discrete Lagrange multipliers of direct NLP problems to the equiv-

alent continuous co-states of indirect optimal control problems, extensively studied

in literature [226, 227, 228, 229, 230]. The direct problems in this work can verify

optimality by the approximation to the co-states determined from the mapping. In

1992, Enright and Conway [226] were the first to show that the Lagrange multipliers

for the defects of direct transcription (Hermite interpolation with Simpson Quadra-

ture or Runge-Kutta parallel shooting) are a discrete approximation to co-states of

the continuous optimal control problem. Later in 2001, Fahroo and Ross [227] ex-

tended Enright and Conway’s work by using a Legendre pseudospectral method to

estimate the co-states to the same order of accuracy as the states. A little earlier in

2000, Hager [228] looked at convergence rates of various Runge-Kutta discretizations

of optimal control problems, utilizing the equivalency of the Lagrange multipliers of

the NLP to the co-states. Benson [229] developed a Gauss pseudospectral method
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in 2006 that connected the KKT multipliers (Lagrange multipliers) of the NLP to

an accurate estimate of the co-state at the Legendre–Gauss points. Mapping these

Lagrange multipliers of the NLP to co-states was formalized by Gong et al. [230],

presenting a set of sufficient conditions for pseudospectral methods in which a solu-

tion to the discretized optimal control problem converges to the continuous solution.

Other works to determine co-states include: Yam and Longuski [231] who

explored different formulations of the impulsive-maneuver model coupled to Cheby-

shev polynomials to reduce the numbers of unknowns for low-thrust gravity-assist

trajectories with optimization runtimes on the order of minutes to hours, depending

on the formulation; as well as Lee and Bang [232] who proposed an initial guess

structure for the co-states of fuel optimal spiral trajectories for planar, initially-

circular, specific-energy targeting problems. Adjoint control transformations exist

to translate from a more physical parameter space to the adjoint space (co-state

space). For example, Ranieri and Ocampo [233] produced optimal spiral trajec-

tories by estimating co-states in a two-step process. The research shows how to

first convert from the thrust unit direction to the co-states, then use a curve fit

extrapolation to produce longer spirals trajectories. Ayyanathan and Taheri [234]

extend adjoint control transformations to map from Cartesian coordinates to mod-

ified equinoctial elements.

Lastly, thrust-acceleration-squared solutions can serve as an initial guess for

practical, higher-fidelity problems. Many previous works combine indirect methods

with a homotopy for high-fidelity modeling. Some homotopies in literature minimize

total flight time [235, 103, 236], fuel [100, 237, 238], or energy [100, 237, 238] using

realistic constraints. In 2004, Haberkorn et al. [100] produced an optimal, energy-

to-fuel low-thrust transfer from low-Earth orbit to geosynchronous orbit (GSO) for
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various thrust maximums. Haberkorn then continued this work in 2011 with the

inclusion of eclipses [239]. In 2012, Jiang et al. [237] successfully used an energy-

to-fuel homotopy for two globally-optimal, low-thrust, gravity-assist problems. In

2016, Zhao and Zhang [238] produced a homotopy for energy-to-fuel optimal station

changes in geosynchronous equatorial orbit that considered two-body perturbations.

The homotopy leverages a normalization technique and a genetic algorithm for the

initial co-states of the indirect method. In 2020, Taheri et al. [240] produced a

high-fidelity homotopy for fuel-optimal spacecraft trajectories with variable specific

impulse and bang-bang thrust. In 2021, Wu et al. [241] created state-based, energy-

optimal control laws for rapid generation of low-thrust Earth-centric trajectories to

be used as initial guesses for higher-fidelity analysis.

The primary contributions of this current work are as follows: (1) The first

contribution is a simple, increasingly accurate direct-to-indirect mapping for the

minimum thrust-acceleration-squared problem using primer vector theory and Lam-

bert’s problem. The mapping is from a coast-impulse model to a continuous-thrust

model. Importantly, the mapping is indifferent to the origin of the direct model.

(2) The second contribution is a finite sum approximation to minimize thrust-

acceleration-squared using the coast-impulse model. (3) The third contribution is

the unprecedented optimization of low-thrust transfers with up to 500 revolutions in

Cartesian coordinates. The solution process used a multi-shooting method coupled

to the mapping, solving problems with various orbital element changes, both large

and small, in runtimes of about one hour.

The chapter is organized as follows. After this introduction as the first

section, the second section is on the discrete and continuous spacecraft trajectory

models used for the direct and indirect problems. The third section outlines two
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approximately equivalent, direct and indirect, optimal control problems. After the

necessary preliminary discussion on the models and optimal control problems, the

details of direct-to-indirect mapping is in the fourth section. In the fifth section,

examples are presented and performance is analyzed. The first set of examples

demonstrate the increasingly accurate mapping as the number of segments per rev

increase. The second set of examples are many-rev, many-segment transfers chang-

ing semimajor axis, eccentricity, and inclination. Two of these examples slightly

change semimajor axis or eccentricity, and the third significantly changes semima-

jor axis and eccentricity in a geosynchronous transfer orbit (GTO) to GSO problem.

5.2 Models

The overall goal of this current work is to map an optimal, direct state history xD

to the optimal, indirect state history xI for an optimal control problem minimizing

thrust-acceleration-squared and subject to two-body dynamics. Note the superscript

‘∗’ means optimal. This mapping with the associated control is compactly

x∗D → x∗I (5.1) Γ∗D → Γ∗I (5.2)

The mapping of Eqs. (5.1) and (5.2) is possible because the direct and indirect

solutions are approximately equivalent. In general, xD and xI are in a Cartesian

space and are functions of time, xD(t) and xI(t), respectively. The states are defined

as

xD =
[
r>D , v>D

]>
(5.3) xI =

[
r>I , v>I

]>
(5.4)

The vectors rD and rI are positions, and vD and vI are velocities.
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The state xD is subject to the dynamics, fD = fD(t, xD), as

ẋD = fD ⇐⇒
[
ṙ>D , v̇>D

]
=

[
v>D , a>D

]
(5.5)

where acceleration aD is equal to two-body acceleration, aD = a2BP,D = −(µ/r3D)rD.

Notably, the control for the direct model, ΓD, is not in the dynamics. The segments

are assumed to be Keplerian. Instead, thrust acceleration is discrete. At node i,

Γi,D =
∆vi,D

∆tavg,i,D
(5.6)

where ∆vi,D is the magnitude of an impulsive maneuver and average flight time is

∆tavg,i,D = (∆t(i−1)i,D+∆ti(i+1),D)/2. The flight times of the segments that neighbor

node i are ∆t(i−1)i,D and ∆ti(i+1),D, before and after, respectively.

The state xI is subject to the dynamics, fI = fI(t, xI), as

ẋI = fI ⇐⇒
[
ṙ>I , v̇>I

]
=

[
v>I , a>I

]
(5.7)

where acceleration aI is equal to two-body acceleration plus control, aI = a2BP,I +

ΓI = −(µ/r3I )rI + ΓI. The control for the indirect model, ΓI, is derived next in the

section for the optimal control problems.

5.3 Optimal Control Problems

The overviews for both optimal control problems follow:
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Direct Problem Overview

minimizexd
cost function JD = 1

2

n∑
i=1

Γ2
D∆tavg,i

a

subject to dynamics aD = a2BP,D
b

boundary conditions x1+,D = x0,s, xn−,D = xf,s
c

path constraints ∆ri,D = ri+,D − ri−,D = 0 d

athrust-acceleration-squared | btwo-body | cfixed x-state to fixed x-state | dposition continuity

Indirect Problem Overview

minimize
ΓI

cost function JI =
1
2

∫ tm
t1

Γ2
Idt

a

subject to dynamics aI = a2BP,I + ΓI
b

boundary conditions x1+,I = x0,s, xm−,I = xf,s
c

path constraints ∆yj,I = yj+,I − yj−,I = 0 d

athrust-acceleration-squared | btwo-body plus control| cfixed x-state to fixed x-state
dy-state continuity

The optimal states through time, x∗D and x∗I , are otherwise known as the

solutions to these direct and indirect problems. The problems are formed to be

approximately equivalent. As mentioned, both problems use two-body dynamics

a2BP and minimize thrust-acceleration-squared Γ2. The transfer is between fixed,

terminal, and specified states:

x0,s =
[
r>0,s, v>0,s

]
(5.8) xf,s =

[
r>f,s, v>f,s

]
(5.9)

where the specified position and velocities at the initial time are r0,s and v0,s, re-

spectively, and likewise rf,s and vf,s, respectively, for the final time. The total flight

time for both problems is from an initial time t0 to a final time tf .

5.3.1 Cost

The direct and indirect quadratic cost functions, JD and JI, respectively, are as

follows. The quadratic cost function of the direct problem is the finite sum of a
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discrete form of the thrust acceleration Γi,D:

JD =
1

2

n∑
i=1

Γ2
i,D∆tavg,i,D =

1

2

n∑
i=1

∆v2i,D
∆tavg,i,D

(5.10)

where the substitution of Γi,D is from Eq. (5.6). Note for ∆tavg,1,D = ∆t12,D/2 and

∆tavg,n,D = ∆t(n−1)n,D/2 because there is only one neighboring segment for nodes 1

and n, respectively. Also, t1,D = t0 and tn,D = tf . The quadratic cost function for

the indirect problem is the integral of a continuous form of the thrust acceleration

ΓI. This cost function is

JI =
1

2

∫ tm,I

t1,I

Γ2
Idt (5.11)

where t1,I = t0 and tm,I = tf . Both the direct and indirect representations for

thrust acceleration and flight time have the same approximate form at ti: Γi,D =

∆vi,D/∆tavg,i,D ≈ Γi,I = [dv/dt]i,I and ∆tavg,i,D ≈ [dt]i,I. This approximation is valid

because finite differences (∆) are related to differentials (d) of a generic variable x

as ∆x = dx+O(d2x). It is now apparent the direct and indirect costs, Eqs. (5.10)

and (5.11), are approximately equivalent.

5.3.2 Augmented Cost, First Differential, and Two-Point Boundary

Value Problem

The direct problem cost JD of Eq. (5.10) is assumed minimized such that xD = x∗D
and ΓD = Γ∗D. For the minimization of the indirect problem, the cost of Eq. (5.11) is

augmented with Lagrange multipliers or co-states to enforce dynamics and boundary

conditions in Eq. (5.12). The first differential of Eq. (5.12) then yields conditions

for an optimal solution. These conditions are enforced with a two-point boundary

value problem (TPBVP).
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Augmented Cost

The augmented cost is

JI = ν>r1,I(r1+,I − r0,s) + ν>v1,I(v1+,I − v0,s)

+ ν>rm,I(rf,s − rm−,I) + ν>vm,I(vf,s − vm−,I)

+

∫ tm

t1

[
1

2
Γ2
I + λ>rI (vI − ṙI) + λ>vI

(
− µ

r3I
rI + ΓI − v̇I

)]
dt (5.12)

where the specified positions and velocities at t1 and tm are shown in Eqs. (5.8)

and (5.9), respectively, and the variable positions and velocities at t1 and tm are r1+,I

and v1+,I, and rm−,I and vm−,I, respectively. The Lagrange multipliers νr1,I , νv1,I ,

νrm,I , and νvm,I enforce initial and final, position and velocity boundary conditions,

respectively. The time-varying Lagrange multipliers λrI and λvI are known as co-

position and co-velocity, respectively, and ensure the time-derivative of the state

conforms to the dynamics, Eq. (5.7).

First Differential

For convenience, a G and H term are defined with respect to Eq. (5.12):

G = ν>r1,I(r1+,I − r0,s) + ν>v1,I(v1+,I − v0,s)

+ ν>rm,I(rf,s − rm−,I) + ν>vm,I(vf,s − vm−,I) (5.13)

H =
1

2
Γ2
I + λ>rIvI + λ>vI

(
− µ

r3I
rI + ΓI

)
(5.14)

H is also known as the Hamiltonian and the Lagrangian is L = 1
2Γ

2
I . Taking the first

differential of Eq. (5.12) and using Eqs. (5.13) and (5.14), the necessary conditions

for a minimum produce the extrema of H with respect to the control, Eq. (5.15); the
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Euler-Lagrange equations, Eqs. (5.17) and (5.18); and the initial and final boundary

conditions, Eqs. (5.19) to (5.22).

The extrema of H with respect to the control, thrust acceleration, yields the

optimal control law Γ∗I . Note Γ>I ΓI = Γ2
I . Take

0 =
∂H

∂ΓI

>
= ΓI + λvI (5.15)

and rearrange to define the optimal control law:

Γ∗I , −λvI (5.16)

Equation (5.16) satisfies Pontryagin’s minimum principle [242] (ch. 1, sec. 3,

pp. 17–21) and Weierstrass (Legendre-Clebsch too) necessary conditions [205] (sec.

10.2–10.3, pp. 167–170). Proof not shown here for brevity.

Substituting Eq. (5.16) into Eq. (5.14), the Euler-Lagrange equations (the

dynamics for the co-states) are

λ̇rI = −
∂H

∂rI

>
= −GIλvI (5.17) λ̇vI = −

∂H

∂vI

>
= −λrI (5.18)

where the position-derivative of acceleration GI is defined as

GI =
∂aI
∂rI

=
−µ
r5I

(
r2I I3×3 − 3rIr>I

)
The initial and final boundary conditions, respectively, are

λr1+,I =
∂G

∂r1+,I

>
= νr1,I (5.19)

λv1+,I =
∂G

∂v1+,I

>
= νv1,I (5.20)

λrm−,I =
∂G

∂rm−,I

>
= −νrm,I (5.21)

λvm−,I =
∂G

∂vm−,I

>
= −νvm,I (5.22)
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where the Lagrange multipliers νr1,I , νv1,I , νrm,I , and νvm,I are arbitrary constants,

trivially enforced. Their values are simply the value of the associated co-positions

or co-velocities, λr1+,I , λr1+,I , −λrm−,I , and −λvm−,I , respectively, after propagation

to either t1 or tm.

Two-Point Boundary Value Problem

A TPBVP is formed to enforce the necessary conditions of the first differential,

particularly Eqs. (5.8), (5.9), (5.15), (5.17) and (5.18). Propagation of an augmented

state yI,

yI =
[
x>I ,λ>x

]>
=

[
r>I , v>I ,λ>rI ,λ

>
vI

]>
(5.23)

using Eqs. (5.17) and (5.18) (Euler-Lagrange equations) and the optimal control

law, Eq. (5.16) from Eq. (5.15), enforces these necessary conditions. To meet the

boundary conditions, Eqs. (5.8) and (5.9), a shooting method is devised. Define a

decision state ydk,I , similar to Eq. (5.23), at a time tk,I for each leg j(j + 1) of the

shooting method,

ydk,I =

[
r>k,I, v>k,I, λ>rk,I , λ>vk,I

]>
1×12

(5.24)

The decision state ydk,I is integrated backward and forward to tj,I and tj+1,I, re-

spectively, and updated by an optimizer until the boundary conditions are satis-

fied. If one leg is used for the TPBVP (m = 2), the total decision state is simply

ydI = yd1,I . Using more than one leg (m ≥ 3), the total decision state ydI is expanded

to ydI =

[
y>d1,I , · · · , y>dm−1,I

]>
1×12(m−1)

.
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The constraint vector cI for a one-leg TPBVP is

cI =
[

r>1+,I − r>0,s, v>1+,I − v>0,s, r>f,s − r>m−,I, v>f,s − v>m−,I

]>
1×12

(5.25)

and expanded to

cI = [ r>1+,I − r>0,s, v>1+,I − v>0,s,

· · · , r>j+,I − r>j−,I, v>j+,I − v>j−,I,

λ>rj+,I − λ>rj−,I , λ>vj+,I − λ>vj−,I , · · · ,

r>f,s − r>m−,I, v>f,s − v>m−,I
]>
1×12(m−1)

(5.26)

for a TPBVP with more than one leg. The internal boundary conditions in Eq. (5.26)

are otherwise known as path constraints or internal continuity constraints. Assum-

ing m ≥ 3, these continuity constraints are for each continuity node j between legs

(j − 1)j and j(j + 1), such that j satisfies 2 ≤ j ≤ m− 1.

The auxiliary cost for the TPBVP is quadratic, using the constraint vector

cI as

JTPBVP,I =
1

2
c>I cI (5.27)

At JTPBVP,I = 0, the boundary and continuity constraints are satisfied, yielding the

optimal solution: y∗I , which uses Γ∗I .

5.4 Direct-to-Indirect Mapping

The direct-to-indirect mapping connects the optimal states and controls of the two

problems, Eqs. (5.1) and (5.2). The direct model represents the control Γ∗i,D dis-

cretely and the continuous state x∗D at each ti,D, so x∗i,D. This increasingly accurate
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approximate discretization as the number of impulses and segments increase for a

solution enables the mapping which generates an initial guess for Eq. (5.24) for each

leg j(j + 1). The mapping leverages the shared space between the variational or

linearized dynamics of both the direct and indirect models, Eqs. (5.28) to (5.31);

the co-state dynamics of the indirect model, Eqs. (5.17) and (5.18); and the opti-

mal control law of the indirect model, Eq. (5.16). Hereafter, the superscript ‘∗’ is

dropped for clarity because all expressions are assumed optimal. Also, the mapping

is done at ti,D, but simplified to ti because both the direct and indirect models use

this same ti.

For the mapping, the variational dynamics of both models is the linearization

of the equations of motion in Eqs. (5.5) and (5.7):

δẋD =
∂fD
∂xD

δxD (5.28) δẋI =
∂fI
∂xI

δxI (5.29)

and in matrix form are

δṙD

δv̇D

 =

03×3 I3×3

GD 03×3


δrD

δvD

 (5.30)

δṙI

δv̇I

 =

03×3 I3×3

GI 03×3


δrI

δvI

 (5.31)

The identical form of the linear dynamics of the direct and indirect models, Eqs.

(5.30) and (5.31), means any variational expressions formulated in the indirect model

are approximately equal to the counterparts in the direct model, assuming both

solutions are optimal with the same boundary conditions: δrD ≈ δrI and δvD ≈ δvI.

The variational dynamics in Eq. (5.31) are similar to Eqs. (5.17) and (5.18),

reproduced as Eq. (5.32) for convenience,
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λ̇rI

λ̇vI

 =

 03×3 −GI

−I3×3 03×3


λrI

λvI

 (5.32)

The following equivalency is stated and its time-derivative:

λrI

λvI

 = β

 03×3 +I3×3

−I3×3 03×3


δrI

δvI

 (5.33)

λ̇rI

λ̇vI

 = β

 03×3 +I3×3

−I3×3 03×3


δṙI

δv̇I

 (5.34)

where the coefficient β must have units of TU−2 for unit consistency between λvI and

δrI or λrI and δvI. Plugging in Eqs. (5.33) and (5.34) into Eq. (5.32) [or Eqs. (5.17)

and (5.18)] reproduces the variational dynamics of Eq. (5.31) and demonstrates β

is arbitrary. Thus, the following mapping expression is true1:

ΓI = −λvI = δrI (5.35) Γ̇I = +λrI = δvI (5.36)

where β = 1 TU−2 for simplicity. The magnitude and direction (but not units) of

ΓI is exactly equal to a particular neighboring trajectory in the linear variational

space of the optimal solution. For arbitrary β, ΓI ∝ δrI and Γ̇I ∝ δvI.

To apply the result of Eqs. (5.35) and (5.36), the augmented state yI is ap-

proximated at every ti using the optimal direct solution, so the mapping to position

ri,I, velocity vi,I, co-position λvi,I , and co-velocity λvi,I are in Eqs. (5.37) to (5.40),

respectively, and visualized in Fig. 5.2. Note this mapping to yi,I is summarized in
1The relationships in Eqs. (5.35) and (5.36) is an extension of eq. (20) in Ref. 217, where the

cost function minimizes flight time or fuel usage and the acceleration is a function of both position
and velocity, a = a(r, v). For eq. (20), the position and velocity partial derivatives of a are needed
and defined as G = ∂a/∂r and H = ∂a/∂v. The matrix G must be symmetric and the matrix H
must be skew-symmetric, G = G> and H = −H>. In this current work, acceleration is a function
of position only and both GD and GI are symmetric.
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Algorithm 1.

ri,I ≈ ri,D (5.37)

vi,I ≈
1

2
(vi−,D + vi+,D) (5.38)

λri,I ≈
1

2
(δvi−,D + δvi+,D) (5.39)

λvi,I ≈ − Γi,D = −
∆vi,D

∆tavg,i,D
= −δri,D (5.40)

Position is trivially approximated in Eq. (5.37). Velocity is chosen as an average

in Eq. (5.38), where vi−,D and vi+,D are the neighboring velocities before and after

node i, respectively. Co-position in Eq. (5.39) uses Eq. (5.36) and is an average

too, where the velocity variations are determined from the neighboring path of the

optimal solution. Co-velocity uses Eq. (5.35) and is straightforward as Eq. (5.40).

In particular for co-position λri,I , the velocity variations of the neighboring

solution can be found two ways: (1) a finite difference approach or (2) a partial

derivative approach. Both approaches are approximately equivalent. The needed

quantities of the direct solution for each λri,I are the flight times ∆t(i−2)(i−1),D,

∆t(i−1)i,D, ∆ti(i+1),D, and ∆t(i+1)(i+2),D; the positions ri−1,D, ri,D, and ri+1,D; and

the velocities v(i−1)−,D, v(i−1)+,D, vi−,D, vi+,D, v(i+1)−,D, and v(i+1)+,D.

For approach (1), the velocity-finite differences of the neighboring path rel-

ative to the optimal path are approximately equal to the velocity variation as

ṽi−,D − vi−,D ≈ δvi−,D (5.41)

ṽi+,D − vi+,D ≈ δvi+,D (5.42)

where ṽi−,D and ṽi+,D are the neighboring velocities, and δvi−,D and δvi+,D are the
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velocity variations, both

Figure 5.2: Mapping for the state and co-state at node i from the direct (left) to
the indirect (right) solution.

before and after node i, respectively. The approximation of the finite-velocity dif-

ferences to the velocity variations trends better as the finite-velocity differences

decrease. To find ṽi−,D and ṽi+,D, the neighboring positions for nodes i− 1, i, and

i+ 1 are computed and used as input to two Lambert calls. A Lambert solver is a

boundary value solver for the two-body problem. Many Lambert solvers are avail-

able, including Battin’s [151], Gooding’s [152], Izzo’s [153], or Russell’s [16, 17, 18].

The inputs are terminal positions and flight time. The outputs are the associated

terminal velocities. There is a unique solution for the short, zero-revolution case

[16].

The neighboring positions are
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r̃i−1,D = ri−1,D + δri−1,D (5.43)

r̃i,D = ri,D + δri,D (5.44)

r̃i+1,D = ri+1,D + δri+1,D (5.45)

where

δri−1,D = Γi−1,D/γ = (∆vi−1/∆tavg,i−1)/γ (5.46)

δri,D = Γi,D/γ = (∆vi/∆tavg,i)/γ (5.47)

δri+1,D = Γi+1,D/γ = (∆vi+1/∆tavg,i+1)/γ (5.48)

If the magnitude of Γi,D is large, then a sufficiently large enough γ ≥ 1 can scale

down Γi,D. The velocity-finite difference, Eqs. (5.41) and (5.42), is computed with

these smaller position variations, per Eqs. (5.46) to (5.48), then scaled up as δvi−,D =

(ṽi−,D − vi−,D)γ and δvi+,D = (ṽi+,D − vi+,D)γ to find the velocity variation. This

scaling works because linearized dynamics governing variations are proportional.

The two Lambert calls to find the terminal velocities are

[ ṽ(i−1)+,D, ṽi−,D ] = Lambert( ∆t(i−1)i,D, r̃i−1,D, r̃i,D ) (5.49)

[ ṽi+,D, ṽ(i+1)−,D ] = Lambert( ∆ti(i+1),D, r̃i,D, r̃i+1,D ) (5.50)

where ∆t(i−1)i,D and ∆ti(i+1),D are the flight times of the neighboring segments

(i − 1)i and i(i + 1), respectively, to node i. The velocity variations δvi−,D and

δvi+,D from Eqs. (5.41) and (5.42) can now be used for Eq. (5.39).

For method (2), the expressions for the velocity variations use the partial
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derivatives of Lambert’s problem, notated as 〈·〉:

δvi−,D =

〈
∂vi−
∂ri−1

〉
δri−1,D +

〈
∂vi−
∂ri

〉
δri,D (5.51)

δvi+,D =

〈
∂vi+

∂ri

〉
δri,D +

〈
∂vi+

∂ri+1

〉
δri+1,D (5.52)

The Lambert partials 〈·〉 are known for segments (i− 1)i and i(i+ 1) of the direct

optimal solution. References 105, 16, and 18 expand on the derivation of these par-

tials of Lambert’s problem. In brief, for Lambert’s problem, small variations of the

independent terminal positions linearly map to small variations of the dependent

terminal velocities, per Eqs. (5.51) and (5.52). No scaling of position variations

or thrust acceleration vectors is needed. Substitute Eqs. (5.46) to (5.48), where

γ = 1, into Eqs. (5.51) and (5.52) to get the velocity variations δvi−,D and δvi+,D

for Eq. (5.39).

Both approaches yield the velocity variations using either Eqs. (5.41) and

(5.42) or Eqs. (5.51) and (5.52). Approach (1) is convenient because the partial

derivatives of Lambert’s problem are not needed. However, method (2) is more

reliable. The linear position and velocity variations are exactly dynamically equiv-

alent to the co-states in the indirect model, Eqs. (5.35) and (5.36), and useful to

approximate co-states from the direct model, Eqs. (5.39) and (5.40).

5.5 Results

For the computational results (exactly the same as Chapters 3 and 4), the code is

written in Fortran 2008 and compiled with Microsoft Visual Studio, Community

2015, Version 14.0.25431.01 with Update 3 and Intel Parallel Studio XE 2017 Com-

poser Edition for Fortran Windows. The code runs on two quad-core Intel Xeon
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CPU X5647 2.93 GHz processors and can access 24 GB of memory. Only the two

largest optimal orbital transfers using 500 revs use up to approximately 11 GB of

memory. Only one processor is used for implementation simplicity. Runtime would

improve if parallelized.

The custom-built, gradient-based optimizer (FMINUNCUT) still finds the lo-

cal solutions in this current research. And as a reminder, the FMINUNCUT employs

a BFGS [160, 161, 162, 163] search direction with a line search that uses a golden

ratio method with quadratic interpolation at every major iteration. FMINUNCUT

takes advantage of fast BLAS [169] matrix and vector operations and parallelizable

integration for each leg in a multi-shooting method. The integration uses a Runge-

Kutta variable-step method [243] with integration tolerance 10−14. FMINUNCUT

uses optimization tolerances related to three inequalities (Gill et al. [209], pp.

306–307): (Jprev − J)/(1 + |J |) < 10−15, ||xdprev − xd||/(1 + ||xd||) <
√
10−15, and

||dJ/dxd||/(1+|J |) ≤
3
√
10−15, where ( )prev means the previous iteration and no sub-

script means current. For more details on FMINUNCUT, see Chapter 3 or Ref. 173.

5.5.1 Results: Relative Error of the Direct Solution to the Indirect

Solution

The optimal direct solution is increasingly accurate relative to its equivalent indi-

rect solution as the number of segments and impulses increase. To demonstrate

this accuracy, an optimal transfer that significantly changes size and shape in five

revolutions is analyzed and defined as (a, e) = (1.0 DU, 0.0) to (5.0 DU, 0.5). Three

cases are looked at that increase segment count per rev: 6, 24, and 96 segs/rev.

For position, velocity, co-position, and co-velocity, the relative errors ε of the direct

solution to the indirect solution are defined as
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εr =
rD − rI

rI
(5.53)

εv =
vD − vI

vI
(5.54)

ελr =
λrD − λrI

λrI

(5.55)

ελv =
λvD − λvI

λvI

(5.56)

In particular for Fig. 5.3, the left column is the time-history of the optimal

indirect solution for rI, vI, λrI , and λvI . For the other three columns, the direct

augmented state yi,I, which includes position rD, velocity vD, co-position λrD , and

co-velocity λvI , is approximated at each ti for nodes 2 to n−1 per Eqs. (5.37) to (5.40)

for each of the three cases that use 6, 24, and 96 segs/rev. The yi,I at nodes 1 and

n are neglected as outliers because the thrust acceleration Γi,D in Eq. (5.6) is only

a function of one neighboring flight time. The relative error is then computed with

Eqs. (5.53) to (5.56). The order of accuracy improves by an order of magnitude for

each doubling of segment count per rev.

For Fig. 5.4, each yi,I per Eqs. (5.37) to (5.40) is integrated backward and

forward in time to t2 and tn−1, respectively. Along the way, each position ri,I,

velocity vi,I, co-position λri,I , and co-velocity λvi,I at each ti is recorded. The left

column of Fig. 5.4 shows the continuous, optimal indirect solution in Cartesian space:

rx vs. ry, vx vs. vy, λrx vs. λry , and λvx vs. λvy . The other three columns, left to

right, show the integrated approximate augmented states (ri,I, vi,I, λri,I , and λvi,I)

discretely in Cartesian space at ti for each of the three cases 6, 24, and 96 segs/rev,

respectively. The spread decreases visually as the segment count per rev increases

in Fig. 5.4. Moreover, the histograms of Figs. 5.5 to 5.8 plot the relative error for

position εri , velocity εvi , co-position ελvi
, and co-velocity ελvi

at a particular middle

time, depending on the case. The middle times ti for cases 6, 24, and 96 segs/rev are

at nodes i = 16, 61, and 241, respectively. Similar to Fig. 5.3, the order of accuracy
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improves by an order of magnitude for each doubling of segment count per rev in

Figs. 5.5 to 5.8. Interestingly, as a visual metric for accuracy, the patterned order

near the origin for the left side of Figs. 5.5 to 5.8 repeats at a different scale for the

24 and 96 segs/rev cases before the chaotic behavior dominates.

The root-mean-square (RMS) of the relative error ε vs. segs/rev is presented

in Fig. 5.9. Figure 5.9 includes the entire set of augmented states yi,I associated with

nodes 2 to n− 1 and integrated from times t2 to tn−1. The RMS trends downward

from approximately 0.1, 0.01, to less than 0.001 for segment counts per rev of 6,

24, and 96, respectively, further emphasizing the convergence of the discrete direct

solution to the continuous indirect solution. Of note, after 70 segs/rev, the curve

of Fig. 5.9 is less smooth. The particular technique for the direct solutions used

in this research uses many solutions to Lambert problems to represent the coasting
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Figure 5.3: Indirect solution (left) and relative error of the direct solution for 6,
24, and 96 segments per rev (mid-left to right, respectively) of an optimal transfer
defined by five revs and (a, e) = (1.0 DU, 0.0) to (5.0 DU, 0.5).
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Figure 5.4: Position, velocity, co-position, and co-velocity spaces showing the con-
tinuous indirect solution (left) and the integrated approximate augmented state yi,I
(mid-left, mid-right, right). Per Eqs. (5.37) to (5.40), each yi,I from nodes 2 to n−1
is propagated backwards to t2 and forwards to tn−1.
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Figure 5.5: Histogram of the rx vs. ry solutions at the middle node shown in Fig. 5.4
for the 6, 24, and 96 segs/rev cases.

Figure 5.6: Histogram of the vx vs. vy solutions at the middle node shown in Fig. 5.4
for the 6, 24, and 96 segs/rev cases.
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Figure 5.7: Histogram of the λrx vs. λry solutions at the middle node shown in
Fig. 5.4 for the 6, 24, and 96 segs/rev cases.

Figure 5.8: Histogram of the λvx vs. λvy solutions at the middle node shown in
Fig. 5.4 for the 6, 24, and 96 segs/rev cases.
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Figure 5.9: RMS of εr, εv, ελr , and ελv , which are computed with direct solution
approximations at nodes 2 to n− 1 and integrated from t1 to tn.

arcs of the coast-impulse model. While fast and robust, this technique encoun-

ters a 0◦-transfer-angle singularity as terminal positions approach each other close.

An initial-value-problem technique using, say solutions to Kepler’s problem, does

not encounter this singularity. Only a sufficient number of segments is needed for

mapping accuracy, for example the 24 segs/rev case.

5.5.2 Results: Initial Guess Options for Indirect Problem

As shown in Fig. 5.9, the approximate augment state yi,I in Eqs. (5.37) to (5.40) is

increasingly accurate as the segment count increases for a given solution. The next

step is to map yi,I to the decision state ydk,I per leg of the indirect problem. The

most straightforward solution is to simply choose a node i from the direct problem,

set k = i: ydk,I = yi,I. This initial guess option serves as the baseline for performance

to beat versus the other potential improvement options. While this simple strategy

seemingly ignores all other segments of the direct solution, the direct solution is
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optimal, implicitly affected by every other segment.

The performance analysis uses the same five-rev, one-leg, optimal orbital

transfer defined by (a, e) = (1.0 DU, 0.0) to (5.0 DU, 0.5) and the three discretization

cases: 6, 24, and 96 segs/revs. The baseline option is called the ‘middle-node

solution’ because the chosen node i and its associated time ti is the middle node for

each of the cases, so i = 16, 61, and 241 (in order). For example, the 6-segs/rev

case sets i = 16 and k = 1 for ydk,I = yi,I at t = t16. The other options all must

determine this 12-state ydk,I at the same middle times, ti = t16, ti = t61, or ti = t241,

for each of the cases, respectively. For the other options, ‘raw data’ is defined as the

data generated and presented for position and velocity at each node i in Fig. 5.4,

which is from the integration of all yi,I’s from nodes 2 to n − 1 to all ti’s from t2

to tn−1. The data for co-position and co-velocity at each of the node i is similarly

generated. Note that in Fig. 5.4, the middle-node solutions for positions and velocity

are highlighted. The other options to generate better initial guesses for ydk,I are as

follows. Note the acronyms are defined on the right side of Fig. 5.10.

• MNSO (1–3): Use the middle-node solution only. (baseline option)

• I, RD, Mean and Median (4–9): Compute the mean or median of the raw data

at the middle time for each case.

• I, FD, SMAD, Mean and Median (10–15): Compute the mean and median of

the raw data at the middle time minus any yi,I’s at this time that are more

than three scaled median absolute deviations away.

• I, FD, +/-5N, Mean and Median (16–21): Compute the mean and median of

the middle yi,I plus the integrated yi,I’s from the five neighboring nodes to the

middle time (eleven total), both before and after.
• I, FD, +/-HR, Mean and Median (22–27): Compute the mean and median of
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the middle yi,I plus the integrated yi,I’s from the neighboring nodes that make

up a half-rev for each case, both before and after. The 6, 24, and 96 segs/rev

cases have half-rev node counts of 3, 12, and 48, respectively, so 7, 25, and 97

12-states at the middle time for the three scenarios, respectively.

• LS (28–30): Use the middle-node solution only and improve this guess with

a least-squares numerical procedure. The ydk,I is integrated and the miss

distance at every node i between nodes 2 and n− 1 is minimized.

In Fig. 5.10, roughly speaking, all initial guess methods, grouped by counts

of segs/rev, trend the same in total iterations for the indirect problem. Despite the

variety of possibilities, the straightforward middle-node solution only (options 1, 2,

and 3) is recommended. The MNSO is easiest to implement and shows compara-

ble performance to the best options 7–9, which are slightly more complicated to

compute.
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Figure 5.10: Initial guess options for the indirect problem, an optimal thrust-
acceleration-squared orbital transfer using five revs and defined by (a, e) =
(1.0 DU, 0.0) to (5.0 DU, 0.5). Three discretization scenarios: 6, 24, and 96 segs/rev
are used.
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5.5.3 Results: Many-Rev, Multi-Shooting Problems

The next set of examples use a multi-shooting method for the TPBVP, minimizing

Eq. (5.27). The first two problems are to find optimal transfers for a small orbital

element change: ∆a and ∆e. The third problem is to find an optimal transfer for

three large orbital element changes simultaneously: ∆a, ∆e, and ∆i. More specif-

ically, the transfers of the first two examples are time free and defined by (a, e) =

(1.0 DU, 0.0) to (2.0 DU, 0.0) and (1.5 DU, 0.0) to (1.5 DU, 0.2), respectively. The

third example is time free too and defined by (a, e, i) = (3.8305 DU, 0.7258, 28.5◦)

to (6.6107 DU, 0.0, 0.0◦), modeling a transfer from GTO to GSO in canonical units.

These problems are time free for convenience, not because of necessity. All three

examples vary rev count from 10 to 100 and include a large-rev count solution. The

first two examples include a large 500-rev solution, while the largest rev count for

the third example is 250. All solutions use the the MNSO initial guess for ydk,I

of Eq. (5.24) for each leg per five revs. Every optimal direct solution is designed

to use 24 segs/rev, deemed sufficiently accurate to balance resolution and problem

dimension.

For implementation, each 3-state vector making up the initial guess for ydk,I

of each leg is scaled to unity to improve convergence: rk,I,scaled = rk,I/rk,I, vk,I,scaled =

vk,I/vk,I, λrk,I,scaled = λrk,I/λrk,I , and λvk,I,scaled = λvk,I/λvk,I . The quadratic TPBVP

cost function in Eq. (5.27) is also scaled. Each squared continuity term for position,

velocity, co-position, and co-velocity is multiplied by 1/r2avg, 1/v2avg, 1/λ2
ravg , 1/λ2

vavg ,

respectively, where the these averages are a function of the initial decision states

over all legs: rk,I, vk,I, λrk,I , and λvk,I . It cannot be overstated; the aforementioned

scaling is essential to converge to an optimal solution. A poorly scaled problem can

erroneously trigger the tolerances that terminate an optimization algorithm.
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Figure 5.11: Optimization runtimes for the indirect problem for three orbital trans-
fers that use an initial guess derived from a 24 segs/rev direct solution.

Figure 5.12: Two optimal, time-free, 500-rev transfers defined by (a, e) =
(1.0 DU, 0.0) to (2.0 DU, 0.0) [left] and (1.5 DU, 0.0) to (1.5 DU, 0.2) [right], re-
spectively.
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Figure 5.13: Optimal, time-free, 250-rev GTO-to-GSO transfer defined by (a, e, i) =
(3.8305 DU, 0.7258, 28.5◦) to (6.6107 DU, 0.0, 0.0◦). Note m is for mass.

The optimization runtimes for rev counts from 10 to 100 is shown in Fig. 5.11.

Notice the runtimes are seconds to minutes for rev counts of 10 to 100, driven by the

number of iterations to optimization. In order, the ∆a transfer has the least amount

in runtime, then the ∆e transfer, to finally the GTO-to-GSO transfer, signaling fast

dynamics and larger orbital element changes are numerically more challenging. For

the left side of Fig. 5.11, the runtime per iteration of the three examples increases

linearly as rev count increases. While these curves are about the same, the ∆a

transfer curve is above the the GTO-to-GSO transfer curve, which is above the

∆e transfer curve. The largest rev-count transfers for ∆a-only, ∆e-only, and the

GTO-to-GSO transfer have runtimes of 30.5 minutes, 1.4 hours, and 3.3 hours,

respectively. These runtimes are not shown on Fig. 5.11. See Figs. 5.12 and 5.13 for
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a visual on the largest transfers, including magnifications to illuminate sinusoidal

behavior. These solutions do not assume a zero-change eccentricity or zero-change

semimajor axis for the ∆a- or ∆e-transfer, respectively. The other curves without

magnification have significantly less or no sinusoidal behavior.

5.6 Conclusions

An accurate, physically intuitive, easy-to-implement, direct-to-indirect mapping is

derived and demonstrated for optimal spacecraft trajectories minimizing thrust-

acceleration-squared in the two-body problem. The direct solution uses a coast-

impulse model, where each segment is ballistic and each impulse is the velocity

discontinuity between position-continuous segments. Direct coast-impulse solutions

are convenient because they are fast, robust, and simple. Furthermore, the mapping

is indifferent to the particular technique applied to solve for the direct, coast-impulse

solution. The indirect solution uses a continuous-thrust model for a trajectory that

satisfies the necessary conditions from a calculus of variations approach. The finite

many-thrust-acceleration vectors or impulses of the direct problem converge to the

continuous-thrust model. The mapping requires as input from the direct, optimal

solution a remarkably small set of positions, velocities, and flight times at only one

time. The mapping output is an approximate augmented state that includes the

position, velocity, co-position, and co-velocity at the same time as the input. This

approximate augmented state is increasingly accurate as the number of segments

and impulses increase for a given solution, mitigating hypersensitivity concerns.

The mapping derivation leverages primer vector theory to show that the linear

space is equivalent to thrust acceleration and the co-states. Notably, Lambert’s

problem is needed to map the linear position space to the velocity linear space
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about the direct, optimal trajectory. The mapping is used in a multi-shooting

method to optimize a set of low-thrust transfers using up to 500 revolutions in

straightforward Cartesian coordinates. Typically, orbital elements are used for this

large of a revolution count. The problems complete various, large and small, orbital

element changes in optimization runtimes on the order of an hour. These smooth

two-body solutions can serve as the starting state for a homotopy towards a higher-

fidelity trajectory with different constraints or objectives.
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5.7 Appendix
Algorithm 1 Direct-to-Indirect Mapping for Position, Velocity, Co-Position, and
Co-Velocity at Node i.

Input: ∆t(i−2)(i−1), ∆t(i−1)i, ∆ti(i+1), ∆t(i+1)(i+2)

ri−1,D, ri,D, ri+1,D
v(i−1)−,D, v(i−1)+,D, vi−,D, vi+,D, v(i+1)−,D, v(i+1)+,D
γ, ‘Approach No.’

Output: ri,I, vi,I, λri,I , λvi,I

1: ∆vi−1 ← v(i−1)+,D − v(i−1)−,D
2: ∆vi ← vi+,D − vi−,D
3: ∆vi+1 ← v(i+1)+,D − v(i+1)−,D

4: ∆tavg,i−1 ← (∆t(i−2)(i−1) +∆t(i−1)i)/2
5: ∆tavg,i ← (∆t(i−1)i +∆ti(i+1))/2
6: ∆tavg,i+1 ← (∆ti(i+1) +∆t(i+1)(i+2))/2

7: δri−1,D ← ∆vi−1/∆tavg,i−1

8: δri,D ← ∆vi/∆tavg,i
9: δri+1,D ← ∆vi+1/∆tavg,i+1

10: if Approach No. = Case (1) then
11: δri−1,D ← δri−1,D/γ
12: δri,D ← δri,D/γ
13: δri+1,D ← δri+1,D/γ
14: r̃i−1,D ← ri−1,D + δri−1,D
15: r̃i,D ← ri,D + δri,D
16: r̃i+1,D ← ri+1,D + δri+1,D
17: ṽ(i−1)+,D, ṽi−,D ← Lamberta( ∆t(i−1)i, r̃i−1,D, r̃i,D )
18: ṽi+,D, ṽ(i+1)−,D ← Lambert( ∆ti(i+1), r̃i,D, r̃i+1,D )
19: δvi−,D ← (ṽi−,D − vi−,D)γ
20: δvi+,D ← (ṽi+,D − vi+,D)γ
21: else if Approach No. = Case (2) then
22:

〈
∂v(i−1)+

∂ri−1

〉
,
〈

∂v(i−1)+

∂ri

〉
,
〈

∂vi−
∂ri−1

〉
,
〈

∂vi−
∂ri

〉
← LambertPartialsb( ∆t(i−1)i, ri−1,D, ri,D )

23:
〈

∂vi+
∂ri

〉
,
〈

∂vi+
∂ri+1

〉
,
〈

∂v(i+1)−
∂ri

〉
,
〈

∂v(i+1)+

∂ri+1

〉
← LambertPartials( ∆ti(i+1), ri,D, ri+1,D )

24: δvi−,D ←
〈

∂vi−
∂ri−1

〉
δri−1,D +

〈
∂vi−
∂ri

〉
δri,D

25: δvi+,D ←
〈

∂vi+

∂ri

〉
δri,D +

〈
∂vi+

∂ri+1

〉
δri+1,D

26: end if
27: ri,I ← ri,D [Eq. (5.37)]
28: vi,I ← (vi−,D + vi+,D)/2 [Eq. (5.38)]
29: λri,I ← (δvi−,D + δvi+,D)/2 [Eq. (5.39)]
30: λvi,I ← −∆vi/∆tavg,i [Eq. (5.40)]
a,b Functions for Lambert’s problem and the partials of Lambert’s problem, respectively.
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Chapter 6

Conclusions

Spacecraft trajectory optimization is a diverse field. Better approaches and better

software tools enable mission feasibility now and into the future. The aim of this

research is to improve the state of the art of solving trajectory problems. The work

(i) significantly improves preliminary low-fidelity design with the embedded bound-

ary value problem (EBVP) trajectory optimization technique, (ii) produces a new

flight time function for discretizing a trajectory, and (iii) produces a new mapping

procedure to solve many-revolution, low-thrust problems in Cartesian coordinates.

The mapping transitions from a direct to an indirect method. These contributions

are summarized in Section 1.3 and a list of publications is in Appendix C. The

present chapter presents the conclusions of this current work, i.e. summarizes and

emphasizes importance, and speculates on future direction.

To solve a trajectory problem, often low-fidelity assumptions are made for

efficiency, where complexity and fidelity are added as the solution matures. A low-

fidelity coast-impulse model, similar to the Sims-Flanagan model, is typically for-

mulated as an initial value problem. But in this current work, the coast-impulse

model is formulated as a boundary value problem. This boundary value problem

uses many solutions to Lambert’s problem to implicitly enforce position and dy-
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namical feasibility at every optimization iteration. In Chapters 3 and 4, this EBVP

technique is shown to be robust, fast, and better than the similar initial-value tech-

nique using Kepler’s problem. The EBVP technique handles many different, even

poor, initial guesses. The EBVP technique is parallelizable because the Lambert

solutions for each segment are independent from each other. The EBVP technique

is also unconstrained, reducing complexity and implementation difficulty. A prac-

titioner can quickly build intuition for optimal trajectory design in the two-body

problem.

The two-body design space of the EBVP technique is broad. Transfers can

minimize fuel, energy, or thrust acceleration without explicit constraints enforced by

an optimizer. The transfers are not limited by the size of the orbital element change

and they converge to the true, continuous, optimal solution. More specifically, Chap-

ter 3 presents the solution to an assortment of fuel and energy optimal transfers that

produce small changes in their orbital elements using equal flight times for each seg-

ment. For large changes, Chapter 4 presents a function which varies flight time per

segment. This variation on flight time from the piecewise Sundman transformation

(PST) function ensures even spatial spacing per segment of a transfer. Moreover,

using an exponent of 3/2 ensures equal steps in eccentric anomaly for transfers that

significantly vary semimajor axis and eccentricity. The regularization provided by

the PST affects the discretization of total flight time, not the dynamics, enabling

simple implementation in trajectory models that are a function of time. The behav-

ior of this alternative, regularizing, flight-time function mimics the error tracking of

Keplerian orbit propagation that uses modified regularized dynamics. The specific

error tracking is for Keplerian energy, a constant of integration for the two-body

problem. The largest optimization problem in Chapter 4 uses 512 revs, 12287 seg-
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ments, and the transfer is defined by (a, e, i): (1.0 DU, 0.0, 30◦) to (5.5 DU, 0.6, 0◦).

The PST function also enables the transfer through the parabolic boundary of the

two-body problem, often difficult for numerical schemes.

Chapter 5 elegantly connects or maps the direct, discrete EBVP technique

to its indirect, continuous-thrust equivalent. Both direct and indirect methods can

solve for the same solution. This mapping enables the practitioner to use the ro-

bustness of a direct method, increasingly accurate as the resolution of the direct

trajectory model increases, to circumvent the sensitivity issues of the continuous

indirect methods. In this thesis work, the direct problem is to the indirect problem

as the Riemann sum is to integration. Importantly too, the mapping is independent

of the solution technique for the direct problem, i.e. the EBVP technique is not

necessarily needed. The mapping procedure leverages that the thrust acceleration

vectors, the linear space, and the co-states share the same space of the optimal

solution. Atypically, the co-states are then physically meaningful. The indirect

problems minimizing thrust-acceleration-squared have fast optimization runtimes.

The largest three problems change (i) semimajor axis only, (ii) eccentricity only,

or (iii) semimajor axis, eccentricity, and inclination simultaneously (GTO-to-GSO

transfer). In order, the transfers for the indirect problem use 500 revs, 500 revs,

and 250 revs, and the runtimes are 30.5 minutes, 1.4 hours, and 3.3 hours, all from

their corresponding direct, initial guess that uses 24 segments per revolution.

6.1 Future Work

Overall, the EBVP technique for spacecraft trajectory optimization is reliable and

very efficient for problems with dozens of revs and about a thousand segments,

and practically feasible with runtimes for solutions with up to hundreds of revs
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and up to ten thousand segments. The EBVP technique is supplemental, even

complementary, to many other trajectory design approaches. Future work should

improve any current limitations. Some suggestions follow.

First, efficiency of the EBVP technique can be improved. In particular,

the number of computations for the quasi-Newton BFGS search direction increases

quadratically as the size of the problem increases. This quadratic increase from

the search direction computation is necessary and is the result of a matrix-vector

operation. The quasi-Newton BFGS method has superlinear convergence, enabling

overall lower runtimes when compared to other methods using steepest descent or

conjugate gradients. To improve the overall optimization runtime, any quadratic

behavior must be minimized.

Second, other state and control representations can be considered. The state

and control in this thesis uses Cartesian coordinates. While simple and singularity-

free, polar or spherical coordinates, as well as classical or modified equinoctial orbital

elements are options. Polar or spherical coordinates are convenient for modeling

circular motion, while orbital elements are natural for paths that are Keplerian or

nearly-Keplerian, especially if the osculating orbital elements are slowly changing

versus time. These alternative representations may improve the trajectory model by

minimizing fast variations in the state and control, enabling an increase in revolution

count for a transfer and minimizing approximate control error.

Third, improvements to the fidelity of the dynamics and control model are

possible and summarized twofold. The first approach to improve fidelity is to use a

different BVP solver that incorporates other dynamics besides two-body. In other

words, the EBVP technique is not exclusive to the two-body problem. For example,

this thesis work demonstrates a general shooting method using Runge-Kutta integra-
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tion as a performance benchmark which also enables the modeling of non-analytical

dynamics. Though, this shooting method is orders-of-magnitude slower than the

Lambert solver. Finding sufficiently fast and robust BVP solvers in other dynam-

ical settings should be considered. The second approach to improve fidelity is to

use a homotopy. Transitioning from simpler, easier-to-obtain scenarios is a common

tactic in literature. For example, there is research into homotopies from minimum-

energy to minimum-fuel problems [244, 245, 100, 237, 238], as well as homotopies

from simple to more complicated dynamics [246]. Though, for emphasis, these ho-

motopies to medium or high fidelity can be difficult and not straightforward [247].

The state might need to be transformed from Cartesian to orbital elements. The

reference frame can be inertial or rotating. Perturbation inclusion to the two-body

problem can be from third-body point-masses, spheroidal central bodies, solar ra-

diation pressure, atmospheric drag, and more. Constraints can be complicated too.

For example, a constraint can incorporate ephemerides data, which tracks the state

history of relevant space objects. A rendezvous problem can be time-dependent,

or power and thrust can be dependent on the location of the Sun, where eclipses

degrade performance. The radiation environment is also a concern. A trajectory

might need to avoid long-duration dosages.

Fourth, the particularly fast and robust Lambert solver used in this work is

applied to optimal control problems. A future direction could be to apply this solver

to other scenarios such as interplanetary, asteroid [42], or intermoon path planning,

space debris removal [248, 249], constellation reconfiguration [250, 251], rendezvous

[252, 253], on-orbit servicing [254], orbit determination [255, 256], and more.

Fifth, the PST discretization scheme can be explored without the use of

Lambert’s problem. For example, the flight time discretization can be used to vary
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the length of an interval in an adaptive collocation method. Furthermore, other

regularization schemes beside the Sundman transformation might be of use, such as

arc-length or curvature.

Sixth and finally, for the mapping, the connection between the thrust accel-

eration and co-states can be explored further. The connection relies on the symmet-

ric and skew-symmetric behavior of the linearized two-body dynamics. The linear

space around an optimal trajectory is simultaneously the co-state space and thrust-

acceleration space. Similar behavior might exist in other dynamical systems, such

as the circular restricted three-body problem, or for other cost functions such as

flight-time or fuel-minimizing problems.
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Appendix A

Optimization Algorithms

Three algorithms for the FMINUNCUT optimizer are stated here: the broad FMIN-

UNCUT algorithm, the algorithm for the BFGS search direction for the line search,

and the algorithm for the line search itself. The unconstrained FMINUNCUT is

presented in Algorithm 2 along with the BFGS search direction in Algorithm 3 and

the line search algorithm in Algorithm 4.

The computation of the search direction leverages the efficient BLAS [169]

subroutines. There are (s)ymmetric and (p)acked versions of some subroutines

where packed takes approximately half the memory as the symmetric version coun-

terpart, enabling the computational feasibility of larger problems but with no par-

allelization runtime improvements for an increase in thread count as shown in Sec-

tion 3.4.2. The BLAS subroutines are: ddot for the dot product of two vectors;

dsymv or dspmv for the multiplication of a matrix and vector; dsyr and dsyr2 or

dspr and dspr2 for two different forms of an outer-product; and dnrm2 for the

2-norm of a vector. The search direction is always one unit in magnitude to conve-

niently limit the step size in the line search. The quadratic growth of the compu-

tation shown in Section 3.4.1 is from dspmv, dspr, and spr2 that require 2n2, n2,

and 2n2 floating-point operations, respectively.
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Every line search performs three primary computations. First, the minimum

is bracketed but with a bounded max step size. Second, the bracketed space is shrunk

via a golden ratio method. Third, the minimization is finalized with quadratic

interpolation of the three points closest to the minimum. If the denominator in the

formula for the quadratic interpolation equals or is close to zero, then the lowest

point of the three is chosen as the actual minimum.
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Algorithm 2 FMINUNCUT Algorithm
1: Iteration Counter: i = 0
2: Initial Guess Decision State from: xd0

3: Initial Guess Cost and Partials: J0 and ∂J0/∂xd0

4: repeat
5: Update Search Direction from BFGS METHOD: ûi

6: Update Iteration Counter: i = i+ 1
7: Save Previous Decision State, Cost, and Partials before their Update:

xdi−1
, Ji−1, and ∂Ji−1/∂xdi−1

8: Update Decision State with LINE SEARCH: xdi

9: Update Cost and Partials: Ji and ∂Ji/∂xdi

10: until |∂Ji/∂xdi | ≤ tol or |Ji − Ji−1| ≤ tol or i > maxval

Algorithm 3 BFGS Method for Updated Search Direction
Input: Iteration Counter, Current and Previous Decision State,

Current and Previous Partials, and Approximate Hessian Inverse:
i, xdi , xdi−1

, ∂Ji/∂xdi , ∂Ji−1/∂xdi−1
, H̃i−1

Output: Search Direction, and Approximate Hessian Inverse:
ûi, H̃i

1: if i = 0 then
2: H̃i ← I
3: else
4: si ← xdi − xdi−1

5: yi ← ∂Ji/∂xdi − ∂Ji−1/∂xdi−1

6: t1i ← sTi yi (ddot)
7: tni ← H̃i−1yi (dsymv or dspmv)
8: t2i ← yT

i tni (ddot)
9: H̃i−1 ← H̃i−1 + (t1i + t2i)/t

2
1i

sisTi (dsyr or dspr)
10: H̃i ← H̃i−1 + (−1/t1i)(tnisTi + sitTni

) (dsyr2 or dspr2)
11: end if
12: tni ← H̃i ∂Ji/∂xdi (dsymv or dspmv)
13: ûi ← −tni/|tni | (dnrm2)
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Algorithm 4 LINE SEARCH for Updated Decision State
Input: Current Decision State and Cost:

xd0, J0, ‘maxstepsize’
Output: Minimum Decision State of 1D Line Search:

xdmin

1.0 Bracket Minimum
1: aGR ← (3−

√
5)/2 . Golden ratio defined

2: dxd ← 0.01 . Initial step: start with a small step, but not too small
3: xdL ← xd0 + dxdû
4: JL ← CostFunction(xdL)

. Choose between case one and two. Does the step increase or decrease cost, respectively?
5: if JL > J0 then . Case one: step size increases cost
6: xdR ← xd0
7: JR ← J0
8: while JL > JR do
9: dxd ← dxd aGR . Decrease step size
10: if dxd < small then . Limit minimum step size
11: dxd ← 0
12: xdL ← xd0
13: JL ← J0
14: exit . Optimization has failed
15: end if
16: xdLtemp ← xdL . Update decision variables and cost
17: JLtemp ← JL
18: xdL ← xdR + dxdû
19: JL ← CostFunction(xdL)
20: end while
21: xdL ← xdLtemp

22: JL ← JLtemp

23: else if JL < J0 then . Case two: step size decreases cost
24: xdR ← xd0
25: JR ← J0
26: dxdPrev ← [ 0, dxd ]
27: while JL < JR do
28: dxd ← dxd/a

3/2
GR . Increase step size

29: xdLtemp ← xdL . Update decision variables and cost
30: JLtemp ← JL
31: xdL ← xdR + dxdû
32: JL ← CostFunction(xdL)
33: xdRtemp ← xdR
34: JRtemp ← JR
35: xdR ← xdLtemp

36: JR ← JLtemp

37: if dxdPrev(1) + dxd > maxstepsize then . Limit max step size
38: dxd ← maxstepsize
39: exit . Do not minimize. Use max step size.
40: end if
41: dxdPrev ← [ dxdPrev(2), dxd ] . Shift the history of previous step sizes
42: end while
43: xdR ← xdRtemp

44: JR ← JRtemp

45: else . Minimum was not bracketed
46: stop . Optimization has failed
47: end if
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2.0 Golden Ratio Method and 3.0 Quadratic Interpolation . Minimize after minimum is
bracketed

48: if dxd > maxstepsize then . Limit the max step size, typically equal to one
49: dxd ← maxstepsize
50: xdmin ← xd0 + dxdûi

51: Jmin ← CostFunction(xdmin)
52: else

2.0 Golden Ratio Method . Minimize
53: xd1 ← xdL + aGR(xdR − xdL)
54: xd2 ← xdR − aGR(xdR − xdL)
55: J1 ← CostFunction(xd1)
56: J2 ← CostFunction(xd2)
57: for iter ← 1 to 2 do . Update the bracket twice
58: if J1 > J2 then . Minimum is between xd1 and xdR
59: xdL ← xd1
60: JL ← J1
61: xd1 ← xd2
62: J1 ← J2
63: xd2 ← xdR − aGR(xdR − xdL)
64: J2 ← CostFunction(xd2)
65: else . Minimum is between xdL and xd2
66: xdR ← xd2
67: JR ← J2
68: xd2 ← xd1
69: J2 ← J1
70: xd1 ← xdL + aGR(xdR − xdL)
71: J1 ← CostFunction(xd1)
72: end if
73: end for

3.0 Quadratic Interpolation . Finalize the minimization
74: if J1 > J2 then . Minimum is between xd1 and xdR
75: for j ← 1 to nxd do
76: t1 ← J1xd2(j)− J1xdR(j)− J2xd1(j) + J2xdR(j) + JRxd1(j)− JRxd2(j)
77: if |t1| < small then
78: xdmin ← xd2
79: exit . Exit loop
80: else
81: xdmin(j)← (J1xd2(j)2 − J1xdR(j)2 − J2xd1(j)2

+J2xdR(j)2 + JRxd1(j)2 − JRxd2(j)2)/(2t1)
82: end if
83: end for
84: else . Minimum is between xdL and xd2
85: for j ← 1 to nxd do
86: t1 ← JLxd1(j)− JLxd2(j)− J1xdL(j) + J1xd2(j) + J2xdL(j)− J2xd1(j)
87: if |t1| < small then
88: xdmin ← xd1
89: exit . Exit loop
90: else
91: xdmin(j)← (JLxd1(j)2 − JLxd2(j)2 − J1xdL(j)2

+J1xd2(j)2 + J2xdL(j)2 − J2xd1(j)2)/(2t1)
92: end if
93: end for
94: end if

95: end if
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Appendix B

Sensitivities

The computational sensitivities are essential for a gradient-based, direct optimiza-

tion method. These partials can be obtained via many methods of varying accuracy,

including finite difference methods, complex step methods, automatic differentiation,

and more. The variational equations approach in Ref. [257] or Battin’s variational

STM implementation [74] on page 467 (implemented in detail in Ref. [105]) are

accurate and common in practice. In the current work, the closed-form ivLam for

two-body dynamics is faster due to the absence of an integrated solution to an ODE

system as shown in examples 1.c and 1.d of Section 3.4.4 and visualized in Fig. 3.3.

A variational equation approach to EBVPs is useful to model perturbed two-body

dynamics. A faster, but less accurate, alternative is to approximate two-body per-

turbations as impulsive ∆v maneuvers[157].

B.1 Cost Partials and Differentials

The following derivation of the cost partials for the direct problem is based off

differentials d(·) to organize dependencies. There are two sets of cost partials: (i)

constant flight time per segment partials used in Chapter 3 and (ii) varying flight
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time per segment partials used in Chapters 4 and 5.

As mentioned previously, the cost J in Eq. (3.1) is a function of the impulsive

maneuvers at each node i, so J = J(∆v1 (∆v1) , · · · ,∆vn (∆vn)). Using the chain-

rule, the expansion of J as a cost differential from nodes 1 to n is

dJ =
∂J

∂∆v1

∂∆v1
∂∆v1

d∆v1 + · · ·+
∂J

∂∆vn

∂∆v1
∂∆vn

d∆vn (B.1)

where the cost partial of node i in terms of the impulsive maneuver, ∆vi, is ∂J
∂∆vi

=

1 and ∂∆vi
∂∆vi =

∆vTi
∆vi

for minimum fuel [k = 1 in Eq. (3.1)] or ∂J
∂∆vi

= ∆vi and
∂∆vi
∂∆vi = ∆vT

i for minimum energy [k = 0 in Eq. (3.1)] or a hybrid combination for

0 < k < 1 in Eq. (3.1). The cost differential, Eq. (B.1), currently terminates at the

impulsive maneuver differential d∆vi for each node i, but as previously mentioned,

the impulsive maneuver is a function of the velocity before vi− and after vi+ node i

written as ∆vi = vi+ − vi− and these velocities are a function of position and time

written as vi− = vi−(ri−1, ri, t(i−1)+, ti−) and vi+ = vi+(ri, ri+1, ti+, t(i+1)−). Thus,

the differential of the impulsive maneuver is d∆vi = dvi+−dvi− and the differential

of the velocity before dvi− and after dvi+ node i is

dvi− =

〈
∂vi−
∂ri−1

〉
dri−1 +

〈
∂vi−
∂ri

〉
dri +

〈
∂vi−

∂t(i−1)+

〉
dt(i−1)+ +

〈
∂vi−
∂ti−

〉
dti−

(B.2)

dvi+ =

〈
∂vi+

∂ri

〉
dri +

〈
∂vi+

∂ri+1

〉
dri+1 +

〈
∂vi+

∂ti+

〉
dti+ +

〈
∂vi+

∂t(i+1)−

〉
dt(i+1)−

(B.3)

where the 〈·〉 represents the EBVP partials that assume position continuity is en-

forced by design by using EBVPs, not the optimizer.

Before substitution of Eqs. (B.2) and (B.3) into Eq. (B.1), careful consid-
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eration must be made towards the first node 1 and the last node n. The initial

and final nodes are constrained by design, not the optimizer, because they are pre-

scribed by a user-defined path, in this current work this path is a two-body orbit.

Thus, the differentials for position at the initial and final orbits are dr1 = v1−dt̃1−

and drn = vn+dt̃n+ and the differentials for velocity are dv1− = a1−dt̃1− and

dvn+ = an+dt̃n+. The time-like t̃ to parameterize an orbit is not associated with

the time of flight of the transfer trajectory. Furthermore, for every segment (i+1)i

from node i to i + 1, the time of flight is defined to be ∆t = t(i+1)− − ti+ and the

time of flight differential is d∆t = dt(i+1)− − dti+. For convenience, the initial time

ti+ of segment (i+1)i is designed to be zero, so the time of flight ∆t is the final time

t(i+1)− of segment (i + 1)i, i.e. ∆t = t(i+1)−. The initial time ti+ can conveniently

be zero because time does not explicitly show up in the dynamics. In other words,

for time-free unconstrained spacecraft trajectory optimization problems, only the

time of flight ∆t of each segment (i+1)i is needed, not the initial and final times of

each segment. Thus, when computing the velocity differentials at node i shown in

Eqs. (B.2) and (B.3), the time of flight differential is d∆t = dti− = dt(i+1)− because

dt(i−1)+ = dti+ = 0.

Now, substitute Eqs. (B.2) and (B.3) into Eq. (B.1), the aforementioned dif-

ferentials for time and position, and group similar differential terms to get a cost

differential of the form

dJ =
∂J

∂t̃1−
dt̃1− +

∂J

∂t̃n+
dt̃n+ +

∂J

∂∆t
d∆t+

∂J

∂r2
dr2 + · · ·+

∂J

∂rn−1
drn−1 (B.4)

where the cost partials are the coefficients of each differential of the initial time-like

variable on the initial orbit t̃1−, the final time-like variable on the final orbit t̃n+,

the time of flight ∆t of each segment (i+1)i, and all intermediate positions ri from
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nodes 2 to n− 1. The cost partials for Chapter 3 are

∂J

∂t̃1−
=

∂J

∂∆v1

∂∆v1
∂∆v1

(〈
∂v1+

∂r1

〉
v1− − a1−

)
+

∂J

∂∆v2

∂∆v2
∂∆v2

(
−
〈
∂v2−
∂r1

〉
v1−

)
(B.5)

∂J

∂t̃n+
=

∂J

∂∆vn−1

∂∆vn−1

∂∆vn−1

(〈
∂v(n−1)+

∂rn

〉
vn+

)
+

∂J

∂∆vn

∂∆vn
∂∆vn

(
an+ −

〈
∂vn−

∂rn

〉
vn+

)
(B.6)

∂J

∂∆t
=

∂J

∂∆v1

∂∆v1
∂∆v1

〈
∂v1+

∂∆t

〉
+

n−1∑
i=2

∂J

∂∆vi

∂∆vi
∂∆vi

(
−
〈
∂vi−

∂∆t

〉
+

〈
∂vi+

∂∆t

〉)
+

∂J

∂∆vn

∂∆vn
∂∆vn

(
−
〈
∂vn−

∂∆t

〉)
(B.7)

∂J

∂ri
=

∂J

∂∆vi−1

∂∆vi−1

∂∆vi−1

〈
∂v(i−1)+

∂ri

〉
+

∂J

∂∆vi

∂∆vi
∂∆vi

(〈
∂vi+

∂ri

〉
−

〈
∂vi−

∂ri

〉)
+

∂J

∂∆vi+1

∂∆vi+1

∂∆vi+1

(
−
〈
∂v(i+1)−

∂ri

〉)
(B.8)

Note the following useful identities between velocity partials that relates flight time

∆t and time t before and after node i:
〈
∂vi−
∂∆t

〉
=

〈
∂vi−
∂ti−

〉
and

〈
∂vi+
∂∆t

〉
=

〈
∂vi+

∂t(i+1)−

〉
.

Also note, if the problem is fixed-state to fixed-state, not orbit-to-orbit, then the

initial and final time-like variables that parameterize the initial and final orbits do

not vary, i.e. dt̃1− = 0 and dt̃n+ = 0 and the associated cost partials are zero, i.e.
∂J
∂t̃1−

= 0 and ∂J
∂t̃n+

= 0. Likewise, the time of flight cost partial is zero, ∂J
∂∆t = 0, if

the total time of flight is fixed.

The cost partials reported in Eqs. (B.5) to (B.8) for Chapter 3 are modified

to a more general form to accommodate the varying flight time function, the PST

shown in Eq. (4.1). Otherwise, position continuity is still assumed and a cost of the

form in Eq. (3.1) is still used. The more general form of the cost partials assumes

Eq. (3.1) is a function of ∆τ for each segment, instead of ∆t, and a function of the

intermediate positions, r2 to rn−1, for nodes 2 to n−1, respectively. The examples in

Chapters 4 and 5 are fixed six-state to six-state, corresponding to Keplerian orbits
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for simplicity. Thus modifications to Eqs. (B.5) and (B.6) are ignored because those

cost partials are zero. The cost partials for Chapter 4 with respect to ∆τ and ri,

modifying Eqs. (B.7) and (B.8), respectively, are

dJ

d∆τ
=

∂J

∂∆v1

∂∆v1
∂∆v1

∂v1+

∂∆τ
+

n−1∑
i=2

∂J

∂∆vi

∂∆vi
∂∆vi

(
∂vi+

∂∆τ
− ∂vi−

∂∆τ

)
+

∂J

∂∆vn

∂∆vn
∂∆vn

(
−∂vn−

∂∆τ

)
(B.9)

dJ

dri
=

∂J

∂∆vi−1

∂∆vi−1
∂∆vi−1

∂v(i−1)+

∂ri
+

∂J

∂∆vi

∂∆vi
∂∆vi

(
∂vi+

∂ri
− ∂vi−

∂ri

)
+

∂J

∂∆vi+1

∂∆vi+1

∂∆vi+1

(
−
∂v(i+1)−

∂ri

)
(B.10)

derived by also considering the variational effects of node i on its neighboring nodes

i−1 and i+1. The initial τi+ is always zero for convenience, so ∆τi(i+1) = τ(i+1)−−

τi+ = τ(i+1)−. Moreover, ∆τ = ∆τi(i+1) because ∆τ is the same for every segment

for a particular solution.

These cost partials in Eqs. (B.9) and (B.10) are built from velocity partials

that combine the partials of Lambert’s problem (the EBVP partials) and the PST.

For segment i(i+ 1), the initial velocity vi+ and final velocity v(i+1)− are functions

of the initial position ri and final position ri+1, and ∆ti(i+1), which in turn is also a

function of ri, ri+1, and ∆τ . These dependencies are written compactly as

vi+ = vi+(ri, ri+1,∆ti(i+1)(ri, ri+1,∆τ))

v(i+1)− = v(i+1)−(ri, ri+1,∆ti(i+1)(ri, ri+1,∆τ))

Applying the chain rule on the aforementioned vi+ and v(i−1)+, the EBVP partials

are shown in Table B.1 along with the PST partials in Table B.2 for the various α’s
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and r∗’s. Note the partials of Lambert’s problem are still distinctly labeled with

〈·〉 and presented in Ref. [105]. For these more general cost partials in Eqs. (B.9)

and (B.10), if α = 0, then the cost partials shown in Eqs. (B.7) and (B.8) are

reproduced. Also note, the velocity partials of segment (i−1)i are derived similarly

to segment i(i+ 1).

Lastly, to minimize an approximation to thrust-acceleration-squared for Chap-

ter 5, an augmentation to Eqs. (B.9) and (B.10) is needed. The cost function in

Eq. (5.10) is repeated here for convenience, dropping the subscript D for clarity,

J =
1

2

n∑
i=1

Γ2
i∆tavg,i =

1

2

n∑
i=1

∆v2i
∆tavg,i

where Γi = ∆vi/∆tavg,i and ∆tavg,i = (∆t(i−1)i +∆ti(i+1))/2. Notice the numerator

of this cost function is ∆v2i . According to the chain rule, the partials of Eqs. (B.9)

and (B.10) are still relevant, but now an additional term is needed to account for

the term in the denominator, ∆tavg,i, that is function of ∆τ and ri.

dJ

d∆τ
=

∂J

∂∆v1

∂∆v1
∂∆v1

∂v1+

∂∆τ
+

n−1∑
i=2

∂J

∂∆vi

∂∆vi
∂∆vi

(
∂vi+

∂∆τ
− ∂vi−

∂∆τ

)
+

∂J

∂∆vn

∂∆vn
∂∆vn

(
−∂vn−

∂∆τ

)
+

∂J

∂∆tavg,1

(
1

2

∂∆t12
∂∆τ

)
+

n−1∑
i=2

∂J

∂∆tavg,i

(
1

2

∂∆t(i−1)i

∂∆τ
+

1

2

∂∆ti(i+1)

∂∆τ

)
+

∂J

∂∆tavg,n

(
1

2

∂∆t(n−1)n

∂∆τ

)
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dJ

dri
=

∂J

∂∆vi−1

∂∆vi−1
∂∆vi−1

∂v(i−1)+

∂ri
+

∂J

∂∆vi

∂∆vi
∂∆vi

(
∂vi+

∂ri
− ∂vi−

∂ri

)
+

∂J

∂∆vi+1

∂∆vi+1

∂∆vi+1

(
−
∂v(i+1)−

∂ri

)
+

∂J

∂∆tavg,i−1

(
1

2

∂∆t(i−1)i

dri

)
+

∂J

∂∆tavg,i

(
1

2

∂∆t(i−1)i

dri
+

1

2

∂∆ti(i+1)

dri

)
+

∂J

∂∆tavg,i+1

(
1

2

∂∆ti(i+1)

dri

)
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Table B.1: Segment i(i+ 1) partials for ri and τi for the PST.
Initial Velocity vi+ Partials Final Velocity v(i+1)− Partials Real Time of Flight ∆ti(i+1)

Initial ri and Final ri+1 Position
∂vi+
∂ri

=
〈

∂vi+
∂ri

〉
∂v(i+1)−

∂ri
=

〈
∂v(i+1)−

∂ri

〉
∂t(i+1)−

∂ri
=

∂∆ti(i+1)

∂ri
=

∂∆ti(i+1)

∂r∗
∂r∗
∂ri

+
〈

∂vi+
∂t(i+1)−

〉
⊗ ∂∆ti(i+1)

∂ri
+
〈

∂v(i+1)−
∂t(i+1)−

〉
⊗ ∂∆ti(i+1)

∂ri

∂vi+
∂ri+1

=
〈

∂vi+
∂ri+1

〉
∂v(i+1)−
∂ri+1

=
〈

∂v(i+1)−
∂ri+1

〉
∂t(i+1)−
∂ri+1

=
∂∆ti(i+1)

∂ri+1
=

∂∆ti(i+1)

∂r∗
∂r∗

∂ri+1

+
〈

∂vi+
∂t(i+1)−

〉
⊗ ∂∆ti(i+1)

∂ri
+
〈

∂v(i+1)−
∂t(i+1)−

〉
⊗ ∂∆ti(i+1)

∂ri+1

Initial τi+ and Final τ(i+1)− Pseudo Time
∂vi+
∂τi+

= −
〈

∂vi+
∂t(i+1)−

〉
∂∆ti(i+1)

∂∆τ

∂v(i+1)−
∂τi+

= −
〈

∂v(i+1)−
∂t(i+1)−

〉
∂∆ti(i+1)

∂∆τ

∂t(i+1)−
∂τi+

= − ∂∆ti(i+1)

∂∆τ

∂vi+
∂τ(i+1)−

=
〈

∂vi+
∂t(i+1)−

〉
∂∆ti(i+1)

∂∆τ

∂v(i+1)−
∂τ(i+1)−

=
〈

∂v(i+1)−
∂t(i+1)−

〉
∂∆ti(i+1)

∂∆τ

∂t(i+1)−
∂τ(i+1)−

=
∂∆ti(i+1)

∂∆τ

Table B.2: Auxiliary segment i(i+ 1) partials for α and r∗ of the PST.
Real Time Ecc. Anomaly Intermediate Anomaly True Anomaly

α = 0 α = 1 α = 3/2 α = 2

∂∆ti(i+1)

∂∆τ
= 1

∂∆ti(i+1)

∂∆τ
= r∗

∂∆ti(i+1)

∂∆τ
= r

3/2
∗

∂∆ti(i+1)

∂∆τ
= r2∗

∂∆ti(i+1)

∂r∗
= 0

∂∆ti(i+1)

∂r∗
= ∆τ

∂∆ti(i+1)

∂r∗
= 3

2
r
1/2
∗ ∆τ

∂∆ti(i+1)

∂r∗
= 2r∗∆τ

Initial Position Final Position Average Position
r∗ = ri r∗ = ri+1 r∗ = (ri + ri+1)/2

∂r∗
∂ri

= ri
ri

∂r∗
∂ri

= 01×3
∂r∗
∂ri

= 1
2

ri
ri

∂r∗
∂ri+1

= 01×3
∂r∗

∂ri+1
=

ri+1

ri+1

∂r∗
∂ri+1

= 1
2

ri+1

ri+1
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B.1.1 Variational State Transition Matrix

The EBVP partials, designated by 〈·〉, can be derived either directly when using

ivLam, or through the variational STM via integration for rk7sh and rk78sh or

by forming the Keplerian submatrices, e.g. via Battin’s Kepler variational STM

implemented in Arora et al. [105], or other analytic forms of two-body dynamics by

Shepperd [258], Goodyear [259], Pitkin [260], Glandorf [261], and more.

The variational STM solves the following variational equations of motion for

a segment δẋ = Fδx for dynamics of the form ẋ = f(x) so F = ∂f/∂x. The variational

STM can then be written as

δx(i+1)− = Φ(t(i+1)−, ti+)δxi+ (B.11)

for segment (i+1)i from ti+ to t(i+1)− or node i to i+1. The variational STM Φ =

Φ(t(i+1)−, ti+) describes the effect of the sensitivity of the initial state, time-fixed

variation δxi+ = δx(ti+) on a final state, time-fixed variation δx(i+1)− = δx(t(i+1)−).

The variational STM is then either numerically integrated with Φ̇ = FΦ or

analytically known. The integrated solution is decomposed into sub-matrix form as

Φ =
∂x(i+1)−

∂xi+
=

 ∂r(i+1)−
∂ri+

∂r(i+1)−
∂vi+

∂v(i+1)−
∂ri+

∂v(i+1)−
∂vi+

 =

A(i+1)i B(i+1)i

C(i+1)i D(i+1)i

 (B.12)

where the sub-matrices A(i+1)i, B(i+1)i, C(i+1)i, and D(i+1)i are defined for notational

simplicity. A closed-form variational STM for two-body dynamics by Battin is not

reproduced here for compactness but can be found in Ref. [105] via Eqs. 38–50. A

similar form of the variational STM can be made for segment i(i− 1). The EBVP

partials in terms of the variational STM sub-matrices are shown in Table B.3. The
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expressions in Table B.3 are primarily for perturbed two-body dynamics, however

the submatrices can be found analytically as previously mentioned for the two-body

problem to give the partials of the Lambert problem.

Table B.3: EBVP partials in terms of the variational STM
Position Time

Velocity Partials for Segment (i + 1)i from Node i to i + 1〈
∂vi+
∂ri

〉
= −B−1

(i+1)i
A(i+1)i

〈
∂vi+
∂ti+

〉
= ai+ + B−1

(i+1)i
A(i+1)ivi+〈

∂vi+
∂ri+1

〉
= B−1

(i+1)i

〈
∂vi+

∂t(i+1)−

〉
= −B−1

(i+1)i
v(i+1)−

Velocity Partials for Segment i(i − 1) from Node i − 1 to i〈
∂vi−
∂ri−1

〉
= Ci(i−1) − Di(i−1)B−1

i(i−1)
Ai(i−1)

〈
∂vi−

∂t(i−1)+

〉
= −(Ci(i−1) − Di(i−1)B−1

i(i−1)
Ai(i−1))v(i−1)+〈

∂vi−
∂ri

〉
= Di(i−1)B−1

i(i−1)

〈
∂vi−
∂ti−

〉
= ai− − Di(i−1)B−1

i(i−1)
vi−

B.1.2 Mass-Leak

A mass-leak numerically fixes a singularity of the cost partials for fuel optimal tra-

jectories, not needed for energy optimal trajectories. If a node is not needed, the

denominator of partial ∂∆vi/∂∆vi = ∆v>i /∆vi goes to zero. The mass-leak elimi-

nates this singularity by including a small constant quantity ε inside the computation

of the magnitude of the impulsive maneuver:

∆vi =
√
∆v2xi

+∆v2yi +∆v2zi + ε2 (B.13)

where ∆vxi , ∆vyi , and ∆vzi are the x, y, and z-components of the ∆vi, respectively.

Practical choices for ε are ε = 10−4, 10−5, and 10−6 DU/TU. Also, in practice,

the optimizer decreases the value of the ∆vi to approximately ε if not needed for

optimality because the gradient-based optimizer does not recognize the node as

affecting the cost once a partial is approximately zero. This mass-leak causes a

slightly higher ∆vi in the cost function of Eq. (3.1), but automatically eliminates

nodes. For a fuel optimal solution, the true cost, computed without a mass-leak,

can be easily post-processed, using the now known correct number of ∆v’s.
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Chapter 3

D. Ottesen and R. P. Russell, “Unconstrained Direct Optimization of Spacecraft

Trajectories Using Many Embedded Lambert Problems,” Journal of Optimization

Theory and Applications, 2021, pp. 1–41. doi:10.1007/s10957-021-01884-1.

N. Arora, R. P. Russell, N. Strange, and D. Ottesen, “Partial Derivatives of the

Solution to the Lambert Boundary Value Problem,” Journal of Guidance, Control,

and Dynamics, Vol. 38, Sept. 2015, pp. 1563–1572. doi:10.2514/1.G001030.

Chapter 4

D. Ottesen and R. P. Russell, “Piecewise Sundman Transformation for Spacecraft

Trajectory Optimization Using Many Embedded Lambert Problems,” Journal of

Spacecraft and Rockets, 2022, pp. 1–18. doi:10.2514/1.A35140.

162

https://link.springer.com/article/10.1007/s10957-021-01884-1
https://arc.aiaa.org/doi/10.2514/1.G001030
https://arc.aiaa.org/doi/full/10.2514/1.A35140


Miscellaneous

R. P. Russell, S. McArdle, D. Ottesen, E. M. Zucchelli, and W. E. Branden-

burg, “Global Trajectory Optimization, Pathfinding, and Scheduling for a Multi-

Flyby, Multi-Spacecraft Mission,” Acta Astronautica, July 2022. doi:10.1016/j.ac-
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17-837, Vol. 162, Stevenson, WA, August 2017, pp. 2271–2290.
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using Embedded Boundary Value Problems,” AAS/AIAA Astrodynamics Specialist

Conference, AAS 19-929, Portland, ME, August 2019.

Chapter 4

D. Ottesen and R. P. Russell, “A Piecewise-Constant Sundman Transformation for

Spacecraft Trajectory Optimization,” AAS/AIAA Astrodynamics Specialist Confer-

ence, AAS 18-467, Vol. 167, Snowbird, WA, August 2018, pp. 1755–1774.

Chapter 5

D. Ottesen and R. P. Russell, “Direct-to-Indirect Mapping for Optimal Low-Thrust

Trajectories,” AAS/AIAA Astrodynamics Specialist Conference, AAS 22-227, Char-
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