
Copyright

by

Syed Akbar Mehdi

2022

The Dissertation Committee for Syed Akbar Mehdi
certifies that this is the approved version of the following dissertation:

Scalability through Asynchrony in Transactional

Storage Systems

Committee:

Lorenzo Alvisi, Co-supervisor

Simon Peter, Co-supervisor

Calvin Lin, Co-supervisor

Christopher J Rossbach

Eddie Kohler

Immanuel Trummer

Scalability through Asynchrony in Transactional

Storage Systems

by

Syed Akbar Mehdi, B.E., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2022

Dedicated to my family: Urooj, Ammar, Anwar, Jabeen and Ali

Acknowledgments

I am grateful to my amazing advisors: Lorenzo Alvisi and Simon Peter.

Their guidance, mentorship and drive for excellence have shaped me as a

researcher. My introduction to Lorenzo was through his awesome distributed

systems course at UT Austin. I shared his enthusiasm for building systems

rooted in strong theoretical frameworks and deep insights, which led to us

working together. I have learned a lot from Lorenzo over the years, including

how to ask the right questions and how to abstract away the details to focus on

the fundamentals of a problem. Lorenzo’s guidance on the Occult paper was

invaluable in helping me understand the broader implications of my own idea.

Simon advised me during the latter half of my PhD, together with Lorenzo.

Simon’s help with ScaleDB was essential. I was always impressed by the ease

with which he was able to guide me about low-level system details, as well as

abstract thinking about system design. I learned a lot about systems building

and scientific writing from Simon that will remain with me as an engineer and

researcher.

I would like to thank my committee members: Chris Rossbach, Eddie

Kohler, Calvin Lin and Immanuel Trummer, for their valuable suggestions and

feedback that helped improve this dissertation.

I would like to thank my co-authors from the Occult and ScaleDB

v

papers: Cody Littley, Natacha Crooks, Wyatt Lloyd, Nathan Bronson and

Deukyeon Hwang. Nathan Bronson was a great mentor during internships at

Facebook and interaction with him, during that time, led to the Occult paper.

I was also fortunate to have friends in UT CS including: Youngjin Kwon,

Trinabh Gupta, Tyler Hunt, Josh Berlin, Lara Schmidt and Ashay Rane.

Outside of graduate school, I shared a lot of good memories with a close

circle of friends in Austin: Rashid Kaleem, Aater Suleman, Ghufran Baig,

Khubaib, Muqeet Ali and Danish Irfan. I also want to mention my friends

from Stanford, who were great company whenever I visited the Bay Area for

internships: Wajahat Qadeer, Rehan Hameed, Haider Razvi and Tahir Azim.

Junaid Khalid has been a good friend from our time together at NUST and

Berkeley, and I am glad we have stayed in touch over the years.

I am grateful to my family for their unconditional love and support.

My parents: Anwar and Jabeen, have been a constant source of love and en-

couragement throughout my life and especially during my PhD. I am fortunate

to have a brother like Ali who has always been my best friend. My son, Am-

mar, was born during my PhD and he has filled our lives with joy ever since.

Finally, to my wife, Urooj, who has stood by me through the highs and lows

of my PhD journey, I am grateful to have you as my partner in life.

vi

Scalability through Asynchrony in Transactional

Storage Systems

Publication No.

Syed Akbar Mehdi, Ph.D.

The University of Texas at Austin, 2022

Supervisors: Lorenzo Alvisi
Simon Peter
Calvin Lin

Modern storage systems face daunting scalability challenges. The amount

of data stored worldwide is doubling every two years. Compounding this prob-

lem are growing demands for these storage systems to offer strong correctness

guarantees (such as consistency and transactional isolation): these guarantees

require a degree of coordination that negatively affects scalability. Prior work

has shown, that avoiding coordination is the key to scalability for a variety of

systems.

This dissertation explores scalability problems due to coordination that

is an artifact of the mechanisms used to implement a system rather than

a fundamental requirement of the system’s correctness guarantees. We call

this phenomenon mechanism coordination. We explore how to build scalable

storage systems that minimize mechanism coordination while continuing to

provide stronger consistency guarantees to their clients.

vii

We develop the insight that assuming nothing about how clients ac-

cess these systems leads to synchronous implementations, which in-turn leads

to mechanism coordination and scalability bottlenecks. By letting the design

of these systems be informed by how clients are going to access them in the

overwhelmingly common case, it is possible to derive asynchronous implemen-

tations that minimize mechanism coordination, enabling them to scale.

We demonstrate the broad applicability of this insight by building asyn-

chronous client-driven solutions to two different scalability problems in two dif-

ferent classes of storage systems. The first part of the dissertation solves the

problem of “slowdown cascades” in large-scale geo-replicated and distributed

storage systems that provide causal consistency to their clients. The second

part of the dissertation solves the problem of CPU contention on range indexes

in multi-core in-memory databases that provide serializable isolation to their

clients.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Thesis Statement . 4

1.2 Contributions . 6

1.2.1 Partitioned and Geo-Replicated Datastores 6

1.2.2 Multi-core, In-Memory Databases 7

1.3 Thesis Organization . 7

Chapter 2. Mechanism Coordination 9

2.1 Slowdown Cascades in Causal Datastores 12

2.1.1 Causal Consistency . 13

2.1.2 How can Slowdown Cascades Impact Causal Datastores? 15

2.1.3 Nature of Mechanism Coordination 17

2.2 Range Index Contention in In-Memory Databases 18

2.2.1 Range Index Scalability 19

2.2.2 In-Memory Databases 21

2.2.3 In-Memory Database Scalability 22

2.2.3.1 Mechanism Coordination on Range Indexes . . 23

Chapter 3. Towards Scalability through Asynchrony 29

3.1 Implicit Pessimistic Assumptions of Prior Systems 29

3.1.1 In-Memory Databases 30

3.2 The Thesis Statement as a Design Principle 33

ix

Chapter 4. Occult: Causal Consistency with No Slowdown Cas-
cades 35

4.1 Observable Causal Consistency 37

4.2 Occult: The Basic Framework 40

4.2.1 System Model . 40

4.2.2 Causal Timestamps . 41

4.2.3 Basic Protocol . 44

4.3 Causal Timestamp Compression 46

4.3.1 A First Attempt: Structural Compression 46

4.3.2 Temporal Compression 47

4.3.3 Isolating Datacenters 49

4.4 Transactions . 51

4.4.1 PC-PSI Specification . 53

4.4.2 Executing Read/Write Transactions 56

4.4.3 Correctness . 58

4.4.3.1 Missed Effects Prevention Examples 60

4.5 Fault Tolerance . 62

4.5.1 Server Failures . 62

4.5.2 Client Failures . 63

4.6 Evaluation . 64

4.6.1 Experimental Setup . 65

4.6.2 Performance and Overhead 67

4.6.2.1 Single Key Operations 67

4.6.2.2 Transactions . 69

4.6.2.3 Resource Overhead 71

4.6.3 Impact of Slow Nodes 72

4.7 Related Work . 75

4.7.1 Scalable Causal Consistency 75

4.7.2 Read/Write Transactions 77

4.7.3 Rethinking the Output Commit Step 77

4.8 Limitations . 78

x

Chapter 5. ScaleDB: An Asynchronous In-Memory Database 80

5.1 Design Rationale and Overview 81

5.1.1 Scalable Transaction Processing with Indexlets 83

5.1.2 Serializability with Asynchronous Range Index Updates 83

5.1.3 Durability . 85

5.1.4 Example . 86

5.2 Design Details . 87

5.2.1 Asynchronous Range Index Updates 87

5.2.1.1 Indexlets . 88

5.2.1.2 Merge Epoch 89

5.2.1.3 Asynchronous Merging 89

5.2.2 Asynchronous Concurrency Control 90

5.2.2.1 Repairing Stale Range Scans 92

5.2.2.2 Atomic Commit 93

5.2.2.3 Asynchronous Phantom Detection 97

5.2.3 Durability . 100

5.2.4 Correctness . 103

5.3 Implementation . 103

5.3.1 Indexlet and Phantomlet Hash Table 103

5.3.2 Lock-Free Reads . 105

5.3.3 Concurrent Range Index 106

5.3.4 System-wide Synchronized Clock 106

5.4 Evaluation . 107

5.4.1 ScaleDB Mechanisms 108

5.4.2 Asynchronous Index Update 109

5.4.3 Serializability . 111

5.5 Limitations . 114

Chapter 6. Conclusions 116

Appendix 118

xi

Appendix 1. Occult Pseudocode 119

1.1 Causal Timestamp Interface 119

1.2 Basic Protocol . 120

1.3 Transactional Protocol . 120

Appendix 2. ScaleDB Serializability Proof 124

Bibliography 137

xii

List of Tables

3.1 Benchmark details. 30

xiii

List of Figures

2.1 Example of a slowdown cascade in traditional causal consis-
tency. Delayed replicated write(a) delays causally dependent
replicated write(b) and write(c) 15

2.2 Average queue length of buffered replicated writes in Eiger un-
der normal conditions and when a single shard is delayed by
100 ms. 16

2.3 Layout of a simple database with range indexes. Tables are
logical entities. Records are stored sorted by primary index
key. Schema information is stored separately in a catalog (not
shown). Arrows are pointers. 19

2.4 Example of contention on a B+ tree range index. Concurrent
transactions T1 and T2, running on different threads, are in-
serting records with keys 123 and 345 respectively to a B+ tree.
The relevant leaf nodes, [111, 222] and [333, 444], are full, so they
need to be split and the shared parent node [333, 555] needs to
be updated with pointers to the new children. This results in
lock contention between T1 and T2 on the shared parent. How-
ever, since the shared parent is full as well, the lock contention
continues to the root. 20

2.5 Serializability and the necessity of coordination. Two concur-
rent transactions T1 and T2 are running on separate threads. If
they access the same record(s), then coordination is necessary
for serializing their order (here T1 → T2). Otherwise, coordina-
tion is unnecessary, since they can be serialized in either order.
Any contention on range indexes (e.g. Figure 2.4) is therefore
mechanism coordination for guaranteeing serializability. 24

2.6 Cicada scalability on the TPC-C benchmark with partitioned
vs shared indexes. Goodput counts only committed transac-
tions. Full means the canonical TPC-C workload (i.e., 45%
New-Order, 43% Payment, 4% Delivery, 4% Order Status and
4% Stock Level). NewOrd-Deliv means a 50% New-Order and
50% Delivery workload. 25

a Goodput . 25

b Abort Rate . 25

xiv

3.1 Range scan property distributions of three benchmarks. 30

a Write to range scan (W-to-RS) latency 30

b Records returned by range scan 30

4.1 Occult Basic Protocol Example. 43

a Occult’s system model and causal timestamps. 7 writes
have been applied to the master of the red shard in Dat-
acenter A and replicated to its slave in Datacenter B.
Client 1’s causal timestamp knows 4 writes from the red
shard. 43

b Client 1 writes to object a, followed by Client 2 reading
a and then writing to b. Red and grey shards have incre-
mented shardstamps, due to these new writes. b’s causal
timestamp is entry-wise >= a’s causal timestamp, indi-
cating that write to b is causally ordered after write to
a. 43

c b’s write replicates to Datacenter B but a’s write is de-
layed. Client 3 still reads the latest value of b. Next, it
tries to read from red shard, but the consistency check
fails. The shard is stale. 43

4.2 PSI requires transactions to be replicated in commit order. s(i)
and c(j) mean respectively start (commit) at timestamp i (j). 52

4.3 Occult Transactional Protocol Example. 55

a Alice and her advisor (close to different replicas) are man-
aging three student lists (a, b and c), located on different
shards. 55

b Observable Atomicity through Causality. Alice adds Abe
to list a in transaction T1 and then moves Bob from list

b to c in transaction T2. Thus T1
sd−→ T2. At T2’s commit,

b’s causal timestamp knows about the write to c and vice
versa. 55

c Replication of writes to a and b is delayed. Alice’s advisor
reads all three lists in transaction T3. Read set validation
of T3 fails due to atomicity violation: c’s causal times-
tamp knows more writes from the grey shard than were
applied to that shard at the time b was read (thick red

border entries). T1
sd−→ T2 ordering violation due to stale

red shard (thick black border entries) is also detected. . 55

4.4 Example of inconsistent reads, prevented by read set validation. 60

xv

4.5 Example of concurrent conflicting writes, prevented by over-
write set validation. 61

4.6 Measurement and analysis of Occult ’s overhead for single key
operations. Spatial, Temporal or DC-Isolate mean that we run
Occult using those compression methods while Eventual indi-
cates our baseline, i.e., Redis Cluster. WI means Wisconsin
datacenter and SC means South Carolina datacenter. 66

a Goodput (Read-heavy) 66

b Read Latency CDF (Read-heavy) 66

c Stale Reads WI (Read-heavy) 66

d Stale Reads SC (Read-heavy) 66

e Stale Read Analysis (Read-heavy) 66

f Retrying Stale reads (Read-heavy) 66

g Goodput (Write-heavy) 66

h Read Latency CDF (Write-heavy) 66

4.7 Transactions in Occult . 70

a Goodput . 70

b Abort Rate as f(shardstamps) (Tsize = 20) 70

c Abort Rate as f(Tsize) (shardstamps = 8) 70

d Average Latency . 70

4.8 Effect on overall goodput and read latency due to slow nodes
in Occult . 73

a Goodput . 73

b Latency(slow tail nodes) 73

c Latency(slow hot nodes) 73

5.1 Asynchronous range index update for the PERSON table. . . 85

5.2 LockUniqueInsert Example. 95

5.3 Asynchronous Phantom Detection Example. 102

a Before validating successfully, transaction T1 acquires locks
for atomically inserting the record with SSN = 333 and
a phantom indicator <0x4ff, 13>, corresponding to leaf
index node [222,]. This node covers the range containing
333. Concurrently, transaction T2 does a range scan for
SSN >= 222, during its read phase. 102

xvi

b Transaction T2 detects phantom indicator <0x4ff, 13>
corresponding to [222,] while validating the range scan
SSN >= 222. It will abort: T1 committed earlier, but T2’s
range scan missed the record with SSN = 333, inserted
by T1 in the indexlet. 102

5.4 ScaleDB Mechanisms . 109

a Indexlet scalability . 109

b System-wide timestamp scalability 109

5.5 YCSB read-insert workload. 95-5 means 95% reads and 5%
inserts. 50-50 means 50% reads and 50% inserts. 110

a Throughput . 110

b Write sensitivity . 110

5.6 ScaleDB vs Cicada goodput scalability comparison on the TPC-
C benchmark with partitioned and shared indexes for Cicada.
Goodput counts only committed transactions. Full means the
canonical TPC-C workload (i.e., 45% New-Order, 43% Pay-
ment, 4% Delivery, 4% Order Status and 4% Stock Level).
NewOrd-Deliv means a 50% New-Order and 50% Delivery work-
load. 112

a Full . 112

b NewOrd-Deliv . 112

5.7 ScaleDB Abort Rate. Full means the canonical TPC-C work-
load (i.e., 45% New-Order, 43% Payment, 4% Delivery, 4% Or-
der Status and 4% Stock Level). NewOrd-Deliv means a 50%
New-Order and 50% Delivery workload. 114

a Full . 114

b NewOrd-Deliv . 114

xvii

Chapter 1

Introduction

Modern storage systems face daunting scalability challenges. The amount

of data stored worldwide is roughly doubling every two years [8, 25]. By 2025,

49% of this data will be stored in the public cloud [8] and nearly 30% will

be consumed in real-time. Already, the largest data stores operate at an im-

mense scale, serving on the order of billions of reads per second [144] and tens

of millions of writes per second [6, 27, 144].

These scalability challenges are accompanied by a growing trend to-

wards providing stronger correctness guarantees by storage systems [24, 49,

69, 74, 144]. By correctness guarantees, we mean either consistency or trans-

actional isolation. These define a contract with the clients of the system,

“specifying the set of behaviors that clients can expect to observe” [76] in the

face of replication of the system’s state (consistency) or concurrent access to

Section 1.2.1 of this chapter is derived from a prior publication describing the Oc-
cult [126] system. The author of this dissertation conceived, designed, implemented and
evaluated the Occult system, and led the writing of the prior publication: S. A. Mehdi, et
al. 2017. “I Can’t Believe It’s Not Causal! Scalable Causal Consistency with No Slowdown
Cascades”. In Proceedings of the 14th USENIX Conference on Networked Systems Design
and Implementation (NSDI’17). USENIX Association, USA, 453–468. The introduction
to slowdown cascades is derived from a prior publication co-authored by this dissertation’s
author, which discusses the Occult system: L. Alvisi et al. “Writes: the dirty secret of
causal consistency.” IEEE Data Eng. Bull. 40 (2017): 15-25.

1

the system by multiple client transactions (isolation).

Stronger correctness guarantees are in tension with scalability because

the former demand increased coordination – “the requirement that concur-

rently executing operations synchronously communicate or otherwise stall in

order to complete” [51]. Avoiding coordination has been shown to be the

key to scalability; whether it is in the context of databases [51], distributed

systems [89, 92] or software for shared-memory multi-core machines [57, 70].

Given the specification of a correctness guarantee, some coordination

is necessary. For instance, a database that provides serializable [39] isola-

tion must behave as if concurrent transactions execute in some serial order.

This requires coordination [78]; for example, to ensure that, if two concurrent

transactions attempt to update the same record, then one of them is aware

of the other’s update before performing its own. Similarly, a replicated data

store that provides linearizability [94] to its clients cannot avoid coordination

between its replicas [89].

Avoiding coordination has been the focus of prior work on building

scalable and performant systems. Given the necessity of coordination when

enforcing stronger guarantees, many systems [15, 63, 67, 71, 139] avoided coor-

dination by choosing to provide weak guarantees instead. However, that choice

came at the cost of increased anomalies for applications, resulting in the de-

mand for stronger guarantees in recent years [24, 49, 69, 74, 144]. Another

approach to coordination avoidance has stepped away from traditional cor-

rectness guarantees and defined necessary coordination in terms of application

2

invariants specified through a new interface [51]. Yet, specifying invariants

manually can be tedious [159] and error-prone, and the appeal of traditional

correctness guarantees remains due to the simpler and clearer abstractions

they provide.

The focus of this dissertation is to explore how to avoid unnecessary

coordination in Online Transaction Processing (OLTP) storage systems. As-

suming traditional correctness guarantees and typical storage system inter-

faces [11, 23], we focus on avoiding coordination that is an artifact of the

mechanisms used to implement a system, rather than a fundamental require-

ment of the guarantees provided by the system. We refer to this unnecessary

coordination as mechanism coordination. We identify and explain instances of

mechanism coordination that cause scalability problems in two different classes

of storage systems. In both instances, the design artifacts that we identify as

causing mechanism coordination are canonical ways of implementing these

systems!

The first problem – slowdown cascades – arises in sharded and geo-

replicated key-value stores that provide causal consistency [41] to their clients.

In prior approaches, a datacenter performs a write operation only after ap-

plying all writes that causally precede it. This design guarantees that reads

never block, as all replicas are always in a causally consistent state, but, in the

presence of slow or failed shards, may cause writes to be buffered for arbitrar-

ily long periods of time. These failures, common in large-scale clusters, can

lead to the slowdown cascade phenomenon, where a single slow or failed shard

3

negatively impacts the entire system, delaying the visibility of updates across

many shards and leading to growing queues of delayed updates [42, 126].

The second problem – range index contention – arises in multi-core in-

memory relational databases that provide serializability [39] to their clients.

Prior approaches synchronously update range indexes with the implicit pes-

simistic assumption that all committed transactional writes could potentially

be read by the same transaction as part of a range scan immediately after

the writing transaction(s) commit. This results in range indexes becoming a

scalability bottleneck for such databases.

1.1 Thesis Statement

We observe that, in both cases, the lack of any assumptions about client

behavior leads to write-synchronous designs, which results in mechanism co-

ordination. By seemingly making no assumptions, prior systems actually im-

plicitly make a pessimistic assumption — i.e., that any write can be observed,

immediately after it is committed, together with any other committed write

on which it depends, in a client transaction or session. In the case of slow-

down cascades, the focus is on dependencies due to causal ordering of writes;

whereas, in the case of range index contention, the focus is on dependencies

between writes to the same range index, due to the requirement of maintain-

ing a sorted order. In either case, before a write can be committed, prior

systems must synchronously update their internal state to enforce all possible

dependencies which may impact the correctness guarantee they provide.

4

The road to solving these problems starts from the above observation.

If no client is going to observe all the dependencies, soon after the writes

commit, then synchronously propagating writes is wasteful. It follows, that it

is more scalable to enforce the dependencies of a write when they are actually

observed by client reads, since doing so avoids mechanism coordination for all

dependencies. This core idea is captured by the following thesis statement:

Scalable OLTP storage systems, that avoid mechanism coordination,

can be built, by asynchronously propagating committed writes, and detecting

and handling potential violations of correctness guarantees on reads; predi-

cated on the assumption that, in the common case, dependencies of writes are

unlikely to be tested by client reads, soon after the writes commit.

To validate this thesis’ statement, we have built two systems that solve

the two problems identified above by using the statement as a design principle.

Occult [126] (Chapter 4) pushes the enforcement of transactional causal con-

sistency to clients during reads, while allowing writes to be applied without

any synchronous ordering. As a result, it is immune from slowdown cascades.

ScaleDB (Chapter 5) updates range indexes asynchronously and avoids stale

reads by using small hash indexlets to hold delayed updates. Using indexlets,

it provides ACC, a novel, asynchronous concurrency control protocol which

provides serializability without adverse performance effects on transaction ex-

ecution in the common case.

5

1.2 Contributions

1.2.1 Partitioned and Geo-Replicated Datastores

We make the following contributions to the the design of partitioned

and geo-replicated key-value stores that guarantee causal consistency to their

clients.

1. A detailed explanation for why slowdown cascades present a clear and

present danger to the scalability of any data store that delays writes to

enforce causal consistency internally.

2. A novel and light-weight read-centric implementation of causal consis-

tency. By shifting enforcement to the clients, it ensures that they never

observe non-causal states, while placing no restrictions on the data store.

3. A new transactional isolation level called Per-Client Parallel Snapshot

Isolation (PC-PSI), a variant of Parallel Snapshot Isolation (PSI) [145],

that contributes to Occult’s immunity to slowdown cascades by weaken-

ing how PSI replicates transactions committed at the same replica.

4. A novel scalable protocol for providing PC-PSI that uses causal times-

tamps to enforce both atomicity and transaction ordering and whose

commit latency is independent of the number of replicas in the system.

5. An implementation and evaluation of Occult, the first causally consistent

store that implements these ideas and is immune to slowdown cascades.

6

1.2.2 Multi-core, In-Memory Databases

We make the following contributions to the the design of multi-core,

in-memory databases that guarantee serializability to their clients.

1. An analysis of the range index scalability bottleneck and of asynchronous

range-index updates as a way to alleviate the bottleneck for unrelated

transactions.

2. The design and implementation of ScaleDB, a scalable in-memory database

that decouples range index management from transaction execution to

allow asynchronous update of range indexes in the common case.

3. Asynchronous concurrency control (ACC), a novel concurrency control

protocol that provides serializability in an asynchronous database. ACC

uses phantomlets to scalably detect phantoms in range scans and pro-

vides scalable locking on keys in indexlets to atomically commit trans-

actions.

4. A performance evaluation of ScaleDB on a dual-socket server with 36

cores, which shows that ScaleDB scales better than the Cicada [117]

database.

1.3 Thesis Organization

The rest of this thesis is structured as follows: In Chapter 2, we first

discuss the two scalability problems that were identified earlier in this chap-

7

ter. We explain why they are instances of mechanism coordination. Next, in

Chapter 3, we discuss how these seemingly disparate problems arise because

of similar implicit assumptions, why those assumptions are overly pessimistic,

and why the thesis statement is the right design principle to solve these prob-

lems. In Chapters 4 and 5 we discuss the design and evaluation of Occult

and ScaleDB respectively and how both systems follow the thesis statement

to solve these problems. Finally we conclude in Chapter 6.

8

Chapter 2

Mechanism Coordination

The disastrous impact of coordination on scalability is well-known. Fre-

quent coordination between concurrent processes (or threads) in a system, re-

sults in the vast majority of their time being spent waiting for other processes

(or threads). As a result, the scalability of such systems is limited. Conversely,

it has been repeatedly shown that avoiding coordination allows systems to

scale [160, 57, 70, 98]. For instance, Clements et al. [70] show that whenever

operations of a software interface commute, they can be implemented in a

way that is multi-core scalable; coordination between two commutative and

concurrent interface calls is unnecessary since their results are independent of

their order of execution.

In the context of OLTP storage systems, prior work on this topic has

focused on the inherent coordination requirement (or otherwise) of various

correctness guarantees. For example, in distributed systems, the CAP The-

Section 2.1 of this chapter is derived from a prior publication describing the Occult [126]
system. The author of this dissertation conceived, designed, implemented and evaluated
the Occult system, and led the writing of the prior publication: S. A. Mehdi, et al.
2017. “I Can’t Believe It’s Not Causal! Scalable Causal Consistency with No Slowdown
Cascades”. In Proceedings of the 14th USENIX Conference on Networked Systems Design
and Implementation (NSDI’17). USENIX Association, USA, 453–468.

9

orem [89] precludes a group of servers, which are connected by a network

subject to partitions, from implementing an atomic read/write register that

responds to every client request. The necessity of an always connected network

implies a synchronous coordination requirement on requests. Such coordina-

tion is therefore necessary ; further implying that the scalability of a group of

servers guaranteeing an atomic register (or a provably stronger guarantee such

as linearizability [94]) is inherently limited. On the other hand, as we discuss

in §2.1.1, if the group of servers were to guarantee causal consistency, then

such coordination is provably unnecessary.

At this point, a relevant question is, when is coordination necessary for

an OLTP storage system? Bailis et al. [50] approach this question by provid-

ing a taxonomy of various consistency and transactional isolation guarantees

according to their compatibility with high availability i.e., the guarantee of

“a response from each non-failing server in the presence of arbitrary network

partitions”. High availability implies that synchronous coordination between

servers is not necessary and therefore permits scalability.

Later work from Bailis et al. [51] asks the question: “when is coordi-

nation strictly necessary to maintain application level consistency?”. They

address this question by moving away from widely used correctness guaran-

tees (such as serializability [39]) and instead enlisting the “aid of application

programmers to specify their correctness criteria in the form of invariants”.

While this approach achieves sizeable performance gains, it also places a sig-

nificant burden on the application programmer – “an exercise in human proof

10

generation” [159]. Brewer [62] refers to the need to know a system’s invariants

as “the hidden cost of forfeiting consistency” and points out that “the subtle

beauty of a consistent system is that the invariants tend to hold even when

the designer does not know what they are”. The Anna key-value store [160]

avoids coordination by using actors and asynchronous message passing, but

focuses only on consistency guarantees that are compatible with high avail-

ability. Finally, the CALM theorem [92] explores the subset of programs that

have a distributed coordination-free implementation by construction.

In this dissertation, we explore a different dimension of this question.

Rather than restricting the application programming model or moving away

from widely used correctness guarantees, we assume traditional correctness

guarantees and typical storage system interfaces [9, 34], and instead ask the

question: “When is coordination unnecessary because it is an artifact of the

design decisions (or mechanisms) used to implement a system rather than a

fundamental requirement of the guarantees provided by the system?”. We

refer to such unnecessary coordination as mechanism coordination.

It is important to understand how mechanism coordination relates to

problems like false sharing [59], lock contention [147] or unnecessary network

communication in a distributed system. Mechanism coordination is a higher-

level concept, related to the design choices made while implementing a cor-

rectness guarantee, that can manifest as any of these lower-level problems. It

is possible, however, to have these lower-level problems exist in a system that

does not have mechanism coordination. For instance, a serializable database,

11

designed to avoid mechanism coordination, can still have false sharing due to

improper cache-alignment of shared data structures. Conversely, mechanism

coordination can show up in ways that might not be traditionally considered

as coordination. For instance, as we show in §2.2.3.1, mechanism coordination

in a serializable database can show up in the form of transactional aborts.

In the rest of this chapter, we explore two different instances of mech-

anism coordination in two different classes of storage systems.

2.1 Slowdown Cascades in Causal Datastores

When systems scale to sufficient size, failures become an inevitable and

regular part of their operation [79, 80]. Performance anomalies, e.g., one node

running with lower throughput than the rest of the system, are typical, and can

be viewed as a kind of partial failure. Potential causes of such failures include

abnormally-high read or write traffic, partially malfunctioning (or “fail-slow”)

hardware [91], bugs or misconfigurations [95, 116], or a localized network issue,

like congestion in a top-of-rack switch.

A recent paper [91] studied 101 reports of fail-slow hardware incidents

in large production systems. Some examples from the study included network

delays of up to hundreds of milliseconds caused by loose network cables and

pinched fiber optics, a degraded NIC due to a non-deterministic network driver

bug in Linux that only surfaced on one machine and a power supply failure

that throttled the CPUs on four machines by 50%.

12

In a partitioned system, a failure within a partition will inevitably affect

the performance of that partition. A slowdown cascade occurs when the failure

spills over to affect other partitions. For instance the study in [91] cites the

example of a degraded NIC (from 1 Gbps to 1 Kbps) in one machine causing

a chained reaction that slowed down an entire cluster of 100 machines.

2.1.1 Causal Consistency

Causal consistency [41] is a well-known consistency model that captures

the potential causal relationships between operations performed by concurrent

processes. When applied in the context of a storage system, it ensures that

clients observe their own updates and read from a state that includes all op-

erations that they have previously observed.

This simple guarantee has clear benefits for users of today’s large-scale

web applications backed by sharded and geographically replicated data stores.

For example, consider two users – Alice and Bob – of a large social network

backed by such a data store. Causal consistency is all that is needed to pre-

serve operation ordering and give Alice assurance that Bob, whom she had

defriended before posting her Spring-break photos, will not be able to access

her pictures, even though Alice and Bob access the social network using dif-

ferent replicas [52, 71, 119].

Further, it has been shown that no guarantee stronger than real-time

causal consistency can be provided in a replicated data store that combines

high availability with convergence [123], and that, conversely, it is possible

13

to build convergent causally-consistent data stores that can efficiently handle

a large number of shards [44, 53, 83, 84, 119, 120]. This implies that in

a replicated data-store that guarantees causal consistency, any synchronous

coordination between replicas is unnecessary for answering client requests.

Thus, without imposing the high latency of stronger consistency guar-

antees [89, 118], causal consistency provides a sweet spot in the debate on

the guarantees that a sharded and geographically replicated (geo-replicated)

data store should offer. On the one hand, causal consistency maintains most

of the performance edge of eventual consistency [155] over strong consistency,

as all replicas are available for reads under network partitions [89, 118]. On

the other hand, it minimizes the associated baggage of increased programmer

complexity and user-visible anomalies. By ensuring that all clients see updates

that may potentially be causally related [108] in the same order, causal consis-

tency can, for example, address the race conditions that a VP of Engineering

at Twitter in a 2013 tech talk called “the biggest problem for Twitter” [106]:

when fanning out tweets from celebrities with huge followings, some feeds may

receive reactions to the tweets before receiving the tweets themselves.

Despite the obvious benefits, however, causal consistency is largely not

deployed in production systems, as existing implementations are liable to expe-

rience, at scale, one of the downsides of strong consistency: slowdown cascades.

14

2.1.2 How can Slowdown Cascades Impact Causal Datastores?

Industry has long identified the spectre of slowdown cascades as one

of the leading reasons behind its reluctance to build strongly consistent sys-

tems [42, 58], pointing out how the slowdown of a single shard, compounded by

query amplification (e.g., a single user request in Facebook can generate thou-

sands of, possibly dependent, internal queries to many services), can quickly

cascade to affect the entire system.

Shard A

Shard B

Shard C

Datacenter 1

Shard A

Shard B

Shard C

Datacenter 2
Alice
write(a=1)

Bob

read(a)=1

write(b=2)

Cindy

read(b)=2

write(c=3)

1

2

3

4

5

write(b)

write(a)

Emily

read(b)

read(a)

Frank

read(b)

read(c)write(c)
wait(b)

wait(a)

Slow shard

Affected shard

Delay

Buffered write

Figure 2.1: Example of a slowdown cascade in traditional causal consistency. Delayed replicated write(a)
delays causally dependent replicated write(b) and write(c)

All prior causally consistent systems [53, 84, 119, 120, 165] are suscep-

tible to slowdown cascades. The reason, in essence, is that, to present clients

with a causally consistent data store, these systems delay applying a write

w until after the data store reflects all the writes that causally precede w.

For example, in Eiger [120] each replicated write w carries metadata that ex-

plicitly identifies the writes that directly precede w in the causal dependency

graph. The datacenter then delays applying w until these dependencies have

been applied locally. The visibility of a write within a shard can then become

dependent on the timeliness of other shards in applying their own writes. As

Figure 2.1 shows, this is a recipe for triggering slowdown cascades: because

15

shard A of DC2 lags behind in applying the write propagating from DC1, all

shards in DC2 must also wait before they make their writes visible. Shard A’s

limping inevitably affects Emily’s query, but also unnecessarily affects Frank’s,

which accesses exclusively shards B and C.

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500

B
u

ff
e

re
d

 R
e

p
lic

at
e

d
 W

ri
te

s

Replicated writes received

Normal Slowdown

Figure 2.2: Average queue length of buffered replicated writes in Eiger under normal conditions and when
a single shard is delayed by 100 ms.

In practice, even a modest delay can trigger dangerous slowdown cas-

cades. Figure 2.2 shows how a single slow shard affects the size of the queues

kept by Eiger [120] to buffer replicated writes. Our setup is geo-replicated

across two datacenters in Wisconsin and Utah, each running Eiger sharded

across 10 physical machines. We run a workload consisting of 95% reads and

5% writes from 10 clients in Wisconsin and a read-only workload from 10

clients in Utah. We measure the average length of the queues buffering repli-

cated writes in Utah. Larger queues mean that newer replicated writes take

longer to be applied. If all shards proceed at approximately the same speed,

the average queue length remains stable. However, if any shard cannot keep

16

up with the arrival rate of replicated writes, then the average queue length

across all shards grows indefinitely.

2.1.3 Nature of Mechanism Coordination

To understand the nature of mechanism coordination in this problem

consider Figure 2.1. It illustrates why causal consistency can be subject to

slowdown cascades despite replicating writes asynchronously: writes share the

fate of all other writes on which they causally depend. If one write is slow to

replicate, all subsequent writes will incur that delay. Though this delay may

sometimes be necessary - Emily must wait for the delayed write to observe a

causally consistent snapshot of the system - inheriting the delays of causally

preceding writes can also introduce gratuitous blocking. Frank, for instance,

never reads Alice’s write (a): delaying writes (b) and (c) until (a) is replicated

is thus unnecessary. Otherwise said, observing writes (b) and (c) while write

(a) is in flight does not lead to a consistency violation.

This observation precisely captures what causal consistency requires;

therefore, it is key to understanding why this approach encounters mechanism

coordination. Causal consistency defines a contract between the data store and

its users that specifies, for a given set of updates, which values the data store is

allowed to return in response to user queries. In particular, it guarantees that

each client observes a monotonically non-decreasing set of updates (including

its own), in an order that respects potential causality between operations.

Causal consistency thus mandates that Frank, upon observing write (c), also

17

observes write (b), but remains silent on the fate of write (a). Existing causally

consistent systems, however, enforce internally a stronger invariant than what

causal consistency requires: to ensure that clients observe a monotonically

non-decreasing set of updates, they evolve each datacenter (or replica) only

through monotonically non-decreasing updates. It is this strengthening that

leaves current implementations of causal consistency vulnerable to slowdown

cascades.

2.2 Range Index Contention in In-Memory Databases

Range indexes are an efficient method for data retrieval. In addition

to providing exact-match lookup of database records in logarithmic time, they

also allow fast scans of records in sorted order. Figure 2.3, shows the use of

range indexes in a simple database with two tables. Tables are implemented

as collections of indexes and include one primary index and zero or more

secondary indexes. For example, table PERSON has primary index SSN and

two secondary indexes, Name and Zipcode. Table records are stored on the

heap and pointed to by the table’s primary index.

A primary range index allows quick retrieval of a table’s records by

primary key for both point and range queries. Primary keys are often required

to be unique within a table and an index can enforce this uniqueness constraint

efficiently. Applications also use secondary indexes extensively. They support

analytical queries [68] and are crucial to maintaining the consistency of the

database by serving as foreign keys, i.e. columns of a table that refer to

18

SSN Name Zipcode
111 Bob 90210
222 Abe 10000
333 Abe 90210

222

111 222 333

90210

<10000, 222> <90210, 333> <90210, 111>

Primary Index on PERSON (SSN) Secondary Index on PERSON (Zipcode)

StateZipcode
CA90210
NY10000

10000 90210

Bob

<Abe, 222> <Abe, 333> <Bob, 111>

Primary Index on ZIPCODE (Zipcode)

Secondary Index on PERSON (Name)

Table PERSON

Table ZIPCODE

Figure 2.3: Layout of a simple database with range indexes. Tables are logical entities. Records are stored
sorted by primary index key. Schema information is stored separately in a catalog (not shown).
Arrows are pointers.

a primary key of another table. For example, a foreign key constraint on

the Zipcode column in the PERSON table implies that deleting the 90210

zipcode from the ZIPCODE table requires deletion of all records with the

90210 zipcode from the PERSON table. The secondary index on the Zipcode

column makes this operation efficient—in the Figure, the root node of the

corresponding secondary tree points directly to the range of all SSNs in the

90210 zipcode; we can use these values as keys to traverse the primary index

of the PERSON table.

2.2.1 Range Index Scalability

Despite decades of work [90, 113, 128, 66, 65, 124, 114, 115], scalability

of range indexes under concurrent accesses remains elusive. This is primarily

due to the hierarchical nature of these data structures. For instance, when

inserting or deleting a single record in a B+-tree, its leaf node structure might

need to change, potentially requiring the atomic update of a chain of inter-

nal nodes all the way to the root. Performing such modifications atomically

19

while supporting concurrent access from multiple threads requires synchro-

nization [86, 157].

One approach to synchronization uses locks [90, 113, 128]. Recent op-

timizations [66, 65, 124] remove shared cache line contention between readers

trying to acquire a lock per node, by making them optimistic. However, read-

ers must read a version number per node to verify their optimistic assumption,

which can cause contention with writers trying to increment it. Similarly, writ-

ers still contend on cache lines, trying to acquire spinlocks on individual tree

nodes. Frequently accessed nodes such as the root of a B+tree or the index

node at the end of the range (for append workloads) can become hotspots of

contention. Figure 2.4 illustrates this further with an example.

333 555

111 222 333 444

333 666

…….

T1 T2
Insert(123) Insert(345)

…….

…….

Figure 2.4: Example of contention on a B+ tree range index. Concurrent transactions T1 and T2, running
on different threads, are inserting records with keys 123 and 345 respectively to a B+ tree.
The relevant leaf nodes, [111, 222] and [333, 444], are full, so they need to be split and the
shared parent node [333, 555] needs to be updated with pointers to the new children. This
results in lock contention between T1 and T2 on the shared parent. However, since the shared
parent is full as well, the lock contention continues to the root.

An alternative is to use lock-free data structures [115, 88, 93]: they use

atomic operations and multi-versioning to avoid lock contention for long crit-

ical sections. Yet, as recent work [86] points out, their theoretical guarantees

20

are “mostly irrelevant to performance and scalability on multi-core hardware”,

since they cannot avoid contention on global memory locations.

A recent study [157] evaluated state-of-the-art range indexes [124, 115,

114, 90, 88] on the YCSB [72] benchmark and showed that none of these

indexes scale well. Even on a read-heavy workload with only 5% inserts, these

indexes only scale up to 12× when increasing cores by 20×. On an insert-

only workload with threads appending new inserts to the end of a range, their

scalability collapses when going from a single NUMA node (20 cores) to two

NUMA nodes (40 cores), with throughput dropping between 50% to 66%.

2.2.2 In-Memory Databases

In-memory databases [22, 16, 32, 81, 7, 33] primarily rely on main mem-

ory for storing their data. They can efficiently support real-time applications

that disk-based databases cannot support [1], such as real-time bidding for on-

line advertisements [35] and operational analytics [26]. Several application and

hardware trends promise to increase the prevalence of in-memory databases

as well as their scalability requirements.

Database application workloads are becoming increasingly demanding.

They can be simultaneously write and read intensive; require both low trans-

action commit latency and high transactional throughput; and, increasingly,

support analytical queries (on data from automated sources such as sensors,

real-time analytics, and machine learning [38, 29, 100]). Some production

databases are already serving both transactional and analytical workloads [68]

21

requiring read and write-heavy queries to execute under tight latency demands.

Analytical queries require creating and maintaining many indexes. Running si-

multaneous transactional workloads requires maintaining those indexes under

a high rate of inserts or updates, while also continuing to provide low-latency

point reads.

In-memory databases are particularly suited to handle these diverse

workload requirements, and their adoption is further facilitated by the large-

scale availability of high-capacity non-volatile memory (NVM), as it allows

for more data to be held in memory, with access latencies comparable to

DRAM [99]. This allows transaction durability with substantially lower com-

mit latencies [47] by obviating the need to persist a log on disk or SSD (as

done in traditional in-memory databases). As a consequence, however, the

variance in commit latency due to contention on in-memory data structures is

becoming more visible. Just as NVM is shifting performance bottlenecks away

from storage and towards multi-core CPU contention, the diverse application

workload requirements are raising the bar for in-memory database scalability.

2.2.3 In-Memory Database Scalability

Much of the last decade’s work on scalable in-memory databases [111,

81, 102, 103, 117, 96, 85, 132, 156, 129] has focused on scaling serializable

ordering on contended transactional workloads. Serializability [39] requires

respecting the data dependencies that arise between transactions that read

and write the same database record. Though such true dependencies are ulti-

22

mately a barrier to full scalability, various techniques can reduce their impact,

including multi-versioning [111, 85, 117], static analysis [156, 129], exploiting

commutativity in some workloads [96] and backoff [117].

However, these techniques are orthogonal to scalability problems for

uncontended transactional workloads, where the architecture of the database,

through mechanism coordination, introduces scalability bottlenecks among un-

related transactions. Existing work in this area [152, 117, 164] has focused on

timestamp allocation i.e. the use of a shared timestamp for ordering transac-

tions [56, 107], which was shown to be a principal bottleneck to the scalability

of concurrency control [163].

An approach proposed by the H-store [101, 137] project, avoids mech-

anism coordination for some applications, by partitioning the database and

accessing each partition from a single thread. This scales really well for appli-

cations whose databases are amenable to a clean partitioning and where most

transactions only access a single partition. However, many applications do not

fit this profile and the performance in those cases can be worse [135, 136].

2.2.3.1 Mechanism Coordination on Range Indexes

Mechanism coordination can also be caused by range indexes. Concur-

rent inserts and deletes to different records can contend on atomically modi-

fying the hierarchical internal structure of a range index (§2.2.1). This con-

tention qualifies as mechanism coordination, for a serializable database; the

specification of serializability [39] does not require ordering transactions that

23

T1 T2Lock(x) Wait

x += 2000 Wait

Unlock(x) Wait

Lock(x)

x = x * x

Unlock(x)

T1 T2Lock(x) Lock(y)

x += 2000 y = y * y

Unlock(x) Unlock(y)

T1 → T2

Coordination is Necessary Coordination is NOT Necessary

T1 → T2 or T2 → T1

Figure 2.5: Serializability and the necessity of coordination. Two concurrent transactions T1 and T2 are
running on separate threads. If they access the same record(s), then coordination is necessary
for serializing their order (here T1 → T2). Otherwise, coordination is unnecessary, since they
can be serialized in either order. Any contention on range indexes (e.g. Figure 2.4) is therefore
mechanism coordination for guaranteeing serializability.

access disjoint sets of records, since any ordering can be equivalent to a serial

order. This is illustrated further by the example in Figure 2.5.

To understand the impact of range index mechanism contention1 on

database scalability, we evaluated Cicada [117], a state-of-the-art scalable in-

memory database that guarantees serializability. Cicada avoids the timestamp

allocation bottleneck by using loosely synchronized clocks for ordering transac-

tions. It was shown to be more scalable than several other databases [152, 164,

102, 103, 81]. However, as we show next, it still incurs range index mechanism

contention.

Figure 2.6 shows Cicada’s goodput scalability (relative to a single core)

on TPC-C [31], a standard OLTP benchmark simulating purchase transactions

on a configurable number of independent warehouses. We use a machine with

1For the range index contention problem, we use the terms mechanism contention and
mechanism coordination interchangeably

24

0
2
4
6
8

10
12
14
16
18
20

0 4 8 12 16 20 24 28 32 36

G
oo

dp
ut

 S
ca

la
bi

lit
y

Number of Threads

Full (Partitioned Idxs) Full (Shared Idxs)
NewOrd-Deliv (Partitioned Idxs) NewOrd-Deliv (Shared Idxs)

(a) Goodput

0
10
20
30
40
50
60
70
80
90

100

0 4 8 12 16 20 24 28 32 36

Ab
or

t R
at

e
(%

)

Number of Threads

Full (Partitioned Idxs) Full (Shared Idxs)
NewOrd-Deliv (Partitioned Idxs) NewOrd-Deliv (Shared Idxs)

(b) Abort Rate

Figure 2.6: Cicada scalability on the TPC-C benchmark with partitioned vs shared indexes. Goodput
counts only committed transactions. Full means the canonical TPC-C workload (i.e., 45%
New-Order, 43% Payment, 4% Delivery, 4% Order Status and 4% Stock Level). NewOrd-
Deliv means a 50% New-Order and 50% Delivery workload.

two CPU sockets, each with an 18-core Intel Xeon Gold 6154 CPU. We increase

the number of transaction processing server threads from 1 to 36 and use as

many warehouses as threads for each data point. This configuration (Cwh=thd)

has very low true contention, since threads (almost always) run queries on

their own warehouses, thus avoiding contention on the same records with other

threads. Therefore, Cwh=thd allows us to isolate and understand the scalability

impact of mechanism contention on shared indexes.

By default, the Cicada prototype partitions (§2.2.3) 8 out of the 9

TPC-C tables and their associated indexes by the warehouse id (w id). This

is possible because, these tables have compound primary keys, formed from

multiple columns of each table, with the w id as the starting part of each key2.

For instance, the NEW-ORDER table has a compound primary key formed

2The HISTORY table has no primary key index. The table is still partitioned by w id

25

from concatenating three columns (in order): the warehouse id (w id), the

district id (d id), and the new order id (o id). When partitioned by w id, each

warehouse has a separate range index which only has keys starting with that

warehouse’s id. This means that if thread t1 inserts a new order for warehouse

w1, it does not contend on the same range index structure with another thread

t2 inserting a new order for warehouse w2. The 9th table (named ITEM) is

not partitioned and has a shared primary key index on item id. However,

the ITEM table receives no inserts or updates during the benchmark run. As

a result, Cicada’s partitioned configuration with Cwh=thd does not have any

mechanism contention.

Figure 2.6a shows how Cicada’s scalability is impacted when we make

all the indexes shared across all threads while keeping the tables partitioned.

On the canonical TPC-C workload (labeled Full in Figure 2.6a), the parti-

tioned index configuration scales well. However, the shared index configura-

tion scales poorly on this workload and in fact stops scaling beyond 24 cores.

As pointed out earlier in §2.2.3, while the partitioned approach works well for

some applications (such as TPC-C with Cwh=thd), it does not perform well in

general.

To further explore the impact of range index contention, we experiment

with a workload consisting of two TPC-C transactions – New-Order and De-

livery – in equal proportions (NewOrd-Deliv in Figure 2.6a). This workload

exacerbates the contention on primary range indexes of the ORDER-LINE and

the NEW-ORDER tables, by increasing the ratios of the two transactions from

26

45% (New-Order) and 4% (Delivery) in the canonical workload to 50% each.

Each New-Order transaction performs one insert into the NEW-ORDER ta-

ble and ten inserts (on average) into the ORDER-LINE table. Each Delivery

transaction performs range scans on the NEW-ORDER and ORDER-LINE

tables and also deletes a key from the NEW-ORDER table. As Figure 2.6a

shows, the increased contention due to these concurrent inserts and range scans

on the same indexes limits scalability for the shared index configuration.

Finally, Figure 2.6b shows the underlying reason for the poor scalability

of Cicada on the shared index configuration – an increasingly high abort rate.

Cicada uses multi-version concurrency control (MVCC) for both its records

and indexes. These multi-version indexes were designed to reduce multi-core

contention on the same index nodes by multiple threads; instead, if an in-

dex node needs to be modified, Cicada creates a new version in thread local

memory and installs it into the index on successful transaction commit. How-

ever, in order to enforce serializability, any transaction that does a range scan

needs to validate at transaction commit that no new records were inserted af-

ter the range scan execution, that match the range scan predicate (i.e., avoid

phantoms). For this purpose, at transaction commit, Cicada validates all in-

dex nodes whose key range intersected with the range scan predicate. This

validation can fail, resulting in transaction aborts. Consequently, range in-

dex contention in Cicada shows up as transaction aborts instead of cache-line

contention on index nodes.

Figure 2.6b shows that, for the shared index configuration, the abort

27

rate rises more sharply for the NewOrd-Deliv benchmark than the canonical

TPC-C benchmark, which matches the goodput scalability difference between

them. The abort rate for the partitioned configuration remained <=0.01% for

both benchmarks (with NewOrd-Deliv having a higher rate than Full), thus

confirming that the high abort rate was due to contention on shared indexes.

28

Chapter 3

Towards Scalability through Asynchrony

The discussion in the previous chapter (§2.1.3 and §2.2.3) explained

the nature of mechanism coordination in the two problems; thus, assuring us

that the coordination is not necessary according to the specification of the

guarantees being provided by these systems. Yet, to move towards a solution,

it is helpful to understand why those mechanisms are also overly pessimistic

from the perspective of the clients accessing these systems; thus yielding no

significant benefit in terms of performance. The discussion in this chapter will

elucidate why the assumption in our thesis statement (§1.1) is practical.

3.1 Implicit Pessimistic Assumptions of Prior Systems

The assumption implicit in the design of causal datastores, that are sus-

ceptible to slowdown cascades, is that a single client can read either the entire

datastore or a large part of it within a single session or transaction. If that were

true, it would justify evolving entire datacenters only through monotonically

non-decreasing updates. Yet, the published literature on OLTP systems used

by organizations such as Facebook [63, 144], LinkedIn [6] and Twitter [27, 162],

does not indicate any such pattern in their workloads. The number of objects

29

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9
Latency (log10(us))

Epinions SEATS
TPC-C (DelivSumOrderAmt) TPC-C (CustByName)
TPC-C (DelivGetOrderId)

(a) Write to range scan (W-to-RS) latency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5
log10 (num rows)

Epinions SEATS TPC-C

(b) Records returned by range scan

Figure 3.1: Range scan property distributions of three benchmarks.

Benchmark Read Range Database size
Txns Scans

TPC-C 8% 7.83% 10 warehouses
SEATS 45% 23% 100K customers
Epinions 50% 100% 200K users

Table 3.1: Benchmark details.

accessed by a single client session or transaction are a negligible fraction of an

entire datacenter, given their scale.

3.1.1 In-Memory Databases

The analysis in §2.2.3 demonstrates that scalability in state-of-the-art

databases is primarily limited by contention on range indexes. A key contribu-

tor to this contention is the synchronous nature of the updates to range indexes

that take place once a transaction commits. Of course, all indexes, be it range

or hash, need to return on a query the most recently committed record cor-

responding to an index key, but range indexes have an additional obligation:

they need to ensure that range scans issued immediately after a transaction

commits will not miss any record inserted or updated by the transaction. It

30

is to guarantee this property that the record is inserted synchronously into all

primary and secondary indexes; this requires sorting the record with respect

to all previously inserted records in the table, but it also creates contention

between otherwise non-conflicting transactions on the internal nodes of a range

index.

To understand whether this is too pessimistic, we run an experiment

to measure the latency between the last time a record is written (inserted

or updated) and when it is read as part of a range scan (W-to-RS latency).

We use three transactional application benchmarks from the OLTP-bench [82]

suite, designed to evaluate modern cloud database workloads. As Table 3.1

shows, these benchmarks range from moderately write-heavy (Epinions) to

very write-heavy (TPC-C), and from minimal range scans to all range scans

as a fraction of all read queries. We ran these benchmarks on a MySQL 8.0

instance running on a 20 core (40 hardware threads) Intel Xeon machine, with

as many clients as needed to saturate throughput. We emulate an in-memory

database by setting the MySQL in-memory buffer pool to a large-enough size,

so that in all three cases the entire database fits in memory and the workload

is never disk-bound.

Figure 3.1a shows the cumulative distribution of the W-to-RS latency.

We use a single curve to characterize the behavior of the different range scans

in Epinions and Seats: we find that the 5th percentile W-to-RS latency is

above 500ms and the median is between 8 and 85 seconds. We instead report

the latency of each range scan in TPC-C separately, since they behave quite

31

differently: DelivSumOrderAmt, a range scan on a primary index responsible

for 3% of all TPC-C read queries has a median W-to-RS latency of 1ms; the

other two TPC-C range scans are on secondary indexes and their median W-

to-RS latencies are orders of magnitude higher. Epinions and SEATS also show

lower W-to-RS latency for range scans of primary indexes, though with a much

smaller (2× to 5×) gap. The low W-to-RS latency of DelivSumOrderAmt is

due to the TPC-C Delivery txn. Delivery contains an update followed by a

read on the same range in the Orderline table.

Figure 3.1b shows the distribution of the number of records read by

range scans in each benchmark. For all benchmarks and all range scans, the

median number of records read was at most 6, while the 99th percentile was at

most 26 records. Epinions had two range scans in read-only transactions that

read thousands of records. However these range scans comprised only 0.068%

of all read queries in Epinions and had a median W-to-RS latency of at least

66 seconds.

For brevity, we omit similar analysis for point queries, but their behav-

ior was mixed. For instance, in TPC-C, four point queries had median Write-

to-Point-Query (W-to-PQ) latencies ranging from 350µs to 21ms. These point

queries read heavily updated records in the District and Warehouse tables.

They are a part of the NewOrder and Payment read-write transactions which

together comprise 90% of the benchmark. On the other extreme, two point

queries in TPC-C had median W-to-PQ latencies of 4 and 15 seconds.

The overall picture that emerges from this analysis is the following:

32

1. While point queries often read recently written records, for range queries

that is the exception rather than the rule. This holds especially true for

secondary indexes.

2. For the vast majority of cases, the number of records that a range query

reads (especially as part of read-write transactions) is small.

3. Large range scans rarely happen. If they do happen, they are usually a

part of a read-only transaction.

3.2 The Thesis Statement as a Design Principle

We now turn to the thesis statement (§1.1) and understand how it fol-

lows from the analysis presented above and why it is the right design principle

for avoiding mechanism coordination.

The first aspect, clear from the analysis, is that synchronously propa-

gating writes is neither necessary to enforce the specification of the correctness

guarantees nor relevant for performance, given the behavior of the clients ac-

cessing these systems. Thus, writes should be done asynchronously, as stated

in the first part of the thesis statement.

Some synchronization for writes is hard to avoid. For example, atom-

ically committing the writes of a transaction in a distributed system requires

running a 2-phase commit protocol, while holding locks. Yet as we discuss in

§4.4.2, we can even design the transaction commit protocol in a way that, once

33

a transaction commits, replication happens asynchronously, even for writes

within a transaction, while still providing atomicity.

This leaves the question of how to actually enforce correctness guaran-

tees, given that writes are no longer synchronous? We argue that enforcing

guarantees on reads is a natural alternative – actually preferable to writes –

since it only pays the cost of synchronization when needed. An important

trend – in addition to the exponentially growing scalability demands – is that

workloads are increasingly write-heavy; since, databases are increasingly stor-

ing machine-generated data, such as outputs of real-time analytics workloads

or time-series data (e.g. generated by DevOps monitoring or IoT sensors) [29].

It follows, that the problems with synchronous writes are going to get worse.

That makes enforcing guarantees on reads even more attractive.

Finally the question is how to enforce guarantees on reads? Given the

asynchronous propagation of writes, reads can potentially observe stale or in-

consistent data; thus, breaking the correctness guarantee. For this purpose, we

need to be able to detect potential violations of correctness guarantees. If the

read operation would violate the guarantee, then we can either synchronously

fix the data we are reading, or if running within a transaction, we can abort

to keep the correctness guarantee intact.

As we show in the next two chapters, our thesis statement is the core de-

sign principle for two systems that solve the scalability problems we described

in Chapter 2.

34

Chapter 4

Occult: Causal Consistency with No

Slowdown Cascades

Occult (Observable Causal Consistency Using Lossy Timestamps) is

the first geo-replicated and sharded data store that provides causal consistency

to its clients without exposing the system to slowdown cascades. To make

this possible, Occult shifts the responsibility for the enforcement of causal

consistency from the data store to its clients. The data store makes its updates

available as soon as it receives them, and causal consistency is enforced on

reads only for those updates that clients are actually interested in observing.

In essence, Occult decouples the rate at which updates are applied from the

performance of slow shards by optimistically rethinking the sync [133]: instead

of enforcing causal consistency as an invariant of the data store, through its

read-centric approach Occult appears to applications as indistinguishable from

a system that does.

Because it never delays writes to enforce consistency, Occult is immune

This chapter is derived from a prior publication describing the Occult [126] system.
The author of this dissertation conceived, designed, implemented and evaluated the Occult
system, and led the writing of the prior publication: S. A. Mehdi, et al. 2017. “I Can’t
Believe It’s Not Causal! Scalable Causal Consistency with No Slowdown Cascades”. In Pro-
ceedings of the 14th USENIX Conference on Networked Systems Design and Implementation
(NSDI’17). USENIX Association, USA, 453–468.

35

from the dangers of slowdown cascades. It may, however, delay read operations

from shards that are lagging behind to ensure they appear consistent with what

a user has already seen. We expect such delays to be rare in practice because a

recent study of Facebook’s eventually-consistent production system found that

fewer than six out of every million reads were not causally consistent [122].

Our evaluation confirms this. We find that our prototype of Occult, when

compared with the eventually-consistent system (Redis Cluster) it is derived

from, increases the median latency by only 50µs, the 99th percentile latency

by only 400µs for a read-heavy workload (4ms for a write-heavy workload),

and reduces throughput by only 8.7% for a read-heavy workload (6.9% for a

write-heavy workload).

Occult’s read-centric approach, however, raises a thorny technical issue.

Occult requires clients to determine how their local state depends on the state

of the entire data store; such global awareness is unnecessary in systems that

implement causal consistency within the data store, where simply tracking

the immediate predecessors of a write is enough to determine when the write

should be applied [119]. In principle, it is easy to use vector clocks [87, 125]

to track causal dependencies at the granularity of objects or shards. How-

ever, their overhead at the scale that Occult targets is prohibitive. Occult

instead uses causal timestamps that, by synthesizing a variety of techniques

for compressing dependency information, can achieve high accuracy (reads do

not stall waiting for updates that they do not actually depend on) at low cost.

We find that 24-byte timestamps suffice to achieve an accuracy of 99.6%; 8

36

more bytes give an accuracy of 99.96%.

Causal timestamps also play a central role in Occult’s support for scal-

able read-write transactions. Transactions in Occult operate under a variant

of Parallel Snapshot Isolation [146]. Occult ensures that all transactions al-

ways observe a consistent snapshot of the system, even though the datastore

no longer evolves through a sequence of monotonically increasing consistent

snapshots. It uses causal timestamps to not only track transaction ordering

but also atomicity (by making writes of a transaction causally dependent on

each other). This novel approach is key to the scalability of Occult’s transac-

tions and their immunity to slowdown cascades. The responsibility for commit

is again shifted to the client, which uses causal timestamps to detect if a trans-

action has observed an inconsistent state due to an ordering or atomicity viola-

tion and, if so, aborts it. Committed writes instead propagate asynchronously

to slaves, allowing the commit logic to scale independently of the number of

slave replicas.

4.1 Observable Causal Consistency

Like every consistency guarantee, causal consistency defines a contract

between the data store and its users that specifies, for a given set of updates,

which values the data store is allowed to return in response to user queries.

In particular, causal consistency guarantees that each client observes a mono-

tonically non-decreasing set of updates (including its own), in an order that

respects potential causality between operations.

37

To abide by this contract, existing causally consistent data stores, when

replicating writes, enforce internally a stronger invariant than the contract

requires: they ensure that clients observe a monotonically non-decreasing

set of updates by evolving their data store only through monotonically non-

decreasing updates. This strengthening satisfies the contract but, as we saw

in §2.1, leaves these systems vulnerable to slowdown cascades.

To resolve this issue, Occult moves the output commit to the clients:

letting clients themselves determine when it is safe to read a value frees the

data store to make writes visible to clients immediately, without having to

first apply all causally preceding writes. Given the duties that many causally

consistent data stores already place on their clients (such as maintaining the

context of dependencies associated with each of the updates they produce [119,

120]), this is only a small step, but it is sufficient to make Occult impervious

to slowdown cascades.

Furthermore, Occult no longer needs its clients to be sticky (real-world

systems like Facebook sometimes bounce clients between datacenters because

of failures, load balancing, and/or load testing [42]). By empowering clients

to determine independently whether a read operation is safe, it is no longer

problematic to expose a client to the state of a new replica R2 that may not

yet reflect some of the updates the client had previously observed on a replica

R1.

The general outline of a system that moves the enforcement of causal

consistency to read operations is straightforward. Each client c needs to main-

38

tain some metadata to encode the most recent state of the data store that

it has observed. On reading an object o, c needs to determine whether the

version of o that the data store currently holds is safe to read (i.e., if it reflects

all the updates encoded in c’s metadata): to this end, the data store could

keep, together with o, metadata of its own to encode the most recent state

known to the client that created that version of o. If the version is deemed safe

to read, then c needs to update its metadata to reflect any new dependency; if

it is not, then c needs to decide how to proceed (among its options: try again;

contact a master replica guaranteed to have the latest version of o; or trade

safety for availability by accepting a stale version of o).

The key challenge, however, is identifying an encoding of the metadata

that minimizes both overhead and read latency. Since each object in the data

store must be augmented with this metadata, the importance of reducing its

size is obvious; keeping metadata small, however, reduces its ability to track

causal dependencies accurately. Any such loss in definition is likely to intro-

duce spurious dependencies between updates. Although these dependencies

can never lead to slowdown cascades in Occult, they can increase the chances

that read operations will be unnecessarily delayed. Occult’s compressed causal

timestamps leverage structural and temporal properties to strike a sweet spot

between metadata overhead and accuracy (§4.3).

These causal timestamps have another, perhaps more surprising conse-

quence: they allow Occult to offer the first scalable implementation of causal

read-write transactions (§4.4). Just as the data-store need not be causal,

39

transactions need not take effect atomically in the datastore. They simply

need to appear atomic to clients. To achieve this, Occult makes a transac-

tion’s writes causally depend on each other. This guarantees that clients that

seek to read multiple writes from a transaction will independently determine

that they must either observe all of the transactions’s writes, or none. In

contrast, transactions that seek to read a single of the transaction’s writes

will not be unnecessarily delayed until other replicas have applied writes that

they are not interested in. Once again, this is a small step that yields big

dividends: transactional writes need no longer be replicated synchronously for

safety, obviating the possibility of slowdown cascades.

4.2 Occult: The Basic Framework

We first outline the system model and an idealized implementation

of Occult’s basic functionality: clients that read individual objects perceive

the data store as causally consistent. We discuss how to make the protocol

practical in §4.3 and sketch Occult’s more advanced features (transactions) in

§4.4.

4.2.1 System Model

Occult is a sharded and replicated key-value store where each replica is

located in a separate datacenter with a full copy of the data. The keyspace is

divided into a large number of shards, i.e., disjoint key ranges. There can be

tens or hundreds of thousands of shards, of which multiple can be colocated

40

on the same physical host.

We assume an asynchronous master-slave replication model, with a

publicly designated master for every shard. This master shard accepts writes,

and asynchronously, but in order, replicates writes to the slave shards. This

design is common to several large-scale real-world systems [63, 71, 134, 139]

that serve read-heavy workloads with online queries.The master shard asyn-

chronously, but in order, replicates writes to the slave shards. We assume

the master for each shard is globally known, e.g., through a separate config-

uration service. The masters for different shards can be in different replicas.

Master-slave replication has higher write latency than multi-master schemes,

but avoids the complexity of dealing with concurrent conflicting writes that

can lead to lost updates [119] or require more complex programming mod-

els [77]. In addition, it provides a primary source of truth, which has been

cited by some production systems [139] as the reason for their choice.

Clients in Occult are co-located with a replica in the same datacenter.

Each client reads from its local replica and writes to the master shard (possibly

located in a remote replica); a client library enforces causal consistency for

reads and attaches meta-data to writes. While clients normally read from the

shards in their replica, there is no requirement for them to be “sticky” (§4.1).

4.2.2 Causal Timestamps

Occult tracks and enforces causal consistency using shardstamps and

causal timestamps. A shard’s shardstamp counts the writes that the shard

41

(master or slave) has accepted. A causal timestamp is a vector of shardstamps

that identifies a global state across all shards: each entry stores the number of

known writes from the corresponding shard. Keeping an entry per shard rather

than per object trades-off accuracy against meta-data overhead: in exchange

for smaller timestamps, it potentially creates false dependencies among all

updates to objects mapped to the same shard. We argue that this is the right

trade-off to make. In the common case, each master shard will have exactly

one ordered replication stream to each of its slave shards. As a result, writes

to a master shard will be totally ordered in any case and therefore no false

dependencies are created due to Occult’s causal timestamp design.

Occult uses causal timestamps for (i) encoding the most recent state

of the data store observed by a client and (ii) capturing the set of causal

dependencies for write operations. An object version o created by write w

is associated with a causal timestamp that encodes all writes in w’s causal

history (i.e., w and all writes that causally preceded it). Upon reading o,

a client updates its causal timestamp to the element-wise maximum of its

current value and that of o’s causal timestamp: the resulting vector defines

the earliest state of the datastore that the client is now allowed to read from

to respect causal consistency.

The pseudocode for causal timestamps is listed in Appendix §1.1. Fig-

ure 4.1a shows how causal timestamps fit in Occult’s system model.

42

Master

Slave

7 7

Master

Slave

Slave

Master

4 4

8 8

4 3 2
Client 1

Client 2

Client 3

6 2 5

0 0 0

Datacenter A Datacenter B

(a) Occult’s system model and causal timestamps. 7 writes have been
applied to the master of the red shard in Datacenter A and repli-
cated to its slave in Datacenter B. Client 1’s causal timestamp
knows 4 writes from the red shard.

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 4

8 8

8 3 2
Client 1

Client 2

Client 3

0 0 0

1. w(a) 8 3 2a

2.
r(a

)

3. w(b)
8 5 5b

Datacenter A Datacenter B

(b) Client 1 writes to object a, followed by Client 2 reading a and then
writing to b. Red and grey shards have incremented shardstamps,
due to these new writes. b’s causal timestamp is entry-wise >=
a’s causal timestamp, indicating that write to b is causally ordered
after write to a.

8 3 2a

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 5

8 8

8 3 2
Client 1

Client 2

Client 3

8 5 5

1. w(a) 8 3 2a

2.
r(a

)

3. w(b)
8 5 5b 8 5 5b

4. r(b)

5. r(a)

≥ ?7 8
Stale Shard !

Delayed!

Datacenter A Datacenter B

(c) b’s write replicates to Datacenter B but a’s write is delayed. Client
3 still reads the latest value of b. Next, it tries to read from red
shard, but the consistency check fails. The shard is stale.

Figure 4.1: Occult Basic Protocol Example.

43

4.2.3 Basic Protocol

Causal consistency in Occult results from the cooperation between

servers and client libraries enabled by causal timestamps. Client libraries

use them to validate reads, update them after successful operations, and at-

tach them to writes. Servers store them along with each object, and return

one during reads. In addition, servers track the state of each shard using a

dedicated shardstamp; when returned in response to a read request, it helps

client libraries determine whether completing the read could potentially violate

causal consistency.

Next, we will describe the details of this basic protocol. The pseudocode

is listed in Appendix §1.2.

Write Protocol Occult associates with any value written v a causal

timestamp summarizing all of v’s causal dependencies. The client library

attaches its causal timestamp to every write and sends it to the master of the

corresponding shard. The master increments the relevant shardstamp, updates

the received causal timestamp accordingly, and stores it with the newly written

value. It then asynchronously replicates the write to its slaves, before returning

the shardstamp to the client library. Slaves receive writes from the master

in order, along with the associated causal timestamps and shardstamps, and

update their state accordingly. On receiving the shardstamp, the client library

in turn updates its causal timestamp to reflect its current knowledge of the

shard’s state.

44

Read Protocol A client reads from its local server, which replies with

the desired object’s most recent value, that value’s dependencies (i.e., its causal

timestamp), and the current shardstamp of the appropriate shard. The re-

turned shardstamp s makes checking for consistency straightforward. The

client simply compares s with the entry of its own causal timestamp for the

shard in question (call it sc) . If s is at least sc, then the shard already reflects

all the local writes that the client has already observed.

When reading from the master shard, the consistency check is guar-

anteed to succeed. When reading from a slave, however, the check may fail:

replication delays from the master shard in another datacenter may prevent

a client from observing its own writes at the slave; or the client may have

already observed a write in a different shard that depends on an update that

has not yet reached the slave.

If the check fails (i.e., the read is stale), the client has two choices. It

can retry reading from the local replica until the shardstamp advances enough

to clear the check. Alternatively, it can send the read to the master shard,

which always reflects the most recent state of the shard, at the cost of increased

latency and additional load on the master. Occult adopts a hybrid strategy: it

retries locally for a maximum of r times (with an exponentially increasing delay

between retries) and only then reads from the master replica. This approach

resolves most stales quickly, while preventing clients from overloading their

local slaves with excessive retries.

Finally, the client updates its causal timestamp to reflect the depen-

45

dencies included in the causal timestamp returned by the server, ensuring that

future successful reads will never be inconsistent with the last read value.

Figure 4.1 shows an example illustrating how the basic protocol works.

4.3 Causal Timestamp Compression

With the basic framework for Occult in place, we now describe the

refinements needed to make it practical. An obvious target for refinement

are causal timestamps. So far we have assumed a vector with an entry for

each shard, but in large-scale systems the number of shards N can be in the

hundreds of thousands: the overhead of transferring back and forth and storing

with each object causal timestamps of this size would be prohibitive. Occult

compresses their size to n entries (with n � N) without introducing many

spurious dependencies.

4.3.1 A First Attempt: Structural Compression

Our most straightforward attempt—structural compression—maps all

shards whose ids are congruent modulo n to the same entry, reducing a causal

timestamps’ size from N to n at the cost of generating spurious dependen-

cies [151]. The impact of these dependencies on performance (in the form of

delayed reads) worsens when shards have widely different shardstamps. Sup-

pose shards i and j map to the same entry sc and their shardstamps read,

respectively, 100 and 1000. A client that writes to j will fail the consistency

check when reading from a slave of i until i has received at least 1000 writes.

46

In fact, if i never receives 1000 writes, the client will always failover to reading

from i’s master shard.

These concerns could be mitigated by requiring master shards to pe-

riodically advance their shardstamp and then replicate this advancement to

their slaves, independent of the write rate from clients. However, fine-tuning

the frequency and magnitude of this synchronization is difficult without ex-

plicit coordination between i and j. A better solution is instead to rely on

loosely synchronized shardstamps based on real, rather than logical, clocks [40].

This guarantees that shardstamps differ by no more than the relative offset

between their clocks, independent of the write rate on different master shards.

Finally, to reduce the impact of clock skew on creating false dependen-

cies, the master for shard i can use the causal timestamp ts received from a

client on a write operation to more tightly synchronize its shardstamp with

those of other shards that the client has recently accessed. Rather than blindly

using the current value cl of the physical clock of the server on which it is

hosted, i can simply set its shardstamp to be larger than the maximum among

(i) its current shardstamp; (ii) cl; and (iii) the highest of the values in ts.

4.3.2 Temporal Compression

Though using real clocks reduces the chances of generating spurious

dependencies, it does not fully address the fundamental limitation of using

modulo arithmetic to compress causal timestamps: it is still quite likely that

shards with relatively far-apart shardstamps will be mapped to the same entry

47

in the causal timestamp vector.

The next step in our refinement is guided by a simple intuition: re-

cent shardstamps are more likely to generate spurious dependencies than older

ones. Thus, rather than mapping a roughly equal number of shards to each of

its n entries, temporal compression focuses a disproportionate fraction of its

ability to accurately resolve dependencies on the shards with the most recent

shardstamps. Adapting to our purposes a scheme first devised by Adya and

Liskov [40], clients assign an individual entry in their causal timestamp to the

n − 1 shards with the most recent shardstamps they have observed. Each

entry also explicitly stores the corresponding shard id. All other shards are

mapped to the vector’s “catch-all” last entry. One may reasonably fear that

conflating all but n−1 shards in the same entry will lead, when a client tries to

read from one of the conflated shards, to a large number of failed consistency

checks—but it need not be so. For a large-enough n, the catch-all entry will

naturally reflect updates that were accepted a while ago. Thus, when a client

tries to read from a conflated shard i, it is quite likely that the shardstamp of

i will have already exceeded the value stored in the catch-all entry.

To allow causal timestamps to maintain the invariant of explicitly track-

ing the shards with the n− 1 highest observed shardstamps, we must slightly

revise the client’s read and write protocols in §4.2.3. The first change in-

volves write operations on a shard currently mapped to the catch-all entry.

When the client receives back that shard’s current shardstamp, it compares

it to those of the n − 1 shards that its causal timestamp is currently track-

48

ing explicitly. The shard with the smallest shardstamp joins the ranks of the

conflated and its shardstamp, if it exceeds the current value, becomes the new

value of the catch-all entry for the conflated shards. The second change occurs

on reads and concerns how the client’s causal timestamp is merged with the

one returned with the object being read. The shardstamps in either of the

two causal timestamps are sorted, and only the shards corresponding to the

highest n− 1 shardstamps are explicitly tracked going forward; the others are

conflated, and the new catch-all entry updated to reflect the new dependencies

it now includes.

4.3.3 Isolating Datacenters

With either structural or temporal compression, the effectiveness of

loosely synchronized timestamps in curbing spurious dependencies can be sig-

nificantly affected by another factor: the interplay between the time it takes

for updates to replicate across datacenters and the relative skew between the

datacenters’ clocks. Consider two datacenters, A and B, and assume for sim-

plicity a causal timestamp consisting of a single shardstamp. Clocks within

each datacenter are closely synchronized and we can ignore their skew. Say,

however, that A’s clocks run s ms ahead of those in B, that the average replica-

tion delay between datacenters is r ms, and that the average interval between

consecutive writes at masters is i ms. Assume now that a client c in A writes

to a local master node and updates its causal timestamp with the shardstamp

it receives. If c then immediately tries to read from a local slave node, c’s

49

shardstamp will be ahead of the slave’s by about (s + r + i) ms: until the

latter catches up, no value read from it will be deemed safe. For clients in B,

meanwhile, the window of inconsistency under the same circumstances would

be much shorter: just (−s + r + i) ms, potentially leading to substantially

fewer stale reads.

This effect can be significant (§4.6.2.1). The master write interval i,

even with a read-heavy Zipfian workload, is less than 1 ms in our experiments.

However, the replication delay r can range from a few tens to over 100 ms

and cross datacenter clock skew s can be tens of milliseconds even when using

NTP [18] (clock skew between nodes in the same datacenter is often within

0.5-2ms). Thus, if masters are distributed across datacenters, the percentage

of stale reads experienced by clients of different datacenters can differ by orders

of magnitude.

We solve this problem using distinct causal timestamps for each data-

center. On writes, clients use the returned shardstamp to update the causal

timestamp of the datacenter hosting the relevant master shard. On reads,

clients update each of their datacenter-specific causal timestamps using the

corresponding causal timestamps returned by the server.

Two factors mitigate the additional overhead caused by datacenter-

specific causal timestamps. First, the number of causal timestamps does not

grow with the number of datacenters, but rather with the number of data-

centers with master shards, which can be significantly lower [63]. Second,

because clocks within each datacenter are closely synchronized, these causal

50

timestamps need fewer entries to achieve a given target in the percentage of

stale reads.

4.4 Transactions

Many applications can benefit from the ability to read and write mul-

tiple objects atomically. To this end, Occult builds on the system described

for single-key operations to provide general-purpose read-write transactions.

To the best of our knowledge, Occult is the first causal system to support

general-purpose transactions while being scalable and resilient to slowdown

cascades.

Transactions in Occult run under a new isolation property called Per-

Client Snapshot Isolation (PC-PSI), a variant of Parallel Snapshot Isolation

(PSI) [146]. PSI is an attractive starting point because it aims to strike a care-

ful balance between the competing concerns of strong guarantees (important

for developing applications) and scalable low-latency operations. On the one

hand, PSI requires that transactions read from a causally consistent snapshot

and precludes concurrent conflicting writes. On the other hand, PSI takes

a substantial step towards improving scalability by letting transactions first

commit at their local datacenter and subsequently replicate their effects asyn-

chronously to other sites (while preserving causal ordering). In doing so, PSI

sidesteps the requirement of a total order on all transactions, which is the

primary scalability bottleneck of Snapshot Isolation [54] (a popular guarantee

in non-distributed systems).

51

T1 : s(1) r(x) w(y=10) c(2) T2 : s(3) r(y=10) w(z) c(4)
T3 : s(5) r(a) w(b=50) c(6) T4 : s(7) r(b=50) w(c) c(8)

Figure 4.2: PSI requires transactions to be replicated in commit order. s(i) and c(j) mean respectively
start (commit) at timestamp i (j).

PSI’s scalability, however, is ultimately undermined by the constraints

its implementation imposes on the order in which transactions are to be repli-

cated, leaving it unnecessarily vulnerable to slowdown cascades. Specifically,

PSI totally orders all transactions that commit at a replica, and it requires this

order to be respected when the transactions are replicated at other sites [146].

For instance, suppose the transactions in Figure 4.2 are executed by four dif-

ferent clients on the same replica. Under PSI, they would be totally ordered

as T1 → T2 → T3 → T4. If, when these transactions are applied at a different

replica, any of the shards in charge of applying T2 is slow, the replication of

T3 and T4 will be delayed, even though neither has a read/write dependency

on T2.

PC-PSI removes these unnecessary constraints. Rather than totally

ordering all transactions that were coincidentally located on the same replica,

PC-PSI only requires transactions to be replicated in a way that respects both

read/write dependencies and the order of transactions that belong to the same

client session (even when the client is not sticky). This is sufficient to ensure

semantically relevant dependencies, i.e., if Alice defriends Bob in one trans-

action and then later posts her Spring-break photos in another transaction,

then Bob will not be able to view her photos, regardless of which replica he

52

reads from. At the same time, it allows Occult to support transactions while

minimizing its vulnerability to slowdown cascades. Recent work [76] showed

that such a “client-centric approach decreased dependencies, per transaction,

by two orders of magnitude (175x)” over PSI, while semantically providing the

same isolation guarantees.

Like PSI, PC-PSI precludes concurrent conflicting writes. When im-

plementing read-write transactions, this guarantee is crucial to removing the

danger of anomalies like lost updates [54]. When writes are accepted at all

replicas, as in most existing causally consistent systems [44, 83, 84, 119, 120]

this guarantee comes at the cost of expensive synchronization [109], crippling

scalability and driving up latency. Not so in Occult, whose master-slave archi-

tecture makes it straightforward and inexpensive to enforce, laying the basis

for Occult’s low-latency read/write transactions.

4.4.1 PC-PSI Specification

To specify PC-PSI, we start from PSI. We leverage recent work [76]

that proves PSI is equivalent to lazy consistency [40]. This isolation level

is known [39] to be the weakest to simultaneously provide two guarantees

at the core of PC-PSI: (i) transactions observe a consistent snapshot of the

database and (ii) write-write conflicts are not allowed. We thus build on the

theoretical framework behind the specification of lazy consistency [39], adding

to it the requirement that transactions in the same client session must be

totally ordered.

53

Concretely, we associate with the execution H of a set of transactions

a directed serialization graph DSG(H), whose nodes consist of committed

transactions and whose edges mark the conflicts (rw for read-write, ww for

write-write, wr for write-read) that occur between them. To these, we add a

fourth set of edges: Ti
sd−→ Tj if some client c first commits Ti and then Tj (sd

is short for session dependency). The specification of PC-PSI then constrains

the set of valid serialization graphs. In particular, a valid DSG(H) must not

exhibit any of the following anomalies:

Aborted Reads A committed transaction T2 reads some object modified by

an aborted transaction T1.

Intermediate Reads A committed transaction T2 reads a version of an object

x written by another transaction T1 that was not T1’s final modification of x.

Circular Information Flow DSG(H) contains a cycle consisting entirely of

wr, ww and sd edges.

Missed Effects DSG(H) contains a cycle that includes exactly one rw edge.

Intuitively, preventing Circular Information Flow ensures that if T1

and T2 commit and T1 depends on T2, then T2 cannot depend on T1. In turn,

disallowing cycles with a single rw edge ensures that no committed transaction

ever misses writes of another committed transaction on which it otherwise

depends, i.e., committed transactions read from a consistent snapshot and

write-write conflicts are prevented (§4.4.3).

54

a = []

b = [Bob]

c = [Cal]c = [Cal]

b = [Bob]

a = []

Master

Master

0 0

Master

Slave

Slave

Slave

1 1

1 1

0 0 0 0 0 0

Datacenter A Datacenter B

0 1 0 0 1 0

0 0 1 0 0 1

(a) Alice and her advisor (close to different replicas) are managing
three student lists (a, b and c), located on different shards.

c = [Bob, Cal]

a = [Abe]

Master

Master

1

b = []

a = []
0

b = [Bob]

c = [Cal]

Master

Slave

Slave

Slave

2 1

2 1

1 2 2 0 0 0

Datacenter A Datacenter B

1 2 2 0 1 0

1 2 2 0 0 1

Start T1
r(a) = []

w(a = [Abe])
Commit T1

Start T2
r(b) = [Bob]
r(c) = [Cal]
w(b = [])

w(c = [Bob, Cal])
Commit T2

1 0 0

(b) Observable Atomicity through Causality. Alice adds Abe to list a
in transaction T1 and then moves Bob from list b to c in transac-

tion T2. Thus T1
sd−−→ T2. At T2’s commit, b’s causal timestamp

knows about the write to c and vice versa.

a = [Abe] a = []

b = [Bob]b = []

c = [Bob, Cal] c = [Bob, Cal]
1

2

2

Master

Master

1 0

Master

Slave

Slave

Slave

2 1

2

1 2 2 1 2 2

Datacenter A Datacenter B

1 2 2 0 1 0

1 2 2 1 2 2

Start T1
r(a) = []

w(a = [Abe])
Commit T1

Start T2
r(b) = [Bob]
r(c) = [Cal]
w(b = [])

w(c = [Bob, Cal])
Commit T2

1 0 0

Start T3
r(b) = [Bob]

r(c) = [Bob,Cal]
r(a) = []

Delayed!

Delayed!

T3 Read Set
b = [Bob]
0 1 0

c = [Bob, Cal]
1 22

(c) Replication of writes to a and b is delayed. Alice’s advisor reads
all three lists in transaction T3. Read set validation of T3 fails due
to atomicity violation: c’s causal timestamp knows more writes
from the grey shard than were applied to that shard at the time b

was read (thick red border entries). T1
sd−−→ T2 ordering violation

due to stale red shard (thick black border entries) is also detected.

Figure 4.3: Occult Transactional Protocol Example.

55

4.4.2 Executing Read/Write Transactions

Occult supports read/write transactions via a three-phase optimistic

concurrency protocol that, in line with the system’s ethos, makes clients re-

sponsible for running the logic needed to enforce PC-PSI. First, in the read

phase, a client c executing transaction T obtains from the appropriate shards

the objects that T reads, and locally buffers T ’s writes. Then, in the valida-

tion phase, c ensures that all read objects belong to a consistent snapshot of

the system that reflects the effects of all transactions that causally precede T .

Finally, in the commit phase, c writes back atomically all objects updated by

T .

Next, we will describe the details of this transactional protocol. The

pseudocode is listed in Appendix §1.3.

Read phase For each object o read by T , c contacts the local server

for the corresponding shard so, making sure, if the server is a slave, not to

be reading a stale version (§4.2.3) of o—i.e., a version of o that is older than

what c’s causal timestamp already reflects about the state of so. If the read

is successful, c adds o, its causal timestamp, and so’s shardstamp to T ’s read

set. Otherwise, after a tunable number of further attempts, c proceeds to read

o from its master server, whose version is never stale. Meanwhile, all writes

are buffered in T ’s write set. They are atomically committed to servers in the

final phase. Thus only committed objects are read in this phase and cascading

aborts are not possible.

56

Validation phase Validation involves three steps. In the first, c ver-

ifies that the objects in its read set belong to a consistent snapshot Σrs. It

does so by checking that all pairs oi and oj of such objects are pairwise con-

sistent [48], i.e., that the saved shardstamp of the shard soi from which oi was

read is at least as up to date as the entry for soi in the causal timestamp of oj

(and vice versa). If the check fails, T aborts.

In the second step, c attempts to lock every object o updated by a

write w in T ’s write set by contacting the corresponding shard so on the

master server. If c succeeds, Occult’s master-slave design ensures that c has

exclusive write access to the latest version of o (reads are always allowed); if

not, c restarts this step of the validation phase until it succeeds (or possibly

aborts T after n failed attempts). In response to a successful lock request, the

master server returns two data items: 1) o’s causal timestamp, and 2) the new

shardstamp that will be assigned to w. c stores this information in T ’s over-

write set. Note that, since they have been obtained from the corresponding

master servers, the causal timestamps of the objects in the overwrite set are

guaranteed to be pairwise consistent, and therefore to define a consistent snap-

shot Σow: Σow captures the updates of all transactions that T would depend

on after committing.

To ensure that T is not missing any of these updates, in the final step

of validation c checks that Σrs is at least as recent as Σow. If the check fails,

T aborts.

Commit phase c computes T ’s commit timestamp tsT by first initial-

57

izing it to the causal timestamp of the snapshot Σrs from which T read, and

by then updating it to account for the shardstamps, saved in T ’s overwrite set,

assigned to T ’s writes. The value of tsT [i] is thus set to the largest between

(i) the highest value of the i-th entry of any of the causal timestamps in T ’s

read set, and (ii) the highest shardstamp assigned to any of the writes in T ’s

write set that update an object stored on a shard mapped to entry i. c then

writes back the objects in T ’s write set to the appropriate master server, with

tsT as their causal timestamp. Finally, to ensure that any future transaction

executed by this client will be (causally) ordered after T , c sets its own causal

timestamp to tsT .

The commit phase enforces a property that is crucial for Occult’s scala-

bility: it guarantees that transactions are atomic even though Occult replicates

their writes asynchronously. Because the commit timestamp tsT both reflects

all writes that T performs and is used as the causal timestamp of every object

that T updates, tsT makes all of these updates, in effect, causally dependent on

one another. As a result, any transaction whose read set includes any object

o in T ’s write set will necessarily either become dependent on all the updates

that T performed, or none of them.

Figure 4.3 shows an example illustrating the protocol.

4.4.3 Correctness

To implement PC-PSI, the protocol must prevent Aborted Reads, In-

termediate Reads, Circular Information Flow, and Missed Effects. The opti-

58

mistic nature of the protocol trivially yields the first two conditions, as writes

are buffered locally and only written back when transactions commit. Occult

also precludes Circular Information Flow. Since clients acquire write locks on

all objects before modifying them, transactions that modify the same objects

cannot commit concurrently and interleave their writes (no ww cycles). Cycles

consisting only of ww, wr, and sd edges are instead prevented by the struc-

ture of OCC, whose read phase strictly precedes all writes: if a sequence of

ww/wr/sd edges leads from T1 to T2, then T1 must have committed before T2,

and could not have observed the effects of T2 or created a write with a lower

causal timestamp than T2’s.

Finally, Occult’s validation phase prevents Missed Effects. By contra-

diction, suppose that all transactions involved in a DSG cycle with a single

anti-dependency (rw) edge have passed the validation phase. Let T be the

transaction from which that edge originates, ending in T ∗. Let T−1 immedi-

ately precede T in the cycle. Let o be the object written by T ∗ whose update

T missed. Either T−1 and T ∗ are one, or T−1 wr/ww/sd depends on T ∗: either

way, Occult’s protocol ensures that the commit timestamp of T−1 is at least

as large as that of T ∗. By assumption, T missed some update to o: hence,

the shardstamp for o’s shard so in T ’s readset must be smaller that the cor-

responding entry in the commit timestamps of T ∗ and T−1. There are three

cases:

(i) T−1
sd−→ T . The client that issued both T−1 and T must have decreased

its causal timestamp after committing T−1, but the protocol ensures causal

59

timestamps increase monotonically.

(ii) T−1
wr−→ T . Since T reads an object updated by T−1, its read set contains

T−1’s commit timestamp. But then T would fail in validating its read set, since

the object updated by T−1 and the version of o read by T would be pairwise

inconsistent.

(iii) T−1
ww−−→ T . Since T overwrites an object updated by T−1, T ’s overwrite

set must include T−1’s commit timestamp. But then T would fail in validat-

ing its read set against its overwrite set, since the latter has a larger entry

corresponding to so than the former.

Each case leads to a contradiction: hence no such cycle can occur and

no effects are missed.

4.4.3.1 Missed Effects Prevention Examples

As shown by the correctness argument above, Occult’s sophisticated

validation phase is designed to prevent Missed Effects anomalies. To further

understand why this works, consider the following examples.

r3(x=0) r1(x=0) w1(x=1) c1 r2(x=1) r2(y=0) w2(y=1) c2 r3(y=1) c3

T1 T2 T3
wr wr

rw

Figure 4.4: Example of inconsistent reads, prevented by read set validation.

First, lets see how validating the read set prevents Missed Effects

anomalies involving inconsistent reads (pertaining to case (ii) of the correct-

ness argument). Consider the example in Figure 4.4. Assume the objects x

60

and y are located on different shards, sx and sy respectively. Here, T3 misses

the write to x by T1, but reads the newer version of y, that was written by T2

after it had read T1’s write to x. The set of reads done by T3 are therefore

inconsistent. When T3 attempts to commit, Occult’s read set validation will

detect that y’s causal timestamp has a higher shardstamp for sx (because of

T1’s write to x) than the saved shardstamp for sx at the time x was read by T3.

This indicates that the version of x, read by T3, is potentially stale compared

to the version of y read by it. As a result, Occult will abort T3, thus preventing

the anomaly.

r3(x=0) r3(y=0) r1(x=0) w1(x=1) c1 r2(x=1) r2(y=0) w2(y=1) c2 w3(y=2) c3

T1 T2 T3
wr ww

rw

rw

Figure 4.5: Example of concurrent conflicting writes, prevented by overwrite set validation.

Next, lets see how validating the overwrite set prevents Missed Effects

anomalies involving concurrent conflicting writes (pertaining to case (iii) of

the correctness argument). Consider the example in Figure 4.5. Here, merely

validating T3’s read set is not sufficient since it is consistent. However, T3

overwrites the newer version of y (written by T2) that it missed. Thus, T2’s

update to y is lost [54]. When validating T3’s overwrite set, Occult will detect

that the version of y in T3’s overwrite set (from T2’s write to y) has a higher

shardstamp for sy, than the saved shardstamp for sy at the time y was read.

This indicates that T3 is potentially overwriting a version of y that it missed

during its read phase. Once again T3 will abort, preventing the anomaly.

61

4.5 Fault Tolerance

4.5.1 Server Failures

Slave failures in Occult only increase read latency as slaves never accept

writes and read requests to failed slaves eventually time-out and redirect to

the master. Master failures are more critical. First, as in all single-master

systems [149], no writes can be processed on a shard with a failed master.

Second, in common with all asynchronously replicated systems [46, 53, 119,

120, 149], Occult exhibits a vulnerability window during which writes executed

at the master may not yet have been replicated to slaves and may be lost if the

master crashes. These missing writes may cause subsequent client requests to

fail: if a client c’s write to object o is lost, c cannot read o without violating

causality. This scenario is common to all causal systems for which clients do

not share fate with the servers to which they write. Occult’s client-centric

approach to causal consistency, however, creates another dangerous scenario:

as datacenters are not themselves causally consistent, writes can be replicated

out of order. A write y that is dependent on a write x can be replicated to

another datacenter despite the loss of x, preventing any subsequent client from

reading both x and y.

Occult’s current prototype (built by modifying Redis Cluster) can pre-

vent such a loss of read availability by leveraging Redis’s existing failure recov-

ery logic for slaves in which data is transferred asynchronously from the master

shard to a new slave. Extending our prototype to support slave failures is rel-

atively straightforward: data can simply be transferred asynchronously from

62

the master shard to the new slave [148]. Any client request will, as per the

traditional read logic, reroute to the master if the slave is not yet up-to-date.

Likewise, Master failures can also be handled using well-known tech-

niques: individual machine failures within a datacenter can be handled by

replicating the master locally using chain-replication [154] or Paxos [110], be-

fore replicating asynchronously to other replicas. This process can be ab-

stracted within each write to the master, and does not not require any modi-

fications to the Occult client’s read/write protocol.

4.5.2 Client Failures

A client failure for single-key operations impacts only the failed client as

neither reads nor writes create temporary server state. In transactional mode,

however, clients modify server state during the commit phase: they acquire

locks on objects in the transaction’s write-set and write back new values. A

client failure during the transaction commit process may thus cause locks to be

held indefinitely by failed clients, preventing other transactions from commit-

ting. Such failures can be handled by augmenting Occult with Bernstein’s co-

operative termination protocol [55] for coordinator recovery [105, 166]. Upon

detecting a suspected client failure, individual shards can attempt to elect

themselves as backup coordinator (using an instance of Paxos to ensure that a

single coordinator is elected). The backup coordinator can then appropriately

terminate the transaction (by committing it if a replica shard successfully re-

ceived an unlock request with the appropriate transaction timestamp using

63

the buffered writes at every replica, or aborting it otherwise).

4.6 Evaluation

The evaluation answers three questions:

1. How well does Occult perform in terms of throughput, latency, and trans-

action abort rate?

2. What is its overhead when compared to an eventually-consistent system?

3. What is the effect of server slowdowns on Occult?

We implemented Occult by modifying Redis Cluster [20], the distributed

implementation of the widely-used Redis key-value store. Redis Cluster divides

the entire key-space into N logical shards (default N = 16K), which are then

evenly distributed across the available physical servers. Our causal timestamps

track shardstamps at the granularity of logical shards to avoid dependencies

on the physical location of the data.

For a fair comparison with Occult, we modify our Redis Cluster baseline

to allow reads from slaves (Redis Cluster by default uses primary-backup [141]

replication for fault tolerance). We further modify the Redis client [10] to, like

Occult, allow for client locality: the client prioritizes reading from shards in

its local datacenter and executes write operations at the master shard.

64

4.6.1 Experimental Setup

We run our experiments on CloudLab [2, 140] with 20 server and 20

client machines evenly divided across two datacenters in Wisconsin (WI) and

South Carolina (SC); the cross-datacenter ping latency is 39ms. Each machine

has dual Intel E5-2660 10-core CPUs and dual-port Intel 10Gbe NICs, with re-

spectively 160GB memory (WI) and 256GB (SC). Our experiments use public

IP addresses, routable between CloudLab sites, which are limited to 1Gbps.

Each server machine runs four instances of the server process, with each server

process being responsible for N/40 logical shards. Half of all shards have a

master in WI and a slave in SC; the other half have the opposite configuration.

Client machines run the Yahoo! Cloud Serving Benchmark (YCSB) [73].

We run experiments with both of YCSB’s Zipfian and Uniform workloads but,

for brevity, show results only for the Zipfian distribution, more representa-

tive of real workloads. Prior to the experiments, we load the cluster with

10 million records following YCSB’s default, i.e., keys varying in size up to

23B and 1KB values. We report results at peak goodput, running for at least

100 seconds and then excluding 10-second ramp-up and ramp-down periods.

Goodput measures successful operations per second, e.g., a read that needs to

be retried four times will only be counted once towards goodput. The bot-

tleneck for all experiments is out bound network bandwidth on the hottest

master. Even if we were to increase network bandwidth, each system would

bottleneck at a similar throughput: the CPU on the hottest master is nearly

saturated (> 90% utilization).

65

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10

G
o

o
d

p
u

t
(m

ill
io

n
 o

p
s/

s)

Number of shardstamps

Structural Temporal DC-Isolate Eventual

(a) Goodput (Read-heavy)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200

Fr
ac

ti
o

n
 o

f
R

e
q

u
e

st
s

Latency (us)

Eventual DC-Isolate Structural Temporal

(b) Read Latency CDF (Read-heavy)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

2 4 6 8 10

St
al

e
 R

e
ad

s
(%

 o
f

al
l R

e
ad

s)

Number of Shardstamps

DC-Isolate Temporal Structural

(c) Stale Reads WI (Read-heavy)

0
5

10
15
20
25
30
35
40
45

2 4 6 8 10

St
al

e
 R

e
ad

s
(%

 o
f

al
l R

e
ad

s)
Number of Shardstamps

DC-Isolate Temporal Structural

(d) Stale Reads SC (Read-heavy)

0%

20%

40%

60%

80%

100%

2 4 6 8 10

B
re

ak
d

o
w

n
 s

ta
le

 r
e

ad
 c

au
se

s

Number of shardstamps

Write Remote Master Read Local Slave

Write Local Master Read Local Master

(e) Stale Read Analysis (Read-heavy)

0

5

10

15

20

25

30

35

0 1 2 3 4 5

St
al

e
 R

e
ad

s
(%

 o
f

al
l R

e
ad

s)

Number of Retries

Structural Temporal DC-Isolate

(f) Retrying Stale reads (Read-heavy)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10

G
o

o
d

p
u

t
(m

ill
io

n
 o

p
s/

s)

Number of Shardstamps

Structural Temporal DC-Isolate Eventual

(g) Goodput (Write-heavy)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10 11

Fr
ac

ti
o

n
 o

f
R

e
q

u
e

st
s

Latency (ms)

Structural Temporal DC-Isolate Eventual

(h) Read Latency CDF (Write-heavy)

Figure 4.6: Measurement and analysis of Occult ’s overhead for single key operations. Spatial, Temporal
or DC-Isolate mean that we run Occult using those compression methods while Eventual
indicates our baseline, i.e., Redis Cluster. WI means Wisconsin datacenter and SC means
South Carolina datacenter.

66

4.6.2 Performance and Overhead

4.6.2.1 Single Key Operations

We first quantify the overhead of enforcing causal consistency in Occult.

We first show results for a read-heavy (95% reads, 5% writes) workload, since

it is more interesting and challenging for our system. Later we show results

for a write-heavy (75% reads, 25% writes) workload as well. The write-heavy

workload performed better in general, as could be expected from the system

design. We include it for completeness.

We compare system throughput as a function of causal timestamp size,

for each of the previously described schemes (structural, temporal, and tem-

poral with datacenter isolation), with Redis cluster as the baseline. Temporal

compression requires a minimum of two entries per causal timestamp; adding

datacenter isolation (DC-Isolate), doubles this number, so that the smallest

number of shardstamps used by DC-Isolate is four.

Read-heavy workload In the best case for this workload (using the DC-

Isolate scheme with four-entry timestamps), Occult’s performance is compet-

itive with Redis, despite providing much stronger guarantees: its goodput is

only 8.7% lower than Redis (Figure 4.6a) and its mean and tail latency are,

respectively, only 50µs and 400µs higher than in Redis (Figure 4.6b). Other

schemes perform either systematically worse (Structural), or require twice the

number of shardstamps to achieve comparable performance (Temporal). The

low performance of the structural and temporal schemes are due to their high

67

stale read rate (Figures 4.6c and 4.6d). In contrast, DC-Isolate has very a low

percentage of stale reads even with small causal timestamps. Its slight drop

in goodput is primarily due to Occult’s other source of overhead: the CPU,

network, and storage cost of attaching and storing timestamps to requests and

objects. These results highlight the tension between overhead and precision:

larger causal timestamps reduce the amount of stale reads (as evidenced by

the improved performance of the temporal scheme when vector size grows),

but worsen overhead (the goodput of the DC-Isolate scheme actually drops

slightly as the number of shardstamps increases).

Achieving a low stale read rate with few shardstamps, as DC-Isolate

does, is thus crucial to achieving good performance. Key to its success is its

ability to track timestamps from different datacenters independently. Consider

Figures 4.6c and 4.6d: in these experiments we simply count the percentage of

stale reads but do not retry locally or read from the remote master. Observe

that the temporal and structural schemes suffer from a significantly higher

stale read rate in the SC datacenter. To understand why, we instrumented

the code to track metadata related to the last operation to modify a client’s

causal timestamp before it does a stale read. We discovered that almost 96%

of stale reads occur when the client writes or reads from a local master node

immediately before reading from a local slave node (Figure 4.6e). If the local

master node runs ahead (for instance, the SC datacenter has a positive offset

of about 22 ms, as measured via ntpdate), the temporal scheme will declare

all reads to the local slave as stale. In contrast, by tracking dependencies on

68

a per-datacenter basis, DC-Isolate side-steps this issue, producing a low stale

rate across datacenters.

Write-heavy workload Figures 4.6g and 4.6h show evaluation of Occult on

a write-heavy workload (75% reads, 25% writes) with a Zipfian distribution

of operations. Overall Occult suffers less goodput overhead (6.9%) over Redis

on this workload than the read-heavy workload. The median latency increase

over Redis is still 50µs but tail latency increases by 4ms.

4.6.2.2 Transactions

To evaluate transactions, we modify the workload generator of the

YCSB benchmark to issue start and commit operations in addition to reads

and writes. Operations are dispatched serially, i.e., operation i must complete

before operation i + 1 is issued. The resulting long duration of transactions

are worst case scenario for Occult. The generator is parameterized with the

required number of operations per transaction (Tsize). We use the DC-Isolate

scheme for Occult and the read-heavy workload of YCSB in all these experi-

ments.

69

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16 18 20

G
o

o
d

p
u

t
(m

ill
io

n
 o

p
s/

s)

Num Ops per Transaction (Tsize)

Transactional (4 shardstamps)

Transactional (8 shardstamps)

Single-key (4 shardstamps)

(a) Goodput

0

5

10

15

20

25

30

4 6 8 10 4 6 8 10

Tr
an

sa
ct

io
n

s
A

b
o

rt
e

d
 (

%
)

Number of Shardstamps

Lock Fail Read Set Fail OW Set Fail

No Lock Retry Lock Retry

(b) Abort Rate as f(shardstamps)
(Tsize = 20)

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20

Tr
an

sa
ct

io
n

s
A

b
o

rt
e

d
 (

%
)

Num Ops per Transaction (Tsize)

No Lock Retry

Lock Retry

Uniform Dist.

(c) Abort Rate as f(Tsize)
(shardstamps = 8)

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

A
vg

 T
ra

n
sa

ct
io

n
 L

at
e

n
cy

 (
m

s)

Num Ops per Transaction (Tsize)

(d) Average Latency

Figure 4.7: Transactions in Occult

We show results for increasing values of Tsize. For smaller values, most

transactions in the workload are read-only, and as Tsize increases most trans-

actions become read-write. As Figure 4.7a shows, the overall goodput remains

within 2/3 of the goodput of non transactional Occult (varying from 60% to

70%), even as Tsize increases and aborts become more likely. Figures 4.7b and

4.7c analyze the causes of these aborts. Recall from §4.4.2 that aborts can

occur because of either (i) validation failures of the read/overwrite sets or (ii)

failure to acquire locks on keys being written.

Figure 4.7b fixes Tsize = 20 and classifies aborts into these three cat-

70

egories. We find that aborts are dominated by the failure to acquire locks.

Furthermore, due to the highly skewed nature of the YCSB zipfian workload,

>80% of these lock-fail aborts are due to contention on the 50 hottest keys.

This high contention also explains the limited benefit of retrying to acquire

locks. Figure 4.7b also shows that increasing the number of shardstamps al-

most completely eliminates aborts due to failed validations of the read set and

roughly halves aborts due to failed validations of the overwrite set. Figure

4.7c shows that the abort rate increases linearly with increasing Tsize and that

retrying lock acquisition has slightly better impact at larger values of Tsize

when most transactions are read-write. For comparison, we show the abort

rate on a uniform distribution. Finally, Figure 4.7d shows the average commit

latency of transactions from start to commit as a function of Tsize. The linear

rise in latency is because operations in our workload are dispatched serially.

4.6.2.3 Resource Overhead

To quantify the resource overhead of Occult over Redis Cluster, we

measure the CPU usage (using getrusage()) and the total bytes sent and

received over 120 secs for both systems at the same throughput (1.27Mop/s)

and report the average of five runs, averaged over the 80 server processes.

Overall CPU usage increases by 7% with a slightly higher increase on

slaves (8%) than masters (6%). This difference is due to stale read retries in

Occult. Output bandwidth increases by 8.8%, while input bandwidth increases

by 49%, as attaching metadata to read requests with a key size of at most 23B

71

has a much larger impact than attaching it to replies carrying 1KB values.

Finally, we measure storage overhead by loading both Redis and Occult

with 10 million records and measuring the increase in memory usage of each

server process. Storing four shardstamps with each key results in an increase,

on average, of 3% for Occult over Redis. Storing 10 shardstamps instead

results in an increase of 4.9%.

4.6.3 Impact of Slow Nodes

Occult is by design immune to the slowdown of a server cascading to

affect the entire system. Nonetheless, the slowdown of a server does introduce

additional overhead relative to an eventually-consistent system. In particular,

slowing down slaves increases the stale rate, which in turn increases retries

on that slave and remote reads from its corresponding master. We measure

these effects by artificially slowing down the replication of writes at a number

of slave nodes, symmetrically increasing their number from one to three per

datacenter—two to six overall. This causes a slowdown of around 2.5% to

7.5% of all nodes. The workload for this experiment was read-heavy with a

Zipfian distribution of operations.

72

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6

G
o

o
d

p
u

t
(m

ill
io

n
 o

p
s/

s)
Number of Slow Nodes

Tail Tail(Inf. Delay) Hot No Slowdown

(a) Goodput

0

1

2

3

4

5

50th 75th 90th 95th 99th

Lo
g 1

0
(L

at
e

n
cy

 u
s)

Percentiles

0 2 4 6 slow nodes

2
8

0
u

s

3
9

0
u

s

1
.6

m
s

3
.7

m
s47.1ms

8
0

0
u

s

(b) Latency(slow tail nodes)

0

1

2

3

4

5

50th 75th 90th 95th 99th

Lo
g 1

0
(L

at
e

n
cy

 u
s)

Percentiles

0 2 4 6 slow nodes

2
m

s 4
.6

m
s 51.3ms

(c) Latency(slow hot nodes)

Figure 4.8: Effect on overall goodput and read latency due to slow nodes in Occult

We notice that, at peak throughput, the node containing the hottest

key serves around 3× more operations than the nodes serving keys in the tail

of the distribution. We evaluate slowdowns of the tail nodes separately from

the hot nodes, which we slowdown in decreasing order of load, starting from

the hottest node.

We first delay replicated writes on tail nodes by 100 ms, which, as

Figure 4.8a shows, does not affect throughput: even at peak throughput for

the cluster, only the hottest nodes are actually CPU or network saturated.

As such, tail nodes (master or slave) still have spare capacity. When clients

73

failover to the master (after n local retries), this spare capacity absorbs the

additional load. In contrast, read latency is affected (Fig 4.8b). Though

median, 75th, and 90th percentile latencies remain unchanged because reads

to non-slow nodes are unaffected by the presence of slow servers, tail latencies

increase significantly as the likelihood of hitting a lagging server and reading a

stale value increases. Thus, increasing slow nodes from two to six first makes

the 99th percentile and then the 95th percentile latency jump to around 48ms.

This includes n = 4 local retries by the client (after delays of 0, 1, 2, and 4

ms) and finally contacting the master in a remote datacenter (39 ms away).

Having a large delay of 100 ms and n = 4 means that our experiment actually

evaluates an arbitrarily large slowdown, since almost all client reads to slow

slaves eventually fail over to the master. We confirm this by setting the delay

to infinite: the results for both throughput (Figure 4.8a) and latency (not

shown) are identical to the 100 ms case.

Slowing down the hot nodes impacts both throughput and latency. The

YCSB workload we use completely saturates the hottest master and its slave.

Unlike in the previous experiments, the hot master does not have any spare

capacity to handle failovers, and throughput suffers (Figure 4.8a). Slowing

more than two slave nodes does not decrease throughput further because their

respective masters have spare capacity. Figure 4.8c shows that, as expected

given the skewed workload, slowing down an increasing number of hot nodes

increases the 99th and 95th percentile latencies faster than slowing down tail

nodes (Figure 4.8b). The median and 75th percentile latencies remain un-

74

changed as before.

4.7 Related Work

4.7.1 Scalable Causal Consistency

COPS [119] tracks causal consistency with explicit dependencies and

then enforces it pessimistically by checking these dependencies before applying

remote writes at a replica. COPS strives to limit the loss of throughput caused

by the metadata and messages needed to check dependencies by exploiting

transitivity. ChainReaction [44], Orbe [83], and GentleRain [84] show how to

reduce these dependencies further by using Bloom filters, dependency matri-

ces, and a single timestamp, respectively. These techniques reduce metadata

by making it more coarse-grained, which actually exacerbates slowdown cas-

cades. Eiger [120] builds on COPS with a more general data model, write-only

transactions, and an improved read-only transaction algorithm. BoltOn [53]

shows how to use shim layers to add pessimistic causal consistency to an exist-

ing eventually consistent storage system. COPS-SNOW [121] provides a new

latency-optimal read-only transaction algorithm. Occult improves on this line

of research by identifying the problem of slowdown cascades and showing how

an optimistic approach to causal consistency can overcome them. In addition,

all of these systems provide weaker forms of transactions than Occult: Eiger

provides read-only and write-only transactions, while all other systems provide

only read-only transactions or no transactions at all.

Pileus [149] and Tuba [46] (which adds reconfigurability to Pileus) pro-

75

vide a range of consistency models that clients can dynamically choose between

by specifying an SLA that assigns utilities to different combinations of con-

sistency and latency. Pileus has several design choices that are similar to

Occult: it uses a single master, applies writes at replicas without delay (i.e., is

optimistic), uses a timestamp to determine if a read value meets a given consis-

tency level (including causal consistency), and can issue reads across different

datacenters to meet a given consistency level. However, Pileus is not scalable

as it uses a single logical timestamp as the client’s state (which we show in our

evaluation has a very high false positive stale rate) and evaluates with only a

single node per replica. We consider an interesting avenue of future work to

see if we can combine the focus of Pileus (consistency choice and SLAs) with

Occult.

Cure [43] is a causally consistent storage system that provides read-

write transactions. Cure is pessimistic and uses a single timestamp per replica

to track and enforce causal dependencies. Cure provides a restricted form

of read-write transactions that requires all operations to be on convergent

and commutative replicated data types (CRDTs) [143]. Using CRDTs allows

Cure to avoid coordination for writes and instead eventually merges conflict-

ing writes, including those issued as part of read-write transactions. Occult,

in contrast, is an optimistic system that provides read-write transactions for

the normal data types that programmers are familiar with. Saturn [61], like

Occult, tries to strike a balance between metadata overhead and false shar-

ing by relying on “small labels” (like Cure) while selecting serializations at

76

datacenters that minimize spurious dependencies.

4.7.2 Read/Write Transactions

Many recent research systems with read/write transactions are limited

to a single datacenter (e.g., [112, 130, 158, 161]) whereas most production sys-

tems are geo-replicated. Some geo-replicated research systems cannot scale

to large clusters because they have a single point of serialization per data-

center [77, 146] while others are limited to transactions with known read and

write sets [131, 150, 167].

Scalable geo-replicated transactional systems include Spanner [74], MDCC

[105] and TAPIR [166]. Spanner is a production system at Google that uses

synchronized clocks to reduce coordination for strictly serializable transac-

tions. MDCC uses Generalized Paxos [110] to reduce wide-area commit la-

tency. TAPIR avoids coordination in both replication and concurrency con-

trol to be able to sometimes commit a transaction in a single wide-area round

trip. All of these systems provide strict serializability, a much stronger consis-

tency level than what Occult provides. As a result, they require heavier-weight

mechanisms for deciding to abort or commit transactions and will abort more

often.

4.7.3 Rethinking the Output Commit Step

We were inspired to rethink the output commit step for causal consis-

tency by a number of previous systems: Rethink the Sync [133], which did it

77

for local file I/O; Blizzard [127], which did it for cloud storage; Zyzzyva [104],

which did it for Byzantine fault tolerance; and Speculative Paxos [138], which

did it for Paxos.

4.8 Limitations

The limitations of Occult’s design include: its master-slave architecture,

the blocking nature of its read-write transactions and a vulnerability to buggy

clients due to its client-centric approach.

Occult’s master-slave architecture has performance and latency disad-

vantages, compared to prior causal data-stores (e.g., [84, 119, 120]), which

had multi-master designs. A hot master shard can become the bottleneck for

a skewed workload, and in a geo-replicated setup, writing to the master can

incur significant latency for operations by distant clients. We explained the

reasons for this choice in §4.2.1, including the fact that this is the design choice

of some of the largest real-world systems [63, 71, 134, 139]. An additional ben-

efit, is that it allowed us to build scalable read-write transactions with stronger

correctness guarantees than previous causal systems. Having all replicas ac-

cept writes, with asynchronous replication, restricts a system from providing

stronger guarantees (such as a variant of snapshot isolation) for its read-write

transactions, because of concurrent conflicting writes and lost updates. This

can be a problem for real-world systems [139], which cited having a primary

source of truth as the reason for their choice of a master-slave architecture.

Occult’s read-write transactions also have the limitation of requiring

78

locks during the validation phase, in contrast to previous systems [120], which

provided non-blocking write-only transactions. Blocking can cause a perfor-

mance hit for workloads with high true contention, such as the heavily skewed

YCSB transactional workload in our evaluation (§4.6.2.2). Yet, the utility of

just providing write-only and read-only transactions is limited. It remains

an interesting avenue for future work, on how to provide read-write transac-

tions in a causal datastore with a stronger isolation level like PC-PSI, while

eliminating blocking for a significant subset of transactions involving writes.

Finally, Occult’s client-centric design is vulnerable to buggy clients.

Such a client could, e.g., claim to know all writes done until the year 2100 at

shard 3. If this client writes to an object with its causal timestamp, then later

clients now have to wait for shardstamps of slaves of shard 3, to catch up to the

year 2100, before being able to read. There are a couple of mitigating factors

for this limitation. First, most large-scale datastores do not directly expose

their storage system’s API to public clients, for security reasons. For these

systems, the same engineering team that builds the storage system, also main-

tains any internal clients, which reduces the chances of such errors. Pushing

the enforcement of consistency to the client, for these systems, means internal

clients, not web browsers. Second, simple sanity checking can greatly mitigate

these sorts of bugs. For instance, each master server can estimate bounds on

the clock values of other master servers (e.g., worst case clock drift multiplied

by 2) and reject a write if it is higher than those bounds.

79

Chapter 5

ScaleDB: An Asynchronous In-Memory

Database

ScaleDB is a serializable transactional database designed for scalability.

The discussion and analysis in §2.2.3 showed that shared range-index struc-

tures continue to be a main source of mechanism coordination, and the high

cost of updates to these indexes, even by unrelated transactions, is a major fac-

tor limiting scalability. Further, the analysis in §3.1.1 showed that contention

caused by synchronous updates to sorted range-index structures is unneces-

sary in the common case; it is possible to delay many common range-index

updates, without compromising on strong consistency guarantees or latency

requirements for transactions. The foundation of ScaleDB’s design, building

on that analysis, is that range indexes are asynchronously updated to provide

scalability.

ScaleDB’s design, minimizes unnecessary contention among unrelated

transactions by decoupling the commit of a transaction from the update to the

affected range indexes; we update range indexes asynchronously (in batches),

while using scalable hash-based indexlets to track writes of recently committed

transactions. By decoupling transaction execution from range index updates,

80

ScaleDB can focus on improving the scalability of the former in isolation from

the latter and without undesirable performance tradeoffs.

Based on this asynchronous architecture at the core of ScaleDB, we de-

sign Asynchronous Concurrency Control (ACC), a novel concurrency control

protocol that provides serializability for concurrent transactions without com-

promising scalability, commit latency, or throughput. ACC is an optimistic

concurrency control protocol that builds on indexlets to provide phantomlets

for scalable phantom detection [54] and uses transactional locks in indexlets,

rather than in range indexes, to provide scalable atomic transaction commit.

By avoiding unnecessary contention on shared data structures in the common

case, ScaleDB uses ACC to guarantee scalable serializable isolation for ACID

transactions, with high throughput, low commit latency, and low abort rate.

5.1 Design Rationale and Overview

ScaleDB’s main contribution lies in recognizing that removing the in-

dexing bottleneck requires to look beyond range index structures; instead, it

is necessary to understand and correct the architectural design decisions that

make range indexes a hotspot of contention in today’s in-memory databases.

This follows from the findings in §3.1.1 which open up an opportunity to funda-

mentally rethink how to maintain range indexes within in-memory databases.

If, in the common case, synchronous updates to range indexes are not nec-

essary to produce consistent range scans, it may be possible to design new

scalable data structures that can synchronously store record updates and hold

81

them temporarily, until they are asynchronously applied to the range indexes.

Of course, range scans should be always consistent, not just in the common

case, and the mechanisms needed to enforce this guarantee should themselves

be scalable. These are the opportunities and challenges that shape the design

of ScaleDB.

Why are asynchronous range index updates scalable? Asynchronously

updating range indexes offers a host of opportunities that we seek to exploit.

Accumulating a number of updates, so they can be applied as a batch to the

range index, is more efficient than applying individual updates, as it avoids

repeated walks of the index tree (e.g. inserts to the same B+ tree leaf node).

Given the cache contention arising from concurrent walks of the range index,

batched updates benefit CPU cache locality and improve performance isolation

among CPU cores. They also incur less overhead for repeated lock operations,

since they allow us to acquire locks only once for several updates. We can fa-

cilitate this process by sorting accumulated updates before applying them to

the range index, outside of a critical section. Finally, for skewed access distri-

butions that update the same record repeatedly within a short time span, only

the last update in the batch needs to be applied to the range index, reducing

the overall work required.

The basic idea of updating range indexes asynchronously raises some

questions. How can this asynchronous architecture provide scalable transac-

tion processing? And how can serializable isolation be guaranteed when range

82

indexes are no longer kept synchronously consistent? Next, we answer these

questions.

5.1.1 Scalable Transaction Processing with Indexlets

To asynchronously update range indexes, we need a temporary store for

writes that can be scalably maintained and flushed with minimal overhead. To

tackle this problem, we introduce a new data structure: hash-based indexlets.

Indexlets temporarily and synchronously record all range index writes. Hash

indexes have a flat structure. As a result, they can avoid contention on their

internal structure for updates to unrelated records. The exception is rehash-

ing—resizing the hash index when it is at capacity [21]. Database hash indexes

require rehashing, as their size cannot be known a-priori. Instead, indexlets

only temporarily hold updates and are periodically merged by ScaleDB into

range indexes. Thus, we can avoid rehashing by bounding the maximum num-

ber of delayed writes held in an indexlet based on the W-to-RS latency and

expected write rate to the underlying table. We describe indexlets and how

to efficiently size and scalably merge them in §5.2.1.

5.1.2 Serializability with Asynchronous Range Index Updates

We design asynchronous concurrency control (ACC), a concurrency

control protocol that provides serializability in an asynchronous database ar-

chitecure. ACC is based on optimistic concurrency control (OCC) [107, 152],

which it integrates with asynchronous range index updates. Both approaches

83

are optimistic. Just as OCC assumes that most transactions do not contend,

asynchronous range index updates assume that most W-to-RS latencies allow

us to leave range indexes temporarily stale without performance consequences.

Since recent writes are held in indexlets, asynchronously enforcing seri-

alizability with good performance requires first checking indexlets on any point

read, and, for range scans, efficiently detecting the small number of instances

when a scan has accessed a stale portion of a range index. This check is neces-

sary to avoid phantoms [54], i.e., anomalies where a range scan fails to include

a prior write (insert or delete) that modified the number of keys returned by

a range scan, as well as for making sure that the transaction read the most

recent value of each key returned by the scan. New or updated records can

simply be found in the indexlet.

ACC’s technique for avoiding phantoms due to newly inserted records

relies on phantom indicators, which leverage ACC’s asynchronous design to

scalably signal the existence of a phantom to range-scanning transactions. Us-

ing the leaf nodes of the range index as partitions of its keyspace, writing

transactions can produce a unique phantom indicator for each range covered

by a leaf node. Each leaf node evolves through a series of version changes

that happen whenever a merge to a range index affects that leaf node. Phan-

tom indicators, uniquely derived from leaf nodes and their current version, are

inserted by writing transactions into phantom detection indexlets (or phan-

tomlets). Maintained for each range index, phantomlets allow range scanning

transactions to detect phantoms at commit time. We describe ACC in detail

84

in §5.2.2.

5.1.3 Durability

To provide durability, ScaleDB uses write-ahead redo logging, relying

on a system-wide clock to assign globally-ordered timestamps to transactions.

Hardware trends and experimental evidence (§5.3) indicate that system-wide

clocks will remain in future servers. As a result, threads can scalably log their

transactions without coordination at commit time while pushing the overhead

of merging the logs to recovery.

345 Jon 54875123 Sam 90210111 Bob 90210 222 Abe 10000

333 Abe 90210

Phantomlet222 444

111 123 222 345

Primary Key (PK) Range Index

Indexlet

Periodic
Merging

T1

T2

T3 PK Range
Scan

Write

PK
Point
Read

SK Range Scan

Secondary Key (SK) Range Indexes
Phantomlet

……

Figure 5.1: Asynchronous range index update for the PERSON table.

85

5.1.4 Example

To see how it all fits together, consider the example in Figure 5.1 (which

continues from Figure 2.3). Transaction T1 does a range scan by zipcode, which

is executed on the appropriate secondary range index. T3 does a range scan by

SSN (the table’s primary key), which is executed on the primary range index.

Concurrently, T2 inserts the record with SSN 333 into the PERSON

table. Instead of synchronously updating the range indexes and potentially

contending with other writers, ScaleDB inserts the new record, using its pri-

mary key (SSN), in the table’s indexlet and marks it as valid (filled circle).

It does this atomically by acquiring a write lock on the indexlet entry. This

may cause true contention if concurrent transactions access the same key, but

it does not cause mechanism contention—if further concurrent transactions

(not shown) insert more records into the PERSON table, ScaleDB can insert

references to them into the indexlet without contention (in contrast to the

example in Figure 2.4). T2 also does a point read for an SSN. To do so, it first

checks the indexlet for the latest version of the record, temporarily holding a

read lock on the record’s indexlet entry. It is not found there (empty circle),

so T2 next reads from the primary range index.

Periodically, the contents of the indexlet are merged into the underlying

primary and secondary range indexes. The indexes are concurrent, so conflict-

ing accesses by reading and merging threads are synchronized. We discuss the

details of ScaleDB’s concurrent range index in §5.3.3.

86

Range-scanning transactions consult phantomlets to detect phantoms

due to newly inserted records. They do this for each leaf node of the range

index, traversed as part of the range scan. To aid phantom detection, each

writing transaction indicates once per version for a leaf node that it has in-

serted records. Here, T2 inserts a phantom indicator for the [222, 345] leaf node

into the phantomlet, indicating a possible later merge of the key with SSN 333

into that range index node. Upon a merge, not all updates might fit in the

[222, 345] node and the structure of the range index might be altered during

a merge. However, phantom indication is only required for unmerged records.

We discard phantom indicators when the indicated records are merged. A

reading transaction scanning just the [111, 123] node does not abort, as there

are no phantoms indicated for this node.

5.2 Design Details

5.2.1 Asynchronous Range Index Updates

To update range indexes asynchronously, we record delayed writes in

indexlets for the duration of a per-indexlet and per-thread merge epoch. At the

end of an epoch, a thread merges its writes from the indexlet into the associated

range indexes, and starts a new epoch. For a given indexlet and thread, the

merge epoch ends as soon as either (i) the maximum epoch duration has been

reached; or (ii) the thread has filled a maximum batch size of entries in the

indexlet. Both epoch duration and batch size are configured separately for

every indexlet, and each thread decides independently for each indexlet when

87

it has reached the end of its merge epoch.

5.2.1.1 Indexlets

ScaleDB uses hash-table-based indexlets (§5.3.1) with open address-

ing [75, 64, 5] to synchronously and scalably absorb concurrent, committed

writes that affect range indexes. Thus, indexlets are associated with tables

that have range indexes. For each table with range indexes, ScaleDB cre-

ates an indexlet, indexed by the table’s primary key. If there is no primary

key, ScaleDB creates an implicit primary key (a common practice [17]). The

per-table indexlet naturally covers writes that affect secondary indexes, as

secondary indexes refer to the primary index (as shown in Figure 2.3).

Recorded writes include insertions, updates, and deletions. Insertions

and updates affecting a range index are simply recorded in the correspond-

ing indexlet, and the record is updated on the heap, in per-thread arenas to

avoid contention on memory allocation. Special care is required to ensure that

deletes are handled consistently. Indexlets mark a record as deleted instead

of deleting its key from the indexlet. This ensures that a later read of the

same key finds the deleted record in the indexlet rather than finding an older

version in a range index. It also allows coalescing a delete of a key, followed

immediately by an insert of the same key, without merging the delete into the

range indexes.

88

5.2.1.2 Merge Epoch

Each thread independently decides when its merge epoch ends after

which it merges the keys and record references into the table’s ranges indexes

– their permanent home. Each thread t has a maximum batch size bi of en-

tries that it can occupy in indexlet i, before it has to merge those entries, i.e.

the end of its merge epoch. Too small a bi causes similar contention as syn-

chronous merging into range indexes. Too large a bi results in stale range scans,

which can cause transaction aborts. We use bi = Expected write rate(tablei)×

W-to-RS latency(tablei).

During quiescent periods for write transaction activity, threads may

not approach their maximum batch size quickly enough, leaving range indexes

stale for too long. To avoid this, threads keep a timer since the start of the

current epoch and merge when either the maximum batch size or an epoch

duration is reached.

Indexlets must be sized (si) appropriately to minimize collisions. We

use si = 4 × #t × bi to minimize hash collisions. Given that each entry in

an indexlet only occupies a single cache line, this results in modest memory

consumption even for tables with a high write rate.

5.2.1.3 Asynchronous Merging

Each thread keeps a list of indexlet entries where it performed a write.

At the end of its merge epoch, it sorts the list in primary range index key

order. Then it iterates through the sorted list, atomically merging (using the

89

per-entry lock) each individual record. Sorting facilitates range index updates

for compact ranges of writes (§5.1). Repeated writes to the same key are

coalesced within the indexlet at this point. Merging involves updating the

range index and removing the record from the indexlet while holding the per-

entry lock, thus ensuring atomicity for each key’s merge. Each lock can be

released as soon as the key is merged into the primary index. Finally, the

thread invalidates all phantom indicators from the index’s phantomlet. We

discuss the details of this process in the next section.

If secondary indexes exist, the merging thread additionally retains pri-

vate copies of each record reference in thread-local storage. After the primary

range index is merged, the thread then merges each secondary index, one at

a time, in the same way, and in deterministic order, using the thread-local

copies. The copies are discarded at the end of this process. Once all indexes

are merged, the overall merge ends.

5.2.2 Asynchronous Concurrency Control

We design asynchronous concurrency control (ACC), a concurrency

control protocol that provides serializability within an asynchronous database.

ACC is based on optimistic concurrency control (OCC), which it integrates

with asynchronous range index updates. To do so, ACC uses two novel con-

structs: transactional locks in indexlets for atomic commit of writes (§5.2.2.2)

and phantom indicators (§5.2.2.3).

90

OCC. OCC minimizes transaction contention by optimistically executing

transactional reads and atomically publishing a transaction’s writes at the end

of its execution. To do so, OCC transactions execute in three phases—read,

validation, and commit. During the read phase, reads are done optimistically,

without holding locks, and are tracked in a transaction’s private read set ;

writes instead are buffered in a private write set. The validation phase ensures

that transactions may commit atomically. To do so, the database acquires

locks on all values identified in the write set and then validates that collected

values in the read set have not been altered by concurrently executing transac-

tions. If the reads are validated, the commit phase commits the transaction’s

writes and releases its locks. Otherwise, the transaction aborts.

ACC. ACC extends the OCC phases and integrates them with asynchronous

range index updates. During the read phase, point reads search the indexlet

first, and, if they miss, search the primary range index. The same process is

followed for updates and deletes, during the validation phase, allowing existing

records to be brought into the primary indexlet first, before being updated in

place. This guarantees that point queries always read the latest value of a

record. On the other hand, range scans (from primary or secondary indexes)

are executed directly on the range indexes, but need to check for phantoms at

commit. We discuss phantom detection in §5.2.2.3.

91

5.2.2.1 Repairing Stale Range Scans

During the read phase, ACC can repair stale scans before returning

them to reduce the chance of a later transaction abort. This is typically done

for scans used in a later update or delete query. For instance, the TPC-C

Delivery transaction has a range scan that returns the earliest order within a

district in the NewOrder table and then deletes that order in the next query.

This transaction can abort, even for a single thread, if the scan is done on

the range index, but the earliest order returned by the scan has already been

marked deleted in the indexlet in a previous Delivery transaction.

ACC repairs such scans, prior to returning them, by looking up each

key in the indexlet to check if it has been updated or deleted. If so, it repairs

the scan to return the latest version. To avoid paying this cost for all range

scans, the client can explicitly set this option in the query for scans that will

be updated or deleted.

ACC also maintains a per-thread per-table index of the keys which

were inserted by each thread during its current merge epoch. When returning

a range scan, ACC repairs it by merging any records returned by running

the same scan on the local index as well. This avoids spurious aborts by the

phantom detection algorithm (§5.2.2.3), due to keys that were inserted by the

same thread in a prior transaction and are waiting to be merged into the range

indexes.

92

5.2.2.2 Atomic Commit

ACC holds transactional locks on keys between the validation and

commit phases, in order to atomically publish a transaction’s writes. Since

ScaleDB writes are asynchronous, ACC locks need to cover records referenced

by indexlets. Indexlets never rehash, allowing ACC to hold locks directly in

indexlet entries as a way to hold locks on records.

To build transactions, ACC provides two types of locks on records:

LockUniqueInsert is used to atomically insert a record with uniqueness con-

straints, while LockUpdDel is used to atomically update or delete an existing

record. These locks are acquired on a transaction’s write set at the start of

the validation phase, and released either at transaction abort or at the end of

the commit phase.

LockUniqueInsert. To lock for the unique atomic insert of a record, ACC

performs two steps:

(i) First, it searches for a duplicate record in the indexlet and, if not present,

acquires a lock on an empty indexlet entry for the record to be inserted. This

step is done atomically by calling LockInsHashTbl, provided by the indexlet

hash table.

(ii) Once LockInsHashTbl has been acquired, ACC searches the primary range

index to make sure that the key has not already been inserted there.

If either step fails, the transaction aborts. If both succeed, a lock for

93

unique insert has been acquired.

The design of LockInsHashTbl is made tricky by the requirement of

scalably and atomically running two searches i.e., for an empty entry and a

possible duplicate record. These searches are run simultaneously in our open-

addressing hash table (§5.1.1), which maintains a per-entry spinlock, as well

as metadata indicating whether each entry is empty or used. For correctly

terminating searches, however, additional metadata is needed: otherwise, the

deletion of a record r would erroneously terminate future searches for records

displaced by r (located later along the hash probe path). Thus, we also main-

tain metadata indicating whether each entry is a search terminator (details in

§5.3.1).

LockInsHashTbl acquires per-entry spinlocks along the hash probe path.

A probe can end when it finds an entry that is both empty and a search ter-

minator. ACC sets eins – the future location of the record being inserted – to

that entry’s index. If, instead, the probe reaches an entry that is empty but

not a search terminator, ACC still sets eins to that entry’s index, but continues

the search for a duplicate record, until the probe lands on a search terminator

entry. Our open addressing scheme probes indexlet entries in a deterministic

order for each record. Hence, contending transactions attempting to insert

the same record are serialized behind this insert. If a duplicate is found, all

spinlocks are released and the transaction is aborted. If a duplicate is found,

but marked deleted, then ACC uses the deleted record’s entry as eins. If a

duplicate is not found, then LockInsHashTbl is successful. In that case, ACC

94

releases any acquired spinlocks on entries after eins in the probe path. Spin-

locks on eins and entries before it in the probe path, are held until the larger

LockUniqueInsert is released: this allows atomically inserting the record and

updating the search termination metadata (see §5.3.1) at transaction commit.

With a properly sized indexlet, probe lengths are short and there is negligible

mechanism contention for unique inserts.

False 1 333
False 0 222
True 0

Spin
lock Empty OC Key Ref

…
…

… … … … …
…
…

1

57

58

59

T2
LockUniqueInsert(111)

345 Jon 54875123 Sam 90210111 Bob 90210 222 Abe 10000

Phantomlet222 444

111 123 222 345

Primary Key (PK) Range Index

……

333 Abe 90210

Indexlet

T1
LockUniqueInsert(111)

Step 1.
LockInsHashTbl(111)

Step 1.
LockInsHashTbl(111)

Step 2.
Search for 111

eins = 59

Figure 5.2: LockUniqueInsert Example.

Figure 5.2 shows an example illustrating LockUniqueInsert. Transac-

tions T1 and T2, on different threads, are in their validation phase. They are

concurrently trying to acquire LockUniqueInsert for a record with primary key

95

(on SSN) 111. T1 acquires LockInsHashTbl in step 1. Its hash probe starts at

entry 57 in the indexlet, which is currently occupied by a record with key 333

– inserted by a recently committed transaction. Subsequently, another trans-

action brought the record with key 222 into the indexlet, for an update; it was

inserted into entry 58 due to collision with key 333. T1’s hash probe acquires

spinlocks along its probe path, until it lands on entry 59, which is both empty

and a search terminator: thus, successfully acquiring LockInsHashTbl for key

111. Here, overflow counts (OC in the figure, see §5.3.1) are used to terminate

searches (when OC == 0).

In step 2, T1 searches the primary range index for key 111, to ensure

uniqueness; since it finds the record, it will abort. If T1 had been able to

commit, it would have incremented the OC for entries 57 and 58 and inserted

the new record (with key 111) into eins = 59, before releasing the spinlocks.

Meanwhile, T2 gets serialized behind T1 (on entry 57’s spinlock), trying to

acquire LockInsHashTbl. It will eventually abort as well.

LockUpdDel. To acquire a LockUpdDel, ACC performs two steps:

(i) First, it searches the indexlet for the record and, if found, locks the entry.

This step is done atomically by calling LockRUDHashTbl, provided by the

indexlet hash table.

(ii) If LockRUDHashTbl fails, because the record was not found in the in-

dexlet, ACC acquires LockInsHashTbl for the record (in the indexlet), fetches

the record from the range index, inserts a reference to the record in eins and

96

then downgrades the lock to LockRUDHashTbl: which involves releasing the

spinlocks on the entries before eins in the probe path.

LockRUDHashTbl is simpler than LockInsHashTbl, since it does not

need to atomically enforce uniqueness or maintain the metadata for search

termination. It acquires per-entry spinlocks along the hash probe path, but

releases each spinlock as it moves to lock the next entry in the path. A probe

can end when it either finds the record or lands on a search terminator entry.

In addition to its use in the first step of LockUpdDel, LockRUDHashTbl is

also used to atomically search the indexlet for point queries, during the read

phase of the transaction. For certains reads, the hash table also provides a

LockFreeRdHashTbl call, as an optimization (see §5.3.2).

For range updates or deletes, we search the range indexes directly and

acquire LockUpdDel for every key satisfying the predicate. If there is not

enough space in the indexlet, the transaction aborts. In this rare case, the

indexlet is merged and temporarily disabled to retry the transaction syn-

chronously, re-enabling the indexlet after the transaction commits.

5.2.2.3 Asynchronous Phantom Detection

Phantom detection is difficult in a database with asynchronously up-

dated range indexes, as phantoms may occur in indexlets, which do not support

efficient range lookup. ACC’s technique for detecting phantoms leverages the

leaf nodes of a range index which undergo coarse-grained version changes due

to asynchronous merges by different threads. To track these changes, each leaf

97

node l maintains a version number vl which is incremented only when an insert

or delete is merged into that node. If l splits due to an insert, then half of its

keys are moved to a sibling leaf node m with vm = 0 while vl is incremented.

To detect phantoms, ScaleDB uses a phantomlet per-range index to

perform a scalable variant of index node validation [152]. Phantomlets use

the indexlet architecture, as described in §5.2.1, but do not need merging,

as they carry only phantom metadata. Writing transactions atomically write

to phantomlets at transaction commit, indicating that they have inserted a

phantom into the corresponding range index. ScaleDB makes this scalable in

the common case by using the leaf nodes of a range index as partitions of its

keyspace. This allows inserting transactions and range scanning transactions

to coordinate phantoms inserted into a leaf node’s range by using a unique

phantom indicator derived from the current version of that leaf node. For

a leaf index node l at version vl, this phantom indicator is composed of the

concatenation of the leaf node’s memory address Ml and vl.

At commit time, for each inserted key k, the inserting transaction asks

the range index for the phantom indicator < Ml, vl > of the leaf node l

that currently covers the range intersecting with k. Then, after successfully

acquiring LockUniqueInsert on k (and locking the rest of the write set) it

acquires a LockInsHashTbl on < Ml, vl > in the phantomlet. If that fails,

because the phantom indicator already exists in the phantomlet, it instead

acquires a LockRUDHashTbl. This lock allows it to atomically increment the

value of the phantom indicator (initially 0), if the transaction later successfully

98

validates. Threads keep track of the phantom indicators they have inserted

and decrement their values at the end of their merge epoch. The last thread

which decrements the value to 0, removes it from the phantomlet.

When validating a range scan, a reading transaction can use the same

phantom indicator to check whether a phantom was inserted in a range covered

by the leaf node at the version it read. To do so, ACC splits OCC’s read

set into two parts and extends them with additional information. For each

point query, the key of a record r is stored along with a copy tPS
r of the

record’s current commit timestamp tr (§5.2.3) in a point read set. Storing

the commit timestamp allows efficiently verifying whether the record changed,

later during validation; it also enables an optimization for reducing aborts

(discussed below). For every range scan, ACC stores the keys of the scan

results in the point read set, but also stores in a range read set, a phantom

indicator for each range index leaf node encountered during the scan. It also

stores the range scan predicate in the range read set.

Read set validation happens differently for the point read set and the

range read set. For the point read set, ACC reads from the indexlet and (if

not found) then searches in the primary range index. If the key of record r

is not found in either index or tPS
r 6= tr (r received a write), the transaction

is aborted. An optimization here is to only abort if tr < tT , where tT is the

timestamp allocated by this committing transaction (§5.2.3).

ACC validates the range read set as follows. For each range scan, it

asks the range index for the current list c of phantom indicators that match

99

the range scan predicate. If c is different in length than the original list o,

stored in the range read set, it aborts. If not, then there is still the chance

that phantoms were inserted, but, either they have not been merged yet, or

they were merged but did not result in leaf node splits. To rule out these

possibilities, ACC goes through each pair of phantom indicators in c and o,

at the same index in the lists, and verifies two things: first, that the pair are

identical, and second, that performing a LockFreeRdHashTbl (§5.3.2) for this

phantom indicator on the phantomlet, returns nothing. If any of these checks

fail, then again it aborts.

Figure 5.3 shows a simple example illustrating asynchronous phantom

detection.

5.2.3 Durability

ScaleDB achieves durability using write-ahead logging to a redo log.

Each worker thread writes to its own separate log, without coordinating with

any other worker thread. To ensure that transactions do not read values that

have not been made durable, a thread only releases write locks and replies back

to the client once it has logged the transaction to its redo log. Each redo log

entry contains the new values of the keys written by the transaction T as well

as a commit timestamp tT assigned to it during the validation phase, after

all the locks have been acquired by ACC. This timestamp, unique for each

transaction, is derived from a scalable system-wide clock (§5.3) and is thus

consistent with T ’s place in the serializable order. During recovery, ScaleDB

100

first merges all the per-thread transaction logs in timestamp order, and then

replays them.

To see why ScaleDB is recoverable despite uncoordinated logging, con-

sider the example of three transactions T1
ww−−→ T2

rw−→ T3, each of them running

on a separate thread. T1 writes x1 = 42 and T2 read-modify-writes that value

to x2 = 52, thus creating both a write-after-write dependency (ww) and read-

after-write (wr) dependency with T1. Next, T2 reads y1 = 33; later T3 read-

modify-writes it to y2 = 36, thus creating a write-after-read (rw) dependency

between T2 and T3.

Because ScaleDB only releases write-locks after the log entry has been

made durable, if T1 is not logged, then T2 will either read x0 or it will wait

for T1’s write lock to be released to read x1 (enforced by indexlets’ lock-free

read operation). Thus, after a crash, it cannot be the case that T2 is logged

but T1 isn’t. This argument extends transitively to a chain of such direct

dependencies.

The second possibility is that after a crash T2 is not logged, but both

T1 and T3 are. In this case, ScaleDB must not have committed T2 and replied

back to the client. Thus, it will recover only T1 and T3, in order, which is fine.

Notice that, if infact T2 does get successfully logged, ScaleDB’s system-wide

timestamps allow correctly ordering T2 and T3’s log entries at recovery, despite

the fact that there was no direct communication between them.

101

LockUniqueInsert(333) T1

123 Sam 90210111 Bob 90210 222 Abe 10000

222 444

111 123 222

Primary Key (PK) Range Index

……

T2
Indexlet

Range Scan SSN >= 222
LockInsHashTbl(<0x4ff, 13>)

<0x4ff, 13>

Validating
Reads

Range Read Set
<0x4ff, 13>

Phantomlet

(a) Before validating successfully, transaction T1 acquires locks for atomically inserting
the record with SSN = 333 and a phantom indicator <0x4ff, 13>, corresponding to leaf
index node [222,]. This node covers the range containing 333. Concurrently, transaction
T2 does a range scan for SSN >= 222, during its read phase.

123 Sam 90210111 Bob 90210 222 Abe 10000

Phantomlet222 444

111 123 222

Primary Key (PK) Range Index

……

T2

Indexlet

<0x4ff, 13>

333 Abe 90210

<0x4ff, 13> 1

Step 1.
Get current
phantom
indicators for
SSN >= 222.
Compare with
Range Read Set

Range Read Set
<0x4ff, 13>

Step 2.
Check existence of
phantom indicators in
Range Read Set

Write locks

(b) Transaction T2 detects phantom indicator <0x4ff, 13> corresponding to [222,] while
validating the range scan SSN >= 222. It will abort: T1 committed earlier, but T2’s
range scan missed the record with SSN = 333, inserted by T1 in the indexlet.

Figure 5.3: Asynchronous Phantom Detection Example.

102

5.2.4 Correctness

Using ACC, ScaleDB guarantees serializability [39], with the additional

guarantee that the equivalent serial order is one where transactions are ordered

by their commit timestamps. We provide a detailed proof of correctness for

ScaleDB’s transactional guarantees in Appendix 2.

ACC derives its correctness guarantees, in part, from the guarantees

provided by the locks (§5.2.2.2) and data structures (§5.2.1.1, §5.3.3), it builds

upon, as well as its descendence from OCC: which guarantees serializabil-

ity [152]. The key difference from OCC is that ACC must deal with ScaleDB’s

asynchronous updates to range indexes. As our proof of correctness shows,

ACC’s Atomic Commit and Asynchronous Phantom Detection protocols en-

sure, that despite ScaleDB’s asychronous architecture, it continues to guaran-

tee serializability.

5.3 Implementation

We implement ScaleDB by modifying the Peloton [28] in-memory SQL

database, written in C++. We replace the storage back-end while retaining

the code for networking, SQL parsing, query planning and query optimization.

5.3.1 Indexlet and Phantomlet Hash Table

Our indexlet and phantomlet implementations build on a simple open-

addressing [75] hash table which uses linear probing for resolving collisions. We

considered more sophisticated open-addressing schemes like Cuckoo hashing [3,

103

12] but found that the ability to hold transactional locks would have been

complicated by displacement of keys and the fact that the cuckoo hashing

probe path is an undirected graph with a possible cycle, which could have

caused deadlocks. Also recall that our hash table does not need to rehash

(§5.1.1): thus we can avoid mechanism coordination on maintaining a count

of occupied entries in the entire hash table.

One issue with using an open addressing hash table is how to ensure

that searches terminate correctly after merging. When removing a record

r from an indexlet entry we cannot simply mark the entry as empty, be-

cause then any records displaced by r would not be found on a subsequent

lookup (the search would terminate at r). Tombstones, which are tradition-

ally used in open addressing tables, have the problem of accumulating and

making search probes ever longer. Instead, we used a scheme used by the re-

cent non-concurrent F14 hash table [64, 45]. Each entry maintains an overflow

count, that is incremented whenever an insert probe finds the entry already

occupied. When removing a record reference at the end of a merge epoch, we

atomically decrement the overflow counts on its probe path before marking it

as free. Similarly, when inserting a record reference, we atomically increment

the overflow counts on its probe path. An entry whose overflow count is zero

is a search terminator (§5.2.2.2).

104

5.3.2 Lock-Free Reads

To avoid reader contention on the same indexlet or phantomlet entries,

ScaleDB provides LockFreeRdHashTbl (based on seqlocks [4]). To implement

these, we add a version number to the per-entry spinlocks in the indexlet or

phantomlet hash tables. Writers (doing inserts, updates or deletes) increment

the version number after acquiring the spinlock but before doing any writes.

At spinlock release, the version number is incremented again. Readers do not

acquire the spinlocks but instead read the version number, before and after

they perform the read. If the version number changed during the read or it

is initially odd in value, then there was interference from a concurrent writer

and the reader retries.

The limitation of this design is that it cannot be used if the data being

read has internal pointers; otherwise, writers could invalidate pointers that

a reader had already followed. To solve this, we can use Read-Copy-Update

(RCU) [36] for implementing LockFreeRdHashTbl [152]. However, RCU can

add significant complexity to the design; e.g., it requires garbage collection

of previous versions of the data, after ensuring that no readers are actively

reading it.

Our current prototype does not implement RCU. Instead, we only use

LockFreeRdHashTbl for use-cases where the data does not have internal point-

ers; e.g., during the ACC validation phase, we use it to atomically search phan-

tomlets, thus avoiding mechanism coordination between threads searching for

phantom indicators for the same leaf node version of a range index. We also

105

use LockFreeRdHashTbl to validate point reads in indexlets with fixed-length

keys. If the data has internal pointers, we instead use LockRUDHashTbl

(§5.2.2.2).

5.3.3 Concurrent Range Index

Our range index implementation is a B+ tree with optimistic latch cou-

pling (OLC) [114], used in a recent study [157] that compared the scalability

of state-of-the-art range indexes. In the OLC tree, reads do not acquire the

per-node spinlocks when traversing the tree. Instead, they validate a per-node

version number by reading it before and after reading the node’s contents. If

the two versions are not the same, they restart their traversal. Writers intially

traverse like readers but restart and acquire spinlocks along the path if they

detect interference from another writer or if they need to modify a node.

5.3.4 System-wide Synchronized Clock

For scalable durability, ScaleDB assigns timestamps to transactions

derived from a system-wide synchronized clock. Synchronized hardware clocks

are available on modern multi-core processors, such as the timestamp counter

(TSC) on recent Intel x86 processors, which runs at a constant rate. Intel has

indicated [97] that “this is the architectural behavior moving forward” and that

“the OS may use invariant TSC for wall clock timer service”. As a result Linux

uses the TSC as the clock source on x86 across multiple CPU sockets, after

running boot-time tests to ensure synchronization [13, 14]. Recent work [57,

106

60] on multi-core filesystems has used it for scalable ordering across cores.

Finally, virtual machines also provide synchronized virtual TSCs by either

using the underlying hardware (fast) or emulating it if not synchronized (slow)

and even across migrations [30, 37].

On architectures where a system-wide TSC counter is not available, it

is possible to use a dedicated timing thread [142] for handing out timestamps

to threads. This approach requires a core dedicated to the timing thread,

which continuously increments a local variable and then stores the value to

a global time variable. A thread requiring a global timestamp simply reads

the time variable. On the Intel Skylake architecuture, such a timing thread

increments the local variable every 0.87 cycles which is actually 15% faster

than the TSC [142].

5.4 Evaluation

Our evaluation aims to understand how ScaleDB performs in terms of

throughput scalability of committed transactions on various workloads, includ-

ing YCSB and TPC-C, and how the various ideas in the design of ScaleDB

contribute to performance. Our comparison baselines are Peloton, upon which

ScaleDB is built, and Cicada.

Our evaluation answers the following questions:

1. Why is the ScaleDB asynchronous architecture a scalable design (§5.4.1)?

We evaluate the scalability of indexlets (phantomlets) and system-wide

107

timestamps given that these mechanisms are necessary for a scalable,

asynchronous database.

2. What is the application-level query scalability of an asynchronous database

(§5.4.2)? We use the non-transactional YCSB benchmark to answer this

question.

3. How is ScaleDB scalability affected when guaranteeing serializability for

transactions (§5.4.3)? Is the transaction abort rate affected? We evalu-

ate on the TPC-C benchmark, to answer this question.

Testbed. All machines in the evaluation have 2×18-core Intel Xeon Gold

6154 CPUs with 36 cores and 72 hardware threads. 192GB of memory is

divided across two NUMA nodes. Each machine has a Mellanox ConnectX-5

network card, operating at 100Gb/s. For networked benchmarks, we run a

single database server and 4 client machines. Each client machine runs as

many processes of the OLTP benchmark suite [19] as needed to saturate the

database server. Accordingly, all experiments report peak throughput.

5.4.1 ScaleDB Mechanisms

Indexlets. We evaluate indexlet scalability against libcuckoo [12], an opti-

mized concurrent hash table, and the BwTree [115, 157], a recent, lock-free

range index structure. This evaluation is performed on a microbenchmark (in-

cluded with libcuckoo) with a 50% read and 50% insert workload consisting of

64-bit integer keys and values. As Figure 5.4a shows, indexlets achieve nearly

108

0

20

40

60

80

100

120

140

160

0 4 8 12 16 20 24 28 32 36

M
ill

io
ns

 o
f o

pe
ra

tio
ns

 p
er

 se
co

nd

Number of threads

Indexlet Libcuckoo BWTree

(a) Indexlet scalability

0
4
8

12
16
20
24
28
32
36
40

0 4 8 12 16 20 24 28 32 36

Re
la

tiv
e

Sp
ee

du
p

Number of Threads

atomic_inc rdtscp timing_thread

(b) System-wide timestamp scalability

Figure 5.4: ScaleDB Mechanisms

5×libcuckoo and 25×BwTree throughput at 36 cores. Open addressing in in-

dexlets provides better scalability than cuckoo hashing and the flat structure

of hash tables scales better than tree indexes.

System-wide timestamps. We evaluate the TSC counters and timing thread

approach described in §5.3 and compare them with an atomic increment as

a global timestamp. As Figure 5.4b shows, both the timing thread and TSC

approaches scale linearly to 36 cores, while the atomic increment approach

does not scale beyond 4 cores.

5.4.2 Asynchronous Index Update

We evaluate ScaleDB’s scalability of asynchronous updates to a single

range index. A single range index is a conservative case for ScaleDB; the

benefit of asynchronous updates grows with the number of range indexes that

are updated in this way. For this purpose, we use the Yahoo! Cloud Serving

Benchmark (YCSB) [72], which is a non-transactional workload. To generate

109

0

50

100

150

200

250

300

350

400

450

500

0 40 80 120 160

Th
ou

sa
nd

s o
f o

ps
 p

er
 s

ec

Number of Client Terminals

Scaledb-95-5 Peloton-95-5 Scaledb-50-50 Peloton-50-50

(a) Throughput

0

100

200

300

400

500

600

0 20 40 60 80 100

Th
ou

sa
nd

s o
f o

ps
 p

er
 s

ec

Write Percentage
ScaleDB Peloton

(b) Write sensitivity

Figure 5.5: YCSB read-insert workload. 95-5 means 95% reads and 5% inserts. 50-50 means 50% reads
and 50% inserts.

enough load, we access the database from 4 networked YCSB benchmark client

machines. The YCSB benchmark defines a single table with an integer primary

key and 10 string columns, each of size 100 bytes. Peloton uses the lock-free

Bw-Tree [157] as the underlying primary range index on the integer key.

All experiments use 36 server threads, with each thread pinned to a

separate core. We show scalability by increasing the number of client terminals

sending operations to the database server. For ScaleDB, we set the maximum

merge epoch duration to 100 ms and the maximum batch size per thread to

1,000 entries. Prior to running each experiment, we load the table with 1

million records. We use a Zipfian distribution of operations for reads and

updates with θ = 0.99, to simulate a skewed workload. For inserts, each client

thread adds new records sequentially within its own interval of the primary key

space, starting after the already inserted 1 million records, to avoid uniqueness

conflicts.

110

Mechanism contention. Figure 5.5a shows terminal scalability of a read-

insert workload for two points of read-insert intensity. The read-insert work-

load has only mechanism contention—reads and inserts are to disjoint keys.

For 95% reads, both ScaleDB and Peloton scale with similar performance until

all server cores are saturated. This is not surprising. Peloton’s range index

scales well when a workload is read-intensive. For a write-intensive workload

with 50% inserts, Peloton’s throughput collapses, while ScaleDB maintains

9.5× Peloton’s throughput at scale.

To show this effect in detail, we examine the sensitivity of both systems

to an increasingly write-heavy load by varying the percentage of inserts in the

workload, fixing the number of terminals to 160. Figure 5.5b shows that

Peloton’s throughput quickly collapses with increasing write intensity (knee-

point at 20% inserts), while ScaleDB’s throughput gradually declines. ScaleDB

loses 46% of its peak throughput when the workload is write-only.

5.4.3 Serializability

We now evaluate asynchronous scalability with serializable transactions

on the TPC-C benchmark, which has multiple tables and several primary and

secondary range indexes. We compare with the Cicada [117] database. Ci-

cada’s prototype does not have a network layer and it uses a TPC-C imple-

mentation linked with the database binary, calling directly into the Cicada

API as opposed to sending calls across the network. To make this an apples-

to-apples comparison we do the same for ScaleDB. Also, Cicada’s prototype

111

0
2
4
6
8

10
12
14
16
18
20
22
24

0 4 8 12 16 20 24 28 32 36

G
oo

dp
ut

 S
ca

la
bi

lit
y

Number of Threads

ScaleDB Cicada (Partitioned Idxes) Cicada (Shared Idxes)

(a) Full

0
2
4
6
8

10
12
14
16
18
20
22
24

0 4 8 12 16 20 24 28 32 36

G
oo

dp
ut

 S
ca

la
bi

lit
y

Number of Threads

ScaleDB Cicada(Partitioned Idxes) Cicada(Shared Idxes)

(b) NewOrd-Deliv

Figure 5.6: ScaleDB vs Cicada goodput scalability comparison on the TPC-C benchmark with partitioned
and shared indexes for Cicada. Goodput counts only committed transactions. Full means the
canonical TPC-C workload (i.e., 45% New-Order, 43% Payment, 4% Delivery, 4% Order Status
and 4% Stock Level). NewOrd-Deliv means a 50% New-Order and 50% Delivery workload.

pre-allocates all of its memory using huge pages. Recent work from Huang

et al. [96] has recommended avoiding this strategy since it “changes system

dynamics significantly – for instance, preallocated indexes never change size”.

Further, Huang et al. show that Cicada, with pre-allocation, experiences a

performance collapse at high core counts due to memory exhaustion (which

we observed in our early experimentation as well). Therefore, we modify Ci-

cada to instead call into jemalloc, which is what ScaleDB uses for memory

allocation.

The maximum per-thread batch size for these experiments is set to 2048

for most tables, calculated using the method outlined in §5.2.1.2. Three of the

exceptions are the WAREHOUSE, DISTRICT and ITEM tables. Cicada uses

hash indexes for these tables, since TPC-C does not run range scans on them.

We do the same for ScaleDB, by setting the batch size to infinity for these

tables, so that they are served from the respective indexlets, without merging.

The final exception is the NEW-ORDER table, for which we set the batch

112

size to 0 (i.e., synchronous merging into range index). This is needed to avoid

excessive aborts of the Delivery transaction, which has a very small W-to-RS

latency for inserts done by the New-Order transaction on this table.

Figure 5.6 shows the TPC-C evaluation. The setup for these experi-

ments is the same as that of Figure 2.6 (§2.2.3.1). ScaleDB does not have a

partitioned index configuration, so the results for ScaleDB are with a shared

index configuration.

Despite shared indexes, ScaleDB scales slightly better than even Ci-

cada’s partitioned index configuration and significantly better than Cicada’s

shared index configuration, on the canonical TPC-C benchmark (Figure 5.6a).

On the more index contended NewOrd-Deliv benchmark, ScaleDB maintains

its scalability even though Cicada’s scalability is impacted on both the par-

titioned and shared index configurations. These results show the efficacy of

ACC and asynchronous index updates in decoupling transaction commit from

contention on range index updates.

Given ScaleDB’s asynchronous design and the fact that transactions

can do stale reads from range indexes in between batch merges, an impor-

tant concern is how the abort rate behaves with increasing number of threads.

Figures 5.7a and 5.7b show this evaluation. On the canonical TPC-C bench-

mark, only the Delivery and StockLevel transactions have a non-negligeable

abort rate. The Delivery abort rate stabilizes at 3.5% around 16 cores (for

both workloads), which implies that this should not be a problem for scal-

ability even beyond 36 cores. Similarly the Stock-Level abort rate is quite

113

0

0.5

1

1.5

2

2.5

3

3.5

4

0 4 8 12 16 20 24 28 32 36

Pe
rc

en
t T

xn
s A

bo
rt

ed

Number of Threads

Overall Delivery StockLevel

(a) Full

0

0.5

1

1.5

2

2.5

3

3.5

4

0 4 8 12 16 20 24 28 32 36

Pe
rc

en
t T

xn
s A

bo
rt

ed

Number of Threads

Overall Delivery New-Order

(b) NewOrd-Deliv

Figure 5.7: ScaleDB Abort Rate. Full means the canonical TPC-C workload (i.e., 45% New-Order, 43%
Payment, 4% Delivery, 4% Order Status and 4% Stock Level). NewOrd-Deliv means a 50%
New-Order and 50% Delivery workload.

manageable, staying under 1 percent even for 36 cores.

5.5 Limitations

Limitations of ScaleDB’s design include: a need to know the W-to-RS

latency and expected write rate of database tables for performance tuning, and

workloads that can cause performance degradation due to excessive aborts or

high true-contention.

Recall from §5.2.1.2 that ScaleDB uses the W-to-RS latency and ex-

pected write rate of each database table, in order to calculate the maximum

batch size per-thread. This is not a big problem if these parameters remain

stable, since it requires doing workload analysis once. For real-world work-

loads, however, diurnal patterns and load spikes can cause changes. Recent

work [153] on automatically tuning database knobs using machine learning

has shown promising results. Applying this approach to ScaleDB’s design can

mitigate or solve this limitation.

114

Another limitation is workloads that immediately perform range scans

on recent inserts. Our analysis in §3.1.1 shows that for such workloads, it

is likely that a small number of tables in the database are impacted. The

simple solution is to selectively switch to synchronous merging for just those

tables. Notice, that even in the absolute worst case, where all tables are being

synchronously merged, ScaleDB just loses its scalability advantage; its scala-

bility will be no worse than that of a regular OCC database with synchronous

merging.

Finally, our current design does not include optimizations for workloads

that have high true contention. These can include workloads with contention

on the same records or true contention on the range index e.g., if all transac-

tions try to append to the end of the table. Recent work [96] has shown that

OCC databases can outperform Multi-Version Concurrency Control (MVCC)

databases on high-contention workloads. Integrating these techniques with

ScaleDB’s design is a promising avenue for future work.

115

Chapter 6

Conclusions

This dissertation identified mechanism coordination as a form of un-

necessary coordination that can limit the scalability of OLTP storage systems.

We described two instances of mechanism coordination that impact two dif-

ferent classes of storage systems. We identified how slowdown cascades are

a fundamental limitation of enforcing causal consistency as a global property

of distributed and replicated data-stores. We also identified range index con-

tention as a form of mechanism coordination for in-memory databases that pro-

vide serializability to their clients. We showed how these seemingly disparate

problems arise because of similar implicit pessimistic assumptions about client

behavior, which leads to write-synchronous implementations. Based on this

insight, we proposed a thesis statement that outlined a general approach to

building asynchronous systems that avoid mechanism coordination. We vali-

dated the thesis statement by building two systems which solve the mechanism

coordination problems identified earlier.

We described the Occult system which solves the slowdown casade

problem by moving the output commit to the client: the data store makes

its updates available as soon as it receives them. Clients then enforce causal

116

consistency on reads only for updates that they are actually interested in ob-

serving, using compressed timestamps to track causality. Occult follows the

same philosophy for its scalable general-purpose transaction protocol: by en-

suring that transactions read from a consistent snapshot and using timestamps

to guarantee atomicity, it guarantees the strong properties of Parallel Snapshot

Isolation while avoiding its scalability bottleneck.

We also described the ScaleDB system which solves the mechanism

contention problem on range indexes. ScaleDB is an asynchronous in-memory

database with SQL and networking support that provides scalable and se-

rializable transactions. ScaleDB asynchronously updates range indexes by

temporarily holding delayed writes in indexlets that are merged periodically

into read-scalable range indexes. ScaleDB uses asynchronous consistency con-

trol (ACC) to provide serializability for transactions within an asynchronous

database. ACC extends OCC with asynchronous phantom detection via phan-

tomlets and atomic transcation commit using locks in indexlets.

117

Appendix

118

Appendix 1

Occult Pseudocode

1.1 Causal Timestamp Interface

The listing below shows the interface and basic implementation of a

causal timestamp (§4.2.2), but skips compression schemes (§4.3). However,

compression only changes the implementation of this interface.

Listing 1.1: Interface of a Causal Timestamp

1 class CausalTimestamp :
2 def i n i t (N) :
3 V = [0] ∗ N
4
5 # Get shardstamp fo r shard id
6 def getSS (sha rd id) :
7 return V[sha rd id]
8
9 # Return the shardstamp with maximum va lue

10 def maxSS () :
11 return max(V)
12
13 # Update the shardstamp fo r shard id to new ss
14 def updateSS (shard id , new ss) :
15 V[sha rd id] = max(V[sha rd id] , new ss)
16
17 # Merge another CausalTimestamp in to t h i s o b j e c t
18 def mergeCTS(o t h e r c t s) :
19 for i in range (0 , len (V)) :
20 V[i] = max(V[i] , o t h e r c t s [i])

The pseudocode listings in this appendix were published in a paper describing the
Occult [126] system. The author of this dissertation conceived, designed, implemented and
evaluated the Occult system, and led the writing of the prior publication: S. A. Mehdi, et
al. 2017. “I Can’t Believe It’s Not Causal! Scalable Causal Consistency with No Slowdown
Cascades”. In Proceedings of the 14th USENIX Conference on Networked Systems Design
and Implementation (NSDI’17). USENIX Association, USA, 453–468.

119

1.2 Basic Protocol

The listings below show the client and server-side pseudocode for the

Basic Occult Protocol as described in §4.2.3.

Listing 1.2: Server-side Basic Protocol

1 def wr i t e (key , value , deps) : #(on masters)
2 sha rd id = shard (key)
3 shardstamps [sha rd id] += 1
4 shardstamp = shardstamps [sha rd id]
5 deps [sha rd id] = shardstamp
6 s t o r e (key , value , deps)
7 for s in mySlaves (sha rd id) :
8 async (s . r e p l i c a t e (key , value , deps , shardstamp))
9 return shardstamp

10
11 def r e p l i c a t e (key , value , deps , shardstamp) : #(on s l a v e s)
12 shardstamps [shard (key)] = shardstamp
13 storeValue (key , value , deps)
14
15 def read (key) :
16 shardstamp = shardstamps [shard (key)]
17 return (getValue (key) , getDeps (key) , shardstamp)

Listing 1.3: Client-side Basic Protocol

1 # c l i t s i s the c l i e n t ’ s causa l timestamp
2 def wr i t e (key , va lue) :
3 sha rd id = shard (key)
4 mas t e r s e rve r = master (sha rd id)
5 shardstamp = mas t e r s e rve r . wr i t e (key , value , c l i t s)
6 c l i t s . updateSS (shard id , shardstamp)
7
8 def read (key) :
9 sha rd id = shard (key)

10 l o c a l s e r v e r = l o c a l (sha rd id)
11 value , deps , shardstamp = l o c a l s e r v e r . read (key)
12 i f i s S l a v e (l o c a l s e r v e r) and shardstamp < c l i t s . getSS (sha rd id) :
13 return f i n i s h S t a l e R e a d (key)
14 else :
15 c l i t s . mergeCTS(deps)
16 return value

1.3 Transactional Protocol

The listings below show the pseudocode for the Occult transactional

protocol, as described in §4.4.2. Note that if multiple transactions concurrently

120

update different objects in the same shard s, in the commit phase each write w

is applied at s (and at its slaves) in the (total) order determined by the value

of the shardstamp assigned to w during the validation phase. The server-side

pseudocode below achieves this property by locking shards instead of objects

during the validation phase.

Listing 1.4: Server-side Transactional Protocol

1 # a l l o c a t e new shardstamp using l o o s e l y synchronized
2 # c l o c k s as de s c r i b ed in Sect ion 5
3 def newShardstamp (max c l i s s , sha rd id) :
4 new ss = max(currentSysTime () , m a x c l i s s)
5 i f new ss < shardstamps [sha rd id] :
6 return shardstamps [sha rd id] + 1
7 else :
8 return new ss + 1
9

10 def read (key) :
11 shardstamp = shardstamps [shard (key)]
12 return (getValue (key) , getDeps (key) , shardstamp)
13
14 def prepare (t id , key , value , m a x c l i s s) :
15 i f not i s l o c k e d (shard (key)) :
16 l o c k w r i t e s (shard (key))
17 i f t i d not in prepKV : # prepared txns key v a l s
18 prepKV [t i d] = l i s t ()
19 prepKV [t i d] . append ((key , va lue))
20 shardstamp = shardstamps [shard (key)]
21 new ss = newShardstamp (max c l i s s , shard (key))
22 return (new ss , getDeps (key))
23 else :
24 throw LOCKED
25
26 def commit server (t id , deps) :
27 for key , va lue in prepKV [t i d] :
28 shardstamps [shard (key)] = deps . maxSS ()
29 s t o r e (key , value , deps)
30 shardstamp = shardstamps [shard (key)])
31 un lockwr i t e s (shard (key))
32 for s in mySlaves () :
33 async (s . r e p l i c a t e (key , value , deps , shardstamp)
34
35 def a b o r t s e r v e r (t i d) :
36 for key , va lue in prepKV [t i d] :
37 un lockwr i t e s (shard (key))

121

Listing 1.5: Client-side Transactional Protocol

1 # c l i t s i s the c l i e n t ’ s causa l timestamp
2 def s t a r tTransac t i on () :
3 TID = newTransactionID ()
4 ReadSet = set ()
5 OWSet = set () # Overwrite Set
6 Writes = dict () # Writes done by t h i s t ransac t i on
7 c l i t s s a v e = copy (c l i t s)
8
9 def wr i t e (key , va lue) :

10 Writes [key] = value
11
12 def read (key) :
13 i f key in Writes :
14 return Writes [key] # Return the va lue we wrote
15 else :
16 sha rd id = shard (key)
17 l o c a l s e r v e r = l o c a l (sha rd id)
18 c l i s s = c l i t s . getSS (sha rd id)
19 value , deps , shardstamp = l o c a l s e r v e r . read (key)
20 i f i s S l a v e (l o c a l s e r v e r) and shardstamp < c l i s s :
21 value , deps , shardstamp = f i n i s h S t a l e R e a d (key)
22
23 ReadSet . add (Elem(key , shard id , deps , shardstamp))
24 c l i t s . mergeCTS(deps)
25 return value
26
27 def v a l i d a t e (S1 , S2) :
28 for x in S1 :
29 for y in S2 :
30 i f x . shardstamp < y . deps . getSS (x . sha rd id) :
31 return False
32 return True
33
34 def abortTransact ion (p r epa r ed s e rve r s , t i d) :
35 c l i t s = c l i t s s a v e
36 for s e r v e r in p r e p a r e d s e r v e r s :
37 s e r v e r . a b o r t s e r v e r (t i d)
38 return False
39
40 def commitTransaction () :
41 p r e p a r e d s e r v e r s = set ()
42 i f not v a l i d a t e (ReadSet , ReadSet) :
43 return abortTransact ion (p r epa r ed s e rve r s , TID)
44
45 for key , va lue in Writes :
46 mas t e r s e rve r = master (shard (key))
47 try :
48 max ss = c l i t s . maxSS ()
49 new ss , deps =
50 mas t e r s e rve r . prepare (TID , key , value , max ss)
51 c l i t s . updateSS (shard (key) , new ss)
52 OWSet . add (Elem(key , shard (key) , deps))
53 p r e p a r e d s e r v e r s . add (mas t e r s e rve r)
54 except LOCKED: #can re t r y l o c k here be f o r e abor t
55 return abortTransact ion (p r epa r ed s e rve r s , TID)

122

56
57 i f not v a l i d a t e (ReadSet , OWSet) :
58 return abortTransact ion (p r epa r ed s e rve r s , TID)
59 else :
60 for s e r v e r in p r e p a r e d s e r v e r s :
61 s e r v e r . commit server (TID , c l i t s)
62 return True

123

Appendix 2

ScaleDB Serializability Proof

ScaleDB, using Asynchronous Concurrency Control (ACC), guarantees

that any schedule of committed transactions is equivalent to the serial schedule,

where those transactions are ordered by their commit timestamps (§5.2.3). To

prove this, we start with some assumptions:

Assumption 1. For simplicity, we assume a database with a single table,

indexed by a primary key range index, along with the corresponding indexlet

and phantomlet. Further, we assume that the following queries can be executed

on this table, using its primary key: point read of a record, range scan read

using a predicate, point delete of a record and point update of a record.

Assumption 2. The concurrent range index data structure (e.g., §5.3.3),

used for the primary key range index, atomically executes individual queries

(listed in Assumption 1).

Assumption 3. A spinlock on an indexlet entry serializes concurrent ac-

cesses to that entry, with mutual exclusion, while the lock is held.

124

Next, we argue a series of lemmas showing that various kinds of locks

on a single record are serialized w.r.t. each other as well as the merging of the

record into the primary range index. We will later build on these lemmas for

arguing the correctness of transactions.

Lemma 1. Concurrent requests for LockUniqueInsert on the same key k are

serialized. If a transaction Ti successfully obtains a LockUniqueInsert on a

key k of record r, then two guarantees are provided: first, no other transaction

obtains a LockUniqueInsert on the same key k of another record r
′
, while Ti

holds the lock, and second, no other record r
′′

with the same key k exists in the

table.

PROOF. Since LockUniqueInsert is composed of two steps (§5.2.2.2), we

first argue that concurrent calls to LockInsHashTbl are serialized. Assume

that they are not, and that key k of record r hashes to entry einit in the

indexlet. Concurrent requests for LockInsHashTbl on k will first conflict on

the spinlock of einit (Figure 5.2) and only one transaction will be able to

obtain the spinlock, by Assumption 3. However, this contradicts our current

assumption. Hence, concurrent calls to LockInsHashTbl are serialized.

Since all transactions attempting to acquire LockUniqueInsert, acquire

LockInsHashTbl in the first step, this also proves that calls to LockUniqueIn-

sert are serialized. Further, once a transaction successfully obtains LockIn-

sHashTbl, it continues to hold the spinlocks on entries from einit to eins, while

125

LockInsHashTbl is held. Since LockInsHashTbl is held as long as LockU-

niqueInsert is held, the first guarantee in the lemma is ensured.

Assume now, that Ti successfully acquires LockUniqueInsert, but the

second guarantee in the lemma is not ensured. Further, assume that the

duplicate record r
′′

with key k is inserted by another transaction Ta. We

have already shown that Ta will be serialized w.r.t. Ti, on to the call to

LockUniqueInsert. If Ta is serialized after Ti, then it cannot be responsible

for the second guarantee being violated. Instead, if Ta is serialized before Ti,

then it must have committed before Ti started, since it was able to successfully

insert r
′′

and the LockUniqueInsert is only released in ACC at the end of the

commit phase. There are three sub-cases here:

(i) r
′′

is in the indexlet, at the time Ti acquires the spinlock on einit. In this

case, Ti will find r
′′

(see protocol in §5.2.2.2) and LockInsHashTbl will be

unsuccessful. However, this contradicts our assumption that Ti successfully

acquired LockUniqueInsert.

(ii) r
′′

is in the primary range index, at the time Ti acquires the spinlock on

einit. In this case, Ti will find it, when it searches the primary range index

in the second step of acquiring LockUniqueInsert. Again, this contradicts our

assumption that Ti successfully acquired LockUniqueInsert.

(iii) r
′′

is in the indexlet, but it is in the process of being merged into the

primary range index, at the time Ti acquires the spinlock on einit. In this

case, the thread merging r
′′

will acquire spinlocks, from einit to eins, in order

126

to atomically update the overflow counts on entries (§5.3.1). It will hold those

spinlocks, until r
′′

is merged into the primary range index. Thus Ti will be

serialized w.r.t. the merging of r
′′
. If Ti is ordered before the merging thread,

then we are back in case (i). Instead, if Ti is ordered after the merging thread,

then we are back in case (ii). Since neither case is possible, we have again

arrived at a contradiction.

Finally, since all three cases (i), (ii) and (iii) are impossible, the second

guarantee in the lemma is ensured.

Lemma 2. Concurrent requests for LockUpdDel on the same record r are

serialized. If a transaction Ti successfully obtains a LockUpdDel on a record r,

then no other transaction can obtain LockUpdDel on r, while Ti holds the lock.

PROOF. For simplicity, we do not consider the case where record r is not

found in the table. Then, there are two cases for LockUpdDel, based on its

two steps (§5.2.2.2):

(i) If there are concurrent calls to LockRUDHashTbl in the first step, one of

those calls is successful, i.e., it finds the record r in the indexlet.

We first argue that concurrent calls to LockRUDHashTbl are serialized.

Assume that they are not, and that key k of record r hashes to entry einit in the

indexlet, and is eventually inserted in eins. Since LockRUDHashTbl releases

spinlocks along its probe path, until it finds k in eins, concurrent requests for

LockRUDHashTbl on k will eventually conflict on the spinlock of eins; only

127

one transaction will be able to obtain the spinlock, by Assumption 3. However,

this contradicts our assumption. Hence, concurrent calls to LockRUDHashTbl

are serialized.

By implication, this also proves, for case (i), that concurrent calls to

LockUpdDel are serialized. Once a transaction successfully obtains Lock-

UpdDel, it continues to hold the spinlock on eins, while LockRUDHashTbl

is held. Since LockInsHashTbl is held as long as LockUpdDel is held, this

proves the lemma for case (i).

(ii) If LockRUDHashTbl fails, because the record was not found in the in-

dexlet, ACC acquires LockInsHashTbl for the record (in the indexlet) and

then fetches the record from the range index.

We have already shown in Lemma 1 that concurrent calls to LockIn-

sHashTbl are properly serialized. The only remaining case here is when this

call to LockInsHashTbl is concurrent with a LockRUDHashTbl call, arising

from a concurrent LockUpdDel call. We observe that they will conflict on

any one of the spinlocks from einit to eins, since LockInsHashTbl holds on to

all of them. By Assumption 3, they will be serialized on that entry. Since

LockInsHashTbl is held as long as LockUpdDel is held, this proves the lemma

for case (ii) as well.

Since both cases are proven, this proves the lemma.

Lemma 3. Concurrent requests for LockUpdDel and LockUniqueInsert on

the same key k, are serialized.

128

We omit a detailed proof of Lemma 3 to avoid repetition with the proofs

of Lemmas 1 and 2. Part of this proof has already been argued in case (ii) of

Lemma 2.

Lemma 4. Merging of a record r with key k, from the indexlet to the primary

range index, is atomic and serialized w.r.t. concurrent requests for LockUpdDel

or LockUniqueInsert on the same key k

Again, we omit a detailed proof to avoid repetition. We have already

argued in case (iii) of Lemma 1, why merging of a record r with key k is seri-

alized w.r.t. a concurrent request for LockUniqueInsert on k. The argument

for serialization with LockUpdDel is similar.

Further, the thread that merges a record, holds the same spinlocks, as

the previous LockInsHashTbl call that brought the record into the indexlet. It

holds these spinlocks until it has merged the record into the range index. By

Assumption 2, the concurrent range index provides atomic queries (including

inserts). Thus the merge of each record from the indexlet to the range index

is atomic.

We now argue a series of lemmas that will help prove that the transac-

tional protocol guarantees serializability.

Lemma 5. The writes of a transaction in ScaleDB, appear atomically, at

transaction commit.

129

PROOF. Assume otherwise. Concretely, assume that a transaction Ti does

multiple writes, and another transaction Tj does point reads of the records (or

phantom indicators) written by Ti, but it misses some of Ti’s writes. There

are four cases:

(i) Ti did not acquire locks on its complete write set before releasing locks

on some of its writes. However, this is not possible according to the protocol

(§5.2.2.2).

(ii) Ti acquired locks on its complete write set, but Tj’s LockRUDHashTbl

calls, for doing its point reads from the indexlet, did not serialize correctly

with Ti’s write locks. This is not possible according to Lemmas 2 and 3.

(iii) Some (or all) of Ti’s writes to the indexlet were merged into the range

index. However, according to Lemma 4, merges are atomic with LockUpdDel

(and by implication with LockRUDHashTbl). Thus Tj will either find these

records in the indexlet (before the merge), or the range index (after the merge).

(iv) Some (or all) of Ti’s phantom indicators, inserted into the phantomlet,

were cleared, before Tj could read them. However, according to the protocol

(§5.2.2.3), phantom indicators are only decremented at the end of a merge

epoch, after the corresponding inserts have been merged into the primary

range index. Thus, Tj will either find a phantom indicator in the phantomlet

or the corresponding inserted record in the range index.

Since none of the cases are possible, the assumption does not hold and

the lemma is proved.

130

Lemma 6. The writes in any schedule of committed transactions in ScaleDB,

have the same order, as the writes in the serial schedule, where those transac-

tions are ordered by their commit timestamps.

PROOF. Recall that ScaleDB allocates unique timestamps for each transac-

tion derived from a system-wide synchronized clock (§5.2.3). WLOG, consider

any two transactions Ti and Tj in a schedule of committed transactions. There

are two cases:

(i) Ti and Tj do not intersect in their write sets. As a result they do not

acquire locks on the same records. This lemma is trivially true in this case.

(i) Ti and Tj intersect in at least one record, in their write sets. Lemmas 1, 2

and 3 prove that transactional lock requests on the same record are serialized

in ScaleDB. In addition, Lemma 4 proves that the merging process for a record

is serialized w.r.t. these transactional locks. So, in this case, Ti and Tj will be

serialized on a lock, on one of the records, in the intersection of their write sets.

WLOG, assume that Ti acquires that lock first, while Tj is ordered behind it.

Ti will therefore allocate an earlier commit timestamp than Tj, after it has

acquired all its locks, and by the structure of ACC (§5.2.2), all its writes will

be ordered before all the writes of Tj.

Lemma 7. For any schedule of committed transactions in ScaleDB, and a

transaction Ti in that schedule, a point read done by Ti returns the same result,

as it would in the serial schedule, where those transactions are ordered by their

131

commit timestamps.

PROOF. To prove this, we argue the following:

(i) Transactions never do any Intermediate or Aborted Reads [39]. This is clear

from the optimistic nature of ACC. Since writes are published atomically at

transaction commit, after acquiring all the locks, Intermediate reads are not

possible. Similarly, if a transaction decides to abort, it is during the validation

stage, before any writes have been published: Aborted Reads are impossible

as well.

(ii) There do not exist two committed transactions Ta and Ti, s.t. tTa < tTi

and Ti does a point read on key k, which misses a write by Ta to record r with

key k, where tTa and tTi
are the commit timestamps of Ta and Ti respectively.

Assume the contrary. Since tTa < tTi
, there are two cases:

1. Ta commits before Ti begins its read phase. In this case, the only pos-

sibility of missing a write is if Ti’s read executes concurrently with the

merging of r from the indexlet to the primary range index. However, by

Lemma 4, merging of r is atomic w.r.t. LockRUDHashTbl on k in the

indexlet. So Ti’s call to LockRUDHashTbl on k executes either before

or after the merge of record r. If it executes before the merge, then it

will find r in the indexlet. If it executes after the merge, then it will not

find r in the indexlet, but it will find it during the later search of the

primary range index. In either case, it cannot miss the write to r, which

contradicts our assumption for case (ii).

132

2. Ta is concurrent with Ti. Since tTa < tTi
, Ta commits first. Therefore,

either Ti does its read before Ta’s acquisition of a write lock (i.e., Lock-

UniqueInsert or LockUpdDel) on r, or it reads afterwards.

(a) If Ti reads before, then it will miss the write. However, since tTa <

tTi
, the read validation of Ti happens after Ta has acquired its write

locks. Therefore, Ti’s acquisition of LockRUDHashTbl on k, for

read validation of r, will be ordered after Ta commits its write to

r. As a result, Ti will read the newly written record and its read

validation will fail, resulting in an abort. But we assumed that Ti

committed, which is a contradiction. So this case is impossible.

(b) If Ti reads after, then there is no write missed, which contradicts

our original assumption for case (ii).

Since none of the cases are possible, the lemma is proved.

Lemma 8. For any schedule of committed transactions in ScaleDB, and a

transaction Ti in the schedule, a range scan done by Ti returns the same result,

as it would in the serial schedule, where those transactions are ordered by their

commit timestamps.

PROOF. We have already argued in Lemma 7, why aborted and interme-

diate reads are not possible. So all we need to argue is that, there do not exist

two committed transactions Ta and Ti, s.t. tTa < tTi
, and Ti does a range scan

133

with predicate p which matches key k, and Ti’s range scan misses an insert by

Ta of a record r with key k. Assume the contrary. Since tTa < tTi
, there are

two cases:

(i) Ta commits before Ti begins its read phase. There are two sub-cases:

1. Ta’s insert is merged into the range index before Ti performs its range

scan. In this, Ti must have read k, since range scans are executed directly

on the range index. But that contradicts the assumption. Hence this

case is impossible.

2. Ta’s insert is merged into the range index after Ti performs its range

scan. In this case, the inserted record r is in the indexlet, at the time Ti

performs its range scan. Thus, Ti will miss r in its range scan, during

its read phase. Assume that the key k of r is covered by the range index

leaf node l and that the version of l, at the time Ti performed its range

scan, is v. WLOG, we assume that Ta is the last committed transaction

to insert a key into the range covered by l, prior to the range scan by

Ti. From Lemma 5, we know that the phantom indicator < addr(l), v >

must be atomically inserted (or incremented) into the phantomlet, along

with the insert of r, at Ta’s commit. Thus, Ti will find this phantom

indicator in the phantomlet when it validates its transaction, resulting

in an abort. However, we assumed at the start of this proof that Ti

commits, which is a contradiction. Hence, this case is impossible.

3. Ta’s insert is merged into the range index concurrently with Ti’s range

134

scan. From Lemma 4, merging of a record r is atomic w.r.t. queries on

the range index. So Ti either reads before the merge, which is the same

as case 1, or it reads after the merge, which is the same as case 2. Hence,

this case is impossible as well.

(ii) Ta is concurrent with Ti. Since tTa < tTi
, Ta commits first. Ti searches the

phantomlet, for the phantom indicator < addr(l), v >, when validating the

range scan; it either does this before Ta’s acquisition of a LockUniqueInsert on

< addr(l), v > in the phantomlet, or afterwards.

1. If Ti searches for the phantom indicator before, then it will miss it. How-

ever, since Ti is in its validation stage at this point, it must have already

acquired its write locks and allocated its commit timestamp tTi
. On the

other hand, by assumption, Ta has not yet acquired a LockUniqueInsert

on the phantom indicator. This implies that tTi
< tTa , contradicting our

initial assumption that tTa < tTi
. Hence, this case is impossible.

2. If Ti searches for the phantom indicator after, then it will find it and

it will abort. However, we assumed at the start of the proof that Ti

commits, resulting in a contradiction. Hence this case is impossible as

well.

Since both cases result in contradictions, the lemma is proved.

Theorem 1. ScaleDB guarantees that any schedule of committed transac-

tions, is equivalent to the serial schedule, where those transactions are ordered

135

by their commit timestamps.

PROOF. This follows directly from Lemmas 5, 6, 7 and 8.

136

Bibliography

[1] Case study: How customers are using memsql for free. https://www.memsql.com/

blog/case-stduy-how-customers-are-using-memsql-for-free/.

[2] CloudLab. https://www.cloudlab.us/.

[3] Cuckoo Hashing. https://web.stanford.edu/class/archive/cs/cs166/cs166.

1146/lectures/13/Small13.pdf.

[4] Driver porting: mutual exclusion with seqlocks. https://lwn.net/Articles/22818.

[5] F14 Hash Table: Why Probing. https://github.com/facebook/folly/blob/master/

folly/container/F14.md#why-probing.

[6] How LinkedIn customizes Apache Kafka for 7 trillion messages per day. https:

//engineering.linkedin.com/blog/2019/apache-kafka-trillion-messages.

[7] HyPer – A Hybrid OLTP&OLAP High Performance DBMS. https://hyper-db.de/.

[8] IDC: Expect 175 zettabytes of data worldwide by 2025. https://www.networkworld.

com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.

html.

[9] ISO/IEC 9075-1:2016 Information technology — Database languages — SQL — Part

1: Framework (SQL/Framework). https://www.iso.org/standard/63555.html.

[10] Jedis. https://github.com/xetorthio/jedis.

137

https://www.memsql.com/blog/case-stduy-how-customers-are-using-memsql-for-free/
https://www.memsql.com/blog/case-stduy-how-customers-are-using-memsql-for-free/
https://www.cloudlab.us/
https://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/13/Small13.pdf
https://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/13/Small13.pdf
https://lwn.net/Articles/22818
https://github.com/facebook/folly/blob/master/folly/container/F14.md#why-probing
https://github.com/facebook/folly/blob/master/folly/container/F14.md#why-probing
https://engineering.linkedin.com/blog/2019/apache-kafka-trillion-messages
https://engineering.linkedin.com/blog/2019/apache-kafka-trillion-messages
https://hyper-db.de/
https://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html
https://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html
https://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html
https://www.iso.org/standard/63555.html
https://github.com/xetorthio/jedis

[11] Key-value Database. https://en.wikipedia.org/wiki/Key-value_database.

[12] libcuckoo github repository. https://github.com/efficient/libcuckoo.

[13] Linux TSC Cross Socket Reliability. https://github.com/torvalds/linux/blob/

c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/cpu/intel.c#L249.

[14] Linux TSC Synchronization. https://github.com/torvalds/linux/blob/master/

arch/x86/kernel/tsc_sync.c.

[15] Manhattan, our real-time, multi-tenant distributed database for twitter scale. https://blog.twitter.com/engineering/en us/a/2014/manhattan-

our-real-time-multi-tenant-distributed-database-for-twitter-scale.

[16] MemSQL. https://www.memsql.com/.

[17] MySQL 8.0 Reference Manual: Clustered and Secondary Indexes. https://dev.

mysql.com/doc/refman/8.0/en/innodb-index-types.html.

[18] Network Time Protocol. https://www.eecis.udel.edu/~mills/ntp.html.

[19] Oltp-bench github repository. https://github.com/oltpbenchmark/oltpbench.

[20] Redis Cluster Specification. http://redis.io/topics/cluster-spec.

[21] Resizing Hash Tables. https://courses.csail.mit.edu/6.006/spring11/rec/

rec07.pdf.

[22] SAP HANA. https://www.sap.com/products/hana.html.

[23] SQL. https://en.wikipedia.org/wiki/SQL.

[24] Strong consistency in Manhattan. https://blog.twitter.com/engineering/en_

us/a/2016/strong-consistency-in-manhattan.

138

https://en.wikipedia.org/wiki/Key-value_database
https://github.com/efficient/libcuckoo
https://github.com/torvalds/linux/blob/c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/cpu/intel.c#L249
https://github.com/torvalds/linux/blob/c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/cpu/intel.c#L249
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc_sync.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc_sync.c
https://www.memsql.com/
https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html
https://www.eecis.udel.edu/~mills/ntp.html
https://github.com/oltpbenchmark/oltpbench
http://redis.io/topics/cluster-spec
https://courses.csail.mit.edu/6.006/spring11/rec/rec07.pdf
https://courses.csail.mit.edu/6.006/spring11/rec/rec07.pdf
https://www.sap.com/products/hana.html
https://en.wikipedia.org/wiki/SQL
https://blog.twitter.com/engineering/en_us/a/2016/strong-consistency-in-manhattan
https://blog.twitter.com/engineering/en_us/a/2016/strong-consistency-in-manhattan

[25] The Digital Universe of Opportunities: Rich Data and the Increasing Value of the In-

ternet of Things. https://www.emc.com/leadership/digital-universe/2014iview/

executive-summary.htm.

[26] The Forrester WaveTM: In-Memory Databases, Q1 2017. http://www.oracle.com/

us/corporate/analystreports/forrester-imdb-wave-2017-3616348.pdf.

[27] The Infrastructure Behind Twitter: Scale. https://blog.twitter.com/engineering/

en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.

[28] The Peloton self-driving SQL database management system. https://github.com/

cmu-db/peloton.

[29] Time-series data: Why (and how) to use a relational database instead of NoSQL. .

[30] Timekeeping in VMware Virtual Machines. https://www.vmware.com/content/

dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.

pdf.

[31] TPC-C Benchmark. http://www.tpc.org/tpc_documents_current_versions/pdf/

tpc-c_v5.11.0.pdf.

[32] VoltDB. https://www.oracle.com/database/technologies/related/timesten.

html.

[33] VoltDB. https://www.voltdb.com/.

[34] What is a key-value database? https://redis.com/nosql/key-value-databases/.

[35] What is an in-memory database? https://aws.amazon.com/nosql/in-memory.

[36] What is RCU, Fundamentally? https://lwn.net/Articles/262464/.

139

https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
http://www.oracle.com/us/corporate/analystreports/forrester-imdb-wave-2017-3616348.pdf
http://www.oracle.com/us/corporate/analystreports/forrester-imdb-wave-2017-3616348.pdf
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale
https://github.com/cmu-db/peloton
https://github.com/cmu-db/peloton
https://blog.timescale.com/blog/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.oracle.com/database/technologies/related/timesten.html
https://www.oracle.com/database/technologies/related/timesten.html
https://www.voltdb.com/
https://redis.com/nosql/key-value-databases/
https://aws.amazon.com/nosql/in-memory
https://lwn.net/Articles/262464/

[37] Xen TSC (time stamp counter) and timekeeping discussion. http://xenbits.xen.

org/docs/4.13-testing/man/xen-tscmode.7.html.

[38] Abuzaid, F., Bailis, P., Ding, J., Gan, E., Madden, S., Narayanan, D.,

Rong, K., and Suri, S. Macrobase: Prioritizing attention in fast data. ACM

Trans. Database Syst. 43, 4 (Dec. 2018), 15:1–15:45.

[39] Adya, A. Weak Consistency: A Generalized Theory and Optimistic Implementations

for Distributed Transactions. PhD thesis, MIT, 1999.

[40] Adya, A., and Liskov, B. Lazy Consistency Using Loosely Synchronized Clocks.

In Proceedings of the 16th ACM Symposium on Principles of Distributed Computing

(Santa Barbara, California, USA, 1997), PODC ’97, ACM, pp. 73–82.

[41] Ahamad, M., Neiger, G., Burns, J., Kohli, P., and Hutto, P. Causal Mem-

ory: Definitions, Implementation, and Programming. Distributed Computing 9, 1

(1995), 37–49.

[42] Ajoux, P., Bronson, N., Kumar, S., Lloyd, W., and Veeraraghavan, K.

Challenges to Adopting Stronger Consistency at Scale. In Proceedings of the 15th

USENIX Conference on Hot Topics in Operating Systems (Switzerland, 2015), HO-

TOS’15, USENIX Association.

[43] Akkoorath, D. D., Tomsic, A. Z., Bravo, M., Li, Z., Crain, T., Bieniusa,

A., Preguiça, N., and Shapiro, M. Cure: Strong Semantics Meets High Avail-

ability and Low Latency. In 2016 IEEE 36th International Conference on Distributed

Computing Systems (ICDCS) (June 2016), pp. 405–414.

140

http://xenbits.xen.org/docs/4.13-testing/man/xen-tscmode.7.html
http://xenbits.xen.org/docs/4.13-testing/man/xen-tscmode.7.html

[44] Almeida, S., Leitão, J. a., and Rodrigues, L. Chainreaction: A Causal+

Consistent Datastore Based on Chain Replication. In Proceedings of the 8th ACM

European Conference on Computer Systems (Prague, Czech Republic, 2013), EuroSys

’13, ACM, pp. 85–98.

[45] Amble, O., and Knuth, D. E. Ordered hash tables. The Computer Journal 17, 2

(01 1974), 135–142.

[46] Ardekani, M. S., and Terry, D. B. A Self-Configurable Geo-Replicated Cloud

Storage System. In Proceedings of the 11th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI 14) (2014), OSDI ’14, USENIX Association,

pp. 367–381.

[47] Arulraj, J., Perron, M., and Pavlo, A. Write-behind logging. Proc. VLDB

Endow. 10, 4 (Nov. 2016), 337–348.

[48] Babaoğlu, O., and Marzullo, K. Consistent Global States of Distributed Sys-

tems: Fundamental Concepts and Mechanisms. In Distributed Systems (2nd Ed.),

S. Mullender, Ed. ACM Press/Addison-Wesley Publishing Co., 1993, pp. 55–96.

[49] Bacon, D. F., Bales, N., Bruno, N., Cooper, B. F., Dickinson, A., Fikes,

A., Fraser, C., Gubarev, A., Joshi, M., Kogan, E., Lloyd, A., Melnik,

S., Rao, R., Shue, D., Taylor, C., van der Holst, M., and Woodford, D.

Spanner: Becoming a sql system. In Proceedings of the 2017 ACM International

Conference on Management of Data (New York, NY, USA, 2017), SIGMOD ’17,

ACM, pp. 331–343.

141

[50] Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J. M., and

Stoica, I. Highly available transactions: Virtues and limitations. Proc. VLDB

Endow. 7, 3 (Nov. 2013), 181–192.

[51] Bailis, P., Fekete, A., Franklin, M. J., Ghodsi, A., Hellerstein, J. M.,

and Stoica, I. Coordination avoidance in database systems. Proc. VLDB Endow.

8, 3 (Nov. 2014), 185–196.

[52] Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J. M., and Stoica, I. The

Potential Dangers of Causal Consistency and an Explicit Solution. In Proceedings

of the 3rd ACM Symposium on Cloud Computing (San Jose, California, 2012), SoCC

’12, ACM, pp. 22:1–22:7.

[53] Bailis, P., Ghodsi, A., Hellerstein, J. M., and Stoica, I. Bolt-On Causal

Consistency. In Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data (New York, NY, 2013), SIGMOD ’13, ACM, pp. 761–772.

[54] Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., and O’Neil,

P. A Critique of ANSI SQL Isolation Levels. In Proceedings of the 1995 ACM

SIGMOD International Conference on Management of Data (San Jose, California,

USA, 1995), SIGMOD ’95, ACM, pp. 1–10.

[55] Bernstein, P., and Newcomer, E. Principles of Transaction Processing: For the

Systems Professional. Morgan Kaufmann Publishers Inc., 1997.

[56] Bernstein, P. A., and Goodman, N. Multiversion concurrency control—theory

and algorithms. ACM Trans. Database Syst. 8, 4 (Dec. 1983), 465–483.

142

[57] Bhat, S. S., Eqbal, R., Clements, A. T., Kaashoek, M. F., and Zeldovich,

N. Scaling a file system to many cores using an operation log. In Proceedings of

the 26th Symposium on Operating Systems Principles (New York, NY, USA, 2017),

SOSP ’17, ACM, pp. 69–86.

[58] Birman, K., Chockler, G., and van Renesse, R. Toward a Cloud Computing

Research Agenda. SIGACT News 40, 2 (June 2009), 68–80.

[59] Bolosky, W. J., and Scott, M. L. False sharing and its effect on shared memory

performance. In USENIX Systems on USENIX Experiences with Distributed and

Multiprocessor Systems - Volume 4 (USA, 1993), Sedms’93, USENIX Association,

p. 3.

[60] Boyd-Wickizer, S., Kaashoek, M. F., Morris, R., and Zeldovich, N. Oplog:

a library for scaling update-heavy data structures. Tech. Rep. MIT-CSAIL-TR-2014-

019, MIT, CSAIL, September 2014.

[61] Bravo, M., Rodrigues, L., and Van Roy, P. Saturn: a distributed metadata

service for causal consistency. In Proceedings of the 12th ACM European Conference

on Computer Systems (2017), EuroSys ’17, ACM.

[62] Brewer, E. Cap twelve years later: How the ”rules” have changed. Computer 45,

2 (2012), 23–29.

[63] Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H.,

Ferris, J., Giardullo, A., Kulkarni, S., Li, H., Marchukov, M., Petrov,

D., Puzar, L., Song, Y. J., and Venkataramani, V. TAO: Facebook’s Dis-

tributed Data Store for the Social Graph. In Proceedings of the 2013 USENIX Annual

143

Technical Conference (San Jose, CA, 2013), USENIX ATC’13, USENIX Association,

pp. 49–60.

[64] Bronson, N., and Shi, X. Open-sourcing F14 for faster, more memory-efficient

hash tables. https://engineering.fb.com/developer-tools/f14/.

[65] Bronson, N. G., Casper, J., Chafi, H., and Olukotun, K. A practical con-

current binary search tree. In Proceedings of the 15th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (New York, NY, USA, 2010),

PPoPP ’10, Association for Computing Machinery, pp. 257–268.

[66] Cha, S. K., Hwang, S., Kim, K., and Kwon, K. Cache-conscious concurrency

control of main-memory indexes on shared-memory multiprocessor systems. In Pro-

ceedings of the 27th International Conference on Very Large Data Bases (San Fran-

cisco, CA, USA, 2001), VLDB ’01, Morgan Kaufmann Publishers Inc., pp. 181–190.

[67] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Bur-

rows, M., Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: A distributed

storage system for structured data. In Proceedings of the 7th USENIX Symposium

on Operating Systems Design and Implementation - Volume 7 (Seattle, WA, 2006),

OSDI ’06, USENIX Association, pp. 15–15.

[68] Chattopadhyay, B., Mittal, S., Ebenstein, R., Mikhaylin, N., Lee, H.-

c., Zhao, X., Xu, T., Perez, L., Shahmohammadi, F., Bui, T., McKay,

N., Dutta, P., Aya, S., Lychagina, V., Elliott, B., Liu, W., Tinn, O.,

Mccormick, A., Mokashi, A., and Lomax, D. Procella: unifying serving and

144

https://engineering.fb.com/developer-tools/f14/

analytical data at youtube. Proceedings of the VLDB Endowment 12 (08 2019),

2022–2034.

[69] Cheng, A., Shi, X., Pan, L., Simpson, A., Wheaton, N., Lawande, S., Bron-

son, N., Bailis, P., Crooks, N., and Stoica, I. RAMP-TAO. Proceedings of the

VLDB Endowment 14, 12 (jul 2021), 3014–3027.

[70] Clements, A. T., Kaashoek, M. F., Zeldovich, N., Morris, R. T., and

Kohler, E. The scalable commutativity rule: Designing scalable software for multi-

core processors. ACM Trans. Comput. Syst. 32, 4 (Jan. 2015).

[71] Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohan-

non, P., Jacobsen, H.-A., Puz, N., Weaver, D., and Yerneni, R. PNUTS:

Yahoo!’s Hosted Data Serving Platform. Proceedings of the VLDB Endowment 1, 2

(Aug. 2008), 1277–1288.

[72] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears,

R. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st

ACM Symposium on Cloud Computing (Indianapolis, Indiana, 2010), SoCC ’10, ACM,

pp. 143–154.

[73] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears,

R. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st

ACM Symposium on Cloud Computing (Indianapolis, Indiana, 2010), SoCC ’10, ACM,

pp. 143–154.

[74] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J.,

Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kan-

145

thak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D., Nagle,

D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szymaniak, M., Taylor, C.,

Wang, R., and Woodford, D. Spanner: Google’s Globally-Distributed Database.

In Proceedings of the 10th USENIX Conference on Operating Systems Design and Im-

plementation (Hollywood, CA, 2012), OSDI’12, USENIX Association, pp. 251–264.

[75] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction

to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009, ch. 11.

[76] Crooks, N., Pu, Y., Alvisi, L., and Clement, A. Seeing is believing: A client-

centric specification of database isolation. PODC ’17, Association for Computing

Machinery, pp. 73–82.

[77] Crooks, N., Pu, Y., Estrada, N., Gupta, T., Alvisi, L., and Clement,

A. TARDiS: A Branch-and-Merge Approach to Weak Consistency. In Proceedings

of the 2016 ACM SIGMOD International Conference on Management of Data (San

Francisco, California, 2016), SIGMOD ’16, ACM, pp. 1615–1628.

[78] Davidson, S. B., Garcia-Molina, H., and Skeen, D. Consistency in a parti-

tioned network: a survey. ACM Computing Surveys 17, 3 (sep 1985), 341–370.

[79] Dean, J., and Barroso, L. A. The Tail at Scale. Communications of the ACM

56, 2 (Feb. 2013), 74–80.

[80] Dean, J., and Ghemawat, S. MapReduce: Simplified Data Processing on Large

Clusters. In Proceedings of the 6th Symposium on Operating Systems Design and

Implementation (San Francisco, CA, 2004), OSDI’04, USENIX Association, pp. 137–

149.

146

[81] Diaconu, C., Freedman, C., Ismert, E., Larson, P.-A., Mittal, P., Stoneci-

pher, R., Verma, N., and Zwilling, M. Hekaton: Sql server’s memory-optimized

oltp engine. In Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data (New York, NY, USA, 2013), SIGMOD ’13, ACM, pp. 1243–

1254.

[82] Difallah, D. E., Pavlo, A., Curino, C., and Cudre-Mauroux, P. Oltp-bench:

An extensible testbed for benchmarking relational databases. Proc. VLDB Endow.

7, 4 (Dec. 2013), 277–288.

[83] Du, J., Elnikety, S., Roy, A., and Zwaenepoel, W. Orbe: Scalable Causal

Consistency Using Dependency Matrices and Physical Clocks. In Proceedings of the

4th ACM Symposium on Cloud Computing (Santa Clara, California, 2013), SOCC

’13, ACM, pp. 11:1–11:14.

[84] Du, J., Iorgulescu, C., Roy, A., and Zwaenepoel, W. GentleRain: Cheap and

Scalable Causal Consistency with Physical Clocks. In Proceedings of the 5th ACM

Symposium on Cloud Computing (2014), SOCC ’14, ACM.

[85] Faleiro, J. M., and Abadi, D. J. Rethinking serializable multiversion concurrency

control. Proc. VLDB Endow. 8, 11 (July 2015), 1190–1201.

[86] Faleiro, J. M., and Abadi, D. J. Latch-free synchronization in database systems:

Silver bullet or fool’s gold? In CIDR 2017, 8th Biennial Conference on Innovative

Data Systems Research, Chaminade, CA, USA, January 8-11, 2017, Online Proceed-

ings (2017), www.cidrdb.org, p. 9.

147

[87] Fidge, C. J. Timestamps in Message-Passing Systems That Preserve the Par-

tial Ordering. In Proceedings of the 11th Australian Computer Science Conference

(ACSC’88) (February 1988), pp. 56–66.

[88] Fomitchev, M., and Ruppert, E. Lock-free linked lists and skip lists. In Pro-

ceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed

Computing (New York, NY, USA, 2004), PODC ’04, Association for Computing Ma-

chinery, pp. 50–59.

[89] Gilbert, S., and Lynch, N. Brewer’s Conjecture and the Feasibility of Consistent,

Available, Partition-Tolerant Web Services. SIGACT News 33, 2 (June 2002), 51–59.

[90] Graefe, G. A survey of b-tree locking techniques. ACM Trans. Database Syst. 35,

3 (July 2010), 16:1–16:26.

[91] Gunawi, H. S., Suminto, R. O., Sears, R., Golliher, C., Sundararaman,

S., Lin, X., Emami, T., Sheng, W., Bidokhti, N., McCaffrey, C., Grider,

G., Fields, P. M., Harms, K., Ross, R. B., Jacobson, A., Ricci, R., Webb,

K., Alvaro, P., Runesha, H. B., Hao, M., and Li, H. Fail-slow at scale: Evi-

dence of hardware performance faults in large production systems. In 16th USENIX

Conference on File and Storage Technologies (FAST 18) (Oakland, CA, Feb. 2018),

USENIX Association, pp. 1–14.

[92] Hellerstein, J. M., and Alvaro, P. Keeping CALM: when distributed consis-

tency is easy. CoRR abs/1901.01930 (2019).

[93] Herlihy, M., Lev, Y., Luchangco, V., and Shavit, N. A simple optimistic

skiplist algorithm. In Proceedings of the 14th International Conference on Structural

148

Information and Communication Complexity (Berlin, Heidelberg, 2007), SIROCCO’07,

Springer-Verlag, pp. 124–138.

[94] Herlihy, M. P., and Wing, J. M. Linearizability: A correctness condition for

concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492.

[95] Huang, P., Guo, C., Zhou, L., Lorch, J. R., Dang, Y., Chintalapati, M.,

and Yao, R. Gray failure: The achilles’ heel of cloud-scale systems. In Proceedings

of the 16th Workshop on Hot Topics in Operating Systems (New York, NY, USA,

2017), HotOS ’17, Association for Computing Machinery, pp. 150–155.

[96] Huang, Y., Qian, W., Kohler, E., Liskov, B., and Shrira, L. Opportunities

for Optimism in Contended Main-Memory Multicore Transactions. Proc. VLDB

Endow. 13, 5 (Jan. 2020), 629–642.

[97] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Man-

ual, vol. 3B. Nov 2018, ch. 17, pp. 17–41.

[98] Israeli, A., and Rappoport, L. Disjoint-access-parallel implementations of strong

shared memory primitives. In Proceedings of the thirteenth annual ACM symposium

on Principles of distributed computing - PODC '94 (1994), ACM Press.

[99] Izraelevitz, J., Yang, J., Zhang, L., Kim, J., Liu, X., Memaripour, A., Soh,

Y. J., Wang, Z., Xu, Y., Dulloor, S. R., Zhao, J., and Swanson, S. Basic

performance measurements of the intel optane DC persistent memory module. CoRR

abs/1903.05714 (2019).

[100] Jankov, D., Luo, S., Yuan, B., Cai, Z., Zou, J., Jermaine, C., and Gao,

Z. J. Declarative recursive computation on an RDBMS. Proceedings of the VLDB

149

Endowment 12, 7 (mar 2019), 822–835.

[101] Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S.,

Jones, E. P. C., Madden, S., Stonebraker, M., Zhang, Y., Hugg, J., and

Abadi, D. J. H-store. Proceedings of the VLDB Endowment 1, 2 (aug 2008), 1496–

1499.

[102] Kim, K., Wang, T., Johnson, R., and Pandis, I. Ermia: Fast memory-optimized

database system for heterogeneous workloads. In Proceedings of the 2016 Interna-

tional Conference on Management of Data (New York, NY, USA, 2016), SIGMOD

’16, Association for Computing Machinery, pp. 1675–1687.

[103] Kimura, H. Foedus: Oltp engine for a thousand cores and nvram. In Proceedings

of the 2015 ACM SIGMOD International Conference on Management of Data (New

York, NY, USA, 2015), SIGMOD ’15, Association for Computing Machinery, pp. 691–

706.

[104] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E. Zyzzyva:

Speculative Byzantine Fault Tolerance. ACM Transactions on Computer Systems

27, 4 (Jan. 2010), 7:1–7:39.

[105] Kraska, T., Pang, G., Franklin, M. J., Madden, S., and Fekete, A. MDCC:

Multi-Data Center Consistency. In Proceedings of the 8th ACM European Conference

on Computer Systems (Prague, Czech Republic, 2013), EuroSys ’13, ACM, pp. 113–

126.

[106] Krikorian, R. Twitter Timelines at Scale (video link. consistency discussion at

26m). http://www.infoq.com/presentations/Twitter-Timeline-Scalability,

150

http://www.infoq.com/presentations/Twitter-Timeline-Scalability

2013.

[107] Kung, H. T., and Robinson, J. T. On optimistic methods for concurrency control.

ACM Trans. Database Syst. 6, 2 (June 1981), 213–226.

[108] Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM 21, 7 (July 1978), 558–565.

[109] Lamport, L. The Part-Time Parliament. ACM Transactions on Computer Systems

16, 2 (May 1998), 133–169.

[110] Lamport, L. Generalized Consensus and Paxos. Tech. Rep. MSR-TR-2005-33,

Microsoft Research, 2004.

[111] Larson, P.-r., Blanas, S., Diaconu, C., Freedman, C., Patel, J. M., and

Zwilling, M. High-performance concurrency control mechanisms for main-memory

databases. Proc. VLDB Endow. 5, 4 (Dec. 2011), 298–309.

[112] Lee, C., Park, S. J., Kejriwal, A., Matsushita, S., and Ousterhout, J.

Implementing Linearizability at Large Scale and Low Latency. In Proceedings of the

25th Symposium on Operating Systems Principles (Monterey, California, 2015), SOSP

’15, ACM, pp. 71–86.

[113] Lehman, P. L., and Yao, s. B. Efficient locking for concurrent operations on

b-trees. ACM Trans. Database Syst. 6, 4 (Dec. 1981), 650–670.

[114] Leis, V., Scheibner, F., Kemper, A., and Neumann, T. The art of practical

synchronization. In Proceedings of the 12th International Workshop on Data Manage-

ment on New Hardware (New York, NY, USA, 2016), DaMoN ’16, ACM, pp. 3:1–3:8.

151

[115] Levandoski, J. J., Lomet, D. B., and Sengupta, S. The bw-tree: A b-tree for

new hardware platforms. In Proceedings of the 2013 IEEE International Conference

on Data Engineering (ICDE 2013) (Washington, DC, USA, 2013), ICDE ’13, IEEE

Computer Society, pp. 302–313.

[116] Li, J., Chen, Y., Liu, H., Lu, S., Zhang, Y., Gunawi, H. S., Gu, X., Lu, X.,

and Li, D. Pcatch: Automatically detecting performance cascading bugs in cloud

systems. In Proceedings of the Thirteenth EuroSys Conference (New York, NY, USA,

2018), EuroSys ’18, Association for Computing Machinery.

[117] Lim, H., Kaminsky, M., and Andersen, D. G. Cicada: Dependably fast multi-

core in-memory transactions. In Proceedings of the 2017 ACM International Con-

ference on Management of Data (New York, NY, USA, 2017), SIGMOD ’17, ACM,

pp. 21–35.

[118] Lipton, R. J., and Sandberg, J. PRAM: A Scalable Shared Memory. Tech. Rep.

TR-180-88, Princeton University, Department of Computer Science, August 1988.

[119] Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G. Don’t

Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS.

In Proceedings of the 23rd ACM Symposium on Operating Systems Principles (Cascais,

Portugal, 2011), SOSP ’11, ACM, pp. 401–416.

[120] Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G. Stronger

Semantics for Low-Latency Geo-Replicated Storage. In Proceedings of the 10th

USENIX Conference on Networked Systems Design and Implementation (Lombard,

IL, 2013), NSDI ’13, USENIX Association, pp. 313–328.

152

[121] Lu, H., Hodsdon, C., Ngo, K., Mu, S., and Lloyd, W. The SNOW Theorem

and Latency-Optimal Read-Only Transactions. In Proceedings of the 12th USENIX

Symposium on Operating Systems Design and Implementation (2016), OSDI’16, USENIX

Association, pp. 135–150.

[122] Lu, H., Veeraraghavan, K., Ajoux, P., Hunt, J., Song, Y. J., Tobagus, W.,

Kumar, S., and Lloyd, W. Existential Consistency: Measuring and Understand-

ing Consistency at Facebook. In Proceedings of the 25th Symposium on Operating

Systems Principles (Monterey, California, 2015), SOSP ’15, ACM, pp. 295–310.

[123] Mahajan, P., Alvisi, L., and Dahlin, M. Consistency, Availability, and Con-

vergence. Tech. Rep. UTCS TR-11-22, Department of Computer Science, The

University of Texas at Austin, 2011.

[124] Mao, Y., Kohler, E., and Morris, R. T. Cache craftiness for fast multicore

key-value storage. In Proceedings of the 7th ACM European Conference on Computer

Systems (New York, NY, USA, 2012), EuroSys ’12, ACM, pp. 183–196.

[125] Mattern, F. Virtual Time and Global States of Distributed Systems. In Proceedings

of the Workshop on Parallel and Distributed Algorithms (1989), North-Holland/Elsevier,

pp. 215–226.

[126] Mehdi, S. A., Littley, C., Crooks, N., Alvisi, L., Bronson, N., and Lloyd,

W. I Can’t Believe It’s Not Causal! Scalable Causal Consistency with No Slow-

down Cascades. In 14th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 17) (Boston, MA, 2017), USENIX Association, pp. 453–468.

153

[127] Mickens, J., Nightingale, E. B., Elson, J., Gehring, D., Fan, B., Kadav,

A., Chidambaram, V., Khan, O., and Nareddy, K. Blizzard: Fast, Cloud-Scale

Block Storage for Cloud-Oblivious Applications. In 11th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 14) (2014), USENIX Associ-

ation, pp. 257–273.

[128] Mohan, C., and Levine, F. E. Aries/im: An efficient and high concurrency index

management method using write-ahead logging. In SIGMOD Conference (1992).

[129] Mu, S., Angel, S., and Shasha, D. Deferred runtime pipelining for contentious

multicore software transactions. In Proceedings of the Fourteenth EuroSys Confer-

ence 2019 (New York, NY, USA, 2019), EuroSys ’19, Association for Computing

Machinery.

[130] Mu, S., Cui, Y., Zhang, Y., Lloyd, W., and Li, J. Extracting More Concurrency

from Distributed Transactions. In Proceedings of the 11th USENIX Conference on

Operating Systems Design and Implementation (Broomfield, CO, 2014), OSDI’14,

USENIX Association, pp. 479–494.

[131] Mu, S., Nelson, L., Lloyd, W., and Li, J. Consolidating Concurrency Control

and Consensus for Commits under Conflicts. In Proceedings of the 12th USENIX Sym-

posium on Operating Systems Design and Implementation (2016), OSDI’16, USENIX

Association.

[132] Neumann, T., Mühlbauer, T., and Kemper, A. Fast serializable multi-version

concurrency control for main-memory database systems. In Proceedings of the 2015

154

ACM SIGMOD International Conference on Management of Data (New York, NY,

USA, 2015), SIGMOD ’15, Association for Computing Machinery, pp. 677–689.

[133] Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn, J. Rethink

the Sync. ACM Transactions on Computer Systems 26, 3 (Sept. 2008), 6:1–6:26.

[134] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C.,

McElroy, R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T.,

and Venkataramani, V. Scaling Memcache at Facebook. In Proceedings of the

10th USENIX Conference on Networked Systems Design and Implementation (Lom-

bard, IL, 2013), NSDI ’13, USENIX Association, pp. 385–398.

[135] Pavlo, A. SIGMOD keynote: What are we doing with our lives?: Nobody cares

about our concurrency control research. https://www.youtube.com/watch?v=M2MEcvMHzkY&

t=3525s, May 2017.

[136] Pavlo, A. What are we doing with our lives? In Proceedings of the 2017 ACM

International Conference on Management of Data (May 2017), ACM.

[137] Pavlo, A., Curino, C., and Zdonik, S. Skew-aware automatic database parti-

tioning in shared-nothing, parallel OLTP systems. In Proceedings of the 2012 inter-

national conference on Management of Data - SIGMOD '12 (2012), ACM Press.

[138] Ports, D. R., Li, J., Liu, V., Sharma, N. K., and Krishnamurthy, A. Design-

ing Distributed Systems Using Approximate Synchrony in Data Center Networks. In

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI

15) (2015), USENIX Association, pp. 43–57.

155

https://www.youtube.com/watch?v=M2MEcvMHzkY&t=3525s
https://www.youtube.com/watch?v=M2MEcvMHzkY&t=3525s

[139] Qiao, L., Surlaker, K., Das, S., Quiggle, T., Schulman, B., Ghosh, B.,

Curtis, A., Seeliger, O., Zhang, Z., Auradar, A., Beaver, C., Brandt,

G., Gandhi, M., Gopalakrishna, K., Ip, W., Jgadish, S., Lu, S., Pachev,

A., Ramesh, A., Sebastian, A., Shanbhag, R., Subramaniam, S., Sun, Y.,

Topiwala, S., Tran, C., Westerman, J., and Zhang, D. On Brewing Fresh

Espresso: LinkedIn’s Distributed Data Serving Platform. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data (New York, NY,

2013), SIGMOD ’13, ACM, pp. 1135–1146.

[140] Ricci, R., Eide, E., and The CloudLab Team. Introducing CloudLab: Scientific

Infrastructure for Advancing Cloud Architectures and Applications. USENIX ;login:

39, 6 (Dec. 2014).

[141] Schneider, F. B. Replication Management Using the State-Machine Approach.

In Distributed Systems (2nd Ed.), S. Mullender, Ed. ACM Press/Addison-Wesley

Publishing Co., 1993, pp. 169–197.

[142] Schwarz, M., Weiser, S., Gruss, D., Maurice, C., and Mangard, S. Malware

guard extension: Using sgx to conceal cache attacks, 2019.

[143] Shapiro, M., Preguiça, N., Baquero, C., and Zawirski, M. A Comprehensive

Study of Convergent and Commutative Replicated Data Types. Tech. Rep. HAL Id:

inria-00555588, Inria–Centre Paris-Rocquencourt; INRIA, 2011.

[144] Shi, X., Pruett, S., Doherty, K., Han, J., Petrov, D., Carrig, J., Hugg,

J., and Bronson, N. Flighttracker: Consistency across read-optimized online stores

156

at facebook. In 14th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 20) (Nov. 2020), USENIX Association, pp. 407–423.

[145] Sovran, Y., Power, R., Aguilera, M. K., and Li, J. Transactional storage for

geo-replicated systems. In Proceedings of the 23rd ACM Symposium on Operating

Systems Principles, SOSP ’11, pp. 385–400.

[146] Sovran, Y., Power, R., Aguilera, M. K., and Li, J. Transactional Storage for

Geo-Replicated Systems. In Proceedings of the 23rd ACM Symposium on Operating

Systems Principles (Cascais, Portugal, 2011), SOSP ’11, ACM, pp. 385–400.

[147] Tallent, N. R., Mellor-Crummey, J. M., and Porterfield, A. Analyzing

lock contention in multithreaded applications. In Proceedings of the 15th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming (New York,

NY, USA, 2010), PPoPP ’10, Association for Computing Machinery, pp. 269–280.

[148] Terry, D. B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera,

M. K., and Abu-Libdeh, H. Consistency-based service level agreements for cloud

storage. In Proceedings of the 24th ACM Symposium on Operating Systems Principles,

SOSP ’13, pp. 309–324.

[149] Terry, D. B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera,

M. K., and Abu-Libdeh, H. Consistency-based Service Level Agreements for Cloud

Storage. In Proceedings of the 24th ACM Symposium on Operating Systems Principles

(Farmington, Pennsylvania, 2013), SOSP ’13, ACM, pp. 309–324.

[150] Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P., and Abadi,

D. J. Calvin: Fast Distributed Transactions for Partitioned Database Systems. In

157

Proceedings of the 2012 ACM SIGMOD International Conference on Management of

Data (2012), ACM, pp. 1–12.

[151] Torres-Rojas, F. J., and Ahamad, M. Plausible clocks: Constant size logical

clocks for distributed systems. Distributed Computing 12, 4 (Sept. 1999), 179–195.

[152] Tu, S., Zheng, W., Kohler, E., Liskov, B., and Madden, S. Speedy transac-

tions in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles (New York, NY, USA, 2013), SOSP ’13,

ACM, pp. 18–32.

[153] Van Aken, D., Yang, D., Brillard, S., Fiorino, A., Zhang, B., Bilien, C.,

and Pavlo, A. An inquiry into machine learning-based automatic configuration

tuning services on real-world database management systems. Proc. VLDB Endow.

14, 7 (mar 2021), 1241–1253.

[154] van Renesse, R., and Schneider, F. B. Chain Replication for Supporting High

Throughput and Availability. In Proceedings of the 6th Symposium on Operating

Systems Design and Implementation (San Francisco, CA, 2004), OSDI’04, USENIX

Association, pp. 91–104.

[155] Vogels, W. Eventually Consistent. Commun. ACM 52, 1 (Jan. 2009), 40–44.

[156] Wang, Z., Mu, S., Cui, Y., Yi, H., Chen, H., and Li, J. Scaling multicore

databases via constrained parallel execution. In Proceedings of the 2016 International

Conference on Management of Data (New York, NY, USA, 2016), SIGMOD ’16,

Association for Computing Machinery, pp. 1643–1658.

158

[157] Wang, Z., Pavlo, A., Lim, H., Leis, V., Zhang, H., Kaminsky, M., and An-

dersen, D. G. Building a bw-tree takes more than just buzz words. In Proceedings

of the 2018 ACM International Conference on Management of Data (2018), SIGMOD

’18, pp. 473–488.

[158] Wei, X., Shi, J., Chen, Y., Chen, R., and Chen, H. Fast In-Memory Transac-

tion Processing Using RDMA and HTM. In Proceedings of the 25th Symposium on

Operating Systems Principles (Monterey, California, 2015), SOSP ’15, ACM, pp. 87–

104.

[159] Whittaker, M., and Hellerstein, J. M. Checking invariant confluence, in whole

or in parts. SIGMOD Rec. 49, 1 (sep 2020), 7–14.

[160] Wu, C., Faleiro, J., Lin, Y., and Hellerstein, J. Anna: A KVS for any scale.

IEEE Transactions on Knowledge and Data Engineering (2019), 1–1.

[161] Xie, C., Su, C., Littley, C., Alvisi, L., Kapritsos, M., and Wang, Y. High-

Performance ACID via Modular Concurrency Control. In Proceedings of the 25th

Symposium on Operating Systems Principles (Monterey, California, 2015), SOSP ’15,

ACM, pp. 279–294.

[162] Yang, J., Yue, Y., and Rashmi, K. V. A large scale analysis of hundreds of

in-memory cache clusters at twitter. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20) (Nov. 2020), USENIX Association,

pp. 191–208.

[163] Yu, X., Bezerra, G., Pavlo, A., Devadas, S., and Stonebraker, M. Staring

into the abyss: An evaluation of concurrency control with one thousand cores. Proc.

159

VLDB Endow. 8, 3 (Nov. 2014), 209–220.

[164] Yu, X., Pavlo, A., Sanchez, D., and Devadas, S. Tictoc: Time traveling

optimistic concurrency control. In Proceedings of the 2016 International Conference

on Management of Data (New York, NY, USA, 2016), SIGMOD ’16, ACM, pp. 1629–

1642.

[165] Zawirski, M., Preguiça, N., Duarte, S., Bieniusa, A., Balegas, V., and

Shapiro, M. Write Fast, Read in the Past: Causal Consistency for Client-Side

Applications. In Proceedings of the 16th Annual Middleware Conference (Vancouver,

BC, Canada, 2015), Middleware ’15, ACM, pp. 75–87.

[166] Zhang, I., Sharma, N. K., Szekeres, A., Krishnamurthy, A., and Ports, D.

R. K. Building Consistent Transactions with Inconsistent Replication. In Proceed-

ings of the 25th Symposium on Operating Systems Principles (Monterey, California,

2015), SOSP ’15, ACM, pp. 263–278.

[167] Zhang, Y., Power, R., Zhou, S., Sovran, Y., Aguilera, M. K., and Li, J.

Transaction Chains: Achieving Serializability with Low Latency in Geo-Distributed

Storage Systems. In Proceedings of the 24th ACM Symposium on Operating Systems

Principles (Farmington, Pennsylvania, 2013), SOSP ’13, ACM, pp. 276–291.

160

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Thesis Statement
	Contributions
	Partitioned and Geo-Replicated Datastores
	Multi-core, In-Memory Databases

	Thesis Organization

	Chapter 2. Mechanism Coordination
	Slowdown Cascades in Causal Datastores
	Causal Consistency
	How can Slowdown Cascades Impact Causal Datastores?
	Nature of Mechanism Coordination

	Range Index Contention in In-Memory Databases
	Range Index Scalability
	In-Memory Databases
	In-Memory Database Scalability

	Chapter 3. Towards Scalability through Asynchrony
	Implicit Pessimistic Assumptions of Prior Systems
	In-Memory Databases

	The Thesis Statement as a Design Principle

	Chapter 4. Occult: Causal Consistency with No Slowdown Cascades
	Observable Causal Consistency
	Occult: The Basic Framework
	System Model
	Causal Timestamps
	Basic Protocol

	Causal Timestamp Compression
	A First Attempt: Structural Compression
	Temporal Compression
	Isolating Datacenters

	Transactions
	PC-PSI Specification
	Executing Read/Write Transactions
	Correctness

	Fault Tolerance
	Server Failures
	Client Failures

	Evaluation
	Experimental Setup
	Performance and Overhead
	Impact of Slow Nodes

	Related Work
	Scalable Causal Consistency
	Read/Write Transactions
	Rethinking the Output Commit Step

	Limitations

	Chapter 5. ScaleDB: An Asynchronous In-Memory Database
	Design Rationale and Overview
	Scalable Transaction Processing with Indexlets
	Serializability with Asynchronous Range Index Updates
	Durability
	Example

	Design Details
	Asynchronous Range Index Updates
	Asynchronous Concurrency Control
	Durability
	Correctness

	Implementation
	Indexlet and Phantomlet Hash Table
	Lock-Free Reads
	Concurrent Range Index
	System-wide Synchronized Clock

	Evaluation
	ScaleDB Mechanisms
	Asynchronous Index Update
	Serializability

	Limitations

	Chapter 6. Conclusions
	Appendix
	Appendix 1. Occult Pseudocode
	Causal Timestamp Interface
	Basic Protocol
	Transactional Protocol

	Appendix 2. ScaleDB Serializability Proof
	Bibliography

