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Efficient Frequency Response Computation for Structures

with Structural Damping

Jeremiah Fletcher Palmer, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Jeffrey K. Bennighof

The modern procedure for analyzing the dynamics of a large, complex struc-

ture, such as an automobile, is to use the finite element method to discretize the

structure with millions of degrees of freedom. For the steady-state response to a

harmonic excitation, a frequency response problem (FRP) is derived for the finite

element discretization. To ease computational cost, modal analysis is performed, cre-

ating a corresponding FRP in an approximating modal subspace with a substantial

reduction in dimension.

Typically, more than one level of structural damping is present in a complex

structure. This results in a fully populated modal damping matrix, so that the

frequency-dependent coefficient matrix of the modal FRP is full. This problem is

traditionally solved using a brute-force approach, which can be prohibitively expensive

since it requires O(n3) operations for each of the hundreds of frequencies.

This dissertation presents two new approaches for solving modal FRPs of

automobile structures that have any composition of structural damping. Each ap-

proach requires a single frequency-independent O(n3) operation which changes the

vii



full coefficient matrix of the modal FRP into one with a simpler form. The first ap-

proach presents a new method which creates a low rank approximation of the modal

structural damping matrix. The second approach is used when the modal structural

damping matrix has high rank and relies on a new method for determining an accu-

rate eigenvalue decomposition of a complex symmetric matrix. Computing responses

using these two approaches then only requires O(n2) operations for every frequency.

Automobile companies perform analyses on computers with multi-core CPU

processors and graphics processing units which can perform dense linear algebra op-

erations with high efficiency. This dissertation shows how the two approaches are

implemented to take advantage of these parallel technologies. The accuracy and per-

formance of the two new approaches are presented and compared with the brute-force

approach.
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Chapter 1

Introduction

Analyzing the dynamics of a complex structure, such as an automobile, is a

challenging task to accomplish efficiently. The current state of the art is to use the fi-

nite element (FE) method to discretize the structure with typically millions of degrees

of freedom (Ndof ). Through FE analysis, a system of ODEs is derived in terms of

the discretization points’ time-dependent displacement, velocity, and acceleration as

well as the time-dependent forcing function and the specified initial conditions. This

system of ODEs can be simplified to algebraic equations when the forcing function

is harmonic in time, in which case the displacements, velocities, and accelerations

are also harmonic in time. The problem of solving this system of algebraic equations

for the response over a range of frequencies is called the frequency response problem

(FRP). To ease computational cost, the FE FRP is projected onto an approximating

modal subspace. The modal subspace is obtained by solving the generalized eigen-

value problem associated with the mass and stiffness matrices, and consequently, their

modal counterparts are diagonal. When other matrices involved in the modal FRP

are transformed into the modal subspace, they become full, except in certain special

cases, but substantially reduced in dimension.

In the automobile industry, there is a continual desire to perform analyses on
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models with more automobile components modeled, more degrees of freedom, and

finer FE meshes, in order to obtain more accurate and useful automobile representa-

tions. A consequence of this trend is that as Ndof increases and the frequency ranges

of interest grow, the dimension of the modal FRP increases. With a higher number of

structural modes, it becomes important to account for the varying levels of structural

damping of the materials which make up the model. When all of the model’s struc-

tural damping is accurately represented, an additional matrix of data is included in

the FRP, which causes the frequency-dependent coefficient matrix of the modal FRP

to be full.

Typically, a modal FRP with a full coefficient matrix is solved using a brute-

force approach which is straightforward, yet expensive. This dissertation presents

two new approaches which solve modal FRPs with structural damping much more

efficiently than the brute-force approach.

1.1 FE Frequency Response Problem

The FRP for a typical automobile structure has the form:

[−ω2
M+ iωB+ (1 + iγ)K+ iKs]Xs(ω) = Fs(ω). (1.1)

M, B, K, and Ks represent the finite element mass, viscous damping, stiffness, and

structural damping matrices, respectively. These matrices are all real, square with

dimension Ndof , and symmetric, unless gyroscopic effects are present, in which case

B is nonsymmetric. The matrix Fs(ω) ∈ C
Ndof×Nc is the frequency-dependent force

matrix with Nc representing the number of load cases. The scalar γ is the global
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structural damping coefficient; ω is the excitation frequency in radians per second;

and i =
√
−1. The matrix Xs(ω) ∈ C

Ndof×Nc contains the solutions of the FRP for a

particular ω, which are the nodal displacements. Let Nfreq represent the number of

frequencies in the frequency range of interest.

Acoustic fluid elements can be used to model the air in the interior of an

automobile. The solution to the modal FRP involving the structure and the acoustic

fluid can be used to determine the noise, vibration, and harshness (NVH) that a

human would perceive. Then, an analyst can make modifications to the design to

create a quieter vehicle. After FE discretization, the FRP for interaction between a

structure and an acoustic fluid, with a pressure representation for the fluid, is

[

Zs(ω) iωA
iωAT −(−ω2E+ iωC+H)/ρ

]{

Xs(ω)
Xf (ω)

}

=

{

Fs(ω)
Ff (ω)

}

(1.2)

where Zs is the sum of the matrices in the square brackets in equation (1.1) and A

is the area (or coupling) matrix which converts fluid pressure to structural loading.

The matrices E, C, and H represent the FE fluid “mass”, “damping”, and “stiffness”

matrices, respectively; and ρ is the fluid mass density [19]. The matrix Xf contains

acoustic fluid pressures.

1.2 Structural Damping

Structural, or material, damping is a type of damping which causes a loss

of energy in materials but the loss of energy per oscillatory cycle is determined by

the amplitude of the displacement rather than that of the velocity. It was demon-

strated experimentally by Kimball and Lovell [28] that the energy loss per cycle is

3



independent of the frequency for many materials, such as metals, glass, and rubber,

but approximately proportional to the amplitude of vibration squared:

△Ecyc = αX2. (1.3)

The way that this observation is usually taken into account in vibration anal-

ysis can be understood through the following thought experiment. Consider a single

degree-of-freedom system consisting of a massless spring, which is excited by a force

that is harmonic in time, so that its equation of motion is simply

kx(t) = f(t) = Akeiωt. (1.4)

The motion that satisfies this equation is proportional to f(t): x(t) = Aeiωt. The

complex representation is often used in harmonic response analysis for convenience,

with the understanding that the actual excitation or response is only the real or

the imaginary part of its complex representation. The amount of energy dissipated

per cycle is a real quantity and is equal to the work done by the excitation, so it

can be determined by integrating the real part of the force over the real part of the

displacement:

△Ecyc =

∫

cyc

(Re f)(Re dx).

Since dx = ẋdt, and one cycle is equal to 2π radians, the amount of energy dissipated
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per oscillatory cycle is

△Ecyc =

∫ 2π/ω

0

(Re f)(Re ẋ)dt

=

∫ 2π/ω

0

(Ak cos(ωt))(−Aω sin(ωt))dt

= −kA2ω

∫ 2π/ω

0

cos(ωt) sin(ωt)dt

= 0.

Over the course of a cycle, there is no net energy dissipated for this system, because

k is real-valued. However, if the spring constant is complex-valued, there is a nonzero

dissipation of energy over each cycle, so the spring is hysteretic. Then, the following

equation governs the motion of the spring:

k(1 + iγ)x(t) = f(t) = Akeiωt. (1.5)

Here, k is multiplied by the dimensionless constant γ to obtain the imaginary part of

the complex spring constant. This equation can be rearranged into the form

k
√

1 + γ2eiφx(t) = Akeiωt, where eiφ = cosφ+ i sinφ =
1 + iγ
√

1 + γ2
. (1.6)

The motion x(t) with the complex-valued spring constant is now not in phase with

f(t):

x(t) =
A

√

1 + γ2
ei(ωt−φ). (1.7)

As a result, the energy lost per oscillatory cycle for this representation is now not
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equal to zero:

△Ecyc =

∫ 2π/ω

0

(Re f)(Re ẋ)dt

=

∫ 2π/ω

0

(Ak cos(ωt))

(

−Aω
√

1 + γ2
sin(ωt− φ)

)

dt

=
−kA2ω
√

1 + γ2

∫ 2π/ω

0

cos(ωt) sin(ωt− φ)dt

=
−kA2ω
√

1 + γ2
· −π sinφ

ω

=
kπA2

√

1 + γ2
· γ
√

1 + γ2

= kπγ

(

A
√

1 + γ2

)2

. (1.8)

The term in the parentheses in equation (1.8) is the magnitude X of the displacement

from equation (1.7). Therefore, comparing equations (1.8) and (1.3), the value α

must be equal to the product kπγ. This gives the constant γ, which is the structural

damping coefficient, in terms of the value of the α, which is determined experimentally,

and k, the spring stiffness, as γ = α
πk
. The system’s structural damping in equation

(1.5) is represented by iγk.

For a multi-degree-of-freedom system composed of hysteretic springs or elastic

members, all with the same structural damping coefficient γ, the equation of motion

is

(1 + iγ)Kx(t) = f(t) = Feiωt (1.9)

where K is the system’s stiffness matrix. Using the definition of eiφ from equation
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(1.6), the displacement vector x(t) is

x(t) =
1

√

1 + γ2
K−1Fei(ωt−φ) = Xei(ωt−φ), (1.10)

where the vector of amplitudes X is

X =
1

√

1 + γ2
K−1F.

Following steps similar to those for the scalar case, the energy dissipated per

cycle becomes

△Ecyc =

∫ 2π/ω

0

(Re f)T (Re ẋ)dt

=

∫ 2π/ω

0

(FT cos(ωt)) (−ωX sin(ωt− φ)) dt

= −ωFTX

∫ 2π/ω

0

cos(ωt) sin(ωt− φ)dt

=
(

−ω
√

1 + γ2
)

XTKX

(−π sinφ

ω

)

= XT (πγK)X.

Experimentally, the energy dissipated per cycle by structural damping is found to be

quadratic in the displacement amplitudes, as for the single-degree-of-freedom case:

△Ecyc = XT [α]X

where [α] is a square matrix. By comparing the two equations, the matrix [α] is found

to be proportional to the stiffness matrix K:

[α] = πγK.
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When an automobile model comprises components made of multiple materials

each with different structural damping values, the complete structural damping in

the FE space is equal to iγK + iKs, where K is the FE stiffness matrix and γ is

the structural damping value of the predominant material. The matrix Ks represents

deviations of other materials’ structural damping from γ.

1.3 Modal Frequency Response Problem

The coefficient matrix in equation (1.1) is very large, so it is projected onto a

smaller, approximating subspace to reduce the problem’s dimension. This is accom-

plished by finding an approximate solution to the generalized eigenvalue problem of

the form:

KΦs = MΦsΛ. (1.11)

For many years, analysts relied on the Lanzcos method to solve the eigenvalue prob-

lem. However, the computational time required to perform the Lanczos method

for modern automobile models is usually very high. The Automated Multi-Level

Substructuring (AMLS) method provides an approximate solution to the eigenvalue

problem for the pertinent parts of the model much more efficiently. The commercial

implementation of the AMLS method is now the standard software used by nearly

every automobile company in the world to compute approximate modes for large FE

models.

Let Nev represent the number of modes of vibration found by approximating

the solution to (1.11) using AMLS. Then, the modes of vibration are the columns

of Φs ∈ R
Ndof×Nev . The diagonal matrix Λ ∈ R

Nev×Nev contains the squares of the
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natural frequencies of the system. After Φs is mass-normalized so that ΦT
s MΦs = I

and ΦT
s KΦs = Λ, let the nodal displacements be approximated as

Xs(ω) ≈ ΦsXs(ω). (1.12)

Premultiplying equation (1.1) by ΦT
s with the substitution in (1.12), yields the modal

FRP:

[−ω2I + iωB + (1 + iγ)Λ + iKs]Xs(ω) = Fs(ω) (1.13)

where B = ΦT
s BΦs, Ks = ΦT

s KsΦs, and Fs(ω) = ΦT
s Fs(ω). The dimension of the

modal subspace, Nev, is typically around 10,000 which is much smaller than the

millions of degrees of freedom of the FE space. Therefore, the modal FRP in (1.13)

can be solved much more economically than the FE FRP in (1.1). Unfortunately, the

coefficient matrix in equation (1.13) is full because both B and Ks are full matrices

which makes computing the response challenging.

If FE acoustic fluid elements are included in the analysis, the FE acoustic

fluid matrices are also projected onto a smaller subspace using AMLS. The following

eigenvalue problem is solved:

HΦf = EΦfΛf .

The number of fluid modes, Nf , is typically much smaller than the number of structure

modes. Φf is normalized so that ΦT
f EΦf = ρIf , where If is anNf×Nf identity matrix,

and as a result, ΦT
f HΦf = ρΛf . The structural displacements and fluid pressures are

represented as
{

Xs(ω)
Xf (ω)

}

≈
[

Φs 0
0 Φf

]{

Xs(ω)
Xf (ω)

}

. (1.14)
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Using the above substitution and multiplying equation (1.2) on the left by

[

ΦT
s 0
0 ΦT

f

]

, (1.15)

the modal FRP with acoustic fluid interaction is derived:

[

Zs(ω) iωA
iωAT Zf (ω)

]{

Xs(ω)
Xf (ω)

}

=

{

Fs(ω)
Ff (ω)

}

. (1.16)

Here, Zs(ω) is the structure’s coefficient matrix represented by the sum in square

brackets from equation (1.13), and the analogous matrix for the fluid is given by

Zf (ω) = −
(

−ω2If + iωCf + Λf

)

, (1.17)

where A = ΦT
s AΦf , Cf = ΦT

f CΦf , and Ff (ω) = ΦT
f Ff (ω).

1.4 Determining Algorithm Performance

A floating point operation (FLOP) is typically considered to be a single mul-

tiplication or addition involving floating point numbers. On modern computers, a

calculation which requires pairs of numbers to be multiplied together and added to a

sum is usually handled by a multiplier-accumulator (MAC) unit. The inner product

of two real vectors of length n uses the MAC unit n times, and costs 2n FLOPs.

Therefore, the product of two real matrices, one of size m × n and the other of size

n× k, requires 2mnk FLOPs. Since a complex multiplication-accumulation requires

four multiplications and four additions, the inner product of two complex vectors of

length n is 8n. Then, the product of two complex matrices with the same dimensions

as the real matrices costs 8mnk FLOPs. Table 1.1 gives a summary of FLOP counts
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A Description B Description AB FLOPs

diagonal complex full real 2nk
diagonal complex full complex 6nk

full complex diagonal complex 6mn
full real full real 2mnk
full real full complex 4mnk

full complex full complex 8mnk

Table 1.1: AB FLOPs for Various Forms and Types of A and B

for matrix multiplications for AB, where A is m × n and B is n × k, for various

forms and data types of the matrices. When A or B is diagonal, then no additions of

entries in the matrices are required. When one of the matrices is real and the other is

complex, then the FLOP cost is double the cost of performing a matrix multiplication

when both matrices are real.

FLOP costs can be used to determine the most efficient way to accomplish a

task. For example, suppose three real matrices are multiplied together as D := ABC

where A is a× b, B is b× c, and C is c× d. The product D can be determined in two

ways:

D := (AB)C or D := A(BC).

If the first two matrices are multiplied first, the number of FLOPs required to compute

D is 2ac(b+d). If the second two matrices are multiplied first, the number of FLOPs

is 2bd(a+ c). Clearly, for this task, the sizes of the matrices dictate which of the two

choices requires fewer FLOPs and is, therefore, more efficient.

The performance of high performance computing (HPC) software for NVH

analyses is directly related to the performance of a collection of dense linear algebra
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routines. The simpler routines are contained within the Basic Linear Algebra Sub-

programs (BLAS) interface [31]. BLAS functionality is divided into three levels, in

order of complexity:

1. BLAS level-1 subprograms perform operations on vectors, such as inner prod-

ucts and vector scaling.

2. BLAS level-2 subprograms perform matrix-vector operations. Since the number

of operations in these subprograms is proportional to the number of matrix and

vector entries, their performance is limited by memory bandwidth.

3. BLAS level-3 subprograms perform matrix-matrix operations. For square ma-

trices of dimension n, the number of FLOPs in BLAS level-3 subprograms is

O(n3), whereas the number of entries in the matrices is O(n2). This indicates

that these subprograms are limited by the processor throughput. BLAS level-3

subprograms can be implemented in a way which takes advantage of parallel

computing.

The Linear Algebra Package (LAPACK) contains complicated routines such as matrix

factorizations and matrix solves [7]. Table 1.2 lists a few LAPACK routines which are

referenced in this dissertation. In the table, A represents an n×n square, symmetric

matrix, B represents an n×n square, nonsymmetric matrix, and C represents an n×r

general matrix. The FLOP costs listed in Tables 1.1 and 1.2 are used to compute

FLOP costs for all of the algorithms presented in this dissertation.
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Name Description FLOPs

DSYTRD Tridiagonal reduction of real A 4
3
n3

DORMTR Backtransformation of real C 2n2r + nr

ZSYSV Complex “solve”: A−1C 4
3
n3 + 8n2r +O(n2)

ZGESV Complex “solve”: B−1C 8
3
n3 + 8n2r +O(n2)

Table 1.2: FLOPs for Various LAPACK routines

1.5 Motivations and Challenges

NASTRAN is the primary commercial NVH software package that automo-

bile engineers use to analyze FE models. After the AMLS software is used within

NASTRAN to provide a substantial modal reduction, the next task is to find the

solution of the modal FRP. When the structural damping matrix is present in the

FRP, NASTRAN does not take advantage of any special properties of Ks. In this

case, modal FRPs are solved by first forming the coefficient matrix of the modal

FRP at a frequency. Next, the complex matrix system of equations is solved (using

a ZSYSV or ZGESV routine) which involves factoring the coefficient matrix into two

triangular matrices and performing two triangular matrix solves. This approach is

very expensive as it requires O(N3
ev) FLOPs at every frequency. In many cases, using

this approach to solve the modal FRP dominates NVH analyses.

This dissertation provides two new approaches for handling the modal struc-

tural damping matrix and the choice of the two approaches is primarily based on the

rank of Ks. For each approach, only one O(N3
ev) operation is required, followed by

some computations for every frequency which have a FLOP cost significantly less than
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using the brute-force approach at every frequency. Modern computers on which NVH

analyses are executed have processors with multiple cores per CPU and coprocessors

which provide very fast computation performance. This dissertation explains how

the two approaches can be implemented for optimal performance on various modern

computer system architectures.

The Fast Frequency Response Solver (FastFRS) is a commercial software pack-

age created by the author which provides automobile analysts a comprehensive modal

FRP solver. It is currently licensed by many automobile companies around the world,

and is used in place of the NASTRAN modal FRP solver. The two approaches pre-

sented in this dissertation are implemented in FastFRS, giving it a distinct advantage

in performance over other available modal FRP solvers.

1.6 The Industrial Test Suite

Several industrial models are used in this dissertation to demonstrate the ef-

fectiveness and performance of the approaches. The models differ in Nev, Nf , Nfreq,

and Nc, and represent a typical range of automobile models from industry which have

modal structural damping. Some information about each model is listed in Table 1.3.

1.7 Outline of the Dissertation

In this dissertation, two approaches are presented which solve modal FRPs

for models with structural damping efficiently. The following is an outline of the

dissertation.
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Model Nev Nfreq Nc Nf

A 10351 218 1 803

B 11475 381 6 6017

C 8595 797 345 364

D 6539 401 150 857

E 15923 796 90 1088

F 12165 591 48 426

Table 1.3: Statistics of Automobile Models in the Industrial Test Suite

• Chapter 2 provides a survey of the traditional and recent methods used to solve

modal FRPs with viscous and structural damping.

• Chapter 3 introduces the first new approach for handling modal structural

damping. This approach uses a low rank approximation for Ks.

• Chapter 4 introduces the second approach, which treatsKs as a full rank matrix.

A new complex symmetric matrix eigensolver is presented which is used in this

approach.

• Chapter 5 gives an overview of implementations of the approaches which take

advantage of current parallel programming paradigms.

• Chapter 6 evaluates the new approaches’ solutions in terms of solution accuracy

and elapsed time for the models in Table 1.3.

• Chapter 7 discusses conclusions and future work.
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Chapter 2

Survey of Methods to Solve Modal FRPs

In the absence of viscous and structural damping, the coefficient matrix of the

FRP in equation (1.13) becomes diagonal in the modal space:

[−ω2I + Λ]Xs(ω) = Fs(ω). (2.1)

The response is trivial to compute, requiring only O(Nev) FLOPs at every frequency:

Xs(ω) =
[

−ω2I + Λ
]−1

Fs(ω).

However, damping must be represented in models of automobile structures to

obtain accurate results. Sections of this chapter present modal FRPs having viscous

and/or structural damping with increasing levels of complexity. Methods proposed by

others for solving different types of modal FRPs are described. Section 2.1 identifies

models of damping that result in uncoupled systems of equations in the modal FRP

that, like equation (2.1), are trivial to solve. If viscous damping is represented, but

the structural damping model does not produce off-diagonal terms in the modal FRP,

the modal FRP has a full coefficient matrix, and it can be solved at every frequency

using a special matrix formula which is discussed in Section 2.2. When structural

damping is modeled in such a way that off-diagonal terms are produced in the modal

FRP, the traditional approach in Section 2.3 can be used to determine the solution
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to the modal FRP, but it is expensive. An alternative to the traditional approach is

described in the final section of the chapter. This alternative approach is inexpensive,

but the solutions of the modal FRP that result from its use are sometimes inaccurate.

2.1 Solving Uncoupled Modal FRPs

Models with globally uniform structural damping represented with the scalar

parameter γ, and/or Rayleigh (proportional) damping produce an uncoupled modal

FRP. With proportional damping, the FE viscous damping matrix is represented as

a linear combination of the FE mass and stiffness matrices. Let

B = β0M+ β1K,

where β0 and β1 are two scalar quantities. The coefficient matrix of the modal FRP

is diagonal. The response is

Xs(ω) =
[

(−ω2 + iωβ0)I + (1 + iγ + iωβ1)Λ
]−1

Fs(ω).

Globally uniform structural damping and proportional damping only offer three pa-

rameters (γ, β0, and β1) for modeling damping, so their versatility for accurately

modeling damping in a complex structure is very limited.

2.2 Solving Modal FRPs having Non-Proportional Damping

If there is non-proportional viscous damping, but no structural damping present,

then equation (1.13) becomes

[−ω2I + iωB + Λ]Xs(ω) = Fs(ω).
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In typical automobile models, viscous damping is only associated with a limited num-

ber of discrete devices such as engine mounts and shock absorbers, so the FE matrix

B is very sparse, having only dozens of nonzero rows and columns, Nnz. Kim [27] suc-

cessfully takes advantage of this sparsity by recognizing that even though the modal

viscous damping matrix, B, is full, its rank is always equal to or less than Nnz. If

Bnz ∈ R
Nnz×Nnz represents a condensed matrix containing only the nonzero rows and

columns of B, and Φnz ∈ R
Nnz×Nev represents a matrix of the rows of Φ (from equa-

tion (1.12)) that correspond to nonzero columns in B, the modal viscous damping

matrix can be represented as:

B = ΦT
nzBnzΦnz. (2.2)

Bnz is a square matrix with an extremely small dimension, due to the sparsity of B.

Typically, B is a symmetric matrix and it can be decomposed using an eigenvalue

decomposition (EVD): Bnz = UΣBU
T
. If gyroscopic effects are present in the au-

tomobile model, B is nonsymmetric and can be decomposed using a singular value

decomposition (SVD): Bnz = UΣBV
T
. Let U and V be defined as ΦT

nzU and ΦT
nzV ,

respectively, then

B = ΦT
nzUΣBV

T
Φnz = UΣBV

T (2.3)

where the dimension of the diagonal matrix ΣB is rank(Bnz), and U and V are

Nev × rank(Bnz). Since U and V are orthogonal, U and V are not. The modal FRP

becomes

[−ω2I + Λ + U(iωΣB)V
T ]Xs(ω) = Fs(ω). (2.4)
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If B is symmetric, then U = V . The coefficient matrix above is a low rank modifi-

cation to a diagonal matrix and can be inverted using a variation of the Sherman-

Morrison-Woodbury (SMW) formula [23].

Formula 1 (Sherman-Morrison-Woodbury). If W and (I + Y TW−1Z) are in-

vertible, then (W + ZY T )−1 = W−1 −W−1Z(I + Y TW−1Z)−1Y TW−1.

The SMW formula can be modified into a form useful for solving (2.4) by

letting W be a diagonal matrix D, and letting Z = PΣ1/2 and Y = RΣ1/2, where Σ

is another diagonal matrix:

(D + PΣRT )−1 = D−1 −D−1PΣ
1

2 (I + Σ
1

2RTD−1PΣ
1

2 )−1Σ
1

2RTD−1. (2.5)

To invert the coefficient matrix in equation (2.4) at each frequency ω using (2.5), let

D(ω) := −ω2I + Λ,

P := U,

R := V , and

Σ(ω) := iωΣB.

Without the SMW formula, the FLOP cost of computing the response of equation

(2.4) at each frequency is O(N3
ev). Using the SMW formula, the FLOP cost of com-

puting the response at a frequency is O((rank(Bnz))
3), which is much smaller than

the method which avoids using the SMW formula if rank(Bnz) is much smaller than

Nev.
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2.3 Traditional Approaches for Solving FRPs with Struc-
tural Damping

When structural damping is present in an automobile structure, the coefficient

matrix of the modal FRP is full. Then, the modal FRP represents a complex indef-

inite linear system of equations. Traditionally, these kinds of problems are solved

by forming the coefficient matrix and solving the matrix equation at every frequency

using either an iterative or an exact approach.

2.3.1 Iterative Approaches

For large systems of equations with positive definite coefficient matrices, it-

erative approaches are generally preferred over exact approaches because they are

typically faster and use less computer memory. However, these features of iterative

approaches do not extend to systems with complex indefinite coefficient matrices.

Since the convergence rate of iterative approaches depends on spectral properties of

the coefficient matrix, and the coefficient matrix of interest is a complex indefinite

one, iterative approaches either converge slowly, or do not converge at all. Further-

more, for those systems that do converge, a solution must be found for every right

hand side (Nc) for every frequency. Iterative approaches are not practical to use to

find the response of large modal FRPs with structural damping.

2.3.2 Exact Approaches

Exact approaches reliably provide solutions to complex indefinite systems of

equations. They use a single factorization at each frequency to compute the solution
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for all right hand sides simultaneously. Also, since the steps in exact approaches are

prescribed, their FLOP costs are known. In order to avoid inevitable divisions by

zero which occur while complex indefinite matrices are factored, a pivoting strategy

is used [26]. The LAPACK routine, ZSYSV, provides the solution to a complex indef-

inite system and uses the efficient Bunch-Kaufman method [12] for the factorization’s

pivoting strategy. The cost of pivoting is small compared to the cost of the factoriza-

tion. Using ZSYSV to solve the modal FRP in equation (1.13) involves the following

steps:

1. Form the coefficient matrix, Zs(ω), in equation (1.13) at a particular frequency:

Zs(ω) := −ω2I + iωB + (1 + iγ)Λ + iKs.

Then, the modal FRP is Zs(ω)Xs(ω) = Fs(ω).

2. Factor Zs(ω) with the Bunch-Kaufman pivoting strategy: Zs = UDUT , where

U is a unit upper triagular matrix and D is a symmetric block-diagonal matrix

with 1× 1 and 2× 2 diagonal blocks.

3. Let a matrix Y := UTXs and W := DY . Then, the response is computed

through:

W = U−1Fs

Y = D−1W

Xs = U−TY.
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From Table 1.2, the FLOP cost of computing responses with this approach is

Cost = Nfreq

(

4

3
N3

ev + 8N2
evNc

)

.

If B is nonsymmetric, an LU factorization (with partial pivoting) is performed, im-

plemented in MKL in the routine ZGESV. This approach’s FLOP cost is

Cost = Nfreq

(

8

3
N3

ev + 8N2
evNc

)

.

When the number of modes and frequencies is high, exact approaches often require

more time to complete than the reduction from FE space to modal space using AMLS.

For models with structural damping, the traditional approaches for solving the cor-

responding modal FRPs are time-consuming and expensive.

2.4 An Inadequate Approach for Solving the Modal FRP
with Structural Damping

In his dissertation, Kim [27] suggests an approach for solving modal FRPs

which have structural damping, but no viscous damping. It computes one O(N3
ev)

factorization, which is used to diagonalize the coefficient matrix. In this situation,

the modal FRP is

[−ω2I + (1 + iγ)Λ + iKs]Xs(ω) = Fs(ω). (2.6)

Let the Nev ×Nev complex symmetric matrix, C, be defined as

C := (1 + iγ)Λ + iKs. (2.7)

Next, its eigenvalue decomposition is computed:

C = ΦCΛCΦ
T
C . (2.8)
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When ΦC is scaled so that ΦT
CΦC = I, the solution of the modal FRP becomes:

Xs(ω) = ΦC

[

−ω2I + ΛC

]−1
ΦT

CFs(ω). (2.9)

The critical step in the proposed approach is the determination of ΦC and ΛC in

equation (2.8). This type of matrix decomposition is unusual. The diagonalization of

complex symmetric matrices is a topic which has not received much attention because

of the following [8], [9], [43]:

• Complex Hermitian matrices are encountered much more often in practice than

complex symmetric matrices.

• A straightforward approach to the tridiagonal reduction of a complex symmetric

matrix can encounter numerical instability that results in significant loss of

accuracy.

• Complex symmetric matrices do not benefit from all of the advantageous prop-

erties of real symmetric matrices. For instance, a complex symmetric matrix

cannot be reduced to diagonal form by a unitary similarity transformation.

Because of the possibility of encountering instability, the symmetry of complex sym-

metric matrices is ordinarily not exploited in finding its EVD, but instead an EVD

process for general nonsymmetric complex matrices is used. However, Kim explores

the potential for exploiting the symmetry of C in finding its EVD, using a proce-

dure which is analogous to the most efficient procedure for finding the EVD of real

symmetric matrices. The procedure for real symmetric matrices consists of these

steps:
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1. Reduce the matrix to tridiagonal form using a sequence of unitary Householder

reflections.

2. Compute the eigenvalues and eigenvectors of the tridiagonal matrix. The eigen-

values of the tridiagonal matrix are the same as those of the original matrix,

because the first step uses similarity transformations.

3. Recover the eigenvectors of the original matrix using a sequence of the House-

holder reflections used in the first step.

In complex matrix arithmetic, similarity transformations with unitary matrices are

ordinarily preferred because they are norm-preserving. However, in this case, since C

is complex symmetric rather than Hermitian, unitary transformations do not preserve

symmetry. Instead, a sequence of unitary Householder reflections that annihilates all

entries below the subdiagonal, for example, does not annihilate the entries above the

superdiagonal, so the matrix becomes upper Hessenberg rather than tridiagonal. This

increases computational cost significantly. A similarity transformation that preserves

symmetry can be accomplished with a complex matrix which is not unitary, but is

instead a complex orthogonal (CO) matrix [14]. CO matrices can be used to reduce

the complex symmetric matrix C to complex symmetric tridiagonal form.

2.4.1 Complex Orthogonal Rotations

A sequence of CO rotation matrices can be used to tridiagonalize complex

symmetric matrices. A CO rotation G, which is the complex analogue of the Givens
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rotation, is defined as:

G =

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

.

The angle θ is allowed to be complex; therefore, sin(θ) and cos(θ) can be complex.

The values of sin θ and cos θ are related to one another through the relationship

sin2(θ) + cos2(θ) = 1, which means that G is an orthonormal matrix because GTG =

GGT = I.

A single CO rotation matrix is used to annihilate a single entry from a column.

For example, the entries inG which annihilate the second entry in the column
{

a b
}T

through

G

{

a

b

}

=

{

α

0

}

are cos(θ) = a
α
and sin(θ) = −b

α
, with α =

√
a2 + b2. The value of θ itself is not

typically computed. In general, when G is Nev ×Nev, it takes the form

G =





































p−1 p Nev

1 · · · 0 0 · · · 0

...
. . .

...
...

...

p−1 0 · · · cos(θ) − sin(θ) · · · 0

p 0 · · · sin(θ) cos(θ) · · · 0

...
...

...
. . .

...

Nev 0 · · · 0 0 · · · 1





































. (2.10)

The position p represents the row number of the entry which will be annihilated using

the entry at row number (p− 1).
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When the entry being annihilated is in an Nev × Nev matrix, the only rows

affected by the multiplication are p − 1 and p. CO rotations can reduce a complex

symmetric matrix to tridiagonal form, but the entries are annihilated individually.

It is much more economical to use reflections instead of rotations for tridiagonal

reduction.

2.4.2 Complex Symmetric Tridiagonal Reduction

Two strategies have been presented that perform complex symmetric matrix

tridiagonal reductions using reflections [9], [21]. Both strategies progress from one

corner of the matrix along the diagonal to the opposite corner, annihilating entries of

the matrix outside of the tridiagonal, one row/column pair at a time.

The first strategy, the “splitting method”, involves annihilating the real part

of a row/column pair using a real Householder reflection followed by annihilating the

imaginary part of that same row/column pair (but reduced in length by 1 so that the

real part’s annihilation is retained) with another real Householder reflection. Next,

the remaining entry is annihilated by a CO rotation [9].

Another strategy keeps the real and imaginary parts together and is analogous

to performing real Householder transformations to obtain the tridiagonal matrix. By

modifying La Budde’s Method [29] to accommodate complex symmetric matrices,

Gansterer shows that a complex symmetric matrix can be tridiagonalized with CO

reflections [21]. La Budde’s Method is preferred to the “splitting method” because

it requires less memory throughput. Let a Householder-analogous CO reflection be
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defined as:

H := I − 2

β
vvT , where β = vTv and v ∈ C

n. (2.11)

The vector v is chosen so that Hx produces a vector with zeroes in all but the first

entry. For this to be true, v must be x± ê1
√
xTx where ê1 is a Euclidean unit vector.

Then,

β = 2(xTx± x1

√
xTx) (2.12)

and to maximize accuracy, the sign of the second term above is selected to minimize

2
β
. For real arithmetic, this decision ensures that the scalar coefficient 2

β
is bounded.

However, because x is complex, it is possible for xTx to be zero when x is nonzero.

A simple example of such an x is

x =

{

1 + i

1− i

}

.

This causes “catastrophic cancellation,” which results in β being zero or nearly zero,

and instability in the reflection matrix H. The possibility of catastrophic cancellation

exists in both the splitting method and the modified La Budde’s method.

2.4.3 Catastrophic Cancellation

Suppose during the tridiagonalization of a complex symmetric matrix of size

Nev, catastrophic cancellation is encountered at row/column κ. The form of the
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matrix at this point is:






























































α1 β1 · · · 0

β1 α2 β2
...

β2
. . . . . .

. . . ακ−1 βκ−1

βκ−1 ακ x1 x2 x3 · · · xr

x1 × × × · · · ×

x2 × × × · · · ×

x3 × × × · · · ×
...

...
...

...
...

. . . ×

0 · · · xr × × × × ×































































(2.13)

where r = Nev − κ and the vector x =
{

x1 x2 · · · xr

}T

corresponds to the vector

exhibiting catastrophic cancellation. The part of the matrix that has been tridi-

agonalized (the entries αj and βj where j = 1, . . . , κ−1) is called the “tridiagonal

tail”. The beginning of the tail corresponds to entries near α1; the end of the tail

corresponds to entries near ακ.

In [9], Bar-On and Ryaboy identify catastrophic cancellation and call it a

“breakdown”. They conclude that this problem is very unlikely to occur, as it in-

dicates that the real and imaginary parts of x have identical magnitudes and are

orthogonal. Bar-On and Ryaboy present an algorithm which is to be used when a

breakdown is encountered during tridiagonalization.

In Algorithm 1, a CO rotation is symmetrically applied at the beginning of the
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Algorithm 1: Bar-On and Ryaboy’s method for removing “breakdowns”

Given : A partially reduced matrix of the form equation (2.13), with a
breakdown at row/column κ

1 Perform one sweep of the complex variant of the QL algorithm from the
beginning to the end of the tridiagonal tail.

2 The final CO rotation in the sweep fills in row/column κ− 1 with
nonzeroes.

3 The fill-in row/column is annihilated.

tridiagonal tail to create a “bulge” - a new nonzero entry just outside of the tail. When

another CO rotation matrix is used to annihilate this bulge, a new bulge appears one

step down the tail. Repeating this process, which causes the bulge to move along the

tail, is called “bulge chasing” [42]. All together, the creation of the bulge, followed by

bulge chasing constitutes one sweep of the QL algorithm [15]. When the bulge reaches

the unreduced part of the matrix, instead of creating a bulge, the last CO rotation

matrix replaces the previously-annihilated row/column with nonzeroes, which must

be annihilated again. Kim [27] suggests using La Budde’s Method to tridiagonalize

the matrix and Algorithm 1 to avoid breakdowns. The similar matrices C and T are

related to one another through

C = QTQT (2.14)

with

QTQ = I. (2.15)

Considering the possibility of breakdowns, the CO matrix Q is

Q =
Nev−2
∏

i=1

Ki, where Ki =

{

GiH
′
i−1Ĥi, if a breakdown is present

Hi, otherwise.
(2.16)
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Model eo(Q) et(Q, T, C)

A 4.43× 10−3 1.75× 10−2

B 3.77× 10−3 6.49× 10−3

C 4.76× 10−4 2.83× 10−3

D 2.32× 10−4 3.46× 10−3

E 1.20× 10−2 2.85× 10−1

F 1.56× 10−2 1.19× 10−2

Table 2.1: Quality of Tridiagonalization

The matrix Hi is defined in equation 2.11 and the product of the CO rotations used

in a sweep of complex QL is represented by Gi. The sweep causes the reduction to

retreat by one row/column and H ′
i−1 is the CO reflection that annihilates the filled-

in entries. Finally, Ĥi is the new CO reflection that is used after the breakdown is

removed.

In order to determine the validity of the Q and T matrices, two metrics are

used. The first checks the orthogonality of Q from equation (2.15):

eo(Q) := max
i,j

|δij − (QTQ)ij|. (2.17)

The second verifies that C can be recovered using Q and T by measuring the difference

between QTQT and C with respect to the diagonal entries of C from equation (2.14):

et(Q, T, C) := max
i,j

∣

∣

∣

∣

∣

(QTQT )ij − Cij
√

CiiCjj

∣

∣

∣

∣

∣

. (2.18)

The results from tridiagonalizing the C matrices in the Industrial Test Suite using

Q from equation (2.16) are found in Table 2.1. This table shows that the quality of

the tridiagonal reduction is substantially worse than machine precision error. In all
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of the cases, when the resulting Q and T matrices are used to compute the EVD of

C, the quality of the resulting solution to the modal FRP from equation (2.9) is too

poor to be used in industry. The cause of this imprecision is identified and a method

for overcoming this problem is discussed in Chapter 4.
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Chapter 3

Low Rank Approach

The structure of a typical automobile is made of mostly one material: steel.

Consequently, analysts are able to represent structural damping for most of the struc-

ture with a single global structural damping coefficient γ. Structural damping for

components made of other materials is represented in Ks. When the number of el-

ements contributing to Ks is small, then there are several null rows and columns in

Ks. This means that Ks can be low rank which implies that Ks in equation (1.13)

has the potential of being low rank.

3.1 Low Rank Representation

An m × n matrix A with m ≥ n can be factored using a standard tool, the

singular value decomposition (SVD): A = UΣV T , where the orthogonal matrices U

and V are m ×m and n × n, respectively, and Σ is m × n. The nonzeroes in Σ are

located on the diagonal of the upper n×n part of Σ. The factorization can be written

as a sum of n rank-1 matrices:

A =
n
∑

i=1

σiuiv
T
i ,

where ui and vi are the ith columns of U and V , respectively, and σi is the (i, i) entry

in Σ. If there are only r nonzero values in Σ, where r < n, then the factorization can
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be expressed as a sum of r rank-1 matrices instead. A can be approximated by using

fewer than r rank-1 matrices, possibly resulting in savings in computation.

Given a matrix A as described above and a matrix norm || · ||, let the low rank

approximation (LRA) of A of rank r be defined as

Â = arg min
Ā

‖Ā− A‖, subject to rank(Ā) = r ≤ n.

The Eckart-Young-Mirsky theorem [24] states that if the matrix norm is the Frobenius

norm, then the truncated SVD can be used to create an approximation to A with a

lower rank.

Theorem 1 (Eckart-Young-Mirsky). Let A be an m × n matrix with m ≥ n.

Define the singular value decomposition as A = UΣV T , where UTU = I, V TV = I,

and Σ = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. If Σ̂ is defined as Σ̂ =

diag(σ1, σ2, . . . , σk, 0, . . . , 0), then the rank k matrix Â = UΣ̂V T is such that

||A− Â||F = min
rank(Ā)≤k

||A− Ā||F =
√

σ2
k+1 + . . .+ σ2

n.

For a symmetric matrix, such as the modal structural damping matrix, the

singular values are the absolute values of the eigenvalues of the matrix, and each

column of U is equal to the corresponding column of V , to within a sign. The SVD

becomes essentially an eigenvalue decomposition (EVD), with eigenvalues sorted by

absolute value and U = V . An LRA of A of rank-r that is optimal in the sense of

the Frobenius norm can be obtained by setting eigenvalues with magnitudes smaller

than a threshold to zero, effectively truncating the sum of rank-1 matrices used to

approximate A. Because FE structural damping matrices can have a low rank, it
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may be possible to approximate the modal structural damping matrices with LRAs.

Unfortunately, the values in Ks vary greatly in magnitude from one model to another,

with larger values exerting disproportionate influence on eigenvalue decompositions,

which then causes the eigenvalue ranges and distributions to vary across models.

For the Industrial Test Suite, the maximum eigenvalues of Ks vary from O(105) to

O(1012). A standard cutoff value for determining LRAs using Theorem 1 requires that

the eigenvalue ranges of all modal structural damping matrices have some consistency.

This can be accomplished by using weighting matrices to scale the rows and columns

of Ks, which can diminish the influence of the extreme values on the EVD, thereby

exposing the underlying structure of Ks. A theorem of Markovsky [35] tells how an

optimal LRA of a matrix weighted on both sides can be obtained:

Theorem 2 (Two-Sided Weighted LRA). Define the two-sided weighted matrix

L = WlAWr, where the square matrices Wl and Wr are the left and right weighting

matrices. Let L̂∗ represent the optimal unweighted LRA of L of rank-k. Then,

Â∗ = W−1
l L̂∗W−1

r (3.1)

is a solution of the following two-sided weighted LRA problem

min
rank(Ā)≤k

||Wl(A− Ā)Wr||F .

Determining the most appropriate weighting matrices that produce optimal

LRAs can be complicated. A common approach is to use weighting matrices that

have a special structure such as diagonal or block-diagonal so that the inverses in

equation (3.1) are easy to compute [34].
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3.2 Determining the Rank of the Structural Damping Matrix

When there is no viscous damping, the modal FRP from equation (1.13) be-

comes

[−ω2I + (1 + iγ)Λ + iKs]Xs(ω) = Fs(ω). (3.2)

If all of the structural damping in the automobile model can be represented by the

global structural damping factor, then equation (3.2) becomes

[−ω2I + Λ + iγΛ]Xs(ω) = Fs(ω)

and Λ’s direct impact on the structural damping term is obvious. The structural

damping of models that have this simple damping can be compared to one another

easily by comparing the models’ γ values. This is accomplished by removing the

structural damping term’s dependence on Λ. When the structural damping of the

model can not be represented by a single γ, then matrix Ks must be used as in

equation (3.2). Just as the level of structural damping γ can be found from matrix

γΛ by dividing by the eigenvalues in Λ, matrixKs can similarly be interpreted relative

to the eigenvalues by multiplying on its left and right by Λ−1/2. Equation (3.2) can

be written as

{−ω2I + Λ1/2
[

I + i(γI + Λ−1/2KsΛ
−1/2)

]

Λ1/2}Xs(ω) = Fs(ω)

which suggests that a suitable choice for the left and right weighting matrices for a

weighted LRA of Ks is Λ
−1/2.

Since some of the modes in the frequency response can be rigid body modes, it

is important to be mindful while forming the weighting matrix W that some entries
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in Λ can be zero or nearly zero. Then, W is the pseudoinverse of Λ1/2:

W := diag (w1, . . . , wNev
) , where wi =

{

1√
Λi,i

, if Λi,i > 0

1, otherwise.
(3.3)

Let L represent the two-sided weighted modal structural damping matrix:

L = WKsW (3.4)

and let its eigenvalue decomposition be determined to be

L = ΦLΛLΦ
T
L (3.5)

where ΦT
LΦL = I and ΛL = diag(λ1, λ2, . . . , λNev

). We find that a Ks matrix and

its corresponding weighted matrix L generally have similar ranks,but dramatically

different eigenvalue ranges. The new eigenvalue ranges of the weighted modal struc-

tural damping matrices are similar across models, and a consistent method can now

be used to determine the ranks of L matrices. Table 3.1 shows how the maximum

eigenvalues of the models in the Industrial Test Suite are much more similar for L

than for Ks.

After the values in ΛL are ordered so that |λ̄1| > |λ̄2| > · · · > |λ̄Nev
|, the first

k entries are used to form Λ̂L = diag(λ1, λ2, . . . λk). Next, let L̂ represent a rank-k

approximation of L:

L ≈ L̂ = Φ̂LΛ̂LΦ̂
T
L, (3.6)

where Φ̂L contains the first k columns of ΦL. Let the arbitrary value τLRA represent

an LRA tolerance, which can be used for any automobile model’s structural damping

36



Model Max e’value of Ks Max e’value of L

A 2.11× 106 1.00× 10−1

B 4.11× 105 1.99× 10−2

C 4.81× 1012 2.04× 100

D 4.51× 108 1.34× 10−1

E 8.80× 106 1.50× 10−1

F 4.08× 106 2.86× 10−1

Table 3.1: Comparing Maximum Eigenvalues of the Ks to L = WKsW

matrix. Using Theorem 1, the relative difference between the original structural

damping matrix and its LRA through the weighting matrix can be written as:

||W (Ks − K̂s)W ||F
||WKsW ||F

=
||L− L̂||F
||L||F

=

min
rank(L̄)≤k

||L− L̂||F

||ΛL||F
< τLRA.

The above equation reduces to

√

√

√

√

Nev
∑

r=k+1

λ
2

r

√

√

√

√

Nev
∑

r=1

λ
2

r

< τLRA. (3.7)

Therefore, the rank of the weighted modal structural damping matrix, NLRA is

NLRA(τLRA) := minimum k such that
Nev
∑

r=k+1

λ
2

r < τ 2LRA

Nev
∑

r=1

λ
2

r. (3.8)

The summation on the right hand side of equation (3.8) is constant, therefore, once

ΛL is known, the LRA’s rank is trivial to compute as a function of the common

tolerance τLRA.
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Figure 3.1: The Weighted LRAs for the Industrial Test Suite

Figure 3.1 shows how the ranks of the modal structural damping matrices in

the Industrial Test Suite (as a ratio of each model’s Nev) decrease as τLRA increases.

For some models, such as Model B and Model D, a very stringent τLRA produces a

very low rank approximation. In contrast, Model C is required to be represented

as full rank unless τLRA is set to a large enough value to result in an inaccurate

approximation.

Let the LRA of Ks be represented by K̂s. The weighting matrices transform

L̂ into K̂s through the following:

K̂s = (W−1Φ̂L)Λ̂L(W
−1Φ̂L)

T . (3.9)
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The modal structural damping matrix is now written as

Ks ≈ K̂s = JsΛ̂LJ
T
s (3.10)

where the non-orthogonal matrix Js = W−1Φ̂L is Nev × NLRA. In the low rank

approach, the matrix Ks is replaced with its LRA, K̂s, whose rank is NLRA.

3.3 Solving Modal FRPs using the Low Rank Approach

In order to determine the rank of Ks, the eigenvalues of the weighted LRA

of Ks must be computed. The most effective way of accomplishing this task is to

first use Householder reflections to tridiagonalize the real symmetric matrix L from

equation (3.4), where W is defined in equation (3.3). This yields the real symmetric

tridiagonal matrix

T := QTLQ, (3.11)

where Q is an orthogonal matrix containing the product of the Householder reflections

used to annihilate entries outside the tridiagonal. Householder reduction is performed

in the LAPACK routine, DSYTRD, with the FLOP cost of 4
3
N3

ev. Since equation

(3.11) represents a similarity transformation, the eigenvalues of T are the same as

those of L.

If L has a very small NLRA, then shortly after NLRA rows and columns of L

have been annihilated, the unreduced matrix will be zero. A potentially substantial

savings in FLOPs can be gained if this situation is detected and used to stop the

tridiagonal reduction process early.
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The eigenvalue decomposition of T is

T = ΦTΛLΦ
T
T .

which can be computed by the MR3 algorithm [17] with O(N2
ev) FLOPs. The entries

in ΛL and columns of ΦT are sorted according to the absolute value of the eigenvalues.

Then, given τLRA, equation (3.8) is used to determine NLRA very inexpensively. The

first NLRA columns of ΦT form the truncated Φ̂T and the corresponding rows and

columns of ΛL are used to form Λ̂L, so that T ≈ T̂ = Φ̂T Λ̂LΦ̂
T
T . The matrix Js is

recovered through

Js = W−1
(

QΦ̂T

)

. (3.12)

The most costly operation in equation (3.12) is the backtransformation step, con-

tained within the parentheses, which can be computed using the LAPACK routine,

DORMTR. From Table 1.2, its FLOP cost is 2N2
evNLRA+NevNLRA. The total FLOP

cost of finding the LRA of the weighted modal structural damping matrix is

CLRA =
4

3
N3

ev + 2N2
evNLRA. (3.13)

Now, using the LRA of Ks, equation (3.2) becomes

[

−ω2I + (1 + iγ)Λ + iJsΛ̂LJ
T
s

]

Xs(ω) = Fs(ω). (3.14)

This modal FRP can be solved efficiently using the SMW formula in equation (2.5),

with the substitutions

D(ω) := −ω2I + (1 + iγ)Λ ∈ C
Nev×Nev ,

P = R := Js ∈ R
Nev×Nk , and

Σ := iΛ̂L ∈ C
Nk×Nk ,
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Step Task FLOP Cost

(1) D := D(ω)−1, Σ := Σ(ω)1/2 Nev +Nk

(2) G1 := P TDFs 4NevNcNk+6NevNc

(3) G1 := ΣG1 6NkNc

(4) G2 := P TDP 2NevNk(Nk+1)

(5) G2 := I+ΣG2Σ 6N2
k+Nk

(6) G1 := G−1
2 G1

4
3
N3

k+8N2
kNc

(7) G1 := ΣG1 6NkNc

(8) Fs := PG1−Fs 4NevNkNc

(9) Xs := −DFs 6NevNc

Total Xs := (D+PΣP T )−1Fs
4
3
N3

k+2NevN
2
k+8NcN

2
k+8NevNcNk

Table 3.2: Symmetric SMW Operations per Frequency for Low Rank Approach

where Nk = NLRA. The solution to equation (3.14) is

Xs(ω) = (D(ω) + PΣP T )−1Fs(ω)

= [D−1 −D−1PΣ1/2(I + Σ1/2P TD−1PΣ1/2)−1Σ1/2P TD−1]Fs. (3.15)

D(ω) and Σ are complex diagonal matrices, so the operations D−1 and Σ1/2 are very

inexpensive. All of the matrices, except for D, are frequency independent. But, be-

cause D(ω) is used throughout equation (3.15), the solution must be computed for

every frequency. The work required to execute the matrix operations in equation

(3.15) is broken up into steps with each corresponding FLOP cost in Table 3.2. The

steps are chosen to minimize the amount of complex arithmetic. This means that

Steps (2), (4), and (8) involve matrix multiplications of purely real matrices by com-

plex matrices, which are not standard BLAS subprograms. Also, the G2 matrix in

41



Steps (4), (5), and (6), is symmetric and only the diagonal and either the upper or

lower triangle of the matrix is maintained.

The total FLOP cost of computing the solution of the modal FRP of equation

(3.2) is equal to the sum of the significant operations in computing the LRA of Ks

(dominated by the tridiagonal reduction and backtransformation steps) and the cost

of computing the response at a single frequency, listed in Table 3.2, multiplied by the

number of frequencies:

Cost = CLRA +Nfreq

(

4

3
N3

k + 2NevN
2
k + 8NcN

2
k + 8NevNcNk

)

. (3.16)

When the rank of Ks is low, the cost of computing the LRA is insignificant compared

to the total cost of finding the responses at every frequency.

3.3.1 Low Rank Structural Damping and Viscous Damping

When a model has both structural and viscous damping, and Ks is represented

with an LRA, it is possible to use the SMW formula to solve the FRP efficiently. The

two damping matrices are factored according to equations (2.3) and (3.10). Then,

equation (1.13) is reformulated as

{

−ω2I + (1 + iγ)Λ +
[

U Js

]

[

iωΣB

iΛ̂L

][

V T

JT
s

]}

Xs(ω) = Fs(ω). (3.17)
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Step Task FLOP Cost

(1) D := D(ω)−1, Σ := Σ(ω)1/2 Nev +Nk

(2) G1 := RTDFs 4NevNcNk+6NevNc

(3) G1 := ΣG1 6NkNc

(4) G2 := RTDP 2NevNk(2Nk+1)

(5) G2 := I+ΣG2Σ 12N2
k+Nk

(6) G1 := G−1
2 G1

8
3
N3

k+8N2
kNc

(7) G1 := ΣG1 6NkNc

(8) Fs := PG1−Fs 4NevNkNc

(9) Xs := −DFs 6NevNc

Total Xs := (D+PΣRT )−1Fs
8
3
N3

k+4NevN
2
k+8NcN

2
k+8NevNcNk

Table 3.3: Nonsymmetric SMW Operations per Frequency for Low Rank Approach

Equation (3.17) can then be solved using the SMW formula with the substitutions

D(ω) := −ω2I + (1 + iγ)Λ ∈ C
Nev×Nev ,

P :=
[

U Js

]

∈ R
Nev×Nk ,

R :=
[

V Js

]

∈ R
Nev×Nk , and

Σ(ω) :=

[

iωΣb

iΛ̂L

]

∈ C
Nk×Nk

(3.18)

where Nk = rank(Bnz) + NLRA. If the modal viscous damping matrix is symmetric,

P = R, and the response at each frequency is computed using the steps outlined in

Table 3.2. The factorization in equation (2.3) is very inexpensive, since Bnz is a very

small matrix. The total FLOP cost is given in equation (3.16), where Nk is defined

as the sum of the ranks of Bnz and Ks.

If the modal viscous damping matrix is not symmetric, P 6= R, and the re-
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sponse is computed with a different set of steps, outlined in Table 3.3. The total

FLOP cost is

Cost = CLRA +Nfreq

(

8

3
N3

k + 4NevN
2
k + 8NcN

2
k + 8NevNcNk

)

. (3.19)

3.4 Using the Low Rank Approach with Structure-Fluid In-
teraction

The low rank approach can be extended to solve modal FRPs with structure

and fluid interaction in one of two ways, depending on the form of the acoustic fluid

matrices.

3.4.1 General Acoustic Fluid Formulation

A partitioned solution approach is used when the modal fluid “damping” ma-

trix is full, which means that Zf in equation (1.17) is also full. First, the matrix

equation is cast as a system of equations:

ZsXs + iωAXf = Fs

iωATXs + ZfXf = Ff .
(3.20)

All of the matrices in the system above, except the area matrix A, are frequency-

dependent. The first equation is rearranged into

Xs = Z−1
s (Fs − iωAXf ) (3.21)

and used in the second equation:

(

Zf + ω2ATZ−1
s A

)

Xf = Ff − iωATZ−1
s Fs.
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The above equation contains the products Z−1
s A and Z−1

s Fs which can be combined

into Z−1
s

[

A Fs

]

. These products can then be computed using the SMW formula once

per frequency with the substitutions in equation (3.18) with Nk = rank(Bnz)+NLRA.

Let Z̄f := Zf + ω2ATZ−1
s A and F̄f := Ff − iωATZ−1

s Fs. Then, the acoustic fluid

solution is

Xf = Z̄−1
f F̄f . (3.22)

The number of acoustic fluid modes is typically much smaller than the number of

structural modes; therefore, equation (3.22) is relatively inexpensive to solve. After

Xf is determined at a particular frequency, equation (3.21) is used to solve for Xs.

Table 3.4 outlines all of the steps and the cost of finding the structural and acoustic

fluid responses at a particular frequency, when modal viscous damping is symmetric.

The FLOP cost of finding the structural and acoustic fluid responses at a single

frequency, considering only the cubic terms is:

CLR1 = Nev(8NfNk + 8NcNk + 12NfNc)

+N2
k

(

4

3
Nk + 2Nev + 8Nf + 8Nc

)

+N2
f

(

4Nev +
4

3
Nf + 8Nc

)

.

(3.23)

The total FLOP cost is

Cost = CLRA +NfreqCLR1. (3.24)

3.4.2 Diagonal Acoustic Fluid Formulation

If the FE fluid “damping” is Rayleigh (proportional) damping, the SMW for-

mula can be used to solve the modal FRP efficiently. Let the FE fluid “damping”

45



Step Task FLOP Cost

(1) D := D(ω)−1, Σ := Σ(ω)1/2 Nev+Nk

(2) G3 := P TDA 2NevNf (2Nk+1)

(3) G4 := P TDFs 4NevNcNk+6NevNc

(4)
[

G3 G4

]

= Σ
[

G3 G4

]

6Nk(Nf+Nc)

(5) G2 := P TDP 2NevNk(Nk+1)

(6) G2 := I + ΣG2Σ 6N2
k+Nk

(7)
[

G3 G4

]

:= G−1
2

[

G3 G4

]

4
3
N3

k+8N2
k (Nf+Nc)

(8)
[

G3 G4

]

:= Σ
[

G3 G4

]

6Nk(Nf+Nc)

(9)
[

Ā Fs

]

:= P
[

G3 G4

]

−
[

A Fs

]

4NevNk(Nf+Nc)

(10) Ā := −DĀ, Fs := −DFs 6Nev(Nf+Nc)

(11) Zf := ω2If − iωCf − Λf + ω2AT Ā 4N2
f (Nev+1)

(12) Ff := Ff − iωATFs 4NfNevNc

(13) Xf := Z−1
f Ff

4
3
N3

f +8N2
fNc

(14) Xs := Fs − iωĀXf 8NevNfNc

Table 3.4: Low Rank Approach Operations per Frequency for General Fluid Matrices

in equation (1.2) be represented as a linear combination of the FE fluid “mass” and

“stiffness” matrices.

C := β0E+ β1H, (3.25)

where β0 and β1 are two scalar values. (If the FE fluid “damping” is not modeled at

all, both scalars equal 0.) The modal FRP is represented by equation (1.17), where

Zs is the coefficient matrix from equation (1.13) and

Zf = (ω2 − iωβ0)I + (1− iωβ1)Λf . (3.26)
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Since Zf is diagonal, the modal FRP in equation (1.16) can be solved using the SMW

formula. Using the system of equations in equation (3.20), rearrange the second

equation into

Xf = Z−1
f

(

Ff − iωATXs

)

(3.27)

and use it in the first equation:

(

Zs + ω2AZ−1
f AT

)

Xs = Fs − iωAZ−1
f Ff . (3.28)

The AZ−1
f AT term is a rank-Nf update to Zs. From this perspective, the SMW

formula can be used to solve for Xs with the substitutions:

D(ω) := −ω2I + (1 + iγ)Λ ∈ C
Nev×Nev ,

P :=
[

Js U A
]

∈ R
Nev×Nk ,

Σ(ω) :=









iΛ̂L

iωΣB

ω2Z−1
f (ω)









∈ C
Nk×Nk , and

F (ω) := Fs − iωAZ−1
f Ff ∈ C

Nev×Nc

when the viscous damping matrix is symmetric and where Nk = rank(Bnz)+NLRA+

Nf . The steps needed to compute Xs and Xf for the symmetric Bnz case are

outlined in Table 3.5. The FLOP cost of computing the response at a single frequency

is

CLR2 = Nev(8NfNc + 8NcNk)

+N2
k

(

4

3
Nk + 2Nev + 8Nc

)

.
(3.29)

The total FLOP cost is

Cost = CLRA +NfreqCLR2. (3.30)
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Step Task FLOP Cost

(1) Zf := ω2If − iωCf − Λf 6Nf

(2) Ff := Z−1
f Ff 6NfNc

(3) Fs := Fs − iωAFf 4NevNfNc

(4) D := D(ω)−1, Σ := Σ(ω)1/2 Nev+Nk

(5) G1 := P TDFs 4NevNcNk+6NevNc

(6) G1 := ΣG1 6NkNc

(7) G2 := P TDP 2NevNk(Nk+1)

(8) G2 := I + ΣG2Σ 6N2
k+Nk

(9) G1 := G−1
2 G1

4
3
N3

k+8N2
kNc

(10) G1 := ΣG1 6NkNc

(11) Fs := PG1 − Fs 4NevNkNc

(12) Xs := −DFs 6NevNc

(13) Xf := ATXs 4NfNevNc

(14) Xf := Z−1
f Xf 6NfNc

(15) Xf := Ff − iωXf 5NevNc

Table 3.5: Low Rank Approach Operations per Frequency for Diagonal Fluid Matrices
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Chapter 4

Complex Symmetric Approach

If the rank of the modal structural damping matrix is high, it may be preferable

to treat the matrix as if it has full rank and use the complex symmetric approach

described in Section 2.4 to solve the modal FRP. However, before this approach can be

used, the loss of precision in Q and T demonstrated in Table 2.1 from tridiagonalizing

C (where C is defined in equation (2.7)) must be addressed.

Closer inspection of the xTx inner products, which are used to form the

complex orthogonal (CO) reflections, makes the underlying issue more apparent. If

x = y + iz, then

xTx = yTy − zTz+ i2yTz, (4.1)

and the real part of the result can suffer from cancellation error if yTy and zTz are

nearly equal. The precision of the difference between the two is reduced by the number

of digits of agreement [22]. For example, suppose a machine is able to store floating

point numbers with four digits of precision and let a complex vector be defined as

x =

{

10.01 + i10.00

10.00− i10.00

}

.
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Then, using the machine’s four digit limitation, the following steps compute xTx.

xTx = [(100.2 + 100.0− (100.0 + 100.0) + i2(100.1− 100.0)]

= 0.2 + i0.2

Since there are three digits of agreement between yTy and zTz, three digits of preci-

sion are lost in the result. The author of this dissertation calls this type of imprecision

due to cancellation error a “cancellation event” (CE). A CE occurs when xTx ≈ 0 in

a relative sense, and a metric which is used to detect its existence is derived in the

next section.

4.1 The Cancellation Event

CO reflections are used to reduce the complex symmetric matrix C to tridiag-

onal form. Let a vector x represent nonzero entries of C at and below a subdiagonal.

Then, a CO reflection annihilates the entries in x below the subdiagonal. By symme-

try, the entries to the right of the corresponding superdiagonal are also annihilated

simultaneously. It is convenient to scale the reflection vector v, which is used to

construct the CO reflection, so that its first entry is 1. This allows the essential part

of v to be stored below the subdiagonal of the column which is being annihilated. In

the process of doing this scaling, the amount of cancellation error that is introduced

becomes evident, and a means for detecting its presence is derived. After scaling, the

vector v is

v :=
1

x1 ±
√
xTx

(

x± ê1
√
xTx

)

(4.2)
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and the scalar value 2
β
(with β = vTv) becomes

2

β
=

(

x1 ±
√
xTx

)2

xTx± x1

√
xTx

= 1± x1√
xTx

. (4.3)

By definition, the CO reflection is orthonormal:

HTH =

(

I − 2

β
vvT

)(

I − 2

β
vvT

)

= I − 4

β
vvT +

4

β2
(vTv)vvT = I. (4.4)

If there are large entries in H, then the orthonormality property above relies on

cancellation to hold true. Thus, the sign in front of the
√
xTx term is chosen to

minimize the magnitude of v which minimizes the magnitude of entries in H.

When the CO reflection is applied to x, the result is

Hx =

(

I − 2

β
vvT

)

x = x− 2vTx

vTv
v = x− x∓ ê1

√
xTx = ∓ê1

√
xTx (4.5)

which shows that the corresponding subdiagonal entry in the tridiagonal tail becomes

∓
√
xTx. The product xTx is needed to compute v and 2

β
, which are used to compute

a CO reflection, and a subdiagonal entry in T . If a lot of precision is lost in the

product xTx, then equations (2.14) and (2.15) lose their validity.

The loss of precision due to cancellation in the real part of the product xTx

in equation (4.1) can be expressed as the ratio of yTy (or zTz) to the difference

yTy − zTz, in which the cancellation has taken place. In the complex quantity xTx,

if yTz ≫ yTy − zTz, the imaginary part dominates the real part and the loss of

precision in the real part is of less importance. With this in mind, it is appropriate

to express the loss of precision due to cancellation as the ratio of yTy (or zTz) to

the magnitude of xTx. A measure of the severity of the loss of precision due to
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cancellation is the number of digits lost in a cancellation event, and this is given by

the quantity

CE value = log10
yTy

√

(yTy − zTz)2 + (2yTz)2

= log10
yTy

|xTx| . (4.6)

When the CE value is greater than a chosen CE tolerance, τCE, which represents

the acceptable number of digits lost, a CE is said to be encountered in forming the

product xTx.

The CE value calculated in equation (4.6) does not depend on the numerical

precision of the real or imaginary parts of x. Furthermore, if, when a CE is encoun-

tered, a higher precision is used to compute xTx, then xTx will still be approximately

zero. When xTx is approximately zero, then small variations in the computation of

xTx produces large variations in the value of 2
β
in equation (4.3), and the entries in

the resulting CO reflection H can become very large. If there are very large entries in

H, then the accuracy with which HTH = I is satisfied will be limited because of the

cancellation that will be required to produce only ones and zeros in I. This loss of

accuracy will also be seen in an orthogonal matrix formed as a product of reflection

matrices.

To understand the character of the CE values encountered during the tridiag-

onal reduction of a large matrix, it is helpful to plot graphs of these values versus the

column number. Figure 4.1 shows the CE values encountered while tridiagonalizing

the complex symmetric matrix from Model E. For this implementation, the tridiago-
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nal reduction progresses from the lower-right corner up toward the upper-left corner.

It is evident that the cancellation event is not an infrequent occurrence.

Figure 4.2 shows the distribution of cancellation event values encountered dur-

ing the tridiagonal reduction of a complex symmetric matrix containing random en-

tries. This matrix produces a graph that also has a wide variation of CE values. The

effect of CEs is not negligible. The tridiagonal reduction procedure exhibits both

instances of very high cancellation and from frequent occurrences of low cancellation.

The cancellation event has the character of a chance event, and each row/column’s

CE value cannot be predicted before the tridiagonal reduction begins.

The matrix C has a complex diagonal and is purely imaginary outside of its

diagonal. The first row/column in C which is annihilated has no cancellation since

it is purely imaginary. The first CO reflection vector and scalar, defined in equations

(4.2) and (4.3), are purely real because the x which is used to create them is purely

imaginary. This means that the CO reflection which annihilates the first row/column

of C is purely real. After this CO reflection is applied to C, the real part of the non-

diagonal entries in the new C matrix are different from zero, but remain dominated

by their imaginary counterparts. After several rows/columns are annihilated, the

real and imaginary parts of C are more similarly matched, and it is only then that a

cancellation event is encountered. The figures reflect this observation. At the end of

the tridiagonalization process, the annihilated vectors are shorter and are less likely

to encounter agreement to many digits; therefore, the end of the tridiagonalization

process is usually free of cancellation, which is also reflected in the figures.

Algorithm 1, described in Section 2.4.3, is useful for avoiding infrequent break-
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Figure 4.1: CE Values for C from Model E
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Figure 4.2: CE Values for C with Random Entries
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downs (xTx = 0 when x 6= 0). However, cancellation events are not infrequent and

since the first step in the algorithm is a variant of the QL algorithm, the repeated

use of Algorithm 1 causes the subdiagonal entries in the tridiagonal tail to approach

zero. As the tridiagonal tail becomes more diagonalized, the algorithm becomes less

able to remove CEs.

4.2 Characteristics of CE Removal Methods

The method presented by Bar-On and Ryaboy is ineffective at removing many

CEs encountered while tridiagonalizing complex symmetric matrices from automobile

models. This section identifies characteristics that would be needed for a CE removal

method to be successful. With these characteristics in mind, an effective CE removal

method has been developed and is presented in the next section.

Application of LaBudde’s Method for real matrices to tridiagonal reduction of

complex symmetric matrices entails annihilating the part of each successive row/column

of C outside the tridiagonal using a CO reflection. In the complex symmetric case,

just before forming and applying every CO reflection, the CE value associated with

forming the xTx product for the reflection must be checked, according to equation

(4.6). If the number of digits lost in computing xTx is greater than the CE tolerance,

then the row/column possesses a CE. Before any more work is done to tridiagonalize

the matrix, the CE must be removed. The Implicit Q Theorem [23] provides some

valuable information about symmetric tridiagonal reduction which must be kept in

mind in developing a successful CE removal strategy.

Theorem 3 (Implicit Q Theorem). Suppose Q = [q1, . . . ,qn] and V = [v1, . . . ,vn]
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are orthogonal matrices such that QTAQ = T and V TAV = S are unreduced, tridi-

agonal matrices and A is an n× n symmetric matrix. If v1 = q1, then vi = ±qi and

ti,i−1 = ±si,i−1 for i = 2 . . . n.

The first column q1 of Q may be chosen arbitrarily, but it determines the

remaining columns of Q, to within a sign, and the subdiagonal of T , to within a

sign. Equation (4.5) shows that when entries in a row/column are annihilated with

a CO reflection, the resulting subdiagonal entry in the tridiagonal matrix is ∓
√
xTx.

Therefore, if xTx is found to be too small for a particular row/column, it can only

be altered by modifying the first column q1 in some way. The first step of Algorithm

1 is a complex QL sweep which changes the first column of Q. This change enables

the algorithm to modify the value of xTx and the CE can be removed. However,

its tendency to annihilate the subdiagonal entries in the tridiagonal tail makes it

impractical for repeated use.

It is possible to change the CE value of x by changing the numerator of the frac-

tion in equation (4.6). This can be accomplished by reverting the unreduced matrix

to its state before the previous row/column was annihilated and re-annihilating the

previous row/column using an alternate annihilation scheme. However, this method

will not modify the first column q1, and the denominator of the fraction, xTx, which

corresponds to the square of the subdiagonal entry which remains after x is annihi-

lated, will remain unchanged. If xTx is very small, then this method will never be

successful at removing CEs.

If a method uses a bulge chasing (implicit QR) algorithm [42], it is likely that
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the complex sines and cosines (the values that make up the CO rotations as seen in

equation (2.10)) will have magnitudes greater than 1. The sines and cosines are used

to form the updated Q that has a new first column. So, in any CE removal method,

the magnitudes of entries in Q must be monitored to ensure that those entries do not

become huge, because if they do, then Q will rely on cancellation to keep equation

(2.15) valid.

Finally, a CE removal method must reliably be able to remove the CE in one

of its first attempts. If many attempts must be made for each CE, the time required

for this will cause the tridiagonal reduction to become a greater bottleneck for finding

the eigenvalue decomposition of C.

4.3 A New Cancellation Event Removal Method

Using the characteristics described in section 4.2, a new method is presented

which removes cancellation events efficiently. This method is not a variation of the

QR algorithm; therefore it may not share the inherent tendency of the QR algorithm

to zero subdiagonal and superdiagonal entries in the tridiagonal tail. Nearly every

time this method is used, the CE is removed on its first attempt.

Suppose the tridiagonal reduction of an Nev ×Nev complex, symmetric matrix

C progresses from the top-left corner of C to the bottom-right corner of C, and

during this process a CE is found at row/column κ. Let the matrix at this state be
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represented with C̄. The form of C̄ is

C̄ =































































α1 β1 · · · 0

β1 α2 β2
...

β2
. . . . . .

. . . ακ−1 βκ−1

βκ−1 ακ x1 x2 x3 · · · xr

x1 × × × · · · ×

x2 × × × · · · ×

x3 × × × · · · ×
...

...
...

...
...

. . . ×

0 · · · xr × × × × ×































































(4.7)

where r = Nev − κ. Let C̄ be partitioned as

C̄ =









T1 Ô1 O

ÔT
1 T2 Ô2

O ÔT
2 C̄ ′









. (4.8)

The square matrix C̄ ′ is the unreduced part of C̄ and is of dimension (Nev − κ+1)×

(Nev − κ+ 1). The cancellation event is situated in the first row/column of C̄ ′. The

tridiagonal tail is separated into a small p× p tridiagonal matrix T1 at the beginning

of the tail, and tridiagonal matrix T2 which is of dimension (κ− p− 1) and contains

the remainder of the tail. The O matrices are null, and submatrices Ô1 and Ô2 each

have only one nonzero entry, having the form

Ô1 =

[

0̃ O

C̄p,p+1 0̃T

]

and Ô2 =

[

0̃ O

C̄κ−1,κ 0̃T

]

.
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Since the CO reflections are applied symmetrically, C̄ ′, T1, and T2 are symmetric. The

following subsections describe the steps in the new method which together remove a

cancellation event in the first row/column of C̄ ′.

4.3.1 Step 1: The Small Tridiagonal Eigenvalue Decomposition

The first step in the CE removal method is to find the eigenvalue decomposition

of T1

T1ΦT1
= ΦT1

ΛT1

and scale ΦT1
so that ΦT

T1
ΦT1

= I and ΦT
T1
T1ΦT1

= ΛT1
. The EVD above is determined

using a procedure developed by Cullum and Willoughby [15]. Define a complex

orthogonal matrix Υκ ∈ C
Nev×Nev that has the form

Υκ =

[

ΦT1
O

O I

]

. (4.9)

When the matrix C̄ is transformed into a similar matrix C̄(1) through

C̄(1) := ΥT
κ C̄Υκ, (4.10)

because of the orthogonality of eigenvectors in ΦT1
with respect to T1, the upper-left

corner of C̄(1) has an arrow shape. The T1 matrix has been diagonalized, with entries

equal to the eigenvalues of T1. The first column of Ô1 is now completely nonzero,

equal to the last column of ΦT
T1
, scaled by C̄p,p+1. Graphically, the first (κ− 1) rows
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and columns of C̄(1) have the form























































p κ−1

λ1 0 +

0 λ2 0 +

0
. . . . . .

...

. . . λp−1 0 +

p 0 λp ×

+ + · · · + × × ×

× × . . .

. . . . . . ×

κ−1 × ×























































where “×” represents a nonzero entry. Entries marked with “0” were nonzero but

have become zero and “+” represents new nonzero entries. The λ1, λ2, . . . , λp values

are the diagonal entries of ΛT1
.

4.3.2 Step 2: Annihilate Most of the Arrow

Zha’s algorithm [46] is a two-way chasing algorithm that transforms real, sym-

metric arrowhead matrices to tridiagonal form using Givens rotations. The second

step in the CE removal method uses this algorithm, modified to use CO rotations,

to convert the arrowhead form to nearly tridiagonal form. Completely restoring the

tridiagonal matrix would have no effect on removing CEs, therefore, all but the final

step of Zha’s algorithm is used. The series of rotations is halted when there is one

bulge entry remaining. Let the product of the CO rotation matrices used in this step
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be called Ωκ, and the new similar matrix, C̄(2), be defined as

C̄(2) = ΩT
κ C̄

(1)Ωκ. (4.11)

Now, the first (κ− 1) rows and columns of C̄(2) have the form



















































p κ−1

× ×

× . . . . . .

. . . × ×

× × 0 +

p 0 × ×

+ × × ×

× × . . .

. . . . . . ×

κ−1 × ×



















































.

The form of the matrix resembles a tridiagonal matrix at a step during a bulge-chasing

algorithm. Zha’s algorithm chases bulges toward the beginning of the tridiagonal tail.

The “chase” must now be directed toward the end of the tridiagonal tail; however,

because of the “0” next to the bulge, the first CO rotation used to chase in the new

direction behaves like a permutation matrix. The matrices Υκ in Step 1 and Ωκ in

Step 2 successfully modify the first column q1 of Q which means that the product

xTx is modified due to the Implicit Q Theorem.
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4.3.3 Step 3: Permute Rows and Columns p and p+1

Let a permutation matrix Pκ be defined as an Nev ×Nev identity matrix, but

with rows and columns p and p+ 1 swapped:

Pκ =

























p p+1 Nev

1 · · · 0 0 · · · 0
...

. . .
...

...
...

p 0 · · · 0 1 · · · 0

p+1 0 · · · 1 0 · · · 0
...

...
...

. . .
...

Nev 0 · · · 0 0 · · · 1

























.

This matrix is used to form another similar matrix C̄(3) through the multiplication

C̄(3) := PκC̄
(2)Pκ. (4.12)

The matrix C̄(3) is identical to C̄(2) except that rows and columns p and p+1 are

exchanged. The first p rows and columns of C̄(3) are tridiagonal. The bulge which

was permuted is now chased toward the end of the tridiagonal tail.
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4.3.4 Step 4: Bulge Chasing and Fill-In Row/Column

After the transformation using Pκ, the first κ − 1 rows and columns of C̄(3)

have the form:



























































p+1 p+2 κ−1

× ×
× × ×

× . . . . . .

. . . × ×

× × × +

p+1 × ×

p+2 + × ×

× × . . .

. . . . . . ×
κ−1 × ×



























































.

Using CO rotations, the bulge, which begins at C̄
(3)
p,p+2 and C̄

(3)
p+2,p, is chased along the

tridiagonal to the end of the tail. Just before the last bulge is annihilated, the matrix

63



has the form





















































κ Nev

× ×
× . . . . . .

. . . × ×
× × × +

× × ×

κ + × × × × · · · ×

× × × · · · ×

× × × · · · ×
...

...
...

. . .
...

Nev × × × · · · ×





















































.

The final CO rotation replaces C̄κ−1,κ+1:Nev
and C̄κ+1:Nev ,κ−1 with nonzeroes. Let the

product of the CO rotation matrices used to chase the bulge be Γκ and define the

similar matrix C̄(4) as

C̄(4) = ΓT
κ C̄

(3)Γκ. (4.13)
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4.3.5 Step 5: Annihilate the Fill-In Row/Column

Let the values of sin(θ) and cos(θ) in the CO rotation matrix which annihilates

the final bulge in C̄(3) be sf and cf . The form of C̄(4) is























































κ Nev

× ×
× . . . . . .

. . . × ×

× × ×

× × × + + · · · +

κ × × × × · · · ×

+ × × × · · · ×

+ × × × · · · ×
...

...
...

...
. . .

...

Nev + × × × · · · ×























































.

which resembles the form of C̄, except that the tridiagonal reduction has retreated by

one row/column. The troublesome vector at row/column κ in C̄(4) is now cfx, where

x =
{

x1 x2 · · · xNev−κ

}T

corresponds to entries C̄κ+1:Nev ,κ. Let the fill-in row/column be represented by xf

which contains the new nonzeroes:

xf =
{

C̄
(4)
κ,κ−1 sfx1 sfx2 · · · sfxNev−κ

}T

.

The vector xf must be annihilated in order for this CE removal attempt to

continue. If a CO reflection is used to annihilate xf , the remaining subdiagonal entry
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is ∓
√

xT
f xf , according to equation (4.5). The Implicit Q theorem states that the first

column of Q determines the subdiagonal entries in the tridiagonal matrix, each within

a sign. Therefore, since the first column of Q is set in Steps 1 and 2, then regardless

of the annihilation method used to annihilate xf , the subdiagonal entry at position

(κ, κ−1) will become ∓
√

s2fx
Tx+

(

C̄
(4)
κ,κ−1

)2

. The method used to annihilate entries

in xf also updates the troublesome vector at row/column κ and experience has shown

that this updated vector at row/column κ rarely possesses a cancellation event. The

values in the updated vector, and, therefore, the CE value of the updated vector, are

dependent on the method used to annihilate xf .

Let the CO matrix used to annihilate the fill-in be represented by Xκ. The

new C̄(m) matrix is defined as

C̄(m) := XT
κ C̄

(4)Xκ. (4.14)

The matrix is now returned to its original form in equation (4.7) having an unreduced

submatrix and a tridiagonal tail. All of the values in C̄(m) are different from those in

C̄. In the unlikely circumstance that a CE still exists in row/column κ, the changes

from this attempt can be discarded, the size of p can be increased by one, and steps

1 through 5 can be repeated. Because the number of operations required to remove a

cancellation event is O(κ2), different values of p can be tried inexpensively to find one

that is satisfactory. The number of rows in the first column of Q which are modified

by this CE removal method is equal to p, so different values of p will always produce

different vectors for row/column κ.
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4.4 The Complete CE Removal Method

Putting equations (4.10) through (4.14) together, the modified C̄ matrix is

C̄(m) := XT
κ Γ

T
κPκΩ

T
κΥ

T
κ C̄ΥκΩκPκΓκXκ. (4.15)

This method removes CEs for any row/column which is longer than p + 2. The

matrix Q which tridiagonalizes C (as seen in equation (2.14)) while considering the

possibility of CEs is

Q =
Nev−2
∏

i=1

Ki, where Ki =

{

ΥiΩiPiΓiXiĤi, if a CE exists

Hi, otherwise.
(4.16)

The matrix Hi is defined in equation 2.11 and Ĥi is the CO reflector used to annihilate

the new CE-free row/column. When this process is used to remove CEs encountered

while tridiagonalizing C matrices from industrial models, one attempt with a value

of p = 5 removes the CE nearly every time.

The sum of the FLOPs required to perform the first four steps of the CE

removal process is small because the operations are performed on the tridiagonal tail

and p is small. The only appreciable cost in removing a CE is from annihilating the

fill-in row/column. This FLOP cost is δ(Nev − κ)2, where κ is the number of the

row/column with a CE and δ is set by the method of annihilation. The value of δ for

two methods of annihilation is derived in the next chapter, in Section 5.2. Since the

CE is a chance event, it is not possible to know the values of κ before the tridiagonal

reduction process begins. Therefore, the average FLOP cost is computed which is the

sum of the FLOP costs of removing CEs at every row/column in the matrix, divided
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by the total number of rows/columns which are annihilated:

1

Nev − 2

Nev−2
∑

κ=1

δ(Nev − κ)2 ≈ δ

3
N2

ev. (4.17)

All of the steps taken to remove CEs use COmatrices, and the CEs are removed

between applications of CO reflections. The process reduces the complex symmetric

matrix C into a tridiagonal matrix, T , through T = QTCQ, where Q is defined in

equation (4.16). Next, the eigenvalue decomposition of T is solved: T = ΦTΛTΦ
T
T .

Since T and C are similar matrices, their eigenvalues are the same.

After the eigenvector matrix, ΦT , of the tridiagonal matrix is determined,

ΦT must be backtransformed into the eigenvector matrix of C, ΦC . During the

backtransformation, the matrices, Υκ, Ωκ, Pκ, Γκ, and Xκ, must be applied in the

reverse order for every row/column which has a CE removed to provide the correct

update to Q. Since the eigenvector matrix ΦT is full and general, these CE updates

are more costly to perform than in the tridiagonal reduction. However, the process

can be easily parallelized by dividing ΦT into column panels to speed up computation.

Table 4.1 provides a list of the steps required to apply the CE removal matrices during

the backtransformation as well as the corresponding FLOP cost to perform each step.

The value of δ is set by the method of annihilation, which is derived in Section 5.2.

Taking only the highest order cubic terms, the average cost per CE removed

in the backtransformation is

1

Nev − 2

Nev−2
∑

κ=1

δNev(Nev − κ) + 28Nev(κ− p− 1) ≈
(

14 +
δ

2

)

N2
ev. (4.18)
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Step Operation FLOP Cost

1 Apply Xκ δNev(Nev−κ)

2 Apply Γκ 28Nev(κ−p−1)

3 Apply Pκ neglible

4 Apply Ωκ 14p2Nev

5 Apply Υκ 8p2Nev

Total 1 CE Update δNev(Nev−κ) + 28Nev(κ−p−1) + 22p2Nev

Table 4.1: CE-related FLOPs during ΦC = QΦT

4.5 The CE Tolerance

Rounding error has an effect on real arithmetic in all matrix computations

due to the limitation of representing analytical numbers as floating point numbers

on computers. For example, for a large, real vector, x, it is not unusual for the

result of xTx to differ in the last one or two digits when entries in x have been

reordered. Therefore, since the CE value is a measure of the number of digits lost in

the computation of the complex xTx, a tolerance of less than 2.0 is unrealistic.

Let NCE represent the number of CEs encountered and removed. The ratio

αCE =
NCE

Nev

(4.19)

is a simple measure which can be used to compare the frequency at which CEs are

fixed across industrial models. Figure 4.3 plots αCE versus the CE tolerance, τCE,

for the Industrial Test Suite models. Even though the cancellation event is a chance

event, the figure shows that there is some consistency in the frequency of CEs based

on tolerance. As τCE is lowered, more CEs are removed, and the resulting matrices
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Figure 4.3: Frequency of CEs Removed for Industrial Test Suite

Q and T become more valid in equations (2.14) and (2.15). The error measurements

eo and et defined in equations (2.17) and (2.18) are plotted for each model in the

Industrial Test Suite against the CE tolerances, in Figures 4.4 and 4.5.

4.6 The Complex Symmetric Matrix Eigensolver

The complex symmetric matrix eigensolver (CSMES) finds the eigenvalues and

eigenvectors of a complex symmetric matrix C through the following steps.

1. The rows and columns of C are annihilated, one at a time, using CO reflec-

tions with a total FLOP cost of 16
3
N3

ev. (The tridiagonal reduction requires
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2
3
N3

ev complex multiplications and 2
3
N3

ev complex additions.) Just before each

row/column is annihilated, the CE value of the row/column is compared with

a given CE tolerance. If the CE value is greater than the tolerance, the CE

removal method is used before the tridiagonal reduction continues.

2. The eigenvalues of the complex symmetric tridiagonal matrix, T , are deter-

mined using Cullum and Willoughby’s CMTQL1 algorithm, which is a complex

orthogonal extension of the EISPACK routine, IMTQL1 [15]. The eigenvectors

of T are determined using inverse iteration. The total cost of performing these

operations is O(N2
ev).

3. The eigenvalues of C are the same as the eigenvalues of T . The eigenvectors

of C are recovered by implicitly applying each CO reflection from the right in

reverse order for a total cost of 8N3
ev + 4N2

ev FLOPs. The matrices used to

remove CEs in the tridiagonal reduction are applied between the appropriate

CO reflections, in reverse order. When Q is defined according to equation (4.16),

the eigenvector matrices are related to one another through ΦC = QΦT . This

process is known as the complex symmetric backtransformation.

The improvement in Q and T by fixing CEs directly impacts the quality of the EVD

of the complex symmetric matrix. The change in eo and et, plotted against CE

tolerances for the Industrial Test Suite are plotted in Figures 4.6 and 4.7.

The total FLOP cost of CSMES, considering only the cubic terms, is displayed

in Table 4.2. Using equation (4.19), the total number of FLOPs for CSMES is

CCSMES =

[

40

3
+

(

5δ

6
+ 14

)

αCE

]

N3
ev. (4.20)
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Operation FLOP Cost

Row/Column Annihilation 16
3
N3

ev

CE fixes δ
3
N2

evNCE

Backtransformation 8N3
ev + 4N2

ev

Applying CE fixes
(

14 + δ
2

)

N2
evNCE

Total 40
3
N3

ev +
(

5δ
6
+ 14

)

N2
evNCE

Table 4.2: CSMES FLOPs

Figure 4.3 can be used to give an estimate for αCE before the tridiagonal reduction

begins based on the CE tolerance.

4.7 Solving Modal FRPs using the Complex Symmetric Ap-
proach

The complex symmetric matrix C is defined in equation (2.7) and its eigen-

values and eigenvectors are computed using CSMES:

C = ΦCΛCΦ
T
C , where ΦT

CΦC = I.

The complex symmetric approach uses the results from CSMES to transform the full

coefficient matrix of the modal FRP into the sum of a diagonal and, in most cases, a

low rank matrix, and the SMW formula is used (unless there is no low rank matrix)

to find the response at every frequency.

4.7.1 Modal FRP with Only Structural Damping

When there is no viscous damping in the model, the use of CSMES completely

diagonalizes the coefficient matrix of the modal FRP. The response is given in equation
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(2.9) and is straightfoward to compute. The total FLOP cost is the cost of performing

CSMES on the matrix C in equation (4.20) and the matrix products involving ΦC ,

performed at every frequency:

Cost = CCSMES + 16N2
evNcNfreq. (4.21)

4.7.2 Modal FRP with Viscous and Structural Damping

When viscous and structural damping are represented in the model, the modal

FRP in equation (1.13) becomes

[−ω2I + iωB + C]Xs(ω) = Fs(ω). (4.22)

Let Xs(ω) := ΦCY (ω) and premultiply equation (4.22) by ΦT
C . The viscous damping

matrix is cast in a compact form in equation (2.3). If the modal viscous damping

matrix is nonsymmetric, its SVD is B = UΣBV
T and the modal FRP becomes

[−ω2I + iωΦT
CUΣBV

TΦC + ΛC ]Y (ω) = ΦT
CFs. (4.23)

The above equation is solved efficiently using the SMW formula, with the substitu-

tions

D(ω) := −ω2I + ΛC ∈ C
Nev×Nev ,

P := ΦT
CU ∈ C

Nev×Nk ,

R := ΦT
CV ∈ C

Nev×Nk , and

Σ(ω) := iωΣB ∈ C
Nk×Nk ,

(4.24)

where Nk = rank(Bnz). Then, the response is

Xs(ω) = ΦC

[

D + PΣRT
]−1

ΦT
CFs.
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Step Task FLOP Cost

(1) F := ΦT
CF 8N2

evNc

(2) D := D−1/2, Σ := Σ1/2 Nev +Nk

(3) P := DPΣ, R := DRΣ 24NevNk

(4) F := DF 6NevNc

(5) G1 := RTF 8NevNkNc

(6) G2 := RTP 8N2
kNev

(7) G2 := I +G2 Nk

(8) G1 := G−1
2 G1

8
3
N3

k + 8N2
kNc

(9) F := PG1 − F 8NevNkNc

(10) Y := −DF 6NevNc

(11) X := ΦCY 8N2
evNc

Table 4.3: Nonsymmetric SMW Operations per Frequency for Complex Symmetric
Approach

Since the rank of Bnz is typically very small, the time required to compute P and R

is small when compared to the CSMES execution time. The steps needed to compute

the above response at a frequency and the FLOP costs which correspond to each step

are listed in Table 4.3. The steps in the table are selected to maximize matrix reuse

since neither P nor R is purely real. The rank of the condensed FE viscous damping

matrix is typically very small (less than 20), so steps (1) and (11) are the most costly

steps to compute the response at a frequency. All steps involving the viscous damping

matrices have very small dimensions, so their FLOP costs are negligible. Therefore,

the total FLOP cost is given in equation (4.21).

If the modal viscous damping matrix is symmetric, then this symmetry can be

exploited in the SMW formula with D, P , and Σ set to the values in equation (4.24),
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Step Task FLOP Cost

(1) F := ΦT
CF 8N2

evNc

(2) D := D−1/2, Σ := Σ1/2 Nev +Nk

(3) P := DPΣ 12NevNk

(4) F := DF 6NevNc

(5) G1 := P TF 8NevNkNc

(6) G2 := P TP 4N2
kNev

(7) G2 := I +G2 Nk

(8) G1 := G−1
2 G1

4
3
N3

k + 8N2
kNc

(9) F := PG1 − F 8NevNkNc

(10) X := −DF 6NevNc

(11) X := ΦCY 8N2
evNc

Table 4.4: Symmetric SMW Operations per Frequency for Complex Symmetric Ap-
proach

but R = P . The response is

Xs(ω) = ΦC

[

D + PΣP T
]−1

ΦT
CFs.

The FLOP cost of computing a response at a frequency for this symmetric case is

listed in Table 4.4. The most costly steps, again, are the first and last steps, which

do not depend on P . Therefore, the FLOP cost of computing the modal FRP is the

same as the nonsymmetric case, given in equation (4.21).
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4.8 Using the Complex Symmetric Approach with Structure-
Fluid Interaction

When the model has viscous and structural damping and acoustic fluid ele-

ments, the modal FRP can be solved using the complex symmetric approach. The

frequency independent work is performed first: CSMES computes ΦC and ΛC and

for symmetric viscous damping matrices, the EVD from equation (2.3) is used to

compute U and ΣB. Let Xs(ω) = ΦCY (ω), let Ac = ΦT
CA, and premultiply equation

(1.16) by
[

ΦT
C

I

]

. (4.25)

This gives a new FRP:

[

Z̄s(ω) iωAc

iωAT
c Zf (ω)

]{

Y (ω)

Xf (ω)

}

=

{

ΦT
CFs(ω)

Ff (ω)

}

(4.26)

where Z̄s(ω) = −ω2I + ΛC + iωΦT
CUΣBU

TΦC .

4.8.1 General Acoustic Fluid Formulation

When the modal fluid “damping” matrix is full, Zf in equation (4.26) is also

full. A partitioned approach is appropriate as it casts the modal FRP into one that

is solved using the SMW formula. First, the FRP is written as a system of equations:

Z̄sY + iωAcXf = ΦT
CFs

iωAT
c Y + ZfXf = Ff .

(4.27)

Rearranging the first equation into

Y = Z̄−1
s

[

ΦT
CFs − iωAcXf

]

(4.28)
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and plugging the above into the second equation gives the fluid response:

Xf =
[

Zf + ω2AT
c Z̄

−1
s Ac

]−1 [
Ff − iωAT

c Z̄
−1
s (ΦT

CFs)
]

. (4.29)

Then, the structural response is

Xs = ΦC

[

Z̄−1
s (ΦT

CFs)− iωZ̄−1
s AcXf

]

. (4.30)

The terms Z̄−1
s (ΦT

CFs) and Z̄−1
s Ac are computed through the following

[

D + PΣP T
]−1
[

ΦT
CFs Ac

]

(4.31)

using the SMW formula with the substitutions from equation (4.24). The steps to

compute the fluid and structural responses in equations (4.29) and (4.30) which rely

on the SMW formula are listed in Table 4.5.

Taking only the cubic terms, the FLOP cost per frequency is

CCE1 = Nev (16NevNc + 16NfNk + 16NcNk + 12NfNc)

+N2
k

(

4

3
Nk + 4Nev + 8Nf + 8Nc

)

+N2
f

(

4Nev +
4

3
Nf + 8Nc

)

.

(4.32)

Then, the total FLOP cost is the sum of the CSMES cost, the cost of forming Ac, and

the cost of all frequency dependent work for all frequencies. The number of structural

modes is usually much larger than the number of frequencies and the number of fluid

modes, causing the CSMES computation to become the primary FLOP cost.

Cost = CCSMES + 4N2
evNf +NfreqCCE1
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Step Task FLOP Cost

(1) Fs := ΦT
CFs 8N2

evNc

(2) D := D−1/2, Σ := Σ1/2 Nev+Nk

(3) P := DPΣ 12NevNk

(4) G3 := P TDAc 4NevNf (2Nk+1)

(5) G4 := P TDFs 8NevNcNk+6NevNc

(6) G2 := P TP 4N2
kNev

(7) G2 := I +G2 Nk

(8)
[

G3 G4

]

:= G−1
2

[

G3 G4

]

4
3
N3

k+8N2
k (Nf+Nc)

(9) Ā := DAc, Fs := DFs 6Nev(Nf+Nc)

(10)
[

Ā Fs

]

:= P
[

G3 G4

]

−
[

Ā Fs

]

8NevNk(Nf+Nc)

(11) Ā := −DĀ, Fs := −DFs 6Nev(Nf+Nc)

(12) Zf := ω2If − iωCf − Λf + ω2AT
c Ā 4Nf (NfNev+1)

(13) Ff := Ff − iωAT
c Fs 4NfNevNc

(14) Xf := Z−1
f Ff

4
3
N3

f +8N2
fNc

(15) Fs := Fs − iωĀXf 8NevNfNc

(16) Xs := ΦCFs 8N2
evNc

Table 4.5: Complex Symmetric Approach Operations per Frequency for General Fluid
Matrices
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4.8.2 Diagonal Acoustic Fluid Formulation

If the FE fluid “damping” is proportional damping, or not present at all, Zf

(represented in equation (3.26)) is diagonal and the SMW formula is used to solve the

modal FRP efficiently. Using the system of equations in equation (4.27), the second

equation is rearranged into

Xf = Z−1
f

(

Ff − iωAT
c Y
)

(4.33)

and plugged into the first equation which gives the following:

[

Z̄s + ω2AcZ
−1
f AT

c

]

Y = ΦT
CFs − iωAcZ

−1
f Ff . (4.34)

The above equation is solved efficiently for Y using the SMW formula with the sub-

stitutions:

D(ω) := −ω2I + ΛC ∈ C
Nev×Nev ,

P :=
[

ΦT
CU Ac

]

∈ C
Nev×Nk ,

Σ(ω) :=

[

iωΣB

ω2Z−1
f

]

∈ C
Nk×Nk , and

F (ω) := ΦT
CFs − iωAcZ

−1
f Ff

(4.35)

where Nk = rank(Bnz) +Nf and the viscous damping matrix is symmetric. Then, Y

is

Y =
[

Z̄s + ω2AcZ
−1
f AT

c

]−1 [
ΦT

CFs − iωAcZ
−1
f Ff

]

. (4.36)

After Y is computed using the SMW formula, the fluid response is determined from

equation (4.33) and the structural response is Xs = ΦCY . The steps to compute the
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responses are listed in Table 4.6. The total number of FLOPs per frequency is

CCE2 = Nev (16NevNc + 16NfNc + 16NkNc)

+N2
k

(

4

3
Nk + 8Nc + 4Nev

)

.
(4.37)

The total FLOP cost is

Cost = CCSMES + 4N2
evNf +NfreqCCE2.

4.9 Solving Modal FRPs having Low Frequency Modes

With enforced motion techniques, base motion is used to specify the displace-

ment, velocity, or acceleration at particular grid points. This is typically accom-

plished by setting the masses at the grid points to be very large, which produces

models with low frequency modes. Also, if the structure is unconstrained, or if mech-

anism modes are present, then some of the modes will be rigid body modes. All

of these situations produce a Λ matrix containing diagonal values which are low or

nearly zero [11]. The complex symmetric matrix, C, is formed from Λ in equation

(2.7). Consequently, when low frequency modes are present in the model, C becomes

ill-conditioned and the eigenvalue decomposition from CSMES is imprecise [27]. To

avoid the ill-conditioning, the modal FRP is partitioned into a low frequency part and

a high frequency part. The number of low frequency modes is very small, typically

less than ten. For a model with symmetric viscous damping (with B = UΣBU
T ) and

structure-fluid interaction, let the number of low frequency modes be represented by

Nl and the number of high frequency modes be Nh and Nev = Nl +Nh. Partition C,
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Step Task FLOP Cost

(1) Zf := ω2If − iωCf − Λf 6Nf

(2) Fs := ΦT
CFs, Ff := Z−1

f Ff 8N2
evNc+6NfNc

(3) D := D−1/2,Σ := Σ1/2 Nev+Nk

(4) P := DPΣ 12NevNk

(5) G2 := P TP 4N2
kNev

(6) G2 := G2 + I Nk

(7) Fs := Fs − iωAcFf 8NevNfNc

(8) Fs := DFs 6NevNc

(9) G1 := P TFs 8NevNkNc

(10) G1 := G−1
2 G1

4
3
N3

k+8N2
kNc

(11) Fs := PG1 − Fs 8NevNkNc

(12) Y := −DFs 6NevNc

(13) Xs := ΦCY 8N2
evNc

(14) Xf := AT
c Y 8NfNevNc

(15) Xf := Z−1
f Xf 6NfNc

(16) Xf := Ff − iωXf 4NevNc

Table 4.6: Complex Symmetric Approach Operations per Frequency for Diagonal
Fluid Matrices
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U , Xs, A, and Fs into:

C =

[

Nl Nh

Nl C11 C12

Nh CT
12 C22

]

, U =

[

rank(B)

Nl U1

Nh U2

]

,

Xs =

[

Nc

Nl X1

Nh X2

]

, A =

[

Nf

Nl A1

Nh A2

]

, and Fs =

[

Nc

Nl F1

Nh F2

]

.

The modal viscous damping matrix is

B =

[

B11 B12

BT
12 B22

]

=

[

U1ΣBU
T
1 U1ΣBU

T
2

U2ΣBU
T
1 U2ΣBU

T
2

]

. (4.38)

Then, the modal FRP becomes:









−ω2I + C11 + iωB11 C12 + iωB12 iωA1

CT
12 + iωBT

12 −ω2I + C22 + iωU2ΣBU
T
2 iωA2

iωAT
1 iωAT

2 Zf























X1

X2

Xf















=















F1

F2

Ff















.

CSMES is computed on the high frequency part of C, which has good conditioning:

C22 = ΦCΛCΦ
T
C . Let X2(ω) = ΦCY (ω) and premultiply the above equation by









I

ΦT
C

I









which becomes








Z11(ω) Z12(ω) iωA1

ZT
12(ω) Z̄22(ω) iωAc

iωAT
1 iωAT

c Zf (ω)























X1

Y

Xf















=















F1

ΦT
CF2

Ff















, (4.39)
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where

Ac := ΦT
CA2,

Z11(ω) := −ω2I + C11 + iωB11,

Z̄22(ω) := −ω2I + ΛC + iωΦT
CU2ΣBU

T
2 ΦC , and

Z12(ω) := (C12 + iωB12) ΦC .

(4.40)

If C̄12 := C12ΦC and B̄12 := B12ΦC , then Z12 is formed at each frequency as the

linear combination of constant matrices: Z12(ω) = C̄12 + iωB̄12. When the acoustic

fluid matrices are diagonal, the fluid part can be included as a rank-Nf update to the

structure. Let

D(ω) := −ω2I + ΛC ∈ C
Nh×Nh ,

P :=
[

ΦT
CU Ac

]

∈ C
Nh×Nk , and

Σ(ω) :=

[

iωΣB

ω2Z−1
f

]

∈ C
Nk×Nk ,

where Nk = rank(B) +Nf .

Using the techniques presented in previous sections, it can be shown that

equation (4.39), for the situation in which Zf is diagonal, is solved using the steps

listed in Table 4.7. Because Nh ≈ Nev and Nh ≫ Nl, the total FLOP cost is the

same as equation (4.8.2). For determining FLOP costs in the complex symmetric

approach, the possibility of low frequency modes can be ignored.
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Step Task FLOP Cost

(1) F2 := ΦT
CF2(ω), Ff := Z−1

f Ff (ω) 8N2
hNc+6NfNc

(2) F2 := F2 − iωAcFf 8NhNfNc

(3) Z12 := C̄12 + iωB̄12 4NlNh

(4) Z̄12 := Z12 + ω2A1Z
−1
f AT

c 4NfNh(Nl+1)

(5) D := D−1/2(ω),Σ := Σ1/2(ω) Nh+Nk

(6) P := DPΣ 12NhNk

(7) Z̄12 := Z̄12D,F2 := DF2 6NhNc+6NlNh

(8) G2 := I+P TP 4N2
kNh+Nk

(9)
[

G3 G4

]

:= P T
[

F2 Z̄T
12

]

8NkNh(Nc+Nl)

(10)
[

G3 G4

]

:= G−1
2

[

G3 G4

]

4
3
N3

k+8N2
k (Nc+Nl)

(11)
[

F2 Z̄T
12

]

:= P
[

G3 G4

]

−
[

F2 Z̄T
12

]

8NkNh(Nc+Nl)

(12) Z̄12 := −Z̄12D,F2 := −DF2 6NcNh+6NlNh

(13) A2c := AcZ
−1
f , A1c := A1Z

−1
f 6NhNf+2NlNf

(14) Ff := Ff − iωAT
2cF2 8NfNhNc

(15) A1c := Z̄12A2c − A1c 8NlNhNf

(16) Z11 := Z11 − Z12Z̄
T
12 − ω2A1A

T
1c 8N2

l Nh+4N2
l Nf

(17) F1 := F1 − iωA1Ff − Z12F2 8NlNhNc+4NlNfNc

(18) X1 := Z−1
11 F1

4
3
N3

l +8N2
l Nc

(19) Xf := Ff + iωAT
1cX1 8NfNlNc

(20) Y := F2 − Z̄T
12X1 8NhNlNc

(21) X2 := ΦCY 8N2
hNc

Table 4.7: Complex Symmetric Approach Operations per Frequency for Diagonal
Fluid Matrices, where Low Frequency Modes are Present

86



Chapter 5

Parallel Implementation of the New Approaches

The low rank and complex symmetric approaches efficiently provide the solu-

tions to modal FRPs having structural and localized viscous damping. This chapter

explores the ways that the approaches can be implemented to take advantage of

modern computing technology. During the last several decades of the 20th century,

software performance improvements were automatically gained by the faster clock

speeds of successive processors, without requiring software developers to modify code

substantially to accommodate new types of hardware. This “free lunch”, as described

by Sutter [40], ended near the beginning of this current century due to processor hard-

ware limitations such as an inability to dissipate the ever-increasing amount of heat,

power demands, and problems with leaking voltage. Hardware manufacturers are

addressing this processor speed plateau problem by creating CPU processors with

multiple cores and by creating many-core coprocessors. In order to take advantage

of computers with these hardware configurations, programmers must now implement

algorithms with concurrency in mind. Concurrency is the programming paradigm

in which expensive computations are distributed among computing resources and

executed simultaneously. This may require coordination between the resources.

One way of increasing CPU throughput is to increase the number of computing
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cores. It is common now to install two or more multi-core CPUs on one motherboard

so that they share access to system memory, disk drives, and hardware linked through

the peripheral component interconnect (PCI) bus. CPU processors carry out the in-

structions of a computer program through a CPU process, which is subdivided into

sequences of instructions called CPU threads. A single CPU process is shared among

all of the multi-core CPUs and tends to have peak performance when the number

of CPU threads is equal to the total number of CPU cores. A programming inter-

face which takes advantage of this type of configuration, supporting shared memory

multiprocessing, is called OpenMP. The parallel processing in OpenMP is a “fork-

join” type in which execution at a designated point is subdivided into parallel tasks

performed by the CPU threads. After the parallel tasks are completed at another

designated point, the threads merge and a single thread continues working on the

serial tasks. Intel’s Math Kernel Library (MKL) provides implementations of BLAS

and LAPACK which have been optimized for Intel multi-core processors. MKL’s

BLAS level-3 subprograms and those LAPACK routines which rely on BLAS level-3

subprograms are capable of multi-threaded parallelism. Unfortunately, the additional

cores in CPU processors do not improve the memory bandwidth of the computer. In

some situations, additional cores in a CPU processor decrease the memory bandwidth

per core. The result is that it is memory bandwidth, and not processor throughput,

which is the performance bottleneck for many operations.

Computing speeds are also increased through the use of many-core coproces-

sors which offer a dramatic improvement in computational performance over multi-

core CPUs. Modern coprocessors used for floating point arithmetic contain hundreds
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or thousands of computing cores with very fast memory bandwidth and are connected

to the processors through, for example, the PCI bus. Though there are examples

of modern coprocessors including Intel’s Xeon Phi and AMD’s Firestream, Nvidia’s

Tesla graphics processing units (GPUs) are primarily chosen for NVH analyses be-

cause their hardware and accompanying software are much more mature than the

other options. Nvidia provides a programming interface called CUDA which gives

programmers the ability to implement algorithms which can take advantage of the

thousands of computing cores on GPUs [4]. Compared to CPU cores, GPU cores are

“lightweight”, performing only simple tasks. However, the thousands of GPU cores

working together can solve dense linear algebra operations at a much higher rate than

the multi-core CPUs.

Nvidia also provides a thorough implementation of BLAS called CUBLAS

[3]. The BLAS level-3 subprograms in CUBLAS perform many times faster than

their MKL counterparts. The memory bandwidth is higher for GPUs than CPU

cores; however, the BLAS level-2 subprograms on GPUs are also limited by memory

bandwidth. There is no implementation of LAPACK for GPUs provided by Nvidia.

But, there are open source and commercial software packages, such as libFLAME [44],

CULA Dense [1], and MAGMA [6], which provide some routines found in LAPACK.

Unfortunately, these packages do not offer the specific type of functionality needed

to implement the two approaches presented in this dissertation, so specialized CUDA

“kernel” routines were created to provide the missing functionality.

Using OpenMP, GPU routines can be executed in parallel, with each CPU

thread launching CUBLAS and CUDA kernel routines on separate GPUs simultane-
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ously. All kernels, whether in CUBLAS or written by a developer of more specialized

software can only operate on matrix data that have been transferred to the GPU.

Currently, the maximum on-board memory of any GPU is 24 GB, which means that

all matrix data for solving modal FRPs cannot completely reside on the GPUs. Ma-

trix data is transmitted to a GPU from the CPU cores through the PCI bus. So,

GPUs should only be used when the cost of transferring the matrix data between the

GPUs and CPU cores is much less than the cost of performing the operation with the

CPU cores.

Automobile companies typically perform HPC NVH analyses on single node

machines with one or two multi-core CPU processors; however, it is becoming common

for the companies to incorporate one to four GPUs in their machines as well. There-

fore, a machine (“Machine A”) with these attributes was built in order to simulate an

engineer’s computing experience. Machine A has two 8-core 3.1 GHz Sandy Bridge

Intel E5-2687W processors and four K20c “Kepler” GPUs. The maximum theoretical

FLOP rate and memory bandwidths of the computational hardware of Machine A are

given in Table 5.1, taken from data found in [2] and [5]. All of the performance results

reported in this and the next chapter reflect those of implementations executed on

Machine A.

5.1 The WY Representation

The low rank and complex symmetric approaches require a tridiagonal reduc-

tion of a symmetric Nev × Nev matrix. One way the reduction performances are

improved is by taking advantage of the “WY representation”, introduced by Bischof
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CPU Processors 1 K20 GPU

Number of Computing Cores 16 2496

Memory Bandwidth (GB/sec) 51.2 208

Compute Performance (GFLOP/sec) 396.8 1170

Memory (GB) 256 5

Table 5.1: Theoretical Hardware Maximums for Machine A

and Van Loan [10]. This representation works by aggregating many operations, reduc-

ing the number of memory accesses which improves the overall performance. During

the tridiagonal reduction process, successive row/column pairs are annihilated from

one corner of the matrix to the other using reflections, leaving a tridiagonal matrix.

A reflection is defined as H = I− 2
β
vvT , where β = vTv. The vector v is determined

by the row/column which is annihilated, x, through equation (4.2). Let A represent

the symmetric matrix which is tridiagonalized in either approach. If x is the first

row/column of A, then multiplying HA annihilates all of x below the first subdiago-

nal of A, while AH annihilates all of x to the right of the first super-diagonal of A.

Multiplying HAH annihilates the row and column simultaneously, leaving entries in

the diagonal and subdiagonal that belong to the tridiagonal matrix. The transformed

matrix, A′, is

A′ := HAH = A− 2

β
AvvT − 2

β
vvTA+

4

β2

(

vTAv
)

vvT .

The above equation can be rearranged into a more compact form by first setting

w := Av (5.1)
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which is a symmetric matrix-vector multiplication. Next, inexpensive operations

update w into

w :=
2

β

(

w − wTv

β
v

)

. (5.2)

Then, the product HAH can be written as

A′ := A−wvT − vwT . (5.3)

A reflection is a rank-1 modification of the identity matrix, and its two-sided appli-

cation to A is a rank-2 update on A, which is a BLAS level-2 operation. Then, A

becomes completely tridiagonal using (Nev−2) rank-2 updates.

The WY representation allows the product of r reflections to be combined into

a single rank-r modification of the identity matrix. This permits the tridiagonalization

process to be constructed into a blocked algorithm. Manyw and v vectors are grouped

together into matrices and these matrices are used to apply updates simultaneously

in efficient BLAS level-3 subprograms. The backtransformation performance is also

improved using the WY representation. In this process, matrices containing v and w

vectors are used to backtransform the tridiagonal eigenvector matrix into the matrix

of eigenvectors of A using BLAS level-3 subprograms.

There are two alternate methods for accumulating reflections, which, like the

WY representation, are rank-r modifications of the identity matrix. The compact

WY representation exploits the connection between the v and w vectors in order

to save computer memory and more efficiently create the matrices needed in the

blocked algorithm [39]. The UT representation is a modification of the compact

WY representation which can offer a further improvement in performance since its
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matrix operations are computed in a different order [38]. The relative performance

of these two methods depends on the performance of particular BLAS subprograms,

which is a topic outside of the scope of this dissertation [45]. For simplicity, the

WY representation is used in this dissertation to accumulate reflections during the

symmetric matrix tridiagonal reduction process.

5.2 Annihilating the Fill-In Row/Column in the CE Removal
Method

In the complex symmetric approach, the final step in the CE removal method

is the annihilation of the fill-in row/column, which is described in Section 4.3.5. The

fill-in row/column corresponds to entries below the first subdiagonal and to the right

of the first superdiagonal of the unreduced part of the complex symmetric matrix.

These entries can be annihilated, for example, using a CO reflection or a series of CO

rotations. Let the size of the unreduced part of the matrix be n.

When a CO reflection is used, all of the entries in the row/column are anni-

hilated simultaneously. The previous section shows that the main cost in computing

and applying a single reflection is a matrix-vector multiplication in equation (5.1)

and a rank-2 update in equation (5.3). The matrix-vector multiplication requires n2

scalar multiplications and n2 scalar additions. The rank-2 update, which is only ap-

plied on the diagonal and the lower triangle of the matrix because of symmetry, also

requires n2 scalar multiplications and n2 scalar additions. Since a complex multipli-

cation requires 6 FLOPs and a complex addition requires 2 FLOPs, the total number

of FLOPs needed to annihilate the fill-in row/column is 16n2.
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When a series of CO rotations is used, the entries in the fill-in row/column

are annihilated sequentially, which is a process described in Section 2.4.1. When a

rotation is applied from the right, two columns of the unreduced matrix are modified.

Each column becomes a linear combination of itself and the other affected column.

By symmetry, when the rotation is applied from the left, the two corresponding rows

of the unreduced matrix are modified. Each row becomes a linear combination of

itself and the other affected row.

One application of a CO rotation from either side requires 4n scalar multipli-

cations and 2n scalar additions. The application of a CO rotation from both sides

requires twice as many operations; however, since the matrix is symmetric, only the

diagonal and the upper or lower triangle of the matrix is referenced, which reduces

the number of operations by half. Since there are approximately n entries in the

row/column that are annihilated with CO rotations, the number of required scalar

multiplications is 4n2 and the number of required scalar additions is 2n2. The total

number of FLOPs needed to annihilate the fill-in row/column using CO rotations is

28n2.

Table 5.2 provides a summary of the FLOP cost results from this section. The

value of δ used in the total FLOP cost calculations in equations (4.17) and (4.18)

is set by the method used to annihilate the fill-in row/column. If a CO reflection is

used, δ = 16, and if a series of CO rotations is used, δ = 28.
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1 CO (n− 2) CO

Reflection Rotations

Addition 12n2 24n2

Multiplication 4n2 4n2

Total 16n2 28n2

Table 5.2: FLOP Cost for Annihilating the Fill-In Row/Column

5.3 Real Symmetric Tridiagonal Reduction

The weighted structural damping matrix, L, is defined in equation (3.4). Dur-

ing the determination of an LRA of L, the first dominating process is its reduction to

tridiagonal form, as seen in equation (3.11). This section describes the various ways

that this process is parallelized on machines with multiple CPU cores, multiple CPU

cores with a single GPU, or multiple CPU cores with multiple GPUs. Algorithm 2 is

a pseudocode which shows how real symmetric tridiagonal reduction, blocked to take

advantage of the WY representation, is accomplished. It serves as a reference for the

following subsections.

In Algorithm 2, after a default algorithmic block size b is set, the reduction

process is performed over N = ⌈(Nev − 2)/b⌉ blocks. Here, the ceiling notation (⌈·⌉)

represents the ceiling function, or the least integer upper bound. Since L is symmetric,

computations and updates in line 19 are only performed on the lower triangle of L

for each block. The “for loop” at line 2 iterates over blocks of L. Within this loop is

another “for loop” at line 6, which iterates over columns within a block of L. At an

iteration of the inner “for loop”, i is the index of a column x. The part of x below the

subdiagonal is annihilated with the reflection which is implicitly created and applied
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Algorithm 2: Blocked Real Symmetric Tridiagonalization

Data: L ∈ R
Nev×Nev is symmetric; b is block size; V,W ∈ R

Nev×b

1 N = ⌈(Nev − 2)/b⌉
2 for j = 1 : N do // loop over blocks

3 V = 0,W = 0
4 s = (j − 1)b+ 1
5 t = min(s+b−1, Nev − 2)
6 for i = s : t do // loop over columns

7 if i > s then // make x current

8 updatex(L, i, V,W)

9 x = L(i+1:Nev, i)
10 [v, σ, τ ] = buildv(x)
11 w = L(i+1:Nev, i+1:Nev)v
12 L(i+1, i) = σ
13 if i > s then // make w current

14 updatew(w, i,v, V,W)

15 w = τ
[

w −
(

1
2
τwTv

)

v
]

16 V (i+1:Nev, i−s) = v; W (i+1:Nev, i−s) = w
17 L(i+2:Nev, i) = v(2 :Nev−i+1), z(i) = τ

18 V0 = V (t+1:Nev, :); W0 = W (t+1:Nev, :)

19 L(t+1:Nev, t+1:Nev) −=
(

V0W
T
0 +W0V

T
0

)

// update outside

of block
20 if checkempty(L) then // Quit early if possible

21 L(t+1:Nev, t+1:Nev) = 0
22 z(t+1:Nev) = 0
23 quit

Result: The tridiagonal matrix is stored in the diagonal and subdiagonal
entries of L. The lower triangle of L stores the reflection vectors
and z stores the reflection scalars τ .
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Algorithm 3: buildv(x)

input : x vector of length n
output: Reflection vector v and scalars τ = 2/vTv, σ =

√
xTx, such that

Hx = σê1, where H = I − τvvT .
σ =

√
xTx

if (R(x(1) ∗ σ) > 0) then
σ = −σ

τ = 1− x(1)/σ
α = 1/(x(1)− σ)
v = αx
v(1) = 1

in lines 10 through 15. In line 10, buildv (displayed in Algorithm 3) takes x as input

to create the reflection vector, v, and reflection scalar, τ = 2/vTv, which are used to

create the reflection. The i-th subdiagonal entry of the resulting tridiagonal matrix

is also created in buildv and stored in the subdiagonal of L.

After v is computed, w is computed using a matrix-vector multiplication at

line 11, which corresponds to equation (5.1), and is then modified in line 15, which

corresponds to equation (5.2). Once v and w are determined, equation (5.3) could

be used to update the unreduced matrix, but this is an expensive technique. Instead,

the WY representation is used to make several v and w updates simultaneously. The

v and w vectors are stored as columns in the V and W matrices. Outside of the

algorithmic block, the V and W updates are performed with the matrix multiplica-

tions in line 19, which is a rank-2b update. Within the block, the updates are never

performed explicitly. In line 8, updatex updates the x vector with the accumulated

V and W matrices to create the current x vector. In line 14, updatew is used to

update the w vector with the V and W matrices. These two algorithms are displayed
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Algorithm 4: updatex(A, i, V,W )

Data: A is n× n; V and W are n× b
x = A(i :n, i)
x = x− V (i :n, :)W (i, :)T −W (i :n, :)V (i, :)T

A(i :n, i) = x
Result: The ith column of A is updated with the current V and W

matrices.

Algorithm 5: updatew(w, i,v, V,W )

Data: V and W are n× b, w is length n− i
p = W (i+1:n, :)Tv
w = w − V (i+1:n, :)p
p = V (i+1:n, :)Tv
w = w −W (i+1:n, :)p
Result: w is updated with the current V and W matrices.

in Algorithms 4 and 5 and require few FLOPs since they operate on matrices and

vectors with small dimensions. The costly steps in Algorithm 2 are the matrix-vector

multiplication (in line 11) and the application of the rank-2b update of V and W to

the unreduced matrix after a block is annihilated (in line 19).

The trace of L is equal to the sum of the eigenvalues of L, and, because the

eigenvalues of L are also the eigenvalues of the tridiagonal matrix, T , the trace of

T is equal to the trace of L. If L is of low rank, then at some point during the

reduction process, the trace of the tridiagonal tail will be equal to the trace of L.

Then, the tridiagonal tail represents a submatrix of the complete tridiagonal matrix,

with all of the other values in the tridiagonal matrix equal to zero. The eigenvalue

decomposition of the current tridiagonal tail sufficiently represents the eigenvalue

decomposition of the complete tridiagonal matrix. Hence, the tridiagonal reduction
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process can be halted before it finishes, potentially saving many FLOPs. Line 20 in

Algorithm 2 represents a test on the unreduced part of L which decides whether or

not the tridiagonal reduction can be halted. This test can be as simple as comparing

the trace of the current tridiagonal tail with the original trace of L.

5.3.1 Multi-Core Implementation

The LAPACK routine which performs real symmetric matrix tridiagonaliza-

tion is called DSYTRD. The performance of all LAPACK routines depends on the per-

formance of the BLAS subprograms they use. In this case, the efficiency of DSYTRD

depends on the efficiency of DSYMV, the symmetric matrix-vector multiplication

which is used for nearly every column of L, and DSYR2K, the symmetric matrix

rank-2b update which is used for nearly every algorithmic block.

Figure 5.1 shows the rate of performance in GFLOP per second versus the

number of given CPU threads for DSYMV and DSYR2K for Machine A. DSYMV is

a BLAS level-2 subprogram which is limited by memory bandwidth. Its number of

FLOPs is proportional to the amount of matrix and vector data on which it operates.

For this operation, the processor is not efficient because the rate that matrix data is

supplied to the processor cannot match the rate of computation of the CPU cores. The

figure shows that there is no improvement in performance for DSYMV as more CPU

threads are added. DSYR2K, on the other hand, is a BLAS level-3 subprogram. It

is compute-bound, not limited by memory bandwidth, and its performance improves

as the number of threads is increased. This figure is helpful in understanding the

parallel performance of DSYTRD, which is shown in Figure 5.2.
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Figure 5.1: Performance of MKL DSYMV and DSYR2K (b = 100)

For low numbers of CPU threads, the highly parallelizable nature of DSYR2K

dominates the behavior of DSYTRD in Figure 5.2. After about eight threads, how-

ever, the improvement in performance stalls due to the memory bandwidth limitation

of DSYMV. The consequence of this limitation is a highly irregular and inconsistent

rate of performance for higher numbers of CPU threads. Better parallelism can only

be attained if the memory bandwidth limitation in the DSYMV operation is ame-

liorated, which is possible through the higher memory bandwidth of GPUs. Since

DSYTRD is incapable of detecting whether or not the tridiagonal reduction process

can halt early for a low rank matrix, a multi-core implementation of Algorithm 2 was

created which performs this check and stops the tridiagonalization if possible.
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5.3.2 Single-GPU Implementation

CUBLAS takes advantage of the thousands of GPU cores and high memory

bandwidth to provide very efficient DSYMV and DSYR2K routines. Recently, an

option of DSYMV was released in CUBLAS which relies on “atomic” operations to

give a more efficient DSYMV. Table 5.3 compares the performance of the 16-core

MKL BLAS DSYMV with the new CUBLAS DSYMV. The CUBLAS DSYR2K is

more efficient than MKL’s DSYR2K as seen in Table 5.4. When the results in the

two tables are compared, it is evident that although the GPU rates are faster than

the MKL rates, the DSYMV routine remains the bottleneck for tridiagonal reduction

in a GPU implementation.
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MKL CUBLAS

Size 16-core w/atomic

10000 7.80 53.1

15000 8.01 51.5

Table 5.3: Parallel Performance of DSYMV (GFLOP/Sec)

MKL

Size 16-core CUBLAS

10000 170.8 657.1

15000 189.7 666.3

Table 5.4: Parallel Performance of DSYR2K (GFLOP/Sec)

It is straightforward to implement Algorithm 2 to use CUBLAS DSYMV and

DSYR2K. Unfortunately, both of these efficient CUBLAS routines require the entire

symmetric matrix to be held in memory, which means that about half of the matrix is

stored and never referenced. Since the amount of memory on a GPU is limited, there

is a maximum matrix size for which the entire matrix can fit on a GPU and can be

tridiagonalized with a GPU implementation. A scheme which performs tridiagonal

reduction on very large matrices and yet still takes advantage of GPUs is described

in the next subsection.

5.3.3 Multi-GPU Implementation

For an implementation of the tridiagonalization process to use multiple GPUs

efficiently, each GPU must be made to do an equal share of the work, and this will

require the matrix data to be distributed approximately equally among the GPUs.
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Larger matrices can be accommodated if only the lower triangle is stored in GPU

memory. Then the heights of the stored portions of the various columns will differ.

The matrix data can be distributed nearly equally among GPUs by allocating columns

to them in a cyclic manner. Finally, if a matrix is too large to fit among the given

GPUs, then a minimum portion of the matrix is stored in CPU memory. In this case,

the CPU cores cooperate to perform the computations and updates for their local

data.

In Algorithm 2, the annihilation of each column requires a matrix-vector multi-

plication which involves all of the remaining columns in the matrix. This distribution

assigns columns of L to GPUs in a round-robin fashion, demonstrated below.

L =









1 2 · · · g 1 2 · · ·









The entries of L above the diagonal are not referenced, so storing these entries on

GPUs wastes precious GPU memory. But, if the columns are stored on different

GPUs, then the matrix data is not contiguous and BLAS level-3 operations cannot

be used. Therefore, a block-packed scheme is used to store the 1-D cyclic columns on

each GPU. For example, suppose a 16 × 16 L matrix is distributed among 2 GPUs.

Figure 5.3 shows which elements of L GPU #2 owns, for a block-packed storage

of width 3. Each block of local matrix data (corresponding to a rectangle in the

table) is stored independently, but each block’s data is stored contiguously. Matrix

entries corresponding to global data above the diagonal are set to zero. This padding

constitutes a negligible amount of storage space compared to the amount of storage

space required to hold the values below and at the diagonal.
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L2,2 0 0

L3,2 0 0

L4,2 L4,4 0

L5,2 L5,4 0

L6,2 L6,4 L6,6

L7,2 L7,4 L7,6

L8,2 L8,4 L8,6 L8,8 0 0

L9,2 L9,4 L9,6 L9,8 0 0

L10,2 L10,4 L10,6 L10,8 L10,10 0

L11,2 L11,4 L11,6 L11,8 L11,10 0

L12,2 L12,4 L12,6 L12,8 L12,10 L12,12

L13,2 L13,4 L13,6 L13,8 L13,10 L13,12

L14,2 L14,4 L14,6 L14,8 L14,10 L14,12 L14,14 0

L15,2 L15,4 L15,6 L15,8 L15,10 L15,12 L15,14 0

L16,2 L16,4 L16,6 L16,8 L16,10 L16,12 L16,14 L16,16

Figure 5.3: Local data for GPU #2 of a 16×16 distributed matrix, with block-packed
storage of width 3.

Each GPU has its own memory space, so any data needed by one GPU, but

stored on another, must be communicated across the PCI bus. When the sum of data

stored on multiple GPUs is required, each GPU communicates the needed data to

the CPU cores, which then perform the sum. The result of the sum is communicated

back to the GPUs, if necessary. This heterogeneous approach is essential for the

GPUs to operate independently, yet coordinate when necessary. The barrier routines

in OpenMP and the CUDA routines which halt CPU execution until certain GPU

tasks are completed, are used to ensure that all of the data in the various locations

stay current.
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MKL

Size 16-core 1 GPU 2 GPUs 3 GPUs 4 GPUs

10000 7.891 20.57 38.89 59.37 69.34

15000 8.090 23.13 44.57 67.07 95.08

Table 5.5: Parallel Performance of DSYMV (GFLOP/Sec)

MKL

Size 16-core 1 GPU 2 GPUs 3 GPUs 4 GPUs

10000 169.4 557.7 956.8 1295 1521

15000 185.3 610.1 1077 1462 1771

Table 5.6: Parallel Performance of DSYR2K (GFLOP/Sec)

CUBLAS does not provide DSYMV and DSYR2K routines compatible with

this distribution of the matrix data, since consecutive columns of the matrix are

on different GPUs. Instead, matrix-vector multiplications and rank-2k updates are

performed locally by looping over blocks of matrix data and launching CUBLAS or

specially created CUDA kernels to carry out the arithmetic. For DSYMV, each GPU

computes its portion of the matrix-vector multiplication. Then, the complete product

is obtained by taking the sum of all of the local products from each GPU.

Table 5.5 shows the improvement in performance for an implementation of the

DSYMV operation using multiple GPUs on Machine A. The multi-GPU DSYR2K

is implemented by having each GPU independently update its local block of matrix

data with the pertinent parts of the V and W matrices using the CUBLAS DGEMM

routine. Table 5.6 shows the performance of DSYR2K on Machine A.

A machine built for NVH analyses could potentially have CPU cores which
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together match the performance of a single GPU. In this case, better performance

may be gained by assigning some columns of L to the CPU cores. Also, the models in

the Industrial Test Suite all have L matrices which can fit on one GPU, but this trend

is not likely to continue. Historically, the rate at which GPU memory increases with

each generation of GPUs is slower than the rate at which memory demands increase

as more structural modes are included in analyses.

5.4 Real Backtransformation

After the weighted structural damping matrix is reduced to tridiagonal form,

the eigensolution is computed for the tridiagonal matrix. A subset of the eigenpairs

of the tridiagonal matrix is used to create the LRA of L. The nonzero eigenvalues of

L are simply the retained eigenvalues of the tridiagonal matrix. The eigenvectors of L

are computed by backtransforming the retained eigenvectors of the tridiagonal matrix

by applying the Householder reflections used to create the tridiagonal matrix. This

process is represented within the parentheses of equation (3.12). Forming Q, which is

the product of the Householder reflections, explicitly as the product of the individual

reflections is expensive, so, the WY representation is used to implicitly apply the

updates to Φ̂T by blocks. A pseudocode which shows how this backtransformation is

accomplished is presented in Algorithm 6.

In the algorithm, Φ̂T is the Nev×NLRA matrix which comprises the retained

eigenvectors of the tridiagonal matrix. The backtransformation is performed over

algorithmic blocks of size b. During the tridiagonal reduction, the reflection vectors

v are stored in the lower triangle of L (below the subdiagonal), and the reflection
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Algorithm 6: Blocked Real Backtransformation

Data: L ∈ R
Nev×Nev is symmetric; b is block size; V,W ∈ R

Nev×b;
Φ̂T ∈ R

Nev×NLRA

1 N = ⌈(Nev − 2)/b⌉
2 for j = N : 1 : −1 do
3 V = 0,W = 0
4 s = (j − 1)b+ 1
5 t = min(s+b−1, Nev − 2)
6 for i = t : s : −1 do
7 v(2 :Nev−i+1) = L(i+2:Nev, i)
8 v(1) = 1
9 τ = z(i)

10 w = τv
11 if i < t then
12 w = (I +WY T )w

13 V (i+1:Nev, i−s+1) = v; W (i+1:Nev, i−s+1) = w

14 Φ̂T = (I +WY T )Φ̂T

Result: Φ̂T is overwritten with QΦ̂T , where Q is the product of the
Householder reflections, formed from the reflection vectors stored
below the subdiagonal of L and the reflection scalars stored in z.

scalars τ = 2/vTv are stored in z. The backtransformation algorithm refers to these

stored values and computes each corresponding w in lines 10-12. The reflections are

applied to Φ̂T in reverse order, from the left, using the V and W matrices through

matrix-matrix multiplications, which are very efficient. Although the FLOP cost of

the backtransformation process is higher than the tridiagonal reduction process, it

does not have a memory bandwidth limitation, since the most costly step is a matrix-

matrix multiplication. Thus, the backtransformation process is much more amenable

to parallelization than the tridiagonal reduction process. The MKL LAPACK routine

which performs real backtransformation for multi-core CPUs is called DORMTR.
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Figure 5.4: Performance of MKL DORMTR

Since its dominant step involves matrix-matrix multiplications, it is able to use all of

the given CPU cores as seen in Figure 5.4.

It is straightforward to implement Algorithm 6 to take advantage of any num-

ber of GPUs in addition to the CPU cores. Since the updates to Φ̂T are applied from

the left, Φ̂T is divided into panels and each panel is backtransformed independently.

The number of panels is equal to the number of GPUs, plus one if the CPU cores

participate in the computation. Because the GPUs and the CPU cores perform op-

erations at different rates, the width of the panel allocated to each GPU is typically

larger than the width allocated to the CPU cores.
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5.5 Complex Symmetric Tridiagonal Reduction

The complex symmetric approach uses CSMES to find the eigenvalues and

eigenvectors of C as defined in equation (2.7). CSMES’s first task is to reduce C

to tridiagonal form, accomplished using CO reflections which sequentially annihilate

rows/columns of C. Unfortunately, the tridiagonal reduction of complex symmet-

ric matrices suffers from an imprecision issue, mentioned at the end of Section 2.4.

The imprecision is caused by cancellation events, which frequently appear when CO

reflections are formed.

Algorithm 7 is a pseudocode which demonstrates how complex symmetric

tridiagonal reduction is performed over algorithmic blocks. For convenience, in this

dissertation, an implementation of this algorithm is called ZSYTRD. Most of the

algorithm resembles that of the tridiagonal reduction of real symmetric matrices. The

differences between the algorithms are due to the existence of CEs. Since CEs are not

removed by a simple CO reflection, it is not possible to extend the WY representation

to include all of the additional matrices in equation (4.15) used to remove CEs. As

a result, when a CE appears, the current algorithmic block must be ended so that

the CE can be removed. The CEs are not known until they are discovered in the

tridiagonalization process. Hence, the “for loops” in Algorithm 2 are replaced with

“while loops” in Algorithm 7 to accommodate the variable widths of the algorithmic

blocks.

Within the inner “while loop”, just before a column x is used to create the

CO reflection, its CE value is determined using the routine CEvalue, which is listed

in Algorithm 8 (described in equation (4.6)). If the CE value is larger than τCE, then
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Algorithm 7: CE-aware Blocked CO Symmetric Tridiagonalization

Data: C ∈ C
Nev×Nev is symmetric; b is default block size; V,W ∈ C

Nev×b,
τCE is the CE tolerance, J is the CE data struct

1 r = Nev − 2
2 s = 1
3 while r > 0 do
4 V = 0,W = 0
5 t = min(s+b−1, Nev − 2)
6 x = C(s+1:Nev, s)
7 if CEvalue(x) > τCE then
8 removeCE(C, s, τCE, J)

9 i = s
10 while i ≤ t do
11 if i > s then
12 x0 = C(i :Nev, i)
13 updatex(C, i, V,W)

14 x = C(i+1:Nev, i)
15 if CEvalue(x) > τCE then
16 t := i− 1
17 C(i :Nev, i) = x0

18 else
19 [v, σ, τ ] = buildv(x)
20 w = C(i+1:Nev, i+1:Nev)v
21 C(i+1, i) = σ
22 if i > s then
23 updatew(w, i, V,W)

24 w = τ
[

w −
(

1
2
τwTv

)

v
]

25 V (i+1:Nev, i−s) = v; W (i+1:Nev, i−s) = w
26 C(i+2:Nev, i) = v(2 :Nev−i+1), z(i) = τ
27 i = i+ 1

28 V0 = V (t+1:Nev, :); W0 = W (t+1:Nev, :)
29 C(t+1:Nev, t+1:Nev) = C(t+1:Nev, t+1:Nev)− V0W

T
0 −W0V

T
0

30 r = r − t+ s− 1; s = s+ t− s+ 1

Result: The tridiagonal matrix is stored in the diagonal and subdiagonal
entries of C. The lower triangle of C stores the reflection vectors
and z stores the reflection scalars τ .
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Algorithm 8: CEvalue(x)

input : x vector of length n
output: The cancellation event value, γ
β = |xTx|
α = 0
for i = 1 : n do

t = R(x(i))
α = α + t2

γ = log10(α/β)

the CE is removed before more tridiagonalization continues. The loop is exited, the

work performed by updatex is reverted in line 17, and the accumulated V and W

matrices are used to update the unreduced matrix in line 29. The outcome of these

steps is that a CE can only be at the beginning of an algorithmic block.

A CE is detected in line 7 and removed in line 8 using removeCE which is dis-

played in Algorithm 9. The removeCE routine performs the steps outlined in Section

4.3 to remove a CE at column κ. Usually, this process removes the CE with a single

attempt, but if is unsuccessful, the matrix is reverted back to its original state, the

size of the small tridiagonal matrix in line 5 is increased by one, and the process is

restarted.

The multiplication in line 7 of removeCE causes the first column of Q to be

modified, which, according to Theorem 3, implies that the κ-th subdiagonal value of

the tridiagonal matrix is modified. This causes the denominator in equation (4.6) to

be modified which produces a new CE value. The CE value can also be modified by

altering the numerator in the equation. In line 11, the fill-in column is annihilated

using a chosen matrix X. This X can represent, for instance, a CO reflection or
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Algorithm 9: removeCE(C, κ, τCE, J)

input : C ∈ C
Nev×Nev with CE at column κ, CE tolerance τCE

output: The transformed C with no CE at column κ
// Information about these steps is found in Section 4.3.

1 p = 5
2 pmax = 10
3 x = C(κ+1:Nev, κ)
4 while CEvalue (x) > τCE do
5 T1 = C(1 :p, 1:p)
6 Solve: T1ΦT1

= ΦT1
ΛT1

// Define Υ according to equation (4.9).
7 C ′ = ΥTCΥ

// The top-left corner of C ′ has an arrowhead form. Let Ω
represent the product of the CO rotations which

transform C ′ so that it has a tail with a bulge.

8 C ′ = ΩTCΩ
// Permute the bulge to progress toward the unreduced part

of C ′.

9 C ′ = P TCP
// Let Γ represent the product of the CO rotations which

chase the bulge to the unreduced part of C ′.

10 C ′ = ΓTCΓ
// The last CO rotation fills in the previous column.

Annihilate this column using X.

11 C ′ = XTC ′X
12 x = C ′(κ+1:Nev, κ)
13 p = p+ 1
14 if p > pmax then break

15 C = C ′

// Store the CE data in the struct, J.
16 J.Υκ = Υ
17 J.Ωκ = Ω
18 J.Pκ = P
19 J.Γκ = Γ
20 J.Xκ = X
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the product of CO rotations. Different choices of X can modify the numerator of

(4.6) to produce different CE values. A single CO reflection which annihilates a

column is more efficient than using many CO rotations; however, the CO rotations

can be applied across rows or columns of the unreduced matrix in parallel, giving it

a performance advantage over using a single CO reflection.

Equation (5.4) shows the status of the complex symmetric matrix just before

the final entry in the fill-in column is annihilated. In an implementation of this

process, only the lower or upper triangle of the matrix needs to be referenced, but

the complete matrix is shown to provide insight into this step. In the equation, CO

rotations have annihilated entries in the fill-in row/column which are marked with

“0”, and have modified the unreduced part of the matrix. The CO rotations applied

from the left have modified rows of the unreduced matrix, marked with “×l”, and CO

rotations applied from the right have modified columns of the matrix, marked with

“×r”. The “×lr” entries represent values which have been modified by CO rotations
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from both the left and the right.
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
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. (5.4)

Before the final entry in the fill-in row/column, marked with “+”, is annihi-

lated, the current values in row/column κ (which holds the CE) can be computed

without referencing the rest of the unreduced matrix. But, when the last CO ro-

tation is applied from the left and right, row/column κ becomes dependent on the

current values of row/column κ+1, which means that in order to compute the modi-

fied row/column κ, every entry in the fill-in row/column must be annihilated. Then,

the success of a CE removal attempt is only known after the fill-in column has been

completely annihilated and its rotations have updated the unreduced part of the ma-

trix. The updates to the unreduced matrix are BLAS level-2 subprograms, which are

limited by memory bandwidth. The primary cost of removing a CE is the annihilation

of the fill-in column.
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With a lower CE tolerance, more CEs are detected and removed, and the

algorithmic blocks become more segmented. So, as τCE is lowered, ZSYR2K performs

rank-2b updates to the unreduced matrix outside of the algorithmic block with thinner

V and W matrices. The ZSYR2K routine is less efficient when the width of the

updating matrices is reduced, and it must be called more often as the number of

algorithmic blocks becomes higher.

5.5.1 Multi-Core Implementation

The performance of a multi-core implementation of ZSYTRD depends on the

performance of the multi-core complex symmetric matrix-vector multiplication, the

rank-2b update, and CE removals. The BLAS subprogram which performs complex

symmetric matrix-vector multiplication is called ZSYMV. For a chosen matrix size,

this routine executes four times as many FLOPs as DSYMV, yet complex matrix data

is only twice as large as real matrix data. This suggests that the memory bandwidth

limitation is more relaxed for ZSYMV than for DSYMV. Unfortunately, MKL’s BLAS

ZSYMV does not appear to take advantage of this observation. Its performance with

1 thread and 16 threads are indistinguishable from one another, much like DSYMV.

Therefore, Algorithm 10 is used to perform the multiplication and takes advantage

of multiple threads, given a workspace. Figure 5.5 shows the improvement in parallel

performance of an implementation of Algorithm 10 over MKL ZSYMV. As expected,

the BLAS level-3 MKL ZSYR2K subprogram takes advantage of multiple CPU cores

very well which is also seen in Figure 5.5.

The most costly step in removing cancellation events is the annihilation of
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Algorithm 10: Efficient Complex Symmetric Matrix-Vector Multiplica-
tion

Data: C is n× n and symmetric; x and y are vectors of length n; w0 is
the default block width, Nt is the number of OpenMP threads
used in the parallel region, yt is thread t’s local copy of y.

N = ⌈n/w0⌉
begin parallel region
t = a thread’s rank
yt = 0
for b = 1 to N do

if b > 1 then
s = w0(b− 1)
w = min(w0, n−s+1)
for j = 1 to w do

for i = 1 to s do
c = C(i, j+s)
yt(i) += cx(j+s)
yt(j+s) += cx(i)

end

end

end
for j = 1 to w do

for i = 1 to j − 1 do
c = C(i+s, j+s)
yt(i+s) += cx(j+s)
yt(j+s) += cx(i+s)

end

end

end
end parallel region

y =
Nt
∑

t=1

yt

Result: y = Cx
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Figure 5.5: Performance of MKL ZSYMV, Alg. 10, and MKL ZSYR2K

the fill-in column using CO rotations. When a rotation is created, multiple CPU

threads work independently, applying the rotation to sections of the rows or columns

of the unreduced matrix. Also, to prepare for the unlikely event that the CE removal

attempt is unsuccessful, the CPU threads copy the values from the unreduced part of

C to the unreferenced triangle of C in parallel before the fill-in rotations are applied.

If the attempt is unsuccessful, the CPU threads reinstate the original values in parallel

before the next CE removal attempt begins.
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MKL Alg 10 CUBLAS

Size 16-cores 16-cores w/atomic

10000 4.82 40.9 59.6

15000 4.83 41.8 61.6

Table 5.7: Parallel Performance of Single GPU ZSYMV (GFLOP/Sec)

MKL

Size 16-core CUBLAS

10000 276.0 857.7

15000 285.5 866.6

Table 5.8: Parallel Performance of Single GPU ZSYR2K (GFLOP/Sec)

5.5.2 Single-GPU Implementation

A new option of ZSYMV has been made available in the latest version of

CUBLAS which uses atomic operations to provide a more efficient complex symmetric

matrix-vector multiplication. Table 5.7 compares the performance of three versions

of ZSYMV: MKL ZSYMV, the ZSYMV from Algorithm 10 and the new CUBLAS

option.

The CUBLAS ZSYR2K is substantially more efficient than MKL’s ZSYR2K as

seen in Table 5.8. An implementation of the complex symmetric tridiagonal reduction

process which takes advantage of a single GPU is straightforward to create. Unlike

the real symmetric case, the upper half of the matrix is not an unreferenced part of

the matrix as it can be used to store the lower part of the matrix in case a CE removal

attempt fails. Unfortunately, since the matrix data is complex, the maximum matrix

size for which a matrix can fit on a single GPU is much lower than the maximum size
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Size 1 GPU 2 GPUs 3 GPUs 4 GPUs

10000 35.20 70.03 101.2 128.5

15000 36.95 72.44 107.8 137.7

Table 5.9: Parallel Performance of Multi-GPU ZSYMV (GFLOP/Sec)

for real tridiagonal reduction.

5.5.3 Multi-GPU Implementation

As with the real case, the multi-GPU implementation uses block-packed stor-

age (described in Section 5.3.3) to store the lower triangle of the matrix. If a CE

removal attempt fails, the original values in the unreduced part of the matrix must

be reinstated, in order to begin a new attempt. So, additional GPU memory must be

allocated to store the original matrix values before a CE removal attempt is made.

Since a CE could exist in nearly any annihilated column, the amount of additional

GPU memory is equal to the amount of GPU memory used to store the current matrix

data.

Table 5.9 shows how the global ZSYMV performance improves when more

GPUs participate in the computation. ZSYR2K performance is also improved as

additional GPUs share the workload as seen in Table 5.10, but the ZSYMV operation

remains a bottleneck for complex symmetric tridiagonalization.

The CE removal process first operates on the tridiagonal tail, which comprises

vector data, and these operations are performed efficiently by the CPU. When the fill-

in column is annihilated, the procedure of applying the CO rotations to the unreduced
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Size 1 GPU 2 GPUs 3 GPUs 4 GPUs

10000 557.7 956.8 1295 1521

15000 610.1 1077 1462 1771

Table 5.10: Parallel Performance of Multi-GPU ZSYR2K (GFLOP/Sec)

matrix is complicated, since the matrix data is distributed across the GPUs. This

operation is broken up into three steps, in order to minimize the amount of data

transfers and the number of synchronizations among computing resources.

The first step in the operation is annihilating the fill-in column with CO ro-

tations. Since the amount of matrix data is small, this step is solely performed by

the CPU. The sin θ and cos θ values which were used to create the CO rotations are

transferred to all the GPUs in anticipation of the next step. The second step is cre-

ating the CO rotations from the given sin θ and cos θ values and applying them from

the left to the unreduced matrix. Each CO rotation causes a row of the matrix to

become a linear combination of itself and a neighboring row. Each column stored on

a GPU contains consecutive rows of matrix data; therefore, all of the GPUs perform

this step independently of one another efficiently. The third step is applying the CO

rotations from the right to the unreduced matrix. Each CO rotation causes a column

of the matrix to become a linear combination of itself and a neighboring column.

Since adjacent columns of the matrix are stored on different GPUs, this step is car-

ried out most efficiently by transferring each GPU’s part of the unreduced matrix to

the CPU, arranging the columns of the matrix into the correct order, and applying

the CO rotations using the CPU. After the CO rotations are applied, the updated

unreduced matrix is redistributed to the GPUs.
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The latest GPUs are capable of receiving data while they transmit other data

and the data transfers can be conducted without disrupting the CPU’s computations.

In order to exploit these GPU features which improve the performance of the third

step, the unreduced matrix is divided into panels and the updates from the right

are performed on successive panels. While a panel is updated from the right by CO

rotations by the CPU, the columns of the next panel are transmitted to the CPU and

the previous panel is redistributed to the GPUs.

5.6 Complex Backtransformation

After the eigenvectors and eigenvalues of the complex symmetric tridiagonal

matrix are determined, the eigenvectors of the tridiagonal matrix are backtransformed

into the eigenvectors of C through ΦC = QΦT . Algorithm 11 is a pseudocode for this

process which resembles the algorithm for real backtransformation. Line 16 deter-

mines when the CE updates (listed in Table 4.1) are applied. In line 17, the matrices

which were used to remove CEs in the tridiagonal process are applied to ΦC in reverse

order in updateCE, displayed in Algorithm 12. Except for the computations which

pertain to the CE updates, the parallel implementations of complex backtransfor-

mation are similar to the implementations of real backtransformation. Since every

update, including those in updateCE, is performed from the left, the Nev columns

of ΦC are subdivided into panels, where each GPU (and the CPU cores, if used)

is responsible for the backtransformation of one panel. Similar to the case for real

backtransformation, each panel is backtransformed independently.
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Algorithm 11: CE-aware Blocked Complex Backtransformation

Data: C ∈ C
Nev×Nev is symmetric; b is maximum block width from

tridiagonal reduction; V,W ∈ C
Nev×b; ΦT ∈ C

Nev×Nev , J is a struct
which holds CE data

1 N = number of blocks in tridiagonal reduction
2 t = Nev−2
3 for j = N : 1 : −1 do
4 V = 0,W = 0
5 σ = width of block j
6 s = t− σ + 1
7 for i = t : s : −1 do
8 v(2 :Nev−i+1) = L(i+2:Nev, i)
9 v(1) = 1

10 τ = z(i)
11 w = τv
12 if i < t then
13 w = (I +WY T )w

14 V (i+1:Nev, i−s+1) = v; W (i+1:Nev, i−s+1) = w

15 ΦT = (I +WY T )ΦC

16 if CE was present before next block then
17 updateCE(ΦC, J , s)

18 t = t− σ

Result: ΦT is overwritten with QΦT , where Q is the product of the CO
reflections, formed from the reflection vectors stored below the
subdiagonal of C and the reflection scalars stored in z, and the
CE data stored in J .

5.7 The Fast Frequency Response Solver (FastFRS)

The two new approaches for solving modal FRPs are implemented by the

author of this dissertation in the commercial software package, FastFRS, which is

currently licensed by several automobile companies around the world. FastFRS is

designed to take advantage of multiple CPU cores on a single node machine. A newly
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Algorithm 12: updateCE(Φ, J , κ)

input : Φ, struct J , column κ which had a CE in tridiagonal reduction
process

output: The transformed Φ, having been updated with CE matrices
// Information about these steps is found in Section 4.4.

1 Φ = J.XκΦ
2 Φ = J.ΓκΦ
3 Φ = J.PκΦ
4 Φ = J.ΩκΦ
5 Φ = J.ΥκΦ

released version of FastFRS can take advantage of multiple GPUs in addition to the

CPU cores. There are two parts to every FastFRS job:

• The “Set Up” part of FastFRS includes all of the frequency independent work for

solving a modal FRP. First, the singular value decomposition of B is determined

as seen in equation (2.3). If B is symmetric, an eigenvalue decomposition is used

instead. Next, either the LRA of Ks is computed for the low rank approach

or CSMES finds the eigensolution of C for the complex symmetric approach.

Operations in this part create the constant matrices which are used to compute

responses using the SMW formula. All of the available CPU cores and GPUs

coordinate to compute the needed eigenvalue decompositions or matrix multi-

plications. Sections 5.3 through 5.6 describe the parallel implementations for

this part. For the low rank approach, if Ks is low rank, the cost of this step

is negligible since the tridiagonal process can be halted early. For the complex

symmetric approach, CSMES is usually more costly than its frequency depen-

dent work. Additionally, some matrices must be transformed through ΦC , such
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as U and A.

• After the decomposition of either approach is determined, the response is com-

puted using the SMW formula (with a partitioned approach, if necessary). Since

D in every SMW formula variation (Table 3.2, 3.3, 4.3, or 4.4) is frequency-

dependent, the SMW formula must be solved at every frequency. This is called

the “Frequency Sweep” part of FastFRS. The frequency range is divided into

groups of response frequencies, and each group is assigned to either a GPU

with a managing CPU thread, or just a single CPU thread. Because of this, the

threads with GPUs finish computing a single response much faster than their

CPU-only counterparts. FastFRS uses a scheduler to assign frequencies to CPU

cores, which gives preference to the CPU threads with a GPU. In the low rank

approach, this is the dominant part of FastFRS.

Figure 5.6 gives an overview of how FastFRS takes advantage of c CPU cores

and g GPUs. The Set Up part of FastFRS uses all the CPU cores and GPUs to

compute the necessary frequency independent matrix products and decompositions.

All of the CPU cores function as a single team, coordinating with the multiple GPUs

to complete the tasks. In the Frequency Sweep part of FastFRS, the c threads operate

independently, with the first g threads computing responses at a higher rate than

the other threads. A scheduler attempts to keep all of the threads active until the

Frequency Sweep is completed. Thus, FastFRS utilizes all available resources in order

to provide solutions of modal FRPs very efficiently.
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Set Up
(All CPUs,
All GPUs)

Frequency Sweep

Thread 2 (CPU 2, GPU 2)

Thread 1 (CPU 1, GPU 1)

...

Thread g (CPU g, GPU g)

Thread g+1 (CPU g+1)

...

Thread c (CPU c)

Figure 5.6: Parallel Tasks for FastFRS
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Chapter 6

Results

The automobile models in the Industrial Test Suite in Table 1.3 vary in the

numbers of structural modes, acoustic fluid modes, load cases, and frequency ranges of

interest. Together, they encapsulate a spectrum of modal frequency response prob-

lems (FRPs) that an analyst of noise, vibration, and harshness (NVH) might en-

counter. Machine A (described in Chapter 5) is a single-node, multi-core, computing

machine with multiple graphics processing units (GPUs), similar to the high per-

formance computing (HPC) machines that automobile companies use for frequency

response analyses. This chapter presents the accuracy and performance results for

the low rank and complex symmetric approaches used to solve the modal FRPs of

the Industrial Test Suite models as executed on Machine A.

In both new approaches, a pre-defined tolerance needs to be established. For

the low rank approach, the value of the low rank approximation (LRA) tolerance,

τLRA, determines the rank of the weighted modal structural damping matrix as shown

in equation (3.8). If τLRA is equal to zero, then the complete, rather than partial,

eigensolution represents the weighted modal structural damping matrix. The repre-

sentation of Ks is no longer an approximation, and the low rank approach becomes an

exact, full-rank method. For the complex symmetric approach, the value of the can-
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cellation event (CE) tolerance, τCE, determines the quality of the complex symmetric

tridiagonal reduction. Before a column is annihilated in the reduction, the column’s

CE value from equation (4.6) is computed. Then, if the CE value is greater than τCE,

the CE is removed before the reduction process continues. As τCE approaches zero,

the cancellation error in the eigenvalue decomposition is driven to zero and the accu-

racy of the solution approaches the full accuracy offered by machine precision. When

the tolerances of both approaches are lowered, the solutions of modal FRPs using

either approach align with the exact solutions. But, when the tolerances are low-

ered, the total FLOP costs of the approaches increase. The values for the tolerances

that result in acceptable frequency response accuracy at minimal computational cost

cannot be known without experimentation.

One heuristic method to determine the appropriate tolerance for either ap-

proach is to compare approximate solutions obtained using different tolerance values

to the exact solution. The tolerance can then be chosen as the highest value that

gives a solution close enough to the exact solution. Computing exact solutions is

expensive, so it may be more efficient to compare approximate solutions as a toler-

ance is reduced, and choose a tolerance value beyond which improvement in solution

accuracy is negligible. After the tolerances are set, it is important to periodically

verify that the chosen values continue to result in acceptable accuracy. The company

that was responsible for distributing the FastFRS software concluded after testing

that setting τLRA to 0.001 and τCE to 3.5 would reliably produce acceptable solution

accuracy for the low rank and complex symmetric approaches, respectively.

Typically, an NVH analyst uses frequency response solutions to give guidance
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for design decisions or optimizations. The accuracy of the solutions is determined

“visually” through a graph, rather than numerically to a certain number of digits.

With an appropriate tolerance, an approximate method is considered acceptable when

their graphs visually match.

An analysis of the accuracy of the low rank and complex symmetric approaches

requires a virtually exact solution to which the solutions to modal FRPs can be com-

pared, and a method for comparing the solutions. In Section 6.1, the FastFRS brute-

force approach for obtaining exact solutions of modal FRPs is presented. Section 6.2

shows how the results of modal FRPs solved in two different ways can be compared to

one another, and describes a technique that is used in industry to compute a measure

of the difference between them. Then, Sections 6.3 and 6.4 present accuracy results

of the low rank and complex symmetric approaches, respectively. In Section 6.5, the

FastFRS solution strategy, which gives an analyst guidance for determining whether

the low rank approach or the complex symmetric approach offers faster performance,

is presented. The strategy is used on the models in the Industrial Test Suite and

suggests the approach which is favored for each model. The performance results of

the low rank approach are shown in Section 6.6 and those for the complex symmetric

approach are shown in Section 6.7. All of these were collected from executions on

Machine A using all of the CPU cores and none, some, or all of the available GPUs.

Finally, Section 6.8 confirms that the favored approaches, selected using the FastFRS

solution strategy in Section 6.5, are the appropriate choices.
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6.1 The FastFRS Brute-Force Approach

A brute-force approach is implemented in FastFRS which provides the exact

solutions to modal FRPs. This approach is expensive because it requires O(N3
ev)

FLOPs at each frequency, but it can be used to determine the appropriate tolerances

for the low rank and complex symmetric approaches. For models with structure-fluid

interaction, the solutions are computed in one of two ways. If the acoustic fluid

matrices are full, the entire coefficient matrix in equation (1.13) is formed and the

coefficient matrix is factored to solve the modal FRP at every frequency. The total

FLOP cost of this approach is

Cost =

[

4

3
(Nev+Nf )

3 + 8 (Nev+Nf)
2 Nc

]

Nfreq. (6.1)

For models with diagonal acoustic fluid matrices, like Models D, E, and F

in the Industrial Test Suite, it is best to use a partitioned solution approach to take

advantage of the fluid matrices being diagonal. The steps which solve the modal FRP

in this manner are listed in Table 6.1. The total FLOP cost using this form of the

brute-force approach is

Cost =

[

4

3
N3

ev + 12NevNfNc + 4N2
evNf + 8N2

evNc

]

Nfreq (6.2)

which is less than the cost in equation (6.1). For this chapter and the next, the “brute-

force approach” specifically refers to either of the two methods above (depending on

the whether the acoustic fluid matrices are diagonal) which provide exact solutions

and are implemented in FastFRS.
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Step Task FLOP Cost

(1) Ff := Z−1
f Ff (ω), Ā := AZ−1

f (ω) 4NfNc + 2NevNf

(2) Fs := Fs − iωAFf 4NevNfNc

(3) Zs := Zs + ω2AĀT 4N2
evNf

(4) Xs := Z−1
s Fs

4
3
N3

ev + 8N2
evNc

(5) Xf := Ff − iωĀTXs 8NevNfNc

Table 6.1: FastFRS Brute-Force Approach Operations per Frequency for Modal FRPs
with Diagonal Acoustic Fluid Matrices

6.2 Comparing FRFs

FastFRS returns solutions of FRPs in modal space, so the solutions are back-

transformed to FE space through equation (1.14) to be of use to analysts. These FE

solutions are examined by plotting the displacements, velocities, or accelerations of

a particular grid point and load case combination as a function of frequency. These

types of graphs are called frequency response function (FRF) graphs. Since there is

an FRF for every degree of freedom for every load case, an FRP could potentially

lead to hundreds of millions of FRFs. However, analysts are typically only interested

in the responses in a relatively small number of degrees of freedom of the automobile,

so only the rows of Φs which correspond to those degrees of freedom are used in the

transformation. This reduces the number of necessary FRFs significantly.

The number of FRFs in a set of FRFs is equal to the number of degrees of

freedom of interest times the number of given load cases. The purpose of comparing

two sets of FRFs is to determine whether or not the different methods used to create

the FRFs yield equivalent responses. This can be accomplished by systematically
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plotting the FRF from each set corresponding to the same degree of freedom and

load case on a graph and noting the differences, which is a cumbersome task. Instead

of examining every pair of FRFs, it is sufficient to first determine which pair of FRFs

has the greatest difference in values over all frequencies. Then, if the “worst case”

FRF pair is virtually indistinguishable on an FRF plot, then the two sets of FRFs

are considered to be equivalent, and the methods used to compute the responses are

considered to be equivalent.

In the NVH community, an informal measure of the difference between two

computed FRFs has been developed and is used often for evaluating solution accuracy.

The measurement takes into account the differences in the FRFs over all frequencies,

without allowing a single large difference to dominate the calculation. The numerator

of the error measurement is a sum of the differences of the squares of the response

values, and the denominator is the sum of the averages of the response values, squared.

Let R represent a vector containing the responses sorted by frequency for a particular

degree of freedom and load case combination from a set of FRFs. Let S represent

the corresponding responses from a second set of FRFs. The FRF error measure is

computed in the following way.

FRF error measure =



































0 if R = S = 0
Nfreq
∑

i=1

∣

∣R2
i − S2

i

∣

∣

Nfreq
∑

i=1

(

Ri + Si

2

)2
otherwise

(6.3)

The “worst case” FRF pair is the one with the highest FRF error measure.
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For example, suppose that an analyst is interested in comparing solutions

obtained from using the low rank approach with solutions obtained from using the

brute-force approach. After FastFRS produces a set of FRFs from using each ap-

proach, the analyst has two sets of FRFs to compare. An FRF from the first set has

a corresponding FRF in the second set. Let R represent a single FRF from the first

set (created from the low rank approach) and S represent the corresponding FRF

from the second set (created from the brute-force approach). Then, equation (6.3) is

used to compute the error measure between those two particular FRFs. The process

is repeated for every FRF over all degrees of freedom and all load cases in order to

determine which FRF pair is the “worst case”.

6.3 Accuracy of the Low Rank Approach

In the low rank approach, τLRA determines the rank of the weighted modal

structural damping matrix. Figures 6.1 and 6.2 demonstrate the accuracy of the low

rank approach using the τLRA that is currently used in industry. Equation (6.3) was

used to find the grid point and load case combination with the greatest difference

between the low rank approach and the brute-force approach for two sample models

in the Industrial Test Suite. These “worst case” FRFs are shown in Figure 6.1, which

plots velocity responses versus the frequencies for Model D, and Figure 6.2, which

plots displacement responses for Model F. Both figures show that the FRFs from

the low rank approach are virtually indistinguishable from their brute-force approach

counterparts. The other models in the Industrial Test Suite produce similarly in-

distiguishable “worst case” plots, which demonstrates that using the standard τLRA
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leads to acceptable solutions of modal FRPs.

6.4 Accuracy of the Complex Symmetric Approach

The CE tolerance specifies the number of digits which are permitted to be

lost in the application of a CO reflection (defined in equation (2.11)) during the

tridiagonal reduction of the complex symmetric matrix, C. The precision of the

eigenvalues and eigenvectors of C from CSMES is determined by τCE which influences

the accuracy of the solutions of the modal FRP. Equation (6.3) was used to determine

the grid point and load case corresponding to the greatest difference between the

response computed from the complex symmetric and brute-force approaches. The

accuracy of the complex symmetric approach is shown in two figures. Figure 6.3

plots the “worst case” FRF graphs of acceleration vs. frequency for the complex

symmetric and brute-force approaches for Model E. The same grid point and load

case used to plot Figure 6.2 are used to plot the FRFs in Figure 6.4. The FRF plots

are practically indistinguishable from one another, demonstrating that the complex

symmetric approach, using the standard value of τCE, leads to acceptable solutions

of the modal FRP.

6.5 The FastFRS Solution Strategy

Equipped with the two efficient approaches for solving modal FRPs with struc-

tural damping, it is useful to know a priori which approach will perform faster for

a particular modal FRP. For instance, if the modal structural damping matrix has

a high rank, then the low rank approach has an even higher FLOP cost than the

133



 0

 0.5

 1

 1.5

 2

 2.5

 0  50  100  150  200  250  300  350  400  450

V
el

oc
ity

 (
m

m
/s

)

Frequency

 Brute-Force Approach
 Low Rank Approach

Figure 6.1: Comparing “Worst Case” FRFs for Model D
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Figure 6.2: Comparing “Worst Case” FRFs for Model F
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Figure 6.3: Comparing “Worst Case” FRFs for Model E
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Figure 6.4: Comparing “Worst Case” FRFs for Model F
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brute-force approach, and the complex symmetric approach should be chosen. If the

rank of the modal structural damping matrix is very low, then using CSMES in the

complex symmetric approach is unnecessary and is much more expensive than the

low rank approach. This section describes a strategy that provides some guidance for

determining which approach offers faster performance. The strategy relies on both

machine-independent calculations, such as the rank of the modal structural damping

matrix and the FLOP costs of each approach, and FLOP rate estimates for each

significant part of FastFRS, which are machine-specific values. The strategy is then

demonstrated on the models in the Industrial Test Suite.

1. The first step in this strategy is to determine the rank of the weighted Ks. This

process is not costly when compared to the other operations in FastFRS. Also,

when Ks is of low rank, the tridiagonal reduction process is stopped early and

the rank is determined very quickly.

2. Second, the FLOP costs for the Set Up and the Frequency Sweep parts of Fast-

FRS are computed for both approaches. Since the LRA of Ks has already been

determined in the first step, the remaining Set Up cost for the low rank ap-

proach is zero. For the Set Up part of the complex symmetric approach, the

only unknown value needed to compute the FLOP cost of CSMES is αCE, which

is defined in equation (4.19). Figure 4.3 suggests that even though the CE is a

chance event, the total number of CEs encountered has some consistency. So,

for an estimate, let αCE = 0.20, which is the upper bound which has been ob-

served for many models, including those in the Industrial Test Suite. The cost
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of CSMES, CCSMES, is computed using equation (4.20). Next, the FLOP costs

are computed for each of the remaining parts of FastFRS for the two new ap-

proaches. The cost of computing the low rank approach’s frequency-dependent

operations for a single frequency in the Frequency Sweep depends on whether

the acoustic fluid matrices are diagonal. The cost is either CLR1 or CLR2, found

in equations (3.23) and (3.29), respectively. The cost of computing the complex

symmetric approach’s frequency-dependent operations for a single frequency in

the Frequency Sweep is either CCE1 or CCE2, found in equations (4.32) and

(4.37), respectively. For convenience, the FLOP cost results presented in this

chapter are reported in GFLOPs.

3. The FLOP costs in the previous step are computed without taking into ac-

count that some of them will be executed in parallel. They do not account

for machine-specific parameters such as the rate at which FLOPs are executed

simultaneously by CPU threads in parallel, and memory bandwidth. There-

fore, the third step is determining estimates of the FLOP rates of each part of

FastFRS for a particular machine. Let an estimated FLOP rate for CSMES be

represented with SCSMES and an estimated FLOP rate of the Frequency Sweep

of both approaches be represented with SFS. In order to have consistency with

the FLOP costs from the second step, the FLOP rates are recorded in GFLOPs

per second.

4. The final step in the FastFRS solution strategy is to estimate the total time

in seconds that each approach will take to compute the responses. Since the
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rank of the weighted Ks is determined in the first step in the strategy, the

set up performance of the low rank approach is not included in the total time

estimates. These estimates are simply:

Low Rank Estimate =







CLR1∗Nfreq

SFS
, if Cf is full

CLR2∗Nfreq

SFS
, otherwise

(6.4)

Complex Symmetric Estimate =
CCSMES

SCSMES

+







CCE1∗Nfreq

SFS
, if Cf is full

CCE2∗Nfreq

SFS
, otherwise.

(6.5)

The approach with the lower time estimate is the one which is favored, providing

the solutions to the modal FRP more efficiently.

The estimated FLOP rate SCSMES does not vary much across models for a particular

machine since the frequency at which CEs are encountered and removed during the

tridiagonalization process is somewhat consistent across models. Unfortunately, the

values of SFS are less consistent across models than SCSMES, since there is much

variation in the dimensions of the many matrices involved in the Frequency Sweep.

The models in the Industrial Test Suite are used to demonstrate the FastFRS

solution strategy. First, every model’s NLRA is determined using the tolerance τLRA

using the process described in Section 3.2. These values are listed in Table 6.2. Next,

FLOP costs for each significant part of FastFRS are computed. Models B and C do

not have purely diagonal acoustic fluid matrices, so their Frequency Sweep costs are

computed using CLR1 and CCE1. The acoustic fluid matrices of Models A, D, E, and

F are diagonal, so their Frequency Sweep costs are computed using CLR2 and CCE2.
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Model Nev NLRA CLR1 or CLR2 CCSMES CCE1 or CCE2

A 10351 2137 213.2 22331 29.40

B 11475 848 2480 30421 1972

C 8585 8594 2972 12784 425.7

D 6539 227 26.10 5629.2 150.5

E 15923 8438 4230 81281 493.0

F 12165 3350 443.8 36245 130.6

Table 6.2: Computed Costs Needed for the FastFRS Solution Strategy (GFLOPs)

Table 6.2 shows FLOP costs for each significant part of FastFRS for the models in

the Industrial Test Suite.

In order to compute the estimated times for each approach, the FLOP rates

specific to Machine A are needed. For simplicity, only the 0-GPU situation is consid-

ered for this exercise. The Frequency Sweep operations are primarily compute-bound

and not limited by the memory bandwidth of the CPU cores. Therefore, the theoret-

ical maximum compute performance rate for Machine A, listed in Table 5.1, which

is 396.8 GFLOP/sec, is used as the value of the FLOP rate, SFS. Since CSMES is

limited by memory bandwidth, its FLOP rate, SCSMES, is determined experimentally,

and found to be 32.1 GFLOP/sec, on average. Using these values, the estimated

times for each CPU-only approach are calculated and displayed in Table 6.3. The

final column in the table shows which approach is favored based on estimated time.

The FastFRS Solution strategy predicts that when only the CPU cores are used,

Models A, B, D, and F should be solved using the low rank approach, and Models C

and E should be solved using the complex symmetric approach.
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Low Rank Complex Sym. Favored

Model Est. Time (sec) Est. Time (sec) Approach

A 113 711 Low Rank

B 2290 2770 Low Rank

C 5740 1220 Complex Sym.

D 25.3 322 Low Rank

E 8170 3480 Complex Sym.

F 636 1320 Low Rank

Table 6.3: Estimated CPU-only Performance Time for Each Approach

6.6 Performance of the Low Rank Approach

The low rank approach first determines the LRA of Ks, according to equation

(3.10). The most costly step in this process is the tridiagonal reduction of the weighted

modal structural damping in equation (3.11). DSYTRD is an LAPACK routine which

provides tridiagonal reduction, but it assumes that the input matrix has full rank.

If the matrix is low rank, then before the reduction is completed, the unreduced

part of the matrix will be populated with zeroes, and the reduction can be halted

early. Therefore, a specialized implementation is used in FastFRS which is capable of

detecting whether the reduction process can end before the last column is annihilated.

This implementation is capable of taking advantage of all of the CPU cores and any

number of GPUs present on a computing machine.

Table 6.4 compares performance results of computing the LRA of the structural

damping matrix using DSYTRD and the specialized implementation. The ‘Using

DSYTRD’ column reports the total decomposition time when DSYTRD is used as the
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Using Using “Stop Early” Implementation

Model DSYTRD 0-GPUs 1-GPU 2-GPUs 3-GPUs 4-GPUs

A 59.3 33.3 16.2 16.7 12.2 10.7

B 75.9 21.0 12.2 11.8 9.06 7.99

C 45.8 47.5 36.7 38.7 33.2 31.3

D 12.3 2.41 2.50 2.83 2.23 1.94

E 232.5 224.8 97.7 93.6 70.7 61.1

F 99.5 67.1 30.2 29.9 21.9 19.1

Table 6.4: Performance of Ks = JsΛ̂LJ
T
s Decomposition (seconds)

reduction routine. The remaining columns report the total decomposition time when

the specialized implementation is used as the reduction routine. The performance of

the specialized implementation improves as more GPUs are used in the reduction.

The only model which does not benefit from the specialized implementation is Model

C. With the value of τLRA that is used in industry, Model C’s Ks is found to be full

rank, as is confirmed in Figure 3.1. Therefore, the higher time in the 0-GPUs case

for this model is due to the overhead of checking whether the process can be finished

early.

The Frequency Sweep is the dominant part of FastFRS for the low rank ap-

proach. In the Frequency Sweep, each CPU thread independently computes responses

for specific frequencies until the list of frequencies is exhausted. Each available GPU

is assigned to a managing CPU thread. CPU threads with GPUs are able to compute

responses much more quickly than the CPU threads without GPUs. For example,

Model B is a model in the Industrial Test Suite which has a structural damping ma-
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trix with low rank, according to Figure 3.1. Its modal FRP may be solved faster

using the low rank approach than the complex symmetric approach. It has a full

acoustic fluid “damping” matrix; therefore, the corresponding operations which com-

pute the response at a single frequency with the low rank approach are displayed in

Table 3.4. The performance of each step in the table depends on whether the work is

performed by a solitary CPU thread or a CPU thread with a GPU. Table 6.5 breaks

down the performance for each significant step listed in Table 3.4 for Machine A.

Steps 2,3 and 11,12 are shown together since their operations are aggregated in order

to improve BLAS and CUBLAS performance. The final column in Table 6.5 shows

the “speedup”, which is the CPU-only time divided by the CPU+GPU time. The

speedup is an useful way to evaluate GPU performance. For instance, the speedup

of step 9 is 42.4, which means that for that step in Table 3.4, the GPU has the per-

formance of about 42 CPU cores. In step 14, two matrices are multiplied together

and the matrix product width is Nc. Since BLAS and CUBLAS routines are most

efficient when the matrices on which they operate are square, and for this model, Nc

is small, step 14 has the lowest speedup.

Table 6.6 shows the speeds, in solutions per second, at which responses are

computed by a single CPU thread for all models in the Industrial Test Suite. Sc

represents the rate at which a CPU thread without a GPU computes responses, and

Sg represents the rate for a CPU thread with a GPU. The speedup results in the last

column shows the benefit of including GPUs in the Frequency Sweep. The structural

damping matrix from Model C has full rank and most of the matrices involved in the

Frequency Sweep are square. Since CUBLAS matrix multiplications are most efficient
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Step in Table 3.4 CPU-only (sec) CPU+GPU (sec) Speedup

2, 3 17.3 0.330 52.5

5 1.08 0.0449 24.1

7 3.66 0.0938 39.0

9 13.9 0.327 42.4

11,12 82.4 2.86 28.7

13 14.9 1.90 7.84

14 0.439 0.414 1.06

Table 6.5: Model B Performance of Individual Steps in Frequency Sweep

Model Sc Sg Speedup (Sg/Sc)

A 0.0768 1.21 15.8

B 0.00759 0.140 18.4

C 0.00530 0.138 26.0

D 0.345 3.57 10.3

E 0.00387 0.0803 20.7

F 0.0381 0.625 16.4

Table 6.6: Speed of CPU cores and GPU (solutions/sec)

when the matrices are square, Model C has the highest speedup in the table.

Once a response at a single frequency has been computed by one CPU thread

with and without a GPU, it is possible to accurately predict the overall speed with

which responses are computed by all of the CPU cores and GPUs. If a machine has

c CPU cores and g GPUs, the speed of the machine, in terms of frequency response

solutions per unit time, can be represented simply as a function of g as

S(g) ≈ gSg + (c− g)Sc = cSc + g(Sg − Sc). (6.6)
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Figure 6.5: Predicted and Actual Speedup

In the latter representation, the speed begins with cSc, the speed of the machine

without GPUs, and increases linearly with the number of GPUs. In FastFRS, good

load balancing across all CPU threads is maintained in the Frequency Sweep when

the frequency scheduler is equipped with the values of Sc and Sg to properly assign

frequencies to the CPU threads. Figure 6.5 plots equation (6.6) for each model, based

on the values in Table 6.6 on Machine A. The points near or on each line represent the

total response rates based on execution time. The agreement between the theoretical

and measured speeds indicates that the performance is close to ideal.

The semi-log plot in Figure 6.6 shows the performance of the low rank approach

compared to the CPU-only brute-force approach for all models in the Industrial Test
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Figure 6.6: Performance Improvement of the Low Rank Approach over the Brute-Force
Approach

Suite. In the figure, the y-axis is the overall elapsed time using the low rank approach

divided by the time using the CPU-only brute-force approach, and the x-axis is the

number of GPUs used in the low rank approach. For all models, except C and E,

the improvement in performance is dramatic. When two GPUs are used, the modal

FRPs from Models A, B, D, and F are solved more than ten times faster with the low

rank approach than with the CPU-only brute-force approach. Model C’s modal FRP

is not solved faster using the low rank approach since its structural damping matrix

has full rank. For this model, the low rank approach requires more operations per

frequency than the brute-force approach.
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6.7 Performance of the Complex Symmetric Approach

In the complex symmetric approach, the matrix C is formed from the stiffness

matrix, the global structural damping factor, and Ks, as seen in equation (2.7). The

eigenvalues and eigenvectors of C are computed using CSMES, described in Section

4.6, and the modal FRP is transformed into an equation which is solved efficiently

using the SMW formula.

6.7.1 CSMES Performance

The two primary routines in CSMES are ZSYTRD, which performs the tridi-

agonal reduction of C to T , and ZORMTR, which backtransforms the eigenvectors of

T to the eigenvectors of C. A secondary routine in CSMES computes the eigenvec-

tors and eigenvalues of T and is much more efficient than ZSYTRD and ZORMTR

because its FLOP cost is O(N2
ev). The performance of ZSYTRD is limited by the

machine’s memory bandwidth since a matrix-vector multiplication is required Nev−2

times in the tridiagonal reduction process, and removing CEs requires many more

costly BLAS level-2 operations. Every CE that is removed in ZSYTRD has a corre-

sponding set of updates which must be applied in ZORMTR; therefore, as more CEs

are removed, the performance of ZSYTRD and ZORMTR degrade. When τCE is set

to the standard level used in industry, the number of CEs removed in the tridiagonal

reduction process is usually between ten and twenty percent of Nev regardless of the

size of C.

Model A’s structural damping matrix appears to have a high rank, as seen in

Figure 3.1. When its matrix C is created and tridiagonalized in ZSYTRD using the

146



Operation 0-GPUs 1-GPU 2-GPUs 3-GPUs 4-GPUs

ZSYTRD 350.4 228.1 167.7 142.4 127.4

ZORMTR 302.5 197.9 124.5 113.3 94.5

Table 6.7: ZSYTRD and ZORMTR Performance for Model A (sec)

standard CE tolerance, it is found that CEs must be removed for 16% of its columns.

Table 6.7 shows the time spent in the two primary routines used in CSMES for sample

Model A. When two or more GPUs are used in ZSYTRD, there is an additional cost

of transferring matrix data between the GPUs and the CPU cores every time a CE

is removed. If the data transfer speed between the GPUs and the CPU is improved,

then the multi-GPU ZSYTRD performance will improve. Although CPUs and GPUs

do not need to communicate with one another during the ZORMTR process, the

ZORMTR performance is hindered by the matrix updates which correspond to CEs

which were removed in ZSYTRD.

6.7.2 Comparing CSMES to ZGEEV

An alternative to CSMES in LAPACK is a routine called ZGEEV which com-

putes the eigenvalues and eigenvectors of complex general matrices. This routine

assumes that the input matrix is square, but nonsymmetric. Instead of a reduc-

tion to tridiagonal form, ZGEEV reduces the matrix to upper (or lower) Hessenberg

form, in which all of the lower triangle except the subdiagonal (or all of the upper

triangle except the superdiagonal) is annihilated. In the Hessenberg reduction, the

reflections are complex Householder reflections, where H = I − τvvH . The vector v

and the subdiagonal entries in the resulting Hessenberg matrix are determined from
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xHx instead of xTx. Therefore, the cancellation event is not present in this type of

reduction. However, the symmetry of C is not exploited at all in this process, and

all of the unreduced portion of C must be referenced and modified when each col-

umn is annihilated. The process of computing the eigenvalues and eigenvectors of the

Hessenberg matrix is more costly than computing the eigenvalues and eigenvectors of

the tridiagonal matrix in CSMES since a Hessenberg matrix has many more nonzeros

than a tridiagonal matrix. The final step of ZGEEV backtransforms the eigenvectors

of the Hessenberg matrix to the eigenvectors of C. ZGEEV is the standard approach

for computing the eigenvalues and eigenvectors of complex symmetric matrices.

CSMES takes advantage of the symmetry of C, but CEs must be removed

during the tridiagonal reduction process. By contrast, ZGEEV ignores the symmetry,

but encounters no CEs. The FLOP cost of the CSMES approach depends on αCE,

the fraction of columns of C in which CEs are encountered that must be removed. By

leaving αCE as a variable and equating the FLOP cost of CSMES with the FLOP cost

of ZGEEV, the value of αCE for which the two costs are equal can be determined. At

this particular value of αCE, the benefit of exploiting symmetry is exactly balanced

by the added cost of removing CEs. The cost of CSMES, CCSMES which is derived in

Section 4.6 is

CCSMES =

[

40

3
+

(

5δ

6
+ 14

)

αCE

]

N3
ev. (6.7)

The value of δ in the equation above is a function of the type of CO matrices that are

used to annihilate fill-in columns during the CE removal process. In CSMES, each

fill-in column is annihilated with CO rotations, which corresponds to δ equal to 24.

According to [7], the FLOP cost of performing ZGEEV is 26.33N3
ev. Then, equating
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the two FLOP costs and cancelling Nev from both sides,

40

3
+

(

5× 28

6
+ 14

)

αCE = 26.33. (6.8)

This equation can be solved to obtain the value αCE = 0.35, which indicates that

when more than 35% of the columns of C have CEs removed, ZGEEV has a lower

FLOP cost than CSMES. As seen in Figure 4.3, an αCE value that high corresponds

to a very low CE tolerance for models in the Industrial Test Suite. The CE tolerance

used in industry yields αCE values that are much lower than 0.35.

Figure 6.7 shows the performance results for computing eigenvalues and eigen-

vectors of C for the models in the Industrial Test Suite. The standard value of

τCE = 3.5 was used. In the figure, CSMES is compared with the only alternative,

the CPU-only ZGEEV routine, beginning with the CPU-only case (with no GPUs)

and increasing the number of GPUs. Without GPUs, the time taken by CSMES is

between 26% and 36% of the ZGEEV time. As GPUs are added, which ZGEEV

does not presently allow, performance continues to improve significantly. When 4

GPUs are used, the time spent in CSMES is between 10% and 14% of the ZGEEV

time. For all models, since αCE varies between 0.10 and 0.20, CSMES requires fewer

FLOPs than ZGEEV, so the superior performance of CSMES shown in the figure is

not surprising.

6.7.3 Frequency Sweep

After CSMES is finished in the Set Up part of FastFRS, some matrix multi-

plications must be performed at every frequency in the Frequency Sweep. Table 6.8
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Figure 6.7: Performance Improvement of CSMES over ZGEEV

shows that these operations take very little time compared to the CSMES time for

Model A.

6.7.4 Total Performance

The performance of the complex symmetric approach compared to the CPU-

only brute-force approach is shown in the semi-log plot in Figure 6.8. The axis ranges

are the same as the axis ranges in the plot in Figure 6.6. For all cases, the complex

symmetric approach is faster than the brute-force approach. For example, the CPU-

only complex symmetric approach completed its work on Model B 3.84 times faster

than the brute-force approach, and the 4-GPU implementation was 16.45 times faster
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Operation 0-GPUs 1-GPU 2-GPUs 3-GPUs 4-GPUs

Set Up (w/CSMES) 686.1 460.6 326.4 290.8 257.2

Freq. Sweep 35.5 25.9 21.0 19.0 17.6

Table 6.8: Model A Performance Breakdown (sec)

Brute-Force Low Rank Complex Sym. Faster

Model Total Time (s) Total Time (s) Total Time (s) Approach

A 1406 194.2 724.9 Low Rank

B 17620 3630 4580 Low Rank

C 4147 9478 931.2 Complex Sym.

D 968.1 80.70 302.0 Low Rank

E 18620 11950 3584 Complex Sym.

F 5555 939.8 1321 Low Rank

Table 6.9: Total CPU-only Performance Time for Each Approach

than the brute-force approach.

6.8 The FastFRS Solution Strategy, Revisited

The FastFRS Solution Strategy attempts to predict which new approach will

solve the modal FRP faster. Table 6.3 lists the results of using the strategy on the

models in the Industrial Test Suite, and predictions are made in the last column. Table

6.9 lists the actual performance time for each model using the two new approaches,

and confirms that the predictions in the previous table were correct.
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Figure 6.8: Performance Improvement of the Complex Symmetric Approach over Brute-
Force Approach

152



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The classical modal approach is very effective for vibration analysis of ex-

tremely high dimension finite element (FE) discretizations of complicated structures,

but accurate modeling of damping can reduce the benefits of this approach. For

automobiles, viscous damping is typically associated with only a few discrete compo-

nents, such as engine mounts and shock absorbers, and results in a low rank damping

matrix that can be handled easily. However, structural damping permeates the au-

tomobile’s structure, and different structural materials typically have different levels

of structural damping.

An efficient approach is to establish a global structural damping level, γ, for

the predominant structural material, because this results in a structural damping

matrix equal to the stiffness matrix multiplied by a scalar. The modes are orthogonal

with respect to this matrix as they are with respect to the stiffness matrix, so the

contribution of this matrix to the modal frequency response problem (FRP) is diago-

nal. Then other materials are modeled by representing their deviation from the global

structural damping level by another matrix Ks, but Ks contributes a fully populated

matrix to the modal FRP.
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This dissertation presents two new approaches for solving modal FRPs whose

coefficient matrix is full because of structural damping. The approaches modify the

modal FRP by putting its full coefficient matrix in a form that is more amenable

to efficient solution. These approaches rely on some preparatory computation that

requires O(N3
ev) operations, followed by frequency response calculations that requires

only O(N2
ev) operations at each frequency. The approaches are implemented in the

commercial software package, FastFRS, which is currently licensed by automobile

companies around the world.

7.1.1 Chapter 3: The Low Rank Approach

The rank of Ks is determined by the number of finite elements composed

of different materials from the predominant material whose structural damping is

reflected by γ. If the number of finite elements with structural damping different

from γ is very small, then the Ks matrix is of low rank. The modal structural

damping matrix Ks is full, but it is also of low rank, and the low rank approach

outlined in Chapter 3 is used to solve the modal FRP. This approach relies on an

accurate low rank approximation (LRA) of Ks. However, the entries in Ks vary

greatly in magnitude, making it difficult to determine the rank of Ks reliably. The

variation in magnitudes of values in Ks is related to the variation among values in

the modal stiffness matrix Λ. The pseudoinverse of the square root of the diagonal

matrix Λ is an appropriate choice of a weighting matrix for scaling rows and columns

of Ks. When Ks is rescaled in this manner, determining its rank for the modal FRP

becomes straightforward and yields results that are consistent across a wide variety of
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automobile models. A tolerance is used to determine the rank of the weighted matrix,

and Ks is represented with an LRA. The LRA of Ks makes it possible to solve the

modal FRP efficiently using the Sherman-Morrison-Woodbury (SMW) formula.

7.1.2 Chapter 4: The Complex Symmetric Approach

If there are a large number of finite elements composed of different materials

from the predominant material, then Ks is of high rank. The modal Ks matrix also

has a high rank, and the complex symmetric approach, described in Chapter 4, is

used to solve the modal FRP. In this approach, a complex symmetric matrix, C, is

created, which is defined in equation (2.7), and its eigenvalue decomposition (EVD)

is determined using the complex symmetric matrix eigensolver (CSMES), which is

presented in Chapter 4. When there is no viscous damping represented in the model,

the eigenvectors of C diagonalize the coefficient matrix and the modal FRP is trivial

to solve. When viscous damping is represented in the model, the coefficient matrix

is transformed into a diagonal plus low rank matrix, which is solved efficiently using

the SMW formula.

In the first step in CSMES, a non-unitary complex orthogonal (CO) matrix is

used to reduce C to symmetric tridiagonal form. The CO matrix is the product of CO

reflections, which sequentially annihilate many entries in a row and the corresponding

column of C. A consequence of using CO matrices for tridiagonal reduction is that

when a reflection is formed and applied, there can be cancellation between terms in

the product xTx that reduces numerical precision in the EVD of C. Chapter 4 shows

how this cancellation event (CE) is detected by comparing the result of equation (4.6)
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with a specified tolerance. Next, a CE removal method is described which typically

removes the CE on its first attempt, but allows for additional attempts if they are

needed. After C is reduced to the tridiagonal matrix T , the EVD of T is computed.

Because T was obtained using similarity transformations, the eigenvalues of T are

the same as those of C, but the eigenvectors of T must be backtransformed to obtain

those of C. These eigenvectors are then used to transform the full coefficient matrix

of the modal FRP into a form that is more amenable to efficient solution.

7.1.3 Chapter 5: Parallel Implementations of the New Approaches

Currently, automobile companies conduct NVH analyses on single node com-

puters with multiple cores per processor. It is becoming common for some companies

to install multiple GPUs on their computers because GPUs are capable of performing

computations much more efficiently than multi-core processors. Chapter 5 discusses

the various ways that the low rank and complex symmetric approaches are imple-

mented to take advantage of these timely parallel computing technologies.

In the low rank approach, after Ks is weighted with the pseudo-inverse of the

square root of Λ, the weighted matrix is tridiagonalized using Householder reflections.

If Ks is of low rank, then in the course of the tridiagonal reduction, the portion of Ks

that has not yet been tridiagonalized can become null. If this happens, many FLOPs

can be saved by stopping the reduction process early, if the magnitudes of unreduced

entries are examined. This feature is included in the multi-core, single GPU, and

multi-GPU implementations of this process.

For the multi-GPU implementation, the columns of Ks are distributed nearly
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equally among the GPUs. To ensure good load-balancing during tridiagonalization,

the columns are distributed in a 1-D cyclic fashion, and in order to take advantage of

GPU cores most efficiently, local matrix data is stored on each GPU in block-packed

form. Data which is stored on one GPU but is needed by another is communicated

across the peripheral component interconnect (PCI) bus by the CPU.

When matrix C is of full rank, the complex symmetric approach is used, and

the unreduced part of C is never null during the tridiagonalization process. As each

CO reflection is formed for annihilating a row and column of C, it must be checked to

see if a CE has occurred. If a CE is detected, all of the CE removal steps that must

be applied to the portion of the matrix that has been made tridiagonal by then are

most efficiently performed by the CPU cores. The last CE removal step is applying

the CO rotations, which were constructed for annihilating the entries in the fill-in

column, to the as-yet unreduced part of the matrix. The performance of this step is

limited by memory bandwidth.

The parallel implementations of the tridiagonal reduction process of the com-

plex symmetric approach resemble the implementations of the low rank approach,

except for the steps pertaining to the CE removal method. When an attempt is made

to remove a CE, the CPU cores conduct all of the steps up to the application of CO

rotations to the unreduced part of the matrix which were used to annihilated fill-in

columns. For the CPU-only and single GPU implementations, the application of CO

rotations is carried out without any synchronizations or coordinations between com-

puting resources. For the multi-GPU implementation, this step is complicated, since

the unreduced part of the matrix is distributed among all of the GPUs. Applications
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of CO rotations are conducted on successive panels of the matrix, and simultaneously,

the next panel is gathered from the GPUs and the previous panel is distributed back

to the GPUs.

Both the low rank approach and the complex symmetric approach require a

backtransformation process which transforms an eigenvector matrix for the tridiago-

nal matrix to one for the matrix that was tridiagonalized. In this process, panels of

the eigenvector matrix are assigned to each of the GPUs and to the CPU cores. The

panels are backtransformed independently. For the complex symmetric approach, the

CO matrices used to remove the CEs in the tridiagonal reduction process must be

applied between the appropriate algorithmic blocks in order to perform the back-

transformation correctly.

In the Frequency Sweep part of FastFRS, the solution of the modal FRP is

computed at every frequency. For this part, each available GPU is assigned to a

managing CPU thread, and a scheduler assigns frequencies both to managing CPU

threads and to CPU threads without GPUs during the Frequency Sweep until the

list is exhausted. The scheduler ensures that the CPU threads with GPUs are given

precedence in an attempt to use all of the available resources most efficiently.

7.1.4 Chapter 6: Results

Machine A has similar specifications to the computers that automobile compa-

nies use for NVH analyses. The parallel implementations described in Chapter 5 were

performed on Machine A and the results are presented in Chapter 6. The accuracy

and performance of the two approaches are explored by comparing responses from
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the new approaches with responses from the brute-force approach for models in the

Industrial Test Suite.

The accuracy of each new approach is demonstrated through the use of an

error measure and frequency response function (FRF) graphs. First, for one of the

new approaches, the error measure in equation (6.3) is used to identify the grid point

and load case combination whose FRF differs the most from a corresponding FRF

created from the brute-force approach. Next, the FRFs from the new approach and

from the brute-force approach for this “worst case” are plotted on the same graph.

The FRF plots from the new approaches and the brute-force approach are found to be

virtually indistinguishable for the sample models in the Industrial Test Suite. These

graphs demonstrate that the tolerances chosen for each approach lead to FRFs which

are virtually identical to FRFs created using the brute-force approach.

Chapter 6 presents the performance of the multi-core (no GPU), single-GPU,

and multi-GPU implementations of the low rank and complex symmetric approaches

on Machine A. For both approaches, the performance is always improved as more

GPUs are included in the Set Up and Frequency Sweep parts of FastFRS. For the low

rank approach, the time required for the Set Up part of FastFRS is usually negligible

compared to the time required for the Frequency Sweep part. In contrast, for the

complex symmetric approach, most of the time is spent in CSMES, which is in the

Set Up part of FastFRS.

The low rank approach is much more efficient than the brute-force approach

for all models in the Industrial Test Suite, except for Model C, whose Ks matrix is of

full rank, so the low rank approach is not appropriate. For Model A, the CPU-only
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implementation of the low rank approach is 7.2 times faster than the implementation

of the CPU-only brute-force approach. When expensive computations are performed

by the GPUs instead of the managing CPU threads, the improvement in performance

is dramatic. When 4 GPUs are used, the implementation of the low rank approach

on Model A becomes 28.3 times faster than the CPU-only brute-force approach.

For all of the models in the Industrial Test Suite, the complex symmetric

approach is more efficient than the brute-force approach. For example, Model E com-

putes the response 5.2 times faster using the CPU-only complex symmetric approach

than using the CPU-only brute-force approach. When 4 GPUs are used, the perfor-

mance is 13.6 times faster. The improvement in performance is not as dramatic for the

complex symmetric approach as the low rank approach because CSMES performance

is limited by memory bandwidth.

Chapter 6 presents a solution strategy for determining in advance which new

approach will compute the solution of a modal FRP more efficiently. This strat-

egy uses the FLOP cost for the significant operations for each approach, with some

machine-specific parameters, to estimate the total time each approach may take. The

solution strategy correctly predicts which of the two new approaches performs faster

for each model in the Industrial Test Suite.

7.2 Future Work

The low rank and complex symmetric approaches provide solutions to modal

FRPs more efficiently than the traditional brute-force approach. The following list

proposes some ways to extend the capabilities of the two new approaches.

160



1. Vargas [41] explored the possibility of obtaining a reformulation of the sum

of the complex modal stiffness and structural damping matrices as a diagonal

matrix plus a matrix of minimal rank. An algorithm for computing a “diagonal

plus low rank” (DPLR) representation was developed, along with an iterative

algorithm for using an inexact DPLR approximation in the solution. The DPLR

algorithm is impractical to use in FastFRS for industrial models due to its slow

convergence, but its performance may be improved by using a weighting matrix

to transform the structural damping matrix as described in Chapter 3.

2. In this dissertation, it is assumed that the materials have frequency independent

damping. If the structural damping is frequency-dependent and can be repre-

sented as the sum of a frequency dependent diagonal matrix and a matrix of

low rank, then the techniques in Chapter 3 could be extended to accommodate

this situation. Also, it is assumed that the acoustic fluid “damping” matrix is

of full rank. If it is a low rank matrix, then the acoustic fluid part of the modal

FRP could be represented as a diagonal plus low rank matrix and its inversion

could be computed quickly using the SMW formula.

3. The CE removal method presented in Chapter 4 is used in FastFRS. However,

another method could exist which may be more efficient when implemented on

another parallel technology. Any method which has the characteristics described

in Section 4.2 is an acceptable CE removal method and should be investigated.

4. The technological trends may change to prompt automobile companies to rely

on multi-node computers using Message Passing Interface or other coprocessors
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such as Intel’s Phi to conduct NVH analyses. It will be important to reevaluate

the implementations of the low rank and complex symmetric approaches in

order to support these different technologies.
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