
Copyright

by

Changyong Hu

2021

The Dissertation Committee for Changyong Hu
certifies that this is the approved version of the following dissertation:

Theory and Algorithms for Matching Problems Under

Preferences

Committee:

Vijay K. Garg, Supervisor

Anna Gal

Christine Julien

Sarfraz Khurshid

David Soloveichik

Theory and Algorithms for Matching Problems Under

Preferences

by

Changyong Hu

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2021

Dedicated to my parents Ci’an Hu and Guilan Peng

Acknowledgments

I would like to express my deep appreciation to my advisor, Dr. Vijay

Garg, for his patient guidance and support during this long and rewarding

journey. He was always willing to discuss with me on my immature ideas and

supported me to explore what I truly want to do.

I would like to thank Dr. Anna Gal, Dr. Sarfraz Khurshid, Dr. Chris-

tine Julien, and Dr. David Soloveichik for serving as my committee members.

In particular, I would like to thank Dr. Anna Gal for helpful discussions on

my research and life.

I would like to thank many friends who helped me during my difficult

time. In particular, I would like to thank my lab mates and as well my friends,

Chenguang Liu, Mengshi Zhang, Zhicheng Xiao, Xiong Zheng, and Jie Hua

for their advice and friendship.

I am deeply thankful to my parents, Ci’an Hu and Guilan Peng, for

their unconditional love and constant support.

v

Theory and Algorithms for Matching Problems Under

Preferences

Publication No.

Changyong Hu, Ph.D.

The University of Texas at Austin, 2021

Supervisor: Vijay K. Garg

Matching under preferences involves matching agents to one another,

subject to various optimality criteria such as stability, popularity, and Pareto-

optimality, etc. Each agent expresses ordinal preferences over a subset of the

others. Real-life applications include assigning graduating medical students

to hospitals, high school students to colleges, public houses to applicants,

and so on. We consider various matching problems with preferences. In this

dissertation, we present efficient algorithms to solve them, prove hardness

results, and develop linear programming theory around them.

In the first part of this dissertation, we present two characterizations

for the set of super-stable matchings. Super-stability is one of the optimality

criteria when the preference lists contain ties. The first algorithm computes

irreducible super-stable matchings in the super-stable matching lattice. The

second algorithm takes O(mn) time, where m denotes the number of edges

vi

and n denotes the number of vertices and gives an explicit rotation poset that

can be used to construct all super-stable matchings.

In the second part, we present a polyhedral characterization of the

set of all super-stable matchings, i.e. a linear system that is integral and

describes the super-stable matching polytope. We also give alternative proof

for the integrality of the strongly stable matching polytope. We also use

linear programming techniques to solve an application of the stable matching

problem.

In the third part, we present NC algorithms for the popular matching

problem. Popularity is another optimality criterion, where each agent gives a

vote and the outcome matching has majority votes.

In the last part, we consider envy-freeness, a relaxation of stability

in the Hospitals/Residents setting, which allows blocking pairs involving a

resident and an empty position of a hospital. Envy-free matching might not

exist. We prove NP-hardness results of minimizing envy (if envy is inevitable)

in terms of envy-pairs and envy-residents in the Hospitals/Residents Problem

with Lower Quota.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Figures xi

Chapter 1. Introduction 1

1.1 The Stable Marriage Problem 2

1.1.1 The Deferred Acceptance Algorithm 3

1.1.2 The Lattice of Stable Matchings 4

1.2 Extensions of The Stable Marriage Problem 6

1.2.1 The Hospitals/Residents Problem 6

1.2.2 Ties in Preference Lists 8

1.3 Stable Matchings and Linear Programming 9

1.4 The Housing Allocation Problem 10

1.5 Overview . 11

Chapter 2. Characterization of Super-stable Matchings 14

2.1 Introduction . 14

2.1.1 Related Work . 16

2.2 Preliminaries . 17

2.3 Irreducible Super-stable Matchings 18

2.4 A Maximal Sequence of Super-stable Matchings 23

2.4.1 Correctness of Algorithm 2 28

2.4.2 Running Time of Algorithm 2 32

2.4.3 Rotation Poset . 33

2.5 Conclusion and Open Problems 35

viii

Chapter 3. Linear Programming and its Applications 36

3.1 The Super-stable Matching Polytope 37

3.1.1 Self-Duality . 41

3.1.2 Partial Order Preference Lists 42

3.2 The Strongly Stable Matching Polytope 44

3.3 Paths to Stability . 48

3.4 Conclusion and Open Problems 52

Chapter 4. Parallel Algorithms for Popular Matchings in the
Housing Allocation Model 53

4.1 Introduction . 53

4.1.1 Our Contributions . 54

4.2 Preliminaries . 55

4.2.1 The Popular Matching Problem 55

4.3 Finding Popular Matching in NC 57

4.3.1 Characterizing Popular Matchings 57

4.3.2 Algorithmic Results . 58

4.3.2.1 Correctness . 62

4.3.2.2 Complexity . 63

4.3.3 Example of Popular Matchings 64

4.4 Finding Maximum-Cardinality Popular Matching in NC 65

4.4.1 Finding Cycles in Pseudoforest in NC 67

4.4.2 Algorithmic Results . 69

4.4.3 Correctness . 72

4.4.4 Complexity . 72

4.4.5 Optimal Popular Matchings 73

4.5 Preference Lists with Ties . 75

4.6 Finding “next” Stable Matching in NC 77

4.6.1 The Stable Marriage Problem 78

4.6.2 Algorithmic Results . 79

4.6.3 Example of Stable Matchings 83

4.7 Conclusion and Open Problems 83

4.7.1 Reduction to stable matching instance with bounded-degree 85

ix

Chapter 5. Minimal Envy Matchings in the Hospitals/Residents
Problem with Lower Quotas 90

5.1 Introduction . 90

5.1.1 Related Work . 92

5.2 Preliminaries . 92

5.3 Minimum-Envy-Pair HRLQ 94

5.3.1 A Simple Exponential-Time Algorithm 101

5.4 Minimum-Envy-Resident HRLQ 102

5.5 Conclusion and Open Problems 105

Bibliography 107

Vita 119

x

List of Figures

2.1 m �w m′ and w �m′ w′ . 20

2.2 Each solid edge (a, b) denotes a rank 1 edge for a and rank 2
edge for b and each dashed edge (a, b) denotes a rank 2 edge for
a and rank 1 edge for b . 26

4.1 A popular matching instance I 57

4.2 The reduced instance of I . 64

4.3 The reduced graph after the while loop of Algorithm 4 65

4.4 The switching graph GM for popular matching M 67

4.5 The stable marriage instance of size 8 and the stable matching
M denoted by underlining . 83

4.6 The reduced lists of the men for the stable matching M 84

4.7 The switching graph HM . 84

4.8 (a) A vertex v and the edges contains v. We assume that e1 <v

e2 <v e3 <v e4. (b) for each integer i in {1, 2, 3, 4}, we have
e∗vi = e∗i . 86

5.1 Matchings M i,j
0 (left) and M i,j

1 (right) 98

xi

Chapter 1

Introduction

Matching problems have been studied historically for a long time and

are still very active research topics in computer science, discrete mathematics,

and economics [68, 82, 20]. Besides their importance in theory, matching

problems have many real-world applications [66, 2, 1, 4]. We focus on matching

problems under preferences, i.e. each participant expresses her preferences over

others as an ordered list, possibly with ties. Our task is to find a matching

that is optimal with respect to these preferences. The notion of optimality can

differ, such as stability [20], popularity [22, 6], and Pareto-optimality [5], etc.

In 1962, Gale and Shapley [20] published their seminal paper entitled

“College Admissions and the Stability of Marriage”, in which they introduced

the stable marriage problem, and the college admission problem, which is also

referred as to the hospitals/residents problem. A matching is stable when there

is no two people of opposite sex who both prefer each other to their current

partner under the matching. Their fundamental result is that every instance

of the stable marriage problem admits at least one stable matching and can be

computed by a linear-time algorithm known as the deferred acceptance (DA)

algorithm.

1

In this dissertation, we discuss various problems related to stable match-

ings. Around these problems, we present efficient algorithms, develop linear

programming theory, and prove hardness results. In this chapter, we first pro-

vide some basic notions in stable matchings and then give an overview of the

rest of this dissertation.

1.1 The Stable Marriage Problem

In the classical stable marriage problem, a complete bipartite graph

G = (A ∪B,E) is given, where A represents a set of n men and B represents

a set of n women. Vertices in G are often referred to as agents. For each agent

in G, there is a strictly ordered preference list over all agents in the opposite

side. The set of these preference lists is denoted by O. In the stable matching

problem, which is a natural generalization of the stable marriage problem, the

bipartite graph G is not necessarily a complete bipartite graph and the size of

A may not be equal to the size of B. Man m and woman w are connected by an

edge (m,w) ∈ E if they find each other mutually acceptable. For each agent in

G, its preference list only includes its neighbors in G. Unless otherwise stated,

we consider the generalized stable matching problem in this dissertation.

We introduce one useful notation with respect to the set of men, which

can be applied to the set of women analogously. A man m ∈ A prefers woman

w1 to woman w2 if w1 precedes w2 in m’s preference list and we denote it by

w1 �m w2.

A set of edges M ⊆ E is a matching in G if no two edges in M are

2

adjacent in G. The vertex that is matched to u in M is denoted by M(u) or

pM(u). If man m and woman w are matched in M , then m and w are called

partners in M , written as m = M(w) and w = M(m) or m = pM(w) and

w = pM(m).

A pair (m,w) ∈ E\M is called a blocking pair for M , if m prefers w to

M(m) and w prefers m to M(w), i.e. w �m M(m) and m �w M(w). In the

case that some agent u is unmatched in M , we write M(u) = ∅. Any agent

prefers being matched instead of staying alone.

Definition 1.1.1. A matching M is stable if there is no blocking pair for M .

1.1.1 The Deferred Acceptance Algorithm

Gale and Shapley’s [20] fundamental result is that every instance of the

stable marriage problem admits at least one stable matching. They proved this

result by giving a linear-time algorithm (the deferred acceptance algorithm or

DA algorithm for short) that is guaranteed to find such a matching. Since

then, many variants of DA algorithms have been developed to solve different

variants of the stable matching problem. In later chapters, we give some

variants of DA algorithms as well.

The DA algorithm of Gale and Shapley is very simple and natural and

can be outlined as follows. Initially, no men and women are matched. In turn,

each unmatched man proposes to his most preferred woman who he has not

yet proposed in his preference list. If a woman is unmatched and receives a

proposal, then she accepts the proposal. If a woman is matched and receives

3

a proposal better than her current fiance, she rejects her fiance and accepts

the new proposal. If she prefers her fiance over the new proposal, she rejects

the new proposal. A rejected man continue proposing until he runs out of his

preference list. The algorithm ends once every man is matched or has proposed

to all women in his preference list.

Theorem 1.1.1 ([20]). Given an instance I = (G = (A ∪ B,E),O) of the

stable matching problem, the DA algorithm outputs a stable matching M in

O(|E|) time and M assigns each man his best partner among all stable match-

ings in I.

1.1.2 The Lattice of Stable Matchings

An instance of the stable matching problem can have exponentially

many stable matchings. The set of all stable matchings admits a rich structure.

Theorem 1.1.2 (Knuth [44] attributes this result to John Conway). The set

of stable matchings in a given instance forms a distributive lattice.

A distributive lattice is a partial order in which

(i) each pair of elements a, b has a greatest lower bound, or meet, denoted

by a∧ b, so that a∧ b � a, a∧ b � b, and there is no element c such that

c � a, c � b and a ∧ b ≺ c;

(ii) each pair of elements a, b has a least upper bound, or join, denoted by

a ∨ b, so that a � a ∨ b, b � a ∨ b, and there is no element c such that

a � c, b � c and c ≺ a ∧ b;

4

(iii) the distributive laws hold, a∨ (b∧ c) = (a∨ b)∧ (a∨ c) and a∧ (b∨ c) =

(a ∧ b) ∨ (a ∧ c).

The join and meet operators of the lattice of stable matchings can be

defined as below.

Definition 1.1.2. Given two stable matchings M1 and M2, the join (∨) of M1

and M2, written as M1 ∨M2, is defined as for each men m, match him to the

worst woman in M1(m) and M2(m). The meet (∧) of M1 and M2, written as

M1 ∧M2, is defined similarly.

Unsurprisingly, both M1 ∨M2 and M1 ∧M2 are stable matchings. Ad-

ditionally, M1 ∨ (M2 ∧M3) = (M1 ∨M2) ∧ (M1 ∨M3).

The two extreme points of this lattice are called man- and woman-

optimal stable matchings. The man-proposing DA algorithm outputs the man-

optimal stable matching. The man-optimal stable matching is also the woman-

pessimal stable matching: it assigns to each woman the worst partner among

all feasible stable matchings. The woman-optimal stable matching can be ob-

tained by running the DA algorithm reversely, with women proposing instead

of men.

More details of the lattice structure of stable matchings and its relation

to Birkhoff’s representation theorem [8] will be discussed in later chapters.

5

1.2 Extensions of The Stable Marriage Problem

1.2.1 The Hospitals/Residents Problem

The Hospitals/Residents (HR, for short) problem, or sometimes re-

ferred to as the College Admission problem, is a many-to-one extension of the

stable matching problem. The problem involves a set of residents R and a set

of hospitals H. The bipartite graph G = (R ∪ H,E) is defined similarly as

in the stable matching problem. Besides, each hospital h ∈ H has an upper

quota uh, indicating the maximum capacity of this hospital. Each resident

and each hospital has a strict order preference list over the opposite side as

well.

An assignment M is a subset of E. If (r, h) ∈ M , we say r is assigned

to h in M and h is assigned to r in M . The vertices that are assigned to u is

denoted by M(u). If a resident r ∈ R and M(r) = ∅, we say r is unassigned,

otherwise r is assigned. Similarly, a hospital h ∈ H is under-subscribed, full

or over-subscribed according as M(h) is less than, equal to or greater than uh,

respectively.

A many-to-one matching (or simply a matching) M is an assignment

such that each resident is assigned to at most one hospital and no hospital

is over-subscribed, i.e. |M(r)| ≤ 1 for each resident r and |M(h)| ≤ uh for

each hospital h. The stability definition needs to be revised for the Hospi-

tals/Residents problem.

Definition 1.2.1. Given a matching M of an instance I of HR. A pair (r, h) ∈

E\M is a blocking pair for M , if

6

(i) r is unassigned or prefers h to M(r);

(ii) h is under-subscribed or prefers r to at least one member of M(h).

M is stable if it admits no blocking pair.

The DA algorithm can be easily extended to solve the Hospitals/Residents

problem and the resident-optimal and hospital-optimal stable matchings can

be computed. There may be other stable matchings as well. A famous theorem

called Rural Hospitals Theorem describes some key structural properties held

regarding unassigned residents and under-subscribed hospitals with respect to

all stable matchings in a given HR instance, as follows:

Theorem 1.2.1 (Rural Hospitals Theorem [21, 66, 67]). For all stable match-

ings of a given HR instance, the following properties hold:

(i) the same residents are assigned;

(ii) each hospital is assigned the same number of residents;

(iii) any hospital that is under-subscribed in one stable matching is assigned

exactly the same set of residents.

Due to this theorem, we are not able to accommodate more residents

to those “rural” hospitals while still maintaining stability.

7

1.2.2 Ties in Preference Lists

Another natural extension is the stable matching problem with ties. In

large-scale matching schemes, participants may not able to provide a genuine

strict preference list over a large number of participant from the other party

and may prefer to express ties or indifference in their preference lists. When

ties are present, the definition of stability needs to be revised. Irving and

Manlove [33, 51] define three levels of stability, called weak stability, strong

stability and super-stability.

Before we give the definition of each stability, we introduce some nota-

tions in term of ties. A man m is indifferent between w1 and w2 if w1 and w2

appear in the same tie of m’s preference list. We denote this indifference by

w1 =m w2. We call that m weakly prefers w1 to w2 if w1 �m w2 or w1 =m w2

and denote it by w1 �m w2. The definition of blocking pairs of each stability

is defined as below.

Definition 1.2.2. Given a matching M of an instance of the stable matching

problem with ties, a pair (m,w) ∈ E\M is a blocking pair of M if

• weak stability :

w �m M(m) and m �w M(w);

• strong stability :

(i) w �m M(m) and m �w M(w), or

(ii) w �m M(m) and m �w M(w);

8

• super-stability :

w �m M(m) and m �w M(w).

1.3 Stable Matchings and Linear Programming

Linear programming is a powerful tool in solving many combinatorial

optimization problems (see more details in books by Schrijver [71, 72]). The

first linear programming (LP) formulation for stable matchings was given by

Vande Vate [78], where the underlying graph is a complete bipartite graph.

Rothblum [70] extended Vande Vate’s work to arbitrary bipartite graph by

giving a LP formulation for the general stable matching problem. Later, Roth

et al [69] used duality theory to obtain new results and to derive new proofs of

known results for the stable matching problem. They also defined a fractional

stable matching to be a solution to the linear inequalities system (not neces-

sarily an extreme point) and showed that the set of fractional stable matchings

forms a distributive lattice. The following theorem summarizes Vande Vate

and Rothblum’s work.

Theorem 1.3.1 ([78, 70]). Let (G = (V,E),O) be an instance of the stable

matching problem where the graph G is bipartite. Then, the stable matching

polytope SM(G) is described by the following linear system:

9

∑
u∈N(v)

xu,v ≤ 1, ∀v ∈ V, (1.1a)

∑
i>uv

xu,i +
∑
j>vu

xj,v + xu,v ≥ 1, ∀(u, v) ∈ E, (1.1b)

xu,v ≥ 0, ∀(u, v) ∈ E (1.1c)

where N(v) denotes the set of neighbors of v in G, and w >u v means u prefers

w to v.

Theorem 1.3.1 implies polynomial-time algorithms to find egalitarian,

minimum regret and minimum weight stable matchings [35, 15, 9]. Kiraly and

Pap [42] further showed that the LP formulation by Rothblum is totally dual

integral (TDI) and gave a strongly polynomial-time algorithm for finding an

integer optimal dual solution.

Recently, Kunysz [46] gave a LP formulation for the strongly stable

matching problem and proved that the strongly stable matching polytope

given by their linear inequalities is integral. In this dissertation, we give a

LP formulation for the super-stable matching problem.

1.4 The Housing Allocation Problem

The Housing Allocation (HA, for short) problem is another two-sided

matching problem involving preference lists, where only one side expresses

preference. The HA problem is often described as allocating a set H of in-

divisible goods, e.g. houses, jobs, among a set A of applicants [74, 32, 13].

10

Each applicant a has an ordinal preference list over a subset of H. In the

literature the situation where each applicant initially owns a good is known as

the Housing Market [74, 68, 65] problem. When there is no prior assignment,

we obtain the Housing Allocation [32, 82, 3] problem.

There are a range of optimality criteria that can be applied to instances

of the Housing Allocation problem, such as Pareto optimality, popularity and

profile-based optimality. Many-to-one extension and ties can also be applied

to the Housing Allocation problem.

We discuss some results in the Housing Allocation problem in Chapter

4.

1.5 Overview

In this section, we give a summary of each chapter of the rest of this

dissertation.

In Chapter 2, we present two algorithms that give two compact repre-

sentations of size O(m) that can be used to construct all super-stable match-

ings, where m denotes the number of edges in the graph. The first algorithm

computes irreducible super-stable matchings in the super-stable matching lat-

tice. The second algorithm takes O(mn) time, where n denotes the number

of vertices in the graph, and gives an explicit rotation poset similar to the

rotation poset in the classical stable marriage problem.

In Chapter 3, we use linear programming approach to solve two prob-

11

lems related to the stable matching problem. We give a polyhedral character-

isation of the set of all super-stable matchings and prove that the super-stable

matching polytope is integral, thus solving an open problem stated in the book

by Gusfield and Irving [25]. We also give an alternative proof for the integral-

ity of the strongly stable matching polytope. Another problem we discuss in

this chapter is to compute a stable matching closest to a given initial matching

or assignment under an appropriate distance function between matchings.

In Chapter 4, we consider the popular matching problem. The popular

matching problem is of matching a set of applicants to a set of posts, where

each applicant has a preference list, ranking a non-empty subset of posts in

the order of preference, possibly with ties. A matching M is popular if there

is no other matching M ′ such that more applicants prefer M ′ to M . We give

the first NC algorithm to solve the popular matching problem without ties.

We also give an NC algorithm that solves the maximum-cardinality popular

matching problem. No NC or RNC algorithms were known for the matching

problem in preference systems prior to this work. Moreover, we give an NC

algorithm for a weaker version of the stable matching problem, that is, the

problem of finding the “next” stable matching given a stable matching.

In Chapter 5, we consider the Hospitals/Residents problem with Lower

Quota (HRLQ for short), where each hospital has a lower quota for the num-

ber of residents it receives. In this setting, a stable matching may not exist.

Envy-freeness is introduced as a relaxation of stability that allows blocking

pairs involving a resident and an empty position of a hospital. Hamada et al.

12

[27] considered the problem of minimizing the number of blocking pairs and

showed hardness of approximation results. We present NP hardness results

of minimizing envy in terms of envy-pairs and envy-residents in the Hospi-

tals/Resident problem with Lower Quota. We also give a simple exponential-

time algorithm for the Minimum-Envy-Pair HRLQ problem.

13

Chapter 2

Characterization of Super-stable Matchings

2.1 Introduction

The problem of characterizing super-stable matchings was stated in the

book by Gusfield and Irving [25] as one of the 12 open problems. The structure

of the set of all stable matchings in the stable marriage problem without ties

is well understood in Gusfield and Irving’s book [25]. Recently, Kunysz et al.

[46] gave compact representations for the set of all strongly stable matchings

and showed that the construction can be done in O(mn) time, where n and m

denote the number of vertices and edges in the graph. Scott [73] investigated

the structure of all super-stable matchings by defining an object called meta-

rotation, which corresponds to one collection of rotations in some arbitrary

tie-breaking instance of the original instance and the time complexity of the

construction is O(m2).

We give two compact representations of the set of all super-stable

matchings that can be constructed in, respectively, O(nm2) and O(mn) time.

The first representation of the set of all super-stable matchings consists

of O(m) matchings, each of which is a man-optimal stable matching among all

super-stable matchings that contains a given edge. We show that computing

14

such matching for each edge can be reduced to computing a man-optimal

super-stable matching in a reduced graph by deleting an appropriate subset

of edges in graph G. The algorithm is described in Section 2.3.

Our second representation explicitly constructs rotations, which are

differences between consecutive super-stable matchings in a maximal sequence

of super-stable matchings starting with a man-optimal super-stable matching

and ending with a woman-optimal super-stable matching. Unlike Scott’s [73]

meta-rotation, our rotation is the symmetric difference of two super-stable

matchings, which could be a cycle or multiple cycles.

Our construction takes O(mn) time, while Scott’s [73] algorithm takes

O(m2) time. We also show how to efficiently construct a partial order among

rotations. This poset can be used to solve other problems connected to super-

stable matchings such as the enumeration of all super-stable matchings and

the maximum weight super-stable matching problem. Fleiner et al. [18] solve

the weight super-stable matching by reducing it to the 2-SAT problem and the

time complexity is O(mn log(W)), where W is the maximum weight among

all edges in G. By using the rotation poset constructed in this paper, the

weighted problem can also be solved in O(mn log(W)) time.

The results presented in this chapter are joint work with Vijay Garg

and published in [29].

15

2.1.1 Related Work

Irving [33] gave an O(m) algorithm to find a super-stable matching if

it exists. Spieker [75] showed that super-stable matchings form a distributive

lattice. Further properties of super-stable matchings were proved by Manlove

in [52]. Scott [73] introduced the concept called meta-rotation poset for super-

stable matchings and showed the one-to-one correspondence between super-

stable matchings and closed subsets of the poset.

Irving [33] and Manlove [52] gave an O(m2) algorithm to find a strongly

stable matching if it exists. Kavitha et al. [40] gave anO(nm) algorithm for the

strongly stable matching problem. Manlove [52] showed that strongly stable

matchings form a distributive lattice. Kunysz et al. [47] gave a characterisa-

tion of all strongly stable matchings and later Kunysz [46] gave a polyhedral

description for the set of all strongly stable matchings and proved that the

strongly stable matching polytope is integral.

For weakly stable matchings, it is not true that all weakly stable match-

ings of a given instance always have the same size. Weakly stable matching

can be easily found by running the deferred-acceptance algorithm while break-

ing ties in an arbitrary manner. The problem of computing a maximum-size

weakly stable matching is NP-hard, which has been proved by Iwama et al.

[36]. Thus finding good approximations of the problem becomes very interest-

ing. For the version when ties are allowed on both sides, the currently best

approximation factor is 3/2 [55, 61, 43]. For the case when ties only occur

on one side, there are a sequence of works pushing the approximation factor

16

lower. Iwama et al. [37] gave an 25/17 approximation algorithm. Huang and

Kavitha [31] improved it to 22/15. Later Radnai [64] improved the approxi-

mation factor to 41/28, then Dean et al. [12] pushed the approximation factor

to 19/13. Most recent result by Lam and Plaxton [48] gave the currently best

approximation factor of 1 + 1/e.

2.2 Preliminaries

In this section we give some definitions and theorems that are useful in

the following sections.

Theorem 2.2.1. [33, 52] There is an O(m) algorithm to determine a man-

optimal super-stable matching of the given instance or report that no such

matching exists.

Theorem 2.2.2. [52] In a given instance of the super-stable matching problem,

the same set of vertices are matched in all super-stable matchings.

Lemma 2.2.3. [52] Let M,N be two super-stable matchings in a given super-

stable matching instance. Suppose that, for any agent p, (p, q) ∈ M and

(p, q′) ∈ N , where p is indifferent between q and q′, then q = q′.

We recall some standard notations and definitions from the theory of

matchings under preferences. For a given edge (m,w), any matching contain-

ing (m,w) is called an (m,w)-matching. Let us denote the set of all super-

stable matchings of G by MG. Let MG(m,w) be the set of all super-stable

(m,w)-matchings in G.

17

For two super-stable matchings M and N , we say that M dominates

N and write M � N if each man m weakly prefers M(m) to N(m). If M

dominates N and there exists a man m who prefers M(m) to N(m), then we

say M strictly dominates N , write M � N and we call N a successor of M .

Note that by Lemma 2.2.3, M � N implies M � N , assuming M is not equal

to N .

2.3 Irreducible Super-stable Matchings

In this section, we give our first representation via irreducible match-

ings. Birkhoff’s representation theorem [8] for distributive lattices states that

the elements of any finite distributive lattice can be represented as finite sets in

such a way that the lattice operations correspond to unions and intersections

of sets. The theorem gives a one-to-one correspondence between distributive

lattices and partial orders. Our goal is to find the partial order that represents

the set of all super-stable matchings.

Distributive lattice is closely related to rings of sets, which is a family

of sets that is closed under set unions and set intersections. If the sets in a ring

of sets are ordered by set inclusion, they form a distributive lattice. Theory

regarding rings of sets and its application to representations of the set of stable

matchings in the classical stable marriage problem is well studied by Irving

and Gusfield [25]. Below we give a brief summary of this theory that serves as

a preliminary for our algorithm.

Given a finite set B, the base set, a family F = {F0, F1, · · · , Fk} of

18

subsets of B is called a ring of sets over B if F is closed under set union and

intersection. A ring of sets contains a unique minimal element and a unique

maximal element.

For any element a ∈ B, we denote F(a) the set of all elements of F

that contains a. It is obvious that F(a) is also a ring of sets over B. We

define F (a) to be the unique minimal element of F(a). An element F ∈ F

that is F (a) for some a ∈ B is called irreducible. We denote I(F) the set of

all irreducible elements of F . We view (I(F),≤) as a partial order under the

relation ≤ of set containment. We give the Birkhoff’s representation theorem

in the language of rings of sets below.

Theorem 2.3.1. [25] i) There is a one-to-one correspondence between the

closed subsets of I(F) and the elements of F .

ii) If S and S ′ are closed subsets of I(F) that generate F =
⋃
S and F ′ =

⋃
S ′

respectively, then F ⊆ F ′ if and only if S ⊆ S ′.

In the context of super-stable matchings, the base set B corresponds to

the set of all acceptable pairs (m,w) ∈ E. We define the P -set of a super-stable

matching M to be the set of all pairs (m,w), where w is either M(m) or a

woman whom m weakly prefers to M(m), which corresponds to an element in

F . It is obvious that the unique minimal (man-optimal) super-stable matching

in MG(m,w), if nonempty, is irreducible.

We describe an O(|E|) algorithm for computing a man-optimal super-

stable (m,w)-matching in G. Algorithm 1 essentially constructs a reduced

19

graph G′ ⊆ G by removing some edges from G (line 4 to line 13 in Algorithm

1). After that, the algorithm computes a man-optimal super-stable matching

M ′ in the reduced graphG′. By adding back the edge (m,w), the new matching

M ∪ (m,w) is super-stable in G.

Figure 2.1 gives an example on how edges are removed in line 4-8. m

and w are removed from G. Any edges (m′, w′) that satisfy m �w m′ and

w �m′ w′ are removed from G. Note that if any such edge (m′, w′) is matched

in a super-stable matching M in the reduced graph G′, then the matching

M ∪ {(m,w)} is blocked by (m′, w′) in G.

m′

m

w′

w

Figure 2.1: m �w m′ and w �m′ w′

Lemma 2.3.2. Let M be a super-stable (m,w)-matching. Then M ′ = M\{(m,w)}

is a super-stable matching in the reduced graph G′.

Proof. We need to prove M ′ ⊆ G′ or equivalently none of edges removed from

G is matched in M ′. Suppose not, an edge (m′, w′) was removed from G and

is matched in M ′. Note that m′ 6= m and w′ 6= w. Hence, it follows that there

is an edge (m,w′) or (m′, w) which caused the removal of (m′, w′). W.l.o.g,

let’s assume it is (m,w′) which caused the removal of (m′, w′). Then we have

w �m w′ and m �w′ m′. Obviously, (m,w′) is a blocking pair, which leads to

a contradiction of M being super-stable.

20

Algorithm 1: Computing man-optimal super-stable (m,w)-
matching

1 Input: the graph G = (A ∪B,E) and preference lists of G and an
edge (m,w) ∈ E.

2 Output: man-optimal super-stable (m,w)-matching or deciding
that no such matching exists.

3 G′ ← G\{m,w} // remove m and w and all edges that are
incident to them

4 for m′ s.t. (m′, w) ∈ E and m �w m′ do
5 for w′ s.t. (m′, w′) ∈ E and w �m′ w′ do
6 G′ ← G′\(m′, w′)
7 end for
8 end for
9 for w′ s.t. (m,w′) ∈ E and w �m w′ do

10 for m′ s.t. (m′, w′) ∈ E and m �w′ m′ do
11 G′ ← G′\(m′, w′)
12 end for
13 end for
14 compute man-optimal super-stable matching in G′.
15 if exists man-optimal super-stable matching M in G′ and

M ∪ (m,w) is super-stable in G
16 return M ∪ (m,w)
17 else
18 return no super-stable (m,w)-matching exists.
19 end if

21

To prove super-stability of M ′ is easy. If there were an edge e blocking

M ′, it would also block M .

Lemma 2.3.3. Let M ′ be some super-stable matching in the reduced graph

G′ if exists. If M ′ ∪ (m,w) is a super-stable matching in G, then for each

super-stable matching N ′ in G′, N ′ ∪ (m,w) is a super-stable matching in G.

If G′ does not have any super-stable matching, then there is no super-stable

(m,w)-matching.

Proof. Let M = M ′ ∪ (m,w). Since M ′ is super-stable in G′. It follows that

only the removed edges in E\E ′ can potentially block M . We have two cases

shown as below:

Case 1: Any edge that is incident to m or w cannot block M . W.l.o.g, Suppose

that for some w′ that is incident to m, and (m,w′) blocks M . Then we have

w′ �m w. By the construction of G′, any edge (m′, w′) such that m �w′ m′

was removed. Hence w′ must be unmatched in M . From Theorem 2.2.2, w′

is unmatched in any super-stable matching of G. Let us assume there exists

some super-stable (m,w)-matching N . Then N ′ = N\(m,w) is super-stable

in G′. Since w′ is unmatched in N , (m,w′) blocks N , contradiction.

Case 2: Any edge (m′, w′) such that m′ 6= m and w′ 6= w cannot block M . By

the construction of the reduced graph G′, the removal of (m′, w′) was caused by

some edge (m,w′) or (m′, w). W.l.o.g, some edge (m,w′) caused the removal

of (m′, w′). Hence, if w′ is matched in M , then M(w′) �w′ m′. (m′, w′) does

not block M . In the case that w′ is unmatched in M , w′ is unmatched in

22

any super-stable matching in G. Similar to Case 1, if there exists some super-

stable (m,w)-matching N , then (m,w′) blocks N, contradiction. By the same

argument, if M is super-stable in G, for any other super-stable matching N ′

in G′, M ′ and N ′ match the same set of vertices. No edges in E\E ′ can block

N ′ ∪ (m,w).

Theorem 2.3.4. Let (m,w) be an edge in G. There is an O(m) algorithm

for computing a man-optimal super-stable (m,w)-matching or deciding that no

super-stable (m,w)-matching exists.

Proof. Lemma 2.3.3 makes sure if Algorithm 1 outputs a matching M , then

M is super-stable in G. Lemma 2.3.2 guarantees that if there exists any super-

stable matching in G, then Algorithm 1 would never miss it.

Theorem 2.3.5. (I(MG),≤) can be constructed in O(nm2) time.

Proof. I(MG) can be computed in O(m2) time by running Algorithm 1 for

each edge (m,w) ∈ E. The set I(MG) has at most m elements. By checking

each pair of I(MG), we can construct the partial order. Each check takes

O(n) time. Thus, the total time is O(nm2).

2.4 A Maximal Sequence of Super-stable Matchings

Representation via irreducible matchings is intuitive, but the time com-

plexity is high. In this section, we give another representation via rotation

poset and the time complexity to construct this rotation poset is only O(mn).

23

Rotation poset derives from the concept of minimal differences of a

ring of sets. A chain C = {C1, · · · , Cq} in F is an ordered set of elements

of F such that Ci is an immediate predecessor of Ci+1 for each i ∈ [q]. The

maximal chain is a chain that begins at the minimal element of F , F0 and ends

at the maximal element of F , Fz. Let Fi and Fi+1 be two elements of F such

that Fi is an immediate predecessor of Fi+1. The difference D = Fi+1\Fi is

called a minimal difference of F . Note that for each two consecutive elements

of a chain C, there is a minimal difference D. We say that C contains D.

The following two theorems give another version of Birkhoff’s representation

theorem in the language of minimal differences. The reader can find more

details in Irving and Gusfield’s book [25].

Theorem 2.4.1. [25] If F and F ′ are two elements in F such that F ⊂ F ′,

then every chain from F to F ′ in F contains exactly the same set of minimal

differences (in a different order).

Theorem 2.4.2. [25] Let D(F) denote the set of all minimal differences in

F . For two minimal differences D and D′, D ≺ D′ if and only if D appears

before D′ on every maximal chain in F . There is a one-to-one correspondence

between the elements of F and the closed subsets of D(F).

In the context of super-stable matchings, we want to compute a maxi-

mal sequence of super-stable matchings inM(G), i.e. a sequence M0 �M1 �

· · · � Mz where M0 is the man-optimal super-stable matching and Mz is the

woman-optimal super-stable matching and for each 1 ≤ i ≤ z, there is no

24

super-stable matching M ′ such that Mi−1 � M ′ � Mi. We call a matching

M ′ a strict successor of a matching M if M ′ is a successor of M , i.e. M �M ′

and there exists no super-stable matching M ′′ such that M � M ′′ � M ′. We

can solve this problem by computing a strict successor of any super-stable

matching M .

Let M be a super-stable matching in G and m a vertex in A. Suppose

that there exists a super-stable matching M ′ such that m gets a worse partner

in M ′ than in M , i.e. M(m) �m M ′(m). Let w = M ′(m), by Lemma 2.2.3, w

must be matched in M and m �w M(w). Hence we are essentially searching

for some vertex w such that M(m) �m w and m �w M(w). In Algorithm

2, the set Ec contains, for each man m, highest ranked edges incident to him

that satisfy the condition above. For each man m, the candidate edge (m,w)

is not unique; there might be other edge (m,w′) that forms a tie with (m,w).

While in the case of strict preference list, the candidate edge is unique.

A strongly connected component S of a directed graph G is a subgraph

S that is strongly connected, i.e. there is a path in S in each direction between

each pair of vertices of S, and is maximal with this property: no additional

edges or vertices from G can be included in the subgraph without breaking its

property of being strongly connected. We say that e = (m,w) is an outgoing

edge of S if m ∈ S and w /∈ S.

In Algorithm 2 given below we maintain a directed graph Gd = (V,Ed),

whose every edge (m,w) ∈ Ed ∩M is directed from w to m and every other

edge (m,w) is directed from m to w. Gd is a subgraph of G that contains

25

the edges the algorithm traverses so far. The basic idea of this algorithm is

that for each man m such that M(m) 6= Mz(m), we traverse the preference

list of m until we find some candidate edges defined above. We add the edges

traversed into Gd and the candidate edges into Gc. For each strongly connected

component S of Gd without outgoing edges, we try to find a perfect matching

on S in Gc = (V,Ec). If we are successful, we find a strict successor of M .

Otherwise, we modify Gc and Gd by allowing edges of lower ranks.

Figure 2.2 gives an example to show an execution of Algorithm 2. M0 =

{(a1, b1), (a2, b2), (a3, b3), (a4, b4)} is the man-optimal super-stable matching.

Dashed edges are those candidate edges in Ec. We can see that outdeg(S(a3)) =

0 and outdeg(S(a1)) = 1. The matchingM1 = {(a1, b1), (a2, b2), (a3, b4), (a4, b3)}

is extended because outdeg(S(a3)) = 0. While updating Gc and Gd, edge

(a2, b3) is deleted and now outdeg(S(a1)) = 0. Thus the matching M2 =

{(a1, b2), (a2, b1), (a3, b4), (a4, b3)} is extended.

a4

a3

b4

b3

a2

a1

b2

b1

Figure 2.2: Each solid edge (a, b) denotes a rank 1 edge for a and rank 2 edge
for b and each dashed edge (a, b) denotes a rank 2 edge for a and rank 1 edge
for b

26

Algorithm 2: Computing a maximal sequence of super-stable
matchings

1 let M0 be the (unique) man-optimal super-stable matching of G.
2 let Mz be the (unique) woman-optimal super-stable matching of G.
3 M ←M0

4 let M ′ contain edge (m,M(m)) for each man m s.t.
M(m) =m Mz(m)

5 let Ed contain all edges of M
6 let Gd be the directed graph (V,Ed) s.t. each edge

(m,w) ∈ Ed ∩M is directed from w to m and every other edge
(m,w) is directed from m to w

7 E ′ ← E\Ed
8 let Ec = M ′ and Gc = (V,Ec)
9 for each (m,w) ∈M remove from E ′ each edge (m′, w) s.t.

m′ ≺w m and each edge (m,w′) s.t. w′ �m w
10 repeat
11 while (∃m ∈ A) degGc(m) = 0 and outdeg(S(m)) = 0 do
12 add the set Em of top choices of m from E ′ to Ed
13 if outdeg(S(m)) = 0 then
14 add every edge (m,w) ∈ Em s.t. m �w M(w) and

M(m) �m w to Ec
15 for each edge (m,w) of Ec that becomes strictly

dominated by some added edge (m′, w), remove it from Gc

16 remove Em from E ′

17 end if
18 end while
19 for each m ∈ A s.t. outdeg(S(m)) = 0 do
20 delete all lowest ranked edge in Ec ∪ E ′ incident to any

w ∈ S s.t. w is multiple engaged
21 end for
22 while (∃S) outdeg(S) = 0 and Ec is a perfect matching on S do
23 M ← (Ec ∩ S) ∪ (M\S)
24 Mi ←M
25 output Mi

27

26 i← i+ 1
27 update Gc and Gd: Ec ∩ S contains only edges (m,M(m))

s.t. M(m) =m Mz(m); an edge (m,w) ∈ S stays in Gd only if
w = M(m) and rankw(m) ≤ rankM(w)

28 end while
29 until (∀m ∈ A) rankM(m) = rankMz(m)

2.4.1 Correctness of Algorithm 2

Lemma 2.4.3 proves that any edge removed from Gd (line 9 and line

27) never block any super-stable matching that the algorithm will output.

Lemma 2.4.3. Let M be a super-stable matching in G. For any successor N

of M such that N is also a super-stable matching in G and each (m,w) ∈M ,

any edge (m,w′) such that w′ �m w or (m′, w) such that m �w m′ cannot

block N .

Proof. For any edge (m,w′) such that w′ �m w, this edge (m,w′) cannot block

M since M is super-stable. Thus we must have m ≺w′ M(w′). The matching

N is a successor of M from the man’s point of view, hence from the woman’s

point of view, M is a successor of N . Then we have m ≺w′ N(w′) since

M(w′) �w′ N(w′), which implies that the edge (m,w′) would not block N .

Similarly, for any edge (m′, w) such that m �w m′, we have N(w) �w m′ since

N(w) �w M(w), which implies that the edge (m′, w) would not block N .

Lemma 2.4.4. No edge deleted in line 15 can belong to any super-stable

matching N dominated by M .

28

Proof. Suppose that the algorithm deletes an edge (m,w) from Ec because it

is dominated by some edge (m′, w), i.e. w strictly prefer m′ to m. We want

to show that (m,w) cannot belong to any super-stable matching dominated

by M . Suppose, for a contradiction, that the edge (m,w) belongs to a super-

stable matching N dominated by M . m′ must match to another woman w′

in N and m′ strictly prefers w′ to w, otherwise the edge (m′, w) would block

N . Thus we have that rankM(m′) ≤ rankm′(w
′) < rankm′(w), where the first

inequality comes from the fact that N is dominated by M . Hence, we have

two cases shown as below:

Case 1: rankM(m′) < rankm′(w
′) < rankm′(w). In this case, w′ must match

to a different man M(w′) other than m′ in M . Again because M dom-

inates N , m′ �w′ M(w′). If m′ �w′ M(w′), by our algorithm, in order

to let (m′, w′) belong to Ed, (m′, w′) must also belong to Ec and this re-

quires that rankm′(w) = rankm′(w
′), which contradicts with the fact that is

rankm′(w
′) < rankm′(w).

Case 2: rankM(m′) = rankm′(w
′) < rankm′(w). First, we rule out the case

that m′ is indifferent between M(m′) and w′ = N(m′) by Lemma 2.2.3. Thus

we must have w′ = M(m′) = N(m′). In order to prove a contradiction, we

need the property of strongly connected component. m′ and w are in the same

strongly connected component, hence there must be a directed path P from

w to m′. Arc (w′,m′) is the unique arc that points to m′ since (m′, w′) ∈ M .

Hence, there must be an arc (m′′, w′) in P . If rankM(m′′) < rankN(m′′), then

rankm′′(w
′) ≤ rankN(m′′) , thus (m′′, w′) would blockN . SoM(m′′) = N(m′′).

29

Let w′′ = M(m′′). (m′′, w′′) is also in path P , Let us continue this process until

it reaches to w and we will have M(w) = N(w), which is a contradiction.

Lemma 2.4.5. No edge deleted in line 20 can belong to any super-stable

matching N dominated by M .

Proof. Suppose that an edge (m,w) is deleted in line 20, there must be an

edge (m′, w) ∈ Ec such that m =w m′. Let N be a super-stable matching

dominated by M that includes the edge (m,w). m′ must match to a woman

w′ in N and m′ strictly prefer w′ to w, otherwise the edge (m′, w) would block

N . m′ and w are in the same strongly connected component. By the same

argument as in Lemma 2.4.4, we will have a contradiction. We omit the proof

here.

Lemma 2.4.6. The output matching Mi is super-stable and a strict successor

of Mi−1.

Proof. Note that the algorithm outputs Mi when the edge set Ec is a perfect

matching in a strongly connected component S with no outgoing edges and

Mi = (Mi−1\S) ∪ (Ec ∩ S). Suppose, for a contradiction, that Mi is blocked

by some edge (m,w) ∈ Ed. There are four cases.

Case 1: m /∈ S and w /∈ S, it is obvious that (m,w) cannot block Mi, since it

would block Mi−1 as well.

Case 2: m ∈ S and w /∈ S, this is not possible, because this will imply S has

an outgoing edge in Ed.

30

Case 3: m /∈ S and w ∈ S, then Mi(m)(= Mi−1(m)) �m w, hence (m,w)

would not block Mi.

Case 4: m ∈ S and w ∈ S, if (m,w) never belong to Ec, then Mi(w) �w

Mi−1(w) =w m, (m,w) can not block Mi; if (m,w) once belongs to Ec and got

deleted later, then w always get a strictly better partner than m. We prove

that no edge from Ed can block Mi. There might be some other edges e 6∈ Ed

that can potentially block Mi. These edges are deleted during the updating

of Ed. Lemma 2.4.3 gives a proof that these set of edges cannot block any

matching N that is dominated by Mi−1. Hence Mi is super-stable.

Next we prove that Mi is a strict successor of Mi−1. Suppose not and let

m be any man in S and N a successor of Mi−1 such that Mi−1(m) � N(m) �

Mi(m). If (m,N(m)) ∈ Ec and is not deleted during the algorithm, then

(m,Mi(m)) would not be in Ec, which is not true. Since N is a successor of

M and is super-stable, by Lemma 2.4.4 and Lemma 2.4.5, the edge (m,N(m))

can never once belong to Ec. Let w = N(m), by our updating rule of Ed, we

have N(w) �w M(w). While if N(w) �w M(w), then the edge (m,w) must

once belong to Ec. Thus we have N(w) =w M(w), which violates Lemma

2.2.3.

Lemma 2.4.7. If Mi 6= Mz, the algorithm always outputs a matching.

Proof. The algorithm will end without outputting any matching if and only

if in line 22 the while loop, it cannot find any strongly connected component

with no outgoing edges. Note that every directed graph can be expressed as

31

a directed acyclic graph of its strongly connected components. Hence, we can

always find a strongly connected component without outgoing edges.

Theorem 2.4.8. Algorithm 2 computes a maximal sequence of super-stable

matchings.

Proof. By Lemma 2.4.6 and Lemma 2.4.7, it is obvious that Algorithm 2 out-

puts a maximal sequence of super-stable matchings.

2.4.2 Running Time of Algorithm 2

Theorem 2.4.9. The running time of Algorithm 2 is O(mn).

Proof. Each time we add new edges into Ed, we need to compute strongly

connected components of Gd. Computing strongly connected component of

any directed graph G′ = (V ′, E ′) can be done in O(E) time. Each edge e of G

is added to Gd at most once, and Gd is always a subgraph of G. Hence, a naive

implementation takes O(m2) on computing strongly connected components of

Gd. As mentioned in [47], Pearce [63] and Pearce and Kelly [62] sketch how

to extend their algorithm and that of Marchetti-Spaccamela et al. [53] to

compute strongly connected component dynamically. Their algorithm runs in

O(mn) if edges can only be added to the graph and not deleted. The edges

in Gd can be deleted during the algorithm, but they are deleted only when Ec

is perfect on a strongly connected component without outgoing edges. Thus,

other strongly connected components are unchanged. Also as mentioned in

[47], the edges remaining in the selected strongly connected component can

32

be treated as they were added anew to the graph. Since the ranks of men

increase as we output subsequent super-stable matchings, each edge can be

added anew to Gd constant number of times. Thus, the amortized cost of edge

insertion remains unchanged. The reader can easily check the other part of

the algorithm takes at most O(m) time. Hence, the total time is O(mn).

2.4.3 Rotation Poset

We have shown all rotations D(MG) can be found in time O(mn) by

Algorithm 2. It remains to show how to efficiently construct the precedence

relation ≺ on D(MG). Our construction is essentially the same as the con-

struction given in [25] for the classical stable marriage problem. The only

difference here is that one rotation for super-stable matchings can be one or

multiple cycles, while one rotation for stable matchings in the classical stable

marriage problem is always a cycle. For the completeness, we briefly sketch it.

The reader can find more details in [25].

Let ρ = {(m1, w1), · · · , (mk−1, wk−1)} be a rotation. Each rotation cor-

responds to the symmetric difference of two consecutive super-stable matchings

in a maximal chain of MG. We say ρ is exposed to a super-stable matching

M if ρ ∈ M and we can eliminate it to obtain another super-stable matching

M ′ = M ⊕ ρ.

We say that ρ moves mi down to wi+1 and moves wi up to mi−1 for

each i ∈ [k]. We also say ρ moves mi below w if wi−1 ≺mi
w �mi

wi and moves

wi above m if mi �wi
m ≺wi

mi−1.

33

Let us consider a directed graph (D(MG), E), E contains two types of

edges:

• Type 1: For each pair (m,w) ∈ ρ, if ρ′ is the unique rotation that moves

m down to w, then (ρ′, ρ) ∈ E.

• Type 2: If ρ moves m below w and ρ′ 6= ρ is the unique rotation that

moves w above m, then (ρ′, ρ) ∈ E.

The algorithm to construct the set E is simple. For each rotation ρ and each

pair (mi, wi) ∈ ρ, label wi in mi’s preference list with a type 1 label of ρ, and

for each m strictly between mi and mi−1 on wi’s list, label wi in m’s preference

list with a type 2 label of ρ. Then, traverse each woman w on m’s preference

list, set ρ∗ = ∅. If w has a type 1 label of ρ, add (ρ∗, ρ) into E and set ρ∗ = ρ.

If w has a type 2 label of ρ, add (ρ, ρ∗) into E. The algorithm takes O(m)

time since it only traverse the preference lists once.

It turns out that the transitive closure of (D(MG), E) is exactly (D(MG),≺

). The reader can find the proof in Irving and Gusfield’s book [25].

We summarize Section 2.4 with the following theorem.

Theorem 2.4.10. The partial order (D(MG),≺) can be constructed in O(mn).

Proof. The construction of D(MG) takes O(mn) time by running Algorithm

2. The precedence relation can be constructed in O(m) time. Hence, the time

complexity is O(mn).

34

2.5 Conclusion and Open Problems

In this chapter, we give two algorithms to characterize the set of all

super-stable matchings. The first algorithm computes irreducible super-stable

matchings in the super-stable matching lattice. The second algorithm con-

structs a rotation poset in O(mn) time. One interesting open question is how

to extend the results in this chapter to the roommate setting. In the room-

mate setting, the underlying graph can be arbitrary and each vertex in the

graph ranks all its neighbors. Blocking pair, thus, is defined for every pair

of vertices in this graph. For the stable matching problem in the roommate

setting, semi-rotation was introduced in [25]. One might use the techniques

in this chapter to find semi-rotation structures for the super-stable matching

problem in the roommate setting.

35

Chapter 3

Linear Programming and its Applications

In this chapter we give a polyhedral characterisation for the set of all

super-stable matchings and prove that the super-stable matching polytope is

integral. This result implies that the maximum weight super-stable matching

problem can be solved in polynomial time. Though the complexity of solving

LP is usually higher than combinatorial methods, like in [18], this gives an al-

ternative direction to solve the weighted super-stable matching problem. Pre-

viously, it has been shown that the stable matching polytope and the strongly

stable matching polytope are integral [78, 70, 46], we complete all three cases

by proving that the super-stable matching polytope is integral as well.

We prove a property called self-duality for the super-stable matching

polytope, which also holds for the classical stable matching polytope [77] and

the strongly stable matching polytope [46].

We also show how to use LP technique to solve an application of the

stable marriage problem, called the path to stability problem.

See in Chapter 1 Section 1.3 for a brief introduction of the connection

of stable matchings and linear programming.

The results presented in Section 3.1 and Section 3.2 are joint work with

36

Vijay Garg and published in [29]. Section 3.3 is joint work with Vijay Garg

and published in [23].

3.1 The Super-stable Matching Polytope

In this section, we give a polyhedral characterisation of the set of all

super-stable matchings and prove that the super-stable matching polytope is

integral. The main result is the following theorem.

Theorem 3.1.1. Let G = (V,E) be a stable matching problem with ties where

the graph G is bipartite, then the super-stable matching polytope SUSM(G) is

described by the following linear system:

∑
u∈N(v)

xu,v ≤ 1, ∀v ∈ V, (3.1a)

∑
i>uv

xu,i +
∑
j>vu

xj,v + xu,v ≥ 1, ∀(u, v) ∈ E, (3.1b)

xu,v ≥ 0, ∀(u, v) ∈ E (3.1c)

where N(v) denotes the set of neighbors of v in G, and w >u v means u strictly

prefers w to v.

Inequalities (3.1a) and (3.1c) are standard matching constraints. If

x ∈ SUSM(G) is an integral solution, then constraint (3.1b) for an edge

(u, v) implies that (u, v) does not block the matching associated with x. Thus

integral solutions of SUSM(G) are exactly super-stable matchings of G.

37

Proof. Let x be a feasible solution. Define E+ to be the set of edges (u, v)

with xu,v > 0, and V + the set of vertices covered by E+. For each u ∈ V +,

let N∗(u) be the maximal elements in {i : xu,i > 0}. Note that there might be

multiple maximal elements that form a tie.

We first show the following lemma.

Lemma 3.1.2. For each vertex u and each vertex v ∈ N∗(u), u is the unique

minimal element in {j : xj,v > 0} and that
∑

j∈N(v) xj,v = 1.

Proof. Indeed, (3.1b) implies

1 ≤
∑
j>vu

xj,v+xu,v =
∑
j∈N(v)

xj,v−
∑
j<vu

xj,v−
∑
j=vu;
j 6=u

xj,v ≤ 1−
∑
j<vu

xj,v−
∑
j=vu;
j 6=u

xj,v ≤ 1

(3.2)

Hence we have equality throughout in (3.2). This implies that xj,v = 0 for

each {j : j <v u} and each {j : j =v u; j 6= u} and that
∑

j∈N(v) xj,v = 1.

Since xj,v = 0 for each {j : j =v u; j 6= u}, v strictly prefers any other

vertices in {j : xj,v > 0} over u, making u the unique minimal element in

{j : xj,v > 0}.

We then prove that for any v such that v ∈ N∗(u) for some u, then u

is unique. Suppose not, there is a vertex u′ 6= u and v ∈ N∗(u′). By Lemma

3.1.2, u is the unique minimal element in {j : xj,v > 0}, and u′ is the unique

minimal element in {j : xj,v > 0}, contradiction.

Now let vertex sets U and W be the two parts of bipartite graph G.

For any u ∈ U ∩ V +, there is at least one unique vertex w ∈ N∗(u), such

38

that
∑

j∈N(w) xj,w = 1. Let FW (x) be the set of these vertices. Formally,

FW (x) = {w : w ∈ N∗(u), u ∈ U ∩ V +}. Then we have |FW (x)|≥ |U ∩ V +|.

We also have that

|FW (x)|=
∑

w∈FW (x)

∑
j∈N(w)

xj,w =
∑

j∈U∩V +

∑
w∈FW (x)

xj,w ≤
∑

j∈U∩V +

1 = |U ∩ V +|

(3.3)

implying that |FW (x)|= |U ∩ V +|. Hence, we conclude that for each u ∈

U ∩ V +, |N∗(u)|= 1, which implies that u has an unique maximal element in

{i : xu,i > 0}. Since |N∗(u)|= 1, we denote this unique vertex as x∗(u). We

then have the following corollary.

Corollary 3.1.3. There is a bijection between U ∩ V + and FW (x), and for

each u ∈ U ∩ V +,
∑

i∈N(u) xu,i = 1.

Similarly, we may define FU(x) = {u : u ∈ N∗(w), w ∈ W ∩ V +} and

we have

Corollary 3.1.4. There is a bijection between W ∩ V + and FU(x), and for

each w ∈ W ∩ V +,
∑

j∈N(w) xj,w = 1.

Then we have |U ∩V +|= |FW (x)|≤ |W ∩V +| and |W ∩V +|= |FU(x)|≤

|U ∩ V +|, implying |U ∩ V +|= |W ∩ V +|= |FW (x)|= |FU(x)|. Then any

u ∈ U ∩V + is also in FU(x), hence, u has an unique minimal element, denoted

by x∗(u).

39

The bijection between U ∩V + and FW (x) forms a perfect matching M

in (V +, E+), i.e. the set of edges {(u, x∗(u)) : u ∈ U ∩ V +}. Similarly, the

bijection between W ∩ V + and FU(x) forms another perfect matching N , i.e.

the set of edges {(x∗(w), w) : w ∈ W ∩ V +}.

Consider the vector x′ = x + εχM − εχN , with ε close enough to 0

(positive or negative). we will show that x′ is also feasible solution of (3.1a)-

(3.1c). It is easy to see that x′ satisfies (3.1a) and (3.1c). For each vertex

u ∈ U∩V +, there is an unique maximal element x∗(u) and (u, x∗(u)) ∈M and

an unique minimal element x∗(u) and (u, x∗(u)) ∈ N , implying
∑

i∈N(u) x
′
u,i =∑

i∈N(u) xu,i ≤ 1. To see that x′ satisfies (3.1b), let (u, v) be an edge in E+

attaining equality in (3.1b). The case that (u, v) ∈M or (u, v) ∈ N is trivial.

So assume that (u, v) /∈ M and (u, v) /∈ N . The edge (u, x∗(u)) ∈ M and

x∗(u) >u v. There is no other edge in {(u, i) : i ∈ N(u)} belongs to M . We

prove that there is no edge (j, v) in M and j >v u since if (j, v) ∈ M , j is

the minimal element of v. Similarly, we can prove that there is exact one

edge (j, v) ∈ N and j >v u. Concluding,
∑

i>uv
x′u,i +

∑
j>vu

x′j,v + x′u,v =∑
i>uv

xu,i +
∑

j>vu
xj,v + xu,v = 1. Let x be an extreme point. The feasibility

of x′ implies that χM = χN , that is, M = N . So E+ = M since the maximal

element is the same as the minimal element for each vertex, hence, x = χM .

40

3.1.1 Self-Duality

Let’s consider the linear program:

(LP) maximize
∑

(u,v)∈E

xu,v (3.4a)

subject to x ∈ FSUSM(G,P). (3.4b)

The dual problem with variables (α, β) ∈ RV ×RE, is given by

(DLP) minimize
∑
v∈V

αv −
∑

(u,v)∈E

βu,v (3.5a)

subject to αu + αv −
∑
i<uv

βu,i −
∑
j<vu

βv,j − βu,v ≥ 1, ∀(u, v) ∈ E,

(3.5b)

αv ≥ 0, ∀v ∈ V,
(3.5c)

βu,v ≥ 0, ∀(u, v) ∈ E.
(3.5d)

Lemma 3.1.5 (Self-Duality). Each x ∈ FSUSM(G,P) is an optimal solu-

tion of (LP) and (α, x) is an optimal solution of (DLP), where

αv =
∑
i∈N(v)

xv,i ∀v ∈ V. (3.6)

Proof. Let x ∈ FSUSM(G,P) and let α be defined by (3.6). Let (u, v) ∈ E,

we have that

41

αu + αv −
∑
i<uv

xu,i −
∑
j<vu

xv,j − xu,v

=
∑
i∈N(u)

xu,i +
∑
j∈N(v)

xv,j −
∑
i<uv

xu,i −
∑
j<vu

xv,j − xu,v

=
∑
i>uv

xu,i +
∑
i=uv;
i 6=v

xu,i +
∑
j>vu

xv,j +
∑
j=vu;
j 6=u

xv,j + xu,v

≥
∑
i>uv

xu,i +
∑
j>vu

xv,j + xu,v

≥1,

where the last two inequalities hold since x satisfies (3.1c) and (3.1b).

Hence (α, x) is feasible for (DLP). To see that x and (α, x) are optimal

solutions of (LP) and (DLP), respectively. Note that

∑
v∈V

αv −
∑

(u,v)∈E

xu,v = 2
∑

(u,v)∈E

xu,v −
∑

(u,v)∈E

xu,v =
∑

(u,v)∈E

xu,v,

so the objective function in (LP) and that in (DLP) are equal. Thus, the weak

duality theorem of linear programming implies that x is optimal for (LP) and

(α, x) is optimal for (DLP).

3.1.2 Partial Order Preference Lists

Partial order preference lists are generalisation of preference lists with

ties in such a way that the preference list of each man or woman is an arbitrary

partial order. It turns out that the linear system (3.1a)-(3.1c) can also describe

the set of all super-stable matchings with partial order preference list.

42

Theorem 3.1.6. Let G = (V,E) be a stable matching problem with partial or-

der preference lists where the graph G is bipartite, then the super-stable match-

ing polytope SUSMP (G) is described by the following linear system:

∑
u∈N(v)

xu,v ≤ 1, ∀v ∈ V, (3.7a)

∑
i>uv

xu,i +
∑
j>vu

xj,v + xu,v ≥ 1, ∀(u, v) ∈ E, (3.7b)

xu,v ≥ 0, ∀(u, v) ∈ E (3.7c)

where N(v) denotes the set of neighbors of v in G, and w >u v means u strictly

prefers w to v.

Proof. Let x be a feasible solution. Define E+ to be the set of edges (u, v)

with xu,v > 0, and V + the set of vertices covered by E+. For each u ∈ V +,

let N∗(u) be the maximal elements in {i : xu,i > 0}. Note that there might be

multiple maximal elements that are incomparable to each other.

The following lemma is an analogue to Lemma 3.1.2.

Lemma 3.1.7. For each vertex u and each vertex v ∈ N∗(u), then u is the

unique minimal element in {j : xj,v > 0} and that
∑

j∈N(v) xj,v = 1.

Proof. Indeed, (3.1b) implies

1 ≤
∑
j>vu

xj,v+xu,v =
∑
j∈N(v)

xj,v−
∑
j<vu

xj,v−
∑
j‖vu

xj,v ≤ 1−
∑
j<vu

xj,v−
∑
j‖vu

xj,v ≤ 1

(3.8)

43

, where w ‖u v means w is incomparable with v in u’s preference list. Hence

we have equality throughout in (3.2). This implies that xj,v = 0 for each

{j : j <v u} and each {j : j ‖v u} and that
∑

j∈N(v) xj,v = 1. Since xj,v = 0

for each {j : j ‖v u}, v strictly prefers any other vertices in {j : xj,v > 0} over

u, making u the unique minimal element in {j : xj,v > 0}.

The rest of the proof is essentially the same as in Theorem 3.1.1.

3.2 The Strongly Stable Matching Polytope

Kunysz [46] gives a linear system that characterizes the set of all strongly

stable matchings and proves this linear system is integral using the duality the-

ory of linear programming. Here, we give an alternate and simpler proof that

does not rely on the duality theory and uses only Hall’s theorem.

Theorem 3.2.1 (Kunysz, [46]). Let G = (V,E) be a stable matching problem

with ties where the graph G is bipartite, then the strongly stable matching

polytope SSM(G) is described by the following linear system:∑
u∈N(v)

xu,v ≤ 1, ∀v ∈ V, (3.9a)

∑
i>uv

xu,i +
∑
j>vu

xj,v +
∑
k=uv

xu,k ≥ 1, ∀(u, v) ∈ E, (3.9b)∑
i>uv

xu,i +
∑
j>vu

xj,v +
∑
k=vu

xk,v ≥ 1, ∀(u, v) ∈ E, (3.9c)

xu,v ≥ 0, ∀(u, v) ∈ E (3.9d)

where N(v) denotes the set of neighbors of v in G, and w >u v means u strictly

prefers w to v.

44

We give an alternative proof that does not rely on the duality theory

of linear programming.

Proof. It is easy to verify that the incidence vector of any strongly stable

matching satisfies constraints (3.9a)-(3.9d). We need to prove each extreme

point of the polytope defined by (3.9a)-(3.9d) is integral.

Let x be a feasible solution. Define E+ to be the set of edges (u, v)

with xu,v > 0, and V + the set of vertices covered by E+. For each u ∈ V +, let

N∗(u) be the set of maximal elements in {i : xu,i > 0}. Note that there might

be multiple maximal elements that form a tie. Similarly, for each u ∈ V +, let

N∗(u) be the set of minimal elements in {i : xu,i > 0}.

We first show the following lemma.

Lemma 3.2.2. For each vertex u and each vertex v ∈ N∗(u), then u ∈ N∗(v)

and that
∑

j∈N(v) xj,v = 1, and
∑

k=uv
xu,k ≥

∑
k=vu

xk,v.

Proof. Indeed, (3.9c) implies

1 ≤
∑
j>vu

xj,v +
∑
k=vu

xk,v ≤
∑
j∈N(v)

xj,v −
∑
j<vu

xj,v ≤ 1−
∑
j<vu

xj,v ≤ 1 (3.10)

Hence we have equality throughout in (3.10). This implies that xj,v = 0 for

each {j : j <v u} and that
∑

j∈N(v) xj,v = 1. Hence, u ∈ N∗(v). (3.9b) implies

1 ≤
∑
j>vu

xj,v +
∑
k=uv

xu,k ≤ 1−
∑
k=vu

xk,v +
∑
k=uv

xu,k

Hence,
∑

k=uv
xu,k ≥

∑
k=vu

xk,v.

45

Now let vertex sets U and W be the two parts of bipartite graph G.

Let E∗(x) be the set of edges {(u, v) : u ∈ U ∩ V +, v ∈ N∗(u)} and FW (x) be

the set of vertices in W and covered by E∗(x). We will show that the subgraph

induced by E∗(x) contains a perfect matching M .

Suppose not, by Hall’s theorem, let S be the unique critical subset of

U ∩ V +. A subset of X is critical if it is maximally deficient and contains

no maximally deficient proper subset. Hence, we have |N(S)|< |S| and there

is a matching M ′ saturating for N(S) in the subgraph induced by S ∪N(S).

Fixing the matching M ′, let S ′ be the set of vertices in S that is matched in

M ′, so S ′ (S. By Lemma 3.2.2, we have

∑
u∈S′

∑
k∈N∗(u)

xu,k ≥
∑

v∈N(S)

∑
k=vM ′(v)

xk,v (3.11)

≥
∑

v∈N(S)

∑
k∈S

xk,v (3.12)

=
∑
u∈S

∑
k∈N∗(u)

xu,k (3.13)

The first equality follows from Lemma 3.2.2. The second inequality follows

from that each vertex v ∈ N(S) is indifferent with all neighbors. The third

equality follows by double counting. Hence, the vertices in S\S ′ are isolated,

contradiction. So we also have |U ∩ V +|= |FW (x)|. Again by Lemma 3.2.2,

we have

∑
u∈U∩V +

∑
k=uM(u)

xu,k ≥
∑

v∈FW (x)

∑
k=vM(v)

xk,v ≥
∑

u∈U∩V +

∑
k=uM(u)

xu,k (3.14)

46

Hence, we have equality throughout (3.14). So for each v ∈ FW (x) and each

k ∈ N∗(v), v = N∗(k).

Similarly, let E∗ be the set of edges {(u, v) : v ∈ W ∩ V +, u ∈ N∗(v)}

and FU(x) be the set of vertices in U and covered by E+. The subgraph

induced by E∗ contains a perfect matching N . Hence, |W ∩ V +|= |FU(x)|. So

|U ∩ V +|= |W ∩ V +|= |FU(x)|= |FW (x)|. It follows that E∗ is exactly the set

of edges {(u, v) : u ∈ U ∩ V +, v ∈ N∗(u)}.

Consider the vector x′ = x + εχM − εχN , with ε close enough to 0

(positive or negative). we will show that x′ is also feasible solution of (3.9a)-

(3.9d). It is easy to see that x′ satisfies (3.9a) and (3.9d). For each vertex

u ∈ U ∩V +, there is one edge in M and one edge in N incident to it, implying∑
i∈N(u) x

′
u,i =

∑
i∈N(u) xu,i ≤ 1. To see that x′ satisfies (3.9b), let (u, v) be an

edge in E+ attaining equality in (3.9b). First we know that there is one edge

in M incident to u such that M(u) ≥u v. Also there is no M edge incident to v

and M(v) >v u since M(v) ∈ N∗(v). Similarly, there is one edge in N incident

to v such that M(v) ≥v u. Then we have two cases. If there is one edge in

N incident to v such that N(v) >v u, then there is no edge in N incident

to u such that M(u) ≥u v, because otherwise, u ∈ N∗(v), which contradicts

with N(v) >v u. The other case is that there is one edge in N incident to

v such that N(v) =v u, then there must be an edge in N incident to u such

that N(u) =u v. Hence,
∑

i>uv
x′u,i +

∑
j>vu

x′j,v +
∑

k=uv
x′u,k =

∑
i>uv

xu,i +∑
j>vu

xj,v +
∑

k=uv
xu,k = 1. Similarly, we can prove x′ satisfies (3.9c). Let

x be an extreme point. The feasibility of x′ implies that χM = χN , that is,

47

M = N . So for each v ∈ V +, we have N∗(v) = N∗(v) and
∑

k∈N∗(v) xk,v = 1.

Then x is an extreme point of the perfect matching polytope of (V +, E+). x

must be a perfect matching in (V +, E+).

3.3 Paths to Stability

In many applications, it is useful to consider the initial state of the

system as an arbitrary assignment of men to women and then to find a path

to a stable matching. For example, suppose that we consider a system in which

there are more women than men and suppose that every man is matched to

a unique woman such that there is no blocking pair. Now, if a new man or a

woman joins the system, it is more natural to start with the initial state as the

existing assignment rather than the empty matching. In particular, if there

is some cost associated with breaking up an existing couple, then we may be

interested in the paths to stability that are of short lengths.

As another example, suppose that we have a stable matching. In a

dynamic preference mechanism, a woman may change her list of preferences.

The existing matching may not be stable under new preferences of the woman.

Again, it is more natural to start with the existing matching and then to find a

path to a stable matching under new preferences. Thus, the generalization al-

lows one to consider a dynamic stable matching algorithm in which preferences

of a man or a woman may change and the goal is to find a stable matching

under new preferences.

Our another goal is to find a matching that is not too far from the

48

original matching (or the initial proposal vector). Given any proposal vector

I, the regret of a man is defined as the rank the woman he is assigned in I,

i.e., if a man is assigned his kth top choice in I then his regret is k. Given two

proposal vectors I and M , we define the distance between I and M , dist(I,M)

as the sum of differences of regrets for all men in I and M , i.e. the L1 distance

between two vectors, dist(I,M) = ‖I −M‖1.

The following algorithm is based on a linear programming formulation

of the stable marriage problem by Rothblum [70]. By appropriately defining

the objective function to minimize the distance from the initial proposal vector,

we get a polynomial time algorithm to find the closest stable marriage.

Given an arbitrary proposal vector (not necessarily a matching) I, we

want to find a stable matching M such that the distance between the proposal

vector I and the stable matching M is minimized over all stable matchings,

M. The distance we consider here is L1 distance, a.k.a Manhattan distance

between two vectors. We denote the distance as dist(I,M) = ‖I −M‖1. The

problem hence can be rephrased as: find the marriage M ∈M that minimizes

dist(I,M).

It is well-known that the convex hull of stable matchings of an arbitrary

bipartite preference system can be described by a linear system [70] as follows:

49

∑
j∈[w]

xi,j ≤ 1 ∀i ∈ [m] (3.15a)

∑
i∈[m]

xi,j ≤ 1 ∀j ∈ [w] (3.15b)

∑
i′∈[m];i′>ji

xi′,j +
∑

j′∈[w];j′>ij

xi,j′ + xi,j ≥ 1 ∀(i, j) ∈ [m]× [w] (3.15c)

Here, we define that for each man or woman i, p >i q denotes that i

prefers p over q in his/her preference list. Rothblum [70] proved that the linear

system above is integral, i.e. every basic feasible solution of Equation 3.15 is

integral. Suppose that every possible marriage (i, j) has a cost c(i, j), we can

find a minimum-cost stable matching in polynomial time by solving the LP

above.

Now we show that our problem of minimizing the distance between

an initial proposal vector and any stable matching can be translated into a

minimum-cost stable matching problem with a carefully designed cost function.

For each pair (i, j), we assign the cost c(i, j) = |I[i] − mrank[i][j]|.

Hence, for each stable matching M , we have:

dist(I,M) =
∑
i∈[m]

|I[i]−M [i]|

=
∑

(i,j)∈[m]×[w]

c(i, j) · 1ρ(M,i)=j

Hence, we can rewrite our problem as:

50

minimize
∑

(i,j)∈[m]×[w]

ci,j · xi,j (3.16a)

subject to
∑
j∈[w]

xi,j ≤ 1 ∀i ∈ [m] (3.16b)

∑
i∈[m]

xi,j ≤ 1 ∀j ∈ [w] (3.16c)

∑
i′∈[m];i′>ji

xi′,j +
∑

j′∈[w];j′>ij

xi,j′ + xi,j ≥ 1 ∀(i, j) ∈ [m]× [w]

(3.16d)

Solving the above LP gives us a stable matching that is nearest to the

initial proposal vector. This LP has O(n2) variables and constraints where n is

the total number of men and women. However, we note that the minimum-cost

stable matching problem can be reduced to the minimum-cost closed subset

of a poset due to the rotation poset structure of stable matching problem.

See [25] for more details of rotation poset. Feder [16] has shown that the

minimum-cost stable matching problem in a bipartite preference system can

be solved in O(n3) time if max(ci,j) = O(n) .

We summarize the preceding discussion as the following theorem.

Theorem 3.3.1. Given an arbitrary proposal vector I, we can find a stable

matching M that minimizes the distance dist(I,M) over all stable matchings

in O(n3) time where n is the total number of men and women.

51

3.4 Conclusion and Open Problems

In this chapter, we give proofs for the integrality of the super-stable

matching polytope and the strongly stable matching polytope. As mentioned

in Chapter 1 Section 1.3, Kiraly and Pap [42] proved the LP formulation by

Rothblum is totally dual integral (TDI). It would be interesting to investigate

whether the linear systems for the super-stable matching polytope and the

strongly stable matching polytope given in this chapter is TDI.

52

Chapter 4

Parallel Algorithms for Popular Matchings in

the Housing Allocation Model

The results presented in this chapter are joint work with Vijay Garg

and published in [28].

4.1 Introduction

The notion of a popular matching was first introduced in [22] in the

context of the stable marriage problem. We say that a matching M is more

popular than M ′ if the number of nodes that prefer M to M ′ exceeds the

number of nodes that prefer M ′ to M . A matching M is popular if M is

optimal under the more popular than relation. Gupta et al. [24] and Faenza

et al. [14] recently showed that the popular matching problem is NP-complete

in the general roommate setting. The popular matching problem we consider

is from [6] such that the preference system is only one-sided. Abraham et al.

[6] gave a linear-time algorithm for the problem in the case of strictly-ordered

preference lists and a polynomial-time algorithm for the case of preference lists

with ties. There are other problems with other definitions of optimality such

as Pareto optimal matching [5], rank-maximal matching [34] etc. We do not

53

discuss them here.

The matching problem in the normal case, that is the problem of check-

ing if a given graph has a perfect matching, and the corresponding search

problem of finding a perfect matching have received considerable attention in

the field of parallel computation. Tutte and Lovasz [50] observed that there is

an RNC algorithm for the decision problem. The search version was shown to

be in RNC by Karp, Upfal and Wigderson [39] and subsequently by Mulmu-

ley, Vazirani and Vazirani using the celebrated Isolation Lemma [58]. We note

that no NC or RNC algorithms were known for the matching problem in pref-

erence systems prior to this work. The problem of finding an NC algorithm

for the stable marriage problem has been open for a long time. Mayr and

Subramanian [54] showed that the stable marriage problem is CC-complete.

Subramanian [76] defined the complexity class CC as the set of problems log-

space reducible to the comparator circuit value problem (CCV). Cook et al.

[11] conjectured that CC is incomparable with the parallel class NC, which

implies none of the CC-complete problems has an efficient polylog time paral-

lel algorithm. Recently, Zheng and Garg [81] showed that computing a Pareto

optimal matching in the housing allocation model is in CC and computing the

core of a housing market is CC-hard.

4.1.1 Our Contributions

1. We give NC algorithms for both the popular matching problem and

the maximum-cardinality popular matching problem in the setting of

54

strictly-ordered preference lists.

2. In the case that preference lists contain ties, we show that maximum-

cardinality bipartite matching is NC-reducible to popular matching.

3. We also give an NC algorithm to find the “next” stable matching if one

stable matching is given. We will define “next” in Section 4.6.

4.2 Preliminaries

4.2.1 The Popular Matching Problem

LetA be a set of applicants and P be a set of posts, associated with each

member of A is a preference list (possibly involving ties) comprising a non-

empty subset of the elements of P . An instance of the popular matching prob-

lem is a bipartite graph G = (A∪P , E) and a partition E = E1∪̇E2∪̇ · · · ∪̇Er

of the edge set. The partition E consists of all pairs (a, p) such that post p ap-

pears in the preference list of applicant a and we say that each edge (a, p) ∈ Ei

has a rank i if post p is on the i-th position of the preference list of applicant

a. If (a, p) ∈ Ei and (a, p′) ∈ Ej with i < j, we say that a prefers p to p′. If

i = j, we say that a is indifferent between p and p′. We say that preference

lists are strictly ordered if no applicant is indifferent between any two posts

on his/her preference list. Otherwise, we say that preference lists contain ties.

A matching M of G is a set of edges no two of which share an endpoint.

A node u ∈ A ∪ P is either unmatched or matched to some node, denoted by

M(u). We say that an applicant a prefers matching M ′ to M if (i) a is

55

matched in M ′ and unmatched in M , or (ii) a is matched in both M ′ and M ,

and a prefers M ′(a) to M(a). Let M be the set of matchings in G and let

M,M ′ ∈M. Let P (M,M ′) denote the set of applicants who prefer M to M ′.

Define a “more popular than” relation � on M as follows: if M,M ′ ∈M, then

M ′ is more popular than M , denoted by M ′ �M , if |P (M ′,M)|> |P (M,M ′)|.

Definition 4.2.1. A matching M ∈M is popular if there is no matching M ′

such that M ′ �M .

The popular matching problem is to determine if a given instance ad-

mits a popular matching, and to find such a matching, if one exists. Note

that popular matchings may have different sizes, a largest popular matching

may be smaller than a maximum-cardinality matching since no maximum-

cardinality matching needs to be popular. The maximum-cardinality popular

matching problem then is to determine if a given instance admits a popu-

lar matching, and to find a largest such matching, if one exists. Figure 4.1

shows an example of a popular matching instance. The reader can check that

{(a1, p1), (a2, p2), (a3, p4), (a4, p3), (a5, p5), (a6, p7),

(a7, p8), (a8, p9)} is a popular matching.

As in [6], we add a unique last resort post l(a) for each applicant a and

assign the edge (a, l(a)) higher rank than any edge incident on a. In this way,

we can assume that every applicant is matched, since any unmatched applicant

can be matched to his/her unique last resort post. From now on, we only focus

on matchings that are applicant-complete, and the size of a matching is the

number of applicants not matched to their last resort posts.

56

a1 : p1 p4 p5 p2 p6

a2 : p4 p5 p7 p2 p8

a3 : p4 p1 p3 p8

a4 : p1 p7 p4 p3 p9

a5 : p5 p1 p7 p2 p6

a6 : p7 p6

a7 : p7 p4 p8 p2

a8 : p7 p4 p1 p5 p9 p3

Figure 4.1: A popular matching instance I

Definition 4.2.2. A matching M ∈M is applicant-complete if each applicant

a ∈ A is matched to some post p ∈ P .

4.3 Finding Popular Matching in NC

4.3.1 Characterizing Popular Matchings

We restrict our attention to strictly-ordered preference lists. For each

applicant a, let f(a) denote the first-ranked post on a’s preference list. We

call any such post p an f -post, and denote by f−1(p) the set of applicants a

for which f(a) = p. For each applicant a, let s(a) denote the first non-f -post

on a’s preference list (note that s(a) always exists, due to the introduction of

l(a)). We call any such post p an s-post, and remark that f -posts are disjoint

from s-posts. We also call any last resort post p an l-post.

The following theorem, proved in [6], completely characterizes popular

matchings.

Theorem 4.3.1 ([6]). A matching M is popular if and only if

57

(i) every f-post is matched in M , and

(ii) for each applicant a, M(a) ∈ {f(a), s(a)}.

Let G′ be the reduced graph of G that only includes f -posts and s-

posts. For a reduced graph G′, let M be a popular matching, and let a be an

applicant. Denote by OM(a) the post on a’s reduced preference list to which

a is not assigned in M . Note that since G′ is a reduced graph of G, OM(a) is

well-defined. If a is matched to f(a) in M , then OM(a) = s(a), whereas if a is

matched to s(a) in M , then OM(a) = f(a).

4.3.2 Algorithmic Results

Now we show Algorithm 3 is an NC algorithm for the popular matching

problem with strictly-ordered preference lists. First we construct the reduced

graph G′ from G. Then we find an applicant-complete matching M in G′.

Hence for each applicant a, M(a) ∈ {f(a), s(a)}. Then for any f -post p that

is unmatched in M , we match p with any applicant in f−1(p).

The most non-trivial part is line 4 that determines an applicant-complete

matching M in the reduced graph G′. Perfect matching in bipartite graph is

in Quasi-NC [17], but we do not know whether it is in NC. Recent results in [7]

show that perfect matching in planar graph is in NC. But the reduced graph

for popular matching problem is not necessarily planar. It is easy to check

that the reduced graph G′ may contain a subgraph that is a subdivision of the

complete bipartite graph K3,3.

58

Algorithm 3: Popular Matching

1 Input: Graph G = (A ∪ P , E).
2 Output: A popular matching M or determine that no such

matching.
3 G′ := reduced graph of G;
4 if G′ admits an applicant-complete matching M then
5 for each f -post p unmatched in M in parallel do
6 let a be any applicant in f−1(p);
7 promote a to p in M ;
8 return M ;
9 else

10 return “no popular matching”;

We first show how to construct the reduced graph G′ from G in parallel

(line 3). For each post p, we check if there is any incident edge (a, p) ∈ E1.

Let F be the set of such posts, which corresponds to all f -posts. Then for

each post p ∈ F , we remove all incident edges (a, p) /∈ E1. After that, for

each applicant a, we find the highest ranked incident edge (a, p) /∈ E1, which

corresponds to s(a), and remove all other incident edges. The remaining graph

must be G′. It is clear that each step can be done in logarithmic time with a

polynomial number of operations.

It remains to show how to find an applicant-complete matching in G′

(line 4), or determine that no such matching exists in NC. Now we explain

Algorithm 4 that finds an applicant-complete matching.

The while loop (line 4) gradually matches applicants to posts of degree

1 or 2 until there is no post of degree 1. Then, either the remaining graph

admits a perfect matching or we can conclude that there is no applicant-

59

Algorithm 4: Applicant-Complete Matching

1 Input: Graph G′ = (A ∪ P , E ′).
2 Output: An applicant-complete matching M or determine that

no such matching exists.
3 M := ∅;
4 while some post p has degree 1
5 Find all maximal paths that end at p;
6 for each edge (p′, a′) at an even distance from some p in

parallel do
7 M := M ∪ {(p′, a′)};
8 G′ := G′ − {p′, a′};
9 for each post p has degree 0 in parallel do

10 G′ := G′ − p
11 // Every post now has degree at least 2;
12 // Every applicant still has degree 2;
13 if |P|< |A| then
14 return “no applicant-complete matching”;
15 else
16 // G′ decomposes into a family of disjoint even cycles
17 M ′ := any perfect matching of G′;
18 return M ∪M ′;

60

complete matching. We show the details below.

First, we identify all vertices of degree 2 in G′. Note that all applicants

have degree 2, but posts may have any degree. We only need to identify posts

of degree 2. Some of these vertices might be connected to each other, in which

case we get paths formed by these vertices. We can extend these paths, by

the doubling trick in polylog time to find maximal paths consisting of degree

2 vertices. Let the vertices of the path be (v1, v2, · · · , vk). Further, let v0 be

the vertex we would get if we extended this path from v1 side and vk+1 be the

one we would get from vk side. Note that deg(vi) = 2 for i = 1, · · · , k but not

for i = 0, k + 1.

Then, in parallel, we consider each maximal path with at least one

of v0 and vk+1 of degree 1. W.l.o.g, let v0 be the vertex of degree 1. For

each such path, we add each edge at an even distance from v0 to M (e.g.

the edge (v0, v1) is at zero distance from v0 and must be added to M) and

delete v0, · · · , vk and their incident edges. Note that v0 and vk+1 can only be

posts since all applicants have degree exactly 2. Hence, any maximal path

must have even length and vk+1 is not matched. In the case both end points

have degree 1, we only consider this path once and choose v0 or vk+1 to be

matched arbitrarily. After one round, there would be some new vertices of

degree 1 because the degree of vk+1 decreases by 1 for each maximal path that

ends at vk+1. Run the same process until there is no post that has degree

1. After removing any isolated posts, we can conclude that either there is no

applicant-complete matching, or the remaining graph is a family of disjoint

61

even cycles.

4.3.2.1 Correctness

Algorithm 4 begins by repeatedly matching maximal paths (v0, v1, · · · , vk+1)

with deg(v0) = 1. After first round, no subsequent augmenting path can in-

clude any vertices vi for i = 0, 1, · · · , k since they are matched and any al-

ternating path that includes them must end at v0, which is matched and has

degree 1. So we can remove all matched vertices from consideration. The same

argument holds for subsequent rounds. Also note that the while loop always

terminates because whenever we find a post of degree 1, we match at least one

edge (v0, v1) and remove at least two vertices that are {v0, v1}.

Now we have a matching and we only need to match remaining posts

and applicants. All remaining posts have degree at least 2, while all remaining

applicants still have degree exactly 2. Now, if |P|< |A|, G′ cannot admit

an applicant-complete matching by Hall’s Marriage Theorem [26]. Otherwise,

we have that |P|≥ |A|, and by a double counting argument, we have 2|P|≤∑
p∈P deg(p) = 2|A|. Hence, it must be that |P|= |A| and every post has

degree exactly 2. G′ becomes 2-regular bipartite graph and consists of disjoint

union of even cycles. By choosing any edge e in an even-length cycle C, even

distance (resp. odd distance) from e is well-defined. Choosing all edges of even

distance yields a perfect matching in G′. Now we have an applicant-complete

matching in G′. Hence for each applicant a, M(a) ∈ {f(a), s(a)}. Then for

any f -post p that is unmatched in M , we match p with any applicant in f−1(p).

62

By Theorem 4.3.1, the resulting matching is a popular matching.

4.3.2.2 Complexity

Lemma 4.3.2 proves that the while loop in Algorithm 4 runs O(log(n))

number of times.

Lemma 4.3.2. The while loop (line 4) runs O(log(n)) number of times.

Proof. For any vertex v of deg(v) ≥ 3 that is reduced to degree of 1, it must

be the end point of deg(v)− 1 maximal paths. If in round r, s.t. r > 1, there

are t vertices of degree 1 (for some constant t), then we must have deleted

at least 2t vertices in round r − 1. After round r, we have deleted at least

(2r − 1)t vertices. Hence, it is clear that the while loop can be run at most

dlog(n)e+ 1 times since the total number of vertices is bounded by n.

Finding all maximal paths of degree 2 vertices and calculating the dis-

tance from v0 in the path can be done in polylog time. Furthermore, the while

loop runs at most a logarithmic number of times. Finding a perfect matching

in a 2-regular bipartite graph i.e. graph consisting of even-length cycles is

in NC. More generally, searching for a perfect matching in regular bipartite

graphs can be done in NC [49]. So, Algorithm 4 is in NC. The for loop in

Algorithm 3 can be done in constant time since for every f -post p, f−1(p) is

disjoint from each other.

We summarize the preceding discussion in the following theorem.

63

Theorem 4.3.3. We can find a popular matching, or determine that no such

matching exists in NC.

4.3.3 Example of Popular Matchings

To illustrate Algorithm 4, we provide a detailed example. Figure 4.1

shows the preference lists for a popular matching instance I. The set of f -posts

is {p1, p4, p5, p7} and the set of s-posts is {p2, p3, p6, p8, p9}.

Figure 4.2 shows the reduced preference lists of I and reduced graph

G′.

a1 : p1 p2

a2 : p4 p2

a3 : p4 p3

a4 : p1 p3

a5 : p5 p2

a6 : p7 p6

a7 : p7 p8

a8 : p7 p9

(a) The reduced preference lists of I
with popular matching M denoted by
underlining

a8

a7

a6

a5

a4

a3

a2

a1

p9

p8

p7

p6

p5

p4

p3

p2

p1

(b) The reduced graph G′ of G

Figure 4.2: The reduced instance of I

In the while loop of Algorithm 4, pairs (a8, p9), (a6, p6) , (a7, p8), (a5, p5)

are matched. Figure 4.3 shows the reduced graph after the while loop of Al-

gorithm 4. The graph consists of only even-length cycles. Choose one perfect

matching in the reduced graph such as pairs (a1, p1), (a2, p2), (a3, p4), (a4, p3),

64

we obtain an applicant-complete matching. Note that one f -post p7 is not

matched in this applicant-complete matching. So we can promote any appli-

cant from {a6, a7, a8} to match with p7, e.g. a6 is matched to p7. The resulting

popular matchingM is {(a1, p1), (a2, p2), (a3, p4), (a4, p3), (a5, p5), (a6, p7), (a7, p8)

, (a8, p9)}.

a4

a3

a2

a1

p4

p3

p2

p1

Figure 4.3: The reduced graph after the while loop of Algorithm 4

4.4 Finding Maximum-Cardinality Popular Matching in
NC

We now consider the maximum-cardinality popular matching problem.

Let A1 be the set of all applicants a with s(a) = l(a), and let A2 = A − A1.

Our target matching must satisfy conditions (i) and (ii) of Theorem 4.3.1,

and among all such matchings, allocate the fewest A1-applicants to their last

resort. To be able to find maximum-cardinality matching in NC, we need

another characterization of popular matching problem called switching graph

[56], a directed graph which captures all the possible ways in which applicants

may form different popular matchings by switching between the two posts on

their reduced preference lists.

Given a popular matching M for an instance G = (A ∪ P , E), the

switching graph GM of M is a directed graph with a vertex for each post

65

p, and a directed edge (pi, pj) for each applicant a, where pi = M(a) and

pj = OM(a). Then each edge is labelled with the applicant that it represents.

A component of GM is any maximal weakly connected subgraph of GM . An

applicant (resp. post) is said to be in a component, or path, or cycle of GM

if the edge (resp. vertex) representing it is in that component, path or cycle.

The following lemma in [56] gives some simple properties of switching graphs.

Lemma 4.4.1 ([56], Lemma 1). Let M be a popular matching for an instance

of G = (A ∪ P , E), GM be the switching graph of M . Then

(i) Each vertex in GM has outdegree at most 1.

(ii) The sink vertices of GM are those vertices corresponding to posts that are

unmatched in M , and are all s-post vertices.

(iii) Each component of GM contains either a single sink vertex or a single

cycle.

A component of a switching graph GM is called a cycle component if

it contains a cycle, and a tree component if it contains a sink vertex. Each

cycle in GM is called a switching cycle. If T is a tree component of GM with

sink vertex p, and if q is another s-post vertex in T , the unique path from q

to p is called a switching path. Note that each cycle component of GM has a

unique switching cycle, but each tree component may have zero or multiple

switching paths; to be precise it has one switching path for each s-post vertex

it contains, other than the sink vertex.

66

Figure 4.4 shows the switching graph GM for popular matching M .

There are one switching cycle and two switching paths starting from p8 and

p9 respectfully.

p1 p2

p3 p4

p5

p6

p7 p8

p9

a1

a2

a3

a4

a5

a6

a7

a8

Figure 4.4: The switching graph GM for popular matching M

Lemma 4.4.1 shows that the switching graph GM is indeed a directed

pseudoforest. Next we give several NC algorithms for finding all switching

cycles and switching paths in GM .

4.4.1 Finding Cycles in Pseudoforest in NC

Definition 4.4.1. A pseudoforest is an undirected graph in which every

connected component has at most one cycle. A pseudotree is a connected

pseudoforest. A directed pseudoforest is a directed graph in which each

vertex has at most one outgoing edge, i.e., it has outdegree at most one.

A directed 1-forest (most commonly called a functional graph, sometimes

maximal directed pseudoforest) is a directed graph in which each vertex has

outdegree exactly one.

It is easy to see that every weakly connected component in a directed

67

pseudoforest contains either a single sink vertex or a single cycle.

We consider the problem of finding switching cycles in GM , later we

will show that finding switching paths is as easy as finding switching cycles.

Given a directed pseudoforest GP , we want to find each unique cycle C

in each component of GP . There could not be any cycle in a component of GM

if it is a tree component. The first approach is based on transitive closure G∗P

of GP since computing the transitive closure is in NC by Theorem 4.4.2. We

compute the transitive closure G∗P and for any two vertices i and j s.t. i 6= j

in GP , if G∗P (i, j) = 1 and G∗P (j, i) = 1, then both i and j are in the unique

cycle C. Hence we can identify the cycle C by checking each pair of vertices

in parallel.

Theorem 4.4.2 ([38]). The transitive closure of a directed graph with n ver-

tices can be computed in O(log2 n) time, using O(M(n) log n) operations on a

CREW PRAM, where M(n) is the best known sequential bound for multiplying

two n× n matrices over a ring.

We also give NC algorithms in the setting of undirected graph in which

transitive closure does not help. Given an undirected pseudoforest GP , denote

the incidence matrix of GP as IGP
. Let cc(G) be the number of connected

components in G. The basic idea is that we remove any one edge e from GP , if

e ∈ C s.t. C is the unique cycle in GP , then cc(GP−{e}) = cc(GP); otherwise,

cc(GP − {e}) = cc(GP) + 1. There is a direct connection between the rank of

incidence matrix I of G and the number of connected component cc(G) in G.

68

Lemma 4.4.3. If G is an undirected graph with k connected components, then

the rank of its incidence matrix IG is n− k.

So we can compute the rank of IGP
and for each e in GP , compute the

rank of IGP−{e} in parallel. There are at most |V | edges in GP .

Theorem 4.4.4 ([57]). The rank of a n×n matrix over an arbitrary field can

be computed in O(log2 n) time, using a polynomial number of processors.

We can also compute the number of connected component of GP di-

rectly by finding all connected components in GP .

Theorem 4.4.5 ([10]). The connected components of a graph with n vertices

and m edges can be computed in O(log n) time, using O((m+n)α(m,n)/log n)

operations on an ARBITRARY CRCW PRAM, where α(m,n) is the inverse

Ackermann function.

For any tree component T , there might be zero or multiple switching

paths. For each s-post p, we make a copy of T and add one directed edge from

the sink vertex to p and then find the unique cycle in the new graph, which

yields one switching path in T .

4.4.2 Algorithmic Results

Now we are ready to give an NC algorithm to find a maximum-cardinality

popular matching.

69

Algorithm 5: Maximum-Cardinality Popular Matching

1 Input: Reduced graph G′ = (A ∪ P , E ′) and a popular matching
M .

2 Output: A maximum-cardinality popular matching M ′.
3 GM := switching graph of M and G′.
4 Find all weakly connected components of GM ;
5 for each cycle component (resp. tree component) in parallel do
6 Find the unique switching cycle (resp. each switching path);
7 for each switching cycle (resp. switching path) in parallel do
8 Compute the margin of applying this switching cycle(resp.

switching path);
9 for each cycle component (resp. tree component) in parallel do

10 if the margin ∆ of switching cycle (resp. the largest margin of
switching paths) is positive

11 Apply this switching cycle (resp. switching path) to M ;
12 // The resulting matching M ′ after applying such switching cycles

and switching paths is the maximum-cardinality matching.
13 return M ′;

70

Given the reduced graph G′ and a popular matching M , we construct

the switching graph GM . After that, we identify the unique switching cycle

or each switching path in GM . Then we increase the size of popular matching

locally according to the margin ∆ of each component.

For each switching cycle C (resp. switching path P), we define the

margin ∆ in Definition 4.4.2 as the difference of the number of last resort

posts after applying C (resp. P) to M . For each applicant a, the margin ∆

increases by 1 if a promotes from l(a) to f(a) or decreases by 1 if a demotes

from f(a) to l(a), otherwise no change is made. The following theorem gives

a one-to-one correspondence between a popular matching and a unique subset

of the cycle components and the tree components of GM , which is crucial to

our algorithm for maximum-cardinality popular matching.

Definition 4.4.2. Let ∆ be the margin of applying a switching cycle C (resp.

switching path P) to M , i.e.

∆ =
∑

a∈C(resp.P) 1M ·C(a) − 1M(a)

where 1p is an indicator function of posts

s.t. 1p :=

1 if p is not l-post

0 if p is l-post

The following theorem is crucial for the correctness of Algorithm 5.

Theorem 4.4.6 ([56], Corollary 1). Let G = (A ∪ P , E) be an instance, and

let M be an arbitrary popular matching for G with switching graph GM . Let

the tree components of GM be T1, T2, · · · , Tk, and the cycle components of GM

71

be C1, C2, · · · , Cl. Then the set of popular matchings for G consists of exactly

those matchings obtained by applying at most one switching path in Ti for each

i(1 ≤ i ≤ k) and by either applying or not applying the switching cycle in Ci

for each i(1 ≤ i ≤ l).

4.4.3 Correctness

Any popular matching can be obtained from M by applying at most

one switching cycle or switching path per component of the switching graph

GM . For any tree component T , we apply the switching path in T with the

largest positive margin. Similarly, for any cycle component C, we apply the

switching cycle in C with positive margin. Then, we get the largest possible

total margin, which in turn implies the largest possible number of l-posts

we removed from M . Hence, we obtain the maximum-cardinality popular

matching. For any other popular matching obtained by applying difference

subset of switching paths or switching cycles, it will have strictly less total

margin than the maximum-cardinality popular matching.

4.4.4 Complexity

It is clear that the switching graph GM can be constructed from G′

and M in constant time in parallel. All weakly connected components of GM

can also be found in polylog time by Theorem 4.4.5. Moreover, in Section

4.4.1, we showed that all switching cycles and switching paths can be found

in polylog time. Each switching cycle and switching path can be applied to

72

matching M easily in parallel since they are vertex-disjoint in GM . So, overall

the complexity of Algorithm 5 is O(log2 n).

We summarize the preceding discussion in the following theorem.

Theorem 4.4.7. We can find a maximum-cardinality popular matching, or

determine that no such matching exists in NC.

4.4.5 Optimal Popular Matchings

It is natural to extend the popular matching problem to a weighted

version of the popular matching problem. If a weight w(ai, pj) is defined for

each applicant-post pair with pj acceptable to ai, then the weight w(M) of a

popular matching M is
∑

(ai,pj)∈M w(ai, pj). A popular matching is optimal

if it is a maximum or minimum weight popular matching. It turns out that

maximum-cardinality popular matching is a special case of maximum weight

popular matching if we assign a weight of 0 to each pair involving a last resort

post and a weight of 1 to all other pairs.

Kavitha et al. [41] considered other optimality criteria, in terms of the

so called profile of the matching. For a popular matching instance with n1

applicants and n2 posts, we define the profile ρ(M) of M to be the (n2 + 1)

tuple (x1, x2, · · · , xn2+1) such that for each i, 1 ≤ i ≤ n2 + 1, xi is the number

of applicants who are matched with their ith ranked post. An applicant who

is matched to his/her last resort post is considered to be matched to his/her

(n2 + 1)th ranked post, regardless of the length of his/her preference list.

73

Suppose that ρ = (x1, x2, · · · , xn2+1) and ρ′ = (y1, y2, · · · , yn2+1). We

use �R denote the lexicographic order on profiles: ρ �R ρ′ if xi = yi for

1 ≤ i < k and xk > yk, for some k. Similarly, we use ≺F to denote the

lexicographic order on profiles: ρ ≺F ρ′ if xi = yi for k < i ≤ n2 + 1 and

xk < yk, for some k.

A rank-maximal popular matching is a popular matching whose profile

is maximal with respect to �R. A fair popular matching is a popular matching

whose profile is minimal with respect to ≺F . Note that a fair popular matching

is always a maximum-cardinality popular matching since the number of last

resort posts is minimized. It is easy to check these two problems are equivalent

to the optimal popular matching problem with suitable weight assignments as

follows.

• Rank-maximal popular matching: assign a weight of 0 to each pair in-

volving a last resort post and a weight of nn2−k+1
1 to each pair (ai, pj)

where pj is kth ranked post of ai, and find a maximum weight popular

matching.

• Fair popular matching: assign a weight of nk1 to each pair (ai, pj) where

pj is the kth ranked post of ai, and find a minimum weight popular

matching.

Now we are ready to give an NC algorithm for the optimal popular

matching problem. Given a popular matching instance and a particular weight

assignment, let M be a popular matching, and Mopt be an optimal popular

74

matching (maximum or minimum weight, depends on the context). By Theo-

rem 4.4.6, Mopt can be obtained from M by applying a choice of at most one

switching cycle or switching path per component of the switching graph GM .

Similar to Algorithm 5, the algorithm for computing Mopt will compute an

arbitrary popular matching M , and make an appropriate choice of switching

cycles and switching paths to apply in order to obtain an optimal popular

matching. The only difference is the margin calculation. In order to decide to

apply a switching cycle C or not, we need to compare
∑

a∈C w(a,M(a)) with∑
a∈C w(a,M · C(a)). In the case of maximum-cardinality popular matching,

the weight assignment is either 0 or 1. While in rank-maximal popular match-

ing and fair popular matching, w is bounded by nn2+1
1 , which has Õ(n) bits.

So
∑

a∈C w(a,M(a)) can be computed in NC.

4.5 Preference Lists with Ties

In this section, we consider the popular matching problem such that

preference lists are not strictly ordered, but contain ties. Without the as-

sumption of strictly ordered preference lists, we show that the popular match-

ing problem is at least as hard as the maximum-cardinality bipartite match-

ing problem by showing that maximum-cardinality bipartite matching is NC-

reducible to popular matching. Note that whether bipartite perfect matching

is in NC is still open [17].

Now we show the following NC reduction.

75

Theorem 4.5.1. Maximum-cardinality Bipartite Matching ≤NC Popular Match-

ing.

Proof. Suppose we have access to a black box that can solve Popular Match-

ing in NC. Consider an arbitrary instance of Maximum-cardinality Bipartite

Matching, specified by a graph G = (A ∪ B, E). We construct our Pop-

ular Matching instance by giving all edges rank 1, i.e. each applicant has

the same preference over all acceptable posts. For convenience, we also use

G = (A ∪ B, E) as our instance of Popular Matching. We do not add last re-

sort posts at all. Lemma 4.5.2 and Lemma 4.5.3 show that popular matching

always exists in G and any popular matching M is also a maximum-cardinality

matching in G.

Lemma 4.5.2. Let M be a popular matching in G. Then M is also a maximum-

cardinality matching in G.

Proof. Suppose for a contradiction that M is not a maximum matching of

G. Then M admits an augmenting path Q with respect to G. Since each

edge in G has rank 1, after applying augmenting path Q to M , we obtain a

matching M ′ that is more popular than M because M ′ has exactly one more

edge matched than M and all rest of applicants do not have preference over

M and M ′.

We know from Section 4.3 that popular matching may not exist in an

arbitrary popular matching instance. We show that given the construction

that each edge in G has rank 1, popular matching always exists.

76

Lemma 4.5.3. Let M be a maximum-cardinality matching in G. Then M is

also a popular matching in G.

Proof. Consider any other matching M ′ in G. We only care about the symmet-

ric difference M∆M ′ since the rest of edges do not have preference over M and

M ′. Since all edges have rank 1, then |P (M ′,M)|−|P (M,M ′)|= |M ′|−|M |≤ 0.

Hence, no matching is more popular than M .

We conjecture that the following reduction is also true.

Conjecture 4.5.4. Popular Matching ≤NC Maximum-cardinality Bipartite

Matching.

4.6 Finding “next” Stable Matching in NC

In this section, we consider the problem of finding the “next” stable

matching. Irving and Gusfield’s book [25] mentioned that even if it is not

possible to find the first stable matching fast in parallel, perhaps, after suf-

ficient preprocessing, the stable matchings could be enumerated in parallel,

with small parallel time per matching. Our results partially answer this ques-

tion, given a stable matching, we can enumerate the “next” stable matching in

the stable matching lattice in polylog time. This result can be regarded as an

application of the techniques used in 4.4, that is to find cycles in pseudoforest

in NC. The main result is given by Theorem 4.6.2.

We give some useful definitions in the next section.

77

4.6.1 The Stable Marriage Problem

We first give some basic results of the stable marriage problem. Defi-

nitions of the stable marriage problem is given in Chapter 1.

Definition 4.6.1 (Partial Order M). For a given stable marriage instance,

stable matching M is said to dominate stable matching M ′, written M �M ′,

if every man either prefers M to M ′ or is indifferent between them. We use

the term strictly dominate, written M ≺ M ′, if M � M ′ and M 6= M ′. We

use the symbol M to represent the set of all stable matchings for a stable

marriage instance. Then the set M is a partial order under the dominance

relation, denoted by (M,�).

It is well-known that the partial order (M,�) forms a distributive

lattice. Hence, the unique minimal element inM with respect to �, i.e. man-

optimal stable matching (denoted by M0), as well the unique maximal element,

i.e. woman-optimal stable matching (denoted by Mz) is well-defined.

Definition 4.6.2 (Rotation). Let k ≥ 2. A rotation ρ is an ordered list of

pairs

ρ = ((m0, w0), (m1, w1), · · · , (mk−1, wk−1))

that are matched in some stable matching M with the property that for every

i such that 0 ≤ i ≤ k − 1, woman wi+1 (where i+ 1 is taken modulo k) is the

highest ranked woman on mi’s preference list satisfying:

(i) man mi prefers wi to wi+1, and

78

(ii) woman wi+1 prefers mi to mi+1.

In this case, we say ρ is exposed in M .

Definition 4.6.3 (Elimination of a Rotation). Let ρ = ((m0, w0)

, (m1, w1), · · · , (mk−1, wk−1)) be a rotation exposed in a stable matching M .

The rotation ρ is eliminated from M by matching mi to w(i+1) mod k for all

0 ≤ i ≤ k − 1, leaving all other pairs in M unchanged, i.e. matching M is

replaced by matching M ′, where

M ′ := M\ρ ∪ {(m0, w1), (m1, w2), · · · , (mk−1, w0)}.

Note that the resulting matching M ′ is also stable.

Lemma 4.6.1 ([25], Theorem 2.5.1). If ρ is exposed in M , then M immedi-

ately dominates M\ρ, i.e. there is no stable matching M ′ such that M ≺ M ′

and M ′ ≺M\ρ.

Theorem 4.6.2. Given a stable matching M , there is an NC algorithm that

outputs stable matching M\ρ for each rotation ρ exposed in M or determines

M is the woman-optimal matching.

4.6.2 Algorithmic Results

We describe an NC algorithm to find the “next” stable matching in this

section.

Let M be a stable matching. For any man m, let sM(m) denote the

highest ranked woman on m’s preference list such that w prefers m to pM(w).

79

Algorithm 6: “next” Stable Matching

1 Input: Stable matching M and preference lists mp and wp.
2 Output: M\ρ or determine M is the woman-optimal matching.
3 Compute ranking matrices mr and wr; // constant steps
4 Compute reduced preference lists mp′ and wp′; // logarithmic

number of steps
5 Construct HM from mp′;
6 if HM is not empty then
7 Find all simple cycles(rotations) in HM ;
8 for each rotation ρ in HM in parallel do
9 return M\ρ;

10 else
11 return M is the woman-optimal matching;

Let nextM(m) denote woman sM(m)’s partner in M . Note that since M is

stable, m prefers pM(m) to sM(m).

Now let m be any man who has different partners in M and Mz and

let w be m’s partner in Mz. Since Mz is woman-optimal, m prefers pM(m)

to w and w prefers m to pM(w). Hence, sM(m) exists. If sM(m) exists and

m′ = nextM(m), then sM(m′) exists as well. Otherwise, m′ and sM(m) are

partners in Mz, so m prefers sM(m) to his partner w in Mz and sM(m) prefers

m to her partner m′ in Mz, contradicting the stability of Mz. Denote D the

set of man who has different partners in M and Mz, then for any man m ∈ D,

nextM(m) ∈ D. Later we will show that the algorithm does need to know Mz.

Similar to the switching graph of popular matching, we define the

switching graph of stable matching M as a directed graph HM with a ver-

tex for each man in D and a directed edge from the vertex for m to the vertex

80

for nextM(m), which is also in HM . Some simple properties of switching graph

HM are shown in the following lemma.

Lemma 4.6.3. Let M be a stable matching other than the woman-optimal

matching Mz, let HM be the switching graph of M , then

(i) Each vertex in HM has outdegree exactly one.

(ii) Each component of HM contains a single simple cycle.

Proof. (i) is direct from the definition of a switching graph. (ii) No vertex

points to itself, so there is no self loop in HM . If there is no cycle in one

component, then there exists at least one sink vertex (consider the topological

sort of HM), contradicting (i). If there are two cycles in one component,

consider any path that connects these two cycles. There must be a vertex

with at least two outgoing edges again contradicting (i).

From Definition 4.6.2, it is easy to see that any such simple cycle defines

the men in a rotation exposed in M , in the order that they appear in the

rotation. On the other hand, based on the uniqueness of nextM(m) for each

m ∈ D, if m belongs to some rotation ρ, e.g. m = mi, then mi+1 is uniquely

determined, that is nextM(m). Hence the men in ρ must be a simple cycle in

HM .

We know from Section 4.4.1 that every cycle in HM can be found in

NC. It is obvious that the elimination of a rotation can be done in one parallel

step. Thus, we are left to show that HM can be constructed in NC.

81

Let us assume that a stable marriage instance is described by the sets

of preference lists, represented as matrices mp and wp defined by

• mp[m, i] = w if woman w is ranked of i in m’s preference list

• wp[w, i] = m if man m is ranked of i in w’s preference list

We also define the ranking matrices mr and wr as below

• mr[m,w] = i if woman w is ranked of i in m’s preference list

• wr[w,m] = i if man m is ranked of i in w’s preference list

We need to identify sM(m) and nextM(m) for each man m. Suppose

for each woman w we delete all pairs (m′, w) such that w prefers pM(w) to m′.

In the resulting preference lists, which we call reduced lists, pM(w) is the last

entry in w’s list, and pM(m) is the first entry in m’s list for if any woman w′

remains above pM(m), then (m,w′) blocks M . Moreover, sM(m) is the second

entry in m’s list if exists, for by definition, it is the highest ranked woman w

on m’s list such that w prefers m to pM(w). nextM(m) is simply the partner

in M of woman sM(m).

From the algorithmic aspect, for each entry (m,w) to be deleted in

parallel, we call the ranking matrix mr to obtain woman w’s rank on m’s list.

Then call the preference matrix mp and use soft-deletion, i.e. mark the entry

mp[m,mr[m,w]] zero. After each entry is soft-deleted, we can compress the

preference list using parallel prefix sum technique. The resulting preference

82

lists are reduced lists. Now we obtain all pairs (m,nextM(m)) and it is easy

to construct HM .

4.6.3 Example of Stable Matchings

Figure 4.5 is an example of a stable marriage instance. The reader can

verify that the matching M denoted by underlining is stable.

m1 : w5 w7 w1 w2 w6 w8 w4 w3

m2 : w2 w3 w7 w5 w4 w1 w8 w6

m3 : w8 w5 w1 w4 w6 w2 w3 w7

m4 : w3 w2 w7 w4 w1 w6 w8 w5

m5 : w7 w2 w5 w1 w3 w6 w8 w4

m6 : w1 w6 w7 w5 w8 w4 w2 w3

m7 : w2 w5 w7 w6 w3 w4 w8 w1

m8 : w3 w8 w4 w5 w7 w2 w6 w1

(a) Men’s preferences

w1 : m5 m3 m7 m6 m1 m2 m8 m4

w2 : m8 m6 m3 m5 m7 m2 m1 m4

w3 : m1 m5 m6 m2 m4 m8 m7 m3

w4 : m8 m7 m3 m2 m4 m1 m5 m6

w5 : m6 m4 m7 m3 m8 m1 m2 m5

w6 : m2 m8 m5 m3 m4 m6 m7 m1

w7 : m7 m5 m2 m1 m8 m6 m4 m3

w8 : m7 m4 m1 m5 m2 m3 m6 m8

(b) Women’s preferences

Figure 4.5: The stable marriage instance of size 8 and the stable matching M
denoted by underlining

Figure 4.6 shows the reduced lists of the men for the stable matching

M . The second column corresponds to sM(m) for each m.

Finally we give the switching graph HM for the stable matching M in

Figure 4.7.

4.7 Conclusion and Open Problems

In this chapter, we established that the popular matching problem with-

out ties is in NC. The notion of pseudoforest may have other applications for

83

m1 : w8 w3

m2 : w3 w6

m3 : w5 w1 w6 w2

m4 : w6 w8 w5

m5 : w7 w2 w1 w3 w6

m6 : w1 w5 w2 w3

m7 : w2 w5 w7 w8 w1

m8 : w4 w2 w6

Figure 4.6: The reduced lists of the men for the stable matching M

m1

m2 m3

m4

m5

m6

m7

m8

Figure 4.7: The switching graph HM

designing parallel algorithms.

We showed that maximum-cardinality bipartite matching is NC-reducible

to popular matching. One open problem is Conjecture 4.5.4. If it is true, then

it means these two problems are NC-equivalent. The other open problem is

establishing the NC reduction among several other matching problems in pref-

erence systems such as Pareto-optimal matching and rank-maximal matching.

To find an NC algorithm for the stable matching problem seems hard

84

given that the stable matching problem is CC-complete. It may be easier to

give an RNC algorithm for the stable matching problem. It is also interesting

to study some other variants of the stable matching problem, e.g. stable

matching instance with bounded-length preference lists, etc.

We initialize some works in the following:

4.7.1 Reduction to stable matching instance with bounded-degree

Assume that we are given a bipartite preference system P = (V,E,<v),

i.e. a bipartite graph (V,E) and a set of strict total order <v for vertices v ∈ V .

For each vertex v ∈ V , we denote by E(v) the set of edges that are incident

to v. We also define that deg(P) := maxv∈V |E(v)|.

We construct a new preference system Q = (W,F,≺v) from P such

that deg(Q) ≤ 3 (See Figure 4.8). For each vertex v ∈ V , we make 2|E(v)|−1

copies and partition into two groups {vi|i ∈ {1, 2, · · · , |E(v)|}} and {v∗i |i ∈

{1, 2, · · · , |E(v)|−1}}. For each vertex v ∈ V and each edge e ∈ E(v), we

define the rank of e in v as rankv(e) = 1 + |{f ∈ E(v)|f <v e}|. For each edge

e = (u, v) ∈ E, we define e∗ = (uranku(e), vrankv(e)) and the set of these edges

as E∗. Notice that E and E∗ is a one-to-one mapping. We also include the

set of edges (vi, v
∗
i) and (v∗i , vi+1) for each i ∈ {1, 2, · · · , |E(v)|−1}.

Next, we define the strict total order ≺v for each v ∈ W . For each

vertex v in V and each integer i in {1, 2, · · · , |E(v)|}, we denote by e∗vi the

unique edge e in E∗ that is incident to vi. We define the strict total order of

vertex vi ∈ W for each v ∈ V and each integer i ∈ {1, 2, · · · , |E(v)|} as follows:

85

v

e1

e2

e3
e4

(a)

v∗1

v1

e∗v1

v∗2

v2

e∗v2

v∗3

v3

e∗v3

v4

e∗v4

(b)

Figure 4.8: (a) A vertex v and the edges contains v. We assume that e1 <v

e2 <v e3 <v e4. (b) for each integer i in {1, 2, 3, 4}, we have e∗vi = e∗i .

e∗v1 ≺v1 (v1, v
∗
1)

(v∗i−1, vi) ≺vi e∗vi ≺vi (vi, v
∗
i) for 2 ≤ i ≤ |E(v)|−1

(v∗|E(v)|−1, v|E(v)|) ≺v|E(v)| e
∗
v|E(v)|

Then for each v in V and each integer i in {1, 2, · · · , |E(v)|−1}, we

define that (vi, v
∗
i) ≺v∗i (v∗i , vi+1).

We prove that we can construct a stable matching in P from a stable

matching in Q. Suppose that we are given a stable matching M∗ in Q.

Lemma 4.7.1. For each vertex v in V and each integer i in {1, 2, · · · , |E(v)|−1},

v∗i is matched in M∗.

Proof. Suppose that v∗i is unmatched, then vi+1 must be matched in M∗.

Otherwise we can add (v∗i , vi+1) into M∗. However, v∗i is the best choice of

vi+1, i.e. rankvi+1
((v∗i , vi+1)) = 1. Hence, (v∗i , vi+1) blocks M∗.

86

Proposition 4.7.2. For each vertex v in V and each integer i in {1, 2, · · · , |E(v)|},

exactly one of vi is either unmatched in M∗ or matched in e∗vi.

Proof. Obvious by Lemma 4.7.1.

Given a stable matching M∗ in Q, if the edge (vi, uj) is in M∗ for some

vertices v, u in V and some integers i, j, then we include the edge (v, u) into

M . We need to prove that M is a stable matching in P .

Lemma 4.7.3. The set of edges M in P is a matching.

Proof. Suppose that M is not a matching, then there exists a vertex v in V

such that v has two neighbors u and w in M . Thus there exists integers i and

j, such that vi matches to e∗vi and vj matches to e∗vj in M∗, which contradicts

with Proposition 4.7.2.

Lemma 4.7.4. If e∗ = (vi, uj) for some vertices v, u and integers i, j is un-

matched in M∗ and vi is matched to v∗i−1, then there exists vk, k < i, such that

e∗vk is in M∗.

Proof. We prove by induction. Base case: v2 is matched with v∗1. If e∗v1 is

unmatched in M∗, then v1 is unmatched. But (v1, v
∗
1) is a blocking pair. If

vi+1 is matched to v∗i , we have 3 cases. Case 1: vi is unmatched, then (vi, v
∗
i)

is a blocking pair; Case 2: e∗vi is matched, we have the required edge e∗vi in

M∗ and i < i + 1; Case 3: (vi, v
∗
i−1) is matched, by induction, we have if vi is

matched to v∗i−1, then there exists vk, k < i, such that e∗vk is in M∗.

87

Lemma 4.7.5. The set of edges M is a stable matching.

Proof. M is a matching by Lemma 4.7.3. Next we prove that there is no

blocking pair in M . This is equivalent to say for any edge e = (v, u) in E\M ,

at least one of v and u, w.l.o.g, let it be v, such that v is matched in M and

(v,M(v)) <v (v, u).

We know that M∗ is a stable matching in P . For each unmatched

edge e in E, there is a corresponding unmatched edge e∗ in F . Since M∗ is

stable, there must exist some vertex vi ∈ e∗ for some v in V and integer i

such that vi is matched in M∗ and (vi,M
∗(vi)) ≺vi e∗. Since we know that

(v∗i−1, vi) ≺vi e∗vi ≺vi (vi, v
∗
i), then M∗(vi) = v∗i−1. By lemma 4.7.4, we know

that there exists vk, k < i, such that e∗vk is in M∗. Hence v is matched in M

and (M(v), v) <v e.

We proved that given a stable matching in Q such that Q has degree

at most 3, we can recover a stable matching in P from Q. It is natural to ask

that if it is possible to recover an almost stable matching in P given an almost

stable matching in Q. There is no consensus in the literature on precisely

how to measure almost-stability, but typically almost-stability requires that

a matching induces relatively few blocking pairs. Ostrovsky and Rosenbaum

[60] gives a deterministic distributed algorithm which finds an almost stable

matching in O(log5 n) communication rounds for arbitrary preferences. The

running time can be improved to O(1) rounds for “almost regular” preferences.

88

It would be interesting to consider the almost stable matching problem such

that the degree of the preference lists is at most 3 in a distributed manner.

89

Chapter 5

Minimal Envy Matchings in the

Hospitals/Residents Problem with Lower

Quotas

5.1 Introduction

In the Hospitals/Residents problem, every hospital has an upper quota

that limits the number of residents assigned to it. While, in some applications,

each hospital also has a lower quota for the number of residents it receives. This

extension of the HR problem is referred to as the Hospitals/Residents problem

with Lower Quotas (HRLQ, for short) in the literature. However, the existence

of a stable matching is not always true for a given HRLQ instance. This can

be easily observed by the well-known Rural Hospitals theorem [21, 66, 67]

stating that each hospital is assigned the same number of residents in any

stable matching for a given HR instance.

Since there might be no stable matching given a HRLQ instance, one

natural approach is to weaken the requirement of stability. Envy-freeness is

a relaxation of stability that allows blocking pairs involving a resident and

an empty position of a hospital. Structural results of envy-free matchings

were investigated in [79] showing that the set of envy-free matchings forms a

lattice. Envy-free matchings with lower quotas has recently been studied in

90

[80]. Fragiadalis et al. [19] studies envy-free matchings called fairness in their

paper when the preference lists are complete and the sum of lower quotas of

all hospitals does not exceed the number of residents. In this restricted set-

ting, envy-free matching always exists and they gave a linear-time algorithm

called extended-seat deferred acceptance (ESDA) to find an envy-free match-

ing. However, if preference lists are not complete, envy-free matching may not

exist. Yokoi [80] provided a characterization of envy-free matchings in HRLQ,

connecting them to stable matchings in a modified HR instance so that the ex-

istence of envy-free matching can be decided by running DA on this modified

HR instance.

Given a HRLQ instance, we know that stable matchings or envy-free

matchings might not exist. Hamada et al. [27] considered the problem of min-

imizing the number of blocking pairs among all feasible matchings (feasible

matching means a matching satisfies both lower and upper quotas of each hos-

pital). They showed hardness of approximation of the problem and provided

an exponential-time exact algorithm.

In this chapter, we consider the problem of minimizing envy (defined

later) among all feasible matchings given a HRLQ instance. Given a feasible

matching, the envy among all residents can be measured by the number of

envy-pairs or the number of residents involved in any envy-pair.

We show that for both measurements, the problem is NP-hard. We also

provide an exponential-time algorithm to find a feasible matching minimizing

the number of envy-pairs.

91

The results presented in this chapter are joint work with Vijay Garg

and published in [30].

5.1.1 Related Work

Popular matching is another relaxation of stability which preserves

“global” stability in the sense that no majority of residents wish to alter into

another feasible matching. Popular matching always exists. Nasre and Nimb-

horkar [59] proposed an efficient algorithm to compute a maximum cardinality

matching that is popular amongst all the feasible matchings in an HRLQ in-

stance. When there exists a stable matching given a HRLQ instance, it is

known that every stable matching is popular.

5.2 Preliminaries

An instance I = (G,�) of the Hospitals/Residents Problem with Lower

Quotas (HRLQ for short) consists of a bipartite graph G = (R∪H,E), where

R is a set of residents and H is a set of hospitals, and an edge (r, h) ∈ E

denotes that r and h are mutually acceptable, and a preference system � such

that every vertex (resident and hospital) in G ranks its neighbors in a strict

order, referred to as the preference list of the vertex. If a vertex a prefers its

neighbor b1 over b2, we denote it by b1 �a b2. Each hospital h has a lower

quota lh and an upper quota uh (0 ≤ lh ≤ uh). Sometimes we write [lh, uh] to

denote the lower and upper quota for a hospital h.

A matching M ⊆ E in G is an assignment of residents to hospitals such

92

that each resident is matched to at most one hospital, and every hospital h

is matched to at most uh residents. Let M(r) denote the hospital that r is

matched in M . If r is unmatched in M , we let M(r) = ∅. For any neighbor h

of r, we have h �r ∅ since we assume that any resident prefers to be matched

over to be unmatched. We say that a hospital h is under-subscribed in M

if |M(h)| < uh, h is fully-subscribed if |M(h)| = uh, h is over-subscribed if

|M(h)| > uh and h is deficient if |M(h)| < lh. A matching M is feasible in a

HRLQ instance if no hospital is deficient or over-subscribed in M . The HRLQ

problem is to match residents to hospitals under some optimality condition

such that the matching is feasible. Envy-freeness is defined as follows.

Definition 5.2.1. Given a matching M , a resident-hospital pair (r, h) is an

envy-pair if h �r M(r) and r �h r′ for some r′ ∈M(h).

Definition 5.2.2. Given a matching M , a resident r has justified envy toward

r′ who is matched to hospital h if h �r M(r) and r �h r′.

Definition 5.2.3. A matching M is envy-free if there is no envy-pair in M .

Equivalently, a matching M is envy-free if no resident has justified envy toward

other residents in M .

In case that envy-free matchings may not exist in a given HRLQ in-

stance. We define two other problems that minimize envy in terms of envy-

pairs and envy-residents.

Minimum-Envy-Pair Hospitals/Residents Problem with Lower

Quotas (Min-EP HRLQ for short) is the problem of finding a feasible match-

93

ing with the minimum number of envy-pairs. 0-1 Min-EP HRLQ is the re-

striction of Min-EP HRLQ where a quota of each hospital is either [0, 1] or

[1, 1].

Definition 5.2.4. Given a matching M , a resident r is an envy-resident if

there exists h such that (r, h) ∈ E is an envy-pair in M .

Minimum-Envy-Resident Hospitals/Residents Problem with

Lower Quotas (Min-ER HRLQ for short) is the problem of finding a feasible

matching with minimum number of envy-residents. 0-1 Min-ER HRLQ is

defined similarly.

We assume without loss of generality that the number of residents is at

least the sum of the lower quotas of all hospitals, since otherwise there is no

feasible matching. In other papers, they impose the Complete List restriction

(CL-restriction for short). There always exists envy-free matchings in CL-

restriction instances, and a maximum-size one can be found in polynomial

time [19, 45].

5.3 Minimum-Envy-Pair HRLQ

In this section, we consider the problem of minimizing the number of

envy-pairs in HRLQ. We prove a NP-hardness result for 0-1 Min-EP HRLQ

in the following theorem.

Theorem 5.3.1. 0-1 Min-EP HRLQ is NP-hard.

94

Proof. We give a polynomial-time reduction from the well-known NP-complete

problem Vertex Cover. Below is the definition of the decision version of the

Vertex Cover problem. Given a graph G = (V,E) and a positive integer

K ≤ |V |, we are asked if there is a subset C ⊆ V such that |C| ≤ K, which

contains at least one endpoint of each edge of G.

Reduction: Given a graph G = (V,E) and a positive integer K, which

is an instance of the Vertex Cover problem, we construct an instance I of 0-1

Min-EP HRLQ. Define n = |V |, m = |E| and l = n2 + 1. The set of residents

is R = C ∪ F ∪ S and the set of hospitals is H = V ∪ T . Each set is defined

as follows:

C = {ci | 1 ≤ i ≤ K}

F = {fi | 1 ≤ i ≤ n−K}

Si,j = {si,j0,a | 1 ≤ a ≤ l} ∪ {si,j1,a | 1 ≤ a ≤ l} ((vi, vj) ∈ E, i < j)

S =
⋃

Si,j

V = {vi | 1 ≤ i ≤ n}

T i,j = {ti,j0,a | 1 ≤ a ≤ l} ∪ {ti,j1,a | 1 ≤ a ≤ l} ((vi, vj) ∈ E, i < j)

T =
⋃

T i,j

Each hospital in H = V ∪ T has a quota [1, 1]. Note that |C|+|F |=

|V |= n and |S|= |T |= 2ml. Thus |H|+|R|= 2n+ 4ml, which is polynomial in

n and m.

95

Next, we construct the preference lists of I. The preference lists of

residents is shown as follows:

ci : [[V]] (1 ≤ i ≤ K)

fi : [[V]] (1 ≤ i ≤ n−K)

si,j0,1 : ti,j0,1 vi ti,j1,1 ((vi, vj) ∈ E, i < j)

si,j0,2 : ti,j0,2 vi ti,j0,3 ((vi, vj) ∈ E, i < j)

...

si,j0,l−1 : ti,j0,l−1 vi ti,j0,l ((vi, vj) ∈ E, i < j)

si,j0,l : ti,j0,l vi ti,j0,1 ((vi, vj) ∈ E, i < j)

si,j1,1 : ti,j0,2 vj ti,j1,2 ((vi, vj) ∈ E, i < j)

si,j1,2 : ti,j1,2 vj ti,j1,3 ((vi, vj) ∈ E, i < j)

...

si,j1,l−1 : ti,j1,l−1 vj ti,j1,l ((vi, vj) ∈ E, i < j)

si,j1,l : ti,j1,l vj ti,j1,1 ((vi, vj) ∈ E, i < j)

, where [[V]] denotes a fixed order of elements in V in an increasing order of

indices.

96

The preference lists of hospitals is shown as follows:

vi : [[C]] [[Si]] [[F]] (1 ≤ i ≤ n)

ti,j0,1 : si,j0,1 si,j0,l ((vi, vj) ∈ E, i < j)

ti,j0,2 : si,j1,1 si,j0,2 ((vi, vj) ∈ E, i < j)

...

ti,j0,l−1 : si,j0,l−2 si,j0,l−1 ((vi, vj) ∈ E, i < j)

ti,j0,l : si,j0,l−1 si,j0,l ((vi, vj) ∈ E, i < j)

ti,j1,1 : si,j0,1 si,j1,l ((vi, vj) ∈ E, i < j)

ti,j1,2 : si,j1,1 si,j1,2 ((vi, vj) ∈ E, i < j)

...

ti,j1,l−1 : si,j1,l−2 si,j1,l−1 ((vi, vj) ∈ E, i < j)

ti,j1,l : si,j1,l−1 si,j1,l ((vi, vj) ∈ E, i < j)

, where [[C]] and [[F]] are as before a fixed order of all the residents in C and

F , respectively, in an increasing order of indices, [[Si]] is an arbitrary order of

all the residents in S that are acceptable to vi as determined by the preference

lists of residents.

Since each hospital in V ∪ T has a quota [1, 1], any feasible matching

must be a perfect matching in I. Further, the subgraph between C ∪ F and

V is a complete graph and there is no edge between C ∪ F and T in I. Thus,

any feasible matching must include a perfect matching between C ∪F and V .

For each edge (vi, vj) ∈ E (i < j), there are the set of residents Si,j

97

and the set of hospitals T i,j. We call this pair of sets a gi,j-gadget, and write

it as gi,j = (Si,j, T i,j). For each gadget gi,j, let us define two perfect matchings

between Si,j and T i,j as follows:

M i,j
0 = {(si,j0,1, t

i,j
0,1), (s

i,j
0,2, t

i,j
0,2), · · · , (s

i,j
0,l−1, t

i,j
0,l−1), (s

i,j
0,l, t

i,j
0,l),

(si,j1,1, t
i,j
1,2), (s

i,j
1,2, t

i,j
1,3), · · · , (s

i,j
1,l−1, t

i,j
1,l), (s

i,j
1,l, t

i,j
1,1)}, and

M i,j
1 = {(si,j0,1, t

i,j
1,1), (s

i,j
0,2, t

i,j
0,3), · · · , (s

i,j
0,l−1, t

i,j
0,l), (s

i,j
0,l, t

i,j
0,1),

(si,j1,1, t
i,j
0,2), (s

i,j
1,2, t

i,j
1,2), · · · , (s

i,j
1,l−1, t

i,j
1,l−1), (s

i,j
1,l, t

i,j
1,l)}

Figure 5.1 shows M i,j
0 and M i,j

1 on preference lists of Si,j.

si,j0,1 : ti,j0,1 vi ti,j1,1 si,j0,1 : ti,j0,1 vi ti,j1,1
si,j0,2 : ti,j0,2 vi ti,j0,3 si,j0,2 : ti,j0,2 vi ti,j0,3

...
...

si,j0,l−1 : ti,j0,l−1 vi ti,j0,l si,j0,l−1 : ti,j0,l−1 vi ti,j0,l
si,j0,l : ti,j0,l vi ti,j0,1 si,j0,l : ti,j0,l vi ti,j0,1

si,j1,1 : ti,j0,2 vj ti,j1,2 si,j1,1 : ti,j0,2 vj ti,j1,2
si,j1,2 : ti,j1,2 vj ti,j1,3 si,j1,2 : ti,j1,2 vj ti,j1,3

...
...

si,j1,l−1 : ti,j1,l−1 vj ti,j1,l si,j1,l−1 : ti,j1,l−1 vj ti,j1,l
si,j1,l : ti,j1,l vj ti,j1,1 si,j1,l : ti,j1,l vj ti,j1,1

Figure 5.1: Matchings M i,j
0 (left) and M i,j

1 (right)

Lemma 5.3.2. For a gadget gi,j = (Si,j, T i,j), M i,j
0 and M i,j

1 are the only

perfect matchings between Si,j and T i,j. Furthermore, each M i,j
0 and M i,j

1

contains an unique envy-pair (r, h) such that r ∈ Si,j and h ∈ T i,j.

98

Proof. Consider the induced subgraph Gi,j that contains only Si,j and T i,j.

One can see that Gi,j is a cycle of length 4l. Hence there are only two perfect

matchings between Si,j and T i,j, and they are actually M i,j
0 and M i,j

1 . More-

over, it is easy to check that M i,j
0 contains only one envy-pair (si,j1,1, t

i,j
0,2) and

M i,j
1 contains only one envy-pair (si,j0,1, t

i,j
0,1).

We now ready to show the NP-hardness of 0-1 Min-EP HRLQ.

Lemma 5.3.3. If G is a “yes” instance of the Vertex Cover problem, then I

has a solution with at most n2 +m envy-pairs.

Proof. If G is a “yes” instance of the Vertex Cover problem, then G has a

vertex cover of size exactly K. Let this vertex cover be Vc ⊆ V and let

Vf = V \Vc. We construct a matching M of I according to Vc. We match each

hospital in Vc to each resident in C and each hospital in Vf to each resident in

F in an arbitrary way. Since |C∪F |= |V |= n, there are at most n2 envy-pairs

between C ∪ F and V .

Since Vc is a vertex cover of G, for each edge (vi, vj), either vi or vj is

included in Vc. Thus for each gadget gi,j = (Si,j, T i,j) corresponding to the

edge (vi, vj), if vi ∈ Vc, we use M i,j
1 as part of our matching M , otherwise, use

M i,j
0 . By constructing in this way, it is easy to see that neither vi nor vj can

be involved in an envy-pair. Also, by Lemma 5.3.2, there is only one envy-pair

between Si,j and T i,j. Thus, the total number of envy-pairs is at most n2 +m

w.r.t M .

99

Lemma 5.3.4. If G is a “no” instance of the Vertex Cover problem, then any

solution of I has at least n2 +m+ 1 envy-pairs.

Proof. It is equivalent to prove that if I admits a feasible matching M with

less than n2+m+1 envy-pairs, then G has a vertex cover of size at most K. M

must be a perfect matching and must be a one-to-one correspondence between

C ∪ F and V in order to be a feasible matching. Since all V are matched to

C ∪ F , for each gadget gi,j = (Si,j, T i,j), by Lemma 5.3.2, there are only two

possibilities, M i,j
0 and M i,j

1 and either matching admits one envy-pair within

each gi,j. In all, we have m envy-pairs between S and T .

Suppose we choose M i,j
0 for gi,j. If vj is matched with a resident in F ,

there are l envy-pairs between vj and Si,j. Then we have l +m = n2 +m+ 1

envy-pairs, contradicting the assumption. Thus, vj must be matched with a

resident in C. By the same argument, if M i,j
1 is chosen, vi must be matched

with a resident in C. Hence, for each edge (vi, vj), either vi or vj is matched

with a resident in C. It is obvious that the set of vertices matched with

residents in C is a vertex cover of size K. This completes the proof.

Thus a polynomial-time algorithm for 0-1 Min-EP HRLQ would solve

the Vertex Cover problem, implying P=NP.

Note that the reduction above also implies NP-hardness of 0-1 Min-BP

HRLQ because all envy-pairs are blocking pairs and the construction in Lemma

5.3.3 does not generate any wasteful pairs (non-envy blocking pairs). [27] gives

100

stronger results showing 0-1 Min-BP HRLQ is hard to approximate within the

ratio of (|H|+|R|)1−ε for any positive constant ε even if all preference lists are

complete. While, the reduction cannot be used for 0-1 Min-EP HRLQ because

there exists envy-free matchings when all preference lists are complete [19] (or

a weaker requirement such that all hospitals with positive lower quotas has

complete preference lists over all residents [45]) and a maximum-size envy-free

matching can be found in linear time.

5.3.1 A Simple Exponential-Time Algorithm

Let I be a given instance. Starting from k = 1, we guess a set B of

k envy-pairs. There are at most |E|k choices of B. For each choice of B, we

delete each (r, h) ∈ B. Let I ′ be the modified instance. We apply Yokoi’s

algorithm to find an envy-free matching in I ′. If the algorithm outputs an

envy-free matching M , then it is the desired solution, otherwise, we proceed

to the next guess. If we run out of all guess of B for a fixed k, we increment

k by 1 and proceed as before until we find a desired solution.

Theorem 5.3.5. There is an O(|E|t+1)-time exact algorithm for Min-EP

HRLQ where t is the number of envy-pairs in an optimal solution of a given

instance.

Proof. If the algorithm ends when k < t, then the output matching M is an

envy-free matching in I ′ and the set B can only introduce at most k envy-

pairs, contradicting that t is minimum number of envy-pairs in any feasible

101

matching of instance I. Consider the execution of the algorithm for k = t and

any optimal solution Mopt and let our current guess B contains exactly the

t envy-pairs of Mopt. Then it is easy to see that Mopt is envy-free in I ′ and

satisfies all the lower quotas. Hence if we apply Yokoi’s algorithm, we find a

matching M is envy-free and satisfies all the lower quotas. Thus M has at

most t envy-pairs in the original instance I and it is our desired solution.

For the time complexity, Yokoi’s algorithm runs in O(|E|) time and for

each k, we apply Yokoi’s algorithm at most |E|k times. Therefore, the total

time is at most
∑t

k=1O(|E|k+1) = O(|E|t+1).

5.4 Minimum-Envy-Resident HRLQ

In this section, we consider the problem of minimizing the number of

envy-residents in HRLQ. We prove a NP-hardness result for Min-ER HRLQ

in the following theorem.

Theorem 5.4.1. Min-ER HRLQ is NP-hard.

Proof. We give a polynomial-time reduction from the NP-complete problem

CLIQUE. In CLIQUE, we are given a graph G = (V,E) and a positive integer

K ≤ |V |, and asked if G contains a complete graph with K vertices as a

subgraph.

Reduction: Given a graphG = (V,E), and a positive integerK ≤ |V |,

which is an instance of the CLIQUE problem, we construct in instance I of

Min-ER HRLQ. Define n = |V |, m = |E| and t = n + 1. The set of residents

102

is R = C ∪ F ∪E ′ and the set of hospital is H = V ∪ {x}. Each set is defined

as follows:

C = {ci | 1 ≤ i ≤ K}

F = {fi | 1 ≤ i ≤ n−K}

E ′ = {eki,j | (vi, vj) ∈ E, 1 ≤ k ≤ t}

V = {vi | 1 ≤ i ≤ n}

Each hospital in V has a quota [1, 1] and the hospital x has a quota

[mt,mt].

The preference lists of residents and hospitals is shown as follows:

ci : [[V]] (1 ≤ i ≤ K)

fi : [[V]] (1 ≤ i ≤ n−K)

eki,j : vi vj x ((vi, vj) ∈ E, 1 ≤ k ≤ t)

vi : [[C]] [[E ′i]] [[F]] (1 ≤ i ≤ n)[1, 1]

x : [[E ′]] [mt,mt]

, where [[V]] are a fixed order of all hospitals in V in an increasing order

of indices, [[C]] and [[F]] are a fixed order of all the residents in C and F ,

103

respectively, in an increasing order of indices, [[E ′i]] is an arbitrary order of all

the residents in E ′ that are acceptable to vi as determined by the preference

lists of residents. [[E ′]] are a fixed order of all residents in E ′ in an increasing

order of indices.

Lemma 5.4.2. If I is a “yes” instance of CLIQUE, then there is a feasible

matching of I having at most (m−
(
K
2

)
)t+ n envy-residents.

Proof. Suppose that G has a clique Vc of size K. We will construct a matching

M of I from Vc. We assign all the residents in C to the hospitals in Vc in an

arbitrary way and all the residents in F to the hospitals in V \Vc in an arbitrary

way. Further, we match all the residents in E ′ to {x}. Clearly, M is feasible.

Since Vc is a clique, (vi, vj) ∈ E for any pair vi, vj ∈ Vc(i 6= j). There are

t residents eki,j(1 ≤ k ≤ t) associated with the edge (vi, vj). Each of these

residents eki,j are assigned to the hospital x in M , which is the worst in eki,j’s

preference list and the hospitals vi and vj are assigned to residents in C, better

than eki,j. Hence all these residents eki,j(vi, vj ∈ Vc, i 6= j) are not envy-residents.

There are
(
K
2

)
t such residents and total number of residents is mt+ n. Hence

there are at most (m−
(
K
2

)
)t+ n envy-residents.

Lemma 5.4.3. If I is a “no” instance of CLIQUE, then any feasible matching

of I contains at least (m−
(
K
2

)
+ 1)t envy-residents.

Proof. Suppose that there is a feasible matching M of I that contains less

than (m−
(
K
2

)
+ 1)t envy-residents. We show that G contains a clique of size

104

K. Note that M must match all the resident in E ′ to {x} because {x} has

a quota [mt,mt] and is only acceptable to E ′. Thus the hospitals V must

only match to the residents in C ∪ F and there is one-to-one correspondence

between V and C ∪ F in order for M to be feasible. Define Vc be the set of

hospitals matched with C. Clearly Vc = K. We claim that Vc is a clique.

The total number of residents is mt + n. Since we assume that there

are less than (m−
(
K
2

)
+1)t envy-residents, there are more than n+(

(
K
2

)
−1)t

non-envy-residents (obviously an non-envy-resident is a resident that is not

an envy-resident). Since |C|+|F |= n, there are more than (
(
K
2

)
− 1)t non-

envy-residents in E ′. Consider the following partition of E ′ into t subsets:

E ′k = {eki,j | (vi, vj) ∈ E} for each 1 ≤ k ≤ t. There must exists a k such that

E ′k contains at least
(
K
2

)
non-envy-residents by Pigeonhole principle. In order

for eki,j to be a non-envy-resident, we note that both vi and vj must match to

some resident in C because if vi or vj is matched to F , we have an envy-pair

contains eki,j. Thus any pair of vertices in Vc causes such a non-envy-resident,

implying that Vc is a clique.

Because t = n + 1, we have (m −
(
K
2

)
+ 1)t > (m −

(
K
2

)
)t + n. Hence

by Lemma 5.4.2 and Lemma 5.4.3, Min-ER HRLQ is NP-hard.

5.5 Conclusion and Open Problems

In this chapter, we give NP hardness results of minimizing envy in terms

of envy-pairs and envy-residents in the Hospitals/Resident problem with Lower

105

Quota. Hamada et al. [27] showed hardness of approximation for the problem

of minimizing the number of blocking pairs among all feasible matchings. It

would be interesting to show hardness of approximation for minimizing envy

in the HRLQ problem.

106

Bibliography

[1] Atila Abdulkadiroğlu, Parag A Pathak, and Alvin E Roth. The new

york city high school match. American Economic Review, 95(2):364–367,

2005.

[2] Atila Abdulkadiroğlu, Parag A Pathak, Alvin E Roth, and Tayfun Sönmez.

The boston public school match. American Economic Review, 95(2):368–

371, 2005.

[3] Atila Abdulkadiroğlu and Tayfun Sönmez. Random serial dictatorship

and the core from random endowments in house allocation problems.

Econometrica, 66(3):689–701, 1998.

[4] David Abraham, Ning Chen, Vijay Kumar, and Vahab S Mirrokni. As-

signment problems in rental markets. In International Workshop on

Internet and Network Economics, pages 198–213. Springer, 2006.

[5] David J Abraham, Kataŕına Cechlárová, David F Manlove, and Kurt

Mehlhorn. Pareto optimality in house allocation problems. In Interna-

tional Symposium on Algorithms and Computation, pages 3–15. Springer,

2004.

[6] David J Abraham, Robert W Irving, Telikepalli Kavitha, and Kurt Mehlhorn.

Popular matchings. SIAM Journal on Computing, 37(4):1030–1045,

107

2007.

[7] Nima Anari and Vijay V Vazirani. Planar graph perfect matching is in

NC. In 2018 IEEE 59th Annual Symposium on Foundations of Computer

Science (FOCS), pages 650–661. IEEE, 2018.

[8] Garrett Birkhoff et al. Rings of sets. Duke Mathematical Journal,

3(3):443–454, 1937.

[9] Xujin Chen, Guoli Ding, Xiaodong Hu, and Wenan Zang. The maximum-

weight stable matching problem: duality and efficiency. SIAM Journal

on Discrete Mathematics, 26(3):1346–1360, 2012.

[10] Richard Cole and Uzi Vishkin. Approximate and exact parallel schedul-

ing with applications to list, tree and graph problems. In 27th Annual

Symposium on Foundations of Computer Science (sfcs 1986), pages 478–

491. IEEE, 1986.

[11] Stephen A Cook, Yuval Filmus, and Dai Tri Man Le. The complexity of

the comparator circuit value problem. ACM Transactions on Computa-

tion Theory (TOCT), 6(4):15, 2014.

[12] Brian Dean and Rommel Jalasutram. Factor revealing LPs and stable

matching with ties and incomplete lists. In Proceedings of the 3rd Inter-

national Workshop on Matching Under Preferences, pages 42–53, 2015.

108

[13] Xiaotie Deng, Christos Papadimitriou, and Shmuel Safra. On the com-

plexity of equilibria. In Proceedings of the thiry-fourth annual ACM

Symposium on Theory of Computing, pages 67–71, 2002.

[14] Yuri Faenza, Telikepalli Kavitha, Vladlena Powers, and Xingyu Zhang.

Popular matchings and limits to tractability. In Proceedings of the Thirti-

eth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2790–

2809. SIAM, 2019.

[15] Tomás Feder. A new fixed point approach for stable networks and stable

marriages. Journal of Computer and System Sciences, 45(2):233–284,

1992.

[16] Tomás Feder. Network flow and 2-satisfiability. Algorithmica, 11(3):291–

319, 1994.

[17] Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect

matching is in quasi-NC. In Proceedings of the forty-eighth annual ACM

symposium on Theory of Computing, pages 754–763. ACM, 2016.

[18] Tamás Fleiner, Robert W Irving, and David F Manlove. Efficient algo-

rithms for generalized stable marriage and roommates problems. Theo-

retical computer science, 381(1-3):162–176, 2007.

[19] Daniel Fragiadakis, Atsushi Iwasaki, Peter Troyan, Suguru Ueda, and

Makoto Yokoo. Strategyproof matching with minimum quotas. ACM

Transactions on Economics and Computation (TEAC), 4(1):1–40, 2016.

109

[20] David Gale and Lloyd S Shapley. College admissions and the stability of

marriage. The American Mathematical Monthly, 69(1):9–15, 1962.

[21] David Gale and Marilda Sotomayor. Some remarks on the stable match-

ing problem. Discrete Applied Mathematics, 11(3):223–232, 1985.

[22] Peter Gärdenfors. Match making: assignments based on bilateral prefer-

ences. Behavioral Science, 20(3):166–173, 1975.

[23] Vijay Kumar Garg and Changyong Hu. Improved paths to stability for

the stable marriage problem. arXiv preprint arXiv:2007.07121, 2020.

[24] Sushmita Gupta, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi.

Popular matching in roommates setting is NP-hard. In Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

2810–2822. SIAM, 2019.

[25] Dan Gusfield and Robert W Irving. The stable marriage problem: struc-

ture and algorithms. MIT press, 1989.

[26] Philip Hall. On representatives of subsets. In Classic Papers in Combi-

natorics, pages 58–62. Springer, 2009.

[27] Koki Hamada, Kazuo Iwama, and Shuichi Miyazaki. The hospitals/residents

problem with lower quotas. Algorithmica, 74(1):440–465, 2016.

[28] Changyong Hu and Vijay K Garg. NC algorithms for popular matchings

in one-sided preference systems and related problems. In 2020 IEEE

110

International Parallel and Distributed Processing Symposium (IPDPS),

pages 759–768. IEEE, 2020.

[29] Changyong Hu and Vijay K. Garg. Characterization of super-stable

matchings. In Anna Lubiw and Mohammad Salavatipour, editors, Algo-

rithms and Data Structures, pages 485–498, Cham, 2021. Springer Inter-

national Publishing.

[30] Changyong Hu and Vijay K Garg. Minimal envy matchings in the hospi-

tals/residents problem with lower quotas. arXiv preprint arXiv:2110.15559,

2021.

[31] Chien-Chung Huang and Telikepalli Kavitha. An improved approxima-

tion algorithm for the stable marriage problem with one-sided ties. In

International Conference on Integer Programming and Combinatorial Op-

timization, pages 297–308. Springer, 2014.

[32] Aanund Hylland and Richard Zeckhauser. The efficient allocation of

individuals to positions. Journal of Political economy, 87(2):293–314,

1979.

[33] Robert W Irving. Stable marriage and indifference. Discrete Applied

Mathematics, 48(3):261–272, 1994.

[34] Robert W Irving, Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail,

and Katarzyna Paluch. Rank-maximal matchings. In Proceedings of the

111

fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages

68–75. Society for Industrial and Applied Mathematics, 2004.

[35] Robert W Irving, Paul Leather, and Dan Gusfield. An efficient algo-

rithm for the “optimal” stable marriage. Journal of the ACM (JACM),

34(3):532–543, 1987.

[36] Kazuo Iwama, Shuichi Miyazaki, Yasufumi Morita, and David Manlove.

Stable marriage with incomplete lists and ties. In International Collo-

quium on Automata, Languages, and Programming, pages 443–452. Springer,

1999.

[37] Kazuo Iwama, Shuichi Miyazaki, and Hiroki Yanagisawa. A 25/17-

approximation algorithm for the stable marriage problem with one-sided

ties. Algorithmica, 68(3):758–775, 2014.

[38] Joseph JáJá. An introduction to parallel algorithms, volume 17. Addison-

Wesley Reading, 1992.

[39] Richard M Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect

matching is in random NC. Combinatorica, 6(1):35–48, 1986.

[40] Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and Katarzyna E

Paluch. Strongly stable matchings in time O(nm) and extension to the

hospitals-residents problem. ACM Transactions on Algorithms (TALG),

3(2):15–es, 2007.

112

[41] Telikepalli Kavitha and Meghana Nasre. Optimal popular matchings.

Discrete Applied Mathematics, 157(14):3181–3186, 2009.

[42] Tamás Király and Júlia Pap. Total dual integrality of Rothblum’s de-

scription of the stable-marriage polyhedron. Mathematics of Operations

Research, 33(2):283–290, 2008.

[43] Zoltán Király. Linear time local approximation algorithm for maximum

stable marriage. Algorithms, 6(3):471–484, 2013.

[44] Donald Ervin Knuth. Stable marriage and its relation to other combinato-

rial problems: An introduction to the mathematical analysis of algorithms,

volume 10. American Mathematical Soc., 1997.

[45] Prem Krishnaa, Girija Limaye, Meghana Nasre, and Prajakta Nimb-

horkar. Envy-freeness and relaxed stability: hardness and approximation

algorithms. In International Symposium on Algorithmic Game Theory,

pages 193–208. Springer, 2020.

[46] Adam Kunysz. An algorithm for the maximum weight strongly stable

matching problem. In 29th International Symposium on Algorithms and

Computation (ISAAC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer In-

formatik, 2018.

[47] Adam Kunysz, Katarzyna Paluch, and Pratik Ghosal. Characterisation

of strongly stable matchings. In Proceedings of the twenty-seventh annual

113

ACM-SIAM symposium on Discrete algorithms, pages 107–119. SIAM,

2016.

[48] Chi-Kit Lam and C Gregory Plaxton. A (1+1/e)-approximation algo-

rithm for maximum stable matching with one-sided ties and incomplete

lists. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 2823–2840. SIAM, 2019.

[49] Gavriela Freund Lev, Nicholas Pippenger, and Leslie G Valiant. A fast

parallel algorithm for routing in permutation networks. IEEE transac-

tions on Computers, 100(2):93–100, 1981.

[50] László Lovász. On determinants, matchings, and random algorithms. In

FCT, volume 79, pages 565–574, 1979.

[51] David F Manlove. Stable marriage with ties and unacceptable partners.

Technical report, Technical Report TR-1999-29, University of Glasgow,

1999.

[52] David F Manlove. The structure of stable marriage with indifference.

Discrete Applied Mathematics, 122(1-3):167–181, 2002.

[53] Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert. Main-

taining a topological order under edge insertions. Information Processing

Letters, 59(1):53–58, 1996.

114

[54] Ernst W Mayr and Ashok Subramanian. The complexity of circuit

value and network stability. Journal of Computer and System Sciences,

44(2):302–323, 1992.

[55] Eric McDermid. A 3/2-approximation algorithm for general stable mar-

riage. In International Colloquium on Automata, Languages, and Pro-

gramming, pages 689–700. Springer, 2009.

[56] Eric McDermid and Robert W Irving. Popular matchings: structure and

algorithms. Journal of combinatorial optimization, 22(3):339–358, 2011.

[57] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a

matrix over an arbitrary field. Combinatorica, 7(1):101–104, 1987.

[58] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is

as easy as matrix inversion. Combinatorica, 7(1):105–113, 1987.

[59] Meghana Nasre and Prajakta Nimbhorkar. Popular matching with lower

quotas. arXiv preprint arXiv:1704.07546, 2017.

[60] Rafail Ostrovsky and Will Rosenbaum. Fast distributed almost stable

matchings. In Proceedings of the 2015 ACM Symposium on Principles of

Distributed Computing, pages 101–108, 2015.

[61] Katarzyna Paluch. Faster and simpler approximation of stable match-

ings. Algorithms, 7(2):189–202, 2014.

115

[62] David J Pearce and Paul HJ Kelly. Online algorithms for topological

order and strongly connected components. Technical report, Citeseer,

2003.

[63] David James Pearce. Some directed graph algorithms and their applica-

tion to pointer analysis. PhD thesis, University of London, 2005.

[64] András Radnai. Approximation algorithms for the stable matching prob-

lem. Eötvös Lorand University, 2014.

[65] Alvin E Roth. Incentive compatibility in a market with indivisible goods.

Economics letters, 9(2):127–132, 1982.

[66] Alvin E Roth. The evolution of the labor market for medical interns and

residents: a case study in game theory. Journal of political Economy,

92(6):991–1016, 1984.

[67] Alvin E Roth. On the allocation of residents to rural hospitals: a general

property of two-sided matching markets. Econometrica: Journal of the

Econometric Society, pages 425–427, 1986.

[68] Alvin E Roth and Andrew Postlewaite. Weak versus strong domination

in a market with indivisible goods. Journal of Mathematical Economics,

4(2):131–137, 1977.

[69] Alvin E Roth, Uriel G Rothblum, and John H Vande Vate. Stable

matchings, optimal assignments, and linear programming. Mathematics

of operations research, 18(4):803–828, 1993.

116

[70] Uriel G Rothblum. Characterization of stable matchings as extreme

points of a polytope. Mathematical Programming, 54(1-3):57–67, 1992.

[71] Alexander Schrijver. Theory of linear and integer programming. John

Wiley & Sons, 1998.

[72] Alexander Schrijver. Combinatorial optimization: polyhedra and effi-

ciency, volume 24. Springer Science & Business Media, 2003.

[73] Sandy Scott. A study of stable marriage problems with ties. PhD thesis,

University of Glasgow, 2005.

[74] Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of

mathematical economics, 1(1):23–37, 1974.

[75] Boris Spieker. The set of super-stable marriages forms a distributive

lattice. Discrete applied mathematics, 58(1):79–84, 1995.

[76] Ashok Subramanian. The computational complexity of the circuit value

and network stability problems. PhD thesis, Stanford University, 1990.

[77] Chung-Piaw Teo and Jay Sethuraman. The geometry of fractional stable

matchings and its applications. Mathematics of Operations Research,

23(4):874–891, 1998.

[78] John H Vande Vate. Linear programming brings marital bliss. Opera-

tions Research Letters, 8(3):147–153, 1989.

117

[79] Qingyun Wu and Alvin E Roth. The lattice of envy-free matchings.

Games and Economic Behavior, 109:201–211, 2018.

[80] Yu Yokoi. Envy-free matchings with lower quotas. Algorithmica, 82(2):188–

211, 2020.

[81] Xiong Zheng and Vijay K Garg. Parallel and distributed algorithms

for the housing allocation problem. In 23rd International Conference

on Principles of Distributed Systems (OPODIS 2019). Schloss Dagstuhl-

Leibniz-Zentrum für Informatik, 2020.

[82] Lin Zhou. On a conjecture by Gale about one-sided matching problems.

Journal of Economic Theory, 52(1):123–135, 1990.

118

Vita

Changyong Hu was born in Hunan, China. He received his Bachelor of

Engineering degree in Electrical Engineering from Zhejiang University in July,

2015. Thereafter, he started pursuing a Ph.D. at UT Austin.

Email Address: colinhu9@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

119

