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In eukaryotes, the first step of interpreting the genetic information is the 

transcription of DNA into RNA. For protein-coding genes, such transcription is carried 

out by RNA polymerase II. A special domain of RNA polymerase II, called the C-

terminal domain (CTD), functions as a master controller for the transcription process by 

providing a platform to recruit regulatory proteins to nascent mRNA (Chapter 1-2). The 

modifications and conformational states of the CTD, termed the ‘CTD code’, represent a 

critical regulatory checkpoint for transcription. The CTD, found only in eukaryotes, 

consists of 26–52 tandem heptapeptide repeats with the consensus sequence, 

Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. Phosphorylation of the serines and prolyl isomerization of 

the prolines represent two major regulatory mechanisms of the CTD. Interestingly, the 

phosphorylation sites are typically close to prolines, thus the conformation of the adjacent 

proline could impact the specificity of the corresponding kinases and phosphatases. 

Understanding how those modifying enzymes recognize and regulate the CTD is 

important for expanding our knowledge on the transcription regulation and deciphering 

the ‘CTD code’. 
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During my PhD study, I studied the function of CTD phosphatases and prolyl 

isomerase in the CTD regulation using Scp1, Ssu72 and Pin1 as model regulators. Scp1 

and Ssu72 are both Ser5 phosphatases. However, Ssu72 is an essential protein and 

regulates the global transcription while Scp1 epigenetically silences the expression of 

specific neuronal genes. Pin1 is a highly conserved phosphorylation-specific prolyl 

isomerase that recognizes the phospho-Ser/Thr-Pro motif within the CTD as one of its 

primary substrates in vivo. Among these enzymes, Scp1 is the focal point of this 

dissertation, as it was studied from different angles, such as enzymatic mechanism 

(Chapter 3 describes the capture of phospho-aspartyl intermediate of Scp1 as a direct 

evidence for the proposed two-step mechanism), specific inhibition (Chapter 4 describes 

the identification and characterization of the first specific inhibitor of Scp1), and its non-

active-site contact with the CTD (Chapter 5 describes the structural basis of this contact). 

These studies are of great importance towards understanding the molecular mechanism of 

the dephosphorylation process of the CTD by Scp1. 
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C-TERMINAL DOMAIN (CTD) OF EUKARYOTIC RNA 

POLYMERASE II 

Chapter 1:  Introduction to the CTD of Eukaryotic RNA Polymerase 

II 

Biological systems have long served as a source of inspiration for engineering, 

resulting in numerous inventions based on biomimetics. During the last few decades, as 

electronics-based information technology has matured and flourished, our understanding 

of the biological system has also proceeded to the molecular and informational level. 

Such understanding has enabled researchers to reprogram cells to undertake unnatural 

tasks, such as the production of proteins and metabolites for medical and industrial 

purposes. Recent development of systems and synthetic biology promises the 

development of cells with even more complex artificial functions that will require the 

collaboration of a large number of genes. With a similar philosophy, information-based 

molecular programming has also been established as a new path for nanotechnology. 

Central to all these new technologies, cellular or acellular, is the encoding and decoding 

of information at the molecular level, particularly using DNA as the information carrier. 

Therefore, from both a scientific and engineering point of view, it is important to 

understand how biological systems read information from DNA. 

In biology, the major interpretation of this genetic information is through 

transcription regulation where eukaryotic RNA polymerase II plays the central role of 

transcribing the genetic information to the expressed protein. A special domain called the 

CTD of RNA polymerase II functions as a master controller for the transcription process 

by providing the template to recruit regulatory proteins to nascent mRNA (Corden 1990). 

The conformational states of the CTD, termed the CTD code, represent a critical 

regulatory check point for transcription (Dahmus 1996; Palancade et al. 2003; Meinhart 
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et al. 2005). The CTD, found only in eukaryotes, consists of 26–52 tandem heptapeptide 

repeats generally with the consensus sequence, Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 (Corden 

1990). Alterations of the sequence or the copy number of the heptapeptide may lead to 

distinguishable phenotypes or cell death (Chapman et al. 2007; Rogers et al. 2010). The 

CTD can spatially and temporally recruit different regulatory and processing factors to 

the transcriptional machinery, reviewed in Corden (Corden 1990) (Figure 1-1) but the 

domain is disordered in X-ray crystal structures. The CTD phosphorylation is a major 

mechanism by which cells regulate gene expression, with serines at position 2 and 5 as 

major phosphorylation sites (Phatnani et al. 2006). Recently, Ser7 was also found to be 

phosphorylated in vivo although its function is still elusive (Chapman et al. 2007). A 

secondary mechanism for CTD regulation is prolyl-isomerization of the two prolines in 

the CTD heptapeptide sequence. By adjusting the cis–trans conformation of a proline 

adjacent to a phosphorylated serine, interaction of the CTD and binding partners it 

recruits can be modulated. 

Coordinately regulated phosphorylation and dephosphorylation of the CTD plays 

an essential role not only in the recruitment and assembly of transcription complexes but 

also in temporal control of transcription and mRNA processing, reviewed in Refs 

(Buratowski 2009; Fuda et al. 2009). Evidence points to the phosphorylation state of Ser2 

and Ser5 as the trigger for transcriptional process modulation (Figure 1-2). Ser5 

phosphorylation is required for assembly of the preinitiation complex (PIC) and 

facilitates mRNA capping via recruitment of capping enzymes (Cho et al. 1997; 

Komarnitsky et al. 2000). During the transition when the transcription complex moves 

away from the initiation site, Ser5 gradually becomes dephosphorylated, whereas Ser2 is 

phosphorylated. Ser2 phosphorylation is the predominant CTD pattern on both elongating 

and terminating RNA Polymerase II, which ensures efficient 3’–RNA processing by 
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triggering the recruitment of 3’–RNA processing machinery (Fuda et al. 2009). At the 

end of transcription, CTDs are free of phosphate groups; non-phosphorylated CTDs are 

required for RNA polymerase II to recycle and bind a promoter for the next cycle of 

transcription (Fuda et al. 2009). Little is known about the timing of Ser7 phosphorylation 

and how it affects the transcription but it appears to be an essential event specific for 

snRNA expression (Egloff et al. 2007). 

 

Figure 1-1: Model of the CTD of RNA polymerase II.1 

                                                 
1 The RNA polymerase II is colored with purple. Different shapes bound to the CTD indicate various 
proteins that are recruited by the CTD. Magenta circles labeled with ‘P’ indicate phosphorylation on the 
CTD. One repeat in the black circle is zoomed in to show its primary sequence ‘YSPTSPS’. The Ser2 and 
Ser5 (colored with magenta) are always phosphorylated in each round of transcription, and Tyr1 and Ser7 
(colored with yellow) are also detected as phosphorylation sites in vivo. 
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Figure 1-2: Schematic diagram of RNA polymerase II-mediated transcription.2 

One central question for CTD-directed transcription regulation is how high 

resolution recognition of different states of Ser2 and Ser5 are identified. Residues flanking 

Ser2 and Ser5 are highly similar, so it is puzzling how the transcription regulation is 

managed with such precision in location and timing. The most direct way to visualize and 

identify molecular elements in binding specificity is X-ray crystallography. A careful 

examination of the primary sequence of the CTD reveals the possibility that the CTD 

might have little secondary structure until its association with binding partners. In the 

next chapter, we will discuss our current understanding of the CTD structure and how the 

CTD is recognized by its binding partners (Table 1-1). 

                                                 
2 The figure was adapted from (Fuda et al. 2009). Ser5 phosphorylation (indicated by magenta blobs) 
occurs in promoter-proximal regions coincident with initiation and facilitates mRNA capping via recruiting 
capping enzymes (step 4). When the transcription complex moves away from the initiation site, Ser5 
gradually becomes hypophosphorylated (indicated by only one magenta blob), whereas Ser2 gradually 
becomes hyperphosphorylated (indicated by blue blobs) (step 5). After termination, the CTD is 
dephosphorylated to reinitiate a new round of transcription (step 7). The colored-shapes indicate some 
essential accessory proteins and regulatory factors during transcription. 
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Species Protein Method Preference 
PDB 
code 

References 

Homo sapiens Pin1 X-ray Phospho.Ser5 CTD 1f8a 
(Verdecia et al. 

2000) 

Saccharomyces 
cerevisiae 

Pcf11 
CID 

X-ray 
Unphosphorylated 
CTD; phospho.Ser2 

CTD 
1sza 

(Meinhart et al. 
2004) 

Saccharomyces 
cerevisiae 

Nrd 
CID 

X-ray Phospho.Ser5 CTD 3clj 
(Vasiljeva et al. 

2008) 

Homo sapiens 
SCAF8 

CID 
X-ray Phospho.Ser2 CTD 3d9i 

(Becker et al. 
2008) 

Homo sapiens Scp1 X-ray Phospho.Ser5 CTD 2ght 
(Zhang et al. 

2006) 
Saccharomyces 

cerevisiae 
Fcp1 X-ray Phospho.Ser2 CTD 3ef0 

(Ghosh et al. 
2008) 

Candida 
albicans 

Cgt1 X-ray Phospho.Ser5 CTD 1p16 
(Fabrega et al. 

2003) 

Homo sapiens 
Set2 
SRI 

NMR Phospho.Ser2 CTD 2a7o (Li et al. 2005) 

Saccharomyces 
cerevisiae 

Set2 
SRI 

NMR Phospho.Ser2 CTD 2c5z 
(Vojnic et al. 

2006) 

Homo sapiens 
CA150 

FF 
NMR Unknown 2kis 

(Murphy et al. 
2009) 

Saccharomyces 
cerevisiae 

Prp40 
FF 

NMR Unknown 2b7e 
(Gasch et al. 

2006) 

Table 1-1: Summary of CTD interacting proteins/domains. 

REFERENCES 

Becker, R., B. Loll and A. Meinhart (2008). "Snapshots of the RNA processing factor 
SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain 
of RNA polymerase II." J Biol Chem 283(33): 22659-22669. 

Buratowski, S. (2009). "Progression through the RNA polymerase II CTD cycle." Mol 

Cell 36(4): 541-546. 

Chapman, R. D., M. Heidemann, T. K. Albert, R. Mailhammer, A. Flatley, M. 
Meisterernst, E. Kremmer and D. Eick (2007). "Transcribing RNA polymerase II 
is phosphorylated at CTD residue serine-7." Science 318(5857): 1780-1782. 



 6 

Cho, E. J., T. Takagi, C. R. Moore and S. Buratowski (1997). "mRNA capping enzyme is 
recruited to the transcription complex by phosphorylation of the RNA polymerase 
II carboxy-terminal domain." Genes Dev 11(24): 3319-3326. 

Corden, J. L. (1990). "Tails of RNA polymerase II." Trends Biochem Sci 15(10): 383-
387. 

Dahmus, M. E. (1996). "Reversible phosphorylation of the C-terminal domain of RNA 
polymerase II." J Biol Chem 271(32): 19009-19012. 

Egloff, S., D. O'Reilly, R. D. Chapman, A. Taylor, K. Tanzhaus, L. Pitts, D. Eick and S. 
Murphy (2007). "Serine-7 of the RNA polymerase II CTD is specifically required 
for snRNA gene expression." Science 318(5857): 1777-1779. 

Fabrega, C., V. Shen, S. Shuman and C. D. Lima (2003). "Structure of an mRNA capping 
enzyme bound to the phosphorylated carboxy-terminal domain of RNA 
polymerase II." Mol Cell 11(6): 1549-1561. 

Fuda, N. J., M. B. Ardehali and J. T. Lis (2009). "Defining mechanisms that regulate 
RNA polymerase II transcription in vivo." Nature 461(7261): 186-192. 

Gasch, A., S. Wiesner, P. Martin-Malpartida, X. Ramirez-Espain, L. Ruiz and M. J. 
Macias (2006). "The structure of Prp40 FF1 domain and its interaction with the 
crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF 
domains." J Biol Chem 281(1): 356-364. 

Ghosh, A., S. Shuman and C. D. Lima (2008). "The structure of Fcp1, an essential RNA 
polymerase II CTD phosphatase." Mol Cell 32(4): 478-490. 

Komarnitsky, P., E. J. Cho and S. Buratowski (2000). "Different phosphorylated forms of 
RNA polymerase II and associated mRNA processing factors during 
transcription." Genes Dev 14(19): 2452-2460. 

Li, M., H. P. Phatnani, Z. Guan, H. Sage, A. L. Greenleaf and P. Zhou (2005). "Solution 
structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction 



 7 

with the hyperphosphorylated C-terminal domain of Rpb1." Proc Natl Acad Sci U 

S A 102(49): 17636-17641. 

Meinhart, A. and P. Cramer (2004). "Recognition of RNA polymerase II carboxy-
terminal domain by 3'-RNA-processing factors." Nature 430(6996): 223-226. 

Meinhart, A., T. Kamenski, S. Hoeppner, S. Baumli and P. Cramer (2005). "A structural 
perspective of CTD function." Genes Dev 19(12): 1401-1415. 

Murphy, J. M., D. F. Hansen, S. Wiesner, D. R. Muhandiram, M. Borg, et al. (2009). 
"Structural studies of FF domains of the transcription factor CA150 provide 
insights into the organization of FF domain tandem arrays." J Mol Biol 393(2): 
409-424. 

Palancade, B. and O. Bensaude (2003). "Investigating RNA polymerase II carboxyl-
terminal domain (CTD) phosphorylation." Eur J Biochem 270(19): 3859-3870. 

Phatnani, H. P. and A. L. Greenleaf (2006). "Phosphorylation and functions of the RNA 
polymerase II CTD." Genes Dev 20(21): 2922-2936. 

Rogers, C., Z. Guo and J. W. Stiller (2010). "Connecting mutations of the RNA 
polymerase II C-terminal domain to complex phenotypic changes using combined 
gene expression and network analyses." PLoS One 5(6): e11386. 

Vasiljeva, L., M. Kim, H. Mutschler, S. Buratowski and A. Meinhart (2008). "The Nrd1-
Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA 
polymerase II C-terminal domain." Nat Struct Mol Biol 15(8): 795-804. 

Verdecia, M. A., M. E. Bowman, K. P. Lu, T. Hunter and J. P. Noel (2000). "Structural 
basis for phosphoserine-proline recognition by group IV WW domains." Nat 

Struct Biol 7(8): 639-643. 

Vojnic, E., B. Simon, B. D. Strahl, M. Sattler and P. Cramer (2006). "Structure and 
carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples 
histone H3 Lys36 methylation to transcription." J Biol Chem 281(1): 13-15. 



 8 

Zhang, Y., Y. Kim, N. Genoud, J. Gao, J. W. Kelly, S. L. Pfaff, G. N. Gill, J. E. Dixon 
and J. P. Noel (2006). "Determinants for dephosphorylation of the RNA 
polymerase II C-terminal domain by Scp1." Mol Cell 24(5): 759-770. 

 
 

 

 

 



 9 

Chapter 2:  CTD Interacting Proteins 

PIN1 AND THE CTD 

The first glimpse of the CTD structure was through its interaction with human 

Pin1, a unique prolyl isomerase that catalyzes cis/trans isomerization of specific 

phospho.Ser/Thr-Pro motifs in signaling proteins (Lu et al. 1996; Ranganathan et al. 

1997; Yaffe et al. 1997; Lu et al. 1999). Identification and characterization of this novel 

peptidyl-prolyl cis/trans isomerase (PPIase), Pin1, led to the discovery of a novel post-

phosphorylation regulatory mechanism, in which regulation is achieved by 

conformational changes of a phosphorylated Ser/Thr-Pro peptide bond upon proline 

isomerization (Figure 2-1). This change in the configuration of the polypeptide has a 

profound effect on Pin1 targets and therefore modulates various signaling pathways at 

both transcriptional and post-translational levels. Specifically, prolyl-isomerization 

activity of Pin1 can interconvert the cis/trans conformation of the phospho.Ser/Thr-Pro 

motif of target proteins and make them better or worse substrates for conformation-

specific signaling kinases (such as cyclin-dependent protein kinase, glycogen synthetase 

kinase 3 beta, and mitogen-activated protein kinase) and phosphatases (such as PP2A and 

Cdc25). Recent studies also provide substantial evidence implicating Pin1 in progression 

of malignant tumor cells (Lu 2004) and development of Alzheimer’s disease (Etzkorn 

2006). High affinity inhibitory unnatural peptides have been developed as a good 

template for chemical compounds targeting Pin1 for antineoplastic effects (Zhang et al. 

2007). 

Compelling data have implicated human Pin1 as a key modulator in the 

transcription mechanism. The yeast homologue of Pin1, Ess1, interacts physiologically 

and genetically with the CTD (Wu et al. 2000). Furthermore, hyperphosphorylated RNA 
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polymerase II appears to be the dominant binding target in yeast extracts (Morris et al. 

1999). Considering the high local concentration of the phospho.Ser/Thr-Pro motif in the 

hyperphosphorylated CTD, it is plausible that the CTD is the major substrate of Pin1 in 

vivo. The Kd of a single CTD repeat that is phosphorylated at Ser5 was reported to be 30 

µM (Verdecia et al. 2000). Presumably, the CTD tail containing 26–52 such repeats 

localizes a substantial amount of Pin1. 

Figure 2-1: Cis and trans conversion of proline in a phospho.Ser-Pro motif. 

Pin1 is a 163 amino acid polypeptide that can be divided into two domains based 

on topology and function, a C-terminal PPIase domain and an N-terminal WW domain. 

Structure of the WW domain reveals three antiparallel β-strands forming a shallow 

interface with the PPIase domain for substrate peptide binding (Macias et al. 1996; 

Huang et al. 2000). It has long been realized that WW domains recognize proline-

containing sequences but it was not clear until recently that WW domains join a group of 

modules that bind to protein ligands in a phosphorylation-dependent manner (Lu et al. 

1999; Lu et al. 2002); these domains include SH2, PTB, 14-3-3, WD40, FHA, and FF 

domains. The modular nature of WW domain interactions leads to a classification into 
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four distinct groups based on binding specificity (Sudol et al. 2000). Group I WW 

domains, such as dystrophin and the Yes-associated protein YAP65, recognize ‘PpxY’ 

motifs (Chen et al. 1997). Group II, such as FE65 and formin binding proteins (FBPs), 

bind the ‘PPLP’ motif (Ermekova et al. 1997). A subset of FBPs interacts with ‘PGM’ 

motifs (Bedford et al. 1998). Group III WW domains select poly-proline motifs flanked 

by arginine or lysine (Komuro et al. 1999; Bedford et al. 2000). Group IV WW domains, 

including human Pin1 and Nedd4, specifically recognize a phospho.Ser/Thr-Pro motif 

(Lu et al. 1999; Verdecia et al. 2000; Myers et al. 2001). 

The molecular detail of recognition of the CTD by Pin1 was elucidated by a 

structure of human Pin1 in complex with one doubly phosphorylated CTD repeat 

(Verdecia et al. 2000) (Figure 2-2a). So far, this is the only structure available for a full-

length Pin1 binding to its target at the recognition module WW domain. The structure is 

consistent with the thermodynamic data, which showed that the phosphorylated Ser5 in 

the CTD repeat is the major binding element in recognition. Loop 1 of the WW domain 

has been shown to be highly flexible in apo Pin1 (Kowalski et al. 2002) but this loop is 

essential for specificity recognition (Jager et al. 2006). In the complex structure, this loop 

warps toward the substrate peptide to ensure binding and results in an exaggerated twist 

in the triple-stranded β-sheet (Verdecia et al. 2000) (Figure 2-2a). This twist is coupled 

to a contraction of the WW domain ligand binding surface formed between the WW and 

PPIase domains. The two essential elements for peptide recognition include binding of 

phosphate by loop 1 residues and hydrophobic stacking of proline by Tyr23 and Trp34 

(Verdecia et al. 2000). The binding of Pin1 to the CTD can modulate the regulatory effect 

of other CTD-binding proteins. In vitro experiments showed that Pin1 can influence the 

phosphorylation status of the CTD by inhibiting the transcription factor IIF-interacting 

CTD phosphatase 1 (Fcp1) and stimulating CTD phosphorylation by cdc2/cyclinB (Xu et 
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al. 2003; Palancade et al. 2004). The Rsp5, a ubiquitin ligase that binds to the CTD, also 

functions to oppose Pin1 effects on RNA polymerase II (Wu et al. 2001). The biological 

and structural results of Pin1 effects on RNA polymerase II function support a model that 

Pin1 works in a processive manner on the CTD with the WW domain acting as a binding 

element restricting movement to an efficient one dimensional walk and with the PPIase 

acting much like a reading head to processively isomerize the peptide bonds. The binding 

of Pin1 prolongs the phosphorylated state of the CTD by suppressing dephosphorylation, 

thereby enhancing the regulatory effect of CTD binding proteins. 
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Figure 2-2: Ribbon representation of four CTD recognition modules.3 

CTD-INTERACTING DOMAIN (CID) AND THE CTD 

Recognition of the phosphorylated CTD by Pin1 is mediated by its WW domain, 

a modular domain of around 40 residues that is essential for recognition of proline-rich 

motifs by the PPIase domain. However, the Pin1 WW domain also recognizes other 

substrates in addition to the CTD. A more specific recognition domain for the CTD is the 

CTD-interacting domain (CID) identified in multiple RNA processing and termination 

factors in eukaryotes (Meinhart et al. 2004; Noble et al. 2005) (Figure 2-3). 

                                                 
3 (a) WW domain of Pin1 in complex with a short CTD peptide (1f8a); (b) CID domain of Pcf11 in 
complex with a short CTD peptide (1sza); (c) SRI domain of Set2 (2a7o); and (d) FF domain of CA150 
(2kis). 
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In yeast, the effective termination of transcription relies on the recruitment of 

cleavage factors by Pcf11. The Pcf11 is a yeast protein of 70 kD with a CID domain 

directly targeted to the CTD of RNA polymerase II, which gives us the first glance of 

how a CID recognizes heptad repeats of the CTD. Interestingly, the CID domain of Pcf11 

can bind to both unphosphorylated or phospho.Ser2 CTD in biophysical binding assays 

(Meinhart et al. 2004). Consistent with the biochemical data for such preferences, the co-

crystal structure of the Pcf11 CID and a CTD peptide shows no direct interaction between 

the phosphate group of phospho.Ser2 and Pcf11, indicating no pre-requirement of 

phosphorylation of the CTD for protein binding (Meinhart et al. 2004) (Figure 2-2b). 

The CID domain, as an eight-helical bundle, recognizes a span of two heptad repeats in 

the CTD with a conserved groove, whereas the phosphate group of phospho.Ser2 actually 

forms an intramolecular hydrogen bond with Thr4 of the CTD and stabilizes the sharp β-

turn formed by CTD, presenting the side chain to the binding groove (Figure 2-2b). 

Hydrogen bondings between the CID domain and the CTD peptide are distributed 

between the CID side chain and the main chain amide and carbonyl group of the CTD 

peptide. Importantly, hydrophobic interaction by Tyr1 of the CTD to CID might 

contribute greatly for the specificity for phospho.Ser2 over phospho.Ser5. Meinhart and 

Cramer (Meinhart et al. 2004) conclude that Ser2 phosphorylation stabilizes the CTD β-

spiral that is incorporated into the transcription complex. Ser5 phosphorylation would 

unwind the spiral resulting in an extended region that binds the capping enzyme. Overall, 

the binding of Pcf11 is not particularly strong but is consistent with its dynamic role 

involved in dismantling the elongation complex (Zhang et al. 2005; Hollingworth et al. 

2006). 

Another CID containing protein Nrd1 is an essential player in the termination 

pathway for RNA polymerase II-mediated transcription for snoRNA, snRNA as well as 
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cryptic unstable transcripts (CUT). The complex of Nrd1-Nab3-Sen1 is recruited to the 

transcription machinery through the CTD by the CID domain of Nrd1 of the complex. 

The CID domain derived from Nrd1 (Figure 2-3) has a very similar overall fold and a 

strong conservation of residues involved in CTD peptide binding with Pcf11, but Nrd1 

shows a different specificity profile in which a much stronger preference for 

phospho.Ser5 over phospho.Ser2 in the CTD sequence is detected for the CID from Nrd1 

by in vitro binding assays (Vasiljeva et al. 2008). Using yeast-two hybrid and 

fluorescence anisotropy, Vasiljeva showed a tenfold improvement in binding affinity for 

singly phosphorylated CTD double repeats at Ser5 over Ser2 (Kd = 40 µM for 

phospho.Ser5 vs. 390 µM for phospho.Ser2) and a slight improvement when the peptide is 

doubly phosphorylated (Kd = 16 µM upon double phosphorylation for both Ser2 and Ser5 

sites). Specificity for phospho.Ser5 on the protein is essential to understand how different 

termination pathways are selected. A potential different phosphate binding site was 

proposed but more insightful information about specificity will only be available with a 

structure of the Nrd1–CID complexed with the CTD peptide. Since the Nrd1-dependent 

termination pathway is usually associated with much shorter transcripts (a few hundred 

base-pairs), upon which point dephosphorylation of Ser5 is not complete, a logical 

hypothesis is that phosphorylation at Ser5 favors the selection of Nrd1 complex as a 

termination pathway in yeast. Indeed, Gudipati et al. (Gudipati et al. 2008) showed that 

reducing phosphorylation of Ser5 using a mutant of kin28, a CTD Ser5 kinase, will 

hamper Nrd-dependent termination. The selectivity for phospho.Ser5 over phospho.Ser2 

might be the determining factor for the selection of termination pathways. A functional 

model for how the phosphorylation pattern of the CTD determines the transcriptional 

pathways suggests that termination by the Nrd1-Nab3-Sen1 complex is enforced when 

the CTD is still highly phosphorylated at Ser5 (Rondon et al. 2008). The structure of a 
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complex of the CID of Nrd1 with the CTD domain will help provide a molecular 

explanation of transcription termination. 

Figure 2-3: Superimposition of CID domains from Pcf11, Nrd1 and SCAF8.4 

Another CID containing protein human SCAF8 was crystallized with different 

phosphorylated forms of CTD peptides (Figure 2-3), providing more clues about how 

registration of a phosphate group on the CTD is encoded in target recognition for CID 

domains (Becker et al. 2008). The SCAF8 is implicated in splicing with a preference of 

phospho.Ser2, similar to mRNA 3’-processing factor Pcf11. Indeed, a similar 

conformation of β-turn adapted by the CTD is observed in SCAF8 upon peptide binding 

but with one major distinction: phospho.Ser2 is directly recognized by a basic residue, 

Arg112, through salt bridge interaction (Becker et al. 2008). At a similar position in 

Pcf11, a methionine residue was placed with no direct interaction with the CTD peptide. 

                                                 
4 CID domain from Pcf11 is shown in light blue (PDB code: 1sza), the one from Nrd1 is shown in light 
pink (PDB code: 3clj), and the one from SCAF8 is shown in white (PDB code: 3d9i). 
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The replacement of methionine by arginine in SCAF8 distinguishes the phospho.Ser2 

CTD from the unphosphorylated form and might explain a tighter interaction for SCAF8 

toward phosphoryl-peptide (Kd = 68 µM). In the study of Becker et al. (Becker et al. 

2008), an issue was raised whether phosphorylated Ser7 contributes to recognition by the 

CID domain of SCAF8. Binding affinity measured by fluorescence anisotropy showed no 

advantage with additional Ser7 phosphorylation (Kd = 68 µM for phospho.Ser2 and Kd = 

90 µM for doubly phosphorylated Ser2 and Ser7). Consistent with the binding interaction 

measurement, the complex structure of the SCAF8 CID and the peptide presents no 

interaction between the phosphate group of phospho.Ser7 and the protein. 

SMALL C-TERMINAL DOMAIN PHOSPHATASES (SCPS)/FCP PHOSPHATASES AND THE 

CTD 

A wide range of enzymes participate in dynamic modifications of the CTD, 

including kinases and phosphatases responsible for addition and removal of phosphates. 

The CTD is principally phosphorylated by cyclin-dependent kinases (CDKs) with their 

associated cyclins. Specifically, Ser5 phosphorylation is mainly catalyzed by Cdk7/cyclin 

H subunits of transcription factor IIH (TFIIH) (Lu et al. 1992; Hengartner et al. 1998; 

Fouillen et al. 2010); Ser2 phosphorylation is mainly catalyzed by P-TEFb, which 

contains Cdk9/cyclin T subunits (Zhou et al. 2000; Shim et al. 2002). Intriguingly, it is 

suggested that Cdk9 also makes a contribution to Ser5 phosphorylation and the relative 

contribution of TFIIH-associated Cdk7 varies between different genes based on 

experimental observations (Glover-Cutter et al. 2009). Moreover, the CTD can also be 

phosphorylated at both Ser2 and Ser5 by Cdk8 as part of the mediator complex, and 

preferentially phosphorylated at Ser5 by MAPK2/Erk2 (Trigon et al. 1998). Recently, 

TFIIH-associated Cdk7 kinase has also been shown to phosphorylate Ser7 in vivo (Akhtar 

et al. 2009; Glover-Cutter et al. 2009). Even though structural information has been 



 18 

obtained for Cdk7 (Lolli et al. 2004) and Cdk9/cyclin T (Baumli et al. 2008), how they 

recognize the CTD peptide and label the phosphorylation mark on the CTD is still 

elusive. It is assumed that specificity is achieved by other associated proteins in the 

multiprotein complexes they are involved (Cdk7 in TFIIH, Cdk8 in mediator, and Cdk9 

in P-TEFb). 

Dephosphorylation is essential for recycling RNA polymerase II, because after 

each round of transcription, the CTD has to be dephosphorylated in order to actively 

restart a new round of transcription. In humans, Fcp1, which is required for general 

transcription and cell viability, was the first discovered CTD-specific phosphatase with a 

catalytic preference for phospho.Ser2. The Fcp1 is conserved among eukaryotes and was 

shown to be essential for cell survival in budding and fission yeast (Archambault et al. 

1997; Kimura et al. 2002). The conserved region of Fcp1 is composed of two domains: 

an N-terminal FCP homology (FCPH) domain with phosphatase activity and a C-terminal 

breast cancer protein related C-terminal (BRCT) domain (Ghosh et al. 2008) (Figure 2-

4). 

Recently, a family of small CTD phosphatases (Scps) with activities preferential 

for phospho.Ser5 was identified (Yeo et al. 2003; Yeo et al. 2005). This family includes 

three highly similar proteins designated Scp1, Scp2, and Scp3. The Scps also contain the 

FCPH catalytic domain that includes the DXDX(T/V) motif, the signature of a 

superfamily of phosphotransferases and phosphohydrolases called the haloacid 

dehalogenase (HAD) superfamily (Collet et al. 1998). Therefore, Fcp/Scp family 

members are classified as HAD superfamily enzymes. Interestingly, outside the signature 

motif, Scps share very little sequence similarity with the other enzymes in the HAD 

superfamily (Zhang et al. 2010). In humans, Scp1 has more than 20% sequence identity 

to Fcp1 in the FCPH domain but lacks the C-terminal BRCT domain that exists in Fcp1. 
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Moreover, Scp2 and Scp3, which also lack the BRCT domain, share more than 90% 

similarity with Scp1 in the FCPH domain (Yeo et al. 2003) (Figure 2-4). 

 

Figure 2-4: Surface representation of Scp1 and Fcp1 FCPH domains.5 

The apo structure of Scp1 solved by Kamenski et al. (Kamenski et al. 2004) 

showed a central parallel β sheet flanked by two α helices, a two-stranded β sheet, and a 

short 310 helix. The conserved DXDX(T/V) signature motif lines part of a central crevice, 

which forms the active site and coordinates the Mg2+ ion that is essential to Scp1 

phosphatase activity. The first aspartate in the signature motif is involved in Mg2+-

assisted phosphoryl transfer and acts as the phosphoryl acceptor. Mutation of this residue 

(Asp96 in Scp1) to alanine or asparagine abolished the activity of Scp1. The second 

aspartate (Asp98 in Scp1) also contributes to metal ion-binding and could possibly 

function as a general acid/base (Kamenski et al. 2004). The proposed phosphoryl transfer 

                                                 
5 (a) Scp1 in complex with a short CTD peptide (2ght). The zoom-in picture shows the Pro3 binds to the 
hydrophobic pocket with the aromatic residues shown in stick. (b) Fcp1 FCPH domain (3ef0). In both 
structures, the active site signature motif is colored with pale green, and the insertion domain is colored 
with light pink. Notably, the additional helical domain (light cyan) covers the ‘insertion domain’ in Fcp1 
and makes it much less accessible for substrates. 
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mechanism for the Scp/Fcp family involves a phosphoryl-aspartate intermediate. 

Existence of this phosphoryl-enzyme intermediate was confirmed in a recent structural 

and functional study when we successfully trapped the phosphoryl-aspartate intermediate 

in the crystal structure of an Scp1D206A mutant soaked with para-nitrophenyl phosphate 

(pNPP) (see Chapter 3). The steady-state kinetic analysis of a variety of Scp1 mutants 

revealed the importance of Asp206 in Mg2+ coordination mediated by a water molecule. 

Moreover, snapshots of the phosphoryl transfer reaction at each stage of Scp1-mediated 

catalysis were also captured in this study (see Chapter 3). 

In order to understand the discrimination of phospho.Ser5 over phospho.Ser2 as a 

substrate by Scp1, the complex structure of a dominant negative form of human Scp1 

(Scp1D96N) bound with Ser2/Ser5-phosphorylated CTD peptide was obtained by crystal 

soaking (Zhang et al. 2006). The defined complex structure revealed a unique binding 

mode of the peptide in which Ser2Pro3Thr4(phospho.Ser5) forms a β-turn. The 

phospho.Ser5 binds to the active site groove through Mg2+ coordination. The Pro3 is 

recognized by an aromatic-rich hydrophobic pocket near the active site that further 

confers substrate specificity (Zhang et al. 2006). Notably, Scp1 shows remarkable 

specificity toward the trans peptide-bond configuration of the two prolines in the CTD 

repeat, which can adopt both cis and trans configurations. Such configuration switching is 

known to modulate the structure of the CTD and its accessibility to kinases or 

phosphatases (Morris et al. 1999; Verdecia et al. 2000). An insertion domain formed by a 

three-stranded β sheet directly follows the signature motif (Figure 2-4). This insertion 

domain is unique to Fcp1/Scp1 family phosphatases and may assist in substrate 

recognition. Consistent with the known specificity of Scp1 toward phospho.Ser5 instead 

of phospho.Ser2, in the complex structure the phospho.Ser2 flips out of the active site, 

making no direct interaction with the protein. 
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Even though Scp and Fcp share similar phosphatase active sites, their strategies 

for substrate recognition might be different, as suggested by the recent crystal structure of 

apo Schizosaccharomyces pombe Fcp1 (SpFcp1) (Ghosh et al. 2008) (Figure 2-4). The 

minimal effective CTD substrate for SpFcp1 is a single heptad CTD peptide: 

Ser5Pro6Ser7Tyr1(phospho.Ser2)Pro3Thr4, among which the Tyr1 and Pro3 flanking the 

phospho.Ser2 are critical determinants of Fcp1 activity (Hausmann et al. 2004). The 

SpFcp1 structure revealed that it is a Y-shaped protein composed of three structural 

domains (Ghosh et al. 2008). The stem of the Y is the FCPH domain that contains a 

globular catalytic phosphatase core similar to that of Scp1. One major difference is that 

the three-stranded β sheet in Scp1 (insertion domain) is accessible for substrate 

recognition, whereas in Fcp1 it is buried by a helical insertion domain, suggesting a 

different binding interface between Fcp and the CTD with phospho.Ser2 (Figure 2-4). 

MRNA CAPPING ENZYME CGT1 AND THE CTD 

Even though 26–52 heptad repeats exist in the CTD primary sequence, 

recognition of the CTD by proteins in all the complex structures discussed above only 

show a spanning of one or two repeats. This is understandable since a balance between 

favorable interactions of the CTD with its binding partners versus the entropy cost for 

binding a disordered peptide needs to be achieved. This leads to the proposed mechanism 

that a double repeat of the CTD sequence is the functional unit for transcription. To 

explore if such rule is consistent with the mRNA capping enzyme Cgt1, a four-heptad-

repeat peptide with each Ser5 phosphorylated was used in a cocrystallization experiment 

(Fabrega et al. 2003). Interestingly, a long span of CTD peptide consisting of 17 amino 

acids was modeled in the density of one of the two monomers with an extensive buried 

surface of 1,600 A2 (Fabrega et al. 2003). Three of the four phosphorylated Ser5 residues 



 22 

were visible in this structure with both the first and third phosphate group recognized by 

positively charged patches on the Cgt1 surface. Consistent with a previous study of Cgt1, 

the Tyr1 position in the CTD sequence is essential for recognition by the protein (West et 

al. 1995). On the other hand, a single mutation of the Cgt protein for the recognition 

interface did not show obvious deleterious effects during yeast mutation screening 

(Fabrega et al. 2003), possibly due to the extended binding surface without one 

interaction dominating binding. Since the other monomer in the asymmetric unit shows a 

much smaller interface, it suggests that multiple phosphorylation sites are not a 

prerequisite for ligand binding. Further affinity measurements with a different length and 

registration of the phospho.Ser5 would elucidate whether interaction with multiple repeats 

of the CTD is essential for the effective binding by Cgt1. 

NUCLEAR MAGNETIC RESONANCE (NMR) STRUCTURE OF SET2  

The identification of the histone methyltransferase Set2 as a novel CTD binding 

partner bridges the CTD code to the histone code by implicating the regulatory effect of 

the CTD on histone modification and epigenetic control (Gerber et al. 2003; Hampsey et 

al. 2003) (Figure 2-2c). In eukaryotes, large genomes are efficiently organized into 

nucleosomes that are fundamental repeat units of chromatin. The nucleosome is 

composed of a histone octamer consisting of two copies of each of the core histones 

H2A, H2B, H3, and H4, around which 147 bp of DNA is wrapped. Such a structure is not 

only a strategy to compress large genomic DNA, but also provides a potential solution for 

tight regulation of DNA replication, repair, and transcription. During transcription, for 

example, the binding sites for a variety of transcription factors can be occluded by 

histones, leading to transcriptional silencing (Kornberg et al. 1999). Access to specific 

loci on the nucleosomal DNA is dynamically regulated by many factors including 
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chromatin modifiers and chromatin remodelers. Histones can be covalently modified by 

chromatin modifiers at particular loci, most of which are concentrated in the relatively 

unstructured N-terminal tails of histones. These modifications include acetylation, 

methylation, phosphorylation, ubiquitination, and sumoylation (Kouzarides 2007). The 

histone code, which is defined by covalent modifications, represents a fundamental 

regulatory mechanism of gene expression and repression (Strahl et al. 2000). 

Furthermore, the histone code can be interpreted by different modules in a modification-

dependent manner to decide whether a gene is to be transcribed. 

A novel Rpb1-binding domain of Set2, called Set2–Rpb1 interacting (SRI) 

domain, mediates the recognition and interaction with the phosphoryl CTD (Figure 2-

2c). Lys4 of histone 3 is methylated by the proteins of the Set1 family, while Lys36 is 

methylated by proteins of the Set2 family (Gerber et al. 2003). Both Set1 and Set2 

associate with the CTD but at different stages of transcription: Set1 binds to 

phosphorylated CTD enriched with Ser5 at the promoter region through the mediation of 

the Paf complex (Krogan et al. 2003; Ng et al. 2003); whereas the recognition of the CTD 

by Set2 relies on the phosphorylation of Ser2 in heptad repeats (Xiao et al. 2003). The 

SRI domains from both human (Li et al. 2005) and yeast (Vojnic et al. 2006) Set2 were 

determined by NMR and the binding interface mapped by phosphoryl-peptide titration. 

The study of affinity with peptides that have different length and phosphorylation 

registration showed that single repeats are not sufficient for SRI recognition and a strong 

preference for doubly phosphorylated peptide was observed. Five residues were 

identified as essential for the effective association between Set2 SRI and the CTD using 

NMR and mutagenesis (Krogan et al. 2003). One can assume the positively charged 

residues, Lys54, Arg58, and His62 of the Set2 SRI, are involved in phosphate binding 
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whereas Val31 and Phe53 are important for hydrophobic interaction with the side chain 

residues of the CTD, possibly tyrosine or proline. 

In addition, the FF domain is a protein-protein interaction module existing in 

several CTD interaction proteins such as human transcription factor CA150 (Carty et al. 

2000) and splicing factor Prp40 (Morris et al. 2000). Like the SRI domain, the FF domain 

exhibits a structure of three-helical bundle (Figure 2-2d). The FF domains usually are 

arranged as tandem arrays in proteins and such architecture might account for interaction 

with the CTD with each module contributing very weakly to binding. Identification of the 

specificity of phosphorylation states of the CTD recognized by FF domains has been 

challenging due to the weak binding. In vitro binding assays and NMR titration 

experiments did not detect interaction with a CTD peptide with the FF domain arrays 

derived from Prp40 (Gasch et al. 2006) or CA150 (Murphy et al. 2009). A binding 

constant of 50 µM was reported for the mammalian homologue of Prp40, FBP11, using 

isothermal titration calorimetry (Allen et al. 2002) but detailed information about the 

interaction between molecules is yet to be elucidated. 

CONCLUSION  

Recognition of the phosphorylation states of the CTD is essential for mediation of 

the expression of genetic information. Proteins that are highly selective toward specific 

phosphorylated forms of the CTD decipher the ‘CTD code’ and synchronize the 

transcriptional events accordingly. Communication of the CTD and histone codes 

provides an exquisite regulatory network for the precise control of transcription at 

multiple levels. Some CTD interacting proteins function as global transcriptional 

regulators non-discriminatingly. The inactivation of such molecules will lead to the 

shutdown of transcription machinery and eventually, cell death. For example, the deletion 
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of the CTD Ser2 phosphatase Fcp1 is lethal for yeast due to the abolishment of RNA 

polymerase II recycling (Kobor et al. 1999; Kimura et al. 2002). Similar effects on yeast 

are observed when the CTD Ser5 phosphatase Ssu72 is eliminated (Sun et al. 1996). On 

the other hand, evidence has indicated that CTD-interacting proteins can control gene 

expression at an epigenetic level and regulate expression of specific genes based on 

timing and the developmental needs. Human Scps are only found in higher eukaryotes 

and their expression is limited to neuronal stem cells or nonneural tissues. Consistent 

with their unique expression profile, Scps are identified as a component of the neuronal 

chromatin remodeling complex, REST (Yeo et al. 2005). The inactivation of Scp activity 

leads to the inappropriate differentiation of neuronal stem cells (Yeo et al. 2005). Another 

example of epigenetic regulation of a CTD-interacting protein is the Cdk8/cyclin C pair, 

which has been linked to transcriptional repression (Hengartner et al. 1998). Histone 

methyltransferases Set1 (Ng et al. 2003) and Set2 (Krogan et al. 2003) can identify the 

different phosphorylation stages of CTD. The phosphorylation of Ser7 of CTD itself also 

occurs in a gene-specific fashion (Egloff et al. 2007). The apparent simple primary 

sequence of CTD integrates genetic and epigenetic information and plays a pivotal role in 

transcriptional activation or repression. Understanding how such coding is deciphered at 

the molecular level is essential to the interpretation of the central role of RNA 

polymerase II and its regulatory domains. The application of the CTD code provides a 

unique opportunity to engineer the transcriptional process in an epigenetic level in tissue-

specificity manner. 
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SMALL C-TERMINAL DOMAIN PHOSPHATASE (SCP) 

The unstructured C-terminal domain (CTD) of eukaryotic RNA polymerase II 

dynamically regulates the process of transcription by recruiting different factors to the 

nascent mRNA through its multiple phosphorylation patterns. A newly discovered class 

of phosphatases, the human small C-terminal domain phosphatases (Scps), specifically 

dephosphorylate phosphorylated Ser5 (phospho.Ser5) of the tandem heptad repeats of the 

CTD of RNA polymerase II. Scps also function as transcription regulators that 

epigenetically silence the expression of specific neuronal genes. Inactivation of Scps 

leads to neuronal stem cell differentiation. Therefore, Scps are a group of important 

enzymes not only as regulators of the dynamic transcription cycles, but also as potential 

targets for the treatment of neurodegenerative diseases. This section will reveal to the 

readers the detailed stories about this group of enzymes (focusing on Scp1), from their 

catalytic mechanism, to the selective inhibition of these enzymes, to the effort on 

unveiling how these enzymes read the ‘CTD code’. 

Chapter 3:  Structural and Functional Analysis of the Phosphoryl 

Transfer Reaction Mediated by Scp1 

INTRODUCTION 

The CTD of RNA polymerase II is a unique structure that not only temporally and 

spatially modulates the progression of RNA polymerase II through the transcription 

cycle, but also associates mRNA transcription to mRNA processing, DNA repair and 

other cellular processes (Egloff et al. 2008). The biological functions of the CTD are 

performed through controlling the recruitment of regulatory factors in accordance with 

the dynamic modifications and conformation changes of the CTD (Meinhart et al. 2005), 

including phosphorylation, isomerization, and possibly glycosylation (Egloff et al. 2008). 



 36 

The CTD largely consists of tandem heptad repeats with a consensus sequence 

Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 where the phosphorylation of Ser2, Ser5 and Ser7 has been 

shown to have important regulatory effects on the function of RNA polymerase II 

(Meinhart et al. 2005; Chapman et al. 2007; Egloff et al. 2007). The enzymes responsible 

for the phosphorylation and dephosphorylation of these residues therefore play essential 

roles in the regulation of transcription and related processes. 

The transcription factor IIF (TFIIF)-interacting C-terminal domain phosphatase 1 

(Fcp1) is the first discovered CTD-specific phosphatase that preferentially 

dephosphorylates Ser2 (Chambers et al. 1994; Cho et al. 2001) in eukaryotes. Fcp1 has 

been shown to regulate the recycling of RNA polymerase II by dephosphorylating Ser2 

after each round of transcription (Cho et al. 1999). More recently, a family of small CTD 

phosphatases (Scps) with activities preferential for phosphoryl-Ser5 (phospho.Ser5) was 

identified (Yeo et al. 2003; Yeo et al. 2005). This family includes three highly similar 

proteins designated Scp1, Scp2 and Scp3. They share more than 90% similarity at the 

catalytic domain and have essentially the same activity to dephosphorylate phospho.Ser5. 

In humans, Scp1 has ~20% identity with the catalytic domain (FCPH domain) of 

Fcp1 but lacks the C-terminal breast cancer protein related C-terminal domain (BRCT) 

which is associated with CTD recognition by Fcp1. Scps show a strong preference 

towards Ser5 over Ser2 by 70-fold (Zhang et al. 2006). The first clue to the specificity of 

Scps was elucidated when the structures of Scp1 bound to the CTD peptides were 

determined (Zhang et al. 2006). These structures revealed a unique mode for CTD 

recognition and provided a structural explanation for the preferential binding and 

turnover of phospho.Ser5 of the CTD. Consistent with the known specificity of Scp1 

towards phospho.Ser5 instead of phospho.Ser2, in the complex structure the phospho.Ser5 

is bound to the active site whereas phospho.Ser2 flips out of the active site, making no 
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direct interaction with the protein. Notably, Scp1 shows remarkable specificity toward 

the trans peptide-bond configuration of the two prolines in the CTD repeat which can 

adopt both cis and trans configurations. Such configuration switching is known to 

modulate the structure of the CTD and its accessibility to kinases and/or phosphatases 

(Morris et al. 1999; Verdecia et al. 2000). Computational docking shows that if a similar 

active site conformation is adopted, the peptide with cis Pro will result in an unfavorable 

steric clash with the protein. However, it has yet to be established if Scps can undergo a 

dramatic conformational change to accommodate cis Pro. 

Unlike kinases that evolved from the same ancestor, the protein phosphatases 

derived from separate origins which results in different structures and reaction 

mechanisms (Tonks 2006). Protein tyrosine phosphatases mediate the phosphoryl transfer 

via a phosphoryl-protein intermediate at a conserved Cys residue at the active site (Zhang 

2003). On the other hand, protein serine/threonine (Ser/Thr) phosphatases normally 

require metal ions for their associated reactions. The Ser/Thr phosphatase family is 

further divided into phosphoprotein phosphatase (PPP) and Mg2+- or Mn2+-dependent 

protein phosphatase (PPM) families with different metal requirements (Cohen 1997; 

Barford et al. 1998). Nonetheless, in both cases, the dephosphorylation reaction occurs in 

a single step in which a water molecule activated by metal ions targets the leaving 

phosphate group (Shi 2009). One of the major distinctions between tyrosine phosphatases 

and Ser/Thr phosphatases is the involvement of metal ions (Ser/Thr phosphatases) and 

the generation of phosphoryl intermediate (tyrosine phosphatases). Therefore, when a 

group of novel human CTD phosphatases (Fcp/Scp phosphatases) were identified, they 

were classified as the PP2C subfamily of the PPM Ser/Thr phosphatase family 

(Chambers et al. 1996; Yeo et al. 2003). Like other PP2C phosphatases, Fcp/Scp 

phosphatases are Mg2+-dependent enzymes with multiple highly conserved aspartates. 



 38 

However, when the Scp structure was determined (Kamenski et al. 2004), it exhibited 

several fundamental distinctions from other PP2C members. First, it lacks the di-metal 

center which is present in other PP2C Ser/Thr phosphatases but has a single Mg2+ ion 

bound at the active site (Figure 3-1). Moreover, the four strictly conserved aspartates are 

arranged in a different topology from PP2C active sites.   

Figure 3-1: Ribbon diagram of metal centers in human protein phosphatase 2C (1A6Q) 
and human Scp1 (2ghq).6 

Based on the structure-based sequence alignment, Scp is similar to the HAD 

superfamily proteins, the majority of which are involved in phosphoryl transfer (Allen et 

al. 2004). Indeed, with little primary sequence identity, the active site of Scp 

superimposes perfectly with that of other HAD members (Wang et al. 2001; Lahiri et al. 

2003; Kamenski et al. 2004). Even the Mg2+ ion position and its coordinating water 

molecules are conserved (Zhang et al. 2006). This suggests that Scp is a unique family of 

Ser/Thr phosphatases that mediates phosphoryl transfer through the generation of a 

phosphoryl-aspartate using its DXDX(T/V) signature motif, a mechanism conserved in 

                                                 
6 (a) Di-metal ion center of PP2C. Invariant metal-coordinating residues (yellow) and phosphate group 
(red) are shown in stick, and the two catalytic essential Mn2+ ions are shown in cyan sphere. (b) Single-
metal ion center of Scp1. Key residues at the active site are shown in yellow stick, and the essential Mg2+ 
ion is shown in purple sphere. The substrate, phosphorylated CTD peptide, is shown in white stick. 
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the HAD family. Using BeF3
- as a phosphoryl analogue, the first Asp of the motif was 

identified to be the nucleophile that undergoes phosphorylation leading to a phosphoryl-

aspartate intermediate. This high-energy mixed anhydride is subsequently hydrolyzed to 

regenerate the enzyme (Allen et al. 2004). Although this proposed mechanism is well 

accepted, the phosphoryl intermediate was never directly visualized in Fcp/Scp family. 

Considering the uniqueness of Fcp/Scp phosphatases in their phosphoryl reaction 

mechanism as a Ser/Thr phosphatase, we sought to isolate the phosphoryl intermediate 

combining mutagenesis and X-ray crystallography. We extend our previous structural 

and functional investigations to further probe the role of key residues in the 

dephosphorylation reaction. Steady-state kinetic analysis of a variety of Scp1 mutants 

verified the Mg2+-coordinating function of Asp206, a conserved residue in the HAD 

superfamily whose role was not highlighted before. We have successfully captured the 

phosphoryl-aspartate intermediate in the crystal structure of Scp1D206A mutant soaked 

with pNPP, providing evidence for the proposed two-step mechanism. In this study, we 

were able to obtain the snapshots of Scp protein at each stage of the phosphoryl-transfer 

reaction which will be really valuable for the structure-function study of Fcp/Scp 

phosphatases. 

RESULTS AND DISCUSSION 

Design of mutants based on proposed phosphoryl transfer mechanism  

Based on the structures of Scp1, a two-step reaction mechanism for the 

dephosphorylation reaction catalyzed by Scp1 was proposed (Zhang et al. 2006). In this 

proposed mechanism (Figure 3-2a), the Asp96 [the first Asp in the DXDX(T/V) 

signature motif] acts as the attacking nucleophile in the first step of the reaction where 

the phosphoryl group on phospho.Ser5 is transferred to Asp96, forming a phosphoryl-
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carboxyl mixed anhydride, which is subsequently hydrolyzed in the second step to 

release the phosphate and regenerate Asp96. Phosphoryl analogues have been used to 

understand the reaction mechanism (Kamenski et al. 2004). Most recently, a study 

conducted on Schizosaccharomyces pombe Fcp1 captured the mimic structures of the 

phosphoryl-aspartate intermediate and the transition state of the hydrolysis step using 

BeF3
- and AlF4

- respectively (Ghosh et al. 2008). In the Fcp1 structure, a water molecule 

occupies the position close to the Asp172 (corresponding to Asp98 in human Scp1) and 

can potentially be activated by Asp172 side chain for the breakdown of the phosphoryl-

intermediate. This observation is consistent with the structural studies on phosphoserine 

phosphatase (PSP) (Wang et al. 2002). Based on the similarity between Fcp1 and Scp1, it 

is likely that Asp98 functions as the general acid to protonate the leaving group and as the 

general base to activate a water molecule in the first and second steps, respectively.  

However, structural or biochemical data that directly test this model in Scp1 are lacking. 

One of the most efficient ways to understand the catalytic mechanism of an 

enzyme is to capture the intermediate of the reaction. It has been shown in an earlier 

study that a transient phosphoryl-cysteine intermediate was captured in the protein 

tyrosine phosphatase 1B crystal structure by generating an active site mutation at Gln262 

to Ala (Pannifer et al. 1998). However, although the two-step mechanism of the 

dephosphorylation reaction (Figure 3-2a) by the HAD superfamily enzymes is generally 

accepted (Allen et al. 2004), the phosphoryl-aspartate intermediate has rarely been shown 

structurally (Lahiri et al. 2002). In theory, there are two scenarios where the phosphoryl-

aspartate intermediate may be captured in crystal structure. First, if the general acid that 

protonates the product (in the first step, Figure 3-2a) is a different residue from the 

general base that catalyzes the hydrolysis of the phosphoryl-aspartate intermediate (the 

second step, Figure 3-2a) then mutation of the latter residue would result in the 
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accumulation of the intermediate. Second, if the general acid and the general base are the 

same residue, but the mutation of an auxiliary residue (e.g. a Mg2+-coordinating residue) 

slows down the rate of both the first and the second reactions, the overall reaction rate 

might be low enough so that the added substrate is not completely consumed during the 

process of crystallization. In this case if the rate of the second step (k2, Figure 3-2a) is 

not much higher than that of the first step (k1, Figure 3-2a), a substantial fraction of the 

enzyme (
21

1

kk

k

+
) should exist as the phosphoryl-aspartate intermediate. 

With this reasoning in mind, we designed a series of Scp1 mutants where each of 

the acidic residues (namely, Asp98, Asp99 and Asp206) was mutated to either the 

isosteric neutral residue (i.e. Asn) or Ala, examined these mutants with biochemical 

assays and chose suitable ones for crystallographic investigation in order to capture the 

phosphoryl intermediate. 
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Figure 3-2: Proposed mechanism of phospho.Ser5 dephosphorylation catalyzed by 
Scp1.7 

                                                 
7 (a) Proposed mechanism of phospho.Ser5 dephosphorylation catalyzed by Scp1. At early steady-state, the 
concentration of product has not accumulated to a significant level so that the reverse reaction of the first 
step can be ignored. (b) Stereo diagram of the CTD-bound active site of Scp1D96N. The structure of 
human Scp1D96N in complex with a CTD heptad repeat peptide phosphorylated at Ser5 shown as a stereo 
pair of ribbon diagram. The active site residues are depicted as color-coded bonds. The three residues 
serving as candidate general bases for hydrolysis of the phosphoryl-Asp96 intermediate are highlighted 
with cyan colored bonds. 
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Phosphatase activity assays for Scp1 mutants 

We used two complementary methods to measure the general dephosphorylation 

activity of Scp1 mutants: a colorimetric assay with pNPP as the substrate and a 

fluorescent assay using 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as the 

substrate. The pNPP assay is highly robust but shows a strong background absorbance, 

resulting in insensitivity with an enzyme with low activity. On the other hand, the 

fluorescence-based DiFMUP assay is highly responsive towards dephosphorylation and 

can detect very low phosphatase activity. However, high concentrations of DiFMUP 

appeared to non-specifically inhibit the activities of all tested variants of Scp1. The 

inhibitory effect was evident at concentrations of DiFMUP around 500 µM and was 

nearly complete at higher concentrations of DiFMUP (>5 mM). For this reason, the 

highest concentration of DiFMUP used in our assay was 150 µM which is below the Km 

of all active Scp1 variants, making the measurement of Km and kcat unfeasible. 

Nonetheless, the kcat/Km could still be measured in DiFMUP assays and were used to 

compare relative activities of Scp1 variants. Despite being less sensitive, the pNPP assay 

allowed high concentrations of substrate (up to 30 mM pNPP) and, when necessary, 

enabled us to obtain the kcat and Km for Scp1 variants toward pNPP. Using the two assays, 

significant information on the catalytic activity of these Scp1 variants was obtained. 

As expected, the mutation of the active site nucleophile Asp96 to Asn (D96N) or 

Ala (D96A) abolished all measurable activity in both assays. Interestingly, although 

Asp98 was proposed to act as a general acid to protonate the leaving group of the first 

phosphoryl transfer and subsequently deprotonate a water to accelerate hydrolysis of the 

anhydride (Kamenski et al. 2004; Zhang et al. 2006), mutation of Asp98 to Asn (D98N) 

retained 30% activity of the wildtype Scp1 (DiFMUP assay data, Table 3-1). Even a 

D98A mutant showed 10% activity of the wildtype Scp1 (both assays, Table 3-1). The 
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kcat of D98A using pNPP as the substrate was as high as 0.5 s-1. This high kcat is 

noteworthy because using the model described in Figure 3-2a, it can be deduced that 

2
21

1 k
kk

k
kcat ⋅

+
=         [1]  

Or in other words, k2 must of necessity be greater than kcat. Therefore, the first-order rate 

constant for the dephosphorylation of D98A mutant (k2) must be greater than 0.5 s-1, 

which is at least 4 orders of magnitude higher than the reported uncatalyzed hydrolysis of 

phosphoryl-aspartate mixed anhydrate [10-4 s-1, (Allen et al. 2004)]. These results argue 

against the proposed function of Asp98 as the only possible general acid/base in catalysis, 

suggesting that complementarity by another active site residue may be applied in Scp-

mediated phosphate transfer. 

Similarly, mutations of Glu99 to Gln or Ala did not abolish phosphatase activity, 

resulting in 10% and 5% activity compared to wildtype, respectively. The mutation of 

Asp206 to Asn resulted in greatly reduced stability and solubility of the protein. The 

corresponding mutation of Asp to Asn is also reported to be very disruptive for Fcp1 

(Hausmann et al. 2003), possibly due to the misfolding of the protein induced by the 

disruption of the salt bridge between this Asp and active site Lys. Therefore, alanine 

mutation was tested to investigate the functional role of D206. Under the standard assay 

condition with 20 mM MgCl2, the activity of D206A mutant was too low to be reliably 

detected in both assays. The crystal structure of Scp1 (Figure 3-2b) shows that an active 

site Mg2+ is coordinated by a water molecule which is further positioned by Asp206. 

Such secondary stabilization of metal ion binding via water molecules might be essential 

for the effective catalysis. Indeed, this role of Mg2+-coordination by residues 

corresponding to D206 is also observed in many other HAD family proteins in three-

dimensional structure (see structural alignment later). Consistent with these structural 
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observations, when the MgCl2 concentration was increased to 50 mM, the D206A mutant 

displayed a well-detectable activity toward DiFMUP. The kcat/Km was 0.2 mM-1min-1 

(~2% of the wildtype activity measured at 20 mM MgCl2).  

 

 DiFMUP assay pNPP assay 

 kcat/Km (mM-1min-1) kcat (s
-1) Km (mM) kcat/Km (mM-1s-1) 

Wildtype 10.3 ± 0.8 2.5 ± 0.1 3.6 ± 0.8 0.7 ± 0.2 

D96N N.A.8 N.A.8 N.A.8 N.A.8 

D96A N.A.8 N.A.8 N.A.8 N.A.8 

D98N 3 ± 1 N.A.9 N.A.9 N.A.9 

D98A 0.8 ± 0.2 0.50 ± 0.02 7.3 ± 0.8 0.068 ± 0.008 

E99Q 1.14 ± 0.09 2.0 ± 0.3 8 ± 4 0.2 ± 0.1 

E99A 0.5 ± 0.1 0.005 ± 0.001 N.A.10 N.A.10 

D206A11 0.23 ± 0.04 0.022 ± 0.005 8 ± 4 0.002 ± 0.001 

Table 3-1: Steady-state parameters of Scp1 variants tested by DiFMUP and pNPP 
assays. 

To further characterize the Mg2+-dependence of D206A mutant, we tested the 

catalytic activity of wildtype Scp1 and the D206A mutant at various MgCl2 

concentrations (Figure 3-3). While the apparent Kd of wildtype Scp1 with Mg2+ was 1.3 

                                                 
8 Signal below detection limit.  
9 Although D98N showed strong activity to pNPP, the activity of this mutant appeared unstable so that 
during the time course required for pNPP assay the enzyme did not maintain constant activity, leading to 
uninterpretable data. 
10 The Km of E99A mutant is greatly increased, and thus can not be accurately determined from the rate-
vs-pNPP concentration curve. 
11 Both DiFMUP and pNPP assay were performed with 20 mM Mg2+, however, no signal can be detected 
for D206A mutant under this condition. Therefore, the data for D206A were obtained under 50 mM Mg2+ 
condition. 
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± 0.9 mM, that of the D206A mutant was at least 100-fold higher. These results indicate 

that Asp206 is critical during catalysis at least in part by coordinating the catalytic Mg2+. 

 

Figure 3-3: Mg2+-dependence of enzyme activity of wildtype Scp1 and Scp1D206A 
mutant. 

Phosphoryl intermediate of Scp1 obtained by incubating Scp1D206A mutant with 

pNPP at low Mg
2+

 concentration 

Based on the kinetic characterization above, we crystallized D98A, E99A and 

D206A and soaked the crystals in the buffer containing a high concentration of pNPP. X-

ray diffraction data were collected for each mutant at resolutions from 2.35-2.45 Å 

(Table 3-2). In the structure of the Scp1D98A mutant, a hydrogen bond originally 

observed between the side chain of Asp98 and that of Tyr158 found both in the apo 
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protein structure (Figure 3-4) and our previous complex structures (Figure 3-5a) is 

interrupted due to mutation of Asp98. This hydrogen bond appears to anchor Tyr158 to 

facilitate the formation of part of the CTD binding groove (Zhang et al. 2006). Without 

this hydrogen bond anchoring the side chain of Tyr158 by Asp98 side chain, an 

alternative conformation of Tyr is adopted (Figure 3-5b), which places the phenolic side 

chain of Tyr in the hydrophobic pocket previously observed to specifically sequester Pro3 

of the CTD repeat sequence (Figure 3-5c). This hydrophobic pocket prefers binding to 

hydrophobic molecules, and the adoption of Pro3 of the CTD repeat is essential for CTD 

recognition by Scp1. The structure of Scp1E99A exhibits an identical metal center with 

wildtype Scp1 and Scp1D96N structures (Figure 3-6), with the only difference being the 

coexistence of both conformations of Tyr158 due to a minor change of the Asp98 

position. Apparently, the orientation of the Tyr158 is directly affected by its hydrogen 

bonding to Asp98 carboxyl side chain. 

 

Figure 3-4: Ribbon diagram showing the salt bridge between Asp98 and Tyr158 in Scp1 
apo protein structure. 
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 Scp1D206A soaked 

in pNPP at low Mg
2+

 

Scp1D206A soaked 

in pNPP at high 

Mg
2+

 

Scp1D98A soaked 

in pNPP at low 

Mg
2+

 

Data collection    
Space group C2 C2 C2 
Cell dimensions    
      a, b, c (Å) 124.7, 78.2, 62.6 125.5, 77.3, 63.1 124.8, 79.0, 62.9 
      α, β, γ (°) 90.0, 112.3, 90.0 90.0, 112.5, 90.0 90.0, 112.8, 90.0 
Resolution (Å) 49.1–2.35 (2.43–2.35) 48.6–2.45(2.54–2.45) 48–2.30 (2.38–2.30) 
No. of 
observation 

39564 32699 39941 

No. of unique 
reflections 

23379 20421 24660 

Rsym or Rmerge (%) 7.1 (20.4) 7.5 (22.7) 7.2 (20.5) 
I/σ(I) 16.4 (2.6) 13.4 (2.1) 17.5 (3.4) 
Completeness 
(%) 

91.3 (59.1) 90.7 (53.2) 90.2 (57.2) 

Redundancy 2.4 (1.7) 3.3 (2.1) 3.4 (2.6) 
    
Refinement    
Resolution (Å) 49.1–2.35 48.6–2.45 32.2–2.35 
No. reflections 
(test set) 

23286 (1109) 17693 (864) 21099 (1131) 

Rwork / Rfree (%) 19.5(25.9)/24.5(34.5) 20.4(25.6)/25.4(37.7) 19.2(24.0)/23.1(30.6) 
No. of atoms    
      Protein 2930 2908 2928 
      ion 2 12 2 
      Water 95 32 99 
B-factors (Å2)    
      Protein 36.2 37.8 37.4 
      Mg2+ 20.5 39.3 24 
      Water 37.2 38.2 39.1 

Table 3-2: Data collection and refinement statistics.12 

 

 

                                                 
12 Highest resolution shell is shown in parenthesis. Rfree is calculated with 5% of the data randomly 
omitted from refinement. 
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(Table 3-2 cont.) 
R.m.s deviations    
Bond lengths (Å) 0.013 0.014 0.011 
Bond angles (°) 1.48 1.60 1.36 
Ramachandran 
plot (%) 

   

Most favored 87.8 84.4 90.5 
Additionally 
allowed 

11.3 15.3 9.2 

Generally allowed 0.9 0.3 0.3 

 

Figure 3-5: Two different conformations of Tyr158 observed in Scp1D96N structure (a) 
and Scp1D98A structure (b).13 

 
                                                 
13 In (a), the side chain of Tyr158 forms a hydrogen bond (yellow dashed line) with the side chain of 
Asp98 which is lost in (b). (c) Stereo diagram of superimposition of Scp1D98A structure with Scp1D96N-
CTD complex (PDB code: 2ghq). The CTD peptide is shown in yellow stick. 
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Figure 3-6: Superimposition of Scp1E99A (magenta) and D96N (cyan) active site 
structures.14 

Unlike D98A and E99A structures, the Scp1D206A mutant exhibited strong 

positive electron density directly contiguous with the electron density associated with the 

Asp96 residue. The shape and high signal to noise ratio of the contiguous density is 

consistent with a covalently trapped phosphate group, which was built and refined as a 

phosphoryl-Asp96 intermediate (Figure 3-7a, b). The remaining parts of the overall 

Scp1D206A structure are virtually identical to the wildtype and D96N Scp1 structures. 

Additional density resided in the Pro3 binding pocket that was refined well as a part of 

PEG molecule in one of the two Scp1D206A monomers in the asymmetric unit. This is 

consistent with previous observation that this pocket highly favors hydrophobic 

molecules and might non-specifically bind to chemical molecules in crystallization 

solution (Kamenski et al. 2004).  

 
                                                 
14 The structure of E99A mutant exhibits an identical metal center with that of D96N. Notably, the Tyr158 
can adopt two conformations as discussed in the paper due to the minor change of Asp98 position. 
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Figure 3-7: Structural studies of Scp1D206A.15 

Apparently, in the crystalline environment of the Scp1D206A mutant, the high 

energy phosphoryl-enzyme intermediate bound to Asp96 reaches appreciable levels and 

remains stable over time to allow visualization by protein X-ray crystallography. Based 

on the peak height from initial Fo-Fc electron density maps as well as thermal factors 

from active sites, we estimated that the occupancy of the phosphate group covalently 

                                                 
15 (a) Phosphorylation of Asp96. The mutation of Asp206 (labeled in red) stabilizes the trapped 
phosphoryl-aspartate intermediate of the enzyme. (b) The hydrogen bonding formed between phosphate 
group and the enzyme. (c) Superimposition of phosphate-trapping Scp1D206A (light blue) with Scp1 
bound with BeF3

-
 (1ta0) (lime). The water molecules are colored red and Mg2+ ion colored magenta for the 

former structure, whereas water as white and Mg2+ as orange for the latter. (d) Superimposition of 
Scp1D206A soaked in substrate pNPP at different Mg2+ concentrations. The active site residues are shown 
in stick. The Asp96 covalently linked to phosphate group is shown in yellow, and the phosphoryl-free 
Asp96 is shown in green. 
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attached to Asp96 reached approximately 50%. In the crystalline environment of the 

Scp1D206A mutant, the electron density of Mg2+ (Figure 3-8) is significantly weaker 

than that obtained in the Scp1D96N-CTD peptide complex structure, suggesting the Mg2+ 

occupancy is not 100% (refined as 50% occupancy with B factor around 20 Å2). This is 

again consistent with the kinetic study that the binding affinity between Mg2+ and 

Scp1D206A is much lower. Therefore, using lower Mg2+ concentration in the 

crystallization mother liquor could be one of the major reasons why we captured this 

phosphoryl-enzyme intermediate in Scp1D206A crystal. The crystallization state also 

sheltered the phosphoryl intermediate from bulk water in the D206A mutant and slowed 

down the hydrolysis of phosphoryl-Asp96. 

 

Figure 3-8: Fo-Fc electron-density map (green) of Mg2+ ion with a sigma cutoff of 8σ. 

A previously reported structure of BeF3
- in complex with Scp1 suggested the 

existence of a Scp1 phosphoryl-enzyme intermediate (Kamenski et al. 2004). Because of 
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the presumed chemical instability of phosphoryl-aspartate intermediates of HAD family 

proteins, BeF3
- has been used as a phosphate mimic (Cho et al. 2001). By comparing the 

structure of our trapped phosphoryl-aspartate intermediate and that of BeF3
- bound to 

Scp1 (PDB code: 1ta0), we conclude that the complex structure encompassing BeF3
- 

bound to Asp96 is a reasonably acceptable mimic for the covalent phosphoryl-aspartate 

intermediate (Figure 3-7c). 

Product-trapping structure of Scp1 obtained by incubating Scp1D206A mutant with 

pNPP at high Mg
2+

 concentration and high pH 

Based on the proposed mechanism that a general base is involved in the second 

step and our kinetic data, we hypothesized that increased Mg2+ availability and higher pH 

would facilitate the hydrolysis of the phosphoryl-aspartate. To evaluate these effects on 

the activity of Scp1D206A crystallographically, we used the same Scp1D206A crystal 

form but soaked the samples in 25 mM pNPP with 0.2 M MgCl2 at slightly higher pH 

(pH 6.5–7.0). Clear and unmistakable electron density indicates a bound phosphate group 

in the Scp1D206A active site. However, unlike the electron density associated with 

phosphate for the low Mg2+ soaked crystals, this electron density clearly showed a 

complete loss in covalent attachment to the enzyme (Figure 3-7d). The phosphate group 

in the structure was refined to 100% occupancy with the same thermal factors as the 

surrounding protein residues. The position of the phosphate group moves by 

approximately 1.2 Å away from its original position in the low Mg2+ complex while the 

side chain of the Asp96 nucleophile rotates away from the phosphate (Figure 3-7d). 

Together with previously reported structures, these newly determined Scp1 crystal 

structures provide static snapshots along the reaction pathway catalyzed by Scp1 (Figure 

3-9). Our complex structure of Scp1D96N with CTD phosphoryl-peptide presents the 

pre-reaction binding mode. The D206A structure soaked with pNPP at low Mg2+ 
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concentration is the capture of phosphoryl intermediate, whereas the same mutant at high 

Mg2+ concentration is a product trapped image with inorganic phosphate group at the 

active site. 

 

Figure 3-9: Snapshots of dephosphorylation reaction of human Scp1.16 

Capture of phosphoryl intermediate for HAD superfamily 

The formation of phosphoryl-enzyme intermediates is a crucial component of 

various enzymatic mechanisms involving phosphoryl transfer (Pannifer et al. 1998). Even 

though phosphoryl-aspartate is not very stable, it has been captured in other proteins 

containing a DXDX motif (Allen et al. 2004; Diaz et al. 2008), mostly using phosphoryl 

analogues. In addition to the direct visualization of phosphoryl intermediate in our X-ray 

structure for Scp1, β-phosphoglucomutase (β-PGM) is found to be phosphorylated at the 

active site aspartate (Asp8) in the crystalline state (PDB code: 1lvh) (Lahiri et al. 2002). 

β-PGM is a subclass I HAD family protein, which catalyzes the transfer of a phosphate 

group between the 1 and the 6 position of the cyclic glucose ring. As the enzyme needs to 

                                                 
16 This is the presumed model for the reaction catalyzed by Scp1 in substrate recognition (a), phosphoryl 
transfer (b), and phosphate release (c) stages. In order to capture them in crystallization state, certain 
residues were mutated (see below). Scp1 is shown in ribbon diagram in light blue, and Asp96, Asp98 and 
Asp206 residues are shown in stick in yellow. Mg2+ ion and the two water molecules are shown in sphere in 
magenta and orange, respectively. (a) Scp1 bound to phosphorylated CTD (carbon chain shown in white). 
Asp96 was mutated to Asn to capture this complex structure. (b) Phosphate group of phospho.Ser5 is 
transferred to Asp96 and generates the phosphoryl-aspartate intermediate. Asp206 was mutated to Ala in 
this structure. (c) Hydrolysis of the phosphoryl-aspartate intermediate and release of phosphate group from 
Asp96 side chain. Again, Asp206 was mutated to Ala in this structure. 
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transfer the phosphate group from position 1 on the hexose to position 6, the phosphoryl-

enzyme intermediate is sufficiently stable to allow reorientation of the acceptor in the 

active site while preventing water-mediated loss of phosphate. Other phosphoryl-

aspartate intermediate was investigated where various phosphate analogs (AlF4
-, MgF4

2- 

and BeF3
-) were used to mimic the different stages of phosphoryl transfer. For instance, 

in Ca2+-ATPase, the ATP-dependent phosphorylation of its catalytic Asp is a critical step 

in transducing chemical energy into conformational energy for Ca2+ ion transport 

(Toyoshima et al. 2004; Toyoshima et al. 2007). Subsequent to ATP-dependent 

phosphorylation of the ATPase, the dephosphorylation reaction of the phosphoryl-

enzyme intermediate triggers a conformational change that closes the lumenal gate of the 

Ca2+ channel though the movement of a domain capping the transmembrane portal 

(Toyoshima et al. 2004; Toyoshima et al. 2007). Furthermore, the phosphoryl-aspartate 

intermediate was observed in Schizosaccharomyces pombe Fcp1 structure with BeF3
- 

mimicking the phosphate group (PDB code: 3ef0) (Ghosh et al. 2008). In the crystal 

structure, a covalent bond was clearly observed between the BeF3
- and Asp170 of Fcp1 

(the first Asp in the DXDX motif). Human eyes absent (Eya) proteins, which also belong 

to the HAD family, play dual roles as a protein tyrosine phosphatase and a transcription 

factor in organ formation during development. Again, using phosphate analog BeF3
- and 

AlF3, a phosphoryl-aspartate intermediate and a transition sate of phosphoryl-enzyme 

were captured in the catalytic domain of Eya2 phosphatase, respectively (Jung et al. 

2010). Additionally, phosphoryl-aspartate intermediates have been detected by 

radioactivity measurements in DNA 3’ phosphatase Tpp1 (Deshpande et al. 2004), and in 

a recent study, Ca2+ ions were shown to have an inhibitory effect and induce the 

accumulation of a phosphoryl-aspartate intermediate detected by mass spectrometry in 

histidinol phosphate phosphatase (Rangarajan et al. 2006). 



 56 

Conservation of D206 in HAD family 

While most HAD family proteins vary considerably in primary sequence, they all 

share the DXDX(T/V) motif (motif I) (Asp96 and Asp98 in human Scp1) as well as two 

other motifs at similar positions in their 3D structures (Figure 3-10a). Motif II is a single 

residue, either Thr (Thr152 in human Scp1) or Ser, which hydrogen bonds through its 

side chain with the phosphate moiety of the substrate. These two motifs are highly 

conserved and easily identified using structure-based alignment. Motif III is a DD or DN 

pair with a Lys residue located a short distance away on the N-terminal side of the acidic 

pair. The first Asp of the DD (DN) pair (Asp206 in human Scp1) aligns a water molecule 

which coordinates the catalytic Mg2+ ion in the active site. This residue also forms a salt 

bridge to the side chain amino group of the upstream Lys (Lys190 in human Scp1) 

residue, which in turn forms a second intermolecular bridge to the phosphate moiety of 

the substrate. The second Asp or Asn (Asn207 in human Scp1) forms an axial 

coordination bond with the octahedrally coordinated Mg2+ ion (Figure 3-2b). 

Interestingly, the conservation of the second of the acidic stretch (Asn207) extends 

throughout HAD family whereas Asp206 is found to be replaced by Gly in a lot of HAD 

proteins (protein serine phosphatase, P-type ATPase, phosphomannomutase, histidinol 

phosphate phosphatase, sucrose phosphatase). This is very puzzling at first since our 

kinetic study strongly supports an essential structural function of Asp206 (or 

corresponding residues) in ion coordination and possibly a functional role in catalysis due 

to its mutation leads to capture of phosphoryl intermediate. A more careful examination 

of structure-based alignment shows that in HAD proteins where the first Asp of Motif III 

is replaced by Gly, the position corresponding to the side chain of Asp206 in Scp1 is 

always occupied by an Asp side chain extended from an amino acid 4~5 residue 

downstream of the second residue of Motif III (Figure 3-10b). Therefore, Asp206 side 
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chain function is conserved spatially with similar functions: Mg2+ coordination and salt 

bridging to Lys (Table 3-3). 

 

Figure 3-10: Structural alignment of HAD family members.17 

                                                 
17 (a) Structural alignment of alpha-carbon backbone of Scp1 (yellow, 2ght), PSP (green, 1l7m), β-PGM 
(cyan, 1lvh), PMM (magenta, 2fuc), P-Type ATPase (pink, 2zbd) and Eya2 (gray, 3geb). Red sphere is the 
Mg2+ in Scp1, indicating the active site. For visual clarity, only the conserved portion is shown in each 
structure (Scp1: show residue 89-222 without residue 104-130; PSP: show residue 4-184 without residue 
19-73 and 120-137; β-PGM: show residue 1-188 without residue 15-91; PMM: show residue 12-240 
without residue 82-190; P-Type ATPase: show residue 346-719 without residue 359-602 and 641-673; 
Eya2: show residue 268-519 without 281-424). (b) Structural alignment of the active site of human Scp1 
(light pink, 2ght) and MjPSP (white, 1l7m). The Asp206 in Scp1 and corresponding residue Asp171 in 
MjPSP are shown in stick. The water molecule hydrogen-bonding with Asp206 (or Asp171) is shown in 
pale green, and Mg2+ is shown in red. Hydrogen bonds are indicated by yellow dashed lines. 



 58 

 
Protein name PDB 

code 
Seq. 
iden
. 
(%) 

Corre
s. a.a. 
for 
D96 

Corre
s. a.a. 
for 
D98 

Corres. 
a.a. for 
T152  

Corres
. a.a. 
for 
D206 

Corre
s. a.a. 
for 
K190 

Corres
. a.a. 
for 
N207 

   Motif I Motif II Motif III 
Pseudomonas sp. YL 
HAD 

1jud 14 D10 Y12 S118 T175 K151 S176 

Schizosaccharomyces 

pombe Fcp1 
3ef0 24 D170 D172 T243 D297 K280 D298 

Lactococcus lactis β-
PGM 

1lvh 14 D8 D10 S114 E169 K145 D170 

T4 polynucleotide 
kinase 

1ltq 16 D165 D167 S211 D277 K258 D278 

Leishmania mexicana α-
phosphomannomutase 
(PMM) 

2i54 12 D10 D12 S46 D215 K188 D207 

Human PMM 2fuc 16 D19 D21 G52 D226 K198 N218 
Methanocaldococcus 

jannaschii 
Phosphoserine 
phosphatase (MjPSP) 

1l7m 10 D11 D13 S99 D171 K144 D167 

Human PSP 1l8l 15 D20 D22 S109 D183 K158 D179 
Oryctolagus cuniculus 
P-Type ATPase 

2zbd 13 D351 T353 T625 D707 K684 D703 

Escherichia coli 
Histidinol phosphate 
phosphatase 

2fpr 12 D10 D12 T55 D135 K106 D131 

Synechocystis sp. 
PCC6803 Sucrose 
phosphatase 

1tj3 15 D9 D11 T41 D190 K163 D186 

Escherichia coli NagD 2c4n 14 D9 D11 T42 D206 K176 D201 
Escherichia coli Class B 
acid phosphatase 
(AphA) 

2b82 12 D44 D46 T112 D171 K152 D167 

Human eyes absent 
phosphatase 2 (Eya2) 

3geb 13 D274 D276 T448 E506 K480 D502 

Table 3-3: Conserved residues in the HAD family in comparison to Scp1. 
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Possible additional role of D206 in catalysis 

Our studies have established that even though the coordination of Mg2+ by D206 

is mediated through a water molecule, its mutation can reduce Mg2+ binding by at least 

100-fold. When considering the reaction mechanism of phosphoryl transfer reaction, the 

most logical candidate for general acid/based is Asp98. As shown in a recent paper about 

a Scp family member, Schizosaccharomyces pombe Fcp1, a water molecule is occupying 

at an ideal position to be activated by Asp98 and nucleophically attacks phosphorus 

(Ghosh et al. 2008). Interestingly, our mutants of Asp98 still retain a significant 

percentage of phosphoryl activity, which prompted us to speculate if alternative general 

acid/base might exist especially when Asp98 is replaced. Considering the conservation of 

Asp206 throughout HAD family and our capture of phosphoryl intermediate upon 

mutation, it is possible that this residue may also play a catalytic role. With our current 

experimental method, Mg2+ concentration higher than 100 mM causes precipitation of the 

protein, therefore it is hard to determine whether saturating concentration of Mg2+ would 

fully rescue the activity of D206A mutant. However, it would be interesting to investigate 

the structural and functional roles of this residue in other HAD family. For example, it 

was reported that mutation at this residue in P-type ATPase (Asp707) totally abolishes its 

activity (McIntosh et al. 2004). 

In summary, our current study provided definitive evidence for the existence of 

the phosphoryl-aspartate intermediate in the reaction catalyzed by Fcp/Scp phosphatase 

family. We identified Asp206 as a key residue for catalysis and metal binding, whose 

mutation can result in product trapping. Our results strongly suggest that Asp206 and its 

equivalent residues in other HAD family members play a structural and possible 

mechanistic role through divalent cation coordination. We believe these results will direct 

future studies on the mechanism of Scp1 and other HAD family enzymes. 
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MATERIALS AND METHODS 

Cloning, mutagenesis and purification 

Wildtype human Scp1, residues 77-256, was sub-cloned and expressed in E.coli 

BL21(DE3) strain using pHIS8 vector encoding a thrombin cleavable N-terminal octa-

histidine tag (Jez et al. 2000). Mutant genes were generated using the QuikChange Site-

Directed Mutagenesis Kit (Stratagene, CA). The expression of Scp1 wildtype or mutants 

was induced in E.coli at low temperature (16°C) with 250 µM IPTG and allowed to 

accumulate to high levels overnight. Cells were harvested and re-suspended in 0.5 M 

NaCl, 15 mM imidazole, 50 mM Tris-HCl pH 8.0, 10% (v/v) glycerol and 0.1% (v/v) 

Triton X-100. After sonication, cell debris was removed by centrifugation. The 

supernatant was loaded onto a Ni2+-NTA affinity column, washed extensively with 

sonication buffer and then with sonication buffer minus Triton X-100. Nearly 

homogeneous Scp1 was eluted with sonication buffer minus Triton X-100 but including 

150 mM imidazole. Eluted protein was dialyzed into 20 mM Tris-HCl pH 8.0, 100 mM 

NaCl, 5 mM β-mercaptoethanol and stored at a concentration of 2 mg/ml at 4 °C. 

Samples for protein x-ray crystallography were subjected to thrombin processing to 

remove the octa-histidine tag followed by size exclusion chromatography for final 

cleanup. These samples were stored in 20 mM HEPES-Na+ pH 7.5, 100 mM NaCl, 3 mM 

dithiothreitol at a concentration of 12-16 mg/ml at -80 °C. 

pNPP assay 

The steady-state parameters of D98A/N, E99Q/A, and D206A were measured 

using pNPP as a substrate. The reaction mixtures contained 50 mM Tris-acetate pH 5.5, 

20 or 50 mM MgCl2, 0.5–50 mM of pNPP, and suitable amount of mutant proteins. The 

reactions were incubated at 37 °C for 15 mins and then quenched by adding 80 µl of 0.25 
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N NaOH. Release of pNP was determined by measuring absorbance at 410 nm. The 

absorbance was converted to product concentration by a pNP standard curve. The data 

were analyzed by nonlinear regression performed in Matlab (The MathWorks, Inc., MA). 

The Mg2+ dependence of wildtype Scp1 or Scp1D206A was measured by the same assay 

at constant substrate concentration with 0–100 mM Mg2+. 

DiFMUP assay 

DiFMUP (Invitrogen, CA) was dissolved in 100% DMSO to make 100 mM stock.  

Before each measurement, the DiFMUP was freshly diluted in 1× reaction buffer 

containing 50 mM Tris-acetate pH 5.5, 20 mM MgCl2 to desired concentrations. The 

substrate mixture and protein mixture were pre-incubated at 37 °C for 10 mins prior to 

mixing. The final reaction mixture contained 0–150 µM of DiFMUP and wildtype Scp1 

or Scp1 mutants. The generation of the fluorescent DiFMU was monitored continuously 

at excitation/emission maxima ~358/450 nm for 2 hrs. The data were analyzed by the 

same method as described for pNPP assay. 

Crystallization and structure determination  

Scp1 mutants were crystallized in 0.5–0.8 M ammonium sulfate, 100 mM 

HEPES-Na+ pH 7.0, with 0.2 M lithium sulfate. Crystals were then transferred to a 

stabilizer consisting of 100 mM sodium citrate, pH 5.5 (or MES-Na+, pH 6.5), 30% (w/v) 

PEG 8000, 5-25 mM pNPP and 10 mM MgCl2 or 0.2 M MgCl2. The pH of the crystal 

stabilizer drop was retested and confirmed using pH paper. After soaking for 24 hrs, 

crystals were transferred to a cryo-protecting stabilizer containing 30% (v/v) glycerol, 

30% (w/v) PEG8000 and 100 mM of the respective buffer of the original stabilizer. After 

a brief period of equilibration, crystals were frozen in nylon loops in liquid nitrogen and 

stored in liquid nitrogen prior to data collection. Data were collected at 100 K on beam-
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line 8.2.2 of the Advanced Light Source (ALS). Diffraction data were processed with 

HKL2000 (Otwinowski et al. 1997). The data collection statistics are summarized in 

Table 3-2. 

The crystal structures of Scp1 mutants were determined by molecular replacement 

(MR) using the Scp1D96N structure as a search model (PDB code: 2ghq) using the 

program AmoRe (Navaza 1994) available in the CCP4 software package (CCP4 1994). 

MR solutions were refined using CNS (Brunger et al. 1998) and REFMAC, reserving 5% 

of the measured and reduced structure factor amplitudes as an unbiased test set for cross 

validation (Rfree) (Brunger 1992). SigmaA-weighted electron density maps (2Fo-Fc and 

Fo-Fc) were calculated after each cycle of refinement and carefully inspected to guide 

model rebuilding using O (Jones et al. 1991). The final models were evaluated by 

PROCHECK (Laskowski et al. 1993). 

ACCESSION NUMBERS 

Coordinates for structural studies in the paper have been deposited in the Protein 

Data Bank with human Scp1 D206A phosphoryl-Asp structure as 3L0B, D206A product 

trapped structure as 3L0C and D98A mutant as 3L0Y. 
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Chapter 4:  Selective Inactivation of Scp1 by a Small Molecule 

Inhibitor 

INTRODUCTION 

The CTD specific kinases and phosphatases function as house-keeping regulatory 

factors for global transcription (Majello et al. 2001). Recently, it has been shown that 

certain CTD regulatory factors can also epigenetically modulate the expression level of a 

specific group of genes (Li et al. 2005; Yeo et al. 2005; Zhang et al. 2010). As an 

example, a newly discovered class of phosphatases, the human small C-terminal domain 

phosphatases (Scps), specifically dephosphorylates phosphorylated Ser5 (phospho.Ser5) 

of the tandem heptad repeats of the CTD (Yeo et al. 2003). Interestingly, Scps have also 

been shown to epigenetically silence the expression of a specific set of neuronal genes in 

neuronal stem cells and non-neuronal cells by acting as co-repressors in REST/NRSF 

complex (Yeo et al. 2005). Inhibition of Scps in P19 stem cells by the dominant negative 

mutants (which retain the overall structure but have abolished phosphatase activity) or 

microRNA miR-124 (which directly targets the untranslated region of Scp genes and 

suppresses their expression) allows neuronal gene expression and induces neuronal 

differentiation (Yeo et al. 2005; Visvanathan et al. 2007). Given the demonstrated role of 

Scps in limiting inappropriate expression of neuronal specific genes in pluripotent cells 

and the fact that their down-regulation leads to neuronal differentiation, Scps serve as 

promising new targets for small molecule inhibitors to regulate neuronal stem cell 

development and to promote neuronal differentiation. 

However, one of the greatest challenges associated with phosphatase inhibitor 

identification is the cross inhibition of other phosphatases due to poor selectivity (Yu et 

al. 2007), which usually stems from small, uncharacteristic active sites of phosphatases. 
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For Scp inhibitors, selectivity is of great concern as two close family members in the 

Scp/Fcp family, Fcp1 (Cho et al. 1999) and Dullard (Kim et al. 2007), play essential roles 

in cell survival as well as proper development (Chambers et al. 1994; Archambault et al. 

1997; Kim et al. 2007).  

The crystal structures of Scp/Fcp family members Fcp1 and Scp1 were initially 

solved by Ghosh et al. (Ghosh et al. 2008) and Kamenski et al. (Kamenski et al. 2004). 

Unlike the traditional cysteine-based or dimetal-dependent phosphatases, the Scp/Fcp 

family members belong to a unique family of phosphatases that rely on the DXDX(T/V) 

motif and Mg2+ to catalyze the phosphoryl-transfer (Yeo et al. 2003; Kim et al. 2007), as 

found in the haloacid dehydrogenase (HAD) superfamily (Allen et al. 2004). In fact, the 

overall core fold of Scps resembles the core domains of other HAD family members, 

despite low sequence similarity (see Chapter 3) (Zhang et al. 2010). 

The HAD superfamily can be further divided into three subfamilies (Figure 4-1) 

according to the presence and the location of a second domain known as the “cap 

domain” (Morais et al. 2000; Zhang et al. 2002). Both type I and II subfamily members 

utilize the cap domain to shield the active site from bulk solvent and to achieve substrate 

recognition (Allen et al. 2004). The type III HAD superfamily, including the Scp/Fcp 

family, do not have a cap domain, requiring specificity achieved through alternative 

strategies, such as recruitment of other regulatory proteins. This feature poses an 

additional challenge for inhibitor design. In fact, no specific inhibitors have been reported 

to date for type III HAD family members. 

The complex structure of Scp1 bound to its substrate peptide has previously been 

solved (Zhang et al. 2006), and the snapshots of the phosphoryl-transfer reaction at each 

step and the formation of the phospho-aspartyl intermediate were captured using X-ray 

crystallography and the reaction mechanism of Scps was established (Zhang et al. 2010). 
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These crystallographic and biochemical studies not only provided insights into the 

catalytic mechanism of Scp/Fcp, but also hinted a novel strategy of specific recognition 

of substrates by Scps. The complex structure of Scp1 bound to its substrate peptide 

revealed a hydrophobic binding pocket which is specific for Scps, suggesting that a 

specific Scp inhibitor might be obtained through targeting this pocket (Zhang et al. 2006). 

In the present study, we exploited this possibility and identified rabeprazole as the first 

reported lead compound for Scp inhibition (Ki = 5 ± 1 µM). This small molecule shows 

no inhibition towards Fcp1 or Dullard, nor towards bacteriophage lambda Ser/Thr 

phosphoprotein phosphatase (λPPase). This extraordinary selectivity can be explained 

through analysis of our high resolution structure of Scp1 complexed with the compound, 

which shows, as expected, the compound binds specifically to the unique hydrophobic 

binding pocket of Scps. The structure highlights the chemical functional groups that 

make essential contributions to binding. To the best of our knowledge, this is the first 

selective lead compound for the Scp/Fcp phosphatase family, as well as the type III HAD 

family. 
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Figure 4-1: Representative family members of HAD super family.18 

                                                 
18 (a) Type I family member β-phosphoglucomutase (PDB code: 1o08), (b) Type II family member 
phosphatase TM0651 (PDB code: 1nf2), (c) Type III family member Scp1 (PDB code: 2ght). The 
conserved core domain is colored in lime, and the portion that does not align structurally is colored in gray.  
Mg2+ is shown in violet to indicate the active site. 
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RESULTS AND DISCUSSION 

Human Scps as target for inhibitor identification 

Phosphatases have historically proven to be difficult targets for inhibitor design. 

The difficulty stems from three major challenges in inhibitor design: (1) affinity: the 

binding pockets of phosphatases tend to be small, and therefore limit potential molecular 

interactions; (2) specificity: the substrate-specificities of phosphatases tend to overlap, 

creating possibilities for cross inhibition; (3) permeability: the mimicry of the charged 

phosphate group, which is key to recognition by phosphatases, often prevents the 

compounds from penetrating cell membranes. Owing to these difficulties, one of the best 

phosphatases inhibitors, I-C11, inhibits its target lymphoid-specific tyrosine phosphatase 

(Lyp) with a Ki of 2.9 ± 0.5 µM and shows some degree of promiscuity (Yu et al. 2007). 

With hundreds of Ser/Thr PPases and protein tyrosine phosphatases identified, the 

specific inhibitors reported are very limited. The most potent inhibitor for any 

phosphatase is a small molecule reported recently which targets T cell protein tyrosine 

phosphatase with a Ki of 4.3 ± 0.2 nM and a minor degree of cross inhibition (Zhang et 

al. 2009). 

The newly discovered Scps might prove to be viable targets for inhibitor design. 

First, the structure of Scp1 bound to its natural substrate phosphorylated CTD peptide 

reveals a spacious substrate-binding area compared to that of other phosphatases (Figure 

4-2a). Most notably, there is a hydrophobic pocket unique to Scps that specifically 

recognizes the Pro3 of the CTD and is about 7 Å away from the active site where the 

phosphate group binds (Figure 4-2a). Compounds that target this hydrophobic pocket are 

expected to have high binding affinities due to ample opportunities of making molecular 

contacts. Secondly, cross inhibition of close family members might be prevented by 

targeting this hydrophobic pocket since it is unique to Scps. The hydrophobic pocket is 
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located between the three-stranded β sheet insertion domain and the core domain. Many 

of the hydrophobic residues lining a part of the hydrophobic pocket are from the insertion 

domain which is unique to the Scp/Fcp family and is highly diversified within Scp/Fcp 

family members (Figure 4-2b). There is no sequence similarity between Scp, Fcp, 

Dullard and other family members in the insertion domain (Figure 4-2c). Finally, the 

affinity provided by binding to the hydrophobic pocket might mitigate the necessity of 

having a charged moiety to mimic phosphate, making the prospect compound more 

membrane-permeable. By considering these unique advantages of Scps, we reasoned that 

Scps might be feasible targets for selective and high affinity inhibitor design. 
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Figure 4-2: The hydrophobic binding pocket is unique to Scps.19 

                                                 
19 (a) The complex structure of Scp1 and a CTD-derived peptide (PDB code: 2ght). The active site 
DXDXT motif is shaded with pink color and the hydrophobic pocket residues are shaded with blue color. 
(b) Domain construct of human CTD phosphatases Scp1 (NCBI accession number: AAH12977), Scp2 
(AAH65920), Scp3 (NP_005799), Dullard (AAH09295), Fcp1 (AAC64549) and S. pombe Fcp1 
(NP_594768). Each domain is represented by a colored block. The catalytic domain is colored in light blue. 
The insertion domain, which is partially conserved, is colored in yellow. (c) The zoom-in figure of the 
insertion domain alignment. The upper panel shows the secondary structure of human Scp1 insertion 
domain, and the lower panel shows the secondary structure of S. pombe Fcp1 insertion domain. α indicates 
α helix, β indicates β sheet, and η indicates 310 helix. 
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Identification of Scp inhibitors 

Scps include three highly similar homologous family members in the human: 

Scp1, Scp2, and Scp3 (Yeo et al. 2003). Since no differences are found in the catalytic 

activities or biological functions of Scp1–3, they are thought to be functionally redundant 

(Yeo et al. 2005). Our structural studies of Scp1, 2 and 3 show little overall structural 

difference and no observable difference at the active site (Zhang Y, unpublished data). 

Furthermore, they display identical kinetic characteristics against para-nitrophenyl 

phosphate (pNPP) and phosphorylated CTD peptide (Kim Y and Dixon JE, personal 

communication). Therefore, we chose the best-characterized family member, Scp1, in the 

following studies. 

In order to identify the inhibitors for Scps, we screened a pilot library of the NIH 

clinical collection (~400 compounds) and spectrum collection (2000 compounds) for 

their ability to impede phosphatase activity of Scp1. The screening assay was performed 

using pNPP as the substrate at a concentration comparable to its Km (~6 mM). It was 

confirmed that Scp1 was stable under the assay conditions and can tolerate up to 10% 

DMSO. A Z’ factor of 0.87 was obtained using the optimized screening protocol.  

Thirty-nine compounds showed greater than 70% inhibition when screened at a 50 µM 

inhibitor concentration.   

To eliminate the false positives, we compared our initial hits with the 

collaborative drug discovery database (CDD) and identified eight compounds that are 

sufficiently soluble and less likely to be false positives. To further confirm the inhibitory 

effect of the compounds, we used a secondary assay to monitor phosphatase activity, 

where the CTD-derived phosphorylated peptide 

(Sa5Pa6Sa7Yb1Sb2Pb3Tb4Sb5Pb6Sb7Yc1Sc2Pc3Tc4phospho.Sc5Pc6Sc7) was used as the substrate 

and malachite green reagent was used to capture the released phosphate, and in doing so 
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produce a colorimetric signal. Five of the eight compounds showed inhibition for Scp1 

when using the natural substrate in the assay. Rabeprazole (Figure 4-3a), which showed 

the strongest inhibition, was further characterized to exhibit an IC50 of 4 ± 0.7 µM in the 

pNPP assay and 9 ± 3 µM in the malachite green assay, where the concentration of pNPP 

and phosphorylated peptide were 6 mM and 30 µM, respectively, close to their respective 

Km values (Figure 4-3b). To eliminate the possibility that the inhibitory effect of the 

compound was caused by protein denaturation, the thermal stability of Scp1 in the 

absence or presence of rabeprazole was tested in differential scanning fluorimetry assay 

(Niesen et al. 2007). Under the measurement condition, the melting temperature of Scp1 

is 57.8 °C and 59.1 °C in the absence and presence of the compound, respectively. This 

result excludes protein destabilization as the mechanism for the observed inhibitory effect 

of rabeprazole on Scp1 (Figure 4-4). 
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Figure 4-3: Inhibition of Scp1 by rabeprazole.20 

                                                 
20 (a) Structure of rabeprazole. The benzimidazole ring is in black. The methyl pyridine ring and methyl 
sulfinyl groups are in red. The methoxypropoxy tail is in blue. (b) Concentration-response of rabeprazole 
inhibition towards Scp1 tested by the pNPP assay and the malachite green assay. IC50 values were derived 
by fitting the data to the equation (1) in Materials and Methods. (c) Steady-state kinetics of Scp1 in the 
presence (blue) and absence (red) of rabeprazole. Inhibition constants were derived by fitting the data to 
equation (2) in Materials and Methods. 
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Figure 4-4: Melting curves measured by differential scanning fluorimetry (DSF).21 

In order to probe the mechanism of inhibition, the steady-state kinetics using both 

the pNPP and malachite green assays were determined. Kinetic analysis revealed that the 

compound is a mixed inhibitor for Scp1 against pNPP. The inhibition constants Ki and 

Ki’ of the compound was determined to be 5 ± 2 µM and 10 ± 2 µM using pNPP as the 

substrate. Interestingly, when the CTD-derived phosphorylated peptide was used as the 

substrate, rabeprazole exhibited characteristics of a competitive inhibitor: while the Ki 

was determined to be 5 ± 1 µM, the Ki’ was at least ten times higher than Ki, and could 

not be precisely determined (Figure 4-3c). Rabeprazole very likely directly competes 

with the natural substrate CTD peptide in binding to Scp1. 

                                                 
21 The samples are Scp1 only at 20 µM final concentration (a), Scp1 with 1% DMSO (b), Scp1 with 
rabeprazole at 100 µM final concentration plus 1% DMSO (c), and Scp1 with 17-mer peptide at 1mM final 
concentration (d). Each measurement was done in duplicates. 
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Complex structure of Scp1 and rabeprazole 

To understand the inhibition mechanism of rabeprazole at the molecular level, we 

attempted to obtain the structure of Scp1 and rabeprazole by X-ray crystallography. 

Unfortunately, crystals derived from the published conditions proved to be too fragile 

upon compound soaking. We therefore identified new crystallization conditions for 

wildtype Scp1 which yielded Scp1 crystals in much higher quality (see Materials and 

Methods). Unlike the original conditions, with high concentration of ammonium sulfate 

as precipitant, the crystals grown from the new polyethylene glycol (PEG)-based 

conditions are much more durable upon compound soaking. The complex structures were 

obtained by soaking the Scp1 crystals in buffer containing 0.1–1 mM rabeprazole and 

incubating for various amounts of time at 25 ºC. After optimization of soaking 

conditions, the crystals soaked in ~0.5 mM rabeprazole for 2–3 hr were used in X-ray 

data collection with good diffraction quality (Table 4-1).   

In all the data collected from multiple crystals, a strong area of electron density 

was observed at the hydrophobic pocket for recognition of the Pro3 of CTD substrate 

(Figure 4-5a). The final structure of the Scp1-rabeprazole complex was refined to 2.35 Å 

with the protein portion of the structure highly identical to apo Scp1 (Figure 4-6). 

Between the two molecules in each asymmetric unit, molecule A shows strong and 

consistent positive density at the active site, indicating effective compound binding. In 

comparison to molecule A, the density at the active site of molecule B is much weaker. 

Our subsequent discussion of protein and ligand interaction focuses on molecule A in 

which a better model can be generated based on the diffraction data. 
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Data collection Scp1-rabeprazole complex 

Space group C2 

Cell dimensions:           a, b, c (Å) 125.5, 78.3, 62.7 

                     α, β, γ (°) 90.0, 111.9, 90.0 

Resolution (Å) 50–2.35 (2.39–2.35) 

No. of unique reflections 21285 

Rsym or Rmerge (%) 10.0 (39.7) 

I/σ(I) 11.4 (1.6) 

Completeness (%) 90.2 (47.3) 

Redundancy 3.1 (2.2) 

Refinement  

Resolution (Å) 64.95-2.35 

No. of reflections (test set) 20188 (1097) 

Rwork / Rfree (%) 20.7/26.5 

No. of atoms:              Protein 2928 

                         Ion 2 

                         Ligand 25 

                         Water 112 

B-factors (Å2):              Protein 32.0 

                          Mg2+ 28.0 

                          Ligand 52.5 

                          Water 34.6 

R.m.s deviations:   Bond lengths (Å) 0.020 

                 Bond angles (°) 1.977 

Ramachandran plot (%): Most favored 85.7 

               Additionally allowed 13.7 

                 Generally allowed 0.3 

Table 4-1: Crystallographic data statistics.22 

                                                 
22 Highest resolution shell is shown in parenthesis. Rfree is calculated with 5% of the data omitted. 
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Figure 4-5: Complex structure of Scp1 and rabeprazole.23 

                                                 
23 (a) Structure of rabeprazole bound to Scp1 with the blue SIGMAA-weighted 2Fo-Fc electron-density 
map contoured at 1σ shown in stereo. (b) Surface representation of rabeprazole bound to the hydrophobic 
pocket of Scp1. (c) Superimposition of Scp1-rabperazole complex and Scp1-CTD peptide complex (PDB 
code: 2ght). The protein portion is identical. The hydrophobic pocket residues are shown in stick in cyan. 
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Figure 4-6: The SIGMAA-weighted Fo-Fc electron density map of Scp1 contoured at 
1.7σ. 

The total buried contact area of Scp1 upon rabeprazole binding is about 279 Å2. 

The shape complementarily (Sc) value is calculated to be 0.54 which indicates a good 

shape complementarity between the protein and ligand surfaces (an Sc value of 1 reflects 

a perfect fit). The most distinguishing characteristic of the compound binding is the site 

of interaction of the methyl pyridine ring at the hydrophobic pocket surrounded by 

Tyr158, Phe106, Val118, Ile120, Val127 and Leu155 (Figure 4-5b, c). The distances 

between the methyl pyridine ring and surrounding key residues are within 3.5–4.5 Å. The 

binding to this hydrophobic pocket is noteworthy as this “insertion domain” is unique for 

Scps and is believed to be the major structural element for the specific recognition of Pro3 

of the CTD (Zhang et al. 2006). Since the compound binds to the hydrophobic pocket of 

Scp1, it is likely to prevent Pro3 of the substrate from binding to the protein, explaining 

why the compound resembled a competitive inhibitor to Scp1 when the peptide was used 

as the substrate (Figure 4-5c). To further validate the binding mode of rabeprazole 

binding to Scp1, mutagenesis study around the hydrophobic binding pocket was 
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performed. Four mutants, including F106E, V127A, K157A and L155A, were tested by 

the pNPP assay. The IC50 of rabeprazole when tested against each mutant was derived 

from the concentration-response curve (Figure 4-7). It is clearly shown that F106E 

mutant increased IC50 by at least ten fold. The other mutants, V127A, K157A and 

L155A, all have moderately increased IC50, indicating some degree of loss of inhibition. 

The mutagenesis results show that the hydrophobic residues in the insertion domain are 

very important for inhibition of Scp1 by rabeprazole. 

The interaction of the sulfoxide group of rabeprazole and Tyr158 side chain 

resembles a cation-π interaction where the electron-rich π cloud of the phenyl ring of 

Tyr158 interacts with the partially positively charged sulfur of rabeprazole. Cation-π 

interactions are not uncommon in protein-inhibitor interactions and have been recognized 

as an important noncovalent interaction in structural biology (Dougherty 1996; Scrutton 

et al. 1996; Ma et al. 1997; Gallivan et al. 1999). For instance, the horse liver alcohol 

dehydrogenase is bound by its inhibitor sulfoxides through a cation-π interaction between 

the inhibitor and the benzene ring of Phe93 of the enzyme (Cho et al. 1997). In our 

structure, the sulfur atom locates directly over the phenyl ring of Tyr158. The distance 

between the sulfur atom and the center of phenyl ring is about 4 Å, which is within the 

range of typical distance for “amino-aromatic” interactions (Burley et al. 1986). Indeed, 

when we eliminated this cation-π interaction by mutating Tyr158 to Ala, a loss of 

inhibition by at least ten fold was observed when tested by the pNPP assay (Figure 4-7). 
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Figure 4-7: Inhibition assay of Scp1 mutants.24 

It is likely that not all functional groups of rabeprazole contribute to Scp1 binding. 

Unlike pyridine ring and sulfoxide, the benzimidazole ring showed little if any electron 

                                                 
24 (a) Steady-state kinetics of Y158A, F106E, V127A, K157A and L155A tested by the pNPP assay. (b) 
Concentration response of rabeprazole inhibition towards Y158A, F106E, V127A, K157A and L155A 
determined by the pNPP assay. 
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density which suggests that this portion is flexible in our structure. Accordingly, the 

refinement of this part of the structure presents a higher thermal factor than the active site 

residues, thus we rebuilt our model with the benzimidazole ring as 50% occupancy. The 

refinement puts the group in a position that extends it outward of the active site, 

contributing little to the recognition of the inhibitor. In addition, the methoxypropoxy 

“tail” portion also showed partial densities consistently in multiple crystals. Although 

there are two oxygen atoms on the “tail”, no identifiable polar interactions were observed 

in our structure. It may also form hydrophobic interactions with the pocket, and the 

distances between the “tail” and surrounding hydrophobic residues are within 4–4.4 Å. 

It should be noted that the rabeprazole used in our structural studies is a mixture 

of two enantiomers with the sulfur as the chiral center. However, only (R)-rabeprazole 

can be built into the electron density whereas the S enantiomer does not fit the density 

well (Figure 4-8). We predict that only the R enantiomer binds the protein and exerts 

inhibitory effect. 

 

Figure 4-8: Model of (S)-rabeprazole bound to Scp1.25 

                                                 
25 The distance between the main chain oxygen of Ser104 and the benzoimidazole ring is 3.3 Å. 
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Selectivity of rabeprazole 

To evaluate the specificity of rabeprazole as a Scps inhibitor, we tested its 

inhibition against other Scp/Fcp family phosphatases including Fcp1 and Dullard, whose 

inactivation usually lead to cell death or improper development (Chambers et al. 1994; 

Archambault et al. 1997; Kobor et al. 1999; Satow et al. 2002). Such tests are not only 

important to evaluate the potential value of rabeprazole in biological applications, but 

also crucial for confirming the mechanism of the inhibition. In the Scp/Fcp phosphatase 

family, all enzymes share the same signature motif DXDX(T/V) for phosphoryl transfer. 

They all belong to the HAD superfamily (also called DXDX(T/V) superfamily) type III 

subfamily which predominantly act on protein substrates (Allen et al. 2004). 

The possible off-target inhibitory effect of rabeprazole was tested on the closest 

homologues of Scps: Schizosaccharomyces pombe (S. pombe) Fcp1 (Hausmann et al. 

2003; Ghosh et al. 2008) and human Dullard.  His-tagged S. pombe Fcp1 and His-GST-

tagged Dullard were purified to homogeneity and exhibit stable phosphatase activity 

(Figure 4-9). The steady-state kinetic studies of these enzymes were performed. The Km 

for Fcp1 and Dullard were determined to be 15 ± 3 mM and 10 ± 2 mM respectively, 

comparable with previously reported values (Hausmann et al. 2003; Kim et al. 2007). The 

concentration-response of inhibition was tested for both proteins using substrate 

concentrations comparable to the Km. No inhibition was observed for either enzyme when 

up to 0.1 mM rabeprazole was used (Figure 4-10a). 
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Figure 4-9: Steady-state kinetics of His-tagged Fcp1 and His-GST-tagged Dullard.26 

The observed specificity of rabeprazole can be explained structurally. The major 

interactions of rabeprazole with Scp are attributed to the insertion domain which is 

unique to the Scp/Fcp family and poorly conserved among the family member (Figure 4-

2c). For example, the three-stranded β sheet insertion domain in Scp1 is accessible for 

substrate recognition, whereas in Fcp1 it exhibits a different secondary structure and is 

buried by a helical insertion domain, suggesting a different binding interface between 

Fcp1 and the CTD with phospho.Ser2 (Figure 4-10b). Even though the Dullard structure 

has yet to be determined, the secondary structure is predicted to be different from the 

three-stranded β sheet as observed in Scp1. It is highly likely that rabeprazole does not 

inhibit human Dullard due to a different insertion domain in Dullard. 

Rabeprazole also exhibits no inhibition of λPPase, a Ser/Thr PPases outside the 

Scp/Fcp family, at up to 1 mM concentration (Data not shown). 

 

 

 

                                                 
26 The red data points in both plots indicate the no enzyme control of the pNPP reaction. 
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Figure 4-10: Inhibition of Fcp1 and Dullard by rabeprazole.27 

                                                 
27 (a) Concentration-response of rabeprazole inhibition towards S. pombe Fcp1 and human Dullard tested 
by the pNPP assay. (b) Superimposition of Scp1 (white) and S. pombe Fcp1 FCPH domain (pink, PDB 
code: 3ef0). The catalytic core folds of the two proteins are similar. The three-stranded β sheet insertion 
domain of Scp1 (cyan) is accessible for substrate recognition, whereas the insertion domain of Fcp1 
(yellow) exhibits different secondary structure and is buried by an additional helical insertion domain (light 
blue). 
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We next determined if rabeprazole analogues also exhibit inhibitory effect on 

Scps (Figure 4-11). Rabeprazole sulfone, a metabolite of rabeprazole (Klotz 2000) did 

not show any inhibition in our concentration-response assay (data not shown). The 

absence of inhibition might stem from the loss of cation-π interaction between the 

sulfoxide group and Tyr158 with the extra oxygen in rabeprazole sulfone. The result 

further demonstrates that the sulfoxide group is important for the Scp1-rabeprazole 

interaction and should be kept intact. 

Rabeprazole N-oxide (Figure 4-11), a contaminate during the rabeprazole 

synthesis process (Reddy et al. 2009), also exhibited no inhibition towards Scp1. It is 

likely that the change of the methyl pyridine ring interrupts or weakens the van del Waals 

interactions originally existing between the hydrophobic pocket residues and rabeprazole. 

Likewise, lansoprazole (marketed as Prevacid in U.S., Figure 4-11) which only 

differs from rabeprazole at the tail portion, showed no inhibition, probably because the 

electrons of pyridine ring are dramatically influenced by converting the ether to the 

trifluoromethyl group. It is equally likely that the shorter tail and significant change in 

hydrophobicity disrupt important contacts. Since the pyridine ring is important in making 

hydrophobic interactions with the protein, the changed electron distribution or changed 

hydrophobicity will likely weaken the hydrophobic interactions. 

Taken together, these results not only demonstrate the excellent specificity of 

rabeprazole, but also validate our strategy of targeting the hydrophobic binding pocket 

adjacent to the active site. To the best of our knowledge, rabeprazole is the first reported 

selective inhibitor for the Scp/Fcp family proteins, and also for the type III HAD 

subfamily proteins. 
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Figure 4-11: Structures of rabeprazole analogues.28  

Considerations on the clinic application of rabeprazole 

Rabeprazole is the active ingredient of an FDA-approved antiulcer drug AcipHex 

which is used to treat gastroesophageal reflux disease (GERD). In acidic environment 

such as lumen of gastric parietal cells, rabeprazole inhibits its target H+/K+ ATPase by 

forming a covalent bond with the active site cysteine under acidic condition (pH around 

1). Rabeprazole behaves as a pro-drug for GERD and only becomes activated in highly 

acidic condition through two protonations and a subsequent spontaneous rearrangement 

to form the active sulfenamide (Figure 4-12) (Roche 2006). However, we reason that 

rabeprazole does not inhibit Scp1 through this mechanism, since no cysteines participate 

in the catalysis of Scp1 and no covalent bond between rabeprazole and Scp1 was 

                                                 
28 The differences between the analogues and rabeprazole are indicated by thick lines. 
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observed in the complex structure (crystals obtained at neutral pH). This reasoning is 

corroborated by the fact that lansoprazole, another a proton pump inhibitor that shares the 

same mechanism with rabeprazole in treating GERD, does not inhibit Scp1. 

 

Figure 4-12: Mechanism of rabeprazole sodium inhibition of Cys-based enzymes. 

Further development of inhibitors with higher binding affinity 

Based on the complex structure of Scp1 and rabeprazole, further development of 

Scps specific inhibitors with higher affinity should be attainable. The important groups of 

this lead compound contributing to the binding are the methyl pyridine ring and methyl 

sulfinyl moieties. The benzimidazole ring seems to play little positive role if not 

hindering the compound binding, therefore, its replacement by other groups should be 

desirable. In our structure, no interaction of rabeprazole with the DXDX motif was 

observed. Further optimization can be explored by keeping the methyl pyridine ring and 

methyl sulfinyl groups of rabeprazole intact but changing other portions to explore 

interactions with the active site pocket.     

In conclusion, we successfully identified the first selective lead compound for the 

inhibition of Scps in our high-throughput screening efforts. Our kinetic and structural 
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analyses further confirmed its inhibitory effect towards Scp1 but not its close family 

members, Fcp1 and Dullard. Thus, rabeprazole represents the first specific inhibitor for 

Scp/Fcp family phosphatases and also the first inhibitor for type III HAD family 

members. The complex structure of Scp1 bound with rabeprazole clearly shows the 

binding mode of the small molecule. As we expected, rabeprazole binds to the unique 

hydrophobic pocket of Scps which, in natural context, binds to Pro3 of the CTD peptide. 

Since the hydrophobic pocket is located at the insertion domain which is unique to 

Scp/Fcp family members and shows diverse sequence among those family members, 

cross inhibition of other family members is prevented. The pyridine ring and sulfoxide 

groups are essential for this compound binding to Scp1. Other groups which may not 

substantially contribute to the binding can be optimized to make more potent inhibitors. 

The present study provides a starting point for the development of new inhibitors of Scps 

that can induce neuronal stem cell differentiation, which is of great interest in both basic 

and clinical research. 

MATERIALS AND METHODS 

Materials  

pNPP was purchased from Fluka, Sigma-Aldrich. CTD peptides were purchased 

from Anaspec. SYPRO orange dye was purchased from Invitrogen. The S. pombe Fcp1 

cDNA was purchased from National BioResource Project (NBRP)-Yeast Genetic 

Resource Center (Osaka City University, Osaka, Japan). Malachite green reagent was 

purchased from BIOMOL, Enzo Life Sciences. Rabeprazole and rabeprazole analogues 

were purchased from Toronto Research Chemicals, Inc., and the identity and purity of 

each compound was confirmed by our in-house mass spec facility. 
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Cloning, protein expression and purification 

Wildtype or mutant human Scp1, residues 77–256, was sub-cloned and expressed 

in E.coli BL21(DE3) strain using pHIS8 vector encoding a thrombin cleavable N-

terminal octa-histidine tag (Jez et al. 2000). The expression of Scp1 was induced in E.coli 

at low temperature (16 °C) with 250 µM IPTG and allowed to accumulate to high levels 

overnight (16 hr). Cells were harvested and re-suspended in lysis buffer (0.5 M NaCl, 15 

mM imidazole, 50 mM Tris-HCl pH 8.0, 10% (v/v) glycerol and 0.1% (v/v) Triton X-

100). Then the cells were sonicated. After sonication, cell debris was removed by 

centrifugation. The supernatant was incubated with Ni2+-NTA affinity beads at 4 ºC for 

20 min, then loaded onto a column and washed extensively with the lysis buffer minus 

Triton X-100. Nearly homogeneous Scp1 was eluted with the lysis buffer minus Triton 

X-100 but including 150 mM imidazole. Eluted protein was dialyzed into 25 mM Tris-

HCl pH 8.0, 50 mM NaCl, 10 mM β-mercaptoethanol and stored at a concentration of 2 

mg/ml at 4 °C. Samples for protein x-ray crystallography were subjected to thrombin 

processing to remove the octa-histidine tag followed by size exclusion chromatography 

for final cleanup. These samples were stored in 20 mM Tris-HCl pH 8.0, 50 mM NaCl, 

10 mM β-mercaptoethanol at a concentration of 8–10 mg/ml at –80 °C. 

Wildtype S. pombe Fcp1, residues 148–641, was also sub-cloned into pHIS8 

vector. Wildtype human Dullard, residues 46–244, was sub-cloned into engineered 

pET28 vector encoding a 3C protease cleavable N-terminal His-GST tag. The expression 

and purification of human Dullard and yeast Fcp1 followed the same protocol as Scp1 

with minor modifications. The protein samples were stored in the buffer containing 20 

mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM β-mercaptoethanol and 10% glycerol. 
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High-throughput screening 

The high-throughput screening was performed in 384-well plates using pNPP as 

the substrate. We screened a library of NIH clinical collection (~400 compounds) and 

spectrum collection (2000 compounds) in our local high-throughput facility TI3D. The 

proteins were pre-incubated in the presence of 50 µM compounds in 0.8% DMSO at 

room temperature for 10 min. All the screening reactions (10 µl) were carried out at 

37 °C in Master Buffer (50 mM Tris-acetate pH 5.5, 10 mM MgCl2, 0.02% Triton X-100, 

0.5% DMSO) with 25 ng of Scp1, and pNPP concentration at its Km (6 mM). The 

reactions were quenched by addition of 40 µl of 0.25 N NaOH after 10 min of reaction.  

Release of pNP was determined by measuring absorbance at 410 nm. 

pNPP assay 

The activity of each phosphatase toward pNPP in the absence or presence of 

inhibitor was measured in Assay Buffer (50 mM Tris-acetate pH 5.5, 10 mM MgCl2, 

0.02% Triton X-100, 1% DMSO) with appropriate amount of protein (50 ng of Scp1 or 

Scp1 mutants, 5 µg of Dullard or Fcp1) at 37 oC in 20 µl volume. When inhibitor was 

included, protein and inhibitor were pre-incubated in Assay Buffer at room temperature 

for 10 min in 15 µl volume. After 10–15 min of reaction, the reactions were quenched by 

adding 80 µl of 0.25 N NaOH. Released pNP was quantified by measuring absorbance at 

410 nm. 

Malachite green assay 

The activity of Scp1 toward 17-mer Ser5-phosphorylated peptide 

(Sa5Pa6Sa7Yb1Sb2Pb3Tb4Sb5Pb6Sb7Yc1Sc2Pc3Tc4phospho.Sc5Pc6Sc7) in the absence or 

presence of inhibitor was measured in Assay Buffer with 5 ng of Scp1 at 37 oC in 20 µl 

volume. When inhibitor was included, protein and inhibitor were pre-incubated in Assay 
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Buffer at room temperature for 10 min in 15 µl volume. After 3 min of reaction, the 

reactions were quenched by adding 40 µl of malachite green reagent. The release of free 

inorganic phosphate was determined by measuring the absorbance at 620 nm. 

Determination of steady-state and inhibition constants 

The raw absorbance readings were exported to Excel for further processing. For 

all reactions, a corresponding mock reaction containing everything but the protein was set 

up. The absorbance reading of a mock reaction was treated as background and used to 

subtract the raw absorbance readings of the corresponding true reaction, resulting in a 

processed absorbance reading caused by the product of the reaction. In the following text 

the term ‘absorbance’ is used to refer to ‘processed absorbance reading’. When 

necessary, the absorbance was converted to concentration of product using a standard 

curve that was established beforehand. 

To determine the IC50 of rabeprazole towards Scp1 (or Scp1 mutants), the relative 

activity of enzyme were determined by dividing the absorbance at each inhibitor 

concentration by the absorbance of positive control ([I] = 0). The relationship between 

the relative activity of enzyme and inhibitor concentration was fitted to the equation (1), 
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where Y is relative activity of enzyme, x is the inhibitor concentration, H is hill 

coefficient. 

To determine steady-state constants (Vmax and Km) and inhibition constants (Ki 

and Ki’), the initial rate of reaction was obtained by dividing the product concentration by 

incubation time. The linearity of kinetics during such periods of time had been 

confirmed. The Vmax and Km values were obtained by fitting initial rates v.s. substrate 
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concentrations (in the absence of inhibitor) into Michaelis-Menten equation. Once the 

Vmax and Km are determined, the initial rates v.s. substrate concentrations in the presence 

of inhibitor at its IC50 were fitted into equation (2): 
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where V and [S] are initial rate and substrate concentration, respectively; Vmax and Km are 

pre-determined; α and α' are used to calculate Ki and Ki’ using equations (3) and (4): 
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All non-linear fittings were carried out using the ‘nlinfit’ function of Matlab. 

Differential scanning fluorimetry 

The method was modified based on a published protocol (Niesen et al. 2007). 

Wildtype Scp1 was mixed with rabeprazole in the reaction containing 20 mM HEPES 

pH7.5, 50 mM NaCl, 1% DMSO, and 5× SYPRO orange dye. The final concentrations of 

protein and rabeprazole were 20 µM and 100 µM, respectively. The unfolding process of 

protein was monitored during the temperature increase from room temperature to 85 °C 

by LightCycler 480 machine (Roche). The protein only, protein with 1% DMSO and 

protein with 1 mM peptide were used as controls. The denature process of the protein was 

fitted into a monophase graph and the Tm was derived using the LightCycler 480 Protein 

Melting Software. 

Crystallization and structure determination  

Wildtype Scp1 was crystallized in 30% PEG 3350 and 0.2 M magnesium acetate. 

Crystals were transferred to a stabilizer consisting of the same buffer condition and 0.1–1 

mM inhibitor. After soaking for 2–12 hrs, crystals were transferred to a cryo-protecting 
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stabilizer containing 30% (v/v) glycerol, 25% (w/v) PEG 3350, and 0.2 M magnesium 

acetate. After a brief period of equilibration, crystals were frozen in nylon loops in liquid 

nitrogen and stored in liquid nitrogen prior to data collection. Crystallographic data were 

collected at 100 K on beam-line 5.0.2 of the Advanced Light Source (ALS). Diffraction 

data were processed with HKL2000 (Otwinowski et al. 1997). The complex crystal 

structures of Scp1 were determined by molecular replacement (MR) using the Scp1D96N 

structure as a search model (PDB code: 2ghq) using the program PHASER (McCoy et al. 

2007) available in the CCP4 software package (CCP4 1994). MR solutions were refined 

using REFMAC5 (Vagin et al. 2004), reserving 5% of the measured and reduced 

structure factor amplitudes as an unbiased test set for cross validation (Rfree) (Brunger 

1992). The inhibitor library was created by SKETCHER also available in the CCP4 

software package. The model was built by COOT (Emsley et al. 2004) and refined by 

REFMAC5. The buried contact area of Scp1 by the compound and shape 

complementarity (Sc) were calculated by AREAIMOL (Lee et al. 1971) and SC 

(Lawrence et al. 1993) available in the CCP4 software package. 

ACCESSION CODE 

Coordinates of the Scp1-rabeprazole complex structure have been deposited in the 

Protein Data Bank with the accession number 3PGL. 
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Chapter 5:  Potential Secondary Regulatory Site of Scp1 

INTRODUCTION 

Accurate transcription of genetic information is essential for cell survival. In 

eukaryotes, the major player of transcription is RNA polymerase II, responsible for the 

transcription of protein-coding genes as well as mammalian snRNA genes and yeast 

snoRNA genes (Egloff et al. 2008). The C-terminal domain (CTD) of RNA polymerase II 

forms a tail-like peptide chain extended from the catalytic core and resides closed to the 

RNA exit channel of the enzyme. In addition, a wealth of evidence reveals that CTD is an 

important mediator in coupling mRNA transcription, mRNA processing, DNA repair and 

other cellular processes (Egloff et al. 2008). This unusual structure serves as a docking 

platform for a variety of factors involved in transcriptional and co-transcriptional events. 

Although the CTD undergoes very complicated modifications and regulates 

various cellular processes, the primary sequence of the CTD is surprisingly simple. The 

CTD consists of multiple tandem heptapeptide repeats of the consensus sequence: 

Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. The number of repeats is different from species to species 

(Egloff et al. 2008). There is a minimum length of the CTD, which is required for normal 

cell growth and function in many species (Chapman et al. 2007). All the transcriptional 

events are highly related to the conformations and modifications, particularly 

phosphorylation patterns, of the CTD. Different phosphorylation patterns are the major 

component of the “CTD code” which orchestrates the function of RNA polymerase II 

(Figure 5-1). Moreover, different phosphorylation patterns could specifically recruit 

essential factors to the vicinity of genes, conferring success and possessiveness of 

transcriptional and co-transcriptional events. 
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Figure 5-1: Schematic diagram of “CTD code” and its important role in modulating 
RNA polymerase II activity. 

Although there are five potential phosphorylation sites in the CTD consensus 

sequence, including Tyr1, Ser2, Thr4, Ser5 and Ser7, CTD phosphorylation occurs mainly 

at residues Ser2 and Ser5 in vivo (Figure 5-1). In each round of transcription, Ser5 

phosphorylation occurs in promoter-proximal regions coincident with initiation and 

facilitates mRNA capping via recruiting capping enzymes (Cho et al. 1997; Komarnitsky 

et al. 2000). During the process in which the transcription complex moves away from the 

initiation site, Ser5 gradually becomes hypophosphorylated, whereas Ser2 gradually 

becomes hyperphosphorylated. Ser2 phosporylation is the predominating pattern on both 

elongation and termination steps. Ser2 phosphorylation ensures efficient 3'-RNA 

processing by triggering the recruitment of 3'-RNA processing machinery. Ser2 and Ser5 
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phosphorylation have been extensively studied; however, until recently the biological 

functions of phosphorylation at sites other than Ser2 and Ser5 have not been fully 

addressed. Only recently, Tyr1, Thr4 and Ser7 have also been observed being 

phosphorylated in vivo in certain scenarios (Chapman et al. 2007; Hsin et al. 2011; 

Hintermair et al. 2012; Mayer et al. 2012). Two recent works suggest that Ser7 

phosphorylation occurs during transcription and is required for snRNA expression in 

humans. It is shown that Ser7 phosphorylation occurs on both mRNA and snRNA genes 

and facilitates interaction with the snRNA gene-specific integrator complex (Chapman et 

al. 2007; Egloff et al. 2007). 

A range of enzymes participate in the dynamic modifications of the CTD, 

including kinases and phosphatases responsible for the addition and removal of 

phosphates (Bataille et al. 2012). The CTD is principally phosphorylated by cyclin-

dependent kinases (CDKs). Specifically, Ser5 phosphorylation is mainly catalyzed by the 

general transcription factor IIH (TFIIH) which contains Cdk7/cyclin H subunits (Lu et al. 

1992; Hengartner et al. 1998); Ser2 phosphorylation is mainly catalyzed by the positive 

transcription elongation factor b (P-TEFb) which contains Cdk9/cyclin T subunits (Zhou 

et al. 2000; Shim et al. 2002). Intriguingly, it is suggested that Cdk9 also makes a 

contribution to Ser5 phosphorylation (Garber et al. 2000; Gomes et al. 2006) and the 

relative contribution of TFIIH-associated Cdk7 varies between different genes based on 

experimental observations. Moreover, the CTD can also be phosphorylated at both Ser2 

and Ser5 by Cdk8, and preferentially be phosphorylated at Ser5 by mitogen-activated 

protein kinase 2 (MAPK2/Erk2). Recently, TFIIH-associated Cdk7 kinase has also been 

identified to phosphorylate Ser7 in vivo (Glover-Cutter et al. 2009). 

Dephosphorylation negatively controls the activity of RNA polymerase II and 

makes a significant contribution to the changes in the “CTD code”. More importantly, it 
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is thought to be essential in recycling RNA polymerase II, because the CTD has to be 

dephosphorylated at the end of transcription in order to actively restart a new round of 

transcription. In humans, Transcription factor II F (TFIIF) interacting CTD phosphatase 1 

(Fcp1), which is required for general transcription and cell viability, was the first 

discovered CTD-specific phosphatase with the catalytic preference for phospho.Ser2. 

Later on, Ssu72 was identified to be a CTD-specific phosphatase, targeting on the 

phospho.Ser5 (Krishnamurthy et al. 2004). Like Fcp1, Ssu72 is also considered to be a 

house-keeping gene whose deletion will result in cell death in yeast. On the contrary, a 

group of phosphatases called small CTD phosphatases (Scp’s), which are also identified 

to dephosphorylate Ser5, function at the epigenetic level and regulate the expression of a 

subset of genes. Scp’s were identified to inhibit neuronal gene transcription in non-

neuronal cells by acting as a co-repressor in REST/NRSF complex (Yeo et al. 2005). 

Scp’s are expressed broadly in non-neuronal tissues but are largely excluded from the 

adult nervous system. The expression pattern of Scp’s in human tissues parallels with that 

of REST/NRSF [which stands for repressor element 1 (RE-1)-silencing transcription 

factor/neuron-restrictive silencer factor] complex, the best-characterized transcription 

factors that regulate the expression of neuronal genes globally. Interestingly, dominant 

negative form of Scp1 (Scp1D96N) can de-repress the neuronal differentiation. 

Although a large body of knowledge regarding the function of CTD has 

accumulated, there remains many questions to be answered in order to fully decipher the 

CTD code, for example, how the CTD enzymes are targeted to regulate general or gene-

specific transcription, how Scps respond to the bivalent modification marks, etc. 

Previously, we have shown the complex structures of Scp1 and CTD-derived peptides, 

providing a detailed binding mode of the CTD. Although CTD peptides with different 

lengths and phosphorylation patterns were soaked into the Scp1 crystals, the same 
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binding mode in multiple crystals was observed. The S2P3T4(p.S5) adopts a beta turn 

conformation which is recognized by the active site groove of Scp1. The trans Pro3 at the 

N-terminal of the phospho.Ser5, which is accommodated by the adjacent hydrophobic 

pocket, is crucial for the substrate specificity. However, one point worth mentioning is 

that the CTD is a very long tail and thus may have larger content area with Scp1. 

Therefore, in this study, we extended our studies to further investigate the binding mode 

of the CTD with Scp1 as well as how Scp1 functions on the CTD. Interesting 

observations were made based on X-ray crystallographic study. In addition, detailed 

kinetic studies were performed to further demonstrate the functional mode of Scp1 on the 

CTD. 

RESULTS AND DISCUSSION 

Complex structures of Scp1D96N mutant and the CTD-derived peptides 

Obtaining the complex structure of Scp1 and its substrate CTD is of necessity to 

understand how Scp1 recognizes and regulates the CTD. In our previous study, we 

crystallized the dominant negative mutant of Scp1, Scp1D96N, and the CTD peptides 

through crystal soaking method (Zhang et al. 2006). These peptides were different in 

length and modification (Table 5-1). The structures of multiple crystals complexed with 

different peptides were solved. There are two interesting observations from these crystal 

structures. Firstly, consistent with the kinetic study that Scp1 is much more active toward 

phospho.Ser5, only the phospho.Ser5 is observed in the active site whereas the 

phospho.Ser2 flips out of the active site, making no direct interaction with the protein 

(Zhang et al. 2006). Secondly, in both 9-mer and 14-mer phospho.Ser5 peptides, only 

eight residues [Sa7Yb1Sb2Pb3Tb4(p.Sb5)Pb6Sb7] showed strong electron density (Zhang et al. 

2006), indicating that this segment is stably bound by the protein. 
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Number Length Sequence 
Previous Structural Study 

1 9-mer                               Pa6Sa7Yb1Sb2Pb3Tb4(p.Sb5)Pb6Sb7 
2 9-mer                            Pa6Sa7Yb1(p.Sb2)Pb3Tb4(p.Sb5)Pb6Sb7 
3 14-mer               Ya1Sa2Pa3Ta4(p.Sa5)Pa6Sa7Yb1Sb2Pb3Tb4(p.Sb5)Pb6Sb7 
4 14-mer               Ya1Sa2Pa3Ta4Sa5Pa6Sa7Yb1(p.Sb2)Pb3Tb4(p.Sb5)Pb6Sb7 
5 14-mer               Ya1(p.Sa2)Pa3Ta4Sa5Pa6Sa7Yb1Sb2Pb3Tb4(p.Sb5)Pb6Sb7 

Current Structural Study 
6 17-mer          Sz5Pz6Sz7Ya1Sa2Pa3Ta4Sa5Pa6Sa7Yb1Sb2Pb3Tb4(p.Sb5)Pb6Sb7 
7 20-mer  Sz2Pz3Tz4Sz5Pz6Sz7Ya1Sa2Pa3Ta4Sa5Pa6Sa7Yb1Sb2Pb3Tb4(p.Sb5)Pb6Sb7 

Current Kinetic Study 
8 14-mer                  Ya1Sa2Pa3Ta4Sa5Pa6Sa7Yb1Sb2Pb3Tb4(p.Sb5)Pb6Sb7 
6 17-mer          Sz5Pz6Sz7Ya1Sa2Pa3Ta4Sa5Pa6Sa7Yb1Sb2Pb3Tb4(p.Sb5)Pb6Sb7 
9 17-mer       Sz5Pz6(p.Sz7)Ya1Sa2Pa3Ta4Sa5Pa6Sa7Yb1Sb2Pb3Tb4(p.Sb5)Pb6Sb7 

Table 5-1: CTD peptides used in the previous and current studies. 

 

But we reasoned that since the CTD is very long, there may be extended contact 

area between the CTD and Scp1 in the cells. To test this hypothesis, Scp1D96N mutant 

crystals were soaked in the buffer containing 17-mer or 20-mer synthetic peptide with a 

single phospho.Ser5 (Table 5-1). These two peptides contain two full repeats and several 

more residues at the N-terminus. Expectantly yet still intriguingly, in both crystals, we 

observed strong and beautiful electron density of seventeen residues from Serz5 to Serb7 

(Figure 5-2). The crystallographic statistics of the Scp1D96N and 17-mer peptide 

complex are summarized in Table 5-2. Compared with the previous complex structure of 

Scp1D96N and the 14-mer peptide, the complex structure of Scp1D96N and the 17-mer 

phospho.Ser5 peptide has nine more residues clearly shown, although only three more 

residues (Sz5Pz6Sz7) were included in the 17-mer peptide. The newly obtained complex 

structures implied the existence of larger contact area and more stable binding formed 

between Scp1 and the CTD. It is surprising to see such large contact area by extending 

only three residues of the peptide. It is possible that these three additional residues make 
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important interactions with the protein; however, it is also likely that these three residues 

are not very important per se but facilitate the interaction between other residues and the 

protein. Besides the original interactions observed in the previous structures, the 

additional eight residues largely form hydrophobic interactions with the protein. The 

phenol ring of Tyrb1 of the peptide and the side chain of Ile120 of Scp1 forms amino-

aromatic interaction (Figure 5-3). The Proa6 and the imidazole ring of His125 form a pi-

stacking interaction (Figure 5-3). There are also some hydrophilic interactions involved. 

For instance, the side chain of Sera7 is 2.6 Å away from the carbonyl oxygen of Asp121, 

indicating the possibility of forming hydrogen bonds (Figure 5-3). The total buried 

surface of the protein by binding to the peptide is about 701.3 Å2, and it has a surface 

complementarity (Sc) value of 0.814. 

Figure 5-2: Complex structure of Scp1 and the 17-mer peptide. 

Interestingly, in the crystal soaked with 17-mer peptide, a tetrahedral shaped 

electron density was observed in between the protein and the peptide. In the 

crystallization condition, there was an excess amount of ammonium sulfate as the 
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precipitant, therefore we built a sulfate group into the density. However, when 

considering the environment in the cell, this sulfate-binding pocket might incorporate a 

phosphate group of the phosphorylated CTD. If so, this interaction might position Scp1 in 

the vicinity of other phosphorylation sites on the CTD for essentially higher local 

concentration of substrate. Because of the close proximity between the observed sulfate 

group and Ser7, it is reasonable to hypothesize that phospho.Ser7 might occupy this 

pocket and recruit Scp1 to the CTD. Moreover, it also possible that such phospho.Ser7 

might function as a docking site for Scp1 so that Scp1 can catalyze the dephosphorylation 

of Ser5 on multiple sites of the CTD without dissociating from it (Figure 5-4). This 

notion is strongly fortified with the recent discovery that TFIIH can phosphorylate both 

Ser5 and Ser7, making the co-existence of phospho.Ser5 and Ser7 a very common species. 

Therefore, it is highly plausible that Ser7 phosphorylation might play a role in the 

phosphorylation state of Ser5. 

 

Figure 5-3: Some potential interactions between the 17-mer peptide and Scp1. 



 111 

 

Figure 5-4: Proposed processivity model of Scp1. 

Kinetic analysis of the possible processivity model of Scp1 dephosphorylation 

To initially examine whether the phospho.Ser7 can contribute to the substrate 

binding, we tested the steady-state kinetics of Scp1 toward these two peptide substrates: 

one with both Ser5 and Ser7 phosphorylated, and the other with only Ser5 phosphorylated 

(Table 5-1). If phospho.Ser7 enhances the reactivity of CTD peptide towards Scp1, some 

increase of activity, most likely through decreased Km, is expected. However, no 

difference was observed by comparing the kinetic parameters (Figure 5-5). There are two 

possibilities that can account for the data. One is that the Ser7 phosphorylation has no 

effect on the substrate binding since the alternative binding site may not recognize 

phospho.Ser7 at all. The other (unlikely but intriguing explanation) is that phospho.Ser7 

binds to the alternative binding site extremely tight so that the effect of this binding is not 

apparent in a multi-turnover reaction. If the second scenario is true, we would expect 
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dramatic processivity of Scp1 in true processivity assays. To perform these assays, 

phosphorylated substrates with multiple repeats were prepared. 

GST-CTD was used as a model substrate in our processivity assays. In this 

system, yeast full length CTD was expressed as a fusion protein with GST to mimic the 

native Rpb1-CTD as well as ensure good solubility. Previous studies have shown that 

Erk2-treated GST-CTD is phosphorylated at Ser5 in each repeat, and TFIIH-treated GST-

CTD is phosphorylated at both Ser5 and Ser7. If the kinase treatment is done in the 

presence of radio-labeled ATP, [γ-32P]ATP, we can then monitor the dephosphorylation 

of these two substrates by radioautography. The yeast GST-CTD was expressed in E.coli, 

purified to ≥90% homogeneity, and fully treated with TFIIH or Erk2 in the presence of 

[γ-32P]ATP. The treated substrates were used in the following experiments. 

 

Figure 5-5: Steady-state kinetics of Scp1 toward 17-mer Ser5Ser7 phosphorylated 
peptide and Ser5 phosphorylated peptide. 

We first tested the activity of Scp1 toward these two GST-CTD substrates 

(phosphorylated by Erk2 and TFIIH) by varying the protein concentrations while keeping 

the substrate concentration constant. The result clearly showed that the TFIIH-treated 

substrate, which has both Ser5 and Ser7 phosphorylated, is a better substrate for Scp1 
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(Figure 5-6). But whether this observation is due to the binding between the alternative 

binding site and phospho.Ser7 still remains a question. In order to test our processive 

model, a rapid dilution assay was performed. In this assay, Scp1 and TFIIH-treated GST-

CTD were mixed at high concentration, incubated for a short period of time, and then the 

mixture was diluted 50-fold with the buffer. After dilution, a fraction of the mixture was 

taken out at each time point, quenched by protein gel loading dye, and resolved by SDS-

PAGE. If our processive model is true, we would expect that the koff rate between the 

GST-CTD and the protein is very low. And in this case, if we allow the protein and 

substrate to bind with each other at high concentration, they should form very stable 

complex. Even if the mixture is diluted, they should still associate with each other and the 

reaction can proceed in the diluted mixture. However, it is important to make sure that 

new complexes between the protein and substrate are not formed in the diluted mixture. 

To make sure this is the case, in the control group, diluted GST-CTD and Scp1 were 

directly mixed to the final volume. 

 

Figure 5-6: Activity of Scp1 on the GST-CTD substrates treated with different kinases.  
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Our result showed that, after the dilution, the reaction no longer continued 

(Figure 5-7). If the binding pocket has a low koff, we would expect to see decreasing of 

band intensity over time in the rapid dilution group. However, this result did not 

completely disprove our model as there are two explanations for this result. One 

possibility is that the enzyme is distributive. The other possibility is that: the enzyme is 

processive and is extremely fast. The second scenario means that either the enzyme and 

substrate do not meet with each other, or when they meet, the enzyme completely 

dephosphorylates the substrate rapidly. 

To discriminate the above two possibilities, we performed a gel shift assay. The 

prerequisite of this assay is that GST-CTD substrates with different numbers of 

phosphorylations have different migration rates on SDS-PAGE and will appear at 

different positions on the gel. If our processive model is true, we should see two major 

species on the gel after dilution with one corresponding to fully phosphorylated GST-

CTD, the other corresponding to hypophosphorylated GST-CTD. On the contrary, if the 

enzyme is distributive, then we would expect to see a smear on the gel, indicating various 

intermediates with different numbers of phosphorylation sites. In this assay, the density 

of each band on the gel was converted to a peak for easy observation and analysis. The 

result showed that there were different intermediates present in the mixture over time as 

indicated by the peak shift (Figure 5-8). This experiment, together with the previous 

supporting experiments, demonstrates that Scp1 is a distributive enzyme rather than a 

processive enzyme when dephosphorylating TFIIH-treated CTD substrate. 
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Figure 5-7: The result of rapid dilution assay showed that the reaction no longer 
continued after the dilution.29  

The sulfate group may be a mimic of phosphate group from sites other than Ser7  

Though our kinetic analysis indicated that the sulfate group is not a mimic of 

phospho.Ser7 to confer processivity of Scp1, it could be a mimic of phosphate group from 

other sites. Since more and more modifications on the CTD have been discovered, the 

combinatory effects between two or more modifications of the CTD on its binding 

proteins seem plausible. We then wanted to see if any of the combinatory effects were 

present that could potential affect the dephosphorylation by Scp1. The possible 

phosphorylation sites other than Ser7 would be Tyr1 and Ser2. The synthetic peptides with 

both Ser5 and Tyr1 phosphorylated or Ser5 and Ser2 phosphorylated (Table 5-1) were 

used as substrates in our steady-state kinetic analysis. However, no substantial change of 

Scp1 activity was observed. Scp1 is not a processive enzyme in all of our assays, but it 

might be processive in cells in the presence of some binding partners. 

                                                 
29 The protein and the GST-CTD peptide were pre-incubated for about 8 min. 
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Figure 5-8: The result of the gel shift assay. The intensity of each band was converted to 
the peak on the right.  

The extra three residues of the 17-mer peptide provide additional contact 

Since the kinetic analysis demonstrated that the additional phosphorylation from 

any of the three residues (i.e. Ser7, Tyr1 and Ser2) does not influence the activity of Scp1, 

we turned our focus to the extra three residues of the 17-mer peptide compared with the 

14-mer peptide. Steady-state kinetics experiments were performed to probe whether this 

extra contact was biochemically relevant, and not just a crystallographic artifact. The 

activity of Scp1 toward the 14-mer and the 17-mer peptide was tested. As expected, the 

extra three residues makes the 17-mer peptide a much better substrate as indicated by 

decreased Km and increased kcat. The kcat/Km increased significantly to about 13-fold 

(Figure 5-9). 
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Figure 5-9: Steady-state kinetics of Scp1 toward 14-mer peptide (a) and 17-mer peptide 
(b). 

We next measured the binding affinity between Scp1 and the 14-mer or 17-mer 

peptide. While the Kd value between Scp1 and the 14-mer peptide was about 261 ± 21 

µM, the Kd value between Scp1 and the 17-mer peptide was greatly reduced to 46 ± 8 

µM. These results demonstrated that the contact between the extra three residues of the 

17-mer peptide and the protein is indeed present in solution, at least in our in vitro 

system. The additional contact makes the 17-mer peptide bind to Scp1 much better, 

resulting in a faster dephosphorylation by the protein. 

The repetitive nature of the CTD may require modifying enzymes, e.g. kinases 

and phosphatases, to function in a processive way to ensure efficient control of the 

transcription during the transcription cycle. Based on our crystallographic results, we 

hypothesized that Scp1 could be a processive enzyme by binding strongly to the 

phospho.Ser7. However, in our in vitro system, we did not observe a strong processivity 

of Scp1 in the presence of phosphorylated Ser7, Tyr1 or Ser2. On the other hand, the 

combinatory effect of the phosphorylation of the residues besides Ser5 was not observed 

a b 
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for Scp1. All other potential phosphorylations on the CTD besides Ser5 did not influence 

the activity of Scp1 in vitro. In cells, the activity of Scp1 may be regulated by other 

modifications on the CTD via regulation of its binding partners. Moreover, other 

phosphatases, for example Ssu72, may be processive enzymes or be significantly 

regulated by other modifications on the CTD. Our data for the first time demonstrate that 

the long CTD has additional contact area with the protein in addition to the interaction at 

the active site. The large contact area makes the CTD bind to the Scp1 much better and is 

more readily dephosphorylated by the Scp1. In addition, our results show that there is a 

secondary binding pocket on Scp1 which can be used to design more potent inhibitors of 

this protein. 
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Data collection Scp1-17-mer peptide complex 

Space group C2 
Cell dimensions:           a, b, c (Å) 124.9, 78.3, 62.8 

                     α, β, γ (°) 90.0, 112.6, 90.0 
Resolution (Å) 50.0–2.29 (2.33–2.29) 

No. of unique reflections 25291 
Rsym or Rmerge (%) 10.0 (48.9) 

I/σ(I) 12.8 (2.2) 
Completeness (%) 99.7 (99.9) 

Redundancy 3.7 (3.7) 
Refinement  

Resolution (Å) 64.8-2.29 
No. of reflections (test set) 24000 (1288) 

Rwork / Rfree (%) 18.0/23.3 
No. of atoms:              Protein 2928 
                         Mg2+ 2 
                         Ligand 181 
                         Water 166 
B-factors (Å2):              Protein 30.2 
                          Mg2+ 24.1 
                          Ligand 42.9 
                          Water 36.4 
R.m.s deviations:   Bond lengths (Å) 0.022 
                 Bond angles (°) 1.941 
Ramachandran plot (%): Most favored 87.2 
               Additionally allowed 11.6 
                 Generally allowed 1.2 

Table 5-2: Crystallographic data statistics.30 

METHODS 

Cloning, protein expression and purification 

Wildtype and mutant Scp1 were purified using the method described previously 

in Chapter 3. Yeast CTD was sub-cloned from Saccharomyces cerevisiae (S. cerevisiae) 

genomic DNA into a pGTVL2 vector which contains a His-tag followed by a GST-tag at 

                                                 
30 Highest resolution shell is shown in parenthesis. Rfree is calculated with 5% of the data omitted. 
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the N-terminus. The GST-CTD fusion protein was expressed in E.coli BL21(DE3) strain 

and purified using the same method for Scp1. 

Malachite green assay 

The activity of Scp1 toward the CTD peptides was measured in Assay Buffer (see 

Chapter 4) with 5 ng of Scp1 at 37 oC in 20 µl volume. The reactions were quenched by 

adding 40 µl of malachite green reagent. The release of free inorganic phosphate was 

determined by measuring the absorbance at 620 nm. 

X-ray crystallography 

For crystal soaking, the Scp1D96N proteins were crystallized in previously 

identified conditions. The crystals soaked with 20-mer peptide were crystallized in the 

buffer containing 0.5–0.8 M ammonium sulfate, 100 mM HEPES-Na+ pH 7.0, and 0.2 M 

lithium sulfate. The crystals soaked with 17-mer peptide were crystallized in a different 

condition containing 25% polyethylene glycol (PEG) 3350 and 0.2 M magnesium 

acetate. Crystals were transferred to a cryo-protecting stabilizer containing 30% (v/v) 

glycerol, 25% (w/v) PEG 3350, and 0.2 M magnesium acetate. After a brief period of 

equilibration, crystals were frozen in nylon loops in liquid nitrogen and stored in liquid 

nitrogen prior to data collection. Crystallographic data were collected at 100 K on beam-

line 5.0.2 of the Advanced Light Source (ALS). Diffraction data were processed with 

HKL2000. The complex crystal structures of Scp1 were determined by molecular 

replacement (MR) using the Scp1D96N structure as a search model (PDB ID: 2ghq) 

using the program PHASER available in the CCP4 software package. MR solutions were 

refined using REFMAC5, reserving 5% of the measured and reduced structure factor 

amplitudes as an unbiased test set for cross validation (Rfree). The model was built in 

COOT and refined by REFMAC5. The buried contact area of Scp1 by the peptide and 
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shape complementarity (Sc) were calculated by AREAIMOL and SC available in the 

CCP4 software package. 

Preparation of 
32

P-labeled GST-CTD 

GST-CTD was treated with either TFIIH (Millipore) or MAPK2/Erk2 (NEB) in 

the presence of [γ-32P]ATP and 2 mM cold ATP. The labeling reactions were carried out 

at 30 °C overnight to ensure complete phosphorylation. 

Phosphatase assay using labeled GST-CTD 

All the dephosphorylation reactions (20 µl total volume) were performed in the 

Reaction Buffer containing 50 mM Tris-HCl pH 7.9, 10 mM MgCl2, 20% glycerol, 

0.02% triton X-100, 20 mM KCl, and 5 mM Dithiothreitol (DTT). Each reaction 

contained about 1 pmol 32P-labeled GST-CTD and a certain amount of Scp1 (0-1.34 

pmol). The reactions were carried out in 30 °C for different periods of time. At each time 

point, 5 µl of the reaction was taken out and quenched by adding 2x Laemmli buffer. The 

reaction products were resolved on a 12 % SDS-PAGE gel. The gel images were 

developed by radioautography. The gel shift assay was done using the similar procedure, 

but the SDS-PAGE was supplemented with 50 mM phosphate-binding compound (AAL-

107) in the presence of Mn2+. 

Rapid dilution assay 

Comparable amount of Scp1 and CAK-treated 32P-labeled GST-CTD (~1 pmol) 

were pre-incubated in the 1x Reaction Buffer in 20 µl total volume either in the presence 

or absence of Mg2+ for 8 min. The reactions were rapidly diluted by 50-fold by the 

addition of 0.98 ml of 1x Reaction Buffer. After the rapid dilution, the reactions were 

incubated in 30 °C. As a control, the same amount of Scp1 in 0.5 ml of 1x Reaction 

Buffer was mixed with GST-CTD in 0.5 ml of 1x Reaction Buffer without further 
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dilution. A fraction of each reaction was taken out every 5-10 min and quenched by 

adding 2x Laemmli buffer. The products in each reaction were analyzed by SDS-PAGE. 

Fluorescence polarization 

The 14-mer and 17-mer Ser5 phosphorylated CTD peptides labeled with 5-

carboxylfluorescein (5-FAM) at the N-terminal were used in this assay. The peptide with 

a final concentration of 1 µM was mixed with various amount of the dominant negative 

form of Scp1 D96N mutant in 20 µl reactions. The final binding buffer was 20 mM Tris 

pH 8.0, 50 mM NaCl, 10 mM BME and 20 mM MgCl2. The fluorescence signal was 

monitored at 485/535 nm (excitation/emission) wavelength using Tecan Infinite F200 

microplate reader. The FP signal was calculated by the following equation: 

crossparallel

crossparallel

SignalGSignal

SignalGSignal
FP

∆+⋅∆

∆−⋅∆
=  

where Signalparallel and Signalcross are the signals parallel and cross to the incident 

light, respectively. G is the G-factor which equals to 1.138 on the instrument used. 

The Kd value can be determined by fitting the data points to the following 

equation: 
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+
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SSU72 PHOSPHATASE 

Reversible phosphorylation of the C-terminal domain (CTD) of eukaryotic RNA 

polymerase II largest subunit represents a critical regulatory mechanism during the 

transcription cycle and mRNA processing. Ssu72 is an essential phosphatase conserved in 

eukaryotes that dephosphorylates phosphorylated Ser5 (phospho.Ser5) of the CTD 

heptapeptide. Unlike Scps, Ssu72 is a house-keeping phosphatase for RNA polymerase 

II-mediated transcription. The function of Ssu72 is implicated in transcription initiation, 

elongation and termination as well as RNA processing. In this section, I will focus on 

Ssu72 phosphatase, introducing its characteristics both structurally and functionally. 

Chapter 6:  Crystal Structure of Ssu72 in Complex with a Transition 

State Analogue 

INTRODUCTION 

Dynamic reversible phosphorylation of the CTD plays an essential role, not only 

in the recruitment and assembly of transcription complexes, but also in the temporal 

control of transcription and mRNA processing (reviewed in (Fuda et al. 2009)). Ser5 

phosphorylation is required for assembly of the pre-initiation complex (PIC), and 

facilitates mRNA capping via recruitment of capping enzymes. As the transcription 

complex moves away from the initiation site, Ser5 gradually becomes dephosphorylated, 

whereas Ser2 is phosphorylated. Ser2 phosphorylation is the predominant CTD pattern on 

both elongating and terminating RNA polymerase II, which ensures efficient 3’-RNA 

processing by triggering the recruitment of 3’-RNA processing machinery. Non-

phosphorylated CTDs are necessary for the recycling of RNA polymerase II and its 

subsequent binding to a promoter (see Chapter 1).  
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Phosphorylation/dephosphorylation of the CTD is catalyzed by cyclin-dependent 

kinases and CTD-specific phosphatases (Majello et al. 2001). The best characterized 

CTD-specific phosphatases are the Fcp/Scp family members. Fcp1 is essential for cell 

survival in budding and fission yeasts presumably due to its function in RNA polymerase 

II recycling (Archambault et al. 1997). Small CTD phosphatase (Scp) has been identified 

as a phospho.Ser5 phosphatase (Yeo et al. 2003), but it only affects a subset of genes 

involved in neuronal differentiation (Yeo et al. 2005). It is a component of the neuronal 

silencing complex REST and prohibits the inappropriate differentiation of neuronal cells 

(Yeo et al. 2005). Scp1 and Fcp1 share the same active site topology and reaction 

mechanism (Zhang et al. 2006; Ghosh et al. 2008), but are distinct in preferences for Ser2 

or Ser5 dephosphorylation and domain architecture (Zhang et al. 2010). Interestingly, 

Scps which exhibit a strong preference towards phospho.Ser5 are conserved in higher 

eukaryotes but not in yeast. Inactivating Scp genes will promote neurogenesis but does 

not lead to cell death (Yeo et al. 2005). It is also observed that even though neuronal gene 

expression can be de-repressed upon Scp inactivation, general transcription in the cell is 

not eliminated (Pfaff, SL, personal communication). Therefore, eukaryotes must have 

other Ser5 phosphatases which function as house-keeping proteins for RNA polymerase II 

recycling, while Scps function at an epigenetic level and only specifically affect the 

expression profile of a subset of genes.  

A novel phosphatase, Ssu72, was identified as the Ser5 phosphatase in yeast 

whose phosphatase activity is identified as essential for cell survival and transcription 

cycling (Sun et al. 1996; Krishnamurthy et al. 2004). Ssu72 belongs to a highly 

conserved protein family found in eukaryotes. Compromising Ssu72 phosphatase activity 

results in the accumulation of a hyperphosphorylated Ser5 form of the CTD 

(Krishnamurthy et al. 2004). Ssu72 was first identified by its genetic interaction with the 
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transcription factor TFIIB, as a mutation in Ssu72 disrupted this interaction and affected 

the accuracy of start site selection (Sun et al. 1996). Further studies identified Ssu72 as a 

subunit of the cleaving and processing factor (CPF) complex, indicating its participation 

in mRNA processing regulation (He et al. 2003). Ssu72 may also be involved in 

transcription termination, as the mutations at Ssu72 directly alter the termination of the 

expression of snoRNA (Kim et al. 2006). Interestingly, the prolyl-isomerization 

regulation of the CTD, mediated by Ess1 in yeast, is also linked functionally to the 

phosphatase activity of Ssu72 (Krishnamurthy et al. 2009). It has been proposed that Ess1 

can change the balance of the cis-trans conformation of proline by adjusting the 

conformation suitability of Ser5-Pro6 as Ssu72 substrate, which in turn determines the 

pathway selection for transcriptional termination (Krishnamurthy et al. 2009). Therefore 

the effectiveness of Ssu72 mediated dephosphorylation of Ser5 of the CTD can be 

modulated by the prolyl-isomerization state of the CTD. Recently, an atypical 

phosphatase, Rtr1, has been defined as a CTD phosphatase, but its biological role is not 

fully understood (Mosley et al. 2009). 

To gain insight into the molecular mechanism of phosphoryl transfer by the Ssu72 

phosphatase family and the substrate recognition of Ssu72, we purified recombinant 

yeast, Drosophila and human Ssu72 to examine their catalytic activities and kinetic 

properties against a generic phosphatase substrate and their natural substrate CTD 

peptides. Furthermore, the X-ray crystal structures of Drosophila Ssu72 were obtained. 

The structure of Ssu72 clearly indicates it is a unique member of the low molecular 

weight tyrosine phosphatase (LMWPTP) superfamily, and further exhibits a deep groove 

that may potentially bind to the CTD of RNA polymerase II. A complex structure of 

Ssu72 with vanadate highlights the formation of a phosphoryl-cysteine intermediate and 

mimics the transition state of the phosphoryl transfer reaction. A unique “cap” domain 
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excludes direct access to the active site of Ssu72 by substrate and provides a possible 

explanation for the selectivity of Ssu72. We have also identified several residues in the 

CTD binding groove that play essential roles for substrate recognition. 

RESULTS AND DISCUSSION 

Phosphatase activity of Ssu72 from various organisms and the overall structure of 

Drosophila Ssu72 

The sequence alignment of ten Ssu72 phosphatases from various organisms in the 

NCBI database (Figure 6-1) shows a high degree of conservation from yeast to human 

(43% identity yeast to human, 60% identity Drosophila to human), consistent with the 

proposed biological role of Ssu72 as an essential phosphatase for the C-terminal domain 

of RNA polymerase II. To study the phosphatase activity and structure of the Ssu72 

family, the genes derived from Saccharomyces cerevisiae, Drosophila melanogaster and 

Homo sapiens were cloned and overexpressed in E. coli. The proteins were purified to 

homogeneity, and phosphatase activities were evaluated by pNPP assay which is a 

generic phosphatase assay. All three enzymes exhibit phosphatase activity with an 

optimal pH around 6.0–6.5 (data not shown). Yeast Ssu72 has the lowest enzymatic 

activity with a kcat of 0.090 ± 0.002 s-1, and Km of 38 ± 3 mM (Figure 6-2c). For 

Drosophila Ssu72, much higher activity is observed with the kcat and Km determined to be 

1.30 ± 0.04 s-1 and 11.5 ± 0.9 mM (Table 6-1, Figure 6-2a). The kcat and Km of human 

Ssu72 is comparable to Drosophila homologue, and was determined to be 0.47 ± 0.01 s-1 

and 11.0 ± 0.8 mM (Figure 6-2b). Our kinetic data for Ssu72 are consistent with 

previously reported results on yeast and human Ssu72 (Meinhart et al. 2003). The results 

confirm that the proteins, which were subsequently used in structural studies, are 

catalytically active. 
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Figure 6-1: Primary sequence alignment of Ssu72 from various species.31 

 

 

 

 

                                                 
31 Sequence alignment of Ssu72 from Drosophila (Dro, NP_608342), Homo sapiens (Hom, NP_054907), 
Saccharomyces cerevisiae(Sce, NP_014177), Schizosaccharomyces pombe (Spo, NP_594076), Rattus 

norvegicus (Rat, NP_001020828), Bos Taurus (Bos, XP_595220), Gallus gallus (Gal, NP_001007876), 
Salmo salar (Sal, NP_001136192), Xenopus laevis (Xen, NP_001084864) and Arabidopsis thaliana (Ara, 
NP_177523). Helices and strands are indicated by coils and arrows, respectively. Active site residues are 
marked with filled triangles below the alignment. The residues (also included in the mutagenesis study) for 
the tentative substrate CTD proline binding are marked by hollow triangles. 
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Figure 6-2: Steady-state kinetics of Ssu72 measured by pNPP assay.32 

 

 

 

 

 

 

 

                                                 
32 The data points were fitted into Michaelis–Menten equation by Origin7.5. 
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Table 6-1: Probing the residues that are important for the substrate CTD peptide 
binding.33 

Drosophila Ssu72 was crystallized, and the diffraction of apo crystals was 

processed to resolution at 2.85 Å. The protein crystallizes in space group P21212 (unit 

cell: a = 158.1 Å, b = 101.9 Å, c = 65.6 Å; α = β = γ = 90.0º) with four molecules per 

asymmetry unit. The protein structure consistently exhibits a high thermal factor (Table 

6-2). This may also explain the difficulty in obtaining a high resolution structure for apo 

Ssu72 as well as the crystal’s high sensitivity to environmental changes. The four 

molecules in each asymmetry unit are highly identical with the exception of two flexible 

loops (residues 47–53 and 127–134). The topology can be roughly divided into two 

portions with a deep groove cutting through the surface of the molecule, separating the 

protein into the “cap” and the “core” domains (Figure 6-3a). The connections between 

the “core” and “cap” domains are two flexible loops, suggesting that the individual 

                                                 
33 N.A.: No activity detected. 

 
 
 
 

Mutants 

pNPP 
 

phos-CTD peptide 
(10 mers) 

Y-S-P-T-pS-P-S-Y-S-P 
 

phos-CTD peptide 
(14 mers) 

Y-S-P-T-pS-P-S-Y-S-P-
T-pS-P-S 

Km (mM) kcat (s
-1) Km (mM) kcat (s

-1) Km (mM) kcat (s
-1) 

Wildtype 11.5 ± 0.9 1.30 ± 0.02 0.96 ± 
0.03 

0.42 ± 
0.04 

0.15 ± 
0.01 

0.397 ± 
0.004 

M17A 17 ± 2.6 0.28 ± 0.02 N.A. N.A. N.A. N.A. 
P46A 17.8 ± 1.7 0.69 ± 0.02 N.A. N.A. N.A. N.A. 
D51A 5.5 ± 0.7 1.34 ± 0.05 N.A. N.A. N.A. N.A. 
Y56A 144.2 ± 

21.2 
0.35 ± 0.04 N.A. N.A. N.A. N.A. 

Y77A 35.8 ± 1.9 1.39 ± 0.03 N.A. N.A. N.A. N.A. 

L82A 4.6±0.6 1.31±0.04 1.9±0.1 0.53±0.03 0.38±0.05 0.47 ± 0.04 

M85A 34.9 ± 2.5 0.48 ± 0.02 N.A. N.A. N.A. N.A. 
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domains can move in a hinge-like motion to desolvate the active site and impose 

selectivity toward substrates. The essential catalytic residue, Cys13, whose substitution 

results in loss of phosphatase activity and death of yeast strains (Sun et al. 1996), is 

located at the tip of the groove (Figure 6-3a). The “core” domain of the protein has a 

typical Rossmann fold with a series of twisted beta-strands sandwiched by alpha helices 

at each side (Figure 6-3b). The “cap” portion (residue 41–92), which is well conserved 

among Ssu72 from different species, is unique with no similar sequence or structure 

identified in other protein families (Figure 6-1 and 6-3c). When we color the protein 

according to residue conservation, the highly conserved residues are localized around the 

groove dividing the “cap” and “core” domains of the protein, indicating the functional 

importance of this groove (Figure 6-3c). 
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Data Statistics Apo Complex (Ssu72–vanadate) 

Source 
Advanced Light Source 

5.0.1 
Advanced Light Source 

5.0.1 

Wavelength (Å.) 0.9774 0.9765 

Resolution (Å.) 48.3-2.85(2.90–2.85) 48.5- 2.35 (2.39–2.35) 

Space group P21212 P21212 

Unit cell (Å.) a, b, c 158.1, 101.9, 65.6 157.6, 102.3, 65.8 

Number of unique reflections 24877 45695 

Redundancy 5.0 (4.6) 6.6 (6.1) 

Completeness (%) 94.6 (96.2) 99.9 (98.4) 

I/σ 21.8 (1.3) 36.5/1.5 

Rsym (%) 8.7 (76.7) 7.0 (76.1) 

Refinement Statistics   

Resolution limits (Å.) 48.3–2.85 48.65–2.35 

Number of reflections (test) 23460 (1194) 45556(2295) 

R work/ Rfree (%) 21.6 / 27.7 20.5 / 26.7 

Number of atoms protein/water 6216/15 6236/171 

B factors for protein atoms (Å2) 83.7 62.5 

B factors for ligand/water (Å2) -/66.7 54.0/60.8 

Bond rmsd length(A)/angles (°) 0.008/1.2 0.018/2.1 

Most favored 88.4% 87.7% 

Additionally allowed 10.7% 11.1% 

Generously allowed 0.6% 1.1% 

Disallowed region 0.3% 0 

Table 6-2: Crystallographic data statistics.34 

 

                                                 
34 Parentheses indicate statistics for highest resolution shell. 
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Figure 6-3: Structures of Ssu72.35 

Ssu72 is a low molecular weight tyrosine phosphatase 

Unlike kinases which evolve from the same ancestor and therefore maintain the 

same three-dimensional topology, protein phosphatases adapt different catalytic 

mechanisms for the phosphoryl-transfer reaction. Three different catalytic mechanisms 

are identified among protein phosphatases (Figure 6-4). The first category, called 

                                                 
35 (a) Surface representation of Drosophila Ssu72 apo protein structure. The signature motif residue 
arginine is highlighted in orange, and the nucleophilic cysteine is highlighted in red. (b) Ribbon 
representation of Drosophila Ssu72 structure. The active site essential residues are shown in stick 
representation. (c) Surface representation of the conserved residues (shown in orange) on Drosophila Ssu72 
structure. Partially conserved residues are shown in light blue. (d) Superimposition of Drosophila Ssu72 
(core domain in pale green, cap domain in cyan, finger region in yellow) and human LMWPTP 1 (PDB 
code: 1xww, core domain in white, a short helix that differs in different isoforms colored in red). 
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cysteine-based phosphatases, utilizes cysteine as the nucleophile at the active site (Denu 

et al. 1995; Tonks 2006). The well-studied mechanism establishes that the phosphate 

group from the substrate is transferred to the thiol group as a phosphoryl-intermediate, 

which in turn undergoes hydrolysis. On the other hand, Ser/Thr phosphatases such as PP1 

and PP2 utilize a dramatically different strategy for the hydrolysis of phosphate 

monoesters by using di-metal ions and activating a water molecule to directly break the 

P–O bond without a phosphoryl-protein intermediate (reviewed in (Shi 2009)). The third 

category, HAD-like phosphatases, including the CTD phosphatase Scp/Fcp family, 

resembles the two-step reaction mechanism of cysteine-based phosphatases, but utilizes 

aspartic acid as a nucleophile (Allen et al. 2004). 

The cysteine-based protein phosphatases are further divided into three sub-

families based on the relative location of the signature motif, termed “PTP” loop (–

CX5R–), and their preferences for substrates. The first subfamily, classical tyrosine 

phosphatase, is usually around 30 kDa with the PTP loop close to the middle of the 

protein, and it specifically dephosphorylates phosphoryl tyrosine. Dual specificity protein 

phosphatases, on the other hand, recognize both tyrosine and serine/threonine 

phosphorylation, as indicated by the name, with the PTP loop situated closer to the C-

terminal end of the protein. The third family, low molecular weight tyrosine phosphatases 

(LMWPTP), has a single catalytic phosphatase domain of around 18 kDa. The PTP loop 

is located at the N-terminus of the LMWPTP, with nucleophile cysteine usually in the 

vicinity of the 10–15th residues. LMWPTP favors phosphoryl-tyrosine as a substrate, 

even though high concentrations of phosphoryl-serine/threonine are also subjected to 

LMWPTP-catalyzed hydrolysis in vitro (Ramponi et al. 1997). 
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Figure 6-4: Summary of three different catalytic mechanisms identified among protein 
phosphatases. 
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Although Ssu72 exhibits very low primary sequence identity with proteins from 

any of the cysteine-based phosphatase families, the fold of the core domain is highly 

identical to that of LMWPTP (Figure 6-3d). A –CX5R– signature motif is located at the 

N-terminus of the protein. With the primary sequence consensus of only 15%, the overall 

fold of Ssu72 exhibits a Z score of 11.6 in DALI search (Holm et al. 2010) and a RMS 

deviation of 1.7 Å when superimposed with the main chain of LMWPTP (PDB code: 

1xww) (Ssu72 6–195 excluding residue 41–96; LMWPTP 1–157 excluding residue 50–

67). 

Complex structure of Ssu72 with inhibitor vanadate 

Another characteristic of cysteine-based phosphatases is their sensitivity to 

oxoanion compounds such as vanadate, tungsten and molybdate (Lindqvist et al. 1994). 

These compounds can inhibit cysteine-based phosphatases by forming transition states or 

product analogs with cysteine nucleophiles. In order to better understand the reaction 

mechanism and roles of catalytic residues, apo Ssu72 crystals were transferred to 

crystallization medium that contained 2mM Na3VO4. A structure of Ssu72 in which 

VO4
3- was coordinated in the active site was then compared to the apo Ssu72 structure. 

Interestingly, the incorporation of the vanadate ion stabilizes the crystal, which exhibits a 

higher resolution and lower thermal factor than apo Ssu72 crystals (Table 6-2). 

The structure of the Ssu72-vanadate complex was solved using apo Ssu72 as a 

search model in molecular replacement, and refined to a resolution of 2.35 Å (Figure 6-

5a). The refined model is almost identical to apo Ssu72 with the signature motif (–CX5R–

) located at the crevice. Strong positive electron density can be observed close to the 

nucleophilic cysteine (Cys13), with a characteristic trigonal bipyramidal coordination 

(Figure 6-5b). A vanadate group can be built into the electron density with three oxygen 
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atoms at equatorial positions, and a cysteine sulfur atom, as well as another oxygen atom 

at each side of the apical position (Figure 6-5c). The distance of vanadium to sulfur is 

refined to 2.3–2.4 Å, and the other four oxygen atoms are all about 1.9 Å away, 

consistent with a previously published vanadate adduct with bovine LMWPTP (Zhang et 

al. 1997). The bond length of S–V suggests the existence of covalent bond formation 

between the compound and the active site residue of Ssu72, explaining the inhibitory 

effect of vanadate compounds on Ssu72 (Figure 6-5c). 

The other conserved residue of the signature motif, Arg19, is located close to the 

nucleophilic cysteine (Figure 6-5c), and has dual functions in the phosphoryl transfer 

reaction which is conserved in all cysteine-based phosphatases (Zhang 2002). First, the 

positively charged arginine side chain can help recruit the phosphate group to the active 

site through electrostatic interactions. More importantly, the side-chain of arginine has 

the potential to stabilize the tetrahedral intermediate by forming hydrogen bonds with 

vanadate (Zhang et al. 1992) (Figure 6-5d). The stability of the coplanar bidentate is 

essential for the phosphoryl transfer reaction since lysine replacement of arginine cannot 

fully replace the arginine function in Yersinia PTPase (Zhang et al. 1992). Indeed, in the 

complex structure of Ssu72 with vanadate, the two nitrogen atoms of the guanidinium 

group from the highly conserved Arg19 pair with two equatorial oxygen atoms in the 

vanadate group (Figure 6-5d). The pairing of the vanadate oxygen and side chain of 

Arg19 constitutes a six-membered ring hydrogen bonding network that presumably 

reduces the free energy activation for the phosphoryl transfer reaction. The structure 

mimics the formation of the trigonal-pyramidal transition state in the phosphoryl transfer 

reaction, and explains how such a high-energy state is stabilized in Ssu72. Additional 

hydrogen bonding occurs between the backbone amides of the PTP loop and the 

equatorial oxygen atoms (Figure 6-5d). As found in other cysteine-based phosphatases, a 
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serine residue is located after this arginine and potentially stabilizes the thiolate anion of 

nucleophile cysteine by lowering its pKa (Peters et al. 1998). Indeed, in our structure, the 

hydroxyl group of the Ser20 side chain forms a hydrogen bond with nucleophile Cys13, 

which can potentially promote the deprotonated state of cysteine and facilitate the 

nucleophilic attack on phosphorus (Figure 6-5e). The elimination of this hydrogen bond 

by replacing Ser20 with Ala abolished the phosphatase activity of the protein in our 

pNPP assay (data not shown). 

Asp-containing flexible loop 

In addition to the –CX5R– PTP motif, another highly conserved residue in all 

LMWPTP is an aspartic acid residue, usually 110 amino acids away from the nucleophile 

cysteine. The three-dimensional position of this aspartic acid is conserved in all cysteine 

based phosphatases. In Yersinia PTPase, this conserved aspartate accounts for the basic 

limb of the pH dependence curve (Zhang et al. 1994). This aspartate residue fills the role 

of a general acid to provide the proton for the substrate-leaving after phosphoryl transfer 

(Zhang 2002). In the primary sequence of Drosophila Ssu72, two aspartate residues, 

Asp141 and Asp144 (Asp140 and Asp143 in human), are highly conserved in this area. 

The mutation of either of these two aspartate residues in human Ssu72 reduced the kcat/Km 

of Ssu72 by about 20 fold (Meinhart et al. 2003). To identify which is the general acid for 

phosphoryl transfer reaction, we inspected the interaction of the transition state analogue 

vanadate with active site residues. In the complex structure of Ssu72 and vanadate, this 

highly conserved position is occupied by Asp144, which can make two potential 

hydrogen bonds with vanadate (Figure 6-5c). However, Asp141 is 12.7 Å away from the 

vanadate group (Figure 6-5e). Therefore, we conclude that the Asp144 is the general acid 

that contributes to the reaction, and the loss of activity of Asp141 mutation might be 
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caused by structural disruption. Indeed, when we mutated Asp141 to Ala, the proteins can 

be expressed (as detected by SDS-PAGE), but are not accumulated in soluble fraction, 

likely due to issue with protein folding.  

In other cysteine-based phosphatases, this loop containing general acids/bases is 

presumably highly flexible, and can adopt the active conformation upon ligand binding or 

swing away when the active site is empty. For example, in classical protein tyrosine 

phosphatases, this aspartate is 10 Å away from the active site in the absence of substrate 

and only extends into the active site when occupied (Zhang 2002). In our crystal structure 

of Drosophila Ssu72 complexed with vanadate, the loop is in the “active” form with 

Asp144 extending into the active site, mimicking the conformation of an active site for 

phosphoryl transfer (Figure 6-5c). Without the vanadate compound, the loop still extends 

into the active site, forming a hydrogen bond with a highly ordered water molecule. 

 

 

 



 141 

 

Figure 6-5: Complex structure of Ssu72 and vanadate.36 

                                                 
36 The green dashed lines indicate hydrogen bonds. The numbers are the distances of hydrogen bonds in Å. 
(a) Stereoview of 2Fo-Fc electron density of active site residues contoured at 2σ. The nucleophile cysteine is 
in yellow. (b) 2Fo-Fc electron density map of vanadate contoured at 1.6σ. (c) The interactions between 
vanadate and Cys13/Asp144. The S–V bond between Cys13 and vanadate (blue dashed line) is within 
covalent bond range. (d) The vanadate mimics the formation of the trigonal pyramidal transition state in 
phosphoryl transfer. (e) The hydroxyl group of the Ser20 side chain forms a hydrogen bond with the 
nucleophile Cys13. Asp141 is located distal to the active site with its carbon atom colored blue. 
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To confirm that the addition of transition state analog vanadate stabilizes the 

conformation of the loop containing the aspartate biochemically, we used DSF to assay 

the effect of an oxoanion compound on the folding of Ssu72 (Niesen et al. 2007). In this 

method, fluorescence from a dye with affinity for hydrophobic surface is monitored. The 

fluorescence increases upon the exposure of hydrophobic surfaces during protein 

unfolding. In our experiment, the incorporation of the vanadate compound consistently 

stabilized Ssu72 and increased the Tm. For yeast Ssu72, Tm increased from 37.8 ± 0.2 ºC 

to 43.5 ± 0.3 ºC upon vanadate addition. Similar trends were observed in human Ssu72 

(Tm increased from 44.0 ± 0.3 ºC to 49.2 ± 0.5 ºC) and Drosophila Ssu72 (Tm from 42.5 ± 

0.2 ºC to 45.6 ± 0.4 ºC) (Figure 6-6a, b and c). We also used CD to detect the effect of 

the vanadate compound and to correlate with our DSF results. Even though the buffer 

condition is slightly different, the stabilization effect of vanadate is consistent with a Tm 

of Drosophila Ssu72 increase from 44.0 ± 0.3 ºC to 46.2 ± 0.2 ºC (Figure 6-6d). We 

reason that the binding of vanadate stabilizes the flexible loop containing general acid 

Asp144 through hydrogen bonding, thereby enhancing protein folding. 

The “cap” region 

Unlike the bottom core portion of the Ssu72 protein whose topology is highly 

conserved in all cysteine-based phosphatase, the “cap” region (residue 41–92) of Ssu72 is 

unique and shows no structural similarity to any other protein (less than 4.0 in Z score) in 

DALI search (Holm et al. 2010). From residue Glu41 to Glu57, two short anti-parallel β-

strands are connected by an extended flexible loop resembling a “finger”, comprising the 

most dynamic portion of the Ssu72 structure (Figure 6-3d). This mobile tip excludes the 

active site pocket from the bulk solvent, and limits access to the binding pocket for 

Ssu72. When we mutated a residue at the tip of the finger, Asp51 to Ala, the binding to 
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CTD substrate was greatly reduced, even though the phosphatase activity was not 

affected when tested by the pNPP assay (Table 6-1). Consistent with our mutagenesis 

result, a complex structure of human Ssu72 with the substrate CTD and the scaffold 

protein symplekin was recently determined, showing the incorporation of the substrate 

CTD close to this flexible region (Xiang et al. 2010) (Figure 6-7a). 

 

Figure 6-6: Differential scanning fluorimetry and circular dichroism spectra of Ssu72 in 
the absence or presence of sodium vanadate. 

Unlike Ssu72, the active site in LMWPTP (PDB code: 1xww) is highly exposed 

(Figure 6-3d). Such architectural design is consistent with the substrate specificity of 
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these phosphatases. LMWPTP target receptor tyrosine kinases such as platelet-derived 

growth factor receptor, insulin receptor (Chiarugi et al. 1997), ephrin receptor (Stein et al. 

1998), and fibroblast growth factor receptor (Rigacci et al. 1999). Therefore, the active 

site of LMWPTP needs to be accessible and open to accommodate such bulky substrates. 

On the other hand, the only substrate Ssu72 recognizes in vivo is the CTD of RNA 

polymerase II, which is a highly disordered peptide and presumably adopts a long 

extended loop to fit into the more exclusive active site of Ssu72. 

One important regulatory mechanism for LMWPTP activity is through the 

differential phosphorylation of Tyr131 and Tyr132 (Bucciantini et al. 1999). These two 

sites are proposed to increase the activity of the phosphatase or to recruit the SH2 domain 

of Grb2 to LMWPTP (Bucciantini et al. 1999). In contrast, no phosphorylation regulation 

has yet been observed for Ssu72. The flexible loop, containing two tyrosine residues 

(Tyr131 and Tyr132) in LMWPTP, is substantially shorter in Ssu72, with the two 

tyrosine residues omitted in the Ssu72 sequence (Figure 6-7b). We speculate that instead 

of using phosphorylation as regulatory mechanism, Ssu72 adapts the unique “cap” 

domain to modulate phosphatase activity and substrate selectivity. Use of divergent cap 

domains to limit the accessibility of the active site is a common strategy in biology. For 

example, the HAD super family, a large family of proteins for phosphoryl transfer, 

utilizes different “cap” domains to mediate different phosphoryl transfers of different 

substrates (Allen et al. 2004). A core domain with Rossmann fold is conserved among all 

3000 HAD family members. 
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Figure 6-7: Important residues for Ssu72 function.37 

Potential proline binding pocket  

Ssu72 can dephosphorylate the hyperphosphorylated CTD in vitro 

(Krishnamurthy et al. 2004). To test the activity of Drosophila Ssu72 towards the CTD, 

                                                 
37 (a) Superimposition of Drosophila (Dro) Ssu 72 and human Ssu72-CTD complex (PDB code: 3o2q). 
Dro. Ssu72 is in light blue color, and human Ssu72 is in salmon color. The CTD peptide is in white stick. 
The flexible loop region (indicated by “Finger”) encloses the CTD binding site in the human Ssu72-CTD 
peptide complex structure. (b) Superimposition of the active sites of Ssu72 (cyan) and LMWPTP (PDB 
code: 1xww, pink). The key residues are shown in white stick in LMWPTP, and in orange stick in Ssu72, 
respectively. The vanadate is shown in yellow to indicate the active site. (c) Stereo figure of the CTD 
binding groove presented by superimposition of the CTD peptide from the symplekin-Ssu72-CTD complex 
structure (PDB code: 3o2q) into Drosophila Ssu72 structure. The residues in the mutagenesis study are 
shown in stick. 
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we used CTD derived peptides with different lengths and phosphorylation patterns to 

identify the optimal minimal length for the CTD recognition. It has been noticed that the 

binding of CTD by Ssu72 is highly dependent on the Tyr from the following repeat of 

phospho.Ser5 (Hausmann et al. 2005). This is quite different from human Scp, in which 

the Pro3 N-terminus from the phospho.Ser5 is essential for the CTD recognition (Zhang et 

al. 2006). To evaluate this, we first tested against a 17-mer CTD peptide with 

phospho.Ser5 site (SPSYSPTSPSYSPTpSPS), which is the optimal substrate for Scps. 

However, the activity is relatively low with a kcat of 0.19 ± 0.01 s-1 and Km of 0.85 ± 0.09 

mM. Consistently, when using a singly phosphorylated double repeats peptide 

(YSPTSPSYSPTpSPS) as the substrate, the kcat is measured to be 0.44 ± 0.03 s-1 and Km 

is 1.2 ± 0.2 mM. The best activity is obtained when both Ser5 are phosphorylated in the 

double repeats CTD peptide (YSPTpSPSYSPTpSPS) which results in a kcat of 0.397 ± 

0.004 s-1 and Km of 0.152 ± 0.006 mM (Table 6-1, Figure 6-8). This turnover rate is 20 

times better than the previously reported yeast Ssu72 (kcat estimated to be 0.02 s-1) 

(Hausmann et al. 2005), and comparable to the other Ser5 phosphatases, Scps (Km = 0.21 

± 0.05 mM and kcat = 2.44 ± 0.04 s-1) (Zhang et al. 2006). We further identified a minimal 

optimal peptide (10-mer, YSPTpSPSYSPT) which shows comparable activity with Km = 

0.96 ± 0.03 mM and kcat = 0.42 ± 0.04 s-1 (Table 6-1). This result suggests different 

recognition element requirements to Scp and Ssu72 for substrate binding, even though 

they both dephosphorylate phospho.Ser5 of the CTD. The residues that contribute greatly 

to the binding of CTD by Scp are primarily located at the N-terminal to the phospho.Ser5 

subject to dephosphorylation (Zhang et al. 2006). Conversely, Ssu72 requires certain C-

terminal residues following the phospho.Ser5 for CTD peptide recognition. 
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Figure 6-8: Steady-state kinetics of Drosophila Ssu72 towards CTD peptide.38 

Most recently, the complex structure of human Ssu72 bound to CTD and scaffold 

protein symplekin was reported (Xiang et al. 2010). A particularly interesting question 

about Ssu72 is the identity of residues that play essential roles in the substrate 

recognition. We reasoned that such residues would not interfere with active site 

phosphatase activity, as characterized by the pNPP assay, but should exhibit much lower 

activity towards CTD peptides. To investigate which residues are important specifically 

for the substrate recognition of Ssu72, we made mutations of residues that are located in 

the substrate binding groove. We are particularly interested in the residues that might 

contribute to the binding of Pro6 in the CTD sequence. Unlike any other CTD bound 

proteins such as Scp1 or Cgt1 (Zhang et al. 2010), Pro6 exhibits a unique cis 

conformation upon Ssu72 binding (Xiang et al. 2010). Through mutagenesis and steady-

                                                 
38 The CTD peptide sequence is YSPTpSPSYSPTpSPS. 
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state kinetics, we identified five residues that play pivotal roles for the specific activity 

towards the CTD (Table 6-1). A pair of Met residues, Met17 and Met85, clamp on Pro6 

of the CTD, with Pro46 from the opposite side, through hydrophobic interactions (Figure 

6-7c). The mutation of either of the two Met residues, or Pro46 to Ala results in the loss 

of Ssu72 activity towards the CTD peptide, even though the activity towards pNPP is 

unaffected or insignificantly reduced (Table 6-1). On the other hand, the loss of activity 

due to Tyr77 mutation is surprising, since Tyr77 does not directly contribute to the 

substrate binding. Instead, it orients the side chain of Asn54 with hydrogen bonding, and 

stabilizes the conformation of the highly flexible region (residues 41–57). The 

comparison of the human Ssu72-CTD complex structure and our Drosophila structures 

discloses that Ssu72 structure is highly conserved upon vanadate incorporation, with the 

only difference found at this highly flexible region (residues 41–57) enclosing the CTD 

substrate in the complex structure (Figure 6-7a). This region is formed by two anti-

parallel beta-strands with a flexible loop, and is highly dynamic in apo structure (Figure 

6-3d). The phosphate group of phospho.Ser5 of the CTD is found at the location of the 

vanadate ion in our structure. Residues on this flexible loop are particularly important for 

the function of Ssu72. Asp51Ala mutant exhibits comparable phosphatase activity with 

the wildtype Ssu72 in the pNPP assay, but its activity is greatly compromised when 

phosphoryl CTD peptides are used as the substrate (Table 6-1, Figure 6-7c). Another 

mutation, Tyr56Ala, disrupts the protein activity in both the pNPP assay and malachite 

green assay (Table 6-1). Not all residues located in the groove contribute to Ssu72 

activity. For example, the Ala mutation of Leu82, which is located very close to the 

substrate CTD, results in no loss of phosphatase or specificity activity (Table 6-1).   

Ssu72 is an essential protein in eukaryotes whose phosphatase activity plays a key 

role in RNA polymerase II recycling and the selection of the transcription termination 
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pathways. In the present study, we successfully solved the high resolution X-ray crystal 

structures of Drosophila Ssu72 in complex with vanadate, mimicking the transition state 

of the phosphoryl transfer. This structure shows that Ssu72 is a unique subfamily of 

LMWPTP with a “cap” domain to confer its substrate specificity. Moreover, kinetic 

studies of Drosophila Ssu72 using Ser5-phosphorlated peptides as the substrates 

demonstrated that Ssu72 can dephosphorylate phospho.Ser5 of the CTD peptide. A deep 

groove engulfing the nucleophile Cys13 between the core domain and the “cap” domain 

was observed in the Ssu72 structures and is predicted to be the binding site for the CTD 

peptide. In addition, the complex structure of Ssu72 and vanadate mimics the formation 

of the trigonal pyramidal transition state in the phosphoryl transfer reaction, and explains 

how such a high-energy state is stabilized in Ssu72. 

METHODS 

Cloning and protein purification 

The Ssu72 genes from various organisms were cloned from Saccharomyces 

cerevisiae genomic DNA, Drosophila melanogaster synthetic genes (Drosophila 

Genomics Resource Center) and Homo sapiens cDNA (Origene). The genes encoding 

Ssu72 were amplified by PCR using primers with convenient ligation-independent 

cloning sites and corresponding templates. The PCR products were directly inserted into 

an in-house-generated pET28b derivative vector, pETHis8-SUMO, which was linearized 

with T4 DNA polymerase. The resulting expression plasmid pETHis8-SUMO-ssu 

encodes a corresponding Ssu72 fusion protein with an N-terminal 124-amino-acid tag 

consisting of a His8 leader (MGSSHHHHHHHHSSGSDSEVNQEAKP) followed by an 

86-amino-acid SUMO (small ubiquitin-related modifier) fragment and a PreScission 

protease recognition sequence (ALEVLFQGPGSG). Escherichia coli BL21 (DE3) were 
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transformed with the pETHis8-SUMO-ssu vectors and grown in Luria–Bertani medium 

containing 50 µg/ml kanamycin at 37 °C until the OD600 reached 0.6–1.0. The cultures 

were supplemented with 0.5 mM IPTG (isopropyl β-D-thiogalactopyranoside) and then 

grown at 16 °C for 16 h. The induced cells were harvested with centrifugation (5000 

rev./min, Beckman Avanti J-26, JLA 8.1 rotor) and disrupted by sonication on ice 

(Misonix sonicator 4000, amplitude 90%) for 5 cycles (30 sec/cycle, with 1 sec on/off 

pulses, and a 4 min pause between cycles). The recombinant Ssu72 protein was affinity 

purified using a Ni-NTA (Ni2+-nitrilotriacetate) column (Qiagen) and eluted with buffer 

A [250 mM imidazole, 500 mM NaCl, 100 mM Tris/HCl (pH 8.5) and 10 mM 2-

mercaptoethanol]. A final concentration of 3 mM EDTA was added to the eluted protein 

to eliminate any residual nickel ion. The eluted protein was then dialysed against buffer B 

[20 mM Tris/HCl (pH 8.5), 100 mM NaCl and 10 mM 2-mercaptoethanol] and digested 

with PreScission protease (GE Healthcare) at 4 °C overnight. The truncated tag and 

untruncated protein were removed by reloading the digested sample on a second Ni-NTA 

column equilibrated with buffer C [30 mM imidazole, 20 mM Tris/HCl (pH 8.5), 100 

mM NaCl and 10 mM 2-mercaptoethanol]. Flow-through fractions were pooled and 

applied on a MonoQ column, and proteins were eluted with a NaCl gradient. Ssu72 

proteins were further purified by gel filtration using a Superdex-75 column (GE 

Healthcare) equilibrated against buffer D [25 mMHepes (pH 7.5), 80 mM NaCl and 1 

mM DTT (dithiothreitol)]. Finally, the pure Ssu72 proteins were concentrated with a 10 

kDa Vivaspin-20 concentrator (GE Healthcare) to ∼10 mg/ml. 

Crystallization and compound soaking 

Crystallization trials were carried out using sitting-drop vapour diffusion at 4 °C. 

An initial Ssu72 crystal was identified from the Classics suite crystal screen (Qiagen) by 
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mixing equal amounts of protein solution (10 mg/ml) and reservoir solution containing 

0.1 M Hepes sodium salt (pH 7.5), 10% (v/v) propan-2-ol and 20% (w/v) PEG 

[poly(ethylene) glycol] 4000. Subsequently, production of the crystal was optimized 

under the following conditions: 0.1 M Hepes sodium salt (pH 7.5), 10% (v/v) propan-2-ol 

and 14–18% (w/v) PEG 4000. Crystals appeared within 1 week and grew for 10 more 

days. A 20–25% (v/v) glycerol was supplemented with crystallization conditions as the 

cryoprotectant for all crystals used in the experiments. To obtain the complex structure of 

Ssu72 with vanadate, apo crystals were soaked in mother liquor containing 2 mM sodium 

orthovanadate solution for 2 h prior to cryoprotection. X-ray diffraction data were 

collected at beamline 5.0.1 (Advanced Light Source) using a 2×2 ADSC CCD (charge-

coupled device) detector. Data were processed with HKL2000 and are summarized in 

Table 6-2. 

Structure determination and refinement 

The crystal structures of Drosophila Ssu72 were determined by molecular 

replacement using a low-resolution structure (PDB code 3FMV; 3.3 Å) from Northeast 

Structure Genomic Consortium as the initial search model using the program Phaser from 

the CCP4 package. Initial refinement was carried out using the Phenix refinement suite 

under NCS (non-crystallographic symmetry) restraints with a 5% test set (reflections) 

excluded for Rfree cross-validation. Electron-density maps σA-weighted 2Fo −Fc and Fo 

−Fc maps were calculated after each cycle of refinement and inspected to guide model 

rebuilding using Coot. For the complex structure of Ssu72 and vanadate, the locations of 

the vanadate group were clear in Fo −Fc maps. The inhibitor model was built into the 

electron density using Coot. The final models were evaluated by PROCHECK. 
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Refinement statistics are summarized in Table 6-2. PyMOL was used to produce 

molecular graphics renditions. 

Phosphatase activity assays 

An assay for non-specific phosphatase activity was carried out using the general 

substrate pNPP (p-nitrophenyl phosphate) (Fluka, Sigma–Aldrich) in 0.2 ml of reaction 

mixture containing 0.1 M citrate buffer (pH 6.0), 1 mM DTT, various pNPP 

concentrations (0–40 mM for Drosophila and human Ssu72, 0–320 mM for yeast Ssu72), 

and 2.0 µg of the enzyme. After incubation at 28 °C (or 37 °C for human Ssu72) for 15 

min, the reaction was terminated by adding an equal volume of 2.0 M NaOH, and the 

released pNPP was measured at 405 nm using a Tecan infinite 200 microplate reader. 

The optimum pH for enzyme activity was determined in 0.1 M citrate buffer, 0.1 M Mes 

buffer and 0.1 M Tris/HCl (adjusted in the range of pH 4–9) at 28 °C (or 37 °C for 

human Ssu72) with 2.4 mM pNPP as the substrate. Temperature effects on activity were 

measured in 0.1 Mcitrate buffer (pH 6.0) at different temperatures. Michaelis–Menten 

kinetic parameters for purified Ssu72 towards pNPP were determined by measuring 

initial reaction rates at various pNPP concentrations in the above reaction buffer. Data 

were fitted to the Michaelis–Menten equation with the program Origin7.5 (OriginLab). 

The substrate specificity of the Drosophila Ssu72was examined using Ser5-

phosphorylated CTD peptides (Anaspec) by malachite green colorimetric assay. The 

assay was performed in a 200 µl PCR tube in 20 µl of assay buffer [0.1 M Mes (pH 6.0) 

and 1 mM DTT] containing various concentrations of Ser5-phosphorylated CTD peptide 

in the absence and the presence of purified Ssu72 at 100 ng per reaction. The assay tubes 

were incubated in a PCR machine (Bio-Rad) at 28 °C for 10 min. It was stopped with 80 

µl of malachite green reagent (Biomol Green), and the absorbance was read at 620 nm 
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according to the manufacturer’s instructions. Kinetic data were analysed according to the 

Michaelis–Menten equation with the program Origin7.5. 

Differential scanning fluorimetry 

Yeast, Drosophila and human Ssu72s with various concentrations (1–50 µM) 

were mixed with 1 mM sodium vanadate in 96-well low-profile PCR plates (ABgene, 

catalogue number AB-0700) and incubated on ice for 30 min. SYPRO orange dye was 

added into each well immediately before placing the plate in LightCycler 480 (Roche). 

The protein unfolding experimentwas carried out with an increase of temperature from 

20 °C to 85 °C. The melting temperature curves of Ssu72s were monophasic and Tm 

values were derived from the curves. 

CD-monitored thermal denaturation 

Drosophila Ssu72 (43 µM) was incubated with 1 mM sodium orthovanadate in 20 

mM Hepes buffer (pH 7.5). CD spectra were monitored at 220 nm with an AVIV model 

420 spectropolarimeter equipped with a thermoelectric temperature control unit. Data 

points were collected every min/°C as the sample temperature increased from 30 to 70 °C 

(1 °C per min). Melting temperature was obtained by fitting the data to a Boltzman 

sigmoidal function by Origin7.5. 

ACCESSION CODE 

The atomic coordinates and structure factors (codes 3OMW and 3OMX) have 

been deposited in the Protein Data Bank. 

REFERENCES 

Allen, K. N. and D. Dunaway-Mariano (2004). "Phosphoryl group transfer: evolution of a 
catalytic scaffold." Trends Biochem Sci 29(9): 495-503. 



 154 

Archambault, J., R. S. Chambers, M. S. Kobor, Y. Ho, M. Cartier, D. Bolotin, B. 
Andrews, C. M. Kane and J. Greenblatt (1997). "An essential component of a C-
terminal domain phosphatase that interacts with transcription factor IIF in 
Saccharomyces cerevisiae." Proc Natl Acad Sci U S A 94(26): 14300-14305. 

Bucciantini, M., P. Chiarugi, P. Cirri, L. Taddei, M. Stefani, G. Raugei, P. Nordlund and 
G. Ramponi (1999). "The low Mr phosphotyrosine protein phosphatase behaves 
differently when phosphorylated at Tyr131 or Tyr132 by Src kinase." FEBS Lett 
456(1): 73-78. 

Chiarugi, P., P. Cirri, F. Marra, G. Raugei, G. Camici, G. Manao and G. Ramponi (1997). 
"LMW-PTP is a negative regulator of insulin-mediated mitotic and metabolic 
signalling." Biochem Biophys Res Commun 238(2): 676-682. 

Denu, J. M. and J. E. Dixon (1995). "A catalytic mechanism for the dual-specific 
phosphatases." Proc Natl Acad Sci U S A 92(13): 5910-5914. 

Fuda, N. J., M. B. Ardehali and J. T. Lis (2009). "Defining mechanisms that regulate 
RNA polymerase II transcription in vivo." Nature 461(7261): 186-192. 

Ghosh, A., S. Shuman and C. D. Lima (2008). "The structure of Fcp1, an essential RNA 
polymerase II CTD phosphatase." Mol Cell 32(4): 478-490. 

Hausmann, S., H. Koiwa, S. Krishnamurthy, M. Hampsey and S. Shuman (2005). 
"Different strategies for carboxyl-terminal domain (CTD) recognition by serine 5-
specific CTD phosphatases." J Biol Chem 280(45): 37681-37688. 

He, X., A. U. Khan, H. Cheng, D. L. Pappas, Jr., M. Hampsey and C. L. Moore (2003). 
"Functional interactions between the transcription and mRNA 3' end processing 
machineries mediated by Ssu72 and Sub1." Genes Dev 17(8): 1030-1042. 

Holm, L. and P. Rosenstrom (2010). "Dali server: conservation mapping in 3D." Nucl. 

Acids Res. 38(suppl_2): W545-549. 



 155 

Kim, M., L. Vasiljeva, O. J. Rando, A. Zhelkovsky, C. Moore and S. Buratowski (2006). 
"Distinct pathways for snoRNA and mRNA termination." Mol Cell 24(5): 723-
734. 

Krishnamurthy, S., M. A. Ghazy, C. Moore and M. Hampsey (2009). "Functional 
Interaction of the Ess1 Prolyl Isomerase with Components of the RNA 
Polymerase II Initiation and Termination Machineries." Mol. Cell. Biol. 29(11): 
2925-2934. 

Krishnamurthy, S., X. He, M. Reyes-Reyes, C. Moore and M. Hampsey (2004). "Ssu72 
Is an RNA polymerase II CTD phosphatase." Mol Cell 14(3): 387-394. 

Lindqvist, Y., G. Schneider and P. Vihko (1994). "Crystal structures of rat acid 
phosphatase complexed with the transition-state analogs vanadate and molybdate. 
Implications for the reaction mechanism." Eur J Biochem 221(1): 139-142. 

Majello, B. and G. Napolitano (2001). "Control of RNA polymerase II activity by 
dedicated CTD kinases and phosphatases." Front Biosci 6: D1358-1368. 

Meinhart, A., T. Silberzahn and P. Cramer (2003). "The mRNA transcription/processing 
factor Ssu72 is a potential tyrosine phosphatase." J Biol Chem 278(18): 15917-
15921. 

Mosley, A. L., S. G. Pattenden, M. Carey, S. Venkatesh, J. M. Gilmore, L. Florens, J. L. 
Workman and M. P. Washburn (2009). "Rtr1 is a CTD phosphatase that regulates 
RNA polymerase II during the transition from serine 5 to serine 2 
phosphorylation." Mol Cell 34(2): 168-178. 

Niesen, F. H., H. Berglund and M. Vedadi (2007). "The use of differential scanning 
fluorimetry to detect ligand interactions that promote protein stability." Nat 

Protoc 2(9): 2212-2221. 

Peters, G. H., T. M. Frimurer and O. H. Olsen (1998). "Electrostatic evaluation of the 
signature motif (H/V)CX5R(S/T) in protein-tyrosine phosphatases." Biochemistry 
37(16): 5383-5393. 



 156 

Ramponi, G. and M. Stefani (1997). "Structure and function of the low Mr 
phosphotyrosine protein phosphatases." Biochim Biophys Acta 1341(2): 137-156. 

Rigacci, S., E. Rovida, S. Bagnoli, P. Dello Sbarba and A. Berti (1999). "Low Mr 
phosphotyrosine protein phosphatase activity on fibroblast growth factor receptor 
is not associated with enzyme translocation." FEBS Lett. 459(2): 191-194. 

Shi, Y. (2009). "Serine/Threonine Phosphatases: Mechanism through Structure." Cell 
139(3): 468-484. 

Stein, E., A. A. Lane, D. P. Cerretti, H. O. Schoecklmann, A. D. Schroff, R. L. Van Etten 
and T. O. Daniel (1998). "Eph receptors discriminate specific ligand oligomers to 
determine alternative signaling complexes, attachment, and assembly responses." 
Genes Dev 12(5): 667-678. 

Sun, Z. W. and M. Hampsey (1996). "Synthetic enhancement of a TFIIB defect by a 
mutation in SSU72, an essential yeast gene encoding a novel protein that affects 
transcription start site selection in vivo." Mol Cell Biol 16(4): 1557-1566. 

Tonks, N. K. (2006). "Protein tyrosine phosphatases: from genes, to function, to disease." 
Nat Rev Mol Cell Biol 7(11): 833-846. 

Xiang, K., T. Nagaike, S. Xiang, T. Kilic, M. M. Beh, J. L. Manley and L. Tong (2010). 
"Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide 
complex." Nature 467(7316): 729-733. 

Yeo, M., S.-K. Lee, B. Lee, E. C. Ruiz, S. L. Pfaff and G. N. Gill (2005). "Small CTD 
Phosphatases Function in Silencing Neuronal Gene Expression." Science 
307(5709): 596-600. 

Yeo, M., P. S. Lin, M. E. Dahmus and G. N. Gill (2003). "A novel RNA polymerase II C-
terminal domain phosphatase that preferentially dephosphorylates serine 5." J 

Biol Chem 278(28): 26078-26085. 

Zhang, M., G. Gill and Y. Zhang (2010). "Bio-molecular Architects: A Scaffold Provided 
by the C-terminal Domain of Eukaryotic RNA Polymerase II." Nano Reviews. 



 157 

Zhang, M., J. Liu, Y. Kim, J. E. Dixon, S. L. Pfaff, G. N. Gill, J. P. Noel and Y. Zhang 
(2010). "Structural and functional analysis of the phosphoryl transfer reaction 
mediated by the human small C-terminal domain phosphatase, Scp1." Protein Sci 
19(5): 974-986. 

Zhang, M., M. Zhou, R. L. Van Etten and C. V. Stauffacher (1997). "Crystal structure of 
bovine low molecular weight phosphotyrosyl phosphatase complexed with the 
transition state analog vanadate." Biochemistry 36(1): 15-23. 

Zhang, Y., Y. Kim, N. Genoud, J. Gao, J. W. Kelly, S. L. Pfaff, G. N. Gill, J. E. Dixon 
and J. P. Noel (2006). "Determinants for dephosphorylation of the RNA 
polymerase II C-terminal domain by Scp1." Mol Cell 24(5): 759-770. 

Zhang, Z. Y. (2002). "Protein tyrosine phosphatases: structure and function, substrate 
specificity, and inhibitor development." Annu Rev Pharmacol Toxicol 42: 209-
234. 

Zhang, Z. Y., J. P. Davis and R. L. Van Etten (1992). "Covalent modification and active 
site-directed inactivation of a low molecular weight phosphotyrosyl protein 
phosphatase." Biochemistry 31(6): 1701-1711. 

Zhang, Z. Y., Y. Wang and J. E. Dixon (1994). "Dissecting the catalytic mechanism of 
protein-tyrosine phosphatases." Proc Natl Acad Sci U S A 91(5): 1624-1627. 

 



 158 

HUMAN PROLYL-ISOMERASE PIN1 

The CTD of eukaryotic RNA polymerase II is an essential regulator for RNA 

polymerase II-mediated transcription. It is composed of multiple repeats of a consensus 

sequence Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. CTD regulation of transcription is mediated both 

by phosphorylation of the serines and prolyl isomerization of the two prolines. 

Interestingly, the phosphorylation sites are typically close to prolines, thus the 

conformation of the adjacent proline could impact the specificity of the corresponding 

kinases and phosphatases. Experimental evidence of cross-talk between these two 

regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-

specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr 

(pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In this chapter, 

we provide structural snapshots and kinetic evidence that support the concept of cross-

talk between prolyl isomerization and phosphorylation. We determined the structures of 

Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro 

motifs in cis or trans conformations. The results unequivocally demonstrate the utility of 

both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound 

to a protein target. Building on this result, we identified a specific case in which Pin1 

differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 

and Ssu72) that target the same serine residue in the CTD heptad repeat but that have 

different preferences for the isomerization state of the adjacent proline residue. These 

data exemplify for the first time how modulation of proline isomerization can kinetically 

impact signal transduction in transcription regulation. 
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Chapter 7:  Structural and kinetic analysis of prolyl-

isomerization/phosphorylation cross-talk in the CTD code 

INTRODUCTION 

The unique chemical structure of the proline residue makes it the only amino acid 

enabling the Xaa-Pro peptide bond (where Xaa is any amino acid residue) to adopt a cis 

conformation to a significant extent (10-30%) (Brandts et al. 1975). The transition 

between cis and trans conformations of the prolyl peptide bond occurs at a slow rate, and 

phosphorylation of the serine or threonine preceding the proline (pSer/Thr-Pro) can 

further slow the transition (Schutkowski et al. 1998). Since protein kinases or 

phosphatases are specific for the proline isomeric state (Lu et al. 2002), it is possible that 

kinases and phosphatases could recognize the same Ser/Thr position but with different 

preferences for the isomerization state of the adjacent Pro. In other words, since proline 

isomerases can be dependent on the phosphorylated state, these enzymes may act as 

molecular ‘switches’ that govern the downstream recognition and kinetics of 

phosphatases.   

To the extent this hypothesis is true, the conformation of the peptide bond should 

impact the substrate recognition of at least some modifying enzymes. Pin1 is a highly 

conserved peptidyl-prolyl isomerase (PPIase) that specifically recognizes the pSer/Thr-

Pro motif and catalyzes faster transition between the two isomeric states, and thereby 

regulates protein functions. The isomerization of the pSer/Thr-Pro motif mediated by 

Pin1 is especially important for biological processes, e.g. cancer and neurodegenerative 

diseases such as Alzheimer’s (Lu et al. 1996; Lu 2004). In humans, one of the most 

significant substrates of Pin1 is RNA polymerase II, the central molecule for eukaryotic 

transcription (Yaffe et al. 1997). The signature motif recognized by Pin1 is highly 

enriched in the C-terminal domain (CTD) of RNA polymerase II, which consists of 26-52 
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tandem heptapeptide repeats with the general consensus sequence from yeast to human, 

Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 (Corden 1990). CTD phosphorylation is a major 

mechanism by which cells regulate gene expression, with serines at positions 2 and 5 as 

the primary phosphorylation sites (Dahmus 1996). The conformational states of the 

prolines in the CTD also represent a critical regulatory checkpoint for transcription 

(Dahmus 1996; Palancade et al. 2003; Meinhart et al. 2005). By adjusting the cis-trans 

conformation of a proline adjacent to a phosphorylated serine, the interaction of the CTD 

and the binding partners it recruits can be modulated (Morris et al. 1999; Wu et al. 2000). 

These CTD binding proteins are involved in a variety of processes during the 

transcription. However, nearly all the complex structures of CTD-binding proteins and 

the CTD peptides solved so far contain the pSer-Pro motif in trans conformation (Zhang 

et al. 2010). Some examples of these CTD-binding proteins include Pcf11 (Meinhart et 

al. 2004), a subunit of yeast cleavage and polyadenylation factor I, and mRNA capping 

enzyme Cgt1 (Fabrega et al. 2003). 

Substantial evidence has been accumulated that Pin1 modulates the 

dephosphorylation of the CTD of RNA polymerase II (Wu et al. 2000; Palancade et al. 

2003; Xu et al. 2003; Xu et al. 2007). Congruent with the hypothesis set out above, in the 

absence of Pin1-catalyzed cis/trans isomerization, a phosphatase might not be able to 

'undo' the phosphorylation catalyzed by the kinase, even though they recognize the same 

Ser/Thr. In other words, Pin1 might significantly affect the steady-state phosphorylation 

level of a protein even though it has neither kinase nor phosphatase activity. Notably, the 

function of Pin1 itself is tightly regulated in normal tissues on both expression level and 

post-translational modification level (Lu et al. 2007), indicating Pin1 as a regulatory 

switch of the isomeric states of pSer/Thr-Pro in signal transduction. 
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About a dozen CTD-specific kinases have been identified and characterized 

(Prelich 2002), but CTD phosphatases are understudied. Recently, our lab and others 

have structurally characterized two CTD-specific phosphatases: small CTD phosphatase 

1 (Scp1) (Yeo et al. 2003; Yeo et al. 2005; Zhang et al. 2006) and Ssu72 (Zhang et al. 

2011), and their interactions with phosphorylated CTD (Xiang et al. 2010; Werner-Allen 

et al. 2011). Scp1 was identified as a neuronal gene suppressor in non-neuronal cells as 

well as neuronal stem cells (Yeo et al. 2005), where it epigenetically regulates the 

expression of a subset of genes. Scp1 is the first structurally characterized CTD-specific 

phosphatase with its substrate bound in human (Yeo et al. 2003; Yeo et al. 2005; Zhang 

et al. 2006). In our high-resolution structure of the Scp1-CTD complex (PDB code 2ght), 

it is obvious that pSer5 is the site that undergoes dephosphorylation, while the pSer2 side 

chain extends outwards from the protein surface, even though it is also phosphorylated. 

The Pro3 and Pro6 are both in the trans conformation, and the conversion from trans to cis 

would make the substrate chain clash sterically with the protein unless dramatic 

conformational changes occurred (Zhang et al. 2006). Ssu72, on the other hand, has been 

recognized as a housekeeping gene that is pivotal to the general transcription cycle. It 

exhibits substrate specificity toward the cis conformation of its bound CTD peptide 

(Xiang et al. 2010; Werner-Allen et al. 2011). It recognizes pSer5-Pro6 motif only if Pro6 

adopts the cis conformation (Xiang et al. 2010). Based on the structure, the high energy 

cis-proline substrate can be stabilized in part by the intramolecular hydrogen bond 

between the hydroxyl side chain of Thr4 and the carbonyl group of Pro6. This is 

surprising since all previously identified CTD binding proteins are trans specific. Since 

the cis conformation only accounts for ~20% of the peptide, the unambiguous 

observation in crystal structures of the cis conformation binding in Ssu72 indicates 

selectivity, rather than an averaging effect of crystallography. The structures strongly 
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suggest that the cis or trans conformations of prolines upstream or downstream of a pSer 

site in the CTD can directly determine if the specific site can be subject to the 

dephosphorylation by the CTD phosphatases.   

We therefore hypothesized that prolyl isomerization has a substantial impact on 

dephosphorylation rates by changing the suitability of CTD as the substrate for CTD 

phosphatases, and thus affects the phosphorylation patterns of the CTD (Etzkorn 2006). 

In particular, Scp1 and Ssu72 might respond differently to the Pin1-mediated prolyl 

isomerization. However, structural and kinetic evidence were lacking. In order to test this 

hypothesis, we determined the structures of two conformational-locked alkene isosteres 

bound to Pin1 that mimic the two endpoints of the isomerization reaction: pSer-cis-Pro 

and pSer-trans-Pro (Wang et al. 2004). These structures not only provide insight into 

how Pin1 recognizes its substrates, but also demonstrate unequivocally the utility of both 

cis- and trans-locked alkene isosteres as close geometric mimics of peptide bonds bound 

to a protein target. We further show that cis-specific phosphatase Ssu72 was highly 

activated by Pin1 activity, but that trans-specific phosphatase Scp1 was not affected 

substantially. These data illustrate how the ability of Pin1 to ‘switch’ the cis and trans 

conformation of its substrates may have significant implications for the regulation of 

RNA polymerase II-mediated transcription. 

RESULTS AND DISCUSSION 

The binding of cis and trans isosteric compounds to Pin1   

In order to promote Pin1 crystals to endure prolonged chemical soaking, it was 

necessary to engineer Pin1 using an entropy reduction strategy (Zhang et al. 2007). R14A 

mutation of Pin1 has been shown to dramatically stabilize the protein crystal, yet it has 

little impact on the PPIase activity or WW domain binding on the substrates of Pin1 (Lu 
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et al. 1999). The R14A mutant also shows identical binding modes as wild-type protein 

when bound to high-affinity inhibitor Ac-L-Phe-D-pThr-L-Pipecolic acid-L-

Naphthylalanine-L-Gln-NH2 (D-PEPTIDE) (Zhang et al. 2007). Therefore, in our current 

investigation, crystals of this mutant were used to soak with cis and trans isosteric 

compounds. This strategy was extremely effective and the crystals diffracted to 2.1 and 

2.3 Å on an in-house X-ray source for cis and trans complexes respectively. 

The overall structure of Pin1 is highly consistent with previously reported 

structures. Briefly, human Pin1 has two distinctive domains, a WW domain that 

recognizes the signature motif pSer/Thr-Pro, and a PPIase domain that catalyzes the 

reaction of the prolyl-peptide. The linker between the two domains is highly flexible and 

disordered in all of the structures of Pin1 published thus far (Figure 7-1) (Ranganathan et 

al. 1997; Verdecia et al. 2000; Zhang et al. 2007). The flexible nature of the linker is 

inherited throughout the Pin1 family. The mobility of the linker and the inter-domain 

movement is proposed to be an integral regulatory mechanism for the communication 

between WW and PPIase domains and essential for the biological function of the protein 

(Li et al. 2005; Namanja et al. 2011). A PEG400 molecule, used as additive in the 

crystallization buffer, was found as usual in the groove between the two domains. This 

PEG400 molecule stabilizes the mobility between the two domains and enables the 

crystallization of Pin1 molecules. The only exception is the structure of Pin1 with the 

phosphoryl-peptide derived from the CTD of RNA polymerase II, in which case the 

peptide replaced the PEG molecule (PDB code: 1f8a) (Verdecia et al. 2000). 
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Figure 7-1: Overall structure of Pin1 represented by cartoon and surface.39 

The complex structures show that both cis and trans alkene compounds (Figure 7-

2) bind to the PPIase domain of the Pin1. The structures indicate that Pin1 recognizes 

both cis and trans substrates in very similar conformations, even though the mode of the 

proline 5-membered ring analogue bound to the proline binding pocket is slightly 

different. The PPIase domain has two distinctive binding areas for each residue of the 

signature motif, pSer/Thr-Pro. Three essential residues of the PPIase domain, Lys63, 

Arg68 and Arg69, form a positive triad pocket that specifically binds to the phosphate 

group (Figure 7-1). The elimination of any of these residues greatly diminishes the 

activity of the enzyme but does not totally abolish the isomerization activity (Lu et al. 

1999). However, eliminating two out of the three residues reduces the activity of the 

enzyme to an undetectable level (Lu et al. 1999). These residues, embracing the 

phosphate group of the substrate with electrostatic interactions, form a roomy and elastic 

                                                 
39 The PPIase domain is colored light pink, and the WW domain is colored light blue. The linker in 
between of the two domains is missing due to its high flexibility. The residues, Lys63, Arg68 and Arg69, 
that bind phosphate group is shown as sticks. The red arrow indicates the pocket that recognizes proline.  
PEG molecule is shown in green and red as sticks. 
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pocket that can accommodate “rolling” of the phosphate. When not occupied, the positive 

triad loop preserves an open conformation that can close up upon inhibitor binding 

(Figure 7-3) (Verdecia et al. 2000). A hydrophobic pocket that binds to the proline 

residue of the substrate is also accountable for the unique selectivity of Pin1 isomerase. 

This greasy pocket highly prefers hydrophobic residues like proline. When a proline-

containing compound is not provided in solution, density from additives sometimes can 

be found in the crystal structure, most likely due to non-specific binding. This implies a 

strong preference for hydrophobic interactions in this binding area and provides clues for 

inhibitor design (Zhang et al. 2007). 

 

Figure 7-2: Chemical structures of the cis and trans peptidomimetic inhibitors of Pin1: 
cis isostere (1) and trans isostere (2). 

 



 166 

 

Figure 7-3: Superimposition of multiple Pin1 structures published in PDB shows “open” 
and “closed” conformations of the loop containing Arg68.40 

The Pin1 R14A-cis-isostere complex structure 

The cis isosteric inhibitor binds to the PPIase domain, as predicted based on the 

kinetic results that the compound is a competitive PPIase inhibitor (Wang et al. 2004). 

Three residues of the inhibitor are ordered and modeled in the density at the active site 

(Figure 7-4a). Even though it has been proposed that the presence of hydrophobic 

residues N-terminal to the signature motif can enhance binding (Yaffe et al. 1997), the 

two phenylalanine residues in the cis peptidomimetics are not visible in our structure. 

This is similar to another complex structure of Pin1 (PDB code: 2itk) with high affinity 

peptide inhibitor (Ki of 19 nM) where N-terminal hydrophobic residue (Phe) immediately 

preceding the pSer/Thr-Pro motif (PDB code: 2itk) was also disordered (Zhang et al. 

2007). The consistent lack of order in these amino acids suggests that the residue(s) N-

terminal to the pSer/Thr-Pro motif might contribute very little structurally to the tight 

binding between Pin1 and those inhibitors. We took advantage of this observation in our 

                                                 
40 The ones that have ligand bound at the phosphate-binding pocket (red arrow) include 1pin (green), 2itk 
(cyan), 1nmw (magenta), and 3jyj (yellow). The structure with PDB code 1f8a (pink) has no ligand at the 
phosphate-binding pocket, possessing the loop swung out about 23.5 Å from the “closed” conformation. 
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ensuing design of a reduced amide inhibitor of Pin1, Ac–pSer–Ψ[CH2N]-Pro–tryptamine 

(Xu et al. 2011). In this case, no hydrophobic residues were placed in front of the pSer, 

the resultant compound exhibited much improved solubility that allowed structural 

determination. 

Figure 7-4: Complex structures of Pin1 bound with cis or trans isosteres.41 

One interesting aspect of our structure is the conformation of Arg68 of Pin1, 

whose side chain was disordered in the previous PPIase complex structure (Zhang et al. 

                                                 
41 (a) Electron density map (2Fo-Fc) of cis isostere contoured at 1σ. (b) Superimposition of Pin1 bound 
with cis isostere (yellow) and L-PEPTIDE (magenta, PDB code: 2q5a). Pin1 bound with cis isostere is 
shown in pale green, and the Pin bound with L-PEPTIDE is shown in white. Arg68 in both structures is 
shown as sticks. The yellow dashed lines indicate the hydrogen bonds. (c) Hydrophobic pocket (pink 
surface) which recognizes Pro analogue of the peptidomimetic inhibitor. The key hydrophobic residues are 
shown in pink as sticks. (d) Superimposition of Pin1 bound with cis (yellow) and trans (light blue) 
isosteres. 
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2007). The loop containing the positively charged triad (Arg68, Arg69 and Lys63) forms 

favorable electrostatic interactions with phosphate group, stabilizing the interaction 

between protein and peptide inhibitor. The loop can adopt two dramatically different 

conformations, a closed conformation when a negatively charged group, such as 

inorganic sulfate or a phosphate group from substrate or substrate analogues, occupies the 

active site, and an open conformation when the site is unoccupied. Compared with the 

closed conformation, the tip of the loop swings 23.5 Å away when the pocket is empty 

(Figure 7-3). Furthermore, even in the closed conformation, the side chain of Arg68 is 

highly flexible in different structures, and it is usually totally disordered. However, in this 

pair of structures of Pin1 with substrate analogues, Arg68 covers the entrance of the 

active site cavity and provides a lid with hydrogen bonds to the amides of both inhibitors’ 

C-terminal arginine residues and phosphates (Figure 7-4b). The position of the Arg68 

side chain is also very close to the alkene bond that mimics the peptidyl-prolyl bond in 

the substrate. The highly mobile Arg68 side chain enables a very elastic binding pocket 

for phosphate, and permits the rotation of the phosphate group upon isomerization.  

The proline-binding pocket, on the other hand, is less flexible and favors certain 

positioning of proline over others. This pocket is composed of Phe125, Phe134, Met130 

and Leu122 (Figure 7-4c), which provides hydrophobic interactions with the proline-

mimic moiety of the inhibitors. Hydrophobic interactions usually grant high-affinity 

binding for inhibitors. For example, rapamycin presents a 0.2 nM Kd toward another 

PPIase, FKBP12 of the FK506 binding protein (FKBP) family, yet all the strong 

interactions are driven by hydrophobic interactions with only one potential hydrogen 

bond between the ligand and the enzyme (PDB code: 2dg3). Exploitation of the proline-

binding pocket in Pin1 will help us to design inhibitors for human Pin1 with stronger 

affinity and selectivity. Indeed, the high affinity of D- and L-PEPTIDE is at least partially 
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attributed to the exchange of proline residue by a 6-membered ring analogue of proline, 

pipecolic acid (Zhang et al. 2007). The natural substrate of Pin1 at this site, proline, 

actually has relatively weak binding to the PPIase domain, which is mimicked by the 

position of the proline analogue in our structure (Figure 7-4c). Instead, the WW domain 

shows a strong affinity for pSer/Thr-Pro sequences, and may function as a recruiter for 

natural substrates. Pin1 PPIase only binds substrate with Kd in millimolar range, therefore 

it is believed that the PPIase domain can only take the substrate after the WW domain 

targets the protein to the substrate (Ranganathan et al. 1997; Lu et al. 1999). This dual 

mode of action has been the center of investigation for human Pin1 function (Daum et al. 

2007; Namanja et al. 2011), but how the two domains communicate and coordinate 

catalysis remains to be elucidated. 

The Pin1 R14A-trans-isostere complex structure  

The structure of Pin1 bound to the inhibitor mimicking trans-proline exhibits a 

very similar conformation as its cis counterpart (Figure 7-4d). Consistently, Arg68 is 

ordered in this structure and covers the active site entrance. However, one interesting 

distinction from the cis complexes is the much weaker density at the alkene bond that 

mimics the prolyl peptide bond even though the densities of the compound at the 

phosphate binding site and proline binding pocket are rather strong. Considering that both 

complexes were obtained with similar amounts of soaking time at similar resolutions, this 

suggests that the isosteric bond is more ordered in the cis compound compared to the 

trans. The Ki of the trans compound is 23-fold higher than that of the cis compound, 

possibly due to the different binding modes of the proline residues as restricted by the cis 

or trans conformation. Alternatively, it is possible that the binding of the trans 

conformation of carbocyclic proline analogue exerts strain upon binding to Pin1, as 



 170 

evidenced by the protein dynamics measured by NMR (Namanja et al. 2011). In contrast, 

the cis conformation of the alkene bond introduces less distortion, resulting in more 

favorable binding. 

Impacts on CTD dephosphorylation mediated by Scp1 and Ssu72 

Even though both cis- and trans-proline are suitable substrates for Pin1, as 

mimicked in our structures, the impact of isomerase activity is not the same on different 

enzymes recognizing different prolines. Since cis-proline is only a minor component in 

naturally occurring proteins, enzymes recognizing cis-proline as substrate will have their 

substrate pool greatly affected by Pin1 activity. Phosphatases targeting the same substrate 

sequence motif, but requiring different proline isomers, represent the best system to test 

this. Scp1 and Ssu72 are eukaryotic phosphatases recognizing the Ser5 position of the 

CTD. However, their complex structures suggest that Scp1 and Ssu72 prefer different 

proline conformations. We have examined how Pin1 activity affects the phosphatase 

activity of these enzymes.   

In order to investigate whether Pin1 can regulate the activity of CTD-specific 

phosphatases, we tested the dephosphorylation of a CTD-derived peptide using the 

malachite green assay. This peptide includes four repeats, (YSPTpSPS)4, with all four 

Ser5 phosphorylated. Previously, Ssu72 has been shown to be more active upon the 

addition of yeast homologue of Pin1, Ess1 (Werner-Allen et al. 2011). We asked whether 

similar effects would be observed when human Pin1 was used. The isomerization effects 

of Pin1 on another CTD phosphatase, transcription factor IIF-interacting CTD-

phosphatase 1 (Fcp1), have been controversial when both activation with human Pin1 

(Kops et al. 2002) and inhibition with yeast homologue Ess1 (Xu et al. 2003) have been 

observed. We reasoned that the discrepancy comes from the different recognition sites for 
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Fcp1 and Pin1. Pin1 binds the Ser5 of the CTD (Verdecia et al. 2000) whereas Fcp1 

highly favors Ser2, and only binds Ser5 weakly (Hausmann et al. 2002). When the same 

recognition motif is being recognized, the effect of the PPIase towards isomer-specific 

phosphatases should be more consistent between the yeast and human versions of the 

PPIase.   

In this study, we used Drosophila Ssu72 to test how Pin1 affects its activity. 

Drosophila Ssu72 shares 60% identity with human Ssu72, and structural conservation of 

0.56 Å in the main chain (Zhang et al. 2011). The active site superimposes perfectly 

between the Drosophila and human counterparts (Figure 7-5). The Drosophila version of 

Ssu72 has much higher thermostability, making it a better version to use for the kinetic 

experiments. Consistent with prior reports (Xiang et al. 2010; Werner-Allen et al. 2011), 

Ssu72 is activated upon Pin1 addition (Figure 7-6a) by about 3-fold. This result is 

consistent with a scenario in which Pin1 quickly converts the trans-Pro to cis-Pro, and by 

doing so, makes the cis-trans ratio reach equilibrium much faster than the uncatalyzed 

auto-conversion. Therefore, the consumable substrate concentration for Ssu72 was 

increased in the presence of Pin1, and led to the apparent increased activity of Ssu72. 

Such effect is specifically caused by the prolyl isomerase activity of Pin1, because when 

we used a truncated version of Pin1, PPIase domain, which cannot target CTD substrate 

to PPIase active site (Verdecia et al. 2000), the activation effect is lost (Figure 7-6a). 
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Figure 7-5: Superimposition of the active sites of the human (light blue, PDB code: 
3o2q) and Drosophila (light orange, PDB code: 3omw) Ssu72.42 

It should be noted that the fraction of peptide that was dephosphorylated by Ssu72 

(~1/3) consists of both substrate that was in cis-conformation initially [estimated to be 

~20%], and substrate that was auto-converted to cis-conformation during the process of 

the reaction. The difference between the reactions with and without Pin1 is caused by the 

effect of Pin1 'outracing' trans-to-cis auto-conversion.  

Combined with a previous experiment that a catalytically impaired mutant of 

yeast homologue of Pin1, Ess1, cannot activate Ssu72 (Werner-Allen et al. 2011), our 

result shows that it is the isomerization of the CTD that promotes the enhanced 

phosphatase activity of Ssu72, rather than stabilization of Ssu72 protein or reducing the 

non-specific adsorption of Ssu72 protein to the test tube. Furthermore, we ruled out the 

possibility that Pin1 activates Ssu72 by physically interacting with Ssu72. Firstly, Pin1 

specifically recognizes a Ser/Thr-Pro motif in its substrates only when the Ser/Thr is 

phosphorylated. However, Ssu72 contains no pSer/Thr-Pro motif in its primary sequence. 

                                                 
42 The three key residues at the active site are shown as sticks. The nucleophile Cys12 was mutated to Ser 
in the human Ssu72 in order to obtain the complex structure with the peptide (shown as yellow sticks). 
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Secondly, we tested whether Pin1 and Ssu72 can directly interact with each other to form 

a stable complex using gel filtration chromatography. In this experiment, roughly equal 

amount of Pin1 and Ssu72 (~300 µM each) were mixed together and incubated at 4 °C 

for 6 hr. The mixture was then loaded on Superdex 75 column (GE Healthcare). No peak 

corresponding to a possible Pin1-Ssu72 complex was observed (Figure 7-7). This 

experiment shows that the enhancement of Ssu72 activity is not due to its physical 

interaction with Pin1. 
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Figure 7-6: Effect of human Pin1 on the activities of Drosophila Ssu72 (a) and human 
Scp1 (b) phosphatases.43 

In contrast, when we tested human Scp1 in the same assay, the phosphatase 

activity is not significantly affected by Pin1 (Figure 7-6b). The insensitivity of Scp1 to 

Pin1 is consistent with the structural observations for prolyl isomeric states. Both Pro3 

and Pro6 of the CTD peptide exhibit only the trans conformation in the complex structure 

                                                 
43 The activities of both phosphatases toward a 28-mer peptide [sequence: (YSPTpSPS)4] were measured 
using malachite green assay. The Pin1 is wild-type full length protein and PPIase domain is a truncated 
version of Pin1 with residues 51-163. (a) The reaction (20 µL total volume) for Ssu72 was carried out in 
buffer containing 100 ng of Ssu72, 20 µM of peptide, 100 mM MES pH 6.5, and 10 ng of Pin1 or PPIase 
domain. (b) The reaction of Scp1 was performed in the buffer containing 5 ng of Scp1, 10 µM of peptide, 
50 mM Tris-acetate pH 5.5, 10 mM MgCl2 and 10 ng of Pin1 or the PPIase domain. The reactions were 
quenched by adding 40 µL of malachite green reagent at different time points. The release of inorganic 
phosphate was detected by measuring the absorbance at 620 nm. 
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of Scp1 and CTD peptide (Zhang et al. 2006). Unlike Ssu72, Pro3 two residues upstream 

of pSer5 is a recognition determinant for Scp1 binding. Since the majority of the peptide 

substrate [estimated to be 80%] has the proline in the trans conformation, Scp1 

recognizes the substrate readily and dephosphorylates the substrate. In this case the 

addition of Pin1 only marginally improves substrate accessibility of Scp1. The slight 

improvement is hard to distinguish due to the sensitivity level of malachite green assay 

and is thus insignificant. 

 

Figure 7-7: Gel filtration traces of Ssu72 (~23 kDa), Pin1 (~18 kDa) and Ssu72-Pin1 
mixture generated by Superdex 75 column (GE Healthcare).44 

                                                 
44 The wild-type Drosophila Ssu72 and human Pin1 were purified by following the same procedure 
described in Methods. Ssu72-Pin1 mixture was prepared by mixing nearly equal molar concentration 
(~300 µM) of Ssu72 and Pin1 in 4 °C and incubated for 6 hr. The arrows indicate where the standard 40 
kDa and 20 kDa protein should be. 
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Implication of Pin1 mechanism from the structures 

Both cis- and trans-prolines are subject to isomerization by Pin1 with cis and trans 

alkene inhibitors mimicking substrate/product of the Pin1 isomerization reaction. The 

pSer-Pro dipeptide with either cis or trans conformation is modeled, based on our present 

complex structures, in the Pin1 structure to illustrate the real substrate binding (Figure 7-

8b, c). The complex structures show that the same structural elements are used to 

recognize the substrate/product and interconvert the two species to reestablish the 

equilibrium cis:trans ratio. 
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Figure 7-8: Model of the cross-talk between Ser5 dephosphorylation and prolyl 
isomerization of the CTD.45 

                                                 
45 (a) The Pin1 acts as molecular switch that changes the isomeric state of the two prolines, resulting in 
recruitment of different transcription complex and therefore, different outcomes of transcription. (b) pSer-
cis-Pro dipeptide modeled in Pin1 structure. (c) pSer-trans-Pro dipeptide modeled in Pin1 structure. (d) 
Ssu72 is recruited with specific regulatory factors (colored shapes) to control general gene transcription in 
response to cis-proline. (e) Scp1 is recruited with a different set of regulatory factors (colored shapes) to 
control neuronal gene transcription in response to trans-proline. 
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A challenge of this field has been making substrates locked in only one 

conformation. Alkenes have a long history as peptide bond isosteres. The carbon-carbon 

double bond is close to the same length as the amide carbonyl-nitrogen bond, 1.40 Å vs 

1.32 Å, and the distance between the α-carbons is identical, 3.8 Å (Shue et al. 1993). The 

dynamics of both cis- and trans-locked ligands are dramatically affected by which 

conformation is bound to Pin1; cis is more rigid than trans, and the rigidity of bound cis 

results in 23-fold tighter binding (Wang et al. 2004; Namanja et al. 2011). The protein 

dynamics of a conduit between the PPIase and WW domains of Pin1 are also 

differentially affected by binding of cis- or trans-locked substrate isosteres (Namanja et 

al. 2011).   

Previously, we have obtained crystal structures of Pin1 complexed with two high 

affinity peptide inhibitors; Ac-Phe-(D/L)-pThr-Pip-Nal-Gln-NH2, (D-PEPTIDE or L-

PEPTIDE, respectively). Our new structures replace the prolyl-peptide which is subject 

to isomerization with non-rotatable carbon-carbon double bond, locking the two states of 

substrate-bound mode of Pin1. When we compared these two pairs of complex structures 

of Pin1, substrate-mimicking (cis and trans isosteres) versus high affinity inhibitors (D- 

and L-PEPTIDE), it has been observed that the phosphate positions of different Pin1 

inhibitors are highly diversified. The architecture of the triad positive residues allows the 

rolling of the phosphate group to form electrostatic interactions with Lys63, Arg68 and 

Arg69. The side chains of these three residues also adopt different conformations with 

each isomer to accommodate different positions of the phosphate of the substrate, 

allowing the rotation of the phosphate group, yet still within the pocket. On the contrary, 

the C-terminus of the signature motif (pSer/Thr-Pro) provides a strong hold for the 

peptide. The proline pocket does not accommodate free rotation of the proline and the 

hydrogen bonding between the carbonyl of proline and the amide of Gln131 is highly 
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conserved among all of our Pin1 structures (Figure 7-9). These observations suggest that 

dynamic interactions of the phosphate group and the protein allows the rotation of the 

prolyl peptide at the N-terminus of the peptide subject to isomerization, which echoes the 

discovery in NMR studies on the issue (Labeikovsky et al. 2007; Namanja et al. 2010). In 

addition, the flexibility of the interactions between the phosphate group and the positive 

triad during the rotation permits transition-state stabilization (Xu et al. 2011). 

 

Figure 7-9: Hydrogen bond (green dashed line) formed between the carbonyl of proline 
(or proline analogue) and the amide of Gln131.46 

Implications for the regulatory mechanism of CTD 

During the progression of the RNA polymerase II-mediated transcription cycle, 

many CTD-specific kinases and phosphatases are recruited to the CTD. The dynamic 

phosphorylation/dephosphorylation is a major regulatory mechanism of the CTD, greatly 

influencing transcription. However, various phosphatases and kinases may have different 

specificity toward the isomeric states of the prolines adjacent to the major 

                                                 
46 Shown here is an example from complex structure of Pin1 and L-PEPTIDE (PDB code: 2q5a). 



 180 

phosphorylation sites. Even though cis and trans forms of proline can reach equilibrium 

slowly under thermal isomerization called auto-conversion, the rate is too slow to allow 

efficient signal transduction in cells. Therefore, Pin1-mediated prolyl isomerization of the 

CTD is necessary to couple with the phosphorylation regulation to generate suitable 

substrates for both cis- and trans-specific kinases/phosphatases (Figure 7-8a). The 

dynamic nature of the CTD phosphorylation states during transcription determines that 

different outcomes can be reached for different phosphatases when their proline isomeric 

specificity is different (Figure 7-8).   

In such a scenario, the prolyl isomerase activity can greatly affect the outcome 

when the pool of one species of the substrate is rapidly depleted. For a cis-specific 

enzyme, such as Ssu72, the isomerase activity of Pin1 guarantees the availability of cis-

form substrate that is rapidly depleted. On the other hand, since Scp1 utilizes the trans-

form CTD as substrate, which is the major species, the apparent dephosphorylation will 

not be affected much by Pin1. So even though both Scp1 and Ssu72 recognize the pSer5 

of CTD as substrate, their response towards Pin1 PPIase activity in cells will differ 

dramatically (Figure 7-8d, e). Their different responses will in turn affect the regulatory 

factors recruited to the vicinity of genes during transcription. Specifically, Ssu72 together 

with its binding partner, the scaffold protein symplekin (Xiang et al. 2010) and other 

regulatory factors from the cleavage/polyadenylation specificity factor (CPSF) complex 

(Krishnamurthy et al. 2004), will be recruited in response to pSer-cis-Pro, thus regulate 

general transcription. On the other hand, Scp1, together with REST complex (Yeo et al. 

2005), will be recruited in response to pSer-trans-Pro to turn off neuronal gene 

expressions. To a certain extent, the phosphorylation state of the CTD is governed not 

only by the phosphorylation/dephosphorylation mechanism, but also the prolyl 

isomerization mechanism (Figure 7-8). The combination of the various post-translational 
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modifications on CTD can lead to different transcription outcome and therefore, various 

fates for the cell. The recognition of both phosphorylation and isomerization states of 

CTD by partner proteins are very likely to be a general mechanism adopted by other 

CTD-binding proteins in transcription regulation, indicating a “combinatorial” CTD 

code. 

CONCLUSIONS 

In this study, we determined the complex structures of human Pin1 with two 

isomer-locked peptidomimetics that mimic the substrates in the cis or trans form of a 

pSer-Pro peptide bond. The recognition by Pin1 has an impact on the downstream 

regulatory phosphatases of CTD to a different extent based on their specificity towards 

proline isomeric states. The existence of Pin1 isomerase activity can greatly stimulate the 

activity of a cis-proline specific phosphatase by increasing the potential substrate pool. 

However, the Pin1 effect is more limited on trans-proline specific phosphatases. 

Therefore, the up-regulation of Pin1 activity can alter the signal transduction pathway in 

CTD-mediated transcriptional regulation. The cross-talk between prolyl-isomerase and 

CTD phosphatases can differentially lead to various transcriptional outcomes in cells. 

METHODS 

Synthesis of the cis and trans peptide mimetic inhibitors 

The cis and trans isosteres, Boc–Ser–Ψ[(Z/E)CH=C]-Pro–OH, where (Z) is the cis 

mimic, and (E) is the trans mimic, were synthesized as previously reported (Wang et al. 

2003). Both peptidomimetics (Figure 7-2), Ac–Phe–Phe–pSer–Ψ[(Z/E)CH=C]-Pro–Arg–

NH2, were synthesized using solid-phase peptide synthesis with the Fmoc-protected, 

block-phosphorylated isosteres as described previously (Wang et al. 2004).   
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Purification of human Pin1 and human Scp1 

The human Pin1 or Scp1 gene was sub-cloned in a pHIS8 vector, a derivative of 

pET28a vector (Novagene) (Jez et al. 2000). The Pin1 R14A mutant was produced using 

the QuikChange Site-Directed Mutagenesis Kit (Stratagene, CA). The purification of 

Pin1 R14A mutant or Pin1 PPIase domain (residue 51-163) was identical to the 

procedure previous reported (Zhang et al. 2007). Concisely, the protein was 

overexpressed using E. coli BL21(DE3) strain with isopropyl-β-D-thiogalactopyranoside 

(IPTG) induction at 16 °C overnight. The cells were pelleted and lysed with subsequent 

nickel affinity chromatography purification. After imidazole elution of the HIS-tagged 

recombinant protein, the N-terminal polyhistidine-tag was truncated with thrombin 

protease during dialysis at 4 °C, and subsequently purified on ion-exchange and size 

exclusion chromatography columns. The purified protein was homogenous on SDS-

PAGE gel.   

Purification of Drosophila Ssu72  

A pET28b derivative vector, pETHIS8–SUMO, encoding Drosophila Ssu72 

proceeded by an N-terminal 8xHIS-SUMO tag was constructed previously (Zhang et al. 

2011). The protein was overexpressed in E. coli BL21 (DE3). The cells were grown at 

37 °C in Luria-Bertani medium supplemented with 50 µg/mL kanamycin, then induced 

with 0.5 mM IPTG at 16 °C when the O.D. at 600nm reached 0.8. After overnight 

incubation, the cells were harvested by centrifugation and disrupted by sonication. 

Recombinant protein was initially purified with Ni-NTA column (Qiagen, Switzerland). 

The N-terminal 8xHIS-SUMO tag was then removed by PreScission protease (GE 

Healthcare). The protein was further purified by a size exclusion column Superdex-75 

(GE Healthcare), equilibrated with 25 mM Tris-HCl (pH8.0) and 200 mM NaCl buffer. 

The collected Ssu72 protein was passed through the Ni-NTA column again to remove 
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any heterogeneous proteins, as evaluated by SDS-PAGE gels. The pure Ssu72 protein 

was finally flash frozen in liquid nitrogen and stored at –80 °C. 

Crystallization, soaking and data collection  

The R14A variant of human Pin1 was crystallized by vapor diffusion using a 

hanging drop of 1 µL protein plus 1 µL well solution. The crystals were obtained at 1.9-

2.2 M ammonium sulfate, 1% PEG400 at pH 7.5 in 50 mM HEPES buffer. The crystals 

were then transferred to mother liquor containing 40% PEG400 and 50 mM HEPES pH 

7.5 with 0.2 mM of peptide mimetic inhibitor. The crystals were soaked for 4 weeks with 

buffer exchange using fresh mother-liquor containing peptide mimetic inhibitor every 

week. The crystals were then frozen in liquid nitrogen and subjected to in-house X-ray 

beam using DIP100 imaging plate (MacScience, CO) with data collection. Diffraction 

data were processed using HKL2000. The statistics of the data are summarized in Table 

7-1. 

Structure determination and analysis 

The complex structure of human Pin1 R14A with cis or trans peptide mimetic 

inhibitors were determined using molecular replacement with Pin1 complex structure 

with a high affinity inhibitor (PDB code: 2itk) as a search model. The solution of the 

structure was identified using AMoRe, a program in the CCP4 program suite (Navaza 

1994). The refinement of the complex structures was performed using the program 

refmac in CCP4 (Vagin et al. 2004). Electron density maps (sigmaA weighted 2Fo-Fc and 

Fo-Fc maps) were calculated after each cycle of refinement, and inspected to guide model 

rebuilding using Coot (Emsley et al. 2004). The quality of the final model was evaluated 

using Procheck (CCP4 1994). The statistics of the final model for both structures are 

summarized in Table 7-1. 
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Malachite green assay for Scp1 and Ssu72 

The activity of the CTD phosphatases Scp1 and Ssu72 in the presence or absence 

of Pin1 toward 28-mer CTD peptide was measured in this assay (Martin et al. 1985). The 

28-mer peptide contains 4 repeats of the consensus sequence with each Ser5 

phosphorylated: (YSPTpSPS)4. The reaction (20 µL total volume) for human Scp1 was 

carried out in buffer containing 5 ng of Scp1, 10 µM of peptide, 50 mM Tris-acetate pH 

5.5, 10 mM MgCl2 and 10 ng of Pin1 or the PPIase domain, and was incubated at 37 °C. 

The reaction (20 µL total volume) of Drosophila Ssu72 was performed in the buffer 

containing 100 ng of Ssu72, 20 µM of peptide, 100 mM MES pH 6.5, and 10 ng of Pin1 

or PPIase domain, and was incubated at 28 °C. The reactions were quenched by adding 

40 µL of malachite green reagent at different time points. The release of inorganic 

phosphate was detected by measuring the absorbance at 620 nm. 

ACCESSION CODE 

Coordinates of the Pin1-cis compound and Pin1-trans compound complex 

structures have been deposited in the Protein Data Bank with the accession numbers 3tcz 

and 3tdb. 
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 Pin1 w/ cis compound Pin1 w/ trans compound 

Data collection   
Space group P3121 P3121 

Cell dimensions:  a, b, c (Å) 69.4, 69.4, 79.6 69.3, 69.3, 79.7 
α, β, γ (°) 90.0, 90.0, 120.0 90.0, 90.0, 120.0 

Resolution (Å) 50.00 – 2.10 (2.18 – 2.10) * 50.00– 2.26 (2.34 – 2.26) * 
No. of unique reflections 12458 (1106) 10488 (908) 

Rsym or Rmerge (%) 5.4 (47.6) 4.3 (30.1) 
I/σ(I) 26.4 (2.5) 33.2 (5.4) 

Completeness (%) 93.2 (84.8) 97.5 (85.9) 
Redundancy 5.5 (5.0) 4.6 (4.3) 
Refinement   

Resolution (Å) 33.19 – 2.10 47.95 – 2.27 
No. of reflections (test set) 10431 (1187) 9168 (1037) 

Rwork / Rfree (%) # 22.3 / 26.5 21.7 / 25.6 
No. of atoms:   Protein 1164 1164 

Ligand 30 39 
PEG 24 24 

Water 87 64 
B-factors (Å2):  Protein 32.6 29.0 

Ligand 47.0 55.6 
PEG 31.7 30.2 

Water 39.1 32.5 
R.m.s deviations: Bond lengths 

(Å) 
0.011 0.020 

Bond angles (°) 1.411 1.977 
Ramachandran plot (%): Most 

favored 
92.8 92 

Additionally allowed 6.4 7.2 
Generally allowed 0.0 0.0 

Disallowed a 0.8 0.8 

Table 7-1: Crystallographic data statistics.47 

                                                 
47 * Highest resolution shell is shown in parenthesis. # Rfree is calculated with 10% of the data randomly 
omitted from refinement. a Leu7 (chain A) in both structures is close to the N-terminus of Pin1. 
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Perspective 

The research described in this dissertation provided not only answers to several 

key questions regarding the function of Scps and the dynamic regulation of the CTD, but 

also a number of novel and powerful tools for the further study in these areas. 

Firstly, our understanding of the enzymatic mechanism of Scps was significantly 

deepened by our capture of the phosphoryl-aspartate intermediate of Scp1. This was the 

first definitive evidence for the previously debated two-step mechanism of Scps. 

Secondly, the first selective inhibitor of Scp1, which represents the first selective 

inhibitor of the Fcp/Scp-family protein serine/threonine phosphatases, was identified. 

This discovery not only defied many stereotypes of phosphatase inhibition, but also 

provided a stepping-stone to develop more potent inhibitors of Scp1 for neuron 

regeneration. Thirdly, the potential secondary binding pocket for the CTD was identified 

on Scp1, which provided new insight of CTD regulation and may even facilitate the 

development of more potent Scp1 inhibitors. Finally, the communication between two 

different regulatory mechanisms of the CTD, i.e. phosphorylation and prolyl-

isomerization, was established in our in vitro model system where Scp1, Ssu72 and Pin1 

were effectors. This simplistic model represented an elegant example to delineate ‘control 

at equilibrium’ and ‘control at steady-state’, a concept that may underlie many regulatory 

processes including the dynamic regulation of transcription through the CTD. 

These new findings and tools should enable us to ask deeper questions in these 

areas. With regard to the function of Scps, it would be interesting to identify all genes 

(other than neuronal genes) that are regulated by Scps. In addition, it is important to 

understand how Scp1 is recruited to the CTD and whether Scp1 displays processivity in 

the presence of binding partners. Moreover, the recent discovery of phosphorylation at 
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Tyr1, Thr4 and Ser7 residues also prompts the question of whether additional 

modifications in conjunction with Ser5 phosphorylation would influence the 

dephosphorylation of Ser5 by Scp1.  

Extraordinarily rapid progress has been made over the past few years in the field 

of CTD research; however, many important questions remain to be answered. One big 

hurdle is the inability of current technologies to identify the exact phosphorylation 

patterns across individual repeats at different stages during the transcription cycle. The 

ability to unambiguously identify (or ‘sequence’) the phosphorylation patterns at the 

resolution of individual repeats is likely to be essential to determine the existence and 

meaning of the postulated “CTD code”. As the field stands now, this remains one of the 

most exciting and important challenges in the future of CTD research. 
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