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The aggressive scaling of the semiconductor technology following the Moore’s 

Law has delivered true system-on-chip (SoC) integration. Network-on-chip (NoC) has 

been recently introduced as an effective solution for scalable on-chip communication 

since dedicated point-to-point (P2P) interconnection and shared bus architecture become 

performance and power bottlenecks in the SoCs. This dissertation studies three critical 

NoC challenges such as latency, power, and compatibility with emerging technologies in 

aspect of an architecture and physical design level. 

Latency is a key issue in NoC since the performance of applications considerably 

depends on resource sharing policies employed in an on-chip network. NoCs have been 

mainly developed to improve network-level performance that captures the inherent 

performance characteristics of a network itself, but the network-level optimizations are 

not directly related to application- or system-level performance. In addition, memory 

latency on NoC critically affects the performance of applications or systems. We propose 

a synchronous dynamic random access memory (SDRAM) aware NoC design to 



 viii 

optimize memory throughput, latency, and design complexity. Furthermore, it is extended 

to an application-aware NoC design to provide the quality-of-service (QoS) of memory 

for various applications. 

NoC provides great on-chip communication. However, it brings no true relief to 

power budget when the on-chip network scales in terms of complexity/size and signal 

bandwidth. The combination of NoC and other techniques has the potential to reduce 

power. We study two power saving research topics for NoC: (a) we propose a voltage-

frequency island (VFI) aware NoC optimization framework with a better tradeoff 

between power efficiency and design complexity to minimize both computation and on-

chip communication power. (b) We formulate an application mapping problem to mixed 

integer quadratic programming (MIQP) with the purpose of reducing power consumption 

in various hard networks and develop highly efficient algorithms for the MIQP.  

Regarding NoC compatible with new technologies, we focus on three dimensional 

(3D) die integration based on through-silicon vias (TSVs). Since an on-chip network 

design has been subject to not only application constraints but also design/manufacturing 

constraints, a 3D NoC design is required for innovation in interconnection networks. We 

propose a chemical-mechanical polishing (CMP) aware application-specific 3D NoC 

design that minimizes TSV height variation, thus reduces bonding failure, and meanwhile 

optimizes conventional NoC design objectives such as hop count, wirelength, power, and 

area. 



 ix 

Table of Contents 

List of Tables ....................................................................................................... xiii 

List of Figures ........................................................................................................xv 

Chapter 1: Introduction ............................................................................................1 

1.1 Network-on-Chip Challenges in Ultra-Deep Submicron Era ................1 

1.2 Overview and Contributions of This Dissertation .................................5 

Chapter 2: Memory-Aware NoC Design for Improving Application-Level    
Latency ............................................................................................................8 

2.1 SDRAM-Aware NoC Design ................................................................9 

2.1.1 Basic SDRAM Operation ...........................................................12 

2.1.2 SDRAM Scheduling ...................................................................14 

2.1.2.1 Bank Conflict ................................................................14 

2.1.2.2 Data Contention ............................................................15 

2.1.2.3 Short Turn-Around Bank Interleaving .........................20 

2.1.3 NoC Design with SDRAM .........................................................23 

2.1.3.1 Problem Description .....................................................23 

2.1.3.2 Basic Idea of Our Approach .........................................24 

2.1.4 SDRAM-Aware Router ..............................................................26 

2.1.4.1 Router Description ........................................................27 

2.1.4.2 SDRAM-Aware Flow Control for Avoiding Bank  
Conflict and Data Contention ............................................30 

2.1.4.3 SDRAM-Aware Flow Control for Avoiding Short    
Turn-Around Bank Interleaving ........................................36 

2.1.4.4 Hardware Complexity...................................................39 

2.1.5 Experimental Results ..................................................................40 

2.1.5.1 Digital Television Application .....................................41 

2.1.5.2 Synthetic Benchmarks ..................................................44 

2.1.5.3 Comparison of SP and SP+AP .....................................46 

2.1.6 Summary .....................................................................................46 



 x 

2.2 Application-Aware NoC Design ..........................................................48 

2.2.1 Problem Description and Our Basic Idea ....................................51 

2.2.1.1 Priority SDRAM Service in NoC .................................51 

2.2.1.2 SDRAM Access Granularity Mismatch .......................54 

2.2.2 Application-Aware NoC Design .................................................56 

2.2.2.1 Architecture of GSS Router ............................................56 

2.2.2.2 GSS Flow Control Algorithm .........................................59 

2.2.2.3 NoC Design for SAGM ..................................................63 

2.2.3 Experimental Results ..................................................................68 

2.2.3.1 No Priority Memory Request .......................................68 

2.2.3.2 Priority Memory Request .............................................72 

2.2.4 Summary .....................................................................................79 

Chapter 3: Power Optimization for Advanced NoC ..............................................80 

3.1 VFI-Aware Energy Optimization Framework for NoC .......................81 

3.1.1 Motivation and Contributions .....................................................84 

3.1.1.1 Motivational Example ..................................................84 

3.1.1.2 Major Novelty...............................................................86 

3.1.2 Problem Formulations .................................................................87 

3.1.2.1 Partitioning with VF Assignment Problem ..................87 

3.1.2.2 VFI-Aware Mapping Problem ......................................88 

3.1.2.3 VFI-Aware Routing Problem .......................................89 

3.1.3 VFI Optimization Framework.....................................................90 

3.1.3.1 Core Partitioning with VF Assignment ........................91 

3.1.3.2 VFI-Aware Mapping Algorithm ...................................93 

3.1.3.3 VFI-Aware Routing Path Allocation ............................96 

3.1.3.4 VFI-Aware Interface Planning ...................................102 

3.1.4 Experimental Results ................................................................108 

3.1.5 Summary ...................................................................................113 

3.2 Architecture-Aware Analytic Application Mapping .........................114 

3.2.1 Problem Formulation ................................................................117 



 xi 

3.2.2 A3MAP Algorithms ..................................................................123 

3.2.2.1 A3MAP-SR ................................................................123 

3.2.2.2 A3MAP-GA................................................................126 

3.2.3 A3MAP for Large-Scale NoC ..................................................129 

3.2.4 Experimental Results ................................................................132 

3.2.4.1 Regular Mesh Network ...............................................132 

3.2.4.2 Irregular Mesh Network .............................................135 

3.2.4.3 Custom Network .........................................................137 

3.2.4.4 Large-Scale NoC ........................................................139 

3.2.5 Summary ...................................................................................144 

Chapter 4: NoC Architecture and Physical Design for Emerging Technologies .146 

4.1 CMP-Aware Application-Specific 3D NoC Design ..........................146 

4.1.1 Preliminaries .............................................................................149 

4.1.1.1 Chemical-Mechanical Polishing and Cu-Cu Thermo-
Compression Direct Bonding ...........................................149 

4.1.1.2 TSV Layouts and CMP Variation ..............................151 

4.1.2 CMP-Aware NoC Design Flow and Problem Formulation ......155 

4.1.2.1 Core-to-Layer Assignment .........................................157 

4.1.2.2 3D NoC Topology Decision and Routing Path   
Allocation .........................................................................158 

4.1.2.3 Floorplanning..............................................................159 

4.1.3 CMP-Aware 3D NoC Design ...................................................160 

4.1.3.1 CMP-Aware Core-to-Layer Assignment ....................160 

4.1.3.2 CMP-Aware 3D NoC Topology Decision ..................162 

4.1.3.3 CMP-Aware Floorplanning ........................................166 

4.1.4 Experimental Results ................................................................167 

4.1.4.1 TSV Density and Predictive CMP Model ..................167 

4.1.4.2 CMP-Aware Application-Specific 3D NoC ...............168 

4.1.5 Summary ...................................................................................172 



 xii 

Chapter 5: Conclusions ........................................................................................175 

Bibliography ........................................................................................................178 

Vita .....................................................................................................................187 



 xiii 

List of Tables 

Table 2.1: Timing parameter of DDR I, II, and III SDRAM. ............................16 

Table 2.2: SDRAM data input/output delay between h(n) and hi(n+1). ............32 

Table 2.3: Memory utilization and latency comparison in DTV application 

according to various DDR SDRAMs. ...............................................45 

Table 2.4: Memory utilization and latency comparison in synthetic     

benchmarks according to network size. ............................................45 

Table 2.5: Memory utilization and latency comparison of SP and SP+AP in   

DDR I/II/III SDRAM. .......................................................................47 

Table 2.6: Memory performance comparison on industrial benchmarks     

without priority memory requests. ....................................................71 

Table 2.7: Memory performance comparison on industrial benchmarks with 

priority memory requests. .................................................................73 

Table 2.8: The memory performance comparison of GSS+SAGM+STI and 

GSS+SAGM on industrial benchmarks. ...........................................77 

Table 2.9: The comparison of gate count synthesized at 400MHz clock      

speed. ................................................................................................77 

Table 2.10: The comparison of power consumption ruing at 400MHz clock   

speed. ................................................................................................78 

Table 3.1: The comparison of VFI overhead, hop count, and communication 

congestion on VOPD benchmark. ...................................................109 

Table 3.2: The comparison of VFI overhead and hop count on E3S     

benchmark. ......................................................................................111 



 xiv 

Table 3.3: The comparison of energy consumption according to the number     

of VFI on E3S benchmarks . ...........................................................113 

Table 3.4: The hop count increase and runtime improvement of NMAP,   

A3MAP-GA, and A3MAP-SR normalized by A3MAP-FS. ..........133 

Table 3.5: The comparison of hop count for industrial benchmarks in regular  

mesh networks. ...............................................................................134 

Table 3.6: The comparison of hop count for VOPD benchmark in various  

irregular mesh networks. .................................................................137 

Table 3.7: The comparison of hop count and wirelength for VOPD     

benchmark in custom networks. .....................................................139 

Table 4.1: TSV height variation comparison (μm). .........................................169 

Table 4.2: Hop count comparison. ...................................................................170 

Table 4.3: Total wirelength comparison (mm). ...............................................170 



 xv 

List of Figures 

Figure 1.1: NoC architecture. ................................................................................2 

Figure 2.1: SDRAM architecture and activation, read/write, and deactivation 

operations. .........................................................................................13 

Figure 2.2: Examples showing bank conflict and interleaving in DDR II    

SDRAM @333MHz. ........................................................................17 

Figure 2.3: Examples showing data contention in DDR II SDRAM     

@266MHz. ........................................................................................19 

Figure 2.4: Examples showing short turn-around bank interleaving in DDR III 

SDRAM @800MHz. ........................................................................21 

Figure 2.5: Bank conflict in 2× 3 NoC with conventional round-robin flows 

controller although an effective memory subsystem. .......................23 

Figure 2.6: No bank conflict in 2× 3 NoC with SDRAM-aware flow controller 

although a simple memory subsystem. .............................................25 

Figure 2.7: The architecture of an SDRAM-aware router consisting of input  

buffers, routing logics, flow controllers, and output schedulers       

for a mesh network. ...........................................................................27 

Figure 2.8: The architecture of an SDRAM-aware flow controller combined    

with a conventional flow controller for a mesh network. .................29 

Figure 2.9: The architecture of an SDRAM interface signal generator with a 

deactivation buffer, an activation buffer, and a read/write buffer   

which packets pass through. .............................................................38 



 xvi 

Figure 2.10: The comparisons of memory utilization, latency, and design  

complexity in DTV application according to the number of    

SDRAM-aware routers, where our NoC design achieves the best 

tradeoff between performance and cost when three conventional  

routers are replaced to SDRAM-aware routers. ................................42 

Figure 2.11: Examples of scheduling memory requests, where priority-equal     

and priority-first schedulers show long latency for priority packets   

and low memory utilization, respectively. ........................................53 

Figure 2.12: Example of memory access granularity mismatch in DDR II    

SDRAM @200, where four bursts read are thrown away. ...............55 

Figure 2.13: The architecture of an NoC router and a GSS flow controller        

for a 2D mesh network. .....................................................................57 

Figure 2.14: Scheduling memory request packets for guaranteed SDRAM     

service considering (a) bank conflict and data contention, and       

(b) bank conflict, data contention and short turn-around bank   

interleaving. ......................................................................................62 

Figure 2.15: SDRAM Operations when BL is set to 4 in DDR II SDRAM 

@300MHz, where the read command with authoprecharge does     

not need any precharge command. ....................................................65 

Figure 2.16: The architecture of our memory controller where small PRE and    

RAS buffers are required thanks to authoprecharge operations. ......67 

Figure 2.17: Single DTV/blue-ray and dual DTV application mapping results      

by A3MAP in 3x3 and 4x4 mesh networks. .....................................70 



 xvii 

Figure 2.18: The memory performance of our application-aware NoC design 

according to the number of GSS routers, where our NoC design  

achieves the best tradeoff between performance and cost when     

three conventional routers are replaced to GSS routers. ...................74 

Figure 3.1: Computing and communication energy consumption and design 

overhead according to the number of VFIs. The goal of VFI based  

NoC designs is to minimize the sum of the computing and 

communication energy and the design overhead. .............................84 

Figure 3.2: Motivational VFI based NoC designs. ..............................................86 

Figure 3.3: The proposed VFI-aware NoC methodology where VFI     

partitioning is first performed. ..........................................................91 

Figure 3.4: Incremental core mapping on NoC. ..................................................96 

Figure 3.5: Link insertion within VFI and between VFIs, where all links    

between VFIs are not inserted...........................................................97 

Figure 3.6: Finding the best interconnection between VFIs. .............................100 

Figure 3.7: The proposed rules for allocating routing path in VFI-based       

NoC .................................................................................................101 

Figure 3.8: NoC tiles with MCFIFO or VLC placed (a) between routers and     

(b) a core and a router. ....................................................................103 

Figure 3.9: NoC designs with (a) the conventional VFI interface and (b) the 

proposed VFI interface. ..................................................................104 

Figure 3.10: Examples of the proposed VFI interface insertion. ........................107 

Figure 3.11: Visual comparison of VFI based NoC designs on 4x4 NoC. ..........111 

Figure 3.12: Various graphs and their interconnection matrices. ........................119 

Figure 3.13: Guiding continuous P(i,j) to binary P(i,j) after solving QP. ...........125 



 xviii 

Figure 3.14: Cycle crossover. ..............................................................................128 

Figure 3.15: Partition-based A3MAP flow for large networks and complex 

applications. ....................................................................................130 

Figure 3.16: The comparison of runtime for industrial benchmarks in 3×3-5×5 

regular mesh networks. ...................................................................134 

Figure 3.17: The hop count improvement of A3MAP algorithms compared to  

NMAP for synthetic benchmarks in 3×3-10×10 regular mesh  

networks. .........................................................................................135 

Figure 3.18: Irregular mesh networks used in our experiments. .........................136 

Figure 3.19: Custom NoC networks used in our experiments.............................138 

Figure 3.20: The hop count comparison of application mapping algorithms in   

large networks partitioned to 9-15 subnetworks. ............................140 

Figure 3.21: The runtime comparison of application mapping algorithms in     

large networks partitioned to 9-15 subnetworks. ............................141 

Figure 3.22: The hop count of A3MAP-SR-P normalized by A3MAP-SR on   

regular mesh, irregular mesh, and custom networks with 25-100    

PEs. .................................................................................................142 

Figure 3.23: The hop count of A3MAP-GA-P normalized by A3MAP-GA on  

regular mesh, irregular mesh, and custom networks with 25-100    

PEs. .................................................................................................143 

Figure 3.24: The runtime comparison of NMAP, A3MAP-GA, A3MAP-SR, 

A3MAP-GA-P, and A3MAP-SR-P. ...............................................144 

Figure 4.1: Typical rotary CMP tool .................................................................150 

Figure 4.2: Local topography on backside of wafer ..........................................151 



 xix 

Figure 4.3: TSV layouts and their TSV height variation induced by CMP   

process.............................................................................................152 

Figure 4.4: The conventional and proposed 3D NoC design flows. .................156 

Figure 4.5: Examples of assigning eight cores to four layers. ...........................160 

Figure 4.6: CMP-aware router-to-router interconnections in adjacent layers. ..166 

Figure 4.7: TSV height variation by TSV density. ............................................168 

Figure 4.8: Network topologies and layouts performed by CMP-aware 3D     

NoC .................................................................................................171 

Figure 4.9: Typical application-specific 3D NoC with 2 layers ........................173 

Figure 4.10: CMP-aware application-specific 3D NoC with 2 layers. ................173 

Figure 4.11: Improvement according to the area of routers. ...............................174 

  



 1 

Chapter 1 

Introduction 

1.1 NETWORK-ON-CHIP CHALLENGES IN ULTRA-DEEP SUBMICRON ERA 

The aggressive scaling of the semiconductor technology has enabled billions of 

transistors to be integrated to a single chip, following Moore’s Law that the minimum 

feature size is scaled down at the rate of a factor 0.7 reduction every three years. The 

technology scaling trend has continued for more than half a century and it is expected to 

last until 2015 or later, according to the International Technology Roadmap for 

Semiconductors [48]. The effective reduction in size and cost provides higher chip 

performance in a smaller silicon area and thus enables the realization of scenarios 

deemed to belong to the domain of science fictions.  

The continued feature size scaling has delivered the potential of true and complete 

system-on-chip (SoC) integration. However, as most SoC designs target the high-

performance system level integration of existing heterogeneous cores with low power 

consumption, previous dedicated point-to-point (P2P) interconnections and shared bus 

architectures become performance bottlenecks due to the increasing communication 

between the cores. Furthermore, with the rapid technology scaling, the global 

interconnection causes critical delays and high energy consumption. To mitigate such 

issues, network-on-chip (NoC) has been recently introduced as an effective solution for 

the scalable on-chip communication [4][18]. As the better SoC platform for system 

integration, NoC makes interconnect structure and wiring complexity manageable easily 

such that the issues in a physical design such as floorplanning, placement, and routing 

can be well optimized. It leads to faster time-to-market by reduction in the number of 
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design re-spins. Therefore, the NoC has attracted great attentions for the current and 

future SoC designs. 

Figure 1.1 illustrates general NoC architecture. Each processing element (PE) is 

attached to its own router via a network interface logic or a wrapper and the router is 

interconnected to different routers. When any PE receivers or transfers data to different 

PE, the requests and data are encoded or wrapped to a packet in the network interface 

logic or the wrapper and then the packet is delivered to its own router. The packet is 

stored at an input buffer and a routing logic in the router selects the path of the packet on 

a given network topology. If more than two packets arriving on different input buffers at 

the same time desire the same output channel, a flow-control mechanism resolves this 

contention. An output scheduler either detects if the input buffer of the next router is 

available or expects when the input buffer is available. After performing such operations, 

the packets are delivered to the next router on its path. This process is repeated until the 

packet arrives at its final destination.  

 

S1

 S2

D2

D1

Tile Routing path

Network interface/wrapper

Input buffers

Routing and flow 
control logic

Output 
schedulers

Router

Switching fabric

Processing element

Core

 

Figure 1.1: NoC architecture.  
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For the last decade, there have been many NoC researches to achieve greater 

design productivity and higher performance by handling increasing parallelism, 

manufacturing complexity, wiring problems, and reliability, where critical challenges for 

NoC include latency, power, and compatibility with new technologies [88]. 

Unfortunately, a number of researches gave an impression that NoC greatly improved 

SoC designs where it was utilized, but failed to show that NoC reduces latency and power 

consumption, compared to shared bus interconnects. In addition, as emerging 

technologies have become feasible, new constraints and design flows are required for 

innovation in NoC. 

Latency is crucial to the success of NoC since an on-chip network with long 

latency can considerably deteriorate the overall application performance although its high 

throughput. NoCs have been mainly developed to improve network-level performance 

such as throughput or average network latency [5][21][31][59][63][76][83][89][94]. It 

captures the inherent performance characteristics of a network itself, but is not directly 

related to application-level or system-level performance. This is because each application 

demands different network performance and much of the system performance depends on 

not only on-chip networks but also shared memories, in particular, synchronous dynamic 

random access memories (SDRAMs). The application- and SDRAM-oblivious NoCs lead 

to reduced overall system performance. Therefore, latency in NoC is required to approach 

the characteristics of shared bus interconnects with the consideration of various 

applications and memories. 

Power should be budgeted and traded off among different NoC optimization 

factors since it has also become a major issue. NoC itself is not efficient for power and 

even may consume higher power than shard bus interconnects due to additional power 

consumers such as router and network interface logics. However, the combination of 
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NoC and other techniques efficient for power has the potential to easily reduce power to 

allowable levels. A voltage-frequency island (VFI) paradigm is one of the desirable 

solutions for reducing power consumption in NoC since it is inefficient for all cores and 

links on NoC to operate at a single voltage level and clock speed [10][41][62][66][84] 

[118][119]. VFI enables fine-grained core-level power optimization by utilizing a unique 

voltage and clock for each island. The use of multiple voltages and clocks in NoC 

provides better performance-power tradeoffs than that of a single voltage and clock. In 

addition, application mapping which decides how to topologically place the selected set 

of cores onto the tiles of a network can greatly reduce both application latency and power 

consumption. NoC designers or programmers favor regular mesh architecture consisting 

of regular rectangle tiles on which homogeneous processors are placed since the regular 

mesh architecture makes the application mapping manageable [13][15][39][79][103]. On 

the contrary, most industrial SoC platforms consist of heterogeneous cores with different 

design areas, and thus they can be structured with an irregular mesh network or even a 

custom network. Therefore, since previous works have mainly optimized their application 

mapping on the regular mesh architecture, the application mapping algorithm is required 

to reduce application latency and power consumption in various networks. 

The architecture and physical design for an on-chip network design should be 

compatible with emerging technologies since it has been always subject to technology 

constraints. With shrinking transistor and wire dimensions, variability and reliability have 

become important for NoC designs. In addition, as three dimensional (3D) die integration 

using through-silicon vias (TSVs) becomes viable, 3D NoC becomes new opportunities 

and challenges [80][102][120]. Since 3D NoC must satisfy not only application 

constraints such as latency, throughput, and power, but also manufacturing/design 

constraints imposed by 3D technologies such as the number of TSVs, chemical-
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mechanical polishing (CMP), TSV stress, and temperature, 3D NoC design shall consider 

such constraints for interconnection networks.  

Therefore, it is indispensable to propose novel architecture and physical designs 

for advanced NoCs in ultra-deep submicron era, which can address all these challenges in 

an effective and efficient manner. First, we need to improve system-level or application-

level performance with consideration of various application demands and memories. 

Next, we propose a VFI based NoC design and an application mapping algorithm to 

reduce power consumption. Finally, we propose a 3D NoC design with consideration of 

both application constraints and manufacture/design constraints imposed by the 3D 

technology.  

 

1.2 OVERVIEW AND CONTRIBUTIONS OF THIS DISSERTATION 

The architectures and physical design techniques for advanced NoC, presented in 

this dissertation target the above mentioned challenges and are described in the next three 

chapters. The overall flow of the dissertation is as follows. 

Chapter 2 presents SDRAM- and application-aware NoC designs to improve not 

only network-level performance but also application-level or system-level performance. 

The performance of various applications considerably depends on the resource sharing 

policies employed in an on-chip network. In particular, memory service for the 

applications becomes one of the most important issues since its performance becomes the 

bottleneck of the overall system. Unfortunately, its improvement aided by a memory 

subsystem is severely limited since diverse applications generate their specific memory 

requests with different latency constraints and data sizes. With consideration of different 
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demands of applications, our on-chip network shares the responsibility for the memory 

performance with the memory subsystem. 

In Chapter 3, we propose a VFI based design flow and application mapping 

algorithms for a low power NoC design. The NoC design style fits nicely with the 

concept of VFI. There have been several design efforts to combine VFI based design 

style with the NoC interconnect mechanism. However, previous works are limited since 

VFI-awareness is partially applied in a NoC design. In Section 3.1, a systematic VFI-

aware energy optimization framework that considers partitioning, mapping, and routing 

together is presented to improve the power efficiency of VFI-based NoC designs. In 

Section 3.2, we propose architecture-aware analytic application mapping (A3MAP) 

algorithms that are analogous to analytical communication minimization in a given NoC. 

The proposed A3MAP algorithms adaptively map cores to any different sized tiles on 

regular/irregular meshes and custom networks for the minimum power consumption 

under performance constraints. 

In Chapter 4, we propose a CMP process-aware application-specific 3D NoC 

design that minimizes TSV height variation, thus reduces bonding failure, and meanwhile 

optimizes conventional NoC design objectives, such as hop count, wirelength, power, and 

area. Previous NoC design flows are not effective in 3D integration since they do not 

consider manufacturing/design constraints by TSVs. The key idea behind our 3D NoC 

design flow is to determine the CMP-aware network topology where different layers are 

interconnected by one-way links with the minimum hops and thus TSV height variation 

is minimized. This is the first work that addresses the 3D NoC design which considers 

architecture, physical design and manufacturing issues together. 
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Chapter 5 concludes this dissertation with summaries based on the results of the 

previous chapters as well as presents promising future research directions to further 

investigate architecture and physical design for advanced NoC.  
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Chapter 2 

Memory-Aware NoC Design for Improving Application-Level Latency 

Memory bandwidth and latency to feed a number of cores have become a key 

issue in the modern and future SoC design. SDRAM is commonly used as a shared 

memory since it provides high memory capacity and infinite endurance for modern 

computing systems. However, since the SoCs mainly interface with a single or dual 

SDRAM, there would be insufficient memory bandwidth to keep up with a number of 

high speed cores. For example, Intel Teraflop which is the state-of-the-art NoC and 

composed of 80 cores is supported by a dual shared memory [112]. If cores will have 

access to the single or dual memory at the same time, memory latency will be too long to 

provide real-time computing. As an effective solution of memory bandwidth and latency, 

3D NoC based on TSV technology [78] is gaining momentum and industry adoption. 3D 

NoC can be embedded with a lot of SDRAMs on top of processing elements at different 

layers [67]. It achieves higher system performance and more reliable electrical features. 

Furthermore, it provides low power consumption, low electromagnetic interference 

(EMI), small die and printed circuit board (PCB) area and low pin density. 

Most NoCs with a number of cores require a dedicated memory subsystem to 

control SDRAMs. The memory subsystem that schedules SDRAM requests and 

generates SDRAM interface signals is one of the most important components in SoCs 

since the performance of the entire system depends on its performance. However, the 

conventional memory subsystem still underperforms due to special operation flows of 

SDRAM [24]. For example, double data rate (DDR) II SDRAM utilization gets 

deteriorated up to 55% in a digital television (DTV) application [113], where memory 

utilization is defined as the number of clock cycles used for data transfer divided by the 
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number of total clock cycles. In addition, since on-chip networks are oblivious of 

applications and SDRAMs, their performances are not directly related to the performance 

observable at the application level or system level. Moreover, since the corresponding 

number of a memory subsystem must also be equipped to control a number of SDRAMs, 

the cost of an NoC design will rapidly increase. Therefore, considerable attention has 

been shifted toward memory-aware NoC exploration to improve memory utilization and 

latency with the economical design cost of NoC platform [27]. 

 

2.1 SDRAM-AWARE NOC DESIGN 

A memory subsystem usually consists of three parts, i.e., a buffer, a SDRAM 

scheduler and a SDRAM interface signal generator (or memory controller), where a 

depth of buffer and an SDRAM scheduler for reordering dynamic SDRAM requests are 

key components for higher memory utilization and shorter memory latency. Panda et al. 

presented synthesis models for various off-chip memory access modes, as well as a 

technique for analyzing a behavior to determine memory accesses that can be optimized 

by exploiting the available memory features [90]. A memory scheduler proposed in [96] 

supports preemption and reordering to optimize offered net bandwidth and average 

latency. Schedulers discussed in [36] and [114] support preemption for high-priority 

requests to decouple latency and rate. In [1], PREDATOR is proposed with two step 

approaches: grouping memory requests and predictable arbitration for the group. A 

memory scheduler proposed in [44] adopts an adaptive history-based (AHB) scheduler 

that uses a history of recently scheduled operations to improve memory efficiency. 

However, the improvement just aided by such memory subsystems is severely limited 
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since diverse applications generate their specific memory requests with different latency 

constraints and the different data sizes. 

Recently, microprocessors and shared buses considering SDRAM operations have 

been developed to support a guaranteed memory service. In [59], a memory bus was 

implemented to source-synchronous code division multiple access. A low-cost memory 

controller was present in [64] to maximize the benefit of useful prefetches and to 

minimize harms caused by useless prefetches. Cost-effective on-chip memory request 

issue mechanisms were proposed in [65] using SDRAM bank-level parallelism (BLP)-

aware prefetch issue and BLP-preserving multi-core request issue. In [20], network 

interface architecture was proposed to cope with in-order delivery, resource utilization, 

and latency. A memory controller was integrated into this network interface to improve 

memory utilization and reduced both memory latency and network latency. However, 

they all do not provide an efficient priority memory service or an access granularity 

matching solution when using multiple SDRAMs. 

Flow control in NoC is on how network resources, e.g. channel bandwidth, buffer 

capacity, and control state, are allocated to packets traversing a network. In previous 

works, congestion control is well studied for macro-networks. For example, decentralized 

control and predictive explicit-rate control are developed in [89], where sources adjust 

their traffic generation rates based on feedbacks received from bottleneck links. In [94], a 

predictive flow controller managing a packet injection rate to regulate the number of 

packet is proposed, based on traffic sources and router models. To minimize overall 

execution time and link utilization of applications, optimal link scheduling and shared 

buffer router architecture are proposed in [83]. An open-loop flow control scheme is 

proposed in [60] to reduce conflicts of data transfers from multiple memory modules to 
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the same masters. In addition to such congestion control mechanisms, flow controllers 

may be useful for scheduling packets for memories. 

This section presents an SDRAM-aware NoC design to improve memory 

utilization and latency with a low design cost [50][54]. Our key ideas are twofold. First, if 

each NoC router schedules memory request packets, the packets arrive at a memory 

subsystem in the order that is friendly to SDRAM operations. Since our SDRAM-aware 

router uses existing resources to schedule the packets, e.g. input buffers for storing 

blocked packets and other flow-control mechanisms, additional circuitry is tiny. On the 

other hand, a heavy reordering buffer and a complex scheduler can be removed in a 

memory subsystem. Second, a scheduling scheme performed by multiple SDRAM-aware 

routers outperforms a scheduling scheme performed by a single memory subsystem. The 

reason is that the performance of single-stage scheduling mainly depends on the number 

of port/buffer in the single memory subsystem. However, the multi-stage scheduling uses 

all the buffers in multiple routers to schedule the memory request packets. Based on these 

ideas, the major novelty and contribution of this section include: 

 

• We propose a novel NoC router architecture with explicit SDRAM-aware flow 

control to schedule SDRAM access requests instead of using the conventional 

memory subsystem. 

• We propose SDRAM-aware flow control algorithms to resolve problems of bank 

conflict, data contention and short turn-around bank interleaving, which employs 

priority-based arbitration and multi-stage scheduling. 

• We show that an NoC design embedding our SDRAM-aware router achieves 

higher memory utilization, shorter memory latency and cheaper design cost than 

the conventional NoC design with an SDRAM-unaware router. 
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• We show that performance of our SDRAM-aware router gets better for complex 

NoC architectures and high- performance SDRAM. 

 

To the best of our knowledge, this is the first work that addresses a router 

scheduling memory requests instead of a memory subsystem. The rest of this section is 

organized as follows. In the next section, we survey related works. In Section 2.1.2, we 

review basic SDRAM operation principles and SDRAM request scheduling. In Section 

2.1.3, the problem of the conventional SDRAM-unaware NoC router is presented and our 

basic solution is proposed. Section 2.1.4 presents detailed description of our SDRAM-

aware router. Experimental results are shown in Section 2.1.5. Finally, Section 2.1.6 

summarizes Section 2.1. 

 

2.1.1 Basic SDRAM Operation 

SDRAM has a three dimensional structure, i.e., a bank, a row, and a column as 

shown in Figure 2.1. Basic commands to access SDRAM are activation (ACT), 

read/write (R/W), and precharge (PRE), where the ACT command is executed with a 

bank address (BA) and a row address (RA), the R/W command is executed with BA and 

a column address (CA), and the PRE command is executed only with BA. A bank 

becomes active by an ACT command and idle by a PRE command. An R/W command 

can be executed only after a bank is activated. In Figure 2.1, when a bank is activated, 

one row data of the bank move to a row buffer of the bank. It takes tRCD to complete an 

ACT command. Timing parameters of DDR I, II, and III SDRAM used in this work is 

shown in Table 2.1 [24]. As shown in Table 2.1, the faster clock rate is used in DDR 

SDRAM, the more clock cycles are required to complete SDRAM operations. For 
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example, DDR I SDRAM working at 133MHz clock frequency spends only two clock 

cycles activating a bank while DDR III SDRAM working at 800MHz clock frequency 

spends 11 clock cycles activating a bank. Then, an R/W command is executed on the 

active row buffer. After either read latency called column access strobe (CAS) latency 

(CL) or write latency (WL), successive data go from or to SDRAM. Finally, a PRE 

command is executed to deactivate the active row buffer in the bank, i.e., data in the row 

buffer move to the bank of the row buffer. It takes the bank state tRP to become an idle 

state. 

 

activate

precharegebank
address 0

data
width row buffer

bank
address 1

bank
address n

.

.

.column
address

row
address

MUX

. . .

read
write

data from/to
memory subsystem

control and address
from memory

subsystem

 

Figure 2.1: SDRAM architecture and activation, read/write, and deactivation operations.  
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2.1.2 SDRAM Scheduling 

SDRAM consists of independent multiple banks whereas address and data 

pin/wire resources serialize accesses to different banks, as shown in Figure 2.1. The 

benefit of this architecture is that pin/wire resources between SDRAM and SoC can be 

saved and commands to different banks can be pipelined, i.e., while data are transferred 

to or from any bank, the rest of bank becomes idle and active for the latter request. Based 

on this principle, memory subsystems schedule SDRAM access requests. However, the 

improvement of memory performance is still limited due to special operation flows of 

SDRAMs and clock cycles wasted by timing constraints in Table 2.1. Moreover, it is 

much worse in high performance SDRAMs. Main factors which deteriorate memory 

performance are bank conflict, data contention, and short turn-around bank interleaving 

explained in the next three subsections. 

 

2.1.2.1 Bank Conflict 

Continuously accessing one bank with different RAs is called bank conflict which 

is the most critical to SDRAM performance. Since a bank activated by the former request 

should get idle and then active for the latter request again, a lot of clock cycles are 

required to complete these operations. For example, in Figure 2.2, there are two SDRAM 

schedulers reordering four read requests, i.e., read 1 (RA 0, BA 0, CA 0), read 2 (RA 1, 

BA 0, CA 0), read 3 (RA 0, BA 1, CA 0), and read 4 (RA 1, BA 1, CA 0). We assume 

that all schedulers work for DDR II SDRAM at 333MHz clock frequency. In Figure 2.2 

(a), let them scheduled in the order, read 1, read 2, read 3, and read 4 by scheduler 1. 

After performing read 1, read 2 cannot be immediately executed since a row buffer of 

bank 0 is already occupied by data of RA 0. Hence, a PRE command should release the 

open row buffer of bank 0 and then an ACT command should be executed to fill the row 
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buffer of bank 0 with data of RA 1. On the contrary, read 3 can be pipelined, called bank 

interleaving, since it has different BA with read 2. As shown in Figure 2.2(a), while the 

bank 0 is activated and accessed for read 2, bank 1 gets activated for read 3. As a result, 

data 3 accessed by read 3 are generated with no loss of clock cycle. The last read 4 

conflicts with read 3 since they have the same BAs, but different RAs. 

On the contrary, scheduler 2 changes the execution order of four read requests, 

read 1, read 3, read 2, and read 4 as shown in Figure 2.2(b). Since this order does not 

cause any bank conflict, all read requests are pipelined. That means the second SDRAM 

scheduler lets all requests completed faster and latency of data 3 and 4 be shorter than the 

first SDRAM scheduler. In this example, the first scheduler achieves 9.5% (= 4 data/42 

clock cycles) memory utilization and the second scheduler achieves 13.3% (= 4 data/30 

clock cycles) memory utilization. Therefore, the second one is more desirable. 

2.1.2.2 Data Contention 

A case of a write request followed by a read request or a read request followed by 

a write request is called data contention. Data pins/wires are bidirectional in most 

SDRAMs while control and address pins/wires are unidirectional. As a result, input data 

may be collided with output data. To transfer data to SDRAM after receiving data from 

SDRAM, there should be at least one clock cycle interval between writing data and 

reading data in DDR I/II SDRAM. Since internal read-to-write command delay time 

(tRTW) is required in DDR III SDRAM in Table 2.1, an interval between read data and 

write data happens up to two clock cycles. tRTW is CL+tCCD+2-WL if burst length (BL) is 

8 or tRTW is CL+tCCD/2+2-WL if BL is 4. Hence, data contention is naturally hidden 

behind this delay time in DDR III SDRAM. 
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On the other hand, a read command following a write command needs internal 

write-to-read command delay time (tWTR) to be executed. Then, after read latency or CL, 

reading data can be received from SDRAM. Write-to-read data contention is naturally 

hidden behind tWTR and CL, but they cause memory utilization and memory latency 

degraded critically. Therefore, continuous read or write requests are preferred to access 

SDRAM efficiently. 

For example, in Figure 2.3, there are two SDRAM schedulers reordering two 

write requests and two read requests, i.e., write 1 (RA 0, BA 0, CA 1), read 2 (RA 0, BA 

0, CA 2), write 3 (RA 0, BA 0, CA 3), and read 4 (RA 0, BA 0, CA 4). All schedulers 

interface with DDR II SDRAM working at 266MHz clock frequency. As shown in Figure 

2.3(a), let them scheduled in the order, write 1, read 2, write 3, and read 4 by scheduler 1. 

In this figure, read 2 cannot be immediately performed after writing all data 1 since tWTR 

is required to accept the next read command. Furthermore, since data 2 are received from 

SDRAM after read latency or CL, a read request following a write request wastes total 

tWTR and CL cycles even if bank conflict does not happen between two requests. If both 

bank conflict and data contention happen simultaneously, bank conflict is commonly 

prioritized. Since bank conflict wastes more clock cycles than data contention, data 

contention is hidden behind bank conflict. On the contrary, a write request following a 

read request has no internal command delays in DDR I/II SDRAM. Instead, a write 

command performing write 3 should be given to DDR SDRAM when it does not cause 

any collision with data 2. Most DDR I/II SDRAM schedulers get at least one clock cycle 

interval between read data and write data. If DDR III SDRAM is used, data contention is 

hidden naturally behind tRTW. The last read 4 requires both tWTR and CL before 

transferring data 4. 
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On the contrary, scheduler 2 changes the order of two write requests and two read 

requests, i.e., read 2, read 4, write 1 and write 3 as shown in Figure 2.3(b). Since this 

order causes one data contention wasting just one clock cycle, all read/write requests are 

performed faster than scheduler 1. In common SDRAM operations, after writing data 3, 

write recovery time (tWR) is required to accept a PRE command. Scheduler 1 and 

scheduler 2 take 28 and 20 clock cycles, respectively, until bank 0 becomes idle after 

performing all requests. As a result, scheduler 1 achieves 14.3% (= 4 data/28 clock 

cycles) memory utilization and scheduler 2 achieves 20% (= 4 data/20 clock cycles) 

memory utilization. Therefore, continuous read or write requests are encouraged to 

access SDRAM efficiently. 

 

2.1.2.3 Short Turn-Around Bank Interleaving 

A bank interleaving approach as a solution of bank conflict is the efficient 

technique. Hence, high memory utilization and short memory latency can be achieved as 

explained in Section 2.1.2.1. However, bank interleaving may achieve little improvement, 

in particular, in high performance SDRAM even if bank interleaving is performed 

completely. In Table 2.1, as an operating clock of SDRAM is faster and faster, activation 

delay time (tRCD), deactivation delay time (tRP) and read/write latency (CL/WL) are also 

longer and longer. The long delay times let the benefit of bank interleaving critically 

degraded since a bank interleaved may not get sufficient time to be deactivated or 

reactivated after the bank is accessed by the previous request with different RA.  

For example, in Figure 2.4, there are two SDRAM schedulers reordering four read 

requests, i.e., read 1 (RA 0, BA 0, CA 0), read 2 (RA 0, BA 1, CA 0), read 3 (RA 1, BA 

0, CA 0), and read 4 (RA 0, BA 2, CA 0). We assume that all schedulers work for DDR  
  



 21 

  
  

 

Figure 2.4: 
Exam

ples show
ing short turn-around bank interleaving in D

D
R

 III SD
R

A
M

 @
800M

H
z. 



 22 

III SDRAM at 800MHz clock frequency. In Figure 2.4(a), let them be scheduled in the 

order, read 1, read 2, read 3, and read 4 by scheduler 1 such that all read requests are 

performed without bank conflict. After performing read 1, bank 0 is deactivated and read 

2 starts to receive data 2. Then, read 3 waits until all data 2 are received. However, read 3 

accessing bank 0 cannot be performed even if read 2 is done and the relation between 

read 2 and read 3 is bank interleaving. The reason is that bank 0 accessed by read 1 is not 

deactivated due to too long tRP, i.e., operations for read 3 such as deactivation, 

reactivation, and read/write cannot be hidden behind the process of read 2. Hence, while 

bank 0 is deactivated, reactivated with data of RA 1, and ready to transfer data 3, any data 

cannot be transferred or received from other banks, which makes memory utilization and 

latency degraded. 

On the contrary, scheduler 2 changes the execution order of read 3 and read 4 as 

shown in Figure 2.4(b). As a result, read 4 accessing bank 2 can be hidden behind the 

process of executing read 2 and even read 3 accessing bank 0 can be hidden behind the 

process of executing read 4. If there is another read 5 accessing bank 3 and it is 

performed between read 4 and read 3, data may be transferred more continuously with no 

loss of clock cycle. Consequently, memory utilizations by scheduler 1 and scheduler 2 

are 6.7% (= 4 data/60 clock cycles) and 7.4% (= 4 data/54 clock cycles), respectively.  

Since this problem is more serious in high performance DDR SDRAM, a memory 

subsystem should check when banks get active again even if bank interleaving is 

performed completely. 
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2.1.3 NoC Design with SDRAM 

2.1.3.1 Problem Description 

Bank conflict and data contention frequently happen in the conventional NoC 

design due to limited resources such as an input buffer in a memory subsystem. 

Moreover, short turn-around bank interleaving also happens in high performance DDR 

SDRAM. Figure 2.5 shows a simple example of bank conflict in a 2× 3 NoC design 

under the limited resources. This NoC includes a single memory subsystem that consists 

of an input buffer, a memory scheduler and an SDRAM interface signal generator. The 

memory scheduler reorders packets stored in the input buffer to avoid bank conflict, data 

contention and short turn-around bank interleaving. In this figure, RxBy means that a row 

address (RA) and a bank address (BA) of packet are x and y, respectively. An arrow 

indicates that a packet will move to the direction at the next clock cycle. We assume that 

a length of all packets is 1, the memory subsystem includes a two-depth input buffer to 

store two packets and the scheduler makes one of two stored packets executed every 

cycle (although execution time is actually longer than one cycle).  

 

 

Figure 2.5: Bank conflict in 2× 3 NoC with conventional round-robin flows controller 
although an effective memory subsystem. 
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In Figure 2.5, round-robin arbitration [19] is adopted as a flow control mechanism 

of NoC routers to assign a channel and an input buffer of the next node to one packet 

among several competing packets. At cycle 0, three packets, R2B0, R2B1 and R3B0 get a 

competition for an advance to the router interconnected to the memory subsystem and we 

assume that R2B0 wins. R0B1 is executed in the memory subsystem. At cycle 1, R2B0 

advances to the router interconnected to the memory subsystem and then R3B1 also 

advances to the empty router by the advance of R2B0. Then three packets, R2B1, R3B0 

and R3B1 also get the competition such that R3B0 wins by round-robin arbitration. In the 

memory subsystem, R0B0 but not R1B1 is executed for avoiding bank conflict since 

R0B1 accessing bank 0 is performed at cycle 0. At cycle 2, R3B0 advances in the router 

interconnected to the memory subsystem and R1B1 is executed in the memory 

subsystem. Then, two packets, R3B1 and R2B1 get the competition such that R2B1 wins 

by round-robin arbitration. At cycle 3, bank conflict happens in the memory subsystem 

since current execution is a bank 0 request and two buffers are also stored with bank 0 

requests, where all row addresses are different. Although the efficient memory subsystem 

is included in the NoC design, it is difficult to avoid bank conflict completely under the 

limited depth of a buffer and the dynamic SDRAM accesses of processing elements. Data 

contention and short turn-around bank interleaving can happen in the conventional NoC 

design by similar mechanism to this example. 

 

2.1.3.2 Basic Idea of Our Approach 

In our NoC design, scheduling SDRAM request packets is performed by multiple 

SDRAM-aware routers. This architecture makes the possibility of bank conflict lower 

since packets arrive at a memory subsystem in the order that is friendly to SDRAM 
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operations. Figure 2.6 shows how NoC with our SDRAM-aware router works well 

without bank conflict. At the first competition (cycle 0) for an advance to the router 

interconnected to the memory subsystem, the winner is R2B1 accessing bank 1 since the 

former packet (R1B0) passed in this router accesses bank 0. The rest of packet causes 

bank conflict since they read/write data in the same bank but different row addresses 

from the former packet. At cycle 1, R2B1 advances to the router interconnected to the 

memory subsystem and then R2B0 and R3B0 get the competition. Both can be a winner 

for the next advance since they access bank 0. In this example, R2B0 is chosen by our 

SDRAM-aware router. At cycle 2, R2B0 advances to the router interconnected to the 

memory subsystem and R3B1 avoiding bank conflict wins against R3B0 for the next 

advance. Finally, R3B1 advances to the router interconnected to the memory subsystem 

and R3B0 follows R3B1 at cycle 3. As a result, an NoC design with our SDRAM-aware 

router avoids bank conflict better than an NoC design with the conventional memory 

subsystem and router. 

 

no bank conflict

(d) cycle 3(c) cycle 2(b) cycle 1(a) cycle 0

execution

R3B0 R3B1
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Figure 2.6: No bank conflict in 2× 3 NoC with SDRAM-aware flow controller although 
a simple memory subsystem. 
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A single memory subsystem usually controls one channel of SDRAM in the 

conventional NoC, which means the same number of memory subsystem as the number 

of SDRAM channel is required. Whereas it is allowable to use multiple SDRAMs for 

high performance, it is not desirable to use a corresponding number of memory 

subsystems. The reason is that the memory subsystem as shown in Figure 2.5 is too high 

in terms of hardware cost due to the heavy input buffer and the complex scheduler. 

Furthermore, a depth of input buffer rapidly increases as a length of packet is longer and 

longer in a high definition graphics/video system. On the other hand, the proposed 

architecture saves the NoC design cost since any input buffer and any scheduler are not 

required in the memory subsystem as shown in Figure 2.6. Instead, a simple flow 

controller is included in multiple routers, which has a very low hardware cost compared 

to an input buffer and a scheduler in a memory subsystem. In the next section, we present 

a novel SDRAM-aware NoC router in detail. 

 

2.1.4 SDRAM-Aware Router 

For a wide range of applications, the proposed NoC router is about a novel 

paradigm for SDRAM-aware-NoC exploration, which has a flow-control mechanism 

improve memory utilization and memory latency with a cost-effective NoC platform. 

Indeed, based on our idea present in Section 2.1.3.2, any deterministic and adaptive 

routing scheme can be combined to implement our SDRAM-aware router. Another flow-

control mechanism can be also combined to avoid deadlock and livelock [19], to make 

traffic load balanced on a network [83][89][94] and to manage buffers and channel 

bandwidth [58]. 
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2.1.4.1 Router Description 

Our NoC router consists of an input buffer, a routing logic, a flow controller and 

an output scheduler as shown in Figure 2.7. A packet is split into so-called flits (flow 

control digits) which are then routed and stored in a pipelined fashion. The input buffers 

are managed by a wormhole flow control mechanism or a virtual-channel flow control 

mechanism and backpressure is used to inform upstream nodes when they must stop 

transmitting flits because all of the downstream input buffers are full. For our experiment, 

the wormhole flow control mechanism is implemented due to its simplicity and wide 

popularity [19] and an on/off flow control mechanism for the backpressure is employed 

to avoid a loss of flits. 
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Figure 2.7: The architecture of an SDRAM-aware router consisting of input buffers, 
routing logics, flow controllers, and output schedulers for a mesh network.  

Our SDRAM-aware router can be implemented to either deterministic or adaptive 

routers according to a routing logic that guarantees deadlock and livelock freeness. 

Virtual channels and deterministic dimension-ordered routings (e.g. XY routing, odd-

even routing) are commonly used to prevent deadlock [19]. We implement XY routing 

that is a deterministic and minimal path routing algorithm such that it guarantees 
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deadlock- and livelock-free routing. In addition, we consider an ordering issue when a 

master core sends a read request to another slave core before the master core receives a 

read data from one slave core or when a master core requests another read data to a slave 

core in NoC employing an adaptive router before the master core receives one read data 

from the slave core. This ordering issue can be solved by [61] or under the following 

constraint: a master core can send a read request to a slave core only after the master core 

receives all data requested. The latter solution is employed in our implementation. In 

addition, since our SDRAM-aware flow control algorithm is performed with in-order 

buffers, the ordering problem does not happen in each SDRAM-flow control. 

In this router, more than two flits arriving on different input buffers at the same 

time may both desire the same channel toward a memory subsystem. In this situation, our 

flow-control mechanism resolves this contention, allocating the channel to one packet 

and dealing with the others, blocked packets. Figure 2.8 shows our SDRAM-aware flow 

controller combined with the conventional flow controller. In Figure 2.8, an address 

parser sends an incoming memory request packet to our SDRAM-aware flow controller 

and an incoming normal packet to the conventional flow controller. Our SDRAM-aware 

flow controller schedules the memory packets in order to prevent bank conflict, data 

contention and short turn-around bank interleaving. In the next section, the SDRAM-

aware flow-control algorithm using a priority-based arbitration is described minutely. 

Then, the resulting memory request packet competes with normal packets by the 

conventional flow control mechanism. Hence, normal packets can reach their destination 

with no additional communication delay. 

Figure 2.8(a) shows its serial implementation. This architecture causes a timing 

path to be much longer since a 5-input conventional flow control algorithm is performed  
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Figure 2.8: The architecture of an SDRAM-aware flow controller combined with a 
conventional flow controller for a mesh network.  

after performing our 4-input SDRAM-aware flow control algorithm. On the other hand, 

in Figure 2.8(b), our 4-input SDRAM-aware flow controller for memory packets and a 4-

input conventional flow control algorithm for normal packets are parallelly performed. 

Finally, two resulting packets are scheduled by a 2-input conventional flow controller. 

This parallel implementation can minimize an increase of timing path whereas its design 

cost is more expensive than the design cost of the serial implementation. We adopt this 

parallel implementation in our experiment. In addition, our flow controllers adopt 

winner-take-all bandwidth allocation that allocates all of the bandwidth to just one packet 

until it is finished or blocked before serving the other packets [19]. 

An output scheduler either detects if an input buffer of the next router is available 

or expects when the input buffer is available. When an input buffer of the next router is 

full and a deterministic routing logic is implemented, an output scheduler lets the 

corresponding SDRAM-aware flow controller stop scheduling packets. On the other 

hand, packets given multiple routing paths performed by an adaptive routing logic can be 

scheduled to other flow controller less busy. 
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2.1.4.2 SDRAM-Aware Flow Control for Avoiding Bank Conflict and Data Contention 

Our flow control acts to allocate a channel to one of competing flits which 

destination is a memory subsystem interfacing with SDRAM. Therefore, our flow-control 

mechanism performs arbitration to determine which flit gets the channel it has requested. 

After the arbitration, a winning flit advances over this channel. Our arbitration algorithm 

also decides how to dispose of any flits that do not get their requested channel. 

In Algorithm 1 called SP, our arbitration is a priority-based algorithm, where a 

priority is determined by SDRAM awareness. The priority is assigned to all head flits 

which destination is a memory subsystem. Let h(n) be a head flit of a packet, which is 

already allocated a channel by the SDRAM-aware flow control at the nth arbitration. 

Body and tail flits are assigned the same channel as their head flit. Let hi(n+1) be one of 

all competing head flits (I)  which should be allocated to the same channel as h(n) by the 

SDRAM-aware flow control at the (n+1)th arbitration, where i∈I. The head flits, h(n)  

and hi(n+1) contain address and command information to access SDRAM, denoted by 

(RAn, BAn, R/Wn) and (RAn+1,i, BAn+1,i, R/Wn+1,i), respectively, where the notations are 

(row address, bank address, read/write command). At the (n+1)th arbitration, all hi(n+1) 

 
Algorithm 1 Scheduling Packet to Avoid Bank Conflict and Data Contention  
Input: h(n), hi(n+1) and Table 2.2 
1: for each hi(n+1), i∈I do 
2: if hi(n+1) is a new packet entering to the router then 
3: wi = 0; 
4: else 
5: wi = wi + waiting cycles from previous arbitration(n); 
6: end if 
7: di = delay cycle between h(n) and hi(n+1) from Table 2.2; 
8: pi = wi - di; 
9: end for 
10: hi(n+1) with maximum(pi) is allocated to a channel; 
Output: h(n+1) 
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are compared to h(n) and then are given a delay penalty from Table II (line 7) that is 

composed from DDR I, II and III SDRAM working at 133MHz to at 800MHz clock 

frequency (with 266MHz to 1.6GHz data rate) [24]. 

Table 2.2 shows how many clock cycles waste by bank conflict and data 

contention or a combination thereof when hi(n+1) accesses SDRAM after h(n). If bank 

conflict and data contention happen simultaneously, bank conflict is commonly 

prioritized since bank conflict wastes more clock cycles than data contention. According 

to a read/write command, a bank address and a row address, there are twelve cases as 

shown in Table 2.2. Twelve cases are also classified into eight delay types that are 

described as follows: 

 

Delay a: Case 1 and case 10 have no clock cycle loss since hi(n+1) is the same 

read/write command, bank address and row address as h(n). These cases indicate 

that the same row data of the same bank are again accessed by the same 

command. Thus, the bank does not need to be deactivated and reactivated, which 

causes the clock cycle loss. In addition, read/write latency of hi(n+1) can be 

hidden while h(n) is accessed. In Figure 2.3(b), the relation between read 2 and 

read 4 is case 1 and the relation between write 1 and write 3 is case 10. 

 

Delay b: Case 2 is the read-to-read bank conflict explained in Section 2.1.2.1. 

Before executing the latter read accessing the same bank but a different row, the 

bank must be deactivated, i.e. data in the row buffer move to the corresponding 

row of the bank. Then, the bank must be activated again, which indicates that the 

row buffer should be again filled with new data for the latter read. Thus, it takes 

tRP+tRCD+CL to receive data of the latter read after receiving data of the former  
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read. This case is shown in the relation between read 1 and read 2 and in the 

relation between read 3 and read 4 in Figure 2.2(a). 

 

Delay c: Case 3 and case 12 have no clock cycle loss since bank interleaving is 

completely performed as mentioned in Section 2.1.2.1. Case 3 is the read-to-read 

bank interleaving as shown in Figure 2.2(b) and case 12 is the write-to-write bank 

interleaving. Since a bank address of the latter request is different from that of the 

former request, the bank accessed by the latter request can be activated while data 

of the former request are transferred to or from SDRAM. Then, when data of the 

former request complete to transfer, data of the latter request can be accessed with 

no loss of clock cycle. 

 

Delay d: Case 4 and case 6 have at least one clock cycle interval between the 

former read data and the latter write data to avoid data contention in DDR I/II 

SDRAM as shown in Section 2.1.2.2. In DDR III SDRAM, the latter write 

command can be executed internal read-to-write command delay time (tRTW) after 

the former read command. Then, write data can be transferred to SDRAM after 

write latency (WL). Thus, actual write data are transferred to DDR III SDRAM, 

two clock cycles after receiving the last read data. Thus, tRTW lets data contention 

hidden naturally. In Figure 2.3(a), the relation between read 2 and write 3 is case 

4. Case 6 is data contention with bank interleaving. 

 

Delay e: In case 5, data contention and bank conflict happen at the same time 

since it is a read-to-write access and bank addresses of the read request and the 

write request are same but their row addresses are different.  As mentioned 
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before, bank conflict should be considered preferentially since it wastes more 

clock cycles than data contention. Before writing data to the different row in the 

same bank, the row buffer should be idle after reading data and then active. It 

takes tRP to be idle and tRCD to be active again. Then, data can be written after 

write latency. Data contention hides naturally behind this bank conflict. 

 

Delay f: Case 7 is the write-to-read data contention when the latter read request 

accesses data placed in the same bank and row as the former write. Case 9 is also 

the write-to-read data contention with bank interleaving since the latter read has a 

different bank address. To read data after writing data placed in the same bank 

and row or in a different bank, a read command is accepted internal write-to-read 

command delay time (tWTR) after writing the last data to SDRAM. Then read data 

are transferred from the SDRAM after read latency. 

 

Delay g: Case 8 causes the longest delay time due to the write-to-read bank 

conflict. Data contention is ignored since the bank conflict is more critical. The 

latter read request accesses data placed in the same bank but a different row. 

Thus, after the former write request, the bank should be idle. tWR is required to 

accept a precharge command for deactivation after writing the last data and it 

takes tRP to complete the precharge command. Furthermore, tRCD is required to 

activate the row buffer for the latter read request. Then, data can be received read 

latency after accepting a read command. Thus, total delay time is 

tWR+tRP+tRCD+CL. 
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Delay h: Case 11 is the write-to-write bank conflict since the latter write request 

accesses the same bank but a different row from the former write request. As 

presented in the previous case, delay g, it takes a bank tWR and tRP to be idle after 

writing the last data. Then, its row buffer gets active with row data for the latter 

write request. It takes tRCD to be active and write data are finally transferred to 

SDRAM after write latency. 

 

Our priority-based arbitration guarantees the upper bound latency even if a high 

delay penalty of packet given from Table 2.2 lasts for a long time. For example, let a 

packet with case 11 lose a competition against a packet with case 10. If it meets another 

packet with case 10 at the next competition, the defeated packet keeps losing the 

competition since the delay penalty is not changed. Thus, the defeated packet is required 

to escape from this competition after several defeats. To solve this starvation problem, 

our flow control counts the number of clock cycle passed from the first competition to the 

current competition (line 5) for each defeated packet. Then, this waiting clock cycle is 

subtracted by the delay clock cycle obtained in Table 2.2 (line 8). By this operation, any 

packet delayed for the amount of the worst delay (case 8) does not have a lower priority 

than a new packet entered in the router. For example, in DDR III SDRAM working at 

533MHz and 800MHz clock frequency, the packets waiting for 32 and 45 clock cycles 

get higher priority than any new packet entered in the router respectively. 

Finally, the packet with the maximum pi is allocated to a channel (line 10). In our 

SDRAM-aware flow control, the packet with longer waiting cycle and shorter delay cycle 

gets a higher priority. Then, the rest of packet that is blocked waits for the next 

competition or get another competition at a different SDRAM-aware flow controller if 
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multiple routing paths are allocated by a routing logic. Thus, if an adaptive router instead 

of a deterministic router is employed in a routing logic, the performance would be better. 

 

2.1.4.3 SDRAM-Aware Flow Control for Avoiding Short Turn-Around Bank 
Interleaving 

As mentioned in Section 2.1.2.3, a short turn-around bank interleaving problem is 

not critical for low-performance SDRAM like DDR I SDRAM since a bank has sufficient 

time to be deactivated or reactivated until the bank is accessed again The reason is that 

short deactivation (tWR+tRP for writing and tRP for reading) or reactivation time (tRCD) is 

hidden behind the process of accessing a different bank. On the other hand, deactivation, 

reactivation and read/write latency time are so long in high-performance SDRAM that it 

is difficult for them to hide behind the process of accessing a different bank. For 

example, in DDR III SDRAM working at 800MHz clock frequency, it takes a bank 23, 

11 and 11 clock cycles to deactivate, reactivate and output data, respectively after writing 

data. Thus, before the written bank is again read with a different row address, a scheduler 

should let different banks accessed for at least 23 clock cycles to improve memory 

utilization. 

The proposed SP algorithm just schedules memory request packets to prevent 

bank conflict and data contention. Hence, it should check whether a bank accessed by 

hi(n+1) is given sufficient deactivation time before the bank is activated. It is well 

explained together with hardware/architecture of an SDRAM interface signal generator. 

Figure 2.9 is an SDRAM interface signal generator commonly used, where an input 

packet passes three buffers to generate SDRAM commands such as a PRE command, an 

ACT command and an R/W command. First, an input packet arriving at an SDRAM 

interface signal generator is stored in a deactivation buffer but not an activation buffer as 
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shown in Figure 2.9. That means a bank keeps activating after accessing data, called open 

page mode. It can be useful for high memory utilization since most of the cores access 

data placed in continuous memory addresses, i.e., the same bank and row addresses but 

different column addresses. Then, if the input packet accesses the bank previously 

activated with a different row address, a PRE command is output to an SDRAM interface 

signal controller to deactivate the bank and then the packet moves to an activation buffer. 

On the other hand, if the input packet accesses the bank previously activated with the 

same row address or if the input packet accesses the bank already deactivated, the packet 

just passes a deactivation buffer with no PRE command. If a packet stored in an 

activation buffer accesses the bank deactivated, the packet lets an ACT command 

generated to an SDRAM interface signal controller and then moves to a read/write buffer. 

Finally, a packet stored in a read/write buffer always lets an R/W command generated to 

an SDRAM interface signal controller. An SDRRM interface signal controller receives a 

PRE command, an ACT command and an R/W command from those buffers and then 

generates the final interface signals to SDRAM. 

To solve the short turn-around bank interleaving problem happening in this 

SDRAM interface signal generator, a packet that is output from a deactivation buffer 

should pass (tWR)+tRP until the packet is output from an activation buffer. In addition, a 

packet that is output from an activation buffer should pass tRCD until the packet is output 

from a read/write buffer. Since the deactivation time is longer than the activation time 

and read/write latency, the interval between packets accessing the same bank and a 

different row should be at least tRP or tWR+tRP depending on a read request or a write 

request that the previous packet accessing each bank is. 
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Figure 2.9: The architecture of an SDRAM interface signal generator with a 
deactivation buffer, an activation buffer, and a read/write buffer which 
packets pass through. 

Algorithm 2 called AP is executed instead of line 8 in our SP algorithm to solve the short 

turn-around bank interleaving problem. In the AP algorithm, a clock cycle (dis) required 

to deactivate each bank is recorded after a read/write operation is completed. Thus, the 

same number of counter as the number of bank is required to save and count dis. If the 

packet h(n) performed is a write request, dis of bank that h(n) accesses is set to tWR+tRP in 

line 4. If the packet h(n) performed is a read request, dis of bank that h(n) accesses is set 

to tRP in line 6. Then, all dis are reduced by 1 every clock cycle in line 9. If any packet, 

hi(n+1) is in case 3, 6, 9, and 12 of Table 2.2 with h(n), our AP algorithm checks if the 

bank accessed by the hi(n+1) has sufficient deactivation time (line 11-15). For this 

operation, did captures dis in line 12 if the relation between h(n) and hi(n+1) is case 3, 6, 

9, and 12. Otherwise, did is 0 in line 14. Then, did is compared to di obtained from Table 

2.2. Finally, larger delay time is chosen as effective delay time and then subtracts a 

waiting clock cycle as shown in line 16. Our solution makes banks accessed as uniformly 

as possible such that the banks get the sufficient time to be deactivated for the next 

request. 
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Algorithm 2 Assigning Priority to Avoid Short Turn-Around Bank Interleaving  
Input: wi, di, h(n) and hi(n+1) 
1: for every clock cycle do 
2:     if h(n) is done then 
3:         if h(n) is write request then 
4: dis of bank(h(n))= tWR + tRP; 
5: else 
6: dis of bank(h(n)) = tRP; 
7: end if 
8:     end if 
9: dis = dis – 1 for all dis; 
10: end for 
11: if relation of h(n) and hi(n+1) is case 3, 6, 9 and 12 then 
12:  did = dis of bank(hi(n+1)); 
13: else 
14:      did = 0; 
15: end if 
16: pi = wi – max(di, did); 
Output: pi 

2.1.4.4 Hardware Complexity 

Memory scheduling is performed by our SDRAM-aware flow controller included 

in multiple NoC routers instead of a single memory subsystem. Thus, simple logics are 

added for our SP algorithm to compute SDRAM access delay (di) and waiting time (wi) 

whereas a buffer and a scheduler of memory subsystem are removed as shown in Figure 

2.6. A buffer in a memory subsystem is used to store several packets and then to reorder 

the packets for successive delivery of SDRAM data. However, as the massive size of 

packet is recently generated in graphics processing units (GPU) and a high-definition 

video system, the size of buffer gets larger. The proposed NoC design does not require 

any buffers in a memory subsystem since memory scheduling is performed in multiple 

NoC routers and the maximum four input buffers per router in a regular mesh network 

substitute for a buffer in a memory subsystem. In addition, the size of input buffer in the 

router does not increase according to the size of packet since the input buffer is managed 
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by wormhole flow control. Consequently, a distinguished hardware decrease by a buffer 

in a memory subsystem exceeds a hardware increase by the SDRAM-aware flow 

controller in multiple routers such that total gate count is reduced. 

 

2.1.5 Experimental Results 

Our SDRAM-aware NoC router is implemented with Verilog hardware 

description language (HDL). We implement a memory subsystem operating for DDR I 

SDRAM working at 133MHz and 200MHz clock frequency, DDR II SDRAM working at 

266MHz, 333MHz and 400MHz clock frequency and DDR III SDRAM working at 

533MHz and 800MHz clock frequency [24] which all consist of four banks. The memory 

subsystem is implemented with a design concept of Sonics MemMax [75] and Denali 

Databahn [23]. MemMax offers a sophisticated thread-based pipeline and advanced 

arbitration schemes which prevent bank conflict and data contention conditions. Because 

there are no ordering requirements between threads, requests from different threads can 

be freely reordered. Different bandwidths and the qualities of service (QoSs) may be 

allocated to different threads to effectively support system data flow requirements. In 

MemMax, users can choose the depth of buffers, operation modes, and QoS settings that 

best suit various applications. Since MemMax supports OCP where request signals and 

data signals are separated, MemMax requires both a request buffer and a data buffer per 

thread. We use 4-thread MemMax where each thread requires a 32-flit request buffer and 

a 32-filt data buffer. The Databahn is an SDRAM controller that optimizes RAS, CAS, 

PRE, and refresh operation. Since the Databahn employs command look-ahead to prepare 

pages in memory in advance of when commands execute, it can give class-leading 

performance even if the pattern of traffic is not known at design time. Both are included 
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in the conventional NoC design with a round-robin flow control based router. This is 

compared to our NoC design including multiple SDRAM-aware routers and an SDRAM 

interface signal generator instead of a full memory subsystem. Applications are mapped 

to mesh grid by A3MAP [51] and each simulation runs for one million clock cycles. 

 

2.1.5.1 Digital Television Application 

The conventional NoC design and our SDRAM-aware NoC design are applied to a 

Samsung DTV system that consists of nine subsystems, i.e., a central processing unit 

(CPU)  that consists of ARM and several peripherals, a moving picture experts group 

(MPEG) decoder, a digital natural image engine (DNIE), GPU, an audio decoder, a 

transport stream (TS) decoder, an audio/video (AV) format converter, a channel decoder 

and a memory subsystem that interfaces with DDR II SDRAM working at 333MHz clock 

frequency. In the conventional NoC design, a router using a round-robin flow control 

algorithm is gradually replaced with our SDRAM-aware router using the proposed SP 

algorithm in the order where the router that is the closest to a memory subsystem is 

replaced firstly and where the router that is the farthest away from a memory subsystem 

is replaced lastly. Figure 2.10 shows the results depending on the number of SDRAM-

aware router placed in the order. 

In Figure 2.10(a) and (b), memory utilization and memory latency achieved by the 

conventional NoC design are 67.2% and 94 cycles, respectively. Memory utilization and 

memory latency performed by our SDRAM-aware NoC design is just 57% and 119 

cycles, respectively, in case that there are no input buffer and no memory scheduler in a 

memory subsystem and no SDRAM-aware router. However, whenever our SDRAM-

aware router is substituted for the conventional router in the DTV system, memory 
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utilization and memory latency improves rapidly. As a result, when three SDRAM-aware 

routers are substituted for three conventional routers, memory utilization increases up to 

72% (that is 7.1% better than the conventional NoC design). However, more than four 

SDRAM-aware routers do not improve memory utilization any more since the solvable 

bank conflict and data contention are almost prevented by three SDRAM-aware routers.  

 

 

(a) Memory utilization                         (b) Average latency 

 

(c) Gate count ratio 

Figure 2.10: The comparisons of memory utilization, latency, and design complexity in 
DTV application according to the number of SDRAM-aware routers, where 
our NoC design achieves the best tradeoff between performance and cost 
when three conventional routers are replaced to SDRAM-aware routers. 
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Similarly, in Figure 2.10(b), memory latency is also shortened by three SDRAM-aware 

routers up to 79 cycles (that is 16% shorter than the conventional NoC design) since high 

memory utilization makes a packet performed as fast as possible and our SDRAM-aware 

flow controller manages the upper bound latency. 

Our SDRAM-aware NoC design and the conventional NoC design are 

synthesized by Synopsys Design Vision with a TSMC130LV library. The gate count of 

our SDRAM-aware NoC design is 26.8% smaller when three round-robin routers are 

replaced with our SDRAM-aware routers in Figure 2.10(c). In addition, its gate count is 

24.8% smaller even if all round-robin routers are replaced with our SDRAM-aware 

routers. The reason is that a large buffer and a complex scheduler in a memory system are 

removed whereas an additional hardware increased by our SDRAM-aware flow 

controller is minimal. 

We also implement the SDRAM-aware NoC based a DTV system interfacing 

with a variety of DDR SDRAMs working at 133Mhz to 800MHz clock frequency. Our 

DTV system works for real-time computing when it interfaces with DDR II SDRAM 

working at 333MHz clock frequency. However, to show the benefit of our SDRAM-

aware NoC design in various DDR SDRAMs, we let a packet injection rate of each IP 

changed similar to a change of the SDRAM clock speed. Table 2.3 shows memory 

utilization and latency in our NoC design including three SDRAM-aware routers 

compared to the conventional NoC design. Our SDRAM-aware NoC design proves more 

merits on high-performance DDR SDRAM in Table 2.3. For example, our SDRAM-

aware NoC improves more 3.7% memory utilization and 14.3% memory latency than the 

conventional NoC when they all interface with DDR I SDRAM working at 133MHz 

clock frequency. On the other hand, our SDRAM-aware improves more 26% memory 

utilization and 30.8% memory latency than the conventional NoC when they all interface 
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with DDR III SDRAM working at 800MHz clock frequency. Since timing constraints 

caused by bank conflict is about six times longer in DDR III SDRAM working at 

800MHz clock frequency than in DDR I SDRAM working at 133MHz clock frequency, 

our SDRAM-aware NoC design achieves better improvement of memory utilization and 

latency in DDR SDRAM operating at a fast clock frequency. 

The SDRAM-aware NoC design implemented by our SP algorithm is also applied 

into dual DTV model [99] containing dual MPEG decoders and dual memory 

subsystems. Consequently, the improvement of memory utilization and latency is similar 

to a single memory subsystem. However, it saves more than 42% gate count compared to 

dual DTV model implemented by the conventional NoC design since our SDRAM-aware 

NoC design does not need eight 32-flit request and data buffers and two complex 

memory schedulers in a dual memory subsystem. 

 

2.1.5.2 Synthetic Benchmarks 

We evaluate the improvement of memory utilization and memory latency 

obtained from several randomly generated applications on industrial intellectual 

properties (IP) with DDR II SDRAM working at 333MHz clock frequency. The 

SDRAM-aware router adopts the SP algorithm and all of the conventional routers are 

replaced with our SDRAM-aware routers. The IPs are mapped into 3×3 to 6×6 mesh 

network by A3MAP [51] and generate 4 to 32 flits per packet at dynamic intervals. Table 

2.4 shows our SDRAM-aware NoC improves 11.8% memory utilization and 18% 

memory latency on average compared to the conventional NoC. In particular, the 

improvement of memory utilization and memory latency is higher in 6x6 NoC than in 

3x3 NoC since packets passing through more SDRAM-aware routers have more  
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opportunities to be scheduled well for SDRAM operations. Therefore, we can expect that 

the improvement of memory utilization and memory latency would be greater in larger or 

complex NoC. 

 

2.1.5.3 Comparison of SP and SP+AP 

We evaluate the improvement of memory utilization and latency of SP+AP 

algorithm that considers the short turn-around bank interleaving problem. For this 

experiment, we use a 4x4 mesh network including three SDRAM-aware routers and 

execute several randomly generated applications on industrial IPs. Table 2.1 shows the 

SP+AP algorithm achieves better memory utilization and memory latency than the SP 

algorithm in particular in high-performance DDR SDRAM. As shown in Table 2.5, the 

short turn-around bank interleaving problem is not critical in low-performance DDR 

SDRAM since the improvement of memory utilization and latency achieved by the 

SP+AP algorithm is just around 1% compared to the SP algorithm. On the other hand, it 

causes memory performance critically degraded when high-performance DDR SDRAM 

is adopted in an NoC design. For example, in DDR III SDRAM working at 800MHz 

clock frequency, the SP+AP algorithm achieves 9.2% higher memory utilization and 

9.2% shorter memory latency than the SP algorithm. The proposed SP+AP algorithm 

requires an additional hardware such as four counters, one comparator and some control 

logics to check each bank state. However, the additional circuitry is tiny. 

 

2.1.6 Summary 

This section presented an SDRAM-aware NoC design where multiple NoC 

routers adopting our SDRAM-aware flow control algorithm allocate an SDRAM access  
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packet to a channel for the efficient SDRAM operation. Our SDRAM-aware flow control 

algorithms solve three memory scheduling problems, such as bank conflict, data 

contention, and short turn-around bank interleaving to improve memory utilization and 

latency. The proposed SP algorithm solves the bank conflict problem and the data 

contention problem and the proposed SP+AP algorithm solves the short turn-around bank 

interleaving problem. Experimental results show that our SDRAM-aware flow controller 

adopting the SP algorithm delivers superior memory utilization and latency with the 

small design cost compared to the conventional NoC design. In addition, our SP+AP 

algorithm achieves higher memory performance than the SP algorithm in particular in 

high-performance DDR SDRAM. Our SDRAM-aware router actives better performance 

improvement when it is employed in complex NoC or its routing scheme is adaptive. In 

conclusion, the proposed SDRAM-aware router provides more opportunities to support 

bandwidth-hungry NoC designs with the small hardware cost. 

 

2.2 APPLICATION-AWARE NOC DESIGN 

In Section 2.1, our NoC design provides a best-effort memory service as each 

SDRAM-aware NoC router equally manages all memory request packets. However, since 

the latest real-time applications request a memory service with short latency, a priority 

memory service should be also provided for cores sensitive to memory latency. 

Furthermore, different applications request various sizes of memory data. In the state-of-

the-art multimedia system, the length of memory request packets requested by a video 

encoder/decoder like H.264 [115] gets shorter whereas the length of memory request 

packets requested by a video enhancer/format converter gets longer. The long best-effort 

packets cause a priority packet to be further delayed. If any long best-effort packet is 
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already scheduled in a router, a priority packet may wait until the best-effort packet is 

completely transferred to the next router. On the contrary, the short packets cause 

SDRAM utilization to be severely deteriorated. Since most SDRAMs receive or transmit 

fixed-length data per read/write command, SDRAM data unnecessarily acquired may be 

thrown away. Therefore, a NoC design should also consider the access granularity of 

diverse applications for an efficient SDRAM access. 

Since such guaranteed throughput and bounded latency are essential for NoC 

designs, many researchers have developed various approaches [71]. Æthereal NoC 

proposed in [31] provided a guaranteed service combined with a best-effort service 

employing variants of time division multiplexing. In [76], Nostrum NoC was 

implemented with the service of guaranteed bandwidth and latency in addition to the 

existing service of best-effort. In [5], MANGO using clockless circuit techniques was 

implemented. It exploited virtual channels to provide connection-oriented service 

guarantees and connection-less best-effort routing. Kim et al. proposed router architecture 

which utilized adaptive routing while maintaining low latency [58]. BiNoC supporting a 

self-configuring bidirectional channel mechanism for better bandwidth utilization and 

lower packet delivery latency was proposed in [63]. Das et al. in [21] proposed efficient 

prioritization policies and architectural extensions to NoC routers that improved the 

overall application-level throughput, while ensuring fairness in the network. The 

prioritization policies were application-aware, distinguishing applications based on the 

stall-time criticality of their packets. In [22], they also proposed router prioritization 

policies that exploited the available slack of interfering packets in order to accelerate 

performance-critical packets and thus improved overall system performance. However, 

these approaches are not optimized for SDRAM request packets that cause the most 

critical latency. 
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In this section, we propose an application-aware NoC design to efficiently access 

shared SDRAMs [52][55]. Our key motivations are twofold. First, some cores request a 

guaranteed SDRAM service to an on-chip network and a memory subsystem. For 

example, a demand request generated by a microprocessor is usually served as a priority 

packet since the microprocessor may halt until the demand request is served. However, 

the priority packet causes overall memory latency and utilization to be severely degraded. 

Since an on-chip network first serves the priority packet without any consideration of 

SDRAM operations, there exits strong possibility to meet bank conflict, data contention 

and short turn-around bank interleaving in SDRAM, which all make memory 

performance deteriorated. Therefore, the priority memory service should be considered 

not only in a memory subsystem but also in an on-chip network. In addition, since long 

best-effort packets may interfere with the fast service for the priority packet, they should 

be split to several short packets and then served. Second, different cores request various-

length SDRAM data whereas DDR I/II SDRAMs always generate fixed-length data. 

Even if DDR III SDRAM can generate variable-length data, it has few advantages due to 

CAS to CAS delay time (tCCD) [24]. If the length of data requested by cores is not either 

same as the length of data served by SDRAM or a multiple of the length of data served 

by SDRAM, unnecessary data may be accessed and then thrown away. Therefore, the 

access granularity mismatch problem resulting in low memory performance is considered 

in our application-aware NoC design. Based on these motivations, the major novelties 

and contributions of this section include the following. 

 

• We propose a guaranteed SDRAM service (GSS) router. It provides an efficient 

priority service for cores sensitive to memory latency. 
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• We propose an SDRAM access granularity matching (SAGM) NoC design. Since 

a packet is split to several short packets of which the size is equal or less than 

SDRAM access granularity and then served by our GSS router and memory 

subsystem without a memory scheduler and a number of buffers, unnecessary 

SDRAM data can be less accessed. 

• We show the hardware architecture of our GSS router and memory subsystem 

working with a partially open-page policy and an auto- precharge (AP) operation. 

• We show the GSS router significantly improves memory latency for a priority 

packet with few penalties of overall memory utilization and latency. In addition, 

the SAGM NoC design not only recovers the penalties but also further improves 

overall memory performance. 

 

To the best of our knowledge, this is the first work that addresses a NoC design 

improving the quality of memory service through application-aware manners. The rest of 

this section is organized as follows. In Section 2.2.1, we introduce two problems of 

conventional application-unaware NoC designs. Section 2.2.2 presents the detail 

description of the proposed application-aware NoC design. Experimental results are 

shown in Section 2.2.3. Finally, Section 2.2.4 summarizes Section 2.2. 

 

2.2.1 Problem Description and Our Basic Idea 

2.2.1.1 Priority SDRAM Service in NoC 

A microprocessor including a general processor, a cache and a prefetcher 

commonly generates a demand request and a prefetch request. The demand request 

should be served as soon as possible since the microprocessor may stall until it receives a 
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service of the demand request. On the contrary, the prefetch request does not need to be 

served with such a priority since it may be useless or not promptly used by the 

microprocessor. Memory requests of multimedia processors and peripherals are 

commonly handled similarly to the prefetch request in the latest video/graphics systems. 

Most of the conventional memory scheduler or NoC router takes two different 

approaches as to how to treat a priority request with respect to others. Figure 2.11(b)-(c) 

show the operation of three different memory schedulers when two demand memory 

requests, two prefetch memory requests and two memory requests by specific video 

processors are filled in their input buffer as shown in Figure 2.11(a). In the figure, BA 

means a bank address and all requests are read operations. In addition, the RAs of all 

requests are different except prefetch 2 and request 2. 

A memory scheduler providing a best-effort service as shown in Figure 2.11(b) 

regards a priority memory request to have the same priority as others and then schedules 

all memory requests to avoid bank conflict, data contention, and short turn-around bank 

interleaving and to encourage row-buffer hit and bank interleaving. As a result, all 

memory requests are successively executed with no bank conflict whereas the execution 

of demand 2 is considerably delayed, which may cause the microprocessor generating 

demand 2 to halt for a long time. On the contrary, in Figure 2.11(c), the demand requests 

are executed with a priority. This approach makes the demand requests executed early. 

However, since demand 2 accesses the same bank as demand 1 access with a different 

RA, bank conflict happens. It causes any data not to be delivered while the row buffer of 

bank 1 becomes deactivated and then is filled with the data of demand 2. Consequently, 

since total execution time of six requests is longer, memory utilization gets deteriorated. 

Therefore, a memory scheduler providing a priority service without the loss of memory 

utilizaton is required. 
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Figure 2.11: Examples of scheduling memory requests, where priority-equal and priority-
first schedulers show long latency for priority packets and low memory 
utilization, respectively. 

Figure 2.11(d) is the most desirable scheduler that achieves the same memory 

utilization as the best-effort scheduler and the same memory latency for the demand 

requests as the priority-first scheduler. In order to achieve this performance, we propose a 

hybrid flow control algorithm that gets the advantage of the priority-equal and priority-

first scheduler, which is fully described in Section 2.2.2. There may be strong possibility 

to meet bank conflict, data contention, and short turn-around bank interleaving if a 

demand request is separately considered on an on-chip network and in a memory 

subsystem. Therefore, this scheduling is performed by multiple NoC routers which are 

similar to the SDRAM-aware NoC design proposed in Section 2.1. 

Moreover, we consider a long best-effort packet interfering with the fast service 

of priority packets. In the advanced video/graphics system, the length of a packet is 

longer and longer to provide a high-quality image. For example, the length of a packet 

generated by an industrial video enhancer/format converter reaches 64 burst lengths 
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(BLs), which means that it takes at least 64 clock cycles to transfer the packet to the next 

router [99]. It is usually served as a best-effort packet. Let a router employing winner-

take-all bandwidth allocation [19] schedule the long best-effort packet to any channel and 

then a priority packet reach in this router. If the router allocates the priority packet to the 

same channel as the long best-effort packet, the priority packet must wait until the long 

best-effort packet is completely delivered. In order to solve this problem, we split all 

packets to several short packets and then served. As a result, the priority packet can get 

more opportunities to be allocated to the channel. In the video/graphics system with 64-

BL packets, if the best-effort packet is split to several packets with 4 BLs, a priority 

packet will wait for the maximum 4 clock cycles and then get the next competition. In the 

proposed application-aware NoC design, the length of a packet split is determined by an 

SDRAM access granularity introduced in the next subsection. 

 

2.2.1.2 SDRAM Access Granularity Mismatch 

SDRAMs transfer/receive fixed-length data (= the number of data bit × BL) per 

CAS command, called SDRAM access granularity. DDR I SDRAM has a BL 2, BL 4 

and BL 8 mode and DDR II/III SDRAM has a BL 4 and BL 8 mode. In addition, since 

DDR III SDRAM has a selectable BL 4 or BL 8 on-the-fly (OTF) mode, it can deliver 

data with 4 or 8 BLs, depending on address 12 pin without any BL mode change. For 

example, if SDRAM with 16-bit data bus is set to a BL 8 mode via mode register set 

(MRS), it always generates 16 bytes per CAS command as shown in Figure 2.12. On the 

contrary, any cores may request data with various lengths to SDRAMs. For example, an 

MPEG-1/2 and H.264 [115] encoder/decoder requests 8 or 16 bytes and 4, 8 or 16 bytes 

for motion estimation/compensation to SDRAM, respectively. If the MPEG-1/2 or H.264 
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encoder/decoder requests just 8 bytes as shown in Figure 2.12, the rest of data 

unnecessarily accessed are thrown away, which seriously degrades memory performance. 

Simple solutions are to reduce the number of data bits or to use a short BL mode 

in DDR SDRAM. If the number of data bits is changed to 8 bits, there exists no wasteful 

data. However, the overall system interfacing with SDRAM with 8-bit data bus does not 

have sufficient memory bandwidth to feed all cores. If more SDRAMs are interfaced with 

the entire system in order to increase the memory bandwidth, additional memory 

subsystems and pins/wires that are the limited resources are required. On the contrary, 

when short BL modes such as BL 2 and BL 4 are used in DDR SDRAM, command 

bandwidth exceeds data bandwidth such that it is difficult to hide commands behind data 

input/output time. The reason is that BL 2 and BL 4 have just one and two spaces where 

commands can be executed, respectively, whereas three spaces per SDRAM access are 

always required to execute three commands such as RAS, CAS, and PRE, except for a 

row-buffer hit condition. If there exists no row-buffer hit condition, memory utilization 

cannot exceed 33.4% and 66.7% in BL 2 and BL 4. 
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Figure 2.12: Example of memory access granularity mismatch in DDR II SDRAM 
@200, where four bursts read are thrown away. 
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For this SDRAM access granularity mismatch problem, we focus on the latter 

approach using a BL 4 mode. In order to overcome the shortage of a command execution 

space, we use an auto-precharge (AP) operation in a memory subsystem. When AP is 

executed with a CAS command, the row buffer of an accessed bank automatically 

becomes idle without a PRE command after finishing transferring or receiving SDRAM 

data. In addition, a packet is split to several short packets with the same BL as SDRAM 

or less BL of SDRAM and then served by an on-chip router and a memory subsystem in 

our application-aware NoC design. As mentioned in Section III.B, splitting a packet to 

several short packets is also helpful to a priority service when a best-effort packet is too 

long. The detail approach is described in Section 2.2.2. 

 

2.2.2 Application-Aware NoC Design 

Even with a perfect network routing algorithm and a perfect flow control 

algorithm mentioned in [71], a priority memory request may be significantly congested 

and delayed in a memory subsystem if it reaches the memory subsystem with the order 

unfriendly to SDRAM operations. In addition, if the length of data requested by cores is 

different from that of data served by SDRAM, data unnecessarily accessed are thrown 

away. In this regime, our attention shifts to an application-aware NoC design to improve 

not only the overall memory performance but also the quality of memory service. 

 

2.2.2.1 Architecture of GSS Router 

The proposed GSS router with p input/output ports consists of an input buffer, a 

routing logic, a flow controller and an output scheduler as shown in Figure 2.13. 

Typically, p is 5 and 7 for 2D and 3D mesh networks, respectively. The input buffers are 
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managed by a wormhole flow control mechanism or a virtual-channel flow control 

mechanism. For our experiment, the wormhole flow control mechanism is implemented 

due to its simplicity and wide popularity [19]. The routing logic is responsible for 

determining the next router for each packet. Our GSS router can be implemented to either 

deterministic or adaptive routers according to a routing logic that guarantees both 

deadlock and livelock freeness. For our experiment, we implement XY routing that is a 

deterministic and minimal path routing algorithm such that it guarantees deadlock-free 

and livelock-free routing. 
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Figure 2.13: The architecture of an NoC router and a GSS flow controller for a 2D mesh 
network. 
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In this router, more than two different packets arriving on input buffers at the 

same time may desire the same channel toward a memory subsystem. In this situation, 

our GSS flow-control mechanism resolves this contention, allocating the channel to one 

packet and dealing with the others, blocked packets. In Figure 2.13, our GSS flow 

controller is parallelly performed with the conventional flow controller. Each address 

parser sends an incoming memory request packet to our GSS flow controller and an 

incoming normal packet to the conventional flow controller. Our GSS flow controller 

schedules the memory request packets in order to prevent bank conflict, data contention, 

and short turn-around bank interleaving and provide a priority service at the same time. 

Then, the resulting memory request packet again competes with a normal packet by the 

conventional flow control mechanism. Hence, normal packets can reach their destination 

with no additional communication delay and interference. This parallel implementation 

can minimize an increase of timing critical path whereas its design cost is slightly 

expensive. In addition, our flow controllers adopt winner-take-all bandwidth allocation 

that allocates all of the bandwidth to just one packet until it is finished or blocked before 

serving the other packets [19]. 

An output scheduler either detects if an input buffer of the next router is available 

or expects when the input buffer is available. When the input buffer of the next router is 

full and a deterministic routing logic is implemented, an output scheduler makes the 

corresponding GSS flow controller stop scheduling packets. On the contrary, packets 

given multiple routing paths by an adaptive routing logic can be scheduled to other GSS 

flow controllers which is not busy. 

In addition, we consider an ordering issue when a master core sends a read 

request to another slave core before the master core receives a read data from one slave 

core or when a master core requests another read data to a slave core in NoC employing 
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an adaptive router before the master core receives one read data from the slave core. This 

ordering problem can be solved by various previous works including [61] or a following 

constraint: a master core can send a read request to a slave core only after the master core 

receives all requested data. The latter solution is employed in our implementation for 

simplicity. In addition, since our GSS flow control algorithm is performed with in-order 

buffers, the ordering problem does not happen in each GSS flow control. 

 

2.2.2.2 GSS Flow Control Algorithm 

In this section, we minutely present our flow control algorithm providing short 

latency for a priority memory request packet and similar overall memory utilization and 

latency. Let h(n) be a packet already allocated any channel by our GSS flow control at 

the nth arbitration. Let hi(n+1) be any packet i of all completing packets, H(n+1), which 

may be allocated the same channel as h(n) by our flow controller at the (n+1)th 

scheduling. The packets, h(n) and hi(n+1) contain an address and a command to access 

SDRAM, denoted by (RAn, BAn, R/Wn) and (RAn+1,i, BAn+1,i, R/Wn+1,i), respectively, 

where the notations are (row address, bank address, read/write). Thus, bank conflict, data 

contention, bank interleaving and row-buffer hit conditions are defined as (BAn=BAn+1,i 

and RAn≠RAn+1,i), (RWn≠RWn+1,i), (BAn≠BAn+1,i) and (BAn=BAn+1,i and RAn=RAn+1,i), 

respectively. Based on these notations and definitions, Algorithm 3 shows how our flow 

controller works for a guaranteed memory service, which consists of two parts. 

First, a memory request packet (i) is given some tokens (ti), depending on its input 

order and priority (line 1-13). Let a new packet come in a router. All of the old packets 

are given to one additional token to avoid starvation (line 3). Then, if the new packet has 

a priority, old best-effort packets accessing the same bank as the priority packet are  
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Algorithm 3 GSS Flow Control 
1:  if new packet hk(n+1) comes in each router then 
2: for hi(n+1) ∈ H(n+1) do 
3: ti ← ti+1; 
4: 
 

if hk(n+1) is priory packet and its BA is equal to that of hi(n+1) that is best-
effort packet then  

5: 
6: 
7: 

 hi(n+1) is except from H(n+1); 
end if 

 end for 
8: if hk(n+1) is priority packet then 
9: tk ← 2 to 5 (or 6); // PCT for Figure 2.14(a) (or (b)) 
10: else 
11: 
12: 
13: 

tk ← 1; // best-effort packet 
 end if 
end if 

14: if h(n) finishes being delivered to the next router then 
15: for hi(n+1) ∈ H(n+1) do 
16: Ti(ti) in Figure 2.14 ← hi(n+1); 
17: 
18: 

Ti(0) in Figure 2.14← hi(n+1); 
end for 

19: if SPPCT = ∅ then 
20: for hi(n+1) ∈ H(n+1)  do 
21: 
22: 

ti ← ti+1; 
end for 

23: 
24: 
25: 

Go to line 14; 
end if 

end if 

except from H(n+1) (line 5). It means that old best-effort packets that access the same 

bank as any priority packet are not scheduled until the priority packet is scheduled. Then, 

the new packet gets an initial token. If it is a best-effort packet, one token is given (line 

11). Otherwise, more than two tokens are given (line 9) to a priority packet by a user, 

called a priority control token (PCT). If a single token is given to the priority packet, it is 

equal to a priority-equal scheduler and if the maximum tokens are given to the priority 

packet, it is equal to a priority-first scheduler. Therefore, we can control the service speed 

of a priory packet by PCT. 
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Second, when h(n) finishes being delivered, the rest of packets, H(n+1) in the 

router are scheduled (line 14-25). They all are input to Figure 2.14, according to the 

number of tokens each packet has. That is, if any packet has 1, 2, 3, 4, 5, and 6 tokens, 

the packet is input to Ti(1), Ti(2), Ti(3), Ti(4) , Ti(5), and Ti(6), respectively (line 16). All 

of the packets are also input to Ti(0) in line 17. As mentioned in Section III.A, a short 

turn-around bank interleaving problem is not critical for DDR SDRAM working at a low 

clock frequency since a short deactivation clock cycle and a reactivation clock cycle can 

be hidden behind the process of accessing a different bank. For such DDR SDRAMs, our 

flow controller just resolving bank conflict and data contention is shown in Figure 2.14 

(a). On the contrary, since it takes a number of clock cycles to finish deactivation and 

reactivation in DDR SDRAM working at a high clock frequency, it is difficult for them to 

hide behind the process of accessing different banks. For example, in DDR III SDRAM 

working at an 800MHz clock frequency, it takes 23 clock cycles to deactivate any bank 

after writing data [24]. Thus, until the written bank finishes being deactivated, a flow 

controller should make different banks accessed for 23 clock cycles to improve memory 

performance. Therefore, a flow controller working for such DDR SDRAMs should 

consider not only bank conflict and data contention but also short turn-around bank 

interleaving as shown in Figure 2.14(b). 

In order to check whether each bank finishes being idle, our flow controller has 

the same number of a counter as the bank of DDR SDRAM. After the last data are 

transferred to SDRAM, a counter corresponding to a bank written is set to tWR+tRP, where 

tWR and tRP are write recovery (WR) time and row precharge (RP) time, respectively [24]. 

On the contrary, after the last data are received from SDRAM, a counter corresponding to 

a bank read is set to tRP. Then, the delay cycle stored in the counter is reduced by 1 every 

clock cycle. Thus, in Figure 2.14(b), the short bank turn-around bank interleaving 
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condition is defined as the counter corresponding to a bank accessed by hi(n+1) is greater 

than 0. If it is true, the bank is not ready to be activated again. Otherwise, the bank 

finishes being deactivated. 
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Figure 2.14: Scheduling memory request packets for guaranteed SDRAM service 
considering (a) bank conflict and data contention, and (b) bank conflict, data 
contention and short turn-around bank interleaving. 
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Finally, the packets are differently filtered in Figure 2.14, depending on the 

number of token and the priority. If any packet has a few token, which means an old 

packet or a priority packet, it is easy to pass this filter. After filtering all packets, if there 

is no packet passing the filter (line 19), all packets are given one additional token (line 

21) and then go to the input of the filter again (line 23). Finally, if there are any packets 

passing the filter, one among the packets is output to SPPCT (Scheduled Packet). If PCT is 

n in line 9, SPn is used in Figure 2.14 where To(ti) is the filtered output of Ti(ti). 

SPn=A?B?C means A is chosen if A is not 0. If A is 0 and B is not 0, B is selected. 

Finally, if both A and B are 0 and C is not 0, C is chosen.  In Figure 2.14, a packet with 

a priority (P) and the most tokens is first selected. Next, a packet with To(0) is selected. 

Lastly, a best-effort packet with the most tokens is selected. The reason that the packet 

with To(0) is preferred to the best-effort packet with the most tokens is that there is strong 

possibility that h(n) and hi(n+1) is split from the same packet. Why they are split from 

the same packet will be explained in the next section. 

 

2.2.2.3 NoC Design for SAGM 

It is useful to split a long packet into several short packets since on-chip network 

resources can be efficiently reserved and an SDRAM access granularity mismatching 

problem can be easily solved. That is, the optimal length of packets can improve 

memory/network utilization/latency. We split a packet to several short packets, 

depending on an SDRAM access granularity. Since our GSS routers communicate 

through a famous open core protocol (OCP) [86] or an AMBA AXI/AHP [2] protocol, 

packets consist of body flits but not head and tail flits including routing information. 

Instead, more controls and address buses include the routing information. Therefore, even 
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if a packet is split to several short packets in each core and then is injected on a network, 

network loads do not increase. 

As mentioned in Section 2.2.1.2, DDR I/II SDRAMs always transfer/receive 

fixed-length data per read/write command after any BL mode is set in MRS. Most of the 

memory subsystems prefer a BL 8 mode in DDR I/II SDRAM because a BL 2 mode and 

a BL 4 mode can cause command bandwidth to be severely limited. As DDR SDRAMs 

transfer/receive two data burst per clock cycle, data are transferred/received for one and 

two cycles in the BL2 and BL4 mode, respectively. However, without any row-buffer hit, 

SDRAM needs three commands such as RAS, CAS and PRE to obtain the short data. 

Therefore, the commands are so congested that the execution of commands is delayed. 

As shown in Figure 2.15, we assume that a PRE command for BA 1 and a CAS 

command for BA 2 are issued at the same time. In Figure 2.15(a), the PRE command is 

performed earlier than the CAS command. Consequently, the data of the second packet 

are written with some delays. In Figure 2.15(b), the CAS command is performed earlier 

than PRE command. Consequently, the bank 1 gets idle and active with some delays. 

Therefore, such command congestion should be solved when short BL modes are used. 

Fortunately, SDRAMs can omit a PRE command if a CAS command is executed 

with an auto-precharge (AP). The AP is enabled to provide a self-timed row precharge 

that is initiated at the end of burst access. As a result, both the PRE command and the 

CAS command are not delayed due to AP, as shown in Figure 2.15(c). Under this 

consideration, it is useful that the BL (granularity) of packets is 2 and a BL mode in DDR 

I/II SDRAM is set to 4. Now that DDR III SDRAM has a selectable BL4 or BL8 OTF 

mode, it is useful that the BL of packets is 4 and a BL mode in DDR III SDRAM is set to 

8. For example, if the BL of any packet is 9, it is split to five packets whose BLs are 2, 2, 

2, 2 and 1 for DDR I/II SDRAM and it is split to three packets whose BLs are 4, 4 and 1 
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for DDR III SDRAM. It is efficient not only to match the access granularity but also to 

manage network resources. That is, a priority packet can be served faster in a winner-

take-all bandwidth allocation policy. If the length of any best-effort packet is 9, a priority 

packet waits until all 9 bursts of the best-effort packet are transferred. If it is split like our 

approach, a priority packet wait until the maximum 2, 2 and 4 bursts of the best-effort 

packets are transferred in DDR I, II and III SDRAM, respectively and then get more 

opportunities to be allocated to a channel. 
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Figure 2.15: SDRAM Operations when BL is set to 4 in DDR II SDRAM @300MHz, 
where the read command with authoprecharge does not need any precharge 
command. 
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To implement this idea, we make a core generate short packets whose granularity 

is 2, 2 and 4 in DDR I, II and III SDRAM, respectively and the last packet has a tag to 

execute AP. Since the relation of packets split is row-buffer hit, there is not any loss of 

memory performance. As explained in IV.B, our GSS router prefers the row-buffer hit 

condition to the bank interleaving condition even if both do not cause any loss of memory 

performance. Therefore, if split best-effort packets do not meet any priority packet, they 

are scheduled successively. On the contrary, a priority packet is always scheduled 

without any interference. 

Figure 2.16 shows our memory subsystem. Since memory scheduling is 

performed in multiple GSS routers, our memory subsystem consists of an SDRAM 

controller, but not a complex memory scheduler and a number of buffers. Our SDRAM 

controller makes DDR SDRAMs work for a partially open-page mode. Each bank keeps 

an active state (open-page) after being accessed by a packet without any tag indicating 

the last packet split from a long packet. However, if a bank is accessed by a packet with a 

tag, the bank is deactivated (closed-page) by AP. In addition, when a priority packet 

meets bank conflict relation with the previous best-effort packet, the bank is closed even 

if the previous best-effort packet has no tag. Our SDRAM Controller works by this 

concept. 

A memory request packet that is input to our SDRAM controller is decoded to 

extract SDRAM access information such as BA, RA, column address (CA), the length of 

data, the type of a command, write data (if the command is a write request) and a master 

address. Then, the master address of read requests is stored in an output buffer and then 

used for building a memory service packet when requested data are received from 

SDRAM. The write data is stored in a data buffer and then used for generating an 

SDRAM interface signal for a write operation. The rest of SDRAM access information is 
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stored in a PRE buffer. Then, the PRE buffer issues a PRE command only if a priority 

packet has any bank conflict relation with the previous best-effort packet without any tag. 

Since AP performing with a CAS command can be substituted for the PRE command, a 

number of PRE buffers are not required. The information stored in the PRE buffer is 

again stored to a RAS buffer. The RAS buffer issues a RAS command only if a packet 

does not have any row-buffer hit relation with the previous packet. The information 

stored in the RAS buffer is again stored in a CAS buffer. The CAS buffer always issues a 

read/write command. If a tag is attached to any information, its command is executed 

with AP. Next, all PRE, RAS and CAS commands are scheduled by a command 

scheduler with a round-robin policy. Finally, an SDRAM interface signal generator 

builds SDRAM interface signals for each command and then sends them to SDRAM. 
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Figure 2.16: The architecture of our memory controller where small PRE and RAS 
buffers are required thanks to authoprecharge operations.   
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2.2.3 Experimental Results 

The proposed application-aware NoC is implemented in Verilog HDL. The 

memory subsystem interconnected to DDR I/II/III SDRAM with 32-bits data bus [24] 

employs the design concepts from Sonics’ MemMax [75] and Denali’s Databahn [23]. 

Both the MemMax and the Databahn are employed in the conventional NoC design with 

a round-robin flow control based router, called CONV. The conventional NoC design and 

the SDRAM-aware NoC design set DDR SDRAMs to a BL 8 mode via MRS. They are 

compared to our application-aware NoC design where DDR I/II SDRAM are set to a BL 

4 mode and DDR III SDRAM is set to a selectable BL 4 or BL 8 OTF mode. 

We use a Blu-ray model [115], a DTV model and a dual DTV model [99] as 

applications, which consist of 9, 9 and 16 cores, respectively. A memory subsystem is 

placed in a upper left corner and the applications are mapped to 3×3, 3×3 and 4×4 mesh 

network, respectively by A3MAP [51] as shown in Figure 2.17. The multimedia systems 

can work for various video sizes to measure memory performance in different DDR 

SDRAMs. For example, let dual DTV work for two video streams with 1920×1088 

pixels, interfacing with 400MHz DDR II SDRAM for real-time computing. If the dual 

DTV interfaces with 200MHz DDR I SDRAM and 800MHz DDR III SDRAM, it works 

for two video streams with 1280×720 pixels and 2560×1600 pixels, respectively. All 

simulations run for one million cycles. 

 

2.2.3.1 No Priority Memory Request 

Our application-aware NoC design is first experimented when there is not any 

priority packet. Since a demand packet generated by a microprocessor or a cache is not 

assigned to a priority packet, all packets receive a best-effort service. We implement the 

proposed application-aware NoC design to two versions. One is that only a GSS router is 
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employed and the other is that both a GSS router and an SAGM design are employed in 

our NoC design, called GSS and GSS+SAGM, respectively. 

Table 2.6 shows their memory performance, where the performance ratio is based 

on the SDRAM-aware NoC design presented in Section 2.1, called SANoC. The GSS 

router achieves slightly better overall memory utilization and latency than SANoC even if 

it is optimized for the latency of priority memory requests. On the contrary, the GSS 

router shows slightly worse latency of demand packets, compared to SANoC. However, 

the latency of demand packets is not important since the demand packets are not assigned 

to a priority packet. Our NoC design employing both the GSS router and the SAGM 

design achieves not only higher memory utilization and shorter memory latency for 

overall requests, but also much shorter latency for the demand requests than SANoC and 

GSS designs. 

As shown in Table 2.6, the proposed application-aware NoC design with SAGM 

is the most useful for DDR II SDRAM where a read operation cannot be interrupted by 

any write and a write operation cannot be interrupted by any read and precharge 

operations. In DDR I SDRAM, a read operation can be interrupted by a burst stop 

command to support a short-burst data. However, since a write operation cannot be still 

interrupted, our SAGM design can improve memory performance in DDR I SDRAM. 

Now that DDR III SDRAM has a selectable BL4 or BL8 on-the-fly (OTF) mode, it looks 

perfect for the SAGM. However, in DDR III SDRAM, a CAS command can be 

performed only 4 clock cycles after the previous CAS command due to tCCD (CAS to 

CAS delay time). It makes DDR III SDRAM similarly works for a BL8 mode even if the 

BL mode is not set to 8. Therefore, our performance improvement in DDR III SDRSAM 

is less than that in DDR I/II SDRAM. 
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2.2.3.2 Priority Memory Request 

We test the proposed application-aware NoC design on priority packets. Since a demand 

packet generated by a microprocessor or a cache is assigned to a priority packet, it is 

served earlier than a best-effort packet. We also implement the conventional NoC design 

and the SDRAM-aware NoC with a priority-first service (PFS), called CONV+PFS and 

SANoC+PFS, respectively. 

Table 2.7 shows their memory performance, where the ratio is based on SANoC 

in Table 2.6. Our application-aware NoC design proves more merits when there exists a 

priority packet on NoC. SANoC+PFS improves, on average, the latency of priority 

memory request packets up to 20.7%, compared to SANoC. However, the memory 

utilization and latency of all packets are 8.3% and 23.3% worse than SANoC. On the 

contrary, our GSS router improves, on average, the latency of priority memory request 

packets up to 23.7%, compared to SANoC. The memory utilization and latency of all 

packets are just 1.7% and 2.9% worse than SANoC. Compared to SANoC +PFS, our 

GSS router improves, on average, 7.7% memory utilization, 16.5% latency of all packets 

and 3.7% latency of priority packets. This result shows our GSS router has fewer 

penalties of memory performance than SANoC +PFS to support a priority service. 

Furthermore, GSS+SAGM further improves the memory performance since it 

accesses few SDRAM data unnecessary. GSS+SAGM achieves, on average, 4.7% higher 

memory utilization, 10.2% shorter memory latency of all packets and 9.1% shorter 

memory latency of priority packets than GSS. Consequently, GSS+SAGM improves, on 

average, not only 32.7% latency of priority packets but also 3.4% memory utilization and 

7.8% latency of all packets, compared to SANoC. Compared to SANoC+PFS, 

GSS+SAGM improves, on average, 12.7% memory utilization, 25.2% latency of all 

packets and 15.2% latency of priority packets. 
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Figure 2.18 shows the memory performance of our application- aware NoC 

design according to the number of GSS routers when a single DTV model (3×3), a Blue-

ray model (3×3) and a dual DTV model (4×4) work with DDR I SDRAM at 200MHz, 

DDR II SDRAM at 333MHz and DDR III SDRAM at 666MHz, respectively. In the  

 

 

(a) Average memory utilization                  (b) Average latency for all packets 

 

 

(c) Average latency for demand packets 

Figure 2.18: The memory performance of our application-aware NoC design according to 
the number of GSS routers, where our NoC design achieves the best tradeoff 
between performance and cost when three conventional routers are replaced 
to GSS routers. 
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conventional NoC design, a router employing a priority-first and round-robin flow 

control algorithm is gradually replaced with our GSS router in the order where a router 

that is the closest to a memory subsystem is replaced first and where a router that is the 

farthest away from a memory subsystem is replaced last. 

When any input buffer and any memory scheduler are not adopted in a memory 

subsystem and the conventional router is placed on a network, its memory utilization is 

just 69%, 56% and 38% in a single DTV model, a Blue-ray model, and a dual DTV 

model, respectively as shown in Figure 2.18(a). However, whenever our GSS router is 

substituted for the conventional router, its memory utilization improves rapidly. As a 

result, when three GSS routers are substituted for three conventional routers, the memory 

utilization increases up to 77%, 73% and 54% in a single DTV model, a Blue-ray model 

and a dual DTV model, respectively. However, more than four GSS routers achieve little 

improvement of memory utilization since the solvable bank conflict and data contention 

are almost prevented by three GSS routers. 

Figure 2.18(b) shows the memory latency of all packets including both a priority 

packet and a best-effort packet. The memory latencies of all packets are initially 134 

cycles, 157 cycles and 332 cycles in a single DTV model, a Blue-ray model and a dual 

DTV model, respectively. However, whenever the GSS router is substituted for the 

conventional router, the memory latency of all packets also improves rapidly. As a result, 

when three GSS routers are substituted for three conventional routers, the memory 

latency of all packets decreases up to 88 cycles, 98 cycles and 191 cycles in a single DTV 

model, a Blue-ray model and a dual DTV model, respectively. 

Figure 2.18(c) shows the memory latency of priority packets. The memory 

latencies of priority packets are 92 cycles, 122 cycles and 146 cycles in a single DTV 

model, a Blue-ray model and a dual DTV model, respectively when any input buffer and 
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memory scheduler are not adopted in a memory subsystem and the conventional router is 

placed on a network. However, when three GSS routers are substituted for three 

conventional routers, the memory latency of priority packets decreases up to 54 cycles, 

63 cycles and 95 cycles in a single DTV model, a Blue-ray model and a dual DTV model, 

respectively. Therefore, three GSS routers placed around a memory subsystem shows the 

most efficient result in terms of hardware cost and memory performance. 

We also evaluate the improvement of memory performance when a short turn-

around bank interleaving problem is considered in our application-aware NoC design, 

called GSS+SAGM+STI. For this experiment, we use three GSS routers employing 

Figure 2.14(b) and execute a Blue-ray model, a single DTV model and a dual DTV 

model with DDR III SDRAM at 533MHz, 667MHz, and 800MHz, respectively. The 

short turn-around bank interleaving problem is not critical in DDR SDRAM working at a 

low clock frequency. This is because a bank can be sufficiently deactivated and 

reactivated while any different bank is accessed. On the contrary, the short turn-around 

interleaving problem causes memory performance to be critically degraded in DDR 

SDRAM working at a high clock frequency. This is because the deactivation, activation, 

and WL/CL delay time are too long, compared to the length of data accessed. Table 2.8 

shows that GSS+SAGM+STI achieves, on average, 9.4% higher memory utilization, 

11.2% shorter memory latency of all packets and 12.9% shorter memory latency of 

priority packets than GSS+SAGM.  

CONV, SANoC, and the proposed NoC design are synthesized by Synopsys 

Design Vision with OSU PDK 45nm CMOS standard cell library [107]. Table 2.9 shows 

their gate count in case that they are optimized at 400MHz clock speed. Our flow 

controller is 8.9% smaller than SANoC even if it provides effective QoS and high 

throughput. This is because our GSS flow control mechanism for scheduling memory  



 77 

App. Clock 
speed 

Utiliz
ation Imp. Latency of 

all packets Imp. 
Latency 

of priority 
packet 

Imp. 

Blue-ray 533MHz 0.674 10.9% 119 cycles 4% 79 cycles 12.2% 
Single DTV 667MHz 0.590 5.5% 140 cycles 7.3% 87 cycles 8.4% 
Dual DTV 800MHz 0.593 11.9% 161 cycles 22.2% 81 cycles 18.2% 

Average 0.619 9.4% 140 cycles 11.2% 82 cycles 12.9% 

Table 2.8: The memory performance comparison of GSS+SAGM+STI and 
GSS+SAGM on industrial benchmarks.  

Module CONV SANoC GSS+SAGM+STI 
Gate count Ratio Gate count Ratio Gate count Ratio 

Flow controller 3,310 0.539 6,732 1.097 6,136 1 
Router 56,683 0.904 62,949 1.003 62,721 1 

Memory subsystem 489,898 3.283 158,874 1.065 149,245 1 
3x3 NoC with 

memory subsystem 966,250 1.511 661,645 1.035 639,481 1 

Table 2.9: The comparison of gate count synthesized at 400MHz clock speed. 

requests and avoiding starvation are optimized by event driven architecture. On the 

contrary, the gate count of our flow controller is 85.4% greater than that of a 

conventional flow controller due to the additional GSS flow control mechanisms. 

However, since the flow controllers are commonly tiny, the gate count increased or 

decreased by our GSS flow control mechanism has little impact on the area of whole 

NoC design. In addition, routers can be equipped with the minimum GSS flow controllers 

according to a routing policy. That is, any conventional flow controller through which a 

packet goes to a memory subsystem can be just substituted for the proposed flow 

controllers. Moreover, the GSS flow controllers can have fewer input ports. For example, 

if a memory subsystem is placed in the upper left corner on NoC as shown in Figure 2.17, 

a router located in (2, 2) can have two 3-input GSS flow controllers. The GSS flow 

controllers schedule memory requests from processing element, south, and east inputs 
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and are attached to a north and west output scheduler, respectively. As a result, the gate 

count of our router is just 10.7% greater than a conventional router and 0.4% less than 

SANoC, as shown in Table 2.9. 

Our memory subsystem has great impact on the area of whole NoC design since it 

does not require any reordering buffers and any complex memory scheduler. Since 

memory requests are already scheduled by multiple routers with GSS flow controllers, 

the memory requests arrive at our memory subsystem with the order friendly with 

memory operations. In addition, our memory controller has fewer PRE buffers than a 

conventional memory controller and SANoC due to effective AP operations. Thus, our 

memory subsystem is 69.5% and 6.1% smaller than a conventional memory subsystem 

and SANoC, respectively. Such a distinguished gate count decrease by removing 

reordering buffers and a memory scheduler in our memory subsystem far exceeds a gate 

count increase by GSS flow controllers in multiple routers. As a result, NoC with our 

memory subsystem and three routers with GSS flow controllers is 33.8% and 3.3% 

smaller than a conventional one and SANoC, respectively, as shown in Table 2.9. 

We compute their power consumption by Synopsys Prime Time PX after gate-

level simulation. As shown in Table 2.10, our application aware NoC design consumes 

on average 28.5% and 0.3% less power than the conventional one design and SANoC, 

respectively. 

 

Application Clock speed CONV SANoC GSS+SAGM+STI 
Power Ratio Power Ratio Power Ratio 

Single DTV 200MHz 179.0mW 1.550 116.0mW 1.004 115.5mW 1 
Blue-ray 400MHz 351.6mW 1.550 227.8mW 1.004 226.8mW 1 

Dual DTV 800MHz 961.9mW 1.328 726.0mW 1.003 724.1mW 1 
Average 497.5mW 1.399 356.6mW 1.003 355.5mW 1 

Table 2.10: The comparison of power consumption ruing at 400MHz clock speed. 
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2.2.4 Summary 

In NoC, a microprocessor and a specific core that perform various applications 

request not only a best-effort memory service but also a priority memory service. In 

addition, they request memory data with various sizes which do not match an SDRAM 

access granularity. Therefore, we proposed an application-aware NoC design for an 

efficient SDRAM access. The proposed GSS router schedules a priority packet as fast as 

possible with the consideration of bank conflict, data contention, and short turn-around 

bank interleaving which all make memory performance severely degraded. Furthermore, 

the proposed SAGM NoC design splits a packet to several short packets, based on the BL 

of SDRAM and then serves them with a partially open-page mode and an AP operation in 

our memory subsystem. Experimental results showed our application-aware NoC design 

improved not only the memory utilization and latency of all packets but also the memory 

latency of priority packets in famous industrial multimedia systems. In conclusion, our 

application-aware NoC provides more opportunity for bandwidth-hungry system-on-chip 

designs with the high quality of a memory service. 
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Chapter 3 

Power Optimization for Advanced NoC 

Power has become a major concern in NoC as more and more IPs are integrated 

to a single chip. NoC itself is not efficient for power consumption and even may consume 

higher power than shard bus interconnects due to increased communication between IPs. 

However, the combination of NoC and other techniques efficient for power has the 

potential to easily reduce power to allowable levels.  

In NoC, it is not necessary for all IPs and links to run at a single voltage level and 

clock speed. Voltage-frequency island (VFI) enables fine-grained core-level power 

optimization by utilizing a unique voltage and clock for each island. Thus, VFI can be 

one of the most desirable solutions for reducing power consumption in NoC. This is 

possible because static complementary metal–oxide–semiconductor (CMOS) logic used 

in the vast majority of current processors has a voltage-dependent maximum operating 

frequency. Thus, when used at a reduced frequency, the processors can operate at a lower 

supply/higher threshold voltage. The power is supplied by an off- or on-chip source and 

can be controlled independently for each VFI. This may be achieved by using either on-

chip voltage regulators or multiple power grids. The communication across different 

VFIs is achieved through a mixed clock first input, first output (MCFIFO) buffer and a 

voltage level converter (VLC) [12][16]. They provide the flexibility to scale the 

frequency and voltage of various VFIs in order to minimize power consumption. A 

number of modern processors such as Intel’s XScale [47], AMD’s Athlon [77], and 

IBM’s CU-08, -45HP and -65HP [45] are employed with the VFI concept. The use of 

multiple voltages and clocks in NoC provides better performance-power tradeoffs than 

that of a single voltage and clock. In Section 3.1, we present a systematic VFI-aware 
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energy optimization framework that performs partitioning, mapping and routing together 

to improve the power efficiency of VFI-based NoC designs [49][53]. 

Application mapping that decides how to topologically place the selected set of 

cores onto the tiles of a network can greatly reduce both application latency and power 

consumption. NoC designers or programmers commonly favor a regular mesh network 

consisting of regular rectangle tiles on which homogeneous processors are placed since 

the regular mesh network makes application mapping manageable easily. On the 

contrary, most industrial SoC platforms consist of heterogeneous cores with different 

design areas, thus they may be structured with an irregular mesh network or even a 

custom network. Therefore, since previous works have just optimized their application 

mapping on the regular mesh architecture network, a novel application mapping 

algorithm is required to reduce application latency and power consumption in various 

networks. In Section 3.2, we present architecture-aware analytic application mapping 

(A3MAP) algorithms that are analogous to analytical communication minimization in 

various network architectures [51].  

 

3.1 VFI-AWARE ENERGY OPTIMIZATION FRAMEWORK FOR NOC 

There are many existing works that address the problem of VFIs generation for 

core-based SoC designs. The design style based on multiple VFIs was proposed in [62], 

where synchronous IPs in an SoC design had different voltages and frequencies. Hu et al. 

considered voltage island partitioning, assignment and floorplanning in an SoC design 

[41]. By using a graph-based representation, the partitioning and floorplanning steps were 

modeled in an integrated fashion and solved by a simulated annealing-based algorithm. 

Wu et al. considered trade-off between power and design cost under timing requirement 
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for a VFI generation problem that was formulated as a voltage-partitioning problem and 

solved by a two-step heuristic algorithm [118]. In [119], the number of voltage islands 

determined by island partitioning was minimized after performing placement phase. 

Ching et al. considered non-slicing voltage-island partitioning to facilitate the 

floorplanning in [14]. 

As many cores have been recently interconnected by an on-chip network, the 

concept of the VFI design is being employed in NoC. Ogras et al. proposed a design 

methodology for partitioning NoC tiles into multiple VFIs and assigning supply/threshold 

voltages and corresponding clock speeds to each domain [84]. Leung et al. proposed an 

NoC design with voltage islands in [66]. The approach simultaneously solved three 

problems, i.e. tile mapping, routing path allocation and physical voltage island generation 

and voltage assignment. Seiculescu et al. proposed a synthesis approach to obtain 

customized application-specific NoC that can support the shutdown of voltage islands in 

[102]. Liu et al. proposed a simultaneous task and voltage scheduling algorithm for 

energy minimization in NoC based designs in [69]. The energy-latency tradeoff was 

handled by Lagrangian relaxation.  

Such a VFI-based NoC concept fits very well with a globally asynchronous, 

locally synchronous (GALS) design style for global on-chip asynchronous 

communication. The problem of selecting voltages and clock speeds for 

voltage/frequency islands in GALS systems was addressed in [81]. The problem of both 

rate and latency constrained systems was considered and a practical solution for static 

and application adaptive, dynamic voltage and speed scaling is provided. The field 

programmable gate array (FPGA) prototype of GALS-based NoC with two synchronous 

IPs was presented in [95]. In [8], a method for reducing wire propagation delays in 
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GALS-based NoC is proposed. In [84], both VFI and GALS concepts were applied to an 

NoC design for minimum energy consumption. 

However, there are several limitations in the previous VFI-based NoC designs 

although their powerful energy efficiency. First, an island partitioning process is only 

combined with a voltage and frequency (VF) assignment process. Such approach limits 

the flexibility of VFI optimization thus NoC energy efficiency. As shown in the 

experimental results of [84], more than three VFIs in NoC with less than 25 cores cannot 

improve overall energy consumption any more since the inflexibility of VFI optimization 

generates a lot of energy overheads. Second, a search for low energy consumption is 

carried out on a hard mesh network where both communication and computation 

components are pre-designed. Since the application mapping process is not optimized by 

a VFI-aware manner, the solution space is inevitably constrained. Third, VFI-based NoC 

needs a good routing strategy to bring down energy consumption. It may be inefficient to 

insert all links between different VFIs since MCFIFO and VLC required to interconnect 

different VFIs are too expensive. Therefore, pruning the links between VFIs and 

allocating efficient routing paths over the survived links are required to further improve 

VFI energy efficiency, where the routing path must guarantee deadlock and livelock 

freeness. Last, efficient VFI interfaces are required to easily satisfy the performance 

constraints. In [84], MCFIFO and VLC are simply placed between routers in different 

VFIs. However, if any packet generated in VFI operating with a fast clock passes VFI 

operating with a slow clock, it may be difficult for the packet to satisfy performance 

constraints. In addition, the better VFI interfaces can further reduce the number of 

MCFIFO and VLC required thus NoC energy consumption. 
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3.1.1 Motivation and Contributions 

3.1.1.1 Motivational Example 

VFI generation causes the chip design process severely to be complicated with 

respect to static timing, power routing and clock tree. In particular, the design complexity 

grows significantly with the number of allowed VFIs as shown in Figure 3.1. Since each 

VFI requires its own power grid, clock tree, MCFIFO buffer and VLC in order to 

communicate with other VFIs, those design overheads with respect to area, delay and 

energy are not avoidable. Therefore, NoC designs employing the concept of VFI design 

needs to cluster as many cores supplied by the same voltage level and clock speed as 

possible and ensure that the created grouping does not violate other design constraints 

such as performance, timing and wiring congestion [93].  
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Figure 3.1: Computing and communication energy consumption and design overhead 
according to the number of VFIs. The goal of VFI based NoC designs is to 
minimize the sum of the computing and communication energy and the 
design overhead. 

Figure 3.2, for instance, shows two VFI-based NoC designs with 16 tiles. Each 

tile operates at either voltage A or voltage B, depending on the computation complexity 
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of mapped cores. After cores are mapped to tiles for the purpose of reducing hop counts 

and thus communication energy consumption, two different mapping results are shown in 

Figure 3.2(a) and (b). Then, let us apply tile partitioning with VF assignment to the NoC 

designs, as proposed in [84]. Such approach may improve total energy consumption by 

running two VFIs in Figure 3.2(a) since its additional design cost is only four complex 

routers including MCFIFO and VLC. If the energy saved by operating two VFIs is lower 

than the energy consumed by four complex routers, it is regarded as a desirable solution. 

However, in Figure 3.2(b), any tile cannot operate together with other tiles at the same 

VF. Operating each tile as one VFI needs the complex wiring of power, ground and clock 

and even 24 complex routers that may be much more expensive than the energy saved by 

VFI separation. As a result, higher voltage of two voltages, A and B, will be used for 

meeting performance constraints in overall NoC such that their approach may fail to 

consume lower energy. This shows that tile partitioning with VF assignment alone may 

be misleading during NoC energy optimization. Our solution is to combine core 

partitioning with VF assignment, core mapping and routing path allocation together, 

which are considered by VFI-aware manner. 

In addition, we implement various VFI interfaces and propose their insertion 

algorithm to minimize communication latency and further reduce energy consumption. If 

any packet passes VFI operating at very low clock frequency, it may be difficult for the 

packet to meet target communication performance. Even though a core operates at the 

same clock frequency as its VFI, its router and link should operate at different clock 

frequency satisfying performance constraints. To achieve this issue, we perform the VFI-

aware mapping algorithm with specific constraints and insert a pair of MCFIFO and VLC 

between routers or a router and a core by our VFI interface insertion algorithm. 
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Figure 3.2: Motivational VFI based NoC designs. 

 

3.1.1.2 Major Novelty 

The main novelties and contributions of our VFI-aware optimization framework 

include: 

 

• We propose an NoC design methodology that is aware of a voltage-frequency 

island. After partitioning cores with VF assignment, mapping the cores and 

allocating routing path provides more opportunities to efficiently build unified 

VFIs. 

• VFI-aware mapping is performed, based on an effective region growing method. 

In addition, we add specific constraints for efficient VFI interface which provides 

short communication latency. Such VFI-aware mapping techniques fit the VFI-

based NoC methodology well. 

• VFI-aware routing path allocation seeks to further reduce VFI overheads such as 

MCFIFO and VLC. 
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• We implement various VFI interfaces and propose their insertion algorithm. Such 

approach achieves short communication latency and further reduces VFI 

overheads. 

• We show that the proposed VFI-based NoC optimization framework makes cores 

running at the same voltage and clock frequency unified to single VFI with the 

slight increase of hop count such that it provides better energy-performance trade-

offs. 

 

3.1.2 Problem Formulations 

We start to solve VFI-applied NoC issues from a core graph consisting of cores 

and their communication relation since a core can be one-to-one mapped onto a tile of 

NoC. Therefore, we assume to have an application that needs to be mapped onto SoC 

populated by cores as a starting point. We implement earliest deadline first (EDF) and a 

heuristic called energy aware scheduling (EAS) that are used for generating a core graph 

from a task graph [42]. 

 

3.1.2.1 Partitioning with VF Assignment Problem 

In this stage, the object is to decide how cores are partitioned to minimize energy 

consumption except for communication energy consumption. We assume that the 

maximum number of allowable VFIs denoted by max{n(VFI)} or m, a core graph G with 

a set of n cores where pairs of supply voltage and threshold voltage are (V1, Vt1), (V2, Vt2), 

…, (Vn, Vtn) and an NoC topology such as a mesh or a torus are given. Clock period (τi) 

for each core ci, which can trade off with supply and threshold voltage, is defined as: 
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where α is a technology parameter and Ki is a design specific constant [84][73][98]. The 

operating frequency (fj) of VFI j is determined by a core including the longest path as: 
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where Sj is a set of tiles that belong to VFI j. Each core can be performed with a different 

supply and threshold voltage and the voltage level is regarded as a legal one as long as 

the performance constraints are satisfied. Based on these constraints, we partition n cores 

into the maximum number of allowable VFIs and assign a supply and threshold voltage 

to each core such that total energy consumption is minimized as: 
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where G is a set of n cores, Ri is the number of active cycles, Ci is total switched 

capacitance per cycle, Ti is the number of idle cycles, ki is a design parameter and St is a 

technology parameter [7]. 

 

3.1.2.2 VFI-Aware Mapping Problem 

In this section, we determine which tile each core should be mapped to in order to 

minimize communication energy consumption under stringent performance constraints. 

 

Definition 1: A partitioned core graph G´(V,E) generated by Section 3.1.2.1 is a 

directed graph, where each vertex vi∈V represents a core, and each directed edge 

ei,j∈E represents communication relation from vi to vj. vol(ei,j) represents the 

communication volume between vi to vj. 
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Definition 2: An NoC topology graph N(T,C) is a directed graph, where each 

vertex ti∈T represents a tile, and each directed edge ci,j∈C represents candidate 

minimum paths from ti to tj. bw(ci,j) represents the minimum bandwidth 

requirement from ti to tj. 

 

The one-to-one mapping function M() of the partitioned core graph G´(V,E) onto the NoC 

topology graph N(T,C) is defined as: 

( ): , . . , ,i j i jM V T s t M v t v V t T→ = ∀ ∈ ∃ ∈             (3.4) 

This mapping function is only defined when n(V)≤n(T), where n(X) is the number of 

𝑥𝑖 ∈ 𝑋. In addition, our mapping function has two objectives, i.e. minimizing overall 

communication and building a convex region with cores using the same voltage on given 

NoC. 

 

3.1.2.3 VFI-Aware Routing Problem 

Ebit(ei,j) is the energy consumption of sending one bit of data from M(vi) to M(vj). 

Assuming the bit energy values are observed at VDD, its energy consumption is defined 

as: 
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where L(ei,j) is a set of links passed from M(vi) to M(vj) and ELbit, ELbit, and ELbit are the 

energy consumed by the link, buffer and switch fabric, respectively [84]. Therefore, 

finding a routing path from ti to tj is formulated as: 
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where ECLK is the energy overhead of generating additional clock signals and EVLC and 

EMCFIFO is the energy overhead of VLC and MCFIFO, respectively. This formulation is 

subject to performance constraints expressed as: 

c
c

c

e d deadline
f
+ ≤                          (3.7) 

where ec is the number of cycles required to complete the function of core c and dc is 

communication delay encountered when core c needs to communicate with a core 

mapped to a different tile. 

 

3.1.3 VFI Optimization Framework 

In this section, we present the proposed VFI-aware NoC methodology and 

detailed algorithms for core partitioning with VF assignment, VFI-aware core mapping 

onto a given NoC topology and VFI-aware routing path allocation. In addition, we show 

a VFI interface to easily satisfy performance constraints and further improve its energy 

efficiency. Figure 3.3 shows the overall flow chart of our VFI-aware NoC optimization 

framework. We first partition n cores but not tiles into m VFIs, where m is given as the 

maximum number of allowable VFIs. Based on the result of partitioning cores, novel 

VFI-aware mapping and routing path allocation algorithms are performed to minimize 

communication energy consumption. Then, we establish unique interconnection for key 

traffic paths between islands to minimize the overheads of VFI. After routing path 

allocation is carried out, the pairs of MIFIFO and VLC are placed between routers or a 

core and its router. Finally, we compute its energy consumption and check whether it 
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Figure 3.3: The proposed VFI-aware NoC methodology where VFI partitioning is first 
performed. 

meets performance constraints. If the performance constraints are satisfied, an energy-

efficient NoC platform with q(≤m) VFIs is obtained. Otherwise, we again perform the 

VFI-aware mapping with constraints descripted in Section 3.1.3.2 or all procedures with 

decreasing the maximum number of VFIs, m by 1. 

 

3.1.3.1 Core Partitioning with VF Assignment 

The proposed core partitioning algorithm is different from [84] that can partition 

tiles in a neighbor on NoC. Since our partitioning stage is performed before the stages of 

mapping and routing path allocation, any core unmapped to a tile can be clustered 

together to the same VFI. Thus, our methodology can make cores operating at the same 

voltage gathered as one VFI such that the number of a complex router requiring MCFIFO 

and VLC is minimized. Consequently, it further reduces energy consumption. 

Algorithm 4 shows our core partitioning algorithm for a core graph G(V,E) and 

the maximum number of allowable VFIs, m. Since the voltage of a core can trade off its  
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Algorithm 4 Core partitioning and VF assignment 
Input: G(V,E), max{n(VFI)}=m 
1: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

Compute the lowest voltage of each core satisfied with performance constraints 
using Eq. (3.1); 
for all cases that choose m VFs among k VFs used in each core do 

Assign the lowest operable voltage among m to all n cores; 
if chosen m VFs are satisfied with performance constraints of all n cores then 

Compute overall energy consumption from Eq. (3.3); 
end if 

end for 
Choose the best VF pair consuming minimum energy; 

Output: G´ (V,E) partitioned into VFI 

operating frequency, the lowest voltage of each core are computed from Eq. (3.1) in line 

1, which must satisfy performance constraint of each core. If there are k VFs used by n 

cores and the maximum number of accepted VFIs is m, we can choose m VF among total 

k VF (where m≤k), where there are total kCm cases. Then, the lowest VF among the 

chosen m VFs is assigned to each core if the performance constraint of the core is 

satisfied in the VF level. When the chosen m VFs are satisfied with the performance of 

all cores, computation energy consumption is computed from Eq. (3.3). This procedure 

repeats all kCm VF cases. After completing this procedure, we choose the best VF pair 

consuming the lowest energy. 

For example, there are 4 cores and the lowest voltages of each core, which satisfy 

their performance constraints, are 1.0V, 1.2V, 1.1V and 1.0V, respectively (k=3). We 

assume that the maximum number of allowable VFI is 2 (m=2) and the operating 

frequency and area of all cores are same to make simple. In this example, we can choose 

2 of 3 voltages, i.e. 1.0V, 1.1V and 1.2V. Thus, there are 3 cases (3C2) we can choose: 

(1.0, 1.1), (1.0, 1.2) and (1.1, 1.2). Here, (1.0, 1.1) case cannot satisfy the performance 

constraint of the second core that must operate at least 1.2V. On the other hand, the rest 

of two pairs meet performance constraints since the cores can run at 1.0V, 1.2V, 1.2V 

and 1.0V in the second case and 1.1V, 1.1V, 1.2V and 1.1V in the last case. 
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Consequently, since the third pair consumes more energy than the second pair, (1.0, 1.2) 

case is chosen to compose two VFIs and assigned to all cores such that cores runs at 

1.0V, 1.2V, 1.2V and 1.0V. Finally, a core graph G´ (V,E) of which the VF level is 

assigned is generated. 

 

3.1.3.2 VFI-Aware Mapping Algorithm 

Cores operating at the same VF level should be mapped to NoC tiles which build 

a convex region and thus, it reduces the overhead energy consumption caused by 

MCFIFO, VLC and clock/power routing. We already know which cores VFIs consist of 

because the core partitioning with VF assignment is performed in the previous section. 

Therefore, this information helps selecting a region which looks as convex as possible. 

In the mapping step, we use a heuristic approach using the partitioned core graph, 

as shown in Algorithm 5. In line 1, cores are sorted in a decreasing order by the amount 

of their communication and then they are mapped in the order. We define a VF_LIST() 

indicating whether the VF level of a core being mapped is already used on NoC. From 

line 3 to 11, our initial mapping algorithm starts for the sorted vi. In line 4, the proposed 

mapping algorithm checks whether the VF level of a core being mapped is used 

throughout VF_LIST(). If the VF level of the core being mapped does not exist in 

VF_LIST(), it is mapped on any empty NoC tile with the maximum neighbor tiles or the 

minimum hops (line 5). Then, the VF level of the core is recorded in VF_LIST() (line 6). 

If the VF level of the core being mapped exists in VF_LIST(), the core is mapped on any 

candidate tile with the same VF level (line 8). Next, additional candidates are selected in 

line 10, where NSWE(ti) indicates north, south, west and east tile of the mapped ti. The 

candidates are used for the next mapped cores that run at the VF level. If the core  
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Algorithm 5 VFI-Aware Mapping 
Input: G´(V,E), NoC topology 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
13: 
14: 
15: 
16: 
17: 

Sort(vol(vi)) in decreasing order; 
VF_LIST() = empty; 
for all sorted vi do // initial mapping 

if  VF level of vi does not exists in VF_LIST() then 
M(vi) on any empty tile tj with maximum neighbors and minimum hops; 
Add VF level into VF_LIST(); 

else then  
M(vi) on any candidate tile tj with minimum hops; 

end if 
Add unmapped NSWE(tj) (or NS(tj) or WE(tj)) as candidate with VF of vi; 

end for 
for all isolated island ti do // moving of an isolated tile 

Pair-wise swapping(ti,tj) to be clustered to main VFI using the same VF level 
under minimum traffic increase;  

end for 
for all ti do // minimization of the overall traffics 

Pair-wise swapping(ti,tj) within island for min. traffic; 
end for 

Output: N(T,C) mapped on NoC 

mapping is again performed due to the dissatisfaction of performance constraints, either 

NS(ti) or WE(ti) is used as candidate tiles for cores working at the lowest VF level. This 

candidate constraint makes the cores mapped to tiles in a single row or column and thus, 

improves communication speed with our VFI interface insertion algorithm which is 

described in Section V.D. If it does not still satisfy the performance constraints, either 

NS(ti) or WE(ti) is also used as candidate tiles for cores running at the next lowest VF 

level. This procedure repeats until all cores are mapped on NoC. 

Our initial mapping algorithm as a near convex region solution reduces the 

number of an isolated tile separating from the main group of tiles (VFI) running at the 

same VF level. However, we cannot completely remove an isolated tile around the edge 

of NoC. In order to combine an isolated tile with its main VFI using the same VF level, 

the isolated tile is moved to the VFI if the moving cost is less than the overhead of the 
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extra isolated tiles (line 13). Since our initial mapping does not generate an isolated tile 

around the center of NoC where communication is too heavy, the loss of performance 

and the increase of hop count caused by this pair-wise swapping of tiles in different VFIs 

are minimal. The procedure repeats until all isolated tiles disappear. Finally, the pair-wise 

swapping of tiles within each island is executed to find the best mapping solution with 

the minimum hop count until it is not improved (line 16). 

Figure 3.4 shows the simple example of the initial mapping in Algorithm 5. In 

Figure 3.4(a) that is the partitioned core graph, the number is the mapping order by 

sorting cores into the amount of communication and two groups, i.e. grey and white 

denoted VFI 1 and VFI 2, respectively exist. Core 1 that has the maximum 

communication is placed onto the center of NoC with the maximum neighbors as shown 

in Figure 3.4(b). Four candidates, a, b, c and d are also marked as VFI 1 for the next 

mapped cores using the same VF as the core 1, i.e. core 3 and 4. Core 2 that has the next 

maximum communication is placed onto candidates minimizing hop count with other 

cores already mapped if candidates marked as VFI 2 exist. Otherwise, core 2 is only 

placed onto any unmapped tile that minimizes hop count with other cores already 

mapped. In this example, core 2 is mapped by the latter case as shown in Figure 3.4(c). 

Three candidates, e, f and g are also marked as VFI 2 for the next mapped core using the 

same VF as the core 2, i.e. core 5 and 6. Next, core 3 that has the next maximum 

communication is placed onto one of the VFI 1 candidates, minimizing hop count with 

other cores already mapped. In Figure 3.4(c), there are three candidates, b, c and d and 

candidate b is chosen because b generates fewer hops than c and d. Then, three 

candidates, e, h and i are also marked as VFI 1, where any core operating at VFI 1 and 

VFI 2 can be mapped to tile e in Figure 3.4(d). The procedure repeats until all cores are 

mapped as shown from Figure 3.4(e) to (f). Since this mapping algorithm makes the 
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region of each VFI grow toward its candidates, the VFI is prevented splitting into several 

VFIs using the same VF level. 

 

l

c

b

a

3

1

2

4 6

1

2

d
5

Partitioned core graph

(a) (b) (c)

(e) (d)(f)

5

c

g

b

e

f

1d

2

c i

g

h

e

f

1d 3

2

c i

h

k

jf

1d 3

4

l

5 2

m c i

h

k

jf

1 3

4

6

 

Figure 3.4: Incremental core mapping on NoC. 

 

3.1.3.3 VFI-Aware Routing Path Allocation 

In this section, we present a VFI-aware routing path allocation algorithm. In [84], 

more than three VFIs applied to less than 25 cores could not improve overall energy 

consumption any more since the VFIs also generate more overheads that degrade the 

energy efficiency of VFI separation. The key idea of our routing path allocation is to use 

the minimum links between VFIs. Since NoC based on a mesh or torus topology has a lot 
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of extra bandwidth, we can remove some links requiring MCFIFO and VLC if the latency 

of communication and the bandwidth of links satisfy performance constraints. In 

addition, since our VFI-aware mapping algorithm generates unified VFIs that mean any 

core is not split from the main group of VFI using the same voltage as the core, we use 

fewer MCFIFO and VLC. Consequently, the rate of energy saved by VFI separation 

becomes higher than the rate of energy consumed by MCFIFO and VLC as the number of 

VFI increases in our VFI-based NoC. 

Figure 3.5 shows how links between tiles are inserted briefly. After the VFI-aware 

mapping in Section V.B, we assume that there is no link between any tiles as shown in 

Figure 3.5(a) including four VFIs. Next, as shown in Figure 3.5(b), all links within each 

VFI are inserted. Then, some links between VFIs are partially inserted, as shown in 

Figure 3.5(c). Under such an irregular NoC interconnection, routing paths allocation 

should minimize energy consumption and improve performance with livelock and 

deadlock freeness. As a result, our NoC-aware routing path allocation can achieve lower 

energy consumption with the tiny loss of performance and the tiny increase of hop count.  

 

(a) No link (b) Inserting links within VFI (c) Inserting links between VFI
 

Figure 3.5: Link insertion within VFI and between VFIs, where all links between VFIs 
are not inserted.  
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In addition, communication congestion that causes the misrouting, dropping and delaying 

of packets is minimized. 

Algorithm 6 minutely shows how links between tiles are inserted and how routing 

paths are allocated. Algorithm 6 consists of two parts, i.e. inserting links (line 1 to 3) that 

changes an NoC topology and allocating routing paths on such an irregular 

interconnection (line 4 to 12). First, we interconnect all tiles within each VFI (line 1) as 

shown in Figure 3.5(b) because routers required neither MCFIFO nor VLC 

havereasonable overhead. The optimal number of the complex routers with several 

MCFIFOs and VLCs for connecting two islands is computed as: 

, ,

,

( )

( )
i j i j

i j

w vol VFI
b

bw VFI
=
 
 
  

                          (3.8) 

 
Algorithm 6 VFI-Aware Routing Path Allocation 
Input: N(T,C) 
1: 
2: 
2: 
3: 
3: 
4: 
5: 
6: 
7: 

 
8: 
9: 

10: 
11: 
12: 

Interconnect all tiles within each VFI; 
Compute the optimal number of routers with MCFIFO or VLS between two 
adjacent VFIs from Eq. (3.8); 
Insert b routers to any place between VFIs, where the minimum hops are 
generated; 
Sort(length(ci,j)) in increasing order; // Rule 1 
for all ci,j do 

Bounding box including source and destination is built; 
Dijkstra’s shortest path algorithm where energy consumption of 
communication is computed from Eq. (3.6); // Rule 2 
if  performance of Eq. (3.7) is not satisfied then  

Increase wi,j of Eq. (3.8) more than 1; 
Go to line 2; 

end if 
end for 

Output: link insertion and deterministic, minimal and livelock/deadlock-free 
routing path 
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where x    is the smallest integer larger than x, wi,j is the weight of links between VFI i 

and VFI j and vol(VFIi,j) and bw(VFIi,j) are the total amount of communication volume 

and the minimum bandwidth requirement between VFI i and VFI j, respectively (line 2). 

If performance constraints are not satisfied, the weight wi,j increases more than 1, which 

means more links are inserted between adjacent VFIs. The b complex routers with 

MCFIFO and VLC are placed between two VFIs, where the minimum hops are 

generated. 

Here is a simple example in Figure 3.6, where S1, S2 and S3 communicate with 

D1, D2 and D3 respectively. We assume that the amount of each communication is 

1Mbit/s, each link between tiles can contain 5Mbit/s and wi,j is 1. Therefore, vol(VFIi,j) is 

3Mbit/s and bw(VFIi,j) is 5Mbit/s such that b is equal to 1 from Eq. (3.8). Then, we can 

insert one link between two islands. Depending on the location of a link, hop counts 

computed by the minimum shortest path are 9Mbit/s, 11Mbit/s and 7Mbit/s in Figure 

3.6(a), (b) and (c) respectively. Therefore, we insert one link between VFIs as shown in 

Figure 3.6(c) because it generates the minimum hops. 

From now, we perform routing path allocation under such an irregular NoC 

interconnection. In line 4 of Algorithm 6, all ci,j are sorted in an increasing order by their 

minimum hop count. For example, in Figure 3.6 (c), S2-to-D2 is the shortest and S1-to-

D1 and S3-to-D3 have the same length. Then, we allocate routing paths based on the 

following two rules. 

 

Rule 1: ci,j with few hops among C is allocated earlier to relieve communication 

congestion between VFIs. 
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Figure 3.6: Finding the best interconnection between VFIs. 

In Figure 3.7(a), there are two packets of which the directions are S1-to-D1 and 

S2-to-D2 and of which the hop counts are 2 and 6, respectively. From the Rule 1, the 

packet of which the direction is S1-to-D1 is allocated before the packet of which the 

direction is S2-to-D2 is allocated. The S1-to-D1 packet has only path A as the minimum 

shortest path whereas the S2-to-D2 packet has two paths, i.e. B and C as the minimum 

shortest path. If the S2-to-D2 packet is allocated to path B earlier than the S1-to-D1 

packet, path A will overlap with path B since the S1-to-D1 packet has no choice. At a 

result, the congested packets are dropped and misrouted in a bufferless flow control 

mechanism like circuit switching or have long communication latency in buffered flow 

control mechanism like packet switching. However, if path A is allocated earlier than the 

S2-to-D2 packet, the path C but not the path B can be chosen as the routing path of the 

S2-to-D2 packet. Therefore, the routing path allocation order is important to reduce 

communication congestion and balance network load between VFIs. For example, in 

Figure 3.6(c), the S2-to-D2 packet should be allocated earlier than the S1-to-D1 packet or 

the S3-to-D3 packet according to the rule 1. 

Our routing path allocation follows Rule 2 in the line 6 of Algorithm 6 if the VFI 

of packet source is different from the VFI of its destination: 
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(a) Rule 1                       (b) Rule 2 

Figure 3.7: The proposed rules for allocating routing path in VFI-based NoC.  

Rule 2: If the VFI of packet source is different from the VFI of its destination, the 

minimum shortest routing path that passes through fewer islands is selected. 

 

For example, let any packet move from S to D in Figure 3.7(b). Even if several 

shortest routing paths can be chosen for the packet, let two routing paths, i.e. P1 and P2 

considered. While both P1 and P2 are the minimum shortest paths, the routing path P1 

meets one different island and the routing path P2 meets two different islands. As a 

result, the routing path P1 provides better performance and lower energy consumption 

than the routing path P2 passing two islands since the routing path P2 needs additional 

energy overheads. 

Based on two rules, we perform our routing path allocation algorithm. For each 

ci,j, a bounding box is formed (line 7) and then, the path with the minimum energy 

consumption is obtained within the bounding box from the Dijkstra’s shortest path 

algorithm, where its energy consumption is computed from Eq. (3.6). Since the routing 

path is allocated by a deterministic and minimal path router, both livelock and deadlock 

are free. If performance constrains computed from Eq. (3.7) is not satisfied, we increase a 
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link weight wi,j between VFIs, go to line 2 and then repeat the routing path allocation. 

Even if there is a tiny increase of hop count in our routing path allocation due to irregular 

link insertions between VFIs, the enormous energy saved by VFI separation covers such 

the tiny penalty. 

 

3.1.3.4 VFI-Aware Interface Planning 

In a VFI-based NoC design, all data and control signals are required to be 

converted to a different voltage by VLC and synchronized to a different clock by 

MCFIFO whenever they pass through a boundary between different VFIs. In the 

conventional VF conversion proposed in [84], MCFIFO and VLC are simply inserted 

between routers in different VFIs as shown in Figure 3.8(a). Such a VFI interface may 

make it difficult to guarantee short communication latency under various VFI-based NoC 

design scenarios since the speed of on-chip communication depends on clock speeds used 

in VFIs. For example, let VFI 1 and 2 operate with 1GHz and 100MHz clock, 

respectively, in Figure 3.9. Then, let any packet generated in S go to D. If the routing 

path of the packet is allocated to P1 which is one of the shortest path as shown in Figure 

3.9(a), it takes a lot of clock cycles to escape VFI 2 in terms of a VFI 1 viewpoint. The 

reason is that one clock cycle at VFI 2 is equal to ten clock cycles at VFI 1. Moreover, if 

the packet is blocked within VFI 2 due to any congestion, its latency may be severely 

long. This routing path is slower than another routing path P2 which is not the shortest 

path. Since the routing path P2 detours, it may consume more communication energy and 

be not free of deadlock and livelock. Actually, most microprocessors operate at several 

GHz whereas various co-processors such as peripherals, memories, specific-purposed 
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processors and IO interface logics operate at several hundred MHz. As described above, 

if any packet generated in the microprocessor operating at GHz clock speed traverses any  
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(a) NoC tiles including MCFIFO between routers [84] 
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(b) NoC tiles including MCFIFO between a core and a router 

Figure 3.8: NoC tiles with MCFIFO or VLC placed (a) between routers and (b) a core 
and a router. 
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Figure 3.9: NoC designs with (a) the conventional VFI interface and (b) the proposed 
VFI interface.  

VFI consisting of the co-processors, it is too delayed at the microprocessor’s viewpoint. 

Even if it is a critical problem that should be solved in VFI-based NoC designs, it is not 

considered in the previous works yet. 

We propose a new VFI interface where MCFIFO and VLC are placed between a 

core and its router as shown in Figure 3.8(b). It is used together with the VFI interface 

proposed in [84]. Since the proposed interface makes the clock speed of a router choose 

one of two clocks, i.e. a clock used in VFI 1 and a clock used in VFI 2, the latency of 

packets can be greatly improved. In Figure 3.9(b), three tiles in VFI 2 employ the 

proposed interface with MCFIFO and VLC between a core and its router and the clock 

speed of their routers (clock domain 3 in Figure 3.8 (b)) is selected to the same as that of 

VFI 1. Even though any packet generated in VFI 1 traverses VFI 2, its communication 

latency is not affected from the clock speed of VFI 2. In addition, the proposed VFI-

based interface can use fewer MCFIFOs and VLCs. In Figure 3.9, the number of a pair of 
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MCFIFO and VLC in the conventional VFI interface is 16 whereas that of the pair in our 

VFI interface is just 6. Thus, our VFI-aware NoC interface not only reduces 

communication latency but also further improves VFI energy efficiency. 

However, this interface may be effective when cores included in slow VFI are 

mapped to NoC tiles in a single row or column as shown in Figure 3.9. In order to 

generate VFI with such a convex region, we used a different candidate selection policy in 

our VFI-aware mapping algorithm after mapping each core. If any VFI operates at too 

slow clock speed, candidates for cores in the slow VFI are just selected to either north 

and south tiles or east and west tiles, but not all north, south, east and west tiles. 

Moreover, when our VFI-aware NoC design does not meet performance constraints due 

to long communication latency, we repeat the VFI-aware mapping algorithm with the 

changed candidate selection policy as shown in Algorithm 5 (line 10). Finally, since 

cores in the slow VFI are mapped only to tiles in the candidates, the VFI with a convex 

region can be built with tiles in a single row or column. The mapping restriction may 

make not only hop count slightly increase but also routers operate at high clock 

frequency. However, the energy efficiency degraded by such overheads cancels out the 

energy efficiency improved by fewer MCFIFO and VLC and even the penalty is less than 

the benefit of our method with a fast on-chip communication speed. 

In the proposed VFI-aware NoC design, both interfaces in Figure 3.8 are used 

together. If VFI 1 and VFI 2 inversely operate at 100MHz and 1GHz clock, respectively, 

the VFI interface in Figure 3.8(a) and the VFI interface insertion in Figure 3.9(a) are 

more desirable. Therefore, we need an efficient VFI interface insertion algorithm. As a 

starting point, we assume to have VFIs interconneccted by the interface with MCFIFO 

and VLC between routers and have routers located in the upper left corner of cores. Then, 

we start to replace the conventional VFI interface in Figure 3.8(a) to the proposed VFI 
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interface in Figure 3.8(b) from VFI operating with the lowest clock. The conventional 

interface in the upper or left tiles of any VFI can be replaced to the proposed interface if 

three conditions are satisfied as follows: 1) the upper or left tiles of the VFI must be 

contacted with different VFI operating at a faster clock speed, 2) the upper or left tiles of 

the VFI must be surrounded with both upper and lower or both left and right tiles in 

different VFI and 3) the interface replacement must repeat one time with a updated 

interface result. 

Figure 3.10 shows various examples of our interface replacement, where VFI 

colored to black operates at the slowest clock speed and VFI colored to white operates at 

the fastest clock speed. In Figure 3.10(a), tile A, B, C and D satisfy condition 1) and 2) 

during the first interface replacement (condition 3)). Therefore, the conventional 

interfaces in tile A, B, C and D are replaced to the proposed interfaces. In Figure 3.10(b), 

tile A, C and D satisfy condition 1) and 2) whereas tile B does not satisfy condition 2) 

during the first interface replacement (condition 3)). However, during the second 

interface replacement after updating the result of the first interface replacement 

(condition 3)), tile B also satisfy condition 2). Therefore, the conventional interfaces in 

tile A, B, C and D are replaced to the proposed interfaces. In Figure 3.10(c) consisting of 

three VFIs, the conventional interfaces of black VFI operating with the slowest clock are 

first replaced and then the conventional interfaces of gray VFI operating with the next 

slowest clock are replaced. During the first replacement, the conventional interfaces in 

tile C and tile B are replaced to the proposed interfaces. During the second interface 

replacement after updating the result of the first interface replacement (condition 3)), the 

conventional interface in tile A is also replaced to the proposed interface since tile A 

meets condition 1) and 2). With such interface insertion, our VFI-aware NoC design can  
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Figure 3.10: Examples of the proposed VFI interface insertion. 

make communication clock speed so selectable that it is more valuable for a platform- 

and socket-based NoC design with VFI. 

We implement the VFI-based NoC routers consisting of MCFIFO, VLC, single 

clock FIFO (SCFIFO), an output control (OC) and a crossbar switch as shown in Figure 

3.8. As described in Section 3.1.3.3, crossbar switches perform deterministic and minimal 

path routing to minimize communication energy consumption, based on our routing path 

allocation rules. The OC is responsible for determining the future departure time of each 

packet since a physical channel must be reserved and the OC must ensure that there will 

be sufficient buffer spaces in the next router to store the packets. Our flow control 



 108 

mechanism adopts winner-take-all bandwidth allocation that allocates all of the 

bandwidth to one packet until it is finished or blocked before serving other packets. In 

our VFI-based NoC implementation, MCFIFO and VLC are placed between a core and 

its router or between routers. MCFIFO and SCFIFO are managed by wormhole flow 

control or virtual channel flow control mechanisms and a backpressure is used to inform 

the upstream nodes when they must stop transmitting packets because all of the 

downstream packet buffers are full. On/off flow control is adopted to avoid the loss of 

packets as the backpressure. 

 

3.1.4 Experimental Results 

In this section, we show experimental results on MPEG-4 video object plane 

decoder (VOPD) [111] and E3S benchmark suites [25]. As the first application consists 

of 16 cores, the cores are one-to-one mapped to tiles on 4x4 NoC. The second benchmark 

has several applications: office-automation, consumer, networking, auto-industry and 

telecom application containing 5, 12, 13, 24 and 30 tasks respectively. The benchmark 

also provides the information of 66 processing elements such as the size/cost of the 

processing elements, the maximum operating frequency, idle power consumption and 

task power consumption when the tasks are performed in any processor. The tasks are 

scheduled on to 4, 9, 9, 16 and 25 processors among the 66 processing elements, 

respectively by [42] to generate a core graph. Then, they are mapped to tiles on 2x2, 3x3, 

3x3, 4x4 and 5x5 NoCs, respectively. We compare our VFI-aware NoC design with the 

previous state-of-the-art work, called VFI-P [84]. Since the previous work is assumed 

that VFI partitioning with VF assignment is performed in a hard NoC platform where 

communication and computation components are pre-designed, we implement NMAP 
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[79], one of the famous mapping and routing path allocation methods combined with 

VFI-P. We experiment our VFI-aware NoC methodology by three versions, i.e. our VFI-

aware mapping algorithm combined with a conventional routing path allocation and a 

conventional interface, our VFI-aware mapping algorithm combined with the proposed 

VFI-aware routing path allocation and a conventional interface and our VFI-aware 

mapping algorithm combined with the proposed routing path allocation and interface  to 

verify the performance of mapping, routing and interface apart, denoted as VFI-M, VFI-

R and VFI-I, respectively. 

Table 3.1 shows that VFI-M saves more MCFIFOs and VLCs on MPEG-4 VOPD 

benchmark due to our VFI-aware mapping algorithm generating a convex region with 

VFI partitioning results. In addition, VFI-R needs the fewest MCFIFOs and VLCs. On 

the contrary, the VFI-aware NoC approach commonly causes the slight increase of hop 

count due to the restrictions induced by VFI-aware mapping and routing path allocation. 

However, the maximum congestion is further relieved because a routing allocation order 

is considered for balancing network loads. The low congestion makes communication 

latency shorter and a communication clock speed lower. 

 
Content Algorithm 2-VF 3-VF 4-VF 

# of pair of 
MCFIFO and VLC 

VFI-P [84] 12 22 28 
VFI-M 10 14 20 
VFI-R 2 4 6 

Hop count 
VFI-P [84] 4309 4309 4309 

VFI-R 4353 4211 4211 
Congestion 

(MB/s) 
VFI-P [84] 923 923 923 

VFI-R 516 613 613 

Table 3.1: The comparison of VFI overhead, hop count, and communication 
congestion on VOPD benchmark. 



 110 

The thorough cross-comparison of E3S benchmarks is listed in Table 3.2. In this 

experiment, we assume that the changeable voltage range of cores from Eq. (3.1) is 

±0.2V. For example, let three cores operate at 1.2V, 1.7 V, and 1.9V for the minimum 

energy consumption. Then, if two of three voltages, i.e. 1.7V and 1.9V are assigned for 

VFI-based NoC, the core operating at 1.2V cannot be scaled into 1.7V. The reason is that 

the core running at 1.2V can be scaled up to 1.4V by the constraint. Instead, if 1.2V and 

1.9V are assigned for VFI-based NoC, the cores can be scaled into 1.2V, 1.9V and 1.9V, 

respectively. Since the changeable operating range of voltage and clock frequency is 

small in the most real cores, this constraint is reasonable. Under this condition, tile 

partitioning with VF assignment by VFI-P generates split VFIs operating at the same VF 

level since task/core mapping is already performed by a VFI-unaware manner. That is, it 

may be difficult to include all tiles using the same voltage and frequency in a convex 

region. As a result, a number of MCFIFOs and VLCs are required to interconnect the 

separated VFIs as shown in Table 3.2. On the contrary, our VFI-aware NoC design does 

not generate the split VFIs operating at the same VF level.  As a result, fewer MCFIFO 

and VLCs are required to interconnect the VFIs. Similarly to the MPEG-4 VOPD 

benchmark, our VFI-aware NoC design makes hop counts increase on the E3S 

benchmark, yet its energy degradation is canceled out by fewer MCFIFOs and VLCs. 

Finally, VFI-I requires the fewest MCFIFO and VLC and thus improves energy 

efficiency by VFI separation. In addition, VFI-I improves 27% communication latency 

on average. 

Figure 3.11 illustrates the visual comparison of VFI-P and our VFI-aware 

approach all performed on 4x4 NoC for the MPEG-4 VOPD application. Figure 3.11(a) 

is the result of core/task mapping by NMAP [79]. Since cores are not mapped by VFI-

aware manner, tiles mapped to cores using the same VF level are split over NoC as  
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shown in Figure 3.11(a). Since tiles that operate at 1V are split to three VFIs, this VFI-

based NoC design shows a VF map with six VFIs even if 4 VF levels are used. Based on 

the VF map, VFI partitioning with VF assignment proposed in VFI-P is performed and its 

result is shown in Figure 3.11(b). The VFI partitioning achieves the best energy 

consumption when two VFIs are built. However, some cores operate at higher voltage 

than the voltage which the cores require to satisfy performance constraints. Therefore, it 

is suboptimal solution since task/core mapping are already performed by VFI-unaware 

manner even if the result of VFI partitioning considerably depends on the mapping stage. 

On the other hand, our VFI-aware approach consisting of core partitioning with VF 

assignment, VFI-aware mapping and VFI-aware routing path allocation clusters tiles 

using the same VF level to single VFI such that it clearly provides better partitioned VFI 

as shown in Figure 3.11(c). As a result, all tiles operate at the optimal voltage and 

frequency they require to satisfy performance constraints and thus it is beneficial for low 

energy consumption as well as the global routing of power and clock. 

Table 3.3 shows that our VFI-aware NoC design consumes less energy than VFI-

P. The reason is that our approach needs fewer MCFIFOs and VLS since all tiles running 

at the same VF level can be clustered into single VFI.  As a result, our VFI-aware NoC 

optimization further saves energy consumption as the number of VFI increases. On the 

other hands, the previous state-of-the-art approach VFI-P can improve energy 

consumption only when the number of VFI built is fewer than 2 or 3. In Network 

application, our VFI-aware NoC approach is worse than VFI-P since the amount of 

communication enormously increases when the number of VFI built is 4. However, the 

best energy consumption (0.76) of our approaches at 3-VFI still outperforms that (0.79) 

of the previous approach VFI-P. Moreover, our VFI interface achieves lower energy  
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Benchmark Algorithm 
Normalized Total Energy Consumption 

1-VFI 2-VFI 3-VFI 4-VFI 

Consumer 
VFI-P [84] 1 0.56 0.53 0.54 

VFI_ R 1 0.55 0.51 0.50 
VFI_ I 1 0.55 0.50 0.50 

Network 
VFI-P [84] 1 0.8 0.79 0.79 

VFI_ R 1 0.78 0.76 0.89 
VFI_ I 1 0.77 0.76 0.89 

Auto- industry 
VFI-P [84] 1 0.69 0.65 0.67 

VFI_ R 1 0.63 0.59 0.58 
VFI_ I 1 0.61 0.58 0.57 

Telecom 
VFI-P [84] 1 0.58 0.57 0.58 

VFI_ R 1 0.53 0.51 0.49 
VFI_ I 1 0.50 0.50 0.48 

Table 3.3: The comparison of energy consumption according to the number of VFI on 
E3S benchmarks . 

consumption with shorter communication latency. Finally, the runtime of our VFI-aware 

NoC optimization ranges from a few seconds to a few minutes. 

 

3.1.5 Summary 

In this section, we proposed a systematic energy optimization framework, 

including core partitioning with VF assignment, VFI-aware mapping, VFI-aware routing 

and VFI-aware interface insertion for VFI-based NoC designs. The proposed VFI-aware 

NoC design makes tiles mapped cores using the same voltage and frequency level 

clustered to single VFI. In addition, our VFI interface further improves energy 

consumption with fast on-chip communication. Consequently, our VFI-aware NoC 

optimization framework reduces VFI design cost that degrades energy efficiency by VFI 

overheads. Compared to the recent state-of-the-art NoC design technique with VFI [84], 
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our VFI-aware optimization framework demonstrates an energy efficiency improvement 

of 10% and the overhead reduction of 82% under a variety of system constraints. 

 

3.2 ARCHITECTURE-AWARE ANALYTIC APPLICATION MAPPING 

As thousands of cores will be integrated to a single chip for enhanced 

performance and functionality, on-chip communication techniques and application 

mapping algorithms become key factors in the success of the multi- or many-core chips. 

So far, most of the NoCs have favored a regular mesh network consisting of regular 

rectangle tiles on which homogeneous processors are placed. The regular mesh network 

makes application mapping easy, increases routing efficiency, provides desirable 

electrical and physical properties and reduces the complexity of resource management. 

Hence, most previous works have optimized their application mapping on the regular 

mesh architecture as follows.  

Murali et al. [79] present NMAP that is a fast algorithm, where tasks are mapped 

onto a regular mesh network under bandwidth constrains, aiming at minimizing average 

communication latency. In [39], a branch and bound algorithm is adopted for task 

mapping in a regular mesh-based NoC architecture, which minimizes the total amount of 

power consumed in communications. Shin et al. [103] explores the design space of NoC 

based systems, including task assignment, tile mapping, routing path allocation, task 

scheduling and link speed assignment using three nested genetic algorithms. The work 

presented in [15] proposes an efficient technique for runtime application mapping onto a 

homogeneous NoC platform with multiple voltage levels. Chen et al. in [13] proposes a 

complier-based application mapping algorithm that consists of task scheduling, processor 

mapping, data mapping and packet routing to reduce energy consumption. However, 
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since these solutions have been optimized only for a regular mesh network, they cannot 

be applied to various networks or their mapping performance gets severely deteriorated in 

irregular/custom networks. 

However, industrial SoC platforms, e.g. Nexperia [28], Nomadik [82] and OMAP 

[117], consist of various PEs such as a general processor, a digital signal processor 

(DSP), a specific memory and a peripheral. Since such physically different sized 

processing elements cannot be floorplanned with a regular mesh topology, the resulting 

NoCs get an irregular mesh network or even a custom network [11]. The irregular mesh 

networks are also found in a regular mesh network when some links become faulty or 

degraded by process and temperature variation. Application mapping and routing path 

allocation should deal with the abnormal links and compensate for the loss of yield and 

performance [72]. In addition, since VFI based NoCs have links with different bandwidth 

[49][53][84], it is no longer a regular mesh network. However, the previous application 

mapping algorithms are inefficient in performing application mapping in an 

irregular/custom network since they are not adaptive to various network architectures. As 

a result, specific mapping algorithms may be required for different network architectures. 

Recently, such heterogeneous cores have been considered for low energy 

consumption. Smit et al. solved the problem of run-time task assignment on 

heterogeneous processors with task graphs restricted to the small number of vertices or 

the large number of vertices within degree no more than two [105]. Carvalho et al. 

investigated the quality of several mapping heuristics promising for run-time use in NoC-

based multiprocessor SoCs (MPSoCs) with dynamic workloads, targeting NoC 

congestion minimization [9]. Chang et al. proposed ETAHM to allocate tasks on a target 

multiprocessor system [10]. It mixed task scheduling, mapping and dynamic voltage 

scaling utilization in one phase and couples an ant colony optimization algorithm. 
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ADAM presented in [29] was run-time application mapping in a distributed manner, 

targeting for adaptive NoC-based heterogeneous MPSoCs. However, the previous 

application mapping solutions have not considered the irregularity of NoC tiles and links 

which are caused by different-sized heterogeneous PEs. Since the irregularities cause 

long detoured packets on a network, a lot of communication energy may be consumed or 

a quality-of-service requirement may not be guaranteed. Recently, Tornero et al. 

proposed a communication-aware topological mapping technique for irregular NoCs, 

which matched the communication requirements of the application running on the cores 

with the existing network resources [109]. However, its mapping quality was not still 

satisfactory since it did not provide the efficient solution searching algorithm. Therefore, 

an application mapping algorithm that can be applied to various networks should be 

required. This problem was also addressed as an open problem (P2) in [71].  

Such different-sized PEs is only considered in the latest application-specific NoC 

methodologies. Chatha et al. in [11] present the design methodology and synthesis of 

application-specific NoC architecture. It employs a three-phase synthesis approach 

consisting of core-to-router mapping, custom topology decision, and route generation. In 

[100], an adaptive deadlock free routing algorithm is proposed to handle NoC layouts 

with embedded different-sized cores. Authors in [6] propose hardware-efficient routing in 

irregular mesh NoCs and routing table size minimization based on static shortest path 

routing. Holsmark et al. in [38] list the issues that a designer would encounter while 

designing a heterogeneous mesh topology for NoC using multi-port or multi-access point 

cores and present two deadlock-free routing algorithms for irregular mesh networks. 

In this section, we propose novel and global architecture-aware analytic mapping 

(A3MAP) algorithms. The proposed approach can be employed in most networks 
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including regular/irregular mesh and custom networks. The main novelties and 

contributions include: 

 

• We propose a simple yet efficient metric space to easily capture the architecture 

of NoC and the communication of cores. Then, an application mapping problem is 

exactly formulated to MIQP based on a metric embedding technique. 

• We propose two effective heuristics solving the MIQP, based on a successive 

relaxation algorithm providing short runtime and a genetic algorithm providing 

high mapping quality. They fit well our formulation and provide better trade-off 

between mapping quality and runtime for a small-scale network. 

• We propose a partition-based application mapping approach for large-scale 

networks and show that it provides short runtime with little loss of mapping 

quality. 

• We show that the proposed A3MAP algorithms achieve excellent application 

mapping quality not only in regular networks but also in irregular/custom 

networks. 

 

3.2.1 Problem Formulation 

In this section, we formulate an application mapping problem to MIQP using 

metric embedding. As inputs, we take a core graph and a network. A graph G(V,E) with n 

vertices is a directed graph, where each vertex vi∈V represents a core or a tile and where 

each directed edge ei,j∈E represents communication between vi to vj. vol(ei,j) represents 

communication volume between vi to vj in a core graph and bw(ei,j) represents a 

bandwidth requirement between vi to vj in a network. We construct an n×n 
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interconnection matrix, CN corresponding to a network, where cNi,j∈CN is equal to bw(ei,j) 

as shown in Figure 3.12(a). Each row in CN represents interconnection relation with 

respect to a single tile on NoC. Thus, CN contains interconnection relations for an entire 

network, representing the metric space of a network. Similarly, we construct an n×n 

interconnection matrix CC, corresponding to a core graph, where cCi,j∈CC is equal to 

vol(ei,j) as shown in Figure 3.12 (b). 

For example, Figure 3.12 (c), (d) and (e) show three network graphs and their 

metric spaces using the proposed interconnection matrix. In Figure 3.12 (c) that is a 

regular mesh, all routers are interconnected by a bidirectional network link with the same 

bandwidth. Its interconnection matrix is symmetrically composed as shown under the 

network graph. In case of an irregular mesh network in Figure 3.12(d), interconnections 

between tile A and tile B or between tile C and tile F are unidirectional and tile D is not 

interconnected to tile E. Since the bandwidth of links is also different, its interconnection 

matrix is asymmetrically composed. The irregular mesh network can be observed in VFI 

based NoC where each PE operates with its own voltage and frequency [49][53][84] and 

in NoC with faulty and degraded links by process and temperature variation [72]. 

In case of a custom network, there is slightly difference in the composition of its 

interconnection matrix. In Figure 3.12(e), wirelength between tile E and tile F is different 

from other wirelengths due to tile E with a larger area. Since a packet have to cross each 

link within one cycle, a link between tile E and F may have more repeaters to 

accommodate a fast transmission time resulting in significantly higher energy 

consumption. The composition of an interconnection matrix for the custom network is 

similar to regular/irregular mesh networks except weight α is added in the matrix in order 

to consider efficient communication energy consumption. The hop count based on the 

assumption that all links consume the same communication energy is no longer suitable  
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since links with different wirelength consume different communication energy. Let the 

energy consumption of each link, Elink computed as: 

link driver repeatersE E E= +                         (3.9) 

where Edriver and Erepeaters are the energy consumed by the output driver of routers and 

repeaters on a link respectively. If Elink1 and Elink2 is the energy consumption of sending 

one bit in a solid line and a dotted line respectively, α is the ratio of Elink1 to Elink2 

(=Elink1/Elink2) where Elink1< Elink2. The weigh α (0<α<1) reduces the available bandwidth 

of a long dotted link in a network such that our formulation makes the long dotted link 

less used. In Figure 3.12(e), let’s suppose that dotted lines are three times longer than 

solid lines and a packet generated in tile A goes to tile D. The packet can choose either A-

B-C-D or A-E-F-D as a routing path. Since two routing paths include the same hop 

counts, it takes the packet the same clock cycle to reach tile D while the total wirelengh 

of path A-E-F-D is longer than that of path A-B-C-D. Thus, the path A-E-F-D may 

consume more communication energy than the path A-B-C-D since more repeaters may 

be inserted on the long dotted links or the router attached to tile E and F may be required 

to equip a stronger output driver. Therefore, it is good to assign a core with little 

communication to a tile with the long link or a core with a lot of communication to a tile 

with the short link for low dynamic energy consumption. If the energy consumption is 

linearly proportional to the length of wires in Figure 3.12(e) due to more repeaters and a 

stronger output driver, α is 1/3. The weight α lets a core with a lot of communication 

mapped into a tile with short wires such that communication energy consumption can be 

further minimized. Similarly, our interconnection matrix easily accommodates other 

general cases. 
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Graph embedding [74] maps the vertices of graph G(V,E) into a chosen metric 

space by minimizing distortion. Thus, application mapping has a natural correspondence 

with graph embedding into a given two-dimensional metric space representing NoC. 

Thus, we seek to embed a core graph into the metric space of a network based on the 

interconnection matrices. The goal is that a core is mapped to each tile, satisfying the 

performance constraints in a core-mapped network while the number of communication 

generated between routers is minimal. If a network is exactly same as a core graph, graph 

embedding does not cause any distortion of the edges in the core graph. As a result, it 

always produces the best possible mapping quality on the network. However, since most 

core graphs are generally different from a network, some distortion is not evitable in a 

network. Then, the mapping quality is measured by the total distortion of embedding. By 

minimizing the extent by which edges in a core graph are stretched or distorted with 

intermediate tiles when embedded into a network, we seek to reduce the total amount of 

communications and obtain a better global application mapping solution in terms of 

energy consumption under performance constraints. Based on this concept, our concrete 

application mapping algorithm is formulated as follows. 

With two interconnection matrices, CN for a network and CC for a core graph, we 

exactly formulate an application mapping problem to mixed integer quadratic 

programming (MIQP). It is similar to a field programmable gate array (FPGA) placement 

problem proposed in [32]. However, a crucial difference in our work is the use of metric 

space that accurately captures the interconnections of a network and a core graph. The 

application mapping problem is equivalent to determining the assignment of a core to 

each tile with low energy consumption under performance constraints. This core 

assignment action can be mathematically presented by an n×n permutation matrix P. 

Column indices and row indices in P represent core identifiers and tile identifiers, 
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respectively. For example, if P(i,j)=1, then core j is mapped to tile i. Thus, only one 

element in each row and each column of P can be 1; all others must be 0. The action of P 

on a core graph is represented by PTCCP. Finally, P minimizing the difference between 

the permuted interconnection matrix of a core graph PTCCP and the interconnection 

matrix of a network CN for generating little communication between routers and 

minimizing the distortion of CC for a short routing path can be found. For P that is 

orthogonal, we formulate the application mapping problem mathematically by our 

objective as: 

2 2min T
obj C N C N FF

f P C P C C P PC= − −=                 (3.10) 

where 2
,i jF i j

X x= ∑ ∑ , xi,j ∈X, i.e., the Frobenius norm of the matrix X and xi,j ≤ 0 

to satisfy bandwidth constraints, subject to integrity and linearity constrains as follows: 

1

( , ) 1, 1, 2,...,
n

i

P i j j n
=

= ∀ =∑                        (3.11) 

1

1, 1, 2,...,( , )
n

j

i nP i j
=

= ∀ =∑                        (3.12) 

( ) { }, 0,1P i j ∈                           (3.13) 

The constraints indicate that just one element in each row and each column is 1 and other 

elements are 0 in the permutation matrix P. 

While our formulation has a convex quadratic object function, the binary 

constraints on the elements of P restrict the solution space to a non-convex set. Thus, 

convex optimization techniques like gradient descent cannot be directly applied to solve 

this problem. Actually, this type of formulation is well known as MIQP that is NP-hard 

[97]. Algorithms we take in MIQP are successive relaxation to quickly find an 

application mapping solution and a genetic algorithm to achieve a high mapping quality. 
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In the next section, we describe how they are applied in the proposed A3MAP 

formulation minutely. 

 

3.2.2 A3MAP Algorithms 

We present an effective heuristic based on successive relaxation of MIQP to a 

sequence of quadratic programming (QP), called A3MAP-SR, to quickly find the 

permutation matrix P that minimizes our objective fobj in Eq. (3.10). In addition, we apply 

a genetic algorithm to find a better mapping solution, called A3MAP-GA even though it 

takes a longer runtime than A3MAP-SR. A genetic algorithm is an efficient random 

searching algorithm based on a cycle crossover and a mutation operation. 

 

3.2.2.1 A3MAP-SR 

In this section, we solve our A3MAP formulated to MIQP based on a successive 

relaxation algorithm [33]. The optimal MIQP formulation can become QP if we relax the 

discrete constraint of Eq. (3.13) to a continuous constraint as follows. 

( )0 , 1P i j≤ ≤                            (3.14) 

Then, the key idea behind this algorithm is to use this QP as a subroutine. QP is solved 

much faster and scaled much better. Then, continuous values obtained by a QP solver are 

guided to 0 or 1 depending upon a predefined threshold. If any continuous value is less 

than the threshold, it is guided to 0. Otherwise, it is guided to 1. The proposed concrete 

successive relaxation algorithm employed in our A3MAP formulation is shown in 

Algorithm 7. 
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Algorithm 7 A3MAP-SR 
Input: MIQP formulation 

1: Relax P(i,j) ∈{0,1} to 0≤ P(i,j) ≤1; 
2: Set all P(i,j) to a variable; 
3: ith = n(VN); 
4: repeat 
5: Solve relaxed MIQP only for variables P(i,j); 
6: repeat  
7: Find max{P} and store its location to (imax,jmax) for ∀ P(i,j) that is a variable; 
8: if max{P} ≥ 1/ ith do 
9:       P(imax,jmax) = 1 and a non-variable; 

10: P(i,jmax) = 0 and a non-variable, ∀ i=1,2,.., n(VN); 
11: P(imax,j) = 0 and a non-variable, ∀ j=1,2,.., n(VN); 
12:       ith decreases by 1; 
13: end if 
14: until (max{P} < 1/ ith) 
15: until (all P(i,j) are a non-variable) 
Output: Permutation matrix P 

After relaxing the constraint of Eq. (3.13) to Eq. (3.14) in line 1, we set all P(i,j) 

to a variable since any P(i,j) is not guided to a permanent value, 0 or 1. Initial ith is set to 

the number of tiles in a network and then as an initial threshold, we use 1/ith to guide 

continuous P(i,j) solved by a QP solver to 1, where the threshold indicates the expected 

average that variable P(i,j) can get. On executing the successive relaxation, ith decreases 

by 1 whenever any P(i,j) is set to 1, which means the threshold gets increased. The rest of 

algorithm 1 attempts to constraint continuous values solved by a QP solver to binary 

values inversely. We look for the maximum P(i,j) and compare it to the threshold. If it is 

greater than the threshold, it is set to 1 and a non-variable. In addition, all elements on the 

same row or column as the maximum P(i,j) are also set to 0 and a non-variable since the 

sum of elements on a single row or a single column in the permutation matrix P should 

be 1 from the constraints in Eq. (3.11) and (3.12). This procedure repeats if the next 

maximum P(i,j) is also greater than the updated threshold. Otherwise, we again solve the 

relaxed MIQP for the rest of variables P(i,j) by a QP solver and continue to guide 
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continuous values to binary values. If all P(i,j) are guided to 0 or 1, we get the near-

optimum permutation matrix P. 

For example, we assume that an application with 5 cores and NoC with 5 tiles are 

given. In order to allocate the cores to the tiles, we should find a 5×5 permutation matrix 

where only 5 elements will be 1 and 20 elements will be 0 from our A3MAP formulation. 

We relax the discrete constraint in Eq. (3.13), set all P(i,j) to a variable and set an initial 

threshold to 1/5. Let the relaxed MIQP solved by a QP solver as shown in Figure 3.13(a). 

Then, our A3MAP-SR algorithm looks for the maximum P(i,j) among the variables. In 

Figure 3.13(a), P(3,2) is 0.5 as the maximum. Since it is greater than the initial threshold 

1/5, P(3,2) is guided to 1 and then P(3,k) and P(k,2) where ∀ k= 1, 2, …, 5 are set to 0 as 

shown in Figure 3.13(b). The guided P(i,j) to 0 or 1 is set to a non-variable and the 

threshold is updated to 1/4. Since the next maximum P(1,3) and P(5,5) are greater than 

the threshold 1/4 and 1/3 respectively, P(1,3) and P(5,5) is guided to 1 and P(1,k), P(k,3),  
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Figure 3.13: Guiding continuous P(i,j) to binary P(i,j) after solving QP. 
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P(5,k), and P(k,5) where ∀ k= 1, 2, …, 5 are set to 0 as shown in Figure 3.13(c) and (d). 

Then, the guided P(i,j) to 0 or 1 is set to a non-variable and the threshold is updated to 

1/2. Next, since the next maximum P(2,4) is less than the threshold 1/2 in Figure 3.13(d), 

we again solve the relaxed MIQP by a QP solver for the rest of variable P(i,j) as shown in 

Figure 3.13(e). Then, the guiding procedure repeats until all P(i,j) are guided to 0 or 1 as 

shown in Figure 3.13(f). 

 

3.2.2.2 A3MAP-GA 

The successive relaxation algorithm solves MIQP with the reasonable mapping 

quality and runtime. For application mapping with a high mapping quality, runtime may 

be less important than the reduction of hop count and communication energy 

consumption. To reflect this demand, we develop another heuristic using a genetic 

algorithm. A genetic algorithm reproduces the principle of natural evolution to solve 

search and optimization problems. It is a promising technique for a system-level design 

and is especially suitable for multiple-objective optimization problems. Starting with an 

initial population, a genetic algorithm evolves a population using crossover and mutation 

operations. A genetic algorithm is previously used in [103] to explore the design space 

efficiently for task assignment, mapping and routing path allocation. However, since the 

performance of a genetic algorithm depends on encoding, crossover and mutation 

schemes, we need to select different schemes that fit well in our A3MAP formulation. 

Algorithm 8 is the pseudo-code of our genetic algorithm for MIQP. First, we 

generate two arbitrary permutation matrices as parent individuals. A crossover scheme is 

widely acknowledged as critical to the success of a genetic algorithm. A crossover 

scheme should be capable of producing a new feasible solution (i.e., new child 
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individual) by combining the good characteristics of parent individuals while the child 

individuals should be considerably different from their parent individuals. We use a cycle 

crossover [85] which prevents over two cores being allocated into the same tile. Figure 

3.14 shows how to generate two child individuals based on the cycle crossover. In the 

first step, child 1 inherits a column from parent 1 and child 2 inherits a column from 

parent 2. We start to choose any inherited column in parent 1. In Figure 3.14(a), the first 

column is arbitrarily chosen in parent 1 and then the same column is chosen in parent 2. 

Next, we look for a column in parent 1 including the same elements that the chosen 

column in parent 2 gets. In Figure 3.14(a), the fifth column of parent 1 contains the same 

elements that the first column of parent 2 gets. Then, the fifth column in parent 2 is 

selected. Similarly, this procedure repeats until the chosen column is again chosen. In the 

second step, child 1 inherits a column from parent 2 and child 2 inherits a column from 

parent 1 inversely. The procedure is similar to the first step except the choice of a column 

starts from any unselected column of parent 2. If all columns of children are not filled 

with the column of parents after the second step, we repeat the first step and the second 

step with the unselected columns of parents by turns. In our example, all columns of 

children are filled after the second step. 

 
Algorithm 8 A3MAP-GA 
Input: MIQP formulation 
1: Generate arbitrary parent 1; 
2: repeat 
3: Generate arbitrary parent 2; 
4: (child 1, child 2) = cycle crossover (parent 1, parent 2); 
5: Mutation of child 1 and 2 by pair-wise swapping; 
6: 

 
parent 1 = one of two children with minimum fobj computed by Eq. (3.10) for the 
next evolution; 

7: until (no improvement during i-iterations) 
Output: Permutation matrix P 



 128 

0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

gene
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

0 0 0
0 0 1
0 1 0
0 0 0
1 0 0
0 0 0

0 0 0
1 0 0
0 0 1
0 0 0
0 1 0
0 0 0

0
0
0
1
0
0

1
0
0
0
0
0

0
0
0
0
0
1

0
0
0
1
0
0

1
0
0
0
0
0

0
0
0
0
0
1

0 0 0
0 0 1
0 1 0
0 0 0
1 0 0
0 0 0

0 0 0
1 0 0
0 0 1
0 0 0
0 1 0
0 0 0

(a) 1st step (b) 2nd step

individualparent 1 child  1

parent 2 child 2

parent 1 child 1

parent 2 child 2

 

Figure 3.14: Cycle crossover. 

Then, a mutation operation is performed for each child. In this operation, two 

columns randomly selected are swapped to generate a new individual. Then, the 

swapping is valid only when it reduces the number of traffic. The pair-wise swapping 

operation for each child continues until the pair of swapped columns cannot minimize our 

object function, i.e. Eq. (3.10) any more. After the mutation operation, we choose one of 

two children with the minimum distortion as the parent 1 for the next evolution. Those 

operations repeat until there is no improvement for several (i) iterations. If there is not 

any improvement for i-iterations, a permutation matrix providing the near-optimal 

performance to NoC is obtained. 

Our genetic algorithm makes the superior column of parents passed down to their 

children and the best child again becomes any parent (parent 1) for the next evolution. In 

addition, since the new elements of columns (parent 2) from the outside are supplied, the 

possibility of local minima is relatively lower. This approach can efficiently cover wider 

solution spaces even if runtime is longer than A3MAP-SR. 
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3.2.3 A3MAP for Large-Scale NoC 

Whereas A3MAP enables global optimization, the runtime of A3MAP algorithms 

is longer and longer as the number of cores or tiles increases. Even NMAP [79] that is 

one of the fastest mapping algorithms takes a long runtime when the number of cores or 

tiles is greater than 70. Recently, since NoCs include more tiles for high performance and 

applications are more complex, an application mapping approach with better tradeoff 

between runtime and mapping quality is required. Therefore, we propose a partition-

based application mapping approach that can be easily extended to any large-scale NoC. 

In addition, we show that A3MAP algorithms are suitable for the partition-based 

approach. 

Figure 3.15 shows our partition-based application mapping approach in large-

scale NoCs, where an application with 9 cores and NoC with 9 tiles are given for a simple 

explanation. In Figure 3.15, core 1, 5 and 6 have two times higher computation 

complexity than others and the weight of all edges is just 1. We first perform k-way min-

cut partitioning for the cores. The number of groups (k) is determined by a user. If 

runtime is more important than mapping quality, a few groups are desirable. Otherwise, 

few groups are desirable to high mapping quality. The groups are not required to include 

the same number of cores. Then, the groups are sorted in a decreasing order by the 

amount of communication inside each group and then mapped in the order. Since the 

communication volume of group 1, 2, and 3 are 4, 3, and 2, respectively, group 1 are first 

mapped in Figure 3.15. 

Large NoC (R) including N tiles also requires being partitioned to several small 

networks (R') with a convex region as shown in Figure 3.15. A near convex region 

selection problem can be formulated as follows [15]: 
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Figure 3.15: Partition-based A3MAP flow for large networks and complex applications. 

[ ]1 1min ( ') ( ')L R L R R+ −                     (3.15) 

where L1(R) is the total Manhattan distance between all tiles inside region R. The 

objective is to find a subregion R' with N' tiles of which the total computational capacity 

is greater than or equal to the total computational complexity of cores. The time 

complexity of the near region selection algorithm is known as O(NlogN) in [15]. 

Then, cores in each group are mapped to tiles inside the selected convex region. 

Group 1 which has the maximum communication is first mapped to a possible convex 

region as shown in Figure 3.15. Since the size of an interconnection matrix of group 1 is 

3×3, the runtime of A3MAP algorithms is several hundred times faster than A3MAP 

algorithms with a 9×9 interconnection matrix. Next, based on the mapping result of group 

1, group 2 is mapped to a possible convex region. Even though the size of its 
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interconnection matrix is 6×6 in the mapping of group 2, its runtime is similar to that of 

group 1. This is because some variables P(i,j) are already determined by the mapping of 

group 1. Last, group 3 is mapped to the last convex region, based on two previous 

mapping results. Whereas the size of its interconnection matrix is 9×9 in the mapping of 

group 3, its runtime is also similar to that of the previous core groups. This is because the 

number of variables P(i,j) that A3MAP algorithms should find in the last mapping are the 

same as the number of variables P(i,j) in the first and second mapping. 

Even though most of the application mapping algorithms can be applied to the 

partition-based approach, our A3MAP algorithms such as A3MAP-SR and A3MAP-GA 

are more suitable. This is because the runtime of A3MAP solved by a full search 

algorithm, called A3MAP-FS is still slow and the mapping quality of NMAP is not still 

satisfactory in the partition-based approach. The partition-based approach gets some 

inevitable mapping quality loss since cores in each group can be allocated to only tiles 

inside the selected convex region. In order to minimize the mapping quality degradation 

in the partition-based approach, each group should include cores or tiles as many as 

possible, i.e. the number of a group should be the minimum. However, since it takes 

A3MAP-FS at least 2 seconds to map 10 cores in our experiment, the number of a group 

should increase in order to reduce the runtime. As a result, the mapping quality of 

A3MAP-FS deteriorates severely in the partition-based approach. In case of applying a 

fast application mapping algorithm like NMAP in the partition-based approach, its 

mapping quality is not satisfactory even though the number of a group is the minimum. 

For example, NMAP itself shows on average 7%, 8% and 11% lower application 

mapping quality than A3MAP-FS when 10, 11 and 12 cores are mapped, respectively. As 

a result, even if NMAP performs on a large convex region with a number of cores, its 

mapping quality is still low in the partition-based approach. Therefore, A3MAP 
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algorithms that provide higher mapping quality than NMAP and shorter runtime than 

A3MAP-FS are suitable for the partition-based approach. 

 

3.2.4 Experimental Results 

We implement the A3MAP-SR algorithm by CPLEX11.2 [87] and the A3MAP-

GA algorithm by C++. All experiments were performed on a Linux machine with Intel 

2.4GHz CoreDuo and 8GB RAM. We repeat each application mapping for ten times and 

compute their average to obtain reliable statistics. 

 

3.2.4.1 Regular Mesh Network 

We carry out experiments by applying A3MAP algorithms on an MPEG-4 video 

object plane decoder (VOPD) [111], E3S benchmark suites [25] and synthetic 

benchmarks. The first application including 16 cores is mapped onto a 4×4 regular mesh 

network. The second benchmark consists of three applications, i.e. consumer, auto-

industry (AI) and telecomm containing 12, 24 and 30 tasks respectively, which are 

scheduled to 9, 16 and 25 by [42] and then mapped to a 3×3, 4×4 and 5×5 regular mesh 

network, respectively. In addition, we use task graph for free (TGFF) [26] to generate 

several sets of synthetic applications. The number of tasks and the volume of 

communication are randomly selected according to specific distributions. 

Since the number of cores is generally different from the number of tiles, the pre-

processing is required. If the number of cores is less than the number of tiles, additional 

cores without any communication and computation are added in the core graph. If the 

number of cores is greater than the number of tiles, we perform n(VN)-way min-cut or 

balanced core partitioning, where n(VN) is the number of tiles and the computational 
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complexity of the grouped cores must be less than the computational capacity of PE. The 

min-cut partitioning reduces communication energy consumption between tiles that are 

assigned cores whereas the balanced partitioning for the computational complexity of 

cores improves the system performance by encouraging parallel computing. Then, we 

perform the proposed A3MAP-SR and A3MAP-GA algorithms. Finally, we allocate the 

routing path of packets by a Dijkstra’s shortest path algorithm to compute total hop count 

between routers on a given network. 

Table 3.4 shows how exact and fast solution A3MAP algorithms can find in 

synthetic benchmarks with 9-13 cores, compared to the full searching approach, A3MAP-

FS that provides the best solution in terms of mapping quality. A3MAP-SR and A3MAP-

GA provide near-best solutions since their mapping qualities are just 3.8% and 2.2% 

lower on average than A3MAP-FS respectively, when 13 cores are mapped in a regular 

mesh network. However, their runtimes are about 564 and 153 thousand times shorter 

than A3MAP-FS respectively. On the contrary, the mapping quality of NMAP [79] which 

is one of the most famous core mapping algorithms is on average 15.3% lower than 

A3MAP-FS even if its runtime is the shortest. 

 
# of 
core 

or tile 

Hop count increase (%) 
normalized by A3MAP-FS 

Runtime improvement (times) 
normalized by A3MAP-FS 

A3MAP-SR A3MAP-GA NMAP A3MAP-SR A3MAP-GA NMAP 
9 1.3 1.1 2.0 155 72 202 
10 1.7 1.2 7.1 432 373 470 
11 2.0 1.5 8.1 3819 1555 5287 
12 2.6 1.8 10.9 47K 14K 67K 
13 3.8 2.2 15.3 564K 153K 875K 

Table 3.4: The hop count increase and runtime improvement of NMAP, A3MAP-GA, 
and A3MAP-SR normalized by A3MAP-FS. 
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Table 3.5 shows the application mapping results performed with industrial 

benchmarks. A3MAP-SR greatly reduces on average total hop count by 7.4% in a regular 

mesh network, compared to NMAP. A3MAP-GA achieves on average 3.8% and 11.8% 

less hop count than A3MAP-SR and NMAP, respectively. On the contrary, the runtimes 

of A3MAP-SR and A3MAP-GA are longer than NMAP as shown in Figure 3.16. 

 
Application NMAP A3MAP-SR Imp. (%) A3MAP-GA Imp. (%) 
Consumer 50 50 0 49 2 

VOPD 4309 4265 1.0 4141 3.9 
AI 187 151 19.3 147 21.4 

Telecomm 127 115 9.4 102 19.7 
Average 4673 4581 7.425 4439 11.75 

Table 3.5: The comparison of hop count for industrial benchmarks in regular mesh 
networks. 

 

 

Figure 3.16: The comparison of runtime for industrial benchmarks in 3×3-5×5 regular 
mesh networks. 

Figure 3.17 shows the hop count improvement of A3MAP algorithms compared 

to NMAP on 3×3-10×10 regular mesh networks. We generate ten synthetic task graphs  



 135 

 

Figure 3.17: The hop count improvement of A3MAP algorithms compared to NMAP for 
synthetic benchmarks in 3×3-10×10 regular mesh networks. 

per network by TGFF and compute their average improvement. As shown in Figure 3.17, 

A3MAP-SR and A3MAP-GA reduce on average total hop count by 5.7% and 8.8%, 

respectively, compared to NMAP. In addition, A3MAP algorithms provide much higher 

mapping quality than NMAP as the size of networks increases. 

 

3.2.4.2 Irregular Mesh Network 

In this section, our A3MAP algorithms prove more merits on irregular mesh 

networks. We perform NMAP on an irregular mesh network even if NMAP is optimized 

for a regular mesh network. We also implement [109] which considers irregular networks 

for application mapping, called CMAP. Figure 3.18 shows six irregular mesh networks 

on which we experiment the application mapping algorithms. Figure 3.18(a) has only 

bidirectional links, Figure 3.18(b) has both bidirectional and unidirectional links and 

Figure 3.18(c) has only unidirectional links. Both directions of links have the same 

bandwidth in Figure 3.18(d) whereas each direction of links has different bandwidth in  
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Figure 3.18: Irregular mesh networks used in our experiments. 

Figure 3.18(e). In the figure, solid lines have two times higher bandwidth than dotted 

lines. In Figure 3.18(f), links have all irregularities mentioned in Figure 3.18(a)-(e). 

Table 3.6 shows the mapping results of an MPEG-4 VOPD application on the 

irregular mesh networks. A3MAP algorithms achieve better application mapping 

improvement in an irregular mesh network than that in a regular mesh network. For 

example, whereas A3MAP-SR and A3MAP-GA reduce on average total hop count only 

by 1.0% and 3.9% in a regular mesh network respectively, they reduce on average total 

hop count by 16.1% and 29.4% in irregular mesh networks respectively, compared to 

NMAP. In addition, A3MAP algorithms achieve much higher mapping quality than 

NMAP in Figure 3.18(f) which is the most complex network. That is because A3MAP 

formulation avoids mapping cores with a lot of communication volume to tiles with little 

bandwidth and considers the direction of communication and various network topologies 

adaptively. Even if CMAP is optimized for irregular networks, its mapping quality is 



 137 

Application NMAP CMAP A3MAP-SR A3MAP-GA 
Figure 3.18(a) 4869 4668 4839 4237 
Figure 3.18(b) 5699 6552 4619 4457 
Figure 3.18(c) 7810 8992 7317 4619 
Figure 3.18(d) 4923 5507 4301 4295 
Figure 3.18(e) 5706 4183 4199 4183 
Figure 3.18(f) 8103 7920 4844 4410 

Average 6185 6304 5187 4367 
Ratio 1 1.019 0.839 0.706 

Table 3.6: The comparison of hop count for VOPD benchmark in various irregular 
mesh networks. 

lower than that of NMAP. Since CMAP just considers the irregular wirelength of links, it 

cannot improve mapping quality on irregular mesh networks which have the different 

direction and irregular bandwidth of links. Furthermore, the runtime of CMAP is slightly 

slower than NMAP. As a result, A3MAP algorithms provide energy-efficient application 

mapping to NoC including an irregular mesh network. 

 

3.2.4.3 Custom Network 

In this section, we perform A3MAP algorithms on custom networks with an 

MPEG-4 VOPD benchmark and then it is compared to NMAP and CMAP. Figure 3.19 

shows custom networks where A3MAP algorithms are performed. Figure 3.19(a) 

contains three PEs that have four times larger area than others. Due to the PEs, a custom 

network including irregular interconnections and different wirelengths is synthesized. 

Similarly, 16 PEs that have one of three different areas are floorplanned as shown in 

Figure 3.19(b). Figure 3.19(c) has both unidirectional and bidirectional links and Figure 

3.19(d) has links with different bandwidth. In Figure 3.19, links have one of two different 

wirelengths and assume that a long link consumes two times higher communication  
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Figure 3.19: Custom NoC networks used in our experiments. 

energy than a short link since the long link requires a strong output driver or a number of 

repeaters. Therefore, α is set to 1/2 when the interconnection matrix of a network is 

composed. 

Table 3.7 shows the application mapping results on the custom networks. 

A3MAP-SR and A3MAP-GA reduce on average total hop count by 8.1% and 14%, 

respectively, compared to NMAP. We also measure total wirelength passed by all 

packets, which is related to communication energy consumption than the total hop count 

in custom networks. In Table 3.7, total wirelength passed by all packets is reduced on 

average by 19.1% and 31.2%, respectively, compared to NMAP. CMAP also improves 

mapping quality on custom networks whereas it has no benefit on irregular mesh 

networks. However, its hop count is 6.5% and 12.4% greater than those of A3MAP-SR  
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Total hop count Total wirelength passed by all packets 

Application NMAP CMAP A3MAP-
SR 

A3MAP-
GA NMAP CMAP A3MAP-

SR 
A3MAP-

GA 
Figure 3.19(a) 4488 4752 4531 4087 5879 6300 5332 4543 
Figure 3.19(b) 4264 4119 4248 4199 5505 4135 5049 4215 
Figure 3.19(c) 6296 5598 5867 5150 7835 6842 7434 5613 
Figure 3.19(d) 5524 5735 4263 4263 9196 9627 5170 5170 

Average 5143 5051 4727 4425 7104 6726 5746 4885 
Ratio 1.000 0.982 0.919 0.860 1.000 0.947 0.809 0.688 

Table 3.7: The comparison of hop count and wirelength for VOPD benchmark in 
custom networks. 

and A3MAP-GA, respectively and total wirelength passed by packets is 14.6% and 

28.4% longer than those of A3MAP-SR and A3MAP-GA, respectively. These results 

prove that our weighted interconnection matrix is efficient enough for reducing 

communication energy consumption since the improvement of wirelength passed by all 

packets is greater than that of hop count. Therefore, the weighted interconnection matrix 

is desirable for custom networks. Similarly, the proposed A3MAP algorithms can be 

easily manageable for more complex NoC by controlling the weighted interconnection 

matrix. 

 

3.2.4.4 Large-Scale NoC 

We prove A3MAP algorithms to be suitable for the partition-based approach 

which is described in Section 3.2.3. In this experiment, core graphs with one hundred 

cores are generated by TGFF and mapped to a 10×10 regular network. The cores are 

partitioned to 9-15 groups with the minimum cuts by hMETIS [37] and the network is 

also partitioned to 9-15 groups with a convex region. Then, after sorting the groups in a 

decreasing order by the amount of communication inside each group, A3MAP-FS that 

provides the best mapping quality, A3MAP-SR, A3MAP-GA and NMAP that provides 
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one of the fastest solutions, perform application mapping for each ordered core group on 

a selected convex region, which are called A3MAP-FS-P, A3MAP-SR-P, A3MAP-GA-P 

and NMAP-P, respectively. 

Figure 3.20 shows the hop count comparison of the application mapping 

algorithms. As the number of groups increases, i.e. the number of cores or tiles included 

in each group decreases, A3MAP-GA-P and A3MAP-SR-P achieves similar mapping 

quality to A3MAP-FS. However, total hop count of most partition-based mapping 

algorithms tends to increase since cores are mapped to a more restricted convex region. 

On the contrary, if the number of groups decreases, the number of cores included in each 

group increases. As a result, since cores can be mapped to a larger convex region, most of 

the application mapping algorithms improves their hop count. The improvement of 

mapping quality of A3MAP-GA-P and A3MAP-SR-P is less than that of A3MAP-FS 

whereas it is much greater than that of NMAP-P. 

 

 

Figure 3.20: The hop count comparison of application mapping algorithms in large 
networks partitioned to 9-15 subnetworks. 
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However, since the runtime of A3MAP-FS rapidly gets long in the larger convex 

region as shown in Figure 3.21, it shows an inefficient trade-off between mapping quality 

and runtime. The application mapping quality of A3MAP-FS-P can be obtained by 

A3MAP-GA-P or A3MAP-SR-P if A3MAP-GA-P or A3MAP-SR-P performs in a 

network that is partitioned to fewer groups. In addition, their runtime is much faster than 

that of A3MAP-FS-P. For example, the mapping quality of A3MAP-FS-P on a network 

partitioned to 10 groups is worse than the mapping quality of A3MAP-SR-P and 

A3MAP-GA-P on a network partitioned to 9 groups in Figure 3.21. In addition, the 

runtime of A3MAP-SR-P and A3MAP-GA-P on a network partitioned to 9 groups is 

much faster than that of A3MAP-FS-P on a network partitioned to 10 groups. On the 

contrary, even though NMAP-P shows slightly faster runtime than A3MAP-SR-P and 

A3MAP-GA-P in Figure 3.21, its mapping quality is much worse in a network with few 

groups in Figure 3.20. Therefore, A3MAP algorithms are more suitable for the partition-

based approach in large-scale NoC. 

 

Figure 3.21: The runtime comparison of application mapping algorithms in large 
networks partitioned to 9-15 subnetworks. 
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Next, we check how many hop counts the partition-based A3MAP algorithms 

increase in regular networks, irregular networks and custom networks. We use synthetic 

benchmarks with 25, 36, 49, 64, 81 and 100 cores. We make each partitioned group not 

include more than 16 cores such that 25, 36, 49, 64, 81 and 100 cores are partitioned to 2, 

3, 4, 4, 6 and 7 core groups, respectively. The groups are not required to include the same 

number of cores when the cores are partitioned with the minimum cuts. We perform the 

partition-based A3MAP algorithms ten times with different core graphs and networks. 

Figure 3.22 shows the hop count of A3MAP-SR-P normalized by A3MAP-SR in 

regular networks, irregular networks and custom networks, called A3MAP-SR-P-R, 

A3MAP-SR-P-I and A3MAP-SR-P-C, respectively. The hop count performed by 

A3MAP-SR-P slightly increases, compared to A3MAP-SR due to the partitioning 

process. In addition, the hop count increases in most networks as the number of PEs 

increases. Consequently, A3MAP-SR-P increases on average total hop count by 1.5%, 

2.0% and 2.6% in regular mesh, irregular mesh and custom networks, respectively. 

 

Figure 3.22: The hop count of A3MAP-SR-P normalized by A3MAP-SR on regular 
mesh, irregular mesh, and custom networks with 25-100 PEs. 
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Similarly, Figure 3.23 shows the hop count of A3MAP-GA-P normalized by 

A3MAP-GA in regular mesh, irregular mesh and custom networks, called A3MAP-GA-

P-R, A3MAP-GA-P-I and A3MAP-GA-P-C, respectively. A3MAP-GA-P increases on 

average total hop count by 1.7%, 2.5% and 3.2% in regular mesh, irregular mesh and 

custom networks, respectively. 

 

 
Figure 3.23: The hop count of A3MAP-GA-P normalized by A3MAP-GA on regular 

mesh, irregular mesh, and custom networks with 25-100 PEs. 

Figure 3.24 shows the runtime of A3MAP-GA, A3MAP-SR, A3MAP-GA-P, 

A3MAP-SR-P and NMAP. A3MAP-SR-P and A3MAP-GA-P show that the increases of 

their runtime are slower than others as the number of PEs increases. As a result, when the 

number of PEs is more than 60, they are the fastest even if their runtimes in 25 PEs are 

similar to A3MAP-SR. Therefore, the A3MAP algorithms are more suitable for the 

partition-based approach in large-scale NoCs since they provide an efficient trade-off 

between runtime and mapping quality. 
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Figure 3.24: The runtime comparison of NMAP, A3MAP-GA, A3MAP-SR, A3MAP-
GA-P, and A3MAP-SR-P. 

 

3.2.5 Summary 

In this section, we propose novel and global architecture-aware application 

mapping (A3MAP) algorithms for NoC. Based on a metric embedding technique, we 

analytically formulate an application mapping problem to MIQP. Then, the MIQP is 

solved by two effective heuristics, i.e. a successive relaxation algorithm providing short 

runtime and a genetic algorithm providing high mapping quality. In addition, we propose 

the partition-based approach for large-scale NoCs, where A3MAP algorithms provide an 

efficient trade-off between runtime and mapping quality. Experimental results show that 

our A3MAP algorithms greatly reduce hop count on various networks, compared to the 

previous state-of-the-art works. Especially, A3MAP algorithms show more merits on 

irregular mesh and custom networks. All networks can be easily converted to the simple 

but efficient interconnection matrix such that our A3MAP algorithms have no limitation 
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to map cores to tiles on any arbitrary, faulty and degraded network. Furthermore, 

A3MAP algorithms are easily manageable for low communication energy consumption 

and high performance by an architecture-aware analytical manner.  
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Chapter 4 

NoC Architecture and Physical Design for Emerging Technologies 

The architecture and circuit techniques for NoC should be compatible with 

physical design and design for manufacturability (DFM) constraints since network 

designs are subject to technology constraints. With aggressive scaling transistor and wire 

dimensions, variability and reliability have become important for NoC designs. Fast 

computation relative to communication time motivates more intelligent routing 

algorithms designed to minimize hop count and network congestion. This trend indicates 

a need for research in technology-driven and scalable router, switch, and link designs. 

Moreover, as emerging technologies, such as 3D die integration and on-chip 

optical/wireless communication become viable, new opportunities and constraints will 

further drive the need for innovation in interconnection networks. In particular, as 3D die 

integration based on through-silicon vias (TSVs) becomes feasible, a 3D NoC design 

brings in new challenges. Since 3D NoC must satisfy not only application constraints 

such as latency, throughput, and power, but also manufacturing/design constraints 

imposed by 3D technologies such as the number of TSV, chemical-mechanical polishing 

(CMP), TSV stress, and thermal effect, a 3D NoC design compatible with the constraints 

is required for innovation in interconnection networks. 

 

4.1 CMP-AWARE APPLICATION-SPECIFIC 3D NOC DESIGN 

As shrinking the horizontal feature size has critical limitations, vertically stacking 

silicon based on TSVs has gained tremendous interests from both academia and industry 

for the future integrated circuits (ICs). NoC is an effective solution for scalable on-chip 

communication in the complex three-dimensional (3D) interconnections since it can 
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control the number of TSVs necessary for various applications. However, 3D NoC must 

meet not only application performance/power constraints, but also manufacturing 

constraints imposed by the 3D technologies. Therefore, the combination of the 3D 

technologies and the NoC offers new challenges and opportunities. 

So far, many researchers have addressed the issues of 3D floorplanning and NoC 

topology generation with consideration of thermal hot spots. For example, in 3D 

floorplanning, cores with high power density can be assigned to the silicon layer attached 

to heat sinks and spread out at each silicon layer to reduce peak temperature and help 

mitigate the thermal and reliability  problems such as electromigration, stress,  

dielectric breakdown, leakage-thermal run-away, and speed of devices [17][43]. Based on 

3D thermal-aware floorplanning, 3D NoC topology is then synthesized [80][102][120]. 

Besides thermal and related thermal-mechanic stress effects [3][121], 3D-IC 

integration has other manufacturability and layout related challenges related with TSVs 

and landing pads [68][91]. One particular challenge is that the wide range of the metal 

area by TSVs and landing pads increases non-uniform metal density distribution, and 

thus results in the critical variation of wire thickness and TSV height during the CMP 

process [30][70][104]. The CMP processes in 3D-IC are used for both Cu-CMP (for the 

removal of extra Cu on silicon after filling TSVs with Cu or depositing Cu on TSV 

landing pads) and silicon-CMP (for silicon backside thinning). The uneven Cu-wire 

thickness changes wire resistance and coupling capacitance between wires, and thus 

results in critical timing variation. Moreover, the uneven TSV height leads to bonding 

failure between TSVs and landing pads. To mitigate the non-uniform metal density, 

dummy metal fill insertion can be used in empty spaces, but that may affect RC parasitics 

[56][57]. Dummy TSV insertion can be also inserted for reducing silicon-CMP variation, 

but it may significantly reduce usable silicon area of the entire chip. Since TSV height 
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variation after silicon-CMP strongly depends on the regularity and density of TSV 

distributions, 3D NoC designs with different vertical links composed of tens to hundreds 

of TSVs should consider the TSV height variation. 

In this section, we propose the first CMP-aware application-specific 3D NoC 

design that minimizes TSV height variation, thus reduces bonding failure, and meanwhile 

optimizes conventional NoC design objectives such as hop count, wirelength, power 

consumption, and area. For NoC vertical links composed of tens to hundreds of TSVs, 

the layout of each individual TSV is not efficient since it results in complex global 

routing and TSV manufacturing stresses affect more transistors [3][121]. Therefore, 

TSVs should be placed as an array type in 3D NoC. However, the array with dense TSVs 

is sensitive to CMP process which results in high TSV height variation, and thus leads to 

severe bonding failure. Moreover, if the arrays with different TSV density are used in the 

same layer, bonding TSVs on landing pads is more difficult. NoC includes one-way and 

two-way links of which the metal densities may be different. Therefore, TSVs in an array 

should be placed with a pitch resulting in low TSV height variation endured by a bonding 

technique and TSV arrays with the same density should be inserted in each layer. In 

addition, previous 3D NoC designs cannot handle TSV arrays during placement and 

routing stage since the size of the TSV arrays is too large [80][102][121]. Therefore, TSV 

arrays should be handled during the floorplanning stage in physical design. Based on 

these motivations, the major contributions of this work include: 

 

• We show that TSV height variation during silicon-CMP process is more severe in 

3D NoC where dense TSV arrays are used as vertical links. 

• We propose a CMP-aware application-specific 3D NoC design that minimizes 

TSV height variation and optimizes conventional NoC design objectives. 
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• We present CMP-aware 3D NoC techniques for core-to-layer assignment, 

topology synthesis, and floorplanning. 

• We show that the proposed 3D NoC design reduces TSV height variation with 

lower design cost, and meanwhile achieves less hop count, wirelength, and power 

consumption. 

 

To the best of our knowledge, this is the first work that addresses CMP variation 

in 3D NoC. The rest of this section is organized as follows: Section 4.1.1 introduces CMP 

and Cu-Cu thermo-compression direct bonding, and then addresses various TSV layouts 

and their CMP variation. Section 4.1.2 shows the problem formulation and proposed 

CMP-aware application-specific 3D NoC design flow. Section 4.1.3 presents detailed 

techniques of our proposed algorithms. Section 4.1.4 shows experiment results and 

Section 4.1.5 concludes the section. 

 

4.1.1 Preliminaries 

4.1.1.1 Chemical-Mechanical Polishing and Cu-Cu Thermo-Compression Direct 
Bonding 

One of the most potential sources of yield loss and timing variation in 3D 

technologies is TSV bonding on land pads. In a typical industrial bonding procedure 

[108][110], a TSV-wafer is ground down to a target thickness slightly above the TSV 

depth (keeping TSVs unexposed) and further thinned using CMP process. CMP uses both 

chemical and mechanical means to polish the surface of the wafer. In a typical rotary 
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Figure 4.1: Typical rotary CMP tool [30]. 

CMP tool, the wafer is held on a rotating holder, as shown in Figure 4.1. The surface of 

the wafer being polished is pressed against the polishing pad which is mounted on a 

rotating disk. A slurry composed of particles suspended in a chemical solution is also 

deposited on the pad as the chemical abrasive. The material-removal mechanism of CMP 

is similar to the removal found in glass polishing. A chemical reaction softens the surface 

of a material to be removed later. The chemical reaction creates a hydroxilated-form 

material which has weaker atomic bonds. It is, therefore, more easily removed during the 

polishing process. Then, a mechanical surface abrasion aided by slurry particles removes 

the material. Figure 4.2(a) shows the uneven surface of wafer backside after grinding and 

CMP. Subsequently, the polished silicon surface is plasma-etched, such that the TSVs 

protrude from the wafer as shown in Figure 4.2(b). On the contrary, TSV Landing pads 

are commonly fabricated on the top metal layer in a damascene process and designed to 

be larger than TSVs to prevent overlay error. The top metal layer with TSV land pads is 

also polished by CMP to remove overburden Cu. Finally, a wafer or die with TSV 

landing pads is bonded with a different wafer or die with TSVs. 
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(a) After grinding and CMP            (b) Si-recess etch following CMP 

Figure 4.2: Local topography on backside of wafer [108]. 

Recently, micro-bump-less Cu-Cu direct bonding techniques attract great 

attentions in 3D die integration since the same bonding medium can prevent the 

formation of an intermetallic at the interface between TSVs and landing pads [108][110]. 

In addition, Cu-Cu direct bonding is desired compared to solder-based connections since 

(1) Cu-Cu bond is more scalable and ultra-fine pitch can be achieved; (2) Cu has better 

electrical and thermal conductivities; and (3) Cu has much better electromigration 

resistance for higher current density. The direct Cu-Cu bonding has been demonstrated 

using thermo-compression bonding via parallel application of heat and pressure (typically 

~300-400oC and ~200 kPa). The bonding mechanism is based on interdiffusion of Cu 

atoms and grain growth, and hence it is also widely known as diffusion bonding. 

 

4.1.1.2 TSV Layouts and CMP Variation 

The goal in Cu-CMP is to polish the barrier and remove overburden Cu on silicon 

after filling TSVs with Cu and depositing Cu for landing pads. Cu-CMP involves 

simultaneous polishing of three materials: Cu, dielectric (oxide), and barrier (Tan, Ti, 

etc.). However, due to different chemical effects on the materials and pattern differences 
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in terms of pattern density, Cu line width, and oxide line space, the removal rates of the 

these materials are different. Their difference in removal rates results in different polish 

times across the wafer. For example, in Figure 4.3(a), by the time the excess Cu and 

barrier on TSVs used for a 64-bit link are cleared at a point on the die, those on TSVs 

used for 128-bit links might at another point have already been cleared, where chemicals 

used for Cu-CMP react well on Cu rather than silicon. Hence, either the 128-bit TSVs are 

overpolished at the time the excess Cu and barrier on the 64-bit TSVs are cleared or the 

excess Cu and barrier on the 64-bit TSVs are not cleared at the time the excess Cu and 

barrier on TSVs used for a 128-bit link are cleared. Figure 4.3(a) shows that the 128-bit 

TSVs are overpolished after Cu-CMP. The uneven polishing problem in Cu-CMP can be 

solved by CMP fill synthesis where dummy metals grounded or floating are inserted in 

the empty spaces of a metal layer [56][57]. 
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Figure 4.3: TSV layouts and their TSV height variation induced by a CMP process. 
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Silicon-CMP is used for finely thinning silicon after grinding silicon backside 

since the processing time of CMP is too long. As silicon-CMP also involves simultaneous 

polishing of silicon, Cu, and barrier, their removal rates are different according to 

different chemical effects on the materials and different TSV densities in terms of TSV 

diameter, TSV pitch, and TSV array size. The different removal rates of these materials 

results in different polish times across the wafer backside. For example, in Figure 4.3(a), 

by the time the silicon and barrier under TSVs used for a 64-bit link are cleared at a 

point, the silicon and barrier under TSVs used for 128-bit links might have been not 

cleared yet, where chemicals used for silicon-CMP react well on silicon rather than Cu. 

Hence, either the silicon and barrier under the 128-bit TSVs are underpolished at the time 

the silicon and barrier under the 64-bit TSVs are cleared or the 64-bit TSVs are 

overpolished at the time the silicon and barrier under the 128-bit TSVs are cleared. 

Figure 4.3(a) shows the 128-bit TSVs are underpolished after silicon-CMP. In [108], 

IMEC TSV technology showed that within-die thickness variation after silicon-CMP was 

1.5μm for a die size of 10.6×10.6mm2 when TSVs of which the diameter, pitch, and 

density are 5μm, 10μm, and 10k/mm2, respectively, were evenly distributed over the 

whole chip as shown in Figure 4.3(a). The within-die thickness variation is more 

sensitive to irregular and high TSV density and directly related to TSV height variation. 

Consequently, the uneven TSV height variation can induce severe TSV bonding failure 

as shown in Figure 4.3(a). In particular, the bonding failure will be more severe in Cu-Cu 

direct thermo-compression bonding widely used in 3D-IC since TSVs must be directly 

contacted to landing pads without any micro-bump. Unlike Cu-CMP, CMP fill synthesis 

is not an efficient solution for silicon-CMP since dummy TSV insertion would 

significantly increases the overall chip area. 

http://endic.naver.com/enkrEntry.nhn?entryId=35b29734937f4aabbdaf7b0bd3ed7e85&query=%EC%A0%95%EA%B5%90%ED%95%98%EA%B2%8C�


 154 

 TSVs can be placed with different schemes during placement and routing 

[3][68][91]. If TSVs are laid out without any constraints imposed by 3D technology, they 

can be distributed as shown in Figure 4.3(b). Whereas such layout achieves much shorter 

wirelength, TSV height variation induced by silicon-CMP greatly increases due to 

uneven TSV density. In Figure 4.3(c), TSVs are placed with globally uniform density 

distributions. The TSV distribution provides the least TSV height variation to 3D ICs. 

However, such TSV layout is not suitable for NoC vertical links composed of tens to 

hundreds of TSVs since it results in so complex global routing that any wire in the same 

vertical link may detour with a long path. The long wires detoured makes system 

performance degraded or timing closure difficult. In addition, the layout of each 

individual TSV causes manufacturing stresses to more devices [3][121]. Therefore, 

grouping TSVs to an array and then laying out the array is more desirable for 3D NoC. 

 In Figure 4.3(d), there exist two kinds of TSV arrays. The small array includes 

one one-way NoC link and the large array includes one two-way NoC link which has two 

times more TSVs than the one-way NoC link. TSVs in the small array fail to contact 

landing pads since TSVs in the large array are less cleared than those in the small array 

during silicon-CMP such that the surface in a die is uneven. In Figure 4.3(a) that is the 

cross section of AB in Figure 4.3(d), the 64-bit TSV array has the strong possibility of 

failing to contact landing pads on silicon layer 2 since the 128-bit TSV array is 

underpolished. In addition, since the metal density of the 128-bit TSV is high, its own 

silicon-CMP variation can be so high that TSVs in the array have the possibility of failing 

to contact landing pads. We can control the local TSV density defined as the size of a 

TSV array divided by a TSV pitch. If the 128-bit TSV array has a wider TSV pitch, its 

density can be as low as that of the 64-bit TSV array. However, since it has the penalty of 

area, we focus on reducing the size of a TSV array as shown in Figure 4.3(e).  
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4.1.2 CMP-Aware NoC Design Flow and Problem Formulation 

In most previous application-specific 3D NoC designs [80][102][120], 3D 

floorplanning is first performed and then a 3D network topology is determined, based on 

the 3D floorplanning as shown in Figure 4.4(a), where their 3D technology constraint is 

just the number of allowable TSVs. The constraint is not sufficient for robust and reliable 

3D ICs and the CMP variation resulting in severe bonding failure is not considered. In 

addition, since the 3D floorplanning composed of assigning cores to layers and 

floorplanning the cores in each layer is first performed without any routers and TSV 

arrays, there may be no enough dead space where the routers can be physically placed 

after deciding a 3D network topology [80][102]. The area of the latest routers is no longer 

small since its complexity rapidly increases due to a virtual channel, a complex flow 

controller, and an adaptive routing path allocator. In order to prevent overlapping routers 

inserted and cores already floorplanned, additional floorplanning is performed in each 

layer after deciding a network topology [120]. However, such 3D NoC design flow is not 

efficient for reducing wirelength, hop count, and thus energy consumption as the routers 

gets more and more complex. In addition, the previous 3D NoC designs have not 

considered the layout of TSVs since they assume that TSVs are laid out during placement 

and routing. Furthermore, the layout of each individual TSV without considering NoC 

architecture in the placement and routing stage worsens CMP variation, complex global 

routing, and manufacturing stress to more devices. Finally, since TSV arrays are much 

larger than other placement objects, it is not efficient that they are considered in the 

placement and routing stage. 

Figure 4.4(b) shows the proposed CMP-aware NoC design flow covering such 

issues. We first assign n cores to k layers with the purpose of reducing communication 

between layers under a given area constraint and thus using few TSVs. Based on the 
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cores assigned to each layer, the number of allowable routers is inserted in each layer and 

then routers are interconnected to cores and different routers in the same layer, where the 

number of interconnecting the single router to cores and other routers is limited. The goal 

of our network topology decision in each layer is to minimize hop count with limited 

network resources. Then, routers are interconnected to different routers in adjacent layers 

by only one-way vertical links. That is, any routers in different layers are not 

interconnected by two-way vertical links. Using only one-way links over the whole chip 

makes different layers interconnected with uniform and low local TSV density. Since the 

number of allowable TSVs between layers is also limited by a given area constraint, 

vertical interconnections minimizing the total hop count are selected. Then, routing paths 

without deadlock and livelock are allocated on the existing interconnections. We compute 

a TSV pitch applied in the one-way link and then a TSV array is composed. Finally, all 

cores, routers, and TSV arrays are simultaneously floorplanned in each layer. 

 

Core-to-layer assignment

Floorplanning cores

(a) Conventional 3D NoC design flow

Router insertion
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Figure 4.4: The conventional and proposed 3D NoC design flows. 
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We start to solve the CMP-aware application-specific 3D NoC issues from a core 

graph. A graph G(V,E) with n vertices is a directed graph, where each vertex vi∈V 

represents a core, a router, a TSV array and each directed edge ei,j∈E represents 

communication relation between vi and vj. vol(ei,j) represents communication volume 

between vi and vj and wl(ei,j) represents wirelengh between vi and vj. 

 

4.1.2.1 Core-to-Layer Assignment 

Core-to-layer assignment allows cores to move from continuous space to discrete 

space, forcing each core to exactly occupy one layer. That is, a set of cores V={v1, v2, …, 

vn} is assigned to k layers L={l1, l2, …, lk}, and thus V={Vl1, Vl2,…, Vlk} is obtained, where 

Vli={v1
li, v2

li, …, vj
li}, where j<n. The area of cores is represented as {A1, A2, …, An}. To 

equally assign the area of cores to layers, an area constraint is defined as: 

maxmin
1 1

n n
i i

l
i i

A AA
k k

α α
= =

< <∑ ∑                     (4.1) 

where αmin and αmax are acceptable minimum and maximum area coefficients (αmin <1< 

αmax). We consider thermal hot spots in this step, using the thermal model proposed in 

[17]. The thermal model makes a high power density core assigned to a lower silicon 

layer that is attached to a heat sink. With the area constraint, the objective of our layer 

assignment is to minimize communication between different layers and temperature as 

follows: 
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where β1 and β2 are weighting coefficients, Rq is a thermal resistor in layer q, Pp is the 

sum of current source in layer p, and Rb is the thermal resistor of the bottom layer 

material. 

 

4.1.2.2 3D NoC Topology Decision and Routing Path Allocation 

Given the number of allowable routers and TSV arrays in each layer, the number 

of allowable cores, and the number of different routers interconnected to one router, we 

interconnect routers to cores and different routers in the same layer. A router 

communication graph RCG(R,C) with m vertices is a directed graph, where each vertex 

ri∈R  represents a router, and each directed edge ci,j∈C represents communication 

between ri and rj. The objective of our topology decision in each layer is as follows: 

( ) ( ) ( )( )
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where dist(rp,rq) is distance (or hop count) between rp and rq and M() is a core-to-router 

mapping function, e.g. rp=M(vi) and rq=M(vj). link(rp,rq) is all links which any packet in 

rp passes for reaching rq. Then, we interconnect routers in adjacent layers, based on the 

RCG graphs. The objective of our topology decision among layers is as follows: 
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where linkTSV(rp,rq)∈link(rp,rq) is a vertical link which any packet in rp passes for reaching 

rq. This equation indicates that routers in different layers are interconnected by only one-
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way links. Thus, CMP variation resulting in uneven TSV heights can be greatly reduced 

and the yield of TSV bonding can be greatly improved. 

 

4.1.2.3 Floorplanning 

We compute a TSV pitch where a boding technique used can endure TSV height 

variation in the number of TSVs covering a one-way vertical link, based on our 

predictive CMP model. Then a TSV array is composed and inserted between routers in 

adjacent layers. As the inputs of our floorplanner, we take a set of cores, routers, and 

TSV arrays, {v1, v2, …, vn}. vi is a Wi×Hi rectangle and aspect ratio Hi/Wi. Each block can 

be free to rotate and change the aspect ratio continuously in a given range [ARmin,i, 

ARmax,i]. A floorplan F is the assignment of (xi, yi) for each block vi without any overlap 

of all cores, routers and TSV arrays, where half-perimeter wire length (HPWL) 

estimation is used. We consider thermal hot spots, using the thermal model proposed in 

[17]. The thermal model minimizes the maximum temperature difference in the same 

layer. Therefore, the objective of our floorplan F is as follows: 
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where γ1, γ2, and γ3 are weighting factors. T(x,y,lu) is the temperature of a tile in x, y, and 

lu at x-axis, y-axis, and layer, respectively and thw is the maximum allowable wirelength. 
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4.1.3 CMP-Aware 3D NoC Design 

4.1.3.1 CMP-Aware Core-to-Layer Assignment 

Since the number of TSVs required depends on communication volume between 

different layers, the communication volume should be minimized with thermal 

consideration. In addition, the area of each layer should meet the area constraint, Eq. 

(4.1).  

Figure 4.5 shows two core-to-layer approaches where eight cores are assigned to 

four layers. Let a core graph given as shown in Figure 4.5(a) where all edges have the 

same weight, all cores have the same power density, and the number is the area of a core 

for simple explanation. 
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Figure 4.5: Examples of assigning eight cores to four layers. 
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The first approach is that 4-way minimum-cut area-balanced partitioning is 

performed and then the partitioned subgroups are one-to-one assigned to different layers. 

For example, in Figure 4.5(b), the cores are partitioned to {A, B}, {C, D}, {F, G}, and 

{E, H} that have the same area and the minimum cuts. Then, the partitioned subgroups 

are one-to-one assigned to any layers, achieving the minimum hops as shown in Figure 

4.5(c).  

The second approach we propose in Algorithm 9 recursively performs area-

balanced bi-partitioning with the minimum cost computed from Eq. (4.2). Figure 4.5(d) 

shows the result of the first bi-partitioning where the same area and the minimum cut are 

obtained (line 2). Then, any core which communicates other cores in a different layer is 

assigned in advance, depending on their communication gain as shown in Figure 4.5(e) 

(line 5). The communication gain is computed as the subtraction of the amount of intra-

layer communication from that of inter-layer communication. If the communication gain 

of any core is greater or equal to 0, the core is assigned to a current layer. In Figure 

4.5(e), core B, C, E, and F communicate cores in a different layer and their 

communication gains are 0, -1, 0, and 0, respectively. Thus, core B, E, and F are assigned 

to a current layer. Then, the second bi-partitioning in each sub-group is again performed 

for the minimum cut under the area constraint. Figure 4.5(f) shows the final result where 

hop count between four layers is 7 whereas the hop count of the first approach between 

four layers is 8 in Figure 4.5(c). Therefore, the second one is useful to reduce hop count 

between layers, thus requires less TSVs. 

Even if the number of a given layer is not a power of two, the basic idea of 

Algorithm 9 can be easily extended. For example, let eight cores assigned to five layers 

in Figure 4.5(a), where total area is 20. When the first bi-partitioning is performed, both 

partitions do not get the same area, but one gets 8 and the other gets 12. Then, the first 
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group with area 8 is again bi-partitioned for the minimum cut and same area. On the 

contrary, the second group with area 12 is also bi-partitioned for the minimum cut but 

different areas (where one is 4 and the other is 8). Finally, the last sub-group with area 8 

is again bi-partitioned for the minimum cut and same area. Finally, all five sub-groups get 

area 4. 

 
Algorithm 9 Core-to-Layer Assignment by Recursive Bi-Partitioning 
1:  
 

while the number of partitioned layers is not equal to the target number of layers 
do 

2: Find bi-partitions of cores with min. cost computed by Eq. (4.2); 
3:     Compute communication gain (CGi) of core i in layer k; 
4:     if CGi ≥0 then 
5:         Core i is assigned to layer k; 
6:     end if 
7: end while 

 

4.1.3.2 CMP-Aware 3D NoC Topology Decision 

Since a 3D network topology decision problem is NP-Hard [92], we present 

efficient heuristics in this section. Furthermore, since the integrated problem makes it 

difficult to reach guaranteed quality bounds on the solution, we divide the 3D network 

topology decision problem into two distinct subproblems, called router-to-core/router 

interconnection in the same layer and router-to-router interconnection between different 

layers, and then we solve the respective subproblems. Whereas a bandwidth requirement 

can be easily satisfied by finding alternative routing paths or adding more interconnection 

resources, satisfying latency constraints is difficult if cores communicating each other are 

too wide apart. Therefore, any master core sensitive to latency should be interconnected 

to the same router as its slave core. A TSV array covering a one-way vertical link is used 

for interconnection between different layers and any router is not interconnected to 
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routers in a different layer if it is already interconnected to the router with one direction 

as shown in Eq. (4.4), which minimizes TSV density variation, thus reduces TSV height 

variation resulting in TSV bonding failure. 

 

1. 2D Router-to-router/core interconnection 

Given a core graph, the number of allowable routers (max_router), and the 

number of allowable interconnection to a router (max_int), our 2D network topology 

synthesis approach interconnects possible cores to routers. The objective of our 2D 

network topology decision is to minimize power consumption in each layer. Varying the 

number of routers in NoC designs has a great impact on power consumption and 

communication latency. NoC using few routers leads to longer core-to-router 

interconnections and hence, higher interconnection power consumption. On the contrary, 

when a number of routers are used, data flows have to traverse more routers, leading to 

high router power consumption and increasing area. Thus, we need to explore NoC 

designs with the different number of routers to obtain the best solution, starting from a 

design point where each core is interconnected to the minimum routers to one where 

cores are connected to the maximum allowable routers (max_router) in each layer. For 

example, we assume that there are 20 cores within any layer, the maximum number of 

allowable routers (max_router) is 6 and the maximum allowable interconnection to one 

router (max_int) is 5. We explore a 2D network topology with 4 (equal to the number of 

core/max_int) to 6 routers. 

The objective of Algorithm 10 is to establish efficient physical links between a 

router and a router/core in each layer. First, i-way minimum-cut partitioning is performed 

for cores in the same layer under the max_int constraint (line 2) and then each group is 

assigned to one router (line 3). Next, network links between the routers are inserted 
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according to user’s design objective (line 4). In our implementation, we use the minimum 

spanning tree (MST) or point-to-point (P2P) interconnection. MST requires distance 

information between routers. However, since floorplanning is not performed yet, we use 

different metrics instead of the distance information. MST first interconnects two vertices 

close to each other. Similarly, since two routers, rp and rq which heavily communicates 

each other should be interconnected with high priority, we use 1/vol(cp,q) as the distance 

information. Then, the breadth-first-search or depth-first algorithms are used for 

seraching MST. MST requiring only i-1 links decreases total wirelength but increases 

hop count, where i is the number of routers. On the contrary, P2P decreases hop count but 

increases total wirelength. Next, a new router communication graph (RCG) is generated 

and then prohibited turn set for RCG is build to avoid deadlocks (line 5-6). Based on the 

inserted links, paths for flows across different routers in the same layer are allocated, 

using Dijkstra’s shortest path algorithm (line 7). Application constraints such as hop 

count, communication latency, and bandwidth are evaluated (line 8). If they are not 

satisfied, a different network topology in each layer is again synthesized (line 9). Finally, 

the best network topology and design point are selected (line 11). 

 
Algorithm 10 2D NoC Topology Decision 
1:  for i= max_router to (the number of core/max_int) do 
2: Find i-way min-cut partitions under max_int constraints; 
3: Assign each group to one router; 
4: Interconnect router to router by user’s design objective; 
5: Build router communication graph (RCG); 
6: Build prohibited turn set for RCG to avoid deadlocks; 
7: Find paths for flows across routers in the same layer; 
8: Evaluate the average and peak hop count; 
9: Repeat step 6 and 7 until application constraints are satisfied; 
10: end for 
11: Choose the best topology and design point; 
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2. Layer-to-layer interconnection 

After deciding a 2D network topology in all layers, any layer must be 

interconnected to adjacent layers, using TSV arrays. In section 4.1.3.1, we already 

minimized hop count between different layers, which made few TSVs used. However, 

due to the few TSVs, total hop count may increase according to the location of the TSVs. 

In addition, inserting either both one-way and two-way links in the same layer or a TSV 

array with high metal density results in severe TSV height variation during CMP. Thus, 

the objective of our layer-to-layer interconnection is to insert one-way links between 

layers for uniform TSV distribution and the minimum hop count under performance 

constraints. 

Figure 4.6(a) is a core graph assigned to two layers, where the weight of all edges 

is 1. After deciding the network topology in each layer, let TSV arrays inserted for the 

minimum hop count as shown in Figure 4.6(b) and (c), where one two-way link and two 

one-way links are used, respectively. If the industrial open core protocol (OCP) [86] and 

AMBA advanced extensible interface (AXI) protocol [2] which have been widely used 

for a network interface have a 32-bit data bus and a 32-bit address, the number of TSV 

required for a one-way vertical link is 113 and 204, respectively. Thus, the number of 

TSV required for a two-way vertical link is 226 and 408 in the OCP and AMBA AXI 

protocol, respectively. As a result, TSV height variation during CMP is more critical in 

the two-way link with higher metal density. In addition, if another one-way link is 

inserted in Figure 4.6(b), TSVs array for the link may be open as shown in Figure 4.3(a). 

Therefore, Figure 4.6(c) is more desirable for low and uniform local TSV density if total 

hop count of case 2 are similar to that of case 1. In our technique, if a one-way vertical 

link for cp,q is established, the opposite one-way link for cq,p is removed in the list of TSV 

array insertion candidates, where rp∈Vlm and rq∈Vln, (m≠n). 
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Figure 4.6: CMP-aware router-to-router interconnections in adjacent layers. 

 

4.1.3.3 CMP-Aware Floorplanning 

We first compute a TSV pitch for one-way links, based on our predictive CMP 

model. The pitch must result in low TSV height variation endured by a bonding 

technique. Then, the TSV array is build and then simultaneously floorplanned with 

routers and cores in each layer. The goal of our floorplanning is to generate the layout 

that minimizes area, power consumption, and peak temperature. We modify an existing 

floorplanning technique [35] and invoke it with our unique cost function. 

The power consumption on the given network architecture can be presented as the 

power required by point to point physical links (core-to-router or router-to-router). It is 

desirable to place cores, routers, and TSV arrays close to each other if they heavily 

communicate one another. This is because the power consumption of NoC is directly 

proportional to the number of hop and the length of wire. Hence, we define the cost 

function as the product of communication volume vol(ei,j) and wirelength wi.j in Eq. (4.5). 

In addition, it is necessary to place cores, routers, and TSV arrays communicating within 

the maximum allowed wirelength to operate cores at a given clock speed. We start 

floorplanning from the top layer with TSV. After floorplanning each layer, terminals with 

zero area are inserted at the same XY location of the next layer floorplanned as that of 
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TSV. Since TSV arrays in each layer have no relation one another, they are floorplanned 

wide apart. 

 

4.1.4 Experimental Results 

4.1.4.1 TSV Density and Predictive CMP Model 

CMP is a complex process with a large number of input variables including slurry 

flow rate, pressure, velocity, friction force, lubrication, pad, and wafer geometry and 

output variables including polish rate, planarization rate, polish rate uniformity, and 

surface quality. While there are some researches on modeling the CMP variation 

[30][70], there is very little study on the 3D TSV CMP modeling. Figure 4.7 shows TSV 

heights measured from the latest 3D ICs of IMEC after silicon-CMP, where the TSV 

diameter is 5μm [46]. With these industry measurement data, we model TSV height 

variation as follows: 

0.8017 ln 1.226shv
p

 
= + 

 
                      (4.6)

 

where hv is TSV height variation, s is the size of TSV array, and p is a TSV pitch in the 

array. This equation shows that a small TSV array and a wide TSV pitch are desirable for 

low TSV height variation. Based on this model, we can compute a TSV pitch for the size 

of a given TSV array, which guarantees low TSV height variation endured by a bonding 

technique. Then, TSV arrays are built and then simultaneously floorplanned with cores 

and routers. For example, if the size of a TSV array including a one-way link (113 wires) 

in OCP is 11×11, its TSV pitch must be at least 14.58μm for TSV height variation less 

than 1μm. On the contrary, if the size of a TSV array including a two-way link (226 

wires) in OCP is 16×16, its TSV pitch must be at least 21.21μm for TSV height variation 

less than 1μm. Thus, the widths of 11×11 and 16×16 TSV arrays are 160μm and 339μm 
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and their areas are 0.0256mm2 and 0.1151mm2, respectively. Consequently, two one-way 

vertical links shows lower CMP variation or smaller design area than a single two-way 

vertical link if the performance and energy constraints of a synthesized network are 

satisfied. 

 

Figure 4.7: TSV height variation by TSV density. 

 

4.1.4.2 CMP-Aware Application-Specific 3D NoC 

We implement the proposed CMP-aware application-specific 3D NoC, called 

CAS with 4-8 layers in C++. We repeat CAS for ten times on GSRC Benchmarks with 

100, 200 and 300 modules [34] and compute average to obtain reliable statistics. Wafers 

are stacked in a face-to-back fashion and we set the diameter and pitch of TSV to 5μm 

and 10μm, respectively. Both [120] and CAS employ MST and P2P as a 2D network 

topology. Since the goal of MST is extremely opposite to that of P2P, the performance 

and design cost improvement of CAS with other 2D network topologies will be within 
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the gap of improvement of CAS with MST and P2P. Note that [80] and [102] are not 

suitable for comparison for 3D NoC with large routers and TSV arrays. 

Table 4.1 shows TSV height variation when various network interfaces are used. 

When a 3D network topology is decided, CAS inserts only one-way links between layers 

whereas [120] inserts both one-way and two-way links. Thus, the local TSV density of 

CAS is more uniform and lower than that of [120] and after silicon-CMP, CAS has 

17.9% lower TSV height variation than [120]. Using only one-way links results in 

increasing hop count since it may not provide the shortest path. However, our 3D NoC 

design flow recovers the penalty of the hop count and even improves total hop count 

since a topology decision is first performed. 

Table 4.2 shows total hop count. CAS achieves, on average, 15% lower hop count 

than [120]. CAS tends to further improve hop count in complex NoC with a number of 

modules and layers. In addition, when a network is synthesized with limited resources 

like MST, CAS further improves hop count. 

In Table 4.3, we compare the total wirelength of CAS with that of [120]. Even if 

CAS performs floorplanning with the maximum allowable wirelength constraint after 

synthesizing a network topology, it achieves just 0.3% longer total wirelength than [120] 

in MST and even 4.6% shorter total wirelength than [120] in P2P. 

 
Network 
protocol 

# of wire of 
one(two)-way link  [120] CAS Imp. (%) 

AHB [2] 137 (274) 1.651 1.372 16.9 
AXI [2] 204 (408) 1.821 1.551 14.8 
APB [2] 99 (198) 1.551 1.226 21.0 
OCP [86] 113 (226) 1.603 1.302 18.7 

Average 1.657 1.363 17.9 

Table 4.1: TSV height variation comparison (μm). 
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the number of layer 4 5 6 7 8 Imp. 
(%) 

M 
S 
T 

n100 [120] 1410 1470 1625 1671 1927 16.5 
CAS 1201 1254 1299 1361 1650 

n200 [120] 3341 3366 3459 3737 3927 20.0 CAS 2654 2931 2698 2934 3043 

n300 [120] 5211 5158 5178 5257 5230  22.6 CAS 4065 3912 4077 3984 4118 
Imp. (%) 20.5 19.0 21.3 22.4 20.5 19.7 

P 
2 
P 

n100 [120] 1193 1336 1488 1629 1799 13.1 CAS 1077 1194 1207 1416 1575 

n200 [120] 2051 2487 2744 3136 3285 8.7 CAS 2041 2278 2441 2788 2968 

n300 [120] 2638 3279 3433 4163 4371 11.1 CAS 2626 2943 3405 3234 3695 
Imp. (%) 2.3 9.7 8.0 16.7 12.9 11.0 

Table 4.2: Hop count comparison. 

 

the number of layer 4 5 6 7 8 Imp. 
(%) 

M 
S 
T 

n100 [120] 9.6 8.4 7.5 7.1 6.5 -0.3 CAS 9.6 8.5 7.4 7.1 6.6 

n200 [120] 22.6 19.1 16.6 15.1 13.8 0.0 CAS 23.2 19.1 16.6 15.0 13.3 

n300 [120] 46.5 39.5 34.4 30.5 27.2 -0.6 CAS 47.0 40.0 34.1 30.7 27.3 
Imp. (%) -1.4 -0.9 0.7 -0.2 0.6 -0.3 

P 
2 
P 

n100 [120] 47.2 38.6 32.9 29.6 26.4 2.1 CAS 46.5 38.3 32.3 28.0 26.2 

n200 [120] 95.4 77.7 67.8 61.3 55.2 4.7 CAS 89.6 75.1 65.0 58.5 52.3 

n300 [120] 144.6 129.9 115.5 102.6 94.5 7.0 CAS 132.1 119.6 108.6 99.4 86.1 
Imp. (%) 7.5 5.4 4.8  3.9 6.5 4.6 

Table 4.3: Total wirelength comparison (mm). 
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Figure 4.8 shows power consumption normalized by [120]. The power 

consumption of CAS is 8.1% and 7.8% lower than that of [120] in MST and P2P, 

respectively. CAS tends to further improve power consumption in NoC with a lot of 

modules. 

 

(a) MST 

 

 

(b) P2P 

Figure 4.8: Network topologies and layouts performed by CMP-aware 3D NoC. 
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The total area of CAS is slightly smaller than [120] since CAS has smaller total 

TSV array area than [120]. The runtime of CAS ranges from 48-99 seconds in n300, 

which is about three times faster than [120]. 

Figure 4.9 and Figure 4.10 show the layouts of [120]+MST and CAS+MST with 

2 layers in n300, respectively, where blue lines show communication relations and their 

thickness indicates communication volume. Yellow rectangles, red rectangles, and green 

rectangles are cores, TSV arrays, and routers, respectively. While layer 2 in Figure 4.9 

includes both one-way and two-way links, layer 2 in Figure 4.10 includes just one-way 

links. Therefore, TSV heights are less variable, and thus can contact landing pads easily. 

In Figure 4.11, CAS proves more merits on NoC with complex routers, where 

CAS further improves power consumption and total wirelength as the area of routers 

increases. Since previous NoC designs first floorplan only cores before synthesizing 

network topology, neither is the dead space sufficient for complex routers inserted nor 

wirelength and power consumption are well optimized even if floorplanning is again 

performed after synthesizing a network. 

 

4.1.5 Summary 

In this section, we propose the first CMP-aware application-specific 3D NoC 

design. Our vertical integration managing architecture, physical design, and 

manufacturing issues together enables a reliable and robust 3D NoC. In particular, our 

CMP-aware 3D NoC approach reduces TSV height variation after the CMP process, and 

thus prevents severe bonding failures and timing variation. Meanwhile, it also improves 

hop count, wirelength, power consumption, and area, compared to the previous state-of-

the-art 3D NoC [120]. 
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(a) Layer 1                          (b) Layer 2 

Figure 4.9: Typical application-specific 3D NoC with 2 layers [120]. 

       

(a) Layer 1                        (b) Layer 2 

Figure 4.10: CMP-aware application-specific 3D NoC with 2 layers. 
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Figure 4.11: Improvement according to the area of routers. 
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Chapter 5 

Conclusions  

This dissertation presents systematic architecture and physical design for 

mitigating the challenges of advanced NoCs in terms of latency, power, and emerging 

technologies. Our major contributions include: 

 

• In Chapter 2, we developed SDRAM- and application-aware routers and memory 

subsystems to improve application-level or system-level latency. The multiple SDRAM-

aware routers instead of a single memory subsystem scheduled memory requests to 

prevent bank conflict, data contention, and short turn-around bank interleaving. 

Moreover, the SDRAM-aware router was advanced to an application-aware router with 

the consideration of the demands of various applications, such as different memory 

latency requirements and memory access granularities. Our results showed that the cost-

effective SDRAM- and application-aware NoC design significantly provided not only 

high memory utilization and short average latency but also high QoS. 

 

• In Chapter 3, we proposed a VFI-aware NoC optimization framework in order to 

reduce both computation and communication energy consumption. It consisted of three 

key VFI-aware components, i.e. VFI-aware core partitioning with voltage and frequency 

assignment, VFI-aware mapping, and VFI-aware routing path allocation. Moreover, we 

developed VFI interfaces and their insertion algorithm to easily satisfy performance 

constraints. The proposed methodology made cores using the same voltage and clock 

speed unified to single VFI and thus considerably reduced VFI overheads. In addition, we 

presented architecture-aware analytic application mapping algorithms applied to various 
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networks in order to reduce communication energy consumption and average latency. 

The application mapping problem was formulated to MIQP and then solved by 

successive relation and genetic algorithms. Our results showed that the proposed 

application mapping algorithms greatly reduced power consumption on various networks. 

Especially, they showed more merits on irregular mesh and custom networks.  

 

• In Chapter 4, we presented a CMP-aware application-specific 3D NoC design that 

minimized TSV height variation, thus reduces a bonding failure, and meanwhile 

optimized conventional NoC design objectives such as hop count, wirelength, power 

consumption, and area. Since synthesizing an on-chip network has been always subject to 

technology constraints, NoC architecture and physical design techniques should be 

compatible with 3D technologies. The key idea behind the proposed 3D NoC design flow 

was to determine the CMP-aware 3D NoC topology where different layers were 

interconnected by one-way links with the minimum hops. Our results showed that our 

CMP-aware 3D NoC design achieved smaller chip area, lower hop count, shorter 

wirelength, and lower power consumption than the previous state-of-the-art 3D NoC 

designs. 

 

In this dissertation, we emphasize the importance of synergistic architecture and 

physical design techniques for emerging technologies. We hope that this work motivates 

future research follow-up in this domain. Some of the future directions may include: 

 

• Phase change memory (PCM) is an emerging memory technology for future 

computing systems. Compared to other non-volatile memory alternatives, PCM is 

relatively more matured to production and has a fast read latency and potentially high 
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storage density. The main bottleneck precluding PCM from being used, in particular, in 

the main memory hierarchy, is its limited write endurance. To mitigate this problem, 

recent studies proposed to either reduce the write frequency of PCM or use wear-leveling 

to evenly distribute writes. Although these techniques can extend the lifetime of PCM, 

they will not prevent deliberately designed malicious codes from wearing it out quickly. 

Furthermore, most previous techniques did not consider the dynamic access pattern of 

various applications, in particular, interleaved access pattern in MPEG 1/2/4 and H.264. 

Therefore, we need to improve PCM write endurance at an application or system level. 

 

• Based on recent opto-electro material/device level break-throughs, on-chip 

nanophotonics offers compelling high throughput/bandwidth communication and 

promising low power integration opportunities compared with traditional Cu/low-K 

interconnect, therefore is considered as a potential quantum leap towards the next 

generation on-chip interconnect. Despite of its superior signaling speed and low power 

potentials, the on-chip nanophotonics faces major roadblocks for interconnecting on-chip 

computation resources. Major challenges in this field include but are not limited to: 

photonic network architecture design, low power high performance integration, device 

characterization, and thermal reliability modeling/optimization. With the promising low 

power on-chip optical links, NoC optimization flows can be extended for further 

improving power efficiency. Other important future works along this direction may 

include thermal reliability optimizations for on-chip nanophotonic links and potential 

applications. 
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