

Copyright

by

Woo Young Jang

2011

The Dissertation Committee for Woo Young Jang
Certifies that this is the approved version of the following dissertation:

Architecture and Physical Design for Advanced Networks-on-Chip

Committee:

David Z. Pan, Supervisor

Jacob A. Abraham

Adnan Aziz

Andreas Gerstlauer

Yin Zhang

Architecture and Physical Design for Advanced Networks-on-Chip

by

Woo Young Jang, B.E.; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas at Austin

May 2011

Dedicated to my wife, Minkyung for her support, encouragement, and devotion.

 v

Acknowledgements

First of all, I would like to express my deepest gratitude and appreciation to my

advisor Prof. David Z. Pan for his invaluable advice, great generosity, and continuous

encouragement throughout my research. I am extremely fortunate to study under his

supervision. He has guided my research with remarkable insight and profound

knowledge. Without his guidance and support, this dissertation would not have been

completed.

I am also grateful to the members of my dissertation committee, Prof. Jacob A.

Abraham, Prof. Adnan Aziz, Prof. Andreas Gerstlauer, and Prof. Yin Zhang. Their

helpful advices on my research and their knowledge have guided me in my quest to do

quality work.

I am indebted to many people in Samsung for their support and concern for me. In

particular, I would like to thank Dr. Sun-Jae Cho, Mr. Byung-Hoan Chon, Dr. Seh-

Woong Jeong, Dr. Jinhyun Kim, Dr. Donghoon Lee, and Mr. Youngbum Lee. Without

their support and help, I could not have the great chance to study for a Ph.D. degree with

the complete support of Samsung.

I would like to thank the colleagues at UTDA for their help and cheering up:

James Ban, Ashutosh Chakraborty, Minsik Cho, Duo Ding, Jerrica Gao, Ou He, Kiwoon

Kim, Anurag Kumar, Yen-Hung Lin, Katrina Lu, Joydeep Mitra, Jiwoo Pak, Sean Shi,

Jae-Seok Yang, Bei Yu, Kun Yuan, Rein Zhang, and Yilin Zhang.

I sincerely appreciate the support and love from my father and mother who

always encourage me to pursue my goal. I also thank my parents-in-law who always

cheer me up and my daughter, Hannah who always makes me smile. Finally, I would like

to express my sincerest and deepest gratitude and love to my wife, Minkyung, who

 vi

always supports and encourages me with great love. I will pay my debt back to her

throughout my life.

Woo Young Jang

The University of Texas at Austin

May 2011

 vii

Architecture and Physical Design for Advanced Networks-on-Chip

Publication No._____________

Woo Young Jang, Ph.D.

The University of Texas at Austin, 2011

Supervisor: David Z. Pan

The aggressive scaling of the semiconductor technology following the Moore’s

Law has delivered true system-on-chip (SoC) integration. Network-on-chip (NoC) has

been recently introduced as an effective solution for scalable on-chip communication

since dedicated point-to-point (P2P) interconnection and shared bus architecture become

performance and power bottlenecks in the SoCs. This dissertation studies three critical

NoC challenges such as latency, power, and compatibility with emerging technologies in

aspect of an architecture and physical design level.

Latency is a key issue in NoC since the performance of applications considerably

depends on resource sharing policies employed in an on-chip network. NoCs have been

mainly developed to improve network-level performance that captures the inherent

performance characteristics of a network itself, but the network-level optimizations are

not directly related to application- or system-level performance. In addition, memory

latency on NoC critically affects the performance of applications or systems. We propose

a synchronous dynamic random access memory (SDRAM) aware NoC design to

 viii

optimize memory throughput, latency, and design complexity. Furthermore, it is extended

to an application-aware NoC design to provide the quality-of-service (QoS) of memory

for various applications.

NoC provides great on-chip communication. However, it brings no true relief to

power budget when the on-chip network scales in terms of complexity/size and signal

bandwidth. The combination of NoC and other techniques has the potential to reduce

power. We study two power saving research topics for NoC: (a) we propose a voltage-

frequency island (VFI) aware NoC optimization framework with a better tradeoff

between power efficiency and design complexity to minimize both computation and on-

chip communication power. (b) We formulate an application mapping problem to mixed

integer quadratic programming (MIQP) with the purpose of reducing power consumption

in various hard networks and develop highly efficient algorithms for the MIQP.

Regarding NoC compatible with new technologies, we focus on three dimensional

(3D) die integration based on through-silicon vias (TSVs). Since an on-chip network

design has been subject to not only application constraints but also design/manufacturing

constraints, a 3D NoC design is required for innovation in interconnection networks. We

propose a chemical-mechanical polishing (CMP) aware application-specific 3D NoC

design that minimizes TSV height variation, thus reduces bonding failure, and meanwhile

optimizes conventional NoC design objectives such as hop count, wirelength, power, and

area.

 ix

Table of Contents

List of Tables ... xiii

List of Figures ..xv

Chapter 1: Introduction ..1

1.1 Network-on-Chip Challenges in Ultra-Deep Submicron Era1

1.2 Overview and Contributions of This Dissertation5

Chapter 2: Memory-Aware NoC Design for Improving Application-Level
Latency ..8

2.1 SDRAM-Aware NoC Design ..9

2.1.1 Basic SDRAM Operation ...12

2.1.2 SDRAM Scheduling ...14

2.1.2.1 Bank Conflict ..14

2.1.2.2 Data Contention ..15

2.1.2.3 Short Turn-Around Bank Interleaving20

2.1.3 NoC Design with SDRAM ...23

2.1.3.1 Problem Description ...23

2.1.3.2 Basic Idea of Our Approach ...24

2.1.4 SDRAM-Aware Router ..26

2.1.4.1 Router Description ..27

2.1.4.2 SDRAM-Aware Flow Control for Avoiding Bank
Conflict and Data Contention ..30

2.1.4.3 SDRAM-Aware Flow Control for Avoiding Short
Turn-Around Bank Interleaving ..36

2.1.4.4 Hardware Complexity...39

2.1.5 Experimental Results ..40

2.1.5.1 Digital Television Application41

2.1.5.2 Synthetic Benchmarks ..44

2.1.5.3 Comparison of SP and SP+AP46

2.1.6 Summary ...46

 x

2.2 Application-Aware NoC Design ..48

2.2.1 Problem Description and Our Basic Idea51

2.2.1.1 Priority SDRAM Service in NoC51

2.2.1.2 SDRAM Access Granularity Mismatch54

2.2.2 Application-Aware NoC Design ...56

2.2.2.1 Architecture of GSS Router ..56

2.2.2.2 GSS Flow Control Algorithm ...59

2.2.2.3 NoC Design for SAGM ..63

2.2.3 Experimental Results ..68

2.2.3.1 No Priority Memory Request68

2.2.3.2 Priority Memory Request ...72

2.2.4 Summary ...79

Chapter 3: Power Optimization for Advanced NoC ..80

3.1 VFI-Aware Energy Optimization Framework for NoC81

3.1.1 Motivation and Contributions ...84

3.1.1.1 Motivational Example ..84

3.1.1.2 Major Novelty...86

3.1.2 Problem Formulations ...87

3.1.2.1 Partitioning with VF Assignment Problem87

3.1.2.2 VFI-Aware Mapping Problem88

3.1.2.3 VFI-Aware Routing Problem89

3.1.3 VFI Optimization Framework...90

3.1.3.1 Core Partitioning with VF Assignment91

3.1.3.2 VFI-Aware Mapping Algorithm93

3.1.3.3 VFI-Aware Routing Path Allocation96

3.1.3.4 VFI-Aware Interface Planning102

3.1.4 Experimental Results ..108

3.1.5 Summary ...113

3.2 Architecture-Aware Analytic Application Mapping114

3.2.1 Problem Formulation ..117

 xi

3.2.2 A3MAP Algorithms ..123

3.2.2.1 A3MAP-SR ..123

3.2.2.2 A3MAP-GA..126

3.2.3 A3MAP for Large-Scale NoC ..129

3.2.4 Experimental Results ..132

3.2.4.1 Regular Mesh Network ...132

3.2.4.2 Irregular Mesh Network ...135

3.2.4.3 Custom Network ...137

3.2.4.4 Large-Scale NoC ..139

3.2.5 Summary ...144

Chapter 4: NoC Architecture and Physical Design for Emerging Technologies .146

4.1 CMP-Aware Application-Specific 3D NoC Design146

4.1.1 Preliminaries ...149

4.1.1.1 Chemical-Mechanical Polishing and Cu-Cu Thermo-
Compression Direct Bonding ...149

4.1.1.2 TSV Layouts and CMP Variation151

4.1.2 CMP-Aware NoC Design Flow and Problem Formulation155

4.1.2.1 Core-to-Layer Assignment ...157

4.1.2.2 3D NoC Topology Decision and Routing Path
Allocation ...158

4.1.2.3 Floorplanning..159

4.1.3 CMP-Aware 3D NoC Design ...160

4.1.3.1 CMP-Aware Core-to-Layer Assignment160

4.1.3.2 CMP-Aware 3D NoC Topology Decision162

4.1.3.3 CMP-Aware Floorplanning ..166

4.1.4 Experimental Results ..167

4.1.4.1 TSV Density and Predictive CMP Model167

4.1.4.2 CMP-Aware Application-Specific 3D NoC168

4.1.5 Summary ...172

 xii

Chapter 5: Conclusions ..175

Bibliography ..178

Vita ...187

 xiii

List of Tables

Table 2.1: Timing parameter of DDR I, II, and III SDRAM.16

Table 2.2: SDRAM data input/output delay between h(n) and hi(n+1).32

Table 2.3: Memory utilization and latency comparison in DTV application

according to various DDR SDRAMs. ...45

Table 2.4: Memory utilization and latency comparison in synthetic

benchmarks according to network size. ..45

Table 2.5: Memory utilization and latency comparison of SP and SP+AP in

DDR I/II/III SDRAM. ...47

Table 2.6: Memory performance comparison on industrial benchmarks

without priority memory requests. ..71

Table 2.7: Memory performance comparison on industrial benchmarks with

priority memory requests. ...73

Table 2.8: The memory performance comparison of GSS+SAGM+STI and

GSS+SAGM on industrial benchmarks. ...77

Table 2.9: The comparison of gate count synthesized at 400MHz clock

speed. ..77

Table 2.10: The comparison of power consumption ruing at 400MHz clock

speed. ..78

Table 3.1: The comparison of VFI overhead, hop count, and communication

congestion on VOPD benchmark. ...109

Table 3.2: The comparison of VFI overhead and hop count on E3S

benchmark. ..111

 xiv

Table 3.3: The comparison of energy consumption according to the number

of VFI on E3S benchmarks113

Table 3.4: The hop count increase and runtime improvement of NMAP,

A3MAP-GA, and A3MAP-SR normalized by A3MAP-FS.133

Table 3.5: The comparison of hop count for industrial benchmarks in regular

mesh networks. ...134

Table 3.6: The comparison of hop count for VOPD benchmark in various

irregular mesh networks. ...137

Table 3.7: The comparison of hop count and wirelength for VOPD

benchmark in custom networks. ...139

Table 4.1: TSV height variation comparison (μm). ...169

Table 4.2: Hop count comparison. ...170

Table 4.3: Total wirelength comparison (mm). ...170

 xv

List of Figures

Figure 1.1: NoC architecture. ..2

Figure 2.1: SDRAM architecture and activation, read/write, and deactivation

operations. ...13

Figure 2.2: Examples showing bank conflict and interleaving in DDR II

SDRAM @333MHz. ..17

Figure 2.3: Examples showing data contention in DDR II SDRAM

@266MHz. ..19

Figure 2.4: Examples showing short turn-around bank interleaving in DDR III

SDRAM @800MHz. ..21

Figure 2.5: Bank conflict in 2× 3 NoC with conventional round-robin flows

controller although an effective memory subsystem.23

Figure 2.6: No bank conflict in 2× 3 NoC with SDRAM-aware flow controller

although a simple memory subsystem. ...25

Figure 2.7: The architecture of an SDRAM-aware router consisting of input

buffers, routing logics, flow controllers, and output schedulers

for a mesh network. ...27

Figure 2.8: The architecture of an SDRAM-aware flow controller combined

with a conventional flow controller for a mesh network.29

Figure 2.9: The architecture of an SDRAM interface signal generator with a

deactivation buffer, an activation buffer, and a read/write buffer

which packets pass through. ...38

 xvi

Figure 2.10: The comparisons of memory utilization, latency, and design

complexity in DTV application according to the number of

SDRAM-aware routers, where our NoC design achieves the best

tradeoff between performance and cost when three conventional

routers are replaced to SDRAM-aware routers.42

Figure 2.11: Examples of scheduling memory requests, where priority-equal

and priority-first schedulers show long latency for priority packets

and low memory utilization, respectively. ..53

Figure 2.12: Example of memory access granularity mismatch in DDR II

SDRAM @200, where four bursts read are thrown away.55

Figure 2.13: The architecture of an NoC router and a GSS flow controller

for a 2D mesh network. ...57

Figure 2.14: Scheduling memory request packets for guaranteed SDRAM

service considering (a) bank conflict and data contention, and

(b) bank conflict, data contention and short turn-around bank

interleaving. ..62

Figure 2.15: SDRAM Operations when BL is set to 4 in DDR II SDRAM

@300MHz, where the read command with authoprecharge does

not need any precharge command. ..65

Figure 2.16: The architecture of our memory controller where small PRE and

RAS buffers are required thanks to authoprecharge operations.67

Figure 2.17: Single DTV/blue-ray and dual DTV application mapping results

by A3MAP in 3x3 and 4x4 mesh networks.70

 xvii

Figure 2.18: The memory performance of our application-aware NoC design

according to the number of GSS routers, where our NoC design

achieves the best tradeoff between performance and cost when

three conventional routers are replaced to GSS routers.74

Figure 3.1: Computing and communication energy consumption and design

overhead according to the number of VFIs. The goal of VFI based

NoC designs is to minimize the sum of the computing and

communication energy and the design overhead.84

Figure 3.2: Motivational VFI based NoC designs. ..86

Figure 3.3: The proposed VFI-aware NoC methodology where VFI

partitioning is first performed. ..91

Figure 3.4: Incremental core mapping on NoC. ..96

Figure 3.5: Link insertion within VFI and between VFIs, where all links

between VFIs are not inserted...97

Figure 3.6: Finding the best interconnection between VFIs.100

Figure 3.7: The proposed rules for allocating routing path in VFI-based

NoC ...101

Figure 3.8: NoC tiles with MCFIFO or VLC placed (a) between routers and

(b) a core and a router. ..103

Figure 3.9: NoC designs with (a) the conventional VFI interface and (b) the

proposed VFI interface. ..104

Figure 3.10: Examples of the proposed VFI interface insertion.107

Figure 3.11: Visual comparison of VFI based NoC designs on 4x4 NoC.111

Figure 3.12: Various graphs and their interconnection matrices.119

Figure 3.13: Guiding continuous P(i,j) to binary P(i,j) after solving QP.125

 xviii

Figure 3.14: Cycle crossover. ..128

Figure 3.15: Partition-based A3MAP flow for large networks and complex

applications. ..130

Figure 3.16: The comparison of runtime for industrial benchmarks in 3×3-5×5

regular mesh networks. ...134

Figure 3.17: The hop count improvement of A3MAP algorithms compared to

NMAP for synthetic benchmarks in 3×3-10×10 regular mesh

networks. ...135

Figure 3.18: Irregular mesh networks used in our experiments.136

Figure 3.19: Custom NoC networks used in our experiments.............................138

Figure 3.20: The hop count comparison of application mapping algorithms in

large networks partitioned to 9-15 subnetworks.140

Figure 3.21: The runtime comparison of application mapping algorithms in

large networks partitioned to 9-15 subnetworks.141

Figure 3.22: The hop count of A3MAP-SR-P normalized by A3MAP-SR on

regular mesh, irregular mesh, and custom networks with 25-100

PEs. ...142

Figure 3.23: The hop count of A3MAP-GA-P normalized by A3MAP-GA on

regular mesh, irregular mesh, and custom networks with 25-100

PEs. ...143

Figure 3.24: The runtime comparison of NMAP, A3MAP-GA, A3MAP-SR,

A3MAP-GA-P, and A3MAP-SR-P. ...144

Figure 4.1: Typical rotary CMP tool ...150

Figure 4.2: Local topography on backside of wafer ..151

 xix

Figure 4.3: TSV layouts and their TSV height variation induced by CMP

process...152

Figure 4.4: The conventional and proposed 3D NoC design flows.156

Figure 4.5: Examples of assigning eight cores to four layers.160

Figure 4.6: CMP-aware router-to-router interconnections in adjacent layers. ..166

Figure 4.7: TSV height variation by TSV density. ..168

Figure 4.8: Network topologies and layouts performed by CMP-aware 3D

NoC ...171

Figure 4.9: Typical application-specific 3D NoC with 2 layers173

Figure 4.10: CMP-aware application-specific 3D NoC with 2 layers.173

Figure 4.11: Improvement according to the area of routers.174

 1

Chapter 1

Introduction

1.1 NETWORK-ON-CHIP CHALLENGES IN ULTRA-DEEP SUBMICRON ERA

The aggressive scaling of the semiconductor technology has enabled billions of

transistors to be integrated to a single chip, following Moore’s Law that the minimum

feature size is scaled down at the rate of a factor 0.7 reduction every three years. The

technology scaling trend has continued for more than half a century and it is expected to

last until 2015 or later, according to the International Technology Roadmap for

Semiconductors [48]. The effective reduction in size and cost provides higher chip

performance in a smaller silicon area and thus enables the realization of scenarios

deemed to belong to the domain of science fictions.

The continued feature size scaling has delivered the potential of true and complete

system-on-chip (SoC) integration. However, as most SoC designs target the high-

performance system level integration of existing heterogeneous cores with low power

consumption, previous dedicated point-to-point (P2P) interconnections and shared bus

architectures become performance bottlenecks due to the increasing communication

between the cores. Furthermore, with the rapid technology scaling, the global

interconnection causes critical delays and high energy consumption. To mitigate such

issues, network-on-chip (NoC) has been recently introduced as an effective solution for

the scalable on-chip communication [4][18]. As the better SoC platform for system

integration, NoC makes interconnect structure and wiring complexity manageable easily

such that the issues in a physical design such as floorplanning, placement, and routing

can be well optimized. It leads to faster time-to-market by reduction in the number of

 2

design re-spins. Therefore, the NoC has attracted great attentions for the current and

future SoC designs.

Figure 1.1 illustrates general NoC architecture. Each processing element (PE) is

attached to its own router via a network interface logic or a wrapper and the router is

interconnected to different routers. When any PE receivers or transfers data to different

PE, the requests and data are encoded or wrapped to a packet in the network interface

logic or the wrapper and then the packet is delivered to its own router. The packet is

stored at an input buffer and a routing logic in the router selects the path of the packet on

a given network topology. If more than two packets arriving on different input buffers at

the same time desire the same output channel, a flow-control mechanism resolves this

contention. An output scheduler either detects if the input buffer of the next router is

available or expects when the input buffer is available. After performing such operations,

the packets are delivered to the next router on its path. This process is repeated until the

packet arrives at its final destination.

S1

 S2

D2

D1

Tile Routing path

Network interface/wrapper

Input buffers

Routing and flow
control logic

Output
schedulers

Router

Switching fabric

Processing element

Core

Figure 1.1: NoC architecture.

 3

For the last decade, there have been many NoC researches to achieve greater

design productivity and higher performance by handling increasing parallelism,

manufacturing complexity, wiring problems, and reliability, where critical challenges for

NoC include latency, power, and compatibility with new technologies [88].

Unfortunately, a number of researches gave an impression that NoC greatly improved

SoC designs where it was utilized, but failed to show that NoC reduces latency and power

consumption, compared to shared bus interconnects. In addition, as emerging

technologies have become feasible, new constraints and design flows are required for

innovation in NoC.

Latency is crucial to the success of NoC since an on-chip network with long

latency can considerably deteriorate the overall application performance although its high

throughput. NoCs have been mainly developed to improve network-level performance

such as throughput or average network latency [5][21][31][59][63][76][83][89][94]. It

captures the inherent performance characteristics of a network itself, but is not directly

related to application-level or system-level performance. This is because each application

demands different network performance and much of the system performance depends on

not only on-chip networks but also shared memories, in particular, synchronous dynamic

random access memories (SDRAMs). The application- and SDRAM-oblivious NoCs lead

to reduced overall system performance. Therefore, latency in NoC is required to approach

the characteristics of shared bus interconnects with the consideration of various

applications and memories.

Power should be budgeted and traded off among different NoC optimization

factors since it has also become a major issue. NoC itself is not efficient for power and

even may consume higher power than shard bus interconnects due to additional power

consumers such as router and network interface logics. However, the combination of

 4

NoC and other techniques efficient for power has the potential to easily reduce power to

allowable levels. A voltage-frequency island (VFI) paradigm is one of the desirable

solutions for reducing power consumption in NoC since it is inefficient for all cores and

links on NoC to operate at a single voltage level and clock speed [10][41][62][66][84]

[118][119]. VFI enables fine-grained core-level power optimization by utilizing a unique

voltage and clock for each island. The use of multiple voltages and clocks in NoC

provides better performance-power tradeoffs than that of a single voltage and clock. In

addition, application mapping which decides how to topologically place the selected set

of cores onto the tiles of a network can greatly reduce both application latency and power

consumption. NoC designers or programmers favor regular mesh architecture consisting

of regular rectangle tiles on which homogeneous processors are placed since the regular

mesh architecture makes the application mapping manageable [13][15][39][79][103]. On

the contrary, most industrial SoC platforms consist of heterogeneous cores with different

design areas, and thus they can be structured with an irregular mesh network or even a

custom network. Therefore, since previous works have mainly optimized their application

mapping on the regular mesh architecture, the application mapping algorithm is required

to reduce application latency and power consumption in various networks.

The architecture and physical design for an on-chip network design should be

compatible with emerging technologies since it has been always subject to technology

constraints. With shrinking transistor and wire dimensions, variability and reliability have

become important for NoC designs. In addition, as three dimensional (3D) die integration

using through-silicon vias (TSVs) becomes viable, 3D NoC becomes new opportunities

and challenges [80][102][120]. Since 3D NoC must satisfy not only application

constraints such as latency, throughput, and power, but also manufacturing/design

constraints imposed by 3D technologies such as the number of TSVs, chemical-

 5

mechanical polishing (CMP), TSV stress, and temperature, 3D NoC design shall consider

such constraints for interconnection networks.

Therefore, it is indispensable to propose novel architecture and physical designs

for advanced NoCs in ultra-deep submicron era, which can address all these challenges in

an effective and efficient manner. First, we need to improve system-level or application-

level performance with consideration of various application demands and memories.

Next, we propose a VFI based NoC design and an application mapping algorithm to

reduce power consumption. Finally, we propose a 3D NoC design with consideration of

both application constraints and manufacture/design constraints imposed by the 3D

technology.

1.2 OVERVIEW AND CONTRIBUTIONS OF THIS DISSERTATION

The architectures and physical design techniques for advanced NoC, presented in

this dissertation target the above mentioned challenges and are described in the next three

chapters. The overall flow of the dissertation is as follows.

Chapter 2 presents SDRAM- and application-aware NoC designs to improve not

only network-level performance but also application-level or system-level performance.

The performance of various applications considerably depends on the resource sharing

policies employed in an on-chip network. In particular, memory service for the

applications becomes one of the most important issues since its performance becomes the

bottleneck of the overall system. Unfortunately, its improvement aided by a memory

subsystem is severely limited since diverse applications generate their specific memory

requests with different latency constraints and data sizes. With consideration of different

 6

demands of applications, our on-chip network shares the responsibility for the memory

performance with the memory subsystem.

In Chapter 3, we propose a VFI based design flow and application mapping

algorithms for a low power NoC design. The NoC design style fits nicely with the

concept of VFI. There have been several design efforts to combine VFI based design

style with the NoC interconnect mechanism. However, previous works are limited since

VFI-awareness is partially applied in a NoC design. In Section 3.1, a systematic VFI-

aware energy optimization framework that considers partitioning, mapping, and routing

together is presented to improve the power efficiency of VFI-based NoC designs. In

Section 3.2, we propose architecture-aware analytic application mapping (A3MAP)

algorithms that are analogous to analytical communication minimization in a given NoC.

The proposed A3MAP algorithms adaptively map cores to any different sized tiles on

regular/irregular meshes and custom networks for the minimum power consumption

under performance constraints.

In Chapter 4, we propose a CMP process-aware application-specific 3D NoC

design that minimizes TSV height variation, thus reduces bonding failure, and meanwhile

optimizes conventional NoC design objectives, such as hop count, wirelength, power, and

area. Previous NoC design flows are not effective in 3D integration since they do not

consider manufacturing/design constraints by TSVs. The key idea behind our 3D NoC

design flow is to determine the CMP-aware network topology where different layers are

interconnected by one-way links with the minimum hops and thus TSV height variation

is minimized. This is the first work that addresses the 3D NoC design which considers

architecture, physical design and manufacturing issues together.

 7

Chapter 5 concludes this dissertation with summaries based on the results of the

previous chapters as well as presents promising future research directions to further

investigate architecture and physical design for advanced NoC.

 8

Chapter 2

Memory-Aware NoC Design for Improving Application-Level Latency

Memory bandwidth and latency to feed a number of cores have become a key

issue in the modern and future SoC design. SDRAM is commonly used as a shared

memory since it provides high memory capacity and infinite endurance for modern

computing systems. However, since the SoCs mainly interface with a single or dual

SDRAM, there would be insufficient memory bandwidth to keep up with a number of

high speed cores. For example, Intel Teraflop which is the state-of-the-art NoC and

composed of 80 cores is supported by a dual shared memory [112]. If cores will have

access to the single or dual memory at the same time, memory latency will be too long to

provide real-time computing. As an effective solution of memory bandwidth and latency,

3D NoC based on TSV technology [78] is gaining momentum and industry adoption. 3D

NoC can be embedded with a lot of SDRAMs on top of processing elements at different

layers [67]. It achieves higher system performance and more reliable electrical features.

Furthermore, it provides low power consumption, low electromagnetic interference

(EMI), small die and printed circuit board (PCB) area and low pin density.

Most NoCs with a number of cores require a dedicated memory subsystem to

control SDRAMs. The memory subsystem that schedules SDRAM requests and

generates SDRAM interface signals is one of the most important components in SoCs

since the performance of the entire system depends on its performance. However, the

conventional memory subsystem still underperforms due to special operation flows of

SDRAM [24]. For example, double data rate (DDR) II SDRAM utilization gets

deteriorated up to 55% in a digital television (DTV) application [113], where memory

utilization is defined as the number of clock cycles used for data transfer divided by the

 9

number of total clock cycles. In addition, since on-chip networks are oblivious of

applications and SDRAMs, their performances are not directly related to the performance

observable at the application level or system level. Moreover, since the corresponding

number of a memory subsystem must also be equipped to control a number of SDRAMs,

the cost of an NoC design will rapidly increase. Therefore, considerable attention has

been shifted toward memory-aware NoC exploration to improve memory utilization and

latency with the economical design cost of NoC platform [27].

2.1 SDRAM-AWARE NOC DESIGN

A memory subsystem usually consists of three parts, i.e., a buffer, a SDRAM

scheduler and a SDRAM interface signal generator (or memory controller), where a

depth of buffer and an SDRAM scheduler for reordering dynamic SDRAM requests are

key components for higher memory utilization and shorter memory latency. Panda et al.

presented synthesis models for various off-chip memory access modes, as well as a

technique for analyzing a behavior to determine memory accesses that can be optimized

by exploiting the available memory features [90]. A memory scheduler proposed in [96]

supports preemption and reordering to optimize offered net bandwidth and average

latency. Schedulers discussed in [36] and [114] support preemption for high-priority

requests to decouple latency and rate. In [1], PREDATOR is proposed with two step

approaches: grouping memory requests and predictable arbitration for the group. A

memory scheduler proposed in [44] adopts an adaptive history-based (AHB) scheduler

that uses a history of recently scheduled operations to improve memory efficiency.

However, the improvement just aided by such memory subsystems is severely limited

 10

since diverse applications generate their specific memory requests with different latency

constraints and the different data sizes.

Recently, microprocessors and shared buses considering SDRAM operations have

been developed to support a guaranteed memory service. In [59], a memory bus was

implemented to source-synchronous code division multiple access. A low-cost memory

controller was present in [64] to maximize the benefit of useful prefetches and to

minimize harms caused by useless prefetches. Cost-effective on-chip memory request

issue mechanisms were proposed in [65] using SDRAM bank-level parallelism (BLP)-

aware prefetch issue and BLP-preserving multi-core request issue. In [20], network

interface architecture was proposed to cope with in-order delivery, resource utilization,

and latency. A memory controller was integrated into this network interface to improve

memory utilization and reduced both memory latency and network latency. However,

they all do not provide an efficient priority memory service or an access granularity

matching solution when using multiple SDRAMs.

Flow control in NoC is on how network resources, e.g. channel bandwidth, buffer

capacity, and control state, are allocated to packets traversing a network. In previous

works, congestion control is well studied for macro-networks. For example, decentralized

control and predictive explicit-rate control are developed in [89], where sources adjust

their traffic generation rates based on feedbacks received from bottleneck links. In [94], a

predictive flow controller managing a packet injection rate to regulate the number of

packet is proposed, based on traffic sources and router models. To minimize overall

execution time and link utilization of applications, optimal link scheduling and shared

buffer router architecture are proposed in [83]. An open-loop flow control scheme is

proposed in [60] to reduce conflicts of data transfers from multiple memory modules to

 11

the same masters. In addition to such congestion control mechanisms, flow controllers

may be useful for scheduling packets for memories.

This section presents an SDRAM-aware NoC design to improve memory

utilization and latency with a low design cost [50][54]. Our key ideas are twofold. First, if

each NoC router schedules memory request packets, the packets arrive at a memory

subsystem in the order that is friendly to SDRAM operations. Since our SDRAM-aware

router uses existing resources to schedule the packets, e.g. input buffers for storing

blocked packets and other flow-control mechanisms, additional circuitry is tiny. On the

other hand, a heavy reordering buffer and a complex scheduler can be removed in a

memory subsystem. Second, a scheduling scheme performed by multiple SDRAM-aware

routers outperforms a scheduling scheme performed by a single memory subsystem. The

reason is that the performance of single-stage scheduling mainly depends on the number

of port/buffer in the single memory subsystem. However, the multi-stage scheduling uses

all the buffers in multiple routers to schedule the memory request packets. Based on these

ideas, the major novelty and contribution of this section include:

• We propose a novel NoC router architecture with explicit SDRAM-aware flow

control to schedule SDRAM access requests instead of using the conventional

memory subsystem.

• We propose SDRAM-aware flow control algorithms to resolve problems of bank

conflict, data contention and short turn-around bank interleaving, which employs

priority-based arbitration and multi-stage scheduling.

• We show that an NoC design embedding our SDRAM-aware router achieves

higher memory utilization, shorter memory latency and cheaper design cost than

the conventional NoC design with an SDRAM-unaware router.

 12

• We show that performance of our SDRAM-aware router gets better for complex

NoC architectures and high- performance SDRAM.

To the best of our knowledge, this is the first work that addresses a router

scheduling memory requests instead of a memory subsystem. The rest of this section is

organized as follows. In the next section, we survey related works. In Section 2.1.2, we

review basic SDRAM operation principles and SDRAM request scheduling. In Section

2.1.3, the problem of the conventional SDRAM-unaware NoC router is presented and our

basic solution is proposed. Section 2.1.4 presents detailed description of our SDRAM-

aware router. Experimental results are shown in Section 2.1.5. Finally, Section 2.1.6

summarizes Section 2.1.

2.1.1 Basic SDRAM Operation

SDRAM has a three dimensional structure, i.e., a bank, a row, and a column as

shown in Figure 2.1. Basic commands to access SDRAM are activation (ACT),

read/write (R/W), and precharge (PRE), where the ACT command is executed with a

bank address (BA) and a row address (RA), the R/W command is executed with BA and

a column address (CA), and the PRE command is executed only with BA. A bank

becomes active by an ACT command and idle by a PRE command. An R/W command

can be executed only after a bank is activated. In Figure 2.1, when a bank is activated,

one row data of the bank move to a row buffer of the bank. It takes tRCD to complete an

ACT command. Timing parameters of DDR I, II, and III SDRAM used in this work is

shown in Table 2.1 [24]. As shown in Table 2.1, the faster clock rate is used in DDR

SDRAM, the more clock cycles are required to complete SDRAM operations. For

 13

example, DDR I SDRAM working at 133MHz clock frequency spends only two clock

cycles activating a bank while DDR III SDRAM working at 800MHz clock frequency

spends 11 clock cycles activating a bank. Then, an R/W command is executed on the

active row buffer. After either read latency called column access strobe (CAS) latency

(CL) or write latency (WL), successive data go from or to SDRAM. Finally, a PRE

command is executed to deactivate the active row buffer in the bank, i.e., data in the row

buffer move to the bank of the row buffer. It takes the bank state tRP to become an idle

state.

activate

precharegebank
address 0

data
width row buffer

bank
address 1

bank
address n

.

.

.column
address

row
address

MUX

. . .

read
write

data from/to
memory subsystem

control and address
from memory

subsystem

Figure 2.1: SDRAM architecture and activation, read/write, and deactivation operations.

 14

2.1.2 SDRAM Scheduling

SDRAM consists of independent multiple banks whereas address and data

pin/wire resources serialize accesses to different banks, as shown in Figure 2.1. The

benefit of this architecture is that pin/wire resources between SDRAM and SoC can be

saved and commands to different banks can be pipelined, i.e., while data are transferred

to or from any bank, the rest of bank becomes idle and active for the latter request. Based

on this principle, memory subsystems schedule SDRAM access requests. However, the

improvement of memory performance is still limited due to special operation flows of

SDRAMs and clock cycles wasted by timing constraints in Table 2.1. Moreover, it is

much worse in high performance SDRAMs. Main factors which deteriorate memory

performance are bank conflict, data contention, and short turn-around bank interleaving

explained in the next three subsections.

2.1.2.1 Bank Conflict

Continuously accessing one bank with different RAs is called bank conflict which

is the most critical to SDRAM performance. Since a bank activated by the former request

should get idle and then active for the latter request again, a lot of clock cycles are

required to complete these operations. For example, in Figure 2.2, there are two SDRAM

schedulers reordering four read requests, i.e., read 1 (RA 0, BA 0, CA 0), read 2 (RA 1,

BA 0, CA 0), read 3 (RA 0, BA 1, CA 0), and read 4 (RA 1, BA 1, CA 0). We assume

that all schedulers work for DDR II SDRAM at 333MHz clock frequency. In Figure 2.2

(a), let them scheduled in the order, read 1, read 2, read 3, and read 4 by scheduler 1.

After performing read 1, read 2 cannot be immediately executed since a row buffer of

bank 0 is already occupied by data of RA 0. Hence, a PRE command should release the

open row buffer of bank 0 and then an ACT command should be executed to fill the row

 15

buffer of bank 0 with data of RA 1. On the contrary, read 3 can be pipelined, called bank

interleaving, since it has different BA with read 2. As shown in Figure 2.2(a), while the

bank 0 is activated and accessed for read 2, bank 1 gets activated for read 3. As a result,

data 3 accessed by read 3 are generated with no loss of clock cycle. The last read 4

conflicts with read 3 since they have the same BAs, but different RAs.

On the contrary, scheduler 2 changes the execution order of four read requests,

read 1, read 3, read 2, and read 4 as shown in Figure 2.2(b). Since this order does not

cause any bank conflict, all read requests are pipelined. That means the second SDRAM

scheduler lets all requests completed faster and latency of data 3 and 4 be shorter than the

first SDRAM scheduler. In this example, the first scheduler achieves 9.5% (= 4 data/42

clock cycles) memory utilization and the second scheduler achieves 13.3% (= 4 data/30

clock cycles) memory utilization. Therefore, the second one is more desirable.

2.1.2.2 Data Contention

A case of a write request followed by a read request or a read request followed by

a write request is called data contention. Data pins/wires are bidirectional in most

SDRAMs while control and address pins/wires are unidirectional. As a result, input data

may be collided with output data. To transfer data to SDRAM after receiving data from

SDRAM, there should be at least one clock cycle interval between writing data and

reading data in DDR I/II SDRAM. Since internal read-to-write command delay time

(tRTW) is required in DDR III SDRAM in Table 2.1, an interval between read data and

write data happens up to two clock cycles. tRTW is CL+tCCD+2-WL if burst length (BL) is

8 or tRTW is CL+tCCD/2+2-WL if BL is 4. Hence, data contention is naturally hidden

behind this delay time in DDR III SDRAM.

 16

a W

e assum
e that posted C

A
S (C

olum
n A

ccess Strobe) additive latency (A
L) is 0 in D

D
R

 II/III SD
R

A
M

.

b C
A

S latency or read latency.
c W

rite latency.
d R

A
S (R

ow
 A

ccess Strobe) to C
A

S delay tim
e.

e C
A

S-to-C
A

S com
m

and delay
f R

ow
 precharge tim

e.
g W

rite recovery tim
e.

h Internal w
rite-to-read com

m
and delay tim

e.
i Internal read-to-w

rite com
m

and delay tim
e for D

D
R

 III SD
R

A
M

. If B
urst Length (B

L) is 8, it is C
L+

tC
C

D +
2-W

L and if B
L is 4, it is 4

(=C
L+

tC
C

D /2+
2-W

L). In this table, B
L is 8.

Table 2.1:
Tim

ing param
eter of D

D
R

 I, II a, and III a SD
R

A
M

.

 17

B
A

N
K

 0

B
A

N
K

 1

A
C

T
(R

A
0)

R
D

(C
A

0)
PR

E
A

C
T

(R
A

1)
R

D
(C

A
0)

PR
E

A
C

T
(R

A
0)

R
D

(C
A

0)
PR

E
A

C
T

(R
A

1)
R

D
(C

A
0)

PR
E

42 clocks

tR
C

D

4clk
4clk

4clk
4clk

4clk
4clk

4clk
4clk

4clk

(a) Scheduler 1: read1 (R
A

0, B
A

0, C
A

0), read2 (R
A

1, B
A

0, C
A

0), read3 (R
A

0, B
A

1, C
A

0) and read4 (R
A

1, B
A

1, C
A

0)

read1
read2

read3
read4

4clk

C
L

data1
data 2

D
A

TA
data 3

data 4

tR
P

tR
C

D

tR
C

D
tR

C
D

tR
P

C
L

C
L

B
A

N
K

 0

B
A

N
K

 1

A
C

T
(R

A
0)

R
D

(C
A

0)
PR

E
A

C
T

(R
A

1)
R

D
(C

A
0)

PR
E

A
C

T
(R

A
0)

R
D

(C
A

0)
PR

E
A

C
T

(R
A

1)
R

D
(C

A
0)

PR
E

30 clocks

4clk
4clk

4clk
4clk

4clk

4clk
4clk

4clk
4clk

4clk

(b) Scheduler 2: read1 (R
A

0, B
A

0, C
A

0), read3 (R
A

0, B
A

1, C
A

0), read2 (R
A

1, B
A

0, C
A

0) and read4 (R
A

1, B
A

1, C
A

0)

read1
read3

read2
read4

D
A

TA
data1

data3
data2

data4

tR
C

D
tR

C
D

tR
C

D
tR

C
D

tR
P

tR
P

C
L

C
L

Figure 2.2:
Exam

ples show
ing bank conflict and interleaving in D

D
R

 II SD
R

A
M

 @
333M

H
z.

 18

On the other hand, a read command following a write command needs internal

write-to-read command delay time (tWTR) to be executed. Then, after read latency or CL,

reading data can be received from SDRAM. Write-to-read data contention is naturally

hidden behind tWTR and CL, but they cause memory utilization and memory latency

degraded critically. Therefore, continuous read or write requests are preferred to access

SDRAM efficiently.

For example, in Figure 2.3, there are two SDRAM schedulers reordering two

write requests and two read requests, i.e., write 1 (RA 0, BA 0, CA 1), read 2 (RA 0, BA

0, CA 2), write 3 (RA 0, BA 0, CA 3), and read 4 (RA 0, BA 0, CA 4). All schedulers

interface with DDR II SDRAM working at 266MHz clock frequency. As shown in Figure

2.3(a), let them scheduled in the order, write 1, read 2, write 3, and read 4 by scheduler 1.

In this figure, read 2 cannot be immediately performed after writing all data 1 since tWTR

is required to accept the next read command. Furthermore, since data 2 are received from

SDRAM after read latency or CL, a read request following a write request wastes total

tWTR and CL cycles even if bank conflict does not happen between two requests. If both

bank conflict and data contention happen simultaneously, bank conflict is commonly

prioritized. Since bank conflict wastes more clock cycles than data contention, data

contention is hidden behind bank conflict. On the contrary, a write request following a

read request has no internal command delays in DDR I/II SDRAM. Instead, a write

command performing write 3 should be given to DDR SDRAM when it does not cause

any collision with data 2. Most DDR I/II SDRAM schedulers get at least one clock cycle

interval between read data and write data. If DDR III SDRAM is used, data contention is

hidden naturally behind tRTW. The last read 4 requires both tWTR and CL before

transferring data 4.

 19

B
A

N
K

 0
A

C
T

(R
A

0)
W

R
(C

A
1)

R
D

(C
A

2)

data3

tR
C

D

1clk

(a) Scheduler 1: w
rite1 (R

A
0, B

A
0, C

A
1), read 2 (R

A
0, B

A
0, C

A
2), w

rite 3 (R
A

0, B
A

0, C
A

3), read 4 (R
A

0, B
A

0, C
A

4)

w
rite1

4clk

W
L

data1
D

A
TA

tW
TR

W
L

data2

W
R

(C
A

3)

C
L

tW
TR

2clk
R

D
(C

A
4)

data4 PR
E

4clk

C
L

2clk

B
A

N
K

 0
A

C
T

(R
A

0)
R

D
(C

A
2)

tR
C

D

(b) Scheduler 2: read 2 (R
A

0, B
A

0, C
A

2), read 4 (R
A

0, B
A

0, C
A

4), w
rite 1 (R

A
0, B

A
0, C

A
1), w

rite 3 (R
A

0, B
A

0, C
A

3)

read2

4clk

D
A

TA

read 2
w

rite 3
read 4

R
D

(C
A

4)

data4

W
R

(C
A

1)

read4
w

rite1

W
R

(C
A

3)

w
rite 3

data2
data1

data3

W
L

C
L

1clk

4clk
tW

R
PR

E

28 cycles

20 cycles

t R
TW

tR
TW

Figure 2.3:
Exam

ples show
ing data contention in D

D
R

 II SD
R

A
M

 @
266M

H
z.

 20

On the contrary, scheduler 2 changes the order of two write requests and two read

requests, i.e., read 2, read 4, write 1 and write 3 as shown in Figure 2.3(b). Since this

order causes one data contention wasting just one clock cycle, all read/write requests are

performed faster than scheduler 1. In common SDRAM operations, after writing data 3,

write recovery time (tWR) is required to accept a PRE command. Scheduler 1 and

scheduler 2 take 28 and 20 clock cycles, respectively, until bank 0 becomes idle after

performing all requests. As a result, scheduler 1 achieves 14.3% (= 4 data/28 clock

cycles) memory utilization and scheduler 2 achieves 20% (= 4 data/20 clock cycles)

memory utilization. Therefore, continuous read or write requests are encouraged to

access SDRAM efficiently.

2.1.2.3 Short Turn-Around Bank Interleaving

A bank interleaving approach as a solution of bank conflict is the efficient

technique. Hence, high memory utilization and short memory latency can be achieved as

explained in Section 2.1.2.1. However, bank interleaving may achieve little improvement,

in particular, in high performance SDRAM even if bank interleaving is performed

completely. In Table 2.1, as an operating clock of SDRAM is faster and faster, activation

delay time (tRCD), deactivation delay time (tRP) and read/write latency (CL/WL) are also

longer and longer. The long delay times let the benefit of bank interleaving critically

degraded since a bank interleaved may not get sufficient time to be deactivated or

reactivated after the bank is accessed by the previous request with different RA.

For example, in Figure 2.4, there are two SDRAM schedulers reordering four read

requests, i.e., read 1 (RA 0, BA 0, CA 0), read 2 (RA 0, BA 1, CA 0), read 3 (RA 1, BA

0, CA 0), and read 4 (RA 0, BA 2, CA 0). We assume that all schedulers work for DDR

 21

Figure 2.4:
Exam

ples show
ing short turn-around bank interleaving in D

D
R

 III SD
R

A
M

 @
800M

H
z.

 22

III SDRAM at 800MHz clock frequency. In Figure 2.4(a), let them be scheduled in the

order, read 1, read 2, read 3, and read 4 by scheduler 1 such that all read requests are

performed without bank conflict. After performing read 1, bank 0 is deactivated and read

2 starts to receive data 2. Then, read 3 waits until all data 2 are received. However, read 3

accessing bank 0 cannot be performed even if read 2 is done and the relation between

read 2 and read 3 is bank interleaving. The reason is that bank 0 accessed by read 1 is not

deactivated due to too long tRP, i.e., operations for read 3 such as deactivation,

reactivation, and read/write cannot be hidden behind the process of read 2. Hence, while

bank 0 is deactivated, reactivated with data of RA 1, and ready to transfer data 3, any data

cannot be transferred or received from other banks, which makes memory utilization and

latency degraded.

On the contrary, scheduler 2 changes the execution order of read 3 and read 4 as

shown in Figure 2.4(b). As a result, read 4 accessing bank 2 can be hidden behind the

process of executing read 2 and even read 3 accessing bank 0 can be hidden behind the

process of executing read 4. If there is another read 5 accessing bank 3 and it is

performed between read 4 and read 3, data may be transferred more continuously with no

loss of clock cycle. Consequently, memory utilizations by scheduler 1 and scheduler 2

are 6.7% (= 4 data/60 clock cycles) and 7.4% (= 4 data/54 clock cycles), respectively.

Since this problem is more serious in high performance DDR SDRAM, a memory

subsystem should check when banks get active again even if bank interleaving is

performed completely.

 23

2.1.3 NoC Design with SDRAM

2.1.3.1 Problem Description

Bank conflict and data contention frequently happen in the conventional NoC

design due to limited resources such as an input buffer in a memory subsystem.

Moreover, short turn-around bank interleaving also happens in high performance DDR

SDRAM. Figure 2.5 shows a simple example of bank conflict in a 2× 3 NoC design

under the limited resources. This NoC includes a single memory subsystem that consists

of an input buffer, a memory scheduler and an SDRAM interface signal generator. The

memory scheduler reorders packets stored in the input buffer to avoid bank conflict, data

contention and short turn-around bank interleaving. In this figure, RxBy means that a row

address (RA) and a bank address (BA) of packet are x and y, respectively. An arrow

indicates that a packet will move to the direction at the next clock cycle. We assume that

a length of all packets is 1, the memory subsystem includes a two-depth input buffer to

store two packets and the scheduler makes one of two stored packets executed every

cycle (although execution time is actually longer than one cycle).

Figure 2.5: Bank conflict in 2× 3 NoC with conventional round-robin flows controller
although an effective memory subsystem.

bank conflict

(a) cycle 0 (b) cycle 1 (c) cycle 2 (d) cycle 3

execution
buffers

schedulingmemory subsytem

R3B0 R3B1

R2B0R1B0R2B1

R1B1
R0B1

R0B0
R0B0

R1B0
R1B1

R3B0

R3B1R2B0R2B1

R1B1
R1B0
R2B0

R3B0R2B1 R3B1

R1B0
R3B0
R2B0

R2B1 R3B1

 24

In Figure 2.5, round-robin arbitration [19] is adopted as a flow control mechanism

of NoC routers to assign a channel and an input buffer of the next node to one packet

among several competing packets. At cycle 0, three packets, R2B0, R2B1 and R3B0 get a

competition for an advance to the router interconnected to the memory subsystem and we

assume that R2B0 wins. R0B1 is executed in the memory subsystem. At cycle 1, R2B0

advances to the router interconnected to the memory subsystem and then R3B1 also

advances to the empty router by the advance of R2B0. Then three packets, R2B1, R3B0

and R3B1 also get the competition such that R3B0 wins by round-robin arbitration. In the

memory subsystem, R0B0 but not R1B1 is executed for avoiding bank conflict since

R0B1 accessing bank 0 is performed at cycle 0. At cycle 2, R3B0 advances in the router

interconnected to the memory subsystem and R1B1 is executed in the memory

subsystem. Then, two packets, R3B1 and R2B1 get the competition such that R2B1 wins

by round-robin arbitration. At cycle 3, bank conflict happens in the memory subsystem

since current execution is a bank 0 request and two buffers are also stored with bank 0

requests, where all row addresses are different. Although the efficient memory subsystem

is included in the NoC design, it is difficult to avoid bank conflict completely under the

limited depth of a buffer and the dynamic SDRAM accesses of processing elements. Data

contention and short turn-around bank interleaving can happen in the conventional NoC

design by similar mechanism to this example.

2.1.3.2 Basic Idea of Our Approach

In our NoC design, scheduling SDRAM request packets is performed by multiple

SDRAM-aware routers. This architecture makes the possibility of bank conflict lower

since packets arrive at a memory subsystem in the order that is friendly to SDRAM

 25

operations. Figure 2.6 shows how NoC with our SDRAM-aware router works well

without bank conflict. At the first competition (cycle 0) for an advance to the router

interconnected to the memory subsystem, the winner is R2B1 accessing bank 1 since the

former packet (R1B0) passed in this router accesses bank 0. The rest of packet causes

bank conflict since they read/write data in the same bank but different row addresses

from the former packet. At cycle 1, R2B1 advances to the router interconnected to the

memory subsystem and then R2B0 and R3B0 get the competition. Both can be a winner

for the next advance since they access bank 0. In this example, R2B0 is chosen by our

SDRAM-aware router. At cycle 2, R2B0 advances to the router interconnected to the

memory subsystem and R3B1 avoiding bank conflict wins against R3B0 for the next

advance. Finally, R3B1 advances to the router interconnected to the memory subsystem

and R3B0 follows R3B1 at cycle 3. As a result, an NoC design with our SDRAM-aware

router avoids bank conflict better than an NoC design with the conventional memory

subsystem and router.

no bank conflict

(d) cycle 3(c) cycle 2(b) cycle 1(a) cycle 0

execution

R3B0 R3B1

R2B0R1B0R2B1

R1B1

R3B1R3B0

R2B0R2B1

R1B0

R3B0

R2B1

R2B0 R3B1

R2B0

R3B1

R3B0

Figure 2.6: No bank conflict in 2× 3 NoC with SDRAM-aware flow controller although
a simple memory subsystem.

 26

A single memory subsystem usually controls one channel of SDRAM in the

conventional NoC, which means the same number of memory subsystem as the number

of SDRAM channel is required. Whereas it is allowable to use multiple SDRAMs for

high performance, it is not desirable to use a corresponding number of memory

subsystems. The reason is that the memory subsystem as shown in Figure 2.5 is too high

in terms of hardware cost due to the heavy input buffer and the complex scheduler.

Furthermore, a depth of input buffer rapidly increases as a length of packet is longer and

longer in a high definition graphics/video system. On the other hand, the proposed

architecture saves the NoC design cost since any input buffer and any scheduler are not

required in the memory subsystem as shown in Figure 2.6. Instead, a simple flow

controller is included in multiple routers, which has a very low hardware cost compared

to an input buffer and a scheduler in a memory subsystem. In the next section, we present

a novel SDRAM-aware NoC router in detail.

2.1.4 SDRAM-Aware Router

For a wide range of applications, the proposed NoC router is about a novel

paradigm for SDRAM-aware-NoC exploration, which has a flow-control mechanism

improve memory utilization and memory latency with a cost-effective NoC platform.

Indeed, based on our idea present in Section 2.1.3.2, any deterministic and adaptive

routing scheme can be combined to implement our SDRAM-aware router. Another flow-

control mechanism can be also combined to avoid deadlock and livelock [19], to make

traffic load balanced on a network [83][89][94] and to manage buffers and channel

bandwidth [58].

 27

2.1.4.1 Router Description

Our NoC router consists of an input buffer, a routing logic, a flow controller and

an output scheduler as shown in Figure 2.7. A packet is split into so-called flits (flow

control digits) which are then routed and stored in a pipelined fashion. The input buffers

are managed by a wormhole flow control mechanism or a virtual-channel flow control

mechanism and backpressure is used to inform upstream nodes when they must stop

transmitting flits because all of the downstream input buffers are full. For our experiment,

the wormhole flow control mechanism is implemented due to its simplicity and wide

popularity [19] and an on/off flow control mechanism for the backpressure is employed

to avoid a loss of flits.

Processing element
input buffer

Northern
input buffer

Southern
input buffer

Eastern
input buffer

Flow controller

Flow controller

Flow controller

Flow controller

Flow controller

Routing
logic

Routing
logic

Routing
logic

Routing
logic

Routing
logic

Northern
output scheduler

Western
input buffer

Southern
output scheduler

Eastern
output scheduler

Western
output scheduler

Flit flow Backpressure

Processing element

Figure 2.7: The architecture of an SDRAM-aware router consisting of input buffers,
routing logics, flow controllers, and output schedulers for a mesh network.

Our SDRAM-aware router can be implemented to either deterministic or adaptive

routers according to a routing logic that guarantees deadlock and livelock freeness.

Virtual channels and deterministic dimension-ordered routings (e.g. XY routing, odd-

even routing) are commonly used to prevent deadlock [19]. We implement XY routing

that is a deterministic and minimal path routing algorithm such that it guarantees

 28

deadlock- and livelock-free routing. In addition, we consider an ordering issue when a

master core sends a read request to another slave core before the master core receives a

read data from one slave core or when a master core requests another read data to a slave

core in NoC employing an adaptive router before the master core receives one read data

from the slave core. This ordering issue can be solved by [61] or under the following

constraint: a master core can send a read request to a slave core only after the master core

receives all data requested. The latter solution is employed in our implementation. In

addition, since our SDRAM-aware flow control algorithm is performed with in-order

buffers, the ordering problem does not happen in each SDRAM-flow control.

In this router, more than two flits arriving on different input buffers at the same

time may both desire the same channel toward a memory subsystem. In this situation, our

flow-control mechanism resolves this contention, allocating the channel to one packet

and dealing with the others, blocked packets. Figure 2.8 shows our SDRAM-aware flow

controller combined with the conventional flow controller. In Figure 2.8, an address

parser sends an incoming memory request packet to our SDRAM-aware flow controller

and an incoming normal packet to the conventional flow controller. Our SDRAM-aware

flow controller schedules the memory packets in order to prevent bank conflict, data

contention and short turn-around bank interleaving. In the next section, the SDRAM-

aware flow-control algorithm using a priority-based arbitration is described minutely.

Then, the resulting memory request packet competes with normal packets by the

conventional flow control mechanism. Hence, normal packets can reach their destination

with no additional communication delay.

Figure 2.8(a) shows its serial implementation. This architecture causes a timing

path to be much longer since a 5-input conventional flow control algorithm is performed

 29

Address
parser

Address
parser

Address
parser

Address
parser

4-input SDRAM-aware
flow controller

5-input Conventional
flow controller

Address
parser

Address
parser

Address
parser

Address
parser

4-input SDRAM-aware
flow controller

2-input Conventional
flow controller

4-input Conventional
flow controller

(a) Serial implementation (b) Parallel implementation

Figure 2.8: The architecture of an SDRAM-aware flow controller combined with a
conventional flow controller for a mesh network.

after performing our 4-input SDRAM-aware flow control algorithm. On the other hand,

in Figure 2.8(b), our 4-input SDRAM-aware flow controller for memory packets and a 4-

input conventional flow control algorithm for normal packets are parallelly performed.

Finally, two resulting packets are scheduled by a 2-input conventional flow controller.

This parallel implementation can minimize an increase of timing path whereas its design

cost is more expensive than the design cost of the serial implementation. We adopt this

parallel implementation in our experiment. In addition, our flow controllers adopt

winner-take-all bandwidth allocation that allocates all of the bandwidth to just one packet

until it is finished or blocked before serving the other packets [19].

An output scheduler either detects if an input buffer of the next router is available

or expects when the input buffer is available. When an input buffer of the next router is

full and a deterministic routing logic is implemented, an output scheduler lets the

corresponding SDRAM-aware flow controller stop scheduling packets. On the other

hand, packets given multiple routing paths performed by an adaptive routing logic can be

scheduled to other flow controller less busy.

 30

2.1.4.2 SDRAM-Aware Flow Control for Avoiding Bank Conflict and Data Contention

Our flow control acts to allocate a channel to one of competing flits which

destination is a memory subsystem interfacing with SDRAM. Therefore, our flow-control

mechanism performs arbitration to determine which flit gets the channel it has requested.

After the arbitration, a winning flit advances over this channel. Our arbitration algorithm

also decides how to dispose of any flits that do not get their requested channel.

In Algorithm 1 called SP, our arbitration is a priority-based algorithm, where a

priority is determined by SDRAM awareness. The priority is assigned to all head flits

which destination is a memory subsystem. Let h(n) be a head flit of a packet, which is

already allocated a channel by the SDRAM-aware flow control at the nth arbitration.

Body and tail flits are assigned the same channel as their head flit. Let hi(n+1) be one of

all competing head flits (I) which should be allocated to the same channel as h(n) by the

SDRAM-aware flow control at the (n+1)th arbitration, where i∈I. The head flits, h(n)

and hi(n+1) contain address and command information to access SDRAM, denoted by

(RAn, BAn, R/Wn) and (RAn+1,i, BAn+1,i, R/Wn+1,i), respectively, where the notations are

(row address, bank address, read/write command). At the (n+1)th arbitration, all hi(n+1)

Algorithm 1 Scheduling Packet to Avoid Bank Conflict and Data Contention
Input: h(n), hi(n+1) and Table 2.2
1: for each hi(n+1), i∈I do
2: if hi(n+1) is a new packet entering to the router then
3: wi = 0;
4: else
5: wi = wi + waiting cycles from previous arbitration(n);
6: end if
7: di = delay cycle between h(n) and hi(n+1) from Table 2.2;
8: pi = wi - di;
9: end for
10: hi(n+1) with maximum(pi) is allocated to a channel;
Output: h(n+1)

 31

are compared to h(n) and then are given a delay penalty from Table II (line 7) that is

composed from DDR I, II and III SDRAM working at 133MHz to at 800MHz clock

frequency (with 266MHz to 1.6GHz data rate) [24].

Table 2.2 shows how many clock cycles waste by bank conflict and data

contention or a combination thereof when hi(n+1) accesses SDRAM after h(n). If bank

conflict and data contention happen simultaneously, bank conflict is commonly

prioritized since bank conflict wastes more clock cycles than data contention. According

to a read/write command, a bank address and a row address, there are twelve cases as

shown in Table 2.2. Twelve cases are also classified into eight delay types that are

described as follows:

Delay a: Case 1 and case 10 have no clock cycle loss since hi(n+1) is the same

read/write command, bank address and row address as h(n). These cases indicate

that the same row data of the same bank are again accessed by the same

command. Thus, the bank does not need to be deactivated and reactivated, which

causes the clock cycle loss. In addition, read/write latency of hi(n+1) can be

hidden while h(n) is accessed. In Figure 2.3(b), the relation between read 2 and

read 4 is case 1 and the relation between write 1 and write 3 is case 10.

Delay b: Case 2 is the read-to-read bank conflict explained in Section 2.1.2.1.

Before executing the latter read accessing the same bank but a different row, the

bank must be deactivated, i.e. data in the row buffer move to the corresponding

row of the bank. Then, the bank must be activated again, which indicates that the

row buffer should be again filled with new data for the latter read. Thus, it takes

tRP+tRCD+CL to receive data of the latter read after receiving data of the former

 32

a A

ccessing the sam
e row

 data one m
ore tim

e.
b tR

P + tR
C

D + C
L.

c B
ank interleaving.

d O
ne clock cycle interval betw

een input and output in D
D

R
 I/II SD

R
A

M
. Tw

o clock cycle intervals betw
een input and output in D

D
R

 III
SD

R
A

M
.

e tR
P + tR

C
D + W

L.
f tW

TR + C
L.

g tW
R + tR

P + tR
C

D + C
L.

h tW
R + tR

P + tR
C

D + W
L.

Table 2.2:
SD

R
A

M
 data input/output delay betw

een h(n) and h
i (n+

1).

 33

read. This case is shown in the relation between read 1 and read 2 and in the

relation between read 3 and read 4 in Figure 2.2(a).

Delay c: Case 3 and case 12 have no clock cycle loss since bank interleaving is

completely performed as mentioned in Section 2.1.2.1. Case 3 is the read-to-read

bank interleaving as shown in Figure 2.2(b) and case 12 is the write-to-write bank

interleaving. Since a bank address of the latter request is different from that of the

former request, the bank accessed by the latter request can be activated while data

of the former request are transferred to or from SDRAM. Then, when data of the

former request complete to transfer, data of the latter request can be accessed with

no loss of clock cycle.

Delay d: Case 4 and case 6 have at least one clock cycle interval between the

former read data and the latter write data to avoid data contention in DDR I/II

SDRAM as shown in Section 2.1.2.2. In DDR III SDRAM, the latter write

command can be executed internal read-to-write command delay time (tRTW) after

the former read command. Then, write data can be transferred to SDRAM after

write latency (WL). Thus, actual write data are transferred to DDR III SDRAM,

two clock cycles after receiving the last read data. Thus, tRTW lets data contention

hidden naturally. In Figure 2.3(a), the relation between read 2 and write 3 is case

4. Case 6 is data contention with bank interleaving.

Delay e: In case 5, data contention and bank conflict happen at the same time

since it is a read-to-write access and bank addresses of the read request and the

write request are same but their row addresses are different. As mentioned

 34

before, bank conflict should be considered preferentially since it wastes more

clock cycles than data contention. Before writing data to the different row in the

same bank, the row buffer should be idle after reading data and then active. It

takes tRP to be idle and tRCD to be active again. Then, data can be written after

write latency. Data contention hides naturally behind this bank conflict.

Delay f: Case 7 is the write-to-read data contention when the latter read request

accesses data placed in the same bank and row as the former write. Case 9 is also

the write-to-read data contention with bank interleaving since the latter read has a

different bank address. To read data after writing data placed in the same bank

and row or in a different bank, a read command is accepted internal write-to-read

command delay time (tWTR) after writing the last data to SDRAM. Then read data

are transferred from the SDRAM after read latency.

Delay g: Case 8 causes the longest delay time due to the write-to-read bank

conflict. Data contention is ignored since the bank conflict is more critical. The

latter read request accesses data placed in the same bank but a different row.

Thus, after the former write request, the bank should be idle. tWR is required to

accept a precharge command for deactivation after writing the last data and it

takes tRP to complete the precharge command. Furthermore, tRCD is required to

activate the row buffer for the latter read request. Then, data can be received read

latency after accepting a read command. Thus, total delay time is

tWR+tRP+tRCD+CL.

 35

Delay h: Case 11 is the write-to-write bank conflict since the latter write request

accesses the same bank but a different row from the former write request. As

presented in the previous case, delay g, it takes a bank tWR and tRP to be idle after

writing the last data. Then, its row buffer gets active with row data for the latter

write request. It takes tRCD to be active and write data are finally transferred to

SDRAM after write latency.

Our priority-based arbitration guarantees the upper bound latency even if a high

delay penalty of packet given from Table 2.2 lasts for a long time. For example, let a

packet with case 11 lose a competition against a packet with case 10. If it meets another

packet with case 10 at the next competition, the defeated packet keeps losing the

competition since the delay penalty is not changed. Thus, the defeated packet is required

to escape from this competition after several defeats. To solve this starvation problem,

our flow control counts the number of clock cycle passed from the first competition to the

current competition (line 5) for each defeated packet. Then, this waiting clock cycle is

subtracted by the delay clock cycle obtained in Table 2.2 (line 8). By this operation, any

packet delayed for the amount of the worst delay (case 8) does not have a lower priority

than a new packet entered in the router. For example, in DDR III SDRAM working at

533MHz and 800MHz clock frequency, the packets waiting for 32 and 45 clock cycles

get higher priority than any new packet entered in the router respectively.

Finally, the packet with the maximum pi is allocated to a channel (line 10). In our

SDRAM-aware flow control, the packet with longer waiting cycle and shorter delay cycle

gets a higher priority. Then, the rest of packet that is blocked waits for the next

competition or get another competition at a different SDRAM-aware flow controller if

 36

multiple routing paths are allocated by a routing logic. Thus, if an adaptive router instead

of a deterministic router is employed in a routing logic, the performance would be better.

2.1.4.3 SDRAM-Aware Flow Control for Avoiding Short Turn-Around Bank
Interleaving

As mentioned in Section 2.1.2.3, a short turn-around bank interleaving problem is

not critical for low-performance SDRAM like DDR I SDRAM since a bank has sufficient

time to be deactivated or reactivated until the bank is accessed again The reason is that

short deactivation (tWR+tRP for writing and tRP for reading) or reactivation time (tRCD) is

hidden behind the process of accessing a different bank. On the other hand, deactivation,

reactivation and read/write latency time are so long in high-performance SDRAM that it

is difficult for them to hide behind the process of accessing a different bank. For

example, in DDR III SDRAM working at 800MHz clock frequency, it takes a bank 23,

11 and 11 clock cycles to deactivate, reactivate and output data, respectively after writing

data. Thus, before the written bank is again read with a different row address, a scheduler

should let different banks accessed for at least 23 clock cycles to improve memory

utilization.

The proposed SP algorithm just schedules memory request packets to prevent

bank conflict and data contention. Hence, it should check whether a bank accessed by

hi(n+1) is given sufficient deactivation time before the bank is activated. It is well

explained together with hardware/architecture of an SDRAM interface signal generator.

Figure 2.9 is an SDRAM interface signal generator commonly used, where an input

packet passes three buffers to generate SDRAM commands such as a PRE command, an

ACT command and an R/W command. First, an input packet arriving at an SDRAM

interface signal generator is stored in a deactivation buffer but not an activation buffer as

 37

shown in Figure 2.9. That means a bank keeps activating after accessing data, called open

page mode. It can be useful for high memory utilization since most of the cores access

data placed in continuous memory addresses, i.e., the same bank and row addresses but

different column addresses. Then, if the input packet accesses the bank previously

activated with a different row address, a PRE command is output to an SDRAM interface

signal controller to deactivate the bank and then the packet moves to an activation buffer.

On the other hand, if the input packet accesses the bank previously activated with the

same row address or if the input packet accesses the bank already deactivated, the packet

just passes a deactivation buffer with no PRE command. If a packet stored in an

activation buffer accesses the bank deactivated, the packet lets an ACT command

generated to an SDRAM interface signal controller and then moves to a read/write buffer.

Finally, a packet stored in a read/write buffer always lets an R/W command generated to

an SDRAM interface signal controller. An SDRRM interface signal controller receives a

PRE command, an ACT command and an R/W command from those buffers and then

generates the final interface signals to SDRAM.

To solve the short turn-around bank interleaving problem happening in this

SDRAM interface signal generator, a packet that is output from a deactivation buffer

should pass (tWR)+tRP until the packet is output from an activation buffer. In addition, a

packet that is output from an activation buffer should pass tRCD until the packet is output

from a read/write buffer. Since the deactivation time is longer than the activation time

and read/write latency, the interval between packets accessing the same bank and a

different row should be at least tRP or tWR+tRP depending on a read request or a write

request that the previous packet accessing each bank is.

 38

deactivation
buffer

activation buffer

read/write buffer

SDRAM I/F
signal

controller

Control

Address

Data

Input

Output

Figure 2.9: The architecture of an SDRAM interface signal generator with a
deactivation buffer, an activation buffer, and a read/write buffer which
packets pass through.

Algorithm 2 called AP is executed instead of line 8 in our SP algorithm to solve the short

turn-around bank interleaving problem. In the AP algorithm, a clock cycle (dis) required

to deactivate each bank is recorded after a read/write operation is completed. Thus, the

same number of counter as the number of bank is required to save and count dis. If the

packet h(n) performed is a write request, dis of bank that h(n) accesses is set to tWR+tRP in

line 4. If the packet h(n) performed is a read request, dis of bank that h(n) accesses is set

to tRP in line 6. Then, all dis are reduced by 1 every clock cycle in line 9. If any packet,

hi(n+1) is in case 3, 6, 9, and 12 of Table 2.2 with h(n), our AP algorithm checks if the

bank accessed by the hi(n+1) has sufficient deactivation time (line 11-15). For this

operation, did captures dis in line 12 if the relation between h(n) and hi(n+1) is case 3, 6,

9, and 12. Otherwise, did is 0 in line 14. Then, did is compared to di obtained from Table

2.2. Finally, larger delay time is chosen as effective delay time and then subtracts a

waiting clock cycle as shown in line 16. Our solution makes banks accessed as uniformly

as possible such that the banks get the sufficient time to be deactivated for the next

request.

 39

Algorithm 2 Assigning Priority to Avoid Short Turn-Around Bank Interleaving
Input: wi, di, h(n) and hi(n+1)
1: for every clock cycle do
2: if h(n) is done then
3: if h(n) is write request then
4: dis of bank(h(n))= tWR + tRP;
5: else
6: dis of bank(h(n)) = tRP;
7: end if
8: end if
9: dis = dis – 1 for all dis;
10: end for
11: if relation of h(n) and hi(n+1) is case 3, 6, 9 and 12 then
12: did = dis of bank(hi(n+1));
13: else
14: did = 0;
15: end if
16: pi = wi – max(di, did);
Output: pi

2.1.4.4 Hardware Complexity

Memory scheduling is performed by our SDRAM-aware flow controller included

in multiple NoC routers instead of a single memory subsystem. Thus, simple logics are

added for our SP algorithm to compute SDRAM access delay (di) and waiting time (wi)

whereas a buffer and a scheduler of memory subsystem are removed as shown in Figure

2.6. A buffer in a memory subsystem is used to store several packets and then to reorder

the packets for successive delivery of SDRAM data. However, as the massive size of

packet is recently generated in graphics processing units (GPU) and a high-definition

video system, the size of buffer gets larger. The proposed NoC design does not require

any buffers in a memory subsystem since memory scheduling is performed in multiple

NoC routers and the maximum four input buffers per router in a regular mesh network

substitute for a buffer in a memory subsystem. In addition, the size of input buffer in the

router does not increase according to the size of packet since the input buffer is managed

 40

by wormhole flow control. Consequently, a distinguished hardware decrease by a buffer

in a memory subsystem exceeds a hardware increase by the SDRAM-aware flow

controller in multiple routers such that total gate count is reduced.

2.1.5 Experimental Results

Our SDRAM-aware NoC router is implemented with Verilog hardware

description language (HDL). We implement a memory subsystem operating for DDR I

SDRAM working at 133MHz and 200MHz clock frequency, DDR II SDRAM working at

266MHz, 333MHz and 400MHz clock frequency and DDR III SDRAM working at

533MHz and 800MHz clock frequency [24] which all consist of four banks. The memory

subsystem is implemented with a design concept of Sonics MemMax [75] and Denali

Databahn [23]. MemMax offers a sophisticated thread-based pipeline and advanced

arbitration schemes which prevent bank conflict and data contention conditions. Because

there are no ordering requirements between threads, requests from different threads can

be freely reordered. Different bandwidths and the qualities of service (QoSs) may be

allocated to different threads to effectively support system data flow requirements. In

MemMax, users can choose the depth of buffers, operation modes, and QoS settings that

best suit various applications. Since MemMax supports OCP where request signals and

data signals are separated, MemMax requires both a request buffer and a data buffer per

thread. We use 4-thread MemMax where each thread requires a 32-flit request buffer and

a 32-filt data buffer. The Databahn is an SDRAM controller that optimizes RAS, CAS,

PRE, and refresh operation. Since the Databahn employs command look-ahead to prepare

pages in memory in advance of when commands execute, it can give class-leading

performance even if the pattern of traffic is not known at design time. Both are included

 41

in the conventional NoC design with a round-robin flow control based router. This is

compared to our NoC design including multiple SDRAM-aware routers and an SDRAM

interface signal generator instead of a full memory subsystem. Applications are mapped

to mesh grid by A3MAP [51] and each simulation runs for one million clock cycles.

2.1.5.1 Digital Television Application

The conventional NoC design and our SDRAM-aware NoC design are applied to a

Samsung DTV system that consists of nine subsystems, i.e., a central processing unit

(CPU) that consists of ARM and several peripherals, a moving picture experts group

(MPEG) decoder, a digital natural image engine (DNIE), GPU, an audio decoder, a

transport stream (TS) decoder, an audio/video (AV) format converter, a channel decoder

and a memory subsystem that interfaces with DDR II SDRAM working at 333MHz clock

frequency. In the conventional NoC design, a router using a round-robin flow control

algorithm is gradually replaced with our SDRAM-aware router using the proposed SP

algorithm in the order where the router that is the closest to a memory subsystem is

replaced firstly and where the router that is the farthest away from a memory subsystem

is replaced lastly. Figure 2.10 shows the results depending on the number of SDRAM-

aware router placed in the order.

In Figure 2.10(a) and (b), memory utilization and memory latency achieved by the

conventional NoC design are 67.2% and 94 cycles, respectively. Memory utilization and

memory latency performed by our SDRAM-aware NoC design is just 57% and 119

cycles, respectively, in case that there are no input buffer and no memory scheduler in a

memory subsystem and no SDRAM-aware router. However, whenever our SDRAM-

aware router is substituted for the conventional router in the DTV system, memory

 42

utilization and memory latency improves rapidly. As a result, when three SDRAM-aware

routers are substituted for three conventional routers, memory utilization increases up to

72% (that is 7.1% better than the conventional NoC design). However, more than four

SDRAM-aware routers do not improve memory utilization any more since the solvable

bank conflict and data contention are almost prevented by three SDRAM-aware routers.

(a) Memory utilization (b) Average latency

(c) Gate count ratio

Figure 2.10: The comparisons of memory utilization, latency, and design complexity in
DTV application according to the number of SDRAM-aware routers, where
our NoC design achieves the best tradeoff between performance and cost
when three conventional routers are replaced to SDRAM-aware routers.

 43

Similarly, in Figure 2.10(b), memory latency is also shortened by three SDRAM-aware

routers up to 79 cycles (that is 16% shorter than the conventional NoC design) since high

memory utilization makes a packet performed as fast as possible and our SDRAM-aware

flow controller manages the upper bound latency.

Our SDRAM-aware NoC design and the conventional NoC design are

synthesized by Synopsys Design Vision with a TSMC130LV library. The gate count of

our SDRAM-aware NoC design is 26.8% smaller when three round-robin routers are

replaced with our SDRAM-aware routers in Figure 2.10(c). In addition, its gate count is

24.8% smaller even if all round-robin routers are replaced with our SDRAM-aware

routers. The reason is that a large buffer and a complex scheduler in a memory system are

removed whereas an additional hardware increased by our SDRAM-aware flow

controller is minimal.

We also implement the SDRAM-aware NoC based a DTV system interfacing

with a variety of DDR SDRAMs working at 133Mhz to 800MHz clock frequency. Our

DTV system works for real-time computing when it interfaces with DDR II SDRAM

working at 333MHz clock frequency. However, to show the benefit of our SDRAM-

aware NoC design in various DDR SDRAMs, we let a packet injection rate of each IP

changed similar to a change of the SDRAM clock speed. Table 2.3 shows memory

utilization and latency in our NoC design including three SDRAM-aware routers

compared to the conventional NoC design. Our SDRAM-aware NoC design proves more

merits on high-performance DDR SDRAM in Table 2.3. For example, our SDRAM-

aware NoC improves more 3.7% memory utilization and 14.3% memory latency than the

conventional NoC when they all interface with DDR I SDRAM working at 133MHz

clock frequency. On the other hand, our SDRAM-aware improves more 26% memory

utilization and 30.8% memory latency than the conventional NoC when they all interface

 44

with DDR III SDRAM working at 800MHz clock frequency. Since timing constraints

caused by bank conflict is about six times longer in DDR III SDRAM working at

800MHz clock frequency than in DDR I SDRAM working at 133MHz clock frequency,

our SDRAM-aware NoC design achieves better improvement of memory utilization and

latency in DDR SDRAM operating at a fast clock frequency.

The SDRAM-aware NoC design implemented by our SP algorithm is also applied

into dual DTV model [99] containing dual MPEG decoders and dual memory

subsystems. Consequently, the improvement of memory utilization and latency is similar

to a single memory subsystem. However, it saves more than 42% gate count compared to

dual DTV model implemented by the conventional NoC design since our SDRAM-aware

NoC design does not need eight 32-flit request and data buffers and two complex

memory schedulers in a dual memory subsystem.

2.1.5.2 Synthetic Benchmarks

We evaluate the improvement of memory utilization and memory latency

obtained from several randomly generated applications on industrial intellectual

properties (IP) with DDR II SDRAM working at 333MHz clock frequency. The

SDRAM-aware router adopts the SP algorithm and all of the conventional routers are

replaced with our SDRAM-aware routers. The IPs are mapped into 3×3 to 6×6 mesh

network by A3MAP [51] and generate 4 to 32 flits per packet at dynamic intervals. Table

2.4 shows our SDRAM-aware NoC improves 11.8% memory utilization and 18%

memory latency on average compared to the conventional NoC. In particular, the

improvement of memory utilization and memory latency is higher in 6x6 NoC than in

3x3 NoC since packets passing through more SDRAM-aware routers have more

 45

Table 2.3:
M

em
ory utilization and latency com

parison in D
TV

 application according to various D
D

R
 SD

R
A

M
s.

Table 2.4:
M

em
ory utilization and latency com

parison in synthetic benchm
arks according to netw

ork size.

 46

opportunities to be scheduled well for SDRAM operations. Therefore, we can expect that

the improvement of memory utilization and memory latency would be greater in larger or

complex NoC.

2.1.5.3 Comparison of SP and SP+AP

We evaluate the improvement of memory utilization and latency of SP+AP

algorithm that considers the short turn-around bank interleaving problem. For this

experiment, we use a 4x4 mesh network including three SDRAM-aware routers and

execute several randomly generated applications on industrial IPs. Table 2.1 shows the

SP+AP algorithm achieves better memory utilization and memory latency than the SP

algorithm in particular in high-performance DDR SDRAM. As shown in Table 2.5, the

short turn-around bank interleaving problem is not critical in low-performance DDR

SDRAM since the improvement of memory utilization and latency achieved by the

SP+AP algorithm is just around 1% compared to the SP algorithm. On the other hand, it

causes memory performance critically degraded when high-performance DDR SDRAM

is adopted in an NoC design. For example, in DDR III SDRAM working at 800MHz

clock frequency, the SP+AP algorithm achieves 9.2% higher memory utilization and

9.2% shorter memory latency than the SP algorithm. The proposed SP+AP algorithm

requires an additional hardware such as four counters, one comparator and some control

logics to check each bank state. However, the additional circuitry is tiny.

2.1.6 Summary

This section presented an SDRAM-aware NoC design where multiple NoC

routers adopting our SDRAM-aware flow control algorithm allocate an SDRAM access

 47

* It is the difference (im

provem
ent) betw

een SP and SP+A
P.

Table 2.5:
M

em
ory utilization and latency com

parison of SP and SP+A
P in D

D
R

 I/II/III SD
R

A
M

.

 48

packet to a channel for the efficient SDRAM operation. Our SDRAM-aware flow control

algorithms solve three memory scheduling problems, such as bank conflict, data

contention, and short turn-around bank interleaving to improve memory utilization and

latency. The proposed SP algorithm solves the bank conflict problem and the data

contention problem and the proposed SP+AP algorithm solves the short turn-around bank

interleaving problem. Experimental results show that our SDRAM-aware flow controller

adopting the SP algorithm delivers superior memory utilization and latency with the

small design cost compared to the conventional NoC design. In addition, our SP+AP

algorithm achieves higher memory performance than the SP algorithm in particular in

high-performance DDR SDRAM. Our SDRAM-aware router actives better performance

improvement when it is employed in complex NoC or its routing scheme is adaptive. In

conclusion, the proposed SDRAM-aware router provides more opportunities to support

bandwidth-hungry NoC designs with the small hardware cost.

2.2 APPLICATION-AWARE NOC DESIGN

In Section 2.1, our NoC design provides a best-effort memory service as each

SDRAM-aware NoC router equally manages all memory request packets. However, since

the latest real-time applications request a memory service with short latency, a priority

memory service should be also provided for cores sensitive to memory latency.

Furthermore, different applications request various sizes of memory data. In the state-of-

the-art multimedia system, the length of memory request packets requested by a video

encoder/decoder like H.264 [115] gets shorter whereas the length of memory request

packets requested by a video enhancer/format converter gets longer. The long best-effort

packets cause a priority packet to be further delayed. If any long best-effort packet is

 49

already scheduled in a router, a priority packet may wait until the best-effort packet is

completely transferred to the next router. On the contrary, the short packets cause

SDRAM utilization to be severely deteriorated. Since most SDRAMs receive or transmit

fixed-length data per read/write command, SDRAM data unnecessarily acquired may be

thrown away. Therefore, a NoC design should also consider the access granularity of

diverse applications for an efficient SDRAM access.

Since such guaranteed throughput and bounded latency are essential for NoC

designs, many researchers have developed various approaches [71]. Æthereal NoC

proposed in [31] provided a guaranteed service combined with a best-effort service

employing variants of time division multiplexing. In [76], Nostrum NoC was

implemented with the service of guaranteed bandwidth and latency in addition to the

existing service of best-effort. In [5], MANGO using clockless circuit techniques was

implemented. It exploited virtual channels to provide connection-oriented service

guarantees and connection-less best-effort routing. Kim et al. proposed router architecture

which utilized adaptive routing while maintaining low latency [58]. BiNoC supporting a

self-configuring bidirectional channel mechanism for better bandwidth utilization and

lower packet delivery latency was proposed in [63]. Das et al. in [21] proposed efficient

prioritization policies and architectural extensions to NoC routers that improved the

overall application-level throughput, while ensuring fairness in the network. The

prioritization policies were application-aware, distinguishing applications based on the

stall-time criticality of their packets. In [22], they also proposed router prioritization

policies that exploited the available slack of interfering packets in order to accelerate

performance-critical packets and thus improved overall system performance. However,

these approaches are not optimized for SDRAM request packets that cause the most

critical latency.

 50

In this section, we propose an application-aware NoC design to efficiently access

shared SDRAMs [52][55]. Our key motivations are twofold. First, some cores request a

guaranteed SDRAM service to an on-chip network and a memory subsystem. For

example, a demand request generated by a microprocessor is usually served as a priority

packet since the microprocessor may halt until the demand request is served. However,

the priority packet causes overall memory latency and utilization to be severely degraded.

Since an on-chip network first serves the priority packet without any consideration of

SDRAM operations, there exits strong possibility to meet bank conflict, data contention

and short turn-around bank interleaving in SDRAM, which all make memory

performance deteriorated. Therefore, the priority memory service should be considered

not only in a memory subsystem but also in an on-chip network. In addition, since long

best-effort packets may interfere with the fast service for the priority packet, they should

be split to several short packets and then served. Second, different cores request various-

length SDRAM data whereas DDR I/II SDRAMs always generate fixed-length data.

Even if DDR III SDRAM can generate variable-length data, it has few advantages due to

CAS to CAS delay time (tCCD) [24]. If the length of data requested by cores is not either

same as the length of data served by SDRAM or a multiple of the length of data served

by SDRAM, unnecessary data may be accessed and then thrown away. Therefore, the

access granularity mismatch problem resulting in low memory performance is considered

in our application-aware NoC design. Based on these motivations, the major novelties

and contributions of this section include the following.

• We propose a guaranteed SDRAM service (GSS) router. It provides an efficient

priority service for cores sensitive to memory latency.

 51

• We propose an SDRAM access granularity matching (SAGM) NoC design. Since

a packet is split to several short packets of which the size is equal or less than

SDRAM access granularity and then served by our GSS router and memory

subsystem without a memory scheduler and a number of buffers, unnecessary

SDRAM data can be less accessed.

• We show the hardware architecture of our GSS router and memory subsystem

working with a partially open-page policy and an auto- precharge (AP) operation.

• We show the GSS router significantly improves memory latency for a priority

packet with few penalties of overall memory utilization and latency. In addition,

the SAGM NoC design not only recovers the penalties but also further improves

overall memory performance.

To the best of our knowledge, this is the first work that addresses a NoC design

improving the quality of memory service through application-aware manners. The rest of

this section is organized as follows. In Section 2.2.1, we introduce two problems of

conventional application-unaware NoC designs. Section 2.2.2 presents the detail

description of the proposed application-aware NoC design. Experimental results are

shown in Section 2.2.3. Finally, Section 2.2.4 summarizes Section 2.2.

2.2.1 Problem Description and Our Basic Idea

2.2.1.1 Priority SDRAM Service in NoC

A microprocessor including a general processor, a cache and a prefetcher

commonly generates a demand request and a prefetch request. The demand request

should be served as soon as possible since the microprocessor may stall until it receives a

 52

service of the demand request. On the contrary, the prefetch request does not need to be

served with such a priority since it may be useless or not promptly used by the

microprocessor. Memory requests of multimedia processors and peripherals are

commonly handled similarly to the prefetch request in the latest video/graphics systems.

Most of the conventional memory scheduler or NoC router takes two different

approaches as to how to treat a priority request with respect to others. Figure 2.11(b)-(c)

show the operation of three different memory schedulers when two demand memory

requests, two prefetch memory requests and two memory requests by specific video

processors are filled in their input buffer as shown in Figure 2.11(a). In the figure, BA

means a bank address and all requests are read operations. In addition, the RAs of all

requests are different except prefetch 2 and request 2.

A memory scheduler providing a best-effort service as shown in Figure 2.11(b)

regards a priority memory request to have the same priority as others and then schedules

all memory requests to avoid bank conflict, data contention, and short turn-around bank

interleaving and to encourage row-buffer hit and bank interleaving. As a result, all

memory requests are successively executed with no bank conflict whereas the execution

of demand 2 is considerably delayed, which may cause the microprocessor generating

demand 2 to halt for a long time. On the contrary, in Figure 2.11(c), the demand requests

are executed with a priority. This approach makes the demand requests executed early.

However, since demand 2 accesses the same bank as demand 1 access with a different

RA, bank conflict happens. It causes any data not to be delivered while the row buffer of

bank 1 becomes deactivated and then is filled with the data of demand 2. Consequently,

since total execution time of six requests is longer, memory utilization gets deteriorated.

Therefore, a memory scheduler providing a priority service without the loss of memory

utilizaton is required.

 53

dem 1 dem 2pref 1 pref 2

bank conflict

req 2

BI

(c) Priority-first scheduling

(b) Priority-equal scheduling (best-effort service)

req 1

RBH

(a) Input buffer of
router or memory

subsystem

BI BI BI (Bank Interleaving)

dem 1: BA 1

dem 2: BA 1

pref 1: BA 2

req 1: BA 3

pref 2: BA 4

req 2: BA 4

dem 1 dem 2 pref 1 req 1 pref 2 req 2

BI RBHBI BI

dem 1 pref 1 req 1 dem 2 pref 2 req 2

BI RBH (Row-Buffer Hit)BI BIBI

 (d) Our approach: hybrid of priority-equal and priority-
first scheduling.

frist
come

increased
excution cycles

CPU halts
longer

Figure 2.11: Examples of scheduling memory requests, where priority-equal and priority-
first schedulers show long latency for priority packets and low memory
utilization, respectively.

Figure 2.11(d) is the most desirable scheduler that achieves the same memory

utilization as the best-effort scheduler and the same memory latency for the demand

requests as the priority-first scheduler. In order to achieve this performance, we propose a

hybrid flow control algorithm that gets the advantage of the priority-equal and priority-

first scheduler, which is fully described in Section 2.2.2. There may be strong possibility

to meet bank conflict, data contention, and short turn-around bank interleaving if a

demand request is separately considered on an on-chip network and in a memory

subsystem. Therefore, this scheduling is performed by multiple NoC routers which are

similar to the SDRAM-aware NoC design proposed in Section 2.1.

Moreover, we consider a long best-effort packet interfering with the fast service

of priority packets. In the advanced video/graphics system, the length of a packet is

longer and longer to provide a high-quality image. For example, the length of a packet

generated by an industrial video enhancer/format converter reaches 64 burst lengths

 54

(BLs), which means that it takes at least 64 clock cycles to transfer the packet to the next

router [99]. It is usually served as a best-effort packet. Let a router employing winner-

take-all bandwidth allocation [19] schedule the long best-effort packet to any channel and

then a priority packet reach in this router. If the router allocates the priority packet to the

same channel as the long best-effort packet, the priority packet must wait until the long

best-effort packet is completely delivered. In order to solve this problem, we split all

packets to several short packets and then served. As a result, the priority packet can get

more opportunities to be allocated to the channel. In the video/graphics system with 64-

BL packets, if the best-effort packet is split to several packets with 4 BLs, a priority

packet will wait for the maximum 4 clock cycles and then get the next competition. In the

proposed application-aware NoC design, the length of a packet split is determined by an

SDRAM access granularity introduced in the next subsection.

2.2.1.2 SDRAM Access Granularity Mismatch

SDRAMs transfer/receive fixed-length data (= the number of data bit × BL) per

CAS command, called SDRAM access granularity. DDR I SDRAM has a BL 2, BL 4

and BL 8 mode and DDR II/III SDRAM has a BL 4 and BL 8 mode. In addition, since

DDR III SDRAM has a selectable BL 4 or BL 8 on-the-fly (OTF) mode, it can deliver

data with 4 or 8 BLs, depending on address 12 pin without any BL mode change. For

example, if SDRAM with 16-bit data bus is set to a BL 8 mode via mode register set

(MRS), it always generates 16 bytes per CAS command as shown in Figure 2.12. On the

contrary, any cores may request data with various lengths to SDRAMs. For example, an

MPEG-1/2 and H.264 [115] encoder/decoder requests 8 or 16 bytes and 4, 8 or 16 bytes

for motion estimation/compensation to SDRAM, respectively. If the MPEG-1/2 or H.264

 55

encoder/decoder requests just 8 bytes as shown in Figure 2.12, the rest of data

unnecessarily accessed are thrown away, which seriously degrades memory performance.

Simple solutions are to reduce the number of data bits or to use a short BL mode

in DDR SDRAM. If the number of data bits is changed to 8 bits, there exists no wasteful

data. However, the overall system interfacing with SDRAM with 8-bit data bus does not

have sufficient memory bandwidth to feed all cores. If more SDRAMs are interfaced with

the entire system in order to increase the memory bandwidth, additional memory

subsystems and pins/wires that are the limited resources are required. On the contrary,

when short BL modes such as BL 2 and BL 4 are used in DDR SDRAM, command

bandwidth exceeds data bandwidth such that it is difficult to hide commands behind data

input/output time. The reason is that BL 2 and BL 4 have just one and two spaces where

commands can be executed, respectively, whereas three spaces per SDRAM access are

always required to execute three commands such as RAS, CAS, and PRE, except for a

row-buffer hit condition. If there exists no row-buffer hit condition, memory utilization

cannot exceed 33.4% and 66.7% in BL 2 and BL 4.

RAS
BA1

CAS
BA1

CAS
BA2

R
1

R
2

W
1

W
2

PRE
BA1

RAS
BA1

R
3

R
4

W
3

W
4

RAS
BA2

clock

 DDR II SDRAM @200MHz (RL=3, WL=2, BL=8)

data

useless

read, 64 bits
BA1

16 bits

write, 128 bits
BA2

W
5

W
6

W
7

W
8

packet

command

tRCD CL
tRP

Figure 2.12: Example of memory access granularity mismatch in DDR II SDRAM
@200, where four bursts read are thrown away.

 56

For this SDRAM access granularity mismatch problem, we focus on the latter

approach using a BL 4 mode. In order to overcome the shortage of a command execution

space, we use an auto-precharge (AP) operation in a memory subsystem. When AP is

executed with a CAS command, the row buffer of an accessed bank automatically

becomes idle without a PRE command after finishing transferring or receiving SDRAM

data. In addition, a packet is split to several short packets with the same BL as SDRAM

or less BL of SDRAM and then served by an on-chip router and a memory subsystem in

our application-aware NoC design. As mentioned in Section III.B, splitting a packet to

several short packets is also helpful to a priority service when a best-effort packet is too

long. The detail approach is described in Section 2.2.2.

2.2.2 Application-Aware NoC Design

Even with a perfect network routing algorithm and a perfect flow control

algorithm mentioned in [71], a priority memory request may be significantly congested

and delayed in a memory subsystem if it reaches the memory subsystem with the order

unfriendly to SDRAM operations. In addition, if the length of data requested by cores is

different from that of data served by SDRAM, data unnecessarily accessed are thrown

away. In this regime, our attention shifts to an application-aware NoC design to improve

not only the overall memory performance but also the quality of memory service.

2.2.2.1 Architecture of GSS Router

The proposed GSS router with p input/output ports consists of an input buffer, a

routing logic, a flow controller and an output scheduler as shown in Figure 2.13.

Typically, p is 5 and 7 for 2D and 3D mesh networks, respectively. The input buffers are

 57

managed by a wormhole flow control mechanism or a virtual-channel flow control

mechanism. For our experiment, the wormhole flow control mechanism is implemented

due to its simplicity and wide popularity [19]. The routing logic is responsible for

determining the next router for each packet. Our GSS router can be implemented to either

deterministic or adaptive routers according to a routing logic that guarantees both

deadlock and livelock freeness. For our experiment, we implement XY routing that is a

deterministic and minimal path routing algorithm such that it guarantees deadlock-free

and livelock-free routing.

Processing element
input buffer

Northern
input buffer

Southern
input buffer

Eastern
input buffer

Flow controller

Flow controller

Flow controller

Flow controller

Flow controller

Routing
logic

Routing
logic

Routing
logic

Routing
logic

Routing
logic

Northern
output scheduler

Western
input buffer

Southern
output scheduler

Eastern
output scheduler

Western
output scheduler

Flit flow Backpressure

Processing element

Address
parser

Address
parser

Address
parser

Address
parser

4-input GSS
flow controller

2-input conventional
flow controller

4-input conventional
flow controller

Figure 2.13: The architecture of an NoC router and a GSS flow controller for a 2D mesh
network.

 58

In this router, more than two different packets arriving on input buffers at the

same time may desire the same channel toward a memory subsystem. In this situation,

our GSS flow-control mechanism resolves this contention, allocating the channel to one

packet and dealing with the others, blocked packets. In Figure 2.13, our GSS flow

controller is parallelly performed with the conventional flow controller. Each address

parser sends an incoming memory request packet to our GSS flow controller and an

incoming normal packet to the conventional flow controller. Our GSS flow controller

schedules the memory request packets in order to prevent bank conflict, data contention,

and short turn-around bank interleaving and provide a priority service at the same time.

Then, the resulting memory request packet again competes with a normal packet by the

conventional flow control mechanism. Hence, normal packets can reach their destination

with no additional communication delay and interference. This parallel implementation

can minimize an increase of timing critical path whereas its design cost is slightly

expensive. In addition, our flow controllers adopt winner-take-all bandwidth allocation

that allocates all of the bandwidth to just one packet until it is finished or blocked before

serving the other packets [19].

An output scheduler either detects if an input buffer of the next router is available

or expects when the input buffer is available. When the input buffer of the next router is

full and a deterministic routing logic is implemented, an output scheduler makes the

corresponding GSS flow controller stop scheduling packets. On the contrary, packets

given multiple routing paths by an adaptive routing logic can be scheduled to other GSS

flow controllers which is not busy.

In addition, we consider an ordering issue when a master core sends a read

request to another slave core before the master core receives a read data from one slave

core or when a master core requests another read data to a slave core in NoC employing

 59

an adaptive router before the master core receives one read data from the slave core. This

ordering problem can be solved by various previous works including [61] or a following

constraint: a master core can send a read request to a slave core only after the master core

receives all requested data. The latter solution is employed in our implementation for

simplicity. In addition, since our GSS flow control algorithm is performed with in-order

buffers, the ordering problem does not happen in each GSS flow control.

2.2.2.2 GSS Flow Control Algorithm

In this section, we minutely present our flow control algorithm providing short

latency for a priority memory request packet and similar overall memory utilization and

latency. Let h(n) be a packet already allocated any channel by our GSS flow control at

the nth arbitration. Let hi(n+1) be any packet i of all completing packets, H(n+1), which

may be allocated the same channel as h(n) by our flow controller at the (n+1)th

scheduling. The packets, h(n) and hi(n+1) contain an address and a command to access

SDRAM, denoted by (RAn, BAn, R/Wn) and (RAn+1,i, BAn+1,i, R/Wn+1,i), respectively,

where the notations are (row address, bank address, read/write). Thus, bank conflict, data

contention, bank interleaving and row-buffer hit conditions are defined as (BAn=BAn+1,i

and RAn≠RAn+1,i), (RWn≠RWn+1,i), (BAn≠BAn+1,i) and (BAn=BAn+1,i and RAn=RAn+1,i),

respectively. Based on these notations and definitions, Algorithm 3 shows how our flow

controller works for a guaranteed memory service, which consists of two parts.

First, a memory request packet (i) is given some tokens (ti), depending on its input

order and priority (line 1-13). Let a new packet come in a router. All of the old packets

are given to one additional token to avoid starvation (line 3). Then, if the new packet has

a priority, old best-effort packets accessing the same bank as the priority packet are

 60

Algorithm 3 GSS Flow Control
1: if new packet hk(n+1) comes in each router then
2: for hi(n+1) ∈ H(n+1) do
3: ti ← ti+1;
4:

if hk(n+1) is priory packet and its BA is equal to that of hi(n+1) that is best-
effort packet then

5:
6:
7:

 hi(n+1) is except from H(n+1);
end if

 end for
8: if hk(n+1) is priority packet then
9: tk ← 2 to 5 (or 6); // PCT for Figure 2.14(a) (or (b))
10: else
11:
12:
13:

tk ← 1; // best-effort packet
 end if
end if

14: if h(n) finishes being delivered to the next router then
15: for hi(n+1) ∈ H(n+1) do
16: Ti(ti) in Figure 2.14 ← hi(n+1);
17:
18:

Ti(0) in Figure 2.14← hi(n+1);
end for

19: if SPPCT = ∅ then
20: for hi(n+1) ∈ H(n+1) do
21:
22:

ti ← ti+1;
end for

23:
24:
25:

Go to line 14;
end if

end if

except from H(n+1) (line 5). It means that old best-effort packets that access the same

bank as any priority packet are not scheduled until the priority packet is scheduled. Then,

the new packet gets an initial token. If it is a best-effort packet, one token is given (line

11). Otherwise, more than two tokens are given (line 9) to a priority packet by a user,

called a priority control token (PCT). If a single token is given to the priority packet, it is

equal to a priority-equal scheduler and if the maximum tokens are given to the priority

packet, it is equal to a priority-first scheduler. Therefore, we can control the service speed

of a priory packet by PCT.

 61

Second, when h(n) finishes being delivered, the rest of packets, H(n+1) in the

router are scheduled (line 14-25). They all are input to Figure 2.14, according to the

number of tokens each packet has. That is, if any packet has 1, 2, 3, 4, 5, and 6 tokens,

the packet is input to Ti(1), Ti(2), Ti(3), Ti(4) , Ti(5), and Ti(6), respectively (line 16). All

of the packets are also input to Ti(0) in line 17. As mentioned in Section III.A, a short

turn-around bank interleaving problem is not critical for DDR SDRAM working at a low

clock frequency since a short deactivation clock cycle and a reactivation clock cycle can

be hidden behind the process of accessing a different bank. For such DDR SDRAMs, our

flow controller just resolving bank conflict and data contention is shown in Figure 2.14

(a). On the contrary, since it takes a number of clock cycles to finish deactivation and

reactivation in DDR SDRAM working at a high clock frequency, it is difficult for them to

hide behind the process of accessing different banks. For example, in DDR III SDRAM

working at an 800MHz clock frequency, it takes 23 clock cycles to deactivate any bank

after writing data [24]. Thus, until the written bank finishes being deactivated, a flow

controller should make different banks accessed for 23 clock cycles to improve memory

performance. Therefore, a flow controller working for such DDR SDRAMs should

consider not only bank conflict and data contention but also short turn-around bank

interleaving as shown in Figure 2.14(b).

In order to check whether each bank finishes being idle, our flow controller has

the same number of a counter as the bank of DDR SDRAM. After the last data are

transferred to SDRAM, a counter corresponding to a bank written is set to tWR+tRP, where

tWR and tRP are write recovery (WR) time and row precharge (RP) time, respectively [24].

On the contrary, after the last data are received from SDRAM, a counter corresponding to

a bank read is set to tRP. Then, the delay cycle stored in the counter is reduced by 1 every

clock cycle. Thus, in Figure 2.14(b), the short bank turn-around bank interleaving

 62

condition is defined as the counter corresponding to a bank accessed by hi(n+1) is greater

than 0. If it is true, the bank is not ready to be activated again. Otherwise, the bank

finishes being deactivated.

Read to write access?

Write to read acess?

Bank conflict?
no

no

SP5 = To(5)&P ? To(0) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=5
SP4 = To(5)&P ? To(4)&P ? To(0) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=4
SP3 = To(5)&P ? To(4)&P ? To(3)&P ? To(0) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=3
SP2 = To(5)&P ? To(4)&P ? To(3)&P ? To(2)&P ? To(0) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PTC=2

Row-buffer hit?

no

no

Ti(5) Ti(3) Ti(2) Ti(1) Ti(0)

no

Write to read acess?

Read to write access?
no

Bank conflict
& read to

write access?

Ti(4)

yes

(a)

Read to write access?

Write to read acess?

Bank conflict?

no

no
SP6 = To(6)&P ? To(0) ? To(6) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=6
SP5 = To(6)&P ? To(5)&P ? To(0) ? To(6) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=5
SP4 = To(6)&P ? To(5)&P ? To(4)&P ? To(0) ? To(6) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=4
SP3 = To(6)&P ? To(5)&P ? To(4)&P ? To(3)&P ? To(0) ? To(6) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=3
SP2 = To(6)&P ? To(5)&P ? To(4)&P ? To(3)&P ? To(2)&P ? To(0) ? To(6) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); //PCT=2

Row-buffer hit?

no

no

Ti(6) Ti(3) Ti(2) Ti(1) Ti(0)

no

Write to read acess?

Read to write access?
no

Bank conflict
& read to

write access?

Ti(5)

yes
short turn-around bank interleaving?

no

Ti(4)

(b)

Figure 2.14: Scheduling memory request packets for guaranteed SDRAM service
considering (a) bank conflict and data contention, and (b) bank conflict, data
contention and short turn-around bank interleaving.

 63

Finally, the packets are differently filtered in Figure 2.14, depending on the

number of token and the priority. If any packet has a few token, which means an old

packet or a priority packet, it is easy to pass this filter. After filtering all packets, if there

is no packet passing the filter (line 19), all packets are given one additional token (line

21) and then go to the input of the filter again (line 23). Finally, if there are any packets

passing the filter, one among the packets is output to SPPCT (Scheduled Packet). If PCT is

n in line 9, SPn is used in Figure 2.14 where To(ti) is the filtered output of Ti(ti).

SPn=A?B?C means A is chosen if A is not 0. If A is 0 and B is not 0, B is selected.

Finally, if both A and B are 0 and C is not 0, C is chosen. In Figure 2.14, a packet with

a priority (P) and the most tokens is first selected. Next, a packet with To(0) is selected.

Lastly, a best-effort packet with the most tokens is selected. The reason that the packet

with To(0) is preferred to the best-effort packet with the most tokens is that there is strong

possibility that h(n) and hi(n+1) is split from the same packet. Why they are split from

the same packet will be explained in the next section.

2.2.2.3 NoC Design for SAGM

It is useful to split a long packet into several short packets since on-chip network

resources can be efficiently reserved and an SDRAM access granularity mismatching

problem can be easily solved. That is, the optimal length of packets can improve

memory/network utilization/latency. We split a packet to several short packets,

depending on an SDRAM access granularity. Since our GSS routers communicate

through a famous open core protocol (OCP) [86] or an AMBA AXI/AHP [2] protocol,

packets consist of body flits but not head and tail flits including routing information.

Instead, more controls and address buses include the routing information. Therefore, even

 64

if a packet is split to several short packets in each core and then is injected on a network,

network loads do not increase.

As mentioned in Section 2.2.1.2, DDR I/II SDRAMs always transfer/receive

fixed-length data per read/write command after any BL mode is set in MRS. Most of the

memory subsystems prefer a BL 8 mode in DDR I/II SDRAM because a BL 2 mode and

a BL 4 mode can cause command bandwidth to be severely limited. As DDR SDRAMs

transfer/receive two data burst per clock cycle, data are transferred/received for one and

two cycles in the BL2 and BL4 mode, respectively. However, without any row-buffer hit,

SDRAM needs three commands such as RAS, CAS and PRE to obtain the short data.

Therefore, the commands are so congested that the execution of commands is delayed.

As shown in Figure 2.15, we assume that a PRE command for BA 1 and a CAS

command for BA 2 are issued at the same time. In Figure 2.15(a), the PRE command is

performed earlier than the CAS command. Consequently, the data of the second packet

are written with some delays. In Figure 2.15(b), the CAS command is performed earlier

than PRE command. Consequently, the bank 1 gets idle and active with some delays.

Therefore, such command congestion should be solved when short BL modes are used.

Fortunately, SDRAMs can omit a PRE command if a CAS command is executed

with an auto-precharge (AP). The AP is enabled to provide a self-timed row precharge

that is initiated at the end of burst access. As a result, both the PRE command and the

CAS command are not delayed due to AP, as shown in Figure 2.15(c). Under this

consideration, it is useful that the BL (granularity) of packets is 2 and a BL mode in DDR

I/II SDRAM is set to 4. Now that DDR III SDRAM has a selectable BL4 or BL8 OTF

mode, it is useful that the BL of packets is 4 and a BL mode in DDR III SDRAM is set to

8. For example, if the BL of any packet is 9, it is split to five packets whose BLs are 2, 2,

2, 2 and 1 for DDR I/II SDRAM and it is split to three packets whose BLs are 4, 4 and 1

 65

for DDR III SDRAM. It is efficient not only to match the access granularity but also to

manage network resources. That is, a priority packet can be served faster in a winner-

take-all bandwidth allocation policy. If the length of any best-effort packet is 9, a priority

packet waits until all 9 bursts of the best-effort packet are transferred. If it is split like our

approach, a priority packet wait until the maximum 2, 2 and 4 bursts of the best-effort

packets are transferred in DDR I, II and III SDRAM, respectively and then get more

opportunities to be allocated to a channel.

clock

 DDR II SDRAM @200MHz (RL=3, WL=2, BL=4)

read, 64 bits
BA1, RA1

write, 128 bits
BA2, RA1packet

RAS
BA1

CAS
BA1

R
1

R
2

W
1

W
2

R
3

R
4

W
3

W
4

PRE
BA1

RAS
BA2

RAS
BA1

RAS
BA1

CAS
BA1

R
1

R
2

W
1

W
2

R
3

R
4

W
3

W
4

CAS
BA2

RAS
BA2

RAS
BA1

CAS
BA1

R
1

R
2

W
1

W
2

R
3

R
4

W
3

W
4

CAS
BA2

RAS
BA2

RAS
BA1

command

data

command

data

command

data
autoprecharge

(a) Delay of CAS commands (BA2)

(b) Delay of PRE and RAS commands

(c) No delay of commands

CAS
BA2

PRE
BA1

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

CAS
BA2

CAS
BA2

CAS
BA2

RAS
BA1

tRCD

CL

tRP

CAS
BA1

CAS
BA1

write, 64 bits
BA1, RA2

CAS
BA1

Figure 2.15: SDRAM Operations when BL is set to 4 in DDR II SDRAM @300MHz,
where the read command with authoprecharge does not need any precharge
command.

 66

To implement this idea, we make a core generate short packets whose granularity

is 2, 2 and 4 in DDR I, II and III SDRAM, respectively and the last packet has a tag to

execute AP. Since the relation of packets split is row-buffer hit, there is not any loss of

memory performance. As explained in IV.B, our GSS router prefers the row-buffer hit

condition to the bank interleaving condition even if both do not cause any loss of memory

performance. Therefore, if split best-effort packets do not meet any priority packet, they

are scheduled successively. On the contrary, a priority packet is always scheduled

without any interference.

Figure 2.16 shows our memory subsystem. Since memory scheduling is

performed in multiple GSS routers, our memory subsystem consists of an SDRAM

controller, but not a complex memory scheduler and a number of buffers. Our SDRAM

controller makes DDR SDRAMs work for a partially open-page mode. Each bank keeps

an active state (open-page) after being accessed by a packet without any tag indicating

the last packet split from a long packet. However, if a bank is accessed by a packet with a

tag, the bank is deactivated (closed-page) by AP. In addition, when a priority packet

meets bank conflict relation with the previous best-effort packet, the bank is closed even

if the previous best-effort packet has no tag. Our SDRAM Controller works by this

concept.

A memory request packet that is input to our SDRAM controller is decoded to

extract SDRAM access information such as BA, RA, column address (CA), the length of

data, the type of a command, write data (if the command is a write request) and a master

address. Then, the master address of read requests is stored in an output buffer and then

used for building a memory service packet when requested data are received from

SDRAM. The write data is stored in a data buffer and then used for generating an

SDRAM interface signal for a write operation. The rest of SDRAM access information is

 67

stored in a PRE buffer. Then, the PRE buffer issues a PRE command only if a priority

packet has any bank conflict relation with the previous best-effort packet without any tag.

Since AP performing with a CAS command can be substituted for the PRE command, a

number of PRE buffers are not required. The information stored in the PRE buffer is

again stored to a RAS buffer. The RAS buffer issues a RAS command only if a packet

does not have any row-buffer hit relation with the previous packet. The information

stored in the RAS buffer is again stored in a CAS buffer. The CAS buffer always issues a

read/write command. If a tag is attached to any information, its command is executed

with AP. Next, all PRE, RAS and CAS commands are scheduled by a command

scheduler with a round-robin policy. Finally, an SDRAM interface signal generator

builds SDRAM interface signals for each command and then sends them to SDRAM.

Decoder

C
om

m
and

schedular

Control

Address

Data

Input

Output Output
buffer

PRE buffer SD
R

A
M

 interface
signal generator

RAS buffer

CAS buffer

Data buffer

Figure 2.16: The architecture of our memory controller where small PRE and RAS
buffers are required thanks to authoprecharge operations.

 68

2.2.3 Experimental Results

The proposed application-aware NoC is implemented in Verilog HDL. The

memory subsystem interconnected to DDR I/II/III SDRAM with 32-bits data bus [24]

employs the design concepts from Sonics’ MemMax [75] and Denali’s Databahn [23].

Both the MemMax and the Databahn are employed in the conventional NoC design with

a round-robin flow control based router, called CONV. The conventional NoC design and

the SDRAM-aware NoC design set DDR SDRAMs to a BL 8 mode via MRS. They are

compared to our application-aware NoC design where DDR I/II SDRAM are set to a BL

4 mode and DDR III SDRAM is set to a selectable BL 4 or BL 8 OTF mode.

We use a Blu-ray model [115], a DTV model and a dual DTV model [99] as

applications, which consist of 9, 9 and 16 cores, respectively. A memory subsystem is

placed in a upper left corner and the applications are mapped to 3×3, 3×3 and 4×4 mesh

network, respectively by A3MAP [51] as shown in Figure 2.17. The multimedia systems

can work for various video sizes to measure memory performance in different DDR

SDRAMs. For example, let dual DTV work for two video streams with 1920×1088

pixels, interfacing with 400MHz DDR II SDRAM for real-time computing. If the dual

DTV interfaces with 200MHz DDR I SDRAM and 800MHz DDR III SDRAM, it works

for two video streams with 1280×720 pixels and 2560×1600 pixels, respectively. All

simulations run for one million cycles.

2.2.3.1 No Priority Memory Request

Our application-aware NoC design is first experimented when there is not any

priority packet. Since a demand packet generated by a microprocessor or a cache is not

assigned to a priority packet, all packets receive a best-effort service. We implement the

proposed application-aware NoC design to two versions. One is that only a GSS router is

 69

employed and the other is that both a GSS router and an SAGM design are employed in

our NoC design, called GSS and GSS+SAGM, respectively.

Table 2.6 shows their memory performance, where the performance ratio is based

on the SDRAM-aware NoC design presented in Section 2.1, called SANoC. The GSS

router achieves slightly better overall memory utilization and latency than SANoC even if

it is optimized for the latency of priority memory requests. On the contrary, the GSS

router shows slightly worse latency of demand packets, compared to SANoC. However,

the latency of demand packets is not important since the demand packets are not assigned

to a priority packet. Our NoC design employing both the GSS router and the SAGM

design achieves not only higher memory utilization and shorter memory latency for

overall requests, but also much shorter latency for the demand requests than SANoC and

GSS designs.

As shown in Table 2.6, the proposed application-aware NoC design with SAGM

is the most useful for DDR II SDRAM where a read operation cannot be interrupted by

any write and a write operation cannot be interrupted by any read and precharge

operations. In DDR I SDRAM, a read operation can be interrupted by a burst stop

command to support a short-burst data. However, since a write operation cannot be still

interrupted, our SAGM design can improve memory performance in DDR I SDRAM.

Now that DDR III SDRAM has a selectable BL4 or BL8 on-the-fly (OTF) mode, it looks

perfect for the SAGM. However, in DDR III SDRAM, a CAS command can be

performed only 4 clock cycles after the previous CAS command due to tCCD (CAS to

CAS delay time). It makes DDR III SDRAM similarly works for a BL8 mode even if the

BL mode is not set to 8. Therefore, our performance improvement in DDR III SDRSAM

is less than that in DDR I/II SDRAM.

 70

M
em

ory
subsystem

A
R

M
 &

peripherals

G
raphic

processing
unit

Transport
(elem

entary
) steam

decoder

V
ideo

enhancer

V
ideo

form
at

converter

C
hannel

(optical)
decoder

A
udio

decoder

M
PEG

(H

.264)
decoder

M
em

ory
subsystem

A
R

M
 &

peripherals

G
raphic

processing
unit

Transport
steam

decoder 1

V
ideo

enhancer

V
ideo

form
at

converter 1

C
hannel

decoder 1

C
hannel

decoder 2

Transport
steam

decoder 2

V
ideo noise
rem

over
A

udio
decoder

M
PEG

decoder 1

External
video

capture

V
ideo

form
at

converter 2

G
raphic

accelerator

M
PEG

 or
H

.264
decoder 2

D
D

R

SD
R

A
M

(a) Single D
TV

/B
lue-ray m

odel in 3×
3 m

esh netw
ork

(b) D
ual D

TV
 m

odel in 4×
4 m

esh netw
ork

D
D

R

SD
R

A
M

Figure 2.17: Single D
TV

/blue-ray and dual D
TV

 application m
apping results by A

3M
A

P in 3x3 and 4x4 m
esh netw

orks.

 71

a D

D
R

 I SD
R

A
M

b D

D
R

 II SD
R

A
M

c D

D
R

 III SD
R

A
M

d R

atio is based on SA
N

oC

 Table 2.6:
M

em
ory perform

ance com
parison on industrial benchm

arks w
ithout priority m

em
ory requests.

 72

2.2.3.2 Priority Memory Request

We test the proposed application-aware NoC design on priority packets. Since a demand

packet generated by a microprocessor or a cache is assigned to a priority packet, it is

served earlier than a best-effort packet. We also implement the conventional NoC design

and the SDRAM-aware NoC with a priority-first service (PFS), called CONV+PFS and

SANoC+PFS, respectively.

Table 2.7 shows their memory performance, where the ratio is based on SANoC

in Table 2.6. Our application-aware NoC design proves more merits when there exists a

priority packet on NoC. SANoC+PFS improves, on average, the latency of priority

memory request packets up to 20.7%, compared to SANoC. However, the memory

utilization and latency of all packets are 8.3% and 23.3% worse than SANoC. On the

contrary, our GSS router improves, on average, the latency of priority memory request

packets up to 23.7%, compared to SANoC. The memory utilization and latency of all

packets are just 1.7% and 2.9% worse than SANoC. Compared to SANoC +PFS, our

GSS router improves, on average, 7.7% memory utilization, 16.5% latency of all packets

and 3.7% latency of priority packets. This result shows our GSS router has fewer

penalties of memory performance than SANoC +PFS to support a priority service.

Furthermore, GSS+SAGM further improves the memory performance since it

accesses few SDRAM data unnecessary. GSS+SAGM achieves, on average, 4.7% higher

memory utilization, 10.2% shorter memory latency of all packets and 9.1% shorter

memory latency of priority packets than GSS. Consequently, GSS+SAGM improves, on

average, not only 32.7% latency of priority packets but also 3.4% memory utilization and

7.8% latency of all packets, compared to SANoC. Compared to SANoC+PFS,

GSS+SAGM improves, on average, 12.7% memory utilization, 25.2% latency of all

packets and 15.2% latency of priority packets.

 73

a D

D
R

 I SD
R

A
M

b D

D
R

 II SD
R

A
M

c D

D
R

 III SD
R

A
M

d R

atio is based on SA
N

oC

 Table 2.7:
M

em
ory perform

ance com
parison on industrial benchm

arks w
ith priority m

em
ory requests.

 74

Figure 2.18 shows the memory performance of our application- aware NoC

design according to the number of GSS routers when a single DTV model (3×3), a Blue-

ray model (3×3) and a dual DTV model (4×4) work with DDR I SDRAM at 200MHz,

DDR II SDRAM at 333MHz and DDR III SDRAM at 666MHz, respectively. In the

(a) Average memory utilization (b) Average latency for all packets

(c) Average latency for demand packets

Figure 2.18: The memory performance of our application-aware NoC design according to
the number of GSS routers, where our NoC design achieves the best tradeoff
between performance and cost when three conventional routers are replaced
to GSS routers.

 75

conventional NoC design, a router employing a priority-first and round-robin flow

control algorithm is gradually replaced with our GSS router in the order where a router

that is the closest to a memory subsystem is replaced first and where a router that is the

farthest away from a memory subsystem is replaced last.

When any input buffer and any memory scheduler are not adopted in a memory

subsystem and the conventional router is placed on a network, its memory utilization is

just 69%, 56% and 38% in a single DTV model, a Blue-ray model, and a dual DTV

model, respectively as shown in Figure 2.18(a). However, whenever our GSS router is

substituted for the conventional router, its memory utilization improves rapidly. As a

result, when three GSS routers are substituted for three conventional routers, the memory

utilization increases up to 77%, 73% and 54% in a single DTV model, a Blue-ray model

and a dual DTV model, respectively. However, more than four GSS routers achieve little

improvement of memory utilization since the solvable bank conflict and data contention

are almost prevented by three GSS routers.

Figure 2.18(b) shows the memory latency of all packets including both a priority

packet and a best-effort packet. The memory latencies of all packets are initially 134

cycles, 157 cycles and 332 cycles in a single DTV model, a Blue-ray model and a dual

DTV model, respectively. However, whenever the GSS router is substituted for the

conventional router, the memory latency of all packets also improves rapidly. As a result,

when three GSS routers are substituted for three conventional routers, the memory

latency of all packets decreases up to 88 cycles, 98 cycles and 191 cycles in a single DTV

model, a Blue-ray model and a dual DTV model, respectively.

Figure 2.18(c) shows the memory latency of priority packets. The memory

latencies of priority packets are 92 cycles, 122 cycles and 146 cycles in a single DTV

model, a Blue-ray model and a dual DTV model, respectively when any input buffer and

 76

memory scheduler are not adopted in a memory subsystem and the conventional router is

placed on a network. However, when three GSS routers are substituted for three

conventional routers, the memory latency of priority packets decreases up to 54 cycles,

63 cycles and 95 cycles in a single DTV model, a Blue-ray model and a dual DTV model,

respectively. Therefore, three GSS routers placed around a memory subsystem shows the

most efficient result in terms of hardware cost and memory performance.

We also evaluate the improvement of memory performance when a short turn-

around bank interleaving problem is considered in our application-aware NoC design,

called GSS+SAGM+STI. For this experiment, we use three GSS routers employing

Figure 2.14(b) and execute a Blue-ray model, a single DTV model and a dual DTV

model with DDR III SDRAM at 533MHz, 667MHz, and 800MHz, respectively. The

short turn-around bank interleaving problem is not critical in DDR SDRAM working at a

low clock frequency. This is because a bank can be sufficiently deactivated and

reactivated while any different bank is accessed. On the contrary, the short turn-around

interleaving problem causes memory performance to be critically degraded in DDR

SDRAM working at a high clock frequency. This is because the deactivation, activation,

and WL/CL delay time are too long, compared to the length of data accessed. Table 2.8

shows that GSS+SAGM+STI achieves, on average, 9.4% higher memory utilization,

11.2% shorter memory latency of all packets and 12.9% shorter memory latency of

priority packets than GSS+SAGM.

CONV, SANoC, and the proposed NoC design are synthesized by Synopsys

Design Vision with OSU PDK 45nm CMOS standard cell library [107]. Table 2.9 shows

their gate count in case that they are optimized at 400MHz clock speed. Our flow

controller is 8.9% smaller than SANoC even if it provides effective QoS and high

throughput. This is because our GSS flow control mechanism for scheduling memory

 77

App. Clock
speed

Utiliz
ation Imp. Latency of

all packets Imp.
Latency

of priority
packet

Imp.

Blue-ray 533MHz 0.674 10.9% 119 cycles 4% 79 cycles 12.2%
Single DTV 667MHz 0.590 5.5% 140 cycles 7.3% 87 cycles 8.4%
Dual DTV 800MHz 0.593 11.9% 161 cycles 22.2% 81 cycles 18.2%

Average 0.619 9.4% 140 cycles 11.2% 82 cycles 12.9%

Table 2.8: The memory performance comparison of GSS+SAGM+STI and
GSS+SAGM on industrial benchmarks.

Module CONV SANoC GSS+SAGM+STI
Gate count Ratio Gate count Ratio Gate count Ratio

Flow controller 3,310 0.539 6,732 1.097 6,136 1
Router 56,683 0.904 62,949 1.003 62,721 1

Memory subsystem 489,898 3.283 158,874 1.065 149,245 1
3x3 NoC with

memory subsystem 966,250 1.511 661,645 1.035 639,481 1

Table 2.9: The comparison of gate count synthesized at 400MHz clock speed.

requests and avoiding starvation are optimized by event driven architecture. On the

contrary, the gate count of our flow controller is 85.4% greater than that of a

conventional flow controller due to the additional GSS flow control mechanisms.

However, since the flow controllers are commonly tiny, the gate count increased or

decreased by our GSS flow control mechanism has little impact on the area of whole

NoC design. In addition, routers can be equipped with the minimum GSS flow controllers

according to a routing policy. That is, any conventional flow controller through which a

packet goes to a memory subsystem can be just substituted for the proposed flow

controllers. Moreover, the GSS flow controllers can have fewer input ports. For example,

if a memory subsystem is placed in the upper left corner on NoC as shown in Figure 2.17,

a router located in (2, 2) can have two 3-input GSS flow controllers. The GSS flow

controllers schedule memory requests from processing element, south, and east inputs

 78

and are attached to a north and west output scheduler, respectively. As a result, the gate

count of our router is just 10.7% greater than a conventional router and 0.4% less than

SANoC, as shown in Table 2.9.

Our memory subsystem has great impact on the area of whole NoC design since it

does not require any reordering buffers and any complex memory scheduler. Since

memory requests are already scheduled by multiple routers with GSS flow controllers,

the memory requests arrive at our memory subsystem with the order friendly with

memory operations. In addition, our memory controller has fewer PRE buffers than a

conventional memory controller and SANoC due to effective AP operations. Thus, our

memory subsystem is 69.5% and 6.1% smaller than a conventional memory subsystem

and SANoC, respectively. Such a distinguished gate count decrease by removing

reordering buffers and a memory scheduler in our memory subsystem far exceeds a gate

count increase by GSS flow controllers in multiple routers. As a result, NoC with our

memory subsystem and three routers with GSS flow controllers is 33.8% and 3.3%

smaller than a conventional one and SANoC, respectively, as shown in Table 2.9.

We compute their power consumption by Synopsys Prime Time PX after gate-

level simulation. As shown in Table 2.10, our application aware NoC design consumes

on average 28.5% and 0.3% less power than the conventional one design and SANoC,

respectively.

Application Clock speed CONV SANoC GSS+SAGM+STI
Power Ratio Power Ratio Power Ratio

Single DTV 200MHz 179.0mW 1.550 116.0mW 1.004 115.5mW 1
Blue-ray 400MHz 351.6mW 1.550 227.8mW 1.004 226.8mW 1

Dual DTV 800MHz 961.9mW 1.328 726.0mW 1.003 724.1mW 1
Average 497.5mW 1.399 356.6mW 1.003 355.5mW 1

Table 2.10: The comparison of power consumption ruing at 400MHz clock speed.

 79

2.2.4 Summary

In NoC, a microprocessor and a specific core that perform various applications

request not only a best-effort memory service but also a priority memory service. In

addition, they request memory data with various sizes which do not match an SDRAM

access granularity. Therefore, we proposed an application-aware NoC design for an

efficient SDRAM access. The proposed GSS router schedules a priority packet as fast as

possible with the consideration of bank conflict, data contention, and short turn-around

bank interleaving which all make memory performance severely degraded. Furthermore,

the proposed SAGM NoC design splits a packet to several short packets, based on the BL

of SDRAM and then serves them with a partially open-page mode and an AP operation in

our memory subsystem. Experimental results showed our application-aware NoC design

improved not only the memory utilization and latency of all packets but also the memory

latency of priority packets in famous industrial multimedia systems. In conclusion, our

application-aware NoC provides more opportunity for bandwidth-hungry system-on-chip

designs with the high quality of a memory service.

 80

Chapter 3

Power Optimization for Advanced NoC

Power has become a major concern in NoC as more and more IPs are integrated

to a single chip. NoC itself is not efficient for power consumption and even may consume

higher power than shard bus interconnects due to increased communication between IPs.

However, the combination of NoC and other techniques efficient for power has the

potential to easily reduce power to allowable levels.

In NoC, it is not necessary for all IPs and links to run at a single voltage level and

clock speed. Voltage-frequency island (VFI) enables fine-grained core-level power

optimization by utilizing a unique voltage and clock for each island. Thus, VFI can be

one of the most desirable solutions for reducing power consumption in NoC. This is

possible because static complementary metal–oxide–semiconductor (CMOS) logic used

in the vast majority of current processors has a voltage-dependent maximum operating

frequency. Thus, when used at a reduced frequency, the processors can operate at a lower

supply/higher threshold voltage. The power is supplied by an off- or on-chip source and

can be controlled independently for each VFI. This may be achieved by using either on-

chip voltage regulators or multiple power grids. The communication across different

VFIs is achieved through a mixed clock first input, first output (MCFIFO) buffer and a

voltage level converter (VLC) [12][16]. They provide the flexibility to scale the

frequency and voltage of various VFIs in order to minimize power consumption. A

number of modern processors such as Intel’s XScale [47], AMD’s Athlon [77], and

IBM’s CU-08, -45HP and -65HP [45] are employed with the VFI concept. The use of

multiple voltages and clocks in NoC provides better performance-power tradeoffs than

that of a single voltage and clock. In Section 3.1, we present a systematic VFI-aware

 81

energy optimization framework that performs partitioning, mapping and routing together

to improve the power efficiency of VFI-based NoC designs [49][53].

Application mapping that decides how to topologically place the selected set of

cores onto the tiles of a network can greatly reduce both application latency and power

consumption. NoC designers or programmers commonly favor a regular mesh network

consisting of regular rectangle tiles on which homogeneous processors are placed since

the regular mesh network makes application mapping manageable easily. On the

contrary, most industrial SoC platforms consist of heterogeneous cores with different

design areas, thus they may be structured with an irregular mesh network or even a

custom network. Therefore, since previous works have just optimized their application

mapping on the regular mesh architecture network, a novel application mapping

algorithm is required to reduce application latency and power consumption in various

networks. In Section 3.2, we present architecture-aware analytic application mapping

(A3MAP) algorithms that are analogous to analytical communication minimization in

various network architectures [51].

3.1 VFI-AWARE ENERGY OPTIMIZATION FRAMEWORK FOR NOC

There are many existing works that address the problem of VFIs generation for

core-based SoC designs. The design style based on multiple VFIs was proposed in [62],

where synchronous IPs in an SoC design had different voltages and frequencies. Hu et al.

considered voltage island partitioning, assignment and floorplanning in an SoC design

[41]. By using a graph-based representation, the partitioning and floorplanning steps were

modeled in an integrated fashion and solved by a simulated annealing-based algorithm.

Wu et al. considered trade-off between power and design cost under timing requirement

 82

for a VFI generation problem that was formulated as a voltage-partitioning problem and

solved by a two-step heuristic algorithm [118]. In [119], the number of voltage islands

determined by island partitioning was minimized after performing placement phase.

Ching et al. considered non-slicing voltage-island partitioning to facilitate the

floorplanning in [14].

As many cores have been recently interconnected by an on-chip network, the

concept of the VFI design is being employed in NoC. Ogras et al. proposed a design

methodology for partitioning NoC tiles into multiple VFIs and assigning supply/threshold

voltages and corresponding clock speeds to each domain [84]. Leung et al. proposed an

NoC design with voltage islands in [66]. The approach simultaneously solved three

problems, i.e. tile mapping, routing path allocation and physical voltage island generation

and voltage assignment. Seiculescu et al. proposed a synthesis approach to obtain

customized application-specific NoC that can support the shutdown of voltage islands in

[102]. Liu et al. proposed a simultaneous task and voltage scheduling algorithm for

energy minimization in NoC based designs in [69]. The energy-latency tradeoff was

handled by Lagrangian relaxation.

Such a VFI-based NoC concept fits very well with a globally asynchronous,

locally synchronous (GALS) design style for global on-chip asynchronous

communication. The problem of selecting voltages and clock speeds for

voltage/frequency islands in GALS systems was addressed in [81]. The problem of both

rate and latency constrained systems was considered and a practical solution for static

and application adaptive, dynamic voltage and speed scaling is provided. The field

programmable gate array (FPGA) prototype of GALS-based NoC with two synchronous

IPs was presented in [95]. In [8], a method for reducing wire propagation delays in

 83

GALS-based NoC is proposed. In [84], both VFI and GALS concepts were applied to an

NoC design for minimum energy consumption.

However, there are several limitations in the previous VFI-based NoC designs

although their powerful energy efficiency. First, an island partitioning process is only

combined with a voltage and frequency (VF) assignment process. Such approach limits

the flexibility of VFI optimization thus NoC energy efficiency. As shown in the

experimental results of [84], more than three VFIs in NoC with less than 25 cores cannot

improve overall energy consumption any more since the inflexibility of VFI optimization

generates a lot of energy overheads. Second, a search for low energy consumption is

carried out on a hard mesh network where both communication and computation

components are pre-designed. Since the application mapping process is not optimized by

a VFI-aware manner, the solution space is inevitably constrained. Third, VFI-based NoC

needs a good routing strategy to bring down energy consumption. It may be inefficient to

insert all links between different VFIs since MCFIFO and VLC required to interconnect

different VFIs are too expensive. Therefore, pruning the links between VFIs and

allocating efficient routing paths over the survived links are required to further improve

VFI energy efficiency, where the routing path must guarantee deadlock and livelock

freeness. Last, efficient VFI interfaces are required to easily satisfy the performance

constraints. In [84], MCFIFO and VLC are simply placed between routers in different

VFIs. However, if any packet generated in VFI operating with a fast clock passes VFI

operating with a slow clock, it may be difficult for the packet to satisfy performance

constraints. In addition, the better VFI interfaces can further reduce the number of

MCFIFO and VLC required thus NoC energy consumption.

 84

3.1.1 Motivation and Contributions

3.1.1.1 Motivational Example

VFI generation causes the chip design process severely to be complicated with

respect to static timing, power routing and clock tree. In particular, the design complexity

grows significantly with the number of allowed VFIs as shown in Figure 3.1. Since each

VFI requires its own power grid, clock tree, MCFIFO buffer and VLC in order to

communicate with other VFIs, those design overheads with respect to area, delay and

energy are not avoidable. Therefore, NoC designs employing the concept of VFI design

needs to cluster as many cores supplied by the same voltage level and clock speed as

possible and ensure that the created grouping does not violate other design constraints

such as performance, timing and wiring congestion [93].

The number of VFI

C
om

m
unication energy

consum
ption &

 design
overhead

A B

C
om

pu
tin

g
en

er
gy

co
ns

um
pt

io
n

min(A+B)

Figure 3.1: Computing and communication energy consumption and design overhead
according to the number of VFIs. The goal of VFI based NoC designs is to
minimize the sum of the computing and communication energy and the
design overhead.

Figure 3.2, for instance, shows two VFI-based NoC designs with 16 tiles. Each

tile operates at either voltage A or voltage B, depending on the computation complexity

 85

of mapped cores. After cores are mapped to tiles for the purpose of reducing hop counts

and thus communication energy consumption, two different mapping results are shown in

Figure 3.2(a) and (b). Then, let us apply tile partitioning with VF assignment to the NoC

designs, as proposed in [84]. Such approach may improve total energy consumption by

running two VFIs in Figure 3.2(a) since its additional design cost is only four complex

routers including MCFIFO and VLC. If the energy saved by operating two VFIs is lower

than the energy consumed by four complex routers, it is regarded as a desirable solution.

However, in Figure 3.2(b), any tile cannot operate together with other tiles at the same

VF. Operating each tile as one VFI needs the complex wiring of power, ground and clock

and even 24 complex routers that may be much more expensive than the energy saved by

VFI separation. As a result, higher voltage of two voltages, A and B, will be used for

meeting performance constraints in overall NoC such that their approach may fail to

consume lower energy. This shows that tile partitioning with VF assignment alone may

be misleading during NoC energy optimization. Our solution is to combine core

partitioning with VF assignment, core mapping and routing path allocation together,

which are considered by VFI-aware manner.

In addition, we implement various VFI interfaces and propose their insertion

algorithm to minimize communication latency and further reduce energy consumption. If

any packet passes VFI operating at very low clock frequency, it may be difficult for the

packet to meet target communication performance. Even though a core operates at the

same clock frequency as its VFI, its router and link should operate at different clock

frequency satisfying performance constraints. To achieve this issue, we perform the VFI-

aware mapping algorithm with specific constraints and insert a pair of MCFIFO and VLC

between routers or a router and a core by our VFI interface insertion algorithm.

 86

A voltage

B voltage

(a) (b)

Mixed Clock
FIFO and VLC

Figure 3.2: Motivational VFI based NoC designs.

3.1.1.2 Major Novelty

The main novelties and contributions of our VFI-aware optimization framework

include:

• We propose an NoC design methodology that is aware of a voltage-frequency

island. After partitioning cores with VF assignment, mapping the cores and

allocating routing path provides more opportunities to efficiently build unified

VFIs.

• VFI-aware mapping is performed, based on an effective region growing method.

In addition, we add specific constraints for efficient VFI interface which provides

short communication latency. Such VFI-aware mapping techniques fit the VFI-

based NoC methodology well.

• VFI-aware routing path allocation seeks to further reduce VFI overheads such as

MCFIFO and VLC.

 87

• We implement various VFI interfaces and propose their insertion algorithm. Such

approach achieves short communication latency and further reduces VFI

overheads.

• We show that the proposed VFI-based NoC optimization framework makes cores

running at the same voltage and clock frequency unified to single VFI with the

slight increase of hop count such that it provides better energy-performance trade-

offs.

3.1.2 Problem Formulations

We start to solve VFI-applied NoC issues from a core graph consisting of cores

and their communication relation since a core can be one-to-one mapped onto a tile of

NoC. Therefore, we assume to have an application that needs to be mapped onto SoC

populated by cores as a starting point. We implement earliest deadline first (EDF) and a

heuristic called energy aware scheduling (EAS) that are used for generating a core graph

from a task graph [42].

3.1.2.1 Partitioning with VF Assignment Problem

In this stage, the object is to decide how cores are partitioned to minimize energy

consumption except for communication energy consumption. We assume that the

maximum number of allowable VFIs denoted by max{n(VFI)} or m, a core graph G with

a set of n cores where pairs of supply voltage and threshold voltage are (V1, Vt1), (V2, Vt2),

…, (Vn, Vtn) and an NoC topology such as a mesh or a torus are given. Clock period (τi)

for each core ci, which can trade off with supply and threshold voltage, is defined as:

 88

()
()

, i i
i i ti

i ti

K V
V V

V V α
τ =

−
 (3.1)

where α is a technology parameter and Ki is a design specific constant [84][73][98]. The

operating frequency (fj) of VFI j is determined by a core including the longest path as:

()
1

,
min

jj

i i ti

i Sf
V Vτ

∈≤
 
 
 

 (3.2)

where Sj is a set of tiles that belong to VFI j. Each core can be performed with a different

supply and threshold voltage and the voltage level is regarded as a legal one as long as

the performance constraints are satisfied. Based on these constraints, we partition n cores

into the maximum number of allowable VFIs and assign a supply and threshold voltage

to each core such that total energy consumption is minimized as:

2min exp t
i i i i i ii G

t

V
R C V T k V

S∀ ∈
+ −

   
   

   
∑ (3.3)

where G is a set of n cores, Ri is the number of active cycles, Ci is total switched

capacitance per cycle, Ti is the number of idle cycles, ki is a design parameter and St is a

technology parameter [7].

3.1.2.2 VFI-Aware Mapping Problem

In this section, we determine which tile each core should be mapped to in order to

minimize communication energy consumption under stringent performance constraints.

Definition 1: A partitioned core graph G´(V,E) generated by Section 3.1.2.1 is a

directed graph, where each vertex vi∈V represents a core, and each directed edge

ei,j∈E represents communication relation from vi to vj. vol(ei,j) represents the

communication volume between vi to vj.

 89

Definition 2: An NoC topology graph N(T,C) is a directed graph, where each

vertex ti∈T represents a tile, and each directed edge ci,j∈C represents candidate

minimum paths from ti to tj. bw(ci,j) represents the minimum bandwidth

requirement from ti to tj.

The one-to-one mapping function M() of the partitioned core graph G´(V,E) onto the NoC

topology graph N(T,C) is defined as:

(): , . . , ,i j i jM V T s t M v t v V t T→ = ∀ ∈ ∃ ∈ (3.4)

This mapping function is only defined when n(V)≤n(T), where n(X) is the number of

𝑥𝑖 ∈ 𝑋. In addition, our mapping function has two objectives, i.e. minimizing overall

communication and building a convex region with cores using the same voltage on given

NoC.

3.1.2.3 VFI-Aware Routing Problem

Ebit(ei,j) is the energy consumption of sending one bit of data from M(vi) to M(vj).

Assuming the bit energy values are observed at VDD, its energy consumption is defined

as:

() () () ()()(),

2

, 2i j

i
i j Lbit Bbit Sbitp L e

DD
bit

V
e E p E p E p

V
E

∈
= + +∑ (3.5)

where L(ei,j) is a set of links passed from M(vi) to M(vj) and ELbit, ELbit, and ELbit are the

energy consumed by the link, buffer and switch fabric, respectively [84]. Therefore,

finding a routing path from ti to tj is formulated as:

 90

() (){ } { }
,

, ,min () () ()
i j

CLK VLC MCFIFOi j bit i j
e q m

E E Evol e E e q q q
∀ ≤

+
 
 + +
  
∑ ∑ (3.6)

where ECLK is the energy overhead of generating additional clock signals and EVLC and

EMCFIFO is the energy overhead of VLC and MCFIFO, respectively. This formulation is

subject to performance constraints expressed as:

c
c

c

e d deadline
f
+ ≤ (3.7)

where ec is the number of cycles required to complete the function of core c and dc is

communication delay encountered when core c needs to communicate with a core

mapped to a different tile.

3.1.3 VFI Optimization Framework

In this section, we present the proposed VFI-aware NoC methodology and

detailed algorithms for core partitioning with VF assignment, VFI-aware core mapping

onto a given NoC topology and VFI-aware routing path allocation. In addition, we show

a VFI interface to easily satisfy performance constraints and further improve its energy

efficiency. Figure 3.3 shows the overall flow chart of our VFI-aware NoC optimization

framework. We first partition n cores but not tiles into m VFIs, where m is given as the

maximum number of allowable VFIs. Based on the result of partitioning cores, novel

VFI-aware mapping and routing path allocation algorithms are performed to minimize

communication energy consumption. Then, we establish unique interconnection for key

traffic paths between islands to minimize the overheads of VFI. After routing path

allocation is carried out, the pairs of MIFIFO and VLC are placed between routers or a

core and its router. Finally, we compute its energy consumption and check whether it

 91

Core partitioning with
voltage/frequency assignment

VFI-aware routing path allocation

Compute energy consumption
and performance

C1

C2

C3

C4

C5

C6

C7

C8

C9
Core graph

C1 C2 C9

C5 C3 C8

C4 C6 C7

Optimized NoC with
multiple VFIs

C4

VFI-aware mapping

VFI interface insertion

Figure 3.3: The proposed VFI-aware NoC methodology where VFI partitioning is first
performed.

meets performance constraints. If the performance constraints are satisfied, an energy-

efficient NoC platform with q(≤m) VFIs is obtained. Otherwise, we again perform the

VFI-aware mapping with constraints descripted in Section 3.1.3.2 or all procedures with

decreasing the maximum number of VFIs, m by 1.

3.1.3.1 Core Partitioning with VF Assignment

The proposed core partitioning algorithm is different from [84] that can partition

tiles in a neighbor on NoC. Since our partitioning stage is performed before the stages of

mapping and routing path allocation, any core unmapped to a tile can be clustered

together to the same VFI. Thus, our methodology can make cores operating at the same

voltage gathered as one VFI such that the number of a complex router requiring MCFIFO

and VLC is minimized. Consequently, it further reduces energy consumption.

Algorithm 4 shows our core partitioning algorithm for a core graph G(V,E) and

the maximum number of allowable VFIs, m. Since the voltage of a core can trade off its

 92

Algorithm 4 Core partitioning and VF assignment
Input: G(V,E), max{n(VFI)}=m
1:
1:
2:
3:
4:
5:
6:
7:
8:

Compute the lowest voltage of each core satisfied with performance constraints
using Eq. (3.1);
for all cases that choose m VFs among k VFs used in each core do

Assign the lowest operable voltage among m to all n cores;
if chosen m VFs are satisfied with performance constraints of all n cores then

Compute overall energy consumption from Eq. (3.3);
end if

end for
Choose the best VF pair consuming minimum energy;

Output: G´ (V,E) partitioned into VFI

operating frequency, the lowest voltage of each core are computed from Eq. (3.1) in line

1, which must satisfy performance constraint of each core. If there are k VFs used by n

cores and the maximum number of accepted VFIs is m, we can choose m VF among total

k VF (where m≤k), where there are total kCm cases. Then, the lowest VF among the

chosen m VFs is assigned to each core if the performance constraint of the core is

satisfied in the VF level. When the chosen m VFs are satisfied with the performance of

all cores, computation energy consumption is computed from Eq. (3.3). This procedure

repeats all kCm VF cases. After completing this procedure, we choose the best VF pair

consuming the lowest energy.

For example, there are 4 cores and the lowest voltages of each core, which satisfy

their performance constraints, are 1.0V, 1.2V, 1.1V and 1.0V, respectively (k=3). We

assume that the maximum number of allowable VFI is 2 (m=2) and the operating

frequency and area of all cores are same to make simple. In this example, we can choose

2 of 3 voltages, i.e. 1.0V, 1.1V and 1.2V. Thus, there are 3 cases (3C2) we can choose:

(1.0, 1.1), (1.0, 1.2) and (1.1, 1.2). Here, (1.0, 1.1) case cannot satisfy the performance

constraint of the second core that must operate at least 1.2V. On the other hand, the rest

of two pairs meet performance constraints since the cores can run at 1.0V, 1.2V, 1.2V

and 1.0V in the second case and 1.1V, 1.1V, 1.2V and 1.1V in the last case.

 93

Consequently, since the third pair consumes more energy than the second pair, (1.0, 1.2)

case is chosen to compose two VFIs and assigned to all cores such that cores runs at

1.0V, 1.2V, 1.2V and 1.0V. Finally, a core graph G´ (V,E) of which the VF level is

assigned is generated.

3.1.3.2 VFI-Aware Mapping Algorithm

Cores operating at the same VF level should be mapped to NoC tiles which build

a convex region and thus, it reduces the overhead energy consumption caused by

MCFIFO, VLC and clock/power routing. We already know which cores VFIs consist of

because the core partitioning with VF assignment is performed in the previous section.

Therefore, this information helps selecting a region which looks as convex as possible.

In the mapping step, we use a heuristic approach using the partitioned core graph,

as shown in Algorithm 5. In line 1, cores are sorted in a decreasing order by the amount

of their communication and then they are mapped in the order. We define a VF_LIST()

indicating whether the VF level of a core being mapped is already used on NoC. From

line 3 to 11, our initial mapping algorithm starts for the sorted vi. In line 4, the proposed

mapping algorithm checks whether the VF level of a core being mapped is used

throughout VF_LIST(). If the VF level of the core being mapped does not exist in

VF_LIST(), it is mapped on any empty NoC tile with the maximum neighbor tiles or the

minimum hops (line 5). Then, the VF level of the core is recorded in VF_LIST() (line 6).

If the VF level of the core being mapped exists in VF_LIST(), the core is mapped on any

candidate tile with the same VF level (line 8). Next, additional candidates are selected in

line 10, where NSWE(ti) indicates north, south, west and east tile of the mapped ti. The

candidates are used for the next mapped cores that run at the VF level. If the core

 94

Algorithm 5 VFI-Aware Mapping
Input: G´(V,E), NoC topology

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
13:
14:
15:
16:
17:

Sort(vol(vi)) in decreasing order;
VF_LIST() = empty;
for all sorted vi do // initial mapping

if VF level of vi does not exists in VF_LIST() then
M(vi) on any empty tile tj with maximum neighbors and minimum hops;
Add VF level into VF_LIST();

else then
M(vi) on any candidate tile tj with minimum hops;

end if
Add unmapped NSWE(tj) (or NS(tj) or WE(tj)) as candidate with VF of vi;

end for
for all isolated island ti do // moving of an isolated tile

Pair-wise swapping(ti,tj) to be clustered to main VFI using the same VF level
under minimum traffic increase;

end for
for all ti do // minimization of the overall traffics

Pair-wise swapping(ti,tj) within island for min. traffic;
end for

Output: N(T,C) mapped on NoC

mapping is again performed due to the dissatisfaction of performance constraints, either

NS(ti) or WE(ti) is used as candidate tiles for cores working at the lowest VF level. This

candidate constraint makes the cores mapped to tiles in a single row or column and thus,

improves communication speed with our VFI interface insertion algorithm which is

described in Section V.D. If it does not still satisfy the performance constraints, either

NS(ti) or WE(ti) is also used as candidate tiles for cores running at the next lowest VF

level. This procedure repeats until all cores are mapped on NoC.

Our initial mapping algorithm as a near convex region solution reduces the

number of an isolated tile separating from the main group of tiles (VFI) running at the

same VF level. However, we cannot completely remove an isolated tile around the edge

of NoC. In order to combine an isolated tile with its main VFI using the same VF level,

the isolated tile is moved to the VFI if the moving cost is less than the overhead of the

 95

extra isolated tiles (line 13). Since our initial mapping does not generate an isolated tile

around the center of NoC where communication is too heavy, the loss of performance

and the increase of hop count caused by this pair-wise swapping of tiles in different VFIs

are minimal. The procedure repeats until all isolated tiles disappear. Finally, the pair-wise

swapping of tiles within each island is executed to find the best mapping solution with

the minimum hop count until it is not improved (line 16).

Figure 3.4 shows the simple example of the initial mapping in Algorithm 5. In

Figure 3.4(a) that is the partitioned core graph, the number is the mapping order by

sorting cores into the amount of communication and two groups, i.e. grey and white

denoted VFI 1 and VFI 2, respectively exist. Core 1 that has the maximum

communication is placed onto the center of NoC with the maximum neighbors as shown

in Figure 3.4(b). Four candidates, a, b, c and d are also marked as VFI 1 for the next

mapped cores using the same VF as the core 1, i.e. core 3 and 4. Core 2 that has the next

maximum communication is placed onto candidates minimizing hop count with other

cores already mapped if candidates marked as VFI 2 exist. Otherwise, core 2 is only

placed onto any unmapped tile that minimizes hop count with other cores already

mapped. In this example, core 2 is mapped by the latter case as shown in Figure 3.4(c).

Three candidates, e, f and g are also marked as VFI 2 for the next mapped core using the

same VF as the core 2, i.e. core 5 and 6. Next, core 3 that has the next maximum

communication is placed onto one of the VFI 1 candidates, minimizing hop count with

other cores already mapped. In Figure 3.4(c), there are three candidates, b, c and d and

candidate b is chosen because b generates fewer hops than c and d. Then, three

candidates, e, h and i are also marked as VFI 1, where any core operating at VFI 1 and

VFI 2 can be mapped to tile e in Figure 3.4(d). The procedure repeats until all cores are

mapped as shown from Figure 3.4(e) to (f). Since this mapping algorithm makes the

 96

region of each VFI grow toward its candidates, the VFI is prevented splitting into several

VFIs using the same VF level.

l

c

b

a

3

1

2

4 6

1

2

d
5

Partitioned core graph

(a) (b) (c)

(e) (d)(f)

5

c

g

b

e

f

1d

2

c i

g

h

e

f

1d 3

2

c i

h

k

jf

1d 3

4

l

5 2

m c i

h

k

jf

1 3

4

6

Figure 3.4: Incremental core mapping on NoC.

3.1.3.3 VFI-Aware Routing Path Allocation

In this section, we present a VFI-aware routing path allocation algorithm. In [84],

more than three VFIs applied to less than 25 cores could not improve overall energy

consumption any more since the VFIs also generate more overheads that degrade the

energy efficiency of VFI separation. The key idea of our routing path allocation is to use

the minimum links between VFIs. Since NoC based on a mesh or torus topology has a lot

 97

of extra bandwidth, we can remove some links requiring MCFIFO and VLC if the latency

of communication and the bandwidth of links satisfy performance constraints. In

addition, since our VFI-aware mapping algorithm generates unified VFIs that mean any

core is not split from the main group of VFI using the same voltage as the core, we use

fewer MCFIFO and VLC. Consequently, the rate of energy saved by VFI separation

becomes higher than the rate of energy consumed by MCFIFO and VLC as the number of

VFI increases in our VFI-based NoC.

Figure 3.5 shows how links between tiles are inserted briefly. After the VFI-aware

mapping in Section V.B, we assume that there is no link between any tiles as shown in

Figure 3.5(a) including four VFIs. Next, as shown in Figure 3.5(b), all links within each

VFI are inserted. Then, some links between VFIs are partially inserted, as shown in

Figure 3.5(c). Under such an irregular NoC interconnection, routing paths allocation

should minimize energy consumption and improve performance with livelock and

deadlock freeness. As a result, our NoC-aware routing path allocation can achieve lower

energy consumption with the tiny loss of performance and the tiny increase of hop count.

(a) No link (b) Inserting links within VFI (c) Inserting links between VFI

Figure 3.5: Link insertion within VFI and between VFIs, where all links between VFIs
are not inserted.

 98

In addition, communication congestion that causes the misrouting, dropping and delaying

of packets is minimized.

Algorithm 6 minutely shows how links between tiles are inserted and how routing

paths are allocated. Algorithm 6 consists of two parts, i.e. inserting links (line 1 to 3) that

changes an NoC topology and allocating routing paths on such an irregular

interconnection (line 4 to 12). First, we interconnect all tiles within each VFI (line 1) as

shown in Figure 3.5(b) because routers required neither MCFIFO nor VLC

havereasonable overhead. The optimal number of the complex routers with several

MCFIFOs and VLCs for connecting two islands is computed as:

, ,

,

()

()
i j i j

i j

w vol VFI
b

bw VFI
=
 
 
  

 (3.8)

Algorithm 6 VFI-Aware Routing Path Allocation
Input: N(T,C)
1:
2:
2:
3:
3:
4:
5:
6:
7:

8:
9:

10:
11:
12:

Interconnect all tiles within each VFI;
Compute the optimal number of routers with MCFIFO or VLS between two
adjacent VFIs from Eq. (3.8);
Insert b routers to any place between VFIs, where the minimum hops are
generated;
Sort(length(ci,j)) in increasing order; // Rule 1
for all ci,j do

Bounding box including source and destination is built;
Dijkstra’s shortest path algorithm where energy consumption of
communication is computed from Eq. (3.6); // Rule 2
if performance of Eq. (3.7) is not satisfied then

Increase wi,j of Eq. (3.8) more than 1;
Go to line 2;

end if
end for

Output: link insertion and deterministic, minimal and livelock/deadlock-free
routing path

 99

where x   is the smallest integer larger than x, wi,j is the weight of links between VFI i

and VFI j and vol(VFIi,j) and bw(VFIi,j) are the total amount of communication volume

and the minimum bandwidth requirement between VFI i and VFI j, respectively (line 2).

If performance constraints are not satisfied, the weight wi,j increases more than 1, which

means more links are inserted between adjacent VFIs. The b complex routers with

MCFIFO and VLC are placed between two VFIs, where the minimum hops are

generated.

Here is a simple example in Figure 3.6, where S1, S2 and S3 communicate with

D1, D2 and D3 respectively. We assume that the amount of each communication is

1Mbit/s, each link between tiles can contain 5Mbit/s and wi,j is 1. Therefore, vol(VFIi,j) is

3Mbit/s and bw(VFIi,j) is 5Mbit/s such that b is equal to 1 from Eq. (3.8). Then, we can

insert one link between two islands. Depending on the location of a link, hop counts

computed by the minimum shortest path are 9Mbit/s, 11Mbit/s and 7Mbit/s in Figure

3.6(a), (b) and (c) respectively. Therefore, we insert one link between VFIs as shown in

Figure 3.6(c) because it generates the minimum hops.

From now, we perform routing path allocation under such an irregular NoC

interconnection. In line 4 of Algorithm 6, all ci,j are sorted in an increasing order by their

minimum hop count. For example, in Figure 3.6 (c), S2-to-D2 is the shortest and S1-to-

D1 and S3-to-D3 have the same length. Then, we allocate routing paths based on the

following two rules.

Rule 1: ci,j with few hops among C is allocated earlier to relieve communication

congestion between VFIs.

 100

S3

D1 D2

S1

S2

D3

S3

D1 D2

S1

S2

D3

S3

D1 D2

S1

S2

D3

(a) (b) (c)

Figure 3.6: Finding the best interconnection between VFIs.

In Figure 3.7(a), there are two packets of which the directions are S1-to-D1 and

S2-to-D2 and of which the hop counts are 2 and 6, respectively. From the Rule 1, the

packet of which the direction is S1-to-D1 is allocated before the packet of which the

direction is S2-to-D2 is allocated. The S1-to-D1 packet has only path A as the minimum

shortest path whereas the S2-to-D2 packet has two paths, i.e. B and C as the minimum

shortest path. If the S2-to-D2 packet is allocated to path B earlier than the S1-to-D1

packet, path A will overlap with path B since the S1-to-D1 packet has no choice. At a

result, the congested packets are dropped and misrouted in a bufferless flow control

mechanism like circuit switching or have long communication latency in buffered flow

control mechanism like packet switching. However, if path A is allocated earlier than the

S2-to-D2 packet, the path C but not the path B can be chosen as the routing path of the

S2-to-D2 packet. Therefore, the routing path allocation order is important to reduce

communication congestion and balance network load between VFIs. For example, in

Figure 3.6(c), the S2-to-D2 packet should be allocated earlier than the S1-to-D1 packet or

the S3-to-D3 packet according to the rule 1.

Our routing path allocation follows Rule 2 in the line 6 of Algorithm 6 if the VFI

of packet source is different from the VFI of its destination:

 101

S2

S1

D1

D2

C
A

B

D

S

P2

P1

1

2

1

(a) Rule 1 (b) Rule 2

Figure 3.7: The proposed rules for allocating routing path in VFI-based NoC.

Rule 2: If the VFI of packet source is different from the VFI of its destination, the

minimum shortest routing path that passes through fewer islands is selected.

For example, let any packet move from S to D in Figure 3.7(b). Even if several

shortest routing paths can be chosen for the packet, let two routing paths, i.e. P1 and P2

considered. While both P1 and P2 are the minimum shortest paths, the routing path P1

meets one different island and the routing path P2 meets two different islands. As a

result, the routing path P1 provides better performance and lower energy consumption

than the routing path P2 passing two islands since the routing path P2 needs additional

energy overheads.

Based on two rules, we perform our routing path allocation algorithm. For each

ci,j, a bounding box is formed (line 7) and then, the path with the minimum energy

consumption is obtained within the bounding box from the Dijkstra’s shortest path

algorithm, where its energy consumption is computed from Eq. (3.6). Since the routing

path is allocated by a deterministic and minimal path router, both livelock and deadlock

are free. If performance constrains computed from Eq. (3.7) is not satisfied, we increase a

 102

link weight wi,j between VFIs, go to line 2 and then repeat the routing path allocation.

Even if there is a tiny increase of hop count in our routing path allocation due to irregular

link insertions between VFIs, the enormous energy saved by VFI separation covers such

the tiny penalty.

3.1.3.4 VFI-Aware Interface Planning

In a VFI-based NoC design, all data and control signals are required to be

converted to a different voltage by VLC and synchronized to a different clock by

MCFIFO whenever they pass through a boundary between different VFIs. In the

conventional VF conversion proposed in [84], MCFIFO and VLC are simply inserted

between routers in different VFIs as shown in Figure 3.8(a). Such a VFI interface may

make it difficult to guarantee short communication latency under various VFI-based NoC

design scenarios since the speed of on-chip communication depends on clock speeds used

in VFIs. For example, let VFI 1 and 2 operate with 1GHz and 100MHz clock,

respectively, in Figure 3.9. Then, let any packet generated in S go to D. If the routing

path of the packet is allocated to P1 which is one of the shortest path as shown in Figure

3.9(a), it takes a lot of clock cycles to escape VFI 2 in terms of a VFI 1 viewpoint. The

reason is that one clock cycle at VFI 2 is equal to ten clock cycles at VFI 1. Moreover, if

the packet is blocked within VFI 2 due to any congestion, its latency may be severely

long. This routing path is slower than another routing path P2 which is not the shortest

path. Since the routing path P2 detours, it may consume more communication energy and

be not free of deadlock and livelock. Actually, most microprocessors operate at several

GHz whereas various co-processors such as peripherals, memories, specific-purposed

 103

processors and IO interface logics operate at several hundred MHz. As described above,

if any packet generated in the microprocessor operating at GHz clock speed traverses any

Crossbar
Switch

MCFIFO

OC

M
C

FI
FO

O
C

M
C

FI
FO

O
C

OC

MCFIFO

Core
FIFO

Crossbar
Switch

MCFIFO

OC

M
C

FI
FO

O
C

OC

MCFIFO

Core
FIFO

Clock Domain 2Clock Domain 1

M
C

FI
FO

O
C

(a) NoC tiles including MCFIFO between routers [84]

Crossbar
Switch

FIFO

OC

FI
FO O

C

FI
FO

O
C

OC

FIFO

Core

MCFIFO

Crossbar
Switch

FIFO

OC

FI
FO

O
C

OC

FIFO

Core

MCFIFO

Clock Domain 1 Clock Domain 2

Clock Domain 3

FI
FO O

C

(b) NoC tiles including MCFIFO between a core and a router

Figure 3.8: NoC tiles with MCFIFO or VLC placed (a) between routers and (b) a core
and a router.

 104

S

D

S

D

P2

P1

router MCFIFO and VLC

VFI 2
(100MHz)

VFI 1
(1GHz)

P1

VFI 2
(100MHz)

VFI 1
(1GHz)

(a) Conventional VFI interface (b) Our VFI interface

Figure 3.9: NoC designs with (a) the conventional VFI interface and (b) the proposed
VFI interface.

VFI consisting of the co-processors, it is too delayed at the microprocessor’s viewpoint.

Even if it is a critical problem that should be solved in VFI-based NoC designs, it is not

considered in the previous works yet.

We propose a new VFI interface where MCFIFO and VLC are placed between a

core and its router as shown in Figure 3.8(b). It is used together with the VFI interface

proposed in [84]. Since the proposed interface makes the clock speed of a router choose

one of two clocks, i.e. a clock used in VFI 1 and a clock used in VFI 2, the latency of

packets can be greatly improved. In Figure 3.9(b), three tiles in VFI 2 employ the

proposed interface with MCFIFO and VLC between a core and its router and the clock

speed of their routers (clock domain 3 in Figure 3.8 (b)) is selected to the same as that of

VFI 1. Even though any packet generated in VFI 1 traverses VFI 2, its communication

latency is not affected from the clock speed of VFI 2. In addition, the proposed VFI-

based interface can use fewer MCFIFOs and VLCs. In Figure 3.9, the number of a pair of

 105

MCFIFO and VLC in the conventional VFI interface is 16 whereas that of the pair in our

VFI interface is just 6. Thus, our VFI-aware NoC interface not only reduces

communication latency but also further improves VFI energy efficiency.

However, this interface may be effective when cores included in slow VFI are

mapped to NoC tiles in a single row or column as shown in Figure 3.9. In order to

generate VFI with such a convex region, we used a different candidate selection policy in

our VFI-aware mapping algorithm after mapping each core. If any VFI operates at too

slow clock speed, candidates for cores in the slow VFI are just selected to either north

and south tiles or east and west tiles, but not all north, south, east and west tiles.

Moreover, when our VFI-aware NoC design does not meet performance constraints due

to long communication latency, we repeat the VFI-aware mapping algorithm with the

changed candidate selection policy as shown in Algorithm 5 (line 10). Finally, since

cores in the slow VFI are mapped only to tiles in the candidates, the VFI with a convex

region can be built with tiles in a single row or column. The mapping restriction may

make not only hop count slightly increase but also routers operate at high clock

frequency. However, the energy efficiency degraded by such overheads cancels out the

energy efficiency improved by fewer MCFIFO and VLC and even the penalty is less than

the benefit of our method with a fast on-chip communication speed.

In the proposed VFI-aware NoC design, both interfaces in Figure 3.8 are used

together. If VFI 1 and VFI 2 inversely operate at 100MHz and 1GHz clock, respectively,

the VFI interface in Figure 3.8(a) and the VFI interface insertion in Figure 3.9(a) are

more desirable. Therefore, we need an efficient VFI interface insertion algorithm. As a

starting point, we assume to have VFIs interconneccted by the interface with MCFIFO

and VLC between routers and have routers located in the upper left corner of cores. Then,

we start to replace the conventional VFI interface in Figure 3.8(a) to the proposed VFI

 106

interface in Figure 3.8(b) from VFI operating with the lowest clock. The conventional

interface in the upper or left tiles of any VFI can be replaced to the proposed interface if

three conditions are satisfied as follows: 1) the upper or left tiles of the VFI must be

contacted with different VFI operating at a faster clock speed, 2) the upper or left tiles of

the VFI must be surrounded with both upper and lower or both left and right tiles in

different VFI and 3) the interface replacement must repeat one time with a updated

interface result.

Figure 3.10 shows various examples of our interface replacement, where VFI

colored to black operates at the slowest clock speed and VFI colored to white operates at

the fastest clock speed. In Figure 3.10(a), tile A, B, C and D satisfy condition 1) and 2)

during the first interface replacement (condition 3)). Therefore, the conventional

interfaces in tile A, B, C and D are replaced to the proposed interfaces. In Figure 3.10(b),

tile A, C and D satisfy condition 1) and 2) whereas tile B does not satisfy condition 2)

during the first interface replacement (condition 3)). However, during the second

interface replacement after updating the result of the first interface replacement

(condition 3)), tile B also satisfy condition 2). Therefore, the conventional interfaces in

tile A, B, C and D are replaced to the proposed interfaces. In Figure 3.10(c) consisting of

three VFIs, the conventional interfaces of black VFI operating with the slowest clock are

first replaced and then the conventional interfaces of gray VFI operating with the next

slowest clock are replaced. During the first replacement, the conventional interfaces in

tile C and tile B are replaced to the proposed interfaces. During the second interface

replacement after updating the result of the first interface replacement (condition 3)), the

conventional interface in tile A is also replaced to the proposed interface since tile A

meets condition 1) and 2). With such interface insertion, our VFI-aware NoC design can

 107

router

A

F

B

C

D E

A

F

B

C

D E

A

B

C

D

A

B

C

D

A B

C D

A B

C D

MCFIFO and VLC

(a) (b) (c)

Figure 3.10: Examples of the proposed VFI interface insertion.

make communication clock speed so selectable that it is more valuable for a platform-

and socket-based NoC design with VFI.

We implement the VFI-based NoC routers consisting of MCFIFO, VLC, single

clock FIFO (SCFIFO), an output control (OC) and a crossbar switch as shown in Figure

3.8. As described in Section 3.1.3.3, crossbar switches perform deterministic and minimal

path routing to minimize communication energy consumption, based on our routing path

allocation rules. The OC is responsible for determining the future departure time of each

packet since a physical channel must be reserved and the OC must ensure that there will

be sufficient buffer spaces in the next router to store the packets. Our flow control

 108

mechanism adopts winner-take-all bandwidth allocation that allocates all of the

bandwidth to one packet until it is finished or blocked before serving other packets. In

our VFI-based NoC implementation, MCFIFO and VLC are placed between a core and

its router or between routers. MCFIFO and SCFIFO are managed by wormhole flow

control or virtual channel flow control mechanisms and a backpressure is used to inform

the upstream nodes when they must stop transmitting packets because all of the

downstream packet buffers are full. On/off flow control is adopted to avoid the loss of

packets as the backpressure.

3.1.4 Experimental Results

In this section, we show experimental results on MPEG-4 video object plane

decoder (VOPD) [111] and E3S benchmark suites [25]. As the first application consists

of 16 cores, the cores are one-to-one mapped to tiles on 4x4 NoC. The second benchmark

has several applications: office-automation, consumer, networking, auto-industry and

telecom application containing 5, 12, 13, 24 and 30 tasks respectively. The benchmark

also provides the information of 66 processing elements such as the size/cost of the

processing elements, the maximum operating frequency, idle power consumption and

task power consumption when the tasks are performed in any processor. The tasks are

scheduled on to 4, 9, 9, 16 and 25 processors among the 66 processing elements,

respectively by [42] to generate a core graph. Then, they are mapped to tiles on 2x2, 3x3,

3x3, 4x4 and 5x5 NoCs, respectively. We compare our VFI-aware NoC design with the

previous state-of-the-art work, called VFI-P [84]. Since the previous work is assumed

that VFI partitioning with VF assignment is performed in a hard NoC platform where

communication and computation components are pre-designed, we implement NMAP

 109

[79], one of the famous mapping and routing path allocation methods combined with

VFI-P. We experiment our VFI-aware NoC methodology by three versions, i.e. our VFI-

aware mapping algorithm combined with a conventional routing path allocation and a

conventional interface, our VFI-aware mapping algorithm combined with the proposed

VFI-aware routing path allocation and a conventional interface and our VFI-aware

mapping algorithm combined with the proposed routing path allocation and interface to

verify the performance of mapping, routing and interface apart, denoted as VFI-M, VFI-

R and VFI-I, respectively.

Table 3.1 shows that VFI-M saves more MCFIFOs and VLCs on MPEG-4 VOPD

benchmark due to our VFI-aware mapping algorithm generating a convex region with

VFI partitioning results. In addition, VFI-R needs the fewest MCFIFOs and VLCs. On

the contrary, the VFI-aware NoC approach commonly causes the slight increase of hop

count due to the restrictions induced by VFI-aware mapping and routing path allocation.

However, the maximum congestion is further relieved because a routing allocation order

is considered for balancing network loads. The low congestion makes communication

latency shorter and a communication clock speed lower.

Content Algorithm 2-VF 3-VF 4-VF

of pair of
MCFIFO and VLC

VFI-P [84] 12 22 28
VFI-M 10 14 20
VFI-R 2 4 6

Hop count
VFI-P [84] 4309 4309 4309

VFI-R 4353 4211 4211
Congestion

(MB/s)
VFI-P [84] 923 923 923

VFI-R 516 613 613

Table 3.1: The comparison of VFI overhead, hop count, and communication
congestion on VOPD benchmark.

 110

The thorough cross-comparison of E3S benchmarks is listed in Table 3.2. In this

experiment, we assume that the changeable voltage range of cores from Eq. (3.1) is

±0.2V. For example, let three cores operate at 1.2V, 1.7 V, and 1.9V for the minimum

energy consumption. Then, if two of three voltages, i.e. 1.7V and 1.9V are assigned for

VFI-based NoC, the core operating at 1.2V cannot be scaled into 1.7V. The reason is that

the core running at 1.2V can be scaled up to 1.4V by the constraint. Instead, if 1.2V and

1.9V are assigned for VFI-based NoC, the cores can be scaled into 1.2V, 1.9V and 1.9V,

respectively. Since the changeable operating range of voltage and clock frequency is

small in the most real cores, this constraint is reasonable. Under this condition, tile

partitioning with VF assignment by VFI-P generates split VFIs operating at the same VF

level since task/core mapping is already performed by a VFI-unaware manner. That is, it

may be difficult to include all tiles using the same voltage and frequency in a convex

region. As a result, a number of MCFIFOs and VLCs are required to interconnect the

separated VFIs as shown in Table 3.2. On the contrary, our VFI-aware NoC design does

not generate the split VFIs operating at the same VF level. As a result, fewer MCFIFO

and VLCs are required to interconnect the VFIs. Similarly to the MPEG-4 VOPD

benchmark, our VFI-aware NoC design makes hop counts increase on the E3S

benchmark, yet its energy degradation is canceled out by fewer MCFIFOs and VLCs.

Finally, VFI-I requires the fewest MCFIFO and VLC and thus improves energy

efficiency by VFI separation. In addition, VFI-I improves 27% communication latency

on average.

Figure 3.11 illustrates the visual comparison of VFI-P and our VFI-aware

approach all performed on 4x4 NoC for the MPEG-4 VOPD application. Figure 3.11(a)

is the result of core/task mapping by NMAP [79]. Since cores are not mapped by VFI-

aware manner, tiles mapped to cores using the same VF level are split over NoC as

 111

Table 3.2:
The com

parison of V
FI overhead and hop count on E3S benchm

ark.

(a) V

F m
ap after task/core m

apping (b) N
oC

 Partitioning by [84] (c) Proposed V
FI-A

w
are N

oC

Figure 3.11: V
isual com

parison of V
FI based N

oC
 designs on 4x4 N

oC
.

 112

shown in Figure 3.11(a). Since tiles that operate at 1V are split to three VFIs, this VFI-

based NoC design shows a VF map with six VFIs even if 4 VF levels are used. Based on

the VF map, VFI partitioning with VF assignment proposed in VFI-P is performed and its

result is shown in Figure 3.11(b). The VFI partitioning achieves the best energy

consumption when two VFIs are built. However, some cores operate at higher voltage

than the voltage which the cores require to satisfy performance constraints. Therefore, it

is suboptimal solution since task/core mapping are already performed by VFI-unaware

manner even if the result of VFI partitioning considerably depends on the mapping stage.

On the other hand, our VFI-aware approach consisting of core partitioning with VF

assignment, VFI-aware mapping and VFI-aware routing path allocation clusters tiles

using the same VF level to single VFI such that it clearly provides better partitioned VFI

as shown in Figure 3.11(c). As a result, all tiles operate at the optimal voltage and

frequency they require to satisfy performance constraints and thus it is beneficial for low

energy consumption as well as the global routing of power and clock.

Table 3.3 shows that our VFI-aware NoC design consumes less energy than VFI-

P. The reason is that our approach needs fewer MCFIFOs and VLS since all tiles running

at the same VF level can be clustered into single VFI. As a result, our VFI-aware NoC

optimization further saves energy consumption as the number of VFI increases. On the

other hands, the previous state-of-the-art approach VFI-P can improve energy

consumption only when the number of VFI built is fewer than 2 or 3. In Network

application, our VFI-aware NoC approach is worse than VFI-P since the amount of

communication enormously increases when the number of VFI built is 4. However, the

best energy consumption (0.76) of our approaches at 3-VFI still outperforms that (0.79)

of the previous approach VFI-P. Moreover, our VFI interface achieves lower energy

 113

Benchmark Algorithm
Normalized Total Energy Consumption

1-VFI 2-VFI 3-VFI 4-VFI

Consumer
VFI-P [84] 1 0.56 0.53 0.54

VFI_ R 1 0.55 0.51 0.50
VFI_ I 1 0.55 0.50 0.50

Network
VFI-P [84] 1 0.8 0.79 0.79

VFI_ R 1 0.78 0.76 0.89
VFI_ I 1 0.77 0.76 0.89

Auto- industry
VFI-P [84] 1 0.69 0.65 0.67

VFI_ R 1 0.63 0.59 0.58
VFI_ I 1 0.61 0.58 0.57

Telecom
VFI-P [84] 1 0.58 0.57 0.58

VFI_ R 1 0.53 0.51 0.49
VFI_ I 1 0.50 0.50 0.48

Table 3.3: The comparison of energy consumption according to the number of VFI on
E3S benchmarks .

consumption with shorter communication latency. Finally, the runtime of our VFI-aware

NoC optimization ranges from a few seconds to a few minutes.

3.1.5 Summary

In this section, we proposed a systematic energy optimization framework,

including core partitioning with VF assignment, VFI-aware mapping, VFI-aware routing

and VFI-aware interface insertion for VFI-based NoC designs. The proposed VFI-aware

NoC design makes tiles mapped cores using the same voltage and frequency level

clustered to single VFI. In addition, our VFI interface further improves energy

consumption with fast on-chip communication. Consequently, our VFI-aware NoC

optimization framework reduces VFI design cost that degrades energy efficiency by VFI

overheads. Compared to the recent state-of-the-art NoC design technique with VFI [84],

 114

our VFI-aware optimization framework demonstrates an energy efficiency improvement

of 10% and the overhead reduction of 82% under a variety of system constraints.

3.2 ARCHITECTURE-AWARE ANALYTIC APPLICATION MAPPING

As thousands of cores will be integrated to a single chip for enhanced

performance and functionality, on-chip communication techniques and application

mapping algorithms become key factors in the success of the multi- or many-core chips.

So far, most of the NoCs have favored a regular mesh network consisting of regular

rectangle tiles on which homogeneous processors are placed. The regular mesh network

makes application mapping easy, increases routing efficiency, provides desirable

electrical and physical properties and reduces the complexity of resource management.

Hence, most previous works have optimized their application mapping on the regular

mesh architecture as follows.

Murali et al. [79] present NMAP that is a fast algorithm, where tasks are mapped

onto a regular mesh network under bandwidth constrains, aiming at minimizing average

communication latency. In [39], a branch and bound algorithm is adopted for task

mapping in a regular mesh-based NoC architecture, which minimizes the total amount of

power consumed in communications. Shin et al. [103] explores the design space of NoC

based systems, including task assignment, tile mapping, routing path allocation, task

scheduling and link speed assignment using three nested genetic algorithms. The work

presented in [15] proposes an efficient technique for runtime application mapping onto a

homogeneous NoC platform with multiple voltage levels. Chen et al. in [13] proposes a

complier-based application mapping algorithm that consists of task scheduling, processor

mapping, data mapping and packet routing to reduce energy consumption. However,

 115

since these solutions have been optimized only for a regular mesh network, they cannot

be applied to various networks or their mapping performance gets severely deteriorated in

irregular/custom networks.

However, industrial SoC platforms, e.g. Nexperia [28], Nomadik [82] and OMAP

[117], consist of various PEs such as a general processor, a digital signal processor

(DSP), a specific memory and a peripheral. Since such physically different sized

processing elements cannot be floorplanned with a regular mesh topology, the resulting

NoCs get an irregular mesh network or even a custom network [11]. The irregular mesh

networks are also found in a regular mesh network when some links become faulty or

degraded by process and temperature variation. Application mapping and routing path

allocation should deal with the abnormal links and compensate for the loss of yield and

performance [72]. In addition, since VFI based NoCs have links with different bandwidth

[49][53][84], it is no longer a regular mesh network. However, the previous application

mapping algorithms are inefficient in performing application mapping in an

irregular/custom network since they are not adaptive to various network architectures. As

a result, specific mapping algorithms may be required for different network architectures.

Recently, such heterogeneous cores have been considered for low energy

consumption. Smit et al. solved the problem of run-time task assignment on

heterogeneous processors with task graphs restricted to the small number of vertices or

the large number of vertices within degree no more than two [105]. Carvalho et al.

investigated the quality of several mapping heuristics promising for run-time use in NoC-

based multiprocessor SoCs (MPSoCs) with dynamic workloads, targeting NoC

congestion minimization [9]. Chang et al. proposed ETAHM to allocate tasks on a target

multiprocessor system [10]. It mixed task scheduling, mapping and dynamic voltage

scaling utilization in one phase and couples an ant colony optimization algorithm.

 116

ADAM presented in [29] was run-time application mapping in a distributed manner,

targeting for adaptive NoC-based heterogeneous MPSoCs. However, the previous

application mapping solutions have not considered the irregularity of NoC tiles and links

which are caused by different-sized heterogeneous PEs. Since the irregularities cause

long detoured packets on a network, a lot of communication energy may be consumed or

a quality-of-service requirement may not be guaranteed. Recently, Tornero et al.

proposed a communication-aware topological mapping technique for irregular NoCs,

which matched the communication requirements of the application running on the cores

with the existing network resources [109]. However, its mapping quality was not still

satisfactory since it did not provide the efficient solution searching algorithm. Therefore,

an application mapping algorithm that can be applied to various networks should be

required. This problem was also addressed as an open problem (P2) in [71].

Such different-sized PEs is only considered in the latest application-specific NoC

methodologies. Chatha et al. in [11] present the design methodology and synthesis of

application-specific NoC architecture. It employs a three-phase synthesis approach

consisting of core-to-router mapping, custom topology decision, and route generation. In

[100], an adaptive deadlock free routing algorithm is proposed to handle NoC layouts

with embedded different-sized cores. Authors in [6] propose hardware-efficient routing in

irregular mesh NoCs and routing table size minimization based on static shortest path

routing. Holsmark et al. in [38] list the issues that a designer would encounter while

designing a heterogeneous mesh topology for NoC using multi-port or multi-access point

cores and present two deadlock-free routing algorithms for irregular mesh networks.

In this section, we propose novel and global architecture-aware analytic mapping

(A3MAP) algorithms. The proposed approach can be employed in most networks

 117

including regular/irregular mesh and custom networks. The main novelties and

contributions include:

• We propose a simple yet efficient metric space to easily capture the architecture

of NoC and the communication of cores. Then, an application mapping problem is

exactly formulated to MIQP based on a metric embedding technique.

• We propose two effective heuristics solving the MIQP, based on a successive

relaxation algorithm providing short runtime and a genetic algorithm providing

high mapping quality. They fit well our formulation and provide better trade-off

between mapping quality and runtime for a small-scale network.

• We propose a partition-based application mapping approach for large-scale

networks and show that it provides short runtime with little loss of mapping

quality.

• We show that the proposed A3MAP algorithms achieve excellent application

mapping quality not only in regular networks but also in irregular/custom

networks.

3.2.1 Problem Formulation

In this section, we formulate an application mapping problem to MIQP using

metric embedding. As inputs, we take a core graph and a network. A graph G(V,E) with n

vertices is a directed graph, where each vertex vi∈V represents a core or a tile and where

each directed edge ei,j∈E represents communication between vi to vj. vol(ei,j) represents

communication volume between vi to vj in a core graph and bw(ei,j) represents a

bandwidth requirement between vi to vj in a network. We construct an n×n

 118

interconnection matrix, CN corresponding to a network, where cNi,j∈CN is equal to bw(ei,j)

as shown in Figure 3.12(a). Each row in CN represents interconnection relation with

respect to a single tile on NoC. Thus, CN contains interconnection relations for an entire

network, representing the metric space of a network. Similarly, we construct an n×n

interconnection matrix CC, corresponding to a core graph, where cCi,j∈CC is equal to

vol(ei,j) as shown in Figure 3.12 (b).

For example, Figure 3.12 (c), (d) and (e) show three network graphs and their

metric spaces using the proposed interconnection matrix. In Figure 3.12 (c) that is a

regular mesh, all routers are interconnected by a bidirectional network link with the same

bandwidth. Its interconnection matrix is symmetrically composed as shown under the

network graph. In case of an irregular mesh network in Figure 3.12(d), interconnections

between tile A and tile B or between tile C and tile F are unidirectional and tile D is not

interconnected to tile E. Since the bandwidth of links is also different, its interconnection

matrix is asymmetrically composed. The irregular mesh network can be observed in VFI

based NoC where each PE operates with its own voltage and frequency [49][53][84] and

in NoC with faulty and degraded links by process and temperature variation [72].

In case of a custom network, there is slightly difference in the composition of its

interconnection matrix. In Figure 3.12(e), wirelength between tile E and tile F is different

from other wirelengths due to tile E with a larger area. Since a packet have to cross each

link within one cycle, a link between tile E and F may have more repeaters to

accommodate a fast transmission time resulting in significantly higher energy

consumption. The composition of an interconnection matrix for the custom network is

similar to regular/irregular mesh networks except weight α is added in the matrix in order

to consider efficient communication energy consumption. The hop count based on the

assumption that all links consume the same communication energy is no longer suitable

 119

0
3

0

0

0

0

0

0

0
00

0
0

00
0

0
0

0

0
0

(e) custom
 netw

ork

00

(d) irregular m
esh netw

ork
(c) regular m

esh netw
ork

0
5

0
5

0
0

0

0

0

0

0

5
5

5
0

05
0

0
5

05
0

0
5

0

5
5

0
5

0

0
0

5
0

5

v
A

v
B

v
C

v
D

v
E

v
F

v
A

v
B

v
C

v
D

v
E

v
F

v
A

v
B

v
C

v
D

v
E

v
F

v
A

v
B

v
C

v
D

v
E

v
F

vol(e
AB)

vol(e
AC)

vol(e
AD)

vol(e
AE)

0
vol(e

AF)

0
vol(e

BC)
vol(e

BD)
vol(e

BE)
vol(e

BA)
vol(e

BF)

vol(e
C

B)
0

vol(e
C

D)vol(e
C

E)
vol(e

C
A)

vol(e
C

F)

vol(e
D

B)vol(e
D

C)
0

vol(e
D

E)
vol(e

D
A)

vol(e
D

F)

vol(e
EB)

vol(e
EC)

vol(e
ED)

0
vol(e

EA)
vol(e

EF)

vol(e
FB)

vol(e
FC)

vol(e
FD)

vol(e
FE)

vol(e
FA)

0

(a) Interconnection m
atrix, C

N

v
A

v
B

v
C

v
D

v
E

v
F

v
A

v
B

v
C

v
D

v
E

v
F

(b) Interconnection m
atrix, C

C

bw
(e

AB)
bw

(e
AC)

bw
(e

AD)
bw

(e
AE)

0
bw

(e
AF)

0
bw

(e
BC)

bw
(e

BD)
bw

(e
BE)

bw
(e

BA)
bw

(e
BF)

bw
(e

C
B)

0
bw

(e
C

D)
bw

(e
C

E)
bw

(e
C

A)
bw

(e
C

F)

bw
(e

D
B)

bw
(e

D
C)

0
bw

(e
D

E)
bw

(e
D

A)
bw

(e
D

F)

bw
(e

EB)
bw

(e
EC)

bw
(e

ED)
0

bw
(e

EA)
bw

(e
EF)

bw
(e

FB)
bw

(e
FC)

bw
(e

FD)
bw

(e
FE)

bw
(e

FA)
0

v
A

v
B

v
C

v
D

v
E

v
F

v
A

v
B

v
C

v
D

v
E

v
F

A
B

CF
E

D 5

5

5

5

5

5

5

5

5

5

5

5

5

5

0
3

0
5

0
0

0

0

0

0

0

0
5

5
0

00
0

0
1

00
0

0
2

0

0
4

0
5

0

0
0

10
0

4

v
A

v
B

v
C

v
D

v
E

v
F

v
A

v
B

v
C

v
D

v
E

v
F

A
B

CF
E

D

3

1

5

4

4

5

2

5

5
10

A
B

C

F
E

1

3
5

5

8

5

D

3

95

5

0
5

1
5

0

9

0
3

5¥á8
0

¥á5
5

M
etric space

conversion
M

etric space
conversion

M
etric space

conversion

tile

router

Figure 3.12: V
arious graphs and their interconnection m

atrices.

 120

since links with different wirelength consume different communication energy. Let the

energy consumption of each link, Elink computed as:

link driver repeatersE E E= + (3.9)

where Edriver and Erepeaters are the energy consumed by the output driver of routers and

repeaters on a link respectively. If Elink1 and Elink2 is the energy consumption of sending

one bit in a solid line and a dotted line respectively, α is the ratio of Elink1 to Elink2

(=Elink1/Elink2) where Elink1< Elink2. The weigh α (0<α<1) reduces the available bandwidth

of a long dotted link in a network such that our formulation makes the long dotted link

less used. In Figure 3.12(e), let’s suppose that dotted lines are three times longer than

solid lines and a packet generated in tile A goes to tile D. The packet can choose either A-

B-C-D or A-E-F-D as a routing path. Since two routing paths include the same hop

counts, it takes the packet the same clock cycle to reach tile D while the total wirelengh

of path A-E-F-D is longer than that of path A-B-C-D. Thus, the path A-E-F-D may

consume more communication energy than the path A-B-C-D since more repeaters may

be inserted on the long dotted links or the router attached to tile E and F may be required

to equip a stronger output driver. Therefore, it is good to assign a core with little

communication to a tile with the long link or a core with a lot of communication to a tile

with the short link for low dynamic energy consumption. If the energy consumption is

linearly proportional to the length of wires in Figure 3.12(e) due to more repeaters and a

stronger output driver, α is 1/3. The weight α lets a core with a lot of communication

mapped into a tile with short wires such that communication energy consumption can be

further minimized. Similarly, our interconnection matrix easily accommodates other

general cases.

 121

Graph embedding [74] maps the vertices of graph G(V,E) into a chosen metric

space by minimizing distortion. Thus, application mapping has a natural correspondence

with graph embedding into a given two-dimensional metric space representing NoC.

Thus, we seek to embed a core graph into the metric space of a network based on the

interconnection matrices. The goal is that a core is mapped to each tile, satisfying the

performance constraints in a core-mapped network while the number of communication

generated between routers is minimal. If a network is exactly same as a core graph, graph

embedding does not cause any distortion of the edges in the core graph. As a result, it

always produces the best possible mapping quality on the network. However, since most

core graphs are generally different from a network, some distortion is not evitable in a

network. Then, the mapping quality is measured by the total distortion of embedding. By

minimizing the extent by which edges in a core graph are stretched or distorted with

intermediate tiles when embedded into a network, we seek to reduce the total amount of

communications and obtain a better global application mapping solution in terms of

energy consumption under performance constraints. Based on this concept, our concrete

application mapping algorithm is formulated as follows.

With two interconnection matrices, CN for a network and CC for a core graph, we

exactly formulate an application mapping problem to mixed integer quadratic

programming (MIQP). It is similar to a field programmable gate array (FPGA) placement

problem proposed in [32]. However, a crucial difference in our work is the use of metric

space that accurately captures the interconnections of a network and a core graph. The

application mapping problem is equivalent to determining the assignment of a core to

each tile with low energy consumption under performance constraints. This core

assignment action can be mathematically presented by an n×n permutation matrix P.

Column indices and row indices in P represent core identifiers and tile identifiers,

 122

respectively. For example, if P(i,j)=1, then core j is mapped to tile i. Thus, only one

element in each row and each column of P can be 1; all others must be 0. The action of P

on a core graph is represented by PTCCP. Finally, P minimizing the difference between

the permuted interconnection matrix of a core graph PTCCP and the interconnection

matrix of a network CN for generating little communication between routers and

minimizing the distortion of CC for a short routing path can be found. For P that is

orthogonal, we formulate the application mapping problem mathematically by our

objective as:

2 2min T
obj C N C N FF

f P C P C C P PC= − −= (3.10)

where 2
,i jF i j

X x= ∑ ∑ , xi,j ∈X, i.e., the Frobenius norm of the matrix X and xi,j ≤ 0

to satisfy bandwidth constraints, subject to integrity and linearity constrains as follows:

1

(,) 1, 1, 2,...,
n

i

P i j j n
=

= ∀ =∑ (3.11)

1

1, 1, 2,...,(,)
n

j

i nP i j
=

= ∀ =∑ (3.12)

() { }, 0,1P i j ∈ (3.13)

The constraints indicate that just one element in each row and each column is 1 and other

elements are 0 in the permutation matrix P.

While our formulation has a convex quadratic object function, the binary

constraints on the elements of P restrict the solution space to a non-convex set. Thus,

convex optimization techniques like gradient descent cannot be directly applied to solve

this problem. Actually, this type of formulation is well known as MIQP that is NP-hard

[97]. Algorithms we take in MIQP are successive relaxation to quickly find an

application mapping solution and a genetic algorithm to achieve a high mapping quality.

 123

In the next section, we describe how they are applied in the proposed A3MAP

formulation minutely.

3.2.2 A3MAP Algorithms

We present an effective heuristic based on successive relaxation of MIQP to a

sequence of quadratic programming (QP), called A3MAP-SR, to quickly find the

permutation matrix P that minimizes our objective fobj in Eq. (3.10). In addition, we apply

a genetic algorithm to find a better mapping solution, called A3MAP-GA even though it

takes a longer runtime than A3MAP-SR. A genetic algorithm is an efficient random

searching algorithm based on a cycle crossover and a mutation operation.

3.2.2.1 A3MAP-SR

In this section, we solve our A3MAP formulated to MIQP based on a successive

relaxation algorithm [33]. The optimal MIQP formulation can become QP if we relax the

discrete constraint of Eq. (3.13) to a continuous constraint as follows.

()0 , 1P i j≤ ≤ (3.14)

Then, the key idea behind this algorithm is to use this QP as a subroutine. QP is solved

much faster and scaled much better. Then, continuous values obtained by a QP solver are

guided to 0 or 1 depending upon a predefined threshold. If any continuous value is less

than the threshold, it is guided to 0. Otherwise, it is guided to 1. The proposed concrete

successive relaxation algorithm employed in our A3MAP formulation is shown in

Algorithm 7.

 124

Algorithm 7 A3MAP-SR
Input: MIQP formulation

1: Relax P(i,j) ∈{0,1} to 0≤ P(i,j) ≤1;
2: Set all P(i,j) to a variable;
3: ith = n(VN);
4: repeat
5: Solve relaxed MIQP only for variables P(i,j);
6: repeat
7: Find max{P} and store its location to (imax,jmax) for ∀ P(i,j) that is a variable;
8: if max{P} ≥ 1/ ith do
9: P(imax,jmax) = 1 and a non-variable;

10: P(i,jmax) = 0 and a non-variable, ∀ i=1,2,.., n(VN);
11: P(imax,j) = 0 and a non-variable, ∀ j=1,2,.., n(VN);
12: ith decreases by 1;
13: end if
14: until (max{P} < 1/ ith)
15: until (all P(i,j) are a non-variable)
Output: Permutation matrix P

After relaxing the constraint of Eq. (3.13) to Eq. (3.14) in line 1, we set all P(i,j)

to a variable since any P(i,j) is not guided to a permanent value, 0 or 1. Initial ith is set to

the number of tiles in a network and then as an initial threshold, we use 1/ith to guide

continuous P(i,j) solved by a QP solver to 1, where the threshold indicates the expected

average that variable P(i,j) can get. On executing the successive relaxation, ith decreases

by 1 whenever any P(i,j) is set to 1, which means the threshold gets increased. The rest of

algorithm 1 attempts to constraint continuous values solved by a QP solver to binary

values inversely. We look for the maximum P(i,j) and compare it to the threshold. If it is

greater than the threshold, it is set to 1 and a non-variable. In addition, all elements on the

same row or column as the maximum P(i,j) are also set to 0 and a non-variable since the

sum of elements on a single row or a single column in the permutation matrix P should

be 1 from the constraints in Eq. (3.11) and (3.12). This procedure repeats if the next

maximum P(i,j) is also greater than the updated threshold. Otherwise, we again solve the

relaxed MIQP for the rest of variables P(i,j) by a QP solver and continue to guide

 125

continuous values to binary values. If all P(i,j) are guided to 0 or 1, we get the near-

optimum permutation matrix P.

For example, we assume that an application with 5 cores and NoC with 5 tiles are

given. In order to allocate the cores to the tiles, we should find a 5×5 permutation matrix

where only 5 elements will be 1 and 20 elements will be 0 from our A3MAP formulation.

We relax the discrete constraint in Eq. (3.13), set all P(i,j) to a variable and set an initial

threshold to 1/5. Let the relaxed MIQP solved by a QP solver as shown in Figure 3.13(a).

Then, our A3MAP-SR algorithm looks for the maximum P(i,j) among the variables. In

Figure 3.13(a), P(3,2) is 0.5 as the maximum. Since it is greater than the initial threshold

1/5, P(3,2) is guided to 1 and then P(3,k) and P(k,2) where ∀ k= 1, 2, …, 5 are set to 0 as

shown in Figure 3.13(b). The guided P(i,j) to 0 or 1 is set to a non-variable and the

threshold is updated to 1/4. Since the next maximum P(1,3) and P(5,5) are greater than

the threshold 1/4 and 1/3 respectively, P(1,3) and P(5,5) is guided to 1 and P(1,k), P(k,3),

0.1 0.2 0.2 0.3 0.2

0.0 0.1 0.5 0.1 0.3

0.4 0.2 0.0 0.3 0.1

0.2 0.3 0.2 0.3 0.0

0.3 0.2 0.1 0.0 0.4

1 2 3 4 5
1

2

3

4

5

th=1/5

(a)

0 0.2 0 0.3 0.2

0 0 1 0 0

1 0 0 0 0

0 0.3 0 0.3 0.0

0 0.2 0 0.0 0.4

1 2 3 4 5
1

2

3

4

5

th=1/3

0 0.2 0 0.3 0

0 0 1 0 0

1 0 0 0 0

0 0.3 0 0.3 0

0 0 0 0 1

1 2 3 4 5
1

2

3

4

5

th=1/2

0 0.6 0 0.4 0

0 0 1 0 0

1 0 0 0 0

0 0.4 0 0.6 0

0 0 0 0 1

1 2 3 4 5
1

2

3

4

5

th=1/2

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1 2 3 4 5
1

2

3

4

5

(b) (c)

(d) (e)

0.1 0.2 0 0.3 0.2

0 0 1 0 0

0.4 0.2 0 0.3 0.1

0.2 0.3 0 0.3 0.0

0.3 0.2 0 0.0 0.4

1 2 3 4 5
1

2

3

4

5

th=1/4

1

2

3

4

5

(f)

Figure 3.13: Guiding continuous P(i,j) to binary P(i,j) after solving QP.

 126

P(5,k), and P(k,5) where ∀ k= 1, 2, …, 5 are set to 0 as shown in Figure 3.13(c) and (d).

Then, the guided P(i,j) to 0 or 1 is set to a non-variable and the threshold is updated to

1/2. Next, since the next maximum P(2,4) is less than the threshold 1/2 in Figure 3.13(d),

we again solve the relaxed MIQP by a QP solver for the rest of variable P(i,j) as shown in

Figure 3.13(e). Then, the guiding procedure repeats until all P(i,j) are guided to 0 or 1 as

shown in Figure 3.13(f).

3.2.2.2 A3MAP-GA

The successive relaxation algorithm solves MIQP with the reasonable mapping

quality and runtime. For application mapping with a high mapping quality, runtime may

be less important than the reduction of hop count and communication energy

consumption. To reflect this demand, we develop another heuristic using a genetic

algorithm. A genetic algorithm reproduces the principle of natural evolution to solve

search and optimization problems. It is a promising technique for a system-level design

and is especially suitable for multiple-objective optimization problems. Starting with an

initial population, a genetic algorithm evolves a population using crossover and mutation

operations. A genetic algorithm is previously used in [103] to explore the design space

efficiently for task assignment, mapping and routing path allocation. However, since the

performance of a genetic algorithm depends on encoding, crossover and mutation

schemes, we need to select different schemes that fit well in our A3MAP formulation.

Algorithm 8 is the pseudo-code of our genetic algorithm for MIQP. First, we

generate two arbitrary permutation matrices as parent individuals. A crossover scheme is

widely acknowledged as critical to the success of a genetic algorithm. A crossover

scheme should be capable of producing a new feasible solution (i.e., new child

 127

individual) by combining the good characteristics of parent individuals while the child

individuals should be considerably different from their parent individuals. We use a cycle

crossover [85] which prevents over two cores being allocated into the same tile. Figure

3.14 shows how to generate two child individuals based on the cycle crossover. In the

first step, child 1 inherits a column from parent 1 and child 2 inherits a column from

parent 2. We start to choose any inherited column in parent 1. In Figure 3.14(a), the first

column is arbitrarily chosen in parent 1 and then the same column is chosen in parent 2.

Next, we look for a column in parent 1 including the same elements that the chosen

column in parent 2 gets. In Figure 3.14(a), the fifth column of parent 1 contains the same

elements that the first column of parent 2 gets. Then, the fifth column in parent 2 is

selected. Similarly, this procedure repeats until the chosen column is again chosen. In the

second step, child 1 inherits a column from parent 2 and child 2 inherits a column from

parent 1 inversely. The procedure is similar to the first step except the choice of a column

starts from any unselected column of parent 2. If all columns of children are not filled

with the column of parents after the second step, we repeat the first step and the second

step with the unselected columns of parents by turns. In our example, all columns of

children are filled after the second step.

Algorithm 8 A3MAP-GA
Input: MIQP formulation
1: Generate arbitrary parent 1;
2: repeat
3: Generate arbitrary parent 2;
4: (child 1, child 2) = cycle crossover (parent 1, parent 2);
5: Mutation of child 1 and 2 by pair-wise swapping;
6:

parent 1 = one of two children with minimum fobj computed by Eq. (3.10) for the
next evolution;

7: until (no improvement during i-iterations)
Output: Permutation matrix P

 128

0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

gene
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

0 0 0
0 0 1
0 1 0
0 0 0
1 0 0
0 0 0

0 0 0
1 0 0
0 0 1
0 0 0
0 1 0
0 0 0

0
0
0
1
0
0

1
0
0
0
0
0

0
0
0
0
0
1

0
0
0
1
0
0

1
0
0
0
0
0

0
0
0
0
0
1

0 0 0
0 0 1
0 1 0
0 0 0
1 0 0
0 0 0

0 0 0
1 0 0
0 0 1
0 0 0
0 1 0
0 0 0

(a) 1st step (b) 2nd step

individualparent 1 child 1

parent 2 child 2

parent 1 child 1

parent 2 child 2

Figure 3.14: Cycle crossover.

Then, a mutation operation is performed for each child. In this operation, two

columns randomly selected are swapped to generate a new individual. Then, the

swapping is valid only when it reduces the number of traffic. The pair-wise swapping

operation for each child continues until the pair of swapped columns cannot minimize our

object function, i.e. Eq. (3.10) any more. After the mutation operation, we choose one of

two children with the minimum distortion as the parent 1 for the next evolution. Those

operations repeat until there is no improvement for several (i) iterations. If there is not

any improvement for i-iterations, a permutation matrix providing the near-optimal

performance to NoC is obtained.

Our genetic algorithm makes the superior column of parents passed down to their

children and the best child again becomes any parent (parent 1) for the next evolution. In

addition, since the new elements of columns (parent 2) from the outside are supplied, the

possibility of local minima is relatively lower. This approach can efficiently cover wider

solution spaces even if runtime is longer than A3MAP-SR.

 129

3.2.3 A3MAP for Large-Scale NoC

Whereas A3MAP enables global optimization, the runtime of A3MAP algorithms

is longer and longer as the number of cores or tiles increases. Even NMAP [79] that is

one of the fastest mapping algorithms takes a long runtime when the number of cores or

tiles is greater than 70. Recently, since NoCs include more tiles for high performance and

applications are more complex, an application mapping approach with better tradeoff

between runtime and mapping quality is required. Therefore, we propose a partition-

based application mapping approach that can be easily extended to any large-scale NoC.

In addition, we show that A3MAP algorithms are suitable for the partition-based

approach.

Figure 3.15 shows our partition-based application mapping approach in large-

scale NoCs, where an application with 9 cores and NoC with 9 tiles are given for a simple

explanation. In Figure 3.15, core 1, 5 and 6 have two times higher computation

complexity than others and the weight of all edges is just 1. We first perform k-way min-

cut partitioning for the cores. The number of groups (k) is determined by a user. If

runtime is more important than mapping quality, a few groups are desirable. Otherwise,

few groups are desirable to high mapping quality. The groups are not required to include

the same number of cores. Then, the groups are sorted in a decreasing order by the

amount of communication inside each group and then mapped in the order. Since the

communication volume of group 1, 2, and 3 are 4, 3, and 2, respectively, group 1 are first

mapped in Figure 3.15.

Large NoC (R) including N tiles also requires being partitioned to several small

networks (R') with a convex region as shown in Figure 3.15. A near convex region

selection problem can be formulated as follows [15]:

 130

Min-cut core partitioning Sorting core groups by
communication (C)

Convex region selection

8

1

2

9

3

54 6

7

application
1

2 3

54

7
8

9

6

8

1

2

9

3

54 6

7

group1

group2 group3

C=4 C=3

C=2

1

3 2

1

3 2

4 7

5
1

3 2

4 7

5

98
6

Group 1 mappingGroup 2 mappingGroup 3 mapping

Figure 3.15: Partition-based A3MAP flow for large networks and complex applications.

[]1 1min (') (')L R L R R+ − (3.15)

where L1(R) is the total Manhattan distance between all tiles inside region R. The

objective is to find a subregion R' with N' tiles of which the total computational capacity

is greater than or equal to the total computational complexity of cores. The time

complexity of the near region selection algorithm is known as O(NlogN) in [15].

Then, cores in each group are mapped to tiles inside the selected convex region.

Group 1 which has the maximum communication is first mapped to a possible convex

region as shown in Figure 3.15. Since the size of an interconnection matrix of group 1 is

3×3, the runtime of A3MAP algorithms is several hundred times faster than A3MAP

algorithms with a 9×9 interconnection matrix. Next, based on the mapping result of group

1, group 2 is mapped to a possible convex region. Even though the size of its

 131

interconnection matrix is 6×6 in the mapping of group 2, its runtime is similar to that of

group 1. This is because some variables P(i,j) are already determined by the mapping of

group 1. Last, group 3 is mapped to the last convex region, based on two previous

mapping results. Whereas the size of its interconnection matrix is 9×9 in the mapping of

group 3, its runtime is also similar to that of the previous core groups. This is because the

number of variables P(i,j) that A3MAP algorithms should find in the last mapping are the

same as the number of variables P(i,j) in the first and second mapping.

Even though most of the application mapping algorithms can be applied to the

partition-based approach, our A3MAP algorithms such as A3MAP-SR and A3MAP-GA

are more suitable. This is because the runtime of A3MAP solved by a full search

algorithm, called A3MAP-FS is still slow and the mapping quality of NMAP is not still

satisfactory in the partition-based approach. The partition-based approach gets some

inevitable mapping quality loss since cores in each group can be allocated to only tiles

inside the selected convex region. In order to minimize the mapping quality degradation

in the partition-based approach, each group should include cores or tiles as many as

possible, i.e. the number of a group should be the minimum. However, since it takes

A3MAP-FS at least 2 seconds to map 10 cores in our experiment, the number of a group

should increase in order to reduce the runtime. As a result, the mapping quality of

A3MAP-FS deteriorates severely in the partition-based approach. In case of applying a

fast application mapping algorithm like NMAP in the partition-based approach, its

mapping quality is not satisfactory even though the number of a group is the minimum.

For example, NMAP itself shows on average 7%, 8% and 11% lower application

mapping quality than A3MAP-FS when 10, 11 and 12 cores are mapped, respectively. As

a result, even if NMAP performs on a large convex region with a number of cores, its

mapping quality is still low in the partition-based approach. Therefore, A3MAP

 132

algorithms that provide higher mapping quality than NMAP and shorter runtime than

A3MAP-FS are suitable for the partition-based approach.

3.2.4 Experimental Results

We implement the A3MAP-SR algorithm by CPLEX11.2 [87] and the A3MAP-

GA algorithm by C++. All experiments were performed on a Linux machine with Intel

2.4GHz CoreDuo and 8GB RAM. We repeat each application mapping for ten times and

compute their average to obtain reliable statistics.

3.2.4.1 Regular Mesh Network

We carry out experiments by applying A3MAP algorithms on an MPEG-4 video

object plane decoder (VOPD) [111], E3S benchmark suites [25] and synthetic

benchmarks. The first application including 16 cores is mapped onto a 4×4 regular mesh

network. The second benchmark consists of three applications, i.e. consumer, auto-

industry (AI) and telecomm containing 12, 24 and 30 tasks respectively, which are

scheduled to 9, 16 and 25 by [42] and then mapped to a 3×3, 4×4 and 5×5 regular mesh

network, respectively. In addition, we use task graph for free (TGFF) [26] to generate

several sets of synthetic applications. The number of tasks and the volume of

communication are randomly selected according to specific distributions.

Since the number of cores is generally different from the number of tiles, the pre-

processing is required. If the number of cores is less than the number of tiles, additional

cores without any communication and computation are added in the core graph. If the

number of cores is greater than the number of tiles, we perform n(VN)-way min-cut or

balanced core partitioning, where n(VN) is the number of tiles and the computational

 133

complexity of the grouped cores must be less than the computational capacity of PE. The

min-cut partitioning reduces communication energy consumption between tiles that are

assigned cores whereas the balanced partitioning for the computational complexity of

cores improves the system performance by encouraging parallel computing. Then, we

perform the proposed A3MAP-SR and A3MAP-GA algorithms. Finally, we allocate the

routing path of packets by a Dijkstra’s shortest path algorithm to compute total hop count

between routers on a given network.

Table 3.4 shows how exact and fast solution A3MAP algorithms can find in

synthetic benchmarks with 9-13 cores, compared to the full searching approach, A3MAP-

FS that provides the best solution in terms of mapping quality. A3MAP-SR and A3MAP-

GA provide near-best solutions since their mapping qualities are just 3.8% and 2.2%

lower on average than A3MAP-FS respectively, when 13 cores are mapped in a regular

mesh network. However, their runtimes are about 564 and 153 thousand times shorter

than A3MAP-FS respectively. On the contrary, the mapping quality of NMAP [79] which

is one of the most famous core mapping algorithms is on average 15.3% lower than

A3MAP-FS even if its runtime is the shortest.

of
core

or tile

Hop count increase (%)
normalized by A3MAP-FS

Runtime improvement (times)
normalized by A3MAP-FS

A3MAP-SR A3MAP-GA NMAP A3MAP-SR A3MAP-GA NMAP
9 1.3 1.1 2.0 155 72 202
10 1.7 1.2 7.1 432 373 470
11 2.0 1.5 8.1 3819 1555 5287
12 2.6 1.8 10.9 47K 14K 67K
13 3.8 2.2 15.3 564K 153K 875K

Table 3.4: The hop count increase and runtime improvement of NMAP, A3MAP-GA,
and A3MAP-SR normalized by A3MAP-FS.

 134

Table 3.5 shows the application mapping results performed with industrial

benchmarks. A3MAP-SR greatly reduces on average total hop count by 7.4% in a regular

mesh network, compared to NMAP. A3MAP-GA achieves on average 3.8% and 11.8%

less hop count than A3MAP-SR and NMAP, respectively. On the contrary, the runtimes

of A3MAP-SR and A3MAP-GA are longer than NMAP as shown in Figure 3.16.

Application NMAP A3MAP-SR Imp. (%) A3MAP-GA Imp. (%)
Consumer 50 50 0 49 2

VOPD 4309 4265 1.0 4141 3.9
AI 187 151 19.3 147 21.4

Telecomm 127 115 9.4 102 19.7
Average 4673 4581 7.425 4439 11.75

Table 3.5: The comparison of hop count for industrial benchmarks in regular mesh
networks.

Figure 3.16: The comparison of runtime for industrial benchmarks in 3×3-5×5 regular
mesh networks.

Figure 3.17 shows the hop count improvement of A3MAP algorithms compared

to NMAP on 3×3-10×10 regular mesh networks. We generate ten synthetic task graphs

 135

Figure 3.17: The hop count improvement of A3MAP algorithms compared to NMAP for
synthetic benchmarks in 3×3-10×10 regular mesh networks.

per network by TGFF and compute their average improvement. As shown in Figure 3.17,

A3MAP-SR and A3MAP-GA reduce on average total hop count by 5.7% and 8.8%,

respectively, compared to NMAP. In addition, A3MAP algorithms provide much higher

mapping quality than NMAP as the size of networks increases.

3.2.4.2 Irregular Mesh Network

In this section, our A3MAP algorithms prove more merits on irregular mesh

networks. We perform NMAP on an irregular mesh network even if NMAP is optimized

for a regular mesh network. We also implement [109] which considers irregular networks

for application mapping, called CMAP. Figure 3.18 shows six irregular mesh networks

on which we experiment the application mapping algorithms. Figure 3.18(a) has only

bidirectional links, Figure 3.18(b) has both bidirectional and unidirectional links and

Figure 3.18(c) has only unidirectional links. Both directions of links have the same

bandwidth in Figure 3.18(d) whereas each direction of links has different bandwidth in

 136

A B C D

E F G H

I J K L

M N O P

(a) (b)

(d) (e)

A B C D

E F G H

I J K L

M N O P

(c)

(f)

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

C DA B

Figure 3.18: Irregular mesh networks used in our experiments.

Figure 3.18(e). In the figure, solid lines have two times higher bandwidth than dotted

lines. In Figure 3.18(f), links have all irregularities mentioned in Figure 3.18(a)-(e).

Table 3.6 shows the mapping results of an MPEG-4 VOPD application on the

irregular mesh networks. A3MAP algorithms achieve better application mapping

improvement in an irregular mesh network than that in a regular mesh network. For

example, whereas A3MAP-SR and A3MAP-GA reduce on average total hop count only

by 1.0% and 3.9% in a regular mesh network respectively, they reduce on average total

hop count by 16.1% and 29.4% in irregular mesh networks respectively, compared to

NMAP. In addition, A3MAP algorithms achieve much higher mapping quality than

NMAP in Figure 3.18(f) which is the most complex network. That is because A3MAP

formulation avoids mapping cores with a lot of communication volume to tiles with little

bandwidth and considers the direction of communication and various network topologies

adaptively. Even if CMAP is optimized for irregular networks, its mapping quality is

 137

Application NMAP CMAP A3MAP-SR A3MAP-GA
Figure 3.18(a) 4869 4668 4839 4237
Figure 3.18(b) 5699 6552 4619 4457
Figure 3.18(c) 7810 8992 7317 4619
Figure 3.18(d) 4923 5507 4301 4295
Figure 3.18(e) 5706 4183 4199 4183
Figure 3.18(f) 8103 7920 4844 4410

Average 6185 6304 5187 4367
Ratio 1 1.019 0.839 0.706

Table 3.6: The comparison of hop count for VOPD benchmark in various irregular
mesh networks.

lower than that of NMAP. Since CMAP just considers the irregular wirelength of links, it

cannot improve mapping quality on irregular mesh networks which have the different

direction and irregular bandwidth of links. Furthermore, the runtime of CMAP is slightly

slower than NMAP. As a result, A3MAP algorithms provide energy-efficient application

mapping to NoC including an irregular mesh network.

3.2.4.3 Custom Network

In this section, we perform A3MAP algorithms on custom networks with an

MPEG-4 VOPD benchmark and then it is compared to NMAP and CMAP. Figure 3.19

shows custom networks where A3MAP algorithms are performed. Figure 3.19(a)

contains three PEs that have four times larger area than others. Due to the PEs, a custom

network including irregular interconnections and different wirelengths is synthesized.

Similarly, 16 PEs that have one of three different areas are floorplanned as shown in

Figure 3.19(b). Figure 3.19(c) has both unidirectional and bidirectional links and Figure

3.19(d) has links with different bandwidth. In Figure 3.19, links have one of two different

wirelengths and assume that a long link consumes two times higher communication

 138

A B C

E

D
F

G H I

L
M

P

J K

ON

A B C

D
E

K

F
G

H I

J

N

L M

O P

(a) (b)

A B

E
C

G

I

L O

H

NM

F

J K

P

D

B

K

N P

E

L

E

D

C

F

J
H

M

A

G

I

O

(c) (d)

Figure 3.19: Custom NoC networks used in our experiments.

energy than a short link since the long link requires a strong output driver or a number of

repeaters. Therefore, α is set to 1/2 when the interconnection matrix of a network is

composed.

Table 3.7 shows the application mapping results on the custom networks.

A3MAP-SR and A3MAP-GA reduce on average total hop count by 8.1% and 14%,

respectively, compared to NMAP. We also measure total wirelength passed by all

packets, which is related to communication energy consumption than the total hop count

in custom networks. In Table 3.7, total wirelength passed by all packets is reduced on

average by 19.1% and 31.2%, respectively, compared to NMAP. CMAP also improves

mapping quality on custom networks whereas it has no benefit on irregular mesh

networks. However, its hop count is 6.5% and 12.4% greater than those of A3MAP-SR

 139

Total hop count Total wirelength passed by all packets

Application NMAP CMAP A3MAP-
SR

A3MAP-
GA NMAP CMAP A3MAP-

SR
A3MAP-

GA
Figure 3.19(a) 4488 4752 4531 4087 5879 6300 5332 4543
Figure 3.19(b) 4264 4119 4248 4199 5505 4135 5049 4215
Figure 3.19(c) 6296 5598 5867 5150 7835 6842 7434 5613
Figure 3.19(d) 5524 5735 4263 4263 9196 9627 5170 5170

Average 5143 5051 4727 4425 7104 6726 5746 4885
Ratio 1.000 0.982 0.919 0.860 1.000 0.947 0.809 0.688

Table 3.7: The comparison of hop count and wirelength for VOPD benchmark in
custom networks.

and A3MAP-GA, respectively and total wirelength passed by packets is 14.6% and

28.4% longer than those of A3MAP-SR and A3MAP-GA, respectively. These results

prove that our weighted interconnection matrix is efficient enough for reducing

communication energy consumption since the improvement of wirelength passed by all

packets is greater than that of hop count. Therefore, the weighted interconnection matrix

is desirable for custom networks. Similarly, the proposed A3MAP algorithms can be

easily manageable for more complex NoC by controlling the weighted interconnection

matrix.

3.2.4.4 Large-Scale NoC

We prove A3MAP algorithms to be suitable for the partition-based approach

which is described in Section 3.2.3. In this experiment, core graphs with one hundred

cores are generated by TGFF and mapped to a 10×10 regular network. The cores are

partitioned to 9-15 groups with the minimum cuts by hMETIS [37] and the network is

also partitioned to 9-15 groups with a convex region. Then, after sorting the groups in a

decreasing order by the amount of communication inside each group, A3MAP-FS that

provides the best mapping quality, A3MAP-SR, A3MAP-GA and NMAP that provides

 140

one of the fastest solutions, perform application mapping for each ordered core group on

a selected convex region, which are called A3MAP-FS-P, A3MAP-SR-P, A3MAP-GA-P

and NMAP-P, respectively.

Figure 3.20 shows the hop count comparison of the application mapping

algorithms. As the number of groups increases, i.e. the number of cores or tiles included

in each group decreases, A3MAP-GA-P and A3MAP-SR-P achieves similar mapping

quality to A3MAP-FS. However, total hop count of most partition-based mapping

algorithms tends to increase since cores are mapped to a more restricted convex region.

On the contrary, if the number of groups decreases, the number of cores included in each

group increases. As a result, since cores can be mapped to a larger convex region, most of

the application mapping algorithms improves their hop count. The improvement of

mapping quality of A3MAP-GA-P and A3MAP-SR-P is less than that of A3MAP-FS

whereas it is much greater than that of NMAP-P.

Figure 3.20: The hop count comparison of application mapping algorithms in large
networks partitioned to 9-15 subnetworks.

 141

However, since the runtime of A3MAP-FS rapidly gets long in the larger convex

region as shown in Figure 3.21, it shows an inefficient trade-off between mapping quality

and runtime. The application mapping quality of A3MAP-FS-P can be obtained by

A3MAP-GA-P or A3MAP-SR-P if A3MAP-GA-P or A3MAP-SR-P performs in a

network that is partitioned to fewer groups. In addition, their runtime is much faster than

that of A3MAP-FS-P. For example, the mapping quality of A3MAP-FS-P on a network

partitioned to 10 groups is worse than the mapping quality of A3MAP-SR-P and

A3MAP-GA-P on a network partitioned to 9 groups in Figure 3.21. In addition, the

runtime of A3MAP-SR-P and A3MAP-GA-P on a network partitioned to 9 groups is

much faster than that of A3MAP-FS-P on a network partitioned to 10 groups. On the

contrary, even though NMAP-P shows slightly faster runtime than A3MAP-SR-P and

A3MAP-GA-P in Figure 3.21, its mapping quality is much worse in a network with few

groups in Figure 3.20. Therefore, A3MAP algorithms are more suitable for the partition-

based approach in large-scale NoC.

Figure 3.21: The runtime comparison of application mapping algorithms in large
networks partitioned to 9-15 subnetworks.

 142

Next, we check how many hop counts the partition-based A3MAP algorithms

increase in regular networks, irregular networks and custom networks. We use synthetic

benchmarks with 25, 36, 49, 64, 81 and 100 cores. We make each partitioned group not

include more than 16 cores such that 25, 36, 49, 64, 81 and 100 cores are partitioned to 2,

3, 4, 4, 6 and 7 core groups, respectively. The groups are not required to include the same

number of cores when the cores are partitioned with the minimum cuts. We perform the

partition-based A3MAP algorithms ten times with different core graphs and networks.

Figure 3.22 shows the hop count of A3MAP-SR-P normalized by A3MAP-SR in

regular networks, irregular networks and custom networks, called A3MAP-SR-P-R,

A3MAP-SR-P-I and A3MAP-SR-P-C, respectively. The hop count performed by

A3MAP-SR-P slightly increases, compared to A3MAP-SR due to the partitioning

process. In addition, the hop count increases in most networks as the number of PEs

increases. Consequently, A3MAP-SR-P increases on average total hop count by 1.5%,

2.0% and 2.6% in regular mesh, irregular mesh and custom networks, respectively.

Figure 3.22: The hop count of A3MAP-SR-P normalized by A3MAP-SR on regular
mesh, irregular mesh, and custom networks with 25-100 PEs.

 143

Similarly, Figure 3.23 shows the hop count of A3MAP-GA-P normalized by

A3MAP-GA in regular mesh, irregular mesh and custom networks, called A3MAP-GA-

P-R, A3MAP-GA-P-I and A3MAP-GA-P-C, respectively. A3MAP-GA-P increases on

average total hop count by 1.7%, 2.5% and 3.2% in regular mesh, irregular mesh and

custom networks, respectively.

Figure 3.23: The hop count of A3MAP-GA-P normalized by A3MAP-GA on regular

mesh, irregular mesh, and custom networks with 25-100 PEs.

Figure 3.24 shows the runtime of A3MAP-GA, A3MAP-SR, A3MAP-GA-P,

A3MAP-SR-P and NMAP. A3MAP-SR-P and A3MAP-GA-P show that the increases of

their runtime are slower than others as the number of PEs increases. As a result, when the

number of PEs is more than 60, they are the fastest even if their runtimes in 25 PEs are

similar to A3MAP-SR. Therefore, the A3MAP algorithms are more suitable for the

partition-based approach in large-scale NoCs since they provide an efficient trade-off

between runtime and mapping quality.

 144

Figure 3.24: The runtime comparison of NMAP, A3MAP-GA, A3MAP-SR, A3MAP-
GA-P, and A3MAP-SR-P.

3.2.5 Summary

In this section, we propose novel and global architecture-aware application

mapping (A3MAP) algorithms for NoC. Based on a metric embedding technique, we

analytically formulate an application mapping problem to MIQP. Then, the MIQP is

solved by two effective heuristics, i.e. a successive relaxation algorithm providing short

runtime and a genetic algorithm providing high mapping quality. In addition, we propose

the partition-based approach for large-scale NoCs, where A3MAP algorithms provide an

efficient trade-off between runtime and mapping quality. Experimental results show that

our A3MAP algorithms greatly reduce hop count on various networks, compared to the

previous state-of-the-art works. Especially, A3MAP algorithms show more merits on

irregular mesh and custom networks. All networks can be easily converted to the simple

but efficient interconnection matrix such that our A3MAP algorithms have no limitation

 145

to map cores to tiles on any arbitrary, faulty and degraded network. Furthermore,

A3MAP algorithms are easily manageable for low communication energy consumption

and high performance by an architecture-aware analytical manner.

 146

Chapter 4

NoC Architecture and Physical Design for Emerging Technologies

The architecture and circuit techniques for NoC should be compatible with

physical design and design for manufacturability (DFM) constraints since network

designs are subject to technology constraints. With aggressive scaling transistor and wire

dimensions, variability and reliability have become important for NoC designs. Fast

computation relative to communication time motivates more intelligent routing

algorithms designed to minimize hop count and network congestion. This trend indicates

a need for research in technology-driven and scalable router, switch, and link designs.

Moreover, as emerging technologies, such as 3D die integration and on-chip

optical/wireless communication become viable, new opportunities and constraints will

further drive the need for innovation in interconnection networks. In particular, as 3D die

integration based on through-silicon vias (TSVs) becomes feasible, a 3D NoC design

brings in new challenges. Since 3D NoC must satisfy not only application constraints

such as latency, throughput, and power, but also manufacturing/design constraints

imposed by 3D technologies such as the number of TSV, chemical-mechanical polishing

(CMP), TSV stress, and thermal effect, a 3D NoC design compatible with the constraints

is required for innovation in interconnection networks.

4.1 CMP-AWARE APPLICATION-SPECIFIC 3D NOC DESIGN

As shrinking the horizontal feature size has critical limitations, vertically stacking

silicon based on TSVs has gained tremendous interests from both academia and industry

for the future integrated circuits (ICs). NoC is an effective solution for scalable on-chip

communication in the complex three-dimensional (3D) interconnections since it can

 147

control the number of TSVs necessary for various applications. However, 3D NoC must

meet not only application performance/power constraints, but also manufacturing

constraints imposed by the 3D technologies. Therefore, the combination of the 3D

technologies and the NoC offers new challenges and opportunities.

So far, many researchers have addressed the issues of 3D floorplanning and NoC

topology generation with consideration of thermal hot spots. For example, in 3D

floorplanning, cores with high power density can be assigned to the silicon layer attached

to heat sinks and spread out at each silicon layer to reduce peak temperature and help

mitigate the thermal and reliability problems such as electromigration, stress,

dielectric breakdown, leakage-thermal run-away, and speed of devices [17][43]. Based on

3D thermal-aware floorplanning, 3D NoC topology is then synthesized [80][102][120].

Besides thermal and related thermal-mechanic stress effects [3][121], 3D-IC

integration has other manufacturability and layout related challenges related with TSVs

and landing pads [68][91]. One particular challenge is that the wide range of the metal

area by TSVs and landing pads increases non-uniform metal density distribution, and

thus results in the critical variation of wire thickness and TSV height during the CMP

process [30][70][104]. The CMP processes in 3D-IC are used for both Cu-CMP (for the

removal of extra Cu on silicon after filling TSVs with Cu or depositing Cu on TSV

landing pads) and silicon-CMP (for silicon backside thinning). The uneven Cu-wire

thickness changes wire resistance and coupling capacitance between wires, and thus

results in critical timing variation. Moreover, the uneven TSV height leads to bonding

failure between TSVs and landing pads. To mitigate the non-uniform metal density,

dummy metal fill insertion can be used in empty spaces, but that may affect RC parasitics

[56][57]. Dummy TSV insertion can be also inserted for reducing silicon-CMP variation,

but it may significantly reduce usable silicon area of the entire chip. Since TSV height

 148

variation after silicon-CMP strongly depends on the regularity and density of TSV

distributions, 3D NoC designs with different vertical links composed of tens to hundreds

of TSVs should consider the TSV height variation.

In this section, we propose the first CMP-aware application-specific 3D NoC

design that minimizes TSV height variation, thus reduces bonding failure, and meanwhile

optimizes conventional NoC design objectives such as hop count, wirelength, power

consumption, and area. For NoC vertical links composed of tens to hundreds of TSVs,

the layout of each individual TSV is not efficient since it results in complex global

routing and TSV manufacturing stresses affect more transistors [3][121]. Therefore,

TSVs should be placed as an array type in 3D NoC. However, the array with dense TSVs

is sensitive to CMP process which results in high TSV height variation, and thus leads to

severe bonding failure. Moreover, if the arrays with different TSV density are used in the

same layer, bonding TSVs on landing pads is more difficult. NoC includes one-way and

two-way links of which the metal densities may be different. Therefore, TSVs in an array

should be placed with a pitch resulting in low TSV height variation endured by a bonding

technique and TSV arrays with the same density should be inserted in each layer. In

addition, previous 3D NoC designs cannot handle TSV arrays during placement and

routing stage since the size of the TSV arrays is too large [80][102][121]. Therefore, TSV

arrays should be handled during the floorplanning stage in physical design. Based on

these motivations, the major contributions of this work include:

• We show that TSV height variation during silicon-CMP process is more severe in

3D NoC where dense TSV arrays are used as vertical links.

• We propose a CMP-aware application-specific 3D NoC design that minimizes

TSV height variation and optimizes conventional NoC design objectives.

 149

• We present CMP-aware 3D NoC techniques for core-to-layer assignment,

topology synthesis, and floorplanning.

• We show that the proposed 3D NoC design reduces TSV height variation with

lower design cost, and meanwhile achieves less hop count, wirelength, and power

consumption.

To the best of our knowledge, this is the first work that addresses CMP variation

in 3D NoC. The rest of this section is organized as follows: Section 4.1.1 introduces CMP

and Cu-Cu thermo-compression direct bonding, and then addresses various TSV layouts

and their CMP variation. Section 4.1.2 shows the problem formulation and proposed

CMP-aware application-specific 3D NoC design flow. Section 4.1.3 presents detailed

techniques of our proposed algorithms. Section 4.1.4 shows experiment results and

Section 4.1.5 concludes the section.

4.1.1 Preliminaries

4.1.1.1 Chemical-Mechanical Polishing and Cu-Cu Thermo-Compression Direct
Bonding

One of the most potential sources of yield loss and timing variation in 3D

technologies is TSV bonding on land pads. In a typical industrial bonding procedure

[108][110], a TSV-wafer is ground down to a target thickness slightly above the TSV

depth (keeping TSVs unexposed) and further thinned using CMP process. CMP uses both

chemical and mechanical means to polish the surface of the wafer. In a typical rotary

 150

Figure 4.1: Typical rotary CMP tool [30].

CMP tool, the wafer is held on a rotating holder, as shown in Figure 4.1. The surface of

the wafer being polished is pressed against the polishing pad which is mounted on a

rotating disk. A slurry composed of particles suspended in a chemical solution is also

deposited on the pad as the chemical abrasive. The material-removal mechanism of CMP

is similar to the removal found in glass polishing. A chemical reaction softens the surface

of a material to be removed later. The chemical reaction creates a hydroxilated-form

material which has weaker atomic bonds. It is, therefore, more easily removed during the

polishing process. Then, a mechanical surface abrasion aided by slurry particles removes

the material. Figure 4.2(a) shows the uneven surface of wafer backside after grinding and

CMP. Subsequently, the polished silicon surface is plasma-etched, such that the TSVs

protrude from the wafer as shown in Figure 4.2(b). On the contrary, TSV Landing pads

are commonly fabricated on the top metal layer in a damascene process and designed to

be larger than TSVs to prevent overlay error. The top metal layer with TSV land pads is

also polished by CMP to remove overburden Cu. Finally, a wafer or die with TSV

landing pads is bonded with a different wafer or die with TSVs.

 151

(a) After grinding and CMP (b) Si-recess etch following CMP

Figure 4.2: Local topography on backside of wafer [108].

Recently, micro-bump-less Cu-Cu direct bonding techniques attract great

attentions in 3D die integration since the same bonding medium can prevent the

formation of an intermetallic at the interface between TSVs and landing pads [108][110].

In addition, Cu-Cu direct bonding is desired compared to solder-based connections since

(1) Cu-Cu bond is more scalable and ultra-fine pitch can be achieved; (2) Cu has better

electrical and thermal conductivities; and (3) Cu has much better electromigration

resistance for higher current density. The direct Cu-Cu bonding has been demonstrated

using thermo-compression bonding via parallel application of heat and pressure (typically

~300-400oC and ~200 kPa). The bonding mechanism is based on interdiffusion of Cu

atoms and grain growth, and hence it is also widely known as diffusion bonding.

4.1.1.2 TSV Layouts and CMP Variation

The goal in Cu-CMP is to polish the barrier and remove overburden Cu on silicon

after filling TSVs with Cu and depositing Cu for landing pads. Cu-CMP involves

simultaneous polishing of three materials: Cu, dielectric (oxide), and barrier (Tan, Ti,

etc.). However, due to different chemical effects on the materials and pattern differences

 152

in terms of pattern density, Cu line width, and oxide line space, the removal rates of the

these materials are different. Their difference in removal rates results in different polish

times across the wafer. For example, in Figure 4.3(a), by the time the excess Cu and

barrier on TSVs used for a 64-bit link are cleared at a point on the die, those on TSVs

used for 128-bit links might at another point have already been cleared, where chemicals

used for Cu-CMP react well on Cu rather than silicon. Hence, either the 128-bit TSVs are

overpolished at the time the excess Cu and barrier on the 64-bit TSVs are cleared or the

excess Cu and barrier on the 64-bit TSVs are not cleared at the time the excess Cu and

barrier on TSVs used for a 128-bit link are cleared. Figure 4.3(a) shows that the 128-bit

TSVs are overpolished after Cu-CMP. The uneven polishing problem in Cu-CMP can be

solved by CMP fill synthesis where dummy metals grounded or floating are inserted in

the empty spaces of a metal layer [56][57].

(b) (c) (e)(d)

128 bits

open

silicon layer 1

silicon layer 2

TSV64 bits128 bits

open open

erosion

(a)

thinning

TSV

A B

A B
landing pad

silicon-CMP

Cu-CMP
plasma-

etch

Figure 4.3: TSV layouts and their TSV height variation induced by a CMP process.

 153

Silicon-CMP is used for finely thinning silicon after grinding silicon backside

since the processing time of CMP is too long. As silicon-CMP also involves simultaneous

polishing of silicon, Cu, and barrier, their removal rates are different according to

different chemical effects on the materials and different TSV densities in terms of TSV

diameter, TSV pitch, and TSV array size. The different removal rates of these materials

results in different polish times across the wafer backside. For example, in Figure 4.3(a),

by the time the silicon and barrier under TSVs used for a 64-bit link are cleared at a

point, the silicon and barrier under TSVs used for 128-bit links might have been not

cleared yet, where chemicals used for silicon-CMP react well on silicon rather than Cu.

Hence, either the silicon and barrier under the 128-bit TSVs are underpolished at the time

the silicon and barrier under the 64-bit TSVs are cleared or the 64-bit TSVs are

overpolished at the time the silicon and barrier under the 128-bit TSVs are cleared.

Figure 4.3(a) shows the 128-bit TSVs are underpolished after silicon-CMP. In [108],

IMEC TSV technology showed that within-die thickness variation after silicon-CMP was

1.5μm for a die size of 10.6×10.6mm2 when TSVs of which the diameter, pitch, and

density are 5μm, 10μm, and 10k/mm2, respectively, were evenly distributed over the

whole chip as shown in Figure 4.3(a). The within-die thickness variation is more

sensitive to irregular and high TSV density and directly related to TSV height variation.

Consequently, the uneven TSV height variation can induce severe TSV bonding failure

as shown in Figure 4.3(a). In particular, the bonding failure will be more severe in Cu-Cu

direct thermo-compression bonding widely used in 3D-IC since TSVs must be directly

contacted to landing pads without any micro-bump. Unlike Cu-CMP, CMP fill synthesis

is not an efficient solution for silicon-CMP since dummy TSV insertion would

significantly increases the overall chip area.

http://endic.naver.com/enkrEntry.nhn?entryId=35b29734937f4aabbdaf7b0bd3ed7e85&query=%EC%A0%95%EA%B5%90%ED%95%98%EA%B2%8C�

 154

 TSVs can be placed with different schemes during placement and routing

[3][68][91]. If TSVs are laid out without any constraints imposed by 3D technology, they

can be distributed as shown in Figure 4.3(b). Whereas such layout achieves much shorter

wirelength, TSV height variation induced by silicon-CMP greatly increases due to

uneven TSV density. In Figure 4.3(c), TSVs are placed with globally uniform density

distributions. The TSV distribution provides the least TSV height variation to 3D ICs.

However, such TSV layout is not suitable for NoC vertical links composed of tens to

hundreds of TSVs since it results in so complex global routing that any wire in the same

vertical link may detour with a long path. The long wires detoured makes system

performance degraded or timing closure difficult. In addition, the layout of each

individual TSV causes manufacturing stresses to more devices [3][121]. Therefore,

grouping TSVs to an array and then laying out the array is more desirable for 3D NoC.

 In Figure 4.3(d), there exist two kinds of TSV arrays. The small array includes

one one-way NoC link and the large array includes one two-way NoC link which has two

times more TSVs than the one-way NoC link. TSVs in the small array fail to contact

landing pads since TSVs in the large array are less cleared than those in the small array

during silicon-CMP such that the surface in a die is uneven. In Figure 4.3(a) that is the

cross section of AB in Figure 4.3(d), the 64-bit TSV array has the strong possibility of

failing to contact landing pads on silicon layer 2 since the 128-bit TSV array is

underpolished. In addition, since the metal density of the 128-bit TSV is high, its own

silicon-CMP variation can be so high that TSVs in the array have the possibility of failing

to contact landing pads. We can control the local TSV density defined as the size of a

TSV array divided by a TSV pitch. If the 128-bit TSV array has a wider TSV pitch, its

density can be as low as that of the 64-bit TSV array. However, since it has the penalty of

area, we focus on reducing the size of a TSV array as shown in Figure 4.3(e).

 155

4.1.2 CMP-Aware NoC Design Flow and Problem Formulation

In most previous application-specific 3D NoC designs [80][102][120], 3D

floorplanning is first performed and then a 3D network topology is determined, based on

the 3D floorplanning as shown in Figure 4.4(a), where their 3D technology constraint is

just the number of allowable TSVs. The constraint is not sufficient for robust and reliable

3D ICs and the CMP variation resulting in severe bonding failure is not considered. In

addition, since the 3D floorplanning composed of assigning cores to layers and

floorplanning the cores in each layer is first performed without any routers and TSV

arrays, there may be no enough dead space where the routers can be physically placed

after deciding a 3D network topology [80][102]. The area of the latest routers is no longer

small since its complexity rapidly increases due to a virtual channel, a complex flow

controller, and an adaptive routing path allocator. In order to prevent overlapping routers

inserted and cores already floorplanned, additional floorplanning is performed in each

layer after deciding a network topology [120]. However, such 3D NoC design flow is not

efficient for reducing wirelength, hop count, and thus energy consumption as the routers

gets more and more complex. In addition, the previous 3D NoC designs have not

considered the layout of TSVs since they assume that TSVs are laid out during placement

and routing. Furthermore, the layout of each individual TSV without considering NoC

architecture in the placement and routing stage worsens CMP variation, complex global

routing, and manufacturing stress to more devices. Finally, since TSV arrays are much

larger than other placement objects, it is not efficient that they are considered in the

placement and routing stage.

Figure 4.4(b) shows the proposed CMP-aware NoC design flow covering such

issues. We first assign n cores to k layers with the purpose of reducing communication

between layers under a given area constraint and thus using few TSVs. Based on the

 156

cores assigned to each layer, the number of allowable routers is inserted in each layer and

then routers are interconnected to cores and different routers in the same layer, where the

number of interconnecting the single router to cores and other routers is limited. The goal

of our network topology decision in each layer is to minimize hop count with limited

network resources. Then, routers are interconnected to different routers in adjacent layers

by only one-way vertical links. That is, any routers in different layers are not

interconnected by two-way vertical links. Using only one-way links over the whole chip

makes different layers interconnected with uniform and low local TSV density. Since the

number of allowable TSVs between layers is also limited by a given area constraint,

vertical interconnections minimizing the total hop count are selected. Then, routing paths

without deadlock and livelock are allocated on the existing interconnections. We compute

a TSV pitch applied in the one-way link and then a TSV array is composed. Finally, all

cores, routers, and TSV arrays are simultaneously floorplanned in each layer.

Core-to-layer assignment

Floorplanning cores

(a) Conventional 3D NoC design flow

Router insertion

Router interconnection to
core/different router

Routing path allocation

3D topology decision

Core-to-layer assignment

Floorplanning cores,
routers, TSV arrays

(b) CMP-aware 3D NoC design flow

Router insertion

TSV array insertion and
router interconnection to

core/different router

Routing path allocation

3D topology decision3D floorplanning

Router library

Predictive
CMP model

Router library

Floorplanning cores and routers

Figure 4.4: The conventional and proposed 3D NoC design flows.

 157

We start to solve the CMP-aware application-specific 3D NoC issues from a core

graph. A graph G(V,E) with n vertices is a directed graph, where each vertex vi∈V

represents a core, a router, a TSV array and each directed edge ei,j∈E represents

communication relation between vi and vj. vol(ei,j) represents communication volume

between vi and vj and wl(ei,j) represents wirelengh between vi and vj.

4.1.2.1 Core-to-Layer Assignment

Core-to-layer assignment allows cores to move from continuous space to discrete

space, forcing each core to exactly occupy one layer. That is, a set of cores V={v1, v2, …,

vn} is assigned to k layers L={l1, l2, …, lk}, and thus V={Vl1, Vl2,…, Vlk} is obtained, where

Vli={v1
li, v2

li, …, vj
li}, where j<n. The area of cores is represented as {A1, A2, …, An}. To

equally assign the area of cores to layers, an area constraint is defined as:

maxmin
1 1

n n
i i

l
i i

A AA
k k

α α
= =

< <∑ ∑ (4.1)

where αmin and αmax are acceptable minimum and maximum area coefficients (αmin <1<

αmax). We consider thermal hot spots in this step, using the thermal model proposed in

[17]. The thermal model makes a high power density core assigned to a lower silicon

layer that is attached to a heat sink. With the area constraint, the objective of our layer

assignment is to minimize communication between different layers and temperature as

follows:

()

()

1 2,
1 1 1

min

s.t. ,l lu v

pk k
p q pi j b

p q p

i j

u vvol e P R R P

v V v V u v

β β
= = =

      ⋅ − + +        

∀ ∈ ∀ ∈ ≠

∑ ∑ ∑ ∑
 (4.2)

 158

where β1 and β2 are weighting coefficients, Rq is a thermal resistor in layer q, Pp is the

sum of current source in layer p, and Rb is the thermal resistor of the bottom layer

material.

4.1.2.2 3D NoC Topology Decision and Routing Path Allocation

Given the number of allowable routers and TSV arrays in each layer, the number

of allowable cores, and the number of different routers interconnected to one router, we

interconnect routers to cores and different routers in the same layer. A router

communication graph RCG(R,C) with m vertices is a directed graph, where each vertex

ri∈R represents a router, and each directed edge ci,j∈C represents communication

between ri and rj. The objective of our topology decision in each layer is as follows:

() () ()()
() ()()() () ()

,

,

,

, , ,

min

s.t.

i j i j

lu
i j i ji j

vol e dist M v M v

M v M v v v Vbw link vol e

 
⋅ 

  

≥ ∀ ∀ ∈

∑
 (4.3)

where dist(rp,rq) is distance (or hop count) between rp and rq and M() is a core-to-router

mapping function, e.g. rp=M(vi) and rq=M(vj). link(rp,rq) is all links which any packet in

rp passes for reaching rq. Then, we interconnect routers in adjacent layers, based on the

RCG graphs. The objective of our topology decision among layers is as follows:

() ()
() ()

()() () ()

,

,

,

, ,

, ,

min

s.t. ,

,

i j p q

TSV p q TSV q p

l lu v
p q i j i j

e dist r r

V V

link r r link r r

bw link r r vol e

vol

v v u v

 ⋅ 

≥

≠

∀ ∈ ∀ ∈ ≠

∑
 (4.4)

where linkTSV(rp,rq)∈link(rp,rq) is a vertical link which any packet in rp passes for reaching

rq. This equation indicates that routers in different layers are interconnected by only one-

 159

way links. Thus, CMP variation resulting in uneven TSV heights can be greatly reduced

and the yield of TSV bonding can be greatly improved.

4.1.2.3 Floorplanning

We compute a TSV pitch where a boding technique used can endure TSV height

variation in the number of TSVs covering a one-way vertical link, based on our

predictive CMP model. Then a TSV array is composed and inserted between routers in

adjacent layers. As the inputs of our floorplanner, we take a set of cores, routers, and

TSV arrays, {v1, v2, …, vn}. vi is a Wi×Hi rectangle and aspect ratio Hi/Wi. Each block can

be free to rotate and change the aspect ratio continuously in a given range [ARmin,i,

ARmax,i]. A floorplan F is the assignment of (xi, yi) for each block vi without any overlap

of all cores, routers and TSV arrays, where half-perimeter wire length (HPWL)

estimation is used. We consider thermal hot spots, using the thermal model proposed in

[17]. The thermal model minimizes the maximum temperature difference in the same

layer. Therefore, the objective of our floorplan F is as follows:

() ()()
()() ()()()

2 2 , ,

2 max , , min , ,

, ,

min

. .

p q p qi

j j

p qi j j j

wl e vol e

T m n l T m n l

A

s t v l v l v l

γ

α β ×
 
 + −  

+

∀ ∈ ∀ ∈ ∀ ∈

∑ ∑
 (4.5)

where γ1, γ2, and γ3 are weighting factors. T(x,y,lu) is the temperature of a tile in x, y, and

lu at x-axis, y-axis, and layer, respectively and thw is the maximum allowable wirelength.

 160

4.1.3 CMP-Aware 3D NoC Design

4.1.3.1 CMP-Aware Core-to-Layer Assignment

Since the number of TSVs required depends on communication volume between

different layers, the communication volume should be minimized with thermal

consideration. In addition, the area of each layer should meet the area constraint, Eq.

(4.1).

Figure 4.5 shows two core-to-layer approaches where eight cores are assigned to

four layers. Let a core graph given as shown in Figure 4.5(a) where all edges have the

same weight, all cores have the same power density, and the number is the area of a core

for simple explanation.

C(3) D(2)

G(2)E(2)

H(3)

F(3)

B(2)

A(3)

C(3) D(2)

G(2)E(2)

H(3)

F(3)

B(2)

A(3)

C(3) D(2)

H(3)

F(3)

B(2) A(3)

G(2)

E(2)

C(3)

D(2)

G(2)

E(2)

H(3)

F(3)

B(2)

A(3)

C(3) D(2)

G(2)E(2)

H(3)

F(3)

B(2)

A(3)

C(3) D(2)

G(2)E(2)

H(3)

F(3)

B(2)

A(3)

3

2

3

(a) core graph (b) 4-way min-cut partitioning (c) layer assingment of (b)

(d) first bi-partitioing
and layer assignment (e) fixing cores (f) second bi-partitioing

and layer assignment

2

2

3

Figure 4.5: Examples of assigning eight cores to four layers.

 161

The first approach is that 4-way minimum-cut area-balanced partitioning is

performed and then the partitioned subgroups are one-to-one assigned to different layers.

For example, in Figure 4.5(b), the cores are partitioned to {A, B}, {C, D}, {F, G}, and

{E, H} that have the same area and the minimum cuts. Then, the partitioned subgroups

are one-to-one assigned to any layers, achieving the minimum hops as shown in Figure

4.5(c).

The second approach we propose in Algorithm 9 recursively performs area-

balanced bi-partitioning with the minimum cost computed from Eq. (4.2). Figure 4.5(d)

shows the result of the first bi-partitioning where the same area and the minimum cut are

obtained (line 2). Then, any core which communicates other cores in a different layer is

assigned in advance, depending on their communication gain as shown in Figure 4.5(e)

(line 5). The communication gain is computed as the subtraction of the amount of intra-

layer communication from that of inter-layer communication. If the communication gain

of any core is greater or equal to 0, the core is assigned to a current layer. In Figure

4.5(e), core B, C, E, and F communicate cores in a different layer and their

communication gains are 0, -1, 0, and 0, respectively. Thus, core B, E, and F are assigned

to a current layer. Then, the second bi-partitioning in each sub-group is again performed

for the minimum cut under the area constraint. Figure 4.5(f) shows the final result where

hop count between four layers is 7 whereas the hop count of the first approach between

four layers is 8 in Figure 4.5(c). Therefore, the second one is useful to reduce hop count

between layers, thus requires less TSVs.

Even if the number of a given layer is not a power of two, the basic idea of

Algorithm 9 can be easily extended. For example, let eight cores assigned to five layers

in Figure 4.5(a), where total area is 20. When the first bi-partitioning is performed, both

partitions do not get the same area, but one gets 8 and the other gets 12. Then, the first

 162

group with area 8 is again bi-partitioned for the minimum cut and same area. On the

contrary, the second group with area 12 is also bi-partitioned for the minimum cut but

different areas (where one is 4 and the other is 8). Finally, the last sub-group with area 8

is again bi-partitioned for the minimum cut and same area. Finally, all five sub-groups get

area 4.

Algorithm 9 Core-to-Layer Assignment by Recursive Bi-Partitioning
1:

while the number of partitioned layers is not equal to the target number of layers
do

2: Find bi-partitions of cores with min. cost computed by Eq. (4.2);
3: Compute communication gain (CGi) of core i in layer k;
4: if CGi ≥0 then
5: Core i is assigned to layer k;
6: end if
7: end while

4.1.3.2 CMP-Aware 3D NoC Topology Decision

Since a 3D network topology decision problem is NP-Hard [92], we present

efficient heuristics in this section. Furthermore, since the integrated problem makes it

difficult to reach guaranteed quality bounds on the solution, we divide the 3D network

topology decision problem into two distinct subproblems, called router-to-core/router

interconnection in the same layer and router-to-router interconnection between different

layers, and then we solve the respective subproblems. Whereas a bandwidth requirement

can be easily satisfied by finding alternative routing paths or adding more interconnection

resources, satisfying latency constraints is difficult if cores communicating each other are

too wide apart. Therefore, any master core sensitive to latency should be interconnected

to the same router as its slave core. A TSV array covering a one-way vertical link is used

for interconnection between different layers and any router is not interconnected to

 163

routers in a different layer if it is already interconnected to the router with one direction

as shown in Eq. (4.4), which minimizes TSV density variation, thus reduces TSV height

variation resulting in TSV bonding failure.

1. 2D Router-to-router/core interconnection

Given a core graph, the number of allowable routers (max_router), and the

number of allowable interconnection to a router (max_int), our 2D network topology

synthesis approach interconnects possible cores to routers. The objective of our 2D

network topology decision is to minimize power consumption in each layer. Varying the

number of routers in NoC designs has a great impact on power consumption and

communication latency. NoC using few routers leads to longer core-to-router

interconnections and hence, higher interconnection power consumption. On the contrary,

when a number of routers are used, data flows have to traverse more routers, leading to

high router power consumption and increasing area. Thus, we need to explore NoC

designs with the different number of routers to obtain the best solution, starting from a

design point where each core is interconnected to the minimum routers to one where

cores are connected to the maximum allowable routers (max_router) in each layer. For

example, we assume that there are 20 cores within any layer, the maximum number of

allowable routers (max_router) is 6 and the maximum allowable interconnection to one

router (max_int) is 5. We explore a 2D network topology with 4 (equal to the number of

core/max_int) to 6 routers.

The objective of Algorithm 10 is to establish efficient physical links between a

router and a router/core in each layer. First, i-way minimum-cut partitioning is performed

for cores in the same layer under the max_int constraint (line 2) and then each group is

assigned to one router (line 3). Next, network links between the routers are inserted

 164

according to user’s design objective (line 4). In our implementation, we use the minimum

spanning tree (MST) or point-to-point (P2P) interconnection. MST requires distance

information between routers. However, since floorplanning is not performed yet, we use

different metrics instead of the distance information. MST first interconnects two vertices

close to each other. Similarly, since two routers, rp and rq which heavily communicates

each other should be interconnected with high priority, we use 1/vol(cp,q) as the distance

information. Then, the breadth-first-search or depth-first algorithms are used for

seraching MST. MST requiring only i-1 links decreases total wirelength but increases

hop count, where i is the number of routers. On the contrary, P2P decreases hop count but

increases total wirelength. Next, a new router communication graph (RCG) is generated

and then prohibited turn set for RCG is build to avoid deadlocks (line 5-6). Based on the

inserted links, paths for flows across different routers in the same layer are allocated,

using Dijkstra’s shortest path algorithm (line 7). Application constraints such as hop

count, communication latency, and bandwidth are evaluated (line 8). If they are not

satisfied, a different network topology in each layer is again synthesized (line 9). Finally,

the best network topology and design point are selected (line 11).

Algorithm 10 2D NoC Topology Decision
1: for i= max_router to (the number of core/max_int) do
2: Find i-way min-cut partitions under max_int constraints;
3: Assign each group to one router;
4: Interconnect router to router by user’s design objective;
5: Build router communication graph (RCG);
6: Build prohibited turn set for RCG to avoid deadlocks;
7: Find paths for flows across routers in the same layer;
8: Evaluate the average and peak hop count;
9: Repeat step 6 and 7 until application constraints are satisfied;
10: end for
11: Choose the best topology and design point;

 165

2. Layer-to-layer interconnection

After deciding a 2D network topology in all layers, any layer must be

interconnected to adjacent layers, using TSV arrays. In section 4.1.3.1, we already

minimized hop count between different layers, which made few TSVs used. However,

due to the few TSVs, total hop count may increase according to the location of the TSVs.

In addition, inserting either both one-way and two-way links in the same layer or a TSV

array with high metal density results in severe TSV height variation during CMP. Thus,

the objective of our layer-to-layer interconnection is to insert one-way links between

layers for uniform TSV distribution and the minimum hop count under performance

constraints.

Figure 4.6(a) is a core graph assigned to two layers, where the weight of all edges

is 1. After deciding the network topology in each layer, let TSV arrays inserted for the

minimum hop count as shown in Figure 4.6(b) and (c), where one two-way link and two

one-way links are used, respectively. If the industrial open core protocol (OCP) [86] and

AMBA advanced extensible interface (AXI) protocol [2] which have been widely used

for a network interface have a 32-bit data bus and a 32-bit address, the number of TSV

required for a one-way vertical link is 113 and 204, respectively. Thus, the number of

TSV required for a two-way vertical link is 226 and 408 in the OCP and AMBA AXI

protocol, respectively. As a result, TSV height variation during CMP is more critical in

the two-way link with higher metal density. In addition, if another one-way link is

inserted in Figure 4.6(b), TSVs array for the link may be open as shown in Figure 4.3(a).

Therefore, Figure 4.6(c) is more desirable for low and uniform local TSV density if total

hop count of case 2 are similar to that of case 1. In our technique, if a one-way vertical

link for cp,q is established, the opposite one-way link for cq,p is removed in the list of TSV

array insertion candidates, where rp∈Vlm and rq∈Vln, (m≠n).

 166

c2 c5 c6

c3c1 c4

(a) layer-assigned core graph

30 40 30

50 40 30

c2 c5 c6

c3c1 c4

60

20

30

(b) case 1: routing path

30

50 40

40 30

30

30 30

40

10

(b) case 2: routing path

c2 c5 c6

c3c1 c4

Figure 4.6: CMP-aware router-to-router interconnections in adjacent layers.

4.1.3.3 CMP-Aware Floorplanning

We first compute a TSV pitch for one-way links, based on our predictive CMP

model. The pitch must result in low TSV height variation endured by a bonding

technique. Then, the TSV array is build and then simultaneously floorplanned with

routers and cores in each layer. The goal of our floorplanning is to generate the layout

that minimizes area, power consumption, and peak temperature. We modify an existing

floorplanning technique [35] and invoke it with our unique cost function.

The power consumption on the given network architecture can be presented as the

power required by point to point physical links (core-to-router or router-to-router). It is

desirable to place cores, routers, and TSV arrays close to each other if they heavily

communicate one another. This is because the power consumption of NoC is directly

proportional to the number of hop and the length of wire. Hence, we define the cost

function as the product of communication volume vol(ei,j) and wirelength wi.j in Eq. (4.5).

In addition, it is necessary to place cores, routers, and TSV arrays communicating within

the maximum allowed wirelength to operate cores at a given clock speed. We start

floorplanning from the top layer with TSV. After floorplanning each layer, terminals with

zero area are inserted at the same XY location of the next layer floorplanned as that of

 167

TSV. Since TSV arrays in each layer have no relation one another, they are floorplanned

wide apart.

4.1.4 Experimental Results

4.1.4.1 TSV Density and Predictive CMP Model

CMP is a complex process with a large number of input variables including slurry

flow rate, pressure, velocity, friction force, lubrication, pad, and wafer geometry and

output variables including polish rate, planarization rate, polish rate uniformity, and

surface quality. While there are some researches on modeling the CMP variation

[30][70], there is very little study on the 3D TSV CMP modeling. Figure 4.7 shows TSV

heights measured from the latest 3D ICs of IMEC after silicon-CMP, where the TSV

diameter is 5μm [46]. With these industry measurement data, we model TSV height

variation as follows:

0.8017 ln 1.226shv
p

 
= + 

 
 (4.6)

where hv is TSV height variation, s is the size of TSV array, and p is a TSV pitch in the

array. This equation shows that a small TSV array and a wide TSV pitch are desirable for

low TSV height variation. Based on this model, we can compute a TSV pitch for the size

of a given TSV array, which guarantees low TSV height variation endured by a bonding

technique. Then, TSV arrays are built and then simultaneously floorplanned with cores

and routers. For example, if the size of a TSV array including a one-way link (113 wires)

in OCP is 11×11, its TSV pitch must be at least 14.58μm for TSV height variation less

than 1μm. On the contrary, if the size of a TSV array including a two-way link (226

wires) in OCP is 16×16, its TSV pitch must be at least 21.21μm for TSV height variation

less than 1μm. Thus, the widths of 11×11 and 16×16 TSV arrays are 160μm and 339μm

 168

and their areas are 0.0256mm2 and 0.1151mm2, respectively. Consequently, two one-way

vertical links shows lower CMP variation or smaller design area than a single two-way

vertical link if the performance and energy constraints of a synthesized network are

satisfied.

Figure 4.7: TSV height variation by TSV density.

4.1.4.2 CMP-Aware Application-Specific 3D NoC

We implement the proposed CMP-aware application-specific 3D NoC, called

CAS with 4-8 layers in C++. We repeat CAS for ten times on GSRC Benchmarks with

100, 200 and 300 modules [34] and compute average to obtain reliable statistics. Wafers

are stacked in a face-to-back fashion and we set the diameter and pitch of TSV to 5μm

and 10μm, respectively. Both [120] and CAS employ MST and P2P as a 2D network

topology. Since the goal of MST is extremely opposite to that of P2P, the performance

and design cost improvement of CAS with other 2D network topologies will be within

0

0.5

1

1.5

2

0.000 0.500 1.000 1.500 2.000 2.500 3.000

C
M

P
va

ria
tio

n
(u

m
)

Metal density = TSV array size / TSV pitch

 169

the gap of improvement of CAS with MST and P2P. Note that [80] and [102] are not

suitable for comparison for 3D NoC with large routers and TSV arrays.

Table 4.1 shows TSV height variation when various network interfaces are used.

When a 3D network topology is decided, CAS inserts only one-way links between layers

whereas [120] inserts both one-way and two-way links. Thus, the local TSV density of

CAS is more uniform and lower than that of [120] and after silicon-CMP, CAS has

17.9% lower TSV height variation than [120]. Using only one-way links results in

increasing hop count since it may not provide the shortest path. However, our 3D NoC

design flow recovers the penalty of the hop count and even improves total hop count

since a topology decision is first performed.

Table 4.2 shows total hop count. CAS achieves, on average, 15% lower hop count

than [120]. CAS tends to further improve hop count in complex NoC with a number of

modules and layers. In addition, when a network is synthesized with limited resources

like MST, CAS further improves hop count.

In Table 4.3, we compare the total wirelength of CAS with that of [120]. Even if

CAS performs floorplanning with the maximum allowable wirelength constraint after

synthesizing a network topology, it achieves just 0.3% longer total wirelength than [120]

in MST and even 4.6% shorter total wirelength than [120] in P2P.

Network
protocol

of wire of
one(two)-way link [120] CAS Imp. (%)

AHB [2] 137 (274) 1.651 1.372 16.9
AXI [2] 204 (408) 1.821 1.551 14.8
APB [2] 99 (198) 1.551 1.226 21.0
OCP [86] 113 (226) 1.603 1.302 18.7

Average 1.657 1.363 17.9

Table 4.1: TSV height variation comparison (μm).

 170

the number of layer 4 5 6 7 8 Imp.
(%)

M
S
T

n100 [120] 1410 1470 1625 1671 1927 16.5
CAS 1201 1254 1299 1361 1650

n200 [120] 3341 3366 3459 3737 3927 20.0 CAS 2654 2931 2698 2934 3043

n300 [120] 5211 5158 5178 5257 5230 22.6 CAS 4065 3912 4077 3984 4118
Imp. (%) 20.5 19.0 21.3 22.4 20.5 19.7

P
2
P

n100 [120] 1193 1336 1488 1629 1799 13.1 CAS 1077 1194 1207 1416 1575

n200 [120] 2051 2487 2744 3136 3285 8.7 CAS 2041 2278 2441 2788 2968

n300 [120] 2638 3279 3433 4163 4371 11.1 CAS 2626 2943 3405 3234 3695
Imp. (%) 2.3 9.7 8.0 16.7 12.9 11.0

Table 4.2: Hop count comparison.

the number of layer 4 5 6 7 8 Imp.
(%)

M
S
T

n100 [120] 9.6 8.4 7.5 7.1 6.5 -0.3 CAS 9.6 8.5 7.4 7.1 6.6

n200 [120] 22.6 19.1 16.6 15.1 13.8 0.0 CAS 23.2 19.1 16.6 15.0 13.3

n300 [120] 46.5 39.5 34.4 30.5 27.2 -0.6 CAS 47.0 40.0 34.1 30.7 27.3
Imp. (%) -1.4 -0.9 0.7 -0.2 0.6 -0.3

P
2
P

n100 [120] 47.2 38.6 32.9 29.6 26.4 2.1 CAS 46.5 38.3 32.3 28.0 26.2

n200 [120] 95.4 77.7 67.8 61.3 55.2 4.7 CAS 89.6 75.1 65.0 58.5 52.3

n300 [120] 144.6 129.9 115.5 102.6 94.5 7.0 CAS 132.1 119.6 108.6 99.4 86.1
Imp. (%) 7.5 5.4 4.8 3.9 6.5 4.6

Table 4.3: Total wirelength comparison (mm).

 171

Figure 4.8 shows power consumption normalized by [120]. The power

consumption of CAS is 8.1% and 7.8% lower than that of [120] in MST and P2P,

respectively. CAS tends to further improve power consumption in NoC with a lot of

modules.

(a) MST

(b) P2P

Figure 4.8: Network topologies and layouts performed by CMP-aware 3D NoC.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

4 5 6 7 8

Po
w

er
 C

on
su

m
pt

io
n

no
rm

al
iz

ed
 b

y
co

nv
en

tio
na

l 3
D

 N
oC

 [1
20

]

the number of layer

n100 n200 n300

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

4 5 6 7 8

Po
w

er
 C

on
su

m
pt

io
n

no
rm

al
iz

ed
 b

y
co

nv
en

tio
na

l 3
D

 N
oC

 [1
20

]

the number of layer

n100 n200 n300

 172

The total area of CAS is slightly smaller than [120] since CAS has smaller total

TSV array area than [120]. The runtime of CAS ranges from 48-99 seconds in n300,

which is about three times faster than [120].

Figure 4.9 and Figure 4.10 show the layouts of [120]+MST and CAS+MST with

2 layers in n300, respectively, where blue lines show communication relations and their

thickness indicates communication volume. Yellow rectangles, red rectangles, and green

rectangles are cores, TSV arrays, and routers, respectively. While layer 2 in Figure 4.9

includes both one-way and two-way links, layer 2 in Figure 4.10 includes just one-way

links. Therefore, TSV heights are less variable, and thus can contact landing pads easily.

In Figure 4.11, CAS proves more merits on NoC with complex routers, where

CAS further improves power consumption and total wirelength as the area of routers

increases. Since previous NoC designs first floorplan only cores before synthesizing

network topology, neither is the dead space sufficient for complex routers inserted nor

wirelength and power consumption are well optimized even if floorplanning is again

performed after synthesizing a network.

4.1.5 Summary

In this section, we propose the first CMP-aware application-specific 3D NoC

design. Our vertical integration managing architecture, physical design, and

manufacturing issues together enables a reliable and robust 3D NoC. In particular, our

CMP-aware 3D NoC approach reduces TSV height variation after the CMP process, and

thus prevents severe bonding failures and timing variation. Meanwhile, it also improves

hop count, wirelength, power consumption, and area, compared to the previous state-of-

the-art 3D NoC [120].

 173

(a) Layer 1 (b) Layer 2

Figure 4.9: Typical application-specific 3D NoC with 2 layers [120].

(a) Layer 1 (b) Layer 2

Figure 4.10: CMP-aware application-specific 3D NoC with 2 layers.

 174

Figure 4.11: Improvement according to the area of routers.

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 0.05 0.1 0.15 0.2 0.25

M
et

ric
s n

or
m

al
iz

ed
 b

y
co

nv
en

tio
na

L
3D

 N
oC

 [1
20

]

The area ratio of routers over the entire chip

power consumption total wirelength

 175

Chapter 5

Conclusions

This dissertation presents systematic architecture and physical design for

mitigating the challenges of advanced NoCs in terms of latency, power, and emerging

technologies. Our major contributions include:

• In Chapter 2, we developed SDRAM- and application-aware routers and memory

subsystems to improve application-level or system-level latency. The multiple SDRAM-

aware routers instead of a single memory subsystem scheduled memory requests to

prevent bank conflict, data contention, and short turn-around bank interleaving.

Moreover, the SDRAM-aware router was advanced to an application-aware router with

the consideration of the demands of various applications, such as different memory

latency requirements and memory access granularities. Our results showed that the cost-

effective SDRAM- and application-aware NoC design significantly provided not only

high memory utilization and short average latency but also high QoS.

• In Chapter 3, we proposed a VFI-aware NoC optimization framework in order to

reduce both computation and communication energy consumption. It consisted of three

key VFI-aware components, i.e. VFI-aware core partitioning with voltage and frequency

assignment, VFI-aware mapping, and VFI-aware routing path allocation. Moreover, we

developed VFI interfaces and their insertion algorithm to easily satisfy performance

constraints. The proposed methodology made cores using the same voltage and clock

speed unified to single VFI and thus considerably reduced VFI overheads. In addition, we

presented architecture-aware analytic application mapping algorithms applied to various

 176

networks in order to reduce communication energy consumption and average latency.

The application mapping problem was formulated to MIQP and then solved by

successive relation and genetic algorithms. Our results showed that the proposed

application mapping algorithms greatly reduced power consumption on various networks.

Especially, they showed more merits on irregular mesh and custom networks.

• In Chapter 4, we presented a CMP-aware application-specific 3D NoC design that

minimized TSV height variation, thus reduces a bonding failure, and meanwhile

optimized conventional NoC design objectives such as hop count, wirelength, power

consumption, and area. Since synthesizing an on-chip network has been always subject to

technology constraints, NoC architecture and physical design techniques should be

compatible with 3D technologies. The key idea behind the proposed 3D NoC design flow

was to determine the CMP-aware 3D NoC topology where different layers were

interconnected by one-way links with the minimum hops. Our results showed that our

CMP-aware 3D NoC design achieved smaller chip area, lower hop count, shorter

wirelength, and lower power consumption than the previous state-of-the-art 3D NoC

designs.

In this dissertation, we emphasize the importance of synergistic architecture and

physical design techniques for emerging technologies. We hope that this work motivates

future research follow-up in this domain. Some of the future directions may include:

• Phase change memory (PCM) is an emerging memory technology for future

computing systems. Compared to other non-volatile memory alternatives, PCM is

relatively more matured to production and has a fast read latency and potentially high

 177

storage density. The main bottleneck precluding PCM from being used, in particular, in

the main memory hierarchy, is its limited write endurance. To mitigate this problem,

recent studies proposed to either reduce the write frequency of PCM or use wear-leveling

to evenly distribute writes. Although these techniques can extend the lifetime of PCM,

they will not prevent deliberately designed malicious codes from wearing it out quickly.

Furthermore, most previous techniques did not consider the dynamic access pattern of

various applications, in particular, interleaved access pattern in MPEG 1/2/4 and H.264.

Therefore, we need to improve PCM write endurance at an application or system level.

• Based on recent opto-electro material/device level break-throughs, on-chip

nanophotonics offers compelling high throughput/bandwidth communication and

promising low power integration opportunities compared with traditional Cu/low-K

interconnect, therefore is considered as a potential quantum leap towards the next

generation on-chip interconnect. Despite of its superior signaling speed and low power

potentials, the on-chip nanophotonics faces major roadblocks for interconnecting on-chip

computation resources. Major challenges in this field include but are not limited to:

photonic network architecture design, low power high performance integration, device

characterization, and thermal reliability modeling/optimization. With the promising low

power on-chip optical links, NoC optimization flows can be extended for further

improving power efficiency. Other important future works along this direction may

include thermal reliability optimizations for on-chip nanophotonic links and potential

applications.

 178

Bibliography

[1] B. Akesson, K. Goossens and M. Ringhofer. Predator: a predictable SDRAM
memory controller. In Proc. International Conference on Hardware/Software
Codesign and System Synthesis, 2007.

[2] AMBA open specifications. ARM [Online]. Available: http://www.arm.com.

[3] K. Athikulwongse, A. Chakraborty, J.-S. Yang, D. Z. Pan, and S. K. Lim. Stress-
driven 3D-IC placement with TSV keep-out zone and regularity study. In Proc.
International Conference on Computer-Aided Design, 2010.

[4] L. Benini and G. D. Micheli. Network on chips: a new SoC paradigm. Computer,
vol. 35, no. 1, pp. 70-78, 2002.

[5] T. Bjerregaard and J. Sparsø. A router architecture for connection-oriented service
guarantees in the MANGO clockless network-on-chip. In Proc. Design,
Automation and Test in Europe, 2005.

[6] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny. Routing table minimization for
irregular mesh NoCs. In Proc. Design, Automation and Test in Europe, 2007.

[7] J. A. Butts and G. S. Sohi. A static power model for architects. In Proc.
International Symposium of Microarchitecture, 2000.

[8] G. Campobello, M. Castano, C. Ciofi, and D. Mangano. GALS networks on chip:
a new solution for asynchronous delay-insensitive links. In Proc. Design,
Automation & Test in Europe, 2006.

[9] E. Carvalho, N. Calazans, and F. Moraes. Heuristics for dynamic task mapping in
NoC-based heterogeneous MPSOCs. In Proc. International Workshop on Rapid
System Prototyping, 2007.

[10] P.-C. Chang, I-W. Wu, J.-J. Shann, and C.-P. Chung. ETAHM: an energy-aware
task allocation algorithm for heterogeneous multiprocessor. In Proc. Design
Automation Conference, 2008.

[11] K S. Chatha, K. Srinivasan, and G. Konjevod. Automated techniques for synthesis
of application-specific network-on-chip architectures. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27. no. 8, Aug.
2008.

[12] T. Chelcea and S. M. Nowick. A low latency FIFO for mixed-clock system. In
Proc. IEEE Computer Society Annual Workshop on VLSI, 2000.

[13] G. Chen, F. Li, S. W. Son, and M. Kandemir. Application mapping for chip
multiprocessor. In Proc. Design Automation Conference, 2008.

 179

[14] R. L. S. Ching, E. F. Y. Young, K. C. K. Leung, and C. Chu. Post-placement
voltage island generation. In Proc. International Conference on Computer-Aided
Design, 2006.

[15] C.-L. Chou, U. Y. Ogras, and R. Marculescu. Energy- and performance-aware
incremental mapping for networks on chip with multiple voltage levels. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
27, no. 10, pp. 1866-1879, Oct. 2008.

[16] P. Choudhary and D. Marculescu. Hardware based frequency/voltage control of
voltage frequency island systems. In Proc. International Conference on
Hardware/Software Codesign and System Synthesis, 2006.

[17] J. Cong, J. Wei, and Y. Zhang. A thermal-driven floorplanning algorithm. In Proc.
International Conference on Computer-Aided Design, 2004.

[18] W. J. Dally and B. Towles. Route Packets, Not wires: On-chip interconnection
networks. In Proc. Design Aumation Conference, 2001.

[19] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks.
San Francisco, CA: Morgan Kaufmann, 2004.

[20] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen. A low-
latency and memory-efficient on-chip network. In Proc. International Symposium
on Networks-on-Chip, 2010.

[21] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Application-aware prioritization
mechanisms for on-chip networks. In Proc. International Symposium on
Microarchitecture, 2009.

[22] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Aergia: exploiting packet
latency slack in on-chip networks. In Proc. International Symposium on
Computer Architecture, 2010.

[23] Databahn DRAM Memory Controller IP. Denali Software Inc. [Online].
Available: http://www.denali.com.

[24] DDR I, II and III device operations & timing diagram. Samsung Electronics
[Online]. Available: http://www.samsung.com/global/business/semiconductor.

[25] R. P. Dick. Embedded system synthesis benchmarks suites (E3S) [Online].
Available: http://www.ece.northwestern.edu/~dickrp/e3s/.

[26] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs for free. In Proc.
International Workshop on Hardware/Software Codesign, 1998.

[27] N. Dutt. Memory-aware NoC exploration and design. In Proc. Design Automation
and Test in Europe, 2008.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Masoud%20Daneshtalab�
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Masoumeh%20Ebrahimi�
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Pasi%20Liljeberg�
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Juha%20Plosila�
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Hannu%20Tenhunen�

 180

[28] S. Dutta, R. Jensen, and A. Rieckkmann. Viper: A Multiprocessor SOC for
Advanced Set-Top Box and Digital TV Systems. IEEE Design and Test of
Computers, vol. 18, no. 5, pp. 21-31, Sep./Oct. 2001.

[29] M. A. A. Faruque, R. Krist, and J. Henkel. ADAM: Run-time agent-based
distributed application mapping for on-chip communication. In Proc. Design
Automation Conference, 2008.

[30] T. Gan. Modeling of chemical mechanical polishing for shallow trench isolation.
In Ph.D. Thesis, Massachusetts Institute of Technology, 2000.

[31] K. Goossens, J. Dielissen, and A. Rădulescu. Æthereal network on chip: concepts,
architectures and implementations. IEEE Design and Test of Computers, 22(5):
414–421, 2005.

[32] P. Gopalakrishnan, X. Li, and L. Pileggi. Architecture-aware FPGA placement
using metric embedding. In Proc. Design Automation Conference, 2006.

[33] I.E. Grossmann and Z. Kravanja. Mixed-integer nonlinear programming: A
survey of algorithms and applications. Large-Scale Optimization with
Applications, Part II: Optimal Design and Control, A.R. Conn, L.T. Biegler, T.F.
Coleman, and F.N. Santosa (Eds.), Springer: New York, Berlin, 1997.

[34] GSRC Floorplan Benchmarks [Online]. Available: http://vlsicad.eecs.umich.edu/
BK/GSRCbench.

[35] O. He, S. Dong, J. Bian, S. Goto, and C.-K. Cheng. A novel fixed-outline
floorplanner with zero deadspace for hierarchical design. In Proc. International
Conference on Computer-Aided Design, 2008.

[36] S. Heithecker and R. Ernst. Traffic shaping for an FPGA based SDRAM
controller with complex QoS requirement. In Proc. Design Automation
Conference, 2005.

[37] hMETIS - Hypergraph & Circuit Partitioning [Online]. Avaiable: http://glaros.
dtc.umn.edu/gkhome/views/metis

[38] R. Holsmark, M. Palesi, and S. Kumar. Deadlock free routing algorithms for
irregular mesh toplogy NoC systems with rectangular regions. Journal of System
Architecture, vol. 54, no. 3-4, pp. 384-396, Mar. 2008

[39] J. Hu and R. Marculescu. Energy-aware mapping for tile-based NoC architectures
under performance constraints. In Proc. Asian and South Pacific Design
Automation Conference, 2003.

[40] J. Hu and R. Marculescu. Exploiting the routing flexibility for energy/
performance aware mapping of regular NoC architectures. In Proc. Design,
Automation & Test in Europe, 2003.

 181

[41] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu. Architecting voltage islands in
core-based system-on-a-chip designs. In Proc. International Symposium on Low
Power Electronics and Design, 2004.

[42] J. Hu and R. Marculescu. Communication and task scheduling of application-
specific networks-on-chips. In Proc. IEE Comuters & Digital Techniques, 2006.

[43] W.-L. Hung, G.M. Link, Y. Xie, N. Vijaykrishnan, and M. J. Irwin. Interconnect
and thermal-aware floorplanning for 3D microprocessors. In Proc. International
Symposium on Quality Electronic Design, 2006.

[44] I. Hur and C. Lin. Memory scheduling for modern microprocessors. ACM Trans.
on Computer Systems, vol. 25, no. 10, pp. 10.1-10.36, Dec. 2007.

[45] IBM ASIC Solutions. IBM [Online]. Available: http://www.ibm.com.

[46] IMEC [Online]. Available: http://www.imec.be.

[47] Intel XScale core. Intel [Online]. Available: http://www.intel.com.

[48] International Technology Roadmap for Semiconductors, 2009.

[49] W. Jang, D. Ding, and D. Z. Pan. Voltage-frequency island aware energy
optimization framework for networks-on-chip. In Proc. International Conference
on Computer-Aided Design, 2008.

[50] W. Jang and D. Z. Pan. An SDRAM-aware router for networks-on-chip. In Proc.
Design Automation Conference, 2009.

[51] W. Jang and D. Z. Pan. A3MAP: Architecture-aware analytic mapping for
networks-on-chip. In Proc. Asian and South Pacific Design Automation
Conference, 2010.

[52] W. Jang and D. Z. Pan. Application-aware NoC design for efficient SDRAM
access. In Proc. Design Automation Conference, 2010.

[53] W. Jang, D. Ding, and D. Z. Pan. Voltage frequency island optimization for
many-core/NoC designs. In Proc. International Conference on Green Circuits
and Systems, 2010.

[54] W. Jang and D. Z. Pan. An SDRAM-aware router for networks-on-chip. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no.
10, pp. 1572-1585, Oct. 2010.

[55] W. Jang and D. Z. Pan. Application-aware NoC design for efficient SDRAM
access. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 2011. (to appear).

[56] A. B. Kahng and K. Samadi. CMP fill synthesis: a survey of recent studies. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no.
1, pp. 3-19, 2008.

 182

[57] D. H. Kim, Y.-K. Wu, R. O. Topaloglu, and S. K. Lim. Enabling 3D integration
through optimal topograph. In Proc. International Workshop on Design for
Manufacturability and Yield Workshop, 2010.

[58] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. R. Das. A low latency
router supporting adaptivity for on-chip interconnects. In Proc. Design
Automation Conference, 2005.

[59] J. Kim, B.-C. Lai, M.-C. F. Chang, and I. Verbauwhede. A cost-effective latency-
aware memory bus for symmetric multiprocessor systems. IEEE Transactions on
Computers, vol. 57, no. 12, pp. 1714-1719, 2008.

[60] W.-C. Kwon, S.-M. Hong, S. Yoo, B. Min, K.-M. Choi and S.-K. Eo. An open-
loop flow control scheme based on the accurate global information of on-chip
communication. In Proc. Design, Automation and Test in Europe, 2008.

[61] W.-C. Kwon, S. Yoo, S.-M. Hong, B. Min, K.-M. Choi and S.-K. Eo. A practical
approach of memory access parallelization to exploit multiple off-chip DDR
memories. In Proc. Design Automation Conference, 2008.

[62] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and J. M.
Cohn. Managing power and performance for system-on- chip designs using
voltage islands. In Proc. International Conference on Computer-Aided Design,
2002.

[63] Y.-C. Lan, S.-H. Lo, Y.-C. Lin, Y.-H. Hu and S.-J. Chen. BiNoC: a bidirectional
NoC architecture with dynamic self-reconfigurable channel. In Proc.
International Symposium on Networks on chip, 2009.

[64] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware DRAM
controller. In Proc. International Symposium on Microarchitecture, 2008.

[65] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving memory bank-level
parallelism in the presence of prefetching. In Proc. International Symposium on
Microarchitecture, 2009.

[66] L.-F. Leung and C.-Y. Tsui. Energy-aware synthesis of networks-on-chip
implemented with voltage island. In Proc. Design Automation Conference, 2007.

[67] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan and M. Kandemir.
Design and Management of 3D Chip Multiprocessors Using Network-in-Memory.
In Proc. International Symposium on Computer Architecture, 2006.

[68] S. K. Lim. TSV-aware 3D Physical design toll needs for faster mainstream
acceptance of 3D ICs [Online]. Available: http://www.dac.com

[69] Y. Liu, Y. Yang, and J. Hu. Clustering-based simultaneous task and voltage
scheduling for NoC systems. In Proc. International Conference on Computer-
Aided Design, 2010.

 183

[70] J. Luo and D. A. Dornfeld. Material removal mechanism in chemical mechanical
polishing: theory and modeling. IEEE Trans. on Semiconductor Manufacturing,
vol. 14, no. 2, pp. 112-133, May. 2001.

[71] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote. Outstanding
research problems in NoC design: system, microarchitecture, and circuit
perspectives. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 1, pp. 3-21, Jan. 2009.

[72] Y. Markovsky, Y. Patel, and J. Wawrzynek. Using adaptive routing to
compensate for performance heterogeneity. In Proc. International Symposium on
Networks-on-Chip, 2009.

[73] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage
scaling and adaptive body biasing for lower power microprocessors under
dynamic workloads. In Proc. International Conference on Computer-Aided
Design, 2002.

[74] J. Matousek, Lectures in Discrete Geometry, Springer, 2002.

[75] MemMax Scheduler. Sonics Inc. [Online]. Available: http://www.sonicsinc.com.

[76] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth using
looped containers in temporally disjoint networks within the nostrum network on
chip. In Proc. Design Automation and Test in Europe, 2004.

[77] Mobile AMD Athon 4 processor model 6. AMD [Online]. Available: http://www.
amd.com.

[78] P. Morrow, M. J. Kobrinsky, S. Ramanathan, C.-M. Park, M. Harmes, V.
Ramachandrarao, H. mog Park, Grant Kloster, Scott List, and Sarah Kim. Wafer-
level 3D interconnects via Cu bonding. In Proc. Advanced Metalization
Conference, 2004.

[79] S. Murali and G. De Micheli. Bandwidth-constrained mapping of cores onto NoC
architecture. In Proc. Design, Automation & Test in Europe, 2004.

[80] S. Murali, C. Seiculescu, L. Benini, and G. De Micheli. Synthesis of networks on
chips for 3D systems on chips. In Proc. Asia South Pacific Design Automation
Conference, 2009.

[81] K. Niyogi and D. Marculescu. Speed and voltage selection for GALS systems
based on voltage/frequency islands. In Proc. Asian and South Pacific Design
Automation Conference, 2005.

[82] Nomadik Multimedia Processors. STMicroelectronics [Online]. Available:
http://www.st.com.

[83] U. Y. Ogras and R. Marculescu. Prediction-based flow control for network-on-
chip traffic. In Proc. Design Automation Conference, 2006.

 184

[84] U. Y. Ogras, R. Marcuescu, P. Choudhary, and D. Marculescu. Voltage-frequency
island partitioning for GALS-based networks-on-chip. In Proc. Design
Automation Conference, 2007.

[85] I. Oliver, D. Smith, and J. Holland. A Study of permutation crossover operators
on the traveling salesman problem. In Proc. Conference on Genetic Algorithm,
1987.

[86] Open core protocol specification. OCP [Online]. Available: http://www.ocpip.org.

[87] Optimization software for operations research applications. AIMMS [Online].
Available: http://www.aimms.com.

[88] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler, and L.-S. Peh.
Research challenges for on-chip interconnection networks. IEEE Micro, vol. 27,
no. 5, pp. 96-108, 2007.

[89] F. Paganini, J. Doyle and S. Low. Scalable laws for stable network congestion
control. In Proc. International Conference on Decision and Control, 2001.

[90] P. R. Panda, N. D. Dutt, and A. Nicolau. Exploiting off-chip memory access
modes in high-level synthesis. In Proc. International Conference on Computer-
Aided Design, 1997.

[91] M. Pathak, Y.-J. Lee, T. Moon, and S. K. Lim. Through-silicon-via management
during 3D physical design: when to add and how many? In Proc. International
Conference on Computer-Aided Design, 2010.

[92] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. Efficient synthesis of
networks on chip. In Proc. International Conference on Computer Design, 2003.

[93] R. Puri, L. Stok, J. Cohn, D. Dung, D. Pan, D. Sylvester, and A. Srivastava.
Pushing ASIC performance in a power envelope. In Proc. Design Automation
Conference, 2003

[94] D. Qiu and N. B. Shroff. A Predictive flow control scheme for efficient network
utilization and QoS. IEEE Trans. on Networking, vol. 12, no. 1, pp. 161-172, Feb.
2004.

[95] J. Quartana, S. Renane, A. Baixas, L. Fesquet, and M. Renaudin. GALS systems
prototyping using multiclock FPGAs and asynchronous network-on-chips. In
Proc. International Conference on Field Programmable Logic and Applications,
2005.

[96] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson and J. D. Owens. Memory access
scheduling. In Proc. International Symposium on Compter Architecture, 2000.

[97] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the
ACM, vol. 23, no. 3, pp. 555-565, Jul. 1976.

http://portal.acm.org/author_page.cfm?id=81100362720&coll=DL&dl=ACM&trk=0&cfid=13142001&cftoken=65946455�
http://portal.acm.org/author_page.cfm?id=81100011555&coll=DL&dl=ACM&trk=0&cfid=13142001&cftoken=65946455�

 185

[98] T. Sakurai and A. R. Newton. Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas. IEEE Journal of Solid-
State Circuits, 25(2): 584-594, 1990.

[99] Samsung unveils HDTV system-on-chip. EE Times (2004, Jul) [Online].
Available: http://www.eetimes.com/electronics-news/4049612/Samsung-unveils-
HDTV-system-on-chip.

[100] M. F.-F. Schafer, T. Hollstein, H. Zimmer, and M. Glesner. Deadlock-free routing
and component placement for irregular mesh-based network-on-chip. In Proc.
International Conference on Cumputer Aided Design, 2005.

[101] C. Seiculescu, S. Murali, L. Benini, G. D. Micheli. SunFloor 3D: A tool for
networks on chip topology synthesis for 3D systems on chips. In Proc. Design
Automation and Test in Europe, 2009

[102] C. Seiculescu, S. Murali, L. Benini, and G. D. Micheli. NoC topology synthesis
for supporting shutdown of voltage island in SoCs. In Proc. Design Automation
Conference, 2009.

[103] D. Shin and J. Kim. Power-aware communication optimization for networks-on-
chip with voltage scalable links. In Proc. International Conference on
Hardware/Software Codesign and System Synthesis, 2004.

[104] S. Sivaram, H. Bath, R. Legegett, A. Maury, K. Monning, and R. Tolles.
Planarizing interlevel dielectrics by chemical mechanical polishing. In Proc.
International Electron Devices Meeting, 2006.

[105] L. T. Smit, G. J.M. Smit, J. L. Hurink, H. Broersma, D. Paulusma, and P. T.
Wolkotte. Run-time assignment of tasks to multiple heterogeneous processors. In
Proc. 4th PROGRESS Workshop on Embedded System, 2004.

[106] STBus communication system concepts and definitions. STMicroelectronics
[Online]. Available: http://www.st.com

[107] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D.
Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. Free PDK: An open-
source variation-aware design kit. In Proc. IEEE International Conference on
Microelectronic Systems Education, 2007.

[108] B. Swinnen, W. Ruythooren, P. De Moor, L. Bogaerts, L. Carbonell, K. De
Munck, B. Eyckens, S. Stoukatch, D. Sabuncuoglu Tezcan, Z. Tokei, J. Vaes, J.
Van Aelst, and E. Beyne. 3D integration by Cu-Cu thermo-compression bonding
of extremely thinned bulk-Si die containing 10um pitch through-SI vias. In Proc
international Electron Devices Meeting, 2006.

[109] R. Tornero, M. J. Orduna, M. Palesi, and J. Duato. A communication-aware
topological mapping technique for NoCs. In Proceedings of 14th International
conference on Parallel and Distributed Computing, 2008.

 186

[110] J. Van Olmen, A. Mercha, G. Katti, C. Huyghebaert, J. Van Aelst, E. Seppala,
Zhao Chao, S. Armini, J. Vaes, R. Cotrin Teixeira, M. Van Cauwenberghe, P.
Verdonck. K. Verhemeldonck, A. Jourdain, W. Ruythooren, M. de Potter de ten
Broeck, A. Opdebeeck, T. Chiarella, B. Parvais, I. Debusschere, T.Y. Hoffmann,
B. De Wachter, W. Dehaene, M. Stucchi, M. Rakowski, Ph. Soussan, R.
Cartuyvels, E. Beyne, S. Biesemans, and B. Swinnen. 3D stacked IC
demonstration using a through silicon via first approach. In Proc. International
Electron Devices Meeting, 2008.

[111] E. B. Van der Tol and E. G. T. Jaspers. Mapping of MPEG-4 decoding on flexible
architecture platform. In Proc. SPIE, 2002.

[112] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A.
Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar and S.
Borkar An 80-tile sub-100-w teraflops processor in 65-nm CMOS. IEEE Journal
of Solid-State Circuits, vol. 43, no. 1, pp. 29–41, Jan. 2008.

[113] L. A. Vervoort, P. Yeung and A. Reddy. Addressing memory bandwidth needs for
next-generation digital TVs with cost-effective, high- performance Consumer
DRAM Solutions. Rambus inc., Jul. 2007.

[114] W. D. Weber. Efficient shared DRAM subsystem for SoCs. Sonics Inc., 2001.

[115] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra. Overview of the
H.264/AVC video coding standard. IEEE Transactions on Circuits and System for
Video Technology, vol. 13, no. 7, pp. 560-576, Jul. 2003.

[116] D. Wingard. Micronetwork-based integration for SoCs. In Proc. Design
Automation Conference, 2001.

[117] Wireless Handset Solutions: OMAP Platform. Texas Instruments [Online].
Available: http://www.ti.com.

[118] H. Wu, I-M. Liu. M. D. F. Wong, and Y. Wang. Post-placement voltage island
generation under performance requirement. In Proc. International Conference on
Computer-Aided Design, 2005.

[119] H. Wu, M. D. F. Wong, and I-M. Liu. Timing-constrained and voltage-island-
aware voltage assignment. In Proc. Design Automation Conference, 2006.

[120] S. Yan and B. Lin. Design of application-specific 3D networks-on-chip
architectures. In Proc. International Conference on Computer Design, 2008.

[121] J.-S. Yang, K. Athikulwongse, Y.-J. Lee, S. K. Lim, and D. Z. Pan. TSV Stress
aware timing analysis with applications to 3D-IC layout optimization. In Proc.
Design Automation Conference, 2010.

 187

Vita

Woo Young Jang received the B.E. degree in Radio Science and Technology from

Kyunghee University, South Korea, in 1998 and the M.S. degree in Electrical and

Computer Engineering from Yonsei University, South Korea in 2000. He has been with

System LSI Division in Samsung Electronics CO., LTD., South Korea since 2000, where

he has developed memory subsystems, on-chip communication architectures, and MPEG-

1/2 and H.264 decoders for DTV SoCs. He joined in the Department of Electrical and

Computer Engineering at the University of Texas at Austin in Fall 2006, where he started

graduate studies for Ph.D. degree with Prof. David Z. Pan. His main research includes

computer architecture and nanometer physical design for on-chip communication and

image/video processing. Mr. Jang was the recipient of SK telecom Scholarship for 1994-

1997, Samsung Outstanding Achievement Award in 2005 and Samsung Scholarship for

2006-2011.

Permanent address (or email): wooyoung.jjang@gmail.com

This dissertation was typed by Woo Young Jang.

	Copyright
	Woo Young Jang
	2011
	The Dissertation Committee for Woo Young Jang
	Architecture and Physical Design for Advanced Networks-on-Chip
	Committee:
	Architecture and Physical Design for Advanced Networks-on-Chip
	Woo Young Jang, B.E.; M.S.
	Dissertation
	DOCTOR OF PHILOSOPHY
	The University of Texas at Austin
	Dedicated to my wife, Minkyung for her support, encouragement, and devotion.
	Acknowledgements
	Woo Young Jang
	The University of Texas at Austin
	Publication No._____________
	Supervisor: David Z. Pan
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	1.1 Network-on-Chip Challenges in Ultra-Deep Submicron Era
	Figure 1.1: NoC architecture.

	1.2 Overview and Contributions of This Dissertation

	Chapter 2
	Memory-Aware NoC Design for Improving Application-Level Latency
	2.1 SDRAM-Aware NoC Design
	2.1.1 Basic SDRAM Operation
	Figure 2.1: SDRAM architecture and activation, read/write, and deactivation operations.

	2.1.2 SDRAM Scheduling
	2.1.2.1 Bank Conflict
	2.1.2.2 Data Contention
	2.1.2.3 Short Turn-Around Bank Interleaving

	2.1.3 NoC Design with SDRAM
	2.1.3.1 Problem Description
	Figure 2.5: Bank conflict in 2 3 NoC with conventional round-robin flows controller although an effective memory subsystem.

	2.1.3.2 Basic Idea of Our Approach
	Figure 2.6: No bank conflict in 2 3 NoC with SDRAM-aware flow controller although a simple memory subsystem.

	2.1.4 SDRAM-Aware Router
	2.1.4.1 Router Description
	Figure 2.7: The architecture of an SDRAM-aware router consisting of input buffers, routing logics, flow controllers, and output schedulers for a mesh network.
	Figure 2.8: The architecture of an SDRAM-aware flow controller combined with a conventional flow controller for a mesh network.

	2.1.4.2 SDRAM-Aware Flow Control for Avoiding Bank Conflict and Data Contention
	2.1.4.3 SDRAM-Aware Flow Control for Avoiding Short Turn-Around Bank Interleaving
	Figure 2.9: The architecture of an SDRAM interface signal generator with a deactivation buffer, an activation buffer, and a read/write buffer which packets pass through.

	2.1.4.4 Hardware Complexity

	2.1.5 Experimental Results
	2.1.5.1 Digital Television Application
	Figure 2.10: The comparisons of memory utilization, latency, and design complexity in DTV application according to the number of SDRAM-aware routers, where our NoC design achieves the best tradeoff between performance and cost when three conventional ...

	2.1.5.2 Synthetic Benchmarks
	2.1.5.3 Comparison of SP and SP+AP

	2.1.6 Summary

	2.2 Application-Aware NoC Design
	2.2.1 Problem Description and Our Basic Idea
	2.2.1.1 Priority SDRAM Service in NoC
	Figure 2.11: Examples of scheduling memory requests, where priority-equal and priority-first schedulers show long latency for priority packets and low memory utilization, respectively.

	2.2.1.2 SDRAM Access Granularity Mismatch
	Figure 2.12: Example of memory access granularity mismatch in DDR II SDRAM @200, where four bursts read are thrown away.

	2.2.2 Application-Aware NoC Design
	2.2.2.1 Architecture of GSS Router
	Figure 2.13: The architecture of an NoC router and a GSS flow controller for a 2D mesh network.

	2.2.2.2 GSS Flow Control Algorithm
	Figure 2.14: Scheduling memory request packets for guaranteed SDRAM service considering (a) bank conflict and data contention, and (b) bank conflict, data contention and short turn-around bank interleaving.

	2.2.2.3 NoC Design for SAGM
	Figure 2.15: SDRAM Operations when BL is set to 4 in DDR II SDRAM @300MHz, where the read command with authoprecharge does not need any precharge command.
	Figure 2.16: The architecture of our memory controller where small PRE and RAS buffers are required thanks to authoprecharge operations.

	2.2.3 Experimental Results
	2.2.3.1 No Priority Memory Request
	2.2.3.2 Priority Memory Request
	Figure 2.18: The memory performance of our application-aware NoC design according to the number of GSS routers, where our NoC design achieves the best tradeoff between performance and cost when three conventional routers are replaced to GSS routers.
	Table 2.8: The memory performance comparison of GSS+SAGM+STI and GSS+SAGM on industrial benchmarks.
	Table 2.9: The comparison of gate count synthesized at 400MHz clock speed.
	Table 2.10: The comparison of power consumption ruing at 400MHz clock speed.

	2.2.4 Summary

	Chapter 3
	Power Optimization for Advanced NoC
	3.1 VFI-Aware Energy Optimization Framework for NoC
	3.1.1 Motivation and Contributions
	3.1.1.1 Motivational Example
	Figure 3.1: Computing and communication energy consumption and design overhead according to the number of VFIs. The goal of VFI based NoC designs is to minimize the sum of the computing and communication energy and the design overhead.
	Figure 3.2: Motivational VFI based NoC designs.

	3.1.1.2 Major Novelty

	3.1.2 Problem Formulations
	3.1.2.1 Partitioning with VF Assignment Problem
	3.1.2.2 VFI-Aware Mapping Problem
	3.1.2.3 VFI-Aware Routing Problem

	3.1.3 VFI Optimization Framework
	Figure 3.3: The proposed VFI-aware NoC methodology where VFI partitioning is first performed.
	3.1.3.1 Core Partitioning with VF Assignment
	3.1.3.2 VFI-Aware Mapping Algorithm
	Figure 3.4: Incremental core mapping on NoC.

	3.1.3.3 VFI-Aware Routing Path Allocation
	Figure 3.5: Link insertion within VFI and between VFIs, where all links between VFIs are not inserted.
	Figure 3.6: Finding the best interconnection between VFIs.
	Figure 3.7: The proposed rules for allocating routing path in VFI-based NoC.

	3.1.3.4 VFI-Aware Interface Planning

	/
	/
	Table 2.1: Timing parameter of DDR I, IIa, and IIIa SDRAM.
	Figure 2.2: Examples showing bank conflict and interleaving in DDR II SDRAM @333MHz.
	Figure 2.3: Examples showing data contention in DDR II SDRAM @266MHz.
	Figure 2.4: Examples showing short turn-around bank interleaving in DDR III SDRAM @800MHz.
	/
	/
	Table 2.2: SDRAM data input/output delay between h(n) and hi(n+1).
	/
	/
	Table 2.3: Memory utilization and latency comparison in DTV application according to various DDR SDRAMs.
	Table 2.4: Memory utilization and latency comparison in synthetic benchmarks according to network size.
	Table 2.5: Memory utilization and latency comparison of SP and SP+AP in DDR I/II/III SDRAM.
	Figure 2.17: Single DTV/blue-ray and dual DTV application mapping results by A3MAP in 3x3 and 4x4 mesh networks.
	Table 2.6: Memory performance comparison on industrial benchmarks without priority memory requests.
	Table 2.7: Memory performance comparison on industrial benchmarks with priority memory requests.
	(a) NoC tiles including MCFIFO between routers [84]
	(b) NoC tiles including MCFIFO between a core and a router
	Figure 3.8: NoC tiles with MCFIFO or VLC placed (a) between routers and (b) a core and a router.
	Figure 3.9: NoC designs with (a) the conventional VFI interface and (b) the proposed VFI interface.
	Figure 3.10: Examples of the proposed VFI interface insertion.
	3.1.4 Experimental Results
	Table 3.1: The comparison of VFI overhead, hop count, and communication congestion on VOPD benchmark.
	Table 3.3: The comparison of energy consumption according to the number of VFI on E3S benchmarks .

	3.1.5 Summary
	3.2 Architecture-Aware Analytic Application Mapping
	3.2.1 Problem Formulation
	3.2.2 A3MAP Algorithms
	3.2.2.1 A3MAP-SR
	Figure 3.13: Guiding continuous P(i,j) to binary P(i,j) after solving QP.

	3.2.2.2 A3MAP-GA
	Figure 3.14: Cycle crossover.

	3.2.3 A3MAP for Large-Scale NoC
	Figure 3.15: Partition-based A3MAP flow for large networks and complex applications.

	3.2.4 Experimental Results
	3.2.4.1 Regular Mesh Network
	Table 3.4: The hop count increase and runtime improvement of NMAP, A3MAP-GA, and A3MAP-SR normalized by A3MAP-FS.
	Table 3.5: The comparison of hop count for industrial benchmarks in regular mesh networks.
	Figure 3.16: The comparison of runtime for industrial benchmarks in 3×3-5×5 regular mesh networks.
	Figure 3.17: The hop count improvement of A3MAP algorithms compared to NMAP for synthetic benchmarks in 3×3-10×10 regular mesh networks.

	3.2.4.2 Irregular Mesh Network
	Figure 3.18: Irregular mesh networks used in our experiments.
	Table 3.6: The comparison of hop count for VOPD benchmark in various irregular mesh networks.

	3.2.4.3 Custom Network
	Figure 3.19: Custom NoC networks used in our experiments.
	Table 3.7: The comparison of hop count and wirelength for VOPD benchmark in custom networks.

	3.2.4.4 Large-Scale NoC
	Figure 3.20: The hop count comparison of application mapping algorithms in large networks partitioned to 9-15 subnetworks.
	Figure 3.21: The runtime comparison of application mapping algorithms in large networks partitioned to 9-15 subnetworks.
	Figure 3.22: The hop count of A3MAP-SR-P normalized by A3MAP-SR on regular mesh, irregular mesh, and custom networks with 25-100 PEs.
	Figure 3.23: The hop count of A3MAP-GA-P normalized by A3MAP-GA on regular mesh, irregular mesh, and custom networks with 25-100 PEs.
	Figure 3.24: The runtime comparison of NMAP, A3MAP-GA, A3MAP-SR, A3MAP-GA-P, and A3MAP-SR-P.

	3.2.5 Summary

	Chapter 4
	NoC Architecture and Physical Design for Emerging Technologies
	4.1 CMP-Aware Application-Specific 3D NoC Design
	4.1.1 Preliminaries
	4.1.1.1 Chemical-Mechanical Polishing and Cu-Cu Thermo-Compression Direct Bonding
	Figure 4.1: Typical rotary CMP tool [30].
	Figure 4.2: Local topography on backside of wafer [108].

	4.1.1.2 TSV Layouts and CMP Variation
	Figure 4.3: TSV layouts and their TSV height variation induced by a CMP process.

	4.1.2 CMP-Aware NoC Design Flow and Problem Formulation
	Figure 4.4: The conventional and proposed 3D NoC design flows.
	4.1.2.1 Core-to-Layer Assignment
	4.1.2.2 3D NoC Topology Decision and Routing Path Allocation
	4.1.2.3 Floorplanning

	4.1.3 CMP-Aware 3D NoC Design
	4.1.3.1 CMP-Aware Core-to-Layer Assignment
	Figure 4.5: Examples of assigning eight cores to four layers.

	4.1.3.2 CMP-Aware 3D NoC Topology Decision
	Figure 4.6: CMP-aware router-to-router interconnections in adjacent layers.

	4.1.3.3 CMP-Aware Floorplanning

	4.1.4 Experimental Results
	4.1.4.1 TSV Density and Predictive CMP Model
	Figure 4.7: TSV height variation by TSV density.

	4.1.4.2 CMP-Aware Application-Specific 3D NoC
	Table 4.1: TSV height variation comparison (μm).
	Table 4.2: Hop count comparison.
	Table 4.3: Total wirelength comparison (mm).

	Table 3.2: The comparison of VFI overhead and hop count on E3S benchmark.
	Figure 3.11: Visual comparison of VFI based NoC designs on 4x4 NoC.

	Figure 3.12: Various graphs and their interconnection matrices.
	(a) MST
	(b) P2P
	Figure 4.8: Network topologies and layouts performed by CMP-aware 3D NoC.
	4.1.5 Summary
	Figure 4.9: Typical application-specific 3D NoC with 2 layers [120].
	Figure 4.10: CMP-aware application-specific 3D NoC with 2 layers.
	Figure 4.11: Improvement according to the area of routers.

	Chapter 5
	Conclusions
	Bibliography
	Vita

