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Supervisor: Mark G. Raizen

This dissertation details our experiments on studying the Brownian

motion of an optically trapped microsphere with ultrahigh resolution, and

cooling of its motion towards the quantum ground state.

We have trapped glass microspheres in water, air and vacuum with op-

tical tweezers. We developed a detection system that can monitor the position

of a trapped microsphere with Ångstrom spatial resolution and microsecond

temporal resolution. We studied the Brownian motion of a trapped micro-

sphere in air over a wide range of pressures. We measured the instantaneous

velocity of a Brownian particle. Our results provide direct verification of the

Maxwell-Boltzmann velocity distribution and the energy equipartition theo-

rem for a Brownian particle. For short time scales, the ballistic regime of

Brownian motion is observed, in contrast to the usual diffusive regime. We

are currently developing a new detection system to measure the instantaneous

velocity of a Brownian particle in water.
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In vacuum, we have used active feedback to cool the three center-of-

mass vibration modes of a trapped microsphere from room temperature to

millikelvin temperatures with a minimum mode temperature of 1.5 mK, which

corresponds to the reduction of the root mean square (rms) amplitude of the

microsphere from 6.7 nm to 15 pm for that mode. The mean thermal occupa-

tion number of that mode is reduced from about 6.8×108 at 297 K to about

3400 at 1.5 mK.
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Chapter 1

Introduction

1.1 Macroscopic quantum mechanics

It is well known that the dynamics of microscopic particles such as

photons, electrons and atoms follow quantum mechanics, while the dynamics

of macroscopic objects such as ping-pong balls follow classical mechanics. Why

is there such a transition?

A simple explanation for the absence of quantum behavior of macro-

scopic objects is that the de Broglie wavelength λ of an object is inversely

proportional to the momentum p of the object, i.e. λ = h/p, where h is the

Planck constant. Macroscopic objects usually have large momenta, thus their

de Broglie wavelengths and quantum behaviors are too small to be observed.

Since p = Mv, where M is the mass of an object and v is the veloc-

ity of the object, we can increase the de Broglie wavelength of an object by

reducing its velocity. Thus macroscopic objects should behave quantum me-

chanically if we can reduce their kinetic energies to low enough values. An

important characteristic of quantum mechanics is the possibility of superpo-

sition of two spatially distinct states. Creation of quantum superpositions of

macroscopic objects (“Schrödinger cats”) will provide opportunities to study
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untested regimes of quantum mechanics.

One additional motivation to study the macroscopic quantum mechan-

ics is that the apparent conflict between general relativity and quantum me-

chanics remains one of the unresolved mysteries of the physical world [1, 2].

According to recent theories [2–4], this conflict results in gravity-induced quan-

tum state reduction of “Schrödinger cats”. It is argued that the perturbing

effect of the mass distribution on the space-time structure leads to an essential

uncertainty in the energy of a superposed state. So a macroscopic quantum

superposition of two different mass distributions is intrinsically unstable.

The finite lifetime of a quantum superposition due to the gravity-

induced state reduction is on the order of τ = ~/∆E, where ~ is the Planck

constant/2π. ∆E is the gravitational self-energy of the difference between the

mass distributions of the two superposed states [2, 5, 6]:

∆E = ξG

∫ ∫
[ρ(x)− ρ′(x)] · [ρ(y)− ρ′(y)]

|x− y|
dxdy, (1.1)

where G is Newton’s gravitational constant, ρ and ρ′ are the mass densities

of two members of the superposed state. ξ is a dimensionless number that

represents the strength of the quantum state reduction process, which is ex-

pected to be on the order of 1. The lifetime τ of a quantum superposition of

two separated states of a 1-nm-radius particle is on the order of 1013 s, which

is too long to be measured in an experiment. It is on the order of 10−17 s

for a 1 mm particle, which is too short to be measured. For a 1 µm particle,

the lifetime of a spatially separated quantum superposition is on the order of

2



10−2 s, which seems realistic to be measured in an experiment.

In order to observe quantum behaviors in a mechanical oscillator, we

need to cool the oscillator significantly. The energy of the quantum states of

a mechanical oscillator is quantized in units of ~ΩM , where ΩM is the angular

frequency of the oscillator. The mean thermal occupation number (phonon

number) is 〈n〉 = kBT/~ΩM , where kB is the Boltzmann constant, and T is

the temperature of the oscillator. At room temperature, we have 〈n〉 � 1 for

almost all mechanical oscillators. We need 〈n〉 < 1 for the oscillator to have a

high probability to be in the quantum ground state and to have its dynamics

be dominated by quantum mechanics.

In recent years, great progress has been made in cooling mechanical os-

cillators towards their quantum mechanical ground states [7–9]. The thermal

occupation number of a 2.7 kg pendulum mode around 130 Hz was reduced

from about 5× 1010 at room temperature to about 234 at an effective temper-

ature of 1.4 µK by feedback cooling [10]. Combining conventional cryogenic

cooling and laser cavity cooling, the thermal occupation number of a mechani-

cal deformation mode of a deformed microsphere around 100 MHz was reduced

to about 40 [11], the thermal occupation number of the fundamental mechani-

cal mode of a micromirror (the end mirror of a Fabry-Pérot cavity) at 945 kHz

was reduced to about 30 [12]. Remarkably, quantum ground-state cooling has

been achieved for a dilatational resonant mode of a membrane at 6.2 GHz by

conventional cryogenic cooling [13], and for the fundamental mechanical mode

of a superconducting aluminium membrane at 10.56 MHz by microwave cavity

3



cooling [14].

These results are important steps towards the creation of Schrödinger

cats in the laboratory, and the study of their destruction by decoherence. A

direct test of the gravity-induced state reduction scenario may therefore be

within reach. However, a recent analysis shows that for these mechanical os-

cillators, quantum superpositions are destroyed by environmental decoherence

long before gravitational state reduction takes effect [6]. An alternate candi-

date may be a Bose-Einstein condensate (BEC) of ultracold atoms in vacuum.

It is well isolated from the thermal environment. However, its mass density

is too small. Even worse, the atoms in a Bose-Einstein condensate are only

weakly interacting. They do not move together. Thus only mass fluctuation,

not total mass, contributes to the ∆E. Theoretical calculation shows that

a Bose-Einstein condensate formed from 1029 atoms is required to study the

gravity-induced state reduction [6]. This number is too large to be achieved

in the foreseeable future.

Chapters 3 and 6 of this dissertation describe our experimental efforts

on optical trapping and cooling of glass microspheres in vacuum [15]. An opti-

cally trapped microsphere in vacuum provides an ideal candidate for studying

the interface between quantum mechanics and general relativity, and for study-

ing objective collapse models of the wavefunction [16]. It is nearly perfectly

isolated from the thermal environment, and allows quantum ground state cool-

ing from room temperature [17–19]. The mass density of a glass microsphere

is many orders larger than that of a BEC, and atoms contained in the micro-

4



sphere move together as a whole. We have been able to trap glass microspheres

in vacuum with high oscillation frequencies, and cool their center-of-mass mo-

tion from room temperature to a minimum temperature of about 1.5 mK.

1.2 Instantaneous velocity of Brownian motion

Brownian motion is the apparently random movement of particles sus-

pended in a fluid (liquid or gas). It was discovered by Robert Brown (1773-

1858) in 1827 when he used a simple microscope (a double convex lens with a

focal length of about 0.8 mm) to study the action of particles contained in the

grains of pollens [20]. The size of those particles was about 5 µm. He “observed

many of them very evidently in motion”. He also observed the same motion

with powders of many other materials, such as wood and nickel, suspended in

water.

Persistence and randomness are two key characteristics of Brownian

motion. The trajectories of a Brownian particle are classic examples of fractals.

They are commonly thought to be continuous everywhere but not differentiable

anywhere. Since its trajectory is not differentiable, the velocity of a Brownian

particle is undefined.

At short time scales, however, the dynamics of a Brownian particle

is expected to be dominated by its inertia and its trajectory cannot be self-

similar. This is termed “ballistic Brownian motion” to be distinguished from

the common “diffusive Brownian motion”. Fig. 1.1 shows a 2D trajectory of

a Brownian particle. The black curve is assumed to be a true trajectory of the

5



particle. Red dots are measured positions. In Fig. 1.1A, the sampling rate

is too small to measure the velocity of the Brownian particle. The measured

trajectory (red curve) is completely different from the true trajectory, and

appears chaotic. It is impossible to obtain the velocity of the particle from

the measured trajectory in Fig. 1.1A. In Fig. 1.1B, the sampling rate is much

larger. Now the measured trajectory is very close to the true trajectory of the

particle. If the measured displacement of the particle is ∆~x(t) during time ∆t,

then the velocity of the particle is approximately ~v = ∆~x(t)/∆t.

In 1900, F. M. Exner made the first quantitative study of Brownian mo-

tion by measuring the velocity of the Brownian motion of particles suspended

in water [21, 22]. He found that the measured velocity decreased with increas-

ing particle size and increased with increasing water temperature. However,

(B)

~v
.
= ∆~x

∆t

(A)

~v 6= ∆~x
∆t

Figure 1.1: A 2D trajectory of a Brownian particle. The black curve is assumed
to be a true trajectory of the particle. Red dots are measured positions, and
red curves are measured trajectories. The sampling rate of (B) is 10 times of
that of (A).

6



his measured velocities of Brownian particles were almost 1000-fold smaller

than those predicted by the energy equipartition theorem [21]. The reason

of this discrepancy was not understood until A. Einstein developed a kinetic

theory about Brownian motion in 1905 [23].

In 1907, Einstein published a paper entitled “Theoretical observations

on the Brownian motion” in which he considered the instantaneous velocity of

a Brownian particle [24, 25]. Einstein showed that by measuring this quantity,

one could prove that “the kinetic energy of the motion of the centre of gravity of

a particle is independent of the size and nature of the particle and independent

of the nature of its environment”. This is one of the basic tenets of statistical

mechanics, known as the equipartition theorem. However, Einstein concluded

that due to the very rapid randomization of the motion, the instantaneous

velocity of a Brownian particle would be impossible to measure in practice

[24, 25]:

“We must conclude that the velocity and direction of motion of the

particle will be already very greatly altered in the extraordinary short time θi,

and, indeed, in a totally irregular manner. It is therefore impossible – at least

for ultramicroscopic particles – to ascertain
√
v2 by observation.”

The resolution required to measure the instantaneous velocity is strik-

ing. For a 1 µm diameter silica (SiO2) sphere in water at room temperature,

iIn Einstein’s paper, θ was defined as the time in which the velocity falls to a tenth of
its original value. θ = 2.30 τp, where τp is the momentum relaxation time of the particle.
Einstein mistakenly obtained θ = 330 ns for a 50-nm-diameter platinum nanosphere in
water. The correct value should be θ = 6.8 ns for his example.

7



the momentum relaxation time is about 0.1 µs and the root mean square (rms)

velocity vrms =
√
kBT/M is about 2 mm/s in one dimension. To measure the

instantaneous velocity with 10% uncertainty, one would require 2 pm spatial

resolution in 10 ns.

Recent experiments on Brownian motion in liquid [26–29] and gaseous

environments [30–32] with fast detectors have observed nondiffusive motion

of a Brownian particle. However, no previous experiment has been able to

observe the instantaneous velocity of a Brownian particle and verify the energy

equipartition theorem directly.

Chapter 4 of this dissertation describes our efforts to measure the in-

stantaneous velocity of a Brownian particle suspended in air [33]. Due to the

lower viscosity of gas as compared to liquid, the momentum relaxation time

τp of a particle in air is much larger. This lowers the technical demand for

both temporal and spatial resolution. The main difficulty of performing high

precision measurements of a Brownian particle in air, however, is that the

particle will fall under the influence of gravity. We overcome this problem by

using optical tweezers to simultaneously trap and monitor a silica bead in air

and vacuum, allowing long duration ultra-high-resolution measurements of its

motion.

We have successfully measured the instantaneous velocity of a Brown-

ian particle in air. We used the velocity data to directly verify the Maxwell-

Boltzmann velocity distribution, and the equipartition theorem for a Brownian

particle. The ability to measure instantaneous velocity enables new funda-
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mental tests of statistical mechanics of Brownian particles [34–37]. It is also a

necessary step towards cooling of a particle to the motional quantum ground

state in vacuum.

We are currently building a new detection system to measure the in-

stantaneous velocity of a Brownian particle in water (chapter 5). In contrast to

air, the water has significant inertia and hydrodynamic memory effects [26, 29],

which may cause deviations from the energy equipartition theorem.

1.3 Contents of this dissertation

Chapter 2 introduces the basic principle of optical tweezers, and the

differences between trapping microspheres in air and in water. Chapter 3

provides the details of launching glass microspheres to air, and trapping mi-

crospheres in air and vacuum with a counter-propagating dual-beam optical

tweezer. We also describe the vacuum system and the first generation of our

detection system. Chapter 4 covers the theory of Brownian motion in air at

short time scales, a home-built detection system with ultrahigh resolution, and

the results of our measurement of the instantaneous velocity of a Brownian

particle in air. Chapter 5 discusses the motivation and challenges of measuring

the instantaneous velocity of a Brownian particle in water. It also presents

some of our on-going efforts on developing a new detection system to meet the

challenges. Chapter 6 presents different approaches to cool the center-of-mass

motion of an optically trapped microsphere in vacuum, and the results of 3D

optical feedback cooling. We also discuss the trapping lifetime of optically
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trapped microspheres in vacuum. Finally, chapter 7 discusses a scheme to per-

form 3D ground-state cooling of a optically trapped nanosphere with a single

cavity, and the potential applications of cooled microspheres in vacuum.
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Chapter 2

Physical principle of optical tweezers

The radiation pressure of light was first deduced theoretically by James

C. Maxwell in 1873 based on his electromagnetic theory [38, 39], and measured

experimentally by P. N. Lebedev [40], and E. F. Nichols and G. F. Hull in 1901

[41]. The radiation pressure force exerted on a totally reflecting mirror by an

incident beam of light perpendicular to the mirror is Fmirror = 2P/c, where

P is the power of the light and c is the speed of light in vacuum [42]. The

factor of 2 in the formula is due to reflection. The force is about 7 nN for 1 W

of light, which is tiny and had almost no application before the invention of

the laser. In contrast to classical light sources, a laser beam can be strongly

focused onto a small particle with a diameter on the order of 1 µm. Due to the

small mass of the particle, the radiation force of a 1 W laser can be 105 times

larger than the gravitational force on the particle, and can therefore have huge

effects on the motion of the particle.

In 1970, Arthur Ashkin published a seminal paper [43] demonstrating

that one could use focused laser beams to accelerate and trap micrometer-sized

transparent particles. Optical levitation of oil droplets and glass microspheres

in air [44] and vacuum was demonstrated several years later [45]. The laser
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radiation pressure was soon used to cool and trap atoms [46–49], leading to

dramatic breakthroughs in atomic, molecular and optical physics, including a

new generation of atomic clocks, and realization of Bose-Einstein condensation

and degenerate Fermi gas. In 1986, Ashkin et al. [50] observed stable trapping

of dielectric particles with the gradient force of a strongly focused laser beam.

This technique was soon used to trap and manipulate viruses and bacteria

[51, 52], and became a standard tool in biophysics [42].

In this chapter, we will first explain the principle of optical trapping of

microspheres with ray optics, which is valid when the size of the microspheres

is much larger than the wavelength of the trapping laser. This will be followed

by theoretical calculations of the optical forces on a particle with the Rayleigh

approximation, and numerical results of Lorentz-Mie theory. The differences

between trapping microspheres in air and in water will be discussed.

2.1 Ray optics approximation

When the size of a microsphere is much larger than the wavelength of

the trapping laser (usually R > 10λ0, where R is the radius of the microsphere

and λ0 is the wavelength of the laser in vacuum), the optical forces on the

microsphere can be calculated by ray optics [53].

A qualitative view of optical trapping of microspheres in the ray optics

regime is shown in Fig. 2.1 [50, 53]. If we neglect surface reflection from the

microsphere, then the microsphere will be trapped at the focus of the laser

beam as shown in Fig. 2.1(B). If the microsphere moves to the left of the
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focus (Fig. 2.1(A)), it will deflect the laser beam to the left and thus increase

the momentum of photons to the left. The counter force from the deflected

photons will push the microsphere to the right, i.e. back to the focus of the

laser beam. If the microsphere moves along the propagation direction of the

laser beam (Fig. 2.1(C)), it will focus the laser more strongly and thus increase

the momentum of photons along the propagation direction. The counter force

from the deflected photons will push the microsphere back to the focus of the

laser beam. The same thing will happen if the microsphere moves away from

the focus in other directions. Thus a focused laser beam forms a stable optical

trap in 3D.

The above discussion neglected surface reflection from the microsphere.

(A) (B) (C)

Figure 2.1: Qualitative view of optical trapping of dielectric spheres. (A)
displays the force on the particle when the particle is displaced laterally from
the focus; (B) shows that there is no net force on the particle when the particle
is trapped at the focus; and (C) displays the force on the particle when the
particle is positioned above the focus.

13



In reality, we have to consider the effect of this surface reflection. The pho-

tons reflected back by the surface of a microsphere will push the microsphere

forward. If this force is larger than the restoring force due to refraction (Fig.

2.1(C)), the microsphere will be pushed away from the focus, and thus cannot

be trapped. The surface reflection depends on the relative refractive index of

the microsphere and the medium m = np/nmd, where np is the refractive index

of the microsphere and nmd is the refractive index of the medium. Larger m

implies more surface reflection, and thus greater difficulty in trapping the mi-

crosphere with an optical tweezer [54]. m is about 1.10 for a silica microsphere

(nsilica = 1.46) in water (nwater = 1.33), and is about 1.46 for a silica micro-

sphere in air (nair = 1.00) (see Table A.1 at Appendix A for more information).

Thus it is more difficult to trap microspheres in air than in water.

To increase the restoring force, the laser beam should be strongly fo-

cused by a high numerical aperture (NA) objective lens. The typical NA of

objective lenses used for creating optical tweezers is about 1.2 and 0.95 in

water [50, 54] and air [55], respectively.

2.2 Rayleigh approximation

If the size of a nanosphere (microsphere) is much smaller than the

wavelength of the trapping laser (usually R < λ0/10), the nanosphere can be

approximated as a dipole. In this regime, the optical force on the nanosphere

can be calculated analytically with the Rayleigh scattering theory [50, 56].

Here we will calculate the optical forces in the Rayleigh regime following the
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formulas of Ref. [56].

We consider a nanosphere with radius R and a refractive index np

being illuminated by a laser beam propagating along the z axis in the positive

direction, as shown in Fig. 2.2. The power of the laser beam is P . The

refractive index of the medium in which the nanosphere is suspended is nmd.

The laser beam is a linearly polarized Gaussian beam (TEM00) with beam

waist radius ω0 at the focus. The polarization direction of the electric field of

the laser is parallel to the x axis. The center of the laser beam is located at

the origin, and the center of the nanosphere is at ~r = (x, y, z).

The wavefront of a Gaussian beam is flat at the focus, and its waist

(1/e2 radius) spreads in accordance with [57]:

ω(z) = ω0

[
1 +

(
λmd z

πω2
0

)2
]1/2

, (2.1)

where λmd = λ0/nmd is the wavelength of the laser in the medium.

x

y

z
(propagation axis)rLaser beam

Figure 2.2: Schematic of a nanosphere near the focus of a laser beam.
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The Rayleigh range (zR), defined as the distance over which the beam

radius spreads by a factor of
√

2, is given by

zR =
πω2

0

λmd
. (2.2)

The intensity distribution of the Gaussian beam is

I(x, y) = I0e
−2(x2+y2)/ω2

=
2P

πω2
e−2(x2+y2)/ω2

, (2.3)

where ω = ω(z) and P is the power of the laser beam.

The numerical aperture (1/e2 points in k-space) of a Gaussian beam is

NA =
λ0

πω0

= nmd
λmd
πω0

. (2.4)

The optical force of the focused laser beam on the nanosphere can be

separated into two components: the scattering force ~Fscat(~r) which is propor-

tional to the intensity of the laser, and the gradient force ~Fgrad(~r) which is

proportional to the gradient of the intensity of the laser. The scattering force

is a nonconservative force and the gradient force is a conservative force. The

gradient force forms a trapping potential for the nanosphere, and the scatter-

ing force tends to push the nanosphere out of the trap. In order to form a

stable trap, the gradient force should be lager than the scattering force.

The scattering force of the laser on a nanosphere is [56]:

~Fscat(~r) = ẑ(
nmd
c

)CscatI(~r) = ẑ
128π5R6

3cλ4
0

(
m2 − 1

m2 + 2

)2

n5
md I(~r), (2.5)

where c is the speed of light in vacuum and Cscat is the scattering cross sec-

tion. Because of the larger relative refractive index m, the scattering force
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on a nanosphere in air is about 4.2 times greater than the scattering force on

the same nanosphere in water with the same laser intensity. The number of

scattered photons per second is

Nscat =
λmd
h
|~Fscat|, (2.6)

where h is the Planck constant.

The gradient force on the nanopshere is [56]:

~Fgrad(~r) = [~p(~r, t) · 5] ~E(~r, t) =
2πnmdR

3

c

(
m2 − 1

m2 + 2

)
5 I(~r), (2.7)

where ~p(~r, t) is the induced dipole of the nanosphere due to the instantaneous

electric field ( ~E(~r, t)) of the laser. The gradient force forms a trapping poten-

tial:

V (~r) = −2πnmdR
3

c

(
m2 − 1

m2 + 2

)
I(~r). (2.8)

The total force on the nanosphere is ~F (~r) = ~Fscat(~r) + ~Fgrad(~r). The

minimum force along the z axis Fmin
z = min (Fz(~r)) must be negative in order

to form a stable trap. Otherwise the force of the laser will always push the

nanosphere forward and there will be no trap. Because the scattering force is

proportional to R6 while the gradient force is proportional to R3, the scatter-

ing force decreases much faster than the gradient force when the size of the

nanosphere decreases. Thus it is easier to achieve a negative Fmin
z for a small

nanosphere than a large particle.

In order to trap a nanosphere stably, the well depth should be at least

10 times larger than the average kinetic energy of the nanosphere. This is

17



due to the fact that the kinetic energy of a nanosphere follows the Maxwell-

Boltzmann distribution at thermal equilibrium. The nanosphere has a signif-

icant probability for its instantaneous kinetic energy to be much larger than

its average kinetic energy. According to the energy equipartition theorem, the

average kinetic energy of a nanosphere is kBT/2 in each direction, where kB is

the Boltzmann constant and T is the temperature of the medium. While the

average kinetic energy is independent of the size of the nanosphere, the well

depth of the trapping potential decreases as the size of the particle decreases.

Thus it is difficult to trap a nanosphere if its size is too small.

Fig. 2.3 shows the calculated potentials and forces on a silica nanosphere

in air with a focused laser beam. Since the refractive index of air is very close

to the refractive index of vacuum, the potential and force on a nanosphere in

air is practically the same as that in vacuum. For the calculations yielding Fig.

2.3, the wavelength of the laser is 1064 nm, the power of the laser is 200 mW,

and the waist of the laser at the focus is 1.5 µm, corresponding to NA = 0.22.

The Rayleigh range of the laser is 6.6 µm. The diameter (D = 2R) of the

nanosphere is 50 nm. The calculated well depth of the trap is 367 K. The

laser will therefore only be able to trap a 50 nm nanosphere at a temperature

much lower than room temperature. The potential is approximately harmonic

near the bottom of the trap. The oscillation frequency is about 42 kHz in

the radial direction and 6.7 kHz in the axial direction for a 50 nm nanosphere

trapped near the bottom of the potential. The scattering force is zero in the ra-

dial direction (Fig. 2.3C) and is positive along the axial direction (Fig. 2.3D).
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The gradient force is negative at positive coordinates, and positive at negative

coordinates. Thus it will always pull back the nanosphere to the center of the

trap.

Fig. 2.4 shows the calculated potentials and forces on a silica nanosphere

in a laser beam with a much smaller waist. The waist of the laser beam is

0.5 µm, which corresponds to NA = 0.68. Other conditions are the same as in
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Figure 2.3: Optical potentials and forces on a nanosphere in air when the waist
of the trapping laser is 1.5 µm. The power of the trapping laser is 200 mW
and the diameter of the nanosphere is 50 nm.
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Fig. 2.3. Because of the smaller waist, the well depth becomes large enough

(3310 K) to trap a 50 nm nanosphere at room temperature. The trapping

frequency is about 376 kHz in the radial direction and 180 kHz in the axial

direction. The scattering force is negligible compared to the gradient force.

Comparing Fig. 2.4 and Fig. 2.3, it is clear that a laser beam focused by an

objective lens with a larger NA is much better for trapping nanospheres.
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Figure 2.4: Optical potentials and forces on a nanosphere in air when the waist
of the trapping laser is 0.5 µm. The power of the trapping laser is 200 mW
and the diameter of the nanosphere is 50 nm.
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2.3 Generalized Lorentz-Mie theory

In most experiments with optical tweezers, the sizes of the dielectric

particles are comparable with the wavelength of the trapping laser (R ∼ λ0).

In this case, neither ray optics nor the Rayleigh approximation is appropriate.

Instead the electromagnetic theory of light has to be used. For optical trap-

ping of homogeneous and isotropic microspheres, one can use the generalized

Lorenz-Mie theory. The mathematical calculation of the generalized Lorenz-

Mie theory is quite complex. Here we will only introduce this method briefly,

and use the computational toolbox developed by T. A. Nieminen et al. [58] to

obtain some numerical results of the optical force on a microsphere.

The optical force on a microsphere comes from the momentum of pho-

tons (electromagnetic field) from a laser. It can be obtained by calculating

the change of the momentum of the electromagnetic field scattered by the

microsphere. A natural choice of coordinate system for calculating the light

scattering by a micropshere is spherical coordinates (r,θ,φ) centered on the

trapped microsphere. The incoming and outgoing fields can be expanded in

terms of incoming and outgoing vector spherical wavefunctions [58]:

Ein =
∞∑
i=1

i∑
j=−i

aijM
(2)
ij (kr) + bijN

(2)
ij (kr), (2.9)

Eout =
∞∑
i=1

i∑
j=−i

pijM
(1)
ij (kr) + qijN

(1)
ij (kr), (2.10)

where M
(1)
ij and N

(1)
ij are outward-propagating TE and TM multipole fields,

and M
(2)
ij and N

(2)
ij are the corresponding inward-propagating multipole fields.
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The optical force on the microsphere along the axial direction is [58]:

Fz =
2nmdP

cS

∞∑
i=1

i∑
j=−i

j

i(i+ 1)
Re(a∗ijbij − p∗ijqij)

− 1

i+ 1

[
i(i+ 2)(i− j + 1)(i+ j + 1)

(2i+ 1)(2i+ 3)

]1/2

×Re(aija
∗
i+1,j + bijb

∗
i+1,j − pijp∗i+1,j − qijq∗i+1,j), (2.11)

where

S =
∞∑
i=1

i∑
j=−i

(|aij|2 + |bij|2). (2.12)

Fig. 2.5 shows the calculated optical forces on a microsphere in water

from a laser beam focused by objective lenses with three different NA’s. The

wavelength of the laser is 1064 nm, the power of the laser is 100 mW, and

the diameter of the microsphere is 3 µm. The optical forces along the radial

direction are similar for all three NA’s (NA = 0.85, 1.0, 1.25) as shown in Fig.

2.5B. On the other hand, the optical forces along the axial direction are very

different for different NA’s. This is because the scattering force is only along

the axial direction. The microspheres will be trapped at positions where the

total optical force changes its sign. The scattering force affects the trapping

position (Fig. 2.5A).

Figure 2.6 shows the calculated optical forces on microspheres in air

exerted by a laser beam focused by an objective lens with NA = 0.95. The

maximum value of the NA for an objective lens in air is 1.0, while it is 1.33 for

an objective lens in water. Because of a larger relative refractive index in air

than in water, the scattering force on a microsphere in air is much larger than
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that in water. This makes Fig. 2.6 appear very different from Fig. 2.5. The

optical forces along the axial direction are asymmetric, because the scattering

forces are in the forward direction.

Figure 2.7 shows more calculation results of optical forces on micro-

spheres in air along the axial direction. For a D = 3.0 µm microsphere (Fig.

2.7A), the minimum axial force (Fmin
z ) is positive when NA = 0.85 or NA =
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Figure 2.5: Optical forces on a microsphere in water along axial (A) and
radial (B) directions of a laser beam focused by objective lenses with different
numerical apertures (NA’s). The power of the laser is 100 mW, and the
diameter of the microsphere is 3 µm.
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0.9, and is only slightly negative when NA = 0.95. Thus a laser beam focused

by an objective lens with NA less than 0.95 can not trap a 3-µm silica micro-

sphere. The situation becomes better for smaller microspheres. The minimum

axial force is negative for a 0.5-µm microsphere in a laser beam focused by

objective lenses with all three different NA’s (Fig. 2.7D).

The minimum axial forces on a microsphere in air as a function of the
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Figure 2.6: Optical forces on microspheres in air along axial (A) and radial
(B) directions of a laser beam focused by an objective lens with NA = 0.95.
The power of the laser is 100 mW. The diameter of the microsphere is 2.4 µm
for the dotted lines, 3.0 µm for the dashed lines, and 3.6 µm for the solid lines.

24



diameter of the microsphere are shown in Figure 2.8. The minimum forces

oscillate as the diameter of the microsphere changes. This is because of the

interference between the scattered light and un-scattered light. The oscilla-

tion period is about half the wavelength of the laser inside of the microsphere,

which is λ/(2np) = 364 nm. A microsphere can not be trapped if the minimum

force is positive. For NA = 0.85, only microspheres with certain diameters can

be trapped. This serves as a selection process and can be used for sorting mi-
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Figure 2.7: Optical forces on microspheres in air as a function of the diameter
of the microspheres and the NA of laser beams.
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crospheres. The size distribution of the trapped microspheres will be different

from the size distribution of the microspheres before trapping. For example,

if the microspheres prior trapping have a large diameter distribution ranging

from 0.7 µm to 1.7 µm, the diameter of microspheres trapped by a NA=0.85

laser will always be about 1.4 µm.
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Figure 2.8: Minimum optical forces on a microsphere in air along the axial
direction as a function of the diameter of the microspheres. The power of the
laser is 100 mW.
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Chapter 3

Optical trapping of glass microspheres in air

and vacuum

Optical levitation of dielectric particles in air by an upward-propagating

laser beam was first demonstrated by A. Ashkin and J. M. Dziedzic in 1971

[44]. A few years later, optical levitation of microspheres in vacuum at pres-

sures down to 10−6 torr was achieved [45]. An optical levitation trap is formed

by the balance between the scattering force from an upward laser and the grav-

itational force on a particle. The trapping frequency of an optical levitation

trap is usually very small (about 20 Hz) [45]. Optical trapping of a dielectric

particle in air with the gradient force of a single laser beam was first demon-

strated in 1997 [55], 11 years after the invention of the single beam gradient

force optical trap in water [50]. So far there is still no report on optical trap-

ping of a microsphere in vacuum by a single beam gradient force trap (without

the help of the gravitational force).

Optical trapping of a microsphere in air with the optical gradient force

is much more difficult than optical trapping of a microsphere in water [59].

First, the scattering force on a microsphere from a laser beam is much larger

in air than that in water, because of the larger relative refractive index of a

27



microsphere in air (m=1.46) than that in water (m=1.1). There will be no

stable optical trap if the scattering force is larger than the gradient force, as

discussed in detail in Chapter 2. Second, microspheres in air will fall rapidly

due to the influence of gravity. On the other hand, microspheres in water can

be suspended for a long time. In air, we have to launch a lot of microspheres

to air first and capture one of them by an optical trap passively. In water

however, we can move a microsphere to the focus of a laser beam (by moving

the water chamber with a translation stage) and trap it actively.

In this chapter we will first describe the method used to launch micro-

spheres into air; we will then show our results of trapping microspheres in air

and vacuum. Finally, we will describe the structure of our vacuum system.

3.1 Launching microspheres

The silica (SiO2) microspheres (bought from Bangs Laboratories, Inc.)

are initially stuck on a glass surface and with each each other by the van der

Waals’ (attractive) force. The minimum required force to pull a microsphere off

from a surface is called the “pull-off force”. The pull-off force between a glass

microsphere and a flat glass surface is predicted by the model of Derjaguin,

Muller, and Toporov (DMT) to be [60, 61]:

Fsphere−flat = 4πRγ, (3.1)
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where R is the radius of the microsphere and γ the effective solid surface

energy. The pull-off force between two identical glass microspheres is

Fsphere−sphere = 2πRγ, (3.2)

which is half of the pull-off force between a microsphere and a flat surface.

The pull-off force between two 1-µm-diameter silica microspheres is

measured to be about 88 nN [61], and the pull-off force between a 1-µm-

diameter silica microsphere and a flat silica surface is about 176 nN. The

gravitational force on a 1-µm-diameter silica microsphere is only about 10 fN,

and the maximum force from a typical optical tweezer is about 0.1 nN. Thus

the gravitational force and a typical optical force are too small to pull off a

microsphere from a glass surface. In our experiment, we launch microspheres

to air by ultrasonic vibration. The required acceleration to break the van der

Waals’ bond between a microsphere and a flat surface is:

a =
Fsphere−flat

M
=

4πRγ
4
3
πR3ρbead

∝ 1

R2
, (3.3)

where M is the mass of the microsphere and ρbead the density of the micro-

sphere. The smaller the microsphere, the larger acceleration is required to

break the van der Waals bond. For a 1-µm-diameter silica microsphere, the

required acceleration is about 1.8× 108 m/s2 !

Because the pull-off force between two microspheres is only half of the

pull-off force between a microsphere and a flat surface, the microspheres will

be separated from each other before being pulled off from a glass surface by
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ultrasonic vibration. Thus most of particles launched out by ultrasonic vibra-

tion are single microspheres, even if the microspheres are not mono-dispersed

initially. This is a very good property for us, because we want to trap only a

single microsphere at a time.

We launch single microspheres into air by a home-built ultrasonic trans-

ducer (Fig. 3.1A, also see Fig. 3.7 for a schematic of the ultrasonic generator).

The transducer is a sandwich structure with a piezoelectric ring and a glass

slide clamped together by two copper plates. The main component of the

transducer is the piezoelectric ceramic ring with an outer diameter of 38 mm,

an inner diameter of 13 mm and a thickness of 6.35 mm. It is made of lead

zirconate / lead titanate (PZT) ceramic (APC International Ltd. ). The two

microspheres

22 mm

A B
piezoelectric ring

Figure 3.1: (A) A home-built ultrasonic transducer for launching glass micro-
spheres into air. It has a sandwich structure consisting of a piezoelectric ring
and a glass slide between a pair of copper plates. The microspheres are held on
the surface of a coverslip by the van der Waals force. (B) Glass microspheres
distributed on the surface of a glass coverslip after ultrasonic vibration. The
diameter of the microspheres is 3.0 µm. The picture was taken under a 40x
objective lens.
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flat surfaces of the piezoelectric ring are coated by silver layers that serve as

two electrodes. One flat surface is in direct contact with a copper plate that

is grounded. The other flat surface is isolated from the other copper plate by

the glass slide whose thickness is about 1 mm. A vacuum compatible kapton

coated copper wire is soldered to this flat surface for applying a high voltage

to the piezoelectric ring.

A No. 2 coverslip (thickness: 0.19 - 0.25 mm) is attached to one end of

the glass slide by an ultrahigh-vacuum compatible epoxy (Epoxy Technology,

Inc. Model: EPO-TEK H77). The two-component epoxy becomes a hard

ceramic after mixing and curing at 120 ◦C for 2 hours. After curing, it can be

used continuously at temperatures as high as 250 ◦C without bond failure. The

epoxy ceramic is as hard as the glass slide so it will not reduce the mechanical

quality of the transducer. The purpose of using a coverslip attached to the glass

slide is to increase the vibration amplitude. The microspheres are distributed

on the coverslip at the side that is facing the piezo. We found that the two

sides of the coverslip behave very differently for launching microspheres. We

have tested several different types of ultrasonic transducers and find that this

piezo

glass slide

No.2 coverslipmicrospheres

Figure 3.2: A much simpler, but less efficient ultrasonic transducer for launch-
ing glass microspheres into air.
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transducer is the best one among those we have tested.

A much simpler, but less efficient ultrasonic transducer for launching

glass microspheres into air is shown in Fig. 3.2. A glass slide and a glass

coverslip are attached to the two sides of a piezoelectric ring with an epoxy

ceramic. The microspheres are applied on top of the coverslip. This ultrasonic

transducer needs 2-4 times more ultrasonic power to launch microspheres than

the transducer shown in Fig. 3.1A. However, this is not a problem for launching

microspheres that are larger than 3 µm. This transducer is compatible with

a commercial optical microscopes. The whole transducer can be mounted on

a microscope stage like a glass slide. The piezoelectric ring has a hole at the

center for optical access. We studied the launching process with this ultrasonic

transducer before switching to more complex transducers. Photos in Fig. 3.1B

and Fig. 3.3 were taken with this transducer under a commercial microscope.

Figure 3.3: Glass microspheres distributed on the surface of a glass coverslip
after ultrasonic vibration. The mean diameter of the microspheres is 3.0 µm.
The left photo was taken under a 4x objective lens, and the right photo was
taken under a 10x objective lens, of the region labeled ‘A’.
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We apply dry silica microspheres directly on the coverslip of an ultra-

sonic transducer. If the microspheres are supplied in aqueous solution, we

pipet a few drops of the aqueous solution onto a glass slide. The glass slide

is heated up to about 70 ◦C for several minutes to get rid of water. We then

scratch some microspheres from the dried glass slide and apply them to the

coverslip of an ultrasonic transducer. The microspheres should be dry when

they are applied to the coverslip. We find that microspheres deposited on

a coverslip directly from a solution (water or acetone) cannot be launched

[62, 63].

The required ultrasonic power for launching particles depends strongly

on the size of the particles. We can first remove large clusters of microspheres

by applying low ultrasonic power for a few seconds. When the ultrasonic power

is large enough, the bonds between different microspheres are broken and the

microspheres become mono-dispersed. During ultrasonic vibration, a standing

wave is formed on the coverslip. Some regions of the coverslip will have enough

vibration to launch microspheres while other regions of the coverslip do not

have enough vibration to break the van der Waals’ bonds.

Fig. 3.3 shows glass microspheres distributed on the surface of a cov-

erslip after ultrasonic vibration. The mean diameter of the microspheres is

3.0 µm. In the left photo of the figure, we can observe two distinct regions.

In region ‘A’, microspheres are mono-dispersed because the ultrasonic vibra-

tion is large enough to break the van der Waals’ bonds and redistribute the

microspheres. In region ‘B’, microspheres are not mono-dispersed because the
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vibration in this regime is too small.

Magnified photos of microspheres in region ‘A’ are shown in the right

photo of Fig. 3.3 and Fig. 3.1B. They show that most microspheres are

isolated from each other after ultrasonic vibration, thus most of the launched

particles are single microspheres. The launched spheres fall under gravity, and

eventually a sphere approaches the laser focus and is trapped. A coverslip

fully covered with a monolayer of microspheres can be used to launch and trap

single microspheres several hundred times before there are too few beads left.
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Figure 3.4: Impedance of a piezoelectric ceramic ring. The outer diameter
of the ring is 38 mm, the inner diameter is 13 mm, and the thickness is 6.35
mm. The material is a specially formulated, high purity lead zirconate / lead
titanate (PZT) ceramic (APC 844) from APC International Ltd. It is a hard
ceramic suitable for high power applications.
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Diameter Mass Ultrasonic power

4.7 µm 1.1× 10−13 kg 1.3 W
3.0 µm 2.8× 10−14 kg 4.2 W
1.9 µm 7.2× 10−15 kg 80 W
1.5 µm 3.5× 10−15 kg 133 W
1.0 µm 1.0× 10−15 kg Above 500 W

the piezo ring starts to break

Table 3.1: The masses of silica microspheres with different diameters and the
required ultrasonic powers for launching them. The driving frequency is about
340 kHz. The ultrasonic powers shown here are nominal values. The real
required powers also depend on the air pressure and number of microspheres
remaining on the coverslip.

Since a microsphere can be trapped for many hours, we only need to reapply

microspheres every few months.

Fig. 3.4 is the measured impedance of a free piezoelectric ceramic ring

driven by a sine wave. We have also measured the impedance of piezoelectric

rings mounted in the ultrasonic generators (Fig. 3.1, 3.2). The measured

impedances are almost the same as the one shown in Fig. 3.4. As shown in Fig.

3.4, the impedance has many resonance dips corresponding to different modes

of ultrasonic vibrations [64]. The circumference vibration mode (expansion of

the ring circumference) has a resonant frequency of 44 kHz and impedance of

about 17.9 Ω at resonance. The mechanical quality factor (Q) of this mode is

362. The thickness vibration mode has a resonant frequency of about 340 kHz

and impedance of about 12 Ω at resonance. The Q of this mode is 402. We

use this mode for launching microspheres to air.

In order to achieve high acceleration of the coverslip without breaking
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the ultrasonic transducer, we drive the transducer with a high power square

wave at 340 kHz for a short duration (about 10 ms). A square wave causes

much larger acceleration than a sine wave (the real shape of our driving wave

is very complex because the piezoelectric ring has a large capacitance and

inductance). The ultrasonic power required for launching 3.0-µm diameter

microspheres is about 4 W, and it is about 130 W for 1.5-µm diameter mi-

crospheres (Table 3.1). These are nominal values. The required power also

depends on air pressure and density of microspheres remaining on the slide.

The damage threshold of the piezoelectric ceramic ring and the coverslip is

several hundred watts. Thus we are only able to launch microspheres with

diameter larger than 1 µm in the present experiment.

We drive the ultrasonic transducer with a home-built high-power pulsed

generator (Fig. 3.5). Since the resonant impedance of the piezoelectric ring

is only about 12 Ω, we need to drive it with a large current to achieve high

Fuse 5 Ω

15 Ω8 mF
(450V)

8 mF
(450V)

Piezo
Control

   DC
(0-300V)

MOSFET

Figure 3.5: A simplified electronic circuit of our high-power pulsed generator.
The power MOSFET is IRFPS40N50L from Vishay Siliconix.
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ultrasonic power. The main components of the pulsed generator are two 8 mF

capacitors (Digi-key, Model: 338-1236-ND) to store energy, and a power MOS-

FET to generate pulses. The limit voltage of the capacitors is 450V. The ca-

pacitors are connected to an external power supply which charges them. We

change the output voltage of that external power supply to regulate the charge

on the capacitors.

The power MOSFET is IRFPS40N50L (Vishay Siliconix). The limit

voltage and current of the MOSFET are 500 V and 46 A, respectively. Its “on”

gate-source voltage is 10 V, and its “on” resistance is 0.087 Ω. This power

MOSFET has a very large input capacitance (8110 pF), so we cannot drive

it directly by a signal generator. We use a high-current high-speed MOSFET

Figure 3.6: A home-built high power pulsed generator. The two blue cylinders
are capacitors (8 mF, 450 V) for storing energy to generate the high power
electronic pulses. The diameter of each capacitor is 7.6 cm, and the height is
22 cm.
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driver (Microchip: TC4422) to drive it through the “Control” terminal in Fig.

3.5. The TC4422 has a peak output current of 9 A and can drive the power

MOSFET at the required speed (340 kHz). The TC4422 itself is driven by a

signal generator (Agilent 33250A) that can generate arbitrary waveforms from

DC to 80 MHz. The whole system is controlled by a digital output from a

computer. Since the Q of the piezoelectric ring is about 402, it is enough to

drive the system with pulses at 340 kHz for 10 ms (about 3400 total pulses)

to achieve maximum acceleration.

A photo of our high-power pulse generator is shown in Fig. 3.6.

3.2 Trapping microspheres

Once microspheres are launched into air, they will fall under the influ-

ence of gravity. We can capture a microsphere with an optical trap when the

microsphere passes near the optical trap. Because of air damping, a micro-

sphere that goes into an optical trap will lose its kinetic energy and becomes

trapped. After a microsphere is trapped, we can reduce the air pressure and

keep the microsphere trapped in vacuum.

Optical trapping of dielectric particles in air with a single beam gradient

force trap was first demonstrated in 1997 [55], requiring an objective lens with

NA = 0.95 . So far it is still not feasible to trap a microsphere in vacuum

with a single beam gradient force trap, due to the lack of vacuum-compatible

objective lenses with NA of about 0.95.
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The simplest way to trap a microsphere in air and vacuum is using an

optical levitation trap, which utilizes the gravitational force to assist trapping

[44]. However, the optical levitation trap is not very stable and its trapping

frequency is very small (on the order of 10 Hz). Thus it is not suitable for quan-

tum ground-state cooling. We eventually decided to use a counter-propagating

dual-beam gradient force trap to trap microspheres in air and vacuum. In the

following sections, we will describe our experimental apparatus and results of

trapping microspheres with an optical levitation trap and a dual-beam trap.

3.2.1 Optical levitation trap

The first optical trap that we used to trap microspheres in air was

an optical levitation trap. We used a diode pumped solid-state CW laser

(Coherent Inc. model: Verdi V10) for trapping. Its wavelength is 532 nm,

and its maximum power is 10 W. As shown in Fig. 3.7, a 532 nm laser beam

with size of about 1 cm is focused by an achromatic lens whose focal length is

35 mm. The focal point of the laser beam is inside a glass cell. The width of

the glass cell is about 1.0 cm and the height is about 5 cm. The thickness of

the walls of the glass cell is about 1 mm. The silica microspheres are initially

stuck on a coverslip above the glass cell. The gap between the coverslip and

the glass cell is very small ( ∼ 0.5 mm). Thus the coverslip and the glass cell

form an almost sealed chamber to protect the optical trap from air flows.

We use the ultrasonic transducer to launch the microspheres to air.

After launching, the microspheres fall down due to the gravitational force.
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The air will exert a frictional force on the microspheres, Fair = 6πηairR · v,

where ηair is the viscosity of air (see Table A.1 for the values) and v is the

velocity of the microsphere. The terminal speed of a microsphere is

v =
Mg

6πηairR
(3.4)

whereM is the mass of the microsphere, and g the gravitational acceleration on

the Earth. The settling speed is about 0.22 mm/s for a 1.9 µm diameter silica

bead, 0.57 mm/s for a 3.0 µm diameter silica bead, and 1.4 mm/s for a 4.7 µm

diameter silica bead. So it takes about 3 minutes for a 1.9 µm microsphere to

reach the optical trap after launching. Once a microsphere is near the focus of

the laser beam, it will be captured by the laser beam. In the vertical direction,

Laser beam

copper

piezo

post

copper glass slide No.2 coverslip

microspheres

f = 35 mm

Vpulse

Figure 3.7: A schematic of an optical levitation trap and an ultrasonic trans-
ducer for launching microspheres. The trap is formed by the balance between
the scattering force from an upward laser beam and the gravitational force on
the microsphere.
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the trap is formed by the balance between the scattering force from the upward

laser beam and the gravitational force on the microsphere; in the horizontal

direction, the trap is formed by the gradient force from the laser beam.

A photo of a 4.7-µm diameter microsphere levitated by a laser beam in

air is displayed in Fig. 3.8. We can change the laser power from 2 W to 0.4 W

while keeping the microsphere trapped. As expected, the vertical position of

a trapped microsphere changes when we change the laser power. When we

increase the laser power, the trapped microsphere moves up. Surprisingly, we

found that we could also change the vertical position of a trapped microsphere

Figure 3.8: A 4.7-µm diameter silica microsphere levitated in air inside a glass
cell by an upward laser beam. The bright dot near the center of the photo
is the trapped microsphere. It appears much larger than the real size of the
microsphere because of the overexposure of the camera.
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by driving the ultrasonic transducer. By driving with different ultrasonic fre-

quencies, we could drag the microsphere either up or down. This suggests

that the pressure force from the ultrasonic wave may be enough to levitate the

microsphere. We have not studied this phenomenon in detail.

The optical levitation trap is pretty simple. However, it has several

drawbacks. First, the laser beam must be upward. This is a problem because

thousands of microspheres must be launched into air for each microsphere

which is trapped. Those microspheres will fall to the bottom of the glass cell.

They will be in the path of the laser beam and make the optical trap unstable.

We can only launch and trap microspheres a few times before the bottom of

the glass cell becomes too dirty. Second, the optical levitation trap tends to

trap several microspheres at one time [65]. It is very difficult to trap only one

microsphere at a time, or control the number of the trapped microspheres.

Third, the trapping frequency of the optical levitation trap is too small. It is

usually on the order of 10 Hz [45]. This is very close to the mechanical vibration

frequencies of experimental instruments, and can cause heating of the motion

of a trapped microsphere. It is important that the trapping frequency be much

higher than the frequencies of seismic vibration in order to achieve significant

cooling.

3.2.2 Counter-propagating dual-beam optical trap

The ideal optical trap for our experiment will be a single beam gradient

force trap. However, it requires an objective lens with a NA of about 0.95,

42



which is currently not available for use in vacuum. A high NA objective lens

usually has a very short working distance (usually about 200 µm), which is

not good for us. We need the working distance to be long enough to allow

optical accesses for feedback cooling and cavity cooling.

On the other hand, a low NA lens usually has a long working distance

but can not focus a laser beam strongly enough to create a gradient force

trap. The scattering force from a weakly focused laser will be larger than

the gradient force. One way to overcome this problem is using two counter-

propagating laser beams (Fig. 3.9). The scattering forces from the two beams

cancel, and the gradient forces forms a stable 3D trap for the microsphere.

We built a simple dual-beam optical trap (Fig. 3.9) to test its suitability

for using in vacuum. As shown in Fig. 3.9, we use two achromatic lenes to

focus two laser beams that are propagating in the horizontal direction. The

Figure 3.9: A counter-propagating dual-beam optical trap in air.
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focal lengths of the two lenses are 35 mm and 30 mm, respectively. Because

the launched microspheres fall down to the bottom of the glass cell and do

not affect the light path, this dual-beam trap is much more stable than the

optical levitation trap. We can trap microspheres with diameters of 1.9 µm,

3.0 µm, and 4.7 µm in air repeatedly. We have also filled the glass cell with

water and trapped microspheres in water with this dual-beam trap. This is

remarkable because the walls of the glass cell and the water distort the laser

beam significantly. Dual-beam optical tweezers are also suitable for trapping

particles with high-refractive index in water [66].

The major disadvantage of a counter-propagating dual-beam trap is

that the two laser beams must be aligned correctly. Ideally, the two beams

should be exactly counter-propagating and focused at the same point. If the

two beams are misaligned from each other, the resulting trap will not be

a simple harmonic trap. The scattering force from the laser beams is not

Figure 3.10: A possible motion of a microsphere trapped in a misaligned dual-
beam optical tweezer.
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conservative, and can do work on the microsphere under certain conditions [67,

68]. When the two beams are misaligned (Fig. 3.10), the scattering force from

the left laser beam will push the microsphere to the right, and the scattering

force from the right beam will push the microsphere to the left. This results in

a cycled motion. In air (or water), the resulted complex motion can be stable

due to the air (or water) damping. We have observed this phenomenon in both

air and water. In vacuum, however, the mechanical energy of the microsphere

will keep increasing until the microsphere escapes from the trap eventually.

This problem can be minimized by aligning the two beams correctly.

As the dual-beam trap in air was much more stable than the optical

levitation trap in air, we decided to use the dual-beam trap for trapping mi-

crospheres in vacuum. Fig. 3.11 shows a simplified schematic of the first

generation of our counter-propagating dual-beam optical trap in vacuum. The

two 1064 nm laser beams for trapping are from a fiber laser whose maximum

output power is 10 W. The two laser beams are orthogonally polarized to

avoid interference. Their powers are controlled by two 80 MHz acousto-optic

modulators (AOM’s). The power of beam No. 1 can be changed from 3 mW

to 2 W, and the power of beam No. 2 can be changed from 3 mW to 3 W.

One beam is the +1 order of the output beams from the AOM, and the other

beam is the -1 order of the output beams from the AOM. Thus the frequencies

of the two laser beams differ by 160 MHz. The two laser beams are focused by

two identical aspheric lenses whose focal lengths are 3.1 mm. The two lenses

are inside a vacuum chamber.
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We collect the scattered light from a trapped microsphere with a lens

from the side to monitor the microsphere by a camera. We also use a weak

532 nm laser beam (about 2 mW) and a quadrant detector to monitor the

motion of the microsphere with high resolution. The quadrant detector splits

the 532nm beam into four parts. The difference between the left (top) two

parts and the right (bottom) two parts provides the position information of

the microsphere in the horizontal (vertical) direction, and the summation of

Vacuum
Chamber

s p

AOM AOM

Beam No. 1 Beam No. 2

532 nm

1064 nm 1064 nm

Quadrant
Detector

Camera10x 
objective

scattered light

Figure 3.11: A simplified schematic of the first generation of our counter-
propagating dual-beam optical trap for trapping microspheres in vacuum, and
a detection system to monitor the position of a trapped microsphere. The two
1064 nm laser beams are orthogonally polarized and have different frequencies
to avoid interference.
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the four parts provides the position information of the microsphere along the

axial direction [69]. Thus the quadrant detector can monitor the position of a

trapped microsphere in 3D.

The setup inside our vacuum chamber is shown in Fig. 3.12. The

ultrasonic transducer (Fig. 3.1A) is mounted vertically. The coverslip with

microspheres is above the optical trap by about 5 cm. A pair of aspheric

lenses (Newport, model: KGA330-B) with focal length of 3.1 mm are fixed on

stainless steel structures with vacuum compatible epoxy. The stainless steel

structures are mounted on an aluminum holder by stainless steel screws. The

separation between the front surfaces of the two lenses is about 3.5 mm.

Figure 3.12: Top view of the setup inside the vacuum chamber. A pair of
aspheric lenses with focal length of 3.1 mm, and a piezoelectric ultrasonic
transducer are inside the vacuum chamber.
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We align the laser beams in three steps. First, we send a parallel

1064 nm laser beam through the two lenses. One of the two lenses is fixed. We

change the position of the other lens to make sure that the output beam after

the two lenses is still parallel. Second, we align the directions and divergences

of all three laser beams (two 1064nm beams and one 532nm beam) to make

sure that all beams are on top of each other. Third, we align all laser beams

with a pinhole to make sure that the foci of the three beams are at the same

point (Fig. 3.13).

The setup for aligning a laser beam and measuring its waist with a

pinhole is shown in Fig. 3.13. This setup is good for aligning the trapping

beam No. 1 and the detection beam. We move the photodiode and the lens in

front of it to the other side of the vacuum chamber for aligning the trapping

beam No. 2. The diameter of the pinhole aperture is 1.0±0.5µm. The pinhole

is mounted on a 3-axis translation stage. The translation stage is controlled by

Photo 
diode

Vacuum chamber

3-axis stage

Pinhole

Figure 3.13: Setup for aligning a laser beam and measuring its waist with a
pinhole.
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3 manual differential actuators (Thorlabs: DM10) with graduation of 0.5 µm.

In the vertical direction, we also have a piezoelectric actuator to fine tune the

pinhole. We first align the pinhole to the focus of the trapping beam No. 1

(by aligning the pinhole to maximize the output power of the beam from the

pinhole). The pinhole from National Aperture is easier to align than the high

energy pinhole from Newport, because the pinhole from National Aperture is

located at the center of a small (about 200 µm) countersink, which can be

seen by the naked eye and acts as a guide for alignment. Once the pinhole is

aligned to the focus of the trapping beam No. 1, we fine tune the directions and

divergences of the detection beam and the trapping beam No. 2 to maximize

their output powers from the pinhole. With this method, we can align the

focuses of all three laser beams to the same point with an accuracy of about

0.5 µm.
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Figure 3.14: An example of measured beam profiles of the beam No. 1 in the
horizontal and vertical directions. The red curves are Gaussian functions.
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Figure 3.15: A 4.7-µm diameter microsphere trapped inside a vacuum cham-
ber by a counter-propagating dual-beam optical tweezer. The wavelength of
the trapping beams is 1064 nm. A weak green (532 nm) laser is used for
illumination.
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After alignment, we can scan the pinhole to measure the profiles of the

laser beams. Fig. 3.14 shows an example of measured profiles of the beam No.

1 along the horizontal and vertical directions. The measured beam profiles

agree with Gaussian functions very well. The measured waists of the beam

are 2.01 µm in the horizontal direction and 2.12 µm in the vertical direction.

The real waists of the beam should be smaller than these values because of

the finite size of the pinhole aperture.

A 4.7-µm diameter microsphere trapped inside a vacuum chamber by

a counter-propagating dual-beam optical tweezer is displayed in Fig. 3.15.

The trapping laser is infrared. A weak green laser (about 2 mW) is used for

illumination. The bright spot near the center of the photos is the trapped

microsphere. It usually take us about 10 minutes to trap one microsphere.

Once a microsphere is trapped, the system is very stable. We have tested it

by trapping a 4.7 µm bead in air continuously for 46 hours, during which time

Figure 3.16: Left: A single optically trapped 3.0-µm diameter bead; Right:
multiple (2 or maybe 3) optically trapped 3.0-µm beads. The air pressure is
752 torr. The powers of the two counter-propagating beams are 119 mW and
100 mW.
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the power of both laser beams was varied between 5 mW and 2.0 W to test

the stability of the trap. The trap becomes less stable in vacuum. The lowest

pressure at which we have trapped a bead without requiring extra stabilization

is about 0.1 Pa.

We find that the waists of the two counter-propagating laser beams

determine how many microspheres will be trapped by the dual-beam optical

tweezer at one time. When the two beams have the same beam waist, we

usually trap more than one microsphere (usually two microspheres) at a time.

This is because the two counter-propagating laser beams form a double-well

potential when their foci are not exactly on top of each other. When the waist

of one of the laser beams is larger than the other (for example, 3.0 µm for one

beam, and 2.0 µm for the other beam), we usually trap only one microsphere

at a time. The left photo in Fig. 3.16 shows a single 3.0-µm diameter bead

trapped by the dual-beam optical tweezer, and the right photo in Fig. 3.16

shows multiple (2 or maybe 3) 3.0-µm beads trapped at the same time.

3.3 Vacuum system

The science chamber (the vacuum chamber in which we trap micro-

spheres) and most of optic components are mounted on a 3 × 3 foot bread-

board. The breadboard is supported by elastomers (Newport, Model: New-

Damp) on an air-floated optical table to minimize the mechanical vibration.

The peak-to-peak vibration amplitude of the lab floor is about 30 µm due to

seismic vibrations. The peak-to-peak relative vibration amplitude of optical
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elements on an optical table is about 0.1 µm (in 10 s) when the table is sitting

on rigid legs directly. This is reduced to about 10 nm when the optical table

is supported by pneumatic isolators (air-floated). Thus it is essential to use

pneumatic isolators to reduce vibrations.

Fig. 3.17 shows a schematic of our vacuum system. The science cham-

ber on the breadboard is connected to a small ion pump on the optical table

by a flexible stainless steel bellows to isolate mechanical vibrations. The ion

pump is connected to roughing pumps on the lab floor by a bellows. We

initially use a sorption pump for rough pumping to avoid mechanical vibra-

tions. The sorption pump reduces air pressure by absorbing molecules within

a porous material (molecular sieve) which is cooled by liquid nitrogen. There

 science
chamber

sorption pumps

mechanical 
    pump

ion pump

TC gauge

air or 
nitrogen

cold cathode gaugecombination
gauge

bellow

bellow

bellow

Figure 3.17: A schematic of the vacuum system.
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are no mechanical movable parts in the sorption pump. Thus it has almost no

mechanical vibration. The lowest pressure that we can obtain with a single

sorption pump is about 3 mtorr (1 mtorr = 0.133 Pa). Using two sorption

pumps to pump the vacuum chamber sequentially, we can reduce the pressure

from 760 torr to about 10−5 torr in 1 hour.

The sorption pump needs to be heated up to about 200 ◦C to drive

off absorbed water before using and requires liquid nitrogen to cool it during

use, thus it is not convenient to use the sorption pump. We later switched to

using a mechanical roughing pump in place of the sorption pump. There are 4

bellows separated by 3 rigid structures between the mechanical pump and the

science chamber. They isolates the mechanical vibration sufficiently. There is

no observed effect on the motion of a trapped microsphere when we turn on

and off the mechanical roughing pump. The mechanical roughing pump can

reduce the air pressure from 760 torr (1 atm) to 1 mtorr in a few minutes.

The ion pump can reduce the air pressure from 1 mtorr to about

10−6 torr in 1 hour without bakeout. At first, the ion pump tended to kick

out the trapped microsphere immediately after the pump was turned on. This

was caused by momentary electrical arcing (accompanied by a sudden pressure

burst) in the ion pump [70]. We later moved the pump further away, and this

problem disappeared after we used the ion pump for a few months. With bake-

out, one should be able to achieve pressures much lower than 10−6 torr with the

ion pump. The ion pump is not ideal for using with pressures above 10−6 torr.

Since we are able to isolate the mechanical vibration, a turbomolecular pump
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will be a better choice in future.

We have a cold cathode gauge and a combination gauge near the sci-

ence chamber to measure the air pressure inside the science chamber. The

cold cathode gauge (Kurt J. Lesker Company, model: KJLC 943 ) can mea-

sure the pressure between 10−10 torr and 10−2 torr. The combination gauge

(Kurt J. Lesker Company, model: KJLC 910) can measure the pressure be-

tween 10−5 torr and 1500 torr. The combination gauge has a Piezo sensor

and a Pirani sensor. The Pirani sensor is gas-type sensitive as it measures

pressure based on the thermal conductivity of the gas. The Piezo sensor mea-

sures the absolute pressure independent of the gas type. The gauge reads the

Piezo sensor when the pressure is above 15 torr, reads the Pirani sensor when

the pressure is below 5 torr, and reads both sensors when the pressure is in

between. The accuracy of the measurement is 1 % of the reading when the

pressure is in the range of 10 - 1000 torr, and is about 10 % of the reading

for lower pressures. We also have a thermocouple gauge (TC gauge) near the

sorption pump to monitor the pressure in the rough pumping region.

There are several manual angle valves between the science chamber and

the roughing pumps that can be use to isolate different parts of the system.

The vacuum chamber is also connected to a pure nitrogen (or air) gas tube

by a gas shut off valve (Kurt J. Lesker Company, model: Nupro BK, SS-

4BK). With these valves and vacuum pumps, we can control the pressure in

the science chamber from 10−6 torr to 1500 torr easily. We can achieve much

lower pressure with bakeout. The ability to control air pressure allows us to
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study the Brownian motion of a trapped microsphere at different pressures,

and cool the motion of a trapped microsphere in vacuum.
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Chapter 4

Measuring the instantaneous velocity of a

Brownian particle in air

Brownian motion of particles affects many branches of science. The

Brownian motion was discovered by R. Brown in 1827 [20], and explained

correctly by A. Einstein in 1905 [23]. The trajectories of a Brownian particle

are commonly considered to be not differentiable. This is accompanied by

the fact that the instantaneous velocity of a Brownian particle has not been

measured successfully before. Here we will present our measurement of the

instantaneous velocity of a Brownian particle in air.

In this chapter, we will first introduce some theories about the Brown-

ian motion of free particles and trapped microspheres. This will be followed by

a description of our home-built detection system that can study the Brownian

motion of an optically trapped microsphere in air with an ultrahigh resolu-

tion. We will show some measured power spectra of the motion of trapped

microspheres at different air pressures. Finally, we will show the results of our

measurement of the instantaneous velocity of a Brownian particle in air. Our

results provide direct verification of the Maxwell-Boltzmann velocity distribu-

tion, and the equipartition theorem for a Brownian particle.
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4.1 Theories of Brownian motion

4.1.1 A free particle

Einstein’s theory of Brownian motion predicts that

〈[∆x(t)]2〉 ≡ 〈(x(t)− (x(0))2〉 = 2Dt, (4.1)

where 〈[∆x(t)]2〉 is the mean-square displacement (MSD) of a free Brownian

particle in one dimension during time t , and D is the diffusion constant [23].

The diffusion constant can be calculated by D = kBT/γ, where T is the

temperature, and γ = 6πηR is the Stokes friction coefficient for a sphere with

radius R. Here η is the viscosity of the fluid. The mean velocity measured

over an interval of time t is v̄ ≡
√
〈[∆x(t)]2〉/t =

√
2D/
√
t. This diverges as t

approaches 0, and therefore does not represent the real velocity of the particle

[24, 25].

The equation 〈[∆x(t)]2〉 = 2Dt, however, is only valid when t� τp, i.e.,

in the diffusive regime. Here τp = M/γ is the momentum relaxation time of a

particle with mass M . At very short time scales (t � τp), the dynamics of a

particle is dominated by its inertia, and the motion is ballistic. The dynamics

of a Brownian particle with mass M over all time scales can be described by

a Langevin equation[71–73]:

M
d2x

dt2
+ γ

dx

dt
= Ftherm(t), (4.2)

where

Ftherm(t) = (2kBTγ)1/2ζ(t) (4.3)
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is the Brownian stochastic force. ζ(t) is a normalized white-noise process.

Hence for all t and t′,

〈ζ(t)〉 = 0 , and 〈ζ(t)ζ(t′)〉 = δ(t− t′). (4.4)

Let v(t) = dx/dt, and divide the Eq. 4.2 by M , we obtain

dv(t)

dt
= −Γ0v(t) + A(t), (4.5)

where Γ0 = γ/M = 1/τp is the damping coefficient and A(t) = Ftherm(t)/M is

the fluctuating acceleration. The velocity and position of the particle at time

t = 0 are v(0) = v0 and x(0) = x0, respectively. Then its velocity at time t is

[73]:

v(t) = v0e
−Γ0t + e−Γ0t

∫ t

0

eΓ0 sA(s)ds. (4.6)

Taking the mean over an ensemble of particles, which have started at t = 0

with the same velocity v0, and using Eq. 4.4 we get:

〈v(t)〉v0 = v0e
−Γ0t, (4.7)

〈v(t)v(0)〉v0 = v2
0e
−Γ0t. (4.8)

Taking a second average over v0 and using the energy equipartition theorem

〈Mv2
0/2〉 = kBT/2, we obtain the velocity autocorrelation function:

〈v(t)v(0)〉 =
kBT

M
e−Γ0t. (4.9)

By integrating Eq. 4.6 again, we get the position of the particle [73]:

x(t) = x0 +
v0

Γ0

(1− e−Γ0 t) +

∫ t

0

e−Γ0 s1ds1

∫ s1

0

eΓ0 s2A(s2)ds2. (4.10)
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Taking the average, we get:

〈∆x(t)〉x0 = 〈x(t)− x(0)〉x0 =
v0

Γ0

(1− e−Γ0 t). (4.11)

The MSD for a Brownian particle at thermal equilibrium with the air is [73]:

〈[∆x(t)]2〉 =
2kBT

MΓ2
0

(Γ0 t− 1 + e−Γ0 t). (4.12)

At long time scales, the MSD is the same as the prediction of Einstein’s theory:

〈[∆x(t)]2〉 = 2Dt for t� τp. (4.13)

At very short time scales, the MSD is

〈[∆x(t)]2〉 =
kBT

M
t2 for t� τp. (4.14)

Although the above equations are derived for an ensemble of identical particles,

the ergodic theorem dictates that they are also valid for measurements of a

single particle taken over a long time.

At very short time scales, the motion is ballistic and its instantaneous

velocity can be measured as v = ∆x(t)/t, when t � τp [73]. The ballistic

Brownian motion is different from a simple ballistic motion. For a simple

ballistic motion with velocity u, we have ∆x(t) = ut and [∆x(t)]2 = u2t2. The

velocity u can be any value and usually has no relation with the temperature

of the environment.

The 1D Maxwell-Boltzmann distribution of the velocity of a particle in

thermal equilibrium is

fv(vi) =

√
M

2πkBT
exp

(
−Mv2

i

2kBT

)
, (4.15)

where vi is the velocity of the particle along any direction i.
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4.1.2 A trapped microsphere

For small displacements, the effect of optical tweezers on the micro-

sphere’s motion can be approximated by that of a harmonic potential. The

equation of the Brownian motion of a microsphere in a harmonic trap is:

d2x

dt2
+ Γ0

dx

dt
+ Ω2x = Λζ(t), (4.16)

where Ω =
√
κ/m is the natural angular frequency of the trapped microsphere

when there is no damping, and Λ = (2kBTΓ0/M)1/2. The cyclic frequency of

the damped oscillator is ω1 =
√

Ω2 − Γ2
0/4. The system is underdamped when

ω1 is real (Ω > Γ/2), critically damped when ω1 = 0, and overdamped when

ω1 is imaginary (Ω < Γ/2).

4.1.2.1 Displacement and velocity

The MSD of a Brownian particle in an underdamped harmonic trap in

air can be obtained by solving Eq. 4.16 [74]:

〈[∆x(t)]2〉 =
2kBT

MΩ2

[
1− e−t/2τp

(
cosω1t+

sinω1t

2ω1τp

)]
. (4.17)

The position autocorrelation function is related to the MSD by:

〈[∆x(t)]2〉 = 2〈x2〉 − 2〈x(t)x(0)〉, (4.18)

where 〈x2〉 = kBT/(MΩ2). The rms amplitude is xrms =
√
kBT/(MΩ2). The

normalized position autocorrelation function (PACF) of the particle is [74]:

〈x(t)x(0)〉
〈x2〉

= e−t/2τp
(

cosω1t+
sinω1t

2ω1τp

)
. (4.19)
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The normalized velocity autocorrelation function (VACF) of the particle is

[74]:

〈v(t)v(0)〉
〈v2〉

= e−t/2τp
(

cosω1t−
sinω1t

2ω1τp

)
. (4.20)

Both the position autocorrelation function and the velocity autocorrelation

function oscillate for an underdamped system.

For an overdamped system, ω1 is imaginary. We can rewrite the above
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Figure 4.1: The rms amplitude (xrms) of a microsphere in a harmonic trap
with trapping frequency Ω/(2π) at thermal equilibrium with the environment.
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formula for the normalized position and velocity autocorrelations as [75]:

〈x(t)x(0)〉
〈x2〉

=
1

2|ω1|τ+

e−t/τ− − 1

2|ω1|τ−
e−t/τ+ , (4.21)

〈v(t)v(0)〉
< v2 >

= − 1

2|ω1|τ−
e−t/τ− +

1

2|ω1|τ+

e−t/τ+ , (4.22)

where

τ± =
2τp

1± 2τp|ω1|
. (4.23)

Thus the correlations in an overdamped system decrease as a double-exponential

with characteristic times τ±. A numerical simulation of the dynamics of har-

monic oscillator with different damping can be found in Ref. [75].

4.1.2.2 Power spectrum analysis

Similar to the optical spectrum of an atom, the power spectrum of the

Brownian motion of a trapped microsphere contains a lot of information about

the system. The power spectral density (PSD) of a variable is the squared

modulus of its Fourier transform [74–76].

The Fourier transformations of x(t) and ζ(t) are:

x̃k =

∫ Trec/2

−Trec/2
eiωktx(t)dt, (4.24)

ζ̃k =

∫ Trec/2

−Trec/2
eiωktζ(t)dt, (4.25)

where ωk = 2πk/Trec, k is an integer, and Trec is the time duration of the

recorded positions of a trapped microsphere.
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Fourier transforming Eq. 4.16 gives

−ω2
kx̃k − iωkΓ0x̃k + Ω2x̃k = Λζ̃k. (4.26)

Thus

x̃k =
Λζ̃k

Ω2 − ω2
k − iωkΓ0

. (4.27)

From Eq. 4.4 we have < x̃k >= 0 and < ζ̃kζ̃l >= Trecδkl. The PSD of an
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Figure 4.2: Calculated spectra (fS(ω)) for systems with different damping.
The plot is displayed in linear scales.
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experimentally recorded x(t) is

Sreck ≡ |x̃k|2/Trec =
|ζ̃k|2

Trec

2kBT

MΩ2

Ω2Γ0

(Ω2 − ω2
k)

2 + ω2
kΓ

2
0

. (4.28)

The expected values of the PSD is

S(ω) ≡< Sreck >=
2kBT

MΩ2

Ω2Γ0

(Ω2 − ω2)2 + ω2Γ2
0

. (4.29)

The real measured PSD of a recorded x(t) is Sreck . It has a |ζ̃k|2/Trec

term, which is a random number. Thus an experimental PSD will appear
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Figure 4.3: Calculated spectra (fS(ω)) for systems with different damping.
The plot is displayed in log-log scales.
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noisy. Averaging many measured Sreck will result in a spectrum close to the

expected spectrum S(ω). Another way to reduce the noise in a measured spec-

trum is “blocking”[76]. Here, a “block” of consecutive data points (ωk1 ,S
rec
k1

)...

(ωk2 ,S
rec
k2

) is replaced with a single new “data point” (ωk,Sreck ) which are the

block averages.

Let us define a new function to show the shape of the spectrum

fS(ω) ≡ Ω2Γ0

(Ω2 − ω2)2 + ω2Γ2
0

. (4.30)

We have ∫ ∞
0

fS(ω)dω =
π

2
, (4.31)

thus ∫ ∞
0

S(ω)dω = π
kBT

MΩ2
= π < x2 > . (4.32)

So the integral of the PSD is proportional to the square of the rms amplitude.

Some calculated spectra fS(ω) for systems with different damping are shown

in Fig. 4.2 (in linear scales) and Fig. 4.3 (in log-log scales). As dramatically

displayed in the linear scale plot (Fig. 4.2), the spectra have large values at low

frequencies for an overdamped system, and have large values at the resonant

frequency for an underdamped systems.

4.2 A fast detection system

In order to measure the instantaneous velocity of the Brownian mo-

tion of a trapped microsphere in air, we implemented an ultrahigh resolution

detection system.
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Our first generation of the dual-beam optical trap in vacuum (Fig.

3.11) used a 10 W fiber laser at 1064 nm for trapping, and a weak 532 nm

laser for detection. We used a quadrant detector to monitor the position of

a trapped microsphere in 3D. That system was not ideal for our experiment.

The peak-to-peak intensity noise (in the range of 10 kHz - 1 MHz) of the fiber

laser is about 4 %, which is very big. The 532 nm laser has much less noise

than the fiber laser. However, the quadrant detector has significant electronic

noise and its bandwidth is only about 1 MHz.

s-polarized

Vacuum
Chamber

p-polarized

s-polarized

Detector

Figure 4.4: This simplified schematic shows our counter-propagating dual-
beam optical tweezers, and a novel detection system that has 75 MHz band-
width and low noise. The s-polarized beam is reflected by a polarizing beam
splitter cube after it passes through a trapped bead inside a vacuum chamber.
Then, for detection, it is split by a mirror with a sharp edge. The p-polarized
beam passes through the cube.

67



In the second-generation experiment with the dual-beam optical trap in

vacuum, we use an ultra-stable NPRO laser (Model: 126-1063-700, Lightwave

Electronics (now JDSU)) to replace the fiber laser. Its rms intensity noise is

< 0.05 % over the range from 10 Hz to 2 MHz, and is shot noise limited above

10 MHz. It is a single frequency laser with a linewidth < 5 kHz/ms and a

coherence length longer than 1000 m. A detailed characterization of this type

of laser can be found in Ref. [77]. These values are much better than those of

the 532 nm laser. So we use this laser for both trapping and detection. This is

achieved by using a polarizing beam splitter cube to reflect one of the trapping

beams for detection (Fig. 4.4).

Our lab has previously developed a fast position-sensitive laser beam

detector for studying the Brownian motion of particles in water at fast time

scales [28]. The previous detector used a fiber-optic bundle that spatially splits

the incident beam, and a fast balanced photodetector to measure the difference

between the two halves of the beam. Here we simplify the detection system

by using a mirror with a sharp edge (BBD05-E03, Thorlabs) to replace the

fiber-optic bundle for splitting the beam. The sharp edge of a mirror is much

smoother than the boundary between the two halves of a fiber-optic bundle.

Thus a mirror with a sharp edge is not only much simpler, but also has less

noise than a fiber bundle for splitting the laser beam [28].

We use a balanced detector (PDB120C, photodiode diameter 0.3 mm,

Thorlabs) with a bandwidth of 75 MHz for detection. The detector is sen-

sitive to light with wavelengths in the range of 800-1700 nm. It has a high
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Figure 4.5: The optical circuit of the counter-propagating dual-beam optical
trap and the detection system.
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transimpedance gain of 1.8 × 105 V/A. The detector measures the difference

between the two halves of the beam, which is proportional to the particle ex-

cursion. The intensity noise of the laser is contained in both halves and is thus

canceled in the measurement. This detection system enables us to monitor the

real-time position of a trapped microsphere with Ångstrom spatial resolution

and microsecond temporal resolution.

The major optical circuit of our second generation dual-beam trap and

the detection system is shown in Fig. 4.5. The powers of the two trapping

beams and the probe beam are controlled by AOM’s. We use photodiodes

to monitor the powers of the beams. With measured powers, we use analog

proportional-integral-derivative (PID) circuits to stabilize the laser powers.

This eliminates the drifts of the laser powers. The size of the beam No. 1

before entering the vacuum chamber is twice of the size of the beam No. 2.

This ensures that the optical tweezer traps only one microsphere at a time. The

green laser at 532 nm is helpful for aligning the laser beams and monitoring

microspheres before they are trapped. Once a microsphere is trapped, we

can see it on a VCR monitor connected to the CCD camera. The quadrant

detector and the balanced detector give high resolution signals of the motion

of a trapped microsphere. For studying the Brownian motion, we turned off

the 532 nm laser, and use only the balanced detector to monitor the position

of a trapped microsphere with ultrahigh precision.
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4.3 Measured power spectra

Figure 4.6 shows a waveform and a spectrum of a 3.0-µm diameter bead

trapped by a dual-beam optical tweezer at 749 torr. The powers of the two

trapping beams are 10.7 mW and 14.1 mW. The data were taken by a DAQ

card (PCI 6133, National Instruments) controlled by a Labview program. The

waveform and spectrum shown here were saved from the Labview program

directly. The sampling rate was 2 MHz, and the time duration was 2 s. So

the waveform has 4 million data points. As we can see, the waveform appears

as a white noise and has very little information.

The power spectrum of the waveform, on the other, is much more in-

structive. The power spectrum in Fig. 4.6 is in log-log scales. Comparing it

with the spectra in Fig. 4.3, we can find that its trapping frequency (Ω/(2π))

is about 3 kHz, and the linewidth (Γ0/(2π)) is close to the trapping frequency.

At high frequencies near 1 MHz, the shape of the measured spectrum is very

different from the shape of the expected spectrum as shown in Fig. 4.3. This

is because at frequencies near 1 MHz, the real signal due to the Brownian

motion of the trapped microsphere is smaller than the spectrum of noise (laser

noise, electronic noises of the detector and the DAQ card). So the displayed

spectrum near 1 MHz is the spectrum of noise rather than the real signal.

Figure 4.7 shows a waveform and spectrum of a 3.0-µm diameter bead

trapped by a dual-beam optical tweezer at 20.6 torr. Other conditions are

the same as those in Fig. 4.6. Because of less damping, a peak appears at

the trapping frequency. The spectrum at high frequencies (around 100 kHz) is

71



also smaller than those in Fig. 4.6, in agreement of the theoretical predications

(Fig. 4.3).

Sometimes we can trap more than one microsphere at the same time

(Fig. 3.16). Fig. 4.8 shows a waveform and spectrum of multiple (2 or 3)

microspheres trapped at 752 torr. The powers of the two laser beams are 119

mW and 100 mW. The spectrum has new peaks at frequencies around 300 kHz.

Figure 4.6: A waveform (Top) and a spectrum (Bottom) of a 3.0-µm bead
trapped at 749 torr. The powers of the two trapping beams are 10.7 mW and
14.1 mW.
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These peaks are not presented when there is only one microsphere. They are

due to the relative motion between the trapped microspheres. The frequencies

of relative motion are much larger than the frequency of the center-of-mass

motion (about 1.5 kHz) in this example.

The spectra of the relative motion between multiple microspheres de-

pend strongly on the details of the optical trap, such as the alignment of the

Figure 4.7: A waveform (Top) and a spectrum (Bottom) of a 3.0-µm bead
trapped at 20.6 torr. The powers of the two trapping beams are 10.7 mW and
14.1 mW.
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laser beams and the size of the microspheres. Fig. 4.9 shows the spectra of two

4.7-µm beads trapped at 9.78 torr with different laser power. The frequency

of the highest peak is about 70 kHz when the powers of the two trapping

beams are 0.7 W and 1.0 W, and is about 150 kHz when the powers of the

two trapping beams are 2.0 W and 2.5 W. The data in Fig. 4.9 were taken in

our first generation dual-beam trap with a probe beam (Fig. 3.11). The red

Figure 4.8: A waveform and spectrum of multiple (2 or maybe 3) 3.0-µm beads
trapped at 752 torr. The powers of the two trapping beams are 119 mW and
100 mW.
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curves are for the motion in the horizontal direction, and the blue curves are

for the motion in the vertical direction. Under certain conditions, we can even

observe such narrow peaks at 1 atm. It seams that the scattering forces from

the trapping laser pump energy to the motion and amplify the motion.

Figure 4.9: Spectra of two 4.7-µm beads trapped at 9.78 torr with different
laser powers. The powers of the two trapping beams are 0.7 W and 1.0 W for
the top figure, and 2.0 W and 2.5 W for the bottom figure.

75



4.4 Measurement of the instantaneous velocity of a Brow-
nian particle in air

A simplified scheme of our setup for measuring the instantaneous ve-

locity of Brownian particle in air is shown in Fig. 4.4, and a more detailed

optical circuit is shown in Fig. 4.5. The trap is formed inside a vacuum cham-

ber by two counter-propagating laser beams focused to the same point by two

identical aspheric lenses with focal length of 3.1 mm and numerical aperture

of 0.68. The two 1064 nm laser beams are orthogonally polarized, and their

frequencies differ by 160 MHz to avoid interference.

The two laser beams are aligned with the help of a pinhole aperture

whose diameter is 1.0 ± 0.5 µm. Because the pinhole has a finite thickness

(13 µm), it is difficult to align the foci of the two beams to the same point in

the axial direction. We intentionally make the waist of one beam larger than

the other to make this alignment less critical. The measured waists of the two

beams are 2.2 µm and 3.0 µm in the horizontal direction. The real waists

should be smaller than these values due to the finite size of the pinhole. Also

note that the waists of the two beams are measured at different axial positions

separated by the thickness of the pinhole. Once a bead is trapped, we keep

the power of one beam constant, and tune the power of the other beam to

maximize the trapping frequency.

When the bead deviates from the center of the trap, it deflects both

trapping beams. We monitor the position of the bead by measuring the de-

flection of one of the beams, which is split by a mirror with a sharp edge.
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The difference between the two halves is measured by a fast balanced detec-

tor. This simple, yet novel, detection scheme has a bandwidth of 75 MHz and

ultra-low noise [28, 78].

For the data included in this section, unless otherwise stated, the powers

of the two laser beams are 10.7 mW and 14.1 mW, the diameter of the bead is

3 µm, the temperature of the system is 297 K, and the air pressure is 99.8 kPa

(749 torr) or 2.75 kPa (20.6 torr). The trapping is very stable, and the heating

due to laser absorption is negligible at these conditions. Examples of power

spectra of a 3 µm microsphere trapped at these conditions have been shown

in Fig. 4.6 and Fig. 4.7.

The position signal of a trapped bead is recorded at a sampling rate of

2 MHz. Because of the limited spatial resolution, we are not able to obtain

accurate instantaneous velocities of a bead at this rate. To reduce the noise, we

average every 10 successive position measurements, and use these averages to

calculate instantaneous velocities with time resolution of 5 µs. Although this

method reduces the temporal resolution by a factor of 10, it greatly increases

the signal-to-noise ratio if both the trapping period (2π/ω0) and momentum

relaxation time are much larger than 5 µs. These conditions are satisfied

here since the trapping period is about 320 µs, τp = 48 µs at 99.8 kPa, and

τp = 147 µs at 2.75 kPa.

Figure 4.10 shows typical samples of position and velocity traces of a

trapped bead. The position traces of the bead at these two pressures appear

very similar. On the other hand, the velocity traces are clearly different. The

77



instantaneous velocity of the bead at 99.8 kPa changes more frequently than

that at 2.75 kPa, because the momentum relaxation time is shorter at higher

pressure.

Figure 4.11 shows the mean square displacements of a 3 µm silica

bead as a function of time. The measured MSD’s fit excellently with Eq.

4.17 over three decades of time for both pressures. The calibration factor

α = position/voltage of the detection system is the only fitting parameter
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Figure 4.10: One-dimensional trajectories of a 3 µm diameter silica bead
trapped in air at 99.8 kPa (A) and at 2.75 kPa (B). The instantaneous ve-
locities of the bead corresponding to these trajectories are shown in (C) and
(D).
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Figure 4.11: (A) The mean square displacements of a 3 µm silica bead trapped
in air at 99.8 kPa (red square) and 2.75 kPa (black circle). They are calculated
from 40 million position measurements for each pressure. The “noise” signal
(blue triangle) is recorded when there is no particle in the optical trap. The
solid lines are the theoretical predictions of Eq. 4.17. They fit with the
measurements excellently. The prediction of Einstein’s theory of free Brownian
motion in the diffusive regime is shown in dashed lines for comparison. (B)
MSD’s at short time scales are shown in detail. The dash-dot line indicates
ballistic Brownian motion of a free particle.

79



of Eq. 4.17 for each pressure. M is calculated from the size and density of

the microsphere. τp and Ω are obtained from the measured normalized ve-

locity autocorrelation function (VACF). The two α’s obtained for these two

pressures differ by 10.8%. This is because the vacuum chamber is distorted

slightly when the pressure is decreased from 99.8 kPa to 2.75 kPa. One may

avoid this problem in future by coupling the trapping laser into the vacuum

chamber with an optical fiber and a teflon feedthrough [79]. The measured

MSD’s are completely different from those predicted by Einstein’s theory of

Brownian motion in a diffusive regime. The slopes of measured MSD curves

at short time scales are double of those of the MSD curves of diffusive Brow-

nian motion in the log-log plot (Fig. 4.11A). This is because the MSD is

proportional to t2 for ballistic Brownian motion, and it is proportional to t

for diffusive Brownian motion. Another important feature is that the MSD

curves are independent of air pressure at short time scales, as is predicted by

〈[∆x(t)]2〉 = (kBT/M) t2 for ballistic Brownian motion, whereas the MSD in

the diffusive regime does depend on the air pressure. At long time scales, the

MSD saturates at a constant value because of the optical trap. Fig. 4.11B

displays more detail of the Brownian motion at short time scales. It clearly

demonstrates that we have observed ballistic Brownian motion.

The distributions of the measured instantaneous velocities are displayed

in Fig. 4.12. They agree very well with the Maxwell-Boltzmann distribution.

The measured rms velocities are vrms = 0.422 mm/s at 99.8 kPa and vrms =

0.425 mm/s at 2.75 kPa. These are very close to the prediction of the energy
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equipartition theorem, vrms =
√
kBT/M , which is 0.429 mm/s. As expected,

the velocity distribution is independent of pressure. The rms value of the noise

signal is 0.021 mm/s, which means we have 1.0 Å spatial resolution in 5 µs.

This measurement noise is about 4.8% of the rms velocity. Fig. 4.12 represents

direct verification of the Maxwell-Boltzmann distribution of velocities and the

equipartition theorem of energy for Brownian motion. For a Brownian particle
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Figure 4.12: The distribution of the measured instantaneous velocities of a 3
µm silica bead. The statistics at each pressure are calculated from 4 million
instantaneous velocities. The solid lines are Maxwell-Boltzmann distributions.
We obtained vrms = 0.422 mm/s at 99.8 kPa (red square) and vrms = 0.425
mm/s at 2.75 kPa (black circle) from the measurements. The rms value of
the noise (blue triangle) is 0.021 mm/s, which means we have 1.0 Å spatial
resolution in 5 µs.
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in liquid, the inertial effects of the liquid become important. The measured rms

velocity of the particle will be vrms =
√
kBT/M∗ in the ballistic regime, where

the effective mass M∗ is the sum of the mass of the particle and half the mass

of the displaced fluid [80]. In order to measure the true instantaneous velocity

in liquid as predicted by the equipartition theorem, the temporal resolution

must be much shorter than the time scale of acoustic damping, which is less

than 1 ns for a 1 µm particle in liquid [80].

Figure 4.13 shows the normalized VACF of the bead at two different

pressures. They fit with Eq. 4.20 nicely. At 2.75 kPa, one can clearly see
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Figure 4.13: The normalized velocity autocorrelation functions of the 3 µm
bead at 99.8 kPa (red square) and at 2.75 kPa (black circle) from the mea-
surements. The solid lines are fittings with Eq. 4.20.
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the oscillations due to the optical trap. Eq. 4.20 is independent of the cal-

ibration factor α of the detection system. The only independent variable is

time t, which we can measure with high precision. Thus the normalized VACF

provides an accurate method to measure τp and ω0. Fitting the normalized

VACF with Eq. 4.20, we obtained τp = 48.5± 0.1 µs, ω0 = 2π · (3064± 4) Hz

at 99.8 kPa, and τp = 147.3 ± 0.1 µs, ω0 = 2π · (3168 ± 0.5) Hz at 2.75 kPa.

The trapping frequency changed by 3% due to the distortion of the vacuum

chamber at different pressures. We can also calculate the diameter of the sil-

ica bead from the τp value at 99.8 kPa [81]. The obtained diameter for this

microsphere is 2.79 µm. This is within the uncertainty range given by the

supplier of 3.0 µm silica beads. We use this value in the calculation of MSD

and normalized VACF.

For a particle at a certain pressure and temperature, τp should be in-

dependent of the trapping frequency. We verified this by changing the total

power of the two laser beams from 25 mW to 220mW. The measured τp of a

microsphere trapped at 19.6 torr and 749 torr as a function of the total laser

power is shown in Fig. 4.14. Each data point has a few percent of uncer-

tainty because we use a smaller data sets to calculate the τp than those used

in the previous figures. Although the data points for each pressure are not

perfectly on a line, it is clear that the τp’s are independent of the laser power

within the experimental uncertainty. Fitting the data for each pressure with

a straight line, we obtain τp = [151.3 + 0.00168P/(1mW)]µs at 19.6 torr, and

τp = [53.74 + 0.00275P/(1mW)]µs at 749 torr for this microsphere, where P
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is the total power of the two trapping beams. Thus τp changed less than 1.3%

for both pressures when the total laser power is changed from 0 to 200 mW.

This proves that the fitting method is very accurate, and the heating due to

the laser beams (which would change the viscosity and affect τp) is negligible

at these pressures.

In conclusion, we have observed the Brownian motion of a single particle

in the ballistic regime, and measured its instantaneous velocity successfully for

the first time. The ability to measure the instantaneous velocity of a Brownian

particle will be invaluable in studying nonequilibrium statistical mechanics
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Figure 4.14: Measured momentum relaxation times (τp) of a microsphere
trapped at 19.6 torr and 749 torr as a function of the total power of the
two trapping beams.
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[34, 35] and can be used to cool Brownian motion by applying a feedback force

with a direction opposite to the velocity [82, 83].

In vacuum, our optically trapped particle promises to be an ideal sys-

tem for investigating quantum effects in a mechanical system [45, 78], due

to its near-perfect isolation from the thermal environment. Combining feed-

back cooling and cavity cooling, we expect to cool the Brownian motion of

a bead starting from room temperature to the quantum regime, as predicted

by recent theoretical calculations [17, 18]. We have directly verified the en-

ergy equipartition theorem of Brownian motion. However, we also expect to

observe deviation from this theorem when the bead is cooled to the quantum

regime. The kinetic energy of the bead will not approach zero even at 0 K

because of its zero-point energy. The rotational energy of the bead should also

become quantized.

An optically trapped microsphere can also be used to probe the prop-

erties of superfluid helium. Liquid helium has many special properties. Its

density is only 0.129 g/cm3, and its refractive index is only 1.024, which is

close to that of air (Table A.1). Thus optical trapping of microspheres in liq-

uid helium is similar to optical trapping of microspheres in air. A microsphere

in superfluid helium will do Brownian motion due to collisions between the

microsphere and quasiparticles, such as phonons and rotons [84–86]. Thus

we can probe the properties of superfluid helium by studying the Brownian

motion of an optically trapped microsphere in it.
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Chapter 5

Towards measurement of the instantaneous

velocity of a Brownian particle in water

5.1 Motivation

In the previous chapter, we presented our measurement of the instan-

taneous velocity of a Brownian particle in air. A more interesting experiment

would be to measure the instantaneous velocity of a Brownian particle in wa-

ter (or other liquid). Brownian motion was first discovered in water, and it

affects many aspects of the life of cells in water. More importantly, Brownian

motion in water may reveal new physics that has not been explored before.

It is clear that the velocity distribution of a Brownian particle in air

satisfies the Maxwell-Boltzmann distribution. Since the Maxwell-Boltzmann

distribution is derived for an ideal gas (or a weakly interacting system), it is not

clear whether it holds equally well in water. In water, a moving microsphere

drags water along with it as it moves. If the moving microsphere is suddenly

stopped, the water flow caused by the previous motion of the microsphere will

drag the microsphere to keep it moving. Thus the presence of water adds a

memory effect to the motion of the bead. The water will also add an effective

mass to the microsphere, since accelerating the microsphere requires a force
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both on the microsphere and the water which it displaces as it moves.

5.2 Hydrodynamic theories of Brownian motion

5.2.1 A free particle in water

The effective mass of the microsphere in water is the sum of the mass

of the microsphere and half of the mass of the displaced water [80, 87]:

M∗ = Mp +
1

2
Mf , (5.1)

where Mp = (4/3)πR3ρp is the mass of the microsphere, Mf = (4/3)πR3ρf is

the mass of displaced water, ρp is the density of the microsphere, and ρf is the

density of water. The energy equipartition theorem needs to be modified to:

1

2
M∗〈v2〉 =

1

2
kBT (5.2)

where v is the velocity of the microsphere in one dimension. Thus the rms ve-

locity is vrms =
√
kBT/M∗. Because of the memory effect of water, the veloc-

ity autocorrelation function (VACF) of a free particle will not be 〈v(t)v(0)〉 =

kBT
M
e−t/τp as in air, but [88–91]

〈v(t)v(0)〉
kBT/M∗ =

α+e
α2
+terfc(α+

√
t)− α−eα

2
−terfc(α−

√
t)

α+ − α−
, (5.3)

where

α± =
3

2
· 3± (5− 36τp/τf )

1/2

τ
1/2
f (1 + 9τp/τf )

. (5.4)

τp = Mp/(6πηR) = 2
9
R2ρp/η is the momentum relaxation time of the particle

due to its own inertia, τf = R2ρf/η characterizes the effect of water. Here η

is the viscosity of water and R is the radius of the microsphere.
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At long time scales, Eq. 5.3 approaches

〈v(t)v(0)〉
kBT/M∗ ∝

1

t3/2
for t→∞. (5.5)

At short time scales, Eq. 5.3 approaches

〈v(t)v(0)〉
kBT/M∗ = exp

(
−b
√
t/τf

)
for t→ 0, (5.6)

where

b =
18√

π(1 + 2ρp/ρf )
.

For a silica microsphere in water, b = 2.03. The normalized VACF approaches

1 at short time scales as
√
t, rather than t. This is very different from the case

in air.

The mean square displacement of a free microsphere in water is [26, 92]:

〈[∆x(t)]2〉free = 2Dt

[
1− 2

√
1

π

τf
t

+
8

9

τf
t
− τp

t
+ Ξ(

τp
τf
,
t

τf
)

]
, (5.7)

where D = kBT/(6πηR) is the diffusion coefficient. Ξ( τp
τf
, t
τf

) is a correction

term:

Ξ(
τp
τf
,
t

τf
) =

3

t(5τf − 36τp)1/2

(
1

α3
+

eα
2
+terfc(α+

√
t)− 1

α3
−
eα

2
−terfc(α−

√
t)

)
.

(5.8)

The behavior of the MSD at the long time limit is:

〈[∆x(t)]2〉 = 2Dt for t� τp. (5.9)

Recently, the velocity autocorrelation function of a Brownian particle

in water was measured successfully for 〈v(t)v(0)〉
〈v2〉 < 0.35 [29, 91]. However, the
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instantaneous velocity of a Brownian particle in water will be much more dif-

ficult to measure than the velocity autocorrelation function, and has not been

measured to date. This is because the velocity autocorrelation function is a

statistical average, which is insensitive to the high-frequency noise in the mea-

surement. In our experiment, we hope that we can measure the instantaneous

velocity of a Brownian particle in water for the first time, with particular

interest to test the modified Maxwell-Boltzmann velocity distribution:

fv(vi) =

√
M∗

2πkBT
exp

(
−M

∗v2
i

2kBT

)
. (5.10)

5.2.2 An optically trapped microsphere in water

The optical trap provides a harmonic force Ftrap = −kx on the micro-

sphere when the displacement of the microsphere is small. k = MpΩ
2 where

Ω is the natural angular frequency of the trap. Clercx and Schram [90] gave

analytical solutions for the MSD and VACF of a trapped Brownian particle in

a liquid, and Berg-Sørensen and Flyvbjerg [76] gave a solution for the power

spectrum density (PSD) of a trapped Brownian particle in a liquid. This sec-

tion introduces their analytical solutions and provides some numerical results

to visualize those solutions. These numerical results will serve as a guide for

our experiment.

Because the velocity of the Brownian motion of a microsphere in liquid

is much smaller than the speed of sound in the liquid, we can describe the

fluid motion by the linearized incompressible time-dependent Navier-Stokes

equation. The Langevin equation of the motion of a trapped microsphere in a
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liquid is [90]:

M∗ẍ(t) = −kx(t)− 6πηRẋ(t) (5.11)

−6R2√πρfη
∫ t

−∞
(t− t′)−1/2ẍ(t′)dt′ + Ftherm(t).

The first term after the equal sign of Eq. 5.11 is the harmonic force, the

second term is the ordinary Stokes’s friction, the third term is a memory term

associated with the hydrodynamic retardation effects of the liquid, and the

last term is the Brownian stochastic force.

The mean-square displacement of a trapped microsphere in a liquid is

[90, 92]

〈[∆x(t)]2〉trap =
2kBT

k
+

2kBT

M∗ [
ez

2
1t erfc(z1

√
t)

z1(z1 − z2)(z1 − z3)(z1 − z4)
(5.12)

+
ez

2
2t erfc(z2

√
t)

z2(z2 − z1)(z2 − z3)(z2 − z4)

+
ez

2
3t erfc(z3

√
t)

z3(z3 − z1)(z3 − z2)(z3 − z4)

+
ez

2
4t erfc(z4

√
t)

z4(z4 − z1)(z4 − z2)(z4 − z3)
]

The coefficients z1, z2, z3, and z4 are the four roots of the equation [92](
τp +

1

9
τf

)
z4 −√τfz3 + z2 +

1

τk
= 0, (5.13)

where τk = 6πηR/k. For t→∞, Eq. 5.12 approaches

〈[∆x(∞)]2〉trap =
2kBT

k
.
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Diameter k τp τf τk τc
2
9
R2ρp/η R2ρf/η 6πηR/k R/c

(µm) (µN/m) (µs) (µs) (µs) (ns)

1.0 100 0.11 0.25 94 0.34
3.0 33.3 1.0 2.2 851 1.01
4.7 21.3 2.45 5.51 2083 1.58
10 10 11.1 25.0 9443 3.4

Table 5.1: Characteristic time scales of an optically trapped silica microsphere
in water at 20 ◦C. The second row shows the definitions of τp,f,k,c. The second
column (k) is the spring constant of the optical trap. It is assumed to be
inversely proportional to the diameter of the microsphere when the laser power
is constant.

The normalized VACF of a trapped microsphere in a liquid is [90, 92]

A(t) =
〈v(t)v(0)〉
kBT/M∗ =

z3
1 e

z21t erfc(z1

√
t)

(z1 − z2)(z1 − z3)(z1 − z4)
(5.14)

+
z3

2 e
z22t erfc(z2

√
t)

(z2 − z1)(z2 − z3)(z2 − z4)

+
z3

3 e
z23t erfc(z3

√
t)

(z3 − z1)(z3 − z2)(z3 − z4)

+
z3

4 e
z24t erfc(z4

√
t)

(z4 − z1)(z4 − z2)(z4 − z3)
.

The power spectral density is [76, 92]:

S(f) =
D

2π2f 2

1 +
√
f/2φf

(φk/f −
√
f/2φf − f/φp − f/9φf )2 + (1 +

√
f/2φf )2

,

(5.15)

where f is the observation frequency, φk = 1/(2πτk) is the corner frequency of

the power spectrum due to the trap, and φp,f = 1/(2πτp,f ). For f → 0, Eq.

5.15 approaches

S(0) =
2kBTγ

k2
,
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where γ = 6πηR.

At t → 0, Eq. 5.14 predicts 〈v(0)v(0)〉 = kBT/M
∗, which is different

from the energy equipartition theorem 〈v(0)v(0)〉 = kBT/Mp. This conflict is

caused by the assumption in Eq. 5.11 that the liquid is incompressible. For

t < tc, we need to consider the liquid to be compressible. Here tc = R/c is

the time required for a sound wave to travel a sphere radius, where c is the

speed of sound in the liquid. The normalized velocity autocorrelation function
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Figure 5.1: Mean square displacement of an optically trapped silica micro-
sphere in water at 20 ◦C. Parameters are the same as those in Table 5.1.
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at t ∼ tc is [80]:

A(t) =
〈v(t)v(0)〉
kBT/M∗ = 1 +

Mf

2Mp

[
1

2
− iM∗

(4M2
p −M2

f )1/2

]
e−ix1t/tc (5.16)

+
Mf

2Mp

[
1

2
+

iM∗

(4M2
p −M2

f )1/2

]
e−ix2t/tc ,

where

x1 = −iM
∗

Mp

+ [1−
M2

f

4M2
p

]1/2, (5.17)

x2 = −iM
∗

Mp

− [1−
M2

f

4M2
p

]1/2. (5.18)
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Figure 5.2: Power spectra of an optically trapped silica microsphere in water
at 20 ◦C. Parameters are the same as those in Table 5.1.

93



At very short time scales t � tc, Eq. 5.16 approaches A(0) = 1 +
Mf

2Mp
. The

short time limit A(0) 6= 1 because the normalization factor is kBT/M
∗, rather

than kBT/Mp.

The MSD’s of microspheres with different diameters in water are shown

in Fig. 5.1, and the corresponding power spectra are shown in Fig. 5.2.

Fig. 5.3 displays the normalized velocity autocorrelation function (A(t)) of an

optically trapped silica microsphere in water at 20 ◦C. Fig. 5.3(A) displays

the VACF’s with a linear-log scale to cover a large range of time scales, and

Fig. 5.3(B) displays the VACF’s in a log-linear scale to show the details

at short time scales. The thin solid lines at short time scales (t < 10−8 s)

are calculated from Eq. 5.16, which includes the compressibility effects of

water. The thick solid lines are calculated from Eq. 5.14, which treats the

water as an incompressible fluid. The dashed lines are exponential decays with

τp = 1.0µs, corresponding to a 3.0 µm microsphere. As clearly shown in Fig.

5.3, the VACF of a microsphere in water is very different from exponential

decay because of the hydrodynamic memory effects of water.

The thin solid lines are expected to be correct for t ∼ tc, and the thick

sold lines are expected to be correct for t � tc. The intermediate regime

tc < t < 100tc is still poorly understood. It is suspicious that the thick solid

curves approaches 1 so slowly at the short time limit. The normalized VACF

a 4.7 µm diameter silica microsphere in water at 20 ◦C and 60 ◦C is shown in

linear-linear scales in Fig. 5.4. The VACF follows exp(−b
√
t/τf ) at the short

time limit, rather than exp(−t/τp). A recent experiment has measured the
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Figure 5.3: Normalized velocity autocorrelation function of an optically
trapped silica microsphere in water at 20 ◦C. Parameters are the same as
those in Table 5.1. (A) covers large range of time scales, and (B) shows the
details at short time scales. The thin solid lines (t < 10−8 s) are calculated
from Eq. 5.16, and the thick solid lines are calculated from Eq. 5.14. The
dashed lines are exponential decays with τp = 1.0µs, corresponding to a 3.0
µm microsphere.
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VACF of a Brownian particle in water at VACF< 0.35 [29]. A measurement

of the VACF between 1 and 0.35 is required in order to better understand the

hydrodynamic effects and compressibility effects of water on Brownian motion

[93].
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Figure 5.4: Normalized velocity autocorrelation function of a 4.7 µm diameter
silica microsphere in water at 20 ◦C and 60 ◦C. The solid lines are exact re-
sults of the hydrodynamic theory of Brownian motion in a liquid (Eq. 5.14).
The dashed lines are exp(−b

√
t/τf ), which is the short time limit of the hy-

drodynamic theory (Eq. 5.6). The dashed dot line is an exponential decay
exp(−t/τp).
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5.3 Requirements for measuring the instantaneous ve-
locity

In order to measure the instantaneous velocity of a Brownian particle in

water, the temporal resolution of the detection system must be much shorter

than the momentum relaxation time of the particle, and the spatial resolution

of the detection system must be much smaller than the displacement of the

particle during the measurement time.

Because of the inertia of the particle and the water, the effective mo-

mentum relaxation time is

τ ∗p =
M∗

6πηR
. (5.19)

In order to resolve the instantaneous velocity with 10% uncertainty, we need

the temporal resolution to be at least ∆t = τ ∗p /10. The average displacement of

the microsphere during ∆t is τ ∗p vrms/10. Thus the required spatial resolution

is ∆x = τ ∗p vrms/100. The sensitivity of a detector is usually characterized

by its noise spectral density sx. The spectral density of the detector should

satisfy sx < ∆x
√

∆t at the required frequency 1/∆t in order to measure the

instantaneous velocity.

Table 5.2 shows the minimum required resolution for measuring the in-

stantaneous velocity of a Brownian particle in water. To measure the instan-

taneous velocity of a 1 µm diameter microsphere in water at 20 ◦C, the noise

spectral density of the detection system should be smaller than 0.28 fm/Hz1/2

around 71 MHz. The requirement is relaxed to 0.94 fm/Hz1/2 around 34 MHz

if the temperature of the water is increased to 60 ◦C. This is mainly because
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20◦C 60◦C
Diameter ∆t ∆x sx ∆t ∆x sx

(µm) (µs) (pm) (fm/Hz1/2) (µs) (pm) (fm/Hz1/2)

1.0 0.014 2.4 0.28 0.029 5.5 0.94
1.9 0.049 3.3 0.74 0.10 7.6 2.5
3.0 0.12 4.2 1.5 0.26 9.6 4.9
4.7 0.30 5.2 2.9 0.65 12 9.6
10 1.4 7.6 8.9 2.9 17 30

Table 5.2: Minimum required detection resolution for measuring the instanta-
neous velocity of a Brownian particle in water at 20 ◦C and 60 ◦C.

the viscosity of the water decreases when the temperature increases (Table

A.1). Thus it is easier to measure the instantaneous velocity at 60 ◦C than at

20 ◦C. t∗p is bigger for a larger particle, so the requirements for measuring the

instantaneous velocity of a large microsphere is less demanding than that of a

small microsphere. However, the sensitivity of the detection system varies for

microspheres of different size. Thus there is an optimal size for measuring the

instantaneous velocity.

The resolution of particle tracking with an optical tweezer is fundamen-

tally limited by the shot noise of the laser. Because the size of the microsphere

is on the same order as the wavelength of the laser, an accurate calculation

of the shot noise limited sensitivity is very complex. Here we only discuss a

simple estimation. The shot noise limited noise spectral density is estimated

to be [78]

sx ≈ 5× 10−16G

(
R

1µm

)(
100mW

P

)1/2(
1µm

λ

)1/2

m/
√

Hz, (5.20)

where G is a geometrical factor that depends on R/λ, R/w, and the precise
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details of the Mie scattering by the sphere. λ is the wavelength of the laser,

w is the waist of the laser beam, and P is the power of the laser.

If the wavelength of the laser is 1 µm and the power is 100 mW, we

need G < 1.1 to measure the instantaneous velocity of a 1 µm diameter mi-

crosphere at 20 ◦C. We need G < 2.5 to measure the velocity of a 4.7 µm

diameter microsphere at the same conditions, and if the temperature is 60 ◦C

the requirement is relaxed to G < 8.2. This means that our detection system

must be very close to the shot noise limit in order to measure the instantaneous

velocity of a Brownian particle in water.

The discussions in the previous paragraphs assume that the normalized

VACF is exp(−t/τ ∗p ) at short time scales. However, the normalized VACF is

most likely exp(−b
√
t/τf ) at short time scales. This will require a temporal

resolution of ∆t = τf/(100 b2) in order to measure the instantaneous velocity.

Our optical tweezer will not be able to measure the instantaneous velocity of

a Brownian particle in water if the normalized VACF follows exp(−b
√
t/τf )

even at such short time scales. On the other hand, the normalized VACF is

much easier to measure than the instantaneous velocity. We should be able to

measure the normalized VACF between 0.35 and 1 even if we are not able to

measure the instantaneous velocity.

In the presence of detection noise, the measured position of the micro-

sphere can be expressed as

xmsr(t) = xp(t) + xn(t), (5.21)
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where xp(t) is the real position of the microsphere, and xn(t) is the noise of

the detection system. The mean square displacement (MSD) of the measured

positions is [91]:

MSDmsr(t) = 〈[xmsr(t0 + t)− xmsr(t0)]2〉 (5.22)

= 〈[xp(t0 + t)− xp(t0)]2〉+ 〈[xn(t0 + t)− xn(t0)]2〉

+2〈[xp(t0 + t)− xp(t0)] · [xn(t0 + t)− xn(t0)]〉

= MSDp(t) +MSDn(t).

The derivation assumes no correlation between the real position of the micro-

sphere and the detection noise. In this case, the real MSD of the microsphere

(MSDp(t)) can be obtained by subtracting the noise MSDn(t) from the mea-

sured MSDmsr(t), as is done in Ref. [29]. In reality, there may be a small

correlation between the motion of the bead and the detection noise. Thus it

is important to minimize the noise MSDn(t) in the measurement.

The measured velocity of the microsphere is

vmsr(t) =
xmsr(t+ δt

2
)− xmsr(t− δt

2
)

δt
(5.23)

=
xp(t+ δt

2
)− xp(t− δt

2
)

δt
+
xn(t+ δt

2
)− xn(t− δt

2
)

δt

= vp(t) + vn(t),

where ∆t � τp. Because the measured velocity contains a noise signal vn(t),

the smallest possible δt is not the optimal value for measuring the velocity. The

DAQ card creates noise when it converts an analog signal to a digital signal

due to the finite number of bits. The minimum value of xn(t+ δt
2

)−xn(t− δt
2

)
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is limited by the DAQ card, thus vn(t) may be larger than the real velocity of

the microsphere vp(t) if δt is too small.

The measured velocity represents the real instantaneous velocity of the

microsphere if vn(t) is negligible. This requires 〈v2
msr〉 � 〈v2

n〉. One can check

whether this condition is satisfied by comparing the signal when a microsphere

is trapped in the optical tweezer and when there is not microsphere in the

optical tweezer. The relation between 〈v2
msr〉 and 〈v2

n〉 can also be obtained

from the measured MSD:

〈v2
msr〉 = 〈

[xmsr(t+ δt
2

)− xmsr(t− δt
2

)]2

δt2
〉 (5.24)

=
MSDmsr(δt)

δt2

=
MSDp(δt)

δt2
+
MSDn(δt)

δt2

= 〈v2
p〉+ 〈v2

n〉.

Thus 〈v2
msr〉 � 〈v2

n〉 is equivalent to MSDmsr(δt)�MSDn(δt).

The measured velocity autocorrelation function is

〈vmsr(t+ t0)vmsr(t0)〉 = 〈vp(t+ t0)vp(t0)〉+ 〈vn(t+ t0)vn(t0)〉 (5.25)

Since the noise of the detection system has almost no correlation, the last term

of this equation can be neglected. Thus

〈vmsr(t+ t0)vmsr(t0)〉 .= 〈vn(t+ t0)vn(t0)〉. (5.26)

So the measurement of the velocity autocorrelation function is not sensitive to

the noise of the detection system. On the other hand, the measurement of the

instantaneous velocity is very sensitive to the noise of the detection system.
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If the detection system samples the position of the microsphere every dt

that is much shorter than the required temporal resolution ∆t, we can reduce

the noise in the measured velocity by using successively averaged positions to

calculate the velocity. Let δt = N dt (N � τp/dt), then

xavr(t) =
1

N

N∑
j=1

xmsr(t+ jdt− (N + 1)
dt

2
). (5.27)

The measured velocity becomes

vmsr(t) =
xavr(t+ δt

2
)− xavr(t− δt

2
)

δt
. (5.28)

Then the velocity noise is

vn(t) =
1

N2dt
[
N∑
j=1

xn(t+ jdt− (N + 1)
dt

2
+
δt

2
) (5.29)

−
N∑
j=1

xn(t+ jdt− (N + 1)
dt

2
− δt

2
)].

On average, the rms amplitude of vn(t) is N
√
N times smaller than that of

[xn(t+ dt/2)− xn(t− dt/2)]/dt if the position noise xn(t) is white noise.

5.4 A simple optical tweezer in water

Figure 5.5 shows a simplified schematic of an optical tweezer for trap-

ping a microsphere in water and studying its Brownian motion with ultrahigh

resolution. The trapping laser passes through a λ/2 waveplate and a polar-

izing beam splitter cube (PBS1), which control the power of the laser. The

laser is then reflected by a dichroic mirror (DM2) and enters an objective lens
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(OB2) to form an optical tweezer inside a sample chamber at the focus of the

objective lens. We use another objective lens (OB1) to collect the laser for

detection. The sample chamber and the objective OB1 are both mounted on 3-

axis translation stages. The motion of a trapped microsphere causes deflection

of the trapping laser. Thus we can monitor the position of the microsphere

Detector

DAQ
LED

Trapping
Laser

1064 nm

 Camera

PBS1λ/2

Filter

3-axis
stage

3-axis
stage  OB1

 OB2

DM2

DM1

PBS2λ/2

Beam
Dump

Beam
Dump

 MX

Figure 5.5: Simplified schematic of an optical setup for trapping microspheres
in water. PBS1 and PBS2 are polarizing beam splitter cubes, DM1 and DM2
are dichroic mirrors, OB1 and OB2 are 100x oil-immersion objective lenses,
MX is a mirror with a sharp edge that splits the beam into two parts horizon-
tally, and DAQ is a data acquisition card that is installed in a computer.
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by measuring the deflection of the laser beam. After passing through another

λ/2 waveplate and beam splitter (PBS2) to reduce its power, the laser is split

by a mirror with a sharp edge. The difference between the two halves is mea-

sured by a fast balanced detector [28, 33]. The output signal of the detector

is proportional to the position of a trapped microsphere, and is collected by

a fast data acquisition card (DAQ). We use a white LED for illumination to

take bright field images by a camera for real-time imaging of the microspheres.

The filter before the camera blocks the scattered light from the trapping laser.

The trapping laser is an ultrastable NPRO laser (Model: 126-1063-

700, Lightwave Electronics (now JDSU)) with a wavelength of 1064 nm. The

maximum power is about 800 mW. Its rms intensity noise is < 0.05 % over the

range from 10 Hz to 2 MHz, and is shot noise limited above 10 MHz. PBS1

is a high-energy laser-line polarizing cube beamsplitter from CVI Melles Griot

(PBSO-1064-50, CW damage threshold: 1 MW/cm2). Both OB1 and OB2

are 100x oil-immersion objective lenses with NA =1.25. They are infinite-

conjuncted objective lenses, and are designed for working with cover glasses

with thickness of 0.17 mm. OB1 and OB2 are bought from the Microscope

Store, LLC (www.microscope.com). Their working distance is about 0.1 mm.

Thus the total distance between the front surfaces of the two objective lenses

is about 0.54 mm. Two oil layers, two cover glasses, two epoxy layers and one

water layer must be made to fit within this gap. We later use an objective

lens with a longer working distance to make the alignment easier.

The sample chamber consists of three layers of coverslips bonded to-
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gether by epoxy. The two outer layers are No. 0 coverslips (thickness: 0.08 -

0.13 mm), the center layer is a 1 cm2 square of water layer surrounded by four

small pieces of No. 1 coverslips (thickness: 0.13 - 0.16 mm). The coverslips

are bought from Ted Pella, Inc. The microspheres are contained in the water

A B

C D

Figure 5.6: A 4.7-µm diameter silica microsphere (marked by an arrow) is
trapped in water with an optical tweezer. The trapped microsphere does not
move while other three microspheres are shifted when we move the glass slide
perpendicular to the laser beam (A and B) or along the propagation direction
of the laser beam (B, C and D). In C and D, the images of un-trapped
microspheres become blurred as they are moved out of focus, while the images
of the trapped microsphere are always sharp as it is trapped at the focus.
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layer. We use vacuum grease to seal the sample chamber. The sealed sample

can be used for several hours. Otherwise the water will evaporate in about 10

minutes without sealing. The silica microspheres used for trapping are bought

from Bangs Laboratories, Inc.

The mirror with a sharp edge (MX) is a D-Shaped mirror bought from

Thorlabs, Inc. The detector is a balanced InGaAs photo detector. The two

photodiodes are matched to cancel the common noise of the laser. The band-

width of the detector is 100 MHz, enabling us to study the Brownian motion

of a trapped microsphere at fast time scales. The DAQ card (Gage, Razor

CompuScope 1622) has two channels with sampling rate of 200 MS/s and

vertical resolution of 16 bits. This is one of the fastest high resolution digitiz-

ers currently available on the market. Our detection system can monitor the

position of a trapped microshpere with sub-Ångstrom spatial resolution and

sub-microsecond temporal resolution.

The maximum power of the LED is about 5 W. The camera is a USB

color 3MP CMOS camera bought from Mightex Systems (Model: MCE-C030-

U). It allows us to monitor the sample chamber in real time with spatial

resolution of about 0.5 µm.

Figure 5.6 shows successful trapping of a 4.7-µm diameter silica micro-

sphere in water with an optical tweezer. Initially some microspheres undergo

Brownian motion near the bottom of the sample chamber, while other mi-

crospheres are stuck to the surface of the coverslip due to the van der Waals

force. We can use the optical tweezer to trap a microsphere that is not stuck
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on the surface. After trapping, the position of the trapped microsphere is fixed

by the optical tweezer. We can move the glass slide in 3D while keeping the

microsphere trapped, as shown in figure 5.6. An optical tweezer thus provides

(A)

noise of
DAQ card only

(B)

PDB120C
detector

(C)

PDB110C-
AC
detector

Figure 5.7: Noise spectra of the DAQ card and two different detectors.
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a tool to manipulate a microscopic object in 3D without physical contact.

Figure 5.7 shows the measured noise spectra of the digitizer and two

balanced detectors(Thorlabs PDB120C, and PDB110C-AC). When no detec-

tor is connected to the DAQ card, the average noise spectral density is about

-130 dB around 10 MHz. When a PDB120C detector is connected to the

DAQ card, the average spectral density increases to about -107 dB around

10 MHz. When a PDB110C-AC detector is connected to the DAQ card, the

Figure 5.8: A waveform and spectrum of a 4.7-µm diameter microsphere
trapped in water at room temperature.
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average spectral density increases to about -115 dB around 10 MHz. Thus the

PDB110C-AC detector has less noise than the PDB120C detector. So we use

the PDB110C-AC detector for studying the Brownian motion in water.

Fig. 5.8 shows a measured waveform and power spectrum of a 4.7-µm

diameter microsphere trapped in water at room temperature. The waveform

appears as a sine wave at 120 Hz. We found that it was due to mechanical

Figure 5.9: A waveform and spectrum of a 4.7-µm diameter microsphere
trapped in water at room temperature. A copper block was mounted on the
post of the objective lens to reduce mechanical vibration.
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vibration of the objective lens. The real signal of the Brownian motion of

the microsphere is the high frequency fluctuations in the “sine” curve. As

a result, the power spectrum is very small at frequencies above 1MHz. The

power spectrum at frequencies above 1 MHz basically comes from the noise

of the laser, which is a problem for studying the Brownian motion of the

microsphere.

Later we mounted a heavy copper block on the post of the top objective

lens (OB1 in Fig. 5.5) to reduce the mechanical vibration. This improves the

signal significantly. Fig. 5.9 shows a measured waveform and power spectrum

of a 4.7-µm diameter microsphere trapped in water after we mounted a copper

block on the post. It no longer appears like a sine wave. The high frequency
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Figure 5.10: Preliminary results of the MSD of a 4.7-µm bead in water.
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fluctuation due to the Brownian motion of the microsphere dominates the

signal. As a result, the power spectral density increased by about 7dB at 1

MHz. The signal is about -95 dB at 2 MHz, and the noise of the detection

system is about -103 dB. So the signal is only 8dB above the detection noise

at 2 MHz. This is not enough for measuring the instantaneous velocity of the

Brownian motion. The signal needs to be increased by 10 dB or more in order

to measure the instantaneous velocity of the 4.7-µm diameter microsphere in

water.

Fig. 5.10 show preliminary results of the MSD of a 4.7-µm bead in

water. The measured MSDmsr(t) is dominated by the noise when the time is

shorter than 0.1 µs. The MSDp(t) = MSDmsr(t)−MSDn(t) agrees with the

prediction of slope 2 at short time scales. However, this subtraction method

is limited by the uncertainty on determining MSDn(t).

5.5 Interferometer-enhanced optical tweezers

In order to measure the instantaneous velocity of a 4.7µm microsphere

in water, we need to improve the signal-to-noise ratio of the detection system

by a factor of 10 or more at frequencies above 1 MHz.

We consider the detection of the position of a trapped microsphere along

x axis that is perpendicular to the propagating direction of the laser. Suppose

the position of the microsphere is xp, and the electric field of the optical tweezer

without the microsphere is E0(x)(1 + εint + εpt(x)), where εint represents the

intensity fluctuation of the laser, and εpt(x) represents the pointing fluctuation
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of the laser. The electric field with a trapped microsphere can be written as:

Ep(x) = E0(x)(1 + εint + εpt(x))(1 + ξ(xp)) (5.30)

where ξ(xp) represents the effect of the microsphere. If we assume εint � 1,

εpt � 1 and ξ(xp) � 1, the intensity of the laser beam after the microsphere

is

Ip(x)
.
= I0(x)(1 + 2εint + 2εpt(x) + 2ξ(xp)) (5.31)

where I0(x) = E2
0(x) is assumed to be a Gaussian function.

If we measure the position of the microsphere with a balanced detector

(Fig. 5.5), we are measuring the difference of the power of the two halves of

the laser beam:

∆P (xp, xmir) =

∫ +∞

xmir

Ip(x)dx−
∫ xmir

−∞
Ip(x)dx (5.32)

where xmir is the position of the split mirror. Let us choose a xmir to satisfy∫ +∞

xmir

I0(x)(1 + 2εint)dx−
∫ xmir

−∞
I0(x)(1 + 2εint)dx = 0, (5.33)

then the effect of the intensity fluctuation can be eliminated. The output

signal ∆P (xp, xmir) contains the position signal of the microsphere and the

pointing fluctuation of the laser beam.

If we use a beam splitter to split a laser to two beams, the profiles of

the two beams are the same. We can use one beam to trap the microsphere,

and the other beam as a reference. The electric field of the reference beam is

Eref (x) = E0(x)(1 + εint + εpt(x)) (5.34)
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If we add a phase delay to this reference beam, we can change its sign. Then

we can combine the trapping beam and the reference beam together. The

electric of the combined beam is

Ecb(x) = Ep(x)− Eref (x) = E0(x)(1 + εint + εpt(x))ξ(xp) (5.35)

Since εint � 1 and εpt � 1, we have

Ecb(x)
.
= E0(x)ξ(xp). (5.36)

The effects of the intensity fluctuation and the pointing fluctuation of the

laser beam are almost eliminated from the combined beam. Thus the signal-

to-noise ratio can be increased significantly with an interferometer enhanced

optical tweezer. The difficulty of this method is that the reference laser must

have the same pointing fluctuation as the trapping beam at high frequencies

(> 1 MHz).

Fig. 5.11 shows a Mach-Zehnder interferometer enhanced optical tweezer

and detection system. The two objective lenses change the electric field from

E(x, y) to E(−x,−y), so another pair of lenses is used to correct this. A mir-

ror changes the electric field in one direction, i.e. from E(x, y) to E(−x, y).

The trapping beam is reflected by three mirrors, and the reference beam is

reflected by one mirror. So both beams are changed from E(x, y) to E(−x, y).

We also need an EOM to change the phase of the reference beam. Because

of low frequency mechanical vibration of mirrors, the phase of the reference

beam must be actively locked to the trapping beam. A Sagnac interferometer
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enhanced optical tweezer may solve this problem [94], but its optics seem much

more difficult to align.

We eventually decided to use a Wollaston interferometer enhanced op-

tical tweezer to increase the signal-to-noise ratio. As shown in Fig. 5.12, its

setup is very similar to a simple optical tweezer (Fig. 5.5 ). The Wollaston

prism W2 (Karl Lambrecht Corp., Model: WQ-25-05-V 1064NM) separates

the laser to two beams with different polarizations. The angle between the

two beams is about 0.5◦. These two beams form two optical tweezers that

are separated by about 15 µm at the focus of the objective lens. One optical

tweezer traps a microsphere, and the other optical tweezer serves as a refer-

ence. These two beams are combined together by another Wollaston prism

Detector

Objective

Water

BS

Split Mirror

Dark Port
Objective

BS EOM

Bright Port

Figure 5.11: A Mach-Zehnder interferometer enhanced optical tweezer and
detection system.
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[95]. We tune the angle of the λ/2 waveplate before the PBS2 so that the two

beams interfere destructively at one port of the PBS2. The split detection

system is at the dark port. Compared with the Mach-Zehnder interferometer,

the Wollaston interferometer is much easier to align. Both beams pass through

the same optical path, so the reference and trapping beams contain the same

pointing fluctuation. Thus the effect of the pointing fluctuation in detection

can be eliminated.

Detector

DAQ

Trapping
Laser

1064 nm

λ/2

 OB1

 OB2

DM2

DM1

PBS2λ/2

Beam
Dump

 MX

W2

W1

Figure 5.12: A Wollaston interferometer enhanced optical tweezer and detec-
tion system. The W1 and W2 are two Wollaston prisms. Other components
are the same as in Fig. 5.5.
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We are currently working on this Wollaston interferometer enhanced

optical tweezer. It should provide enough signal-to-noise ratio for measuring

the normalized VACF of a Brownian particle in water between 0.35 and 1. It

will also have many applications in biophysics.
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Chapter 6

Millikelvin cooling of an optically trapped

microsphere in vacuum

6.1 Background

Optical cooling and trapping of atoms [47–49] has led to dramatic

breakthroughs in atomic, molecular and optical physics, including a new gen-

eration of atomic clocks, and realization of Bose-Einstein condensation and

degenerate Fermi gas. Applying similar techniques to cool the mechanical

motion of macroscopic objects towards the quantum ground state will benefit

ultrahigh precision measurements and fundamental tests of macroscopic quan-

tum physics [7, 9, 13]. A major obstacle to achieving ground-state cooling of

most mechanical oscillators [83, 96–101] is the thermal contact between oscil-

lators and their environment. Recently, it was proposed that optical trapping

of dielectric objects in vacuum would greatly reduce the thermal contact, and

could even allow ground-state cooling from room temperature [17–19, 33, 102–

106]. Besides providing ideal isolation from the environment, the optical trap

can be switched off for time-of-flight measurements to perform full tomogra-

phy of the mechanical state [16, 106]. Here we report optical trapping of SiO2

microspheres in vacuum with high oscillation frequencies, and cooling of the

center-of-mass motion to millikelvin temperatures with active feedback.
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Feedback control has been used widely in industry and scientific ex-

periments. The most commonly used feedback controller is a proportional-

integral-derivative (PID) controller. A typical application of a PID controller

is to stabilize the temperature of a system. In our lab, we routinely use PID

controllers to stabilize the intensity of lasers.

A simple pendulum in air will oscillate if it is initially moved away from

the equilibrium position. After oscillating for some time, the pendulum will

decay to rest. In reality, however, the pendulum always vibrates with a small

amplitude, due to external forces from seismic motion, and more fundamen-

tally, due to the thermal Brownian stochastic force. Even at absolute zero

temperature, the pendulum still oscillates because of the quantum zero-point

energy. We can use feedback control to reduce the vibration amplitude. If the

final vibration amplitude is smaller than the Brownian motion amplitude at

thermal equilibrium, the feedback control is called “feedback cooling” unless

the reduction in amplitude corresponds to an increase in frequency. In order

to do feedback cooling, the detection system must at least be able to resolve

the Brownian motion of the system at thermal equilibrium.

According to the equipartition theorem, the root mean square (rms)

amplitude of the Brownian motion of a trapped microsphere at thermal equi-

librium is xrms =
√
kBT0/(Mω2), where T0 is the environmental (air) tem-

perature, M is the mass of the microsphere, and ω is the angular trapping

frequency. The characteristic size of the quantum ground-state wavefunction

is xground =
√

~/(Mω), where ~ is Planck’s constant/2π.
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Previous experiments have demonstrated optical levitation of a 20-µm

diameter sphere in vacuum with a trapping frequency of about 20 Hz [45], as

well as feedback control of a trapped sphere which was used to increase the

trapping frequency to several hundred hertz and stabilize its position to within

a fraction of one micrometer [107]. However, the resolution of its detection sys-

tem [107] was not sufficient to enable feedback cooling. For a 20-µm diameter

sphere trapped at 100 Hz, the rms amplitude is about 0.04 µm at 300 K, and

will be much smaller at lower temperature. The size of the quantum ground-

state wavefunction is xground = 0.14 pm. Both values are far smaller than the

resolution of the detection system of the previous experiment [107]. It is also

important that the trapping frequency be much higher than the frequencies of

seismic vibration in order to achieve significant cooling.

This chapter describes our efforts on feedback cooling of an optically

trapped microsphere in vacuum. We use a dual-beam optical tweezer to trap

a 3.0-µm diameter sphere in vacuum with much higher oscillation frequencies

(about 10 kHz) to minimize the effects of instrumental vibration. We also

demonstrate a detection system to monitor the motion of a trapped micro-

sphere with a sensitivity of about 39 fm/
√

Hz over a wide frequency range.

Using active feedback, we simultaneously cool the three center-of-mass (COM)

vibration modes of a microsphere from room temperature to a minimum mode

temperature of 1.5 mK, which corresponds to the reduction of the rms ampli-

tude of the microsphere from 6.7 nm to 15 pm for that mode.
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6.2 Principle of feedback cooling

An optically trapped microsphere in non-perfect vacuum will exhibit

Brownian motion due to collisions between the microsphere and residual air

molecules. When there is no feedback cooling, the equation of the Brownian

motion of an optically trapped microsphere is:

d2xj
dt2

+ Γ0
dxj
dt

+ Ω2
jx = F th

j , (6.1)

where Γ0 is the viscous damping factor due to air molecules, Ωj/2π (j=1, 2, 3)

are the resonant frequencies of the optical trap along the three fundamental

axes (x, y, and z axes), and F th
j = ζj(t)

√
2kBTΓ0/M is the Brownian stochastic

force.

The damping term Γ0
dx
dt

tends to stop any vibration, while the F th
j

term drives the motion. It is very interesting that Γ0 is also contained in F th
j .

When the mechanical energy (sum of the kinetic energy and the potential

energy) of the microsphere is larger than kBT in one direction, the Γ0
dx
dt

term

will dominate and the mechanical energy of the microsphere will be reduced.

On the other hand, the F th
j term will dominate and increase the mechanical

energy of the microsphere if its mechanical energy is smaller than kBT . Thus

the average mechanical energy of the microsphere will be kBT in each direction

at thermal equilibrium.

At thermal equilibrium, the power spectrum of COM motion of a

trapped microsphere along each of the three fundamental mode axes is [83, 96]:

Sj(ω) =
2kBT0

M

Γ0

(Ω2
j − ω2)2 + ω2Γ2

0

, (6.2)
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where ω/2π is the observation frequency.

6.2.1 Feedback cooling

To implement feedback cooling, we apply an external force on the

trapped microsphere:

F cool
j = −Γcoolj

dxj
dt
. (6.3)

The force is proportional to the velocity of the microsphere but with oppo-

site direction. Thus it will slow down the motion of the microsphere. With

feedback cooling, the equation of the Brownian motion of an optically trapped

microsphere is:

d2xj
dt2

+ (Γ0 + Γcoolj )
dxj
dt

+ Ω2
jx = ζj(t)

√
2kBTΓ0

M
. (6.4)

In contrast to the Γ0 due to air molecules, Γcoolj is only contained in the damping

term but not in the heating term. So “feedback cooling” is also called “cold

damping”.

With feedback cooling, the power spectrum of the COM motion of a

trapped microsphere along each of the three fundamental mode axes is:

Scoolj (ω) =
2kBT0

M

Γ0

(Ω2
j − ω2)2 + ω2(Γ0 + Γcoolj )2

. (6.5)

Let Γtotj = Γ0 + Γcoolj be the total damping factor, and T coolj = T0Γ0/Γ
tot
j be the

effective temperature of the motion with feedback cooling, the power spectrum

can be rewritten as:

Scoolj (ω) =
2kBT

cool
j

M

Γtotj
(Ω2

j − ω2)2 + ω2(Γtotj )2
, (6.6)
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which has the same form as Eq. 6.2. The effective temperature along each axis

may be different because Γcoolj can be different along different directions. The

motion can be cooled significantly by applying a feedback damping Γcoolj >>

Γ0. The lowest temperature will be limited by the noise in the detection system

and feedback circuits, as well as coupling between different directions.

6.2.2 Feedback amplification

Besides cooling, feedback control can also be used to amplify the mo-

tion. We can apply a force in the same direction as the velocity of the micro-

sphere to amplify the motion:

F amp
j = +Γampj

dxj
dt
. (6.7)

With feedback amplification, the equation of the Brownian motion of an opti-

cally trapped microsphere is:

d2xj
dt2

+ (Γ0 − Γampj )
dxj
dt

+ Ω2
jx = ζj(t)

√
2kBTΓ0

M
. (6.8)

The power spectrum of COM motion of the microsphere is:

Sampj (ω) =
2kBT0

M

Γ0

(Ω2
j − ω2)2 + ω2(Γ0 − Γampj )2

. (6.9)

When Γampj < Γ0, the system is stable. The effect of Γampj is to amplify

the motion and decrease the linewidth of the vibration from Γ0 to Γ0 − Γampj .

When Γampj > Γ0, the system is not stable and the microsphere will be lost.

We have observed both feedback cooling and feedback amplification in our

experiment by inverting the velocity signal.
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6.2.3 Heating due to light scattering

For a microsphere trapped by an optical tweezer, there are also heating

effects due to the light scattered by the microsphere. The heating effects of

light scattering can be separated to two parts. The first part is because of the

shot noise of the laser. This effect is very small and has been calculated in

Refs. [17, 18].

The second part is because the scattering force is not conservative. The

scattering force can do net work on the microsphere when the microsphere

moves over a closed loop under certain conditions [67]. If the two counter-

propagating beams of our dual-beam optical trap is slightly misaligned along

x axis (Fig. 3.10), the scattering force on the microsphere is along the axial

direction (z axis), and is proportional to the displacement of the microsphere

along x axis. We have ~Fscat ∝ xẑ. For a microsphere moving in a loop in the

x− z plane, the net work done by the scattering force over a loop is

W =

∮
~Fscatdl ∝

√
〈x2〉

√
〈z2〉. (6.10)

The period of a harmonic oscillator is independent of the energy of the

oscillator. The mechanical energy of the microsphere will increase due to the

work done by the scattering force at a rate:

d

dt
(Ex + Ez) ∝

√
〈x2〉

√
〈z2〉 ∝

√
ExEz, (6.11)

where Ex and Ez are mechanical energies of the microsphere. From this equa-

tion, it is clear that the scattering force couples the motion along different
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directions and can make the dynamics of the system very complex. Here we

will try to obtain some qualitative properties of this heating effect. For sim-

plicity, we assume that Ex is proportional to Ez, then dEx/dt ∝ Ex. So the

scattering force will cause a heating that is proportional to the mechanical

energy of the microsphere. This effect can be minimized by better alignment

of the two counter-propagating laser beams.

A phenomenological description of the feedback cooling process with

this heating effect can be written in an equation about the average mechanical

energy of the microsphere along each axis:

dEj
dt

= −Γ0Ej − Γcoolj Ej + Γ0(kBT ) + αjEj. (6.12)

The first term (−Γ0Ej) describes the damping due to the air, the second term

is due to feedback cooling, the third term describes the heating effect due to

the air, and the last term describes the heating effect due to the scattering

force. The final effective temperature of motion of the microsphere in each

direction is

T coolj = Ej/kB =
Γ0T

Γ0 + Γcoolj − αj
. (6.13)

The system will be stable when Γ0 +Γcoolj > αj and unstable when Γ0 +Γcoolj <

αj. This provides a method to estimate αj experimentally. To estimate the

αj, we turn off the feedback cooling forces to let Γcoolj = 0. We first trap a

microsphere at a high pressure. At high pressures, we have Γ0 > αj, and

the system is stable. We then reduce the air pressure to reduce Γ0. At a

certain pressure, the system becomes unstable and microsphere is lost. Then
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we have αj ≈ Γesc0 , where Γesc0 is the air damping factor at the moment when

the microsphere is lost.

The heating rate due to the nonconservative force is proportional to

the energy of the microsphere. As the energy of the microsphere is reduced

by cooling, this heating effect becomes negligible and will not prevent ground

state cooling. For cooling, we usually have Γcoolj � αj, thus the effect of αj

on the final temperature is very small (Eq. 6.13). The heating effect of the

scattering force will be much smaller for a single-beam optical tweezer.

The above discussions are based on classical mechanics, which is suffi-

cient for understanding our current experiment. Quantum mechanical descrip-

tion of feedback cooling will be necessary if the motion of the microsphere is

cooled to near the quantum ground state [82, 108, 109].

6.2.4 Damping due to the residual gas in vacuum

The viscous damping factor due to air can be calculated by kinetic the-

ory. Assuming the reflection of air molecules from the surface of a microsphere

is diffusive, and the molecules thermalize with the surface during collisions,

we have [110]

Γ0 =
6πηR

M

0.619

0.619 +Kn
(1 + cK), (6.14)

where η is the viscosity coefficient of the air, R is the radius of the microsphere,

M is the mass of the microsphere, and Kn = l/R is the Knudsen number.

Here l is the mean free path of the air molecules. cK = (0.31Kn)/(0.785 +

1.152Kn + Kn2) is a small positive function of Kn [110]. At low pressures
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where Kn� 1, the viscous damping factor is proportional to the pressure. At

high pressures where Kn � 1, the viscous damping factor is Γ0 = 6πηR/M ,

which is the same as the prediction of Stoke’s law.

Figure 6.1 shows the measured linewidth, Γ0/2π, of the oscillation of
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Figure 6.1: Measured linewidths of the oscillation of an optically trapped 3-µm
diameter microsphere at different pressures. The blue curve is the prediction
of a kinetic theory (Eq. 6.14). The inset is the measured power spectrum
at 0.13 Pa. By fitting the spectrum with Eq. 6.2 (red curve), we obtain
ω1 = 2π · (9756.4 ± 0.3) Hz and Γ0 = 2π · (0.46 ± 0.06) Hz for this example.
The same method is used to obtain linewidths for other pressures.
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a trapped 3-µm microsphere at different pressures without feedback cooling.

The powers of the two trapping beams are 120 mW and 100mW, respectively.

The linewidths are obtained by fitting the measured power spectra with Eq.

6.2. The measured linewidths agree very well with the prediction of kinetic

theory (Eq. 6.14) from 105 Pa down to 1 Pa. At pressures below 1 Pa, the

measured linewidths are larger than the theoretical prediction. This linewidth

broadening is due to power fluctuations of the trapping laser. The inset of

Fig. 6.1 shows a power spectrum at 0.13 Pa. A more detailed power spectrum

at 0.13 Pa (1 mtorr) is shown in Fig. 6.2. The trapping frequency ω1/2π is

9756.4 ± 0.3 Hz, and the linewidth is 0.46 ± 0.06 Hz, giving a quality factor
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Figure 6.2: The power spectrum of a trapped 3.0-µm diameter microsphere at
1 mtorr.
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(Qj = ωj/Γ0) of 2.1× 104. This implies the power fluctuation of the trapping

laser is smaller than 0.01% during the measurement. An optically trapped

microsphere provides a method to directly convert laser power to a frequency

signal, which can be measured precisely. Stabilization of laser power to a

trapped bead can find applications in laser physics, and can enable a more

precise measurement of the Q for a second trapped bead in vacuum.

Before feedback cooling, we observe a sharp transition in the trap life-

time as a function of pressure. Above the transition pressure, the microsphere

can be trapped stably for many hours. Below the transition pressure, the mi-

crosphere is lost within a few seconds. This is because of the heating effect

due to the light scattering, which has been discussed in the previous section.

The transition pressure depends critically on the alignment of the two counter-

propagating trapping beams. We can reduce it to less than 0.1 Pa by aligning

the two laser beams. Thus αj in Eq. 6.12 can be smaller than 2π×0.5 Hz. We

also observed limit cycles (vortices) in the motion of a trapped microsphere

when the trapping beams are intentionally misaligned. A 3D simulation of the

system is required in order to fully understand these phenomena.

6.3 A 3D split detection system

In order to monitor the motion of a trapped microsphere with ultra-

high precision in all three dimensions, we built a 3D split detection system. As

shown in Fig. 6.3, the X, Y, and Z detectors are fast balanced photo-detectors

with bandwidth of 75MHz. They have two matched photodiodes to cancel the
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common mode noise in the laser beams, allowing ultra-high precision measure-

ments of the position of a trapped microsphere. When a trapped microsphere

moves in the horizontal (vertical) direction, it deflects the trapping beam in

the horizontal (vertical) direction. This changes the relative power between

the two beams after the MX (MY) mirror, which is measured by the X (Y)

detector. The motion of a trapped bead along the trap axis changes the diver-

gence angle of the output beam, which changes the waists of incident beams

on the Z detector. One photodiode of the Z detector is smaller than the waist

of the incident beam. It measures only part of the power of the incident beam.

Thus its output voltage depends on the waist of the incident beam, which is a

function of the position of the microsphere in Z axis. The other photodiode of

the Z detector is much larger than the waist of the incident beam. It measures

the total power of the incident beam. Thus its output voltage does not depend

on the waist of the incident beam, and can serve as a reference signal [111]. A

photo of our 3D detection system is shown in Fig. 6.4.

For small displacements of a trapped microsphere near the trap center,

the voltage output (Ui) of each detector is proportional to the displacement

(xDi ) of the microsphere along the detection direction, i.e. Ui = βix
D
i , where

i = 1, 2, 3 denotes X, Y, and Z detectors, and βi is the calibration factor of

the detector. We align the detection system carefully to make the detection

direction of each detector be parallel to one of the trap’s fundamental mode

axes. In reality, however, there is always slight difference between the detection

directions and the fundamental mode axes. Thus the voltage output from each
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detector is a combination of signals from each mode, i.e. Ui = βi(αi1x
M
1 +

αi2x
M
2 +αi3x

M
3 ), where xMj (j = 1, 2, 3) is the displacement of the microsphere

along the fundamental mode axis x̂Mj , and αij is the projection coefficient of

PBS

BS1

BS2

BS3 ND

LZ

MX MY

Vacuum

X Detector Y Detector

Z 
Detector

Figure 6.3: Simplified schematic showing the detection system that can mon-
itor the real-time position of a trapped microsphere with ultra-high precision
in all three dimensions. One of the trapping beams (the other trapping beam
is not shown) passes through a trapped microsphere inside a vacuum chamber
and is reflected by a polarizing beam splitter cube (PBS). It is then split to
three beams by two beam splitters (BS1 and BS2) for 3D detection. MX is a
mirror with a sharp edge that splits the beam into two parts horizontally. MY
is a mirror with a sharp edge that splits the beam into two parts vertically.
BS3 is a beam splitter, ND is a neutral density filter, and LZ is a lens. The X,
Y, and Z detectors are balanced detectors that have two matched photodiodes
to cancel the common mode noise in the laser beams.
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x̂Mj to the detection direction x̂Di . Usually only one term dominates as the

detection directions are almost parallel to the mode axes.

The expected value of the power spectrum of the voltage output from

each detector is [76]:

SUi (Ω) ≡ 〈|Ũi|2/Tmsr〉 = β2
i 〈|αi1x̃M1 + αi2x̃

M
2 + αi3x̃

M
3 |2/Tmsr〉, (6.15)

where Tmsr is the measurement time, Ũi and x̃Mj are Fourier transforms of Ui

and xMj , respectively. The expansion of SUi (Ω) has 9 terms, but the expected

values of the cross correlation terms 〈x̃Mi x̃Mj 〉 (i 6= j) are 0 when there is no

feedback, because the three components of the motion of a microsphere in

Figure 6.4: A photo of our 3D detection system and a camera for imaging
a trapped microsphere with the scattered light. Red lines are drawn on the
photo to show the light paths of the detection system.
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a harmonic trap are uncorrelated. With active feedback, there can be small

correlations between different directions if the feedback loops are coupled.

In real experiments, the coupling is small and the trapping frequencies are

different along different directions, thus we assume that the average values of

the cross correlations are negligible. Then

SUi (ω) = β2
i [α

2
i1S1(ω) + α2

i2S2(ω) + α2
i3S3(ω)], (6.16)

where Sj(ω) is the power spectrum of COM motion along each fundamental

mode axis. Sj(ω) is described by Eq. 6.2 without feedback cooling, and by

Eq. 6.5 with feedback cooling.

The detection system can be calibrated by fitting the measured power

spectra at room temperature with the expected power spectra SUi (ω) to obtain

calibration factor β2
i α

2
ij for each mode that is distinguishable in the power spec-

tra. We can also obtain β2
i directly by the energy equipartition theorem, which

says 〈Mv2
i /2〉 = kBT0/2, where vi is the instantaneous velocity of the micro-

sphere projected onto any axis. Since Ui = βix
D
i , we have β2

i = M
kBT0
〈
(
dUi

dt

)2〉.

With β2
i α

2
ij and β2

i , we can easily obtain α2
ij to check the alignment of our de-

tection system. In the experiment, each detector is used to monitor only one

mode, so only three calibration factors (β2
1α

2
11, β2

2α
2
22, and β2

3α
2
33) are required

for measuring the mode temperatures with feedback cooling.

The mass of the microsphere is required to obtain the calibration fac-

tors. The pure silica (SiO2) microspheres used in this experiment are from

Bangs Laboratories, Inc. Their mean diameter is 3.0 µm, corresponding to a
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mean mass of 2.8×10−14 kg for each microsphere. The standard deviation of

the size given by the supplier is 14 %. The exact diameter of the microsphere is

not important for feedback cooling. The temperatures of the feedback-cooled

motion are obtained by comparing the power spectra of the same microsphere

with and without feedback cooling, a measurement which is independent of

the exact size of the microsphere. The viscous damping factor (Γ0) of a mi-

crosphere in air, however, depends on the size of the microsphere. Using the

measured damping factor shown in Fig. 6.1, we obtain the diameter of a

microsphere by kinetic theory (Eq. 6.14) to be 2.7 µm, which is within the

uncertainty range given by the supplier.

6.4 1D optical feedback cooling

Figure 6.5 shows the first feedback cooling scheme that we used in our

experiment. The position signal of a trapped microsphere is sent through

a preamplifier that has a bandpass filter, and a derivative circuit (d/dt) to

provide a signal proportional to the velocity of the microsphere. This velocity

signal is used to control the frequency of the output signal of a radio frequency

(RF) deflector driver (IntraAction, Model: DE-802M26). The output of the

driver is a single frequency signal in the range of 60 - 100 MHz. The driver

has an analog input to modulate the frequency of the signal. An analog input

signal from 0 V to 1 V will change the frequency of the output signal by 40

MHz. The RF signal drives an acousto-optic modulator (AOM) which controls

the p-polarized trapping beam. The frequency of the RF signal determines the
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direction of the laser beam, and the power of the RF signal determines the

power of the laser beam. Here we do feedback cooling by changing the direction

of one of the trapping beams in the horizontal direction. The laser beam will

exert a force on the microsphere as a function of its velocity in the horizontal

direction, which cools the motion of the microsphere.

The preamplifier (SR560, Stanford Research Systems) has a very low

input noise (about 4 nV/
√

Hz), and a variable gain from 1 to 5× 104. In this

s

Vacuum
Chamber

p

s

Detector RF

d
dt

DAQ

AOM

Figure 6.5: Diagram of a 1D feedback cooling scheme. The position of a
trapped microsphere is monitored by a home-built detection system. The
position signal is sent through a preamplifier which has a bandpass filter (typ-
ically 100 Hz to 300 kHz), and a derivative circuit (d/dt) to provide a signal
proportional to velocity. This velocity signal is used to control the frequency of
a radio frequency (RF) AOM driver which modulates the direction of the laser
beam. The data is digitized and stored on a computer by a data acquisition
card (DAQ).
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experiment, we only need the gain to be about 2 or 5 because the output signal

from the detector is pretty big already. The preamplifier contains two first-

order RC filters that can be set to -3 dB cutoff frequencies chosen from a 1-3-10

sequence, from 0.03 Hz to 1 MHz. We typically set the low cutoff frequency to

be 100 Hz and the high cutoff frequency to be 300 kHz. The preamplifier also

has a function to invert the signal, which is very useful. The derivative circuit

is simply the ‘derivative’ branch of an analog PID controller. We first used

a commercial PID controller (SIM 960, Stanford Research Systems). It has a

lot of powerful functions, including digital control of the P, I, D, and Offset.

However, it picks up some external electronic noise through its power cord.

We eventually decided to use our home-built derivative circuit for feedback

cooling.

R1 2 

3 
6 

OPA227 

R2 

R3 
C1 

C2 

Vout 
Vin 

Figure 6.6: A derivative circuit for calculating the real-time velocity of a mi-
croshpere from its position signal.
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A detailed description of our home-built PID controllers can be found in

Appendix C.1 of the Ph.D dissertation of Todd Meyrath [112]. The ‘derivative’

part of the circuit is shown in Fig. 6.6. The main component of the circuit is

the low-noise operational amplifier, the capacitor C1 and the tunable resistor

R2. The operational amplifier is OPA227 from Texas Instruments. It has a low

noise level of 3 nV/
√

Hz and a wide bandwidth of 8 MHz. The differentiation

time of the derivative circuit is C1×R2. It is important that the OPA227 is

unity-gain stable. We have tried to use an OPA228 amplifier which is faster

than the OPA227, but the circuit is not as stable for low gain. The resistor

R1 is much smaller than R2, and the capacitor C2 is much smaller than C1.

R1 limits the differential gain, and C2 gives high frequency roll-off. R1 and

C2 are necessary because the derivative circuit has a very large gain at high

frequencies. For a pure derivative circuit, if the input signal is Vin = sin(ωt),

then the output will be Vout = ω cos(ωt), which will be infinite if ω is infinite.

Thus a derivative circuit amplifies high frequency noise. So we use R1 to

limit the gain, and C2 to serve as a low-pass filter to reduce the gain of high

frequency noise. R3 is used to isolate the derivative circuit from other parts of

the circuit so that they do not interfere with each other. Typical values of the

resistors and capacitors are R1=50 Ω, C1=2.2 nF, R2=0 - 50 kΩ, C2=0.1 nF,

and R3 =1 kΩ.

Figure 6.7 shows some results of the 1D feedback cooling. In Fig.

6.7(A), the rms velocity of the microsphere is reduced from 0.43 mm/s to

0.090 mm/s by 1D feedback cooling. The temperature of the Brownian motion
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Figure 6.7: (A): The normalized velocity distributions of a trapped 3.0-µm
diameter microsphere without feedback cooling at 26 torr (red curve), and
with feedback cooling at 4 mtorr (blue curve). (B): The power spectra of the
microsphere with (blue curve) and without (red curve) feedback cooling at 208
mtorr.
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is reduced from room temperature (297 K) to 13 K. Fig. 6.7(B) shows the

power spectra of the microsphere with (blue curve) and without (red curve)

feedback cooling at 208 mtorr. With 1D feedback cooling, the peak near 10

kHz is reduced by 2 orders, while the peaks near 800 Hz and 3 kHz do not

change very much. Thus the 1D feedback cooling only cools the motion along

one direction efficiently.

In the red curve of Fig. 6.7(B), the peak at 10 kHz corresponds to

the mode along the X axis, the tiny peak at 9 kHz corresponds to the mode

along the Y axis. These two modes have almost the same frequency because

the laser beam is only slightly elliptical. The peak at 3 kHz corresponds to

the Z mode. We initially thought the peak at 800 Hz corresponds to the Z

mode. After an extensive study, we believe that the 800 Hz peak is because of
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Figure 6.8: (A): Modulation of the direction of beam No. 2 (the p-polarized
beam) with an AOM in the horizontal direction. (B): Modulation of the di-
rection of beam No. 2 with an AOM in the vertical direction.
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the frequency difference between the X and Y mode. This became clear when

we do 3D feedback cooling. The Z cooling beam reduced the 3 kHz mode

efficiently, but did not reduce the 800 Hz peak efficiently. The frequency (800

Hz) equals the frequency difference between the X and Y mode. We are also

able to make the 800 Hz peak disappear by better alignment.

We later installed another AOM to control the direction of beam No. 2

(the p-polarized beam) in the vertical direction. Thus we can do 3D feedback

cooling by modulating the intensity of beam No. 2, and the directions of beam

No. 2 in horizontal and vertical directions. The beam No. 1 (the s-polarized

beam) is not modulated because it is used for detection. We have tried such

3D feedback cooling method, but we were only able to cool the motion from

297 K to about 10 K.

We finally found out the problem after struggling for several months.

In order to find out the problem, we use a quadrant detector to monitor the

motion of a laser beam when we modulate its direction by an AOM. Figure 6.8

shows the motion of the center of beam No. 2 when we modulate its directions

with an AOM (IntraAction, model: ATM-801A2) in the horizontal direction

(A) and an AOM in the vertical direction (B). We use a sine signal with peak-

to-peak voltage of 2 mV at 10 kHz to drive the analog input of the RF driver.

This modulates the frequency of the RF signal (centered at about 80 MHz) by

80 kHz. Thus the frequency of the RF signal is 80MHz+40kHz· sin(2π104 t),

where t is time. Ideally, the data points should be a straight horizontal line

in Fig. 6.8(A) and a straight vertical line in Fig. 6.8(B). However, the experi-
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mental points are not in a straight line, especially in Fig. 6.8(B). This means

that when we use an AOM to control the laser along the vertical direction, the

laser beam also moves along the horizontal direction in a very complex way.

Thus when we cool the motion vertically, we also heat the motion horizontally.

This limits the final temperature of the feedback cooling with this method.

Figure 6.9 shows the motion of the center of beam No. 1 (the s-polarized

beam) when we modulate its direction with an AOM (Isomet, model: 1205C-

2-804) in the horizontal direction. We want it to be a straight line in the

horizontal direction. However, the real motion of the laser beam is very com-

plex.
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Figure 6.9: Modulation of the direction of beam No. 1 with an AOM in the
horizontal direction.
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6.5 Electrostatic forces

After we found the problem of modulating the direction of a laser beam

with an AOM, we decided to try to perform feedback cooling using electrostatic

forces. The natural charge of a microsphere is negligible. It is necessary to

charge the microsphere first in order to apply sufficient electrostatic forces for

feedback cooling.

Fig. 6.10 shows our setup for air discharge and feedback cooling with

an electrostatic force. The stainless steel mounts of the two aspheric lenses

and the whole vacuum chamber are grounded. A thin stainless steel sheet is

inserted half way between the two lenses. It is connected to a high-voltage

amplifier that can deliver a 0 - 1 kV voltage output. There will be a strong

Vacuum Chamber

V

Figure 6.10: Setup for air discharge and feedback cooling with an electrostatic
force. The stainless steel holders of the two aspheric lenses and the whole
vacuum chamber are grounded. The smallest separation between the two
holders is about 4 mm. A thin stainless steel sheet is inserted at the center
of the two lenses as an electrode. The edge of the steel sheet is about 1 mm
away from where the microsphere is trapped. The steel sheet is connected to
a high-voltage amplifier that can deliver 0 - 1 kV voltage output.
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(A)
before discharge
1.5 kHz, 340V

(B)
during discharge
1.5 kHz, 680V

(C)
after discharge
1.5 kHz, 340V

Figure 6.11: Spectra of the motion of a trapped microsphere before (A), during
(B) and after (C) air discharge. The pressure is 461 mtorr. The frequency of
the AC voltage is 1.5 kHz, and the air discharge happens when the peak
voltage is about 680 V. We reduce the peak voltage in several seconds after
air discharge occurs to avoid the loss of the microsphere.
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electric field between the steel sheet and the steel holders when a high voltage

is applied to the steel sheet. At high voltage, the air breaks down and becomes

conductive. This can damage the high-voltage amplifier. We connect a 1 MΩ

resister in series with the steel sheet and the high-voltage amplifier to limit

the peak current.

We first trapped a microsphere with the dual-beam optical trap at

about 100 torr. We then reduced the pressure to about 0.5 torr. With

the microsphere trapped, we applied an AC voltage in the form of V (t) =

V0[sin(2πft) + 1]/2 to the steel sheet. The frequency of the AC voltage was

typically about 1 kHz. We increased the peak voltage slowly from a few volts

to several hundred volts until air discharge occured. A spectrum of the motion

of a trapped microsphere at 461 mtorr driven by a 1.5 kHz, V0= 340 V signal

Figure 6.12: Spectrum of the motion of a trapped microsphere at 205 torr
after air discharge. The micropshere is driven by a 400 Hz, V0 = 510 V AC
voltage. After air discharge, the microsphere maintains its charge even at high
pressure.
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is shown in Fig. 6.11A. The peak at 1.5 kHz due to the AC signal is very

small, because the natural charge of the microsphere is very small. When the

peak voltage was increased to 680V, air discharge occurred. The microsphere

moved violently during the air discharge. Thus there are a lot of peaks in Fig.

6.11B. It is surprising to us that the optical tweezer is stable enough to trap

a microsphere during air discharge. We reduced the peak voltage in a few

seconds after air discharge occured to avoid the loss of the microsphere. The

microsphere gained charge during air discharge. Fig. 6.11C shows a spectrum

of the motion of the microsphere driven by a 1.5 kHz, V0= 340 V signal after

air discharge. The peak at 1.5 kHz after discharge is about 4 orders higher

than the peak before discharge.

After air discharge, the microsphere maintains its charge, even at high

pressures. Fig. 6.12 shows a spectrum of the motion of a trapped microsphere

at 205 torr after air discharge. The microsphere is driven by a 400 Hz, V0 =

510 V AC voltage. The hight of the peak at 400 Hz is proportional to the

square of the charge of the microsphere. By measuring the height of the peak,

we can monitor the charge of the microsphere as a function of time. Fig. 6.13

displays the charge of the microsphere as a function of time over a period of

2 hours. The charge fluctuates because there is a weak air discharge near the

microsphere. So the microsphere gains and losses charges over time. The shape

of the curve depends on the driving voltage and the air pressure. We have not

been able to observe individual steps in the curve when the microsphere gains

or loses one electron.
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According to Coulomb’s law, the force between two point charges q1

and q2 is:

F = ke
q1q2

r2
(6.17)

where ke = 8.99×109 N ·m2C−2 is the Coulomb constant, and r is the distance

between the two point charges. The force between two electrons separated by

1 mm and 1 µm is 2.3× 10−22 N and 2.3× 10−16 N, respectively.

When N electrons e are distributed homogeneously on the surface of

a microsphere with radius R, the energy required to add another electron is

about:

E = ke
Ne2

R
(6.18)
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Figure 6.13: Fluctuation of the charge of a 3-µm-diameter microsphere trapped
at 205 torr, driven by a 400 Hz, V0=680 V signal. a.u. : arbitrary unit.
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For a R = 1.5µm microsphere, the required energy is kBT/2 at room

temperature when N=13. Thus the natural charge of a 3-µm diameter mi-

crosphere is in the order of 13 e. We do not know the exact charge of the

microsphere after air discharge, but estimate it to be on the order of 1000 e

from the power spectrum (Fig. 6.11), which corresponds to E = 1 eV. The

maximum electric field at the trap center is about 10 V/mm. Thus the max-

imum electrostatic force on the microsphere is in the order of 1.6 pN. This

is consistent with the observed shift of the trap center when we apply a DC

voltage.

The air discharge is not very controllable. This makes the current setup

(Fig. 6.10) not suitable for feedback cooling. We have tried to implement

feedback cooling with electrostatic forces and were able to cool the motion

from room temperature to about 10 K. The final temperature is limited by

the fact that the charge of the microsphere fluctuates, and we do not know

the real direction of the electrostatic force. These problems can be solved by a

better design of the electrodes and a better charging method. The electrodes

of a quadrupole ion trap [113] should be ideal for 3D feedback cooling with

electrostatic forces. The microsphere can be charged by photoelectric charging

with a ultraviolet lamp [113, 114], by using electrospray [115] or an electron

gun. Combining an optical trap with an ion trap in the same location should

be helpful in trapping and studying particles at ultrahigh vacuum.
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6.6 Millikelvin cooling with 3D optical feedback

Since significant efforts were required to improve feedback cooling with

electrostatic forces, we decided to try feedback cooling with optical forces

again. This time, we used AOM’s to modulate the intensities of laser beams

rather than the directions of laser beams to do 3D feedback cooling. This

method turned out to work very well. It enables us to cool the center-of-

mass motion of a trapped microsphere from room temperature to millikelvin

temperatures in all three dimensions, with a minimum mode temperature of

1.5 mK [15].

6.6.1 Experimental setup

A simplified scheme of our optical trap and cooling beams is shown in

Fig. 6.14. The dual-beam optical trap is the same as described before. It

is created inside a vacuum chamber by two counter-propagating laser beams

focused to the same point by two identical aspheric lenses with a focal length

of 3.1 mm and numerical aperture of 0.68. The wavelength of both trap-

ping beams is 1064 nm. They are orthogonally polarized, and are shifted in

frequency to avoid interference. The beams are slightly elliptical and approx-

imately form a harmonic trap with three fundamental vibration modes along

the horizontal, vertical and axial directions, denoted X, Y, and Z in Fig. 6.14.

The motion of a trapped bead causes deflection of both trapping beams. We

monitor the position of the bead by measuring the deflection of one of the

trapping beams with ultrahigh spatial and temporal resolution in all three
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dimensions (Fig. 6.3).

Using the position signal, we can calculate the instantaneous velocity of

the bead, and implement feedback cooling by applying a force with a direction

opposing the velocity (Fig. 6.15). The feedback is generated by scattering

forces from three orthogonal 532 nm laser beams along the axes as shown in

Fig. 6.3. The average intensity of the cooling beams is about 1% that of

the trapping beams. The optical power of each cooling beam is controlled by

an acousto-optic modulator (AOM). Each beam is modulated with a time-

Z cooling 
   beam

Y cooling 
   beam

X cooling 
   beam

s-polarized
 trap beam p-polarized

 trap beam

Figure 6.14: Simplified schematic showing a glass microsphere trapped at the
focus of a counter-propagating dual-beam optical tweezer, and three laser
beams along the axes for cooling. The wavelengths of the trapping beams
and the cooling beams are 1064 nm and 532 nm, respectively.
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varying signal proportional to the instantaneous velocity of the bead, added

to an offset. The proportional component generates the required cooling force,

while the offset slightly shifts the trap center. A photo of the optics of our 3D

optical feedback cooling system is displayed in Fig. 6.16. The green color in

the photo is due to the scattered light from the cooling beams. The trapping

beams are infrared and cannot be seen in this photo.

Position
Detector

AOM

RF d
dt

DAQ

Vacuum PBSs

s

p

Figure 6.15: Diagram of the feedback mechanism for the X axis: The position
of a trapped microsphere is monitored by a home-built detecting system. The
position signal is sent through a bandpass filter (typically 100 Hz to 300 kHz)
and a derivative circuit (d/dt) to provide a signal proportional to velocity.
This velocity signal is used to control the output power of a radio frequency
(RF) AOM driver which modulates the power of the X cooling beam. The
data is digitized and stored on a computer by a data acquisition card (DAQ).
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Fig. 6.17 shows the power of the first order of a laser beam exiting the

AOM as a function of the input voltage of the RF driver (IntraAction, model:

ME-802) and the reading of the manual offset knob of the RF AOM driver.

In general, the laser power is a nonlinear function of the input voltage. When

the knob reading is at 5, the laser power depends on the input voltage linearly

around 0. This is good for feedback cooling because we want the laser power

to be proportional to the velocity of the microsphere. Thus we set the knob

reading at 5, and use the velocity signal as the input voltage to control the

laser power for feedback cooling.

The behavior of the system with three dimensional (3D) feedback cool-

Figure 6.16: A photo of the 3D optical feedback cooling system.
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ing is straightforward to understand if we assume that there is no coupling

between feedback forces and velocities in different directions. In this case, the

feedback force in each direction adds an effective cold damping factor Γfbj , and

the total damping becomes Γtotj = Γ0 +Γfbj . The power spectrum of the motion

of a trapped microsphere with feedback cooling can be described by Eq. 6.5.

The temperature of the motion with feedback cooling will be T fbj = T0Γ0/Γ
tot
j .

Thus the motion can be cooled significantly by applying feedback damping
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Figure 6.17: Control of the laser power with an AOM. The AOM is driven by
a RF driver which uses an analog input to control the RF power electronically
and a knob to tune the RF power manually. The analog input accepts a
voltage from 0-1 V, and the knob has a reading (carrier level) from 0-10. For
the black curve, the analog voltage input is zero, and the manual knob is tuned
from 0 to 10. The other curves are the power of the laser as a function of the
analog input when the knob is set at different readings (Red: knob reading at
1; Green: knob reading at 2; Blue: knob reading at 5 ).
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Γfbj >> Γ0. The lowest temperature will be limited by the noise in the de-

tection system and feedback circuits, as well as coupling between different

directions.

6.6.2 Results of 3D optical feedback cooling

Figures 6.18, 6.19 and 6.20 show experimental results of feedback cool-

ing. Before feedback is turned on, the resonant frequencies (ωj/2π) are 8066±5

Hz, 9095± 4 Hz, and 2072± 6 Hz for the fundamental modes at 637 Pa along

the X, Y, and Z axes, respectively. At this pressure, the peaks in the power

spectrum due to the three fundamental modes are distinguishable, and heating

effects due to the laser are negligible. We can therefore use the measured power

spectra at 637 Pa to calibrate the position detectors for the fundamental modes

at room temperature. After we turn on feedback cooling, the temperature of

the Y mode changes from 297 K to 24 K at 637 Pa. The mode temperature is

obtained by fitting the measured power spectrum with Eq. 6.6.

After switching on the feedback circuits, we reduce the air pressure

while keeping the feedback gain almost constant, thus the heating rate due to

collisions from air molecules decreases, while the cooling rate remains constant.

As a result, the temperature of the motion drops. At 5.2 mPa, the mode

temperatures are 150 ± 8 mK, 1.5 ± 0.2 mK, and 68 ± 5 mK for the x, y

and z modes. The mean thermal occupation number 〈n〉 = kBT
fb
j /~ωj of

the y mode is reduced from about 6.8 × 108 at 297K to about 3400 at 1.5

mK. Fig. 6.21 shows the temperature of the three fundamental modes as a
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function of pressure. At low pressure and when the feedback gain is constant,

the mode temperature should be proportional to the pressure, which is shown

as a straight line with slope 1 in the figure. The temperature of the y mode

agrees with this prediction very well at pressures above 1 Pa.

At our lowest temperatures, the power spectra are still much larger

than the noise level, and the minimum temperature is achieved at pressures
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Figure 6.18: Power spectra of a trapped 3-µm diameter microsphere along
the X axis as it is cooled. The red curve is the intrinsic spectrum at 637
Pa without feedback cooling, the blue curve is the spectrum at 637 Pa with
feedback cooling, the green curve is the spectrum at 5.2 mPa with feedback
cooling, and the orange curve is the noise signal when there is no particle in
the optical trap. The black curve is the fit of a thermal model (see text for
details). We obtain mode temperatures from these fits.
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above the minimum pressure we can obtain, thus the electronic noise (in de-

tection and feedback circuits) and the pressure are not the limiting factor of

the current experiment. The dominant limiting factor is most likely residual

coupling between the intensities and directions of the cooling beams. When

we change the intensity of a cooling beam using an AOM, the direction and

profile of the beam is also changed slightly. This causes heating of the motion

of a microsphere perpendicular to the beam while cooling it parallel. This

problem should be solved by replacing the AOM’s with electro-optic modula-

tors (EOM’s). The final temperature limited by the present detection system

will be about 0.1 mK. Currently, the laser beam is attenuated before entering
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Figure 6.19: Power spectra of a trapped 3-µm diameter microsphere along the
Y axis as it is cooled. The meanings of the curves are the same as in Fig. 6.18.
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the detectors because the laser power is larger than the damage threshold of

the detectors. If we can utilize all of the signal contained in the laser beam

for feedback cooling, the final temperature can be smaller than 0.01 mK, cor-

responding to a thermal occupation number in the order of 10 or less.

Our result is an important step toward quantum ground-state cooling

of a trapped macroscopic object in vacuum by either cavity cooling[17–19] or

feedback cooling with an improved detection and feedback scheme [108, 109].

Our three-dimensional cooling enables future work on quantum superposition

and entanglement of the motion between different directions. For cavity cool-
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Figure 6.20: Power spectra of a trapped 3-µm diameter microsphere along the
Z axis as it is cooled. The meanings of the curves are the same as in Fig. 6.18.
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ing of a trapped object in vacuum, it is also important to use feedback cooling

to pre-cool and stabilize the object, in order to have enough time to tune the

cavity cooling laser to the correct frequency for efficient cooling.

6.7 Loss of microspheres in vacuum

With feedback cooling, we have been able to trap a microsphere for

more than one hour at pressure below 10−4 torr at optimal conditions. Ashkin

et al. [45] had observed similar lifetimes when they levitated a 20-µm diameter

sphere in vacuum (The laser intensity of the levitation trap is much smaller
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Figure 6.21: Temperatures of the three fundamental oscillation modes along
X (black squares), Y (blue circles), and Z (red triangles) axes as a function of
the air pressure. The dashed line is a straight line with slope 1 for comparison.
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Total power Total power Lifetime with Loss
No. of trapping of cooling ion pump on∗ pressure

beams (mW) beams+ (mW) (minutes) (torr)

1 160 ∼60 7 3.8× 10−5

2 160 ∼60 21∗∗ 2.4× 10−4

3 130 ∼60 5 3.9× 10−5

4 130 ∼60 11∗∗ 2.6× 10−4

5 130 3.6 26 9.4× 10−6

6 130 6.5 22 7.7× 10−6

7 113 39 88 2.4× 10−6

8 82 19 69 2.5× 10−6

Table 6.1: Examples of the lifetimes of a trapped 3.0-µm diameter microsphere
in vacuum under different conditions. + The waists of the cooling beams
are about 9 µm, so only parts of cooling beams pass through the trapped
microsphere. ∗ The ion pump was turned on at about 1 mtorr; and the pressure
dropped below 1.0× 10−4 torr within about 1 minute after the ion pump was
on. ∗∗ The ion pump was not turned on; the lifetime was the trapping time at
pressures below 1 mtorr.

than the laser intensity of our dual-beam trap, and the size of the microsphere

is much larger than ours). Table 6.1 shows some examples of measured life-

times of a trapped microsphere in vacuum under different conditions. These

lifetimes should be long enough to perform cavity cooling [17–19] and many

other interesting experiments. Ideally, however, we would like the lifetime of

the optical trap to be infinite even in vacuum.

Several things can affect the lifetime of a trapped microsphere in vac-

uum. For example, the alignment of the trapping beams and the gains of the

feedback circuits can significantly affect the lifetime. We usually turn on feed-

back circuits at about 20 torr. At this pressure, the damping due to air is still
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large enough to keep the optical trap stable even if the feedback circuits are

not tuned correctly. If the amplitude of the bead’s motion increases when the

feedback is turned on, the sign (polarity) of the velocity signal is incorrect, and

must be inverted for the feedback loop to cool the motion. After tuning the

feedback circuits correctly at 20 torr, we reduce the pressure slowly. The mo-

tion of the trapped microsphere usually becomes unstable when the pressure

is reduced below 50 mtorr. We need to fine tune the horizontal and vertical

directions of beam No. 2 with the two AOM’s to restabilize the motion of the

microsphere. After this step, we can reduce the pressure to below 10−5 torr.

Because we need to fine tune the laser beams and the feedback circuits for

each individual microsphere, the process is not very reproducible. Thus the

lifetimes can be very different for different microspheres (Table 6.1).

We also found evidence that the ion pump intermittently undergoes

electrical arcing [70] which kicks out a trapped microsphere. We observed

spikes in the motion of trapped microspheres when we turned on the ion pump

(an old ion pump that had not been used for several years). Sometimes the

microsphere was lost immediately after we turned on the ion pump. We moved

the ion pump further away from the optical trap to alleviate this problem. This

problem disappeared after the ion pump was used for a few months. However,

the lifetime of the optical trap in vacuum was still only on the order of 10

minutes. Then we stopped using the ion pump for a while, and used two

sorption pumps in sequence to achieve lowest pressures of about 10−5 torr.

However, we still observed the loss of microspheres after trapping for about 15
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minutes at low pressures. Then we considered the possibility that the sudden

loss of trapped microspheres might be caused by floating dust in the air. A

dust particle can cause fluctuations in the laser power and profile when it

passes though the focus of a laser beam. So we used plastic sheets to seal the

space between two lenses where a laser was focused in between. This method

did not notably increase the lifetime of the trap in vacuum.

The final loss of a trapped microsphere is most likely caused by the

heating due to light absorption. It seems that there is some dependance of

the trap lifetime on the laser powers. The longest lifetime, 88 minutes, was

observed when the total power of the trapping beams (1064nm) was 113 mW

and the total power of the cooling beams (532nm) was 39 mW. Because the

waists of cooling beams were much larger than the size of the microsphere,

only a part of cooling beams passed through the microsphere. However, silica

has much larger absorption at 532 nm than 1064 nm. So the heating effect of

the cooling beams may be comparable to that of the trapping beams.

At pressures below 1 mtorr, the internal temperature of a trapped mi-

crosphere is mostly cooled by blackbody radiation [17, 45]. The wavelength of

a photon with energy of kBT is 48 µm (λ = hc
kBT

, where h is the Planck con-

stant) at room temperature. This wavelength is much larger than the size of

our microspheres. Thus we can treat the microsphere as a dipole in calculating

the blackbody radiation when the internal temperature of the microsphere is

not much higher than room temperature. If we assume that the microsphere

has a constant and temperature-independent permittivity ε(ω) ≈ εbb across
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the blackbody radiation spectrum, the microsphere radiates blackbody energy

at a rate [17]:

dE

dt
' −75

π2

V

c3~4
Im
εbb − 1

εbb + 2
(kBTint)

5 (6.19)

where V is the volume of the microsphere, and Tint is the internal temperature

of the microsphere. Similarly, the microsphere absorbs blackbody radiation

from the environment at a rate:

dE

dt
' 75

π2

V

c3~4
Im
εbb − 1

εbb + 2
(kBTenv)5 (6.20)

where Tenv is the temperature of the environment.
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Figure 6.22: The equilibrium internal temperature of a trapped 3.0-µm di-
ameter microsphere irradiated by 10 and 100 mW of 1064 nm laser power in
ultrahigh vacuum as a function of the absorption coefficient of the microsphere.
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In high vacuum, we can neglect the effect of background gas. The

equilibrium internal temperature will be established when the sum of Eqs. 6.19

and 6.20 is equal to the heating rate due to light absorption of the laser beams.

The absorbed energy of the microsphere from the laser beams is proportional to

the power of lasers passing through the microsphere, and the optical absorption

rate of the microsphere. Fig. 6.22 shows the calculated internal temperature

of a trapped 3.0-µm diameter microsphere as a function of the environmental

temperature, power of laser beams that pass through the microsphere, and the

absorption rate of the microsphere.

When the environment is at room temperature and the power of the

laser passing through the microsphere is 100 mW, the internal temperature

of the microsphere stays almost constant when the absorption coefficient is

smaller than 10 dB/km (Fig. 6.22). However, the internal temperature in-

creases significantly if the absorption coefficient is 1000 dB/km or higher. The

microsphere will be lost when the internal temperature is above a certain

threshold temperature. The silica microsphere is initially amorphous. It may

undergo phase transition and become crystalline at high temperatures. Silica

has many crystalline forms. The α-quartz converts to β-quartz at 846 K. At

higher temperatures in vacuum, the silica microsphere will sublimate or melt

and evaporate. The lifetime of the optical trap should be longer for a lower

laser power.

Pure silica core optical fiber with loss of 0.148 dB/km at 1570 nm,

0.265 dB/km at 1310nm, and 0.6 dB/km at 1064 nm have been reported
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[116]. Whispering-gallery modes in fused-silica microspheres with quality fac-

tor of Q = 0.8× 1010 at 633 nm have been demonstrated experimentally [117].

This is close to the ultimate level determined by the fundamental material

attenuation as measured in optical fibers (0.7 dB/km at 633 nm). The loss in-

creases significantly if the silica contains OH [118]. Commercial monodisperse

silica microspheres are produced by the chemical reaction of tetraalkoxysilanes

(TEOS, Si(OC2H5)4) in alcoholic solutions of water and ammonia [119, 120].

Thus they are expected to contain OH, C, and N which will increase their

absorption coefficient.

In the future, we should directly measure the internal temperature of

an optically trapped microsphere using Raman spectroscopy[121]. This should

give us a better insight of the final loss mechanism of a trapped microsphere

in vacuum. We may also be able to purify a trapped microsphere in situ

at high pressures by heating it with a CO2 laser [122]. Heating a trapped

microsphere by a CO2 laser can melt the microsphere and reduce the size of

the microsphere by evaporation. This also provides a novel method to produce

and trap a nanosphere in air and vacuum.
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Chapter 7

Towards quantum ground-state cooling

Quantum ground-state cooling of an optically trapped microsphere

in vacuum can be achieved by feedback cooling with an optimal detection

and feedback scheme [108, 109]. However, it will be difficult to achieve this

since the real detection system and feedback circuits have electronic noise.

Another method to achieve quantum-ground state cooling is cavity cooling

[7, 9, 96, 123, 124]. Cavity cooling has been implemented in many different

micromechanical systems [11, 12, 83, 97–101, 125, 126], and has been used to

successfully cool the mechanical vibration of a 100 nm thick aluminum mem-

brane with a diameter of 15 µm to the quantum ground state recently [14].

Recent theoretical calculations show that cavity cooling can be used to cool

the mechanical motion of an optically trapped dielectric particle in vacuum to

the quantum ground-state from room temperature [17–19, 102–106].

7.1 Principle of cavity cooling

As shown in Fig. 7.1(a), we consider a microsphere trapped in a cavity

by a dual-beam optical tweezer. We use a dual-beam trap here because a

single-beam trap requires a NA≈0.95 objective lens. The working distance
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of a common high NA objective lens is too short (usually about 0.2 mm) to

integrate the optical cavity and the optical tweezer together. Thus we use two

low NA lenses to create a dual-beam trap. In the system with which we have

carried out feedback cooling, the distance between the two front surfaces of

the two lenses is about 3.5 mm. This should be enough for the cavity cooling

laser to pass though.

Let the vibration frequency of the microsphere along the z axis be ωM ,

the frequency of the cooling laser be ωL, the resonant frequency of the cavity

be ωC , the intrinsic cavity linewidth be κ, and the rate of a photon scattered

by the microsphere be γsc . For simplicity, we assume the linewidth of the

cooling laser be much smaller than the cavity linewidth.

x

z

cavity
cooling laser

trap laser

 

c o o l i n g  l a s e r

ωL -  ωM

ωL +  ωM

ωL ωC

c a v i t y  t r a n s m i s s i o n  c u r v e(a) (b)

Figure 7.1: (a) Scheme of 1D cavity cooling. A microsphere is trapped inside
an optical cavity with a dual-beam trap. (b) Principle of 1D cavity cooling.
The frequency of the cooling laser (ωL) is slightly smaller than the resonant
frequency of the optical cavity (ωC). The mechanical vibration of the trapped
microsphere at frequency ωM induces two side bands of the laser at frequencies
of ωL − ωM and ωL + ωM .

164



When γsc � κ� ωM , the system is in the resolved-sideband limit. The

mechanical vibration of the trapped microsphere will induce two side bands

of the laser at frequencies of ωL − ωM and ωL + ωM (Fig. 7.1(b)). If the

frequency of the cooling laser is red-detuned from than the resonant frequency

of the cavity by ωM , the blue sideband ωL +ωM will be on resonance with the

cavity and the red sideband ωL− ωM will be further away from the resonance

of the cavity. Photons in the blue sideband leak out of the cavity because

they are on resonance, while photons in the red sideband are trapped in the

cavity. Thus on average the photons which come out of the cavity have larger

frequency than the photons which come into the cavity. These photons carry

away energy that is from the kinetic energy of the microsphere. Thus the

photons cool the vibration of the trapped microsphere.

Let us consider a microsphere at position z moving with momentum p

along the z axis inside of a driven cavity. The microsphere causes the reso-

nant frequency of a cavity with intrinsic resonant frequency ωC0 to shift by an

amount [17]:

δωC = −1

2

∫
d3rδP (r) · E(r)∫
d3rε0E2(r)

· ωC0 , (7.1)

where E(r) is the bare cavity mode profile, and δP (r) is the variation in per-

mittivity introduced by the microsphere. Thus the resonant frequency of the

cavity with microsphere is ωC = ωC0 + δωC . If the diameter of the microsphere

is much smaller than the wavelength of the laser, we can use Rayleigh ap-

proximation. In Rayleigh approximation, we have P (r′) ≈ αindE(r)δ(r − r′),

where r is the center-of-mass position of the microsphere, αind = 3ε0V ( ε−1
ε+2

) is
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its polarizability, V is its volume, and ε is the electric permittivity.

The classical motion of the microsphere along the z axis can be de-

scribed by the following coupled equations for the cavity field E, the particle

momentum and its position [127]:

Ė = [−κ− γsc(z) + i∆C − iδωC(z)]E − α, (7.2)

ṗ = −|E|2 d
dz
δωC(z)−Mω2

Mz, (7.3)

ż = p/M. (7.4)

Here ∆C = ωL − ωC0 is the detuning of the laser relative to the resonant fre-

quency of the empty cavity, and α describes the external pump laser. Because

the cavity mode is a standing wave, the scattering rate γsc(z) and the frequency

shift δωC(z) have the shape of cos2(2πz/λ). This classical model predicts the

microsphere will stop as t→∞.

Quantum mechanical calculations show that the microsphere will not

stop completely. In the limit ωM � κ and taking the cooling rate Γcool ≈ κ

(can be achieved by control the power and detuning of the cooling laser), the

steady-state phonon number of the vibration is [17]:

〈nf〉 ≈
κ2

16ω2
M

+
γsc
κ
. (7.5)

Thus quantum ground-state cooling (〈nf〉 < 1) can be achieved if ωM � κ and

κ � γsc. The value of γsc depends on the size of the microsphere, the waist

of the cavity mode and the length of the cavity. Calculations using Rayleigh

approximation show that 〈nf〉 < 1 can be achieved at reasonable conditions for
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microspheres with diameter smaller than 400 nm when the wavelength of the

cooling laser is 1064 nm [106]. However, the Rayleigh approximation is only

valid when the size of the microsphere is far smaller than the wavelength of

the laser. It overestimates the scattering rate by about 3 orders of magnitude

when the diameter of the microsphere is the same as the wavelength of the

laser [56]. Thus we believe that ground-state cooling with a cavity should be

possible for microspheres with diameter of 1 µm or slightly larger.

7.2 3D ground-state cooling with a single cavity

A microsphere will scatter the cooling laser to all three dimensions and

cause 3D heating. The heating effects of laser noise are also 3D. If only one-

dimensional motion is cooled efficiently, the others will be heated continuously

and the microsphere will eventually be kicked out of the trap. In order to

achieve ground state cooling of an optically trapped nanosphere, we must use

a 3D cooling scheme. We can add two more cavities for cooling the other two

dimensions, but the system will become too complex to be realized experimen-

tally. A better method to cool and measure the 3D motion of a nanosphere

is to use the TEM00, TEM01, and TEM10 modes of a single cavity [19]. The

TEM01 and TEM10 beams can be generated from a TEM00 beam by two

phase plates [128]. Each one of these three modes can be coupled to the mo-

tion of a trapped microsphere along one orthogonal axis. Thus they can be

used to cool and detect the 3D motion of a microsphere.

Trapping single atoms in a high-finesse cavity driven by three lasers at
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TEM00, TEM01, and TEM10 modes simultaneously has been demonstrated

in an experiment already [129]. A recent experiment also used a tilted cavity

TEM10 mode to measure the trajectories of single neutral atoms determinis-

tically [130].

For simplicity, we consider a microsphere with size much smaller than

the laser wavelength. In this case, the microsphere is in fact a nanosphere.

Figure 7.2: (a) A nanosphere is trapped by a dual-beam optical tweezer inside
of a cavity. The cavity is driven by three lasers in TEM00, TEM01 and TEM10
modes to cool the 3D motion of the trapped nanosphere. (b) Three cooling
modes TEM00, TEM01, and TEM10, and their radial distribution. The black
dot represents the position of the trapped nanosphere. Figure is courtesy of
Z. Q. Yin.
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The nanosphere is trapped in a cavity by an optical tweezer, as shown in Fig.

7.2. The trapping frequencies are ω1, ω2, and ω3 along the z, x, and y axes, re-

spectively. The cavity is driven by three lasers in TEM00, TEM01 and TEM10

modes to cool the 3D motion of the trapped nanosphere. The TEM01 laser is

s-polarized, and the TEM00 and TEM10 lasers are p-polarized. The TEM01

and TEM10 lasers have almost the same frequency, and the TEM00 laser has

a frequency different from those of the TEM01 and TEM10 lasers. Thus the

TEM01 laser can be separated from the other two lasers by a polarizing beam

splitter, and the TEM00 and TEM10 lasers can be separated by a grating.

The frequency differences between the TEM00 and TEM01 lasers can be very

large, and the TEM01 and TEM10 modes are orthogonal in polarizations.

Therefore the interference between the three cavity modes can be neglected.

The TEM00 mode laser is used to cool the motion of the nanosphere

along the z axis, the TEM01 mode laser is for cooling the motion along the

y axis, and the TEM10 mode laser is for cooling the motion along the x

axis. The resonant frequencies of the cavity modes ac1, ac2, ac3 are ωc1, ωc2,

ωc3, respectively. The detunings between the lasers and the cavity modes are

∆cj = ωjc − ω
j
L (j = 1, 2, 3). Let us use aj to characterize the phonon mode

along qj direction with q1 = z, q2 = x, q3 = y, Ωj to be the driving strength

of the lasers and Uj to characterize the coupling between the cavity mode acj
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and the nanosphere. In the limit that ε� 1, we have [19]

U1 =− 3V

2Vc1
exp(−2x2 + 2y2

w2
) cos2(k1z + ϕ1)ωc1,

U2 =− 3V

2Vc2

x2

w2
exp(−2x2 + 2y2

w2
) cos2(k2z + ϕ2)ωc2,

U3 =− 3V

2Vc3

y2

w2
exp(−2x2 + 2y2

w2
) cos2(k3z + ϕ3)ωc3,

where Vc1 = (π/4)Lw2 and Vc2 = Vc3 = (π/16)Lw2.

Let us assume the trapping lasers to be much stronger than cooling

lasers, and neglect the effects of cooling lasers on trapping. If we carefully

choose the location of the trap, such as z0 = 0, x0 = y0 = 0.25w, ϕ1 = π/4,

and ϕ2 = ϕ3 = 0, the gradients of the three light fields lie approximately along

the three axes. The effective Hamiltonian is [19]

Heff =
3∑
j=1

[
~ωja†jaj − ~∆ja

†
cjacj +

~Ωj

2
(acj + a†cj)

+ ~gja†cjacj(aj + a†j)
]
,

(7.6)

where gj = qzeroj ∂U(x, y, z)/∂j|x=x0,y=y0,z=z0 characterizes the coupling strength

between the cavity mode and the oscillation of the nanosphere, and qzeroj =√
~/2Mωj is the zero-point fluctuation for the phonon mode aj. In general,

g1 can be one to two orders larger than g2 and g3. This effective Hamiltonian

(7.6) is valid when the vibration amplitude of a trapped nanosphere is much

smaller than the wavelength of the laser.

In the limit of resolved sideband cooling where ωj � κj, and when the

driving strength is small, the final phonon number is [19, 131]

nmj = −
(ωj + ∆′cj)

2 + (κj/2)2

4ωj∆′cj
, (7.7)
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where ∆′cj is the effective detuning between the driving laser and the cavity

mode acj. In the special case of ∆′cj = −ωj, the final phonon number is

nmj = (κj/4ωj)
2 � 1. Thus the motion of the microsphere can be cooled

to ground state in all three dimensions in the resolved sideband regime. The

cooling rate is Γj = g2
j |αj|2/[κj(1 +

κ2j
16ω2

j
)], where αj is the amplitude of the

cavity mode acj.

7.3 Heating effects of laser noise

In a real experiment, the noise of lasers may cause significant heating

of the motion of an optically trapped microsphere and may prevent ground-

state cooling. The heating effect due to the photon shot noise of a laser has

been found to be negligible [17]. However, the experiment is most likely to be

limited by classical noise sources in the laser beams rather than the photon

shot noise [19].

Let us first consider heating effects from the trapping laser [132]. In

order to achieve ground-state cooling, the total heating rate from laser intensity

fluctuation and laser pointing fluctuation should be much smaller than the

cavity cooling rate. The relative intensity fluctuation of a laser is defined as

ε(t) = (I(t) − I0)/I0, where I0 is the average laser intensity and I(t) is the

laser intensity at time t. The heating rate due to intensity fluctuation can be

obtained by using a first-order time-dependent perturbation theory [132]:

Γε ≡
〈Ė〉
E

=
π

2
ω2
jSε(2ωj) (7.8)
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where Sε(ω) = 2
π

∫∞
0
dτ cos(ωτ)〈ε(t)ε(t + τ)〉 is the one-sided power spectrum

density of the relative intensity noise. For a trap frequency on the order of

MHz, Γε approaches the order of 10−1 Hz when the Sε(ω) is on the order of

10−14 Hz−1.

The laser pointing fluctuation causes fluctuation of the position of the

trap center. The heating rate due to pointing fluctuation is [132]:

Γpj ≡
〈Ė〉
~ωj

=
π

2
Mω4

jSj(ωj)/(~ωj), (7.9)

where Sj(ω) is the power spectrum density of position fluctuation of the trap

center. Here the heating rate Γpj denotes the increase of the phonon number

per second. If we want the Γpj to be on the order of 10−1 Hz, we must have

Sj(ωj) to be about 10−35 m2/Hz for ωj ∼ 1 MHz. Experimentally, Sj(ω)

has been able to be controlled to less than 10−34 m2/Hz for ω ∼ kHz [133].

For frequencies much larger than the resonant frequencies of an instrument,

Sj(ωj) drops down quickly. Therefore, it should be possible to control the laser

pointing fluctuation to be small enough to have Γpj ∼ 0.1 Hz.

For the cavity cooling laser, the dominate heating source is the phase

noise of the laser [134–136]. The phase noise of the laser is related to the finite

linewidth of the laser. The field of a laser with finite linewidth can be written as

ε(t) = εeiφ(t), where the phase noise φ(t) is assumed to be Gaussian with zero

mean value. For a Lorentzian noise spectrum with Sφ̇(ω) = 2ΓLγc/(γ
2
c + ω2),

and correlation function 〈 ˙φ(s) ˙φ(s′)〉 = ΓLγc exp(−γc|s − s′|), where ΓL is the

linewidth of the laser and γ−1
c is the correlation time of the phase noise, the
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minimum phonon number limited by the phase noise is [135]

nph = nc
ΓL
κ

γ2
c

γ2
c + ω2

j

. (7.10)

If ΓL = 1 kHz, γc = 3 kHz, ωj = 106 Hz, and nc = 107, we have nph � 1.

Thus the heating due to the phase noise of a cooling laser with linewidth on

the order of 1 kHz will not prevent ground-state cooling.

7.4 Applications of cooled microspheres in vacuum

7.4.1 Measuring weak forces

Optically trapped microspheres in water are sensitive to forces on the

order of 10−12 N [137], and have found extensive applications in biophysical

research. For example, optical tweezers have been used to measure the force

exerted by single kinesin molecules and the binding force between two individ-

ual stands of DNA molecules [138, 139].

An optically trapped microsphere in vacuum provides an even more

sensitive force detector. The microsphere (just as a cantilever of an AFM)

is subject to thermal fluctuation forces from the environment. The minimum

force that a microsphere (or a cantilever of an AFM) can detect is linked to the

friction that it experiences from the environment. The minimum detectable

force is [140]:

Fmin =
√

4MΓ0kBT∆b, (7.11)

where Γ0 is the viscous damping factor and ∆b is the bandwidth of the mea-

surement. From this equation, it is clear that a microsphere in vacuum is
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much more sensitive to a weak force than a microsphere in water because of

the smaller damping Γ0. A microsphere is also more sensitive to a weak force

than a normal AFM cantilever because of its smaller mass M . Feedback cool-

ing or cavity cooling do not affect the force sensitivity [141], but they can

localize the position of the microsphere and benefit force measurements.

Figure 7.3 shows the calculated minimum detectable force by a 3-µm

microsphere at different pressures with 1 Hz bandwidth. The force sensitivity

increases when the pressure decreases. Fmin = 2.9 × 10−15 N at 1000 torr,

Fmin = 4.0 × 10−18 N at 10−4 torr, and Fmin = 1.3 × 10−21 N at 10−11 torr.

The microsphere at 1000 torr is already much more sensitive than a common

AFM cantilever, which can measure forces on the order of 1 nN.
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Figure 7.3: Minimum detectable force by a 3-µm diameter microsphere trapped
in vacuum. The measurement bandwidth is 1 Hz.
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This potential force sensitivity is remarkable. For comparison, the New-

tonian gravitational force between two point-like objects is

Fg =
GNm1m2

r2
, (7.12)

where m1 and m2 are two masses separated by distance r. The gravitational

force between two 1 g masses separated by 1 m is 6.67× 10−17 N.

It has been proposed that an optically trapped microsphere can be

used to search for non-Newtonian gravity forces via an enhanced sensitivity of

105 − 107 over current experiments at the 1 µm length scale [142].

7.4.2 Measuring the impact of single molecules

The 3D cavity cooling scheme (Fig. 7.2) can also be used to measure

the 3D motion of the nanosphere. In the limit of resolved sideband cooling

where ωj � κj, and when the driving strength is small (gjαj � κj), the output

field from the cavity aout
cj is related to the phonon mode of the motion of the

nanosphere aj by [19]

aout
cj = −i2gjαj√

κj
aj + ain

cj. (7.13)

Therefore the 3D motion of the nanosphere can be measured by detecting the

output fields. In the resolved sideband limit, the output field is nearly vacuum,

and will have a signal when there are collisions between the residual molecules

in vacuum and the nanosphere.

If the collisions between the molecules and the nanosphere are elastic,

and the nanosphere is in its ground state before the collisions, the average
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increase of the photon number for vibration mode aj after single collisions is

[19]

nj0 =
2kBTenvmmol

~ωjM
, (7.14)

where Tenv is the temperature of the residual molecules that is the same as the

environmental temperature, mmol is the mass the molecule, and M is the mass

of the nanosphere. Since nj0 is proportional to mmol, we can distinguish the

molecules with different masses in the measurement. The effective temperature

Tj of mode aj after single collisions can be obtained from

1

e~ωj/kBTj − 1
= nj0. (7.15)

The distribution of the average increase of the phonon number after single
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Figure 7.4: Distribution of the average increase of the phonon number of the
mechanical mode a3 after single elastic collisions between the nanosphere and
molecules. The mass of the molecules is assumed to be ma = 6.63× 10−26 kg
(blue curve) or mb = 2.18× 10−25 kg (red curve). The mass of the nanosphere
is mb = 1.03× 10−18 kg. The temperature of the gas is 300K. Plot is courtesy
of Z. Q. Yin.
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collisions is [19]

f(nj) =
2√
π

(
~ωj
kBTj

)3/2 exp(−nj
~ωj
kBTj

). (7.16)

Fig. 7.4 shows the calculated distribution of mean phonon increase

after single collisions with two different molecules. The two curves for the

two different molecules are very different. Thus we can distinguish differ-

ent molecules from the measurement. In the calculation, the radius of the

nanosphere is r = 50 nm and the mass of the nanosphere isM = 1.03×10−18 kg

(ρ = 1.96 g/cm3). The optical tweezer is formed by a laser with power of

Pt = 25 mW and wavelength of λ = 1500 nm, focused by a lens with numerical

aperture N = 0.9. The trap frequency is (ω1, ω2, ω3)/2π ' (0.5, 0.5, 0.2) MHz

[106]. The mass of the molecules is assumed to be ma = 6.63× 10−26 kg (blue

curve) or mb = 2.18× 10−25 kg (red curve).

7.4.3 Searching for gravity-induced quantum-state reduction

A cooled microsphere in vacuum can also be used to study the gravity-

induced quantum state reduction[2]. After cooling and creation of a super-

position state in momentum, the optical trap can be switched off to let a

microsphere undergo free-fall in vacuum [106]. The wavefuction will expand

during free-fall and become a superposition state in space. The finite lifetime

of a superposition due to gravity-induced state reduction is predicted to be on

the order of ~r/(GM2) when the superposition is composed of states separated

by a distance larger than the size of the microsphere [2, 6], where G is New-

ton’s gravitational constant. The predicted lifetime is about 3 ms for a 3-µm
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diameter microsphere, which is shorter than the environmental decoherence

time in good vacuum and thus measurable.

Other sources of decoherence must be minimized in order to measure

the gravity-induced decoherence. The laser beams are switched off during

the free fall of the microsphere. So the decoherence due to laser scattering

can be neglected [16]. A dominate environmental decoherence source is the

residual air molecules in the vacuum chamber. The localization rate due to air

molecules is Λair = 8
√

2πmav̄P r
2/(3
√

3~2), where P is the air pressure, ma is

the mass of the air molecules and v̄ is their thermal velocity [16]. Λair can be

reduced by reducing the air pressure and the environmental temperature.

There are many other applications of an optically trapped dielectric

particle near the quantum ground state. Besides trapping glass microspheres,

the dielectric particle can even be a virus or other living organism, in which case

it would be possible to to produce Schrödinger cat states of living organisms

[18].
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Appendix A

Physical properties of some common materials

Refractive Density Dynamic
Material index (g/cm3) viscosity

(at 589 nm) (µPa·s)
Vacuum 1 0 0
Helium @ 0 ◦C, 1 atm 1.000036 0.000176 18.69
Air @ 0 ◦C, 1 atm 1.000292 0.00128 17.21
Air @ 27 ◦C, 1 atm 1.000265 0.00116 18.54

Liquid helium @ -269◦C 1.0245a 0.129 3.319
Liquid nitrogen @ -196◦C 1.199 0.8066 161.4
Water @ 20 ◦C 1.3337b 0.9982 1002
Water @ 40 ◦C 1.3310 0.9922 652.7
Water @ 60 ◦C 1.3276 0.9832 466.0
Ethanol @ 20 ◦C 1.361 0.7893 1074c

Acetone @ 20 ◦C 1.359 0.7845c 306c

Ethylene glycol @ 20 ◦C 1.432 1.114 16100c

Ice (Ih) @ -7 ◦C 1.31d 0.918d

Fused silica 1.458 2.21
α-Quartz 1.544(no),1.553(ne) 2.65
Silica microspherese 1.43 - 1.46 2.0
Polystyrene beadse 1.59 1.05
Sapphire 1.761(no),1.769(ne) 3.97
Diamond 2.418 3.51

Table A.1: Physical properties of some common materials. The values are
taken from reference [143]. aat 546 nm; b imaginary part of the refractive
index of water and ice can be found at [144, 145]; cat 25 ◦C; dvalues from [146];
ematerials and values from Bangs Laboratories, Inc. [147].
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toelectric changring of dust particles in vacuum. Phys. Rev. Lett.,

84:6034, 2000.

[115] R. J. Clark, T. Lin, K. R. Brown, and I. L. Chuang. A two-dimensional

lattice ion trap for quantum simulation. J. Appl. Phys., 105:013114,

2009.

[116] K. Nagayama et al. Ultra low loss (0.1484 dB/km) pure silica core fiber.

Sei Technical Review, 57:3, Jan. 2004.

[117] M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko. Ultimate Q

of optical microsphere resonators. Opt. Lett., 21:453, 1996.

[118] B. J. Skutnik, B. Foley, and K. B. Moran, High numerical aperture silica

core fibers. Progress in biomedical optics and imaging, SPIE, 2004.

[119] A. van Blaaderen, J. van Geest, and A. Vrij. Monodisperse colloidal

silica spheres from tetraalkoxysilanes: particle formation and growth

mechanism. J. Col. Inter. Sci., 154:481, 1992.

[120] G. De, B. Karmakar, and D. Ganguli. Hydrolysis-condensation reactions

of TEOS in the presence of acetic acid leading to the generation of glass-

like silica microspheres in solution at room temperature. J. Mater.

Chem., 10:2289–2293, 2000.

195
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