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For many products, the design process is a complex system involving the 

interaction of many distributed design activities that need to be carefully coordinated.  

This research develops a new tool, called a Bayesian network classifier, to improve one 

specific aspect of this challenge: quantitatively capturing a consensus of which designs 

are feasible options for meeting system-wide engineering requirements.  Classifiers 

enable designers to independently develop and share maps of the feasible regions of their 

design space, enabling set-based collaborative design.  The method is set-based in that 

resources are used to thoroughly understand design tradeoffs before commitment is made 

to a final design.  The method is collaborative because the maps are coordinated between 

design teams to represent the mutually feasible design space of all stake-holders.  The 

benefits are a more thorough understanding of the system-wide design problem across 

team boundaries as well as knowledge capture for future re-use, potentially leading to 

faster product development and higher quality products. 
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Chapter 1: Introduction 

For many products, the design process is a complex system involving the 

interaction of many distributed design activities that need to be carefully coordinated.  

The extent to which a firm excels at this coordination has increasingly been recognized as 

a very important competitive advantage.  Coordinating distributed design activities 

involves not only decomposing complex design problems and sequencing design 

activities, but also searching for satisfactory system-wide solutions.  This research 

develops a new tool to improve one specific aspect of this challenge: quantitatively 

capturing a collaborative consensus of which designs are feasible options for meeting 

system-wide engineering requirements.   

1.1 The Set-Based Collaborative Design Challenge 

The design process is one of discovery, and resources must be allocated to 

balance consideration of a variety of design options with the development of at least one 

design in sufficient depth such that it can be produced and sold.  The set-based 

philosophy is that by taking the time to understand the options and delaying the 

commitment to one design for as long as possible, there is less risk of redesign due to 

failing to meet internal requirements or customer expectations.  The cost of redesign at 

later stages in the development process can be significant if many resources have been 

spent on work that will have to be redone.  The evidence in support of the set-based 

philosophy began primarily with studies of Toyota’s product development process, which 

is discussed in this opening chapter, along with other supporting research.  

Set-based design principles are in practice informally every day because of their 

robustness with respect to group decision making.  The underlying ideas are simple.  If 

two or more people need to agree on something but are not likely to have the same 
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constraints, then the set-based approach is to gather their feasible solutions and to find the 

intersection.  This approach is illustrated in Fig. 1.1 where the horizontal axis represents 

the value to be agreed upon and the vertical axis represents a measure of preference, with 

zero representing infeasibility.  In contrast, a point-based method might begin with the 

first person expressing his most preferred point, followed by the second person 

expressing her most preferred point, followed by iteration until a mutually feasible point 

is agreed upon.  This approach is illustrated in Fig. 1.2.   

Figure 1.1: A Set-Based Approach to Group Decision Making 

Figure 1.2: A Point-Based Approach to Group Decision Making 

Already some process trade-offs are identifiable.  Eliciting someone’s preferences 

over a design parameter’s domain is more costly than generating single preference points 

only when needed.  Hence, one can expect a set-based process to require more time up-

front relative to a point-based process.  So where is the time savings?  In the set-based 
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process, at the end of the negotiation, a set of options exists.  When other people weigh in 

on the decision, they are likely to find a new mutually feasible region that is a subset of 

these options.  However, when a new party enters the point-based negotiation, all of the 

previous stakeholders will probably need to iterate again in order to find a new mutually 

feasible design point.  So, while the point-based approach appears to be resource frugal, it 

is subject to subsequent iteration and the more delayed the iteration, the more costly it 

becomes.  A more complete picture of set-based design within a real product 

development process is discussed next.  

In the 1990’s, in-depth studies of Toyota’s product design and manufacturing 

processes were conducted to understand how they achieved their remarkably low product 

development lead times (Ward et al., 1995; Sobek et al., 1999).  Sobek, Ward, and Liker 

summarize what they call the 2
nd

 Toyota paradox as: “Toyota considers a broader range 

of possible designs and delays certain decisions longer than other automotive companies 

do, yet has what may be the fastest and most efficient vehicle development cycle in the 

industry,” (Sobek et al., 1999).  They attribute this acgievement to what they call set-

based concurrent engineering and identify its three underlying principles as: 

 

1. Map the Design Space. 

 Define feasible regions. 

 Explore trade-offs by designing multiple alternatives. 

 Communicate sets of possibilities. 

2. Integrate by Intersection. 

 Look for intersections of feasible sets. 

 Impose minimum constraint. 

 Seek conceptual robustness. 
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3. Establish feasibility before commitment. 

 Narrow sets gradually while increasing detail. 

 Stay within sets once committed. 

 Control by managing uncertainty at process gates. (Sobek et al., 1999) 

 

The first two principles are the focus of this research, and, specifically, within 

these principles the problem of mapping the feasible regions and finding their 

intersections are addressed directly.  At Toyota, it was noticed that each engineering 

department maintains a checklist that defines their guidelines to ensure feasibility.  These 

checklists are shared among the collaborating teams at the beginning of a new 

development program.  Because this knowledge is accumulated over many development 

programs, the initial cost of mapping the feasible regions is partially mitigated.  The 

knowledge captured within the checklists can lead to very rapid and thorough decisions 

for many tasks.  What the present research provides is a new checklist of sorts that can 

help teams more thoroughly define and communicate their feasible sets of designs.  This 

research also provides two procedures for finding the intersection of the feasible regions.  

To further fortify the claims that set-based design can reduce design process lead 

time despite the higher initial effort, Shahan and Seepersad (2010) conducted research to 

isolate how a simple set-based versus point-based design process can influence iteration.  

The reduction of iteration has long been a focus in the project management literature.  

Steward developed the design structure matrix as a tool to find a better sequencing of 

design tasks such that iteration loops have as few other tasks between them as possible 

(Steward, 1981).  Researchers supplemented this early effort with more refined models 

that include a probability of iteration (Browning and Eppinger, 2002).  Shahan and 
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Seepersad extended the model a step further by considering how the design process might 

affect the probability to iterate.   

There are several potential causes for iteration between dependent design teams 

including errors, infeasibility, and convergence of a coupled analysis.  Focusing on just 

iteration due to infeasibility, two designers conducting design tasks that are dependent 

such that one designer’s results become the input to the other designer’s simulation will 

iterate if the upstream designer chooses a design point that is infeasible to the 

downstream designer.  In this relationship, the upstream designer has sole control over 

choosing the next design point.  In a naïve throw-it-over-the-wall set-based strategy, the 

upstream designer will internally iterate until n design points are found that meet her 

local constraints and send these designs on to the second designer as shown in Fig. 1.3.  

With regard to the second designer who receives a set of n random design points, the 

probability that she will find that m of these designs meet her constraints, too, follows a 

negative binomial distribution.  Thus the upstream designer can locally iterate longer to  

Figure 1.3: A Simple Set-Based Sequential Design Process 
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generate a larger set of designs (a larger n) and thereby reduce the downstream designer’s 

probability of iteration, p. 

Set-based design therefore provides designers with a mechanism to trade-off local 

iteration with iteration between design teams.  However, this study also captured the 

potential inefficiency of set-based design that is the paradox described by Ward, et al.  If 

the end of the design task is defined as discovering the first design that is feasible for all 

stakeholders and if there is no additional cost to iterating between teams, then a process 

can on average be shorter if the downstream check on feasibility of a design is made as 

soon as possible instead of waiting until a batch of n feasible designs is generated.   

Figure 1.4: The Affect of Set-based Design on Lead Time Estimations 

This effect was observed in the results of the study shown in Fig. 1.4 where the cost of 

iterating between teams is decreased from left to right on the horizontal axis and the 

strategy with the shortest lead time shifts from set-based to point-based accordingly 

(Shahan and Seepersad, 2010).  The significance of the set-based concurrent engineering 
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strategy rests upon the broader design context including the design environment.  If 

factors exist that increase the cost of iteration between teams then set-based design 

becomes an important means to reducing project lead time.  This cost could come from 

inefficiencies in communication, competition with other design tasks because of design 

resource constraints or, perhaps most importantly, from extensive rework due to 

cascading dependencies that were based upon using what turned out to be an infeasible 

design.  However, the research in this dissertation provides a way to have the benefits of 

both a low probability of iteration due to set-based design as well as early feasibility 

feedback by using an efficient means for generalizing feasibility knowledge from a set of 

designs to regions of the design space. 

The process just described is the classic throw-it-over-the-wall strategy that 

concurrent engineering seeks to avoid.  The solution is to acquire guidance from 

downstream designers earlier in the design process.  Sequential design processes could 

iterate faster with local gradient and constraint feedback such as typically occurs in 

distributed optimization frameworks.  The design process could also be changed to 

include an initial study by the second designer to propose a target for the first design team 

to try to achieve.  The first designer then iterates locally until she achieves the second 

designer’s target or time runs out.  However, these are point-based solutions that are 

prone to repeating because they do not seek knowledge in broader regions of the design 

space. 

Extensions of point-based processes to reason about sets of discrete targets and 

design points have been proposed by Madhavan et al. (2008) in order to obtain a more 

complete understanding of the trade-offs within the collaborative design space as 

illustrated in Fig. 1.5.  However, this approach only partially mitigates the knowledge 

generalization problem because it is not immediately clear how to extend the feasibility 
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information from each point to the neighboring design space.  If a future interaction 

requested the feasibility of a new design that did not exactly coincide with a prior point of 

the set, there is no clear mechanism for determining its feasibility.  Extending the 

knowledge from a collection of points to regions of the design space allows designers to 

use their own simulation runs to map their feasible regions and query collaborators’ maps 

to gain consensus on the system-wide feasibility of their choices.  As long as a mutually 

feasible design space exists and the error of representing this region is acceptably low, 

the probability of iteration between design teams can be significantly reduced if not 

eliminated. 

Figure 1.5: A Set-Based Sequential Design Process 

Given a collection of feasible and infeasible points, how can this knowledge be 

generalized to judge if a new design is likely to be feasible or not?  The standard answer 

from prior research is to use intervals to capture the knowledge of feasibility over a 

design region as illustrated in Fig. 1.6.  However, the correct feasible region is also 

shown in Fig. 1.6 as having a diagonal boundary such as what might occur if decreasing 
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both independent variables always improves the dependent performance parameter that 

must exceed a certain value or else be infeasible.  The single interval will not accurately 

represent the diagonal boundary between feasible and infeasible designs.  The first set-

based design challenge is to provide a representation of regions of the design space that 

can accurately represent feasible regions better than intervals can.  A quick fix would be 

to use many smaller intervals, dividing the space up into many smaller bins and to label 

each bin as being feasible or not as shown in Fig. 1.7.  But a discrete design space 

imposes severe constraints on how the knowledge of a point’s feasibility is extended to 

the design space.  A more flexible and efficient representation will be introduced in 

Chapter 3. 

Figure 1.6: A Set-Based Sequential Design Process with Intervals 
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Figure 1.7: A Set-Based Sequential Design Process with Histograms 

The scenarios so far described have been primarily sequential in that the 

knowledge concerning feasibility is built up first and then used throughout the design 

process to ensure feasibility.  If the generalization of knowledge from design points to 

design regions can be efficiently accomplished, more immediate feasibility feedback 

between concurrently collaborating designers can be provided as depicted in Fig. 1.8, 

making it possible to have both the set-based benefits of low iteration probabilities as 

well as the efficiency of resource allocation due to sampling only in the most mutually 

promising regions.  For example, a designer will not need to sample their entire design 

space if the majority of it is clearly infeasible for their collaborator.  The sooner each 

team has knowledge of their mutually feasible region, the sooner they can focus their 

resources on exploring that smaller region.  The success of this ideal situation depends 

upon how fast the feasible design region can be accurately captured so that it does not 

significantly mislead collaborating designers.  The second challenge of set-based 

collaborative design is to provide accurate feasibility feedback between collaborating 

designers as early as possible. 
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Figure 1.8: A Set-Based Concurrent Design Process with Regions 

In summary, a design tool is proposed that addresses two principles of set-based 

design: map the feasible regions of the design space and integrate collaborating teams of 

engineers by finding the intersection of their feasible regions.  The perceived benefit is 

that collaborating teams of engineers will be less likely to iterate due to downstream 

discovery of a single design being infeasible, a situation project management research has 

sought to avoid.  The potential reduction of late-stage iteration as well as the knowledge 

capture for facilitating future decision making will improve product development 

efficiency, decreasing lead times and potentially improving product quality.  

Furthermore, the efficient generalization of design feasibility knowledge from design 

points to regions of the design space might allow for concurrently developing and sharing 

maps of feasible regions such that resources can be quickly focused on the mutually 

feasible design region.  The next section characterizes the proposed research in more 

depth. 
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1.2 The Research Scope and Requirements 

The question remains: to what extent should one develop more alternative designs 

versus developing a more detailed understanding of one or more designs?  Throughout a 

design process this question must be asked repeatedly and used to commit resources to 

further evaluation of a concept to determine its feasibility.  The sooner a reliable 

judgment of feasibility can be made, the more efficiently resources can be allocated.  

Automation and simulation relieve some of the pressure to get high fidelity information 

earlier in the design process, and lower fidelity simulations are useful for rapidly 

eliminating concepts.  The research in this dissertation does not address these broader 

aspects of the product development process.  Specifically, it is assumed that simulations 

exist that can provide a uniformly accurate judgment of feasibility of a design alternative.  

It is also assumed that sufficient resources are available to search for feasible solutions 

and that the most influential independent and dependent design parameters have already 

been identified.  These self-imposed constraints provide a reasonable scope for this 

research to present and advance the novel aspects of the proposed approach to set-based 

collaborative design.  Within this scope, requirements for the proposed tool can be better 

defined. 

The first requirement for this research, as motivated in the previous section, is to 

provide a method that is flexible enough to accurately describe the different shapes of 

feasible regions that might arise in collaborative design.  Simple and common monotonic 

conditions will create a diagonal design space, as depicted in the earlier figures, which 

already challenges interval-based representations.  How much more flexible then 

intervals should the proposed representation be?  Simple contours can become quite 

complicated once they are mapped through nonlinear simulations.  Inverse kinematic 

problems are known to lead to disconnected regions of the design space (Moore et al., 



 13 

2009).  The distributed design research has also recognized the need for representing 

disconnected regions of the design space (Liu et al., 2009).  Without the benefit of an 

extensive empirical study of many design problems, one can set the goal high and then 

discuss any trade-offs that occur between the computational costs of more flexible 

representations versus their accuracy.  Taking this latter approach, our objective will be 

to use a representation that can capture arbitrarily shaped and potentially disconnected 

feasible regions of the design space that do not lend themselves to being captured easily 

through simpler means such as intervals.  Figure 1.9 illustrates some hypothetical 

examples. 

Figure 1.9: Arbitrarily Shaped and Disconnected Design Regions 

Not all design problems and processes are complex enough to warrant the 

approach proposed in this dissertation.  Specifically, there should be a significant gain to 

being able to provide another team with information such as: “If you decide to set this 

parameter to x1, then we can achieve a feasible design over this range of values for y, but 

if you set the same parameter to x2, then our feasible region changes to this, and if you ...” 

This information should not be trivially attained by evaluating a simple equation or 
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following a few simple rules.  Meeting this requirement will come with some overhead 

that will naturally need to be weighed against the potential gain, although every effort 

will be made to minimize any additional burden on resources.  Furthermore, whenever 

the burden can be shifted from the designer to the computer without loss of effectiveness, 

it will be.  The second requirement for this research is to automate the mapping process 

in order to minimize the burden on the designer as long as its effectiveness is not 

compromised.  This requirement is in large part based upon the author’s own experience 

in seeing design tools fail to be accepted by designers because they simply shift the focus 

of effort from the original problem to a new problem of using and maintaining the new 

tool without a clear gain.  But this is not an argument in favor of just full automation. 

Companies and the experts they employ have a specialized knowledge of their 

fields.  This knowledge has hopefully helped to define some of their existing tools and 

processes to exploit the structure of the problem the company has decided to solve.  If a 

design tool can leverage this existing knowledge to provide its service more effectively, it 

should.  Evidence in favor of keeping designers in the loop during the search of the 

design space has been found in design steering studies (Carlson et al, 2008).  In terms of 

exploiting knowledge of where and how to search the design space, the design tool 

should, if possible, accommodate knowledge from any source.  This capability can be 

stated as an extension of the second requirement in terms of also being not automated to 

the extent that this will allow it to benefit from external information, such as experience-

based knowledge of the designer.  In this mode of operation, the tool will receive design 

points and knowledge of their feasibility from some external source and use it to produce 

its map of the feasible region.  This is a minimal implementation.  In order to still derive 

some benefit from the maps being developed, the tool would, at the request of its user, 
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make sure its knowledge of design point feasibility is consistent with all collaborators’ 

maps.  The role of collaboration informs the final requirement discussed next.   

In preliminary research, the author sought to construct a design environment for 

the express purpose of defining how set-based design support might further facilitate the 

collaborative design process.  Student designers were required to design the wing of an 

unmanned aerial vehicle, a similar problem to the one used throughout this research and 

presented in depth in Chapter 4.  The team was given the collective goal of finding a 

design that achieved a range over a certain limit as determined by a systems designer 

while also meeting the constraints of both the aerodynamics and structures designers.  

The designers sat around the same table, each with their own laptop, and they were given 

instructions not to share their simulations with other designers.  A successful team 

provided an email trail of simulation input and output results such that all shared 

parameters between the designers agreed in value and the range met or exceeded the 

requirement.   

The design processes that arose within the given experimental context all 

exhibited a lot of verbal collective reasoning about what would make a good design.  

Each designer’s activity proceeded concurrently, balancing their attention between the 

competing threads of learning more about their problem, communicating with the other 

designers about how to best proceed, and testing the performance of each other’s designs.  

The design tool should support such a concurrent and interactive environment.  The goal 

should be to provide the collaborating designers expedient and concurrent feedback on 

the feasibility of their design choices with respect to their collaborator’s constraints.  

Achieving this goal removes the cost of communication from the designer’s attention and 

provides the designer collaborative feasibility information earlier in the design process.  
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The third requirement for the proposed design tool is to support designers working in 

parallel who will develop and share their feasibility knowledge as they desire. 

 

Table 1.1: Research Requirements 

1 
Communicate arbitrarily shaped and potentially disconnected regions of 

the design space. 

2 
Provide a range of automation options from full to no automation of the 

mapping process. 

3 
Support designers working in parallel who can develop and share their 

maps as desired. 

 

The proposed requirements for this research are summarized in Table 1.1.  These 

requirements should be understood as goals to be striven for and that hence have 

informed the direction this research took in development of the proposed tool.  The extent 

to which the proposed method meets these requirements is discussed in depth throughout 

the dissertation.  Coming closer to achieving these goals sets the proposed method apart 

from existing methods as discussed further in the literature review of the next chapter.   

1.3 The Research Hypothesis and Overview 

In light of the requirements set forth in the preceding section, the research 

hypothesis can be stated: 

 

Bayesian networks can be used to facilitate distributed design by providing for a 

set-based and parallel process. The resulting methodology will be set-based in that 

arbitrarily shaped and potentially disconnected regions of the design space are 

communicated between collaborating designers. The resulting methodology will also be 
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parallel in that Bayesian networks can be independently developed and shared as desired 

during the design process. Furthermore, the resulting methodology has the potential for 

anything from full automation to no automation of the mapping process.  

 

This research began with a significant amount of work that led to the 

requirements and hypothesis as developed in this chapter.  The extent to which these 

requirements present a novel advancement to the prior collaborative design research is 

discussed in depth in the second chapter.  The third chapter presents the underlying 

technology that was selected, Bayesian network classifiers (BNC), to meet these 

requirements and discusses any fundamental limitations or additional challenges the 

technology presents in order to meet the stated requirements.  The fourth chapter presents 

a collaborative design problem that is used throughout the research as a testbed to judge 

the extent to which the proposed method meets these requirements.  A baseline solution 

to the example problem is also presented in Chapter 4 to provide a point of comparison 

for the methods developed in Chapters 5-7.  Chapter 5 presents an important 

advancement to BNC’s that eliminates some mapping errors.  Chapter 6 presents and 

validates the exploitation of expert knowledge for significantly improving the efficiency 

of the BNC.  Chapter 7 presents additional search capability that is facilitated by the 

choice in technology and enhances the automation of the process.  Chapter 8 presents a 

new method for finding the intersection of three designers sharing their maps of their 

feasible regions.  The dissertation closes with a discussion of the extent to which the 

requirements within the hypothesis were successfully met and important directions for 

future work. 
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Chapter 2: The Collaborative Design Research Context 

There are several threads of research addressing the needs of set-based 

collaborative design and an attempt is made in this chapter to trace them and to 

understand their relationship to the work presented in this dissertation.  By doing so, the 

contributions of the proposed research will be better understood.  Not all of the 

differences between the proposed approach and the prior research are described here, 

only the most fundamental differences with respect to the broader goals of the 

collaborative design problem as presented in the opening chapter.  Throughout this 

document, other differences are mentioned within the specific context of each chapter.   

The review of existing methods will be informed by the principles developed in 

the opening chapter.  First, the method is to be set-based in terms of generalizing design 

knowledge to promising regions of the design space that can be arbitrarily shaped and 

potentially disconnected.  Second, the method used to capture the knowledge should 

support local and concurrent development by designers who will share their knowledge 

with their collaborators in order to find a mutually feasible design space.  Third, the 

generalization process should be automatable, given a means of determining the correct 

classification of a design point.  The method should also support interactive use by which 

the designer can influence the mapping process in order to exploit expert knowledge.  

This chapter is organized around the first principle with the prior work categorized by 

increasing expressiveness.  Methods that have addressed one or more of the other 

principles in a significant way will also be identified.   

2.1 Points and Point Sets 

The line of research generally called multidisciplinary design optimization 

(MDO) is characterized by the adaptation of centralized optimization techniques to a 
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decentralized framework.  The motivation for the approaches comes from the desire to 

apply optimization techniques to large, system-wide design problems without integrating 

all of the design tasks into a single centralized design problem and accompanying 

analysis, which would be highly computationally expensive.  For many MDO methods, 

process focus typically alternates between a coordinating group and several disciplinary 

subgroups which are given varying degrees of control.  This framework allows for 

parallel processing among the disciplines in between iterations with the coordinating 

group.  Many instances of MDO are point-based in that the hand-off of process focus 

occurs with the communication of a single value for each coupled design parameter and 

its derivatives—if required—between the disciplines and the coordinating group.  

Concurrent subspace optimization (CSSO) (Sobieski, 1988), bi-level integrated system 

synthesis (BLISS) (Sobieski et al., 2000), collaborative optimization (CO) (Kroo et al., 

1994) and enhanced collaborative optimization (ECO) (Roth and Kroo, 2008) are primary 

examples of point-based MDO.  Analytical Target Cascading (ATC) is a noteworthy 

point-based distributed product development method that coordinates hierarchical 

dependencies between design teams using system level targets and weighted sum 

objective functions to encourage teams to converge upon the same design (Kim et al., 

2003).  In contrast to many MDO methods, ATC includes a proof of convergence for a 

nested procedure that recursively coordinates subsystem activity at a system level using 

targets in a hierarchical dependency structure, subject to the problem space being convex 

and continuous (Michelena et al., 2003). 

MDO as a discipline has evolved to adapt more global and set-based optimization 

methods to the coordination of distributed design activity.  Genetic algorithms (GA) are 

set-based in that a population of design options is used to evolve increasingly optimal 

solutions (Holland, 1975; Goldberg, 1989).  In coevolutionary genetic algorithms for 
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MDO (CMDO), disciplines are represented by species and competition within a species 

proceeds according to standard genetic algorithms (Nair and Keane, 2002).  The species 

interact through their coupled variables by posting their top performing values and using 

their collaborator’s posted top performing values in a combinatorially exhaustive 

evaluation of their current generation.  This method is notable for achieving an 

asynchronous, parallel process in the same spirit as the third principle of this research.  

Particle swarm optimization (PSO) works with a set of designs that are each 

incrementally improved based upon local information as well as feedback from the 

collective swarm (Kennedy and Eberhardt, 1995).  Particle swarm has been successfully 

applied to the MDO of an aircraft wing where one discipline handles the aerodynamics 

and major geometric parameters while the sub-discipline optimizes the smaller scale 

structural parameters to minimize weight (Ventner and Sobieski, 2004).   

In another variant of applying genetic algorithms to MDO, Gunawan et al. 

propose an entropy-based multiobjective multidisciplinary genetic algorithm (E-MMGA) 

for encouraging solution diversity at the coordinating level and then using the results to 

seed the parallel disciplinary multiobjective genetic algorithm analyses (Gunawan et al., 

2009).  The results of the design groups are synthesized into a large set of solutions from 

which the next seeds for the design groups are chosen by the coordinating group to 

maximize the population diversity.  The iterations between the coordination group and 

the design groups repeat until there is no improvement in entropy.  The entropy is 

calculated using a density function that is the aggregate of influence functions centered 

on the design points.  The density function is similar to the kernel density estimate used 

in this research although the emphasis in this research is primarily on classification and 

not just indentifying designs on the Pareto frontier.  Future work could investigate using 

an entropy estimate to supplement the search methods developed in Chapter 7. 
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Metamodels, also known as surrogate models, have also been applied to 

multidisciplinary design optimization with many references provided in the summary by 

Sobieski and Haftka (1995).  Because metamodels interpolate the output of simulations 

based upon a discrete set of design points, they can be independently developed and 

shared for the purposes of concurrent distributed design.  In this sense, metamodels 

generalize design results from sets of design points to design regions and then 

communicate results over the entire design domain.  Metamodels however are an 

approximate stand-in for the analyses and they still need to be explored, and this 

exploration still needs to be coordinated by some method.  For example, Batill et al 

(1999) use metamodels to facilitate CSSO, one of the founding MDO methods that was 

first developed without metamodels.  More discerning uses of metamodels will be 

discussed later in the context of applications of game theory to collaborative design. 

This concludes the review of MDO for the purposes of set-based collaborative 

design.  These methods are predominantly optimization-oriented and automated with 

additional overhead associated with coordinating the convergence of the distributed 

design activity.  The set-based characteristics are hence a result of optimization methods 

that develop a population of design possibilities such as GA’s and PSO.  These 

population-based optimization methods only support the goals of set-based design to the 

extent that they are multi-objective and attempt to describe trade-offs within the design 

space as opposed to converging upon a single optimum.  There is minimal knowledge 

capture for future use if the only result of the process is a single design point. 

A primary example of a method designed specifically to uncover the tradeoffs in a 

design problem with competing goals is the compromise decision support problem 

(cDSP) (Mistree et al., 1993).  Within this framework, collaborators exchange goals for 

shared parameters that are traded off against local goals and that are subject to meeting 
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local constraints.  With a judicious choice of goals, a Pareto optimal set of designs can be 

found such that improving achievement of any one goal comes at the expense of less 

achievement of any other goal.  One of the strengths of the cDSP is the wide applicability 

of the framework to several different approaches.  Two such approaches that are notable 

for their contribution to collaborative design are reviewed next. 

Lewis and Mistree (1998) present a game theoretic model of collaborative design 

that hinges upon constructing and sharing rational reaction sets (RRS).  A designer’s RRS 

is a metamodel that represents his best choice for the parameters that he is responsible for 

as a function of design parameters that are shared with other designers and effect his 

results.  When designers share RRS’s they are in effect sharing a region of the design 

space defined over shared parameters.  An RRS represents more processed information 

than typical metamodels or simulations; it represents a designer’s preferred objectives 

mapped back onto a design domain.  An RRS summarizes design knowledge that would 

be prohibitively expensive to represent if it were not approximated using metamodels.  

The result of this approach however is by itself not particularly set-based because a 

designer uses another designer’s RRS by submitting a choice for his/her design 

parameters and getting back their collaborator’s best option, in the form of a single point.  

However, by iterating over one’s own design options and obtaining one’s collaborators’ 

choices, tradeoffs can be mapped out with a set of points that otherwise might require 

extensive iteration between teams.  A notable variation of the same principle includes 

concept selection from a system’s perspective (Malak and Paredis, 2007) 

The cDSP has also been used for the purposes of set-based collaborative design in 

a framework called the set-based method (SBM) wherein a set of targets are generated at 

the system level that become subsystem goals (Carlos et al., 2006; Madhavan, 2007; 

Seepersad et al., 2007; Madhavan et al., 2008).  The subsystem teams tradeoff local goals 
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and goals on shared parameters in order to communicate a Pareto set of design options to 

the system level design team.  However, as discussed in the first chapter, because this 

approach does not generalize the knowledge from the set of points to regions of the 

design space it may not be clear if a new point will be acceptable or not.  With the 

exception of metamodels, the same limitation applies to all of the other methods reviewed 

in this section.  Even though metamodels interpolate the design space they still require 

other means for defining regions of the design space.  The most common way of moving 

beyond this limitation is to use intervals, the subject of the next section, to reason about 

regions of the design space. 

2.2 Intervals 

Interval analysis gained recognition in the United States through the work of 

Moore (1966).  The original goal of interval analysis was to trace the propagation of error 

or variation through calculations from intervals over the independent variables to 

intervals over the dependent variables within which the correct answer could be 

guaranteed to lie.  Because these errors are assumed to be independent variations on each 

input, multiple occurrences of a variable within a calculation each contribute to the 

resulting breadth of the output’s interval which can hence be a function of the form of the 

calculation.  Example applications include numerical rounding errors and worst-case 

tolerance stack-ups.  The power of interval analysis methods is their guaranteed enclosure 

of the desired result and their expedience that comes from determining interval 

propagation rules through commonly used functions.   

A notable extension of interval methods to mechanical engineering design is the 

Method of Imprecision (MoI), based upon fuzzy set principles (Wood and Antonsson, 

1988).  The MoI extends interval methods by including a fuzzy measure of preference 

between zero and one defined over each design parameter.  Fuzzy preferences are 
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propagated through the design calculations into the performance space by using interval 

analysis methods for every interval defined by a different level of preference.  A couple 

of the strengths of the MoI is the inclusion of preference and the careful consideration of 

methods of propagating and combining preferences that adhere to well defined properties 

(Wood et al., 1989; Otto and Antonsson, 1991).  The applicability of the MoI to set-based 

collaborative design was recognized and researched primarily in terms of how different 

preferences between teams can be negotiated and trade-offs explored (Antonsson and 

Otto, 1995; Scott and Antonsson, 1996).  For example, the property of annihilation is 

important because each team must have the ability to veto a design that does not meet 

their constraints.  However, the MoI did not consider the dependencies between design 

parameters, resulting in only hypperectangular representations of the feasible regions.  

Although it should be recognized that fuzzy methods could be employed for the purposes 

of representing more complicated regions of the design space. 

Ward’s mechanical design compiler (MDC) research began prior to his 

involvement with the studies of Toyota’s set-based product design process although it 

already showed signs of his preference for reasoning about regions of the design space in 

its extensive use of intervals (Ward, 1989).  The two main strengths of the MDC are the 

extension of interval methods to different mechanical design modes of reasoning, called 

the labeled interval calculus, and applying the calculus in the form of rules that reduce the 

set of possible choices (Ward et al., 1995; Finch and Ward, 1997).  In the context of 

collaborative set-based design, Chang and Ward (1995) propose a decentralized and 

concurrent approach where designers communicate the marginal cost of the shared 

parameters that they control and seek robust solutions that are insensitive to variations in 

the shared parameters that they do not control.  This is called conceptual robustness.   
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Conceptual robustness has also been applied in the game theoretic approach using 

robust design methods to make the leader’s decisions insensitive to the variation of the 

followers design variables, providing greater design freedom for the follower (Chen and 

Lewis, 1999).  The interval-based constraint satisfaction (IBCS) method also extended 

the game theoretic approach for set-based collaborative design (Panchal et al., 2007).  

Each designer in the IBCS method uses arc and box consistency from interval analysis to 

sequentially reduce the intervals, gradually eliminating incompatible regions of the 

design space.   

Set-based approaches that use intervals have also been proposed that take a 

systems perspective on the collaborative design problem.  Recent work by Liu et al. 

(2007) uses the quantization algorithm to divide the system level design space into 

hyperrectangle domains called ranged sets.  They propose the communication of the 

ranged set that is the most achievable by subsystems as determined by a flexibility 

metric.  Interestingly, the flexibility metric is determined by integrating an aggregation of 

achievability functions centered on the sample points.  As will be shown in more detail in 

Section 3, this is similar to the kernel probability distribution used in this research.  

However, Liu et al. do not propose communicating the aggregated achievability 

functions, and instead propose communicating the ranged set as the targets. 

Other interval methods consider how to choose between concepts that have a 

range of performance due to imprecision in the early stages of design.  Wood and Otto 

(1995) developed a method for propagating probabilistically characterized uncertainty 

and an associated confidence metric to help define the extent to which a concept 

outperforms another according to the resulting probability distributions over ranges of a 

performance parameter.  Probabilistic methods are also used by Malak et al. (2009) to 

reason in a set-based manner about either eliminating or further exploring concepts based 
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upon ranges of system level performance parameters.  The proposed approach does not 

presently consider the systems perspective of needing to choose between concepts as in 

the previous two examples and takes instead a subsystems perspective of mapping system 

level requirements to the subsystem design space.  The systems perspective will be left 

for future work. 

 Many of the interval-based methods reviewed in this section take the perspective 

of propagating ranges of values defined over input parameters through simulations in 

order to find the range of values a performance parameter can take on.  This perspective 

will be called the forward propagation approach.  In contrast, this research seeks to find 

the regions of the input domain that satisfy interval constraints on the outputs of 

simulations, called inverse propagation.  The challenge in forward propagation is to find 

combinations of input parameters, which are typically allowed to independently take on 

different values over predefined intervals, that define the limits of achievable output 

values.  As will be seen in Chapter 4, the hyperrectangular regions of independently 

applied intervals, also known as boxes, are not well suited to capturing the more complex 

regions that result from the inverse propagation of intervals through potentially nonlinear 

simulations.  The labeled interval calculus and ICBS have taken a step toward 

considering how dependencies between parameters affect the mutually feasible region of 

the design space however they both still adhere to a box representation of feasibility.  The 

next section presents methods that are able to represent nonrectangular regions of the 

design space, a necessary capability for more accurately reasoning about the inverse 

propagation of intervals.  As an aside, the methods in this section do not directly address 

automation or concurrency of the collaborative design process with the exception of 

ICBS which is a sequential process. 
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2.3 Moving Beyond Parameter Independence 

More sophisticated interval methods have been developed that can represent 

arbitrarily shaped and potentially disconnected regions of the design space.  For example, 

collaborative design using solution spaces (CDSS) uses a 2
k
-tree data structure to 

represent hyperrectangular subdivisions of the design domain where a division occurs 

when any of the 2
k
 corners of a subdivision straddles the boundary between feasible and 

infeasible designs (Lottaz et al., 2000).  However the sampling sequence used to explore 

the design space in the proposed method is considerably more flexible than the 2
k
-tree 

data structure used in CDSS that requires placement of the samples in the corners of each 

hyperrectangular subdivision.  In the proposed method, designers that prefer to choose 

the next design point will be able to do so freely and still have the design point be usable 

by the classifier.  

Joint probability distributions as encoded in a Bayesian network have also been 

used for simulation-based design to represent the feasible region of the design space 

subject to applied constraints (Ivezic and Garret, 1998).  The joint probability distribution 

was visualized using histograms in an agent-based distributed software framework for the 

concurrent design of a frame structure.  The software gives designers visual feedback on 

the feasibility of their design decisions, providing conflict identification and resolution 

capabilities.  The approach is called a simulation-based decision support system (SB-

DSS) and it shares many of the features of this research with some important exceptions.  

The SB-DSS approach uses a neural network to approximate the simulation results and 

then samples the network to generate the design points for the feasibility histogram in a 

fully automated initial step.  The interaction with the designer comes after the feasible 

region has been mapped and a final design choice is identified by narrowing intervals of 

the parameter values.  In contrast, this research addresses more directly which designs to 
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evaluate, placing the designer interaction directly in the sampling loop as opposed to later 

in the final design selection process.  By providing for designer interaction with the 

search process, expert knowledge can be incorporated to guide it. 

In another application of Bayesian networks to engineering design, Xiang et al. 

(2004) propose using collaborative design networks (CDN).  CDN’s are actually 

influence diagrams that are an extension of Bayesian networks to include deterministic 

parameters and measures of utility.  A portion of the nodes and their connecting edges 

represent the feasibility constraints on the design parameters and their dependencies that 

are necessary to represent more complicated regions of the design space than the 

hyperrectangular regions represented by intervals.  CDN’s are also multiply sectioned 

Bayesian networks (MSBN’s) that divide the design space into regions of responsibility 

for distributed solving in an agent-based framework.  The solution to a CDN is the design 

with the maximum expected utility.  However, no procedure is provided to construct a 

CDN or its encoding of the feasible region.  The proposed research provides this 

capability and could be seen as a precursor to using a CDN to reason about preferred 

regions of the design space and not just feasibility.   

Design steering more closely achieves the goal of the proposed research for 

designer guided search.  Design steering uses point sets and histograms among other tools 

to visualize regions of the design space (Carlson et al., 2008).  However, the histograms 

are used only as a visualization tool for feedback to the designer and hence are limited to 

2D and 1D marginal distributions.  Furthermore, design steering is not presented as a 

collaborative design tool so there is no attempt to use the histograms to determine a new 

point’s feasibility.   
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2.4 Discussion 

The methods reviewed in this chapter all have unique perspectives and represent 

important contributions within their context.  Within the context of this research, they all 

have limitations with respect to representing the feasible regions of the design space that 

result from the inverse propagation through simulations of interval requirements for 

performance parameters.  For those methods that are based on a discrete set of design 

points, there is no ability to judge a new point’s feasibility.  Interval-based methods are 

limited to representing only hyperrectangular design regions.  The remaining methods, 

with the exception of design steering, have the ability to represent arbitrarily shaped and 

potentially disconnected regions but are limited primarily in their lack of support for 

integrating the designer into the search process.  One common aspect of these remaining 

methods is that they assume an initial seeding of the design space in order to represent the 

design region of interest.  They focus on providing tools to explore the resulting design 

region as defined by this initial set.  In contrast, the focus of the proposed method is to 

elicit guidance from designers during the creation of the set that is simultaneously used to 

more accurately define the regions of interest, combining the knowledge capture with the 

design space exploration and therefore providing a more expedient design process.  

Chapter 6 demonstrates the possibility of using designer knowledge to improve the 

efficiency of representing regions of the design space. 

Furthermore, the technologies used by these remaining methods, including design 

steering, represent the feasible region of the design space with smaller and smaller 

interval divisions.  In the limit of more subdivisions with ever smaller interval regions, 

these methods will be able to map arbitrarily shaped and potentially disconnected regions 

of the design space.  This approach will not scale well if a grid is used to subdivide the 

design space because the number of bins grows exponentially with increasing dimension.  
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Bayesian networks and the 2
k
-tree can both help mitigate the exponential growth.  

However, discretization of the design space enforces upon every design point an 

unnatural generalization to a rectangular region with a center that is not on the point.  

Much more flexible methods exist that more naturally generalize feasibility knowledge 

from single points to the design space.  Furthermore, prior methods do not exploit 

knowledge from infeasible points.  Methods called classifiers are more flexible and also 

use the infeasible points.  One particularly flexible classifier that is used in this research 

is introduced in the next chapter.  
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Chapter 3.  The Kernel-Based Bayesian Network Classifier 

As motivated in the first chapter, the primary use of classifying a design space in 

terms of acceptability is to help a collaborator decide if a new design point will be 

acceptable or not without running the new design point through a time-consuming 

simulation.  The classifier takes a design point as an input and returns the class label: 

feasible or infeasible.  In this chapter, we present the details of a classifier that uses 

Bayesian networks (BN) (Pearl, 1988) and kernel density estimation (KDE) (Parzen, 

1962; Silverman, 1986; Scott, 1992) in order to create probability distributions that 

interpolate the known acceptability of design points, called the training points, to new 

design points whose acceptability is uncertain.  The use of probability distributions also 

achieves a secondary use of design space classification: to generate new candidate design 

points with a high probability of being acceptable to all collaborating parties.   

Using probability distributions for classification has a theoretical foundation in 

Bayesian decision theory which is covered in Section 3.1.  Section 3.2 formulates how 

Bayesian networks and kernel density estimation are combined to create a very flexible 

model of probability distributions for use in the proposed classifier, called the kernel-

based Bayesian network (KBN) classifier (Perez, et al., 2009).  Sections 3.3 and 3.4 

discuss some practical details of using the KBN classifier.  Section 3.5 discusses the 

classifier’s representation capability.  The final section discusses classification in light of 

the needs of this research, needs which are briefly touched upon next. 

In choosing a classifier for this research, two primary classifier properties were 

sought.  First, the classifier should have a richer representation than intervals.  As will be 

demonstrated in Chapter 4, intervals have a very limited representation capability for the 

acceptable regions of design spaces.  Ideally, the classifier for this research would be able 
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to accurately represent any arbitrarily complex region of the design space asymptotically 

in the number of training points, and the modeling error would decrease rapidly as more 

training points are acquired.    

The second necessary classifier property for this research involves the ability to 

generate new design points from the mutually acceptable design space of all 

collaborators.  For this reason, probability distributions have been chosen to represent the 

acceptable regions because they can be sampled.  With enough training points, the 

samples will have a high probability of also being acceptable.  Being able to generate 

new and acceptable design points allows for a focusing of resources upon the important 

regions of the design space using adaptive sampling methods that are developed in 

Chapter 7.   

3.1 BAYESIAN DECISION THEORY 

Using probability distributions for classification has a theoretical foundation in 

Bayesian decision theory.  This section presents these foundations based upon (Dudda 

and Hart, 2001).  Consider a two category classification:    to represent the satisfactory 

region of the design space and    the unsatisfactory region.  The classification is over a 

bounded D-dimensional design space for which a single design instance can be 

represented by a vector,           
 .  If we can express the class conditional 

probability of a design instance given a category,       , then Bayes formula can be used 

to find the probability of the class given design parameters,       , according to Eq. 3.1. 

 

       
          

    
 

          

             
 
   

 (3.1) 

 



 33 

Design   is classified as a member of class    and not class    when         

       .  It follows that we can ignore      to get Eq. 3.2 as the rule for assigning class 

membership. 

 

Decide c1 if                           (3.2) 

 

It can be shown that the optimal decision boundary for minimizing classification 

error is when the two sides of Eq. 3.2 are equal.  Risk in terms of loss factors,    , 

associated with deciding that the design point belongs to class ci when the correct 

classification is class cj can be incorporated as shown in Eq. 3.3 from which we see that 

losses from decisions that result in misclassification rescale the two sides of Eq. 3.2.  The 

effect of this rescaling on the performance of the classifier will be demonstrated for an 

example design problem in Chapter 4. 

 

Decide c1 if                                 (3.3) 

 

If the data exists to effectively approximate the class prior probabilities,     , 

then the class conditional probabilities of   given c,       , can be approximated, 

otherwise the posterior probabilities of c given  ,       , should be directly 

approximated or the effect of the priors should be removed by setting them equal.  In this 

research, the prior probabilities are estimated using the frequencies of each class 

according to Eq. 3.4 where the padding of a single observation of each class helps to 

moderate the approximation at very low sample sizes.  N is the total number of training 

points, and Nc is the total number of training points for class c. 
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 (3.4) 

 

For the task of approximating the class conditional probability distribution, 

      , we next describe Bayesian networks and Gaussian kernel probability distribution 

estimation. 

3.2 KERNEL DENSITY ESTIMATION AND BAYESIAN NETWORK CLASSIFIERS 

The formulas that combine Bayesian networks and kernel density estimation are 

presented in this section, resulting in a very flexible model of joint probability 

distributions that can be used to approximate the class conditional probability used in 

classification.  The development of the formulation follows the results of several 

researchers: (John and Langley, 1995; Hoffman and Tresp, 1996; Bosman and Thierens, 

2000).   

Bayesian networks (BN) encode a factored joint probability distribution (PD) as a 

directed acyclic graph (DAG) where the edges from the parent nodes to a child node 

mean that the child node’s probability is conditionally independent of its non-

descendants, given its parent nodes (Pearl, 1988).  In other words, setting the values of a 

node’s parents makes that node dependent only upon its descendent nodes, i.e. the nodes 

that are reachable following any chain of arcs from that node.  Hence, using the definition 

of conditional independence, a BN represents a joint PD in the factored form shown in 

Eq. 3.5, as long as the variables are numbered in topological order, meaning that all 

ancestors of a variable have lower numbers and all descendents of a variable have higher 

numbers.  The notation     will be used to denote the K variables,   , that are the parents 

of variable   . 
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     (3.5) 

 

The root nodes of the graph, which have no parents, have probabilities that are 

simply       .  Figure 3.1 shows two extreme examples of BN’s: the fully dependent 

joint PD represented by a fully connected DAG on the left, and the fully independent 

joint PD represented by the empty DAG on the right. 
 

Figure 3.1: Fully Dependent (left) and Fully Independent (right) BN’s 

By having a formula that calculates the conditional probability of a variable that is 

dependent upon the value of its parent variables, the joint PD can be evaluated according 

to the topological order of the graph, beginning with the root nodes and proceeding to 

their children, and then evaluating their children’s children until the leaf nodes are 

reached.  A particular instance of a variable,   , will be denoted by    .  The j
th

 instance 

out of N total known design points will be expressed as    .  Using this notation, Eq. 3.6 

expresses the conditional probability that is calculated at each node of the graph in terms 

of the already evaluated K parents of variable    for the current j
th

 instance.  
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Kernel density estimates (KDE), also known as Parzen windows, are used in this 

research for calculating the conditional probabilities at each node of the BN (Parzen, 

1962; Scott, 1992; Silverman, 1986).  KDE’s center a function, the kernel, at each of N 

design points.  The magnitude of the kernel is a function,  , of the distance from a point 

in the design space,   , to the design point at its center,    , as well as kernel parameters, 

 .  The probability density estimate for each point in the design space is the average of 

the influence of all N kernels, according to Eq. 3.7. 

 

     
 

 
            
     (3.7) 

 

A weighted average can also be used according to Eq. 3.8. 

 

                   
   ,           

    (3.8) 

 

A common kernel function used in probability distribution estimation is the D-

dimensional normal distribution of Eq. 3.9 with a diagonal covariance matrix.  Gaussian 

kernels are used exclusively throughout this research. 

 

         
 

                  
 

 
                       

 

     
 
 
       

 

   
  

     
(3.9) 

 

In the context of KDE’s the j
th

 kernel has its mean set to the data point,    . 

 

             
 

     
 
 
       

 
 
 

   
 

  
      

 
       

 
    

 
     

(3.10) 
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Using Eq. 3.8 and Eq. 3.10, the D-dimensional, normal, weighted KDE is formulated 

according to Eq. 3.11.  Figure 3.2 shows a uniformly weighted KDE composed of three 

normal PD’s. 

 

                    
     (3.11) 

 

Figure 3.2: An Example Kernel Density Estimate 

Using weighted KDE’s for BN’s requires calculating the conditional probability of Eq. 

3.6 with Eq. 3.11.  For the calculation of the N+1 value of the i
th

 variable, the joint 

probability of a variable’s K parents with known values    
    can be expressed as Eq. 

3.12. 
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The conditional probability then becomes Eq. 3.13. 

 

                    
     

     
 
       

 
       

 
    

       
 
    

 
   

 
   

      
     

            
 
   

 
   

 
(3.13) 

 

The probabilities from the normal distributions of the parent variables have already been 

calculated and they can be collected into a coefficient,  , as shown in Eq. 3.14. 

 

                
     

 
    

       
 
    

 
   

      
     

       
     

 
   

 
   

   
 
       

 
     

 
         

  
    (3.14) 

 

Hence, the PD of each variable is a weighted average of normal distributions with each 

weight,   , being a function of the parent probabilities and       
   .   

The weights, w
j
, can be used to determine the class conditional probabilities by 

uniformly weighting the design points that are known to be members of a class and 

setting the remaining weights to zero.  This scheme requires storage of an array of 

weights for each class, c.  Equation 3.15 shows the resulting class conditional 

formulation.   

 

                  
  
 
   

 
    

       
 
    

 
   

      
     

       
     

 
   

 
   

   
 
       

 
     

 
       

 
  

  
    (3.15) 

 

Two extreme cases of network connectivity represent very well studied 

classifiers: Naïve Bayes for the fully independent BN given the class (John and Langley, 

1995), and Parzen windows for the fully dependent case (Jain and Ramaswami, 1988).  

Figure 3.3 depicts the graphical representation of these two methods for the purposes of 
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classification where the dependency on class is represented by the root C node of the 

graph. 

Figure 3.3: Parzen Window (left) and Naïve Bayes Classifiers (right). 

Equations 3.3-3.5, 3.15 define the kernel-based Bayesian network (KBN) 

classifier (Perez et al., 2009).  These foundations were implemented in Matlab


 as a 

collection of m-files that are presented in Appendix A.  As discussed in the previous 

section, this classifier is used for two purposes: to classify a new point and to sample the 

acceptable region.  The procedures for performing these tasks and the associated time 

complexity are described next. 

3.3 EVALUATING, SAMPLING, AND TRAINING 

This section presents the time complexity for the three primary uses of the 

proposed classifier: training, classifying a new point, and sampling one of the class 

conditional probability distributions.  One of the strengths of using the BN representation 

of the class conditional probability distributions is the ability to trade off the 

computational overhead of classifying and sampling for representational capability.  The 

time complexity for these tasks is determined by the longest chain of dependencies in the 

BN from the root to the leaf nodes.  As the longest chain of dependencies is reduced and 
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hence the time complexity is reduced, the representational capability of the classifier is 

also reduced, providing the capability to scale the computational overhead to the 

difficulty of the problem. 

Both evaluation and sampling of the classifier proceeds in ancestral order: 

beginning with evaluating or sampling the distributions of the root nodes and proceeding 

to their children’s distributions, and then to their children’s children nodes, and so on 

until the leaf nodes have been evaluated or sampled.  Thus the longest chain of 

dependencies, of length L, is the outer loop that determines the time complexity of both 

evaluating and sampling the flexible classifier (assuming a parallel implementation).  For 

the fully connected graph this length is equal to the dimensionality of the problem, D.  

For the fully disconnected graph    .  At each node in the graph, the conditional 

probability distribution of Eq. 3.15 has to be either evaluated or sampled.   

In order to classify a new point, the PD of both the acceptable and unacceptable 

regions is evaluated.  This involves an inner loop over all N training points.  Thus the 

time complexity of classifying a new point is      .  In order to sample the PD of Eq. 

3.15, three steps have to be taken: 1) the K mixing coefficients, π, of the parent nodes 

have to be calculated, 2) the resulting discrete multinomial probability distribution of K-1 

degrees of freedom needs to be sampled, and 3) the 1 dimensional normal distribution 

determined from step 2 needs to be sampled.  The combined time complexity of these 3 

steps will be summarized as     .  The time complexity of sampling the BN would 

hence be        except for the possibility that some samples will lie outside of the 

desired maximum and minimum limits for the design parameters.  Samples lying outside 

of the design space domain will have to be rejected.  If this occurs M times, the resulting 

time complexity of sampling the BN is        .  As the number of training points 

increases, the width of each kernel PD can be decreased which in turn will decrease M.  
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Furthermore, the acceptable region of the design space may be far enough from the 

search domain boundary such that the probability of rejection is essentially zero.  Thus 

the time complexity of sampling will most likely be       .  The time complexities of 

using the flexible classifier are summarized in Table 3.1, including the training time 

complexity.  It should be noted that another optimization is possible that performs all or a 

fraction of the N calculations of each training point’s contribution to the PD in parallel.  

However, to fully realize this optimization would probably require a high number of 

parallel processors. 

Table 3.1: Time Complexity for using the KBN Classifier 

Task 

Time Complexity 

Fully Disconnected General Fully Connected 

Training 1 1 1 

Classifying           ,             

Sampling             ,              

 

The time to train the classifier is minimal because all that is required is to store 

the training points in an array.  However, a training time complexity of one assumes that 

the correct classification is known for the training points.  This research follows the 

assumption that either a simulation or an experiment can be performed to determine the 

“correct” classification.  Hence the cost of “correctly” evaluating the acceptability of the 

training points is equal to the cost of running N simulations or experiments.  However, it 

is common throughout the literature to assume that the class of each training point is 

known at training time.  In addition to assuming that the correct classification is known, 

the low cost of training also assumes that all other algorithm settings are preset through 
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an easily evaluated rule such as a formula or table.  This need not be the case.  The KBN 

classifier has several inputs that need to be either set by the user interactively, preset 

according to some rule, or adaptively set through some predefined procedure.  These 

options are discussed in the next section. 

3.4 THE KBN CLASSIFIER’S SETTINGS 

The user of the KBN classifier has several decisions to make: the graph 

connectivity, the kernel widths (standard deviations), the loss factors, the search domain, 

and the training points all have to be determined either in advance of training the 

classifier or as an augmentation to the training procedure.  The training data includes both 

the design parameters as well as the classification for each design point in terms of being 

either acceptable or not.  In the next chapter, an example unmanned aerial vehicle (UAV) 

design problem is presented that is used throughout this research as a motivating example 

for exploring methods that help decide which standard deviations and training data to use.  

The use of loss factors is presented once in Chapter 4 as an illustration of their potential 

use to a designer.  The choice of graph connectivity is only lightly touched upon in 

Chapter 4, leaving an in depth treatment of this topic to future work.  The maximum and 

minimum values for the design parameters that define the search domain have been 

assumed to be either available from expert knowledge or preliminary experimentation.  

The important choice of how to set the standard deviations will now be discussed in more 

depth. 

Research has shown that the choice of smoothing parameter or, for the case of 

Gaussian kernels, the standard deviation, is the most important consideration when using 

KDE’s (Scott, 1992).  Small standard deviations result in very peaked distributions with a 

distinct maximum centered on each data point, while large standard deviations smooth 
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out the influence of each data point into a single peaked distribution as shown in Fig. 3.4.  

In between these extremes the distribution will allow for both local structure as well as 

good generalization results to interpolated points.  Two methods for setting the standard 

deviation are used in this research.  The first approach follows (John and Langley, 1995) 

in using Eq. 3.16 as a heuristic for setting the kernel width for the classifiers with an 

additional scale factor,   .  Note that Eq. 3.16 with      was the formula used in (John 

and Langley, 1995). 

 

   
  

  
  (3.16) 

 

This research also follows the practice of normalizing the data according to Eq. 

3.17 such that all design points are between zero and one for each dimension (Perez et al., 

2009; Siminoff, 1996).  The normalization is provided by the search domain limits on 

each dimension as defined by minimum,       , and maximum,       , allowable values 

for each dimension.  Normalization allows one to consider one standard deviation per 

class. 

 

   
          

               
  (17) 

Figure 3.4: The Effect of Standard Deviation on the Kernel Density Estimate 
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The strength of using Eq. 3.16 to set the standard deviations is its fast evaluation time.  

However, experimentation is required to set the scale factors,   , for each class.  

Furthermore, the rigid functional form might not reliably lead to decision boundaries that 

always correctly classify all of the training data. 

The second approach to setting the standard deviations adaptively finds the largest 

standard deviation of each class that still correctly classifies all of the training points to a 

specified posterior class probability.  Adaptive approaches will have longer training 

times, but they do have the potential to avoid the experimentation required to find a good 

rule.  In addition, the novel method for adaptively setting the standard deviations 

developed in Chapter 5 was designed to generate decision boundaries that are reliably 

consistent with a designer’s knowledge at the time of training. 

Observe that in Eq. 3.18 the standard deviations decrease as the number of 

training points increases, resulting in sharper kernels.  Sharper kernels are a result of the 

higher density of training points having an increased capability to capture local details in 

the classified regions of the design space and hence being able to reduce the classification 

error.  The next section discusses this relationship in greater depth. 

3.5 REPRESENTATION CAPABILITY 

A classifier’s performance can be measured by the percentage of test points that 

are misclassified, called the error rate.  The more training points there are, the more 

kernels that are available to approximate the decision boundary, ideally leading to lower 

error rates.  If the classification error can be reduced by increasing the number of training 

points, can the error rate be made arbitrarily small for any shape of the acceptable region?  

Are there theoretical restrictions to the shapes of regions that can be represented by the 

KBN classifier given an unlimited number of training points?  In this section we show the 
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relationship between Parzen window classifiers and radial basis function (RBF) networks 

following (Web, 2002).  RBF networks have the property of being able to approximate 

with arbitrary accuracy any continuous function given that the RBF network is of the 

form of Eq. 3.19 with a kernel function, K, that is bounded, continuous, and not a 

polynomial (Liao, et al., 2003).  Here   is used in place of    from previous equations to 

emphasize that the result need not be a probability distribution. 

 

       
    

 
  

     
 

(3.19) 

 

By defining the weights,   , according to Eq. 3.20 and setting the centers,   , of the 

kernel function to the sample points,   , the Parzen window classifier with Gaussian 

kernels has a posterior probability of the class given the design point, repeated here as 

Eq. 3.21, with the same functional form as the radial basis function network. 
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(3.21) 

 

Eq. 3.21 meets all of the requirements for being a universal approximation to continuous 

functions, however, the weights of Eq. 3.20 for the fully connected KBN classifier are not 

solved for directly as they are in RBF networks, and the centers of the kernels are 

restricted to the finite number of sample points.  Thus the representational capability of 

the fully connected KBN classifier used in this research is limited.  In practice, the user of 

the KBN classifier will have to live with a certain amount of classification error that 
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depends upon the number of samples as well as the complexity of the shape of the 

classified region.  The error due to the shape of the classified region being beyond the 

representational capabilities of the classifier is not reducible. The error due to having a 

finite number of samples is reducible by taking more samples, although there are 

practical limits to this remedy.   

 While the fully connected KBN classifiers are not universal approximators, they 

are capable of representing any probability distribution arbitrarily accurately as the 

number of training points increases, a property called strong point-wise consistency 

(Scott, 1992).  In fact, (John and Langley, 1991; Perez et al., 2009) have shown that as 

long as the BN connectivity correctly represents the true conditional independencies in 

the underlying probability distribution, all of the KBN classifiers are strongly point-wise 

consistent.  However, the feasible regions are not likely to be generated from probability 

distributions.  The feasible regions will typically come from inequality constraints on the 

output parameters of nonlinear simulations and hence have no connection to being 

represented by probability distributions.   

The properties of universal approximation and strong point-wise consistency both 

suggest that the classification error should decrease with more training points.  However, 

the more training points that are required, the higher the initial development cost of the 

classifier and the higher the cost of classifying new designs.  For difficult problems of a 

high dimensionality, a large number of training points might be required to achieve an 

acceptable level of misclassification error.  For these difficult problems either more 

resourceful classifiers must be used or the correct answer will be determined directly 

through a simulation or experiment. 

For these reasons, the KBN classifier used in this research cannot be guaranteed 

to meet the requirements of the hypothesis that arbitrarily shaped regions of the design 
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space can be represented.  Nevertheless, the KBN classifier will be demonstrated in the 

following chapters to have better representational capability than the simpler interval-

based classification.  Furthermore, kernel density estimation has known advantages to the 

use of histograms.  With KDE’s, the influence of each design point is with respect to its 

distance to other design points as opposed to its presence in a predesigned grid.  The 

resulting probability distribution is also smooth and hence more easily searched—a 

feature that will be exploited for the adaptive sampling developed in Chapter 7.  

Furthermore, classifiers take advantage of more knowledge than histogram-based 

methods because they use both the feasible and infeasible design points to determine the 

decision surface.  For all of these reasons, the KBN classifier is a good candidate for 

advancing the state of the art in set-based collaborative design.  While methods such as 

RBF networks exist that are universal approximators, they come at a higher 

computational cost than the proposed method because of the matrix inversion used to 

solve for the weights.  Future work needs to explore the tradeoff between increasing 

computational cost and more flexible classifiers.  The extent to which universal 

approximation is important enough to justify the additional computational cost needs to 

be better understood. 

3.6 DISCUSSION 

KBN classifiers were presented in this chapter for the stated purposes of this 

research: to classify and sample arbitrarily shaped and potentially disconnected 

acceptable regions of the design space.  The connectivity of the Bayesian network can be 

used to control the complexity of the classifier model, trading off representation 

capability with computational cost of classifying or sampling.  In its most complex form, 

the KBN classifier almost meets the ambitious representational requirements for this 
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research: approximating arbitrarily shaped and potentially disconnected design regions 

with asymptotically reducing error as a function of the number of training points.  

Despite this theoretical shortfall, the representational capability of the classifier is rich 

enough to demonstrate acceptably low classification error rates with a reasonable number 

of training points for the example collaborative design problem presented in Chapter 4.  

The KBN classifier will also be demonstrated to perform significantly better than the 

interval-based classification most commonly used for set-based collaborative design.  

Furthermore, because the flexible classifier uses probability distributions to represent the 

classified regions it facilitates the adaptive sampling methods developed in Chapter 7 

because the mutually acceptable region of the design space can be sampled.   

Classifiers other than the KBN classifier presented in this chapter could be used 

for all of the purposes of this research.  Classifiers, such as Bayesian networks with 

mixtures of Gaussians (Davies and Moore, 2000) and relevance vector machines 

(Tipping, 2001), can provide faster evaluation times at the expense of increased training 

time while maintaining the representation and sampling capabilities of the KBN 

classifier.  Classifiers that can be sampled are called generative.  Classifiers that are not 

generative but are determinant, such as RBF networks (Powell, 1987) and support vector 

machines (Vapnik, Golowich and Smola, 1997), do not produce probability distributions 

over the design space that can be sampled.  Determinant classifiers can be used for all of 

the purposes of this research other than the adaptive sampling presented in Chapter 7. 

The user of the KBN classifier must choose how to set several tuning parameters, 

most importantly the smoothing parameters.  Some of these choices are elaborated upon 

in the following chapters of this dissertation with Chapter 5 being dedicated to choosing 

the smoothing parameters and Chapter 7 being dedicated to choosing the training points.  

Choosing the graph connectivity and the loss factors are only briefly discussed in Chapter 
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4, while choosing the search domain is not discussed any further.  More detailed 

treatments of choosing the graph connectivity, the loss factors, and the search domain 

have been reserved for future work.  Chapter 6 presents the possibility of incorporating 

expert knowledge in the form of monotonic relationships to improve the efficiency of the 

KBN classifier. 

Once a designer has constructed the classifier of their design space, choices 

remain for how to share the classifier with their collaborating designers as well as how to 

incorporate the results of other designer’s classifiers into one’s own classifier.  These 

coordination decisions are elaborated upon in depth in the next chapter where it is shown 

how the classified acceptable region of a design space can be mapped through 

simulations onto another group’s design space.  Chapter 8 extends the results of Chapter 

4 to the case of sharing classifiers between groups with common design variables. 
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Chapter 4.  Classifiers for Collaborative Design: Vertical Coupling 

This chapter has four purposes.  First, the KBN classifier just developed in 

Chapter 3 is demonstrated which should help solidify the concept of locally using 

classifiers to represent the feasible regions of a design space.  Second, this chapter 

demonstrates how classifiers can be used collaboratively to map one designer’s feasible 

region into another designer’s design space—an example of vertical coupling in 

hierarchical collaborative design.  Third, the simplified UAV wing collaborative design 

problem is introduced and discussed as an ongoing demonstration problem used 

throughout this dissertation to illustrate the proposed methods.  Finally, the enhanced 

representational capability of the KBN classifier with respect to interval classification is 

demonstrated.  In summary, this chapter will demonstrate the usefulness of solving 

collaborative design problems with classifiers that have a richer representational 

capability than intervals.  The UAV wing design demonstration application’s relevant 

features will now be introduced, leaving the details of the problem formulation to 

Appendix B. 

4.1 THE UAV DEMONSTRATION PROBLEM 

Consider the problem of designing an unmanned aerial vehicle (UAV) wing for 

the cruise condition, where the goal is to achieve a range greater than 900 kilometers.  

This problem has been decomposed according to Fig. 4.1 where the aerodynamics team is 

responsible for determining the wing loads based upon the external wing geometry, the 

structures team is responsible for determining the wing weight for a structurally sound 

wing based upon the external and internal geometry, and the systems team determines the 

UAV range based on the results of the aerodynamics and structures teams.  The airfoil 

geometry has been parameterized according to the NACA four-digit, three-parameter  
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Figure 4.1: A Collaborative Design Problem for a UAV Wing 

standard using naca1, naca2, and naca3 as the design variables (Abott and von Doenhoff, 

1959).  In addition to these airfoil parameters, the rectangular wing’s external geometry is 

also characterized by the wing chord, span and angle of attack.  The structures and 

aerodynamics teams have these variables in common.  We will consider further 

simplifications that result in an easily visualized design space by fixing the first two 

NACA parameters which define the airfoil camber, to the reasonable values of 4 and 5 

respectively.  We also fix the angle of attack to 0.6 degrees which is near optimal for this 

airfoil.  The span is automatically adjusted to ensure there is enough planform area to 

achieve a lift of 35 N during cruise.  The remaining design variables common to both the 

aerodynamics and the structure’s design problems are chord, which is the front to back 

width of the wing, and naca3, which is the wing’s top to bottom thickness normalized by 

the chord.   

This example problem is representative of the hierarchical decomposition of 

complex engineering products: the results of subsystem simulations feed into the 

simulation of the product’s performance at the system level.  In addition to this vertical 

coupling across scales, the subsystems share common design parameters that must be in 
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agreement by the end of the design process.  Each design team is responsible for their 

analysis, a responsibility that should not be simply handed over to other teams who do 

not have the expertise required to validate the results.  The analyses have been simplified 

for the sake of research but still maintain enough fidelity such that they correctly capture 

the trends between the inputs and the outputs of each group. 

In low Reynolds number cruise speeds, the drag is dominated by induced drag as 

determined by the aspect ratio (the span divided by the chord) which is controlled in this 

case by the chord.  The lower the chord, the higher the span needs to be in order to create 

enough lift.  A lower chord and higher span increases the aspect ratio and hence reduces 

the induced drag.  However, high aspect ratio wings are long and slender and require 

more internal material in order to keep them structurally sound, and hence they produce 

higher weight designs.  Furthermore, the naca3 parameter is the wing thickness 

normalized by the chord, and therefore a higher chord also allows for a higher thickness 

wing.  Having a thicker cross-section can lead to a more efficient distribution of material 

for increasing the wing’s strength.  Hence, the fundamental conflict of interest for this 

problem is that the aerodynamics team seeks to minimize drag by decreasing the chord, 

and the structures team seeks to minimize weight by increasing chord.  Their conflict can 

be resolved at the systems level where the resulting range of the UAV based upon the 

subsystem results of wing drag and wing weight can be used to determine the best 

tradeoff between weight and drag.   

Low fidelity and fast physics-based design programs were written to capture these 

effects.  For aerodynamics’ calculation of lift and drag, a linear vortex panel method and 

a boundary layer growth calculation were created according to (Katz and Plotkin, 2002) 

and (Moran, 1984), respectively.  Structure’s calculation of weight depends on adding 

enough skin thickness to the wing so that the wing doesn’t yield under 10X static cruise 
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loads based upon an arbitrary cross-section beam bending formula from (Cook and 

Young, 1999).  The systems’ calculation uses the Breguet range equation (Raymer, 

2006), once the fuselage aspect ratio has been optimized for maximum fuel capacity and 

minimum drag using an empirical drag equation from (Hoerner, 1965).  These details are 

noteworthy not just for being physics-based but also because they expose the details of 

each group’s design problem which include internal iterations and optimizations that 

must be repeated for every new input.  Most importantly, if the subsystem design teams 

were given simple directives to minimize drag and weight then they would not converge 

to the same design; coordination is necessary.  The coordination strategy that we follow 

next uses KBN classifiers to map and share feasible regions of the design space.  The use 

of interval-based classification of the design space is also presented to demonstrate the 

improved representation capabilities of the proposed method relative to the simpler and 

more common alternative.  The Matlab
®
 code used to produce the following results is 

presented in Appendix C. 

4.2 UAV SOLUTION 1: BASELINE WITH VERTICAL COUPLING ONLY 

The first design process presented here is simple enough to demonstrate the most 

elementary of applications of KBN classifiers to collaborative design.  The first 

simplification is the coordination of the choice of design points for the shared parameters 

of the subsystems design teams such that for every point of naca3 and chord 

aerodynamics and structures will calculate a drag and weight respectively.  Thus the two 

subsystem teams can be merged into a single team that agrees on how the values of their 

shared parameters are sampled.  The resulting problem decomposition is purely vertical 

as shown in Figure 4.2.  The second simplification is a sequential design process where 

the systems group first explores and classifies their design space before the subsystems  
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Figure 4.2. The UAV Design Problem with Merged Subsystems Teams 

Figure 4.3. The UAV Collaborative Design Process 
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group classifies their space.  The process flow is depicted in Fig. 4.3.  For this initial 

design process, each group is free to choose and evaluate their design points within their 

chosen design space domains independently.  The only aspect of the design process of 

Fig. 4.3 that is sequential is that the classification of the subsystem design space will use 

a thoroughly developed classifier at the systems level in order to map acceptable regions 

of the system level design space in terms of drag and weight to acceptable regions of the 

subsystem level design space in terms of naca3 and chord.  This section presents how 

classifiers that are well developed (i.e. have low error rates) can be propagated vertically 

through each group’s nonlinear simulations starting at the highest level requirement for a 

range greater than or equal to 900 km.  Alternative design processes are discussed after 

this baseline design process has been demonstrated. 

The systems group’s design process begins with a Halton sequence (Halton, 1960) 

of 100 design points.  This choice of sampling was used for its space filling yet irregular 

pattern as well as its ability to be sampled sequentially with a progressively finer 

sampling resolution without the need to know how many sample points to use 

beforehand.  These points are the training samples for the classifiers.  At the systems 

level, the design points are evaluated for a range and classified according to whether or 

not the range is greater than or equal to 900 km.  The combined aerodynamics and 

structure’s team also explores their design space using a Halton sequence of 100 design 

points.  The only choice in construction of the Halton sequence is the intervals for the 

design parameters.  Once minimum and maximum values have been chosen for each 

design parameter, the sequence of design points is fully determined.  It is assumed that 

enough prior knowledge is available to choose effective intervals for the design space 

domain.  Table 4.1 presents the maximum and minimum design parameter values used in 

this example.  In addition to the design intervals, each design group must choose the 
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standard deviation of the Gaussian kernels.  Equation 3.16 is used as the rule for setting 

the standard deviations for this solution.  The scale factor,   , is chosen through 

experimentation as if the designer were interactively editing the resulting classifiers.  

Table 4.2 presents the values of    that are used for each design group’s classes.   

Table 4.1: UAV Design Parameter Limits 

Parameter Minimum Value Maximum Value 

drag 0 1 

weight 0 5 

naca3 1 15 

chord 0.1 0.4 

 

Table 4.2: Scale Factors for Rule-Based Calculation of the Kernel Widths 

 Acceptable Class Unacceptable Class 

system 0.25 0.25 

subsystem 0.10 0.50 

 

The remaining settings for a completely determined classifier are the loss factors 

and the BN connectivity.  In this section we present solutions for both the fully connected 

BN, the Parzen window classifier, and the completely disconnected BN, the naïve Bayes 

classifier, at both the systems and subsystems levels.  Initially, the loss factors are chosen 

to not have an influence on the decision.  The effect of the loss factors will be presented 

in the next section.  The results from an interval classifier are also presented in this 

section.  Before showing these results, an example is presented in Fig. 4.4 of how the 
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systems level probability distributions and decision boundary change to capture the 

correct decision boundary for 10, 20 and 100 training points for the fully connected KBN 

classifier without loss factors.  The correct contour, based upon calculating the ranges for 

a grid of 10,000 points and using the contour function in Matlab
®
, is also shown as a 

solid line in the 100 training point graph at the bottom left of Fig 4.4. 

Figure 4.4. The Systems’ Classifier for 10, 20, and 100 Training Points 

Figure 4.5 presents the decision boundaries of the system level fully connected, 

fully disconnected, and interval classifiers after all 100 samples have been evaluated.  At  
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Figure 4.5. The Classifier’s Affect on the Systems’ Decision Boundary 

each stage of sampling and classification, a set of 1000 test samples generated as a 

Hammersley sequence (Hammersley, 1960) was used to find the fraction of the designs 

that are classified as having ranges greater than or equal to 900 km but that actually have 

ranges less than 900 km, called the false positive error rate.  Likewise, the false negative 

error rate can be found as the fraction of designs that are classified as having ranges less 

than 900 km but that actually have ranges greater than or equal to 900 km.  These error 

rates are shown in Fig. 4.6 as a function of the number of training points.  The significant 

result is that the error rates decay to near zero for both the naïve Bayes and the Parzen 

window classifiers.  The fact that the naïve Bayes classifier can achieve near zero error 

rates is perhaps surprising given the assumption of independence between the variables.  

However, as can be seen in Fig. 4.5, the assumption of independence between variables 

does not mean that the decision boundary must be parallel to the variable axes.  

Considered independently, the density estimates will be higher for both parameters at the 

lower ends of their domains.  Multiplying two such distributions together will result in 
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higher probability estimates in one corner that diminish with distance from that corner, 

producing the diagonal decision surface in the center of Fig. 4.5. 

 

Figure 4.6. KBN Classifier Error Rates for the Systems’ Design Space 

Figure 4.7. Interval Classifier Error Rates for the Systems’ Design Space 

Using intervals as classifiers for each design parameter presents a challenge when 

classifying the systems design space.  At one extreme, the intervals over the drag and 

weight can be chosen to correctly classify all of the known good designs.  This strategy 

produces larger intervals, labeled A in Fig. 4.5, that reduce the false negative error rate 

but increase the false positive error rate.  At the other extreme, small enough intervals, 
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labeled B in Fig. 4.5, can be chosen that eliminate all false positive error rates but at the 

expense of allowing more false negative error rates.  This fundamental tradeoff in 

interval-based classification schemes is shown in Fig. 4.5 for the case of all 100 training 

samples.  The error rates are shown in Fig. 4.7 as a function of the number of training 

points.  The significant result is that, for this classification problem, the error rates from 

using intervals are high and do not converge with larger numbers of sample points.  The 

error rates for interval classification have converged to a fixed total of about 25% after 

100 samples.  In contrast, the error rates for the BN classifiers have converged to a total 

of less than 5% after 100 samples. 

Following the process flow chart of Fig. 4.3, the subsystem classification process 

can proceed now that the systems classifier exists with sufficient detail.  For this solution, 

the design points in terms of naca3 and chord for aerodynamics and structures have been 

coordinated to be equal for the two subsystems, such as might be done in a planned 

experiment.  In this case, for every subsystem design point from the Halton sequence, 

both the weight and the drag are calculated by subsystem models; so, they are known at 

the time of classification.  Thus, the system level KBN classifier can be used directly to 

determine if a given subsystem design point’s combination of weight and drag will result 

in a range greater than or equal to 900 km, without running the design point through the 

systems’ simulation.  If either the weight or the drag is outside of the system level design 

space, the design point is classified as unsatisfactory.  In this manner, the subsystem 

teams map the system level classification to a classification over their design variables 

(i.e., naca3 and chord).   

From Fig. 4.8-4.11 we see that the subsystem level KBN classification produces 

an island for which the classification error rates decrease as more points are sampled.  
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The correct decision boundaries are also shown as a contour determined by a 10,000 

point grid of design points whose actual ranges were calculated.  For the interval  

Figure 4.8. The Subsystems’ Classifier for 10, 20, and 100 Training Points 

classifiers, subsystem design points were classified using a system-level interval chosen 

to be half way between intervals A and B of Fig. 4.5 because the smaller interval B 

classified zero satisfactory designs at the subsystem level.  Again, for the subsystem 

classification problem, the interval error, shown in Fig. 4.11 converged to a high fixed 
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rate of about 17% after 100 samples.  In contrast, the KBN error rates decreased to less 

than 10% after 100 samples. 

These results demonstrate the improved ability of KBN classifiers to map the 

satisfactory regions of the design space relative to interval-based approaches for the  

Figure 4.9. The Classifier’s Affect on the Subsystems’ Decision Boundary 

Figure 4.10. KBN Classifier Error Rates for the Subsystems’ Design Space 
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Figure 4.11. Interval Classifier Error Rates for the Subsystems’ Design Space 

presented example problem.  This improvement is primarily a result of the ability of 

KBN classifiers to produce decision boundaries that are not necessarily parallel to the 

parameter axes.  The error rates of interval classifiers are compounded by the nonlinear 

mapping from the subsystem design spaces to the system level calculation of the UAV 

range.  If the correct UAV range for each of the subsystem design points were calculated 

and used to classify the subsystem design space directly, the subsystem intervals would 

produce lower error rates.  These results show that satisfactory regions do exist for which 

interval-based classification errors will always be relatively high no matter how complete 

our knowledge of the design space; they are a fundamentally limited representation of our 

knowledge.  For these types of spaces, KBN classifiers can perform better than interval 

methods, even with the fully disconnected BN classifier’s assumption of independence 

between parameters.  Additionally, KBN classifiers appear to preserve the ability to 

converge to low error rates even when they are mapped to another design space, although 

more test problems are needed to verify this result.  The next example presents how loss 

factors can be used to trade off false positive and false negative error rates for the case 

when a misclassification is too costly. 
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4.3 UAV SOLUTION 2: BASELINE PLUS LOSS FACTORS 

The error rates in KBN classifiers can be traded off using the loss factors in a 

manner similar to how false positive and false negative error rates were traded off with 

larger or smaller intervals.  The loss factors allow us to shift the decision boundary 

inward or outward, trading off false negative error rates for false positive ones as shown 

in Fig. 4.12 for N = 100 training points and a ratio of loss factors, 
   

   
, of 100 that biases 

the decision toward negative classifications.  The loss factor can be set interactively or 

with a predetermined formula such as Eq. 4.1 

 
   
   

 
    

  
 (4.1) 

 

This formula was arrived at by trial and error with the intent of bringing the false positive 

misclassifications to zero at every stage of sampling.  Figure 4.13 confirms this result, 

where the false positive misclassification is less than 3%, and the spike in false positive 

error rates seen in the early stage of sampling has been completely eliminated.   

Figure 4.12. The Loss Factor’s Effect on the Systems’ Decision Boundary 
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Figure 4.13. KBN Classifier Error Rates for the Systems’ Design Space 

These results demonstrate that loss factors can be used to set the false positive 

error rates to zero.  This capability is important for the case when it is simply too costly 

to have a misclassification.  As more knowledge is gained, the loss factors can be 

adjusted to move the decision boundary closer to the correct boundary.  This is a very 

important property for classifiers that are used in mechanical engineering design where 

the infeasible region often means mechanical failure.  Loss factors can also be used to set 

the false negative error rates to zero.  This capability is important for the case when the 

classifier is being used to identify promising regions of the design space for further 

exploration and potentially good designs should not be excluded. 

4.4 DISCUSSION 

The UAV design process presented in this chapter demonstrates the fundamentals 

of KBN classifiers and their ability to represent complicated, acceptable design regions 

for the purposes of coordinating collaborating design groups according to set-based 

design principles.  What wasn’t considered in this design process is the final selection of 

a design, before proceeding with the design process.  Instead, what was presented was the 

identification of a smaller region of the design space that should contain the best 
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performing designs that are acceptable to all design groups.  The final design can be 

chosen from this reduced region with a high probability of meeting all design 

requirements by sampling the class conditional probability distribution of the acceptable 

class.  This is a fundamental goal of set-based design: to identify the mutually acceptable 

design space region within which to restrict future designs such that downstream iteration 

due to infeasibility is avoided.  The belief is that the additional time spent generating the 

more thorough understanding of the design space relative to point-based methods will 

ultimately save time due to avoiding expensive later term iteration.   

Other design processes than the one presented here are of course possible.  In 

general there is no limitation on the order in which the design groups perform their 

classifications.  For example, if the subsystem group had a very restrictive set of local 

constraints, they could classify the acceptability of their design space first, producing a 

classifier over the drag and weight variables that could be used at the system level as a 

check of feasibility in addition to having a high enough range.  Because not all of the 

combinations of drag and weight that define the systems’ search domain will be 

achievable by the subsystems group, future work might identify methods for choosing 

unachievable design points in order to construct a meaningful classifer that originates 

from the subsystems group.  As it turned out in this example, the entire subsystem search 

domain was acceptable to the subsystems teams.  In general it will be more efficient to 

identify the most restrictive requirement first and to use it to classify the acceptable 

regions.  This will allow other teams to restrict their search over a smaller region of their 

design space.  This performance gain will be investigated further in Chapter 7 where the 

possibility of adaptively sampling the design space is developed.  What would happen if 

there is no mutually acceptable region of the design space?  For example, what if the 

systems group needed a range of 1000 km?  In this case, the systems group would have to 
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adjust their constraints such that a mutually feasible region is found.  Another possibility 

exists that is left for future work: the subsystem team could classify their region into the 

best and worst performing categories as defined by their proximity to the system level 

decision boundary or according to a measure of performance. 

The design process of the preceding example could have been executed in a more 

concurrent fashion by allowing each group’s classifiers to be shared at every stage of 

sampling.  It is evident that allowing another team to use a higher error rate classifier will 

result in that team also having a less accurate local classification.  It is not an issue in this 

case because the results of the local classifier are not used to adaptively select the next 

design points.  Instead, the design points are independently predetermined as a space 

filling sequence.  By the time both teams have sampled all 100 design points, the error 

rates of a more concurrent design process will be identical to the error rates of the 

presented serial process.  The concurrent sharing of less accurate classifiers would 

become an issue for adaptive sampling when the results of the local classifier are used to 

determine the next sampling points.  In this case, the adaptive sampling would not be as 

efficient because inaccurate information would be used to make the decision concerning 

where to sample next.  This issue will be discussed further in Chapter 7 when adaptive 

sampling is developed. 

In this discussion, the two subsystem teams, structures and aerodynamics, were 

merged into a single team for this baseline approach.  This simplification was achieved 

by coordinating the values of their shared design parameters.  Chapter 8 demonstrates a 

design process that decouples the training points between structures and aerodynamics, 

allowing each subsystem design team to sample their shared design space independently.  

This consideration of using classifiers for horizontal coupling provides an even greater 



 68 

flexibility in the scheduling of design activity at the potential cost of less accurate 

classifiers. 

In addition to these process considerations, this research considers other methods 

for designers to construct their classifiers.  Chapter 5 presents a novel method for 

automating the choice of kernel standard deviation.  Although this will come at the cost 

of increased computational expense, it will eliminate additional time lost in 

experimentally finding a good rule for setting the standard deviations.  Chapter 6 presents 

two simple ways to use knowledge of monotonic relationships for building classifiers 

with significant performance and accuracy gains over the baseline method presented in 

this chapter.   
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Chapter 5. Adaptively Setting the Standard Deviation 

Chapter 3 introduced the KBN classifier and identified the standard deviation of 

the kernels as the most important setting affecting the classifier’s performance.  In the 

previous chapter, a formula was used to set the standard deviations.  This approach 

provided good performance at the expense of using experimentation to tune the formula 

until it performed as expected.  In this chapter, a novel method is developed that 

adaptively sets the standard deviations of the KBN classifiers automatically, avoiding the 

need for initial experimentation.  The proposed method finds the largest standard 

deviations that still provide an acceptable level of posterior class probability for the 

training set.  The new approach directly captures the expectations of a designer that 1) the 

classifier will correctly classify all of the training data, and 2) the smoothness of the 

decision boundary can be controlled in order for the classifier to interpolate well to 

unexplored designs provided that the first expectation is not violated.  The proposed 

method is essentially an inexpensive automation of the process that was used to 

empirically arrive at the formula that set the standard deviations in the previous chapter.  

Furthermore, the method’s results can suggest better formulas.  Before providing the 

details of the proposed method in Section 5.2, the existing approaches to determining the 

standard deviations are discussed next.  In Section 5.3, the proposed method is 

demonstrated on the UAV design problem introduced in Chapter 4.  The final section is 

reserved for a discussion.   

5.1 BACKGROUND 

A designer using a classifier to find the boundary between feasible and infeasible 

regions of the design space will expect the training points to be correctly classified.  

However, depending on the location of the training points and the standard deviations of 
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the normal kernel this may not always be the case.  Figure 5.1 shows the result of using a 

fully connected classifier for the systems design problem with the scale factor,   , of Eq. 

3.16 set to 1.  From this example, one can see how overly smooth density estimates can 

lead to misclassifying a training point.  This observation led to the experimentation in the 

previous chapter that resulted in using the smaller scale factors of Table 4.2.  The goal of 

this chapter is to provide a means for automating the setting of the standard deviations 

such that all of the training points are correctly classified, removing the burden of 

experimentally determining good standard deviations from the designer. 

Figure 5.1. The Effect of the Standard Deviation on Classification of the Training Points 

The challenge of setting the standard deviations in kernel density estimation is 

well known in the literature and many methods have been proposed.  The majority of the 

methods are motivated by true density estimation problems that seek to estimate qualities 

of the targeted correct probability distribution that generated the training data (Silverman, 

1986; Scott, 1992; Siminoff, 1996; Bowman and Azzalini, 1997; Sheather, 2004).  The 

formula that was used to set the standard deviations in the previous chapter is tied to 
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arguments that follow this motivation.  However, the acceptable regions of the design 

space classified in this research are most likely not produced by probability distributions 

but by inequality constraints over the outputs of simulations.  Hence the emphasis should 

be on producing low classification errors and not on density estimation.  Accordingly, the 

following discussion reviews the methods for density estimation only to the extent that 

they inform the use of formulas such as Eq. 3.16.   

The use of a formula to set the standard deviations is attractive because it is 

computationally cheap.  But how can one arrive at an effective formula with a minimum 

of experimentation?  The formula should have some properties in order to preserve the 

strong point-wise consistency of kernel density estimates: 1) the standard deviation, σ, 

must reduce to zero as the number of training points, N, increases to infinity, and 2) the 

product, Nσ, must go to infinity as the number of training points, N, increases to infinity 

(John and Langley, 1995; Perez et al., 2009).  Beyond these basic requirements, Eq. 5.1, 

called the Normal reference rule, can be derived from minimizing the asymptotic mean 

integrated square error for approximating a multivariate Gaussian distribution using 

Gaussian kernels (Silverman, 1986).  Notice that Nc in Eq. 5.1 refers to the number of 

points in each class whose separate class conditional PD’s are independently estimated, 

leading to two standard deviations,     , for the acceptable and unacceptable classes, c, for 

each i of D dimensions.  The    is the standard deviation of the training points. 

 

      
 

   
 
 
         

  
 
      

  
 (5.1) 

 

The first term on the right side of Eq. 5.1 is always relatively close to one, and hence 

Scott’s rule, Eq. 5.2, is often used (Scott, 1992). 
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   (5.2) 

 

It is also common to scale the data by each dimension’s standard deviation,    , such that 

Scott’s rule reduces to Eq. 5.3 (Perez, et al., 2009; Siminoff, 1996). 

 

   
 

  
 
      

   (5.3) 

 

Because the data used to explore the design spaces in Chapter 4 was chosen to uniformly 

fill a rectangular region of the design space of known extents, each dimension was scaled 

by the width of the interval defining the search domain instead of the standard deviation.  

Equation 5.4 is Scott’s rule scaled by the relationship between the standard deviation of a 

uniform distribution and the width of the domain over which the uniform distribution is 

nonzero.  Note that this relationship between the uniform distribution and the data’s 

standard deviation is approximate because the data from each class fills only a portion of 

the total search domain.  Later, this will be corrected for by using a scale factor. 

 

   
 

     
 
      

   (5.4) 

 

For the initial experimentation performed for the UAV design problem, Eq. 5.4 did not 

reduce the standard deviation fast enough in order to correctly classify all of the training 

data as the number of training points increased.  Instead, a scaled version of the heuristic 

used by (John and Langley, 1995) and repeated here as Eq. 5.5 was found to perform 
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better on the training set than Scott’s rule.  Note that (John and Langley, 1995) used 

    . 

 

   
  

   
   (5.5) 

 

Eq. 5.5 requires the two scale factors, αc, to be set through initial experimentation.  

Notice that, unlike in Eq. 5.4, the rate of decay of the standard deviation with respect to 

the number of training points in Eq. 5.5 is independent of dimension.  However, John and 

Langley (1995) use the same decay rate for classification problems with 4-19 continuous 

dimensions.  The problems used by John and Langley (1995) to verify their classifier are 

different than the problems considered in this research.  Nevertheless, their decay rate 

worked well on the UAV wing design problem as long as some experimentation was 

performed to set the scale factor.  In subsequent sections of this chapter, the effectiveness 

of Eq. 5.5 is compared to the proposed adaptive method for setting the standard 

deviations, and a new rule is suggested that is better suited to the uniformly distributed 

training points used in this research. 

Adaptive methods for setting the standard deviation based upon minimization of 

an estimate of the classification error are common in the literature for KDE-based 

classifiers (Dudda et al., 2001; Jain and Ramaswami, 1988; Specht and Romsdahl, 1994; 

Babich and Camps, 1996; Georgiou et al., 2006).  Of the proposed methods, a search that 

minimizes the K-fold cross-validation estimate of the classification error is the most 

common approach.  K-fold cross-validation is a technique that efficiently uses the data to 

estimate how well the classifier’s performance generalizes to points that it has not been 

trained on.  How it works is that the model is repeatedly trained K times using N-N/K of 

the data and tested using the remaining N/K data points.  The final estimate of the 
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model’s performance is the average of the K train and test cycles (Dudda et al., 2001).  

This approach is summarized in Eq. 5.6.  When K is equal to N the method is called 

leave-one-out cross-validation, LOOCV. 

 

         
 

 
        

   
   

 
         (5.6) 

 

Cross-validation of the error is necessary because KDE smoothing parameters can 

be made arbitrarily small in order to achieve zero classification errors on the training set.  

This is undesirable because if the kernels are too sharp, then the classifier will not 

generalize well to interpolating points that are not close enough to an existing training 

point of the same class (Dudda et al. 2001).  Cross-validation enforces smoother kernels 

that generalize as well as possible to the withheld training points.  However, when 

applied to the UAV wing design problem, the resulting standard deviations that 

minimized the LOOCV errors did not necessarily result in a final classifier with zero 

misclassifications of all of the training data.  Misclassification of any of the training 

points is not consistent with the prior knowledge of a designer who is certain of their 

simulation results.  The proposed method that is developed next approaches this problem 

more from the point-of-view of the designer by guaranteeing that the classifier correctly 

classifies all of the training data to a specified level of confidence.  The proposed method 

also seeks to find standard deviations that will generalize well to new data points, 

however not at the expense of misclassifying any of the training data. 

5.2 THE PROPOSED METHOD 

 As mentioned earlier, the classifications in this research are usually a sharp 

definition of the acceptable region’s boundary that comes from inequality constraints 
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defined over the outputs of simulations.  Therefore a boundary will usually exist that can 

exactly separate the data into the two classes: acceptable and unacceptable.  Even with a 

probabilistic characterization of failure, a sharp decision boundary is often chosen that 

represents some acceptably low probability of failure.  KDE classifiers are well suited to 

these spaces because there are standard deviations small enough to correctly classify all 

points with as high of a posterior class probability as desired.  The posterior probabilities 

for the two classes must sum to 1.  The decision surface defined by Eq. 5.7 in terms of the 

posterior probabilities must move between 1 for a high posterior probability of an 

acceptable design point to -1 for a high posterior probability of an unacceptable design 

point.  The decision boundary is where the decision surface of Eq. 5.7 is zero.  This 

surface is shown on the right side of Fig. 5.2 for the fully connected KBN classifier of the 

systems level with 100 training points from Chapter 4. 

  
                   

          

                             
   (5.7) 

 

Figure 5.2. The Posterior Probability Decision Surface 

 

             

             

                         

                         
   



 76 

These observations suggest a new approach: start from very small standard 

deviations and increase them until a training point is no longer classified with the desired 

posterior probability.  If the desired posterior probability is 1, then the resulting standard 

deviations will be small.  However, the lower the posterior probability threshold, the 

smoother the classifier will become so long as all of the training points are still correctly 

classified to the desired degree.  If the posterior probability threshold is set to 0, then the 

largest standard deviations will be found that still correctly classify all of the data.  Using 

this approach allows the user to indirectly set an upper bound on the standard deviations 

with a guarantee that all of the training data will always be correctly classified.  The 

reason for not always choosing a threshold posterior class probability of 0 is that 

smoother class conditional probabilities do not always generalize best to untested design 

points.  How well a classifier generalizes is dependent upon both the problem as well as 

the sampling sequence.  However, the hope is that the performance of the proposed 

adaptive method will be insensitive to this new tuning parameter, and that the classifier 

will reliably behave in a manner more consistent with the knowledge of the designer.  

This is the essence of the approach that will now be developed in detail. 

 The proposed method is straight-forward.  The user supplies a positive 

“confidence” level, c, which is the posterior probability of the class given the design 

point above which all training points must be correctly classified.  Given the standard 

deviations and c, the error of misclassification is calculated according to Eq. 5.8-5.10.  

Notice that the computational complexity of calculating the error of Eq. 5.8 is equal to N 

times the complexity of evaluating the class as presented in Chapter 3:       , 

     . 

 

           
  

     (5.8) 
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If the data point,    , is from class c1:   

 

             
                   

          

                             
   

(5.9) 

 

If the data point,    , is from class c2:  

 

              
                   

          

                             
  

(5.10) 

 

The search for the largest standard deviations that minimize the error is not well 

defined if the two classes are permitted to have two different standard deviations.  This is 

because the posterior probabilities can be made arbitrarily high by making one class’s 

standard deviation as small as necessary for any given fixed value of the other class’s 

standard deviation.  However, by enforcing the standard deviations of the two classes to 

be equal, the problem is well defined and can be solved through a line search method.  

This strategy was implemented using a customized golden section line search algorithm 

that begins at a very low standard deviation with zero error and increases the standard 

deviations until the error is no longer zero.  The two standard deviations that bracket the 

zero error threshold are then refined using golden section search until the desired 

accuracy is achieved.  The Matlab


 source code implementing this procedure is in 

Appendix D.  The total computational complexity of the proposed method will be the 

number of search iterations, M, times the complexity of calculating the error of Eq. 5.8, 

and could be quite expensive:        ,      .  This cost perhaps helps to justify 

simplifying the problem to a line search. 

The proposed method is used in the next section to automatically set the standard 

deviations for the UAV wing design problem introduced in the previous chapter.  The 
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results suggest that low error rates can be achieved for the full range of values of the 

confidence:      .  This is not the case for the scale factor, α, of Eq. 5.5 for which 

there is no well defined range of good performance.  The generalization of the classifier 

over the range of settings for c is discussed in more depth in Section 5.4 in light of the 

results from the solution to the UAV design problem presented next. 

5.3 UAV SOLUTION 3: BASELINE PLUS ADAPTIVE STANDARD DEVIATIONS 

In this section, the same demonstration UAV wing design problem from Chapter 

4 is solved again with only one difference: the proposed method for adaptively setting the 

standard deviations from the previous section is used instead of the previous rule-based 

formula.  Three confidence levels of c = 1, 0.5, and 0 were used to classify the systems’ 

design space.  The resulting standard deviations are presented in Fig. 5.3 where they are 

compared to the rule-based standard deviations of Eq. 5.5 used in the previous chapter as 

well as Scott’s rule of Eq. 5.4.  From Fig. 5.3 it is evident that increasing the acceptable 

 Figure 5.3.  The Proposed Method and Rule-Based Standard Deviations 
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posterior class probability, c, does result in smaller standard deviations.  However the 

functional form of the standard deviations with respect to the number of training points is 

not as smooth as the rule-based formulas, and the step changes appear to occur more 

frequently at the lower settings of c.  This is perhaps the result of new training points 

having a greater probability of influencing the decision boundary as well as having a 

more significant influence on the decision boundary when they have a higher standard 

deviation kernel.  For the sharper kernels that result from insisting that every training 

point is classified with a c = 1 posterior class probability, a new training point will most 

likely not be close enough to the decision boundary or to have a large enough of a 

nonlocal affect on the decision boundary to change the classification error and hence 

force a change to the standard deviation.  This observation suggests that the adaptive 

setting of the standard deviations need not occur every time a new point is found.  

Perhaps the posterior probability of a new point can be used to determine if a line search 

for new standard deviations is necessary or not.  This observation also suggests that the 

results can be sensitive to the sampling method, an effect that future work should seek to 

better understand. 

The other encouraging result from Fig. 5.3 is that the empirical conclusion in 

Chapter 4 to not use Scott’s rule and to instead use the faster decaying formula of Eq. 5.5 

appears to be justified by the proposed adaptive search method.  The justification comes 

from the fact that the c = 0 curve is often below Scott’s rule which means that Scott’s rule 

is often misclassifying some of the training points. But the c = 0 curve is above the Eq. 

5.5 curve which means that the Eq. 5.5 curve led to no misclassifications of the known 

data throughout the experiment.  For a designer observing the progress of the classifier, a 

misclassification of a training point whose correct class is known with certainty would 

not make sense and would lead them to look for new values for the standard deviations.  
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For the solution presented in Chapter 4 this led to the use of Eq. 5.5.  The proposed 

method achieves this search automatically, and the adaptive method with c = 0.5 

produces standard deviations that are quite similar to Eq. 5.5 with a scale factor, α, of 

0.25.   

When adaptive methods were being explored to set the standard deviations, 

LOOCV was tried, producing standard deviations that are even higher than Scott’s rule, 

as shown in Fig. 5.4.  Because LOOCV misclassified some of the training points, a new 

adaptive method was sought that explicitly did not misclassify any of the training points, 

leading to the proposed method.  The standard deviations produced by LOOCV not only 

were too large, they were also very erratic, especially at low sample sizes.  The sensitivity 

of LOOCV to the training points has been reported in the literature and is another reason 

to look for an alternative adaptive method such as the proposed method (Jain and 

Ramaswami, 1988). 

Figure 5.4.  The Proposed Method and LOOCV Standard Deviations 
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A final point of interest is that there are two standard deviation curves for Scott’s 

rule as well as for Eq. 5.5 in Fig. 5.3.  This is because the formulas are based upon the 

number of points in each class which is not necessarily the same but depends upon the 

correct decision boundary and the sampling sequence.  For the systems’ design problem, 

the number of points in each class is very similar and the two curves for each rule are 

hence also very similar.  As will be seen soon, this is not the case for uniform sampling 

over a domain within which the acceptable design space is a much different size than the 

unacceptable design space region, such as occurs in the subsystems’ design problem.   

Before presenting the same results for the subsystems’ problem, the question of 

which of these methods for setting the standard deviations is best in terms of 

classification errors will be addressed for the systems’ problem.   Just the same as before, 

100 training points from the Halton sequence were used to train the classifiers which 

were subsequently tested using 1000 different design points from the Hammersley 

sequence whose correct classification was determined by the systems’ simulation.  Fig. 

5.5 shows the total classification error rates: the false negative plus the false positive 

error rates.  From these results there is no single conclusively better strategy for setting 

the standard deviations with respect to the total error rates, and the resulting performance 

of the different classifiers is not sensitive to the choice of strategy.  Strategies that appear 

to perform better with fewer training points do slightly poorer with more training points.  

By about 15 training points, all strategies have converged to error rates below 0.15 and 

they all agree within a range of about 0.05.  Thus the final accuracy of the classifiers that  
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Figure 5.5.  Systems Level Total Classification Error Rates 

use the proposed adaptive search to set the standard deviations are relatively insensitive 

performance-wise over the whole range of settings for c.  The LOOCV method led to 

large error for the set of 14 training points when the standard deviations became very 

low, emphasizing the sensitivity of this method to the training points.  The rule-based 

methods provide equally accurate classifiers even though they may misclassify some of 

the training points and might appear to be inaccurate to the designer constructing the 

classifier.  The last conclusion will not hold for applying Scott’s rule to the subsystems’ 

problem presented next. 

These experiments were repeated for the subsystem design problem and the 

results are reported in Fig. 5.6-5.8.  The total error rate of the subsystem classifiers was 

found using the correct classification as determined directly by the systems level 

simulation and not indirectly using the systems’ classifier as was done in Chapter 4.  
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comparison of how well the classifiers perform on the subsystem’s design problem 

without the additional variability of an inaccurate systems’ classifier.   

For the subsystems’ problem, the proposed method successfully finds standard 

deviations automatically that result in well performing classifiers.  Scott’s rule does not.  

In contrast to the systems’ problem, the subsystems acceptable and unacceptable regions 

are of very unequal size, and because the samples are drawn roughly uniformly across the 

entire design space, there are very unequal sample sizes for each class.  This leads to two 

very different standard deviation curves for Scott’s rule in Fig. 5.6.  By about 15 samples, 

this imbalance leads to standard deviations that are too large for the acceptable class, and 

consequently the acceptable class conditional PD is too low relative to the sharper class 

conditional PD of the unacceptable region to ever produce a classification boundary at 

all—the entire design space is classified as unacceptable.  This explains the error rates in 

Fig. 5.8 for Scott’s rule leveling out at 0.09 all of which are false negative errors that 

occur in the acceptable region that is about 9% of the search domain.   

Figure 5.6.  The Proposed Method and Rule-Based Standard Deviations 
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Figure 5.7.  The Proposed Method and LOOCV Standard Deviations 

 Figure 5.8.  Subsystems Level Total Classification Error Rates. 
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compensated for the difference in sample sizes, producing roughly similar standard 

deviations as shown in Fig. 5.6.  Using the proposed adaptive method for setting the 

standard deviations automatically created standard deviations that are the same for each 

class and are similar in magnitude to the two Eq. 5.5 curves with the two different scale 

factors.  After about 20 samples, all of the methods except Scott’s rule produce similar 

error rates.  As shown in Fig. 5.7, LOOCV produces standard deviations that are larger 

than the proposed method with c = 0 for a portion of the training point sets.  Hence, 

LOOCV does not correctly classify all of the training points for the subsystem design 

problem.  The failure of LOOCV to be consistent with the training points for the systems 

and subsystems spaces led to the development of the proposed method. 

There are four conclusions for these design spaces: 1) the proposed method can 

automatically find a good sequence of standard deviations that leads to well performing 

classifiers over the full range of its tuning parameter, 2) formulas exist that create 

classifiers that perform just as well as the adaptive search for standard deviations and will 

have shorter training times, 3) the proposed method can replace the experimentation 

required to adjust the formulas to perform well or to perform as expected by the user but 

with a penalty of increased training time, and 4) the proposed adaptive search method can 

suggest the use of a new formula in order to recover the benefits of a rule’s fast training 

time.  These conclusions will be discussed in more detail in the next section, but first the 

new formula suggested by these results is presented. 

The new formula, Eq. 5.11, uses a single standard deviation for both classes that 

decreases with the total number of design points; an approach that is more consistent with 

the use of uniform sampling to generate the training points.  The new formula also 

suggests starting with a scaling factor of 0.4 which should perform well for both the 

systems and subsystems problems. 
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   (5.11) 

 

Figure 5.9 compares the standard deviations generated from Eq. 5.11 to the results of the 

adaptive standard deviations.  The similarity of standard deviations between the methods 

suggests that the error rates using the new rule will perform well.  This is confirmed by 

the error rates reported in Fig. 5.10 for the new formula which are consistent with the 

error rates from the proposed adaptive method.  The new rule-based classifier will be 

used in subsequent chapters as the baseline method against which further enhancements 

will be compared. 

Figure 5.9.  New Rule Standard Deviations 
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Figure 5.10.  New Rule Total Error Rates 

5.4 DISCUSSION 

In this chapter, the choice of setting the standard deviations has been explored in 

detail.  The literature suggests that the standard deviations are the most important setting 

for kernel density estimation.  The classification of the system and subsystem design 
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classification error rates can be high and not converge for some design problems such as 
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numbers of training points leading to complete misclassification of the acceptable region 

using Scott’s rule.  Second, although the error rates of some methods might not be much 

worse than other methods, these methods might misclassify their own training points.  

The latter concern is a less severe example of the first concern, but it highlights the 

importance of the prior expectations of the designer using the classifier.  Typically a 

designer will not be aware of a classifier’s error rates as determined by a large set of test 

points such as the 1000 Hammersley sequence points used to determine the total error 

rates reported above.  A designer will only be aware of a contradiction to their available 
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knowledge: a misclassification of one of the training points.  The proposed adaptive 

method for setting the standard deviation avoided any of this latter type of error for all 

settings of its tuning parameter, c.  Furthermore, increasing c resulted as desired in 

decreased standard deviations.   

The ability to still control the sharpness or smoothness of a classifier 

acknowledges that different design problems as well as different training point sequences 

will generalize better according to two different assumptions.  The first assumption is that 

the correct decision boundary is smooth.  The second assumption is that the correct 

decision boundary should have the maximum margin between the closest training points 

on either side of the decision boundary.  The second assumption means that, given the 

current training points, the correct decision boundary is more likely to fall half way 

between the points that lie closest to the decision boundary, i.e. to not favor an 

unnecessarily larger or smaller acceptable design space within the region that still 

correctly divides the training points into their two classes.  These assumptions might be 

justified by a designer’s a priori expectations of the design problem, or they might not.  

Therefore, it is reasonable to provide a new tuning parameter that can be set according to 

these expectations.  The threshold acceptable classification probability, c, will produce 

smooth boundaries for lower settings and more marginal boundaries at higher settings.  

Figure 5.11 illustrates these trends for the systems’ and subsystems’ design spaces after 

30 training points have been sampled.  Importantly, the expectation of the designer to not 

misclassify any of the training points is not compromised for any setting of c.  This 

means that for c = 0, there is likely to be a training point directly on the decision surface.  

This discussion suggests a possible direction for future work: to train three classifiers in 

parallel with c = 0, 0.5, and 1.0 and to use the classification with the majority vote or 

some other method of combining classifiers (Kuncheva, 2004).  On the other hand, 
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setting c = 0.5 appears to be a good default compromise between having a smooth as well 

as a large margin boundary.  Other classifiers should also be considered that are more 

flexible and able to independently adjust classification boundary margin and smoothness.  

Figure 5.11.  Decision Boundaries for c = 0, 0.5, 1.0 

One can also conclude from this chapter that a rule can be created that leads to 

classification error rates that are equivalent to the proposed adaptive method and that 
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points of known acceptability.  Furthermore, the sequence of standard deviations created 
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should be updated to reflect this dependency.  Future work should also seek to understand 

the extent to which a rule’s performance is sensitive to the sampling method.  Some 

evidence of this affect is provided in Chapter 7 when adaptive sampling methods are 

developed. 

As an aside, an interesting result that came from using the systems’ simulation 

and not the systems’ classifier to determine the acceptability of the subsystem design 

points is that the subsystems’ acceptable region is classified as two disconnected islands 

of the design space as seen on the right of Fig. 5.11.  While the correct acceptable region 

is really four disconnected islands as shown in Fig. 4.9, the sampling resolution was only 

able to find a single acceptable design point from the three islands other than the largest 

island.  But for this isolated acceptable design the classifier was able to create a 

disconnected acceptable design region.  This is a validation of a minor part of this 

research’s hypothesis that the proposed method can classify arbitrary and potentially 

disconnected regions of the design space.   

The disconnected islands of feasibility come from a nonobvious combination of 

1) decreases in weight relative to increases in drag such that in the balance the range rises 

above the target level as thickness increases and 2) discontinuous jumps of higher drag 

for a few critical thicknesses that drop the range below the target level.  Combining the 

results of multiple nonlinear simulations appears to easily produce such complicated 

feasible regions, although more example problems are needed to understand how 

frequently these types of feasible regions appear and how critical it is to accurately 

capture them.  In this case, the smaller islands of feasibility have borderline acceptable 

ranges.  The designs with the highest range exist in the largest island of feasibility. 

 This chapter essentially took a classifier from the literature and made it perform in 

a manner consistent with the prior knowledge of a designer using simulations or 
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analytical models of their design problem to try to understand the acceptable 

combinations of their design parameters.  The only strictly enforced assumed knowledge 

of the designer was the correct classification of a set of design points—the training set—

that has been evaluated using a simulation.  The designer will most likely possess other 

knowledge, too.  In particular, knowledge of monotonic relationships between parameters 

is a common occurrence in mechanical design.  The next chapter explores two ways in 

which the KBN classifier can exploit this type of knowledge for performance gains. 
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Chapter 6. Incorporating Knowledge of Monotonic Relationships 

The use of classifiers for coordinating mechanical engineering design activity can 

benefit from easily incorporating expert knowledge to make the classification decision 

more efficient.  The only information required is a judgment on whether a design point is 

acceptable or not.  In previous chapters, this judgment came from the satisfaction or 

violation of inequality constraints on the outputs of simulations.  However, mechanical 

engineering design is full of decisions that can be made without simulation and instead by 

exploiting an understanding of the relationships between variables that are based upon a 

physical understanding of the problem.  For example, performance can almost always be 

improved if physical losses are minimized.  For the example UAV wing design problem, 

it is clear that range will always improve with lower drag.  As another example, the range 

will also always improve if the wing weight can be minimized because a lighter wing 

increases the portion of the total weight allocated to carrying more fuel.  What is not 

immediately clear is how to coordinate the subsystems teams to achieve the best low 

weight and low drag design because the two subsystem problems are coupled.  

Nevertheless, this knowledge can significantly improve the efficiency of classifying the 

systems’ design space.   

Many methods exist that seek to incorporate expert knowledge into the decision 

making process.  An important distinction between many of these methods and the 

proposed method of this chapter is that here there is no attempt to reconcile differences in 

opinion from multiple expert sources.  Up until this point, it has been assumed that every 

design point has a single correct label.  The only new possibilities introduced in this 

chapter are that 1) there may be multiple instances of a design point in the training set as 

long as they all have the same class label and 2) these design point labels do not need to 
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necessarily come from a simulation.  Allowing these possibilities opens up the classifier 

to having higher error unless care is taken to maintain the integrity of the data.  The data 

should contain only the highest fidelity information available and there should be no 

conflict in classification for any given training point.  A possible alternate approach 

reserved for future work is to train multiple classifiers based on each different source of 

information and to combine their classifications appropriately (Kuncheva, 2004).  

However, provided that the new information is accurate, there are two simple ways that 

are provided in this chapter by which the classifier already developed can be potentially 

improved in terms of lower classification errors with fewer simulation runs: 1) seeding 

the data with training points of known class and 2) not running a simulation to determine 

a new training point’s class because its correct class can be determined accurately using 

our prior knowledge.   

The type of reasoning discussed in the opening paragraph that allows one to 

assume that a parameter will always increase or decrease as the result of increasing or 

decreasing another parameter is known as monotonicity.  Monotonicity is a powerful way 

of extrapolating decisions to new designs, and it is the only type of knowledge explicitly 

demonstrated in this chapter.  Other forms of knowledge of course exist and could be 

similarly exploited to improve the classifier using either of the same two mechanisms of 

seeding the data and classifying without simulation.  Before the details of the method are 

revealed in Section 6.2 and the results presented in Sections 6.3-4, other methods that 

take advantage of monotonicity are presented next and discussed in relationship to the 

approach taken here. 
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6.1 BACKGROUND 

Leveraging monotonic relationships to make optimization more efficient was 

pioneered by (Papalambros and Wilde, 2000).  In their work, inequality constraints can 

be determined to be active or not by careful reasoning about the monotonic relationships 

between variables.  An active inequality constraint can be changed to an equality 

constraint, reducing the dimensionality of the resulting problem.  The reasoning can be 

quite complex as the number of variables with monotonic relationships increases and 

tools such as monotonic influence diagrams have been created to automate the conclusion 

of which constraints are active (Michelena and Agogino, 1992). 

This is a powerful approach that is used frequently to simplify a design problem.  

For the purposes of this research, using monotonic relationships to reduce the 

dimensionality of the search space should be incorporated into every group’s search 

strategy as long as the resulting simplification is local and does not involve coupled 

design parameters.  In fact, for the example UAV wing design problem the monotonic 

increase in wing stress with decreased wing weight is used to efficiently set the structures 

group’s only hidden design parameter: the wing skin thickness.  Thus for every (naca3, 

chord) design point, the structures group assumes that the lowest weight design will be 

the design with a stress that is equal to the acceptable wing strength limit and adjusts the 

skin thickness accordingly.  This optimization occurs in the background unbeknownst to 

the aerodynamics and the systems groups.   

However, if the monotonic relationship involves a coupled parameter, the 

approach of this research is not to reduce the dimensionality of the design space, but 

rather to use this knowledge to more efficiently map the boundary of the feasible region.  

This is justified by the observation that one group’s monotonic reasoning can lead to 

setting a parameter equal to an active constraint that is not feasible to their collaborators.  
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This is also illustrated in the UAV wing design problem, where the systems group would 

conclude that the wing weight and drag should both be zero, which is clearly not an 

attainable goal for the subsystems groups.    The belief is that by providing an acceptable 

design region as opposed to an acceptable design point, many good designs will be 

identified as opposed to a single design that is the best only locally or currently.  This is 

consistent with the principles of set-based collaborative design.   

Another method that also exploits knowledge of monotonic relationships includes 

qualitative and quantitative sequential sampling, Q2S2 (Rai and Campbell, 2008).  While 

Q2S2 is primarily a sequential sampling method and this research is concerned with 

mapping and sharing feasible regions, how Q2S2 uses qualitative information such as 

monotonicity is informative.  Q2S2 defines a confidence value that is a function of the 

design parameters as well as a performance parameter where a confidence of 1 means 

that the design point has the specified performance value with absolute certainty, -1 

means that the design point does not have the specified performance value with absolute 

certainty, and 0 means that there is no information available about the design point’s 

value.  Monotonicity is used to influence the shape of the confidence field such that low 

confidence (≤ 0) is propagated to regions of the design space above or below a given 

design point, depending on the direction of the monotonic relationship.  In this manner, 

monotonicity is used to reduce the search space for future design points.  The equivalent 

approach for this research would be to directly manipulate the class conditional 

probability distribution at training time.  As will be seen in the next section, the approach 

taken in this research is indirectly through the data points.   

Q2S2 also has the capability of incorporating information from more than one 

source in a manner that is very similar to the other method proposed in this chapter: 

seeding the database with points of known class.   However, Q2S2 allows for ranking the 
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information according to a confidence measure and merging different confidence fields 

over the same design space.  Hence Q2S2 can handle contradictory classifications at the 

same data point.  As discussed earlier, this capability does not yet exist in the proposed 

method although there is a large literature on methods for combining classifiers that can 

achieve this capability (Kuncheva, 2004).  More will be said about the similarities and 

differences between Q2S2 and this research in the next chapter where adaptive sampling 

is developed. 

To the author’s knowledge, these are the only examples of exploiting monotonic 

relationships in engineering design.  In the classification literature, monotonic 

relationships have also been used to improve classification error.  However, the 

classification literature usually takes the class of the training data as a given, not 

something to be discovered.  Hence, exploiting monotonic relationships involves 

improving the training set (Duivesteijn and Feelders, 2008).  In contrast, the proposed 

method exploits monotonic relationships to seed the training set and to avoid potentially 

costly evaluations of the correct class via simulation for new training points.  The details 

of the proposed methods are provided next.   

6.2 THE PROPOSED METHODS 

The first method for incorporating prior class knowledge is simple: the training 

data set is filled with points of known class.  These initial points will create a classifier 

that can potentially avoid the highly variable decision surfaces that occur with low 

numbers of training points.  As more points are sampled and the standard deviations are 

reduced, the effect of the initial seeded data will become more local, and the newly 

sampled points will increasingly dominate the definition of the decision boundary.  The 

rate at which the seeded points become less influential can be indirectly controlled by 
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including more than one instance of a training point in the training set.  This tactic 

increases the weight of a given design point relative to the other points by as many times 

as there are replicated instances.  In order to allow these samples of enhanced weight to 

have their full influence, the formula for calculating the standard deviations should be 

shifted relative to Eq. 5.11 by the number of replications, Nr, according to Eq. 6.1. 

 

  
   

       
   (6.1) 

 

 The second method for incorporating expert knowledge is purely an efficiency 

gain: new samples are compared against the training set to determine if they are 

dominated by other points of known class or not.  If they are dominated, they can be 

classified without running the point through the required simulation.  A point is 

dominated by another point if all design parameters are greater than or less than the 

dominating point’s design parameters according to the monotonic relationship between 

the design parameters and the performance parameter.  Implementing this performance 

enhancement requires a single pass through two new arrays that store the acceptable and 

unacceptable dominating points that bound the classification decision from both sides.  

Every new sample point is compared to the points in the dominance arrays to check if it 

is dominated or not.  If a point is dominated by an unacceptable point in a manner 

consistent with the acceptability constraint then it is classified as unacceptable and added 

to the training set.  For the UAV systems-level design problem, this type of dominance 

means that both the drag and the weight of the new design point are larger than another 

design point that is known to be unacceptable.  If the point is not dominated by any of the 

unacceptable points, then it is compared to the dominant acceptable points.  If a point is 

dominated by any of the dominant acceptable points in a manner consistent with the 
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acceptability constraint then it is classified as acceptable and added to the training set.  

For the UAV systems-level design problem this type of dominance means that both the 

drag and the weight of the new design point are less than another design point that is 

known to be acceptable.  The check for dominance requires evaluating inequality 

relationships over all M monotonic variables with       where D is the number of 

dimensions.  Hence the time complexity of the check is      ,      .  If the point 

is not dominated by either of the dominant acceptable or unacceptable points, its class is 

determined by simulation.  If the simulation classifies the new point as 

acceptable/unacceptable then the new point might dominate some of the points in the 

array of dominant acceptable/unacceptable points.  In order to keep the arrays of 

dominant points to a minimum length, every new point that is classified not by 

monotonic reasoning but by simulation is compared to the dominant points in the array of 

the same class to see if any of the previously dominant points can be removed from the 

array because they are now dominated by the new point.  This procedure is implemented 

in a Matlab
®
 in Appendix E for the example UAV wing design problem.   

 The first method for incorporating expert knowledge by seeding the training set 

with points of known class is demonstrated next using the systems’ UAV wing design 

problem.  Section 6.4 will solve the system’s classification again but using only 

monotonic reasoning to determine the class.  Both methods are independently and 

favorably compared in terms of error rates as a function of the number of simulation runs 

to the new rule-based baseline solution presented at the end of the previous chapter.   

6.3 UAV SOLUTION 4: BASELINE PLUS SEEDED DESIGNS 

In this section, the systems UAV wing design problem of finding combinations of 

weight and drag that produce ranges that are greater than or equal to 900 km is solved 
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again using the same classification method presented at the end of the previous chapter 

with the new rule of Eq. 5.11 to set the standard deviations but also using an initial 

seeding of the training set.  The seeding is the consequence of monotonic reasoning about 

the effect of drag and weight on the UAV’s range already mentioned in the opening 

paragraph of this chapter: decreasing both the drag and the weight will increase the range 

of the UAV over the entire search domain.  As a consequence of this observation, one can 

safely say that the point of zero wing drag and weight will exceed the range requirement 

of 900 km while the point of maximum drag and weight will not.  Being confident in this 

observation, one can give it a high weight by adding to the training set 20 design points 

that are not evaluated by the simulation: 10 instances of the design point (drag = 0, 

weight = 0) classified as acceptable and 10 instances of the design point (drag = dragmax, 

weight = weightmax) classified as unacceptable.  With the number of replicate design 

points, Nr, set to 20, more points can be added to the seeded training set according to the 

same Halton sequence used in previous chapters and with the same sequence of standard 

deviations as provided by Eq. 6.1.  The class of the new training points from the Halton 

sequence is determined by running the systems’ simulation.  The decision boundaries and 

class conditional probability distributions from 0, 10, 20, and 100 simulation runs are 

shown in Fig. 6.1.  The salient observation is how the influence of the seeded information 

becomes more local with every additional new training point until it no longer has a 

significant effect on the shape of the decision boundary. 

The false positive and false negative error rates for the seeded classifier are 

reported in Fig. 6.2 where it is compared to the new baseline classifier introduced at the 

end of the previous chapter.  The error rates are now reported as a function of the number 

of simulation runs instead of the previous metric of the number of training points because 

the initial 20 seeded training points came for free; the real cost is in running a simulation.   
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Figure 6.1.  The Systems’ Classifier for 0, 10, 20, and 100 Simulation Runs 
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Figure 6.2.  KBN Classifier Error Rates for the Systems’ Design Space 

The initial error rate is dramatically improved using the seeded classifier, although it 

must be recognized that in the presented example, the decision boundary was luckily near 

the half-way point.  In general the decision boundary could lie anywhere between the two 

corners and hence the gain in classification error rates might not be as good as presented 

for the UAV systems-level design problem.  This demonstrates the potential effectiveness 

of this first of the two proposed methods for incorporating knowledge of monotonic 

relationships; the second method is demonstrated next. 

6.4 UAV SOLUTION 5: BASELINE PLUS AUTOMATIC CLASSIFICATION 

In this section, the second method for incorporating expert knowledge is used to 

improve the efficiency of the systems’ UAV wing design problem: using monotonic 

reasoning to determine a new point’s class without running a simulation.  Every time a 

new design point is taken from the Halton sequence it is sequentially compared to all of 

the points in the dominant unacceptable design point array to see if the new point has a 

drag and weight that are both greater than the drag and weight of any of the dominant 

unacceptable points.  If the new point is dominated in both drag and weight dimensions, 

then it is immediately classified as unacceptable and added to the training set.  Otherwise, 
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the new point is similarly compared to all dominant acceptable design points to see if the 

new point has a drag and weight that are both less than the drag and weight of any of the 

dominant acceptable points.  If the new point is dominated in both drag and weight 

dimensions, then it is immediately classified as acceptable and added to the training set.  

Otherwise, the new design point’s class cannot be determined by monotonic reasoning 

and its range has to be determined by simulation and classified as acceptable or 

unacceptable according to whether or not its range is greater than or equal to 900 km.  

Finally, for any point whose class is determined by simulation, it is compared to all of the 

points in the dominance array of the same class to determine if the new point dominates 

any of them.  If so, the previously dominant point is removed from the dominance array.  

As mentioned previously, this keeps the dominance array to a minimum length and stores 

all of the points that are closest to the decision boundary for the monotonic dimensions.  

The decision boundaries and class conditional probability distributions from 10, 20, and 

100 training points are shown in Fig. 6.3.  The currently dominant points are the larger 

triangles.  In Fig. 6.1 both the total number of training points, N, as well as the total 

number of simulation runs, Ns, is reported.  The efficiency gain is demonstrated by 

requiring only 35 simulation runs for all 100 training points. 

Figure 6.4 shows the error rates of the proposed method as a function of the 

number of simulation runs compared to the baseline solution presented at the end of the 

previous chapter.  Using monotonic relationships to classify new design points simply 

shifts the error rates of the baseline process to the left because the same point sequence is 

used but fewer simulation runs are required.  The efficiency gain is considerable. 
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Figure 6.3.  The Systems’ Classifier for 10, 20, and 100 Training Points 

Figure 6.4.  KBN Classifier Error Rates for the Systems’ Design Space 
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6.5 DISCUSSION 

Two simple means of improving the baseline classifier by exploiting knowledge 

of monotonic relationships were demonstrated in this chapter.  In the first method, the 

training set was seeded with points of known class with all subsequent points being 

sampled and evaluated according to the baseline classifier solution.  The seeded points 

provided a better decision boundary than the baseline solution for low numbers of sample 

points.  In the second method, the efficiency of the baseline classifier solution was 

improved by providing the same error rates but at the cost of far fewer simulation runs.  

The first method of seeding the training set will be discussed next, followed by a 

discussion of the second method of determining the class without simulation. 

 The presented method of seeding the training set with heavily weighted design 

points of known class was demonstrated using monotonic reasoning.  But the same 

procedure can be used to combine knowledge from multiple sources and not just from 

sampling a simulation or monotonic reasoning.  However, the presented method of 

simply filling the training set with new points is limited in several ways.  First, the class 

of the seeded points must be known with a high level of confidence or else the training 

set will be corrupted and the resulting classifier’s performance could be significantly 

compromised.  Second, although the weight of the seeded training points can be inflated 

by including replications of the design points in the training set, the influence of the 

seeded points on the decision boundary is more dependent upon the size of the standard 

deviation relative to the proximity to the decision boundary.  This observation suggests 

that the seeded points should perhaps have a different standard deviation than the points 

sampled from the simulation.  Future work can explore the impact of implementing this 

increased flexibility.  Third, the deterministic sampling according to the Halton sequence 

did not account for the location of the seeded training points.  Ideally, the seeding could 
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occur anywhere in the design space and the subsequent sampling would adapt to not 

sample again in the same region as the seeded design points.  The possibility of 

exploratory sampling in regions of low information is demonstrated in the next chapter. 

 The presented method of using monotonic reasoning to classify a new sample 

point relied upon all design parameters having a monotonic influence on the performance 

parameter.  If the performance parameter is not monotonic with respect to all of the 

design parameters, then the performance gain would be much more limited because a 

Halton sequence purposefully does not repeat sampling at the same value for any 

dimension.  For example, if the systems’ design space was monotonic in weight but not 

drag then using monotonicity to classify a new point can only be guaranteed if it is 

dominated with respect to weight by an existing training point with the same drag.  Thus, 

extending the results of this chapter to the more general case of monotonic relationships 

between any subset of the design parameters and the performance parameter would 

require a new sampling strategy that fills the training set with new points of known class 

in the appropriate directions along all of the dimensions that have a monotonic 

relationship.  A demonstration is reserved for future work.  As discussed in the previous 

paragraph, any subsequent sampling would also need to adapt to take into account the 

regions of known information and avoid sampling there.  Adaptive exploratory sampling 

that achieves this avoidance of regions of high information is developed in the next 

chapter. 

 Finally, the decision boundaries generated using both of the methods in this 

chapter are not monotonic as is most evident in Fig. 6.1 and 6.3 for the case of 20 training 

points.  The demonstrated methods do not enforce consistency of the decision boundary 

with the monotonicities.  Future work could look at restricting the allowable values of 

standard deviations such that the decision boundary is consistent with the monotonicities 
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of the problem.  Future work could also develop new classifiers with decision boundaries 

that are consistent with the monotonic relationships of the problem. 
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Chapter 7. Adaptive Sampling 

In previous chapters, classifiers have been based on data obtained from the 

deterministic space filling Halton sequence.  The shortcoming of deterministic space 

filling sampling schemes is that they do not adapt to focus the samples on regions of 

interest to the design team (exploitation) or, alternatively, on regions in which little 

information is known (exploration).  In this chapter, the KBN classifier is used to 

generate new sample locations that follow either of two strategies: exploration or 

exploitation.  An exploratory sample is in a location of the design space of low sampling 

density, and an exploitive sample comes from a region of known acceptability.  The goal 

of an exploratory sampling strategy is to find new and better regions of the design space.  

In contrast, an exploitive sampling strategy spends its resources in regions of known 

performance in order to find similar but better designs.   

The primary goal for providing the capability of exploratory and exploitative 

sampling is to give the designer an enhanced ability to spend resources in a way that is 

more flexible than simple space filling non-adaptive sampling methods.  The designer’s 

search strategy will depend generally on the nature of the problem as well as the type and 

quantity of prior information that is available.  Accordingly, different strategies will be 

discussed, but some effort will be focused on identifying a general strategy that works 

well for the example UAV design problem in terms of two benefits: 1) fewer resources 

are spent sampling the region of the subsystems team’s design space that does not fall 

within the systems team’s search domain and 2) a greater quantity of acceptable designs 

are identified but not at the expense of losing classification accuracy. 

The next section introduces the novel KBN space filling exploratory sampling 

method including its use in conjunction with exploitive KBN sampling.  Section 7.2 
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reviews other adaptive sampling methods and discusses their relationship to the proposed 

method.  Section 7.3 compares the performance of the proposed KBN space filling 

method on the example UAV wing design problem to the baseline solution that uses a 

Halton sequence.  Section 7.4 studies the use of more exploitive strategies for the UAV 

wing design problem.  The last section discusses the results. 

7.1 KBN CLASSIFIERS FOR EXPLORATORY SAMPLING 

Because KBN classifiers use a probability distribution estimate for defining 

regions of the design space, exploitive sampling can draw directly from these 

distributions.  This capability was an early motivator for the use of generative classifiers 

as discussed previously.  However, there is not an explicitly defined probability 

distribution defining regions that have not yet been sampled.  A less direct method will be 

required to generate exploratory samples. 

 The proposed method for determining the next exploratory sample point relies 

upon constructing a kernel density estimate, called the exploratory KDE, based upon all 

N of the design points from both the acceptable and unacceptable classes and finding its 

minimum.  The exploratory KDE is multimodal by design, with local maxima at the 

already sampled design points and local minima at the design regions of the lowest 

sampling density.  If the exploratory KDE’s standard deviation is too small, large regions 

of the exploratory KDE will be near zero.  If its standard deviation is too large, the 

minimum will always lie on the border of the search domain.  However, if the standard 

deviation is neither too large nor too small, by the definition of the KDE, the global 

minimum will be the point that is the furthest from all of the training set designs and 

hence will be the best choice for the next exploratory sample,      , according to Eq. 7.1.  
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                               subject to        (7.1) 

The exploratory KDE has been designated    and is a function of a design point,  , all of 

the previously sampled design points,        , and the exploratory standard deviation,   . 

The key to the success of the exploratory KDE lies in setting the standard 

deviation,   , to a good value.  If the design points are spread out such that they fill the D-

dimensional design space evenly then the smallest distance between a sample and its 

nearest neighboring samples can be approximated as the length, l, of the edge of a grid 

according to Eq. 7.2. 

 

  
 

 
 
    

   (7.2) 

 

Within this hypothetical grid, the exploratory KDE minima will occur at the center of a 

line segment in 1 dimension, an area in 2 dimensions, a cube in 3 dimensions, etc, that 

are defined by the training point locations on the grid.  The minima will have 2
D
 nearest 

neighbors that are at a distance of 
 

 
 in each of the D dimensional directions.  Assuming 

that only the 2
D
 nearest neighboring points have a significant contribution to the 

probability at the minima, then Eq. 7.3 can be used to approximate the minima of the 

exploratory KDE. 
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It is simpler to not normalize the Normal distributions or to divide by the number of 

sample points, scaling Eq. 7.3 to Eq. 7.4 without moving the minima. 

 

      
 
   

      (7.4) 
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Assuming that none of the 2D adjacent design points has a significant influence on the 

value of the exploratory KDE at a training point, and that the kernel is neither normalized 

nor averaged, the local maxima will be approximately 1.  Setting the value at the minima 

of the exploratory KDE to be half of the value of the maxima, according to Eq. 7.5, a 

formula for the standard deviation can be derived following Eq. 7.6-7.9 that is a heuristic 

for providing well defined minima in between the training points. 
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 (7.9) 

 

Equation 7.9 provides an approximate formula for calculating the standard 

deviation that will produce well defined local minima that are roughly half the height of 

the local maxima at the training points laid out in a grid.  The exploratory standard 

deviation scales primarily by the number of sample points in a manner that is similar to 

the empirical formula previously used with two dimensions.  The usefulness of this 

equation will be demonstrated for two dimensions although the derivation might lead to 
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effective results in other dimensions too.  If the exploratory standard deviation is too 

large the minimum will repeatedly fall in the corners of the design space.  If the 

exploratory standard deviation is too small the minimum will be found to be near zero.  

Both of these possibilities can be detected and corrected for in a more robust future 

implementation. 

Using Eq. 7.9 to set the standard deviation and randomly choosing the first point, 

the exploratory KDE’s for 1, 2, 5, 10, 25, and 100 sequentially sampled space filling 

training points are shown in Fig. 7.1.  The next point was chosen as the minimum of the 

KDE according to Eq. 7.1 and as determined by a sequential quadratic programming 

(SQP) optimization from random starting points using Matlab
®
’s fmincon function.  The 

search was stopped after either 0.1 seconds was reached or five consecutive SQP runs 

failed to lower the best minimum by more than 1%.  It should be noted that the 

derivatives are available for the optimization.  The Matlab
®

 software implementing this 

procedure is in Appendix F. 

A space-filling pattern for the proposed method is compared in Fig. 7.2 to other 

popular space-filling designs: random, Latin hypercube, Hamersley, and Halton 

sequences.  The proposed method produces a very well dispersed pattern that is similar to 

a grid except with many more levels captured for each variable.  Also, relative to the 

other sequences, the proposed method places samples on the search domain boundary 

which can be considered good or bad depending on the problem.  The lower right graph 

of Fig. 7.2 demonstrates the proposed method’s ability to produce exploratory samples 

that avoid the twenty previously sampled normally distributed solid points and to fill in 

the space around it—the desired behavior that motivated the creation of the proposed 

method.   
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Figure 7.1  Exploratory Samples for N = 1, 2, 5, 10, 25, and 100 Points 
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Figure 7.2  Different Methods for Producing Space-Filling Samples 

The demonstrated effectiveness of the mixed exploitive/exploratory sampling 

with non-uniformly dispersed training points does not invalidate the use of the standard 

deviation that was earlier derived from the assumption that the training points lie on a 

grid.  The method is hence not particularly sensitive to the choice in standard deviation 

and the heuristic approach used to set it appears to be effective.  However, more tests 

need to be conducted to fully validate the approach taken to set the standard deviation.  

As mentioned earlier, adjustments might need to be made if samples repeatedly fall in the 

search domain corners or the minima are very near zero.  The next section applies the 

KBN space-filling sequence to the example UAV wing design problem. 

7.2 BACKGROUND 

At the heart of the proposed adaptive sampling methods is the ability to flexibly 

blend exploitive and exploratory sampling strategies.  Stochastic search methods such as 

simulated annealing (Kirkpatrick et al., 1983; Cerny, 1985) feature a similar capability of 
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changing search strategies between exploration and exploitation through a cooling 

schedule.  Genetic algorithms (GA’s) typically begin with a randomly generated 

exploratory population from which operators select and construct the next generation of 

points (Holland, 1992; Goldberg, 1989).  The basic GA operators include a selection step 

for exploiting good solutions as well as crossover and mutation steps that look for new 

solutions, although how these operators search in terms of exploration/exploitation is not 

precisely clear (Eiben and Schippers, 1998).  More recent developments suggest that 

adapting the GA strategy throughout the search can produce better results with a modest 

increase in computational cost (Hanna and Cagan, 2010).   

The sequential sampling literature often exploits the information from a 

metamodel to direct the search toward a variety of goals including optimal regions and 

unexplored regions.  Sasena (2002) proposes a strategy that switches between 

exploitation and exploration, and Turner et al. (2007) propose a multiobjective 

formulation that blends four different sampling goals.  One of the strengths of the 

proposed adaptive search methods is the ability to switch between exploratory and 

exploitive search strategies.  However, this capability is not extensively explored in this 

chapter.  Instead, two extreme cases are considered: purely exploratory and aggressively 

exploitive.  As will be seen, even the aggressively exploitive strategy relies on a 

minimum of initial exploratory sampling to avoid sacrificing classification accuracy.  An 

interesting line of future research could attempt to identify the best mixed 

exploratory/exploitive sampling strategy for different categories of test problems.   

The proposed exploitive sampling strategy is a form of stochastic search in which 

a probability distribution is constructed to define a region of the design space which can 

be directly sampled for more points within that region.  The basis for the proposed 

exploitive sampling is the class of optimization methods called estimation of density 
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algorithms (EDA’s).  The continuous variable iterated density estimation evolutionary 

algorithm (ID A) uses a single KBN constructed with the top M performing design 

points and samples it for the next generation (Bosman and Thierens, 2000).  These 

algorithms are aligned with the genetic algorithm paradigm but with a more explicit 

definition of where the better points are likely to be.  Similar to GA’s, the IDEA 

framework maintains a constant population size for every generation, discarding 

underperforming designs as needed.  In contrast, this research exploits the knowledge of 

all of the acceptable design points.  A design point that satisfies acceptability constraints 

will remain acceptable while a design point that is within the current best set will not 

necessarily remain among the best.  By pursuing acceptable design regions instead of 

optimal regions, there is less risk of over-committing resources to a local minimum.  

However, there is a greater computational expense in using an ever-expanding database.  

A memory-bounded version of the presented methods would be an interesting direction 

for future work.  Additionally, defining another classifier in terms of the best performing 

points or weighted according to the objective function would add even more flexibility in 

the decision of where to look next in the design space.   

EDA’s typically rely upon a large initial random sample to explore the design 

space after which the sampling is exclusively exploitive.  In contrast, the proposed 

exploratory method was designed to allow for exploratory sampling at any stage during 

the search process.  Because the KDE can be built on any set of data points, an 

exploratory sample can be generated at any time during the search process.  This 

adaptability sets the proposed exploratory sampling mechanism apart from popular space-

filling sampling methods such as Latin hypercube sampling (Mckay et al., 1979) and 

Halton sequences (Halton, 1960).   
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The literature on sequential sampling is full of adaptive space-filling sampling 

methods that work in conjunction with metamodels (for example: Koehler and Owen, 

1996; Jones, 2001; Jin et al., 2002; Sasena, 2002; Turner et al., 2007).  The proposed 

method does not rely upon information obtained from metamodels and the associated 

costs of training them, and hence this review does not cover these and derivative methods 

any further.  Nevertheless, some methods developed in conjunction with metamodeling 

are included in the next review because of the possibility of using them without a 

metamodel.  Adaptive exploratory sampling methods that do not use metamodel 

information, including the proposed method, often take a similar, direct approach: they 

search for the point that is the furthest from the existing points.  These methods include 

Maximin (Johnson et al., 1990), qualitative and quantitative sequential sampling (Q2S2) 

(Rai and Campbell, 2008), the proximity-based method proposed for use in conjunction 

with NURBs-based metamodels (Turner et al., 2007), and minimal Kullback-Liebler 

information designs (Jourdan and Franco, 2009).  These methods are reviewed next. 

The maximin approach seeks a point set that maximizes the minimum distance 

between any two given points.  This method was initially presented as a batch process 

where the locations of all points in the next sample set are placed in the design space 

simultaneously (Johnson et al. 1990).  Implementing such a design could be costly 

because the number of variables in the optimization could be high.  A more practical 

implementation is to use a batch size of one and to sequentially place each point such that 

the minimum distance between the new point and all of the existing training points is 

maximized (Jin et al., 2001).  This should produce a very similar result to the proposed 

method although the implementation is slightly different in that no attempt is made at 

identifying the closest point in the proposed approach; all points contribute to the 

distance measure although often by a small amount.  For example, if two points were 
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coincident in the KBN training set then they would both contribute to the density estimate 

used to place the next point whereas the maximin approach would not account for the 

presence of both points.  However, for the proposed method the effect of a point on the 

density diminishes exponentially with the distance and the standard deviation is 

purposefully set low, so the difference is slight. 

In Q2S2, a confidence surface is constructed as a factored product of a kernel 

function in each dimension with an additional product for the performance parameter that 

produces a 1 at a data point denoting that this point is known with complete confidence 

and that decays to -1 along the performance parameter axis denoting that these other 

values for the output are, with complete confidence, not associated with the design point.  

Along the design parameter axes, the confidence value decays to 0 with increasing 

distance from a data point, denoting that less information is known about the performance 

of the design space as one moves further from the design point.  The confidence function 

is integrated along the performance parameter axis, combined with all other integrated 

confidence fields from the other design points, squared, and minimized in order to find 

the next design point.  The proposed exploratory sampling method is similar in nature to 

the Q2S2 process.  However, the proposed method does not use the additional 

performance parameter axis and the associated integration and squaring.  Hence, the 

proposed method should produce similar results but at a lower computational cost.  

Furthermore, the standard deviation of the Gaussian kernels is specifically controlled in 

the proposed method to produce well defined minima.  However, Q2S2, as discussed 

previously, has the attractive capabilities of accounting for variable fidelity sources that 

are not present in the current implementation of the proposed method. 

For space-filling sampling as proposed by Turner et al. a normalized proximity 

function is constructed as a tensor product of parabolic spans between the nearest control 
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points of the NURBS surface (Turner et al., 2007).  If the control points coincide with the 

data points, then this method should produce very similar results as the proposed 

approach.  Furthermore, by controlling the location of the control points such that the 

density of control points is correlated to the data point density then the control points 

provide a reduction in computational complexity.  However, using the control points to 

define the proximity minima might oversimplify the exploratory search.  Further study is 

required to fully understand the potential advantages of proximity-based sampling using 

the control points of NURBs-based metamodels versus the proposed approach.  Some 

form of clustering will be necessary at high numbers of samples in order to reduce the 

computational complexity of the proposed exploratory search. 

A maximum entropy sampling approach that is not for use in conjunction with 

metamodels was recently proposed by Jourdan and Franco (2009) called minimum 

Kullback-Liebler (KL) information designs.  The method is based upon an estimation of 

the entropy of a Gaussian kernel distribution.  Monte Carlo sampling or a nearest 

neighbor distance approximation are used to estimate the entropy that is used in an 

exchange algorithm for finding the best space-filling distribution of points.  Estimating 

the entropy will be a very expensive approach, but for the cases when it is practical to use 

the minimum KL information designs the results will also be similar to the proposed 

method.  There is however a subtle difference.  The proposed method is more likely to 

place points on the search domain’s boundary than the minimum KL information designs 

because the entropy of a KDE measured over a fixed search domain will be slightly 

higher if the exterior points lie just off the edge (the KDE is more approximately a 

uniform distribution over the search domain).  However, the sequential nature of the 

proposed method in addition to not estimating the entropy but instead performing a 
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limited number of gradient-based searches for which the derivatives are available, will be 

substantially less computationally expensive.   

7.3 UAV SOLUTION 6: EXPLORATORY SAMPLING 

 In this section, the UAV wing design problem is solved again except this time the 

points are not generated from a Halton sequence but come from the exploratory sampling 

procedure developed in the previous section.  Because the KBN exploratory sampling  

Figure 7.3 The Systems’ Classifier for 10, 20, and 100 Training Points 
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Figure 7.4 KBN Classifier Total Error Rates for the Systems’ Design Space 

Figure 7.5 The Subsystems’ Classifier for 10, 20, and 100 Training Points 
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Figure 7.6 KBN Classifier Total Error Rates for the Subsystems 

sequence is random, the solution is repeated and the 10
th

, 50
th

, and 90
th

 percentile total 

error rates that are the sum of the false positive and false negative error rates are reported.  

The experiment was repeated in batches of 100 runs until the reported percentiles did not 

change by a total error rate of more than .01 relative to the results from the previous 

batches.  Figure 7.3 shows the results from a single run for the system’s design problem 

for 10, 20, and 100 KBN exploratory training points.  The total error rates are reported in 

Fig. 7.4 for the systems level and compared to the baseline solution from the end of 

Chapter 5 that used a Halton sequence.  The subsystem results are presented in Fig. 7.5 

and 7.6. 

 Generating exploratory samples by finding local minima of KBN’s can produce 

acceptably low error rates at both the systems and subsystems levels.  Furthermore, the 

error rates are robust to the randomness in the sampling sequence.  An interesting 

difference between the Halton sequence and the exploratory KBN sequence is that the 

former does not place points on the search domain boundary.  As a result, the Halton 

sequence will have a slightly higher density of sampling at the interior of the design 
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space, providing a slight advantage for the subsystems problem where many of the points 

near the border are either too heavy or have too much drag to be within the region 

searched at the systems level.  This difference is illustrated in Fig. 7.7 where the number 

of subsystem design points that are within the systems’ search domain is plotted as a 

function of the number of training points.  There is a simple potential remedy for the 

KBN exploratory sequence: artificially restrict the exploratory sample domain to a 

smaller rectangular region.  However, a more general approach is considered in the next 

section: use another classifier to find the boundary that defines the region that maps to the 

systems’ domain. 

Figure 7.7 Subsystems’ Design Points within the Systems’ Search Domain 

7.4 UAV SOLUTIONS 7 AND 8: EXPLORATORY AND EXPLOITIVE SAMPLING 

In this section progressively more aggressive exploitive sampling strategies are 

pursued as solutions to the example UAV wing design problem and compared to the 

purely exploratory sampling strategy of the previous section.  The comparison is in terms 

of both classification error rates as well as the number of subsystem design points that are 
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within the systems’ search domain.  The goal is to raise the latter without compromising 

the former.   

The first study in this section introduces another classifier that is trained to 

identify the regions of the subsystem design space that have both low enough drag and 

weight to be within the rectangular bounds of the systems’ search space.  Every sample 

point is classified as being acceptable if it is within the systems’ search domain and 

unacceptable otherwise.  The new search domain classifier for the subsystem design 

space is illustrated in Fig. 7.8 for a KBN exploratory sampling sequence of 100 training 

points.  The correct decision boundary is also shown: above the top boundary are the 

designs with a normalized drag greater than one, and below the bottom boundary are the 

designs with a normalized weight greater than one.  All points in between these 

boundaries are within the systems’ rectangular search domain.  A large portion of the 

subsystem design space is not worth exploring because either the weight or the drag is 

simply too high. 

Figure 7.8 Subsystems’ Search Domain and Acceptable Region Classifiers 
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The first mixed exploratory/exploitive sampling strategy that is investigated 

explores the design space until a crude estimate of the search domain classifier exists 

after which its acceptable region is sampled exclusively.  At least ten and if necessary 

more KBN exploratory design points are sampled until the first design is found that falls 

within the systems’ search domain, after which the search domain classifier’s acceptable  

Figure 7.9 Subsystems’ Search Domain and Acceptable Region Classifiers 
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Figure 7.10 KBN Classifier Total Error Rates for the Subsystems 

Figure 7.11 Subsystems’ Design Points within the Systems’ Search Domain (left) and 

within the Systems’ Acceptable Region (right) 

region is sampled exclusively until 100 total training points have been generated.  

Because the exploitive samples should be well dispersed throughout the design space, the 

search domain classifier’s standard deviations are calculated according to Eq. 5.11 but 
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with a numerator equal to 1.  By increasing the standard deviation, the samples will be 

less likely to clump around the initial points, providing a more uniform sampling over the 

desired region.  The increased standard deviation will also mean that the search domain 

classifier will misclassify some of the training points as discussed in detail in Chapter 5.  

But this is not so important when the goal is to uniformly sample a region and not to 

classify it which was the focus of the studies in Chapter 5.  The possibility of an 

exploitive sample falling outside of the desired region might even better define the 

region’s boundary.  However, future work should more rigorously identify how to set the 

standard deviation such that it reliably produces a uniform sample over the desired 

region. 

Representative classifiers for 10, 20, and 100 training points are shown in Fig. 

7.9, and the 10
th

, 50
th

 and 90
th

 percentile total error rates are compared in Fig. 7.10 to the 

purely space-filling strategies using the exploratory KBN.  Figure 7.11 shows the number 

of design points within the systems’ search domain for the two strategies as well as the 

number of design points within the systems’ acceptable region.   

From these results, it is clear that the search domain exploitive sampling strategy 

accomplishes the goal of increasing the number of subsystem level design points in the 

systems’ search domain without compromising the classification error rates for the 

mutually acceptable design region classifier.  Sampling the search domain classifier 

increases the probability of a sample lying within the systems’ search domain and also 

generates samples of both the acceptable and unacceptable classes for defining the 

decision boundary of the mutually acceptable design region.  Fig. 7.12 shows the 

resulting sampled design points from a subsystem search domain exploitive strategy on 

the left and a purely exploratory strategy on the right mapped onto the systems’ design 

space as the hollow circles.  The plots clearly illustrate the advantage of the exploitive 
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strategy in terms of generating more points within the systems’ search domain as well as 

more acceptable design points being identified.  However, the subsystems’ search domain 

exploitive strategy does not disperse the points throughout the systems’ design space as 

well as the exploratory strategy which provides a slightly more thorough sense of what  

Figure 7.12 Subsystems’ Design Points Mapped to the Systems’ Design Space 

designs are achievable by the subsystems’ group.  The tradeoff is as expected: a more 

exploitive strategy achieves a higher density of similar high performance designs while a 

more exploratory strategy achieves a lower density of more diverse designs. 

The second strategy investigated in this section extends the results of the previous 

search domain sampling strategy to a more aggressive level of exploitive sampling by 

drawing samples exclusively from the design region that is acceptable to the systems 

group as soon as it is identified.  The initial samples are exploratory for at least ten 

samples and continue to be exploratory until either the first point within the systems’ 

search domain or the first point within the systems’ acceptable region is found, after 

which the sampling is purely exploitive of the classifier with the first positive result.  If 

the first positive sample is within the systems’ search domain but not within the systems’ 

acceptable design space, then the search domain classifier is sampled exploitively until 
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the first acceptable design point is found.  As soon as the first acceptable design point is 

found, its design space is sampled exploitively until a total of 100 training points have 

been sampled.  The results for this more exploitive strategy are shown in Fig.7.13-17. 

Figure 7.13 Subsystems’ Search Domain and Acceptable Region Classifiers 
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Figure 7.14 KBN Classifier Total Error Rates for the Subsystems 

Figure 7.15 Subsystems’ Design Points within the Systems’ Search Domain (left) and 

within the Systems’ Acceptable Region (right) 
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Figure 7.16 Subsystems’ Design Points Mapped to the Systems’ Design Space 

 From these results it is clear that an acceptable region exploitive sampling 

strategy, while producing the most points within the systems’ acceptable region, can 

compromise the classification error rates.  Part of the increased error might be explained 

by the rule-based standard deviation no longer being appropriate for the higher density of 

points concentrated within the systems’ acceptable region.  The lower right plot of Fig. 

7.13 shows several misclassified unacceptable design points because of their proximity to 

the edge of the acceptable region.  This might be remedied by adaptively setting the 

standard deviations using the method developed in Chapter 5.  However, some of the red 

training points are also within the correct feasible region boundary as depicted by the 

solid line, implying that for this case the systems-level classifier misclassified some of 

the design points at the subsystems-level.  When this occurs, using the adaptive method 

for setting the standard deviation from Chapter 5 could lead to worse classifiers.  Future 

work should identify these borderline cases, assign them lower classification confidence 

levels, and take this information into account when constructing the classifier.   

The other observation of immediate note is the large variation in the number of 

points found in the acceptable design region for the acceptable region exploitive strategy.  

From the right plot of Fig. 7.15, there appear to be a significant number of cases where 

the acceptable region is misclassified to such an extent that the samples taken from the 

classifier are not really acceptable to the systems group.  This is most likely the result of 
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trusting the classifier too soon, when only one acceptable point has been identified.  

Perhaps a more optimal strategy would spend some time exploring more in order to better 

define the acceptable region before it is sampled exclusively.  The next section continues 

the discussion of the different sampling strategies. 

7.5 DISCUSSION 

In this chapter, using the KBN classifier for both exploitive and exploratory 

adaptive sampling was demonstrated.  The ability to sample the probability distribution 

estimate of a region of the design space motivates the use of generative classifiers as 

opposed to discriminant approaches that do not create probability distributions.  The 

density estimate, if carefully constructed, can also be used to find a sample point in a low 

density region of the design space for exploration.  While these capabilities were 

developed and demonstrated in this chapter, there remains a lot of work to refine the 

methods.  Some potential directions for refinement are discussed in this section. 

Three simple sampling strategies were demonstrated in this chapter: purely 

exploratory, search domain exploitive and acceptable region exploitive.  However, the 

exploratory and exploitive sampling methods can be combined into any general sampling 

strategy.  Perhaps a mixed strategy is the best balance between exploit and explore such 

as a simulated annealing cooling strategy that transitions from exploration to exploitation.  

Perhaps a strategy that alternates between periods of exploration and exploitation would 

be better.  It should be pointed out that as long as the probability of exploring is not zero, 

then eventually the search will find the global optimum, although this might involve an 

unreasonably high number of sample points.  Critical to the problem of finding a 

generally applicable sampling strategy is the availability of test problems.  Since the 

application is mechanical engineering design of complex systems, a variety of test 
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problems from this domain should be used.  Collaboration with industry would be 

extremely helpful in this regard.  Even before additional test problems are evaluated, 

there are some important ways that the proposed methods can be investigated and 

improved. 

The exploratory sampling method was demonstrated in this chapter for just two 

dimensional design spaces and its performance at higher dimensions will need to be 

studied to ensure its success.  In particular, the calculation of the standard deviation has 

to be verified as being effective at higher dimensions.  Furthermore, preliminary studies 

show that the method tends to place the design points on the edge of the design space 

where the density will naturally be low.  At higher dimensions, this may be particularly 

undesirable if the acceptable region lies on the interior of the design space.  Some other 

method of exploration may be necessary for finding low density but relatively nearby 

design regions.  Furthermore, when either the search domain or the acceptable region was 

sampled to find more points within the same class, a higher standard deviation was used 

in order to avoid clumping of the new design points too closely to the existing training 

points within that class.  The value for the standard deviation used for sampling was set 

empirically and more work needs to be done to develop a generally applicable rule for 

how the standard deviation should be set during the exploitive sampling.  Finally, while 

the low impact of the exploitive sampling strategies on the classification errors 

demonstrated in this chapter suggest that the classifiers are relatively insensitive to the 

calculation of the prior class probability and standard deviation, the methods for setting 

these parameters could be revisited in order to produce even lower classification error 

rates in light of the less uniform distribution of the training points that results from 

exploitive sampling strategies.  
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The adaptive sampling strategies demonstrated in this chapter were sequential 

with the subsystems teams using a fully developed systems classifier for directing their 

sampling.  When the sampling is adaptive and concurrent, there is a risk that design 

points will be placed in erroneously classified mutually feasible regions leading to a less 

efficient use of simulation time.  An important next step for demonstrating the ability of 

these methods to meet the goals of this research is to test their effectiveness when used 

concurrently and to develop new sampling strategies that can manage this risk.  For 

example, error and convergence measures can indicate when a classifier is ready to be 

used to guide the sampling process.    

This concludes the development of the KBN classifier for the purposes of sharing 

locally mapped acceptable regions of the design space.  More development along all of 

the lines mentioned throughout the previous chapters is warranted for further 

improvement of the classifier’s ability to meet the perceived needs of a designer using the 

classifier in support of their collaborative design activity.  However, further improvement 

upon the classifier is reserved for future work and the attention is now turned toward 

sharing the classifiers within more complicated networks of collaborating designers.   
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Chapter 8. Cross-Classification and Collaborative Classification 

Networks 

 In previous chapters a very simple collaborative relationship has been presented 

in which a subsystem design team’s results serve as input to the simulations of the 

systems group.  However, recall that the original UAV wing distributed design problem 

involved two subsystems teams: aerodynamics and structures.  In previous solutions, 

these two subsystems teams were effectively merged by coordinating their design space 

sampling.  The primary goal of this chapter is to develop and demonstrate a method for 

using KBN classifiers to separate the design activities of the two subsystems teams while 

maintaining agreement of their classifiers.  The aerodynamics and structures teams share 

common design variables, naca3 and chord.  These two teams are also indirectly coupled 

through the systems’ simulation because the structures group’s wing weight affects the 

maximum allowable aerodynamics group’s wing drag needed to achieve the necessary 

900 km range.  The implications of these interactions are discussed in depth in this 

chapter leading to a preliminary discussion of the interactions that this research can 

address and the ones it cannot. 

 To facilitate discussing interactions between collaborating groups of designers, 

collaborative classification network (CCN) diagrams, are developed in the next section.  

Section 8.2 presents cross-classification for the purposes of resolving subsystems that are 

coupled through a system-level dependency.  Section 8.3 applies cross-classification to 

the UAV wing design problem and presents the results.  Section 8.4 extends the CCN 

discussion to address dependencies that are not resolvable using the methods developed 

to date and discusses future work.   
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8.1 COLLABORATIVE CLASSIFICATION NETWORKS 

To illustrate possible collaborative relationships between design teams, 

collaborative classification networks, CCN’s, are introduced in this section.  The goal is 

to better understand how classifiers can be used to propagate constraint information 

between dependent collaborators and to identify the need for new methods as necessary.   

All of the previous chapters’ applications of classifiers to collaborative design 

have been demonstrated for just one relationship: one team’s simulation results serve as 

the inputs to another team’s simulation.  The relationship is shown diagrammatically in 

Fig. 8.1 where the nodes of the diagram represent the two collaborating teams, and the 

edge between the nodes has a direction signifying that some or all of the parent node’s 

simulation results serve as input to the child node’s simulation.  For the UAV 

demonstration problem, the parent node is the subsystems group and the child node is the 

systems group. 

Figure 8.1 CCN for Two Asymmetrically Coupled Design Teams 

As more types of relationships are considered, the systems/subsystems distinction 

becomes blurred and the association with output to input relationships becomes strained.  

Therefore, relationships designated with a directed edge may also be called asymmetric 

to emphasize that the simulation that maps design space to parameter space is not easily 

invertible and to deemphasize any suggestion of a systems/subsystems relationship.  The 

use of a directed edge makes the asymmetric flow of information recognizable in that the 
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parent simulation must be conducted before the child’s simulation in order to produce 

consistent results. 

The second type of relationship is the case in which design teams have common 

inputs to their simulations.  For example, the UAV wing design problem was introduced 

in Chapter 4 as involving two coupled subsystem teams: aerodynamics and structures.  

Both of these teams required naca3 and chord parameters as inputs to their analyses.  

This type of relationship is called symmetric, because the shared parameters are design 

parameters that can be trivially coordinated via prior agreement on their values.  The 

CCN notation for a symmetric relationship between design teams is shown in Fig. 8.2 as 

a directionless edge.   

Figure 8.2 CCN for Two Symmetrically Coupled Design Teams 

In previous chapters, the aerodynamics and structures design teams were 

coordinated by effectively merging them into a combined classifier.  For a symmetric 

relationship, the coordination must occur before the coupled teams execute a 

corresponding simulation.  Once the design point has been agreed upon, the two teams 

can execute their simulations in parallel.  In contrast, the asymmetric relationship 

described in the previous paragraph requires a subsystem simulation to be executed first, 

followed by the system level simulation.  Alternatively, the system level team can 

generate target values for shared parameters that the subsystem team can try to match.   

So far, each node in a CCN has represented a team as depicted by the filleted 

squares in the previous figures.  However, a more precise meaning for the purposes of 
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this research is to use the filleted squares to represent a classifier with a unique set of 

training points.  As illustrated in Fig. 8.3, this allows one to represent the decision to 

coordinate the training points of separate simulations by merging them into a combined 

node.  For the symmetric relationship between the UAV subsystems the inputs  

Figure 8.3 Merging CCN Nodes by Coordinating the Training Points 

in the naca3, chord subsystem domain can be coordinated and the two subsystem teams 

merged into a single classifier as demonstrated in previous chapters.  Likewise, for an 

asymmetric relationship the systems’ weight, drag domain can be replaced directly by the 

subsystems’ domain by running the simulations sequentially.  Thus, the number of nodes 

in a CCN represents the number of classifiers that are being independently developed 

such that their training points do not necessarily coincide with the training points of the 

other classifiers.  The edges represent the ways in which two classifiers are dependent 

and must be coordinated such that the acceptable class of each classifier captures the 
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mutually feasible design space.  A CCN is consistent if every classifier has been 

coordinated such that sampling the mutually feasible design space will result in a design 

that is acceptable to all system-wide requirements. 

The classifier associated with a CCN node can be represented by its Bayesian 

network as illustrated in Fig. 8.4 for the full UAV distributed design problem.  In addition 

to the class parameter and the design parameters, the performance parameters of the  

Figure 8.4 CCN with Bayesian Network Classifiers 

simulation can also be represented.  However, because the value of a performance 

parameter is determined without uncertainty given values for the design parameters, it is 

represented as a double circle instead of a single circle. 

Just as classifiers can be merged, they can also be split into two or more 

classifiers with the appropriate edges added to ensure that their dependencies are 

coordinated.  Adding an edge may not always be necessary if it turns out that the 

classifications can occur independently.  For example, two separate classifiers could be 
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created that independently classify values of drag and weight for acceptable values of 

range if it were known how to limit the values drag and weight take such that all possible 

combinations of drag and weight will produce an acceptable range.  Perhaps an 

investigation is conducted and upon discovery that the classification decision can be 

represented using two or more independent classifiers, then the single CCN node can be 

split into two or more nodes without connecting edges.  The common way to do this is to 

use intervals.  As demonstrated in Chapter 4, intervals can lead to irreducible and large 

classification errors, but if these errors are acceptable, then the CCN connectivity can be 

simplified. 

After defining the basic elements of a CCN as well as a merging/splitting 

operation, the issue of CCN consistency needs to be addressed.  In a consistent CCN, all 

classifiers have been coordinated such that every classifier’s acceptable region is feasible 

for all classifiers.  In order for a CCN to be consistent, constraints on parameters that are 

local to one classifier must be propagated to the other teams that are joined to it by an 

edge.  The method of propagation of constraints through an asymmetric coupling was 

demonstrated for the UAV wing design problem in Chapter 4.  The method begins with 

each team sampling their design spaces independently.  Each new design point is 

classified locally as acceptable or not according to all local constraints.  In addition, the 

subsystem team uses the systems’ classifier as an additional constraint on the 

acceptability of their designs.  The subsystem design points that classify as acceptable for 

the systems team and satisfy all subsystem constraints constitute the mutually acceptable 

set of designs that is then used to train the acceptable design space classifier over the 

subsystem domain.  The subsystem designs within the acceptable design class can then be 

propagated back up to the systems level by evaluating them with the system level 

simulation.  The propagation flows from the top level requirements down to the 
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subsystem level design definition and then only the best designs as defined by their 

mutually acceptable classification are sent back up the chain.  The process is illustrated in 

Fig. 8.5.  Propagating class through a symmetric relationship is achieved by sharing 

classifiers and using them as an additional feasibility constraint for each design point.  

Each classifier’s design parameter domain is searched and classified according to local 

constraints and the constraints of any symmetrically dependent classifier, as shown in 

Fig. 8.6.   

Figure 8.5 Asymmetric Propagation of Class 

Figure 8.6 Symmetric Propagation of Class 

This chapter presents cross-classification as the means to make classifiers that are 

coupled in the same manner as the full UAV distributed design problem as shown in Fig. 

8.4.  What is new is that the classifiers at the subsystem level do not have coordinated 

training points and have not been merged into a single classifier.  Furthermore, the two 

subsystem teams are indirectly coupled through the system level classifier.  This occurs 

in the UAV systems classifier because a different range of weights will be acceptable 

depending on the value of a design’s drag.  Resolving the indirect dependency between 
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the subsystems through the systems’ classifier requires cross-classification.  Resolving 

the direct dependency between the subsystems through their common design parameters 

requires symmetric propagation of class.  Both cross-classification and symmetric 

propagation of class are demonstrated in this chapter for resolving the three-way 

dependency between the UAV teams. 

8.2 CROSS-CLASSIFICATION 

 

Figure 8.7 Parental Relationships without (left) and with (right) Common Design 

Parameters at the Subsystem Level 

 The CCN relationships that are resolved through cross-classification are depicted 

in Fig. 8.7.  There are two cases: the subsystem teams do not (left) or do (right) have 

common design parameters.  As proposed in Section 8.1, the distinction is represented in 

CCN’s as an undirected arc between teams that share simulation inputs.  First, the 

problem of propagating acceptability for the common child, symmetrically uncoupled 

parent case is considered followed by the common child, symmetrically coupled parent 

case.  But first, a fundamental distinction between the two cases is made: when co-

parents share design parameters their design space sampling can be directly coordinated 

such that they behave as a single unified team.  This was the simplification made for all 

of the previous distributed UAV wing design problems: the design points for the shared 

naca3 and chord design space were determined simultaneously for both the structures 

and the aerodynamics teams.  When this can be accomplished, the subsystem teams can 
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be merged into a single classifier and the CCN degenerates into a chain that can be 

resolved by asymmetric propagation of class as covered in Section 8.1 and as 

demonstrated in previous chapters.  The case considered here is when the sampling is not 

coordinated between the co-parents.  Having independent classifiers for each subsystem 

team allows them to act more independently, choosing which designs to sample and 

when.  In other words, data generated at any time and that has not necessarily been 

coordinated with co-parents can still be used in the classifier. 

Figure 8.8 CCN without Common Design Inputs at the Subsystems Level 

 The process for cross-classification is to asymmetrically classify all possible 

combinations of design points for the different co-parent samples.  Consider first the case 

of symmetrically uncoupled design spaces for the co-parents depicted in Fig. 8.8 as two 

one-dimensional subsystems spaces.  The nomenclature from the UAV design problem is 

retained for illustrative purposes even though the symmetric independence between the 
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structures and the aerodynamics teams is purely hypothetical.  In this hypothetical case, 

structures has chord as its only input and aerodynamics has naca3 as its only input.  An 

additionaly line connecting the subsystems-to-systems edges in Fig. 8.8 represents 

dependence through the subsystems teams’ common child’s classifier and not through the 

sharing of common domain variables.  The structures team chooses chord values to 

evaluate for weight, and aerodynamics chooses values of naca3 to determine drag using 

their simulation.  In order for structures to classify a chord value as being acceptable or 

not, it needs to be paired with all of aerodynamics’ available naca3 design points and 

each combination needs to be separately classified as acceptable or not using the systems 

classifier.  Every combination of naca3 and chord that classifies as acceptable to the 

systems team can be classified as acceptable for both structures and aerodynamics.  

However, a given value of naca3 that classifies as acceptable for some combinations with 

chord could also classify as unacceptable with other combinations, making the subsystem 

classification less clear.  The ambiguity can be eliminated by increasing the design space 

dimensionality to the two dimensional naca3 by chord domain.  In the higher 

dimensional space, all possible combinations are represented by separate points, each of 

which gets a single classification.  The result is a shared classifier between the co-parents 

that accurately captures all of the cases for which their design parameters combine to 

acceptable weight and drag system level design points.  This case is represented with a 

connecting line between the subsystem-to-systems edges in the CCN diagram as shown 

in Fig. 8.8 to indicate the need for cross-classification.   

 The example used for the case of symmetrically coupled co-parents is the familiar 

UAV wing design problem with structures and aerodynamics sharing naca3 and chord as 

their design parameters as shown in Fig. 8.9.  In order for the structures team to classify a 

new design point, (naca3, chord), they use the systems’ classifier to reclassify the 
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aerodynamics design points using their calculation for weight resulting from their new 

design point and combining it with all of the drag results from aerodynamics’ design 

points.  This use of cross-classification produces a new classifier in terms of naca3 and 

chord for aerodynamics’ training points.  Then, the new structures’ design point is 

classified as acceptable or not using the new aerodynamics classifier—an instance of 

symmetric propagation of class.  This procedure approximates the regions of 

acceptability based upon aerodynamics’ choices for naca3 and chord that produce drags 

that are acceptable when combined with the weight calculation from structures and then 

finds out if structures’ (naca3, chord) design point falls within these acceptable regions. 

Figure 8.9 CCN with Common Design Inputs for the Co-parents 

If this procedure is carried out by structures or aerodynamics, the combinations of 

weight and drag that classify as acceptable using the systems classifier will be the same, 

although the final decision surfaces will be slightly different because of the different 
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sampling sequences in each of their naca3, chord design spaces.  The case of 

symmetrically coupled co-parents is the same as the previous case of uncoupled co-

parents up to and including the point of using the systems’ classifier to determine the 

acceptability of all combinations of subsystem outputs.  However, beyond this point, the 

procedures differ in that symmetrically uncoupled co-parents have to keep track of their 

parental dependencies through an identical joint classifier of higher dimension whereas 

symmetrically coupled co-parents will have two separate classifiers of the same 

dimensionality as before cross-classification—classifiers that require an additional 

symmetric classification step to establish consistency. 

 Finally, because the number of points that need to be classified at the systems 

level is determined by the number of combinations of each of C co-parents’ training 

points the time complexity of cross-classification is          for the case where all C 

combined classifiers have N training points, and hence could be prohibitively expensive.  

As a reminder, L is the longest dependency chain in the BN and hence is greater than zero 

but less than the number of dimensions.  Means for breaking dependencies are therefore 

important for limiting the difficulty of the problem.  Some of the existing methods for 

breaking dependencies are discussed at the end of the chapter in Section 8.4.  But first, 

the next section demonstrates using cross-classification for resolving the three-way 

dependency between the teams in the UAV example problem.  

8.3 UAV SOLUTION 9: CROSS-CLASSIFICATION AND SEPARATED SUBSYSTEMS 

 In this section, the UAV wing design problem is solved again with the additional 

complexity of considering separated subsystem teams each with their own sampling 

sequence.  The solution was implemented in Matlab
®
 and the associated files are included 

in Appendix G.  As with previous solutions, the systems team will again produce an 
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accurate system level classifier before the subsystem teams perform their cross-

classification.  An additional simplification is made as depicted in the process flow 

diagram of Fig. 8.12 where the aerodynamics team produces their space-filling sequence 

before structures begins the cross-classification.  With every new sample by structures, 

all combinations of the resulting weight with the predetermined aerodynamics design 

points’ drag are classified at the systems level for feasibility according to the cross-

classification procedure, and then each of structures’ (naca3, chord) design points is 

classified again with the new aerodynamics classifier.  The resulting classifier and the 

reported errors are in terms of structures’ sequence of design points and their associated 

classifier.  Both the systems and the aerodynamics teams use the Halton sequence for 

determining their design points, while the structures team uses the purely exploratory 

adaptive KBN sampling developed in Chapter 7.  Using separate sampling sequences for 

the subsystems teams is central to the desired demonstration of this chapter in order to set 

it apart from previous solutions.  One can also classify the aerodynamics points according 

to whether or not their drag values are within systems’ search domain and then to use this 

classifier to immediately determine if structures’ design point is unacceptable or if cross-

classification is needed to make the decision, shown as step 3 in Fig. 8.10. 

Example structures’ classifiers for both the points within systems’ search domain 

as well as the acceptable points are presented in Fig. 8.11 for the case of N = 10, 20 and 

100 design point samples.  Figure 8.12 presents the total error rates as the sum of the 

false positive and false negative classification error rates in terms of the 10
th

, 50
th

, and 

90
th

 percentiles and includes for comparison the baseline error rates from the UAV 

solution that used the new rule presented at the end of Chapter 5.   The total subsystem 

classification error rates remain under 10% after 100 samples and are comparable to the 



 147 

Figure 8.10 The UAV Collaborative Design Process 
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Figure 8.11 Subsystems’ Search Domain and Acceptable Region Classifiers 
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Figure 8.12 KBN Classifier Total Error Rates for the Subsystems 

Halton sequence error rates that did not use cross-classification.  Figure 8.13 also 

compares the previous kbn exploratory sampling solution without cross-classification to 

the solution from this section that used cross-classification.  Cross-classification 

introduced a small amount of additional classification error relative to not using cross-

classification.   

Figure 8.13 KBN Classifier Error Rates for the Subsystems 
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8.4 DISCUSSION 

The primary result from this chapter was the development and demonstration of 

cross-classification for the purposes of propagating classification of acceptability from a 

systems level requirement that imposes a dependent relationship on the simulation results 

of two subsystems level teams.  For the example UAV wing design problem, cross-

classification produced reasonable error rates that are not much different than error rates 

from processes that did not use cross-classification, using instead the coordination of the 

subsystem teams’ sampling sequences such that they could be considered as one team.  

The benefit of the new cross-classification arrangement is that the two subsystem teams 

can independently choose which design points to run through their simulations.  

Knowledge from simulations runs that were not coordinated can now contribute to the 

joint classification of both subsystems, providing additional scheduling flexibility.  

However, the potential cost of cross-classification is high because all combinations of 

subsystem design points were classified at the systems level.  Furthermore, cross-

classification dependencies can propagate through a CCN to expand the dimensionality 

of classifiers as discussed next.  There may be ways to help mitigate the cost, including 

taking advantage of monotonic relationships.  However, there are very practical methods 

already in use that can be used to eliminate the need for cross-classification and the 

potential dimensional expansion of classifiers altogether by controlling the complexity of 

the problem.  Some of these methods will be discussed later after considering more 

complex CCN relationships next. 

The types of classifier dependencies that can be resolved using the coordination 

methods demonstrated in this research will be called the admissible CCN’s.  Inadmissible 

CCN’s are opportunities for future work to define the coordination methods that can 

make them consistent.  Figure 8.14 reviews the CCN dependencies that have been 
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resolved directly through the example problems.  On the top left of Fig. 8.14 is the 

asymmetrically coupled system and subsystem relationship solved in the previous 

chapters using the asymmetric propagation of class.  On the bottom right of Fig. 8.14 is 

the symmetrically coupled co-parents relationship between the two subsystem teams and 

their common system level classifier that was solved in the previous section of this 

chapter using cross-classification.  Cross-classification can be separated into two pieces: 

1) the classification of every combination of co-parent’s training points at the system 

level and 2) the symmetric propagation of class between the co-parents that share input 

parameters.  These two procedures can hence be separately applied to resolve the two 

CCN’s shown in the top right and the bottom left of Fig. 8.14 respectively.   

Figure 8.14 Demonstrated Admissible CCN’s 

Applying the asymmetric propagation of class as demonstrated in the previous 

chapters easily extends to a chain of asymmetrically coupled classifiers as shown on the 

left side of Fig. 8.15.  Furthermore, every parent can have multiple independent children 

because each child’s classifier will be used in the same manner using the asymmetric 

propagation of class.  This allows for the resolution of a tree structure as shown on the 
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right side of Fig. 8.15.  Both of these structures are resolvable using just the asymmetric 

propagation of class. 

Figure 8.15 Admissible CCN Chains and Trees 

Of more interest to complex design is the hierarchical structure shown on the right 

of Fig. 8.16 where systems are made up of multiple subsystems and each subsystem is 

independent.  Hierarchical structures have the useful recursive property of every node 

having a hierarchical relationship with its ancestors.  This property has been taken 

advantage of by analytical target cascading (ATC) which has a guaranteed convergence 

for hierarchical dependencies using a recursive coordination strategy as long as the 

design space is smooth and convex (Michelena et al., 2003).  A slightly more general 

structure called a polytree allows for nodes to have multiple children and parents as long 

as there are no undirected loops.  An undirected loop occurs if more than one path 

connects any two nodes once the arrows have been removed from the graph’s edges to 

allow for edge traversal in either direction.  For this reason, polytrees are also called 
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singly-connected networks (Pearl, 1988).  Collaborative design networks (CDN) that use 

multiply-sectioned Bayesian networks take advantage of polytree structures for finding 

optimal solutions in an efficient distributed agent-based framework (Xiang et al., 2004).  

A polytree that is not hierarchical, a tree or a chain is illustrated on the left side of Fig. 

8.16.  In general these structures are not admissible for the following reasons. 

Figure 8.16 CCN Polytrees 

 Unless the structure is a chain or a tree, making CCN polytrees consistent requires 

at least one application of cross-classification.  As was discussed in Section 8.2, cross-

classification between uncoupled co-parents requires merging the co-parent classifiers 

into a single higher dimensional classifier with training points that are all of the possible 

combinations of the co-parent training points and which have been classified at their 

child’s level.  The trouble with this approach is that the cross-classification dependency 

will propagate through a polytree.  An example of the propagation is shown in Fig. 8.17 

using the hierarchical structure shown in Fig. 8.16.  At the top of the hierarchy, all three 

co-parents of the highest node could be dependent through their common child’s 

classifier, as shown with the connecting line between their edges, and merged into a 

single classifier as shown at the top of Fig. 8.17.  This in turn will make all of the nodes 
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at the third row of the hierarchy co-parents that in general will also need cross-

classification to resolve their indirect dependencies through their new common child, as 

depicted by the new connecting lines between their edges.  The cycle continues until the 

whole CCN has degenerated into a chain.   

Figure 8.17 Propagation of Dependencies in a Hierarchical CCN 

Furthermore, there is no longer necessarily a one to one relationship between the 

co-parent’s outputs and the new merged common child’s classifier’s domain.  For 

example, when the second row of nodes in the example hierarchy at the upper left of Fig. 

8.17 gets merged into a single classifier the middle node will contribute additional 

dimensionality to the domain of the merged classifier that will not be coupled to any of 
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the outputs of the third row classifiers.  This additional dimensionality will need to be 

brought down to the third row’s four dependent classifiers which will hence have the 

combined dimensionality of five classifiers.  The domains of every root node from the 

original hierarchy will get carried down to the root node of the chain of all of the merged 

classifiers.  For the CCN hierarchy in Fig. 8.18, the chain’s root node will have the 

combined dimensionality of all six root nodes from the original hierarchy shown in the 

upper left.  The complexity increases when the possibility of symmetric coupling is also 

considered. 

While this approach of merging classifiers is possible, the expansion of classifier 

dimensionality and the associated cost of combinatorially creating the new training points 

might need to be controlled.  Furthermore, some of the independence between groups 

might want to be preserved for the scheduling benefit of not needing to coordinate the 

mapping process.  Methods are needed to make local classification possible without as 

complete of a consideration of all of the possible dependencies between the design 

parameters.  This would allow for some of the structure of polytree CCN’s to remain and 

not necessarily collapse into a chain.  Some possibilities are discussed next. 

 There are two ways to limit the propagation of dependencies: with the design and 

with the design process.  The dependencies between groups could be a result of the 

concept being analyzed.  There could be completely new concepts that require new 

dependencies between new simulations that change the design problem altogether.  On 

the other hand, systems level dependencies are probably general enough to apply to a 

wide range of concepts such as the drag and weight dependency for the UAV range.  The 

trade-offs between factors that affect systems level performance will be very common in 

physical products.  While perhaps not always at the systems level, product design can 

certainly impact the dependencies below the systems level.  In particular, product 
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architecture can be modular for the express purposes of reducing design dependencies.  

Furthermore, part geometries themselves can be changed in order to move load paths or 

tune stiffness such that design decisions are isolated from each other.  These examples 

are instances of conceptual robustness that seeks to make local design decisions such that 

dependencies between groups are minimized.  Identifying which dependencies are 

fundamental versus which dependencies are affected by product design and how to use 

this information is an interesting avenue for future research.  Combining results from the 

very important research on product architecture and modularity with the results from this 

research would be a very interesting collaboration. 

The design process can be conducted such that dependencies between groups are 

minimized or eliminated.  Design decomposition is an important field of work that will 

obviously greatly impact dependencies between groups and can be used to determine 

better if not optimal design team boundaries.  Hence, another important direction for 

future research will try to answer the question of how and when to either eliminate an 

interface or to create a new interface in order to help resolve the problem of propagating 

class.  In addition to decomposition, classification decision boundaries can be chosen 

such as intervals that eliminate the dependency between groups.  A particularly 

interesting approach that would be a nice complement to this research for determining 

intervals based upon subsystem achievability is developed in (Liu et al., 2008).  

However, intervals can lead to classification errors or unnecessarily small acceptable 

regions of the design space.  Hence identifying when intervals are a good choice versus 

more general classifiers that can capture important dependencies is an important aspect of 

this research that should be considered in more depth.   

Finally, the most common method in practice should be mentioned: the interfaces 

can be standardized.  It is likely that most design processes seek to fix interface parameter 
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values early in the design process in order to proceed without further communication 

between groups.  The express goal of this research is to try to avoid this situation 

whenever appropriate in order to encourage consideration of a larger set of possible 

designs.  However, there will be interfaces that are not important for the system level 

performance and can be frozen or standardized without concern for missing potentially 

better designs.  For example the interface between threaded fasteners and the mating parts 

that they join is a commonly standardized relationship.  Recognizing when to freeze an 

interface and when to explore alternatives is an important aspect of this research that 

warrants a closer look. 

However, there may be new methods for making the classifiers in ploytree and 

hierarchical dependency structures consistent without removing dependencies.  Future 

work should attempt to identify new procedures for handling these important classes of 

dependency structures perhaps with the help of a closer study of ATC and CDN’s.  A 

judicious use of metamodels might also allow for a significant reduction in the 

complexity of cross-classification because every combination of subsystems’ design 

points would not need to be classified at the systems level.  CCN’s as presented in this 

research are just the start at creating a representation for which the applicability of 

resolution procedures can be recognized and then implemented.  Future work should also 

more rigorously define the class of admissible CCN structures that a collection of 

resolution procedures can solve.  
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Chapter 9. Conclusions 

The research presented in the previous chapters is the first step in the direction of 

a systematic method for realizing a set-based collaborative design process where team 

dependencies are characterized and resolved more comprehensively than ever before.  

This research has introduced and validated the possibility of using classifiers towards 

these ends.  One particularly flexible classifier paradigm called kernel-based Bayesian 

network (KBN) classification was presented and used throughout this research to 

demonstrate the feasibility of using classifiers for set-based collaborative design.  Along 

the way, the KBN classifier was adapted to further meet the goals of this research’s 

hypothesis in some important ways.  The accomplishments toward that end are reviewed 

next followed by a critical evaluation of these achievements and discussion on future 

work for advancing the method further.  The chapter concludes with a discussion of the 

practical implications of the research. 

9.1 ACHIEVEMENTS 

The first step in developing the new method was to apply it to a simple but non-

trivial collaborative design problem for a UAV wing.  For this problem, it was verified 

that classification error rates can converge to a reasonably low level within a reasonable 

number of design points for both teams, including the subsystems team that was using the 

system level classifier to determine the feasibility of their design choices.  The 

performance of KBN classifiers was compared to intervals that were shown to not 

converge to low classification error rates because of their fundamentally limited 

representational capability.  This first demonstration problem established the potential 

benefit of using classifiers over the simpler and more common alternative of using 

intervals.  The capability of using either a Naïve Bayes or a Parzen Window classifier 
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(two common special cases of the more general Bayesian network classifier) for this 

problem was also demonstrated.  In addition, the use of loss factors to trade off false 

positive error rates for false negative error rates was demonstrated.  This ability is an 

important feature of the proposed classifier for cases when one type of classification error 

has a more serious implication.  It can also be used to tune the size of the mutually 

feasible region.  These achievements were in line with the stated goal of representing and 

sharing maps of arbitrarily shaped regions of the design space.  The KBN classifier’s 

ability to represent disconnected regions of the design space was demonstrated in the 

outcomes of different experiments throughout the dissertation. 

After the first application of the KBN classifier to the demonstration UAV design 

problem, the importance of setting the standard deviation of the Gaussian kernels was 

recognized and confronted by developing a new automated approach that is guaranteed 

not to misclassify the known design points.  This achievement advanced the automation 

of the proposed method in order to more consistently meet designer expectations in terms 

of correctly classifying the training points.  The new approach removes some of the 

potential burden from the designer who might otherwise have to conduct many 

experiments in order to find a good setting for the standard deviation.  This advance was 

in line with the stated goal of achieving full automation for the proposed method. 

The next achievement of this research was to demonstrate how expert knowledge 

can be exploited by the classifier to significantly improve classification error rates.  This 

capability was demonstrated in terms of exploiting monotonic relationships in two ways: 

seeding the training data with points of known classification and using monotonic 

domination to automatically classify new points without simulating their performance.  

This advance was in line with the stated goal of being flexible enough to exploit 
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knowledge from external sources, including designers themselves, and validates the 

importance of this goal. 

The next demonstrated achievement was the ability to use the same technology to 

direct the search through the design space for the purposes of either exploring new 

regions or exploiting knowledge of the location of good designs to find similar or better 

designs.  The motivation for this achievement comes from the stated goal of exploiting 

accumulated knowledge of the design space in order to focus resources as quickly as 

possible.  In particular, the ability of the classifier to identify and produce samples from 

the region in the subsystem design space that maps to the system level search domain was 

particularly effective in generating design points that are relevant to the systems level 

team.  The novel exploration technique has the additional benefit of adapting to avoid 

regions that have already been sampled, which further facilitates the method's ability to 

exploit feasibility information from other sources. 

Finally, the use of classifiers for a three-way dependency between design teams 

called cross-classification was demonstrated.  This achievement extended the types of 

relationships between coupled design teams that can be resolved by sharing classifiers to 

a total of four configurations as described in Chapter 8.  Furthermore, a new graph-based 

representation was introduced to facilitate a discussion of the relationships between 

design teams that can and cannot be solved using the methods developed in this research. 

9.2 DISCUSSION AND FUTURE WORK 

These achievements were significant advances toward realizing the goal of this 

research to develop a new tool to facilitate set-based collaborative design and they 

represent a major step forward from the previous work in the literature in several ways.  

The classifier technology used to map the feasible regions was demonstrated to be more 
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flexible than intervals. This demonstration was important because intervals are simple to 

implement.  Of the existing methods for mapping more complicated feasible regions, the 

arguments in favor of the proposed method, although not yet demonstrated, are clear.  

The proposed method does not rely on discretizing the design space and using histograms 

to represent feasibility.  Kernel density methods are more flexible and efficient.  

Furthermore, classifiers exploit knowledge from all design points and not just the feasible 

ones.  Finally, previous methods, with the exception of design steering, do not integrate 

the knowledge representation with the search process. 

While the proposed method is an advance over the previously proposed methods, 

future work should evaluate alternatives as well as continue to advance the KBN 

classifier as proposed throughout this dissertation.  Toward this end, more collaborative 

design problems need to be formulated that cover higher dimensional spaces.  Methods 

for managing the increase in time for both sampling and evaluating classifiers as the 

number of design points and the dimensionality increases will be important to enable 

scaling the proposed method to higher dimensional problems.  More test problems will 

also provide evidence for the importance of the first goal of this research: to map 

arbitrarily shaped and potentially disconnected regions of the design space.  It was noted 

in the third chapter that more flexible technology exists than the proposed KBN 

classifiers which does not have the universal approximation property of RBF networks.  

However, it is not clear that the additional overhead of a matrix inversion required to 

train RBF networks is worth the gain in having a universal approximator.  Further studies 

are required to consider how important it is to have a method that completely achieves 

the first goal of mapping arbitrarily shaped regions of the design space.  Part of this 

problem must include the diminishing returns of more sample points in terms of smaller 
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error rates and the practical limitations to any attempt to achieve zero error 

representations. 

In summary, while the method developed in this research does not completely 

meet the first goal of this research, it represents a significant advance over previous 

methods.  Future work can help resolve where the proposed technology should lie on the 

tradeoff between increased computational expense and reduced classification error.  It is 

clear however that there is no need to take a backward step away from classifiers and 

return to interval-based approaches including their more representational versions of 

histograms and 2
k
-trees.   

Perhaps of higher importance in terms of future work is the extent to which the 

second and third goals were met.  The second goal is to provide a range of automation 

options from full to no automation.  The third goal is to enable designers working in 

parallel to develop and share their maps as desired.  The primary motivation for these 

goals was to facilitate the success of the tool in an interactive design environment.  Full 

automation displaces the burden from the designer to the computer and provides the 

service of checking the system-wide feasibility of design choices as soon as possible.  No 

automation means that the method can receive and use any external source of feasibility 

information in order to make the process potentially more efficient because it is 

recognized that experts will have specialized knowledge of the problem being solved that 

should be exploited if possible.   

Much of the focus of this dissertation was on making the method more automated 

such that it could reliably be run in the background without burdening the designer.  An 

important advance toward this end was the method developed to automate setting the 

standard deviation such that the classifier behaved consistently with its own data.  The 

demonstrations from Chapter 5 suggest that the method has been developed enough to be 
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ready for use although additional work can be done to improve the method as discussed 

at the end of Chapter 5.  The other important advance made by this research toward 

realizing the full automation goal was the adaptive sampling methods demonstrated in 

Chapter 7.  The methods developed in Chapter 7 have a lot of potential for refinement in 

future work.  In particular, the methods developed need to be tested with higher 

dimensional problems and adjusted if necessary.  Future work could develop guidelines 

for combinations of explore/exploit strategies that are effective.  Future work could also 

include a classification of not just the feasible region but also the most preferred regions 

which could subsequently be sampled in the hopes of finding better performing designs.  

Sampling on or near the decision boundary is also an intriguing possibility for future 

study. 

 All of the validating experiments throughout this dissertation were automated and 

hence the automation has been extensively demonstrated.  However, the goal of 

accommodating no automation was not explicitly demonstrated; nor was the third goal of 

allowing designers to work in parallel in order to develop and share their classifiers as 

desired.  The method has been developed to the extent necessary that it can now also be 

used without being automated or with a mixture of interaction and automation for simple 

problems similar to the UAV wing design problem.  The method can accommodate 

feasibility information from a designer in order to exploit their insights into the problem.  

The method can also solicit system-wide feasibility from other classifiers to provide 

feedback to the designer about the feasibility of their choices for some simple 

relationships.  In light of the extensive discussion in Chapter 8 concerning the types of 

classifier dependencies that can be resolved using the methods developed in this research, 

it is clear much work needs to be done in order to scale the tools to more complicated 

systems.  More experiments should also be conducted to evaluate how effectively the tool 
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can be used concurrently.  However, it should be possible to test the technology as it 

stands now in an interactive design environment.  This is an important next step to 

completely validate the method’s ability to meet the second and third goals of this 

research.  Significant resources will be required to implement the method in a software 

framework that meets the stated goals of this research.  However, the required effort 

could be mitigated by implementing the method within existing design steering software 

(Carlson et al., 2008).  The importance of this next step is not just to validate the method 

but also to gain insight into how to improve it further. 

 Finally, future work should expand the scope of this research that was presented 

in the first chapter to include more of the design process.  The method could be extended 

to aid designers in evaluating how to spend resources in order to pursue different 

concepts.  Inspiration for this extension can come from (Otto and Wood, 1995; Malak et 

al., 2009) to name just a couple of precedents.  Future work could look into combining 

variable fidelity information with more inspiration from Q2S2 (Rai and Campbell, 2008).  

Future work could look into guiding the setting of the softer constraints as well as 

classifying according to a preference in order to control the size of the feasible region.  

Future work could look at adapting previously developed classifiers to new but similar 

problems such that the knowledge can be fully leveraged for re-use.  For example, 

sampling methods that are robust to future changes in requirements or applications could 

be developed.  Future work could help identify opportunities for innovation based upon 

exploring the impact of violating what are perceived to be hard constraints.  Future work 

could also identify how the product concept and architecture affect the constraint 

dependencies between designers.   



 165 

9.3 PRACTICAL IMPLICATIONS 

 This concluding section returns to the practical motivations of the first chapter of 

this dissertation in order to relate the results of this research to the concerns of designers 

in industry.  Why might designers want to use the methods developed in this dissertation 

to tackle a problem they are confronting?  This research has the potential to change the 

relationships between designers and the groups they interact with in two important ways.  

First, some relationships will be common to all product development processes and these 

relationships should be thoroughly understood and captured.  Second, the choices being 

made that are new to a design team should benefit from a thorough understanding in 

terms of how they constrict the design space and how they explore trade-offs. 

With the use of tools developed by this research, designers can create thorough 

classifications of the systems-level design problem in order to understand how subsystem 

design activities interact to create trade-offs and conflicts with respect to system-level 

performance.  There should be a systems-level view of the problem that is invariant to the 

different concepts being considered and that can be re-used for many new generations of 

products.  Subsystems-level designers also have relationships with other groups such as 

manufacturing that might have fairly static requirements that can be mapped and re-used 

across products.  It is quite possible that independently applied rules that come from 

manufacturing are overly constraining designers, and that independently applied part 

tolerances are overly constraining the manufacturing and quality control of the parts.  

Accounting for conditional dependencies should provide greater freedom for both parties.  

Research activity can be independently conducted and applied to alter the relationship 

between these teams.  Perhaps a more thorough mapping of these relationships can 

provide direction for future technologies that can improve product performance by 

redefining the mutually feasible design space. 
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This research should also help designers that are confronting new design 

problems for the first time by providing the tools to explore and map the results of 

simulations and experiments more thoroughly than was previously possible.  Designers 

should be able to gain a more thorough understanding of the mutually feasible design 

space and how their design choices and constraints shape it.  Designers should also aquire 

an understanding of how dependencies between design activities affect product 

performance and define trade-offs between potential solutions. 

As argued in the opening chapter, these gains in knowledge capture and re-use 

should translate into shorter product development lead times and potentially higher 

quality products.  Product development times for new projects will be reduced by making 

sure at least one design is developed that is feasible to all stakeholders, reducing the 

probability of iteration.  Future product development lead times will also be reduced 

because the re-use of captured knowledge will improve the efficiency of decision 

making.  While these broader claims of the potential impact of this research are still 

preliminary and unproven, it is hoped that the reader will see enough potential in the 

methods that have been developed and demonstrated to want to extend this research 

further toward demonstrating these possibilities. 
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Appendix A 

 The Matlab
®
 code for using KBN classifiers is presented in this appendix.  Table 

A.1 lists the functions and includes a brief description of what they are used for.  Several 

utility files are included for running the experiments and generating the plots throughout 

this dissertation. 

Table A.1: Matlab
®
 Functions for using KBN’s 

kbn( ) The KBN constructor function returns a KBN structure. 

kbnAddData( ) Add design points to the KBN structure. 

kbnEval( ) Evaluate the probability and its derivative at a design point. 

kbnEvalH( ) Calculate the smoothing parameter. 

kbnGetErr( ) Calculate the error based upon correct data. 

kbnPlot( ) Plot the probability distribution in 1 or 2 dimensions. 

createTestPoints( ) Creates a grid of test points for checking the classifier errors. 

sampleGrid( ) Creates a grid of points. 

dataWrite( ) Writes points to a file. 

dataRead( ) Reads points from a file. 

halton( ) 
Generates the Halton sequence with the desired dimensionality and 

number of points. 

 
function n = kbn(Din,Dout,C,varargin) 

  
n.type = 'kbn'; %a kernel-based Bayesian network 

  
n.g = cell(Din+Dout,1); %the directed acyclic graph of the BN 
n.gc = 'full'; %the connectivity, defaults to fully connected 
for i=1:Din+Dout 
    n.g{i}.p = []; 
    n.g{i}.c = []; 
end 
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n.Din = Din; %number of inputs 
n.Dout = Dout; %number of outputs 
n.C = C; %number of classes 
n.N = 0; %number of data points 
n.Nc = zeros(1,C); %number of data points for each class 
n.d = []; %data, N by D 
n.w = []; %weights, N by C 
n.k = @normal; %kernel function 
n.h = []; %smoothing parameter, 1 by C 
n.hscale = ones(1,C); 
n.hshift = 0; 
n.lf = ones(1,C); %loss factors for classification 
n.bnd = [zeros(1,Din); ones(1,Din)]; 

  
propertyArgIn = varargin; 
while length(propertyArgIn) >= 2, 
    prop = propertyArgIn{1}; 
    val = propertyArgIn{2}; 
    propertyArgIn = propertyArgIn(3:end); 
    switch prop 
        case 'bnd' 
            if size(val,1)==2 && size(val,2)==Din 
                n.bnd = val; 
            else 
                display('Input error for the bounds.'); 
            end 
        case 'k' 
            if isa(val,'function_handle') 
                n.k = val; 
            else 
                display('Input error for the kernel function 

handle.'); 
            end 
        case 'connect' 
            if strcmp(val,'none') 
                n.gc = val; 
            else 
                display('Input error for the connectivity.'); 
            end 
        otherwise 
            display('Input error.'); 
    end 
end 

  
n.scale = 1./(n.bnd(2,:)-n.bnd(1,:)); 
n.shift = n.bnd(1,:); 

  
if strcmp(n.gc,'none') 
    %naive bayes 
    for i=1:Din+Dout 
        n.g{i}.p = []; 
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        n.g{i}.c = []; 
    end 
elseif strcmp(n.gc,'full') 
    %fully connected 
    for i=1:Din 
        for j=i+1:Din 
            n.g{j}.p = [n.g{j}.p i]; 
            n.g{i}.c = [n.g{i}.c j]; 
        end 
    end 
end    
for i=1:Din 
    n.g{i}.c = [n.g{i}.c Din+1:Din+Dout]; 
end 
for i=Din+1:Din+Dout 
    n.g{i}.p = 1:Din; 
    n.g{i}.c = []; 
end 

 

end 

 

 
function n = kbnAddData(n,d,c) 

M = size(d,1); 
D = n.Din+n.Dout; 
n.d = [n.d; zeros(M,D)]; 
n.w = [n.w; zeros(M,n.C)]; 

  
for i=1:M 
    n.N = n.N+1; 
    n.d(n.N,:) = d(i,:); 
    n.w(:,c(i)) = n.w(:,c(i)).*n.Nc(c(i))/(n.Nc(c(i))+1); 
    n.Nc(c(i)) = n.Nc(c(i))+1; 
    n.w(n.N,c(i)) = 1/n.Nc(c(i)); 
end 

end 

 

 
function [ps dpdx dpds] = kbnEval(n,xs,varargin) 

M = size(xs,1); %the number of points to evaluate 
D = n.Din; %the number of dimensions 
if size(xs,2)~=D 
    display('The xs do not have n.Din dimensions.'); 
    return; 
end 

  
if isempty(varargin) 
    C = n.C;   %the number of classes 
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    c = 1:C;   %the classes 
else 
    c = varargin{1}; 
    C = length(c); 
end 

  
ps = ones(M,1,C); 
if nargout>1 
    dpdx = zeros(M,D,C); %derivatives w.r.t. x 
    if nargout>2 
        dpds = zeros(M,1,C); %derivatives w.r.t sigma 
    end 
end 

  
for l=1:M 
    %store the kernel calculations for reuse 
    pKernel = zeros(n.N,D,C); 
    %store the conditional probabilities for reuse 
    pGivenPa = zeros(1,D,C); 
    if nargout>1 
        %the derivatives of each of D conditionals 
        dpdxGivenPa = zeros(1,D,C); 
        if nargout>2 
            dpdsGivenPa = zeros(1,D,C); 
            radiusSquared = zeros(n.N,n.Din); 
        end 
    end 
    for i=1:D 
        %calculate the conditional probabilities, p|pa(p) 
        pa = n.g{i}.p; %the array of parents 
        paWeight = ones(n.N,1,C); 
        paNorm = ones(1,C); 
        if nargout>2 
            dpdsWeight = zeros(n.N,1,C); 
            dpdsSum = zeros(1,C); 
        end 
        if ~isempty(pa) 
            paNorm = zeros(1,C); 
            for j=1:n.N 
                for k=1:length(pa) 
                    paWeight(j,1,:) = 

paWeight(j,1,:).*pKernel(j,pa(k),:); 
                    if nargout>2 
                        for ci=1:C 
                            dpdsWeight(j,1,ci) = 

dpdsWeight(j,1,ci)+radiusSquared(j,pa(k))/(n.h(c(ci))^3)-

1/n.h(c(ci)); 
                        end 
                    end 
                end 
                for ci=1:C 
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                    paNorm(ci) = 

paNorm(ci)+n.w(j,c(ci))*paWeight(j,1,ci); 
                    if nargout>2 
                        dpdsSum(ci) = 

dpdsSum(ci)+n.w(j,c(ci))*paWeight(j,1,ci)*dpdsWeight(j,1,ci); 
                    end 
                end 
            end 
        end 
        for j=1:n.N 
            for ci=1:C 
                pKernel(j,i,ci) = n.k(xs(l,i),n.d(j,i),n.h(c(ci))); 
                pGivenPa(1,i,ci) = pGivenPa(1,i,ci) + 

n.w(j,c(ci)).*paWeight(j,1,ci).*pKernel(j,i,ci); 
                if nargout>1 
                    dpdxGivenPa(1,i,ci) = 

dpdxGivenPa(1,i,ci)+n.w(j,c(ci))*paWeight(j,1,ci)*pKernel(j,i,ci)*(-

(xs(l,i)-n.d(j,i))/(n.h(c(ci))^2)); 
                    if nargout>2 
                        radiusSquared(j,i) = (xs(l,i)-n.d(j,i))^2; 
                        dpdsGivenPa(1,i,ci) = 

dpdsGivenPa(1,i,ci)+n.w(j,c(ci))*paWeight(j,1,ci)*pKernel(j,i,ci)*(d

pdsWeight(j,1,ci)-

dpdsSum(ci)/paNorm(ci)+radiusSquared(j,i)/(n.h(c(ci))^3)-

1/n.h(c(ci))); 
                    end 
                end 
            end 
        end 
        %normalize by paNorm 
        for ci=1:C 
            if paNorm(ci)~=0 
                pGivenPa(1,i,ci) = pGivenPa(1,i,ci)/paNorm(ci); 
                if nargout>1 
                    dpdxGivenPa(1,i,ci) = 

dpdxGivenPa(1,i,ci)/paNorm(ci); 
                    if nargout>2 
                        dpdsGivenPa(1,i,ci) = 

dpdsGivenPa(1,i,ci)/paNorm(ci); 
                    end 
                end 
            else 
                pGivenPa(ci) = 0; 
                if nargout>1 
                    dpdxGivenPa(1,i,ci) = 0; 
                    if nargout>2 
                        dpdsGivenPa(1,i,ci) = 0; 
                    end 
                end 
            end 
        end 
        %mulitply them together to get p(x) 
        ps(l,1,:) = ps(l,1,:).*pGivenPa(1,i,:); 
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    end 

     
    %sum over the derivatives of each of D conditionals 
    if nargout>1 
        for k=1:D 
            dpdx(l,k,:) = 

dpdx(l,k,:)+dpdxGivenPa(1,k,:).*ps(l,1,:)./pGivenPa(1,k,:); 
            if nargout>2 
                dpds(l,1,:) = 

dpds(l,1,:)+dpdsGivenPa(1,k,:).*ps(l,1,:)./pGivenPa(1,k,:); 
            end 
        end 
    end 
end 

  
end 

 

 
function h = kbnEvalH(n) 

if n.N+n.hshift<=0 
    h = ones(1,n.C).*n.hscale; 
else 
    h = ones(1,n.C).*n.hscale./((n.N+n.hshift)^(1/n.Din)); 
end 

end 

 

 
function [e1 e2] = kbnGetErr(n,xTest,c,cTest) 

%xTest is N by n.Din and is the test design points 
xTest = [n.scale(1)*(xTest(:,1)-n.shift(1)) n.scale(2)*(xTest(:,2)-

n.shift(2))]; 

  
%cTest is N by 1 and is the correct class index 
N = size(xTest,1); 

  
%c(1:2) are the two test class indices for testing 

  
%a false positive results if the n.lf*p(x|c)*P(c) is greater for 

c(1) 
%  but cTest(i,1)==c(2) 

  
%a false negative results if the n.lf*p(x|c)*P(c) is greater for 

c(2) 
%  but cTest(i,n.Din+1)==c(1) 

  
%e1 is the percentage of false positives, 
%e2 is the percentage of false negatives 

  
n1 = 0; %the number of false positives 
n2 = 0; %the number of false negatives 
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for i=1:N 
    %classify the point 
    [cs ps] = kbnEvalC(n,xTest(i,:),c); 
    if cs(1)==c(1) && cs(1)~=cTest(i,1) 
        n1 = n1+1; 
    elseif cs(1)==c(2) && cs(1)~=cTest(i,1) 
        n2 = n2+1; 
    end 
end 

  
e1 = n1/N; 
e2 = n2/N; 

end 

 
function [x p dp] = kbnPlot(n,res,sf,varargin) 

%this function creates a surface grid for a 1D or 2D kbn 
D = n.Din; 
if length(res)~=D 
    display('res must have n.Din+n.Dout elements.'); 
    return; 
end 

  
if isempty(varargin) 
    C = n.C;   %the number of classes 
    c = 1:C;   %the classes 
else 
    c = varargin{1}; 
    C = length(c); 
end 

  
divs = ceil(1./res); 
step = 1./divs; 
if D==1 
    x1 = 0:step(1):1; 
    x = x1'; 
    p = kbnEval(n,x)'; 
    dp = zeros(1,length(x1)); 
    if C>1 
        dp = sf(1)*p(:,1,c(1))-sf(2)*p(:,1,c(2)); 
    end 
elseif D==2 
    x1 = 0:step(1):1; 
    x1Count = divs(1)+1; 
    x2 = 0:step(2):1; 
    x2Count = divs(2)+1; 
    x = [x1' x2']; 
    p = zeros(x2Count,x1Count,n.C); 
    dp = zeros(x2Count,x1Count); 
    for i=1:x1Count 
        for j=1:x2Count 
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            p(j,i,:) = kbnEval(n,[x1(i) x2(j)]); 
            if C==2 
                dp(j,i) = (sf(1)*p(j,i,c(1))-

sf(2)*p(j,i,c(2)))/(sf(1)*p(j,i,c(1))+sf(2)*p(j,i,c(2))); 
            end 
        end 
    end 
else 
    display('Only 1 or 2 dimensions can be plotted.'); 
end 

end 

 

 
function createTestPoints() 

  
    N = 10000; 
    xs = sampleGrid(2,[0 0; 1 5],[99 99],true); 
    ys = zeros(N,1); 
    for j=1:N 
        ys(j,:) = systemsF0(xs(j,:)); 
    end 
    fileName = sprintf('dataTestsystemsN10000.csv'); 
    fh = fopen(fileName,'w'); 
    dataWrite(fh,xs,ys); 
    fclose(fh); 

  
end 

 

 
function [xs] = sampleGrid(D,limits,bins,onEdge) 

  
    binsize = (limits(2,:)-limits(1,:))./bins; 
    index = zeros(1,D); 
    k = 1; 

  
    if onEdge 
        while index(D) <= bins(D) 
            while index(1) <= bins(1) 
                xlow = limits(1,:) + index.*binsize; 
                xs(k,:) = xlow; 
                index(1) = index(1) + 1; 
                k = k+1; 
            end 
            for j = 1:D-1 
                if index(j) >= bins(j) 
                    index(j+1) = index(j+1) + 1; 
                    index(j) = 0; 
                end 
            end           
        end        
    else 



 175 

        while index(D) <= bins(D)-1 
            while index(1) <= bins(1)-1 
                xlow = limits(1,:) + index.*binsize; 
                xs(k,:) = xlow+binsize*.5; 
                index(1) = index(1) + 1; 
                k = k+1; 
            end 
            for j = 1:D-1 
                if index(j) >= bins(j) 
                    index(j+1) = index(j+1) + 1; 
                    index(j) = 0; 
                end 
            end           
        end    
    end 

  
end 

 

 
function dataWrite(fh,x,y) 

  
    Din = size(x,2); 
    Dout = size(y,2); 
    N = size(x,1); 

  
    if fh==-1 
        display('Invalid file handle.'); 
        return; 
    end 

  
    if Dout>0 && size(y,1)~=N 
        display('The number of x and y rows must match.'); 
    end 

  
    fprintf(fh,'Din,%d\n',Din); 
    fprintf(fh,'Dout,%d\n',Dout); 
    fprintf(fh,'N,%d\n',N); 
    for i=1:N 
        for j=1:Din-1 
            fprintf(fh,'%g,',x(i,j)); 
        end 
        if Dout>0 
            fprintf(fh,'%g,',x(i,Din)); 
            for j=1:Dout-1 
                fprintf(fh,'%g,',y(i,j)); 
            end 
            fprintf(fh,'%g\n',y(i,Dout)); 
        else 
            fprintf(fh,'%g\n',x(i,Din)); 
        end 
    end 
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end 

 

 
function [xs, ys, Din, Dout, N] = dataRead(fh) 

  
    if fh==-1 
        display('Invalid file handle.'); 
        return; 
    end 

  
    %read Din 
    l = fgetl(fh); 
    ls = regexp(l,'\,','split'); 
    if ~strcmp(ls,'Din') 
        display('String ''Din'' not found.'); 
        return; 
    end 
    Din = str2double(ls(2)); 
    if Din<=0 || mod(Din,1)~=0 
        display('Din must be a positive integer.'); 
        return; 
    end 

  
    %read Dout 
    l = fgetl(fh); 
    ls = regexp(l,'\,','split'); 
    if ~strcmp(ls,'Dout') 
        display('String ''Dout'' not found.'); 
        return; 
    end 
    Dout = str2double(ls(2)); 
    if Dout<0 || mod(Dout,1)~=0 
        display('Dout must be a non-negative integer.'); 
        return; 
    end 

  
    %read N 
    l = fgetl(fh); 
    ls = regexp(l,'\,','split'); 
    if ~strcmp(ls,'N') 
        display('String ''N'' not found.'); 
        return; 
    end 
    N = str2double(ls(2)); 
    if N<=0 || mod(N,1)~=0 
        display('N must be a positive integer.'); 
        return; 
    end 

  
    %read in the data 
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    xs = zeros(N,Din); 
    ys = zeros(N,Dout); 
    for i=1:N 
        l = fgetl(fh); 
        ls = regexp(l,'\,','split'); 
        d = str2double(ls); 
        xs(i,:) = d(1:Din); 
        ys(i,:) = d(Din+1:Din+Dout); 
    end 

  
end 

 

 
function xs = halton(D,N) 

  
    xs = zeros(N,D); 
    ps = primes(D+1); 
    for j = 1:N 
       x = zeros(1,D); 
       base = ps; 
       index = j*ones(1,D); 
       while any(index) 
           digit = mod(index,ps); 
           x = x + digit./base; 
           index = (index-digit)./ps; 
           base = base.*ps; 
       end 
       xs(j,:) = x; 
    end 

  
end 
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Appendix B 

 The Matlab
®
 code for the UAV demonstration problem is presented in this 

appendix.  A large portion of this work is credited to Auhona Hoq and Jonathon Lesage.  

Table B.1 shows the functions with a brief summary for each.  This appendix is divided 

into three subsections for each of the disciplines: systems, aerodynamics, and structures.  

Each section has a brief description of the physics used and the numerical approach taken 

with references to the source material as needed.  All of the code is at the end. 

Table B.1: Matlab
®
 Functions for the UAV simulations 

systemF0( ) 
Calculates the range as a function of wing weight and drag; calls 

propulsion( ) and fuselage( ). 

propulsion( ) 
Calculates the specific fuel burn rate and the power as a function of the 

thrust and the speed. 

fuselage( ) 
Calculates the fuselage weight, drag, and length as a function of the 

diameter, volume and speed. 

lineSearchGS() 
Golden section line search for minimizing 1D functions. 

atmosphere( ) 
Returns the air density, viscosity, pressure and temperature as a function of 

the altitude based upon the US Standard Atmosphere (1976). 

aeroF0( ) 
Calculates the drag from the NACA 4 digit parameterization, the chord, and 

the angle of attack. 

aero_profile( ) Generates the panels for use in the calculation of lift. 

aero_forces( ) 

Calculates the lift, drag, moment, panel pressure, and the span given the 

profile generated by aero_profile( ), the angle of attack, the chord, the 

cruise speed, and the altitude. 

aero_flow( ) 
Calculates the lift, drag and moment coefficients using the profile generated 

by aero_profile( ), the angle of attack, and the Reynolds number. 

boundary_layer( ) 
Calculates the drag coefficient given an array of the cumulative surface 

length, the flow velocities, and the Reynold’s number. 

structF0( ) 
Calculates the weight based upon the wing’s geometry including a skin 

thickness and the aerodynamics loads. 

areaproperties( ) 
Calculates the area, moments of inertia, and the centroids of an airfoil. 
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skin( ) 
Creates a new profile based upon offsetting a given profile by the skin 

thickness. 

 

Systems: 

 The systems group is responsible for calculating the range of the UAV using the 

Breguet equation for propeller aircraft, B.1 (Raymer, 2006). 
 

 

       
     

                       
  

    

      
      

      

                  
    (B.1) 

 

To keep things simple, only the cruise condition was considered with a constant speed of 

25 m/s (55.9 mph).  During cruise, lift equals the total weight and thrust equals drag.  A 

limit was placed on the total weight of 35 N (7.9 lbf) and a payload weight of 10 N (2.25 

lbf) was assumed.  The goal is to achieve a range of over 900 km based upon these 

constraints.  As a point of comparison, a UAV called the Spirit of Butts Farm flew over 

3000 km across the antlantic and weighed in at under 5 kg (Sohn, 2003).  The weight 

limit will always be active because any remaining weight under the limit can be taken up 

by more fuel, extending the range.  However, more fuel requires a larger fuel tank which 

increases weight, decreasing the amount of fuel that can be added.  Hence an iterative 

solution is necessary to converge upon the final range.  With each iteration, an optimal 

fuselage is determined as described after the details of the propulsion system are 

presented next. 

The propulsion system was chosen to be a Fox Eagle 74 piston engine because the 

performance information was readily available from (Lennon, 1996).  From this 

information a cubic polynomial was fit using Excel to get the fuel burn rate as a function 



 180 

of the power, Eq. B.3, which in turn is a function of speed, thrust and efficiency, Eq. B.2. 

80% efficiency was assumed. 

 

                                     (B.2) 
 

                                
     

     

 
       

     

     

 
       

     

     
   (B.3) 

 

These equations were implemented in the function propulsion that has been reproduced 

later in this appendix.  Incedentally, this is a good use of metamodels to decouple design 

activity between the systems team and the propulsion engineers.  The engine weighs 

5.284 N, and its drag was assumed to be 1 N.  The thrust, being equal to the drag, 

depends upon a role-up of the total drag according to Eq. B.4. 

 

                                               (B.4) 

 

 The fuselage is optimally designed by the systems group to maximize the range.  

This is achieved by using a golden section (GS) line search algorithm iterating over the 

fuselage diameter.  For every GS iteration there is another nested iteration for 

maximizing how much fuel can be carried while still meeting the weight limit.  In the 

inner loop the fuel volume is set to the remaining available weight, Eq. B.5, and a new 

fuselage weight and drag are calculated using the fuselage function.  The fuselage 

function uses a required fuselage volume, Eq. B.6, and the fuselage diameter of the GS 

iteration. 

 

                                                      
                              

 (B.5) 
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   (B.6) 

 

The fuselage is assumed to have a cigar shape as shown in Fig. B.1.  Given the fuselage 

diameter and required volume, the length calculation is straight forward.  Assuming a 

1mm wall thickness and a material density of 1139 kg/m
3
 (Nylon 6), the fuselage weight 

is easily calculated.  The drag is calculated according to an empirical equation that was 

gotten from Hoerner (1965) and that is repeated as Eq. B.7-11.  The calculation of the 

Reynolds number depends on calling the atmosphere function which implements the 

standard atmosphere model for air density and viscosity as a function of altitude. 

Figure B.1 Fuselage Parameters 
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   (B.9) 
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 (B.11) 
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The total drag calculation will probably underestimate the actual drag because the 

empennage and the wing to fuselage interface were not accounted for among other things.  

The remaining details can be found in the Matlab
®
 code that has been provided at the end 

of this appendix.   
 

Aerodynamics: 

The aerodynamics designer is responsible for calculating the wing lift and drag.  

The airfoil geometry is parameterized by the 4 digit NACA number (Abbot and von 

Doenhoff, 1959).  The first digit, naca1, controls the maximum camber as a percentage of 

the chord.  The second digit, naca2, controls the distance from the leading edge to the 

maximum camber in terms of tenths of chord.  The third digit, naca3, controls the 

maximum thickness of the airfoil in terms of percent chord.  In addition to these airfoil 

parameters, the angle of attack, chord and span define the rest of the wing as shown in 

Fig. B.2.  Notice that the span is not defined as the more typical wing tip to wing tip 

distance but instead represents the length of one wing.  The planform is rectangular for  

Figure B.2 Wing Parameters 
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convenience.  The aero_forces function calculates the wing’s lift, drag, moment and 

span.  The Reynolds number is calculated according to Eq. B.12 using the density and 

viscosity of air as determined by the standard atmosphere model implemented in function 

atmosphere.   

 

    
                                     

         
   (B.12) 

 

The lift coefficient is calculated using the linear vortex panel method as implemented in 

Katz and Plotkin (2002), Appendix D, Program 7.  The drag coefficient is calculated 

using a boundary layer growth model from Moran (1984) implemented in the 

boundary_layer function.   Both the coefficient of lift and drag are modified according to 

Eq. B.13-14 to account for non-infinite wing spans (Abbott and von Doenhoff, 1959).  In 

Eq. B.13, m is the slope of the lift versus the angle of attack linear relationship.  The 

aspect ratio, AR, is equal to the span divided by the chord.  Notice that an Oswald 

efficiency factor of 1 was used which will make the drag lower than reality.   

 

         
  

  
 

   

   (B.13) 

 

            
  

 

   
  

 (B.14) 

 

The span is adjusted to provide enough lift to match half of the total weight, which in this 

case will always be 17.5 Newtons (3.9 lbf).  The wing moment can also be checked and 

kept under 1 Nm to help with limiting the structural torsion loads as well as placing less 

demand on any horizontal stabilizers. 
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Structures: 

The structures designer is responsible for calculating the wing weight based upon 

the wing not yielding under 10X static cruise loads.  The most important load is the 

moment from the lift which is assumed to act halfway down the wing.  Each wing carries 

half of the fixed total 35 Newton weight.  Shear stresses are also considered and 

combined into the Von Mises stress, but they are small.  The bending stress is calculated 

from a general cross-section beam bending formula from Cook and Young (1999) 

repeated here as Eq. B.15.  The coordinate system is set up such that x is positive toward 

the nose of the fuselage, y is vertical, and z is positive toward the wing tip.  Solving for 

the stress hence requires knowing the moments of inertia.   

 

               
          

        
               

          

        
                

 (B.15) 

 

The only internal geometry that structures can vary is the skin thickness of the 

wing which is changed until the wing stress under the 10X load is equal to the yield 

strength.  The area properties of the airfoil are found first assuming that the wing is solid, 

followed by the area properties of the hollow section.  The results are combined to get the 

overall section properties.  This occurs in the function areaproperties within which the 

sections are broken up into triangles and combined appropriately.  The profile of the 

outer wing geometry minus the skin thickness is determined in the function skin.  The 

details are in the code. 

 
function [range] = systemsF0(xIn) 

  
drag = xIn(1); 
wing_weight = xIn(2); 

  
%fixed input 
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speed = 25; % (m/s) 
payload_weight = 10; %N 
payload_density = 7063.2; %N/m^3 
fuel_density = 7063.2; %N/m^3 
engine_weight = 5.28; %N 
engine_drag = 1; %N 
weight_limit = 35; %N 
wingweight_limit = weight_limit-payload_weight-engine_weight; 
power_limit = 1350; %W 

  
its = 0; 
[range, fuselage_diameter, feasible] = 

lineSearchGS(@systems_subfunc,.01,1); 
range = -range/1000; 
if range<=600 
    feasible=0; 
end 

     
function [range, fuselage_diameter, sysFeasible] = 

systems_subfunc(fuselage_diameter) 
    its = its+1; 

  
    %perform the systems design     
    sysFeasible = 1; 
    fuselage_weight = 0; 
    weight = 2*weight_limit; 
    payload_volume = payload_weight/payload_density; %m^3   
    sysIts = 1; 
    while abs(1-weight/weight_limit) > .001 && sysIts < 100 
        %fuselage calculations 
        fuel_weight = weight_limit - payload_weight - engine_weight 

- fuselage_weight - 2*wing_weight; 
        fuel_volume = fuel_weight/fuel_density; %m^3 
        fuselage_volume = payload_volume + fuel_volume; %m^3 
        [fuselage_weight fuselage_drag fuselage_length] = 

fuselage(fuselage_diameter, fuselage_volume, speed); 
        sysIts = sysIts + 1; 
        weight = payload_weight + fuel_weight + engine_weight + 

fuselage_weight + 2*wing_weight; 
    end 
    if sysIts>=100 || fuel_weight <=0 
        sysFeasible = 0; 
        range = 0; 
        return; 
    else 
        %range calculations 
        thrust = fuselage_drag + engine_drag + 2*drag; 
        [specific_fuel_burnrate power] = propulsion(thrust, speed); 
        weight = payload_weight + fuel_weight + engine_weight + 

fuselage_weight + 2*wing_weight; 
        lift = weight; 
        %Breguet range equation for propeller aircraft 
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        range = 

(speed/specific_fuel_burnrate)*(lift/thrust)*log(weight/(weight-

fuel_weight)); 
        endurance = range/speed; %seconds 
    end 
    range = -range; 
end 

  
end 

 
function [C power] = propulsion(thrust, speed) 

     
    %Input:     
    %thrust should be in Newtons 
    %speed should be in m/s 

     
    %Constants: 
    %propeller efficiency 
    efficiency = 0.8; 
    %fuel density in kg/m^3: avgas, see Wikipedia 
    fuel_density = 720; 
    g = 9.81; %m/s^2 

     
    %Calculations: 
    %thrust in Newtons, velocity in m/s, convert from Watts to horse 

power 
    power = (thrust*speed/745.69987158227)/efficiency; %brake horse 

power 
    if power>1.5 
        fuel_burnrate = 35; 
    else 
        %fuel burn rate in cubic centimeters per minute (cc/min) 
        fuel_burnrate = -6.9321*power^3 - 1.0455*power^2 + 

40.028*power; 
    end 
    %fuel burn rate in N/s 
    fuel_burnrate = fuel_burnrate*fuel_density*g/60e6; 
    %specific fuel burn rate in s^-1, see Raymer pp. 21-22 
    C = fuel_burnrate/thrust; 
    %power in Watts 
    power = thrust*speed/efficiency; 

  
end 

 
function [weight drag length] = fuselage(diameter, volume, speed)     

     
    %Fixed inputs 
    density = 1139.09; %kg/m^3 
    thickness = .002; %m 
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    altitude = 100; %m 
    g = 9.81; 

     
    %Fuselage calculations 
    area = pi*(diameter/2)^2; %meters^2 
    if volume <= (4/3)*pi*(diameter/2)^3; 
        length = 0; 
    else 
        cylinder_volume = volume - (4/3)*pi*(diameter/2)^3; 
        length = cylinder_volume/area; 
    end 

     
    [airdensity viscocity pressure_inf temperature] = 

atmosphere(altitude); 
    Re = airdensity*speed*(length+2*diameter)/viscocity;   

     
    fineness_ratio = diameter/(length+2*diameter); 
    Cflam = 1.328/sqrt(Re) + 2/(fineness_ratio*Re); 
    cd = 0.33*fineness_ratio + Cflam*(3/fineness_ratio + 

3*sqrt(fineness_ratio)); 
    A_fuselage = pi*(diameter/2)^2; %meters^2 
    drag = .5*cd*airdensity*A_fuselage*speed^2; %Newtons 
    surfacearea = pi*diameter*length+pi*(diameter^2); %meters^2 
    weight = surfacearea*thickness*density*g; %Newtons 
end 

 
function [fopt, x, feasible] = lineSearchGS(f,xl,xu) 
    x0 = xl; 
    dx = .01; 
    [f0, feas] = f(x0); 
    x1 = x0+dx; 
    [f1, feas] = f(x1); 
    bracketed = 0; 
    while ~bracketed 
        x00 = x0; 
        f00 = f0; 
        x0 = x1; 
        f0 = f1; 
        dx = 1.5*dx; 
        x1 = x0+dx; 
        if x1>=xu 
            break; 
        end 
        [f1 feas] = f(x1); 
        if f1>f0 
            bracketed=1; 
        end 
    end 
    if ~bracketed 
        x = xu; 
        [fopt feasible] = f(x); 



 188 

        return; 
    end 
    lb = x00; 
    lbf = f00; 
    ub = x1; 
    ubf = f1; 
    gs = (sqrt(5)-1)/2; 
    ux = lb+gs*(ub-lb); 
    lx = ub-gs*(ub-lb); 
    [uf feas] = f(ux); 
    [lf feas] = f(lx); 

     
    while (ub-lb)>.0001 
        %sprintf('lb = %.4g lbf = %.4g ub = %.4g ubf = 

%.4g',lb,lbf,ub,ubf) 
        if (uf<=lf) 
            lb = lx; 
            lbf = lf; 
            lx = ux; 
            lf = uf; 
            ux = lb + gs*(ub-lb); 
            [uf feas] = f(ux); 
        else 
            ub = ux; 
            ubf = uf; 
            ux = lx; 
            uf = lf; 
            lx = ub - gs*(ub-lb); 
            [lf feas] = f(lx); 
        end 
    end 
    x = (ub+lb)/2; 
    [fopt feasible] = f(x); 
end 

 
function [density viscocity pressure temperature] = 

atmosphere(altitude) 

  
    if (nargin == 0) || (isnan(altitude)) 
        altitude = 86000; 
    elseif altitude < 0 
        altitude = 0; 
    elseif altitude > 86000 
        altitude = 86000; 
    end 
    altitude = altitude/1000; 

     
    %geopotential altitude conversion 
    r0 = 6356766; % radius of the earth at sea level (m) 
    H = r0*altitude/(r0+altitude); 
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    %Table 4: temperature-height profile reference parameters 
    %geopotential altitude 
    Hb = [0; 11; 20; 32; 47; 51; 71; 84.852]; %(km) 
    %temperature-height gradient from i to i+1 
    LMb = [-6.5; 0; 1; 2.8; 0; -2.8; -2.0];    %(degK/km) 
    %Calculated reference molecular-scale temperatures 
    TMb = [288.15; 216.65; 216.65; 228.65; 270.65; 270.65; 214.65; 

242.946];  %(degK) 
    %Calculated reference pressures 
    Pb = [101325 22632 5474.8 868.01 110.9 66.938 3.9564]; %(N/m^2) 

  
    %Calculate the molecular scale temperature 
    TM = interp1(Hb,TMb,H,'nearest'); 
    %Convert to temperature (degK) 
    temperature = TM; 

  
    %sea level value of the mean molecular weight (kg/kmol) 
    M0 = 28.9644; 
    %universal gas constant (N*m/(kmol*degK)) 
    Rstar = 8314.32; 
    %unit geopotential (m^2/(s^2*m')) 
    g0prime = 9.80665; 

  
    %Pressure calculation 
    index = find(Hb >= H)-1; 
    index = index(1); 
    if LMb(index) == 0 
        pressure = Pb(index)*exp(-g0prime*M0*(H-

Hb(index))/(Rstar*TMb(index))); 
    else 
        pressure = 

Pb(index)*(TMb(index)/TM)^(g0prime*M0/(Rstar*LMb(index))); 
    end 

  
    %density kg/m^3 
    density = pressure*M0/(Rstar*TM); 

  
    %viscocity kg/m*s 
    beta = 1.458e-6; 
    S = 110.4; 
    viscocity = (beta*temperature^(1.5))/(temperature+S); 

     
end  

 
function [drag] = aeroF0(x) 
    %input 
    m = 4;       %camber 
    p = 5;       %max camber location 
    toc = x(1);     %thickness over chord 
    chord = x(2);   %meters 
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    alpha = 0.6;   %angle of attack in degrees 
    alpha = alpha*pi/180;  %angle of attack in radians 

  
    %fixed input 
    altitude = 100; %meters 
    speed = 25;     %m/s 
    npanels = 100;   
    lift_target = 17.5; %Newtons 

  
    feasible = 1; 
    profile = aero_profile(m/100, p/10, toc/100, chord, npanels); 
    [lift drag moment pressure span] = aero_forces(profile, alpha, 

chord, speed, altitude, lift_target); 
    if abs(moment)>1 || abs(lift/lift_target-1)>.001 
        feasible = 0; 
    end 
end 

 
function profile = aero_profile(m, p, toc, chord, npanels) 

  
    %initialize profile datastructure 
    profile = zeros(npanels,1); 

  
    %Calculate the airfoil profile 
    np = npanels/2; 
    for i = 1:np+1 
        xoc_oncircle = pi()-(i-1)*pi()/np; 
        xoc = 0.5*(1+cos(xoc_oncircle)); 
        %calculate the camber line and slope 
        if xoc < p 
            ycoc = (m/(p^2))*(2*p*xoc-xoc^2); 
            dycoc = (2*m/(p^2))*(p-xoc); 
            theta = atan(dycoc); 
        else 
            ycoc = (m/((1-p)^2))*(1-2*p+2*p*xoc-xoc^2); 
            dycoc = (2*m/((1-p)^2))*(p-xoc); 
            theta = atan(dycoc); 
        end 
        ytoc = toc*(1.4845*sqrt(xoc)-0.63*xoc-1.758*xoc^2+1.4215*xoc^3-

0.5075*xoc^4); 
        xu(i) = xoc*chord - ytoc*chord*sin(theta); 
        yu(i) = ycoc*chord + ytoc*chord*cos(theta); 
        xl(i) = xoc*chord + ytoc*chord*sin(theta); 
        yl(i) = ycoc*chord - ytoc*chord*cos(theta); 
    end 
    profile = [xl(np+1:-1:1)' yl(np+1:-1:1)';  
               xu(2:1:np+1)'  yu(2:1:np+1)']; 
end 
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function [lift drag moment pressures span] = aero_forces(profile, 

alpha, chord, speed, altitude, lift_target) 

  
    %flow parameters 
    [density viscocity pressure_inf temperature] = 

atmosphere(altitude); 
    Re = density*speed*chord/viscocity; 

            
    %Calculate the aerodynamic forces 
    alphas = [alpha; alpha-3*pi()/180]; %two alphas to find the local 

slope of the lift vs. alpha line 
    [cp cl cm resultu resultl result_loc cd] = 

aero_flow(profile,alphas,Re); 
    m0 = (cl(1)-cl(2))/(3*pi()/180);    %the slope of the lift vs. 

alpha line 

     
    %calculation of span to get the required lift 
    a = cl(1)*pi()*chord; 
    b = -2*pi()*lift_target/(density*speed^2); 
    c = -2*lift_target*m0*chord/(density*speed^2); 
    span = (-b+sqrt(b^2-4*a*c))/(2*a); 
    Cl = cl(1)/(1+m0/(pi()*span/chord)); 
    lift = .5*density*span*chord*Cl*speed^2; 

     
    %correction for induced drag 
    cdi = (cl(1)^2)/(pi()*span/chord); 
    Cd = cdi + cd(1); 
    drag = .5*density*span*chord*Cd*speed^2; 
    moment = .5*density*span*chord^2*cm(1)*speed^2; 
    pressures = cp(:,1)*(.5*density*speed^2); 

     
end 

 
function [cp cl cm resultu resultl result_loc cd] = 

aero_flow(panel,alpha,Re) 

  
    %This algorithm is straight out of "Low Speed Aerodynamics" 
    % by Joseph Katz and Allen Plotkin, 2nd ed. Apendix D Program No. 7 

     
    %Number of alphas 
    alpha_count = size(alpha,1); 

     
    %Number of panels 
    panel_count = size(panel,1)-1; 

  
    %Initialize variables 
    center = []; 
    angle = []; 
    length = []; 
    a = []; 
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    b = []; 
    cp = []; 
    v = []; 
    vn = []; 
    xu = []; 
    xl = []; 
    yu = []; 
    yl = []; 
    su = []; 
    sl = []; 

     
    %Panel center points, normal vector, and length 
    for i = 1:panel_count 
        center(i,1) = (panel(i+1,1)+panel(i,1))/2; 
        center(i,2) = (panel(i+1,2)+panel(i,2))/2; 
        angle(i) = atan2(panel(i+1,2)-panel(i,2),panel(i+1,1)-

panel(i,1)); 
        length(i) = sqrt((panel(i+1,1)-panel(i,1))^2+(panel(i+1,2)-

panel(i,2))^2); 
    end 

  
    %Influence Coefficients 
    for i = 1:panel_count 
        for j = 1:panel_count 
            %Convert center point to local panel coordinates 
            xt = center(i,1)-panel(j,1); 
            yt = center(i,2)-panel(j,2); 
            x = xt*cos(angle(j))+yt*sin(angle(j)); 
            y =-xt*sin(angle(j))+yt*cos(angle(j)); 

  
            %Find r1, r2, th1, th2 
            r1 = sqrt(x^2+y^2); 
            r2 = sqrt((x-length(j))^2+y^2); 
            th1 = atan2(y,x); 
            th2 = atan2(y,x-length(j)); 

  
            %Compute the velocity components 
            if i == j 
                u1l = -0.5*(x-length(j))/length(j); 
                u2l =  0.5*x/length(j); 
                w1l = -1/(2*pi()); 
                w2l = 1/(2*pi()); 
            else 
                u1l = -(y*log(r2/r1)+x*(th2-th1)-length(j)*(th2-

th1))/(2*pi()*length(j)); 
                u2l = (y*log(r2/r1)+x*(th2-th1))/(2*pi()*length(j)); 
                w1l = -((length(j)-y*(th2-th1))-

x*log(r1/r2)+length(j)*log(r1/r2))/(2*pi()*length(j)); 
                w2l = ((length(j)-y*(th2-th1))-

x*log(r1/r2))/(2*pi()*length(j)); 
            end 
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            %Transform the velocity components into the global csys 
            u1 = u1l*cos(-angle(j))+w1l*sin(-angle(j)); 
            u2 = u2l*cos(-angle(j))+w2l*sin(-angle(j)); 
            w1 =-u1l*sin(-angle(j))+w1l*cos(-angle(j)); 
            w2 =-u2l*sin(-angle(j))+w2l*cos(-angle(j)); 

  
            %Compute the coefficients of gamma in the influence matrix 
            if j == 1 
                a(i,1) = -u1*sin(angle(i))+w1*cos(angle(i)); 
                tmp_a  = -u2*sin(angle(i))+w2*cos(angle(i)); 
                b(i,1) =  u1*cos(angle(i))+w1*sin(angle(i)); 
                tmp_b  =  u2*cos(angle(i))+w2*sin(angle(i)); 
            elseif j == panel_count 
                a(i,j) = -u1*sin(angle(i))+w1*cos(angle(i))+tmp_a; 
                a(i,j+1) = -u2*sin(angle(i))+w2*cos(angle(i)); 
                b(i,j) =  u1*cos(angle(i))+w1*sin(angle(i))+tmp_b; 
                b(i,j+1) =  u2*cos(angle(i))+w2*sin(angle(i)); 
            else 
                a(i,j) = -u1*sin(angle(i))+w1*cos(angle(i))+tmp_a; 
                tmp_a  = -u2*sin(angle(i))+w2*cos(angle(i)); 
                b(i,j) =  u1*cos(angle(i))+w1*sin(angle(i))+tmp_b; 
                tmp_b  =  u2*cos(angle(i))+w2*sin(angle(i)); 
            end 
        end 
        %The boundary conditions 
        for k = 1:alpha_count 
            rhs(i,k) = cos(alpha(k))*sin(angle(i)) - 

sin(alpha(k))*cos(angle(i)); 
        end 
    end 

  
    %The Kutta condition 
    a(panel_count+1,1) = 1; 
    a(panel_count+1,panel_count+1) = 1; 
    rhs(panel_count+1,:) = 0; 

     
    %Solve for vortex strengths 
    ainv = inv(a); 
    for j = 1:alpha_count 
        g(:,j) = ainv*rhs(:,j); 
    end 

  
    %Calculate tangential velocities, cp's, cl's, cm's 
    cl = zeros(alpha_count,1); 
    cm = zeros(alpha_count,1); 
    cd = zeros(alpha_count,1); 
    cp = zeros(panel_count,alpha_count); 
    for k = 1:alpha_count 
        clx_sum = 0; 
        cly_sum = 0; 
        for i = 1:panel_count 
            vel = 0; 
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            for j = 1:panel_count+1 
                vel = vel + b(i,j)*g(j,k); 
            end 
            v(i) = 

vel+cos(alpha(k))*cos(angle(i))+sin(alpha(k))*sin(angle(i)); 
            cp(i,k) = 1-v(i)^2; 
            %cl = cl+v(i)*length(i);  
            clx = cp(i,k)*length(i)*sin(angle(i)); 
            cly = -cp(i,k)*length(i)*cos(angle(i)); 
            clx_sum = clx_sum + clx; 
            cly_sum = cly_sum + cly; 
            cm(k) = cm(k) + cly*(center(i,1)-.25) - clx*(center(i,2)); 
        end 
        cl(k) = cly_sum*cos(alpha(k))-clx_sum*sin(alpha(k)); 
        %cd = cly_sum*sin(alpha)+clx_sum*cos(alpha); 

     
        %This algorithm is straight out of  
        % 'An Introduction to Theoretical and Computational 

Aerodynamics'  
        % by Moran. 

  
        %Get the tangential velocities at the nodes 
        vn = []; 
        vn(2:panel_count) = (v(1:panel_count-1)+v(2:panel_count))./2; 
        %The trailing edge gets special attention 
        v1 = vn(panel_count)+length(panel_count)*(vn(panel_count)-

vn(panel_count-1))/length(panel_count-1); 
        v2 = vn(1)+length(1)*(vn(2)-vn(1))/length(2); 
        vn(1) = (v1+v2)/2; 
        vn(panel_count+1) = vn(1); 

     
        %Stagnation point  THIS COULD BE OFF FOR WEIRD GEOMETRY 
        i = 10; 
        while sign(vn(i)) == sign(vn(i+1)) 
            i = i+1; 
        end 
        if abs(vn(i+1)) < abs(vn(i)) 
            i = i+1; 
        end 
        stag_pnt = i; 

  
        %Separate upper and lower flows 
        vu = []; 
        vu = vn(stag_pnt:panel_count+1); 
        vl = []; 
        vl = vn(stag_pnt:-1:1); 
        vl = -vl; 

  
        %Get surface points for upper and lower flows 
        xu = []; 
        xu = panel(stag_pnt:panel_count+1,1)'; 
        yu = []; 
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        yu = panel(stag_pnt:panel_count+1,2)'; 
        xl = []; 
        xl = panel(stag_pnt:-1:1,1)'; 
        yl = []; 
        yl = panel(stag_pnt:-1:1,2)'; 

    
        %Find surface length 
        su = []; 
        su(1) = 0; 
        for i = 2:panel_count+2-stag_pnt 
            su(i) = su(i-1) + length(stag_pnt+(i-2)); 
        end 
        sl = []; 
        sl(1) = 0; 
        for i = 2:stag_pnt 
            sl(i) = sl(i-1) + length(stag_pnt-(i-1)); 
        end 

  
        %Solve for the boundary layer 
        [resultu{k}, itransu, cdu] = boundary_layer(su,vu,Re); 
        [resultl{k}, itransl, cdl] = boundary_layer(sl,vl,Re); 

         
        if itransu~=0 
            result_loc(k,1:2) = [xu(itransu) yu(itransu)]; 
        else 
            result_loc(k,1:2) = [0 0]; 
        end 
        if itransl~=0 
            result_loc(k,3:4) = [xl(itransl) yl(itransl)]; 
        else 
            result_loc(k,3:4) = [0 0]; 
        end 
        cd(k) = cdu + cdl; 
    end 
end 

 
function [result itrans cd] = boundary_layer(s,ve,Re) 

  
    %Initialize variables 
    theta = []; 
    vgrad = []; 
    h = []; 
    cf = []; 

     
    %Get node count 
    n = size(s,2); 

         
    %Find velocity gradients 
    v1 = ve(3); 
    x1 = s(3); 
    v2 = ve(1); 
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    x2 = s(1); 
    for i = 1:n 
        v3 = v1; 
        x3 = x1; 
        v1 = v2; 
        x1 = x2; 
        if i < n 
            v2 = ve(i+1); 
            x2 = s(i+1); 
        else 
            v2 = ve(n-2); 
            x2 = s(n-2); 
        end 
        fact = (x3-x1)/(x2-x1); 
        if i==1 
            vgrad(i) = ((v2-v1)*fact+(v3-v1)/fact)/(x3-x2); 
        else 
            vgrad(i) = ((v2-v1)*fact-(v3-v1)/fact)/(x3-x2); 
        end 
    end 

     
    %Laminar flow region 
    %vgrad(1) = abs(vgrad(1)); 
    theta(1) = sqrt(.075/(Re*vgrad(1))); 
    i = 1; 
    laminar_separation = 0; 
    transition = 0; 
    itrans = 0; 
    turbulent_separation = 0; 
    while 1  
        %Thwaites' correlation formulas 
        lambda = (theta(i)^2)*vgrad(i)*Re; 
        if lambda < -0.0842 
            %Laminar separation occurs 
            laminar_separation = 1; 
            itrans = i; 
            h(i) = 2.088 + .0731/(.14+lambda); 
            break; 
        elseif lambda < 0 
            l = .22 + 1.402*lambda + .018*lambda/(.107 + lambda); 
            h(i) = 2.088 + .0731/(.14+lambda); 
        else 
            l = .22 + lambda*(1.57 - 1.8*lambda); 
            h(i) = 2.61 - lambda*(3.75 - 5.24*lambda); 
        end 
        cf(i) = 2*l/(Re*theta(i)); 
        if i > 1 
            cf(i) = cf(i)/ve(i); 
        end 
        i = i + 1; 
        if i > n 
            %We've reached the end 
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            break; 
        end 
        if i == 2 
            theta(2) = theta(1); 
        else 
            dth2ve6 = .225*(ve(i)^5 + ve(i-1)^5)*(s(i)-s(i-1))/Re; 
            theta(i) = sqrt(((theta(i-1)^2)*ve(i-

1)^6+dth2ve6)/(ve(i)^6)); 
        end 
        %Test for transition 
        Rex = Re*s(i)*ve(i); 
        Ret = Re*theta(i)*ve(i); 
        Retmax = 1.174*(1+22400/Rex)*Rex^.46; 
        if Ret >= Retmax 
            transition = 1; 
            itrans = i; 
            lambda = (theta(i)^2)*vgrad(i)*Re; 
            if lambda < 0 
                h(i) = 2.088 + .0731/(.14+lambda); 
            else 
                h(i) = 2.61 - lambda*(3.75 - 5.24*lambda); 
            end             
            break; 
        end 
    end 
    %Build in a transistion condition for h 
    if laminar_separation == 1 || transition == 1 
        i = itrans; 
        if h(i) < 1.3 
            h(i) = 1.3; 
        elseif h(i) > 1.4 
            h(i) = 1.4; 
        end 
    end 

         
    %Turbulent flow region  
    if laminar_separation == 1 || transition == 1 
        yy1 = theta(i-1); 
        if h(i) > 1.6 
            yy2 = 3.3 + 1.5501*(h(i)-.6778)^(-3.064); 
        else 
            yy2 = 3.3 + 0.8234*(h(i)-1.1)^(-1.287); 
        end 
        while 1 
            dx = s(i)-s(i-1); 

             
            %Runge Kutta 
                yt1 = yy1; 
                yt2 = yy2; 
                h1 = yt2; 
                if h1 <= 3.3 
                    h(i) = 3; 
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                elseif h1 < 5.3 
                    h(i) = 0.6778 + 1.1536*(h1-3.3)^(-.326); 
                else 
                    h(i) = 1.1 + 0.86*(h1-3.3)^(-.777); 
                end 
                rtheta = Re*ve(i-1)*yt1; 
                cfturb = .246*(10^(-.678*h(i)))*abs(rtheta)^(-.268); 
                yp1 = -(h(i)+2)*yt1*vgrad(i-1)/ve(i-1)+.5*cfturb; 
                if h1 <= 3  
                    h1 = 3.001; 
                end 
                yp2 = -h1*(vgrad(i-1)/ve(i-1)+yp1/yt1)+.0306*((h1-3)^(-

.6169))/yt1; 
                yt1 = yy1+dx*yp1; 
                ys1 = yy1+.5*dx*yp1; 
                yt2 = yy2+dx*yp2; 
                ys2 = yy2+.5*dx*yp2; 
                h1 = yt2; 
                if h1 <= 3.3 
                    h(i) = 3; 
                elseif h1 < 5.3 
                    h(i) = 0.6778 + 1.1536*(h1-3.3)^(-.326); 
                else 
                    h(i) = 1.1 + 0.86*(h1-3.3)^(-.777); 
                end 
                rtheta = Re*ve(i)*yt1; 
                cfturb = .246*(10^(-.678*h(i)))*abs(rtheta)^(-.268); 
                yp1 = -(h(i)+2)*yt1*vgrad(i)/ve(i)+.5*cfturb; 
                if h1 <= 3  
                    h1 = 3.001; 
                end 
                yp2 = -h1*(vgrad(i)/ve(i)+yp1/yt1)+.0306*((h1-3)^(-

.6169))/yt1; 
                yy1 = ys1+.5*dx*yp1; 
                yy2 = ys2+.5*dx*yp2; 

             
            theta(i) = yy1; 
            if yy2 <= 3.3 
                h(i) = 3; 
            elseif yy2 < 5.3 
                h(i) = 0.6778 + 1.1536*(yy2-3.3)^(-.326); 
            else 
                h(i) = 1.1 + 0.86*(yy2-3.3)^(-.777); 
            end 
            rtheta = Re*ve(i)*theta(i); 
            cf = .246*(10^(-.678*h(i)))*abs(rtheta)^(-.268); 
            if h(i) > 2.4 
                turbulent_separation = 1; 
                break; 
            end 
            i = i + 1; 
            if i > n 
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                break; 
            end 
        end 
    end 
    %Return stuff 
    if laminar_separation == 1 
        result = {sprintf('laminar separation')}; 
    elseif transition == 1 
        result = {sprintf('transition')}; 
    else  
        result = {sprintf('flow is fully laminar')}; 
    end  
    cd = 2*theta(i-1)*ve(i-1)^((h(i-1)+5)/2); 
end 

 
function [weight] = structF0(x) 
%input 
m = 4;       %camber 
p = 5;       %max camber location 
toc = x(1);     %thickness over chord 
chord = x(2);   %meters 
alpha = 0.6;   %angle of attack in degrees 

  
%the aero results 
[lift, drag, moment, span, feasible] = aero_func([m p toc chord 

alpha]); 

  
alpha = alpha*pi/180;  %angle of attack in radians 

  
%fixed input 
density = 11174.48; %N/m^3 
yieldstrength = 7.93E7; %Pa 
loadfactor = 10; 

  
%transformation parameter 
pivot = 0.25*chord; 

  
%the aero profile 
profile = aero_profile(m/100, p/10, toc/100, chord, 100); 

  
%get the points in the structures format 
n = size(profile,1); 
x = profile(n:-1:1,1)'; 
y = profile(n:-1:1,2)'; 
x_a = (x-pivot).*cos(alpha) + pivot + y.*sin(alpha); 
y_a = -(x-pivot).*sin(alpha) + y.*cos(alpha); 

  
%get the max thickness 
maxthk = 0; 
for i=1:(n+1)/2+1 
    if (y(i)-y(n+1-i))>maxthk 
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        maxthk = y(i)-y(n+1-i); 
    end 
end 

  
thickness = .0001; 
solid = 0; 
safetyfactor = 0; 
weight = 0; 
feasible = 1;   
its = 1; 
while abs(safetyfactor-1)>.001 && feasible==1 && its<=100 
    %get the area of the outer profile 
    [area centroid_x centroid_y inertia_x inertia_y inertia_xy] = 

areaproperties(x_a',y_a'); 
    if area==0 
        feasible = 0; 
        return; 
    end 
    %get the inner airfoil points 
    if thickness > 0 && solid==0 
        [xin yin] = skin(x, y, thickness); 
        if size(xin,2)==0 
            solid = 1; 
        end 
        xin_a = (xin-pivot).*cos(alpha) + pivot + yin.*sin(alpha); 
        yin_a = -(xin-pivot).*sin(alpha) + yin.*cos(alpha); 
    end 
    %stress and weight calculation 
    if solid==0 
        [areain centroidin_x centroidin_y inertiain_x inertiain_y 

inertiain_xy] = areaproperties(xin_a',yin_a'); 
        if area-areain <=0 
            solid = 1; 
            continue; 
        end 
        centroidnew_x = (centroid_x*area - centroidin_x*areain)/(area-

areain); 
        centroidnew_y = (centroid_y*area - centroidin_y*areain)/(area-

areain); 
        inertia_x = (inertia_x + (centroid_y^2)*area) - (inertiain_x + 

(centroidin_y^2)*areain) - (centroidnew_y^2)*(area-areain); 
        inertia_y = (inertia_y + (centroid_x^2)*area) - (inertiain_y + 

(centroidin_x^2)*areain) - (centroidnew_x^2)*(area-areain); 
        inertia_xy = (inertia_xy + (centroid_x*centroid_y)*area) - 

(inertiain_xy + (centroidin_x*centroid_y)*areain) - 

(centroidnew_x*centroidnew_y)*(area-areain); 
        centroid_x = centroidnew_x; 
        centroid_y = centroidnew_y; 
        area = area - areain; 
    end 
    weight = area*span*density; 
    moment_x = loadfactor*lift*span/2; 
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    moment_y = drag*span/2; 
    stress = []; 
    for i=1:size(x_a,2) 
        stress(i) = ((moment_y*inertia_x-

moment_x*inertia_xy)/(inertia_x*inertia_y-inertia_xy^2))*(x_a(i)-

centroid_x) - ... 
                    ((moment_x*inertia_y-

moment_y*inertia_xy)/(inertia_x*inertia_y-inertia_xy^2))*(y_a(i)-

centroid_y); 
    end 
    stress_zz = max(stress); 
    stress_yz = loadfactor*lift/area; 
    stress_zx = drag/area; 
    wingstress = sqrt(stress_zz^2 + 6*(stress_yz^2 + 

stress_zx^2))/(sqrt(2)); 
    safetyfactor = yieldstrength/wingstress; 
    if solid==1 && safetyfactor<1 
        feasible = 0; 
    else 
        thickness = thickness/safetyfactor;               
    end 
    its = its + 1; 
end 
if its>100 
    feasible = 0; 
end 

  
end 

 
function [area centroid_x centroid_y inertia_x inertia_y 

inertia_xy]=areaproperties (x,y) 
    n = size(x,1); 
    area=0; 
    centroid_x = 0; 
    centroid_y = 0; 
    inertia_x = 0; 
    inertia_y = 0; 
    inertia_xy = 0; 
    if mod(n,2) 
        limit = ((n-1)/2)-1; 
    else 
        limit = (n-2)/2; 
    end 
    for i=1:limit 
        area1 = .5*abs(det([x(i) x(i+1) x(n-i+1);y(i) y(i+1) y(n-i+1);1 

1 1])); 
        area2 = .5*abs(det([x(i+1) x(n-i) x(n-i+1);y(i+1) y(n-i) y(n-

i+1);1 1 1])); 
        area = area + area1 + area2; 

         
        centroid1_x = (x(i)+x(i+1)+x(n-i+1))/3; 
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        centroid2_x = (x(i+1)+x(n-i)+x(n-i+1))/3; 
        centroid_x = centroid_x + centroid1_x*area1 + 

centroid2_x*area2; 
        centroid1_y = (y(i)+y(i+1)+y(n-i+1))/3; 
        centroid2_y = (y(i+1)+y(n-i)+y(n-i+1))/3; 
        centroid_y = centroid_y + centroid1_y*area1 + 

centroid2_y*area2; 

         
        inertia_x = inertia_x + ((y(i)^2+y(i+1)^2+y(n-i+1)^2)/12 + 

(centroid1_y^2)*3/4)*area1; 
        inertia_x = inertia_x + ((y(i+1)^2+y(n-i)^2+y(n-i+1)^2)/12 + 

(centroid2_y^2)*3/4)*area2; 
        inertia_y = inertia_y + ((x(i)^2+x(i+1)^2+x(n-i+1)^2)/12 + 

(centroid1_x^2)*3/4)*area1; 
        inertia_y = inertia_y + ((x(i+1)^2+x(n-i)^2+x(n-i+1)^2)/12 + 

(centroid2_x^2)*3/4)*area2;         
        inertia_xy = inertia_xy + ((x(i)*y(i)+x(i+1)*y(i+1)+x(n-

i+1)*y(n-i+1))/12 + centroid1_x*centroid1_y*3/4)*area1; 
        inertia_xy = inertia_xy + ((x(i+1)*y(i+1)+x(n-i)*y(n-i)+x(n-

i+1)*y(n-i+1))/12 + centroid2_x*centroid2_y*3/4)*area2; 
    end 
    if area~=0 
        centroid_x = centroid_x/area; 
        centroid_y = centroid_y/area; 
    end 
    %use the parallel axis theorem to find the inertia about the 

centroid 
    inertia_x = inertia_x - area*centroid_y^2; 
    inertia_y = inertia_y - area*centroid_x^2; 
    inertia_xy = inertia_xy - area*centroid_x*centroid_y; 
end 

 
function [xin yin] = skin(x, y, thickness) 
    change_x=0; 
    n = size(x,2); 
    for i=1:n-1 
        a(i)=atan2((y(i+1)-y(i)),(x(i+1)-x(i))); 
    end 
    gamma(1)=(pi/2)+a(1); 
    for i=2:n-1 
        if sign(a(i))==-1 && sign(a(i-1))==1 && a(i-1)>pi/2 
            gamma(i)=-(pi/2)+((a(i-1)+a(i))/2); 
        else 
            gamma(i)=(pi/2)+((a(i-1)+a(i))/2);   
        end 
    end 
    gamma(n)=(pi/2)+a(n-1); 
    change_x=cos(gamma); 
    change_y=sin(gamma); 
    xin=x+(thickness*change_x); 
    yin=y+(thickness*change_y); 
    while yin(1)<= yin(n) 
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        if n<4 
            thickness = 0; 
            xin = []; 
            yin = []; 
            break; 
        end 
        xin(n)=[]; 
        yin(n)=[]; 
        xin(1)=[]; 
        yin(1)=[]; 
        n = n-2; 
    end 
    intersect = 0; 
    if thickness > 0 
        for i=1:(n-1)/2 
            if yin(i)<yin(n+1-i) 
                intersect = i; 
                break; 
            end 
        end 
        if intersect ~=0 
            yin = [yin(1:intersect-1) yin(n+2-intersect:n)]; 
            xin = [xin(1:intersect-1) xin(n+2-intersect:n)]; 
        end 
    end 
end 
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Appendix C 

The Matlab
®
 code for Chapter 4’s UAV solutions 1 and 2 is presented in this 

appendix.   

Table C.1: Matlab
®

 Functions for UAV Solutions 1 and 2 

systemsKBN01( ) 
The first baseline solution for the systems group. 

subsystemsKBN01( ) The first baseline solution for the subsystems group. 

systemsKBN02( ) Fully disconnected (Naïve Bayes) KBNC. 

subsystemsKBN02( ) 
Fully disconnected (Naïve Bayes) KBNC. 

systemsInt0( ) 
Uses interval classifiers for the systems group. 

subsystemsInt0( ) 
Uses interval classifiers for the subsystems group. 

systemsKBN03( ) 
With loss factors. 

demo_sys01( ) Plots runs of systemsKBN01, e.g. Fig. 4.4, 4.5 left. 

demo_subsys01( ) Plots runs of subsystemsKBN01, e.g. Fig. 4.8, 4.9 left. 

demo_sys02( ) 
Plots runs of systemsKBN02, e.g. Fig. 4.5 middle. 

demo_subsys02( ) 
Plots runs of subsystemsKBN02, e.g. Fig. 4.8, 4.9 middle. 

demo_sys_Intervals( ) 
Plots runs of systemsInt0, e.g. Fig. 4.5 right. 

demo_subsys_Intervals( ) 
Plots runs of subsystemsInt0, e.g. Fig. 4.9 right. 

demo_sys03( ) Plots runs of systemsKBN03, e.g. Fig. 4.12 right. 

experiment01( ) 
Generates errors for systemsKBN01 and subsystemKBN01, e.g. 

Fig. 4.6, 4.10. 

experiment02( ) 
Generates errors for systemsKBN02 and subsystemKBN02, e.g. 

Fig. 4.6, 4.10. 

experimentInt0( ) 
Generates errors for systemsKBN01 and subsystemKBN01, e.g. 

Fig. 4.6, 4.10. 

experiment03( ) 
Generates errors for systemsKBN03 and subsystemKBN01, e.g. 

Fig. 4.13. 
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Unless stated otherwise, all solutions used a fully connected KBNC without loss factors.  

The standard deviations are rule-based using Eq. 3.16 with the scaling factors set 

according to Table 4.2.  The sampling is a Halton sequence. 

 
function n = systemsKBN01(n,M) 

  
    %The search strategy is exploratory only using a halton sequence. 
    %The sigmas are rule-based. 

  
    rangeDB = 900; %acceptable range lower bound 
    if isempty(n) 
        n = kbn(2,1,2,'bnd',[0 0;1 5]); 
        n.hscale = .25*ones(1,n.C); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 
        yi = systemsF0((xi./n.scale+n.shift)); 

  
        %classify the point 
        if yi>=rangeDB 
            n = kbnAddData(n,[xi yi],1); 
        else 
            n = kbnAddData(n,[xi yi],2); 
        end 

  
    end 

  
    %set the standard deviation 
    n.h = zeros(1,n.C); 
    for i=1:n.C 
        if n.Nc(i)<=0 
            n.h(i) = n.hscale(i); 
        else 
            n.h(i) = n.hscale(i)/(n.Nc(i)^(1/n.Din)); 
        end 
    end 

  
end 

 
function [n] = subsystemsKBN01(n,M,nsys) 
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    classifyType = 1; 
    % 1 for using the systems classifier 
    % otherwise use the systems simulation 

  
    %The search strategy is exploratory only using a halton sequence. 
    %The sigmas are rule-based. 

  
    if isempty(n) 
        n = kbn(2,2,2,'bnd',[1 .1;15 .4]); 
        n.hscale = [.1 .5]; 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 
        yi(1) = aeroF0((xi./n.scale+n.shift)); 
        yi(2) = structF0((xi./n.scale+n.shift)); 

  
        if classifyType 
            %classify the point using systems' classifier 
            [ci] = kbnEvalC(nsys,(yi-nsys.shift).*nsys.scale); 
            if ci==0 
                ci = 2; 
            end 
        else 
            %or classify correctly using the systems' simulation 
            range = systemsF0(yi); 
            if range>=900 
                ci = 1; 
            else 
                ci = 2; 
            end 
        end 
        n = kbnAddData(n,[xi yi],ci); 

  
    end 

  
    %set the standard deviation 
    n.h = zeros(1,n.C); 
    for i=1:n.C 
        if n.Nc(i)<=0 
            n.h(i) = n.hscale(i); 
        else 
            n.h(i) = n.hscale(i)/(n.Nc(i)^(1/n.Din)); 
        end 
    end 

  
end 
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function n = systemsKBN02(n,M) 

  
    %The classifier is naive Bayes  
    %The search strategy is exploratory only using a halton sequence. 
    %The sigmas are rule-based. 

  
    rangeDB = 900; %acceptable range lower bound 
    if isempty(n) 
        n = kbn(2,1,2,'bnd',[0 0;1 5],'connect','none'); 
        n.hscale = .5*ones(1,n.C); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 
        yi = systemsF0((xi./n.scale+n.shift)); 

  
        %classify the point 
        if yi>=rangeDB 
            n = kbnAddData(n,[xi yi],1); 
        else 
            n = kbnAddData(n,[xi yi],2); 
        end 

  
    end 

  
    %set the standard deviation 
    n.h = zeros(1,n.C); 
    for i=1:n.C 
        if n.Nc(i)<=0 
            n.h(i) = n.hscale(i); 
        else 
            n.h(i) = n.hscale(i)/(n.Nc(i)^(1/n.Din)); 
        end 
    end 

  
end 

 
function [n] = subsystemsKBN02(n,M,nsys) 

  
    classifyType = 1; 
    % 1 for using the systems classifier 
    % otherwise use the systems simulation 

  
    %The classifier is naive Bayes 
    %The search strategy is exploratory only using a halton sequence. 
    %The sigmas are rule-based. 
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    if isempty(n) 
        n = kbn(2,2,2,'bnd',[1 .1;15 .4],'connect','none'); 
        n.hscale = [.1 .5]; 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 
        yi(1) = aeroF0((xi./n.scale+n.shift)); 
        yi(2) = structF0((xi./n.scale+n.shift)); 

  
        if classifyType 
            %classify the point using systems' classifier 
            [ci] = kbnEvalC(nsys,(yi-nsys.shift).*nsys.scale); 
            if ci==0 
                ci = 2; 
            end 
        else 
            %or classify correctly using the systems' simulation 
            range = systemsF0(yi); 
            if range>=900 
                ci = 1; 
            else 
                ci = 2; 
            end 
        end 
        n = kbnAddData(n,[xi yi],ci); 

  
    end 

  
    %set the standard deviation 
    n.h = zeros(1,n.C); 
    for i=1:n.C 
        if n.Nc(i)<=0 
            n.h(i) = n.hscale(i); 
        else 
            n.h(i) = n.hscale(i)/(n.Nc(i)^(1/n.Din)); 
        end 
    end 

  
end 

 
function int = systemsInt0(int,M) 

  
    %Intervals for these values are approximated based upon sampling. 
    %The interval is constructed in a balance between errors by using a 

max weight  
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    %and drag that are weighted averages of the bounds. 

  
    %The search strategy is exploratory only using a halton sequence. 

  
    rangeDB = 900; 
    if isempty(int) 
        int = createInt(); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(int.Din,int.N+1); 
        xi = xhalton(int.N+1,:); 
        yi = systemsF0(xi./int.scale+int.shift); 
        int.d(int.N+1,:) = [xi yi]; 
        int.N = int.N+1; 

  
        %set the new decision boundary 
        if yi>=rangeDB 
            if xi(1)>int.dbUB(1) 
                int.dbUB(1) = xi(1); 
            end 
            if xi(2)>int.dbUB(2) 
                int.dbUB(2) = xi(2); 
            end 
        else 
            if xi(1)<int.dbLB(1) 
                int.dbLB(1) = xi(1); 
            end 
            if xi(2)<int.dbLB(2) 
                int.dbLB(2) = xi(2); 
            end 
        end 
        int.db = int.pct.*int.dbUB+(1-int.pct).*int.dbLB; 
    end 

  
    function intOut = createInt() 
        intOut.Din = 2; 
        intOut.Dout = 1; 
        intOut.pct = [.75 .75]; %where to set the decision boundary 
        %setting it to [0 0] is a worse case of the minimum 

unacceptable weights and drags 
        %setting it to [1 1] is a best case of the maximum acceptable 

weights and drags 
        intOut.bnd = [0 0; 1 5]; 
        intOut.scale = 1./(intOut.bnd(2,:)-intOut.bnd(1,:)); 
        intOut.shift = intOut.bnd(1,:); 
        intOut.dbUB = zeros(1,intOut.Din); 
        intOut.dbLB = ones(1,intOut.Din); 
        intOut.db = intOut.pct; 
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        intOut.d = []; 
        intOut.N = 0; 
    end 

  
end 

 
function int = subsystemsInt0(int,M,intsys) 

  
    %Intervals for these values are approximated based upon sampling. 
    %The interval is constructed as the minimum circumscribing 

rectangle  

  
    %The search strategy is exploratory only using a halton sequence. 

  
    if isempty(int) 
        int = createInt(); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(int.Din,int.N+1); 
        xi = xhalton(int.N+1,:); 
        yi(1) = aeroF0(xi./int.scale+int.shift); 
        yi(2) = structF0(xi./int.scale+int.shift); 
        int.d(int.N+1,:) = [xi yi]; 
        int.N = int.N+1; 

  
        %set the new decision boundary 
        %minimum circumscribed rectangle 
        yi = (yi-intsys.shift).*intsys.scale; 
        if yi(2)<=intsys.db(2) && yi(1)<=intsys.db(1) 
            %is it incorrectly classified?  
            %then correct decision boundary 
            if xi(1)<int.dbLB(1) %left 
                int.dbLB(1) = xi(1); 
            end 
            if xi(1)>int.dbUB(1) %right 
                int.dbUB(1) = xi(1); 
            end 
            if xi(2)<int.dbLB(2) %lower 
                int.dbLB(2) = xi(2); 
            end 
            if xi(2)>int.dbUB(2) %upper 
                int.dbUB(2) = xi(2); 
            end 
        end 

  
    end 

  
    function intOut = createInt() 
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        intOut.Din = 2; 
        intOut.Dout = 2; 
        intOut.bnd = [1 .1; 15 .4]; 
        intOut.scale = 1./(intOut.bnd(2,:)-intOut.bnd(1,:)); 
        intOut.shift = intOut.bnd(1,:); 
        intOut.dbUB = zeros(1,intOut.Din); 
        intOut.dbLB = ones(1,intOut.Din); 
        intOut.d = []; 
        intOut.N = 0; 
    end 

  
end 

 
function n = systemsKBN03(n,M) 

  
    %The search strategy is exploratory only using a halton sequence. 
    %The sigmas are rule-based with loss factors 

  
    rangeDB = 900; %acceptable range lower bound 
    if isempty(n) 
        n = kbn(2,1,2,'bnd',[0 0;1 5]); 
        n.hscale = .25*ones(1,n.C); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 
        yi = systemsF0((xi./n.scale+n.shift)); 

  
        %update the loss factors 
        n.lf(2) = 1000/(n.N^(1/2)); 

  
        %classify the point 
        if yi>=rangeDB 
            n = kbnAddData(n,[xi yi],1); 
        else 
            n = kbnAddData(n,[xi yi],2); 
        end 

  
    end 

  
    %set the standard deviation 
    n.h = zeros(1,n.C); 
    for i=1:n.C 
        if n.Nc(i)<=0 
            n.h(i) = n.hscale(i); 
        else 
            n.h(i) = n.hscale(i)/(n.Nc(i)^(1/n.Din)); 
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        end 
    end 

  
end 

 
function demo_sys01() 

  
    %halton sequence at the systems level 
    %rule-based sigmas 
    %fully connected BN 

  
    I = 1; %repeat I times 
    M = 100; %the number of data points per each of I iterations 

  
    figure(); 
    ah = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsystemsN10000.csv'); 
    [xsTestSys,ysTestSys] = dataRead(fh); 
    fclose(fh); 

  
    n = struct([]); %start with the "empty" bn 
    for i=1:I 
        n = systemsKBN01(n,M); 

  
        cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1, ph1, dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'EdgeC

olor','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'EdgeC

olor','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
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plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    dragTestSys = zeros(1,100); 
    weightTestSys = zeros(1,100); 
    rangeTestSys = zeros(100,100); 
    for i=1:100 
        dragTestSys(i) = n.scale(1)*(xsTestSys(i,1)-n.shift(1)); 
        weightTestSys(i) = n.scale(2)*(xsTestSys((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSys(i,:) = ysTestSys((i-1)*100+1:i*100,1); 
    end 
    contour(dragTestSys,weightTestSys,rangeTestSys,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 
function demo_subsys01() 

  
    %halton sequence at the systems level 
    %rule-based sigmas 
    %fully connected BN 

  
    I = 1; %repeat I times 
    M = 100; %the number of data points per each of I iterations 
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    figure(); 
    ah = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsolutionN10000.csv'); 
    [xsTestSol,ysTestSol] = dataRead(fh); 
    fclose(fh); 

  
    %get the systems bn 
    nsys = systemsKBN01(struct([]),100); 

  
    n = struct([]); %start with the "empty" bn 
    for i=1:I 
        n = subsystemsKBN01(n,M,nsys); 

  
        cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'EdgeC

olor','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'EdgeC

olor','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
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            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    tocTestSol = zeros(1,100); 
    chordTestSol = zeros(1,100); 
    rangeTestSol = zeros(100,100); 
    for i=1:100 
        tocTestSol(i) = n.scale(1)*(xsTestSol(i,1)-n.shift(1)); 
        chordTestSol(i) = n.scale(2)*(xsTestSol((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,3); 
    end 
    contour(tocTestSol,chordTestSol,rangeTestSol,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 
function demo_sys02() 

  
    %halton sequence at the systems level 
    %rule-based sigmas 
    %fully disconnected BN 

  
    I = 1; %repeat I times 
    M = 100; %the number of data points per each of I iterations 

  
    figure(); 
    ah = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsystemsN10000.csv'); 
    [xsTestSys,ysTestSys,DinTestSys,DoutTestSys,NtotTestSys] = 

dataRead(fh); 
    fclose(fh); 

  
    n = struct([]); %start with the "empty" bn 
    for i=1:I 
        n = systemsKBN02(n,M); 
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        cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

%surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'Edge

Color','b','FaceColor','b'); hold on; 
        

%surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'Edge

Color','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    dragTestSys = zeros(1,100); 
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    weightTestSys = zeros(1,100); 
    rangeTestSys = zeros(100,100); 
    for i=1:100 
        dragTestSys(i) = n.scale(1)*(xsTestSys(i,1)-n.shift(1)); 
        weightTestSys(i) = n.scale(2)*(xsTestSys((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSys(i,:) = ysTestSys((i-1)*100+1:i*100,1); 
    end 
    contour(dragTestSys,weightTestSys,rangeTestSys,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 
function demo_subsys02() 

  
    %halton sequence at the systems level 
    %rule-based sigmas 
    %fully disconnected BN 

  
    I = 1; %repeat I times 
    M = 100; %the number of data points per each of I iterations 

  
    figure(); 
    ah = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsolutionN10000.csv'); 
    [xsTestSol,ysTestSol] = dataRead(fh); 
    fclose(fh); 

  
    %get the systems bn 
    nsys = systemsKBN02(struct([]),100); 

  
    n = struct([]); %start with the "empty" bn 
    for i=1:I 
        n = subsystemsKBN02(n,M,nsys); 

  
        cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1, ~, dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

%surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'Edge

Color','b','FaceColor','b'); hold on; 
        

%surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'Edge

Color','r','FaceColor','r'); hold on; 
        %plot the data points 
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        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    tocTestSol = zeros(1,100); 
    chordTestSol = zeros(1,100); 
    rangeTestSol = zeros(100,100); 
    for i=1:100 
        tocTestSol(i) = n.scale(1)*(xsTestSol(i,1)-n.shift(1)); 
        chordTestSol(i) = n.scale(2)*(xsTestSol((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,3); 
    end 
    contour(tocTestSol,chordTestSol,rangeTestSol,[900 

900],'k','LineWidth',2); hold on; 

  
end  
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function demo_sys_Intervals() 

  
    %halton sequence at the systems level 
    %rule-based intervals 

  
    I = 100; %repeat I times 
    M = 1; %the number of data points per each of I iterations 

  
    figure(); 
    ah = axes(); 
    rh = -1; 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsystemsN10000.csv'); 
    [xsTestSys,ysTestSys] = dataRead(fh); 
    fclose(fh); 

  
    int = struct([]); %start with the "empty" interval structure 
    rangeDB = 900; 
    for i=1:I 
        int = systemsInt0(int,M); 

  
        cla(ah);     
        axis([0 1 0 1]); 
        %plot the data points 
        for j=1:int.N 
            if int.d(j,3)>=rangeDB 
                

plot(int.d(j,1),int.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',6); 

hold on; 
            else 
                

plot(int.d(j,1),int.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',6); 

hold on; 
            end 
        end 
        %plot the decision surface 
        if rh~=-1 
            delete(rh); 
            delete(rh2); 
            delete(rh3); 
        end 
        rh = annotation('rectangle',dsxy2figxy([[0 0] int.db(1) 

int.db(2)])); hold on; 
        rh2 = annotation('rectangle',dsxy2figxy([[0 0] int.dbUB(1) 

int.dbUB(2)])); hold on; 
        rh3 = annotation('rectangle',dsxy2figxy([[0 0] int.dbLB(1) 

int.dbLB(2)])); hold on; 
        set(rh,'LineStyle','--','EdgeColor','k','LineWidth',2); 
        set(rh2,'LineStyle','--','EdgeColor','b','LineWidth',2); 
        set(rh3,'LineStyle','--','EdgeColor','r','LineWidth',2); 
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        pause(); 
    end 

  
    %plot the correct decision boundary 
    dragTestSys = zeros(1,100); 
    weightTestSys = zeros(1,100); 
    rangeTestSys = zeros(100,100); 
    for i=1:100 
        dragTestSys(i) = int.scale(1)*(xsTestSys(i,1)-int.shift(1)); 
        weightTestSys(i) = int.scale(2)*(xsTestSys((i-1)*100+1,2)-

int.shift(2)); 
        rangeTestSys(i,:) = ysTestSys((i-1)*100+1:i*100,1); 
    end 
    contour(dragTestSys,weightTestSys,rangeTestSys,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 
function demo_subsys_Intervals() 

  
    %halton sequence at the systems level 
    %rule-based intervals 

  
    I = 1; %repeat I times 
    M = 100; %the number of data points per each of I iterations 

  
    figure(); 
    ah = axes(); 
    rh = -1; 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsolutionN10000.csv'); 
    [xsTestSol,ysTestSol] = dataRead(fh); 
    fclose(fh); 

  
    %get the systems interval classifier 
    intsys = systemsInt0(struct([]),100); 

  
    int = struct([]); %start with the "empty" interval structure 
    for i=1:I 
        int = subsystemsInt0(int,M,intsys); 

  
        cla(ah);     
        axis([0 1 0 1]); 
        %plot the data points 
        for j=1:int.N 
            yj = (int.d(j,3:4)-intsys.shift).*intsys.scale; 
            if yj(1)<=intsys.db(1) && yj(2)<=intsys.db(2) 
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plot(int.d(j,1),int.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',6); 

hold on; 
            else 
                

plot(int.d(j,1),int.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',6); 

hold on; 
            end 
        end 
        %plot the decision surface 
        if int.dbUB(1)>int.dbLB(1) && int.dbUB(2)>int.dbLB(2) 
            if rh~=-1 
                delete(rh); 
            end 
            rh = annotation('rectangle',dsxy2figxy([int.dbLB 

int.dbUB(1)-int.dbLB(1) int.dbUB(2)-int.dbLB(2)])); hold on; 
            set(rh,'LineStyle','--','EdgeColor','k','LineWidth',2); 
        end 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    tocTestSol = zeros(1,100); 
    chordTestSol = zeros(1,100); 
    rangeTestSol = zeros(100,100); 
    for i=1:100 
        tocTestSol(i) = int.scale(1)*(xsTestSol(i,1)-int.shift(1)); 
        chordTestSol(i) = int.scale(2)*(xsTestSol((i-1)*100+1,2)-

int.shift(2)); 
        rangeTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,3); 
    end 
    contour(tocTestSol,chordTestSol,rangeTestSol,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 
function demo_sys03() 

  
    %halton sequence at the systems level 
    %rule-based sigmas, loss factors at systems level 
    %fully connected BN 

  
    I = 1; %repeat I times 
    M = 100; %the number of data points per each of I iterations 

  
    figure(); 
    ah = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsystemsN10000.csv'); 
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    [xsTestSys,ysTestSys,DinTestSys,DoutTestSys,NtotTestSys] = 

dataRead(fh); 
    fclose(fh); 

  
    n = struct([]); %start with the "empty" bn 
    for i=1:I 
        n = systemsKBN03(n,M); 

  
        cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

%surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'Edge

Color','b','FaceColor','b'); hold on; 
        

%surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'Edge

Color','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 



 223 

        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    dragTestSys = zeros(1,100); 
    weightTestSys = zeros(1,100); 
    rangeTestSys = zeros(100,100); 
    for i=1:100 
        dragTestSys(i) = n.scale(1)*(xsTestSys(i,1)-n.shift(1)); 
        weightTestSys(i) = n.scale(2)*(xsTestSys((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSys(i,:) = ysTestSys((i-1)*100+1:i*100,1); 
    end 
    contour(dragTestSys,weightTestSys,rangeTestSys,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 
function experiment01() 

  
    %Systems and Subsystems: 
    %  halton sequence 
    %  rule-based sigmas 
    %  parzen window 

  
    N = 100; 

  
    %error test points for systems 
    fh = fopen('dataTestsystemsN1000.csv'); 
    [xTestS,yTestS,DinTestS,DoutTestS,NtotTestS] = dataRead(fh); 
    cTestS = 2*ones(NtotTestS,1); 
    cTestS(yTestS>=900) = 1; 
    fclose(fh); 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,DinTestSS,DoutTestSS,NtotTestSS] = dataRead(fh); 
    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 

  
    %error output files 
    fhs1 = fopen('exp01_se1.csv','w');   %false positives for systems 
    fhs2 = fopen('exp01_se2.csv','w');   %false negatives for systems 
    fhss1 = fopen('exp01_sse1.csv','w'); %false positives for 

subsystems 
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    fhss2 = fopen('exp01_sse2.csv','w'); %false negatives for 

subsystems 

  
    %standard deviation files 
    fhs3 = fopen('exp01_sh1.csv','w');   %acceptable standard 

deviations for systems 
    fhs4 = fopen('exp01_sh2.csv','w');   %unacceptable standard 

deviations for systems 
    fhss3 = fopen('exp01_ssh1.csv','w'); %acceptable standard 

deviations for subsystems 
    fhss4 = fopen('exp01_ssh2.csv','w'); %unacceptable standard 

deviations for subsystems 

  
    its = 1; 
    while its<=1 

  
        nsys = struct([]); 
        nssys = struct([]); 

  
        %systems classification 
        for i=1:N 
            [nsys] = systemsKBN01(nsys,1); 
            [e1 e2] = kbnGetErr(nsys,xTestS,[1 2],cTestS); 
            fprintf(fhs1,'%g,',e1); 
            fprintf(fhs2,'%g,',e2); 
            fprintf(fhs3,'%g,',nsys.h(1)); 
            fprintf(fhs4,'%g,',nsys.h(2)); 
        end 
        fprintf(fhs1,'\n'); 
        fprintf(fhs2,'\n'); 
        fprintf(fhs3,'\n'); 
        fprintf(fhs4,'\n'); 

  
        %subsystems classification 
        for i=1:N 
            [nssys] = subsystemsKBN01(nssys,1,nsys); 
            [e1 e2] = kbnGetErr(nssys,xTestSS,[1 2],cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
            fprintf(fhss3,'%g,',nssys.h(1)); 
            fprintf(fhss4,'%g,',nssys.h(2)); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 
        fprintf(fhss3,'\n'); 
        fprintf(fhss4,'\n'); 

  
        its = its+1; 
    end 
    fclose(fhs1); 
    fclose(fhs2); 
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    fclose(fhs3); 
    fclose(fhs4); 
    fclose(fhss1); 
    fclose(fhss2); 
    fclose(fhss3); 
    fclose(fhss4); 

  
end 

 
function experiment02() 

  
    %Systems and Subsystems: 
    %  halton sequences 
    %  rule-based sigmas 
    %  naive bayes 

  
    N = 100; 

  
    %error test points for systems 
    fh = fopen('dataTestsystemsN1000.csv'); 
    [xTestS,yTestS,DinTestS,DoutTestS,NtotTestS] = dataRead(fh); 
    cTestS = 2*ones(NtotTestS,1); 
    cTestS(yTestS>=900) = 1; 
    fclose(fh); 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,DinTestSS,DoutTestSS,NtotTestSS] = dataRead(fh); 
    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 

  
    %error output files 
    fhs1 = fopen('exp02_se1.csv','w');   %false positives for systems 
    fhs2 = fopen('exp02_se2.csv','w');   %false negatives for systems 
    fhss1 = fopen('exp02_sse1.csv','w'); %false positives for 

subsystems 
    fhss2 = fopen('exp02_sse2.csv','w'); %false negatives for 

subsystems 

  
    its = 1; 
    while its<=1 

  
        nsys = struct([]); 
        nssys = struct([]); 

  
        %systems classification 

  
        for i=1:N 
            [nsys] = systemsKBN02(nsys,1); 



 226 

            [e1 e2] = kbnGetErr(nsys,xTestS,[1 2],cTestS); 
            fprintf(fhs1,'%g,',e1); 
            fprintf(fhs2,'%g,',e2); 
        end 
        fprintf(fhs1,'\n'); 
        fprintf(fhs2,'\n'); 

  
        %subsystems classification 
        for i=1:N 
            [nssys] = subsystemsKBN02(nssys,1,nsys); 
            [e1 e2] = kbnGetErr(nssys,xTestSS,[1 2],cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 

  
        its = its+1; 
    end 
    fclose(fhs1); 
    fclose(fhs2); 
    fclose(fhss1); 
    fclose(fhss2); 

  
end 

 
function experimentInt0() 

  
    %Systems and Subsystems: 
    %  halton sequence 
    %  intervals 

  
    N = 100; 

  
    %error test points for systems 
    fh = fopen('dataTestsystemsN1000.csv'); 
    [xTestS,yTestS,~,~,NtotTestS] = dataRead(fh); 
    cTestS = 2*ones(NtotTestS,1); 
    cTestS(yTestS>=900) = 1; 
    fclose(fh); 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,~,~,NtotTestSS] = dataRead(fh); 
    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 

  
    %error output files 
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    fhs1 = fopen('expInt.075_se1.csv','a');   %false positives for 

systems 
    fhs2 = fopen('expInt.075_se2.csv','a');   %false negatives for 

systems 
    fhss1 = fopen('expInt.075_sse1.csv','a'); %false positives for 

subsystems 
    fhss2 = fopen('expInt.075_sse2.csv','a'); %false negatives for 

subsystems 

  
    its = 1; 
    while its<=1 

  
        intsys = []; 
        intssys = []; 

  
        %systems classification 
        for i=1:N 
            [intsys] = systemsInt0(intsys,1); 
            [e1 e2] = intGetErr1(intsys,xTestS,cTestS); 
            fprintf(fhs1,'%g,',e1); 
            fprintf(fhs2,'%g,',e2); 
        end 
        fprintf(fhs1,'\n'); 
        fprintf(fhs2,'\n'); 

  
        %subsystems classification 
        for i=1:N 
            [intssys] = subsystemsInt0(intssys,1,intsys); 
            [e1 e2] = intGetErr2(intssys,xTestSS,cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 

  
        its = its+1; 
    end 

  
    fclose(fhs1); 
    fclose(fhs2); 
    fclose(fhss1); 
    fclose(fhss2); 

  
    function [err1 err2] = intGetErr1(n,xs,cs) 
        xs = [n.scale(1)*(xs(:,1)-n.shift(1)) n.scale(2)*(xs(:,2)-

n.shift(2))]; 
        Nerr = size(xs,1); 
        nerr1 = 0; 
        nerr2 = 0; 
        for ii=1:Nerr 
            if xs(ii,1)<=n.db(1) && xs(ii,2)<=n.db(2)  
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                if cs(ii,1)~=1 
                    nerr1 = nerr1+1; 
                end 
            elseif cs(ii,1)~=2 
                nerr2 = nerr2+1; 
            end 
        end 
        err1 = nerr1/Nerr; 
        err2 = nerr2/Nerr; 
    end 
    function [err1 err2] = intGetErr2(n,xs,cs) 
        xs = [n.scale(1)*(xs(:,1)-n.shift(1)) n.scale(2)*(xs(:,2)-

n.shift(2))]; 
        Nerr = size(xs,1); 
        nerr1 = 0; 
        nerr2 = 0; 
        for ii=1:Nerr 
            if xs(ii,1)<=n.dbUB(1) && xs(ii,1)>=n.dbLB(1) && 

xs(ii,2)<=n.dbUB(2) && xs(ii,2)>=n.dbLB(2) 
                if cs(ii,1)~=1 
                    nerr1 = nerr1+1; 
                end 
            elseif cs(ii,1)~=2 
                nerr2 = nerr2+1; 
            end 
        end 
        err1 = nerr1/Nerr; 
        err2 = nerr2/Nerr; 
    end 

  
end 

 
function experiment03() 

  
    %Systems and Subsystems: 
    %  halton sequence 
    %  rule-based sigmas, loss factors at systems level 
    %  fully connected BN 

  
    N = 100; 

  
    %error test points for systems 
    fh = fopen('dataTestsystemsN1000.csv'); 
    [xTestS,yTestS,DinTestS,DoutTestS,NtotTestS] = dataRead(fh); 
    cTestS = 2*ones(NtotTestS,1); 
    cTestS(yTestS>=900) = 1; 
    fclose(fh); 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,DinTestSS,DoutTestSS,NtotTestSS] = dataRead(fh); 
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    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 

  
    %error output files 
    fhs1 = fopen('exp03_se1.csv','w');   %false positives for systems 
    fhs2 = fopen('exp03_se2.csv','w');   %false negatives for systems 
    fhss1 = fopen('exp03_sse1.csv','w'); %false positives for 

subsystems 
    fhss2 = fopen('exp03_sse2.csv','w'); %false negatives for 

subsystems 

  
    its = 1; 
    while its<=1 

  
        nsys = struct([]); 
        nssys = struct([]); 

  
        %systems classification  
        for i=1:N 
            [nsys] = systemsKBN03(nsys,1); 
            [e1 e2] = kbnGetErr(nsys,xTestS,[1 2],cTestS); 
            fprintf(fhs1,'%g,',e1); 
            fprintf(fhs2,'%g,',e2); 
        end 
        fprintf(fhs1,'\n'); 
        fprintf(fhs2,'\n'); 

  
        %subsystems classification 
        for i=1:N 
            [nssys] = subsystemsKBN01(nssys,1,nsys); 
            [e1 e2] = kbnGetErr(nssys,xTestSS,[1 2],cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 

  
        its = its+1; 
    end 
    fclose(fhs1); 
    fclose(fhs2); 
    fclose(fhss1); 
    fclose(fhss2);  
end 
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Appendix D 

The Matlab
®
 code for Chapter 5’s UAV solution 3 which investigates different 

methods for setting the standard deviations is presented in this appendix.   

Table D.1: Matlab
®
 Functions for UAV Solution 3 

kbnEvalHadapt( ) 
The implementation of the proposed adaptive standard deviations 

method. 

kbnEvalHadaptLOOCV( ) 
Minimization of the LOOCV error estimate for setting the 

standard deviations. 

systemsKBN04( ) 
Adaptive standard deviations. 

subsystemsKBN04( ) Adaptive standard deviations. 

demo_sys04a( ) Plots runs of systemsKBN04, e.g. Fig. 5.10 left. 

demo_subsys04a( ) 
Plots runs of subsystemsKBN04, e.g. Fig. 5.10 right. 

systemsKBN00( ) 
Scott’s rule for standard deviations. 

subsystemsKBN00( ) 
Scott’s rule for standard deviations. 

experiment04( ) 

Generates errors and standard deviations.  The same file was used 

to run all versions of systemsKBN0X and subsystemsKBN0X 

necessary to produce Fig. 5.2-9. 

 
function h = kbnEvalHadapt(n,confGoal) 

  
    withErrPlot = false; 
    if withErrPlot 
        fh2 = figure(); 
        ah2 = axes(); 
    end 

  
    if n.Nc(1)==0 || n.Nc(2)==0 || (n.Nc(1)==1 && n.Nc(2)==1) 
        h = kbnEvalH(n); 
        return; 
    end 

  
    hLB = .01/(n.N^(1/n.Din)); 
    hUB = 2/(n.N^(1/n.Din)); 

  
    Pc1 = (n.Nc(1)+1)/(n.N+2); 
    Pc2 = (n.Nc(2)+1)/(n.N+2); 
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    if withErrPlot 
        figure(fh2); 
        cla(ah2); 
        errplotting = true; 
        errPlot(@err,[hLB;hUB],(hUB-hLB)/100); 
    end 

  
    errplotting = false; 
    hOpt = linesearch(@err,hLB,hUB); 
    h = hOpt*ones(1,n.Din); 

  
    function [errh] = err(hIn) 
        dplus = 0; 
        dminus = 0; 
        n.h = hIn*ones(1,n.Din); 
        for ii=1:n.N 
            [pTemp] = kbnEval(n,n.d(ii,1:n.Din)); 
            pDiff = (Pc1*pTemp(1,1,1)-

Pc2*pTemp(1,1,2))/(Pc1*pTemp(1,1,1)+Pc2*pTemp(1,1,2)); 
            if n.w(ii,1)>0 
                if pDiff<=confGoal 
                    dminusii = confGoal-pDiff; 
                    dplusii = 0.0; 
                else  
                    dminusii = 0.0; 
                    dplusii = 0.0; 
                end 
            else 
                if pDiff>=-confGoal 
                    dminusii = 0.0; 
                    dplusii = pDiff+confGoal; 
                else  
                    dminusii = 0.0; 
                    dplusii = 0.0; 
                end 
            end 
            dplus = dplus+dplusii; 
            dminus = dminus+dminusii; 
        end 
        errh = dplus^2+dminus^2; 
        if ~errplotting && withErrPlot 
           figure(fh2); 
           axis(ah2); 
           plot(hIn,errh,'o'); hold on; 
           %pause(); 
        end    
    end 

  
    function errPlot(errFN,limits,res) 
        widths = limits(2,:)-limits(1,:); 
        divs = ceil(widths./res); 
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        step = widths./divs; 
        x1 = limits(1,1):step(1):limits(2,1); 
        x1Count = divs(1)+1; 
        y = zeros(1,x1Count); 
        for ii=1:x1Count 
            y(ii) = errFN(x1(ii)); 
        end 
        axis(ah2); 
        plot(x1,y); hold on; 
        xlim(limits(:,1)'); 
    end 

  
    function [x] = linesearch(f,xl,xu) 
        %bracket the onset of error 
        f0 = 1; 
        while f0>0 
            x0 = xl; 
            f0 = f(x0); 
            xl = xl/2; 
        end 
        dx = .01; 
        x1 = x0+dx; 
        f1 = f(x1); 
        while f1<=f0 
            x0 = x1; 
            f0 = f1; 
            dx = 1.5*dx; 
            x1 = x0+dx; 
            if x1>=xu 
                x = xu; 
                return; 
            end 
            f1 = f(x1); 
        end 

  
        %tighten bracket using golden section 
        lb = x0; 
        ub = x1; 
        gs = (sqrt(5)-1)/2; 
        ux = lb+gs*(ub-lb); 
        lx = ub-gs*(ub-lb); 
        uf = f(ux); 
        lf = f(lx); 
        while (ub-lb)>.0001 
            %sprintf('lb = %.4g lbf = %.4g ub = %.4g ubf = 

%.4g',lb,lbf,ub,ubf) 
            if (uf<=lf) 
                lb = lx; 
                lx = ux; 
                lf = uf; 
                ux = lb + gs*(ub-lb); 
                uf = f(ux); 
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            else 
                ub = ux; 
                ux = lx; 
                uf = lf; 
                lx = ub - gs*(ub-lb); 
                lf = f(lx); 
            end 
        end 

  
        %return the best answer 
        x = lb; 
    end 

  
end 

 
function h = kbnEvalHadaptLOOCV(n) 

  
    if n.Nc(1)<2 || n.Nc(2)<2 
        h = zeros(1,n.C); 
        for i=1:n.C 
            if n.Nc(i)+n.hshift<=0 
                h(i) = n.hscale(i); 
            else 
                h(i) = n.hscale(i)/(n.Nc(i)+n.hshift(i))^(1/n.Din); 
            end 
        end 
        return; 
    end 

  
    withErrPlot = false; 
    if withErrPlot 
        fh2 = figure(); 
        ah2 = axes(); 
    end 

  
    hLB = .01/(n.N^(1/n.Din)); 
    hUB = 2/(n.N^(1/n.Din)); 

  
    if withErrPlot 
        figure(fh2); 
        cla(ah2); 
        errplotting = true; 
        errPlot(@err,[hLB;hUB],(hUB-hLB)/100); 
    end 
    errplotting = false; 

  
    h0 = (hUB+hLB)/2; 
    hOpt = linesearch(@err,h0,hLB,hUB); 
    h = hOpt*ones(1,n.Din); 
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    function [errh] = err(hIn) 
        errh = 0; 
        ncv = kbn(n.Din,n.Dout,2); 
        ncv.N = n.N-1; 
        ncv.h = hIn*ones(1,n.Din); 
        for ii=1:n.N 
            ncv.d = [n.d(1:ii-1,:); n.d(ii+1:n.N,:)]; 
            ncv.w = [n.w(1:ii-1,:); n.w(ii+1:n.N,:)]; 
            ncv.Nc(1) = nnz(ncv.w(:,1)); 
            ncv.Nc(2) = nnz(ncv.w(:,2)); 
            ncv.w(:,1) = ncv.w(:,1)*n.Nc(1)/ncv.Nc(1);         
            ncv.w(:,2) = ncv.w(:,2)*n.Nc(2)/ncv.Nc(2); 
            Pc1 = (ncv.Nc(1)+1)/(ncv.N+2); 
            Pc2 = (ncv.Nc(2)+1)/(ncv.N+2); 
            errii = 0; 
            [pTemp] = kbnEval(ncv,n.d(ii,1:n.Din)); 
            pDiff = (Pc1*pTemp(1,1,1)-

Pc2*pTemp(1,1,2))/(Pc1*pTemp(1,1,1)+Pc2*pTemp(1,1,2)); 
            %pDiff = Pc1*pTemp(1,1,1)-Pc2*pTemp(1,1,2); 
            if pDiff>=0    
                if n.w(ii,1)>0 
                    errii = errii-pDiff/(1*n.Nc(1)); 
                else 
                    errii = errii+pDiff; 
                end 
            else 
                if n.w(ii,1)>0 
                    errii = errii-pDiff; 
               else 
                    errii = errii+pDiff/(1*n.Nc(2)); 
                end 
            end 
            errh = errh+errii; 
        end 
        errh = errh/n.N; 
        if ~errplotting && withErrPlot 
           figure(fh2); 
           axis(ah2); 
           plot(hIn,errh,'o'); hold on; 
           %pause(); 
        end    
    end 

  
    function errPlot(errFN,limits,res) 
        widths = limits(2,:)-limits(1,:); 
        divs = ceil(widths./res); 
        step = widths./divs; 
        x1 = limits(1,1):step(1):limits(2,1); 
        x1Count = divs(1)+1; 
        y = zeros(1,x1Count); 
        for ii=1:x1Count 
            y(ii) = errFN(x1(ii)); 
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        end 
        axis(ah2); 
        plot(x1,y); hold on; 
        xlim(limits(:,1)'); 
    end 

  
    function [x] = linesearch(f,x0,xl,xu) 
        %bracket the minimum error 
        f0 = f(x0); 
        dx = .01; 
        x1 = x0+dx; 
        f1 = f(x1); 
        if f1>f0  
            x00 = x1; 
            dx = -.01; 
            x1 = x0+dx; 
            f1 = f(x1); 
        end 

  
        while f1<=f0 
            x00 = x0; 
            x0 = x1; 
            f0 = f1; 
            dx = 1.5*dx; 
            x1 = x0+dx; 
            if x1>=xu 
                if x0==xu 
                    x = xu; 
                    return; 
                end 
                x1 = xu; 
            end 
            if x1<=xl 
                if x0==xl 
                    x = xl; 
                    return; 
                end 
                x1 = xl; 
            end 
            f1 = f(x1); 
        end 

  
        %tighten bracket using golden section 
        if dx>0 
            lb = x00; 
            ub = x1; 
        else 
            lb = x1; 
            ub = x00; 
        end 
        gs = (sqrt(5)-1)/2; 
        ux = lb+gs*(ub-lb); 
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        lx = ub-gs*(ub-lb); 
        uf = f(ux); 
        lf = f(lx); 
        while (ub-lb)>.0001 
            %sprintf('lb = %.4g lbf = %.4g ub = %.4g ubf = 

%.4g',lb,lbf,ub,ubf) 
            if (uf<=lf) 
                lb = lx; 
                lx = ux; 
                lf = uf; 
                ux = lb + gs*(ub-lb); 
                uf = f(ux); 
            else 
                ub = ux; 
                ux = lx; 
                uf = lf; 
                lx = ub - gs*(ub-lb); 
                lf = f(lx); 
            end 
        end 

  
        %return the best answer 
        x = (lb+ub)/2; 
    end 

  
end 

 
function n = systemsKBN04(n,M,c) 

  
    %The search strategy is exploratory only using a halton sequence. 
    %The sigmas are adaptive. 

  
    rangeDB = 900; %acceptable range lower bound 
    if isempty(n) 
        n = kbn(2,1,2,'bnd',[0 0;1 5]); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 
        yi = systemsF0((xi./n.scale+n.shift)); 

  
        %classify the point 
        if yi>=rangeDB 
            n = kbnAddData(n,[xi yi],1); 
        else 
            n = kbnAddData(n,[xi yi],2); 
        end 
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    end 

  
    %set the standard deviation 
    n.h = kbnEvalHadapt(n,c); %adaptive 

  
end 

 
function [n] = subsystemsKBN04(n,M,nsys,c) 

  
    classifyType = 0; 
    % 1 for using the systems classifier 
    % otherwise use the systems simulation 

  
    %The search strategy is exploratory only using a halton sequence. 
    %The sigmas are adaptive. 

  
    if isempty(n) 
        n = kbn(2,2,2,'bnd',[1 .1;15 .4]); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 
        yi(1) = aeroF0((xi./n.scale+n.shift)); 
        yi(2) = structF0((xi./n.scale+n.shift)); 

  
        if classifyType 
            %classify the point using systems' classifier 
            [ci] = kbnEvalC(nsys,(yi-nsys.shift).*nsys.scale); 
            if ci==0 
                ci = 2; 
            end 
        else 
            %or classify correctly using the systems' simulation 
            range = systemsF0(yi); 
            if range>=900 
                ci = 1; 
            else 
                ci = 2; 
            end 
        end 
        n = kbnAddData(n,[xi yi],ci); 

  
    end 

  
    %set the standard deviation 
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    n.h = kbnEvalHadapt(n,c); %adaptive 

  
end 

 
function demo_sys04a() 

  
    %halton sequence 
    %adaptive sigmas 
    %fully connected BN 

  
    M = 10; %the number of data points each time 

  
    figh = figure(); 
    ah = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsystemsN10000.csv'); 
    [xsTestSys,ysTestSys,DinTestSys,DoutTestSys,NtotTestSys] = 

dataRead(fh); 
    fclose(fh); 

  
    c = [0 .5 1]; 
    cc{1} = 'g--'; 
    cc{2} = 'b-'; 
    cc{3} = 'k:'; 
    for i=1:length(c) 
        n = systemsKBN04(struct([]),M,c(i)); 

  
        figure(figh); 
        %cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

%surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'Edge

Color','b','FaceColor','b'); hold on; 
        

%surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'Edge

Color','r','FaceColor','r'); hold on; 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],cc{i},'LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        %plot the data points 
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        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',5); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',10); 

hold on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',10); 

hold on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',5); hold 

on; 
                end                         
            end 
        end 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    dragTestSys = zeros(1,100); 
    weightTestSys = zeros(1,100); 
    rangeTestSys = zeros(100,100); 
    for i=1:100 
        dragTestSys(i) = n.scale(1)*(xsTestSys(i,1)-n.shift(1)); 
        weightTestSys(i) = n.scale(2)*(xsTestSys((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSys(i,:) = ysTestSys((i-1)*100+1:i*100,1); 
    end 
    contour(dragTestSys,weightTestSys,rangeTestSys,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 
function demo_subsys04a() 

  
    %halton sequence 
    %adaptive sigmas 
    %fully connected BN 

  
    M = 10; %the number of data points each time 
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    figh = figure(); 
    ah = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsolutionN10000.csv'); 
    [xsTestSol,ysTestSol,~,~,NtotTestSol] = dataRead(fh); 
    fclose(fh); 

  
    %get the systems bn 
    nsys = systemsKBN04(struct([]),100,.5); 

  
    c = [0 .5 1]; 
    cc{1} = 'g--'; 
    cc{2} = 'b-'; 
    cc{3} = 'k:'; 
    for i=1:length(c) 
        n = subsystemsKBN04(struct([]),M,nsys,c(i)); 

  
        figure(figh); 
        %cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

%surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'Edge

Color','b','FaceColor','b'); hold on; 
        

%surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'Edge

Color','r','FaceColor','r'); hold on; 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],cc{i},'LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',5); hold 

on; 
                else 
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plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',10); 

hold on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',10); 

hold on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',5); hold 

on; 
                end                         
            end 
        end 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    tocTestSol = zeros(1,100); 
    chordTestSol = zeros(1,100); 
    rangeTestSol = zeros(100,100); 
    for i=1:100 
        tocTestSol(i) = n.scale(1)*(xsTestSol(i,1)-n.shift(1)); 
        chordTestSol(i) = n.scale(2)*(xsTestSol((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,3); 
    end 
    contour(tocTestSol,chordTestSol,rangeTestSol,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 
function n = systemsKBN00(n,M) 

  
    %The search strategy is exploratory only using a halton sequence. 
    %The sigmas are rule-based: scott's rule 

  
    rangeDB = 900; %acceptable range lower bound 
    if isempty(n) 
        n = kbn(2,1,2,'bnd',[0 0;1 5]); 
        n.hscale = ones(1,n.C)/sqrt(12); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 
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        yi = systemsF0((xi./n.scale+n.shift)); 

  
        %classify the point 
        if yi>=rangeDB 
            n = kbnAddData(n,[xi yi],1); 
        else 
            n = kbnAddData(n,[xi yi],2); 
        end 

  
    end 

  
    %set the standard deviation using scott's rule 
    n.h = zeros(1,n.C); 
    for i=1:n.C 
        if n.Nc(i)<=0 
            n.h(i) = n.hscale(i); 
        else 
            n.h(i) = n.hscale(i)/(n.Nc(i)^(1/(n.Din+4))); 
        end 
    end 

  
end 

 
function [n] = subsystemsKBN00(n,M,nsys) 

  
    classifyType = 0; 
    % 1 for using the systems classifier 
    % otherwise use the systems simulation 

  
    %The search strategy is exploratory only using a halton sequence. 
    %The sigmas are rule-based. 

  
    if isempty(n) 
        n = kbn(2,2,2,'bnd',[1 .1;15 .4]); 
        n.hscale = ones(1,n.C)/sqrt(12); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 
        yi(1) = aeroF0((xi./n.scale+n.shift)); 
        yi(2) = structF0((xi./n.scale+n.shift)); 

  
        if classifyType 
            %classify the point using systems' classifier 
            [ci] = kbnEvalC(nsys,(yi-nsys.shift).*nsys.scale); 
            if ci==0 
                ci = 2; 
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            end 
        else 
            %or classify correctly using the systems' simulation 
            range = systemsF0(yi); 
            if range>=900 
                ci = 1; 
            else 
                ci = 2; 
            end 
        end 
        n = kbnAddData(n,[xi yi],ci); 

  
    end 

  
    %set the standard deviation using scott's rule 
    n.h = zeros(1,n.C); 
    for i=1:n.C 
        if n.Nc(i)<=0 
            n.h(i) = n.hscale(i); 
        else 
            n.h(i) = n.hscale(i)/(n.Nc(i)^(1/(n.Din+4))); 
        end 
    end 

  
end 

 
function experiment04() 

  
    %Systems and Subsystems: 
    %  halton sequence 
    %  adaptive sigmas 
    %  fully connected BN 

  
    %1.0 halton at systems for 100 points 
    %2.0 halton at subsystems for 100 points using systems bn 
    N = 100; 

  
    %error test points for systems 
    fh = fopen('dataTestsystemsN1000.csv'); 
    [xTestS,yTestS,DinTestS,DoutTestS,NtotTestS] = dataRead(fh); 
    cTestS = 2*ones(NtotTestS,1); 
    cTestS(yTestS>=900) = 1; 
    fclose(fh); 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,DinTestSS,DoutTestSS,NtotTestSS] = dataRead(fh); 
    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 
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    %error output files 
    fhs1 = fopen('exp04_se1.csv','a');   %false positives for systems 
    fhs2 = fopen('exp04_se2.csv','a');   %false negatives for systems 
    fhss1 = fopen('exp04_sse1.csv','a'); %false positives for 

subsystems 
    fhss2 = fopen('exp04_sse2.csv','a'); %false negatives for 

subsystems 

  
    %standard deviation files 
    fhs3 = fopen('exp04_sh1.csv','a');   %acceptable standard 

deviations for systems 
    fhs4 = fopen('exp04_sh2.csv','a');   %unacceptable standard 

deviations for systems 
    fhss3 = fopen('exp04_ssh1.csv','a'); %acceptable standard 

deviations for subsystems 
    fhss4 = fopen('exp04_ssh2.csv','a'); %unacceptable standard 

deviations for subsystems 

  
    its = 1; 
    while its<=1 

  
        nsys = []; 
        nssys = []; 

  
        %systems classification 
        for i=1:N 
            [nsys] = systemsKBN04(nsys,1); 
            [e1 e2] = kbnGetErr(nsys,xTestS,[1 2],cTestS); 
            fprintf(fhs1,'%g,',e1); 
            fprintf(fhs2,'%g,',e2); 
            fprintf(fhs3,'%g,',nsys.h(1)); 
            fprintf(fhs4,'%g,',nsys.h(2)); 
        end 
        fprintf(fhs1,'\n'); 
        fprintf(fhs2,'\n'); 
        fprintf(fhs3,'\n'); 
        fprintf(fhs4,'\n'); 

  
        %subsystems classification 
        for i=1:N 
            [nssys] = subsystemsKBN04(nssys,1,nsys); 
            [e1 e2] = kbnGetErr(nssys,xTestSS,[1 2],cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
            fprintf(fhss3,'%g,',nssys.h(1)); 
            fprintf(fhss4,'%g,',nssys.h(2)); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 
        fprintf(fhss3,'\n'); 
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        fprintf(fhss4,'\n'); 

  
        its = its+1; 
    end 

  
    fclose(fhs1); 
    fclose(fhs2); 
    fclose(fhs3); 
    fclose(fhs4); 
    fclose(fhss1); 
    fclose(fhss2); 
    fclose(fhss3); 
    fclose(fhss4); 

  
end 
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Appendix E 

The Matlab
®

 code for Chapter 6’s UAV solutions 4 and 5 for incorporating expert 

knowledge is presented in this appendix. 

Table E.1: Matlab
®
 Functions for UAV Solutions 4 and 5 

systemsKBN05( ) 
Expert knowledge from seeded training points. 

systemsKBN06( ) Expert knowledge from automatic classification. 

demo_sys05( ) Plots runs of systemsKBN05, e.g. Fig. 6.1. 

demo_sys06( ) 
Plots runs of systemsKBN06, e.g. Fig. 6.3. 

experiment05( ) 
Generates errors for systemsKBN05, e.g. Fig. 6.2. 

experiment06( ) 
Generates errors for systemsKBN06, e.g. Fig. 6.4. 

 
function n = systemsKBN05(n,M) 

  
    %The search strategy is exploratory only using a halton sequence. 
    %Expert knowledge is embedded. 
    %The sigmas are rule-based. 

  
    rangeDB = 900; %acceptable range lower bound 
    if isempty(n) 
        n = kbn(2,1,2,'bnd',[0 0;1 5]); 
        n.hscale = 0.4*ones(1,n.Din); 

  
        %expert input 
        Nexp0 = 10; 
        Nexp1 = 10; 
        expd = zeros(Nexp0+Nexp1,n.Din+n.Dout); 
        expd(Nexp0+1:Nexp0+Nexp1,1:n.Din) = ones(Nexp1,n.Din); 
        expc = ones(Nexp0+Nexp1); 
        expc(Nexp0+1:Nexp0+Nexp1) = 2*ones(1,Nexp0); 
        n = kbnAddData(n,expd,expc); 
        n.hshift = -Nexp0-Nexp1; 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+n.hshift+1); 
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        xi = xhalton(n.N+n.hshift+1,:); 
        yi = systemsF0((xi./n.scale+n.shift)); 

  
        %classify the point 
        if yi>=rangeDB 
            n = kbnAddData(n,[xi yi],1); 
        else 
            n = kbnAddData(n,[xi yi],2); 
        end 

  
    end 

  
    %set the standard deviation 
    n.h = kbnEvalH(n); %rule-based 

  
end 

 

 
function [n Nf] = systemsKBN06(n,M) 

  
    %The search strategy is exploratory only using a halton sequence. 
    %Monotonicity is used at the systems level. 
    %The sigmas are rule-based. 

  
    rangeDB = 900; %acceptable range lower bound 
    if isempty(n) 
        n = kbn(2,1,2,'bnd',[0 0;1 5]); 
        n.hscale = 0.4*ones(1,n.Din); 
        n.dom1 = []; %the dominating set for class 1 
        n.dom2 = []; %the dominating set for class 2 
    end 

  
    Nf = 0; 
    for i=1:M 

  
        %get the next data point 
        xhalton = halton(n.Din,n.N+1); 
        xi = xhalton(n.N+1,:); 

  
        %check for monotonic dominance 
        class = 0; 
        yi = 0; 
        if n.N>0 
            for j=1:size(n.dom1,1) 
                if xi(1)<=n.dom1(j,1) && xi(2)<=n.dom1(j,2) 
                    class = 1; 
                    break; 
                end 
            end 
            if class==0 
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                for j=1:size(n.dom2,1) 
                    if xi(1)>=n.dom2(j,1) && xi(2)>=n.dom2(j,2) 
                        class = 2; 
                        break; 
                    end 
                end 
            end 
        end 
        if class==0 || n.N==0 
            Nf = Nf + 1; 
            yi = systemsF0((xi./n.scale+n.shift)); 
            if yi>=rangeDB 
                class = 1; 
                dj = []; 
                for j=1:size(n.dom1,1) 
                    if xi(1)>n.dom1(j,1) && xi(2)>n.dom1(j,2) 
                        dj = [dj; j]; 
                    end 
                end 
                n.dom1(dj,:) = []; 
                if isempty(n.dom1) 
                    n.dom1 = [xi yi]; 
                else 
                    n.dom1 = [n.dom1;xi yi]; 
                end 
            else 
                class = 2; 
                dj = []; 
                for j=1:size(n.dom2,1) 
                    if xi(1)<n.dom2(j,1) && xi(2)<n.dom2(j,2) 
                        dj = [dj; j]; 
                    end 
                end 
                n.dom2(dj,:) = []; 
                if isempty(n.dom2) 
                    n.dom2 = [xi yi]; 
                else 
                    n.dom2 = [n.dom2;xi yi]; 
                end 
            end 
        end 

  
        %classify the point 
        n = kbnAddData(n,[xi yi],class); 
    end 

  
    %set the standard deviation 
    n.h = kbnEvalH(n); %rule-based 

  
end 
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function demo_sys05() 

  
    %halton sequence w/ expert input at the systems level 
    %rule-based sigmas 
    %fully connected BN 

  
    I = 10; %repeat I times 
    M = 10; %the number of data points per each of I iterations 

  
    figure(); 
    ah = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsystemsN10000.csv'); 
    [xsTestSys,ysTestSys] = dataRead(fh); 
    fclose(fh); 

  
    n = struct([]); %start with the "empty" bn 
    for i=1:I+1 
        if i==1 
            n = systemsKBN05(n,0); 
        else 
            n = systemsKBN05(n,M); 
        end         

  
        cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'EdgeC

olor','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'EdgeC

olor','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
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                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    dragTestSys = zeros(1,100); 
    weightTestSys = zeros(1,100); 
    rangeTestSys = zeros(100,100); 
    for i=1:100 
        dragTestSys(i) = n.scale(1)*(xsTestSys(i,1)-n.shift(1)); 
        weightTestSys(i) = n.scale(2)*(xsTestSys((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSys(i,:) = ysTestSys((i-1)*100+1:i*100,1); 
    end 
    contour(dragTestSys,weightTestSys,rangeTestSys,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 

 
function demo_sys06() 

  
    %halton sequence w/ monotonicity input at the systems level 
    %rule-based sigmas 
    %fully connected BN 

  
    I = 10; %repeat I times 
    M = 10; %the number of data points per each of I iterations 

  
    figure(); 
    ah = axes(); 
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    %information for the correct decision boundary 
    fh = fopen('dataTestsystemsN10000.csv'); 
    [xsTestSys,ysTestSys] = dataRead(fh); 
    fclose(fh); 

  
    n = struct([]); %start with the "empty" bn 
    Ns = 0; 
    for i=1:I 
        [n Nsi] = systemsKBN06(n,M); 
        Ns = Ns+Nsi 

  
        cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'EdgeC

olor','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'EdgeC

olor','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',6); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',6); hold 

on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',6); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',6); hold 

on; 
                end                         
            end 
        end 
        for j=1:size(n.dom1,1) 
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plot(n.dom1(j,1),n.dom1(j,2),'b>','MarkerFaceColor','b','MarkerSize',12

); hold on; 
        end 
        for j=1:size(n.dom2,1) 
            

plot(n.dom2(j,1),n.dom2(j,2),'r<','MarkerFaceColor','r','MarkerSize',12

); hold on; 
        end 

  
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    dragTestSys = zeros(1,100); 
    weightTestSys = zeros(1,100); 
    rangeTestSys = zeros(100,100); 
    for i=1:100 
        dragTestSys(i) = n.scale(1)*(xsTestSys(i,1)-n.shift(1)); 
        weightTestSys(i) = n.scale(2)*(xsTestSys((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSys(i,:) = ysTestSys((i-1)*100+1:i*100,1); 
    end 
    contour(dragTestSys,weightTestSys,rangeTestSys,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 

 
function experiment05() 

  
    %Systems and Subsystems: 
    %  halton sequence w/ expert input at systems level 
    %  rule-based sigmas 
    %  fully connected BN 

  
    N = 100; 

  
    %error test points for systems 
    fh = fopen('dataTestsystemsN1000.csv'); 
    [xTestS,yTestS,DinTestS,DoutTestS,NtotTestS] = dataRead(fh); 
    cTestS = 2*ones(NtotTestS,1); 
    cTestS(yTestS>=900) = 1; 
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    fclose(fh); 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,DinTestSS,DoutTestSS,NtotTestSS] = dataRead(fh); 
    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 

  
    %error output files 
    fhs1 = fopen('exp05_se1.csv','w');   %false positives for systems 
    fhs2 = fopen('exp05_se2.csv','w');   %false negatives for systems 
    fhss1 = fopen('exp05_sse1.csv','w'); %false positives for 

subsystems 
    fhss2 = fopen('exp05_sse2.csv','w'); %false negatives for 

subsystems 

  
    its = 1; 
    while its<=1 

  
        nsys = struct([]); 
        nssys = struct([]); 

  
        %systems classification 
        for i=1:N 
            [nsys] = systemsKBN05(nsys,1); 
            [e1 e2] = kbnGetErr(nsys,xTestS,[1 2],cTestS); 
            fprintf(fhs1,'%g,',e1); 
            fprintf(fhs2,'%g,',e2); 
        end 
        fprintf(fhs1,'\n'); 
        fprintf(fhs2,'\n'); 

  
        %subsystems classification 
        for i=1:N 
            [nssys] = subsystemsKBN10(nssys,1,nsys); 
            [e1 e2] = kbnGetErr(nssys,xTestSS,[1 2],cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 

  
        its = its+1; 
    end 
    fclose(fhs1); 
    fclose(fhs2); 
    fclose(fhss1); 
    fclose(fhss2); 

  
end 
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function experiment06() 

  
    %Systems and Subsystems: 
    %  halton sequence w/ monotonicity input at systems level 
    %  rule-based sigmas 
    %  fully connected BN 

  
    N = 100; 

  
    %error test points for systems 
    fh = fopen('dataTestsystemsN1000.csv'); 
    [xTestS,yTestS,DinTestS,DoutTestS,NtotTestS] = dataRead(fh); 
    cTestS = 2*ones(NtotTestS,1); 
    cTestS(yTestS>=900) = 1; 
    fclose(fh); 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,DinTestSS,DoutTestSS,NtotTestSS] = dataRead(fh); 
    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 

  
    %error output files 
    fhs1 = fopen('exp06_se1.csv','w');   %false positives for systems 
    fhs2 = fopen('exp06_se2.csv','w');   %false negatives for systems 
    fhs3 = fopen('exp06_sns.csv','w');   %function calls for systems 
    fhss1 = fopen('exp06_sse1.csv','w'); %false positives for 

subsystems 
    fhss2 = fopen('exp06_sse2.csv','w'); %false negatives for 

subsystems 

  
    its = 1; 
    while its<=1 

  
        nsys = struct([]); 
        nssys = struct([]); 

  
        %systems classification 
        Ns = 0; 
        for i=1:N 
            [nsys Nsi] = systemsKBN06(nsys,1); 
            Ns = Ns+Nsi; 
            [e1 e2] = kbnGetErr(nsys,xTestS,[1 2],cTestS); 
            fprintf(fhs1,'%g,',e1); 
            fprintf(fhs2,'%g,',e2); 
            fprintf(fhs3,'%d,',Ns); 
        end 
        fprintf(fhs1,'\n'); 
        fprintf(fhs2,'\n'); 
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        fprintf(fhs3,'\n'); 

  
        %subsystems classification 
        for i=1:N 
            [nssys] = subsystemsKBN10(nssys,1,nsys); 
            [e1 e2] = kbnGetErr(nssys,xTestSS,[1 2],cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 

  
        its = its+1; 
    end 

  
    fclose(fhs1); 
    fclose(fhs2); 
    fclose(fhs3); 
    fclose(fhss1); 
    fclose(fhss2); 

  
end 
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Appendix F 

The Matlab
®
 code for Chapter 7’s UAV solutions 6-8 for adaptive sampling is 

presented in this appendix. 

Table F.1: Matlab
®
 Functions for UAV Solutions 6-8 

kbnSampleExplore( ) 
Determine the next exploratory samples using the exploratory 

adaptive sampling method  

kbnEvalHExplore( ) 
Calculate the standard deviation for the exploratory KDE. 

kbnSample( ) Sample from a KBN for exploitive adaptive sampling. 

systemsKBN11( ) Exploratory adaptive sampling. 

subsystemsKBN11( ) 
Exploratory and search domain exploitive adaptive sampling. 

subsystemsKBN12( ) 
Exploratory, search domain exploitive, and feasible region 

exploitive adaptive sampling. 

demo_sys11( ) 
Plots runs of systemsKBN11, e.g. Fig. 7.3. 

demo_subsys11( ) 
Plots runs of subsystemsKBN11, e.g. Fig. 7.5, 7.8, 7.9. 

demo_subsys12( ) 
Plots runs of subsystemsKBN12, e.g. Fig. 7.13. 

experiment11( ) 
Generates errors for systemsKBN11, subsystemsKBN11, e.g. Fig. 

7.4, 7.6, 7.10. 

experiment12( ) 
Generates errors for systemsKBN11, subsystemsKBN12, e.g. Fig. 

7.14. 

 
function [xs N] = kbnSampleExplore(n,M) 

  
    %use multistart SQP to find the mins of the full joint 
    itsConvMax = 5; 
    percentConv = .01; 
    timeMax = .1; 

  
    D = n.Din; 
    N = n.N; 
    if N==0 
        xs = zeros(M,D); 
        xs(1,:) = rand(1,D); 
        N = 1; 
        if M==1 
            return; 
        else 
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            M=M-1; 
        end 
    else 
        xs = [n.d(:,1:D); zeros(M,D)]; 
    end 

  
    options = optimset('GradObj','on','Display','off'); 
    for iN=N+1:N+M 
        s = kbnEvalHexplore(D,iN-1); 
        its = 0; 
        time = 0; 
        while 1 
            tic(); 
            its = its + 1; 
            x0 = rand(1,D); 
            [xtest ptest] = 

fmincon(@evalP,x0,[],[],[],[],zeros(1,D),ones(1,D),[],options); 
            if its==1 
                pmin = ptest; 
                xmin = xtest; 
                pminBL = pmin; 
                itsConv = 1; 
            elseif ptest<pmin 
                pmin = ptest; 
                xmin = xtest; 
                if (pminBL-pmin)/pminBL < percentConv 
                    itsConv = itsConv + 1; 
                else 
                    itsConv = 1; 
                    pminBL = pmin; 
                end 
            else 
                itsConv = itsConv + 1; 
            end 
            time = time + toc(); 
            if itsConv>=itsConvMax || time>=timeMax 
                %if time>=timeMax 
                %    display('Max time reached.'); 
                %end 
                break; 
            end 
        end 
        xs(iN,:) = xmin; 
    end 
    N = n.N+M; 
    xs = xs(n.N+1:N,:); 

  
    function [p dp] = evalP(xx) 
        p = 0; 
        dp = zeros(1,D); 
        dpp = zeros(1,D); 
        for ii=1:iN-1 
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            pp = 1.0; 
            for jj=1:D; 
                %pp = pp*exp(-((xx(jj)-

xs(ii,jj))^2)/(2*s(jj)^2))/(s(jj)*sqrt(2*pi)); 
                pp = pp*exp(-((xx(jj)-xs(ii,jj))^2)/(2*s(jj)^2)); 
            end 
            for jj=1:D; 
                dpp(jj) = -(xx(jj)-xs(ii,jj))*pp/(s(jj)^2); 
                dp(jj) = dp(jj) + dpp(jj); 
            end 
            p = p + pp; 
        end 
        %dp = dp/(iN-1); 
        %p = p/(iN-1); 
    end 

  
end 

 

 
function [h] = kbnEvalHexplore(D,N) 

  
    if N<=1 
        N = 2; 
    end 
    h = (.425*((D/(D+1))^.5)/(N^(1/D)-1))*ones(1,D); 

  
end 

 

 
function [xs N] = kbnSample(n,M,c) 

  
%sample a KBN in ancestral order for M designs 

  
D = n.Din; 
N = n.Nc(c); 
di = find(n.w(:,c)); 
d = n.d(di,:); 
w = n.w(di,:); 
h = n.h(c); 
xs = NaN.*ones(M,D); 
l = 0; 
while l < M 
    xk = NaN.*ones(1,D); 
    pjk = NaN.*ones(N,D); 
    outofbounds = false; 
    for k=1:D 
        xtest = sample(k); 
        if xtest<0 || xtest>1 
            outofbounds = true; 
            break; 
        else 
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            xk(k)=xtest; 
        end 
    end 
    if ~outofbounds 
        l = l+1; 
        xs(l,:) = xk; 
    end 
end 
N = n.N+M; 

  
function x = sample(vk) 

  
    vkp = n.g{vk}.p; 
    anum = ones(1,N); 
    aden = 1; 
    if ~isempty(vkp) 
        aden = 0; 
        for jk=1:N 
            for kk=1:length(vkp) 
                anum(jk) = anum(jk)*pjk(jk,vkp(kk)); 
            end 
            aden = aden+w(jk)*anum(jk); 
        end 
    end 

     
    %estimate the upper and lower ends of the PD 
    xlo = min(d(:,vk))-6*h; 
    xhi = max(d(:,vk))+6*h; 

  
    %find a reasonable resolution based on the standard deviation 
    res = h/10; 
    xdiv = ceil((xhi-xlo)/res); 
    if xdiv>10000 
        xdiv = 10000; 
    end 
    xstep = (xhi-xlo)/xdiv; 

  
    %build the cumulative PD for vvi 
    xks = zeros(1,xdiv+1); 
    pks = zeros(1,xdiv+1); 
    cpks = zeros(1,xdiv+1); 
    r = rand(); 
    for ik=1:xdiv+1 
        xks(ik) = xlo+(ik-1)*xstep; 
        pks(ik) = 0.0; 
        for jk=1:N 
            pjk(jk,vk) = n.k(xks(1,ik),d(jk,vk),h); 
            pks(ik) = pks(ik) + w(jk)*anum(jk)*pjk(jk,vk); 
        end 
        pks(ik) = pks(ik)/aden; 
        if ik==1 
            cpks(ik) = pks(ik)*xstep; 
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        else 
            cpks(ik) = cpks(ik-1)+pks(ik)*xstep; 
        end 
        if r<=cpks(ik) 
            x = xks(ik); 
            break; 
        end 
    end 
end 

  
end 

 

 

function n = systemsKBN11(n,M) 

  
    %The search strategy is KBN exploratory. 
    %The sigmas are rule-based: new rule 

  
    rangeDB = 900; %acceptable range lower bound 
    if isempty(n) 
        n = kbn(2,1,2,'bnd',[0 0;1 5]); 
        n.hscale = 0.4*ones(1,n.Din); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        xi = kbnSampleExplore(n,1); 
        yi = systemsF0((xi./n.scale+n.shift)); 

  
        %classify the point 
        if yi>=rangeDB 
            n = kbnAddData(n,[xi yi],1); 
        else 
            n = kbnAddData(n,[xi yi],2); 
        end 

  
    end 

  
    %set the standard deviation using the new rule 
    n.h = kbnEvalH(n); 

  
end 

 

 
function [n, nn] = subsystemsKBN11(n,nn,M,nsys,alpha) 

  
    %This function classifies the subsystem's calculation of drag and 

weight 
    %  according to the systems level classifier 
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    %The search strategy is exploratory/exploitive. 
    %The sigmas are rule-based. 

  
    if isempty(n) 
        n = kbn(2,2,2,'bnd',[1 .1;15 .4]); 
        n.hscale = 0.4*ones(1,n.Din); 
    end 
    if isempty(nn) 
        nn = kbn(2,2,2,'bnd',[1 .1;15 .4]); 
        nn.hscale = ones(1,n.Din); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        rn = rand(); 
        if n.N<10 
            %exploratory 
            xi = kbnSampleExplore(n,1);         
        elseif nn.Nc(1)>0 && rn<alpha 
            %from the systems' search domain 
            xi = kbnSample(nn,1,1); 
        else 
            %exploratory 
            xi = kbnSampleExplore(n,1); 
        end 
        yi(1) = aeroF0((xi./n.scale+n.shift)); 
        yi(2) = structF0((xi./n.scale+n.shift)); 

  
        %classify the point using systems' classifier 
        [ci] = kbnEvalC(nsys,(yi-nsys.shift).*nsys.scale); 
        if ci(1)==0 
            nn = kbnAddData(nn,[xi yi],2); 
            ci(1) = 2; 
        else 
            nn = kbnAddData(nn,[xi yi],1); 
        end 
        n = kbnAddData(n,[xi yi],ci(1)); 
        nn.h = kbnEvalH(nn); 

  
    end 

  
    %set the standard deviation using the new rule 
    n.h = kbnEvalH(n); 

  
end 

 

 
function [n, nn] = subsystemsKBN12(n,nn,M,nsys,alpha) 
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    %The search strategy is exploratory/exploitive. 
    %The sigmas are rule-based. 

  
    if isempty(n) 
        n = kbn(2,2,2,'bnd',[1 .1;15 .4]); 
        n.hscale = 0.4*ones(1,n.Din); 
    end 
    if isempty(nn) 
        nn = kbn(2,2,2,'bnd',[1 .1;15 .4]); 
        nn.hscale = ones(1,n.Din); 
    end 

  
    for i=1:M 

  
        %get the next data point 
        rn = rand(1,2); 
        if n.N<10 
            %exploratory 
            xi = kbnSampleExplore(n,1);   
        elseif n.Nc(1)>0 && rn(1)<alpha(1) 
            %from the systems' acceptable design space 
            xi = kbnSample(n,1,1); 
        elseif nn.Nc(1)>0 && rn(2)<alpha(2) 
            %from the systems' search domain 
            xi = kbnSample(nn,1,1); 
        else 
            %exploratory 
            xi = kbnSampleExplore(n,1); 
        end 
        yi(1) = aeroF0((xi./n.scale+n.shift)); 
        yi(2) = structF0((xi./n.scale+n.shift)); 

  
        %classify the point using systems' classifier 
        [ci] = kbnEvalC(nsys,(yi-nsys.shift).*nsys.scale); 
        if ci(1)==0 
            nn = kbnAddData(nn,[xi yi],2); 
            ci(1) = 2; 
        else 
            nn = kbnAddData(nn,[xi yi],1); 
        end 
        n = kbnAddData(n,[xi yi],ci(1)); 
        n.h = kbnEvalH(n); 
        nn.h = kbnEvalH(nn); 

  
    end 

  
end 

 

 
function demo_sys11() 
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    %halton sequence at the systems level 
    %rule-based sigmas 
    %fully connected BN 

  
    I = 10; %repeat I times 
    M = 10; %the number of data points per each of I iterations 

  
    figure(); 
    ah = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsystemsN10000.csv'); 
    [xsTestSys,ysTestSys] = dataRead(fh); 
    fclose(fh); 

  
    n = struct([]); %start with the "empty" bn 
    for i=1:I 
        n = systemsKBN11(n,M); 

  
        cla(ah); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1, ph1, dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'EdgeC

olor','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'EdgeC

olor','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
                end 
            else 
                if pDiff>0 
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plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 
        pause(); 
    end 

  
    %plot the correct decision boundary 
    dragTestSys = zeros(1,100); 
    weightTestSys = zeros(1,100); 
    rangeTestSys = zeros(100,100); 
    for i=1:100 
        dragTestSys(i) = n.scale(1)*(xsTestSys(i,1)-n.shift(1)); 
        weightTestSys(i) = n.scale(2)*(xsTestSys((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSys(i,:) = ysTestSys((i-1)*100+1:i*100,1); 
    end 
    contour(dragTestSys,weightTestSys,rangeTestSys,[900 

900],'k','LineWidth',2); hold on; 

  
end 

 

 
function demo_subsys11() 

  
    %halton sequence at the systems level 
    %rule-based sigmas 
    %fully connected BN 

  
    I = 10; %repeat I times 
    M = 10; %the number of data points per each of I iterations 

  
    fhn = figure(); 
    ahn = axes(); 
    fhnn = figure(); 
    ahnn = axes(); 
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    %information for the correct decision boundary 
    fh = fopen('dataTestsolutionN10000.csv'); 
    [xsTestSol,ysTestSol] = dataRead(fh); 
    fclose(fh); 

  
    %get the systems bn 
    nsys = systemsKBN11(struct([]),100); 

  
    n = struct([]); %start with the "empty" bn 
    nn = struct([]); 
    for i=1:I 
        [n nn] = subsystemsKBN11(n,nn,M,nsys,1); 

  
        figure(fhn) 
        cla(ahn); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'EdgeC

olor','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'EdgeC

olor','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
            end 
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        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 

  
        figure(fhnn) 
        cla(ahnn); 
        Pc1 = (nn.Nc(1)+1)/(nn.N+2); 
        Pc2 = (nn.Nc(2)+1)/(nn.N+2); 
        [xh1 ph1 dph1] = kbnPlot(nn,[.025 .025],[nn.lf(1)*Pc1 

nn.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),nn.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'Edge

Color','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),nn.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'Edge

Color','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:nn.N 
            pTemp = kbnEval(nn,nn.d(j,1:nn.Din)); 
            pDiff = (nn.lf(1)*Pc1*pTemp(1,1,1)-

nn.lf(2)*Pc2*pTemp(1,1,2)); 
            if nn.w(j,1)>0 
                if pDiff>0 
                    

plot(nn.d(j,1),nn.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); 

hold on; 
                else 
                    

plot(nn.d(j,1),nn.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); 

hold on;                         
                end 
            else 
                if pDiff>0 
                    

plot(nn.d(j,1),nn.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); 

hold on; 
                else 
                    

plot(nn.d(j,1),nn.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); 

hold on; 
                end                         
            end 
        end 
        %plot the decision surface 
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%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 

  
        pause(); 
    end 

  
    %plot the correct decision boundary 
    figure(fhn); 
    axis(ahn); 
    tocTestSol = zeros(1,100); 
    chordTestSol = zeros(1,100); 
    rangeTestSol = zeros(100,100); 
    dragTestSol = zeros(100,100); 
    weightTestSol = zeros(100,100); 
    for i=1:100 
        tocTestSol(i) = n.scale(1)*(xsTestSol(i,1)-n.shift(1)); 
        chordTestSol(i) = n.scale(2)*(xsTestSol((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,3); 
        dragTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,1); 
        weightTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,2); 
    end 
    contour(tocTestSol,chordTestSol,rangeTestSol,[900 

900],'k','LineWidth',2); hold on; 

  
    figure(fhnn); 
    axis(ahnn); 
    contour(tocTestSol,chordTestSol,dragTestSol,[1 

1],'k','LineWidth',2); hold on; 
    contour(tocTestSol,chordTestSol,weightTestSol,[5 

5],'k','LineWidth',2); hold on;     

  
end 

 

 
function demo_subsys12() 

  
    %KBN exploratory sequence at the systems level 
    %rule-based sigmas 
    %fully connected BN 

  
    I = 10; %repeat I times 
    M = 10; %the number of data points per each of I iterations 

  
    fhn = figure(); 
    ahn = axes(); 
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    fhnn = figure(); 
    ahnn = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsolutionN10000.csv'); 
    [xsTestSol,ysTestSol] = dataRead(fh); 
    fclose(fh); 

  
    %get the systems bn 
    nsys = systemsKBN11(struct([]),100); 

  
    n = struct([]); %start with the "empty" bn 
    nn = struct([]); 
    for i=1:I 
        [n nn] = subsystemsKBN12(n,nn,M,nsys,[0 1]); 

  
        figure(fhn) 
        cla(ahn); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'EdgeC

olor','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'EdgeC

olor','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
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plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 

  
        figure(fhnn) 
        cla(ahnn); 
        Pc1 = (nn.Nc(1)+1)/(nn.N+2); 
        Pc2 = (nn.Nc(2)+1)/(nn.N+2); 
        [xh1 ph1 dph1] = kbnPlot(nn,[.025 .025],[nn.lf(1)*Pc1 

nn.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),nn.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'Edge

Color','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),nn.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'Edge

Color','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:nn.N 
            pTemp = kbnEval(nn,nn.d(j,1:nn.Din)); 
            pDiff = (nn.lf(1)*Pc1*pTemp(1,1,1)-

nn.lf(2)*Pc2*pTemp(1,1,2)); 
            if nn.w(j,1)>0 
                if pDiff>0 
                    

plot(nn.d(j,1),nn.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); 

hold on; 
                else 
                    

plot(nn.d(j,1),nn.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); 

hold on;                         
                end 
            else 
                if pDiff>0 
                    

plot(nn.d(j,1),nn.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); 

hold on; 
                else 
                    

plot(nn.d(j,1),nn.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); 

hold on; 
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                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 

  
        pause(); 
    end 

  
    %plot the correct decision boundary 
    figure(fhn); 
    axis(ahn); 
    tocTestSol = zeros(1,100); 
    chordTestSol = zeros(1,100); 
    rangeTestSol = zeros(100,100); 
    dragTestSol = zeros(100,100); 
    weightTestSol = zeros(100,100); 
    for i=1:100 
        tocTestSol(i) = n.scale(1)*(xsTestSol(i,1)-n.shift(1)); 
        chordTestSol(i) = n.scale(2)*(xsTestSol((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,3); 
        dragTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,1); 
        weightTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,2); 
    end 
    contour(tocTestSol,chordTestSol,rangeTestSol,[900 

900],'k','LineWidth',2); hold on; 

  
    figure(fhnn); 
    axis(ahnn); 
    contour(tocTestSol,chordTestSol,dragTestSol,[1 

1],'k','LineWidth',2); hold on; 
    contour(tocTestSol,chordTestSol,weightTestSol,[5 

5],'k','LineWidth',2); hold on;     

  
end 

 

 
function experiment11() 

  
    %Systems and Subsystems: 
    %  kbn exploratory sequence 
    %  rule-based sigmas: new rule 
    %  parzen window 
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    %1.0 kbn explore at systems for 100 points 
    %2.0 kbn explore at subsystems for 100 points using systems bn 
    N = 100; 

  
    %error test points for systems 
    fh = fopen('dataTestsystemsN1000.csv'); 
    [xTestS,yTestS,DinTestS,DoutTestS,NtotTestS] = dataRead(fh); 
    cTestS = 2*ones(NtotTestS,1); 
    cTestS(yTestS>=900) = 1; 
    fclose(fh); 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,DinTestSS,DoutTestSS,NtotTestSS] = dataRead(fh); 
    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 

  
    %error output files 
    fhs1 = fopen('exp11_se1.csv','a');   %false positives for systems 
    fhs2 = fopen('exp11_se2.csv','a');   %false negatives for systems 
    fhss1 = fopen('exp11_sse1.csv','a'); %false positives for 

subsystems 
    fhss2 = fopen('exp11_sse2.csv','a'); %false negatives for 

subsystems 
    fhssn1 = fopen('exp11_ssn1.csv','a'); %# acceptable to systems 
    fhssn2 = fopen('exp11_ssn2.csv','a'); %# in systems search domain 

  
    its = 1; 
    itsMax = 200; 
    while its<=itsMax 

  
        nsys = struct([]); 
        nssys = struct([]); 
        nnssys = struct([]); 

  
        %systems classification 
        for i=1:N 
            [nsys] = systemsKBN11(nsys,1); 
            [e1 e2] = kbnGetErr(nsys,xTestS,[1 2],cTestS); 
            fprintf(fhs1,'%g,',e1); 
            fprintf(fhs2,'%g,',e2); 
        end 
        fprintf(fhs1,'\n'); 
        fprintf(fhs2,'\n'); 

  
        %subsystems classification 
        n1 = 0; 
        n2 = 0; 
        for i=1:N 
            [nssys] = subsystemsKBN11(nssys,nnssys,1,nsys,0); 
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            [e1 e2] = kbnGetErr(nssys,xTestSS,[1 2],cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
            if nssys.w(i,1)>0 
                range = systemsF0(nssys.d(i,3:4)); 
                if range>=900 
                    n1 = n1+1; 
                    n2 = n2+1; 
                end 
            elseif nssys.d(i,3)>=nsys.bnd(1,1) && 

nssys.d(i,3)<=nsys.bnd(2,1) && ... 
                   nssys.d(i,4)>=nsys.bnd(1,2) && 

nssys.d(i,4)<=nsys.bnd(2,2) 
                n2 = n2+1; 
            end 
            fprintf(fhssn1,'%g,',n1); 
            fprintf(fhssn2,'%g,',n2); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 
        fprintf(fhssn1,'\n'); 
        fprintf(fhssn2,'\n'); 

  
        its = its+1; 
    end 
    fclose(fhs1); 
    fclose(fhs2); 
    fclose(fhss1); 
    fclose(fhss2); 
    fclose(fhssn1); 
    fclose(fhssn2); 

  
end 

 

 
function experiment12() 

  
    %Systems and Subsystems: 
    %  kbn exploratory sequence 
    %  rule-based sigmas: new rule 
    %  parzen window 

  
    %1.0 kbn explore at systems for 100 points 
    %2.0 kbn explore at subsystems for 100 points using systems bn 
    N = 100; 

  
    %error test points for systems 
    fh = fopen('dataTestsystemsN1000.csv'); 
    [xTestS,yTestS,DinTestS,DoutTestS,NtotTestS] = dataRead(fh); 
    cTestS = 2*ones(NtotTestS,1); 
    cTestS(yTestS>=900) = 1; 
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    fclose(fh); 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,DinTestSS,DoutTestSS,NtotTestSS] = dataRead(fh); 
    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 

  
    %error output files 
    fhs1 = fopen('exp12_se1.csv','a');   %false positives for systems 
    fhs2 = fopen('exp12_se2.csv','a');   %false negatives for systems 
    fhss1 = fopen('exp12_sse1.csv','a'); %false positives for 

subsystems 
    fhss2 = fopen('exp12_sse2.csv','a'); %false negatives for 

subsystems 
    fhssn1 = fopen('exp12_ssn1.csv','a'); %# acceptable to systems 
    fhssn2 = fopen('exp12_ssn2.csv','a'); %# in systems search domain 

  
    its = 1; 
    itsMax = 200; 
    while its<=itsMax 

  
        nsys = struct([]); 
        nssys = struct([]); 
        nnssys = struct([]); 

  
        %systems classification 
        for i=1:N 
            [nsys] = systemsKBN11(nsys,1); 
            [e1 e2] = kbnGetErr(nsys,xTestS,[1 2],cTestS); 
            fprintf(fhs1,'%g,',e1); 
            fprintf(fhs2,'%g,',e2); 
        end 
        fprintf(fhs1,'\n'); 
        fprintf(fhs2,'\n'); 

  
        %subsystems classification 
        n1 = 0; 
        n2 = 0; 
        for i=1:N 
            [nssys nnssys] = subsystemsKBN12(nssys,nnssys,1,nsys,[0 

1]); 
            [e1 e2] = kbnGetErr(nssys,xTestSS,[1 2],cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
            if nssys.w(i,1)>0 
                range = systemsF0(nssys.d(i,3:4)); 
                if range>=900 
                    n1 = n1+1; 
                    n2 = n2+1; 
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                end 
            elseif nssys.d(i,3)>=nsys.bnd(1,1) && 

nssys.d(i,3)<=nsys.bnd(2,1) && ... 
                   nssys.d(i,4)>=nsys.bnd(1,2) && 

nssys.d(i,4)<=nsys.bnd(2,2) 
                n2 = n2+1; 
            end 
            fprintf(fhssn1,'%g,',n1); 
            fprintf(fhssn2,'%g,',n2); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 
        fprintf(fhssn1,'\n'); 
        fprintf(fhssn2,'\n'); 

  
        its = its+1; 
    end 
    fclose(fhs1); 
    fclose(fhs2); 
    fclose(fhss1); 
    fclose(fhss2); 
    fclose(fhssn1); 
    fclose(fhssn2); 

  
end 
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Appendix G 

The Matlab
®
 code for Chapter 8’s UAV solution 9 for cross-classification is 

presented in this appendix. 

Table G.1: Matlab
®
 Functions for UAV Solution 9 

subsystemsKBN09( ) 
Cross-classification from structures’ point of view. 

demo_subsys09( ) Plots runs of subsystemsKBN09, e.g. Fig. 8.11. 

experiment09( ) Generates errors for subsystemsKBN09, e.g. Fig. 8.12, 8.13. 

 
function [n, nn] = subsystemsKBN09(n,nn,M,nsys,nnaero,alpha) 

  
%Cross-classification with Aero 
%The search strategy is explore/exploit according to alpha. 
%The sigmas are rule-based. 

  
if isempty(n) 
    n = kbn(2,1,2,'bnd',[1 .1;15 .4]); 
    n.hscale = 0.4*ones(1,n.Din); 
end 
if isempty(nn) 
    nn = kbn(2,1,2,'bnd',[1 .1;15 .4]); 
    nn.hscale = ones(1,n.Din); 
end 

  
for i=1:M 

     
    %get the next data point 
    rn = rand(1,2); 
    if n.N<10 
        %exploratory 
        xi = kbnSampleExplore(n,1);   
    elseif n.Nc(1)>0 && rn(1)<alpha(1) 
        %from the systems' acceptable design space 
        xi = kbnSample(n,1,1); 
    elseif nn.Nc(1)>0 && rn(2)<alpha(2) 
        %from the systems' search domain 
        xi = kbnSample(nn,1,1); 
    else 
        %exploratory 
        xi = kbnSampleExplore(n,1); 
    end 
    yi = structF0((xi./n.scale+n.shift)); 
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    %is the weight within the systems search domain? 
    if yi>=nsys.bnd(1,2) && yi<=nsys.bnd(2,2) 
        %is the design point within aero's acceptable drag domain? 
        [caeroTest] = kbnEvalC(nnaero,xi); 
        if caeroTest(1)==1 
            %construct the aero kbn classifier 
            naero = kbn(2,1,2,'bnd',[1 .1;15 .4]); 
            naero.hscale = 0.4*ones(1,n.Din); 
            %cross-classify aero's temporary classifier 
            for j=1:nnaero.N 
                yitest = nsys.scale.*([nnaero.d(j,3) yi]-

nsys.shift); 
                citest = kbnEvalC(nsys,yitest); 
                if citest(1)==0 
                    citest(1) = 2; 
                end 
                naero = kbnAddData(naero,nnaero.d(j,:),citest(1)); 
            end 
            naero.h = kbnEvalH(naero); 
            %use it to classify struct's design point 
            ci = kbnEvalC(naero,xi); 
            n = kbnAddData(n,[xi yi],ci(1));  
            nn = kbnAddData(nn,[xi yi],1); 
        else 
            n = kbnAddData(n,[xi yi],2);  
            nn = kbnAddData(nn,[xi yi],2); 
        end 
    else 
        n = kbnAddData(n,[xi yi],2);  
        nn = kbnAddData(nn,[xi yi],2); 
    end 

         
    n.h = kbnEvalH(n); 
    nn.h = kbnEvalH(nn); 

  
end 

  
end 

 
function demo_subsys09() 

  
    %Cross-classification for structures 
    %KBN exploratory sequence at the systems level 
    %rule-based sigmas 
    %fully connected BN 

  
    I = 10; %repeat I times 
    M = 10; %the number of data points per each of I iterations 

  



 277 

    fhn = figure(); 
    ahn = axes(); 
    fhnn = figure(); 
    ahnn = axes(); 

  
    %information for the correct decision boundary 
    fh = fopen('dataTestsolutionN10000.csv'); 
    [xsTestSol,ysTestSol] = dataRead(fh); 
    fclose(fh); 

  
    %get the systems bn 
    nsys = systemsKBN11(struct([]),100); 
    %get aero's bn 
    nnaero = kbn(2,1,2,'bnd',[1 .1;15 .4]); 
    nnaero.hscale = ones(1,nnaero.Din); 
    xaero = halton(nnaero.Din,100+1); 
    yaero = zeros(100,1); 
    for i=1:100 
        yaero(i,1) = aeroF0((xaero(i+1,:)./nnaero.scale+nnaero.shift)); 
        if yaero(i,1)>=nsys.bnd(1,1) && yaero(i,1)<=nsys.bnd(2,1) 
            nnaero = kbnAddData(nnaero,[xaero(i+1,:) yaero(i,1)],1); 
        else 
            nnaero = kbnAddData(nnaero,[xaero(i+1,:) yaero(i,1)],2); 
        end         
    end 
    nnaero.h = kbnEvalH(nnaero); 

  
    n = struct([]); %start with the "empty" bn 
    nn = struct([]); 
    for i=1:I 
        [n nn] = subsystemsKBN09(n,nn,M,nsys,nnaero,[0 0]); 

  
        figure(fhn) 
        cla(ahn); 
        Pc1 = (n.Nc(1)+1)/(n.N+2); 
        Pc2 = (n.Nc(2)+1)/(n.N+2); 
        [xh1 ph1 dph1] = kbnPlot(n,[.025 .025],[n.lf(1)*Pc1 

n.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),n.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'EdgeC

olor','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),n.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'EdgeC

olor','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:n.N 
            pTemp = kbnEval(n,n.d(j,1:n.Din)); 
            pDiff = (n.lf(1)*Pc1*pTemp(1,1,1)-

n.lf(2)*Pc2*pTemp(1,1,2)); 
            if n.w(j,1)>0 
                if pDiff>0 
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plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); hold 

on;                         
                end 
            else 
                if pDiff>0 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                else 
                    

plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); hold 

on; 
                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 

  
        figure(fhnn) 
        cla(ahnn); 
        Pc1 = (nn.Nc(1)+1)/(nn.N+2); 
        Pc2 = (nn.Nc(2)+1)/(nn.N+2); 
        [xh1 ph1 dph1] = kbnPlot(nn,[.025 .025],[nn.lf(1)*Pc1 

nn.lf(2)*Pc2]); 
        %plot the kbn surfaces 
        

surface(xh1(:,1),xh1(:,2),nn.lf(1)*Pc1*ph1(:,:,1),'FaceAlpha',0.2,'Edge

Color','b','FaceColor','b'); hold on; 
        

surface(xh1(:,1),xh1(:,2),nn.lf(2)*Pc2*ph1(:,:,2),'FaceAlpha',0.2,'Edge

Color','r','FaceColor','r'); hold on; 
        %plot the data points 
        for j=1:nn.N 
            pTemp = kbnEval(nn,nn.d(j,1:nn.Din)); 
            pDiff = (nn.lf(1)*Pc1*pTemp(1,1,1)-

nn.lf(2)*Pc2*pTemp(1,1,2)); 
            if nn.w(j,1)>0 
                if pDiff>0 
                    

plot(nn.d(j,1),nn.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); 

hold on; 
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                else 
                    

plot(nn.d(j,1),nn.d(j,2),'b>','MarkerFaceColor','b','MarkerSize',8); 

hold on;                         
                end 
            else 
                if pDiff>0 
                    

plot(nn.d(j,1),nn.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); 

hold on; 
                else 
                    

plot(nn.d(j,1),nn.d(j,2),'r<','MarkerFaceColor','r','MarkerSize',8); 

hold on; 
                end                         
            end 
        end 
        %plot the decision surface 
        

%surface(xh1(:,1),xh1(:,2),dph1,'FaceAlpha',0.2,'EdgeColor','g','FaceCo

lor','g'); hold on; 
        %plot the decision boundary 
        contour(xh1(:,1),xh1(:,2),dph1,[0 0],'k--','LineWidth',2); hold 

on; 
        axis([0 1 0 1]); 

  
        pause(); 
    end 

  
    %plot the correct decision boundary 
    figure(fhn); 
    axis(ahn); 
    tocTestSol = zeros(1,100); 
    chordTestSol = zeros(1,100); 
    rangeTestSol = zeros(100,100); 
    dragTestSol = zeros(100,100); 
    weightTestSol = zeros(100,100); 
    for i=1:100 
        tocTestSol(i) = n.scale(1)*(xsTestSol(i,1)-n.shift(1)); 
        chordTestSol(i) = n.scale(2)*(xsTestSol((i-1)*100+1,2)-

n.shift(2)); 
        rangeTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,3); 
        dragTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,1); 
        weightTestSol(i,:) = ysTestSol((i-1)*100+1:i*100,2); 
    end 
    contour(tocTestSol,chordTestSol,rangeTestSol,[900 

900],'k','LineWidth',2); hold on; 

  
    figure(fhnn); 
    axis(ahnn); 
    contour(tocTestSol,chordTestSol,dragTestSol,[1 

1],'k','LineWidth',2); hold on; 
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    contour(tocTestSol,chordTestSol,weightTestSol,[5 

5],'k','LineWidth',2); hold on;     

  
end 

 
function experiment09() 

  
    %Cross-classification for structures 
    %Systems and Aero: 
    %  halton sequence 
    %  rule-based sigmas: new rule 
    %  parzen window 

  
    N = 100; 

  
    %error test points for subsystems 
    fh = fopen('dataTestsolutionN1000.csv'); 
    [xTestSS,yTestSS,~,~,NtotTestSS] = dataRead(fh); 
    cTestSS = 2*ones(NtotTestSS,1); 
    cTestSS(yTestSS(:,3)>=900) = 1; 
    fclose(fh); 

  
    %error output files 
    fhss1 = fopen('exp09_sse1.csv','w'); %false positives for 

subsystems 
    fhss2 = fopen('exp09_sse2.csv','w'); %false negatives for 

subsystems 

  
    %get the systems bn 
    nsys = systemsKBN11(struct([]),100); 
    %get aero's bn 
    nnaero = kbn(2,1,2,'bnd',[1 .1;15 .4]); 
    nnaero.hscale = ones(1,nnaero.Din); 
    xaero = halton(nnaero.Din,100+1); 
    yaero = zeros(100,1); 
    for i=1:100 
        yaero(i,1) = aeroF0((xaero(i+1,:)./nnaero.scale+nnaero.shift)); 
        if yaero(i,1)>=nsys.bnd(1,1) && yaero(i,1)<=nsys.bnd(2,1) 
            nnaero = kbnAddData(nnaero,[xaero(i+1,:) yaero(i,1)],1); 
        else 
            nnaero = kbnAddData(nnaero,[xaero(i+1,:) yaero(i,1)],2); 
        end         
    end 
    nnaero.h = kbnEvalH(nnaero); 

  
    its = 1; 
    while its<=300 

  
        nssys = struct([]); 
        nnssys = struct([]); 
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        %subsystems classification 
        for i=1:N 
            [nssys nnssys] = 

subsystemsKBN09(nssys,nnssys,1,nsys,nnaero,[0 0]); 
            [e1 e2] = kbnGetErr(nssys,xTestSS,[1 2],cTestSS); 
            fprintf(fhss1,'%g,',e1); 
            fprintf(fhss2,'%g,',e2); 
        end 
        fprintf(fhss1,'\n'); 
        fprintf(fhss2,'\n'); 

  
        its = its+1; 
    end 
    fclose(fhss1); 
    fclose(fhss2); 

  
end 

  



 282 

Bibliography 

 

Abott, I. H. and A. E. von Doenhoff, 1959, Theory of Wing Sections: Including a 

Summary of Airfoil Data, Dover Publications, Inc., New York. 

 

Allison, J., M. Kokkolaras, M. Zawislak and P. Y. Papalambros, 2005, “On the Use of 

Analytical Target Cascading and Collaborative Optimization for Complex System 

Design”, 6
th

 World Congress on Structural and Multidisciplinary Optimization, 

Rio de Janeiro, Brazil. 

 

Allison, J. T., M. Kokkolaras and P. Y. Papalambros, 2007, “Optimal Partitioning and 

Coordination Decisions in Decomposition-Based Design Optimization”, ASME 

IDETC/CIE, Las Vegas, NV, Paper No. DETC2007-34698. 

 

Batill, S. M., M. A. Stelmak, and R. S. Sellar, 1999, “Framework for Multidisciplinary 

Design Based on Response-Surface Approximations”, Journal of Aircraft, Vol. 

36, No. 1, pp. 287-297. 

 

Bosman, P. A. N. and D. Thierens, 2000, “ID As Based On the Normal Kernels 

Probability Density Function”, Utrecht University Technical Report UU-CS-

2000-15. 

 

Bowman, A. W. and A. Azzalini, 1997, Applied Smoothing Techniques for Data 

Analysis: The Kernel Approach with S-Plus Illustrations, Oxford University Press 

Inc., New York. 

 

Browning, T. R., and S. D. Eppinger, 2002, “Modeling Impacts of Process Architecture 

on Cost and Schedule Risk in Product Development”, IEEE Transactions on 

Engineering Management, 49(4), pp. 428-442. 

 

Carlos, S., K. Madhavan, G. Gupta, D. A. Keese, U. Maheshwaraa and C. C. Seepersad, 

2006, "A Flexibility-Based Approach to Collaboration in Multiscale Design," 

11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 

Portsmouth, VA. 



 283 

Carlson, D., M. Malone, J. Kollat, and T. W. Simpson, 2008, “Evaluating the 

Performance of Visual Steering Commands for User-Guided Pareto Frontier 

Sampling During Trade Space Exploration”, ASME DETC/CIE, Brooklyn, NY, 

Paper No. DETC2008/DAC-49681. 

 

Cerny, V., 1985, “A Thermodynamic Approach to the Traveling Salesperson Problem: 

An Efficient Simulation Algorithm”, Journal of Optimization Theory and 

Applications, Vol. 45, No. 1, pp. 41-51. 

 

Chang, T.-S., Ward, A. C., 1995, “Conceptual Robustness in Simultaneous Engineering: 

A Formulation in Continuous Spaces”, Research in Engineering Design, Vol. 7, 

pp. 67-85. 

 

Chen, W. and K. Lewis, 1999, “A Robust Design Approach for Achieving Flexibility in 

Multidisciplinary Design,” AIAA Journal, Vol. 37, No. 8, pp. 982-989. 

 

Cook, R. D. and W. C. Young, 1999, Advanced Mechanics of Materials, 2nd ed., 

Prentice Hall, Inc., Upper Saddle River, NJ. 

 

Davies, S. and A. Moore, 2000, “Mix nets: Factored Mixtures of Gaussians in Bayesian 

Networks with Mixed Continuous and Discrete Variables”, Proceedings of the 

Sixteenth Conference on Uncertainty in Artificial Intelligence, (UAI2000). 

 

Dudda, R. O., P. E. Hart and D. G. Stork, 2001, Pattern Classification, 2nd Ed., John 

Wiley & Sons, Inc., New York. 

 

Duivesteijn, W. and A. Feelders, 2008, “Nearest Neighbour Classification with 

Monotonicity Constraints”, Machine Learning and Knowledge Discovery in 

Databases, W. Daelemans, B. Goethals, K. Morik, editors, Springer-Verlag, 

Berlin. 

 

Eiben, A. E. and C. A. Schippers, “On Evolutionary exploration and exploitation”, 

Fundamenta Informaticae, Vol. 35, pp. 1-16. 

 



 284 

Finch, W. W. and A. C. Ward, 1996, “Quantified Relations: A Class of Predicate Logic 

Design Constraints Among Sets of Manufacturing, Operating, and other 

Variations”, ASME DETC/CIE, Paper No. 96-DETC/DTM-1278, Irvine, CA, 

August 18-22. 

 

Finch, W. W. and A. C. Ward, 1997, “A Set-Based System for Eliminating Infeasible 

Designs in Engineering Problems Dominated by Uncertainty”, ASME DETC/CIE, 

Paper No. DETC97/DTM-3386, Sacramento, CA, September 14-17. 

 

Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine 

Learning, Addison-Wessley, Reading, MA. 

 

Gunawan, S., A. Farhang-Mehr and S. Azarm, 2004, “On Maximizing Solution Diversity 

in a Multiobjective Multidisciplinary Genetic Algorithm for Design 

Optimization,” Mechanics Based Design of Structures and Machines, Vol. 32, 

No. 4, pp. 491-514. 

 

Halton, J. H., 1960, “On the efficiency of certain quasi-random sequences of points in 

evaluating multi-dimensional integrals”, Numerische Mathematik, Vol. 2, pp. 84-

90. 

 

Hammersley, J. M., 1960, “Monte Carlo Methods for Solving Multivariable Problems”, 

Annals of the New York Academy of Sciences, Vol. 86, pp. 844-874. 

 

Hanna, L. and J. Cagan, 2010, “Protocal-based Multi-Agent Systems: Examining the 

Effect of Diversity, Dynamism, and Cooperation in Heuristic Optimization 

Approaches”, ASME IDETC/CIE, Montreal, Quebec, Canada, Paper No. 

DETC2010-28601. 

 

Hoerner, S. F., 1965, Fluid Dynamic Drag, published by the author, Midland Park, NJ. 

 

Hoffman, R. and V. Tresp, 1996, “Discovering Structure in Continuous Variables Using 

Bayesian Networks”, Advanvces in Neural Information Processing Systems 8, D. 

S. Touretzsky, M. C. Mozer and M. Hasselmo, editors, MIT Press, Cambridge 

MA. 

 



 285 

Holland, J., 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis 

with Applications to Control, and Artificial Intelligence, MIT Press, Cambridge, 

MA. 

 

Ivezic, N. and J. H. Garret, 1998, “Machine Learning for Simulation-Based Support of 

Early Collaborative Design”, Artificial Intelligence for Engineering Design, 

Analysis and Manufacturing, Vol. 12, pp. 123-139. 

 

Jensen, F. V and T. D. Nielsen, 2007, Bayesian Networks and Decision Graphs, Springer 

Science + Business Media, LLC, New York, NY. 

 

Jin, R., W. Chen and A. Sudjianto, 2002, “On Sequential Sampling for Global 

Metamodeling in Engineering Design”, ASME IDETC/CIE, Montreal, Canada, 

Paper No. DETC2002-34092. 

 

John, G. H. and P. Langley, 1995, “Estimating Continuous Distributions in Bayesian 

Classifiers”, Proceedings of the Eleventh Conference on Uncertainty in Artificial 

Intelligence, Morgan Kaufmann Publishers, San Mateo. 

 

Johnson, M. E., L. M. Moore and D. Ylvisaker, 1990, “Minimax and Maximin distance 

designs”, Journal of Statistical Planning and Inference, Vol. 26, Iss. 2, pp. 131-

148. 

 

Jones, D. R., 2001, “A Taxonomy of Global Optimization Methods Based on Response 

Surfaces”, Journal of Global Optimization, Vol. 21, pp. 345-383. 

 

Jourdan, A., and J. Franco, 2009, “A New Criterion Based on Kullback-Leibler 

information for space filling designs”, ArXiv e-prints. 

 

Katz, J., and A. Plotkin, 2002, Low Speed Aerodynamics, Cambridge University Press, 

Cambridge. 

 

Kennedy, J., and R. C. Eberhart, 1995, “Particle Swarm Optimization” Proc. IEEE Int. 

Conf. Neural Networks, Perth, Australia, Nov. 1995, pp. 1942-1948. 

 



 286 

Kikpatrick, S., C. D. Gelatt and M. P. Vecchi, 1983, “Optimization by Simulated 

Annealing”, Science, Vol. 220, No. 4958, pp. 671-680. 

 

Kim, H. M., N. F. Michelena, P. Y. Papalambros, and T. Jiang, 2003, “Target Cascading 

in Optimal System Design,” ASME Journal of Mechanical Design, Vol. 125, pp. 

474-480. 

 

Koehler, J. R. and A. B. Owen, 1996, “Computer Experiments”, Handbook of Statistics, 

Volume 13, S. Ghosh and C. R. Rao editors., Elsevier Science, New York, pp. 

261-308. 

 

Kroo, I., S. Altus, R. Braun, P. Gage, and J. Sobieski, 1994, “Multidisciplinary 

Optimization Methods for Aircraft Preliminary Design,” 5
th

 

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and 

Optimization, AIAA-94-4325, Panama City, FL, 1, pp. 697-707. 

 

Kuncheva, L. I., 2004, Combining Classifiers: Methods and Algorithms, John Wiley and 

Sons, Inc., Hoboken, NJ. 

 

Lennon, A., 1996, Basics of R/C Model Aircraft Design, Air Age Media Inc., Ridgefield, 

CT. 

 

Lewis, K. and F. Mistree, 1998, “Collaborative, Sequential and Isolated Decisions in 

Design,” ASME Journal of Mechanical Design, Vol. 120, No. 4, pp. 643-652. 

 

Liao, Y., S. Fang and H. L. W. Nuttle, 2003, “Relaxed conditions for radial-bases 

function networks to be universal approximators”, Neural Networks, Vol. 16, 

Issue 7, pp. 1019-1028. 

 

Liu, H., W. Chen, and M. J. Scott, 2008, “Determination of Ranged Sets of Design 

Specifications by Incorporating Heterogeneous Design Space Heterogeneity”, 

Engineering Optimization, Vol. 40, Iss. 11, pp. 1011-1029. 

 



 287 

Lottaz, C., I. F. C. Smith, Y. Robert-Nicoud, and B. V. Faltings, 2000, “Constraint-Based 

Support for Negotiation in Collaborative Design”, Artificial Intelligence in 

Engineering, Vol. 14, pp. 261-280. 

 

Madhavan, K., 2007, "A Framework for a Flexibility-Based Approach to Multiscale and 

Multidisciplinary Design,” M.S. Thesis, Mechanical Engineering Department, The 

University of Texas at Austin, Austin, TX. 

 

Madhavan, K., D. Shahan, C. C. Seepersad, D. A. Hlavinka, W. Benson, 2008, “An 

Industrial Trial of a Set-Based Approach to Collaborative Design”, ASME 

DETC/CIE, Brooklyn, NY, Paper Number DETC2008/49953. 

 

Malak, R. J. and C. J. J. Paredis, 2007, “Using Parameterized Pareto Sets to Model 

Design Concepts”, ASME IMECE, Seattle, WA, Paper No. IMECE2007-43226. 

 

Malak, R. J., J. M. Aughenbaugh, C. J. J. Paredis, 2009, “Multi-attribute Utility Analysis 

in Set-Based Conceptual Design”, Computer-Aided Design, Vol. 41, Issue 3, pp. 

214-227. 

 

Mckay, M. D., R. J. Beckman and W. J. Conover, 1979, “A Comparison of Three 

Methods for Selecting Values of Input Variables in the Analysis of Output from a 

Computer Code”, Technometrics, Vol. 21, pp. 239-245. 

 

Michelena, N., H. Park and P. Y. Papalambros, 2003, “Convergence Properties of 

Analytical Target Cascading”, AIAA Journal, Vol. 41, No. 5. 

 

Mistree, F., O. F. Hughes and B. A. Bras, 1993, "The Compromise Decision Support 

Problem and the Adaptive Linear Programming Algorithm," Structural 

Optimization: Status and Promise, AIAA, Washington, D.C., pp. 247-286. 

 

Moore, R. E., 1966, Interval Analysis, Prentice-Hall, New York. 

 

Moran, J., 1984, An Introduction to Theoretical and Computational Aerodynamics, John 

Wiley & Sons, New York. 

 



 288 

Nair, P. B. and A. J. Keane, 2002, “Coevolutionary Architecture for Distributed 

Optimization of Complex Coupled Systems,” AIAA Journal, Vol. 40, No. 7, pp. 

1434-1443. 

 

Otto, K. N. and K. E. Antonsson, 1991, “Trade-off Strategies in Engineering Design”, 

Research in Engineering Design, Vol. 3, No. 2, pp. 87-104. 

 

Otto, K. N. and K. L. Wood, 1995, “Estimating Errors in Concept Selection”, Design 

Engineering Technical Conferences, Vol. 2, pp. 397-411. 

 

Panchal, J. H., M. G. Fernandez, C. J. J. Paredis, J. K. Allen, and F. Mistree, 2007, 

“Interval-based Constraint Satisfaction (IBCS) Method for Decentralized, 

Collaborative Multifunctional Design”, Concurrent Engineering: Research and 

Applications, Vol. 15, No. 3, pp. 309-323. 

 

Parzen, E., 1962, “On Estimation of Probability Density Function and Mode”, Annals of 

Mathematical Statistics, Vol. 33, pp. 1065-1076. 

 

Pearl, J., 1988, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 

Inference, 2
nd

 Ed., Morgan Kauffman Publishers, Inc., San Francisco. 

 

Perez, A., P. Larranga and I. Inza, 2009, “Bayesian classifiers based on kernel density 

estimation: Flexible classifiers”, International Journal of Approximate Reasoning, 

50, pp. 341-362. 

 

Powell, M. J. D., 1987, “Radial basis functions for multivariate interpolation: A review”, 

Algorithms for Approximation, J. C. Mason and M. G. Cox editors, Oxford, pp. 

143-167. 

 

Rai, R. and M. Campbell, 2008, “Q2S2: A New Methodology for Merging Quantitative 

and Qualitative Information in Experimental Design”, Journal of Mechanical 

Design, Vol. 130. 

 

Raymer, D. P., 2006, Aircraft Design: A Conceptual Approach, 4th ed., AIAA, Inc., 

Reston, VA. 



 289 

 

Roth, B., and M. Kroo, 2008, “Enhanced Collaborative Optimization: A Decomposition-

Based Method for Multidisciplinary Design”, ASME DETC/CIE, Paper Number: 

DETC2008-50038, Brooklyn, NY, August 3-6. 

 

Sasena, M., 2002, Flexibility and Efficiency Enhancements for Constrained Global 

Design Optimization with Kriging Approximations, Ph.D. Dissertation, University 

of Michigan, Ann Arbor, MI. 

 

Scott, D. W., 1992, Multivariate Density Estimation, John Wiley & Sons, Inc., New 

York. 

 

Scott, M. J. and E. K. Antonsson, 1996, “Formalisms for Negotiation in Engineering 

Design”, ASME-DETC/CIE, Paper Number: 96-DETC/DTM-1525, Irvine, CA, 

August 18-22. 

 

Seepersad, C. C., D. Shahan, K. Madhavan, 2007, “Multiscale Design for Solid Freeform 

Fabrication”, Solid Freeform Fabrication Symposium, Austin, TX, USA. 

 

Silverman, B. W., 1986, Density Estimation, Chapman and Hall, London. 

 

Sheather, S. J., 2004, “Density Estimation”, Statistical Science, Vol. 19, No. 4, pp. 588-

597. 

 

Shahan, D., C. C. Seepersad, 2010, “The Implications of Alternative Multiscale Design 

Methods for Design Process Management”, Concurrent Engineering: Research 

and Applications, Vol. 18, No. 1, pp. 5-18. 

 

Siminoff, J. S., 1996, Smoothing Methods in Statistics, Springer-Verlag, New York, NY. 

 

Sobek, D. K., A. Ward and J. K. Liker, 1999, “Toyota's Principles of Set-Based 

Concurrent Engineering,” Sloan Management Review, Winter 1999, pp. 67-83. 

 



 290 

Sobieski, J., 1988, “Optimization by Decomposition: A Step from Hierarchic to Non-

Hierarchic Systems,” Second NASA/Air Force Symposium on Recent Advances in 

Multidisciplinary Analysis and Optimization, NASA TM-101494, NASA CP-

3031, Hampton, VA. 

 

Sobieszczanski-Sobieski, J., 1992, “Aircraft Optimization by a System Approach: 

Achievments and Trends”, NASA Technical Memorandum, NASA TM-107662. 

 

Sobieszczanski-Sobieski, J. and R. J. Balling, 1994, “Optimization of Coupled Systems: a 

Critical Overview of Approaches”, ICASE Report, Report No. 94-100. 

 

Sobieszczanski-Sobieski, J. and R. T. Haftka, 1997, “Multidisciplinary Aerospace Design 

Optimization: Survey of Recent Developments”, Structural Optimization, Vol. 14, 

pp. 1-23. 

 

Sobieski, J., J. S. Agte, and R. R. Sandusky, 2000, “Bilevel Integrated System Synthesis”, 

AIAA Journal, Vol. 38, No. 1. pp. 164-172.   

 

Sohn, E., 2003, “Model Plane Flies the Atlantic”, 

http://www.sciencenewsforkids.org/articles/20031217/Feature1.asp. 

 

Steward, D. V., 1981, Systems Analysis and Management: Structure, Strategy, and 

Design, Petrocelli Books, New York. 

 

Tipping, M. E., 2001, “Sparse Bayesian Learning and the Relevance Vector Machine”, 

Journal of Machine Learning Research, 1 (2001), pp. 211-244 

 

Turner, C. J., R. H. Crawford, M. I. Campbell, 2007, “Multidimensional Sequential 

Sampling for NURBs-Based Metamodel Development”, Engineering with 

Computers, Vol. 23, pp. 155-174. 

 

U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washinton, D. C. 

 



 291 

Vapnik, V., S. Golowich, and A. Smola, 1997, “Support Vector Method for Function 

Approximation, Regression Estimation, and Signal Processing”, Advances in 

Neural Information Processing Systems, Vol. 9, pp. 281-287. 

 

Venter, G., and J. Sobieszczanski-Sobieski, 2004, “Multidisciplinary Optimization of a 

Transport Wing Using Particle Swarm Optimization”, Structural and 

Multidisciplinary Optimizaation, Vol. 26, pp. 121-131. 

 

Ward, A., 1989, A Theory of Quantitative Inference Applied to a Mechanical Design 

Compiler, PhD Thesis, MIT, Cambridge. 

 

Ward, A., J. K. Liker, J. J. Cristiano, and D. K. Sobek, 1995, “The Second Toyota 

Paradox: How Delaying Decisions Can Make Cars Faster”, Sloan Management 

Review, Spring 1995, pp. 43-61. 

 

Web, A., 2002, Statistical Pattern Recognition, 2nd Ed., John Wiley & Sons, Ltd., West 

Sussex, England. 

 

Wood, K. L., and E. K. Antonsson, 1988, “Computations with Imprecise Parameters in 

Engineering Design: Background and Theory”, ASME Journal of Mechanisms, 

Transmissions, and Automation in Design, Vol. 111, No. 4, pp. 616-625. 

 

Wood, K. L., E. K. Antonsson,and J. L. Beck, 1990, “Representing Imprecision in 

Engineering Design: Comparing Fuzzy and Probability Calculus”, Research in 

Engineering Design, Vol 1., pp. 187-203. 

 

Xiang, Y., 1994, “Probabilistic Framework for Multi-Agent Distributed Interpretation 

and Optimization of Communication”, Artificial Intelligence, Vol. 87, Iss. 1-2, pp. 

295-342. 

 

Xiang, Y. and V. Lesser, 2003, “On the Role of Multiply Sectioned Bayesian Networks 

to Cooperative Multiagent Systems”, IEEE Transactions on Systems, Man, and 

Cybernetics, Part A: Systems and Humans, Vol. 33, Iss. 4, pp. 489-501. 

 



 292 

Xiang, Y., J. Chen, and A. Deshmukh, 2004, “A Decision-Theoretic Graphical Model for 

Collaborative Design on Supply Chains”, Advances in Artificial Intelligence, 

LNAI 3060, pp. 355-369. 



 293 

Vita 

 

David Shahan received his BS in Mechanical Engineering at Columbia 

University’s School of Engineering and Applied Science in 1997.  He worked at Pratt & 

Whitney from 1998 to 2006 as a senior mechanical engineer, studying at night to receive 

his MS in Mechanical Engineering at Rensselaer at Hartford as well as mentor Hartford 

Public High School students for the US FIRST robotics competition.  He has continued 

his graduate studies at the University of Texas at Austin, pursuing a PhD in Mechanical 

Engineering since 2006. 

 

 

Permanent address and email: 

80 Red River St. Apt. 320 

Austin, TX 78701 

david.shahan@gmail.com 

 

This dissertation was typed by David Shahan. 

 

mailto:david.shahan@gmail.com

