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Abstract 
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Supervisor:  Scott Nettles 

 

Ethernet as the communication medium in the enterprise data center has outlived 

all competing mediums and resisted the test of time with regards to speed and costs.  The 

future is also poised for growth with 40 and 100Gps speeds just over horizon.  The 

current state of the technology is being enhanced and extended with lossless features to 

allow for fabric convergence of Storage and Inter Process Communication (IPC) 

Networks.  It is under this medium that an increase in the adoption of Remote Direct 

Memory Access (RDMA) over Ethernet using offloaded TCP/IP (iWARP) and 

Infiniband over Ethernet (RoCE) communication stacks to RDMA capable NIC adapters 

(RNIC) is observed.   

RDMA enables direct application to application communication over the network 

resulting in numerous and significant benefits such as reduced CPU utilization, lower 

latency communications, increased energy efficiency, and reduced overall system 
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requirements.  However, with said benefits also comes increased software complexity in 

how RDMA interface users communicate.  The RDMA communication semantics, which 

originate from the High Performance Computing (HPC) domain, are heavily biased 

towards Low-Latency and High-Bandwidth communications rather than Reliability, 

Availability, and Serviceability (RAS).  As adoption increases, and enterprise data 

centers begin to leverage RDMA over Ethernet, enhancements to the OS stack software 

architecture and design of the components involved is required to address these 

deficiencies.  Operating system interfaces, device drivers, adapter hardware design, and 

embedded firmware features must be viewed from a high-availability and maintainability 

point of view.   

RAS enhancements for RDMA communications proposes the software 

architectural tradeoffs for enhancing the iWARP and RoCE RDMA implementations for 

communications in the enterprise data center, with new and traditional RAS features for 

existing communications stacks and devices.  The architecture leverages software 

enhancements in traceability, availability, maintainability, serviceability, fault-isolation 

and resource management; such that in the advent of errors, the probability that the 

forensics data points to identify root cause are immediately and automatically available is 

increased. 
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1.0 INTRODUCTION 

Ethernet is the de-facto networks interconnect for the enterprise data center and 

end users.  It has resisted the test of time with the consistent increases in bandwidth and 

decreases in cost relative to competitors such as ATM, FDDI, and others.  The most 

recent challenge to this position was provided by the Infiniband (IB) physical layers and 

stacks.  Again, due to low cost, high-speed, abundant availability of management skills, 

and richness in products and markets, the Infiniband concepts were translated over to 

Ethernet in an attempt to exploit commodity 40 and 100Gbps physical links.  The attempt 

became official with the recent release of the Remote Direct Memory Access (RDMA) 

over Converged Ethernet (RoCE) Annex to the IB specification [1].  Prior to the Annex, a 

variant of RDMA over Ethernet was available via the Internet Wide Area RDMA 

Protocol (iWARP) [2].  The major differences between the two, being that the Network 

(L3) and Transport (L4) layers under iWARP are based on hardware offloaded TCP/IP, 

whereas the equivalent services on RoCE are based on IB Network and Transport layers. 

The RDMA concepts were developed primarily for Low Latency Inter-Process 

Communications (IPC) in Clusters and High-Performance Computing (HPC) 

environments.  In said deployments, performance is king; and everything else is a distant 

second.  Therefore, it is of no surprise that the architectural design of the communication 

mechanisms, adapters, and protocols would result in tradeoffs that favor performance 

over reliability, availability, and serviceability (RAS).  In HPC environments, 

applications, systems software, and hardware resources are typically devoted to executing 

large complex problems for long periods of time.  Under these types of operating 

environment, the threshold for hardware and software errors tends to be higher than for 

enterprise data centers and end users.  In contrast, the typical modern enterprise data 
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center is dynamic, autonomous, highly virtualized, and demands high availability.  

Compute resources and systems exploit virtualization and mobility mechanisms for fault 

tolerance and Disaster Recover (DR), therefore RAS is king above all else; obviously in 

contrast to HPC environments.  The enterprise data center customer does not typically 

have the luxury of restarting a compute job in the advent of errors, as delays in work 

completion immediately translate to increased operation and business costs. 

From an application point of view, the traditional network communication occurs 

via the Operating System (OS), where said entity owns and mediates access to the 

protocol stacks (TCP/IP, FC, iSCSI, etc.) and Network Interconnect Cards (NIC).  The 

OS provides a simplified communications API, such as Sockets that abstracts and 

performs the data movement operations on behalf of the application.  The OS is the 

mediator of the data exchange operations between two applications over the network, 

hence the visible, traceable, and verifiable RAS mechanisms are readily available via OS 

kernel state; three key traits necessary for enterprise RAS.  From a serviceability point of 

view, it is common to autonomously obtain forensics data, traces, dumps, logs etc., after 

system errors to perform root cause analysis. 

RDMA differs from traditional OS communications in that its core design point it 

to provide the most direct and efficient network communication mechanism possible.  

Therefore it explicitly bypasses the OS during application communication so as to avoid 

the costs of intermediate buffer copies, protocol processing, and context switching.  The 

application communicates directly with the adapter via a channel (Endpoint) and set of 

application user specific resources mapped to the underlying NIC.  The protocol 

processing for OSI layers 3-4 and equivalent are executed within the NIC, effectively 

providing a stateful hardware offload acceleration mechanism and circumventing 

protocol processing by the host CPU. With both a direct channel to the adapter and 
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protocol processing in hardware, the elimination of the Userspace to Kernelspace context 

switch is necessarily eliminated.  Thus, in a nutshell, RDMA allows for direct 

application-to-application data exchange over the network and eliminates the processing 

and latency overhead inherent in the OS mediated network access design.   Clearly, the 

traditional role of the OS from a RAS point of view has been eliminated. 

In both the iWARP and RoCE standards specification, software RAS capabilities 

are undefined and left as an exercise to the implementer, as is typical in most standards 

specifications.  However, the HPC community and US Department of Defense (DoD) 

have recognized that performance above all else has an inherent cost.  The High 

Productivity Computing Systems (HPCS) initiative [3] is an attempt to address this need 

via research into productivity, programmability, and robustness of both software and 

hardware.  This initiative recognizes that the architecture, tools, and components should 

leverage human productivity over the pursuit of unrealistic performance benchmarks [4].  

Though the focus of said research is within the Userspace space domain, the subset of 

requirements necessarily translates to RAS from an OS point of view when adopting 

RDMA in an enterprise data center.  Given the aforementioned design points, the core 

problem present for RDMA implementations is the lack of standardized mechanisms or 

best practice guidelines for providing enterprise level RAS capabilities to RDMA enabled 

applications.  The traditional OS stack communication mechanism, albeit not as efficient 

as RDMA, allows for system-wide view of operations, data, and resources.  A new 

approach is therefore needed to address the expected enterprise RAS requirements.  

Furthermore, the RAS architecture should work equally well for both iWARP and RoCE 

given the amount of commonality in their interfaces and functionality. 

A contrast of the RAS deficiencies behind a typical RDMA implementation is 

necessary; along with the architectural definition and best practices guidelines to balance 
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the performance benefits of current implementations of RDMA, with the enterprise level 

RAS features necessary to achieve efficiency in serviceability and maintainability.  

Research into the existing body of work in the industry and academia is used to leverage 

software and hardware RAS tools and techniques for applicability to RDMA type 

implementations. 

The remainder of this report is structured as follows.  Section 2 provides a 

technical overview, discussion and comparison of existing RDMA implementation under 

iWARP and RoCE.  Section 3 details the motivation for implementation of the RAS 

architecture under a typical enterprise data center deployment.  The related work in 

section 4 details the existing applicable RAS approaches currently in use in the industry 

and academia for advantages and deficiencies.  Section 5 encompasses the general 

proposed architecture and supporting items.  Lastly, section 6 concludes with the 

summarized benefits and results of adopting the architecture.  
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2.0 RDMA TECHNICAL OVERVIEW 

The concept of direct application-to-application communication over the network 

originates from the Virtual Interface Architecture (VIA) [5].  The goal was to provide a 

high performance communications interface with direct access to the NIC from 

Userspace, and equivalent memory protection and isolation mechanisms as provided by 

the traditional communications stack within the OS model.  The VIA design concepts did 

not fully define a hardware architecture for stateful offload of protocols, thus it 

transitioned through several iterations and standards bodies, and is currently integrated 

into both the Infiniband Architecture Specification [6] and the iWARP IETF 

specifications [2]. 

In order to frame the discussion on RDMA specifics, it is necessary to discuss a 

subset of the differences and commonalities of IB and Ethernet.  The IB Architecture 

defines a different set of L1-2 network standards, cables, connectors, and switches that 

leverage multi-path and subnet management capabilities tailored for communication 

between servers rather than clients.  These capabilities are not available in standard 

Ethernet, though recent standards work under Converged Ethernet [7] [8] [30] attempts to 

address these deficiencies. Regardless, the differences in L1-2 necessarily drive the need 

to preserve existing Ethernet L1-2 fabrics in the enterprise, since IB cannot fully replace 

it.  iWARP eliminates the need for separate fabrics, since it utilizes standard Ethernet and 

familiar L3-4 management.  However, this comes at a cost; lower market adoption versus 

IB, fewer enterprise and HPC deployments, and lack of equivalence in connection types 

and RDMA operations which are detailed in later sections.  In short, the majority of 

existing RDMA applications are IB based rather than iWARP based.  Recently, the IB 

Architecture was extended with the RoCE Annex to define and standardize IB L3-4 
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operation over standard Ethernet, such as to allow for exploitation of existing IB RDMA 

enabled applications while preserving the familiarity of Ethernet L1-2 in the enterprise.   

RDMA operations are based on the concept direct application-to-application 

communication via OS bypass.  In order to achieve said functionality, it is necessary to 

understand in detail how it is achieved.  The discussion is based on the premise of 

unsustainable processing scalability for network IO as Ethernet speeds increase; as 

depicted, (Table 1) by the approximate cost of Sockets based communication at 10Gbps.  

It is clear that the host CPU under the traditional model is tasked with the bulk of the data 

movement operations.   

 
Traditional Stack Approximate CPU Networking Cost RDMA Stack 
TCP/IP Processing ~40% L3/L4 Offload 
Intermediate Buffers ~20% RDMA 
Context Switch ~40% OS Bypass 

Table 1: Approximate 10Gbps processing costs for single sessions TCP transfer. 

 

The CPU overhead related to networking is generally estimated at 1 Mhz of CPU 

required for each Mbps of un-accelerated network throughput.  As an individual 

connection scales to 10Gbps, a 20 Ghz CPU is required to drive a single session of bi-

directional link communication [9].  An emphasis is placed on un-accelerated in the 

example due to the fact that there are several stateless offload mechanisms that are typical 

in server L2-4 communication (Table 2).  Stateless acceleration refers to hardware 

mechanisms whereby the state of the connection and protocol processing is not 

transferred to an external hardware entity for autonomous management on behalf of the 

software.  Though stateless mechanisms can alleviate the CPU processing costs and 

measurably reduce latency, they preserve the existing limitations of traditional OS 
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Kernelspace stack processing previously highlighted (Table 1), and thus will not 

efficiently scale in the presence of speeds greater than 10Gbps. 

 
Mechanism Description and Purpose 

Checksum 
Offload 

Delegate checksum generation and decode of IP, TCP, and UDP packets to 
underlying NIC adapter ASIC such that the OS is relieved of performing the 
computations. 

Large Send 

Allows for the OS stack to pass up to 64K of data to the adapter as a single 
transmission.  The adapter hardware will segment the data into MTU size 
frames based on the negotiated MSS value.  Additionally, it will perform IP 
and TCP checksum generation for each packet.  This allows for a single 
large send operation versus ~43 individual operations at MTU 1500, thus 
reducing CPU utilization 

Large Receive 

Coalesce and build multiple receive packets from the same TCP session (up 
to 64KB) in the hardware or software L2 processing such that a single data 
transfer operation is passed to the receiving Socket rather than ~43 
individual operations.  Similar benefits to Large Send. 

Receive Side 
Scaling 

Allows for parallelism on receive packet processing by utilizing multiple 
interrupts sources and hashing the 5-Tuple connection information to 
separate CPUs.  Thus distributing the load for receive processing among 
multiple CPUs in the system.  Allows for utilization of available bandwidth 
with multiple connections.  Provides lower latency but does not accelerate 
single session communication. 

Jumbo Frames 
Non-standardized MTU size (Up to 9KB) to reduce the data movement 
operations from OS to the network.  Similar benefit as Large Send and 
Large Receive. 

Table 2: Ethernet stateless offload techniques. 

 

2.1 CONTEXT SWITCHING 

A contrast of the Sockets model (Fig 1.1) versus the RDMA model (Fig. 1.2) 

serves to show the location of performance bottlenecks.  The context switch cost (1.A) 

consists of when a CPU must switch from Userspace processing to Kernelspace 

privileged processing and vice versa.  During this operation the CPU must save off the 

Userspace application states, registers and pointers for restoration after the Kernelspace 

operations have completed.  This cost is a necessity due to the presence of protocol 

processing in Kernelspace.  Later sections demonstrate how the elimination of context 
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switching (1.A) is a consequence of the eliminations of intermediate buffer copies (1.B) 

and protocol processing (1.C). 

 

 

Figure 1: Sockets model vs. RDMA model. 

 

2.2 INTERMEDIATE COPIES  

In the traditional Sockets model, an application writes data into a Socket buffer 

that is copied (1.B) into Kernelspace for protocol processing.  After protocol processing 

is complete, the kernel passes the application data to the underlying adapter for packet 

transmission via DMA.  Clearly the reverse operation occurs on packet reception with 

similar costs in data copies.  A major bottleneck associated with data copy operations is 

the fact that aside from the CPU cost, a memory write requires two memory bus 

operations, the first operation performs a read, and the second performs the write.  The 

result is that for N bytes of data to be copied, it consumes N*2 the memory bandwidth.  

The performance impact is obviously relative to copy frequency and size, regardless, as 

line speed increases, the copy operations pose a limitation since the memory bus may 

become overloaded and Userspace applications are now at a disadvantage relative to 
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prioritized Kernelspace operations.  Under the RDMA model, a mechanism is provided 

whereby an application can register its memory directly with the underlying NIC such 

that it is visible to both entities (1.E).  A Userspace application can now initiate control 

and data movement operations between itself and the underlying NIC directly, without 

the mediation of the OS.  From the NIC point of view, it has DMA read and write 

capability directly to the Userspace data, hence data transfers are not subject to 

intermediate copies by the OS.  This practice is commonly referred to as Zero-Copy. 

 

2.3 PROTOCOL OFFLOAD  

The movement of protocol processing to the NIC (1.D) effectively means that the 

majority L3-4 processing is now resident on the adapter hardware via a combination of 

vendor specific implementation of hardware and firmware.  Under the iWARP model, it 

is referred to as TCP Offload Engine (TOE).  Similarly, under the RoCE model, the 

standard IB Transport and Network (L3-4) hardware offload mechanisms are carried 

forward.  The protocol processing offload addresses connection timers, sequence number 

generation and tracking, reception acknowledgements (ACKs), and retransmissions.  

Hence the host CPU now has a reduction in preemptions from said operations, resulting 

in more free cycles for application usage.   

The OS is circumvented as an active participant during data transfers but it is still 

the mediator for the creation and destruction of RDMA resources, analogous to Socket 

resource management.  Similarly, the OS also performs the address resolution service, 

thus the acquisition of the destination MAC address is resolved through ARP for both 

cases since the RDMA functionality is effectively an extension and superset of the basic 

NIC functionality.   
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2.4 RESOURCES  

Operations executed by an RDMA capable application are based on the creation 

of a direct and unique communication channel (Endpoint) with the underlying network 

adapter.  The adapter may be referred to as a Host Channel Adapter (HCA), however 

with the convergence of both iWARP and RoCE on Ethernet the standard naming 

convention in the industry is referred to as RDMA capable NIC (RNIC).  The 

communication channel established with the adapter is based on a set of standardized 

Verbs and Resources (Fig. 2) within the IB Architecture, and is also reused within the 

iWARP specification.  Neither of the former RDMA implementations uses a defined API, 

but rather a set of operations which are encompassed by the Verbs representing an 

abstracted function that may be implemented as any combination of hardware, software 

or firmware [10].  The application, though free to do so, is unlikely to use the Verbs 

directly for communication across the network, as the intent of the Verbs is to provide a 

rich set of functionality over which a formal simplified API can be defined for 

application usage.  Examples of such APIs are Sockets Direct Protocol (SDP) and Direct 

Access Programming Library (DAPL), neither of which exposes the Verbs interface to 

the application.  

A key ingredient of any RDMA deployment is a rich set of APIs and interfaces to 

facilitate adoption and interoperability with legacy interfaces.  In an effort to avoid 

proprietary and incompatible APIs, the creation of an Open Source and relatively 

portable RDMA API set was created by the Open Fabrics Alliance (OFA) [11] in the 

Open Fabrics Enterprise Distribution (OFED) package.   OFED is the most widely 

deployed RDMA communication stack in both HPC and enterprise data centers.  

Currently, over 80% of the Top500 supercomputers in the world run the OFED stack.  
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Given its lead in market adoption, the majority of the RAS discussion on RDMA is 

focused on the OFED implementation of RDMA. 

 

 

Figure 2: RDMA Endpoint resources 

 

Endpoint resources are created via application communication with a Userspace 

IB capable Provider Library tied to the application instance (Fig 2 A).  In order to create 

the resources, a series of Verb operations are executed by the specific API in use on 

behalf of the application.  For any given Endpoint, a Protection Domain (PD) is used for 

security and isolation from other like resources.  All of the user specific RDMA resources 

fall into this domain.  The primary component of an Endpoint is a Queue Pair (QP) that is 

composed of a Send Queue (SQ), Receive Queue (RQ), and a Work Queue (WQ).  The 

SQ is used to execute RDMA Read, RDMA Write, and RDMA Send operations into the 

WQ, which the RNIC uses to obtain the command and control operations.  An RQ is used 

post buffers visible to the adapter and inform the adapter where incoming network data 

from the remote peer should be placed.  The buffers posted into the RQ must be pre-
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registered with the RNIC as a Memory Regions (MR) object.  An MR is the 

representation of a contiguous memory area to be used by the application and DMA 

accessible by the RNIC.  A Completion Queue (CQ) provides an asynchronous 

notification and completion mechanism to allow software to track when a specific event 

or error has occurred.  The CQ notification mechanism is typically used to notify the 

application that an RDMA Write, RDMA Read or RDMA Send operation has completed. 

The Verbs to create and destroy resources are generally synchronous in that the 

execution thread from the application traverses into Kernelspace and back.  However the 

operations for data transfer such as RDMA Read, RDMA Write, RDMA Send and 

Receive are asynchronous in nature.  This stands in contrast to the Sockets model, where 

an application typically has a thread listening for receive data on the Socket, hence the 

listening thread is blocked.  In the RDMA model, data arrival or operation completion 

occurs as an event to be handled by the application via a purely asynchronous 

mechanism, similar to an interrupt handler. 

 

2.5 OPERATIONS  

RDMA supported connection types and operations differ between iWARP and 

RoCE (Table 3) [6].  The instantiation of a QP within the Endpoint determines the 

connection type and the desired reliability level.  Four basic IB services compose RDMA 

transport functions.  The Reliable Connection (RC) service is the standard connection 

establishment between Endpoints that, as the name implies, provides reliable 

communication.  The Unreliable Datagram (UD) service is analogous to UPD where a 

message can be sent to an Endpoint without connection establishment.  The Unreliable 

Connection (UC) is similar to RC in terms of connection but does not provide reliable 

message delivery.  Lastly, the Reliable Datagram (RD) service allows for reliable 



 13 

message delivery to an Endpoint without the connection establishment mechanism via the 

use of IB specific L1-2 network features.  There is clearly a difference in the scope of 

RDMA support between iWARP and RoCE.  The IB RDMA implementations are much 

richer in features, whereas iWARP only supports Reliable Connection (RC).  This is to be 

expected as the underlying transport service behind iWARP is TCP, which is natively a 

connection based reliable transport.   

 
Transport 
Function 

Reliable 
Connection 

Unreliable 
Connection 

Reliable 
Datagram 

Unreliable 
Datagram 

iWARP 
Support 

RDMA Send Yes Yes Yes Yes Yes 
RDMA Write Yes Yes Yes Yes Yes 
RDMA Read Yes Yes Yes Yes Yes 
Atomic Op  Optional No Optional No No 
iWARP  Yes No No No  

Table 3: Transport Function Supported for Specific Services 

 

Of the supported RDMA operations, all except Atomic Operations are common 

with iWARP.  Each of the operations, excluding atomics, allows for the transmission of 

up to 2^31 bytes of data prior to CQ notification.  The Receive operation is only used to 

post buffers which allow the Endpoint to be the destination of RDMA Send operations, 

thus for practical purposes is it not considered a true RDMA operation. 

The RDMA Send operation allows for sending data to the remote Endpoint 

without the need to exchange or negotiate the memory destination of the message.  The 

data will simply be placed on the next available free buffer on the remote Endpoint.  This 

operation is typically used to exchange memory information and control messages in 

preparation for the RDMA Read and RDMA Write operations.   

RDMA Write operations allow for an Endpoint to write directly into the pre-

negotiated memory destination of the remote Endpoint.  As previously mentioned the 

memory control information is exchanged via RDMA Send operations between the two 
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Endpoints.  Afterwards, the writing Endpoint will perform a contiguous write operation 

into the destination Endpoint memory. Upon completion, it is up to the sending Endpoint 

to determine if a separate RDMA Send operation is required to identify when the CQ 

notification is provided to the sending Endpoint, indicating the data transfer process has 

completed.  The same notification mechanism is required for RDMA Read operation 

completion.   

The RDMA Read operation is similar to the RDMA Write, but differs by the fact 

that when the memory destination parameter exchange between the Endpoints occurs, the 

initiating Endpoint memory is the target of the RDMA Write operation. Hence the remote 

Endpoint is actually performing an RDMA Write into the memory specified by the 

Endpoint initiating the RDMA Read operation. 

 

2.6 RDMA COMPARISONS  

In discussion of the differences and commonalities between iWARP and RoCE, 

several high level design points must be noted when describing RDMA and how each 

implementation fits into the enterprise and HPC environments. 

In a nutshell, iWARP is a best fit for interoperability with existing switch 

infrastructure and WAN communications due to the fact that it leverages TCP/IP as the 

protocol offload mechanism.  This becomes important with the rise in demand for large 

data transfers via streaming data such as video, music, and torrents.  Though the 

aforementioned can run over UDP, current implementations in the market stream this 

data over TCP.  With the combination of Client based software iWARP [12] and Server 

based hardware iWARP, it is possible to create a Server efficient mechanism for high 

speed media dissemination over the internet [13] which cannot be accomplished with 

RoCE due to the aforementioned routing and interoperability issues with IB. 
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Figure 3: and iWARP over Ethernet 

 

iWARP packets are virtually indistinguishable from standard TCP/IP packets on 

the network (Fig. 3) [15] unless deep packet inspection beyond L4 is performed.  This 

interoperability however comes at a cost in terms of complexity.  The iWARP protocols 

require special standards workarounds to convert a Streams based communication 

mechanism into a Message based mechanism.  Thus the application of the Marker PDU 

Alignment (MPA) [14] protocol is required.  Additionally, the enablement of TCP no-

delay options avoids the coalescing of data for transmissions typical of Streams 

protocols.  Effectively forcing the protocol offload mechanisms to encompass a Streams 

to Message conversion in hardware which is of more complexity than a native Message 

based protocol such as the IB Transport.  It is noted that iWARP can also leverage SCTP 

which is also Message based, however, to date there is no wide market adoption of 

iWARP SCTP, which is expected as there are few major adoptions of standard SCTP, 

therefore SCTP is omitted as a viable alternative to RoCE. 

From a RoCE point of view, the fact that it utilizes a native Message based 

transport specifically engineered for efficiency and HPC, translates to higher bandwidth 
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RDMA Application 

Verbs 

User Space 

APIs (SDP, DAPL, etc…) Kernel Space 

ULP 

L4 
IB Transport TCP 

L3 
IB L3 IP 

Ethernet L2 

 



 16 

in cluster based IPC, and distributed systems.  With its adoption over Ethernet, RoCE 

addresses the needs of most enterprise data centers since the routing aspects can in theory 

be resolved with Ethernet to IB bridges.  The market for such devices is quite niche, thus 

there is currently no wide adoption for the approach. 

Lastly, the aforementioned discussion touches upon the key points and concepts 

relevant as background information for implementing RAS on RDMA implementations.  

An exhausting review of RDMA technical details and comparisons falls outside of the 

intended scope, thus the reader is encouraged to review the references further technical 

information.  
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3.0 MOTIVATION  

With the adoption of RDMA over Ethernet, the traditional NIC software 

functionality and requirements has been extended, hence RDMA support becomes a 

superset of the basic server NIC functionality.  In order to understand the motivation for 

RAS application over RDMA enabled NICs, it is best to describe the underlying software 

NIC framework over which said functionality will be deployed.   

 

 

Figure 4: Generic NIC driver software Architecture 

 

Typical software architectures for an L2 NICs (Fig. 4) are composed of 5 driver 

entry points, excluding configuration.  Execution of the NIC entry points is simplistic in 

nature since the Open and Close operations occur only at setup or teardown of the 

interface.  The IO Control (IOCTL) entry point addresses special and rare operation cases 

such as multicast address registrations and statistics gathering; it is not considered a 

hotpath.  A hotpath is defined as an execution path that is sensitive to performance, hence 

requiring additional design considerations during implementation.  The remaining 
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Transmit (TX) and Receive (RX) entry points are the hotpaths.  In a multiprocessor 

system there may be multiple instances of Transmit and Receive pairs to leverage 

parallelism, also known as Receive Size Scaling (RSS) [16]. 

 

3.1 RNIC EXTENSIONS  

With RDMA, the standard NIC driver is extended in functionality (Fig. 5) via the 

addition of a Provider driver interface (Fig. 5.B), which extends the existing 5 NIC entry 

points with more than 40 new entry points.  The Provider driver interface contains the 

bulk of the software logic to handle RDMA resource create, destroy, and management 

operations.  RDMA entry points differ from the standard NIC entry points in three ways.   

Firstly, the generic NIC interface allocates and destroys all resources at Open, 

Close, and Error time only, whereas a Provider interface uses dynamic resource 

management.  RDMA Endpoint resources are granular and dynamic by design, which is 

to be expected as they are representative of unique connections.  Endpoints are analogous 

to the dynamic and granular nature of TCP connection establishment, hence a Provider 

driver interface must allow for concurrency and scaling, not typical of a generic NIC 

driver, during Endpoint allocation and de-allocation.   

Secondly, RDMA resources allow for unprecedented scale in the number of 

resources.  A typical iWARP RNIC allows for roughly 64K CQs, QPs, PDs, and MRs 

resources.  Hence, software RNIC architectures must scale from the typical 5 NIC 

resources up to 256K Endpoint component resource instances.  Similarly, a larger 

resources scaling requirement is necessary for RoCE, since the maximum supported 

resources are 1.2M for each of the previously mentioned types. 

Thirdly, the Provider interface also contains a Userspace Provider Library 

component (Fig 5.A) which is dynamically loaded by the API or user application 
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instantiation.  The Provider Library allows for the execution of RDMA Verbs from 

Userspace, and transitions to Kernelspace on the executing thread for resource allocate 

and destroy operations.  After the Endpoint resources are created, and during data 

exchange between Endpoints over said connection, the Verbs interface allows for 

operation between the API (application) and RNIC directly through the Verbs interface 

and bypassing the OS. 

 

 

Figure 5: Generic RNIC driver software Architecture with RDMA Extensions 

 

Lastly, as is to be expected, the Userspace Provider Library is vendor specific, 

just as the NIC and Provider drivers; hence any two separate adapter types will 

necessarily contain unique software versions of their respective Provider Library.   

 

 

 

Network 

Interface 

L3/L4 

Software 
Hardware 

Provider 
Driver 

NIC Driver 

Kernelspace 

Driver 

Provider Library 

Userspace 
RDMA Verbs 

Application 

API 

RNIC 

(A) 

(B) 



 20 

3.2 RAS LIMITATIONS  

Given the comparison between NIC and RNIC software architectures, a detailing 

of the challenges from an enterprise RAS point of view is necessary.  The OFED 

implementation of RDMA and the associated certified vendor specific drivers that ship 

with the installation image provide a measured level of reliability via certification testing.  

Though important and essential for deployment, it provides differing serviceability 

approaches within the separate modules, similar to what is provided via any Open Source 

software.  The inconsistency is most evident in the vendor specific RNIC drivers where 

any combination of debug levels, Syslogs, and error messages are used as the primary 

vehicle.  Obviously, the extent to which each is implemented is specific to the OS and 

vendor implementation.  As an example, Linux RAS is mostly based on Syslog and printf 

as the sole kernel vehicles.  Regardless, this approach tends to foster trial and error types 

of root cause determination that is unacceptable in an enterprise data center.   

Another challenge inherent with RDMA is the fact that the protocol processing 

has been offloaded to the underlying RNIC.  The RNIC now contains the processing 

engines and states for L3-4, which are not accessible by the OS.  Traditionally, these 

layers are processed in Kernelspace where the data is globally visible, such that when an 

unexpected operation occurs, all modules can be inspected for traces, states, and errors to 

determine root cause.  In having the L3-4 processing in hardware, its error data is no 

longer readily available.   

To further complicate this matter, the L3-4 implementation of protocol processing 

in hardware is vendor specific and will differ across RNIC adapters from different 

vendors.  In a stateless offload environment, a single software based L3-4 stack is used 

across multiple NICs, hence simplicity via singularity is achieved.  As the L3-4 offload 

processing moves into vendor specific RNICs, it becomes the equivalent of having both 
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multiple instances of L3-4 stacks, and differing implementations of each.  Resulting in 

the possibility that a protocol problem addressed by one adapter will not necessarily be 

addresses in another.  Just as an OS is typically subject to errata and updates to address 

L3-4 protocol processing issues, the underlying RNIC must now be managed in the same 

manner.  The requirement poses a management problem since RNIC vendors can have 

differing approaches and rates of errata application, thus the role of systems management 

has been complicated.  

Concurrency in an RDMA environment must be revised since the simplistic 

serialization mechanisms used for a NIC cannot scale to meet the needs of dynamic 

resources.  The parallelism and serialization of Provider entry points falls under the scope 

of the device driver rather than the interface to the driver.  Critical Paths must be tracked 

and monitored in more detail such as to avoid conditions where an RNIC Fatal Error or 

Close operation causes invalid operations or memory accesses. 

 

3.3 SOFTWARE DEVELOPMENT AND SUPPORT  

Software maintenance is widely known to be the single largest cost of software 

development expense.  Deployments of RDMA in data center environments must be 

enhanced to allow for ease of Serviceability such that a support team can obtain forensics 

data in the face of error, with minimal trial and error cycles.  Enterprise RAS features 

such as granular level tracing, system level dump, software component level dumps, 

resource operation history, and detailed error logging can be implemented in RDMA 

environments.  RAS features may carry a cost that can result a measurable performance 

difference between a non-RAS RDMA implementation and a RAS enabled 

implementation.  Such architectural tradeoffs are the focus of the discussion at hand.   

The problem has been recognized by Commercial OS vendors and the US Department of 
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Defense with concerns about the cost of performance at the expense of human effort [4].  

The RAS enhancements for RDMA communications will leverage key architectural 

improvements from both Academia and enterprise OS vendors to enable granular and 

dynamic levels of RAS. 
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4.0 RELATED WORK  

A software product may work correctly without a robust RAS architecture; 

however as it is extended, additional testing and verification must take place.  This is 

commonly accomplished via static and dynamic analysis source code analysis, Unit 

Testing (UT), Functional Verification Testing (FVT), and Integration Systems Testing 

(IST), of the source code in place of RAS.   While analysis certainly serves to catch 

coding errors, it does not allow for catching architectural errors.  UT, FVT, and IST are 

attempts to cover all hardware and software interactions; however it can rarely address 

the myriad of external error conditions triggering incorrect software or hardware 

operation.  For these reasons a robust RAS architecture serves as an essential mechanism 

to provide recovery and data acquisition in the face of unexpected operating error and 

conditions. 

A review of the main RAS topics with existing examples is performed, along with 

a highlight of the benefits and deficiencies of each in order to establish the groundwork 

for the RDMA RAS architecture.  Recognizing the OFED implementation of RDMA is 

not the sole implementation in the market, it is noted that some or similar features 

discussed may be present in proprietary RDMA implementations from vendors such as 

IBM, HP, Sun, Microsoft, etc.  The fact that said implementations are closed source 

translates into an inability to review in detail their supported RAS capabilities, thus the 

general approach is to provide a generic RAS architecture and development guidelines to 

explicitly address deficiencies which can be implemented or ported to any of the 

aforementioned OSes. 
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4.1 RELIABILITY  

Software reliability is based on the likelihood of operation without failures for a 

predetermined amount of time and in a predefined environment.  In the case of RDMA, 

both software and hardware reliability must be considered due to the stateful offload 

capabilities. Software components should make all possible attempts to overcome and 

continue operation in the advent of both software and hardware failures.  Hence this is 

effectively the implementation of fault tolerance in a combination of both software and 

hardware.  It is clear that fault tolerance can be achieved via distributed computing and 

clustering at the systems level, however these are coarse solutions and have larger scope 

than simply recovering from an RNIC error.  A focus is placed on aggregation techniques 

that allow for the abstraction of the underlying RNICs into a single interface to the 

application or OS user. 

 

4.1.1 Aggregation  

Two well known Ethernet reliability concepts are IEEE 802.1AX [17] and NIC 

Teamming [18], both of which provide the aggregation of multiple physical links as a 

single interface to the OS, thus allowing for uninterrupted and fault tolerant 

communications in the event of NIC errors or link loss. The approach leverages the fact 

that the L3-4 processing is contained within the OS (Fig. 6.A), such that the state of a 

given TCP connection on NIC(x), can be easily transitioned to NIC(y) with minimal loss 

or retransmit operations.  The solution however, does not meet the needs of RDMA 

enabled communication.  As mentioned previously, the offloaded L3-4 processing is tied 

to a specific RNIC (Fig 6.B).  Hence the Endpoint connection context and state are tied to 

a specific RNIC, and cannot be shared among RNICs.  To date there are no known public 
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or proprietary adapter connection state extract and insert mechanisms for stateful offload 

that would allow for such action.   

 

 

Figure 6: Native OS Stack and aggregation challenges due to L3-4 Protocol Offload. 
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network paths for a connection.  Path Migration allows for a given connection to be 
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paths.  The ports share the same adapter L3-4 contexts.  At Endpoint creation time, 

primary and secondary paths contexts are specified.  If the primary path and underlying 

network port loses its link, or connectivity due to downstream switch outage, then a 
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ports on the same RNIC, therefore it does not solve the Single Point of Failure (SPoF) 

scenario from the adapter point of view as is addressed by NIC aggregation. 

Application or user level aggregation is possible; however it places the burden of 

resource management and failure on the Verbs user.  Though the approach achieves the 

desired elimination of SPoF for RDMA, it necessarily means that each Verb user will 

need to implement a proprietary mechanism.   Given the OFED stack provides a wealth 

of existing APIs to abstract RDMA functionality, they can be extended to also abstract 

aggregation functionality, such that the application does not have to account for it.  Thus 

it provides a more desirable approach to avoiding both duplicity and complexity.   

 

4.2 AVAILABILITY  

Availability refers to the capability of a system to operate in a normal or degraded 

state in the event of unexpected operations; commonly referred to as Uptime.  Enterprise 

class systems designs strive to achieve the ideal 99.999% uptime via any combination of 

RAS features.  A discuss of existing mechanisms to prevent or circumvent system 

outages is provided. 

 

4.2.1 Device Recovery  

The typical RNIC adapter is PCI attached and subject to hardware errors 

uncorrectable by software.  Depending on the error type and timing, it is possible for bad 

data to be placed on the PCI bus and a resulting machine check interrupt occurs.  This 

event typically results in a system crash and requires a system restart to recover.  In large 

enterprise class servers a common feature known as PCI Enhanced Error Recovery 

(EEH) [19] is available to reduce the likelihood of system wide outages.  EEH provides a 
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means where each PCI slot is dedicated PCI switch, therefore a PCI bus error can be 

isolated to slot domain that is not possible under s multi-PCI slot to switch scenario.  

When the PCI error is detected, the slot is frozen resulting in no further IO operations.  

Software is responsible for checking for the freeze condition.  If the software driver 

detects such condition, then a graceful software error exit occurs.  The adapter is then 

reset and reinitialized to continue normal operations.  Said actions effectively recover the 

adapter and circumventing a permanent PCI error which would have resulted in system 

crash or reboot.  The entire process typically completes in a few seconds.   

The major caveat of this approach is that all RDMA connections must be closed 

and restarted when the RNIC is reinitialized.  A solution such as Path Migration does not 

resolve this problem since both primary and backup paths would be on the same RNIC 

and subject to the same freeze condition.  A further complication to RDMA is the fact 

that Endpoint resources in Userspace have a direct channel to the RNIC via the Endpoint 

resources, and thus their software cleanup operations must complete prior to allowing for 

the RNIC hardware re-initialization operation to start.  This allows for a condition where 

if an application does not perform proper Endpoint cleanup, it blocks the recovery of the 

RNIC for an extended period of time, resulting in extended network outages.  A 

mechanism to address this issue by tracking the Endpoint process IDs is provided within 

the RDMA RAS architecture, furthermore it allows for automatic or manual removal of 

the Endpoint resources. 

 

4.2.2 Memory  

Memory is considered a crucial component of systems availability and the subject 

of years of RAS research.  Clearly an exhaustive discussion of all existing mechanism 

which apply to RDMA communications is not feasible.  For the purpose of RDMA, 
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emphasis is placed on existing techniques that allow for ease of implementation when 

extending the functionality from the NIC software architecture to the RNIC software 

architecture.  A focus is placed on memory and resource leaks, memory corruption, and 

memory serviceability. 

Software memory management, when applied to RDMA, has the peculiarity of 

allowing for instrumentation with minimal performance impact when compared to 

Sockets communication.  This is due to the fact that when an Endpoint is created under 

the RDMA model, the operations require the creation of multiple resources (PD, QP, CQ, 

and MRs), and registrations of each between the OS and the underlying RNIC.  A typical 

connection setup and first time to byte comparison shows that TCP takes roughly 0.1ms 

whereas RDMA takes roughly 202ms [20]. hence RDMA tends to favor persistent long 

lived connections.  Given these characteristics, memory instrumentation is unlikely to 

add significant overhead to RDMA performance. 

 

4.2.2 Memory Leaks 

Most modern operating systems have low focus on RAS features to pinpoint the 

source of a memory leak.  It is normally left up to the application developer to perform 

graceful cleanup.  In most cases the OS will prevent memory leaks for Userspace, 

however in Kernelspace the operation is somewhat more complex.  Garbage collection is 

not typical, hence kernel operations such as the low level RNIC driver and Provider are 

forced to track each resource allocated and exit gracefully during Close or Error.  The 

number of resources can scale into the millions, thus the resource tracking mechanisms 

can become complex.  Given the peculiarity of RDMA resources in allowing for the 

instrumentation of memory allocations, a mechanism is required to track the memory 

allocated and additional details such as resource, user, and source code data.  This differs 



 29 

from existing efforts in that it occurs at runtime, is generic, and avoids complex 

algorithms [21] [22] which do not provide the descriptive data to clearly show the root 

cause. 

 

4.2.2 Memory Corruption 

Applications residing within the same OS instance are typically not subject to 

overwriting each others memory, however the OS kernel is a privileged entity and able to 

perform incorrect write operations to both Userspace and Kernelspace.  A technique or 

mechanism is necessary for the application to detect and recover from said memory 

corruption on its critical data structures.  A proprietary hardware mechanism to detect 

such a condition exists via Storage Keys [23] which allow for the hardware protection of 

memory associated with a process.  The Keys are a set of shared resources and requires 

the multiplexing of multiple processes into the same keys.  Furthermore is does not 

address the case of an application corrupting its own memory.  Typically, software type 

corruption is characterized by byte alignment since the smallest granularity is a word, 

whereas hardware corruption tends to be bit based and associated to DMA mapped 

memory only.  A technique to probabilistically detect and prevent the use of corrupted 

data within Userspace and Kernelspace software is necessary such that the RNIC driver 

and Provider Library are protected from external memory overlay errors. 

 

4.3 SERVICEABILITY  

The serviceability aspects of RDMA revolve around the expectation that the 

operations, software, and hardware resources composing the Endpoints and network 

communications are accessible, verifiable, and traceable such as to facilitate diagnosis of 
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problems or issues resulting from incorrect operation or errors.  In the advent of said 

events, a system is typically taken out of the production environment (offline) when 

possible, to diagnose and or recreate the problem.  This action has both a monetary and 

business cost for both the customer and the service Provider.  The shorter the Mean-

Time-To-Repair (MTTR), the sooner the system can continue operation at the expected 

Reliability and Availability levels.  From the service provider point of view, the sooner 

the diagnosis and repair are completed the lower the software service cost incurred.  

 

4.3.1 Trace  

Tracing is the primary debug vehicle for both Userspace and Kernelspace 

software development.  A System Log (syslog) also allows for providing equivalent 

functionality.  Taking the Linux OFED stack and RDMA as examples, it is clear that the 

tracing capability is quite coarse.  The driver, OFED stack and Provider components do 

not have a defined mechanism to implement dynamically tunable traces and levels 

without requiring a recompile of the source code.  Clearly this approach is tedious and 

requires manual steps to problem recreation.  A dynamic and tunable tracing mechanism 

for both Userspace and Kernelspace based on the Log4J concept [24] is preferred.  

Granular tracing allows the user to tune the level of tracing on a given path and balance 

the performance impact, thus conditions where tracing or debug can mask off timing and 

performance sensitive issues can be addressed in a more dynamic fashion. 

 

4.3.2 Debugger  

Another commonly used debug tool is the system debugger.  During a system 

crash or investigation into incorrect behavior, the debugger provides access to structures 
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in memory and the historical trace data.  From the Kernelspace point of view, the 

debugger can be used to obtain a global view of all of the memory and variables, in host 

memory at the time of crash, associated with Endpoints and any software based RDMA 

resource.   Furthermore, the values in memory can also be modified such that execution is 

instrumented in a live system.  The major caveat of the debugger is the cognitive 

complexity inherent in its use (Fig. 7).  The developer investigating an issue has to 

perform a series of mathematical steps to acquire and translate memory locations into a 

human readable format.  A mechanism to automate and reduce this process is essential in 

achieving a low MTTR.  Clearly the use of ASCII markers and decoders can address this 

issue and reduce the cognitive complexity inherent in raw debugger commands. 

 

 

Figure 7: Typical debugger output 

4.3.3 Error Log  

An OS error log [25] provides a means whereby critical events and informational 

messages about the system state can be clearly communicated to the user.  This facility is 

commonly used to perform automated service callout, notify the system administrator, 

and optionally communicate to the system vendor both software and hardware errors 

which need immediate attention.  The robustness and capacity of the logging facility is 

dependent on the specific OS implementation.  Implementations such as the AIX OS 
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error log provides facilities to capture and display to the system administrator sufficient 

data to allow for corrective actions or potential workarounds to non-automatable recovery 

solutions.  This concept is leveraged within the RDMA RAS architecture for cases where 

the RNIC device cannot be, closed, reset, or recovered. 

 

4.3.3 Statistics  

 During Endpoint connectivity issues, performance degradations, or general 

system problems, a robust and granular statistics framework serves as a means to answer 

many of the questions and concerns that would traditionally be the subject of debugger 

analysis.  A basic statistics framework will obtain and display data about the connection 

and states, but usually limiting the diagnostic functionality.  In an RDMA RAS 

architecture, the traditional statistics framework must account for the myriad of rare 

errors and conditions for ease of serviceability purposes.   

A traditional TCP stack in kernel statistics approach does not typically account 

each socket resource nor for L2-4 as a single entity.  It is therefore typical for statistics 

programs to be bounded to a specific network layer such as L3 or L4.  In the RDMA 

case, since the L3-4 processing has been offloaded to the adapter, any RDMA specific 

statistics framework necessarily has to encompass L1-4.  In accounting for said layer 

information, the remaining issue is the identification and association of the (PD, MR, CQ, 

QP) resources that compose individual Endpoints.  Hence statistics in the RDMA case are 

significantly more complex than both the traditional NIC and the traditional 

communication stack in Kernelspace approach. 
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4.3.4 System Dump  

System dump is the most disruptive and typically the serviceability action of last 

result.  A system dump [26] is configured by the system administrator such that when a 

fatal error event occurs within the OS, all memory contents are written to either a local 

disk or remote network dump device.  This allows for the post mortem analysis of all 

system memory and states.  For a large enterprise server, the dump will necessarily be of 

the same size as the system memory in use for the OS which initiated the dump, hence it 

is not uncommon to perform post mortem analysis on >10GB of memory to find root 

cause.   This technique requires the application of the debugger to interpret the memory 

contents.  A system dump debugging approach is coarse and causes excessively long 

system outages.  It is therefore necessary to provide a mechanism whereby a very 

granular component dump mechanism [27] can be applied which obtains only the 

memory snapshot of interest, thus avoids the full system outage time resulting from a 

normal system dump. 
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5.0 ARCHITECTURE  

Given the aforementioned limitations and inefficiencies in the existing combined 

approaches to RAS application in the face of RDMA, the individual components within 

the architecture are order and discussed by groups.  Several of the proposed RAS 

components are interrelated (Fig. 8) and build upon each other.  Though some 

components within the architecture are not specific to RDMA operations, they are 

currently unimplemented in current existing version of OFED or Linux RDMA drivers; 

hence their adoption would serve to improve the RDMA RAS capabilities. 

 

 

Figure 8: RAS component relationship 

5.1 RELIABILITY  

In order to enhance reliability, a set of guidelines and concepts intended to 

improve self-checking and self-recovery in the presence of internal en external errors is 

necessary.  Three key issues must be addressed regarding reliability within the 

architecture.  Firstly, the act of tracking user process IDs such that a rouge user does not 

cause an RNIC removal or recovery hang by omitting the de-allocation of Endpoint 
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resources registered with the adapter.  Secondly, a critical path protection mechanism to 

atomically detect the presence of executing threads.  Thirdly, the probabilistic detection 

of host memory corruption via the use of structure markers.  Lastly, a simplistic 

mechanism to detect the API thread level violations which lead to system assert. 

 

5.1.1 Process ID Tracking  

Within the OS every process has a unique identifier known as the PID, this allows 

for the system to perform the management, prioritization, security, and resource 

association of all threads executing within the system.  Under a traditional stack design, 

the underlying L2 NIC driver is oblivious to the upper layer users.  The L2 RNIC 

software driver receives a single Open call and does not need to track each individual 

user since the stack and L3-4 protocol processing occurs above and abstracts the 

individual users.   

In the case of an RDMA connection, the L2 driver has to be user-aware, since 

each user with an established connection or Endpoint to the adapter effectively has 

resources (PD, MR, CQ, and QP) associated with the adapter.  Failure by a user to de-

allocate RNIC registered Endpoint resources (Fig. 9) will result in blocking the recovery 

from a PCI bus Error or the removal of the device during a Close operation. 

The failure to remove resources condition is typical in the early development 

phases, bring-up, and integration phases of heavily multithreaded applications.  Since 

each resource is now actively tracked by both the Userspace Provider Library and the 

Kernelspace Provider Driver with a PID association, the driver can extract this 

information from the thread and build a table or list of active PIDs.  Additionally, the 

driver can extract the human readable thread name that identifies the parent process.  

With the PID at hand, a verbose and detailed error log entry can be generated which 
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contains PID of the rogue user, and the human readable application name owning the 

process.   

 

 

Figure 9: Driver paths blocked by non-deallocated resources 

 

By tracking and reporting the PIDs by number and application name, it is possible 

to provide a clear and concise mechanism of low cognitive complexity to allow a user or 

customer support representative to detect and correct the misbehaving application by 

manually or automatically killing the process.  Thus providing a means to ensure the 

interface works as expected in the presence of the inability to remove the device due to 

outstanding Endpoint resource references.  This feature circumvents system restart 

actions and avoids extended debug cycles in identifying the source of a hung RNIC.   
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Given the number of driver entry points and the level of thread concurrency on 

said entry points, a non-blocking mechanism to detect the presence of threads executing 
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extended to support RDMA, the level of concurrency from the theoretical 64K+ users 

necessarily forces all entry point paths to be atomic.   

 

 

Figure 10: Non-Blocking kernel critical paths and dependent operations 

 

The primary goal is to ensure that an unexpected Close or Error event that triggers 

a software or hardware recovery action yields until all users have successfully cleaned up 
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whereas the Atomic Thread Tracker provides a means to ensure the critical paths are 

protected. 

 

5.1.3 Thread Level Verification  

Userspace threads within an OS run at process level from a kernel point of view.  

Thought there may be manual prioritizations via the nice command in Unix based 

systems, from the Kernelspace point of view it is categorized as process level.  Within the 

kernel processes can execute at either process level or interrupt level.  There are several 

kernel services which cannot execute at interrupt level, namely operations such as thread 

sleep, memory translation, pinning services, and coarse timers are examples.  Linux 

based OSes contain just these two kernel thread levels, whereas advanced Unix based 

systems such as Solaris, HP-UX, and AIX contains more granular kernel thread levels. 

Given the brief background on process levels, the RDMA Verbs and APIs which 

exploit them will have clearly defined input parameters which can be subjected to input 

parameter sanity checks.  In HPC RDMA applications, this is typically not carried out for 

the sake of performance and the quest for the absolute lowest possible communication 

latency.  The standard practice is to trust the input parameters and flush out problems via 

testing; clearly at odds with data center RAS practices.   Hence input parameter checking 

typically does not check for incorrect thread level.  API violations due to thread level are 

typically undetected until a kernel service which is not allowed to execute at interrupt 

level fails; usually an unintended consequence of improper design.  Upon said event, a 

debug and analysis process of the crash scenario is required to identify root cause.   

A simplistic guideline with minimal overhead is proposed which can be used to 

obtain the thread level regardless of the OS in use (Fig. 11).  The mechanism is most 

applicable to kernel level RDMA Verbs access where varying priority levels are present.  
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When this condition occurs, one can deterministically detect this violation and perform a 

graceful exit, thus preventing system crash.  In the absence of a native OS service to 

obtain the thread level, the routine can as a software service to the binary of interest.   

 

 

Figure 11: Thread level sanity checker 

 

5.1.4 Structure Markers  

Within the kernel, memory is globally accessible.  Kernel software has the 

capability to modify the memory contents of other kernel components, which opens the 

door to programming errors causing data integrity problems.  A kernel driver can also 

access Userspace memory by performing a cross memory map operations, hence 

incorrect kernel references to Userspace can also lead similar data integrity problems in 

Userspace.  The condition is not unlikely since these types of errors are difficult to 

recreate and require significant time and manual effort in memory debug.  Advanced 

server systems such as IBM POWER contain a hardware based memory overlay 

protection mechanism to detect this condition via hardware Storage Protection Keys [28].  

Storage Keys operate by association of a key value to a subset of the system memory.  An 

inline int32_t 
thread_level_check() { 
    uint32_t priority; 
    
    /* Transition to highest thread level, saving off the original level, followed  
     * by an immediate restore of the original thread level */ 
    priority = disable_interrupts(); 
    enable_interrupts(priority);    
    if (EXPECTED_THREAD_LEVEL != priority) { 
        /* Unexpected thread level, assuming 0 is not a valid priority */ 
 execute_additional_debug_actions_here(); 
        return priority; 
    } 
 
    return 0; 
}  
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execution threads must provide the key at the software module entry points to 

authenticate access to the memory.  If an incorrect key is provided then loads and stores 

to memory result in a program assert.   

As with any hardware based mechanism, the quantity of physical resources 

become the bottleneck when scaling is desired.  Though the storage keys mechanism 

provide a means to protect the system, it cannot scale linearly with the number of RDMA 

resources, and thus results in key multiplexing which leaves a software module exposed 

to memory overlay errors by other modules within the same storage key group.  An 

alternative mechanism to provide similar memory overlay problems is the use of 

defensive programming techniques such as structure markers (Fig. 12).  Markers allow 

for rudimentary sanity checking of software structures prior to use, thus avoiding 

operations on invalid data. 

 

 

Figure 12: Structure marker definition and conceptual memory layout 

 

At structure allocation or initialization time, a unique and well known value is 

inserted in the start and end of the structure.  Upon operations on said structure, the driver 

simply validates the markers with the expected values.  If the markers are not valid then it 

 
foo bmark 

typedef struct { 
    uint64_t bmark; 
    uint32_t array[1024]; 
    uint64_t emark; 
} bar_t; 
 
typedef struct { 
    uint64_t bmark; 
    bar_t    bar;    
    uint8_t  a; 

    uint16_t b; 
    uint32_t c; 
    uint64_t emark; 
} foo_t; 

 
bar 

bmark 

emark 

emark 

                  (A)                                                                            (B) 
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is safe to assume that a data integrity problem has been detected.  The thread may then 

circumvent both the accesses to compromised memory and pointer dereferences.   

Clearly this method is most effective in detecting contiguous unintended 

overwrite operations in memory, thus its effectiveness is probabilistic and relative to the 

size between the start and end markers within the structure.  The addition of markers will 

increase the memory footprint of the driver, however given that RDMA resources are 

relatively large in terms of memory usage when compared to TCP/IP communications. It 

is sage to assume that the size delta in memory footprint is negligible.  Increases in 

footprint are common as in the case when line speed increases and performance is of 

priority.   Structure markers are a basic mechanism exploited by other components within 

the RAS framework.. 

 

5.2 AVAILABILITY  

System availability is the means whereby it can recover from failed components 

with minimal to no impact to the overall system.  In the case of RDMA, the offloaded 

L3-4 connection contexts are a particularly challenging issue to address.  The goal of 

serviceability for RDMA is to provide a mechanism to ensure the adapter and RNIC 

driver can perform a graceful Close and Error recovery, along with a mechanism to 

preserve the offloaded connection state information for future analysis in the face of such 

error events. 

 

5.2.1 Offloaded State Verification  

As mentioned in previous sections, the L2-3 protocol offload into the RNIC 

domain introduces challenges achieving availability.  When the L2-3 protocols are in 
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software, their state is globally accessible and transportable to any underlying stateless 

NIC adapter.  This allows for simplification of the availability approaches using 802.1AX 

or NIC teaming.  This however is not possible in RNICs since the connection context 

resides within the individual RNICs.  A failure by the adapter is effectively a loss of all 

context information.  Under the TCP in kernel approach, the TCP connections would still 

be available and thus any losses would be addressed via retransmissions over the backup 

links. 

 

 

Figure 13: RNIC connections and states extracted into host memory 

 

Though one of the major benefits of RDMA includes high-throughput and low-

latency, there are cases where the former are not hard requirements and the interest is 

skewed towards low-power and low CPU utilization workloads.  For these environments 

it is feasible for the RNIC L3-4 states to be periodically extracted into host memory.  A 

simple design approach is to extract the L3-4 states at a software defined interval (Fig. 

13).  Given that adapter vendors are likely to contain proprietary implementations of L3-4 

protocols, there are no explicit requirements placed upon the RNIC on how the contents 

are used.  

The main advantage of the state extract approach is that in the case of adapter 

failure, the L3-4 and any additional adapter specific information is available in host 
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memory as a historical record to aid in root cause determination.  During the service 

process, the snapshot contents can be provided to the RNIC vendor for analysis.   

Under the traditional RNIC model, an adapter failure will translate to loss of all 

L3-4 information and connections from the RDMA application point of view; hence the 

snapshot approach provides a mechanism to preserve critical connection details which 

would otherwise have to be obtained via problem recreation and software 

instrumentation.  It is clear that the contents may not reflect the actual state of the device 

at error time, however this approach provides at minimum some information that can aid 

in debug whereas the lack of this feature translates to no L3-4 data available for analysis. 

 

5.2.2 Aggregation  

In order to overcome the SPoF scenario an RDMA API, such as DAPL or SDP, 

necessarily has to implement the use of multiple adapters and implement aggregation at 

the Endpoint level for both RNICs (Figure 14).  Abstracting this functionality from the 

application allows for API handling of any adapter failures.   

Since the L3-4 connection contexts are resident in the RNIC memory, the API 

must perform Endpoint creation across both adapters.  This differs from standard 

aggregation procedures, such as NIC Teaming and 801.1AX, in that the RDMA API must 

duplicate all connection establishment operations and resource creation actions on both 

adapters.  The secondary adapter must have a connection context to the same remote host 

as the primary.  MR resources must also be registered on both adapters such that in the 

advent of a primary RNIC failure, the application egress messages can be re-routed by 

the RDMA API to the secondary adapter without the participation of the application.   

Though both Endpoints can be used for transmission, concurrency may introduce 

complexity in message ordering at the receiver based on network load balancing 
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mechanisms in use.  To overcome this, the sending API would need to hash traffic from 

the sender to the same adapter always to avoid the out of order reception problem on the 

remote Endpoint.  It is therefore recommend, strictly for RAS simplification purposes, 

that an active-passive approach be used. 

 

 

Figure 14: API level aggregation to overcome RNIC SPoF 

 

5.2.3 PCI Error Recovery  

PCI bus errors necessarily translate to an adapter failure or freeze event for 

systems configured with PCI Error recovery functionality.  As described in previous 

architecture components, when this event occurs, all L3-4 connection state information 

resident on the adapter is lost.  All RDMA connections will need to transition to error 

state indicating to the user, that they must close and de-allocate all resources.  A typical 

PCI error implementation will take this into account and allow for a BUSY return by the 

L2 driver during error recovery phases.   
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A viable approach to availability in the context of PCI bus errors revolves around 

the intent to recover, reset, and restore the adapter to operational state as fast as possible.  

Clearly rouge users who do not perform proper resource de-allocations will cause the 

adapter recovery time to extend indefinitely, however the PID tracking mechanism 

provides a means whereby any rouge processes are identified and brought to the attention 

of the administrator or service personnel such that they can be manually removed.  A 

manual correction of this state clearly does not meet the availability requirement of fast 

PCI error recovery; hence an automated mechanism is preferred.  It is therefore 

recommended that the PID tracker information be used by a management program to 

cleanup the (rogue) processes.  The implementation is simplistic in the sense that a 

background process is executing on the system which the RNIC software registers with.  

At error time, an asynchronous notification or wakeup is provided to the process that 

receives or retrieves the PID and application name.  If the application name is one of the 

automatic removal candidates, the process proceeds to kill said application automatically. 

The approach allows for implementing a guaranteed time quanta and bounds the 

RNIC device recovery time.  Hence to increase availability, the automated approach is 

ideal as long as the candidates are defined and appropriate application teardown 

operations are in place. 

 

5.2.3 Unexpected Close  

A typical Ethernet to the system assumes that it can be initialized by the action of 

setting the IP address via manual or automated mechanisms such as DHCP.  All 

operations over the interface are multiplexed by L4 protocols over the IP address, hence 

the removal of the IP address while connections are active result in the termination of all 

connections.  This is not the case under the RDMA model where offloaded connections 
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are in operation alongside traditional non-offloaded connections.  Clearly a removal of 

the IP address on the interface will close non-offloaded connections; however it will not 

close the offloaded connections.  Without the NIC interface in place the RDMA interface 

cannot perform address resolution via ARP, hence when the NIC interface is removed, 

the RDMA connections must be terminated. 

Before the device can be reconfigured again, the same mechanism discussed for 

PCI Error recovery must be used, to ensure no rogue users extend the Close time 

unnecessarily.  If an automated solution is required, then the same constraints for 

addressing any application specific PID destruction process are necessary. 

 

5.3 SERVICEABILITY  

Serviceability is defined as the capability to determine why a system failure has 

occurred, and the associated ease with which the root cause determination can take place.  

The RDMA RAS architecture attempts to address both hardware and software types of 

failures along with guidelines and best practices for fast problem resolution.  The key 

focus is on speed in root cause determination to reduce maintenance costs. 

 

5.3.1 Component Tracing  

The tracing capabilities implemented in the OFED implantation of RDMA and 

the standard Linux kernel do not allow for granularity in tracing.  Effectively an all or 

none approach which does not provide a granular tunable for the desired level of tracing.  

Performance and timing sensitive environments require the ability to dynamically tune 

the level of tracing during program execution to allow tradeoffs in debug and 

performance.  The cost of a single trace requires an indirection in code execution to save 
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off trace parameters to a separate reserved location in system memory, or alternately to a 

log file as is most common in Linux implementations.  The latter obviously being more 

expensive in terms of processing time, hence it is not uncommon for RAS features such 

as tracing to hide timing sensitive problems or be disabled by default resulting in no 

historical data at error time.   

 

 

Figure 15: Pseudocode for granular tracing 

 

A granular tracing mechanism is proposed which allows for the dynamic 

specification of a trace level during program execution (Fig. 15).  The use of a macro is 

advantageous over an inline function call since it expands within the calling function.  

Inline functions are generally preferred over macros due to simpler verification by 

leveraging the compiler verbose output, however in this case the desire is to provide a 

simplified API to the calling function that allows for instrumentation with caller details.  

The module being traced will contain a master variable that can be set via IOCTL or 

other out-of-band mechanism.  If the _curr_level is of greater or equal value than the 

passed in _level, then the tracing actions are performed.  Otherwise the tracing actions are 

circumvented and the only cost incurred is obtaining the _curr_level and the evaluation 

of the conditional.   

#define TRACER(_level,  _desc, _tag, _d1, _d2, _d3, _d4) {                     \ 
    uint64_t _curr_level = get_curr_trace_level();                             \ 
    if (_level >= _curr_level) {                                               \ 
        log_trace(_level, mem_dest,  _tag, _desc,                              \ 
            (ulong_t) _d1, (ulong_t) _d2, (ulong_t) _d3, (ulong_t) _d4);       \ 
                                                                               \ 
        trace_display( get_cpu_id(),                                           \ 
            __LINE__, __FILE__, __FUNCTION__,                                  \ 
            _desc, _tag,                                                       \ 
            (uint64_t) _d1, (uint64_t) _d2, (uint64_t) _d3, (uint64_t) _d4);   \ 
    }                                                                          \ 

}                    
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The trace_display() feature within the macro is optional, and allows for output of 

the contents to the system console or filesystem.  It provides an instrumentation to 

acquire additional data, beyond the _tag and _d1 through _d4 word values.  The console 

approach is advantageous over file output in that during a system crash scenario, the 

historical data is immediately available via console history, whereas the file output or 

normal trace mechanisms would require accessing the data via debugger raw memory 

reads.  The debugger is clearly a process of higher cognitive complexity than inspecting 

the formatted output to console.  To facilitate trace output review, the CPU ID, filename, 

line number, and function name descriptions are included along with a variable length 

text description.  The additional data allows for quickly correlating a trace point to the 

source code which is most useful in a console/terminal environment, whereas the 

standard trace facility in log_trace() only provides the sense data d1-4 and a 8byte tag 

value which must be manually correlated with the source code to find the file, line, and 

function. 

 
Trace Output 

Trace Level 
1 2 3 4 5 6 7 8 9 

All On On          
All Off Off          
 
Error 1          
Rare 2          
Reserved 3          
Function Entry and Exit 4          
Function Internals 5          
Reserved 6          
HOT Function Entry and Exit 7          
HOT Function Internals 8          
Data Dumps 9          

Figure 16: Granular and dynamically tunable tracing levels 

The architecture for tracing levels is based on tracing only the _curr_level value 

and all values below (Fig. 16).  Error traces are always traced by default, but if a user sets 
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a trace _level of 5, then tracing will occur for 5 and all levels below.  In trace level table 

example settings, an incremental selection of levels separate normal data paths from the 

performance paths.  The intent is to correlate the highest trace levels to the amount of 

performance impact to the data path.   

 

5.3.2 Memory Management  

With a traditional NIC driver, the numbers of resources in use are bounded to a 

small manageable footprint.  A typical NIC driver contains the basic operations 

previously outlined (Fig. 4). The number of resources and data structures required to 

achieve operation are trivial and manageable without the need for elaborate memory 

allocators or trackers.  As RDMA increasingly becomes commonplace as a superset of 

the NIC features, the complexity in the high number and dynamic nature of the resources 

becomes a crucial design point for software maintainability.  Since a typical adapter can 

scale up to ~64K or 16M RDMA connections, and each connection typically contains 

anywhere from 6-10 distinct memory resources, a robust and efficient memory tracking 

mechanism is required for RAS.   

The model proposed herein allows for the dynamic allocation, tracking, and 

servicing of memory resources with minimal serialization and logic to address both 

process level operations and the constraints of interrupt level processing.  Additionally, 

integrated memory utilization statistics are provided to allow for a high level view of 

resource utilization without the need for external memory statistics mechanisms.   
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5.3.2.1 Leak Detection  

Memory leaks issues within a kernel environment typically require the detection 

of the event and the traceback to the module responsible for the leak.  Commercial 

products [29] exist to address these issues; however they come at both an economic and 

complexity cost since it applies to an instrumented environment only.  The dynamic 

analysis capability provided by these tools is only valid if the actual leak condition is 

encountered during execution.  A memory tracking mechanism service is proposed which 

is separate but compiled into the RNIC driver and allows for field enablement such that if 

the issue is not found in a lab environment, it can be enabled in the customer environment 

to detect the problem.   Clearly, a commercial product to detect memory leaks is unlikely 

to be installed and deployed on customer production systems. 

 

 

Figure 17: Conceptual memory tracker 

 

The basic memory tracker concept (Fig. 17) revolves around a wrapper to all 

memory allocation functions which instrument the operation to keep a record for 

reference.  This differs from any records and tracking kept by the general OS services in 

that the sole purpose is deterministic memory leak detection with human readable output 
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indicating the specific source line of code at fault.  A memory allocation will be executed 

via a C macro call, which expands to record the filename, line number, and calling 

function.  This information along with relevant data such as memory type, alignment, and 

size are included in an entry within the Memory Tracker table.  Note that the memory 

tracker table can alternately be implemented as a linked list, hence the location for 

recording the data is implementation specific.  In order to reduce serialization of memory 

table updates, an atomic mechanism to add and delete a record are preferred.  As memory 

is freed, its corresponding table entry is atomically removed, thus clearing the record. 

The memory tracker services are best implemented by allocating the table 

resources at RNIC driver initialization such that all subsequent memory allocations are 

tracked. If a table mechanism is used then the driver developer clearly needs to be aware 

of the limits in entries.  This is given since the scope of resources and number of 

Endpoints is a well known value as discussed in the memory management section 

introduction.   

At device Close time, a simple routine to traverse the table and detect the 

presence of record entries would indicate that a memory leak condition has occurred.  

Once the condition is detected, the record information can be used to generate an error 

message to the system log or other OS dependent mechanism.  A service representative 

or customer can now clearly detect the module, file, line, and function in error such that 

the allocating function can be reviewed for root cause of the leak.  In a production 

environment this is the most likely case, while in a development environment it would be 

preferable to assert the system such that this condition does not go undetected if the 

system logs are not being observed. 



 52 

An additional benefit of the memory tracker is that per table statistics can be 

automatically generated to obtain the memory footprint of all allocations associated with 

the table.  Therefore no out-of-band mechanism for memory statistics is required.   

 

5.3.2.2 Coalesced Structures  

Error recovery from inability to allocate memory is a basic essential feature of all 

software.  Typically programs allocate memory granularly for each resource that suffices 

for managing a small number of resources, but leads to resource sprawl (Fig. 18.A) as the 

number scales.  Furthermore, granular allocations necessitate software error handling and 

recovery logic for each failure.  A guideline for circumventing resource sprawl, reducing 

software error recovery logic, and simplifying the memory layout, is to have coalesced 

generic allocations.  When allocating an Endpoint, the parameters for each resource are 

function input parameters and can thus be calculated to obtain the total memory size 

required.  Once total size is known, a single allocation can be used (Fig. 18.B), which 

reduces the insufficient memory error recover logic to a single memory error operation.  

An additional benefit to this approach is that during system assert time, memory 

inspection via debuggers is simplified since all structure contents are coalesced into a 

single location. 

 

 

Figure 18: Memory allocation coalescing 
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In the provided figure, the CQ, RQ, and SQ resources are DMA mapped which 

typically require the starting addressed to be aligned on 4096B boundaries.  Each if these 

is normally allocated separately.  Given that the length of each resource is variable 

length, the ending addresses may not align on said boundaries, therefore padding will 

need to take place up to the next 4096B alignment at which the following resource 

starting address can be used.  In order to simplify access to the memory a set of pointers 

in the control portion of the structure are used.  The pointers will correspond to the 

offsets in the contiguous memory block. Normally these pointers would point to 

separately independent memory allocations. 

 

5.3.2.3 Hexdump Markers  

Memory contents accessed via debugger are typically in raw hex format, which 

introduces difficulty in quickly identifying structure boundaries (Fig. 19A), however as 

shown previously, an ASCII decode capability is typically available in modern OS 

debuggers.  This capability is leveraged for raw memory inspection to allow readability 

via structure markers by inserting human readable ASCII values to uniquely identify the 

structure (Fig. 19B).  When allocating memory that is purposed for DMA mapping, it 

must start on a 4096B boundary.  Resources typically subjected to this constraint are CQ, 

SQ, RQ, and MRs, thus inserting a marker at the top of the structure results in an 

incorrect DMA offset (Fig. 19C).  It can be argued that simply viewing the starting 

address is sufficient to identify the correct start location, however it means that structure 

marker protection mechanism is used inconsistently, which may be acceptable in some 

scenarios. 

An acceptable option is memory allocation guidelines where padding is placed 

before and after the DMA aligned memory (Fig. 19D), such that a marker can be inserted 
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in the 8bytes immediately preceding the DMA address start alignment.  This provides the 

benefit of clear and concise display in ASCII decode within the debugger and avoids 

determining the start of the memory space based solely on the address offset.  The 

padding area is not completely wasted as it will typically hold the non-DMA mapped 

control structures.  The software can also be instrumented such that at resource allocation 

time an inspection on the alignment of the starting resource address is performed.  The 

latter action is a debug option as the structures will not change once the source is 

compiled and binaries are generated but, provide a means to verify software correctness 

after extensibility. 

 

 

Figure 19: Generic managed memory and structure layout 

 

In the example provided a single allocation is described, however, recall that in 

previous marker discussions, structures are nested and thus markers themselves are 

nested.  In using a simplified example, it can be clearly shown that the ending padding 

space can be used for additional data storage that is invisible to the caller. This is treated 

as a black box value for the purposes of memory free operations.  A call to allocate 

memory necessarily has a size parameter passed in.  A Fast Free structure is appended to 
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the total allocation size for memory tracking purposes.  The Fast Free structure contains 

details which indicate table offset or address or record, thus allowing for memory de-

allocation without the need for searching for the record entry within the memory 

allocation table previously discussed in the memory leak detection concept.   

The Fast Free structure is also protected by markers such that in the event of the 

memory user writing past the end of his allocation, the data integrity problem can be 

detected.   When this condition occurs, the memory management logic will automatically 

perform a recovery operation which translates to a secondary mechanism for free via 

linear search in Memory Tracker table for the record matching the starting address of the 

memory at hand. 

 

5.3.2.4 Cross-Mapped Memory 

The final memory management feature proposed is Kernelspace to Userspace 

cross memory mapping, which allows for the kernel to read and write to Userspace 

memory.  Recall that under the RDMA model, the user has a direct channel to the adapter 

and the kernel is not an active participant during data transfer operations.  The major 

RAS issue introduced by this approach is that there is no direct communication between 

the Userspace Provider Library and the Kernelspace Provider driver to perform 

exchanges necessary for fast error notification between the components. 

Under the OFED model, error communication between the Userspace and 

Kernelspace RNIC components is mediated via the OFED stack.  The stack traverses 

both Userspace and Kernelspace via multiple components (Fig. 20).  These components 

are separate from the RNIC Provider driver and Provider Kernelspace, however when a 

resource is created or destroyed in Userspace, the OFED threads perform a context switch 

into the kernel.  The kernel Provider driver is then responsible for performing the actions 
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to make the Userspace resources visible to the RNIC.  Given the information is readily 

available, and that the resources are coalesced, the kernel Provider driver can simply 

perform an indirection to cross map the memory.  This is a minimal cost in terms of 

processing time; simply the cost of an additional structure for the kernel Provider to 

track.  The Userspace users or resources are unaware that the cross memory mapping 

action has occurred. 

 

 

Figure 20: RDMA error notification model via OFED 

 

During runtime, if fatal errors such as PCI errors that effectively disable the 

adapter occur, the Provider driver can write to the Userspace resource or Kernelspace 

structures indicating the error type.  Now there is a direct communication channel via 

shared memory between the Provider and the specific resource owned by the Kernelspace 

(Fig. 21).  This mechanism is independent of execution thread and thus serves as a 

mailbox type notification between the layers.  When the Userspace application attempts 

to perform a send or receive action, the Provider Library will check the error structure 

and return to the user with an error code.   
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Figure 21: Cross mapped shared memory for asynchronous error notification 

 

5.3.3 Resource Snapshot  

Under the Sockets model, when an error arises the Socket is simply closed and the 

resources are freed.  The application will typically perform an error recovery and 

eventually open another Socket to reestablish communications.  This is the same behavior 

used for RDMA connection management, however in the latter case there is no central 

location for historical data as in the Sockets model that can leverage Kernelspace traces 

and memory for RAS.  A mechanism to capture the resource state at error detection time 

is needed in order to preserve historical data for root cause analysis (Fig. 22).  Given that 

the cross memory mapping feature provides read access to all Userspace data structures 

and resources, it is now possible perform a copy of each structure into Kernelspace as a 

linked list of individual resources and Endpoints.  Once the snapshot is taken the users 

are free to perform any cleanup and error recovery actions without causing a loss of 

historical data.  A service representative can then extract the historical data to perform 

root cause analysis. 
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Provider Library 

CQ 

Error Block 

RNIC  
Provider 
Driver 

Error Block 

QP 

Error Block 

Error Block 

User space 
Kernel space 

Application 



 58 

RNIC state is accessible as is the hardware RNIC view, such that the RNIC vendor can 

perform a correlation between software and hardware views of states during error 

detection. 

 

 

 

Figure 22: Snapshot of software and hardware structures at error detection time 

 

5.3.4 Debugger Scripts  

The debuggers included in most OSes are rich enough to allow for making C 

function calls directly from the debugger command line.  This is an extremely useful 

feature for decoding complex data structures rather than viewing raw memory.  Though 

the marker approach provides for a high level view of the memory layout by clearly 

identifying structure boundaries, contents, and individual variables; all are easiest to 

analyze via formatted output.  Hence debugger scripts is a development guideline for 

displaying structure contents with the appropriate output so as to facilitate the finding of 

the variables of interest.  An investment in creating a simple structure decoder will pay 

itself back many times over when problems arise, and the root cause identification 

process begins.  Without structure decoders, a developer is left with repetitive manual 
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discovery and manual translation of structure contents.  Furthermore it will complicate 

communication of the findings to other since one must explicitly describe the contents of 

raw memory to other. 

 

5.3.4 Component Dump  

A system dump provides the closest means to debug a system data without 

actually operating on the failing system.  This is the action of last resort from a RAS 

point of view, since it has the effect of taking a system offline and dumping all memory 

contents to a local or remote location to allow for inspection.  The dump process time is 

relative to the memory size of the system hence larger systems will be offline for 

extended periods of time.  It is not uncommon for systems with ~50GB of memory to 

take over 12hrs to complete the dump process.  From a RAS point of view, this action 

should be avoided at all costs unless it is the result of an existing system crash where the 

system is already offline. 

When an individual kernel component such as an RNIC is not operating correctly 

or displays intermittent errors which are not critical to system operation, it may be 

preferable to obtain a dump of only the RNIC HW, Provider, and Provider Library 

without a full system outage.  The proposed component dump capability is composed of a 

set of OS services which allow for the registration of software memory allocations such 

that in the presence of an external trigger, memory reads and writes are quiesced and the 

memory contents are dumped in a manner similar to a system dump.  The dump target is 

typically a remote dump device (Fig. 23) such that the root cause analysis occurs 

independently of the operation of the failed system. 
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The main advantage of this approach is that it allows for a small outage in the 

operation of a specific component instance, in this case the RNIC Provider and Provider 

Library, without affecting the overall operation of the system.  After the dump is 

complete the RNIC and associated Provider and Provider Libraries are restarted and 

operation continues as normal. 

 

 

Figure 23: Component dump to remote device for root cause analysis 

 

The component dump capability can be automatically triggered in the event of a 

PCI error such that a snapshot of the software state leading up to the event is available.  

Typically, all software resources are reset and only traces remain preserved for analysis.  

With the component dump capability now a more robust system is in place to 

automatically preserve additional data for root cause analysis. 
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6.0 CONCLUSION  

As RDMA gains adoption in the enterprise data center a renewed focus on RAS, 

and the accompanying features expected by enterprise customers must be addressed for 

efficiency in problem determination and resolution.  RDMA must evolve from the current 

focus on performance at the expense of maintainability and serviceability.  Clearly, RAS 

architecture is a feature rich and constantly evolving area of software and hardware 

engineering, hence the RDMA RAS architecture address the key concepts necessary for 

success in the enterprise while placing the performance and RAS tradeoffs in the hands of 

the end users.   

In summary, the RAS for RDMA communications provides an architecture and 

guidelines for efficient means of reducing the cognitive complexity associated with 

software maintenance in RDMA environments by applying a combination of new and 

traditional RAS approaches.  From a customer point of view, the focus is on detecting 

and reporting the necessary data to the system vendor or service provider so as to restore 

the system to the correct operational state in the minimum amount of time.  From the 

systems vendor point of view, the main goal is twofold.  Firstly, a reduction in root cause 

identification time via software architectural features which provide the necessary 

forensics data.  Secondly, via software design guidelines that reduce the cognitive 

complexity associated with software maintenance via decoders and memory managers. 

The proposed RAS architecture addresses the aforementioned challenges and 

allows for extensibility of additional features in the future. 

 

 

 



 62 

 

GLOSSARY 

ACK   Acknowledgement 

ARP   Address Resolution Protocol 

ATM   Asynchronous Transfer Mode 

CE   Converged Ethernet 

DAPL   Direct Access Programming Library 

DMA   Direct Memory Access 

DoD   Department of Defense 

DR   Disaster Recover 

EEH   Enhanced Error Handling 

FDDI   Fiber Distribution Data Interface 

FFDC  First Failure Data Capture 

FVT   Functional Verification Test 

HCA   Host Channel Adapter 

HPCS   High Productivity Computer Systems 

HW   Hardware 

IB   Infiniband 

IOCTL  IO Control 

IP   Internet Protocol 

IPC   Inter-Process Communication 

IST   Integration Systems Test 

iWARP  Internet Wide Area RDMA Protocol 

L3-4  Network and Transport Protocol Layers 
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Library RNIC device driver in Userspace 

MPA   Marker PDU Alignment 

MR   Memory Region 

MSS   Maximum Segment Size 

MTTR  Mean Time To Repair 

MTU   Maximum Transmit Unit 

NIC   Network Interconnect Card 

OFA   Open Fabrics Allicance 

OFED   Open Fabrics Enterprise Distribution 

OS   Operating System 

PCI   Peripheral Component Interconnect 

PD   Protection Domain 

PDU   Protocol Data Unit 

Provider RNIC device driver in kernel 

RAS   Reliability  

RC   Reliable Connection 

RD   Reliable Datagram 

RDMA  Remove Direct Memory Access 

RNIC   RDMA NIC 

RoCE   RDMA over Converged Ethernet 

RQ   Receive Queue 

RX   Receive 

SCTP   Streaming Control Transmission Protocol 

SDP   Sockets Direct Protocol 

SFDC  Second Failure Data Capture 
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SPoF   Single Point of Failure 

SQ   Send Queue 

SW   Software 

TCP   Transmission Control Protocol 

TOE   TCP Offload Engine 

TX   Transmit 

UC   Unreliable Connection 

UD   Unreliable Datagram 

ULP   Upper Layer Protocol 

UT   Unit Test 

VIA   Virtual Interface Architecture 

WAN   Wide Area Network 

WQ   Work Queue 
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