

Copyright

by

Omar Cardona

2010

The Report Committee for Omar Cardona

Certifies that this is the approved version of the following report:

RAS Enhancements for

RDMA Communications

APPROVED BY

SUPERVISING COMMITTEE:

Scott Nettles

William Bard

Supervisor:

RAS Enhancements for

RDMA Communications

by

Omar Cardona, B.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2010

 Dedication

I dedicate this report to my wife Lizandra for her help and support during this journey.

 v

Abstract

RAS Enhancements for RDMA Communications

Omar Cardona, M.S.E.

The University of Texas at Austin, 2010

Supervisor: Scott Nettles

Ethernet as the communication medium in the enterprise data center has outlived

all competing mediums and resisted the test of time with regards to speed and costs. The

future is also poised for growth with 40 and 100Gps speeds just over horizon. The

current state of the technology is being enhanced and extended with lossless features to

allow for fabric convergence of Storage and Inter Process Communication (IPC)

Networks. It is under this medium that an increase in the adoption of Remote Direct

Memory Access (RDMA) over Ethernet using offloaded TCP/IP (iWARP) and

Infiniband over Ethernet (RoCE) communication stacks to RDMA capable NIC adapters

(RNIC) is observed.

RDMA enables direct application to application communication over the network

resulting in numerous and significant benefits such as reduced CPU utilization, lower

latency communications, increased energy efficiency, and reduced overall system

 vi

requirements. However, with said benefits also comes increased software complexity in

how RDMA interface users communicate. The RDMA communication semantics, which

originate from the High Performance Computing (HPC) domain, are heavily biased

towards Low-Latency and High-Bandwidth communications rather than Reliability,

Availability, and Serviceability (RAS). As adoption increases, and enterprise data

centers begin to leverage RDMA over Ethernet, enhancements to the OS stack software

architecture and design of the components involved is required to address these

deficiencies. Operating system interfaces, device drivers, adapter hardware design, and

embedded firmware features must be viewed from a high-availability and maintainability

point of view.

RAS enhancements for RDMA communications proposes the software

architectural tradeoffs for enhancing the iWARP and RoCE RDMA implementations for

communications in the enterprise data center, with new and traditional RAS features for

existing communications stacks and devices. The architecture leverages software

enhancements in traceability, availability, maintainability, serviceability, fault-isolation

and resource management; such that in the advent of errors, the probability that the

forensics data points to identify root cause are immediately and automatically available is

increased.

 vii

Table of Contents

List of Tables ... ix

List of Figures ... x

1.0 INTRODUCTION...1

2.0 RDMA TECHNICAL OVERVIEW..5

2.1 Context Switching...7

2.2 Intermediate Copies ..8

2.3 Protocol Offload..9

2.4 Resources ..10

2.5 Operations ...12

2.6 RDMA Comparisons ..14

3.0 MOTIVATION ..17

3.1 RNIC Extensions ..18

3.2 RAS Limitations ...20

3.3 Software Development and Support ...21

4.0 RELATED WORK...23

4.1 Reliability..24

4.1.1 Aggregation...24

4.2 Availability ...26

4.2.1 Device Recovery...26

4.2.2 Memory...27

4.2.2 Memory Leaks ...28

4.2.2 Memory Corruption ...29

4.3 Serviceability ..29

4.3.1 Trace ...30

4.3.2 Debugger...30

4.3.3 Error Log...31

4.3.3 Statistics ..32

 viii

4.3.4 System Dump..33

5.0 ARCHITECTURE ..34

5.1 Reliability..34

5.1.1 Process ID Tracking..35

5.1.2 Atomic Thread Tracking...36

5.1.3 Thread Level Verification...38

5.1.4 Structure Markers..39

5.2 Availability ...41

5.2.1 Offloaded State Verification ...41

5.2.2 Aggregation...43

5.2.3 PCI Error Recovery...44

5.2.3 Unexpected Close ...45

5.3 Serviceability ..46

5.3.1 Component Tracing ..46

5.3.2 Memory Management...49

5.3.2.1 Leak Detection ..50

5.3.2.2 Coalesced Structures...52

5.3.2.3 Hexdump Markers ..53

5.3.2.4 Cross-Mapped Memory ..55

5.3.3 Resource Snapshot ..57

5.3.4 Debugger Scripts...58

5.3.4 Component Dump...59

6.0 CONCLUSION...61

GLOSSARY...62

REFERENCES...65

VITA..70

 ix

List of Tables

Table 1: Approximate 10Gbps processing costs for single sessions TCP transfer............. 6

Table 2: Ethernet stateless offload techniques.. 7

Table 3: Transport Function Supported for Specific Services.. 13

 x

List of Figures

Figure 1: Sockets model vs. RDMA model. ... 8

Figure 2: RDMA Endpoint resources ... 11

Figure 3: and iWARP over Ethernet ... 15

Figure 4: Generic NIC driver software Architecture .. 17

Figure 5: Generic RNIC driver software Architecture with RDMA Extensions.............. 19

Figure 6: Native OS Stack and aggregation challenges due to L3-4 Protocol Offload. ... 25

Figure 7: Typical debugger output.. 31

Figure 8: RAS component relationship... 34

Figure 9: Driver paths blocked by non-deallocated resources.. 36

Figure 10: Non-Blocking kernel critical paths and dependent operations........................ 37

Figure 11: Thread level sanity checker ... 39

Figure 12: Structure marker definition and conceptual memory layout 40

Figure 13: RNIC connections and states extracted into host memory.............................. 42

Figure 14: API level aggregation to overcome RNIC SPoF... 44

Figure 15: Pseudocode for granular tracing.. 47

Figure 16: Granular and dynamically tunable tracing levels .. 48

Figure 17: Conceptual memory tracker .. 50

Figure 18: Memory allocation coalescing... 52

Figure 19: Generic managed memory and structure layout.. 54

Figure 20: RDMA error notification model via OFED .. 56

Figure 21: Cross mapped shared memory for asynchronous error notification................ 57

 xi

Figure 22: Snapshot of software and hardware structures at error detection time............ 58

Figure 23: Component dump to remote device for root cause analysis............................ 60

 1

1.0 INTRODUCTION

Ethernet is the de-facto networks interconnect for the enterprise data center and

end users. It has resisted the test of time with the consistent increases in bandwidth and

decreases in cost relative to competitors such as ATM, FDDI, and others. The most

recent challenge to this position was provided by the Infiniband (IB) physical layers and

stacks. Again, due to low cost, high-speed, abundant availability of management skills,

and richness in products and markets, the Infiniband concepts were translated over to

Ethernet in an attempt to exploit commodity 40 and 100Gbps physical links. The attempt

became official with the recent release of the Remote Direct Memory Access (RDMA)

over Converged Ethernet (RoCE) Annex to the IB specification [1]. Prior to the Annex, a

variant of RDMA over Ethernet was available via the Internet Wide Area RDMA

Protocol (iWARP) [2]. The major differences between the two, being that the Network

(L3) and Transport (L4) layers under iWARP are based on hardware offloaded TCP/IP,

whereas the equivalent services on RoCE are based on IB Network and Transport layers.

The RDMA concepts were developed primarily for Low Latency Inter-Process

Communications (IPC) in Clusters and High-Performance Computing (HPC)

environments. In said deployments, performance is king; and everything else is a distant

second. Therefore, it is of no surprise that the architectural design of the communication

mechanisms, adapters, and protocols would result in tradeoffs that favor performance

over reliability, availability, and serviceability (RAS). In HPC environments,

applications, systems software, and hardware resources are typically devoted to executing

large complex problems for long periods of time. Under these types of operating

environment, the threshold for hardware and software errors tends to be higher than for

enterprise data centers and end users. In contrast, the typical modern enterprise data

 2

center is dynamic, autonomous, highly virtualized, and demands high availability.

Compute resources and systems exploit virtualization and mobility mechanisms for fault

tolerance and Disaster Recover (DR), therefore RAS is king above all else; obviously in

contrast to HPC environments. The enterprise data center customer does not typically

have the luxury of restarting a compute job in the advent of errors, as delays in work

completion immediately translate to increased operation and business costs.

From an application point of view, the traditional network communication occurs

via the Operating System (OS), where said entity owns and mediates access to the

protocol stacks (TCP/IP, FC, iSCSI, etc.) and Network Interconnect Cards (NIC). The

OS provides a simplified communications API, such as Sockets that abstracts and

performs the data movement operations on behalf of the application. The OS is the

mediator of the data exchange operations between two applications over the network,

hence the visible, traceable, and verifiable RAS mechanisms are readily available via OS

kernel state; three key traits necessary for enterprise RAS. From a serviceability point of

view, it is common to autonomously obtain forensics data, traces, dumps, logs etc., after

system errors to perform root cause analysis.

RDMA differs from traditional OS communications in that its core design point it

to provide the most direct and efficient network communication mechanism possible.

Therefore it explicitly bypasses the OS during application communication so as to avoid

the costs of intermediate buffer copies, protocol processing, and context switching. The

application communicates directly with the adapter via a channel (Endpoint) and set of

application user specific resources mapped to the underlying NIC. The protocol

processing for OSI layers 3-4 and equivalent are executed within the NIC, effectively

providing a stateful hardware offload acceleration mechanism and circumventing

protocol processing by the host CPU. With both a direct channel to the adapter and

 3

protocol processing in hardware, the elimination of the Userspace to Kernelspace context

switch is necessarily eliminated. Thus, in a nutshell, RDMA allows for direct

application-to-application data exchange over the network and eliminates the processing

and latency overhead inherent in the OS mediated network access design. Clearly, the

traditional role of the OS from a RAS point of view has been eliminated.

In both the iWARP and RoCE standards specification, software RAS capabilities

are undefined and left as an exercise to the implementer, as is typical in most standards

specifications. However, the HPC community and US Department of Defense (DoD)

have recognized that performance above all else has an inherent cost. The High

Productivity Computing Systems (HPCS) initiative [3] is an attempt to address this need

via research into productivity, programmability, and robustness of both software and

hardware. This initiative recognizes that the architecture, tools, and components should

leverage human productivity over the pursuit of unrealistic performance benchmarks [4].

Though the focus of said research is within the Userspace space domain, the subset of

requirements necessarily translates to RAS from an OS point of view when adopting

RDMA in an enterprise data center. Given the aforementioned design points, the core

problem present for RDMA implementations is the lack of standardized mechanisms or

best practice guidelines for providing enterprise level RAS capabilities to RDMA enabled

applications. The traditional OS stack communication mechanism, albeit not as efficient

as RDMA, allows for system-wide view of operations, data, and resources. A new

approach is therefore needed to address the expected enterprise RAS requirements.

Furthermore, the RAS architecture should work equally well for both iWARP and RoCE

given the amount of commonality in their interfaces and functionality.

A contrast of the RAS deficiencies behind a typical RDMA implementation is

necessary; along with the architectural definition and best practices guidelines to balance

 4

the performance benefits of current implementations of RDMA, with the enterprise level

RAS features necessary to achieve efficiency in serviceability and maintainability.

Research into the existing body of work in the industry and academia is used to leverage

software and hardware RAS tools and techniques for applicability to RDMA type

implementations.

The remainder of this report is structured as follows. Section 2 provides a

technical overview, discussion and comparison of existing RDMA implementation under

iWARP and RoCE. Section 3 details the motivation for implementation of the RAS

architecture under a typical enterprise data center deployment. The related work in

section 4 details the existing applicable RAS approaches currently in use in the industry

and academia for advantages and deficiencies. Section 5 encompasses the general

proposed architecture and supporting items. Lastly, section 6 concludes with the

summarized benefits and results of adopting the architecture.

 5

2.0 RDMA TECHNICAL OVERVIEW

The concept of direct application-to-application communication over the network

originates from the Virtual Interface Architecture (VIA) [5]. The goal was to provide a

high performance communications interface with direct access to the NIC from

Userspace, and equivalent memory protection and isolation mechanisms as provided by

the traditional communications stack within the OS model. The VIA design concepts did

not fully define a hardware architecture for stateful offload of protocols, thus it

transitioned through several iterations and standards bodies, and is currently integrated

into both the Infiniband Architecture Specification [6] and the iWARP IETF

specifications [2].

In order to frame the discussion on RDMA specifics, it is necessary to discuss a

subset of the differences and commonalities of IB and Ethernet. The IB Architecture

defines a different set of L1-2 network standards, cables, connectors, and switches that

leverage multi-path and subnet management capabilities tailored for communication

between servers rather than clients. These capabilities are not available in standard

Ethernet, though recent standards work under Converged Ethernet [7] [8] [30] attempts to

address these deficiencies. Regardless, the differences in L1-2 necessarily drive the need

to preserve existing Ethernet L1-2 fabrics in the enterprise, since IB cannot fully replace

it. iWARP eliminates the need for separate fabrics, since it utilizes standard Ethernet and

familiar L3-4 management. However, this comes at a cost; lower market adoption versus

IB, fewer enterprise and HPC deployments, and lack of equivalence in connection types

and RDMA operations which are detailed in later sections. In short, the majority of

existing RDMA applications are IB based rather than iWARP based. Recently, the IB

Architecture was extended with the RoCE Annex to define and standardize IB L3-4

 6

operation over standard Ethernet, such as to allow for exploitation of existing IB RDMA

enabled applications while preserving the familiarity of Ethernet L1-2 in the enterprise.

RDMA operations are based on the concept direct application-to-application

communication via OS bypass. In order to achieve said functionality, it is necessary to

understand in detail how it is achieved. The discussion is based on the premise of

unsustainable processing scalability for network IO as Ethernet speeds increase; as

depicted, (Table 1) by the approximate cost of Sockets based communication at 10Gbps.

It is clear that the host CPU under the traditional model is tasked with the bulk of the data

movement operations.

Traditional Stack Approximate CPU Networking Cost RDMA Stack
TCP/IP Processing ~40% L3/L4 Offload
Intermediate Buffers ~20% RDMA
Context Switch ~40% OS Bypass

Table 1: Approximate 10Gbps processing costs for single sessions TCP transfer.

The CPU overhead related to networking is generally estimated at 1 Mhz of CPU

required for each Mbps of un-accelerated network throughput. As an individual

connection scales to 10Gbps, a 20 Ghz CPU is required to drive a single session of bi-

directional link communication [9]. An emphasis is placed on un-accelerated in the

example due to the fact that there are several stateless offload mechanisms that are typical

in server L2-4 communication (Table 2). Stateless acceleration refers to hardware

mechanisms whereby the state of the connection and protocol processing is not

transferred to an external hardware entity for autonomous management on behalf of the

software. Though stateless mechanisms can alleviate the CPU processing costs and

measurably reduce latency, they preserve the existing limitations of traditional OS

 7

Kernelspace stack processing previously highlighted (Table 1), and thus will not

efficiently scale in the presence of speeds greater than 10Gbps.

Mechanism Description and Purpose

Checksum
Offload

Delegate checksum generation and decode of IP, TCP, and UDP packets to
underlying NIC adapter ASIC such that the OS is relieved of performing the
computations.

Large Send

Allows for the OS stack to pass up to 64K of data to the adapter as a single
transmission. The adapter hardware will segment the data into MTU size
frames based on the negotiated MSS value. Additionally, it will perform IP
and TCP checksum generation for each packet. This allows for a single
large send operation versus ~43 individual operations at MTU 1500, thus
reducing CPU utilization

Large Receive

Coalesce and build multiple receive packets from the same TCP session (up
to 64KB) in the hardware or software L2 processing such that a single data
transfer operation is passed to the receiving Socket rather than ~43
individual operations. Similar benefits to Large Send.

Receive Side
Scaling

Allows for parallelism on receive packet processing by utilizing multiple
interrupts sources and hashing the 5-Tuple connection information to
separate CPUs. Thus distributing the load for receive processing among
multiple CPUs in the system. Allows for utilization of available bandwidth
with multiple connections. Provides lower latency but does not accelerate
single session communication.

Jumbo Frames
Non-standardized MTU size (Up to 9KB) to reduce the data movement
operations from OS to the network. Similar benefit as Large Send and
Large Receive.

Table 2: Ethernet stateless offload techniques.

2.1 CONTEXT SWITCHING

A contrast of the Sockets model (Fig 1.1) versus the RDMA model (Fig. 1.2)

serves to show the location of performance bottlenecks. The context switch cost (1.A)

consists of when a CPU must switch from Userspace processing to Kernelspace

privileged processing and vice versa. During this operation the CPU must save off the

Userspace application states, registers and pointers for restoration after the Kernelspace

operations have completed. This cost is a necessity due to the presence of protocol

processing in Kernelspace. Later sections demonstrate how the elimination of context

 8

switching (1.A) is a consequence of the eliminations of intermediate buffer copies (1.B)

and protocol processing (1.C).

Figure 1: Sockets model vs. RDMA model.

2.2 INTERMEDIATE COPIES

In the traditional Sockets model, an application writes data into a Socket buffer

that is copied (1.B) into Kernelspace for protocol processing. After protocol processing

is complete, the kernel passes the application data to the underlying adapter for packet

transmission via DMA. Clearly the reverse operation occurs on packet reception with

similar costs in data copies. A major bottleneck associated with data copy operations is

the fact that aside from the CPU cost, a memory write requires two memory bus

operations, the first operation performs a read, and the second performs the write. The

result is that for N bytes of data to be copied, it consumes N*2 the memory bandwidth.

The performance impact is obviously relative to copy frequency and size, regardless, as

line speed increases, the copy operations pose a limitation since the memory bus may

become overloaded and Userspace applications are now at a disadvantage relative to

Kernel

NIC

Application
Buffer

Buffer

L3

L4

Driver

Kernel

RNIC

Application
Buffer

L3

L4

Driver

 (1) (2)

(A)

(B)

(C)

(D)

(E)

 9

prioritized Kernelspace operations. Under the RDMA model, a mechanism is provided

whereby an application can register its memory directly with the underlying NIC such

that it is visible to both entities (1.E). A Userspace application can now initiate control

and data movement operations between itself and the underlying NIC directly, without

the mediation of the OS. From the NIC point of view, it has DMA read and write

capability directly to the Userspace data, hence data transfers are not subject to

intermediate copies by the OS. This practice is commonly referred to as Zero-Copy.

2.3 PROTOCOL OFFLOAD

The movement of protocol processing to the NIC (1.D) effectively means that the

majority L3-4 processing is now resident on the adapter hardware via a combination of

vendor specific implementation of hardware and firmware. Under the iWARP model, it

is referred to as TCP Offload Engine (TOE). Similarly, under the RoCE model, the

standard IB Transport and Network (L3-4) hardware offload mechanisms are carried

forward. The protocol processing offload addresses connection timers, sequence number

generation and tracking, reception acknowledgements (ACKs), and retransmissions.

Hence the host CPU now has a reduction in preemptions from said operations, resulting

in more free cycles for application usage.

The OS is circumvented as an active participant during data transfers but it is still

the mediator for the creation and destruction of RDMA resources, analogous to Socket

resource management. Similarly, the OS also performs the address resolution service,

thus the acquisition of the destination MAC address is resolved through ARP for both

cases since the RDMA functionality is effectively an extension and superset of the basic

NIC functionality.

 10

2.4 RESOURCES

Operations executed by an RDMA capable application are based on the creation

of a direct and unique communication channel (Endpoint) with the underlying network

adapter. The adapter may be referred to as a Host Channel Adapter (HCA), however

with the convergence of both iWARP and RoCE on Ethernet the standard naming

convention in the industry is referred to as RDMA capable NIC (RNIC). The

communication channel established with the adapter is based on a set of standardized

Verbs and Resources (Fig. 2) within the IB Architecture, and is also reused within the

iWARP specification. Neither of the former RDMA implementations uses a defined API,

but rather a set of operations which are encompassed by the Verbs representing an

abstracted function that may be implemented as any combination of hardware, software

or firmware [10]. The application, though free to do so, is unlikely to use the Verbs

directly for communication across the network, as the intent of the Verbs is to provide a

rich set of functionality over which a formal simplified API can be defined for

application usage. Examples of such APIs are Sockets Direct Protocol (SDP) and Direct

Access Programming Library (DAPL), neither of which exposes the Verbs interface to

the application.

A key ingredient of any RDMA deployment is a rich set of APIs and interfaces to

facilitate adoption and interoperability with legacy interfaces. In an effort to avoid

proprietary and incompatible APIs, the creation of an Open Source and relatively

portable RDMA API set was created by the Open Fabrics Alliance (OFA) [11] in the

Open Fabrics Enterprise Distribution (OFED) package. OFED is the most widely

deployed RDMA communication stack in both HPC and enterprise data centers.

Currently, over 80% of the Top500 supercomputers in the world run the OFED stack.

 11

Given its lead in market adoption, the majority of the RAS discussion on RDMA is

focused on the OFED implementation of RDMA.

Figure 2: RDMA Endpoint resources

Endpoint resources are created via application communication with a Userspace

IB capable Provider Library tied to the application instance (Fig 2 A). In order to create

the resources, a series of Verb operations are executed by the specific API in use on

behalf of the application. For any given Endpoint, a Protection Domain (PD) is used for

security and isolation from other like resources. All of the user specific RDMA resources

fall into this domain. The primary component of an Endpoint is a Queue Pair (QP) that is

composed of a Send Queue (SQ), Receive Queue (RQ), and a Work Queue (WQ). The

SQ is used to execute RDMA Read, RDMA Write, and RDMA Send operations into the

WQ, which the RNIC uses to obtain the command and control operations. An RQ is used

post buffers visible to the adapter and inform the adapter where incoming network data

from the remote peer should be placed. The buffers posted into the RQ must be pre-

Verbs

Provider Library

Application
(user context)

PD

Endpoint

WQ

CQ

SQ

RQ

MR
 MR

RNIC

Network

Software
Hardware

L3/L4

API

(A)

 12

registered with the RNIC as a Memory Regions (MR) object. An MR is the

representation of a contiguous memory area to be used by the application and DMA

accessible by the RNIC. A Completion Queue (CQ) provides an asynchronous

notification and completion mechanism to allow software to track when a specific event

or error has occurred. The CQ notification mechanism is typically used to notify the

application that an RDMA Write, RDMA Read or RDMA Send operation has completed.

The Verbs to create and destroy resources are generally synchronous in that the

execution thread from the application traverses into Kernelspace and back. However the

operations for data transfer such as RDMA Read, RDMA Write, RDMA Send and

Receive are asynchronous in nature. This stands in contrast to the Sockets model, where

an application typically has a thread listening for receive data on the Socket, hence the

listening thread is blocked. In the RDMA model, data arrival or operation completion

occurs as an event to be handled by the application via a purely asynchronous

mechanism, similar to an interrupt handler.

2.5 OPERATIONS

RDMA supported connection types and operations differ between iWARP and

RoCE (Table 3) [6]. The instantiation of a QP within the Endpoint determines the

connection type and the desired reliability level. Four basic IB services compose RDMA

transport functions. The Reliable Connection (RC) service is the standard connection

establishment between Endpoints that, as the name implies, provides reliable

communication. The Unreliable Datagram (UD) service is analogous to UPD where a

message can be sent to an Endpoint without connection establishment. The Unreliable

Connection (UC) is similar to RC in terms of connection but does not provide reliable

message delivery. Lastly, the Reliable Datagram (RD) service allows for reliable

 13

message delivery to an Endpoint without the connection establishment mechanism via the

use of IB specific L1-2 network features. There is clearly a difference in the scope of

RDMA support between iWARP and RoCE. The IB RDMA implementations are much

richer in features, whereas iWARP only supports Reliable Connection (RC). This is to be

expected as the underlying transport service behind iWARP is TCP, which is natively a

connection based reliable transport.

Transport
Function

Reliable
Connection

Unreliable
Connection

Reliable
Datagram

Unreliable
Datagram

iWARP
Support

RDMA Send Yes Yes Yes Yes Yes
RDMA Write Yes Yes Yes Yes Yes
RDMA Read Yes Yes Yes Yes Yes
Atomic Op Optional No Optional No No
iWARP Yes No No No

Table 3: Transport Function Supported for Specific Services

Of the supported RDMA operations, all except Atomic Operations are common

with iWARP. Each of the operations, excluding atomics, allows for the transmission of

up to 2^31 bytes of data prior to CQ notification. The Receive operation is only used to

post buffers which allow the Endpoint to be the destination of RDMA Send operations,

thus for practical purposes is it not considered a true RDMA operation.

The RDMA Send operation allows for sending data to the remote Endpoint

without the need to exchange or negotiate the memory destination of the message. The

data will simply be placed on the next available free buffer on the remote Endpoint. This

operation is typically used to exchange memory information and control messages in

preparation for the RDMA Read and RDMA Write operations.

RDMA Write operations allow for an Endpoint to write directly into the pre-

negotiated memory destination of the remote Endpoint. As previously mentioned the

memory control information is exchanged via RDMA Send operations between the two

 14

Endpoints. Afterwards, the writing Endpoint will perform a contiguous write operation

into the destination Endpoint memory. Upon completion, it is up to the sending Endpoint

to determine if a separate RDMA Send operation is required to identify when the CQ

notification is provided to the sending Endpoint, indicating the data transfer process has

completed. The same notification mechanism is required for RDMA Read operation

completion.

The RDMA Read operation is similar to the RDMA Write, but differs by the fact

that when the memory destination parameter exchange between the Endpoints occurs, the

initiating Endpoint memory is the target of the RDMA Write operation. Hence the remote

Endpoint is actually performing an RDMA Write into the memory specified by the

Endpoint initiating the RDMA Read operation.

2.6 RDMA COMPARISONS

In discussion of the differences and commonalities between iWARP and RoCE,

several high level design points must be noted when describing RDMA and how each

implementation fits into the enterprise and HPC environments.

In a nutshell, iWARP is a best fit for interoperability with existing switch

infrastructure and WAN communications due to the fact that it leverages TCP/IP as the

protocol offload mechanism. This becomes important with the rise in demand for large

data transfers via streaming data such as video, music, and torrents. Though the

aforementioned can run over UDP, current implementations in the market stream this

data over TCP. With the combination of Client based software iWARP [12] and Server

based hardware iWARP, it is possible to create a Server efficient mechanism for high

speed media dissemination over the internet [13] which cannot be accomplished with

RoCE due to the aforementioned routing and interoperability issues with IB.

 15

Figure 3: and iWARP over Ethernet

iWARP packets are virtually indistinguishable from standard TCP/IP packets on

the network (Fig. 3) [15] unless deep packet inspection beyond L4 is performed. This

interoperability however comes at a cost in terms of complexity. The iWARP protocols

require special standards workarounds to convert a Streams based communication

mechanism into a Message based mechanism. Thus the application of the Marker PDU

Alignment (MPA) [14] protocol is required. Additionally, the enablement of TCP no-

delay options avoids the coalescing of data for transmissions typical of Streams

protocols. Effectively forcing the protocol offload mechanisms to encompass a Streams

to Message conversion in hardware which is of more complexity than a native Message

based protocol such as the IB Transport. It is noted that iWARP can also leverage SCTP

which is also Message based, however, to date there is no wide market adoption of

iWARP SCTP, which is expected as there are few major adoptions of standard SCTP,

therefore SCTP is omitted as a viable alternative to RoCE.

From a RoCE point of view, the fact that it utilizes a native Message based

transport specifically engineered for efficiency and HPC, translates to higher bandwidth

processing capabilities and lower latency by design; RoCE therefore outperforms iWARP

RDMA Application

Verbs

User Space

APIs (SDP, DAPL, etc…) Kernel Space

ULP

L4
IB Transport TCP

L3
IB L3 IP

Ethernet L2

 16

in cluster based IPC, and distributed systems. With its adoption over Ethernet, RoCE

addresses the needs of most enterprise data centers since the routing aspects can in theory

be resolved with Ethernet to IB bridges. The market for such devices is quite niche, thus

there is currently no wide adoption for the approach.

Lastly, the aforementioned discussion touches upon the key points and concepts

relevant as background information for implementing RAS on RDMA implementations.

An exhausting review of RDMA technical details and comparisons falls outside of the

intended scope, thus the reader is encouraged to review the references further technical

information.

 17

3.0 MOTIVATION

With the adoption of RDMA over Ethernet, the traditional NIC software

functionality and requirements has been extended, hence RDMA support becomes a

superset of the basic server NIC functionality. In order to understand the motivation for

RAS application over RDMA enabled NICs, it is best to describe the underlying software

NIC framework over which said functionality will be deployed.

Figure 4: Generic NIC driver software Architecture

Typical software architectures for an L2 NICs (Fig. 4) are composed of 5 driver

entry points, excluding configuration. Execution of the NIC entry points is simplistic in

nature since the Open and Close operations occur only at setup or teardown of the

interface. The IO Control (IOCTL) entry point addresses special and rare operation cases

such as multicast address registrations and statistics gathering; it is not considered a

hotpath. A hotpath is defined as an execution path that is sensitive to performance, hence

requiring additional design considerations during implementation. The remaining

Kernel

NIC
Driver

DMA
Mem

DMA
Mem

NIC

RX

Network

TX IOCTL

Open
Close

Interface

L3/L4

Software
Hardware

Application

Socket

 18

Transmit (TX) and Receive (RX) entry points are the hotpaths. In a multiprocessor

system there may be multiple instances of Transmit and Receive pairs to leverage

parallelism, also known as Receive Size Scaling (RSS) [16].

3.1 RNIC EXTENSIONS

With RDMA, the standard NIC driver is extended in functionality (Fig. 5) via the

addition of a Provider driver interface (Fig. 5.B), which extends the existing 5 NIC entry

points with more than 40 new entry points. The Provider driver interface contains the

bulk of the software logic to handle RDMA resource create, destroy, and management

operations. RDMA entry points differ from the standard NIC entry points in three ways.

Firstly, the generic NIC interface allocates and destroys all resources at Open,

Close, and Error time only, whereas a Provider interface uses dynamic resource

management. RDMA Endpoint resources are granular and dynamic by design, which is

to be expected as they are representative of unique connections. Endpoints are analogous

to the dynamic and granular nature of TCP connection establishment, hence a Provider

driver interface must allow for concurrency and scaling, not typical of a generic NIC

driver, during Endpoint allocation and de-allocation.

Secondly, RDMA resources allow for unprecedented scale in the number of

resources. A typical iWARP RNIC allows for roughly 64K CQs, QPs, PDs, and MRs

resources. Hence, software RNIC architectures must scale from the typical 5 NIC

resources up to 256K Endpoint component resource instances. Similarly, a larger

resources scaling requirement is necessary for RoCE, since the maximum supported

resources are 1.2M for each of the previously mentioned types.

Thirdly, the Provider interface also contains a Userspace Provider Library

component (Fig 5.A) which is dynamically loaded by the API or user application

 19

instantiation. The Provider Library allows for the execution of RDMA Verbs from

Userspace, and transitions to Kernelspace on the executing thread for resource allocate

and destroy operations. After the Endpoint resources are created, and during data

exchange between Endpoints over said connection, the Verbs interface allows for

operation between the API (application) and RNIC directly through the Verbs interface

and bypassing the OS.

Figure 5: Generic RNIC driver software Architecture with RDMA Extensions

Lastly, as is to be expected, the Userspace Provider Library is vendor specific,

just as the NIC and Provider drivers; hence any two separate adapter types will

necessarily contain unique software versions of their respective Provider Library.

Network

Interface

L3/L4

Software
Hardware

Provider
Driver

NIC Driver

Kernelspace

Driver

Provider Library

Userspace
RDMA Verbs

Application

API

RNIC

(A)

(B)

 20

3.2 RAS LIMITATIONS

Given the comparison between NIC and RNIC software architectures, a detailing

of the challenges from an enterprise RAS point of view is necessary. The OFED

implementation of RDMA and the associated certified vendor specific drivers that ship

with the installation image provide a measured level of reliability via certification testing.

Though important and essential for deployment, it provides differing serviceability

approaches within the separate modules, similar to what is provided via any Open Source

software. The inconsistency is most evident in the vendor specific RNIC drivers where

any combination of debug levels, Syslogs, and error messages are used as the primary

vehicle. Obviously, the extent to which each is implemented is specific to the OS and

vendor implementation. As an example, Linux RAS is mostly based on Syslog and printf

as the sole kernel vehicles. Regardless, this approach tends to foster trial and error types

of root cause determination that is unacceptable in an enterprise data center.

Another challenge inherent with RDMA is the fact that the protocol processing

has been offloaded to the underlying RNIC. The RNIC now contains the processing

engines and states for L3-4, which are not accessible by the OS. Traditionally, these

layers are processed in Kernelspace where the data is globally visible, such that when an

unexpected operation occurs, all modules can be inspected for traces, states, and errors to

determine root cause. In having the L3-4 processing in hardware, its error data is no

longer readily available.

To further complicate this matter, the L3-4 implementation of protocol processing

in hardware is vendor specific and will differ across RNIC adapters from different

vendors. In a stateless offload environment, a single software based L3-4 stack is used

across multiple NICs, hence simplicity via singularity is achieved. As the L3-4 offload

processing moves into vendor specific RNICs, it becomes the equivalent of having both

 21

multiple instances of L3-4 stacks, and differing implementations of each. Resulting in

the possibility that a protocol problem addressed by one adapter will not necessarily be

addresses in another. Just as an OS is typically subject to errata and updates to address

L3-4 protocol processing issues, the underlying RNIC must now be managed in the same

manner. The requirement poses a management problem since RNIC vendors can have

differing approaches and rates of errata application, thus the role of systems management

has been complicated.

Concurrency in an RDMA environment must be revised since the simplistic

serialization mechanisms used for a NIC cannot scale to meet the needs of dynamic

resources. The parallelism and serialization of Provider entry points falls under the scope

of the device driver rather than the interface to the driver. Critical Paths must be tracked

and monitored in more detail such as to avoid conditions where an RNIC Fatal Error or

Close operation causes invalid operations or memory accesses.

3.3 SOFTWARE DEVELOPMENT AND SUPPORT

Software maintenance is widely known to be the single largest cost of software

development expense. Deployments of RDMA in data center environments must be

enhanced to allow for ease of Serviceability such that a support team can obtain forensics

data in the face of error, with minimal trial and error cycles. Enterprise RAS features

such as granular level tracing, system level dump, software component level dumps,

resource operation history, and detailed error logging can be implemented in RDMA

environments. RAS features may carry a cost that can result a measurable performance

difference between a non-RAS RDMA implementation and a RAS enabled

implementation. Such architectural tradeoffs are the focus of the discussion at hand.

The problem has been recognized by Commercial OS vendors and the US Department of

 22

Defense with concerns about the cost of performance at the expense of human effort [4].

The RAS enhancements for RDMA communications will leverage key architectural

improvements from both Academia and enterprise OS vendors to enable granular and

dynamic levels of RAS.

 23

4.0 RELATED WORK

A software product may work correctly without a robust RAS architecture;

however as it is extended, additional testing and verification must take place. This is

commonly accomplished via static and dynamic analysis source code analysis, Unit

Testing (UT), Functional Verification Testing (FVT), and Integration Systems Testing

(IST), of the source code in place of RAS. While analysis certainly serves to catch

coding errors, it does not allow for catching architectural errors. UT, FVT, and IST are

attempts to cover all hardware and software interactions; however it can rarely address

the myriad of external error conditions triggering incorrect software or hardware

operation. For these reasons a robust RAS architecture serves as an essential mechanism

to provide recovery and data acquisition in the face of unexpected operating error and

conditions.

A review of the main RAS topics with existing examples is performed, along with

a highlight of the benefits and deficiencies of each in order to establish the groundwork

for the RDMA RAS architecture. Recognizing the OFED implementation of RDMA is

not the sole implementation in the market, it is noted that some or similar features

discussed may be present in proprietary RDMA implementations from vendors such as

IBM, HP, Sun, Microsoft, etc. The fact that said implementations are closed source

translates into an inability to review in detail their supported RAS capabilities, thus the

general approach is to provide a generic RAS architecture and development guidelines to

explicitly address deficiencies which can be implemented or ported to any of the

aforementioned OSes.

 24

4.1 RELIABILITY

Software reliability is based on the likelihood of operation without failures for a

predetermined amount of time and in a predefined environment. In the case of RDMA,

both software and hardware reliability must be considered due to the stateful offload

capabilities. Software components should make all possible attempts to overcome and

continue operation in the advent of both software and hardware failures. Hence this is

effectively the implementation of fault tolerance in a combination of both software and

hardware. It is clear that fault tolerance can be achieved via distributed computing and

clustering at the systems level, however these are coarse solutions and have larger scope

than simply recovering from an RNIC error. A focus is placed on aggregation techniques

that allow for the abstraction of the underlying RNICs into a single interface to the

application or OS user.

4.1.1 Aggregation

Two well known Ethernet reliability concepts are IEEE 802.1AX [17] and NIC

Teamming [18], both of which provide the aggregation of multiple physical links as a

single interface to the OS, thus allowing for uninterrupted and fault tolerant

communications in the event of NIC errors or link loss. The approach leverages the fact

that the L3-4 processing is contained within the OS (Fig. 6.A), such that the state of a

given TCP connection on NIC(x), can be easily transitioned to NIC(y) with minimal loss

or retransmit operations. The solution however, does not meet the needs of RDMA

enabled communication. As mentioned previously, the offloaded L3-4 processing is tied

to a specific RNIC (Fig 6.B). Hence the Endpoint connection context and state are tied to

a specific RNIC, and cannot be shared among RNICs. To date there are no known public

 25

or proprietary adapter connection state extract and insert mechanisms for stateful offload

that would allow for such action.

Figure 6: Native OS Stack and aggregation challenges due to L3-4 Protocol Offload.

The IB architecture specification defines a feature known as Automatic Path

Migration [6], which allows for the specification of primary and alternate physical

network paths for a connection. Path Migration allows for a given connection to be

registered with multiple ports on the same adapter and subsequently separate network

paths. The ports share the same adapter L3-4 contexts. At Endpoint creation time,

primary and secondary paths contexts are specified. If the primary path and underlying

network port loses its link, or connectivity due to downstream switch outage, then a

transition to the secondary path is automatically triggered. Unfortunately, this feature is

not supported under the RoCE implementation as it leverages IB L2 features not

available in Ethernet. Furthermore, it requires the registration of the Endpoint with both

Kernel

RNIC J

Switch

Network

RNIC K

Switch

L3 L3

L4 L4

Kernel

Application

NIC X

Switch

Network

NIC Y

Switch

L3

L4

Application

 (A) (B)

 26

ports on the same RNIC, therefore it does not solve the Single Point of Failure (SPoF)

scenario from the adapter point of view as is addressed by NIC aggregation.

Application or user level aggregation is possible; however it places the burden of

resource management and failure on the Verbs user. Though the approach achieves the

desired elimination of SPoF for RDMA, it necessarily means that each Verb user will

need to implement a proprietary mechanism. Given the OFED stack provides a wealth

of existing APIs to abstract RDMA functionality, they can be extended to also abstract

aggregation functionality, such that the application does not have to account for it. Thus

it provides a more desirable approach to avoiding both duplicity and complexity.

4.2 AVAILABILITY

Availability refers to the capability of a system to operate in a normal or degraded

state in the event of unexpected operations; commonly referred to as Uptime. Enterprise

class systems designs strive to achieve the ideal 99.999% uptime via any combination of

RAS features. A discuss of existing mechanisms to prevent or circumvent system

outages is provided.

4.2.1 Device Recovery

The typical RNIC adapter is PCI attached and subject to hardware errors

uncorrectable by software. Depending on the error type and timing, it is possible for bad

data to be placed on the PCI bus and a resulting machine check interrupt occurs. This

event typically results in a system crash and requires a system restart to recover. In large

enterprise class servers a common feature known as PCI Enhanced Error Recovery

(EEH) [19] is available to reduce the likelihood of system wide outages. EEH provides a

 27

means where each PCI slot is dedicated PCI switch, therefore a PCI bus error can be

isolated to slot domain that is not possible under s multi-PCI slot to switch scenario.

When the PCI error is detected, the slot is frozen resulting in no further IO operations.

Software is responsible for checking for the freeze condition. If the software driver

detects such condition, then a graceful software error exit occurs. The adapter is then

reset and reinitialized to continue normal operations. Said actions effectively recover the

adapter and circumventing a permanent PCI error which would have resulted in system

crash or reboot. The entire process typically completes in a few seconds.

The major caveat of this approach is that all RDMA connections must be closed

and restarted when the RNIC is reinitialized. A solution such as Path Migration does not

resolve this problem since both primary and backup paths would be on the same RNIC

and subject to the same freeze condition. A further complication to RDMA is the fact

that Endpoint resources in Userspace have a direct channel to the RNIC via the Endpoint

resources, and thus their software cleanup operations must complete prior to allowing for

the RNIC hardware re-initialization operation to start. This allows for a condition where

if an application does not perform proper Endpoint cleanup, it blocks the recovery of the

RNIC for an extended period of time, resulting in extended network outages. A

mechanism to address this issue by tracking the Endpoint process IDs is provided within

the RDMA RAS architecture, furthermore it allows for automatic or manual removal of

the Endpoint resources.

4.2.2 Memory

Memory is considered a crucial component of systems availability and the subject

of years of RAS research. Clearly an exhaustive discussion of all existing mechanism

which apply to RDMA communications is not feasible. For the purpose of RDMA,

 28

emphasis is placed on existing techniques that allow for ease of implementation when

extending the functionality from the NIC software architecture to the RNIC software

architecture. A focus is placed on memory and resource leaks, memory corruption, and

memory serviceability.

Software memory management, when applied to RDMA, has the peculiarity of

allowing for instrumentation with minimal performance impact when compared to

Sockets communication. This is due to the fact that when an Endpoint is created under

the RDMA model, the operations require the creation of multiple resources (PD, QP, CQ,

and MRs), and registrations of each between the OS and the underlying RNIC. A typical

connection setup and first time to byte comparison shows that TCP takes roughly 0.1ms

whereas RDMA takes roughly 202ms [20]. hence RDMA tends to favor persistent long

lived connections. Given these characteristics, memory instrumentation is unlikely to

add significant overhead to RDMA performance.

4.2.2 Memory Leaks

Most modern operating systems have low focus on RAS features to pinpoint the

source of a memory leak. It is normally left up to the application developer to perform

graceful cleanup. In most cases the OS will prevent memory leaks for Userspace,

however in Kernelspace the operation is somewhat more complex. Garbage collection is

not typical, hence kernel operations such as the low level RNIC driver and Provider are

forced to track each resource allocated and exit gracefully during Close or Error. The

number of resources can scale into the millions, thus the resource tracking mechanisms

can become complex. Given the peculiarity of RDMA resources in allowing for the

instrumentation of memory allocations, a mechanism is required to track the memory

allocated and additional details such as resource, user, and source code data. This differs

 29

from existing efforts in that it occurs at runtime, is generic, and avoids complex

algorithms [21] [22] which do not provide the descriptive data to clearly show the root

cause.

4.2.2 Memory Corruption

Applications residing within the same OS instance are typically not subject to

overwriting each others memory, however the OS kernel is a privileged entity and able to

perform incorrect write operations to both Userspace and Kernelspace. A technique or

mechanism is necessary for the application to detect and recover from said memory

corruption on its critical data structures. A proprietary hardware mechanism to detect

such a condition exists via Storage Keys [23] which allow for the hardware protection of

memory associated with a process. The Keys are a set of shared resources and requires

the multiplexing of multiple processes into the same keys. Furthermore is does not

address the case of an application corrupting its own memory. Typically, software type

corruption is characterized by byte alignment since the smallest granularity is a word,

whereas hardware corruption tends to be bit based and associated to DMA mapped

memory only. A technique to probabilistically detect and prevent the use of corrupted

data within Userspace and Kernelspace software is necessary such that the RNIC driver

and Provider Library are protected from external memory overlay errors.

4.3 SERVICEABILITY

The serviceability aspects of RDMA revolve around the expectation that the

operations, software, and hardware resources composing the Endpoints and network

communications are accessible, verifiable, and traceable such as to facilitate diagnosis of

 30

problems or issues resulting from incorrect operation or errors. In the advent of said

events, a system is typically taken out of the production environment (offline) when

possible, to diagnose and or recreate the problem. This action has both a monetary and

business cost for both the customer and the service Provider. The shorter the Mean-

Time-To-Repair (MTTR), the sooner the system can continue operation at the expected

Reliability and Availability levels. From the service provider point of view, the sooner

the diagnosis and repair are completed the lower the software service cost incurred.

4.3.1 Trace

Tracing is the primary debug vehicle for both Userspace and Kernelspace

software development. A System Log (syslog) also allows for providing equivalent

functionality. Taking the Linux OFED stack and RDMA as examples, it is clear that the

tracing capability is quite coarse. The driver, OFED stack and Provider components do

not have a defined mechanism to implement dynamically tunable traces and levels

without requiring a recompile of the source code. Clearly this approach is tedious and

requires manual steps to problem recreation. A dynamic and tunable tracing mechanism

for both Userspace and Kernelspace based on the Log4J concept [24] is preferred.

Granular tracing allows the user to tune the level of tracing on a given path and balance

the performance impact, thus conditions where tracing or debug can mask off timing and

performance sensitive issues can be addressed in a more dynamic fashion.

4.3.2 Debugger

Another commonly used debug tool is the system debugger. During a system

crash or investigation into incorrect behavior, the debugger provides access to structures

 31

in memory and the historical trace data. From the Kernelspace point of view, the

debugger can be used to obtain a global view of all of the memory and variables, in host

memory at the time of crash, associated with Endpoints and any software based RDMA

resource. Furthermore, the values in memory can also be modified such that execution is

instrumented in a live system. The major caveat of the debugger is the cognitive

complexity inherent in its use (Fig. 7). The developer investigating an issue has to

perform a series of mathematical steps to acquire and translate memory locations into a

human readable format. A mechanism to automate and reduce this process is essential in

achieving a low MTTR. Clearly the use of ASCII markers and decoders can address this

issue and reduce the cognitive complexity inherent in raw debugger commands.

Figure 7: Typical debugger output

4.3.3 Error Log

An OS error log [25] provides a means whereby critical events and informational

messages about the system state can be clearly communicated to the user. This facility is

commonly used to perform automated service callout, notify the system administrator,

and optionally communicate to the system vendor both software and hardware errors

which need immediate attention. The robustness and capacity of the logging facility is

dependent on the specific OS implementation. Implementations such as the AIX OS

F1000A0018DE0060: 00000000FFE7E000 0000000080000000

F1000A0018DE0070: 00000000FFE7F000 0000000090000382

F1000A0018DE0080: 0000000090000382 0000000000008C03

F1000A0018DE0090: 0000000100000001 0000000100000118

F1000A0018DE00A0: 0000022500000226 0000022700000228 ...%...&...'...(

F1000A0018DE00B0: 000002290000022A 0000022B0000022C ...)...*...+...,
F1000A0018DE00C0: 0000000800000002 0000000000000000

Address: 64bit word 64bit word ASCII Decode

 32

error log provides facilities to capture and display to the system administrator sufficient

data to allow for corrective actions or potential workarounds to non-automatable recovery

solutions. This concept is leveraged within the RDMA RAS architecture for cases where

the RNIC device cannot be, closed, reset, or recovered.

4.3.3 Statistics

 During Endpoint connectivity issues, performance degradations, or general

system problems, a robust and granular statistics framework serves as a means to answer

many of the questions and concerns that would traditionally be the subject of debugger

analysis. A basic statistics framework will obtain and display data about the connection

and states, but usually limiting the diagnostic functionality. In an RDMA RAS

architecture, the traditional statistics framework must account for the myriad of rare

errors and conditions for ease of serviceability purposes.

A traditional TCP stack in kernel statistics approach does not typically account

each socket resource nor for L2-4 as a single entity. It is therefore typical for statistics

programs to be bounded to a specific network layer such as L3 or L4. In the RDMA

case, since the L3-4 processing has been offloaded to the adapter, any RDMA specific

statistics framework necessarily has to encompass L1-4. In accounting for said layer

information, the remaining issue is the identification and association of the (PD, MR, CQ,

QP) resources that compose individual Endpoints. Hence statistics in the RDMA case are

significantly more complex than both the traditional NIC and the traditional

communication stack in Kernelspace approach.

 33

4.3.4 System Dump

System dump is the most disruptive and typically the serviceability action of last

result. A system dump [26] is configured by the system administrator such that when a

fatal error event occurs within the OS, all memory contents are written to either a local

disk or remote network dump device. This allows for the post mortem analysis of all

system memory and states. For a large enterprise server, the dump will necessarily be of

the same size as the system memory in use for the OS which initiated the dump, hence it

is not uncommon to perform post mortem analysis on >10GB of memory to find root

cause. This technique requires the application of the debugger to interpret the memory

contents. A system dump debugging approach is coarse and causes excessively long

system outages. It is therefore necessary to provide a mechanism whereby a very

granular component dump mechanism [27] can be applied which obtains only the

memory snapshot of interest, thus avoids the full system outage time resulting from a

normal system dump.

 34

5.0 ARCHITECTURE

Given the aforementioned limitations and inefficiencies in the existing combined

approaches to RAS application in the face of RDMA, the individual components within

the architecture are order and discussed by groups. Several of the proposed RAS

components are interrelated (Fig. 8) and build upon each other. Though some

components within the architecture are not specific to RDMA operations, they are

currently unimplemented in current existing version of OFED or Linux RDMA drivers;

hence their adoption would serve to improve the RDMA RAS capabilities.

Figure 8: RAS component relationship

5.1 RELIABILITY

In order to enhance reliability, a set of guidelines and concepts intended to

improve self-checking and self-recovery in the presence of internal en external errors is

necessary. Three key issues must be addressed regarding reliability within the

architecture. Firstly, the act of tracking user process IDs such that a rouge user does not

cause an RNIC removal or recovery hang by omitting the de-allocation of Endpoint

PID Tracker

Atomic Thread
Tracker

Thread
Verification

Structure
Markers

PCI Error
Recovery

Unexpected
Close

Offload State
Verification

Memory
Management

Resource
Snapshots

Debugger
Scripts

Reliability Availability Serviceability

Component
Dump

 35

resources registered with the adapter. Secondly, a critical path protection mechanism to

atomically detect the presence of executing threads. Thirdly, the probabilistic detection

of host memory corruption via the use of structure markers. Lastly, a simplistic

mechanism to detect the API thread level violations which lead to system assert.

5.1.1 Process ID Tracking

Within the OS every process has a unique identifier known as the PID, this allows

for the system to perform the management, prioritization, security, and resource

association of all threads executing within the system. Under a traditional stack design,

the underlying L2 NIC driver is oblivious to the upper layer users. The L2 RNIC

software driver receives a single Open call and does not need to track each individual

user since the stack and L3-4 protocol processing occurs above and abstracts the

individual users.

In the case of an RDMA connection, the L2 driver has to be user-aware, since

each user with an established connection or Endpoint to the adapter effectively has

resources (PD, MR, CQ, and QP) associated with the adapter. Failure by a user to de-

allocate RNIC registered Endpoint resources (Fig. 9) will result in blocking the recovery

from a PCI bus Error or the removal of the device during a Close operation.

The failure to remove resources condition is typical in the early development

phases, bring-up, and integration phases of heavily multithreaded applications. Since

each resource is now actively tracked by both the Userspace Provider Library and the

Kernelspace Provider Driver with a PID association, the driver can extract this

information from the thread and build a table or list of active PIDs. Additionally, the

driver can extract the human readable thread name that identifies the parent process.

With the PID at hand, a verbose and detailed error log entry can be generated which

 36

contains PID of the rogue user, and the human readable application name owning the

process.

Figure 9: Driver paths blocked by non-deallocated resources

By tracking and reporting the PIDs by number and application name, it is possible

to provide a clear and concise mechanism of low cognitive complexity to allow a user or

customer support representative to detect and correct the misbehaving application by

manually or automatically killing the process. Thus providing a means to ensure the

interface works as expected in the presence of the inability to remove the device due to

outstanding Endpoint resource references. This feature circumvents system restart

actions and avoids extended debug cycles in identifying the source of a hung RNIC.

5.1.2 Atomic Thread Tracking

Given the number of driver entry points and the level of thread concurrency on

said entry points, a non-blocking mechanism to detect the presence of threads executing

in the critical path is required (Fig. 10). Under a traditional NIC driver the control (non-

performance) paths are protected by locks and the data (performance) paths are protected

by atomic flags to allow for maximum concurrency. As the NIC functionality is

Closing

Running Closed Open Blocking

PCI
Error

Recovery

 37

extended to support RDMA, the level of concurrency from the theoretical 64K+ users

necessarily forces all entry point paths to be atomic.

Figure 10: Non-Blocking kernel critical paths and dependent operations

The primary goal is to ensure that an unexpected Close or Error event that triggers

a software or hardware recovery action yields until all users have successfully cleaned up

their resources. A secondary effect of this approach is that it allows for validation of the

paths, during software design and development, to ensure there are no timing holes. The

Close or PCI Error recovery operations must yield until the currently running threads

have exited the critical section and have quieced, such that the L2 driver can perform a

graceful software and hardware Error recovery or Close.

Clearly this feature has interactions with the aforementioned PID tracking feature.

To clarify, the PID tracker provides the identification of the thread to kill for rogue users,

Kernel Driver Entry Points

RNIC

Network

Software
Hardware

Provider
Driver

NIC Driver

Kernel Space

Driver

RDMA App User Space

Interface

Close

In
te

rru
p

t

C
o

m
m

a
n

d

PCI Error

Socket App

 38

whereas the Atomic Thread Tracker provides a means to ensure the critical paths are

protected.

5.1.3 Thread Level Verification

Userspace threads within an OS run at process level from a kernel point of view.

Thought there may be manual prioritizations via the nice command in Unix based

systems, from the Kernelspace point of view it is categorized as process level. Within the

kernel processes can execute at either process level or interrupt level. There are several

kernel services which cannot execute at interrupt level, namely operations such as thread

sleep, memory translation, pinning services, and coarse timers are examples. Linux

based OSes contain just these two kernel thread levels, whereas advanced Unix based

systems such as Solaris, HP-UX, and AIX contains more granular kernel thread levels.

Given the brief background on process levels, the RDMA Verbs and APIs which

exploit them will have clearly defined input parameters which can be subjected to input

parameter sanity checks. In HPC RDMA applications, this is typically not carried out for

the sake of performance and the quest for the absolute lowest possible communication

latency. The standard practice is to trust the input parameters and flush out problems via

testing; clearly at odds with data center RAS practices. Hence input parameter checking

typically does not check for incorrect thread level. API violations due to thread level are

typically undetected until a kernel service which is not allowed to execute at interrupt

level fails; usually an unintended consequence of improper design. Upon said event, a

debug and analysis process of the crash scenario is required to identify root cause.

A simplistic guideline with minimal overhead is proposed which can be used to

obtain the thread level regardless of the OS in use (Fig. 11). The mechanism is most

applicable to kernel level RDMA Verbs access where varying priority levels are present.

 39

When this condition occurs, one can deterministically detect this violation and perform a

graceful exit, thus preventing system crash. In the absence of a native OS service to

obtain the thread level, the routine can as a software service to the binary of interest.

Figure 11: Thread level sanity checker

5.1.4 Structure Markers

Within the kernel, memory is globally accessible. Kernel software has the

capability to modify the memory contents of other kernel components, which opens the

door to programming errors causing data integrity problems. A kernel driver can also

access Userspace memory by performing a cross memory map operations, hence

incorrect kernel references to Userspace can also lead similar data integrity problems in

Userspace. The condition is not unlikely since these types of errors are difficult to

recreate and require significant time and manual effort in memory debug. Advanced

server systems such as IBM POWER contain a hardware based memory overlay

protection mechanism to detect this condition via hardware Storage Protection Keys [28].

Storage Keys operate by association of a key value to a subset of the system memory. An

inline int32_t
thread_level_check() {
 uint32_t priority;

 /* Transition to highest thread level, saving off the original level, followed
 * by an immediate restore of the original thread level */
 priority = disable_interrupts();
 enable_interrupts(priority);
 if (EXPECTED_THREAD_LEVEL != priority) {
 /* Unexpected thread level, assuming 0 is not a valid priority */
 execute_additional_debug_actions_here();
 return priority;
 }

 return 0;
}

 40

execution threads must provide the key at the software module entry points to

authenticate access to the memory. If an incorrect key is provided then loads and stores

to memory result in a program assert.

As with any hardware based mechanism, the quantity of physical resources

become the bottleneck when scaling is desired. Though the storage keys mechanism

provide a means to protect the system, it cannot scale linearly with the number of RDMA

resources, and thus results in key multiplexing which leaves a software module exposed

to memory overlay errors by other modules within the same storage key group. An

alternative mechanism to provide similar memory overlay problems is the use of

defensive programming techniques such as structure markers (Fig. 12). Markers allow

for rudimentary sanity checking of software structures prior to use, thus avoiding

operations on invalid data.

Figure 12: Structure marker definition and conceptual memory layout

At structure allocation or initialization time, a unique and well known value is

inserted in the start and end of the structure. Upon operations on said structure, the driver

simply validates the markers with the expected values. If the markers are not valid then it

foo bmark

typedef struct {
 uint64_t bmark;
 uint32_t array[1024];
 uint64_t emark;
} bar_t;

typedef struct {
 uint64_t bmark;
 bar_t bar;
 uint8_t a;

 uint16_t b;
 uint32_t c;
 uint64_t emark;
} foo_t;

bar

bmark

emark

emark

 (A) (B)

 41

is safe to assume that a data integrity problem has been detected. The thread may then

circumvent both the accesses to compromised memory and pointer dereferences.

Clearly this method is most effective in detecting contiguous unintended

overwrite operations in memory, thus its effectiveness is probabilistic and relative to the

size between the start and end markers within the structure. The addition of markers will

increase the memory footprint of the driver, however given that RDMA resources are

relatively large in terms of memory usage when compared to TCP/IP communications. It

is sage to assume that the size delta in memory footprint is negligible. Increases in

footprint are common as in the case when line speed increases and performance is of

priority. Structure markers are a basic mechanism exploited by other components within

the RAS framework..

5.2 AVAILABILITY

System availability is the means whereby it can recover from failed components

with minimal to no impact to the overall system. In the case of RDMA, the offloaded

L3-4 connection contexts are a particularly challenging issue to address. The goal of

serviceability for RDMA is to provide a mechanism to ensure the adapter and RNIC

driver can perform a graceful Close and Error recovery, along with a mechanism to

preserve the offloaded connection state information for future analysis in the face of such

error events.

5.2.1 Offloaded State Verification

As mentioned in previous sections, the L2-3 protocol offload into the RNIC

domain introduces challenges achieving availability. When the L2-3 protocols are in

 42

software, their state is globally accessible and transportable to any underlying stateless

NIC adapter. This allows for simplification of the availability approaches using 802.1AX

or NIC teaming. This however is not possible in RNICs since the connection context

resides within the individual RNICs. A failure by the adapter is effectively a loss of all

context information. Under the TCP in kernel approach, the TCP connections would still

be available and thus any losses would be addressed via retransmissions over the backup

links.

Figure 13: RNIC connections and states extracted into host memory

Though one of the major benefits of RDMA includes high-throughput and low-

latency, there are cases where the former are not hard requirements and the interest is

skewed towards low-power and low CPU utilization workloads. For these environments

it is feasible for the RNIC L3-4 states to be periodically extracted into host memory. A

simple design approach is to extract the L3-4 states at a software defined interval (Fig.

13). Given that adapter vendors are likely to contain proprietary implementations of L3-4

protocols, there are no explicit requirements placed upon the RNIC on how the contents

are used.

The main advantage of the state extract approach is that in the case of adapter

failure, the L3-4 and any additional adapter specific information is available in host

Kernel

RNIC X Switch Network

RDMA User

S
n
a

p
s
h
o
t L3

L4

 43

memory as a historical record to aid in root cause determination. During the service

process, the snapshot contents can be provided to the RNIC vendor for analysis.

Under the traditional RNIC model, an adapter failure will translate to loss of all

L3-4 information and connections from the RDMA application point of view; hence the

snapshot approach provides a mechanism to preserve critical connection details which

would otherwise have to be obtained via problem recreation and software

instrumentation. It is clear that the contents may not reflect the actual state of the device

at error time, however this approach provides at minimum some information that can aid

in debug whereas the lack of this feature translates to no L3-4 data available for analysis.

5.2.2 Aggregation

In order to overcome the SPoF scenario an RDMA API, such as DAPL or SDP,

necessarily has to implement the use of multiple adapters and implement aggregation at

the Endpoint level for both RNICs (Figure 14). Abstracting this functionality from the

application allows for API handling of any adapter failures.

Since the L3-4 connection contexts are resident in the RNIC memory, the API

must perform Endpoint creation across both adapters. This differs from standard

aggregation procedures, such as NIC Teaming and 801.1AX, in that the RDMA API must

duplicate all connection establishment operations and resource creation actions on both

adapters. The secondary adapter must have a connection context to the same remote host

as the primary. MR resources must also be registered on both adapters such that in the

advent of a primary RNIC failure, the application egress messages can be re-routed by

the RDMA API to the secondary adapter without the participation of the application.

Though both Endpoints can be used for transmission, concurrency may introduce

complexity in message ordering at the receiver based on network load balancing

 44

mechanisms in use. To overcome this, the sending API would need to hash traffic from

the sender to the same adapter always to avoid the out of order reception problem on the

remote Endpoint. It is therefore recommend, strictly for RAS simplification purposes,

that an active-passive approach be used.

Figure 14: API level aggregation to overcome RNIC SPoF

5.2.3 PCI Error Recovery

PCI bus errors necessarily translate to an adapter failure or freeze event for

systems configured with PCI Error recovery functionality. As described in previous

architecture components, when this event occurs, all L3-4 connection state information

resident on the adapter is lost. All RDMA connections will need to transition to error

state indicating to the user, that they must close and de-allocate all resources. A typical

PCI error implementation will take this into account and allow for a BUSY return by the

L2 driver during error recovery phases.

RNIC X

Switch Network

L3

L4

Kernel

API

 (A) (B)

Application

Primary

Switch

Secondary

Switch

L3 L3

L4 L4

Kernel

API

Application

Endpoint Endpoint Endpoint

(1)

 45

A viable approach to availability in the context of PCI bus errors revolves around

the intent to recover, reset, and restore the adapter to operational state as fast as possible.

Clearly rouge users who do not perform proper resource de-allocations will cause the

adapter recovery time to extend indefinitely, however the PID tracking mechanism

provides a means whereby any rouge processes are identified and brought to the attention

of the administrator or service personnel such that they can be manually removed. A

manual correction of this state clearly does not meet the availability requirement of fast

PCI error recovery; hence an automated mechanism is preferred. It is therefore

recommended that the PID tracker information be used by a management program to

cleanup the (rogue) processes. The implementation is simplistic in the sense that a

background process is executing on the system which the RNIC software registers with.

At error time, an asynchronous notification or wakeup is provided to the process that

receives or retrieves the PID and application name. If the application name is one of the

automatic removal candidates, the process proceeds to kill said application automatically.

The approach allows for implementing a guaranteed time quanta and bounds the

RNIC device recovery time. Hence to increase availability, the automated approach is

ideal as long as the candidates are defined and appropriate application teardown

operations are in place.

5.2.3 Unexpected Close

A typical Ethernet to the system assumes that it can be initialized by the action of

setting the IP address via manual or automated mechanisms such as DHCP. All

operations over the interface are multiplexed by L4 protocols over the IP address, hence

the removal of the IP address while connections are active result in the termination of all

connections. This is not the case under the RDMA model where offloaded connections

 46

are in operation alongside traditional non-offloaded connections. Clearly a removal of

the IP address on the interface will close non-offloaded connections; however it will not

close the offloaded connections. Without the NIC interface in place the RDMA interface

cannot perform address resolution via ARP, hence when the NIC interface is removed,

the RDMA connections must be terminated.

Before the device can be reconfigured again, the same mechanism discussed for

PCI Error recovery must be used, to ensure no rogue users extend the Close time

unnecessarily. If an automated solution is required, then the same constraints for

addressing any application specific PID destruction process are necessary.

5.3 SERVICEABILITY

Serviceability is defined as the capability to determine why a system failure has

occurred, and the associated ease with which the root cause determination can take place.

The RDMA RAS architecture attempts to address both hardware and software types of

failures along with guidelines and best practices for fast problem resolution. The key

focus is on speed in root cause determination to reduce maintenance costs.

5.3.1 Component Tracing

The tracing capabilities implemented in the OFED implantation of RDMA and

the standard Linux kernel do not allow for granularity in tracing. Effectively an all or

none approach which does not provide a granular tunable for the desired level of tracing.

Performance and timing sensitive environments require the ability to dynamically tune

the level of tracing during program execution to allow tradeoffs in debug and

performance. The cost of a single trace requires an indirection in code execution to save

 47

off trace parameters to a separate reserved location in system memory, or alternately to a

log file as is most common in Linux implementations. The latter obviously being more

expensive in terms of processing time, hence it is not uncommon for RAS features such

as tracing to hide timing sensitive problems or be disabled by default resulting in no

historical data at error time.

Figure 15: Pseudocode for granular tracing

A granular tracing mechanism is proposed which allows for the dynamic

specification of a trace level during program execution (Fig. 15). The use of a macro is

advantageous over an inline function call since it expands within the calling function.

Inline functions are generally preferred over macros due to simpler verification by

leveraging the compiler verbose output, however in this case the desire is to provide a

simplified API to the calling function that allows for instrumentation with caller details.

The module being traced will contain a master variable that can be set via IOCTL or

other out-of-band mechanism. If the _curr_level is of greater or equal value than the

passed in _level, then the tracing actions are performed. Otherwise the tracing actions are

circumvented and the only cost incurred is obtaining the _curr_level and the evaluation

of the conditional.

#define TRACER(_level, _desc, _tag, _d1, _d2, _d3, _d4) { \
 uint64_t _curr_level = get_curr_trace_level(); \
 if (_level >= _curr_level) { \
 log_trace(_level, mem_dest, _tag, _desc, \
 (ulong_t) _d1, (ulong_t) _d2, (ulong_t) _d3, (ulong_t) _d4); \
 \
 trace_display(get_cpu_id(), \
 __LINE__, __FILE__, __FUNCTION__, \
 _desc, _tag, \
 (uint64_t) _d1, (uint64_t) _d2, (uint64_t) _d3, (uint64_t) _d4); \
 } \

}

 48

The trace_display() feature within the macro is optional, and allows for output of

the contents to the system console or filesystem. It provides an instrumentation to

acquire additional data, beyond the _tag and _d1 through _d4 word values. The console

approach is advantageous over file output in that during a system crash scenario, the

historical data is immediately available via console history, whereas the file output or

normal trace mechanisms would require accessing the data via debugger raw memory

reads. The debugger is clearly a process of higher cognitive complexity than inspecting

the formatted output to console. To facilitate trace output review, the CPU ID, filename,

line number, and function name descriptions are included along with a variable length

text description. The additional data allows for quickly correlating a trace point to the

source code which is most useful in a console/terminal environment, whereas the

standard trace facility in log_trace() only provides the sense data d1-4 and a 8byte tag

value which must be manually correlated with the source code to find the file, line, and

function.

Trace Output

Trace Level
1 2 3 4 5 6 7 8 9

All On On
All Off Off

Error 1
Rare 2
Reserved 3
Function Entry and Exit 4
Function Internals 5
Reserved 6
HOT Function Entry and Exit 7
HOT Function Internals 8
Data Dumps 9

Figure 16: Granular and dynamically tunable tracing levels

The architecture for tracing levels is based on tracing only the _curr_level value

and all values below (Fig. 16). Error traces are always traced by default, but if a user sets

 49

a trace _level of 5, then tracing will occur for 5 and all levels below. In trace level table

example settings, an incremental selection of levels separate normal data paths from the

performance paths. The intent is to correlate the highest trace levels to the amount of

performance impact to the data path.

5.3.2 Memory Management

With a traditional NIC driver, the numbers of resources in use are bounded to a

small manageable footprint. A typical NIC driver contains the basic operations

previously outlined (Fig. 4). The number of resources and data structures required to

achieve operation are trivial and manageable without the need for elaborate memory

allocators or trackers. As RDMA increasingly becomes commonplace as a superset of

the NIC features, the complexity in the high number and dynamic nature of the resources

becomes a crucial design point for software maintainability. Since a typical adapter can

scale up to ~64K or 16M RDMA connections, and each connection typically contains

anywhere from 6-10 distinct memory resources, a robust and efficient memory tracking

mechanism is required for RAS.

The model proposed herein allows for the dynamic allocation, tracking, and

servicing of memory resources with minimal serialization and logic to address both

process level operations and the constraints of interrupt level processing. Additionally,

integrated memory utilization statistics are provided to allow for a high level view of

resource utilization without the need for external memory statistics mechanisms.

 50

5.3.2.1 Leak Detection

Memory leaks issues within a kernel environment typically require the detection

of the event and the traceback to the module responsible for the leak. Commercial

products [29] exist to address these issues; however they come at both an economic and

complexity cost since it applies to an instrumented environment only. The dynamic

analysis capability provided by these tools is only valid if the actual leak condition is

encountered during execution. A memory tracking mechanism service is proposed which

is separate but compiled into the RNIC driver and allows for field enablement such that if

the issue is not found in a lab environment, it can be enabled in the customer environment

to detect the problem. Clearly, a commercial product to detect memory leaks is unlikely

to be installed and deployed on customer production systems.

Figure 17: Conceptual memory tracker

The basic memory tracker concept (Fig. 17) revolves around a wrapper to all

memory allocation functions which instrument the operation to keep a record for

reference. This differs from any records and tracking kept by the general OS services in

that the sole purpose is deterministic memory leak detection with human readable output

…

NIC Memory Allocations RDMA Memory Allocations

Memory
Tracker
Data Table
or List

Mem
Allocator

RNIC
Driver

 51

indicating the specific source line of code at fault. A memory allocation will be executed

via a C macro call, which expands to record the filename, line number, and calling

function. This information along with relevant data such as memory type, alignment, and

size are included in an entry within the Memory Tracker table. Note that the memory

tracker table can alternately be implemented as a linked list, hence the location for

recording the data is implementation specific. In order to reduce serialization of memory

table updates, an atomic mechanism to add and delete a record are preferred. As memory

is freed, its corresponding table entry is atomically removed, thus clearing the record.

The memory tracker services are best implemented by allocating the table

resources at RNIC driver initialization such that all subsequent memory allocations are

tracked. If a table mechanism is used then the driver developer clearly needs to be aware

of the limits in entries. This is given since the scope of resources and number of

Endpoints is a well known value as discussed in the memory management section

introduction.

At device Close time, a simple routine to traverse the table and detect the

presence of record entries would indicate that a memory leak condition has occurred.

Once the condition is detected, the record information can be used to generate an error

message to the system log or other OS dependent mechanism. A service representative

or customer can now clearly detect the module, file, line, and function in error such that

the allocating function can be reviewed for root cause of the leak. In a production

environment this is the most likely case, while in a development environment it would be

preferable to assert the system such that this condition does not go undetected if the

system logs are not being observed.

 52

An additional benefit of the memory tracker is that per table statistics can be

automatically generated to obtain the memory footprint of all allocations associated with

the table. Therefore no out-of-band mechanism for memory statistics is required.

5.3.2.2 Coalesced Structures

Error recovery from inability to allocate memory is a basic essential feature of all

software. Typically programs allocate memory granularly for each resource that suffices

for managing a small number of resources, but leads to resource sprawl (Fig. 18.A) as the

number scales. Furthermore, granular allocations necessitate software error handling and

recovery logic for each failure. A guideline for circumventing resource sprawl, reducing

software error recovery logic, and simplifying the memory layout, is to have coalesced

generic allocations. When allocating an Endpoint, the parameters for each resource are

function input parameters and can thus be calculated to obtain the total memory size

required. Once total size is known, a single allocation can be used (Fig. 18.B), which

reduces the insufficient memory error recover logic to a single memory error operation.

An additional benefit to this approach is that during system assert time, memory

inspection via debuggers is simplified since all structure contents are coalesced into a

single location.

Figure 18: Memory allocation coalescing

CQ

SQ RQ

CQ SQ RQ Control
Control

 (A) (B)

Contiguous

 53

In the provided figure, the CQ, RQ, and SQ resources are DMA mapped which

typically require the starting addressed to be aligned on 4096B boundaries. Each if these

is normally allocated separately. Given that the length of each resource is variable

length, the ending addresses may not align on said boundaries, therefore padding will

need to take place up to the next 4096B alignment at which the following resource

starting address can be used. In order to simplify access to the memory a set of pointers

in the control portion of the structure are used. The pointers will correspond to the

offsets in the contiguous memory block. Normally these pointers would point to

separately independent memory allocations.

5.3.2.3 Hexdump Markers

Memory contents accessed via debugger are typically in raw hex format, which

introduces difficulty in quickly identifying structure boundaries (Fig. 19A), however as

shown previously, an ASCII decode capability is typically available in modern OS

debuggers. This capability is leveraged for raw memory inspection to allow readability

via structure markers by inserting human readable ASCII values to uniquely identify the

structure (Fig. 19B). When allocating memory that is purposed for DMA mapping, it

must start on a 4096B boundary. Resources typically subjected to this constraint are CQ,

SQ, RQ, and MRs, thus inserting a marker at the top of the structure results in an

incorrect DMA offset (Fig. 19C). It can be argued that simply viewing the starting

address is sufficient to identify the correct start location, however it means that structure

marker protection mechanism is used inconsistently, which may be acceptable in some

scenarios.

An acceptable option is memory allocation guidelines where padding is placed

before and after the DMA aligned memory (Fig. 19D), such that a marker can be inserted

 54

in the 8bytes immediately preceding the DMA address start alignment. This provides the

benefit of clear and concise display in ASCII decode within the debugger and avoids

determining the start of the memory space based solely on the address offset. The

padding area is not completely wasted as it will typically hold the non-DMA mapped

control structures. The software can also be instrumented such that at resource allocation

time an inspection on the alignment of the starting resource address is performed. The

latter action is a debug option as the structures will not change once the source is

compiled and binaries are generated but, provide a means to verify software correctness

after extensibility.

Figure 19: Generic managed memory and structure layout

In the example provided a single allocation is described, however, recall that in

previous marker discussions, structures are nested and thus markers themselves are

nested. In using a simplified example, it can be clearly shown that the ending padding

space can be used for additional data storage that is invisible to the caller. This is treated

as a black box value for the purposes of memory free operations. A call to allocate

memory necessarily has a size parameter passed in. A Fast Free structure is appended to

Malloc

Malloc

Marker

Marker

Malloc

Marker

Marker

Malloc

Marker

Marker

Align Pad

4096B Align

 (A) (B) (C) (D)

Fast Free

Fast Free

 55

the total allocation size for memory tracking purposes. The Fast Free structure contains

details which indicate table offset or address or record, thus allowing for memory de-

allocation without the need for searching for the record entry within the memory

allocation table previously discussed in the memory leak detection concept.

The Fast Free structure is also protected by markers such that in the event of the

memory user writing past the end of his allocation, the data integrity problem can be

detected. When this condition occurs, the memory management logic will automatically

perform a recovery operation which translates to a secondary mechanism for free via

linear search in Memory Tracker table for the record matching the starting address of the

memory at hand.

5.3.2.4 Cross-Mapped Memory

The final memory management feature proposed is Kernelspace to Userspace

cross memory mapping, which allows for the kernel to read and write to Userspace

memory. Recall that under the RDMA model, the user has a direct channel to the adapter

and the kernel is not an active participant during data transfer operations. The major

RAS issue introduced by this approach is that there is no direct communication between

the Userspace Provider Library and the Kernelspace Provider driver to perform

exchanges necessary for fast error notification between the components.

Under the OFED model, error communication between the Userspace and

Kernelspace RNIC components is mediated via the OFED stack. The stack traverses

both Userspace and Kernelspace via multiple components (Fig. 20). These components

are separate from the RNIC Provider driver and Provider Kernelspace, however when a

resource is created or destroyed in Userspace, the OFED threads perform a context switch

into the kernel. The kernel Provider driver is then responsible for performing the actions

 56

to make the Userspace resources visible to the RNIC. Given the information is readily

available, and that the resources are coalesced, the kernel Provider driver can simply

perform an indirection to cross map the memory. This is a minimal cost in terms of

processing time; simply the cost of an additional structure for the kernel Provider to

track. The Userspace users or resources are unaware that the cross memory mapping

action has occurred.

Figure 20: RDMA error notification model via OFED

During runtime, if fatal errors such as PCI errors that effectively disable the

adapter occur, the Provider driver can write to the Userspace resource or Kernelspace

structures indicating the error type. Now there is a direct communication channel via

shared memory between the Provider and the specific resource owned by the Kernelspace

(Fig. 21). This mechanism is independent of execution thread and thus serves as a

mailbox type notification between the layers. When the Userspace application attempts

to perform a send or receive action, the Provider Library will check the error structure

and return to the user with an error code.

OFED

Network

Software
Hardware

Provider
Driver NIC Driver

Kernel Space

Driver

Provider Library

User Space

RDMA Verbs

Application
API

RNIC

 57

Figure 21: Cross mapped shared memory for asynchronous error notification

5.3.3 Resource Snapshot

Under the Sockets model, when an error arises the Socket is simply closed and the

resources are freed. The application will typically perform an error recovery and

eventually open another Socket to reestablish communications. This is the same behavior

used for RDMA connection management, however in the latter case there is no central

location for historical data as in the Sockets model that can leverage Kernelspace traces

and memory for RAS. A mechanism to capture the resource state at error detection time

is needed in order to preserve historical data for root cause analysis (Fig. 22). Given that

the cross memory mapping feature provides read access to all Userspace data structures

and resources, it is now possible perform a copy of each structure into Kernelspace as a

linked list of individual resources and Endpoints. Once the snapshot is taken the users

are free to perform any cleanup and error recovery actions without causing a loss of

historical data. A service representative can then extract the historical data to perform

root cause analysis.

The saved software state is complemented with the hardware state from the

aforementioned RNIC offload state verification capability. The software view of the

Provider Library

CQ

Error Block

RNIC
Provider
Driver

Error Block

QP

Error Block

Error Block

User space
Kernel space

Application

 58

RNIC state is accessible as is the hardware RNIC view, such that the RNIC vendor can

perform a correlation between software and hardware views of states during error

detection.

Figure 22: Snapshot of software and hardware structures at error detection time

5.3.4 Debugger Scripts

The debuggers included in most OSes are rich enough to allow for making C

function calls directly from the debugger command line. This is an extremely useful

feature for decoding complex data structures rather than viewing raw memory. Though

the marker approach provides for a high level view of the memory layout by clearly

identifying structure boundaries, contents, and individual variables; all are easiest to

analyze via formatted output. Hence debugger scripts is a development guideline for

displaying structure contents with the appropriate output so as to facilitate the finding of

the variables of interest. An investment in creating a simple structure decoder will pay

itself back many times over when problems arise, and the root cause identification

process begins. Without structure decoders, a developer is left with repetitive manual

SQ SW
MR SW

SQ HW

Application

RQ SW

RQ HW

WQ SW

WQ HW

CQ SW

CQ HW MR HW SQ SW
MR SW

SQ HW

RQ SW

RQ HW

WQ SW

WQ HW

CQ SW

CQ HW MR HW SQ SW
MR SW

SQ HW

RQ SW

RQ HW

WQ SW

WQ HW

CQ SW

CQ HW MR HW

Historical Data

User space
Kernel space

 59

discovery and manual translation of structure contents. Furthermore it will complicate

communication of the findings to other since one must explicitly describe the contents of

raw memory to other.

5.3.4 Component Dump

A system dump provides the closest means to debug a system data without

actually operating on the failing system. This is the action of last resort from a RAS

point of view, since it has the effect of taking a system offline and dumping all memory

contents to a local or remote location to allow for inspection. The dump process time is

relative to the memory size of the system hence larger systems will be offline for

extended periods of time. It is not uncommon for systems with ~50GB of memory to

take over 12hrs to complete the dump process. From a RAS point of view, this action

should be avoided at all costs unless it is the result of an existing system crash where the

system is already offline.

When an individual kernel component such as an RNIC is not operating correctly

or displays intermittent errors which are not critical to system operation, it may be

preferable to obtain a dump of only the RNIC HW, Provider, and Provider Library

without a full system outage. The proposed component dump capability is composed of a

set of OS services which allow for the registration of software memory allocations such

that in the presence of an external trigger, memory reads and writes are quiesced and the

memory contents are dumped in a manner similar to a system dump. The dump target is

typically a remote dump device (Fig. 23) such that the root cause analysis occurs

independently of the operation of the failed system.

 60

The main advantage of this approach is that it allows for a small outage in the

operation of a specific component instance, in this case the RNIC Provider and Provider

Library, without affecting the overall operation of the system. After the dump is

complete the RNIC and associated Provider and Provider Libraries are restarted and

operation continues as normal.

Figure 23: Component dump to remote device for root cause analysis

The component dump capability can be automatically triggered in the event of a

PCI error such that a snapshot of the software state leading up to the event is available.

Typically, all software resources are reset and only traces remain preserved for analysis.

With the component dump capability now a more robust system is in place to

automatically preserve additional data for root cause analysis.

Network

Software
Hardware

Provider
Driver NIC Driver

Kernel Space

Driver

Provider Library
User Space

RNIC

Remote
Dump
Device

 61

6.0 CONCLUSION

As RDMA gains adoption in the enterprise data center a renewed focus on RAS,

and the accompanying features expected by enterprise customers must be addressed for

efficiency in problem determination and resolution. RDMA must evolve from the current

focus on performance at the expense of maintainability and serviceability. Clearly, RAS

architecture is a feature rich and constantly evolving area of software and hardware

engineering, hence the RDMA RAS architecture address the key concepts necessary for

success in the enterprise while placing the performance and RAS tradeoffs in the hands of

the end users.

In summary, the RAS for RDMA communications provides an architecture and

guidelines for efficient means of reducing the cognitive complexity associated with

software maintenance in RDMA environments by applying a combination of new and

traditional RAS approaches. From a customer point of view, the focus is on detecting

and reporting the necessary data to the system vendor or service provider so as to restore

the system to the correct operational state in the minimum amount of time. From the

systems vendor point of view, the main goal is twofold. Firstly, a reduction in root cause

identification time via software architectural features which provide the necessary

forensics data. Secondly, via software design guidelines that reduce the cognitive

complexity associated with software maintenance via decoders and memory managers.

The proposed RAS architecture addresses the aforementioned challenges and

allows for extensibility of additional features in the future.

 62

GLOSSARY

ACK Acknowledgement

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

CE Converged Ethernet

DAPL Direct Access Programming Library

DMA Direct Memory Access

DoD Department of Defense

DR Disaster Recover

EEH Enhanced Error Handling

FDDI Fiber Distribution Data Interface

FFDC First Failure Data Capture

FVT Functional Verification Test

HCA Host Channel Adapter

HPCS High Productivity Computer Systems

HW Hardware

IB Infiniband

IOCTL IO Control

IP Internet Protocol

IPC Inter-Process Communication

IST Integration Systems Test

iWARP Internet Wide Area RDMA Protocol

L3-4 Network and Transport Protocol Layers

 63

Library RNIC device driver in Userspace

MPA Marker PDU Alignment

MR Memory Region

MSS Maximum Segment Size

MTTR Mean Time To Repair

MTU Maximum Transmit Unit

NIC Network Interconnect Card

OFA Open Fabrics Allicance

OFED Open Fabrics Enterprise Distribution

OS Operating System

PCI Peripheral Component Interconnect

PD Protection Domain

PDU Protocol Data Unit

Provider RNIC device driver in kernel

RAS Reliability

RC Reliable Connection

RD Reliable Datagram

RDMA Remove Direct Memory Access

RNIC RDMA NIC

RoCE RDMA over Converged Ethernet

RQ Receive Queue

RX Receive

SCTP Streaming Control Transmission Protocol

SDP Sockets Direct Protocol

SFDC Second Failure Data Capture

 64

SPoF Single Point of Failure

SQ Send Queue

SW Software

TCP Transmission Control Protocol

TOE TCP Offload Engine

TX Transmit

UC Unreliable Connection

UD Unreliable Datagram

ULP Upper Layer Protocol

UT Unit Test

VIA Virtual Interface Architecture

WAN Wide Area Network

WQ Work Queue

 65

REFERENCES

[1] RDMA over Converged Ethernet (RoCE) Annex A16. InfiniBand Trade

Association, InfiniBand architecture. Specification Volume 1. Release 1.2.1.

Nov. 2007 <http://www.infinibandta.com>. Apr. 2010

[2] "Architectural Specifications for RDMA over TCP/IP." RDMA Consortium. N.p.,

n.d. Web. 17 Apr. 2010. <http://www.rdmaconsortium.org/>.

[3] "HPCS-HIGH PRODUCTIVITY COMPUTER SYSTEMS." HPCS Application

Analysis and Assessment. N.p., n.d. Web. 18 Nov. 2010.

<http://www.highproductivity.org/kepner-HPCS.htm>.

[4] Loh, E., Van De Vanter, M. L, Votta, L.G. Can Software Engineering Solve the

HPCS Problem? Proceedings Second International Workshop on Software

Engineering for High Performance Computing System Applications, St. Louis,

15 May 2005.

[5] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M.

Merritt, E. Gronke, and C. Dodd. The virtual interface architecture. IEEE Micro,

18(2), 1998.

[6] InfiniBand Trade Association, InfiniBand architecture. Specification Volume 1.

Release 1.2.1. Nov. 2007 <http://www.infinibandta.com>. Nov. 2007

[7] "IEEE 802.1: 802.1Qaz - Enhanced Transmission Selection." LMSC, LAN/MAN

Standards Committee (Project 802). N.p., n.d. Web. 18 Nov. 2010.

<http://www.ieee802.org/1/pages/802.1az.html>.

 66

[8] "IEEE 802.1: 802.1Qbb - Priority-based Flow Control." LMSC, LAN/MAN

Standards Committee (Project 802). N.p., n.d. Web. 18 Nov. 2010.

<http://www.ieee802.org/1/pages/802.1bb.html>.

[9] Hauser, Brian . "CommsDesign - iWARP: Reducing Ethernet Overhead in Data

Center Designs." CommsDesign. N.p., n.d. Web. 17 Apr. 2010.

<http://www.commsdesign.com/design_corner/showArticle.jhtml?articleID=512

02>

[10] Gregory F. Pfister. An introduction to the infiniband architecture. In Hai Jin,

Toni Cortes, and Rajkumar Buyya, editors, High Performance Mass Storage and

Parallel I/O: Technologies and Applications. IEEE/Wiley Press, New York,

2001.

[11] "The OpenFabrics Alliance." Open Frabrics Enterprise Distribution. N.p., n.d.

Web. 18 Apr. 2010. <http://www.openfabrics.org/index.htm>.

[12] iWARP Protocol Kernel Space Software Implementation. Dennis Dalessandro,

Ananth Devulapalli and Pete Wyckoff. Proceedings of the 20th IEEE

International Parallel & Distributed Processing Symposium (IPDPS '06),

Communication Architectures for Clusters Workshop, Rhodes Greece

[13] P. Frey, A Hasler, B Meltzer Server-Efficient High-Definition Media

Dissemination. NOSSDAV ’09 Williamsburg, Virginia

[14] "RFC 5044 - Marker PDU Aligned Framing for TCP Specification." IETF Tools.

N.p., n.d. Web. 19 Apr. 2010. <http://tools.ietf.org/html/rfc5044>.

[15] Liss, Liran. "RoCEE in OFED Update". Open Fabrics 2010 Sonoma Workshop.

March 1 2010

 67

[16] "Introduction to Receive-Side Scaling (Windows Driver Kit)." MSDN |

Microsoft Development, Subscriptions, Resources, and More. N.p., n.d. Web. 18

Nov. 2010. <http://msdn.microsoft.com/en-

us/library/ff556942%28VS.85%29.aspx>.

[17] IEEE Std 802.1AX-2008 IEEE Standard for Local and Metropolitan Area

Networks — Link Aggregation. IEEE Standards Association. 3 November 2008.

doi:10.1109/IEEESTD.2008.4668665

[18] A. Bhutani and Z. Mahmood, “Using NIC Teaming to Achieve High Availability

on Linux Platforms,” Dells Magazine, February 2003.

[19] D. Henderson, B.Warner, and J.Mitchell. IBMPOWER6 processor-based

systems: Designed for availability. White paper, 2007.

[20] Minimizing the Hidden Cost of RDMA, Frey, P.W.; Alonso, G.; Distributed

Computing Systems, 2009. ICDCS '09. 29th IEEE International Conference on

Digital Object Identifier: 10.1109/ICDCS.2009.32 Publication Year: 2009 ,

Page(s): 553 – 560

[21] S. Cherem, L. Princehouse, and R. Rugina. Practical memory leak detection

using guarded value-flow analysis. In PLDI ’07: Proceedings of the 2007 ACM

SIGPLAN conference on Programming language design and implementation,

pages 480–491, 2007.

[22] Yichen Xie and Alex Aiken. Context- and path-sensitive memory leak detection.

In Proceedings of the 10th European software engineering conference held

jointly with 13th ACM SIGSOFT international symposium on Foundations of

 68

software engineering (ESEC'05/FSE'05), volume 30 of SIGSOFT Software

Engineering Notes, pages 115{125, New York, NY, USA, 2005. ACM Press.

[23] B. Cobb and S. Dutta. Storage Protection Keys on AIX Version 5.3. White

paper, 2007.

[24] "Apache log4j 1.2 - log4j 1.2." Apache Logging Services Project - Welcome to

Apache Logging Services. N.p., n.d. Web. 18 Nov. 2010.

<http://logging.apache.org/log4j/1.2/>.

[25] "The AIX Error Logging Facility." Black Sheep Networks Inc.. N.p., n.d. Web.

16 Nov. 2010. <http://www.blacksheepnetworks.com/security/resources/aix-

error-logging-facility.html>.

[26] "System Dump Facility." AIX 6.1 Information Center. N.p., n.d. Web. 29 Oct.

2010.

<publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.kern

elext/doc/kernextc/sysdumpfac.htm>.

[27] "Live Dump Facility." AIX 6.1 Information Center. N.p., n.d. Web. 7 Nov. 2010.

<http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.ai

x.kernelext/doc/kernextc/livedumpfac.htm>

[28] Mack, M. J.; Sauer, W. M.; Swaney, S. B.; Mealey, B. G.; IBM Journal of

Research and Development Volume: 51 , Issue: 6 Digital Object Identifier:

10.1147/rd.516.0763 Publication Year: 2007 , Page(s): 763 - 774

[29] "PurifyPlus ." IBM - United States. N.p., n.d. Web. 16 Nov. 2010. <www-

01.ibm.com/software/awdtools/purifyplus/>.

 69

[30] "IEEE 802.1: 802.1Qau - Congestion Notification." LMSC, LAN/MAN

Standards Committee (Project 802). N.p., n.d. Web. 18 Nov. 2010.

<http://www.ieee802.org/1/pages/802.1au.html>.

 70

VITA

Omar Cardona holds an associate in Humanities from the Universidad de Puerto

Rico (1998) and a Bachelor in Computer Science from the Universidad Inter-Americana

de Puerto Rico (2001). He is currently employed at IBM where he designs and architects

solutions in IO Virtualization, High-Performance Communications, Device Drivers, and

Ethernet Switching.

omarcardona@yahoo.com

This report was typed by Omar Cardona.

