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Abstract 

 

    Additive Manufacturing (AM) has played an important role in manufacturing, especially in 

customized production. It is an ideal 'Concurrent Manufacturing' which enables fabricating a 

group of same or even different multiple parts simultaneously within one build volume due to 

its unique layer by layer processing way. However, there is very few available methods or 

tools for users, e.g. the AM manufacturing service bureaus, to optimize the process and 

production plan in multiple parts production context. To deal with this problem, this paper 

introduces an AM feature and knowledge based systematic process planning strategy. The 

main contents and key issues of process planning for AM in multiple parts production context 

are analyzed. Then, a developing CAPP system based on a systematic process planning 

framework for AM in this multiple parts production context is presented. Finally, some test 

examples are applied to demonstrate the functions and effectiveness of some key modules of 

the developing system. 

 

Introduction 

 

    Additive Manufacturing (AM) processes employ a layer by layer processing manner to 

deposit material layers progressively for building 3D parts according to sliced 3D CAD 

models. This special processing way allows AM machines to build multiple parts 

simultaneously by placing multiple part slices within each building layer. Significant savings 

in cost and time can be achieved in rapid prototyping (RP/AM) by manufacturing multiple 

parts in a single setup to achieve efficient machine volume utilization [1]. Hence, in real 

application, to improve the machine utilization, parts are usually built batch by batch in AM 

machines per run but not only one by one. This forms the multiple parts production context 

(Figure 1).  

 
 

Figure 1, Difficulties of decision making in Multi-part production context. 
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To make a group of parts built, process technicians or planners have to do a set of 

optimizations and decision makings for preparation work, process planning. As defined by 

Marsan and Dutta [2], there are usually four main planning tasks, orientation optimization, 

support design, slicing and tool-path/scanning-path planning. To solve these tasks, researchers 

had proposed numerous solutions [3-9]. However, most of these solutions were designed for 

single part production context where only one part is built per machine run and they only 

focused on the operational level to help transfer a virtual CAD model to a physical model [3]. 

In addition, these solutions lack systematic. Systemic discussed here refers to two main 

aspects: the integrity of process planning content, including both of ‘macro planning’ (e.g. 

manufacturability analysis, etc) and ‘micro planning’ (specific planning tasks for processing, 

e.g. orientation optimization), the systematic analysis of the interdependence between 

different process planning tasks. Obviously, incomplete process planning cannot realize the 

full processing chain (Figure 2). The lack of interdependence analysis between the process 

planning tasks cannot guarantee optimal planning results. As stated by Kurkarni et al. [3], 

‘process planning problems are not individual problems alone, but they are related to each 

other’. Besides, in multiple parts production context, the planning tasks and their 

characteristics are different to those in single part production context. Hence, to realize a full 

processing chain and obtain better planning results for AM in multiple parts production 

context, this paper introduces a feature and knowledge based systematic process planning 

strategy. To reduce the complexity, the post processing in the processing chain is not included. 

 

 
 

Figure 2, General processing chain of AM (‘micro level’; ‘one-way’ information flow). 

 

The left of this paper is arranged as follows: the second section will analyse the process 

planning problem in multiple parts production context; the third section will introduce the 

development of the proposed strategy; the fourth section will present the implementation of 

two key modules; the fifth section will present test examples for demonstration; the last 

section is the conclusion. 

 

Problem description 

 

    In AM service bureaus (Figure 1), different orders may come from different clients with 

different production requirements, e.g. lead time, cost, quality, etc. Therefore, production 

technicians or planners have to make different decisions and optimizations so as to do the 

preparation work for production. The preparation work is mainly used to answer two types of 

key questions: ‘Whether a part is suitable to be processed by AM processes?’ and ‘How to 

produce a part?’ In this paper, all of the preparation work for AM production is defined as 

process planning and is proposed to be grouped into two levels: ‘macro planning’ and ‘micro 

planning’, which are used to deal with the two types of questions.  In the ‘macro Planning’ 
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level, the main planning tasks include: manufacturability analysis, selection of AM process or 

manufacturing scenario, prediction of build time, cost and general part quality, etc. These 

tasks are usually beyond the processing chain in AM. While in the ‘micro planning’ level, the 

planning tasks are composed by: orientation optimization, work space planning, support 

generation, slicing, tool path planning, etc. To conduct process planning in multiple parts 

production context, the foremost thing is to identify the planning tasks. In AM service bureaus, 

different AM machines already install different preprocessing software tools to help process 

planners to deal with the planning tasks, but only for the ‘micro planning’ level. For the 

planning tasks in the ‘micro planning’ level, they usually use different algorithms designed 

for specific processes. It is hard to develop compatible support generation, slicing and path-

planning algorithm for all the AM processes. Therefore, it is better to use the available tools 

to deal with the above three planning tasks. However, these tools cannot provide enough 

support to the orientation optimization and work space planning in the multiple parts 

production context. For example, current software (e.g. ‘Magics’ software) can only orientate 

parts one by one, which cannot guarantee an optimal orientation results. In multiple parts 

production context, the total build time, cost and quality not only depend on the individual 

part’s build orientations but also their combination. For space planning, current methods 

mainly use part’s bounding box and apply BL-GA methods [10], which waste much building 

space and cannot obtain optimal solutions. Fortunately, current AM machines usually can 

accept CAD models with STL format. This enables the availability of developing generic 

orientation optimization and work space planning methods with uniform output, positioned 

multiple CAD models in STL format, for the later planning tasks, e.g. support generation, 

slicing, on different preprocessing platforms installed in different AM machines. Therefore, 

there is no need to develop planning methods for all the planning tasks in the ‘micro planning’ 

level except for the orientation optimization and work space planning tasks. Hence, the 

general planning tasks in multiple parts production context can be identified as shown in 

Figure 3. The tasks colored with green in the figure are executed on specific preprocessing 

platforms of specific AM machines. 

 
Figure 3, Main planning tasks of process planning in Multi-part production context. 
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To solve these process planning tasks in multiple parts production context, the key issues 

should be identified. Dutta et al. [11] regarded process planning in AM as computation 

problems since the planning models, algorithms, optimization and decision making models 

require much computation as well as the reuse of production knowledge. In this paper, feature 

and knowledge are used to design solutions to deal with the key issue for each of the 

identified planning task. And an additional task, ‘Grouping/Clustering parts’, is proposed to 

reduce the computation for some planning tasks with a combinatorial characteristic. The next 

section will introduce the development of a feature and knowledge based systematic process 

planning strategy. 

 

Development of the proposed strategy 

 

 Manufacturability analysis 

 

Manufacturability analysis is the first planning step either in multiple parts production 

context or single part production context. The output of this task is the feedback on the 

availability of processing a given part by using AM processes. The main content of the 

analysis contains geometric analysis and non-geometric analysis. Geometric analysis refers to 

analyze the size of a part and key geometric features of a part. Current AM machines have 

limitations on the processing size. Some parts with sizes that exceed the build volume and 

cannot be decomposed to build would not be processed by AM processes. Some parts may be 

filled into a build volume, but they may collide with the boundaries of the build volume when 

they are rotated in the build volume. This cannot guarantee the parts to be built in good 

orientations with acceptable production quality. Another type of geometric analysis, analysis 

of surface features, is more difficult. Although AM processes can build any geometric shape 

theoretically, they also have limitations. The limited layer thickness may have difficulty to 

build some shape features with very small sizes. The slicing procedure may cause some 

problem to build facing features (two parallel plane faces with a very small distance). The 

complicated distortion of AM processes cannot guarantee the shape accuracy of some features 

like long tiny holes or cylinders or large planes, shells, etc. Therefore, to conduct the 

geometric analysis, data base of processing characteristics of AM processes or benchmarking 

results of AM processes should be provided. Apart from this, a key or problematic feature 

base should be constructed to help identify the possible problematic areas on a given part 

model. Hence, feature recognition algorithm is also required. The non-geometric analysis is 

mainly focusing on the analyzing of the production requirements, e.g. part quality, build time, 

cost etc. For executing this analysis, benchmarking results of AM processes should be 

provided. Besides of the information or knowledge data base, decision tool is also needed to 

act as reasoning or searching during the decision making. Many former methods adopting 

‘Screen’ method which eliminates alternatives according to the checking of decision attributes, 

e.g. size, time, cost, tensile strength, etc, one by one. This method is efficient for the 

geometric analysis. However, when conducting non-geometric analysis, it would miss some 

potential alternatives which are very close to meet the production requirements. Therefore, to 

prevent the missing of some potential alternatives, an integrated decision making model 

(MADM) [12] is adopted for the non-geometric analysis by providing the deviation extent of 
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each decision attribute. In real application, when some designs can be modified, the deviation 

extent evaluation result may help to dig or attract more potential production possibilities. 

Therefore, a functional module for this planning task is depicted in Figure 4. The interaction 

and control is used to modify and control the input and output as well as set the decision 

attributes. 

 

 
 

Figure 4, Functional module for ‘Manufacturability Analysis’. 

 

 Process and manufacturing scenario selection 

 

When the manufacturability analysis is finished, an evaluation result will be obtained. If a 

part can be processed by AM processes, then there usually a set of finite alternative 

manufacturing scenarios (machine, setup, material, etc.) to produce a prototype according to 

production requirements. Hence, the second planning task is to evaluate those alternatives and 

identify the optimal one according to the production requirements and preference. The input 

of this task is the alternatives generated by the manufacturability analysis. The output of this 

task is the rank of alternative, either AM process or manufacturing scenario. To conduct the 

evaluation, benchmarking results of AM processes and related manufacturing scenarios 

should be provided as information or knowledge base. Then a decision making model is 

necessary to generate evaluation index for the decision support. Besides, the user preference 

and setting of attributes are required during the evaluation. Hence, human interaction and 

control are inevitable. Therefore, a full solution for this task can be depicted by a function 

module as described in Figure 5. 

 

 
 

Figure 5, Functional module for ‘Process & Scenario Selection’. 

 

 Prediction (time, cost and quality) 
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Prediction is very important in AM process planning. For upstream departments, it is used 

to give quotation/pricing and support the communication with clients or even help the 

redesign; for downstream sectors, it is useful for the optimization and decision making during 

the ‘micro planning’ stage. The main contents include the estimation of build time, cost and 

production quality. However, this task is also very difficult to accomplish. Fast, simple 

analogical or empirical estimation models are usually efficient for the build time and cost 

estimation but they suffer from the low accuracy problem. Analytical models can give more 

accurate estimation results but they lose efficiency since they need detailed process planning 

results. In this multiple parts production context, another big challenge of build time and cost 

estimation is how to determine the build time and cost for individual parts which are built 

simultaneously. For the production quality estimation, it is more complicated. Currently, there 

are two types of methods. One is to use mathematical/numerical methods to compute on the 

geometric models or simulate the processing procedure. This type of methods needs many 

mathematical/numerical or geometric assumptions due to the unknown complexity of 

phenomenon from physical or chemical or multiple coupled fields. Hence, the accuracy 

cannot be guaranteed. In addition, the efficiency of this model is relatively low due to the 

large computation. Another type of methods is to use experimental results for constructing 

empirical models. These models have a better accuracy and higher efficiency. However, they 

need large quantity of experiment results and production knowledge. Another difficulty of this 

task is that there is usually no generic prediction model for all the AM processes and 

manufacturing scenarios. Specific models should be constructed for specific processes and 

scenarios. Hence, this task is a knowledge-intensive and computation-intensive problem. 

 

To solve this task, two types of prediction methods from literature are used. To give fast 

prediction of build time and cost for the quotation/pricing, analogical or empirical estimation 

models [13, 14] are adopted. To construct different estimation models for different AM 

manufacturing scenarios, different production record data bases and processing specifications 

of these scenarios, usually stored in benchmarking result base or machine resource base, 

should be provided. To give accurate estimation of built time and cost for individual parts in 

multiple parts production context, the analytical generic build time modeling method 

proposed in [15] is chosen. To use this method, processing specifications of each AM 

manufacturing scenario should be provided. To predict the production quality, knowledge 

based method is used to give fast prediction. To support the optimization and decision making 

in the ‘micro planning’ stage, parametric models are chosen, e.g. the surface roughness 

prediction model used in KARMA platform (http://www.femeval.es/proyectos/karma). Therefore, a 

full solution for this task can be obtained and described in Figure 6. 

 

 
 

Figure 6, Functional module for ‘Prediction’. 
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 Orientation optimization 

 

Orientation optimization is one of the key planning tasks to guarantee the production 

quality of parts. When a group of parts to be produced in one build, the orientation problem 

becomes more complicated. To guarantee each part’s production quality, each part should be 

built in its optimal or near optimal orientation. To diminish the total build time and cost of 

one build, an optimal combination of parts’ orientations should be found to diminish the total 

cross section area, total support volume or maximum build height, etc. However, for one 

given part, theoretically, there are possible infinite alternative build orientations. Therefore, 

for a group of parts in one build, there would be more possible infinite alternative orientation 

combinations. Even for a group of parts with finite alternative orientation sets, the number of 

alternative combinations will have a near exponential growth as the number of parts and parts’ 

alternative orientations increase. As a result, a combinatorial NP-complete problem forms. 

Furthermore, when more objectives (attributes or criteria), such as minimizing the overall part 

surface roughness, overall volumetric error, total build time, total build cost, maximizing the 

overall part accuracy, etc., are taken into consideration during optimization or decision 

making, the NP-complete problem becomes multi-objective NP-complete problem with more 

complexity. Although the orientation optimization problem in multiple parts production 

context is more complicated and difficult than that in single part production context, the main 

sub tasks are similar. The first one is to generate alternative orientations for individual parts 

within a part group. However, the methods for single part orientation optimization proposed 

in literature cannot be directly used for multiple parts orientation problem. Because, on the 

one hand, the computation would be huge if too many alternative orientations are generated 

for each part, especially for those searching in an infinite solution space; on the other hand, 

not all the alternative orientations of each part can guarantee an acceptable production result 

for the related part. As discussed above, the general objective of the multiple parts orientation 

is to guarantee each part’s production quality and at the same time to diminish the total build 

time, cost, overall accuracy error etc. Therefore, the first sub task for the multiple parts 

orientation problem is to efficiently generate a set of practical finite alternative orientations 

guaranteeing the production quality for each individual part within a group, but is not to rotate 

the parts freely respectively by doing an exhaustive searching, which would generate invalid 

alternative orientations. When the first sub task is finished, the second one is aimed to search 

out an optimal combination of parts’ build orientations to minimize the total build time, cost 

and other user concerned objectives (called global objectives). For solving the first sub task 

efficiently, an AM feature based orientation generation method [16] is adopted. When using 

this method, a set of finite alternative orientations can be obtained for each part. However, 

there is a need to refine the alternative orientations for each part since not all of the alternative 

orientations are acceptable ones to guarantee the part’s production quality. Impractical 

alternative orientations may cause invalid build orientation combinations, which cannot 

guarantee individual part’s production quality, for the second sub task. Hence, to ensure all 

the alternative combinations are valid, a filtering process is added. The integrated MADM 

model proposed in [12] is adopted for the filtering. To identify the optimal orientation 

combination from the alternative ones, the second sub task applies a modified evolutionary 

algorithm. Therefore, a functional module and the detailed method are depicted in Figure 7 (a) 

and 7 (b). 
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(a), Functional module of ‘Orientation’. 

 

 
 

(b). Orientation optimization method for Multi-part production. 

 

Figure 7, Functional module for ‘Orientation’ and detailed method. 

 

 Work space planning 

 

In multiple parts production context, work space planning is inevitable. Maximizing the 

compactness of parts is usually set as an optimizing objective when nesting or packing parts 

into a machine build volume. Theoretically, parts can be placed or rotated freely when nesting 

or packing. However, apart from the compactness, the production quality of each part should 

be guaranteed. Therefore, the work space planning task is coupled with orientation 

optimization task. Actually, orientation optimization and nesting or packing can be dealt with 

simultaneously. However, this is too complicated due to the combinatorial characteristic 

which causes expensive computation. Hence, orientation optimization and work space 

planning are processed sequentially in this paper. The output of orientation optimization is the 

input of the work space planning. For some AM processes that need support structure, parts 

can only be nested in one layer, which is a two-dimensional nesting problem. However, the 

two-dimensional nesting problem is different to other classical nesting problems since the 

parts can be rotated around three dimensions though they can only be placed in one layer. For 

those AM processes that do not need support structure, parts can be packed upon each other. 

Hence, this is a three-dimensional packing problem. To solve the two-dimensional nesting or 

three-dimensional packing problem, nesting algorithms should be used. These algorithms are 

serial ones, which place part one by one in sequence, or parallel ones, which nest or pack a 

group of parts simultaneously. When design or select nesting or packing algorithms, the 

efficiency should be considered since work space planning is a type of NP-complete or NP-

hard problem. The output of this task is a group of positioned parts that can be sent to 

downstream planning tasks, support generation, slicing and scanning-path planning. Hence, a 

functional module, shown in Figure 8, can be designed for this task. 
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Figure 8, Functional module for ‘Work space planning’. 

 

 Grouping/clustering parts 

 

As discussed above, the orientation and work space planning tasks are combinatorial 

problems. The computation of optimization is usually expensive due to the large alternative 

combinations. To reduce the number of combinations, a modified group technology proposed 

in [17] is used to form part groups or clusters or sequences. Therefore, another planning task, 

grouping/clustering parts, is proposed for the multiple parts production context. However, this 

task is coupled with the orientation and work space planning tasks since the part group may 

be changed during orientation optimization or work space planning. To simplify the process 

planning problem in this multiple parts production context, this research set the 

grouping/clustering task before the orientation optimization task. When doing the latter two 

tasks, the part group or cluster can be changed according to the generated part sequence. This 

task is to generate a part sequence according to their ‘similarity’ which is not only limited to 

the geometric aspect. Part sequence is used to form part groups or part clusters. To form part 

sequence, production knowledge is required to identify attributes for ‘similarity’ measuring 

and a ‘similarity’ measuring model is needed. Therefore, a functional module can be proposed 

to solve this task as shown in Figure 9.  

 

 
 

Figure 9, Functional module for ‘Grouping/Clustering parts’. 

 

When all the modules for the main planning tasks in the multiple parts production context 

are built, then a full systematic process planning strategy forms. The proposed strategy can be 

fixed in a systematic process planning framework as described in Figure 10. 
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Figure 10, AM feature and knowledge based systematic process planning framework for AM in Multi-part 

production context. 
 

Implementation of the proposed strategy 

 

With the constructed process planning framework for the strategy as proposed above, 

CAPP systems with functional modules can be implemented. In real application context, for 

the planning tasks in the ‘macro planning’ level and the part grouping/clustering task in the 

‘micro planning’ level, the implementation of the related functional modules depends on 

specific production needs and available resources. Different feature base, knowledge base, 

production data base, prediction model base, etc. can be used. There is no common standard 

or solution for all of these tasks. The authors had proposed some methods to solve the 

planning tasks in the ‘macro level’ [12] and a modified ‘Group Technology’ [17] for the 

grouping/clustering task. In this paper, for the limited space, only the implementation of other 

two planning tasks (orientation optimization and work space planning) in the ‘micro planning’ 

level is presented. 

 

 Implementation of the orientation optimization module 

 

    The general method is already shown in Figure 7. There are two main steps: a. generating 

practical alternative orientation sets for each part to guarantee each part’s production quality; 

b. searching out an optimal build orientation combination to optimize pre-set global objectives. 

1268



For the first step, an AM feature based orientation generation method [16] is adopted. Then, a 

refining/filtrating process is applied to select those alternative orientations which can 

guarantee the part’s production quality. When a finite practical orientation set is generated for 

each part in a part group, a practical orientation space forms. The forming of the practical 

orientation space can be depicted by Figure 11 below. 

 

 
 

Figure 11, Identifying practical orientation space from original infinite orientation space in Step one. 

(Note: A: infinite orientation space; B raw alternative orientation space; C: practical alternative orientation space) 

 

When the practical orientation space is identified, the next step is to search out an optimal 

orientation combination to optimize related global objectives. In this paper, a modified 

genetic algorithm is designed for the optimization. The implementation of this module is 

realized on the Matlab platform (Version R2012b). 

 

 Implementation of the work space planning module 

 

For work space planning module, the input is a group of oriented parts, the output of 

orientation optimization module, which can only be rotated around the build direction and 

translated on the build platform. Hence, by using the parts’ projections onto the build platform 

as nesting stencils, this problem can be transferred into a classical 2-Dimensional nesting 

problem. In this paper, a parallel 2-Dimensional method is developed. It can be depicted by 

Figure 12. 

 

 
 

Figure 12, A proposed parallel 2-D nesting method. 
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The first step is to project all the parts onto the build platform. Then, use polygons to 

represent these profiles. To avoid the contact or collision of parts after being nested, a 

minimum distance is set to expand the polygons. The third step is to apply a special genetic 

algorithm using polyploidy chromosome to represent the position of a polygon (three 

parameters) for searching an optimal nesting solution with minimum total overlap area. Based 

on the obtained minimum overlap area, nesting decision can be done. When a minimum 

overlap with the value of 0 can be found, it means that the part group can be placed into a 

specified region without collision, and vice versa. The main reason to use the parts’ 

projections for nesting is that some overhangs of parts may need support structures even their 

base areas are smaller than the projection areas. This will avoid the placement of parts under 

other parts’ overhangs. Hence, the up and down surfaces of parts will not be damaged by the 

support structures. However, this would cause some waste of work space when the overhangs 

have an angle to the build direction with less than 45 or 30 degrees where support structures 

may not be needed and other part could be possibly placed under the overhangs. But, the main 

objective of this research in the current stage is to testify the feasibility of the proposed 

method in the prototype level. Hence, this situation is not considered at present. Another 

reason to use the projection profiles as nesting stencils is to reduce computation cost since 

using voxel-based method to compute the interference between 3D models will cause more 

computation time. To ensure all the polygons are within the specified region during 

movement, a compensation translation is used to move those polygons that intersect with the 

region boundaries. The last step is to place the related 3D parts into the related specified 3D 

region by using the obtained optimal solution’s position data.  

 

In the current stage of this research, the main focus of nesting is ‘Decision problem’ 

(judging whether a group of parts can be nested into a specified region), which is the base of 

other nesting or packing problems since solutions for bin/knapsack/strip packing can easily be 

devised when given a (heuristic) solution method for the ‘Decision problem’ [18]. Modified 

algorithms can be developed to meet the real nesting needs according to this basic problem. 

The work space planning module is also implemented on the Matlab platform. To testify the 

feasibility of the developed algorithms, two illustrative examples are presented respectively in 

the following section. 

 

Test examples for two main modules 

 

 Test example for orientation optimization module 

 

To demonstrate the implementation of the proposed two-step solution for the orientation 

optimization module, an orientation optimization for a part group composed by sixteen parts 

to be manufactured by a SLA machine is presented as an example. An assumption is made 

that no clear user preference is given for the optimization except a general objective on 

minimizing the build time & cost and guaranteeing the production quality at the same time. 

The part group is shown in an experimental building envelope as depicted in Figure 13. 
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Figure 13, A group of parts to be oriented. 

The first step is to generate practical alternative orientation sets for the parts. surface 

roughness (R-µm), support volume (V-mm
3
), build height (Z-mm), build time (T-min), cost (C-

euro) and the projection area onto the XOY platform (build platform) (A-cm
2
) are identified 

as decision attributes and are taken into consideration simultaneously and equally to evaluate 

all the raw alternative orientations. After refining/filtrating, 16 sets of practical alternative 

orientations are generated for the part group. One set of practical orientations for a part is 

presented in Figure 14. Then, the next step is to search out an optimal orientation combination 

to optimize the global objectives. In this example, to reduce the build time & cost and 

improve the average production quality, five objectives, Z-max (Zmax-mm), the maximum 

build height of the parts; Difference of build heights (std(Z)) ; Average projection area onto 

the vat bottom (Aa-cm
2
) ; Average support volume (Va-mm

3
) and Average surface roughness 

(Ra-µm), are set as global objectives with equal weights assigned. 

 

 
 

Figure 14, Practical alternative orientation set for a part. 

 

The aspired goal used for global optimization is obtained by conducting five single 

optimizations for the five global objectives. It is similar to TOPSIS method. The aspired goal 

is composed of the five obtained optimal values of the five objectives and it is given as 

 

Aspired Goal = [80.4300, 16.1420, 2.4712, 376.4075, 4.1769].             (6) 

With the obtained aspired goal and the design genetic algorithm, the global optimization 

can be conducted. The parameters for the designed GA are set as: 

 

Chromosome length: 16, the number of the parts; 
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Population size: 400; 

Crossover Probability: 0.7;  

Mutation probability: 0.1; 

Generation: 1000. 

 

The optimization result is presented in Figure 15 below. 

 

 
                                     

                                                                               (a), Optimization procedure. 

 

 
                                                                            (b), obtained optimal solution 

   
Figure 15, Orientation optimization result for the 16 parts. 

 

The optimization result shows that the optimal solution is very close to the unattainable 

aspired goal. Four sub-objectives have attained a good approaching to their individual optimal 

solutions respectively except for the fourth sub-objective, minimizing the average support 

volume. If more preference weight can be given to the fourth sub-objective during the Many-

objective optimization procedure, the evolutionary search would provide a solution with a 

better value for the fourth sub-objective. However, the values for other objectives may be 

affected. This is normal for multi-objective optimization problems where compromise among 

the investigated objectives should be often made. The example has testified the availability of 

the proposed two-step solution for the multiple parts orientation optimization problem. 

Infinite orientation combination space can be greatly reduced by the AM feature based 

Five-objective optimization 

Optimal solution: C = [1 3 1 3 1 1 2 1 4 1 1 1 1 2 1 2] 

Best value: [80.4300, 16.7977, 4.8181, 393.5944, 5.5069] 

Aspired goal: [80.4300, 16.1420, 2.4712, 376.4075, 4.1769] 
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alternative orientation generation method and an optimal orientation combination is obtained 

by applying an improved genetic algorithm. 

 

 Test example for work space planning module 

 

An assumption is made that a group of parts are already oriented and exported from the 

orientation module. They are displayed in Figure 16 (a). As introduced above, the first step of 

nesting is to get the projection profiles and set the nesting region. In this example, a square 

region is selected as nesting region. The left corner of the nesting region is the origin point of 

the global coordinate system. And the compactness is set as 0.7. Therefore, after projection 

operation, the obtained polygons and nesting region are depicted in Figure 16 (b). 

     
(a)                                                                     (b)                                

Figure 16, (a), Six parts to be nested and a specified nesting region; (b), Convex approximate polygons. 

 

    The following step is to apply the designed genetic algorithm to conduct the evolutionary 

searching. In the genetic algorithm, a running condition is set as: if the best fitness value is 

more than 0.95, then jump out the iteration and check the current obtained best solution. 

Because the polygon used for nesting is just an approximation and expended loop to represent 

a part’s projection boundary. Hence, when the fitness value is big enough and even it does not 

equal 1 (total overlap area is 0), the obtained related solution may meet the nesting 

requirement that is no collision between parts exists. Certainly, more rigorous running 

conditions can be set, e.g. the fitness value arriving at 1, which requires no overlap exists. The 

operating parameters of the genetic algorithm are set as: 

 

Chromosome length: 6, the number of the parts; 

Population size: 200; 

Crossover Probability: 0.9;  

Mutation probability: 0.2; 

Generation: 1500.  

Step length of translation: 1mm; 

Step length of rotation: 1 degree. 

 

After computation, an optimization result can be obtained. The current best fitness value is 

found as 0.9525 at the 1000
th

 generation (Figure 17 (a)). The total computation time is 

3162.1578 seconds. The figures presented below show the nesting result. As depicted in 

Figure 17 (b), the nested polygons have a small overlap. However, there is no collision 

between the parts (Figure 18) due to the expanded polygons and their approximation. 
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(a)                                                                       (b) 

 

Figure 17, a, Optimization procedure; b, Nested polygons with tiny overlap. 

 

       
Figure 18, Nesting result for the six oriented parts. 

 

The result shows that the proposed nesting algorithm is feasible to solve the 2D nesting 

problem of the work space planning module. However, the computation time is a little long. 

The behind reasons may include: large compactness; small translation step length and rotation 

degree; poor setting of parameters or operations for the genetic algorithm, etc. As stated 

before, this research focuses on testifying the parallel nesting method at the prototype level. 

Hence, more research should be done to improve the computation performance. However, it 

has the potential to compete with other nesting methods for AM proposed in literature since 

the parts can be rotated at any degree and small parts can be packed into the inner open holes 

of other bigger parts to further improve the compactness if concave polygons with multiple 

loops are used to represent projections with holes. This cannot be realized by current nesting 

methods proposed for AM in literature since many of them are ‘legal placement’ method that 

does not allow the occurrence of overlap during the nesting. Therefore, more advanced 

computation technical methods, faster computer languages, advanced graphics algorithms etc., 

can be applied to improve the nesting performance and computation performance of the 

proposed nesting strategy. Therefore, further research should be done to improve the 

performance of the proposed method when applies it in real engineering context since 

computation time is very important. 

 

Conclusion 

 

    This paper presents a study on process planning for AM in multiple parts production 

context. A feature and knowledge based systematic process planning strategy is proposed. A 

process planning framework is constructed and some of the main modules of a developing 
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process planning system are implemented on the Matlab platform. However, this is just the 

initial result of the current study. Due to the complexity of process planning problem, further 

research should be carried out. Future work will be conducted to investigate the construction 

of AM feature base, AM production knowledge base, AM process benchmarking base, 

prediction model base, the improvement of decision models, optimization algorithms, 

program codes, the systematic analysis for the interrelations between different process 

planning tasks, etc. 
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