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Urban infrastructure plays a key role in the structure and dynamics of ev-

ery city. Besides ensuring the sustainability of communities and businesses, high-

quality infrastructure services are crucial for generating jobs and attracting capital

investments. Modern infrastructure systems are highly interconnected to enhance

efficiency and safety of operations; however, the interconnections increase the risks

of cascading failures during extreme events, such as natural disasters, acts of ter-

rorism, and pandemics. Not only are the normal operations interrupted during such

events, but prolonged operational disruptions in infrastructure services also have de-

bilitating effects on emergency response and economic recovery in affected regions.

With the emergence of new threats and intensifying climate change, the resilience

of infrastructure systems has become a necessity rather than a choice for our cities.

As with any resource allocation problem, potential resilience investments

require identifying priorities and evaluating project alternatives. Appropriate re-

silience indicators can be used to rank and prioritize infrastructure components and
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systems as well as to evaluate the efficacy of resilience interventions. The disser-

tation proposes five indicator-based methodological frameworks to assist decision-

makers in analyzing the intrinsic risks and resilience in large-scale interdependent

infrastructure networks.

For generic interdependent networks, an agent-based simulation approach

is adopted. In this approach, the interdependent network is modeled as a weighted

bi-directed network where nodes represent infrastructure components and links de-

note the interconnections. For evaluating the risks of cascading failures and the

network’s resilience, a hybrid risk measure based on the well-known Inoperability

Input-Output Model (IIM) using expert judgments is developed. In the process, to

handle the issue of epistemic uncertainty associated with subjective infrastructure

dependency data, a method based on possibility theory is also proposed. Later,

the hybrid risk measure is extended to develop two resilience indexes for quan-

tifying the criticality and susceptibility of infrastructure components and ranking

algorithms are presented. In addition, the hybrid risk measure is combined with

socio-economic characteristics obtained from census data to develop a priority in-

dex to quantify the risks of cascading failures in various urban communities.

With regard to infrastructure-specific networks, the dissertation developed

infrastructure ranking and prioritization methods for two distinct transportation

systems, specifically road networks, and marine port systems, based on empiri-

cal disaster data. For characterizing the resilience of road networks, the disser-

tation proposed three indicators based on the concepts of resilience triangle and

extreme travel time observations. The dissertation combined time series decom-
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position techniques with anomaly detection algorithms to segregate disaster effects

from normal traffic patterns. For characterizing the risks of natural hazards to port

systems, the dissertation employed disaster impact data along with international

trade data and identified the ports with the highest risks.
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Chapter 1

Introduction

Cities, since their inception, have been exposed to various external shocks

and stresses, such as natural disasters, military invasions, and pandemics. Such

events not only resulted in the loss of life but also led to serious consequences on

the socio-economic fronts. Over the centuries, many cities learned from past ad-

versities and developed various strategies to minimize the traditional disaster risks

on the communities, physical infrastructure, economic systems, and environment.

However, the scope of threats and hazards that cities face today are more severe

and have far-reaching consequences than before. Emerging threats, such as cyber-

attacks and climate crisis, are some prominent additions to the list of potential

hazards that every city should be prepared for in the 21st century (Shackelford,

2015; White, George, Boult, & Chow, 2016). Furthermore, the impacts of disasters

are compounded by changes in the built environment and the fast-paced urban-

ization (Chmutina, Ganor, & Bosher, 2014). This is particularly true in low- and

middle-income countries, where cities witness rapid urbanization due to migration

of people from rural areas in search of better living conditions and job opportunities

(Wang, Lin, Glendinning, & Xu, 2018).

Paradoxically, the cities in the low- and middle-income countries are more
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vulnerable to disasters, and the consequences are disproportionately high among

vulnerable populations in those countries (The World Bank, 2009). Nevertheless,

the intensifying climate crisis and other emerging threats are global concerns and

every country needs to be prepared to withstand such extreme events. The resilience

of infrastructure systems is particularly important because of their enormous role in

the evolution of urban dynamics in cities. As infrastructure systems become more

interdependent, the infrastructure disruptions will become more expensive (Brown,

Beyeler, & Barton, 2004; Rinaldi, Peerenboom, & Kelly, 2001). Therefore, im-

mediate realignment of development goals and incorporation of resilience criteria

in the current infrastructure management practices and urban development frame-

works are necessary for enabling cities to prepare for future extreme events.

1.1 Research Background
1.1.1 The role of cities in the 21st century

The industrial revolution, which started in Europe in the 18th century and

later spread to other parts of the world, marked the beginning of urbanization.

As a result, traditional economies based on primary activities, such as agriculture,

forestry, and mining, paved the way for industrial production followed by services

(Satterthwaite, McGranahan, & Tacoli, 2010). This led to a sizable fraction of rural

populations migrating to cities in search of better jobs. As of 2018, 55% of the

global population (4.2 billion) lives in urban areas and this number is expected to

reach 68% (6.7 billion) by 2050 (Figure 1.1).

Urbanization is considered to be an essential stage in the transformation of
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Figure 1.1: World urban population growth projections (Data from Ritchie and Rose
(2018))

the national economy of every country. It is proven that a higher percentage of

urbanization is associated with higher per capita income (pci) of countries (Hender-

son, 2010). Cities continue to develop new capital markets, incentivize new eco-

nomic activities, and generate high-quality jobs. As a result, today, cities generate

80% of the world’s Gross Domestic Product (GDP).

In addition to job creation, cities have themselves transformed into hubs for

technology innovation and laboratories for urban experiments. The emergence of

cities has not only catered to the interests of the urban population but also facilitated

the linkages between the rural economies and international markets. The continued

efforts to maintain and upgrade public infrastructure, impart universal healthcare

and education, and reform legal and governance systems have further accelerated

the growth of cities and have become a blueprint for emerging urban areas to follow.
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1.1.2 Infrastructure and cities

Among various urban systems, infrastructure services have the most defini-

tive impact on the evolution of cities. Proper planning and design of infrastructure

services, such as transportation, telecommunications, water and sanitation, energy,

and healthcare, determine the future form, structure, and dynamics of cities (Cam-

agni, Gibelli, & Rigamonti, 2002; Chandra & Thompson, 2000). In the literature,

terms such as infrastructure systems, critical infrastructures, lifelines, etc. are quite

common, and used interchangeably to denote the most vital infrastructure systems

for day-to-day functions in the urban regions. Chang (2016) defined infrastructure

systems as the set of “assets, networks, and systems in the built environment that

provide essential services for social and economic activities.” Infrastructure systems

are highly interconnected. The interconnections are known as interdependencies,

which refer to the flow of services and goods within the urban infrastructure net-

work. It is because of interconnections that the smooth functioning of each of the

critical infrastructure systems, and dependent communities and other infrastructure

systems are facilitated.

Infrastructure systems, such as highways, are crucial for every economic ac-

tivity in cities. Infrastructure systems form the lifelines of cities (O’Rourke, 2007)

around which all the other urban systems, including economies and communities,

are built on. Urban land use development and economic activities are heavily reliant

on access to essential infrastructure services. For this reason, urban planners and

policymakers have always used infrastructure development as a catalyst to attract

more private sector investments (Y. Song, 2012). In addition to fostering economic

4



growth, equitable spending on urban infrastructure in cities could also contribute

to the social progress of underprivileged communities, manage population growth,

and reduce poverty (Cui & Sun, 2019; Guild, 2000). Social infrastructure such as

healthcare, education, and law enforcement improve livability in urban neighbor-

hoods and can bring inclusive development in the long-term.

While urban infrastructure can cater to the development goals of cities, it

is also true that their poor design and management can worsen urban issues. Ur-

ban infrastructure systems, once built, may be too rigid for redevelopment in the

future, especially because each of the systems is intertwined with others. This has

been one of the pressing issues faced by developing countries where inadequate and

obsolete infrastructure systems have resulted in a variety of urban woes, including

traffic congestion, poor air quality, and the creation of slums. Efforts for a complete

overhaul of urban infrastructure in such countries are often met with political, legal,

and financial obstructions.

1.1.3 Infrastructure resilience: A necessity rather than a choice

The increasing relevance and inevitability of infrastructure services in cities

also comes with a cost. While investing in infrastructure is a widely accepted so-

lution to tackle urban issues, the possibility of unanticipated disruptions caused by

extreme events, such as hurricanes, earthquakes, and floods, was not given adequate

importance until recently. Physical damages and operational disruptions to infras-

tructure systems caused by extreme events cost billions of dollars and resulted in

significant loss of life (Ritchie & Roser, 2014; Smith & Katz, 2013). Figure 1.2
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presents the year-wise global deaths and direct economic loss due to natural disas-

ters between 1990 and 2017.
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Figure 1.2: Global deaths and economic impacts from natural disasters (Data from
Ritchie and Roser (2014))

In addition to the direct losses, failure of a system could further trigger the

failure of dependent systems due to the networked structure of urban infrastructure

systems, and consequently cause widespread disruptions in public utility services.

The economic, social, health, and environmental consequences of infrastructure

failures (Table 1.1) resulting from extreme events are not limited to the area directly

affected. Rather, the consequences often scale up to the communities and economic

sectors that are not at direct exposure to such events (Ouyang, 2014). For instance,

the 2003 Northeast Blackout occurred due to the breakdown of a few high voltage

transmission lines in Cleveland-Akron area and subsequent failure of alarm systems
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Table 1.1: Indirect/cascading effects of infrastructure failures and disruptions
(Chang, 2016)

Category Impacts of infrastructure disruptions

Economic • Revenue loss for infrastructure agencies due to downtime
• Reduction in productivity or complete closure of dependent infrastructure sectors
and businesses
• Additional expenses for restoration of failed infrastructure systems

Social • Mass evacuation or migration
• Rise in violence
• Food insecurity
• Political instability
• Reduced efficiency of emergency response and mitigation

Health • Potential fatalities and inuries from physical failure of infrastructures
• Technological disasters such as fire events and chemical accidents
• Pollution of natural resources
• Epidemics/pandemics and helath hazards due to deteriorated essential services

Environmental • Contamination of natural resources and pollution
• Destabilization of ecological systems

to detect the incident, leading to overburdening of other parallel power lines and re-

sulting in a cascade of failures in southeastern Canada and eight northeastern states

in the United States. The blackout affected 50 million consumers, led to at least

11 deaths, and incurred an overall economic cost of $6.4 billion (Minkel, 2008). A

more recent example of the interdependent effects of disasters is the ongoing global

slowdown caused by the Novel Coronavirus (COVID-19). The pandemic not only

incapacitated healthcare infrastructure systems but also disrupted a large share of

global and regional supply chains. The economic cost of the pandemic to the global

economy is estimated to be in the order of trillions of dollars (Nicola et al., 2020).

The potential threats to infrastructure systems have also diversified over the

years. Though the initial discussions on infrastructure resilience were focused on
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natural disasters such as earthquakes (Bruneau et al., 2003), later, its scope was

extended to a broad range of other hazard categories including terrorist attacks

(Apostolakis & Lemon, 2005; Boin & Smith, 2006), cyber-attacks (Cardenas et

al., 2009), climate change (Linnenluecke, Griffiths, & Winn, 2012; Panteli & Man-

carella, 2017), and natechs (natural disaster-induced technological disasters) (Cruz,

Kajitani, & Tatano, 2015). Aging infrastructure and increasing demand for infras-

tructure services due to urbanization will also accentuate the impacts of disasters.

Historically, the strategy to reduce the impacts of disasters on infrastruc-

ture systems was to enhance physical protection and asset hardening (or in other

words, improve system robustness) (Turnquist & Vugrin, 2013; Vugrin, Warren, &

Ehlen, 2011); however, the emergence of new and more intense hazards and threats

compelled policy-makers to think beyond the physical strength of infrastructure

systems. The shift from infrastructure robustness to infrastructure resilience was

also fueled by the scale of societal and economic costs of indirect effects of infras-

tructure disruptions. Today, infrastructure resilience is viewed as a collective term

for all system qualities, which may be either intrinsic to the system or could be

enhanced through proper interventions, that enable systems to absorb unexpected

shocks, speed up recovery, and adapt to minimize impacts from future shocks.

The concept of infrastructure resilience is heavily influenced by the concept

of ecological resilience introduced by Holling (1973). In his seminal paper, Holling

defined resilience as the ability of ecological populations to absorb external shocks

and still exist. Holling suggested that the persistence of relationships in an affected

ecological system was more important than the consistency of its behavior. This
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is particularly true in the case of interdependent infrastructure systems where each

component function is significantly dependent on the operations of other compo-

nents.

The formal definition of infrastructure system resilience was introduced by

Bruneau et al. (2003) which is stated as “the ability of a system to reduce the

chances of a shock, to absorb a shock if it occurs and to recover quickly after a

shock”. Since then, several studies attempted to define infrastructure resilience and

its characteristics. Table 1.2 presents some of the prominent definitions found in

the literature. These definitions, though tailored to address specific resilience ob-

jectives, have two common elements – ability to absorb external shocks, and to

respond and recover rapidly, while adapting to emerging external conditions is also

cited many times in the wake of climate crisis concerns.

Table 1.2: Definitions of infrastructure resilience

Study Infrastructure resilience definition

Y. Y. Haimes (2009) “the ability of the system to withstand a major disrup-
tion within acceptable degradation parameters and to recover
within an acceptable time and composite costs and risks.”

National Infrastructure Advi-
sory Council (2010)

“ability to reduce the magnitude and/or duration of disruptive
events.”

Vugrin et al. (2011) “ability to efficiently reduce both the magnitude and duration
of the deviation from targeted system performance levels.”

The White House (2013) “the ability of infrastructure systems or components to endure
potential external shocks, and to recover quickly and adapt to
changing external conditions.”

Alderson, Brown, and Carlyle
(2015)

“the ability of a system to adapt its behavior to maintain conti-
nuity of function (or operations) in the presence of disruptions”

The concept of infrastructure resilience has been there in existence since
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the 1850s. However, it was only in the aftermath of September 11, 2001, World

Trade Center Attacks that infrastructure resilience received enhanced attention from

policy-makers, governments, and the private sector (National Infrastructure Advi-

sory Council, 2010). There was a paradigm shift from robustness (ability to absorb

shocks) to other characteristics of infrastructure systems that influence their disaster

response and quick recovery. Furthermore, the new emphasis was not restricted to

the resilience of individual systems but was extended to minimize the aggregate im-

pacts on interdependent infrastructure networks spanning larger geographical and

administrative regions.

The research on infrastructure resilience received a further boost with the

President’s Policy Directive 21 (The White House, 2013) which identified 16 ma-

jor infrastructure sectors that are critical to the economy and security of the United

States. Today, efforts are in place for improving individual infrastructure resilience

due to the advancements in communication, control, and sensing technologies. On

the other hand, the increased dependence of infrastructure systems on others for

their operations has led to more uncertainty over the impacts of known disasters

and emerging threats. Therefore, identifying such extreme events and evaluating

the network-wide vulnerabilities and capabilities are essential to adopt measures

that would help cities to contain the consequences of infrastructure failures and

minimize the network-wide effects through resilience measures, such as inbuilt sys-

tem redundancies and temporary supply mechanisms. Given the emergence of new

threats and how extreme events could impair urban dynamics, it is highly imperative

for both public and private sectors to incorporate resilience criteria in infrastructure-
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related decision-making. Advocating for investing in infrastructure resilience, a

recent study by the World Bank and the Global Facility for Disaster Reduction

and Recovery (GFDRR) estimated a net benefit of $4.2 trillion with $4 in returns

for every $1 spent on resilient infrastructure in disaster-prone regions (Hallegatte,

Rentschler, & Rozenberg, 2019).

1.1.4 Managing infrastructure risks and the need for resilience indicators

The broad objective of resilience interventions in infrastructure systems

is to reduce the overall risks (both direct and indirect) from unanticipated events

(Y. Y. Haimes, 2009; Zio, 2016). Therefore, assessing the effectiveness of resilience

interventions is determined by the reduction in disaster risks to the infrastructure

systems. Most of the frameworks for assessing resilience in infrastructure systems

are based on the well-known relationship connecting hazard1, exposure2, vulnera-

bility3, and risk4, as shown in Figure 1.3.

The risk is considered a function of hazard intensity, exposure of system

components to the hazard, and intrinsic vulnerabilities associated with system com-

1Hazard is defined as a process, phenomenon, or human activity that may cause loss of life,
injury or other health impacts, property damage, social and economic disruption or environmental
degradation UNISDR (2015)

2The situation of people, infrastructure, housing, production capacities and other tangible human
assets located in hazard-prone areas UNISDR (2015)

3The conditions determined by physical, social, economic, and environmental factors or pro-
cesses which increase the susceptibility of an individual, a community, assets or systems to the
impacts of hazards UNISDR (2015)

4The potential loss of life, injury, or destroyed or damaged assets which could occur to a system,
society, or a community in a specific period of time, determined probabilistically as a function of
hazard, exposure, vulnerability and capacity UNISDR (2015)
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Figure 1.3: Relationship among hazard, exposure, vulnerability and system re-
silience (adapted from Cardona et al. (2012))

ponents. The vulnerabilities are determined by the resilience capabilities of the

system. The resilience of a system improves with the adoption of strategies that

reduce the system component vulnerabilities and thereby the hazard risks to the in-

frastructure systems. Thus, resilience enhancement is a continuous and incremental

process. Resilience assessments help infrastructure agencies to identify and prior-

itize critical or weak components, evaluate the progress of the adopted resilience

measures, and fine-tune them to achieve desired resilience in the system.

Quantification of the resilience of an infrastructure system is a crucial stage

in every resilience assessment framework. Resilience quantification methods con-

sist of three steps:

1. Definition of resilience properties of infrastructure systems and networks.

2. Modeling the cascading/interdependent effects of infrastructure failures.
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3. Quantification of infrastructure resilience using appropriate metrics or indi-

cators.

Defining and characterizing the resilience properties of a system can be helpful in

systematic investigation and quantification of the infrastructure resilience. Among

the several classifications of resilience properties, the 4 R’s framework (robustness,

redundancy, resourcefulness, and rapidity) (Bruneau et al., 2003) and the three-

pillar framework (absorptive capacity, adaptive capacity, and restorative capacity)

(Vugrin et al., 2011) are most commonly adopted.

The 4 R’s framework, proposed suggested that infrastructure resilience can

be represented using the following four dimensions (properties), namely, robustness

(ability to endure a given level of stress, shock or demand without consequences on

its level of functioning), redundancy (ability to satisfy its functional requirements

and achieve stated goals by substituting its elements of the system itself in the event

of a disruption, degradation or loss of functionality), resourcefulness (ability to rec-

ognize failures, prioritize restoration activities, and mobilize resources during con-

ditions that threaten to disrupt the functions of the system), and rapidity (capacity

to recognize problems and mobilize resources to contain and avoid further losses

due to external stress promptly).

In the three-pillar framework, the resilience properties are classified into

absorptive capacity (ability to absorb impacts of system shocks and minimize con-

sequences), adaptive capacity (ability to self-organize for recovery and minimize

future risks from similar disasters), and restorative capacity (ability to be repaired

13



or restored easily).

Once the resilience capabilities and capacities of individual infrastructure

components/systems are identified and modeled, the next step in the evaluation

of network resilience is to model the consequences of infrastructure disruptions

on the whole network. This is a challenging task due to the presence of a wide

range of interdependencies among infrastructure systems. The presence of interde-

pendencies makes an infrastructure network a complex “system of systems” (Eu-

sgeld, Nan, & Dietz, 2011; Mostafavi, 2018). For the convenience of modeling,

Rinaldi et al. (2001) categorized the infrastructure interdependencies into four cat-

egories: physical-, geographic-, cyber-, and logical interdependencies. Ouyang

(2014) identified and classified infrastructure network models into five broad cate-

gories, namely empirical-, system dynamics based-, agent based-, economic theory

based-, and network-based approaches. A detailed review of the above methods can

be found in Section 2.2.1 of Chapter 2.

In the next step, the resilience of the individual infrastructure system and the

network can be quantified. The concept of resilience triangle is widely used for re-

silience quantification. The concept of the ‘resilience triangle” was first introduced

by Bruneau et al. (2003) to quantify the resilience of social and infrastructure sys-

tems against earthquakes. Figure 1.4 presents the concept of the resilience triangle

and relates it to the four properties of resilient systems as described in the 4 R’s

framework.

SupposeQ(t) is the performance measure which reflects the extent to which

a given objective is fulfilled by the infrastructure node over time and an external
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Figure 1.4: Resilience triangle for communication systems and its relationship to
the four dimensions of system resilience based on Bruneau et al. (2003) and illus-
trated by Franz et al. (2018)

shock occurs at t0. As a result, the performance measure of the infrastructure sys-

tem drops and reaches a stable performance level, Q(tj). Due to restoration and

recovery efforts after the event, the system performance slowly attains its original

performance level at t2. This is the most generalized model for a system’s perfor-

mance during a disaster. Bruneau et al. (2003) defined the area loss of resilience of

the system (assuming that the initial performance level is 100) as shown in Equa-

tion 1.1.

R =

∫ t2

t0

(Q(t0)−Q(t)dt) (1.1)

On the contrary, the resilience of the system can be obtained as the area

under the curve (Cimellaro, Tinebra, Renschler, & Fragiadakis, 2016). The signifi-

cance of this framework is that it is simple, intuitive and defines the relationship to
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the 4 R’s (as illustrated in Figure 1.4). Many modifications for resilience quantifi-

cation using the resilience triangle has happened over the years to address various

technical issues with it, such as its incapability to distinguish fast and slow recov-

ery processes (Bocchini & Frangopol, 2012) and incapability to distinguish between

various time scales (Frangopol & Bocchini, 2011).

The quantification of infrastructure risks and resilience requires suitable

metrics and indicators. The metrics and indicators quantitatively measure the direct

(physical and operational) and indirect effects (interdependent, societal, and eco-

nomic) of infrastructure disruptions. Appropriate resilience indicators can not only

be used for ranking and prioritization of infrastructure components but also be ef-

fectively used for measuring and evaluating the resilience of infrastructure systems

(Henry & Emmanuel Ramirez-Marquez, 2012; Nan & Sansavini, 2017; K. Zhao,

Kumar, Harrison, & Yen, 2011). The resilience indicators also help in monitoring

the trends in infrastructure networks, such as the intensity of extreme events and

common failure causes, and for validating the resilience compliance of infrastruc-

ture systems and networks with standards and regulations (European Network and

Information Security Agency, 2010). Figure 1.5 illustrates the role of resilience

indicators in resilience-related decision making. The resilience indicators can be

broadly classified into three, namely, graph-based indicators, performance-based

indicators, and hybrid indicators. A detailed discussion of the various resilience

indicators used in the literature is provided in Section 3.2 in Chapter 3.
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1.2 Problem Statement

Infrastructure-related resilience investments are dependent on budgetary con-

straints like any other resource allocation problem. Common optimization methods

for enhancing resilience could be computationally expensive or insufficient due to

the presence of complex interdependencies in the network. Furthermore, the unique

operational characteristics of the component systems also contribute to the com-

plexity. A more actionable approach is to prioritize the infrastructure components

for implementing resilience enhancement programs so that the desired level of net-

work resilience can be achieved under the given constraints. However, the concept

of network-level resilience with regard to infrastructure systems is still not clear.

While resilience metrics specific to certain infrastructure systems have been devel-

oped in the past, the development of indicators for estimating risks and measuring

resilience in large-scale interdependent infrastructure networks remains a sparsely

researched domain.

Developing effective indicators and metrics for evaluating risks and resilience

in interdependent infrastructure networks require addressing several challenges with

regard to modeling cascading or interdependent effects of infrastructure failures.

Some of the pertinent issues are presented below.

• Urban infrastructure systems are increasingly becoming interdependent for

improving their performance, operational efficiency, and safety. The interde-

pendencies among infrastructure systems could be physical, cyber, geograph-

ical, or logical in nature. The increasing number of such interdependencies
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make modeling cascading or interdependent effects of infrastructure system

more complex.

• Urban infrastructure systems vary considerably in their physical, functional,

and organizational characteristics. Mathematical representation of some of

the characteristics that influence infrastructure risks and resilience is difficult.

• Level of technology adoption for sensing and control of infrastructure varies

across infrastructure systems within a single urban network. Therefore, a

modeling approach that may be suitable for one infrastructure system may

not be appropriate for another.

• Even in most developed countries, there is a lack of coordination among var-

ious infrastructure agencies within a geographical region. Sharing of quan-

titative data related to infrastructure operations and dependencies are often

under stringent regulations or are discouraged due to security-, or business

concerns. Therefore, availability of operational data is a pertinent issue in

infrastructure interdependency modeling.

• Each agency could have multiple conflicting or competing resilience objec-

tives which may not be easily captured by the existing operational interde-

pendency models.

Hence, it is highly imperative to develop network-risk assessment models

and resilience indicators under various data and modeling constraints to serve a
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wide range of infrastructure agencies and other stakeholders. Such models and in-

dicators would help decision-makers in incorporating resilience criteria in existing

infrastructure development and management methodologies or develop methodolo-

gies for resilience-oriented intervention strategies.

1.3 Research Objectives and Scope

The primary objective of the dissertation research is to propose indicator-

based methodological frameworks for risk and resilience analysis of interdependent

infrastructure networks and apply them for ranking and prioritization of network

components. Two types of indicator-based methodologies are proposed to address

the above objective, namely, graph-based and empirical (data-driven) methodolo-

gies. The graph-based methodologies are proposed to address the issue of infras-

tructure prioritization when quantitative data on infrastructure interdependencies

are unavailable. The data-driven methodologies, on the other hand, rely on met-

rics and indicators developed using historical data to evaluate the disaster risks and

impacts on infrastructure systems. Furthermore, this research will also investigate

the possibility of incorporating societal and economic impacts of infrastructure dis-

ruptions in the infrastructure prioritization problem. Infrastructure systems are de-

signed and built to cater to the needs of urban communities and economies. There-

fore, such an approach is hypothesized to produce more effective resilience-related

decisions.

The specific objective of the dissertation research are as follows:
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1. Identify and record the various frameworks, models, and metrics used for

risk and resilience evaluation in interdependent infrastructure networks by

conducting a comprehensive literature review. Enlist their advantages and

limitations in ranking and prioritizing infrastructure network components for

resilience interventions. The findings from the literature review will be used

to develop appropriate methodological frameworks to address the identified

research gaps.

2. Develop a methodological framework and a risk measure to quantify the

network-wide impacts of infrastructure failures using linguistic descriptions

of interdependencies instead of quantitative data. Address the issue of epis-

temic uncertainties resulting from the use of imprecise information in the

interdependency model.

3. Propose a methodological framework to identify the most critical and most

susceptible infrastructure components (nodes and links) in a network. Con-

struct appropriate node-level, system-level, and network-level resilience in-

dicators to represent the criticality and susceptibility of components against

random and targeted extreme events. Propose algorithms to quantify the crit-

icality and susceptibility of infrastructure components.

4. Develop a methodological framework and resilience indicator to identify most-

affected communities in an urban region by combining infrastructure disrup-

tion data with socio-economic data.
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5. Propose a methodological framework to quantify the operational and eco-

nomic risks posed by infrastructure shutdowns using historical disaster data.

Rank the infrastructure components based on the direct operational and eco-

nomic risks, and the affected economic sectors based on the indirect eco-

nomic risks.

6. Develop a methodological framework and appropriate resilience metrics to

quantify disaster impacts and identify most affected infrastructure compo-

nents using historical data. Demonstrate the application of the metrics to

quantify the resilience of the infrastructure system to a historical disaster

event.

7. Conduct case studies to demonstrate the applicability of the proposed method-

ological frameworks and resilience indicators. Identify and report the advan-

tages and limitations of the proposed methodologies based on the findings

from the case studies.

1.4 Organization of the Dissertation

As discussed before, the dissertation focuses on two broad categories of

methodologies for evaluating the risks and resilience in large-scale interdependent

infrastructure networks, namely, graph-based methodologies and empirical method-

ologies. These methodologies are intended to address the issue of infrastructure

prioritization when quantitative interdependency data is unavailable. In the first

part of the dissertation, three chapters (Chapters 2–4) are included which deals with
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generic infrastructure networks as follows:

• In Chapter 2, a hybrid risk measure based on the well-known Inoperability

Input-Output Model (IIM) is presented for evaluating infrastructure networks

with a lack of interdependency data. The indicator uses subjective infor-

mation from expert judgments instead of quantitative data for simulating the

interdependent effects of infrastructure failures. A case study is conducted on

the simplified Great Britain gas and electricity network to identify the most-

affected infrastructure nodes due to a hypothetical energy shortage event.

• In Chapter 3, the hybrid resilience indicator presented in Chapter 2 is used to

develop two resilience indices, namely, node criticality index and node sus-

ceptibility index. The chapter also presents methods based on the resilience

indices to prioritize infrastructure components (nodes and links) for imple-

menting resilience-related interventions. A case study based on the simplified

Austin infrastructure network is conducted to demonstrate the applicability of

the resilience indexes.

• In Chapter 4, a methodology is presented to prioritize urban regions that are

vulnerable to large-scale utility disruptions by combining the interdependent

effects of infrastructure failures with social vulnerability. For this purpose,

a priority index is introduced by combining the hybrid risk indicator with

the socioeconomic characteristics of affected communities. The proposed

methodology is demonstrated using the simplified Austin infrastructure net-

work and socio-demographic information of census tracts in Austin.
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In the second part of the dissertation, methods are presented for evaluating

the risk and resilience in infrastructure systems for which historical data regarding

failure events are available (Chapters 5-6).

• In Chapter 5, an analysis framework is introduced to predict the functional

and economic risks posed by natural disasters to infrastructure systems. The

case study investigates the hurricane risks to the Texas ports and its impact to

the various sectors in the U.S. economy.

• In Chapter 6, an analysis framework is presented for investigating the re-

silience of infrastructure systems against historical disasters (natural or man-

made). The case study investigates the traffic conditions on the Houston free-

way network during- and after Hurricane Harvey and develops the resilience

triangle.

Figure 1.6 summarizes the focuses in each chapter concerning the impacts

on infrastructure (direct or interdependent), communities, and economy. Through-

out this dissertation, direct impacts refer to the functional and physical disruptions

resulting from the direct exposure of the infrastructure systems to disasters. The

network-wide impacts are the interdependent effects of local infrastructure failures

arising from the coupling between various infrastructure components in an urban

network. The societal and economic impacts of such infrastructure failures are also

considered in the comparison.
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Chapter 2

A Hybrid Risk Measure for Interdependent
Infrastructure Networks Using Imprecise

Dependency Information1

2.1 Introduction

Modeling failures in interdependent infrastructure networks requires exten-

sive data related to the various interdependencies existing among the component in-

frastructure systems. While topological information can be easily obtained through

GIS tools, identifying and modeling interdependencies at the network-level is still

a challenge, unless system-level data related to dependencies are available. The

data related to infrastructure interdependencies are unavailable due to three major

reasons:

• Data on infrastructure network components and interdependencies are not

readily available due to security and business concerns.

• System-level interdependency data are not maintained in some infrastructure

networks with a lower level of technology adoption.

1based on Balakrishnan, S., and Z. Zhang. 2020, A Methodology to Analyze Interdependent Ef-
fects of Infrastructure Failures Using Imprecise Dependency Information, Sustainable and Resilient
Infrastructure, https://doi.org/10.1080/23789689.2020.1735836.
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• Interdependencies are not only function in nature, but also organizational,

logical, etc. which may not be captured by existing functional models.

When quantitative data on system operation is unavailable (which is the case in

most of the infrastructure networks), an alternative is to collect the required infor-

mation from experts in the relevant field. However, expert judgments are based on a

person’s experience, belief, and knowledge, and therefore are vague, imprecise, and

subjective which could potentially cause epistemic uncertainties in the model. An-

choring on the primary issue of inadequate interdependency data availability, this

chapter attempts to address the following objectives:

1. Develop a hybrid risk measure and methodological framework for evaluating

the interdependent effects of infrastructure node failures by combining the

principles of existing network models, economic models, and agent-based

models, related to infrastructure vulnerability assessment.

2. Model the interdependencies between infrastructure systems using expert judg-

ments and conduct a simulation-based analysis of network-wide effects of

infrastructure failures.

3. Present a method to address the issue of epistemic uncertainties associated

with the imprecise nature of expert judgments on infrastructure interdepen-

dencies.

In this chapter, the simulation approach develops three different probability

distributions of infrastructure dependencies for capturing the resulting imprecision
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in estimated network-wide effects: a pair of lower- and upper bound distributions,

and a most-likely distribution. Possibility theory is used to develop the bound-

ing distributions for the network-wide effects, whereas probability theory is used

to derive the most-likely distribution from the linguistic dependency values. The

methodology is then used to investigate the response of the well-known simplified

Great Britain gas and electricity network against a hypothetical infrastructure fail-

ure scenario. In addition, this chapter also presents a sensitivity analysis to demon-

strate the effect of imprecision of dependencies on the estimates of network-wide

impacts.

This chapter is organized as follows: Section 2.2 provides an overview of

the various infrastructure network vulnerability assessment models and their limita-

tions, and the common mathematical models for handling epistemic uncertainties;

Section 2.3 presents the detailed methodology adopted; Section 2.4 discusses the re-

sults of the application of the methodology on a simplified infrastructure network;

and Section 2.5 summarizes the major findings of the study.

2.2 Literature Review

Estimation of disaster vulnerability is of utmost interest to a wide range of

institutions and stakeholders who are directly involved in urban infrastructure de-

velopment and management. Though the objectives of each of the stakeholders

vary, the estimation of disaster vulnerability of infrastructure systems is a critical

stage in accomplishing those objectives. For example, the various levels of gov-

ernments and emergency management agencies, such as the Federal Emergency

28



Management Agency (FEMA), are interested in vulnerability assessment so that

public funding for future infrastructure expansion and management projects could

be aligned with the national disaster resilience goals (Malalgoda, Amaratunga, &

Haigh, 2013; Ye et al., 2016). However, from the perspective of business entities

belonging to various sectors, assessment of infrastructure vulnerabilities is required

to formulate alternate plans for business continuity during large-scale infrastructure

disruptions (W. Lam, 2002) and to make strategic investment decisions for a region

(Hiles, 2010). Table 2.1 presents a comprehensive list of major stakeholders who

are interested in quantifying disaster vulnerabilities of infrastructure systems.

Vulnerability assessment models specific to infrastructure systems can be

broadly classified into two categories, namely, the direct vulnerability models (catas-

trophe models) and the indirect (interdependent) vulnerability models. Direct vul-

nerability models focus on an infrastructure node or a set of nodes that are under

direct exposure to a given disaster event, whereas, indirect vulnerability models

focus on larger infrastructure systems and networks with due consideration to the

interdependencies among them.

Since the focus of the current research is limited to the interdependent ef-

fects of infrastructure failures, further discussions are focused on those models used

for assessing the vulnerabilities due to interdependencies in infrastructure networks.
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2.2.1 Interdependency models for quantifying indirect effects of disasters on
infrastructure networks

The presence of interdependencies makes an infrastructure network a com-

plex “system of systems” (Eusgeld et al., 2011; Mostafavi, 2018). For the conve-

nience of modeling, Rinaldi et al. (2001) categorized the infrastructure interdepen-

dencies into four categories: physical-, geographic-, cyber-, and logical interde-

pendencies. Ouyang and Wang (2015) suggested that even though the presence of

infrastructure interdependencies enhances the operational efficiency of component

systems in the network, they can also increase the system vulnerability. An external

hazard or internal technical failure of an infrastructure system could trigger the fail-

ure of its dependent systems, degrading its functional efficiency. Many models have

been established to quantify the interdependent effects of failures on infrastructure

networks. Ouyang (2014) identified and classified such models into five broad cate-

gories, namely empirical-, system dynamics based-, agent based-, economic theory

based-, and network-based approaches.

Empirical models use databases of historical infrastructure failures and re-

sultant effects for identifying frequencies of failures and accidents, analyzing the

strength of interdependencies among infrastructure systems and risk analysis of in-

frastructure disruption (Chou & Tseng, 2010; Luiijf, Nieuwenhuijs, Klaver, van

Eeten, & Cruz, 2009; Mendonça & Wallace, 2006).

System dynamics models consist of feedback loops to capture the relation-

ships between events and system components, whereas, the stock and flows rep-

resent the flow of resources and information within the system. Using system dy-
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namics, the aggregate response of the whole system under different scenarios can

be simulated (Pasqualini & Witkowski, 2005; Powell, DeLand, & Samsa, 2008;

Santella, Steinberg, & Parks, 2009).

Economic theory-based models are largely dominated by the input-output

model and its variants. Y. Haimes and Jiang (2001) introduced the static inoperabil-

ity input-output model (IIM) in order to model the interdependent effects of infras-

tructure failures on other infrastructure systems. The IIM models underwent further

modifications and, subsequently, the advantages of other modeling techniques were

incorporated (Oliva, Panzieri, & Setola, 2010, 2011).

Agent-based modeling (ABM) is a bottom-up approach to model complex

systems consisting of numerous components that interact with each other based on

well-defined logical rules and class characteristics (Helbing & Balietti, 2013). Crit-

ical infrastructure systems are often viewed as complex adaptive systems (Eusgeld

et al., 2011; Rinaldi et al., 2001), for which ABM techniques have been effectively

implemented (Nilsson & Darley, 2006; Tesfatsion, 2003).

The network-based models use graph theory to model the interdependen-

cies among infrastructure systems. Graph theory enables the analyst to view infras-

tructure units as nodes and the logical or resource-based interdependencies as links

(Dunn, Fu, Wilkinson, & Dawson, 2013). Graph-theoretic models are convenient as

they can efficiently model the spatial and functional aspects of interdependencies in

infrastructure networks (Holden, Val, Burkhard, & Nodwell, 2013; Patterson, 2005;

Praks, Kopustinskas, & Masera, 2017; Svendsen & Wolthusen, 2007).
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2.2.2 Treatment of imprecise model parameters in quantification of risks

Most of the models discussed in the previous section require interdepen-

dency data to model infrastructure networks accurately. However, in most cities,

though topological netowork data can be easily obtained, the data related to interde-

pendencies in large-scale interdependent infrastructure networks are not easily ob-

tained, especially the data pertaining to interdependencies. Even if dependency data

are available, constructing large-scale sophisticated infrastructure network models

for capturing real-world infrastructure operations and responses is computationally

expensive and challenging. In such circumstances, subjective information obtained

from experts is commonly used for the development and validation of models. The

subjective nature of model components gives rise to epistemic uncertainties in the

interdependency values, which need to be properly addressed in the model. For

handling epistemic uncertainties, several tools, such as probability theory, proba-

bility bound analysis, random sets and possibility theory, have been proposed in the

past (Zio & Pedroni, 2013). In this subsection, some basic principles of probability

theory, fuzzy set theory, and possibility theory are discussed, as they are relevant to

the present chapter.

2.2.2.1 Probability theory

Probability theory is a common tool for modeling both aleatory and epis-

temic uncertainties due to the flexibility it provides for interpretation. According

to the frequentist notion, probability is the relative frequency of occurrence of an

event if the experiment is repeated an infinite number of times.
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When data for constructing probability distributions are not available, they

are often elicited from experts familiar with the problem under consideration. A

number of theories have been proposed to deal with subjective probabilities in en-

gineering, such as evidence theory, interval probabilities, p-boxes, fuzzy probabili-

ties, etc. (Beer, Ferson, & Kreinovich, 2013).

2.2.2.2 Fuzzy set theory

Epistemic uncertainty originates from imprecise data, such as linguistic ex-

pressions. Fuzzy set theory (Zadeh, 1965) is a rigorous mathematical theory that en-

ables models to deal with subjectivity and uncertainty in natural language. Fuzzy set

theory becomes handy when information related to model parameters are elicited

from subject matter experts, which are based on their experience and knowledge.

Given a universal set X , a fuzzy subset A of X is characterized by a membership

function µA(x) which denotes the grade of membership of x inA. The membership

function maps elements in X to a real number in the interval [0,1]. A membership

value of 1 denotes that the element is surely in the set A; a membership value of

zero suggests that the element does not belong to A, and any value between 0 and

1 represents partial membership. Many risk assessment models use fuzzy numbers,

a special case of fuzzy sets, to represent the vagueness of model parameters (Oliva

et al., 2011). A fuzzy number, Ã is defined as follows:

Ã = {x, µA(x)} (2.1)

and is a normal convex fuzzy set. Fuzzy numbers can model ordered linguistic

variables such as very small, small, medium, high, etc., thereby make use of expert
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judgments to define real-life situations without the need of a large amount of data.

Another advantage is that the fuzzy number simulation does not assume indepen-

dence or dependence between variables.

2.2.2.3 Possibility theory

Possibility theory was introduced by Zadeh (1999) to handle the imprecision

intrinsic to the natural language. Possibility theory is based on set functions, which

makes it comparable to probability theory. However, possibility theory introduces

a pair of dual set functions, namely possibility and necessity measures, to represent

real-world scenarios using partial information. The possibility distribution π is a

mapping of x ∈ X to a real number in the interval [0,1]. If π(x) = 1, the state

x is totally possible, and if π(x) = 0, the state x is impossible. Possibility theory

assumes that unless there is evidence to reject a hypothesis, it is still possible. The

possibility and necessity measures, denoted by Π(A) and N(A), can be derived

from possibility distribution π as follows:

Π(A) = supx∈A π(x)

N(A) = infx/∈A 1− π(x)
(2.2)

Possibility theory offers the flexibility of converting a fuzzy number corre-

sponding to a parameter into necessity and possibility measures. The possibility

and the necessary measures in combination can be used for reasoning with extreme

probabilities, which is useful when quantitative data is not available (Dubois, 2006).

Zadeh (1965) suggested that the possibility distribution π coincides with the mem-

bership function µF of a fuzzy subset F of U . Later, several studies (Dubois, Kerre,
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Mesiar, & Prade, 2000; Liu & Liu, 2002; Lodwick, 2012) demonstrated that a fuzzy

number A (as defined in Equation 2.1) can be considered as an envelope of a family

of probability measures PA enclosed by possibility and necessity measures. This

can be mathematically defined as follows:

PA = {P |ΠA(X) = supx∈X µA(x) ≥ prob(X)} = {P |NA(X) = infx/∈X 1− µA(x) ≤ prob(X)}

(2.3)

where X = (−∞, x]. The necessity measure can be considered the lower bound of

the family of probability distributions representing an imprecise parameter, whereas,

the possibility measure corresponds to the upper bound of the same.

2.2.3 Gaps in the literature

The review of the literature revealed that though there exists a wide range

of infrastructure interdependency models, a majority of them require extensive data

related to the interconnections between various infrastructure components. While

there are models such as the fuzzy-inoperability infrastructure models (Fuzzy-IIM)

proposed in the past (Oliva et al., 2011; Setola, De Porcellinis, & Sforna, 2009)

for incorporating the expert judgments related to infrastructure dependencies, their

applications were restricted to aggregate level modeling and did not provide any

methods for integration with aleatory uncertainties. This aspect is critical because,

in large-scale infrastructure networks, both uncertainties need to be handled prop-

erly to ensure the desired level of resilience against external shocks. In addition,

the topological characteristics such as the presence of redundancies in large-scale

infrastructure networks were also not considered in such models.
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2.3 Methodology

The methodological framework adopted for the present chapter is illustrated

in Figure 2.1. The urban infrastructure network is modeled as a set of nodes and

links, where nodes represent the various infrastructure system components and links

are the interdependencies among them. For example, power plants, water treatment

plants, hospitals, etc. constitute the nodes in the network, whereas, the flow of

resources, such as electricity and water, and flow of services, such as healthcare,

between nodes are represented by the links. The topography of infrastructure net-

works is obtained from available databases and web mapping services, whereas,

the interdependency models are constructed using expert opinions and judgments.

Finally, a hazard is initiated in the network (leading to failure of the node(s) under

consideration), and the network performance under various scenarios (best-, worst-

, and most-likely cases) are simulated and analyzed. The following subsections

discuss the various stages of the methodology in detail.

2.3.1 Modeling infrastructure network

An urban infrastructure network can be simplified into a directed graph Ω,

where the nodes are infrastructure facilities that produce or consume resources and

services, and the connecting links are the medium through which the resources are

transported, and can be represented as follows.

GΩ = (NΩ, DΩ) (2.4)
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Figure 2.1: Methodological framework adopted for simulating interdependent vul-
nerabilities in infrastructure networks

where GΩ is the infrastructure network model, NΩ is the set of infrastructure nodes

and DΩ is the set of connections among the nodes based on resource or service

flow. As already indicated, there could be several types of infrastructure systems

(represented as κ: κ(j) = r ∈ R) with associated attributes which define their phys-

ical and functional characteristics. Each infrastructure node may be dependent on

other infrastructure nodes for their functioning. Hence, the presence of connection
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between nodes j, k ∈ NΩ (j dependent on k) can be represented as djk ∈ DΩ.

Whether j is directly connected to k is dependent on two important factors

– their corresponding infrastructure class (κ(j) and κ(k)), and the extent of the

service area of k. If there exists both djk as well as djk, the nodes are said to be

mutually dependent or interdependent.

2.3.2 Modeling interdependencies and dependencies

Determining the presence of dependencies and interdependencies among

infrastructure nodes alone may not be sufficient to evaluate the aggregate impacts

of a hazard on the network under consideration. Consider that j is a node under

consideration and its degree of failure needs to be assessed. The degree of fail-

ure is the same as the reduction in performance of the node under consideration,

given another node fails (assuming the node does not have an alternate mechanism

to negate the effect of infrastructure disruption on its functionality). The node j

gets resources and services from n other nodes represented by a set K : k ∈ K.

Assuming that the failure of j can happen due to the failure of one or more nodes

in Kj or as a direct result of the external event itself (denoted by H), the degree

of failure of j is a function of degrees of failure of nodes in K and the degrees of

failure of j due to the external event H . Hence, the degree of failure of node j as a

function of direct and interdependent effects of H is given by,

Γ(j) = fk∈K (Γ(k),Γ(j|k),Γ(j|H)) (2.5)
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where Γ(k) the degree of failure of k, Γ(j|k) the degree of failure of j given k fails

completely, Γ(j|H) the degree of failure of j due to the direct impact of hazard H ,

and fk(·) is the function defining Γ(j).

When there are redundant links in the network, infrastructure node j may

have access to the same resource or service from multiple nodes belonging to the

same infrastructure family. In such a case, the infrastructure nodes may be capable

of switching the dependee nodes based on their performance levels. This is particu-

larly usual in several grid-based infrastructure networks, such as electric networks,

where electricity may be rerouted through alternate feeders if the main feeder fails.

Then, it could be assumed that the set of nodes that provide resources to j at a spe-

cific time K∗j may dynamically change during an extreme event, depending on the

performance reduction in the network. It can be assumed that at any point in time,

node j would depend on the node with the minimum performance reduction among

all the available redundant nodes belonging to an infrastructure family (r ∈ R). If

so, Equation 2.5 can be rewritten as follows:

Γ(j) = fk∈K∗j (Γ(k),Γ(j|k),Γ(j|H)) (2.6)

where K∗j =
⋃
r∈R argmink∈Kr

i
Γ(k). At the same time, the performance reduction

of the dependee nodes k ∈ L∗k can be modeled as a function of their respective

dependee nodes L∗k 3 l as in Equation 2.6, i.e, Γ(k) = fl∈L∗k (Γ(l),Γ(k|l),Γ(k|H)).

The dependee node set of k may contain node j, which then forms an interdepen-

dency.
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Under circumstances when the above function fk(·) is not known, the degree

of failure of j can take any value between the following two bounds.

maxk∈K∗j [Γ(j|k)× Γ(k)), Γ(j|H)] ≤ Γ(j) ≤ min

1,
∑

k∈K∗(j)

[Γ(j|k)× Γ(k)] + Γ(j|H)


(2.7)

When there is no information on the combined effects of partial or complete failure

of multiple nodes in K∗j , the lower and upper bounds of Γ(j) could be calculated.

The upper bound of the cumulative impacts is obtained when it is assumed that the

effect of the failure of each node k on j are non-overlapping, whereas, the lower

bound is obtained when it is assumed that all such individual effects are overlapping

with each other. Equation 2.7 is analogous to the Boole-Frèchet inequality for logi-

cal disjunction (Boole, 1854). If the lower and upper bounds are deducted from the

maximum performance of one, the upper and lower bounds of performance levels

of the node can be obtained, respectively. By adopting the higher bound for the de-

gree of failure, the inaccuracies arising from the assumptions of non-independence

or independence among the impacts of failure events could be handled. However,

the drawback of this approximation is that it could lead to conservative estimates

for degrees of node failures.

In this chapter, a dependency is defined as the degree of failure of a node

given another node it depends on for a particular resource or service fails and is

denoted by wjk.

wjk = Γ(j|k) (2.8)
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Also, the hazard induced impact on node j is represented by ιHj .

ιHj = Γ(j|H) (2.9)

If both wjk and wkj are non-zero, then it is called an interdependency. Unfortu-

nately, dependencies, as defined above, are difficult to derive quantitatively due to

inadequate interdependency data. Alternatively, information on dependencies could

be obtained from the subject experts using standard elicitation methods. A sizable

number of studies have delineated the methodologies for elicitation of model pa-

rameters from experts (Cooke & Goossens, 2004; Setola et al., 2009; Usher & Stra-

chan, 2013). To handle the epistemic uncertainty of the parameters, each of the

linguistic dependency values is characterized using a minimum possible value, a

mode, and a maximum possible value.

Equation 2.4 defines the structure of the infrastructure network model. How-

ever, the degree of dependencies among various nodes vary depending on the in-

frastructure types. The interdependency model W̃ is a set of imprecise dependency

values in the range of [0, 1] mapped against every djk that exists in the network.

For the present chapter, a triangular fuzzy number is generated for each of the lin-

guistic dependency value using the minimum, the mode, and the maximum values.

Mathematically,

w̃jk = w̃κ(j)κ(k) ⇐⇒ ∃djk, (2.10)

where w̃jk ∈ W̃ is the fuzzy dependency value of j on k, w̃κ(j)κ(k), is the fuzzy
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dependency value for infrastructure type κ(j) dependent on κ(k).

w̃κ(j)κ(k) = [wκ(j)κ(k), wκ(j)κ(k), wκ(j)κ(k)] (2.11)

where wκ(j)κ(k) represents the minimum value, wκ(j)κ(k) the mode, and wκ(j)κ(k) the

maximum value of the dependency.

In many cases, multiple experts may be involved in the fuzzy number elici-

tation process. In such cases, disagreement among the experts may occur regarding

the shape of the membership function. There are several aggregation techniques

available to deal with such scenarios (Cheng, 2004; Hsi-Mei Hsu & Chen-Tung

Chen, 1996).

2.3.3 Modeling hazards and consequences

The United Nations Office for Disaster Risk Reduction (UNISDR, 2015)

defines a hazard as “a potentially damaging physical event, phenomenon or human

activity that may cause the loss of life or injury, property damage, social and eco-

nomic disruption or environmental degradation.” Threats and hazards which pose

risks to infrastructure systems are broadly classified into three categories by the

U.S. Department of Homeland Security (2013), namely, natural hazards, technolog-

ical, and human-caused. For a reasonable prediction of the interdependent effects

due to hazard-induced infrastructure failures on the infrastructure network, defining

hazard intensity, its characteristics of propagation, and possible state changes on af-

fected infrastructure node(s) in the hazard model are crucial. In the present chapter,

it is assumed that all infrastructure nodes and links are insulated from internal fail-
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ures since the focus of this chapter is to model the sudden changes in infrastructure

networks induced by external hazards and not the natural deterioration process of

infrastructure components.

For the present chapter, the agent-based framework presented by Oliva et al.

(2010) for modeling the propagation of hazard induced node failures in infrastruc-

ture networks is adapted in order to incorporate the network redundancies and the

uncertainties in dependency values.

Consider a disruptive event H occurring at point p and affects a certain

geographical area ω ⊂ Ω. The direct impact of the hazard on a node j is given by

the following equation.

ιjH = g(ι0, T, `jp, v) : 0 ≤ ιjH ≤ 1; j ∈ ω (2.12)

where ι0 is the initial intensity of the hazard at the point of occurrence, T is the

time of occurrence of hazard, `jp is the distance between the node and the point

of occurrence of the hazard, and v is the speed of propagation of the impact of

the hazard. There could be other characteristics as well to define the impact of the

hazard, which is not within the scope of this chapter.

If the performance level of j at time t < T is Pj(0) : 0 ≤ Pj(0) ≤ 100, and

given the performance of infrastructure nodes on which j is dependent remains the

same, the performance of the node j at any time t is given by,

Pj(t) =

{
Pj(0) if t− T < `jp

v

Pj(0)− ιHj if t− T ≥ `jp
v

(2.13)
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The equation suggests that the performance of the nodes affected by the direct im-

pact of the event remains at a normal level until the event directly impact it.

At the same time, the performance level reduction in nodes in the network

would subsequently affect those infrastructure nodes which are dependent on them

to function. However, if there are redundant links, the failure of one dependee

node may be compensated by those redundant connections. The reduction in per-

formance of a node is propagated to those nodes which depend on it for functioning

within a very short period (based on the speed of flow of the resource or service).

This is under the assumption that all nodes are incapable of handling a shortage

in resources without external supply. Considering the effect of interdependencies

along with the direct impact due to the hazard, Equation 2.13 can be modified as

follows:

Pj(t) = max

0, Pj(0)−

 ∑
k∗∈K∗j (t)

(Pk∗(0)− Pk∗(t−∆t)) w̃jk∗

− ρjιHj
 : 0 ≤ Pj(t) ≤ 1,

(2.14)

where ∆t is the time step in the simulation, K∗j (t) is the set of dependee nodes of

j with the highest performance level corresponding to each infrastructure system

r ∈ R in the previous iteration, w̃jk∗ is the dependency of node j on node k∗, ρj is

the indicator variable with value 1 if t − T >
`jp
ν

, and 0 otherwise, and ιHj is the

degree of impact of extreme event H on node j. The performance loss of a node j

at any time t is given by Pj(0)− Pj(t).

Equation 4.4 gives a simulation framework and measure to evaluate the di-
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rect and indirect effects of H on the network performance at a given time. Fig-

ure 2.2 illustrates the simulated performance time line of a typical infrastructure

node impacted by an extreme event using the presented model.

T  ? 

t

Pi(0)

Pi(t)

0

Figure 2.2: Typical performance timeline of an infrastructure node after impacted
by an extreme event, considering both direct and interdependent effects

2.3.4 Simulation of interdependent effects

Three different scenarios, namely, best-, worst-, and most-likely cases of

network performance, were considered. The most-likely case is simulated using the

most-likely distribution of linguistic dependency values based on probability the-

ory. The best- and the worst cases are simulated using the possibility and necessity

measures corresponding to the linguistic dependency values based on possibility

theory. All the three distributions were constructed from the membership functions

of ordinal linguistic expressions of dependencies.
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2.3.4.1 Transformation technique to convert membership functions into most
likely probability distributions

The most-likely distribution is constructed based on the assumption that the

minimum, mode, and maximum values of interdependency values elicited from an

expert reflect the person’s experience, knowledge, and belief about the dependen-

cies between the infrastructure systems. In such a case, the analyst can interpret that

the expert believes that the highest frequency of dependency (between two nodes)

he/she would observe is for the mode value and there is no possibility of observing a

value less than the minimum or greater than the maximum for the dependency. The

most-likely distribution reflects the above interpretation of imprecise dependency

variable and can be modeled as follows.

Suppose, the linguistic expression of the conditional degree of failure (de-

pendency) of an infrastructure node j given infrastructure node k is completely

failed can be represented by a fuzzy number w̃jk as follows:

w̃jk = {(x, µw̃jk(x))|x ∈ [0, 1]} (2.15)

where µw̃jk is the membership function corresponding to the imprecise description

of the dependency value. The membership function can be considered as a convex

function of x, represented by φ(x), in the range [0, 1] as follows:

µw̃jk(x) = φ(x) : x ∈ [0, 1] (2.16)
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Then, the area function of the membership curve can be obtained as follows:

Φ(x) =

∫ x

0

φ(x)dx : x ∈ [0, 1] (2.17)

In order to obtain the cumulative probability distribution from the membership

function, the area function can be normalized using the total area under φ(x) as

follows:

F (x) =

∫ x
0
φ(x)dx∫ 1

0
φ(x)dx

(2.18)

F (x) satisfies all the conditions of cumulative probability distributions (0 ≤ F (x) ≤

1, F (xmin) = 0, and F (xmax) = 1). The transformation technique is illustrated in

Figure 2.3. F (x) can be considered as the prior distribution of the dependency

value. The idea behind simulation using probability theory is that if the interdepen-

dent effects of the same node failure are simulated a large number of times based

on the dependency distribution constructed using expert judgments, the resultant

distribution of the network performance will reflect the epistemic uncertainties in

the model.

2.3.4.2 Necessity and possibility measures based on possibility theory

The upper- and lower probability bounds of the linguistic dependencies can

be constructed from the corresponding membership functions (Equation 2.15) us-

ing the possibility theory. In a quantitative setting, the possibility and necessity

measures of infrastructure dependencies (derived using possibility theory) can be

interpreted as upper and lower probabilities corresponding to the values those de-
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Figure 2.3: Transformation of fuzzy dependency value into most-likely distribution
along with necessity and possibility measures

pendencies can take. The possibility and necessity measures (Figure 2.3) of depen-

dencies are calculated as follows:

Πw̃jk(X) =


µw̃jk(x) if wjk ≤ x ≤ wjk

0 if x < wjk

1 if x > wjk

(2.19)

Nw̃jk(X) =


1− µw̃jk(x) if wjk ≤ x ≤ wjk

0 if x < wjk

1 if x > wjk

(2.20)

where µwjk(x) is the membership function of A ; µwjk , x ∈ [0,1].

2.3.4.3 Agent-based simulation algorithm

The possibility and necessity measures and the most-likely distribution for

infrastructure interdependencies were used to simulate the best-, worst-, and most-

likely network performance scenarios, respectively. For every simulation run m,

a dependency value ŵmjk was drawn from the respective distributions using Monte-
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Carlo simulation by fixing the value of cumulative probability. In this way, it was

ensured that the model only captures the epistemic component of uncertainty. The

network-wide effects under different combinations of dependency values were sim-

ulated using agent-based models constructed based on the interdependency model

presented in Equation 2.13. Each simulation was continued until the performance

difference in each node in two consecutive time-steps was less than 0.001. The sim-

ulations were repeated for each scenario to obtain corresponding network perfor-

mance distributions. The algorithm used for implementing the agent-based model

for a single simulation run for a given scenario is presented in Algorithm 1.

2.4 Model Implementation and Results
2.4.1 Description of infrastructure network

For demonstrating the method presented in this chapter, a case study was

conducted on well-known Great Britain (GB) gas and electricity network (Fig-

ure 2.4. The infrastructure components considered in the integrated GB electricity

and gas networks are the bus bars, gas pipeline nodes, gas compressors, and gas

storage units (storage tanks or terminals). The case study demonstrates how the

proposed metric can be used to quantify the interdependent effects on both the elec-

tricity and the gas networks due to a hypothetical event of a sudden 50% shortage

in gas supply to the gas-based power plants in the GB networks.

The GB electricity network consists of 29 bus bars, 47 transmission lines,

and 148 electric generators (National Grid, 2014). Each bus bar has access to

a unique combination of energy sources, including wind turbines, pump storage
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Algorithm 1 Pseudo-code for simulating interdependent effects of infrastructure
node failures on the urban network

simTime = number of time-steps for one simulation run (initial value of 1)
maxPerfChange = maximum node-level performance difference compared to previous
iteration (initial value 0)
errorTolerance = criterion for termination of simultion (1e-04)
agentClasses[] = index(of all infrastructure classes)
agentDependencies[] = index(of dependencies of the infrastructure class)
define the membership functions of each agentDependencies[] and corresponding cumu-
lative distributions (best, worst, most-likely)
for i = 0 to agentClasses.length do

for j = 0 to agentDependencies.length do
select the scenario for simulation (best, worst or most-likely)
generate random value of cumulative density [0,1]
calculate corresponding dependency value using inverse transformation method

for the given scenario
end for

end for
agents[] = index(of all infrastructure nodes belonging to an infrastructure class)
while maxPerfChange ≥ errorTolerance do

for i = 0 to agentClasses.length do
for j = 0 to agents.length do

update the current list of dependee nodes for the agent
generate current performance value for the agent

end for
end for
compute maxPerfChange
simTime += 1

end while

plants, nuclear plants, hydroelectric plants, coal plants, and natural gas plants. The

details regarding the energy sources at each bus bar and the interconnections be-

tween the bus bars were retrieved from Bukhsh and McKinnon (2013). A bidirec-

tional relationship was considered between the connected bus bars, implying that

electric power can be transmitted through the bus lines in both directions depending
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upon the fluctuations in the demand.

For modeling the GB gas network, the simplified GB gas network intro-

duced by Ameli, Qadrdan, and Strbac (2017); Qadrdan, Chaudry, Wu, Jenkins, and

Ekanayake (2010) was adopted. The network consists of 63 nodes (21 compres-

sors, 29 pipeline nodes, 13 terminals/storage facilities), and 54 gas pipelines. A

bidirectional relationship was assigned between each of the gas node pairs which

was physically linked by a pipeline, assuming that the flow of gas can be reversed

by the compressors.

Simplified UK electricity network Simplified UK gas network

Node type Bus Node Gas Node Gas Compressor Gas Storage/Terminal

Figure 2.4: Simplified UK electricity and gas infrastructure networks (Map tiles by
Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL)

As far as the interconnections between the gas and electricity networks, the

pipeline nodes, compressors, and the storage facilities are dependent on the bus bars

for electric power. The details regarding the bus nodes on which each of the gas

network components was dependent on were retrieved from Qadrdan et al. (2010).
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On the other hand, the bus bars are also dependent on the nearest gas pipe nodes

for fuel (this is approximated since gas plants receive fuel from the gas distribution

network).

The linguistic dependencies between the network components were assigned

based on levels of dependencies (influence) presented by Setola et al. (2009). The

linguistic dependencies were converted to the numerical scale using the influence

table and the values are presented in Table 2.2. For example, a value of 0.5 indicates

that the event will cause the infrastructure component unable to provide the required

resources to the dependent nodes. With regard to the imprecision in the dependency

values, the base scenario considered a higher value of ±0.2 (a maximum support

width of 0.2+0.2 = 0.4 for fuzzy dependency values) compared to those suggested

by Setola et al. (2009).

Table 2.2: Assumed degree of dependencies between infrastructure systems for the
case study (based on the definitions by Oliva et al. (2011))

Node type Gas Node Gas Storage Gas Compressor Bus Node

Gas Node 0.1 0.5 0 0.3
Gas Storage 0.3 0 0 0
Gas Compressor 0.3 0.3 0 0
Bus Node 0.1 0.05 0.5 0.2

2.4.2 Simulation results and discussion

The agent-based infrastructure model was developed using the R-statistical

software. To demonstrate the methodology for vulnerability assessment using the

proposed methodology, Algorithm 1 was implemented on the integrated GB gas and

electricity network assuming that there was a sudden 50% shortfall in gas supply to
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the gas power plants. While the necessity and possibility measures of performance

loss are not influenced by the number of simulations, the most-likely distribution

may be affected by it.

In order the to calculate the required number of simulations for achieving

desired confidence interval for the mean with respect to the most-likely distribution,

the two-stage absolute precision method was used.

N(ε) = min

{
n : n ≥

t2n−1,αS
2(n0)

ε2
, n ∈ Z+

}
(2.21)

where N(ε) is the number of simulations required for a precision of ε; tn−1,α is

the student-t quantile, S(n0) is the standard deviation corresponding to initial n0

simulations.

The values ofN(ε) for each of the infrastructure node types were calculated

by fixing ε = 0.001, n0 = 1000, and α = 0.05. The minimum number of required

simulations obtained for gas nodes, gas compressors, gas storage/terminals and bus

nodes are 340, 40, 443 and 49, which are considerably lower than the initial num-

ber of simulations (n0 = 1000). Therefore, 1000 simulations were implemented

in each case for developing the cumulative performance loss distributions. Each

simulation run elapsed until change in every node in two consecutive time steps for

the simulation was at least 0.001.

2.4.2.1 Timeline of infrastructure failure propagation

Figure 2.5 presents the mean system performance degradation of all the in-

frastructure node types over time due to a deficit in natural gas supply. The colors
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Figure 2.5: Simulation results: Progression of mean network performance of in-
frastructure systems after the network underwent shortage in gas supply during the
first 15 time steps

represent the three distinct scenarios (best-, worst- and most-likely cases) consid-

ered in a simulation. Each line corresponds to a single simulation. At the start of

each simulation, the performance of gas storage is reduced from one to 0.5, indicat-

ing a 50% shortage in gas supply, and the failure is reflected in the performance of

all other dependent infrastructure systems causing a string of cascading failures in

the entire network. This can be observed in all three cases. However, mean system

performance distributions at every time-step are significantly different from one an-

other. This is intuitive because possibility measures of dependencies were used for

simulating the best case, necessity measures for the worst case, and the most-likely
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distribution for the most-likely case.

There is a significant variation in the rate at which each infrastructure sys-

tem performance degrades as well. In the best-case scenario, it can be observed

that there is no considerable reduction in the performance of infrastructure systems

after the initial few time-steps, which means that the further accumulation of inter-

dependent effects is negligible. In the worst - scenario, the performance reduction

is steeper in all infrastructure nodes, which decays over time. As expected, in the

most likely case, the degradation in the performance of infrastructure systems is at

a rate intermediate of the best- and the worst-case.

2.4.2.2 Best, worst and most-likely scenarios

Table 2.3 presents the details of the best-, worst-, and most-likely distribu-

tions of the degraded mean system performance levels at the end of simulations for

various infrastructure components in the network due to the initial 50% shortage in

gas supply to the gas-based power plants.

In all the three cases, the most affected node type is the gas storage/terminals

(including direct and interdependent effects). According to the best case distribu-

tion, the degraded mean performance of the gas storage/terminals could be between

42% and 49% (1% to 8% performance due to interdependencies) with a mean value

of 46% and as per the worst-case distribution, the same is estimated to be between

8% and 40% (10% to 42% performance loss due to interdependencies) with a mean

of 29%. The variance of worst-case distributions of all infrastructure node types is

higher because the simulations assume higher probabilities for stronger dependen-
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Table 2.3: Simulation results: Quantiles corresponding to the mean degraded per-
formance estimated using best-, worst-, and most-likely case distributions

Case Infrastructure Node
type

Cumulative impact of 50% gas shortage

0th 25th 50th 75th 100th Mean

Best Case

Bus Node 0.9834 0.9904 0.9941 0.9961 0.9983 0.9930
Gas Compressor 0.9899 0.9947 0.9970 0.9982 0.9994 0.9962
Gas Node 0.9087 0.9328 0.9514 0.9606 0.9748 0.9475
Gas Storage/Terminal 0.4170 0.4445 0.4642 0.4734 0.4855 0.4594

Most-likely
Case

Bus Node 0.9694 0.9781 0.9803 0.9825 0.9883 0.9801
Gas Compressor 0.9760 0.9851 0.9873 0.9890 0.9935 0.9869
Gas Node 0.8688 0.8952 0.9014 0.9101 0.9273 0.9020
Gas Storage/Terminal 0.3763 0.4026 0.4084 0.4187 0.4389 0.4089

Worst Case

Bus Node 0.8388 0.9182 0.9540 0.9724 0.9808 0.9394
Gas Compressor 0.8635 0.9357 0.9667 0.9816 0.9880 0.9534
Gas Node 0.5767 0.7458 0.8294 0.8765 0.9005 0.7993
Gas Storage/Terminal 0.0788 0.2091 0.3179 0.3778 0.4073 0.2864

cies between the infrastructure node based on the necessity measures to take into

account the worst possible interdependent effects. The relationship between the

magnitude of dependencies and network-wide effects is non-linear. The stronger

dependencies between infrastructure nodes lead to cascading effects of higher mag-

nitude and geographical scale compared to a network in which there are weaker

dependencies. The most-likely estimates of system performance lie between the

best-case and worst-case values. The most-likely estimates of gas storage/terminals

are between 37% and 43% with a mean value of 41%.

Considering only the interdependent effects, the gas nodes are also affected

in similar magnitudes. According to the best case distribution, the mean degraded

performance in gas nodes could be between 91% and 97% (3% to 9% performance

loss due to interdependencies) with a mean value of 95%. The estimated mean
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performance of gas nodes based on the worst-case distribution is between 58% and

90% (10% to 42% performance loss due to interdependencies) with a mean of 80%.

With regard to the individual nodes belonging to each network, there are

variations in the performance loss due to network topology, including the effect

of redundancies in the network. Figure 2.6 shows the performance loss estimates

(due to interdependent effects) in gas and electricity network components based on

the best-, worst-, and most-likely distributions, capturing the uncertainties in the

linguistic dependency values with which the network was modeled.

2.4.2.3 Effect of uncertainty reduction in network performance estimates

Though best-, worst-, and most-likely case estimates of infrastructure sys-

tem vulnerability are extremely helpful in risk-based and risk-informed decision

making, those estimates are based on imprecise dependency values constructed us-

ing expert judgments and opinions. Over time, such dependency distributions are

expected to be improved with more data collection and expert judgment elicitation

efforts. This will lead to a reduction in the uncertainty over dependency parameters

in the model. In order to check how the three estimates of interdependent effects are

sensitive to the epistemic uncertainty of dependencies, three levels of uncertainty

reduction in dependency parameters were considered for testing. To implement this

in the model, simulations to develop the best-, worst-, and most-likely distributions

were repeated by setting the maximum support width of fuzzy dependency values

to be 0.1 and 0.05 (against 0.2 in the base model) assuming that the true dependency

is wjk.
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Best Case Most−likely Case Worst Case

25th percentile
50th percentile

75th percentile

Node type

Bus Node

Gas Node

Gas Compressor

Gas Storage/Terminal

Magnitude of interdepenent effects

0.0 0.2 0.4 0.6

Figure 2.6: The 25th-, 50th-, and 75th percentile performance loss estimates on
different infrastructure nodes based on the best-, worst- and most-likely distribution
(Only interdependent effects considered)
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wjk
λ = wjk + λ(wjk − wjk)

wjk
λ = wjk − λ(wjk − wjk)

(2.22)

where wλjk and wλjk are the lower and upper bounds of the support of the fuzzy

number when uncertainty is reduced by a fraction of λ.

The simulation results using dependencies with various levels of uncertain-

ties are presented in Figure 2.7. The colors represent the best-, worst-, and most-

likely cases, and the linetypes correspond to the various levels of uncertainty con-

sidered. The simulation results indicate that the reduction in epistemic uncertainty

associated with dependencies considerably influences the mean performance distri-

butions in all three scenarios. Also, by reducing the epistemic uncertainties, tighter

Gas Node Gas Storage/Terminal

Bus Node Gas Compressor
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Figure 2.7: Effect of reduction in epistemic uncertainty of linguistic dependencies
on the precision of performance estimates
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bounds (best- and worst-case distributions) are obtained for vulnerability distribu-

tions. As the epistemic uncertainties are reduced, there is a significant reduction

in the uncertainty over the performance loss estimates. This stresses the need for

data collection efforts to accurately capture the dependencies among infrastructure

systems and their combined effects on system performance. Underestimating epis-

temic uncertainties in infrastructure interdependency models could lead to conser-

vative estimates of network-wide impacts of extreme events, and may adversely

affect the effectiveness of policy interventions for resilience enhancements.

2.5 Conclusion

This chapter presented a methodological framework to model the prop-

agation of interdependent effects of localized failures on large-scale interdepen-

dent infrastructure network with its focus on using imprecise dependency informa-

tion. Linguistic dependency data are comparatively easier to obtain and more cost-

effective than conventional flow-based dependency data. The linguistic data, which

can be elicited from subject-matter experts, are often the only way to understand

the dependencies and/or interdependencies in large-scale infrastructure networks

in many cities either due to the unavailability or the absence of quantitative depen-

dency data. This chapter also presented a simulation technique based on probability

theory and possibility theory to deal with the epistemic uncertainties intrinsic to im-

precise linguistic data. The interdependent risk estimates generated by the proposed

methodology are characterized by a pair of bounds for mean system performance

distributions along with a most-likely distribution rather than a single distribution,
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providing decision-makers with a better understanding of the risks.

The best-, worst-, and most-likely case distributions of interdependent ef-

fects are simulated on a simplified infrastructure network with many underlying as-

sumptions. Hence, the numerical results of the case study are only a reflection of the

interdependent characteristics of the network being employed, but not a representa-

tion of the geographical area based on which the analysis network was built. In ad-

dition, the redistribution of resource flows due to infrastructure failures may not be

accurately captured as in typical flow-based infrastructure models, requiring further

modifications in the presented method. Nevertheless, the trends obtained reveal the

general physics behind the functioning of interdependent infrastructure networks,

which may be of interest to stakeholders of infrastructure resilience. The results

quantitatively suggest that risk assessment of infrastructure systems requires ade-

quate attention to the uncertainties related to infrastructure dependencies along with

the potential threats to various infrastructure system components in the network.

The infrastructure network vulnerability model developed based on the topological

characteristics and the expert judgments could be considered as a preliminary form

of an expert system. As more empirical or engineering data of the specific network,

with different levels of accuracy and sources of uncertainty, become available, the

expert system is capable of incorporating them. The agent-based framework, which

forms the back end of the model, is capable of incorporating such sophisticated

infrastructure-specific modeling components and empirical evidence from histori-

cal events.
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Chapter 3

Development of a Resilience Enhancement Scheme
Using the Hybrid Risk Measure: Introducing

Criticality and Susceptibility Indicators1

3.1 Introduction

Ensuring the resilience of infrastructure networks not only minimizes direct

losses from extreme events but also plays a vital role in the recovery and mitigation

of urban communities and economic hotspots (Orabi, Senouci, El-Rayes, & Al-

Derham, 2010). However, traditional infrastructure management practices adopt a

reliability-based life-cycle cost minimization approach for maintaining infrastruc-

ture systems at an acceptable level of performance (Frangopol & Liu, 2007), while

overlooking the resilience of networks to extreme events. Because of the rising risks

from conventional and emerging threats and the fact that infrastructure systems are

becoming more interdependent, incorporating resilience priorities in current man-

agement practices has become a necessity rather than a choice. Several studies have

identified disaster risk reduction as one of the most important criteria in project pri-

oritization and selection (Thekdi & Lambert, 2014)

1based on Balakrishnan, S. and Z. Zhang (2020), Criticality and Susceptibility Indexes
for Resilience-Based Ranking and Prioritization of Components in Interdependent Infrastruc-
ture Networks, American Society of Civil Engineers. Journal of Management in Engineering,
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000769.
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Like any other resource allocation problem, infrastructure-related resilience

investments are dependent on budgetary constraints. Common optimization meth-

ods for enhancing resilience could be computationally expensive or insufficient due

to the presence of complex interdependencies in the network and the unique opera-

tional characteristics of the component systems. A more actionable approach is to

prioritize the infrastructure components for implementing resilience enhancement

programs so that the desired level of network resilience can be achieved under the

given constraints. While resilience metrics specific to certain infrastructure sys-

tems have been developed in the past, the development of indicators for measuring

resilience improvements in large-scale interdependent infrastructure networks re-

mains a sparsely researched domain. Hence, the primary objective of this chapter

is to introduce two generic resilience indexes for characterizing and quantifying

the resilience of interdependent infrastructure networks. Two indexes, namely, the

criticality index and the susceptibility index for ranking infrastructure nodes are

proposed in this chapter.

This study employs the inoperability input-output model (IIM), a widely

adopted approach for quantifying interdependent effects of infrastructure failures

(Y. Haimes & Jiang, 2001; Y. Y. Haimes et al., 2005), to compute the criticality

and susceptibility indexes of infrastructure systems. The IIM simplifies infrastruc-

ture systems into a bidirected weighted graph, where nodes represent the origins

and destinations of utility service flow, whereas, the links represent the degree of

dependency between individual infrastructure nodes. The proposed indexes take

both the topological and the generic functional characteristics of infrastructure net-
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works into consideration. Later, this chapter also demonstrates the application of

the resilience indexes to rank and prioritize infrastructure network components for

resilience-oriented investments and for evaluating the resultant improvements.

This chapter is organized as follows: the Background section discusses the

major resilience indicators for evaluating resilience in various types of infrastruc-

ture networks; the Methodology section discusses the development of the proposed

indexes and their application for prioritizing infrastructure components; the Exper-

iment Simulation section presents how the indexes are used for prioritizing infras-

tructure components in a simplified network; and the Conclusion section summa-

rizes the findings from the study.

3.2 Literature Review

Several definitions have been proposed for system resilience with a focus

on the specific aspects of the resilience problem being handled (Francis & Bekera,

2014; Hosseini, Barker, & Ramirez-Marquez, 2016). In the context of infrastructure

systems, The White House (2013) defined resilience as the ability of infrastructure

systems or components to endure potential external shocks and to recover quickly

and adapt to changing external conditions. Bruneau et al. (2003) suggested that

infrastructure resilience can be characterized using the following four dimensions

(properties): (a) robustness, which refers to the ability of a system or a component

to endure a given level of stress, shock or demand without consequences on its

level of functioning; (b) redundancy, which is the ability of the system to satisfy its

functional requirements and achieve stated goals by substituting its elements of the
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system itself in the event of a disruption, degradation, or loss of functionality; (c)

resourcefulness, which is defined as the ability of the system to recognize failures

in the system, prioritize restoration activities, and mobilize resources during condi-

tions that threaten to disrupt the functions of the system; and (d) rapidity, which is

the capacity of the system to recognize problems and mobilize resources to contain

and avoid further losses due to external stress in a timely manner.

The resilience of the infrastructure system can be enhanced by improving

any of the above four dimensions of resilience. While some of these aspects of

resilience overlap with that of reliability (for example, the robustness of infrastruc-

ture systems can be improved by traditional maintenance and rehabilitation efforts

(Rydzak, Magnuszewski, Sendzimir, & Chlebus, 2006)), the other three aspects

also require adequate attention for achieving optimal resilience. This highlights

the need for dedicated resource allocation programs for managing the resilience of

infrastructure systems.

For devising optimal resource allocation strategies, identifying those infras-

tructure systems and components whose resilience is crucial for the whole system

is necessary. Appropriate resilience indicators can not only be used for ranking

and prioritization but also be effectively used for measuring and evaluating re-

silience of infrastructure systems Henry and Emmanuel Ramirez-Marquez (2012);

Nan and Sansavini (2017); K. Zhao et al. (2011). The survey of the literature sug-

gests that the available resilience indicators can be broadly classified into three: (a)

performance-based indicators; (b) topology-based indicators; and (c) hybrid indica-

tors. Each category of metrics can be further subclassified into those developed for
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generic interdependent infrastructure networks and those for specific infrastructure

systems. The scope of the review was limited to the quantitative methods, though

qualitative indicators based on subjective information are also available.

3.2.1 Performance-based indicators

Performance-based indicators are developed using metrics that represent

the operational and physical characteristics of a system pertaining to its resilience.

Comparison of performance indicators under normal- and extreme conditions can

be used to understand a system’s vulnerability to extreme events. Such indicators

can be used to rank components based on their relevance to the overall resilience of

the system. For reliable estimation of resilience, simulating the stresses on the sys-

tem due to the extreme event and the resultant response by the system is essential

(Tran, Balchanos, Domerçant, & Mavris, 2017). Alternatively, historical disaster

data can be used to characterize system response to specific events (Ouyang, 2014).

In both approaches, extensive data related to the system as well as the disruptive

event are needed.

The initial attempt to quantify resilience in generic infrastructure networks

was made by Bruneau et al. (2003) by introducing the concept of the “resilience

triangle”. The resilience triangle represents the performance timeline of the in-

frastructure system after it is impacted by external stress. The area of the triangle

above the timeline is called the area of loss of resilience. In reality, this metric rep-

resents the cumulative loss of functionality (in terms of an appropriate measure of

performance) in the infrastructure system which is subject to the external stresses
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and shocks. The significance of this metric is that it is simple, intuitive, and re-

lates to the four resilience dimensions. Many modified resilience metrics based on

the resilience triangle have been proposed in subsequent studies to address various

technical issues intrinsic to the original resilience triangle, such as its incapability

to distinguish fast and slow recovery processes (Bocchini & Frangopol, 2012) and

its incapability to distinguish between various time scales (Frangopol & Bocchini,

2011).

Based on the concept of the resilience triangle, several studies attempted to

quantify the resilience of specific infrastructure systems using relevant performance

indicators. Bagchi, Sprintson, and Singh (2013) developed the load loss damage

index (LLDI) based on the resilience triangle concept to assess the resilience of

electrical distribution networks to urban fire hazards. LLDI represents the cumu-

lative load lost in the network caused due to a fire event. Similarly, for assessing

the resilience of transportation networks, Ganin et al. (2017) used the concept of

efficiency, computed as the average commuter delays induced by simulated random

traffic disruptions in the network, to quantify the network resilience of 40 cities in

the United States. Similar indicators have also been used in other infrastructure

networks such as water distribution networks (Jeong, Wicaksono, & Kang, 2017;

Todini, 2003), communication networks (Ibrahim, 2018; Kwasinski, 2015), etc. In

addition to the direct functional losses, some studies also considered the socioeco-

nomic losses as well to quantify resilience. For instance, Cimellaro et al. (2016)

used the total number of households affected by water outage along with other per-

formance measures to develop resilience indicators for water distribution network
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components.

3.2.2 Topology-based indicators

Using network theory, infrastructure networks can be represented as com-

plex graphs in which the nodes represent the infrastructure system components and

the links represent the dependencies among them (Dunn et al., 2013). The topo-

logical characteristics of a network could be indicative of the ability of different

infrastructure systems and components to respond to extreme events by reorient-

ing themselves to minimize the aggregate functional loss to the whole system. The

topology-based indicators, which reflect these characteristics, can be used to rank

the nodes and links in the network which are most vulnerable to the direct and indi-

rect effects of extreme events (Grubesic, Matisziw, Murray, & Snediker, 2008). The

general methodology to assess the resilience of infrastructure networks using net-

work theory is to identify the components whose removal from the network would

lead to the loss of specific properties relevant to network resilience (Sudakov &

Vu, 2008). The topology-based indicators are generally independent of any specific

extreme event, simplifying the analysis.

As far as the generic interdependent infrastructure systems are concerned,

there have been a few attempts to assess resilience using topological factors. Cen-

trality (Pinnaka, Yarlagadda, & Çetinkaya, 2015) and prestige measures are com-

monly used as topological measures for ranking infrastructure nodes based on their

importance. Topology-based indicators are also developed for individual infras-

tructure systems with consideration of their unique network characteristics. For
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example, Wyss, Mühlemeier, and Binder (2018) used path length, degree central-

ity, modularity, technological variety, balance, and disparity in energy distribution

networks to characterize resilience in different network topologies. Herrera, Abra-

ham, and Stoianov (2016) used the number of water sources and energy loss along

various paths to quantify the resilience in water distribution networks. Rohrer, Jab-

bar, and Sterbenz (2009) used path diversity to assess the resilience of commu-

nication networks. Topology-based resilience indicators are less accurate than the

performance-based indicators as the former do not reflect the real-world operational

relationships among the components of the infrastructure systems.

3.2.3 Hybrid indicators

Hybrid indicators combine the advantages of performance-based indicators

and topology-based indicators. They can be used for representing both the generic

and the event-specific resilience of infrastructure systems. Modern infrastructure

networks, being highly interdependent and heterogeneous, are often considered as

edge-weighted bidirected graphs (Y. Haimes & Jiang, 2001), where the weight of

the links represents the degree of dependency in the form of resource or service,

and the direction of the links indicates its direction of flow. The first effort to rank

infrastructure systems based on their resilience using the hybrid approach was made

by Oliva et al. (2011) where the authors introduced two measures, namely, influence

gain and dependency index, to denote the concepts of criticality and susceptibility

of nodes. However, these measures did not consider the higher-order interdepen-

dent effects of infrastructure disruptions. Recently, a biased-PageRank measure was
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developed by C. Zhao, Li, and Fang (2018) for interdependent infrastructure net-

works integrating both the topological and the functional characteristics of nodes.

Some studies also combined performance and network properties with social indi-

cators such as the number of consumers affected by infrastructure disruptions to

rank critical infrastructure components (Pant, Zorn, Thacker, & Hall, 2018).

Hybrid resilience indicators are widely used for analyzing the resilience of

individual infrastructure systems as well. Bompard, Napoli, and Xue (2010) eval-

uated the resilience of energy distribution networks by a resilience indicator com-

bining net availability (a functional characteristic) and path redundancy (a graph

characteristic). Ulusoy, Stoianov, and Chazerain (2018) combined the random walk

betweenness centrality of pipe nodes with energy loss in pipelines to evaluate the

resilience of water distribution networks. Heaslip, Louisell, Collura, and Serulle

(2010) used network availability, network accessibility, traveler perception, and

transportation cost to assess the resilience of transportation networks.

Table 3.1 enlists a few examples of the various categories of resilience indi-

cators discussed above along with the details of the performance- and topological

factors used in their development.

3.2.4 Gaps in the literature

The review of the literature revealed that there has been a considerable num-

ber of studies that explored the use of both performance- and topology-related

factors for evaluating the resilience of infrastructure systems and their compo-

nents Henry and Emmanuel Ramirez-Marquez (2012); Nan and Sansavini (2017);
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K. Zhao et al. (2011). While performance-based and topology-based resilience

indicators are commonly used, hybrid indicators have recently emerged as an alter-

native. It was observed that the majority of indicators are developed for individual

infrastructure systems with less focus on the cascading effects of infrastructure dis-

ruptions. Available indicators for evaluating the resilience of generic large-scale

interdependent infrastructure networks are limited.

3.3 Methodology

This section presents the methodology adopted for developing the resilience

indexes introduced in this chapter, namely criticality and susceptibility indexes.

The indexes are computed using an agent-based approach with inoperability input-

output model (IIM) determining the characteristics of the agents and their interre-

lationships. Later the indexes are used to identify the most important infrastructure

nodes from the perspective of system resilience. A heuristic algorithm based on the

proposed resilience indexes is also presented to systematically identify critical links

and improve the resilience of infrastructure networks by introducing redundancies.

3.3.1 Infrastructure interdependency model

Several methods have been proposed in the past to quantify the interde-

pendent effects of external hazards in infrastructure networks (Table 3.2). In this

chapter, the methodology for developing the criticality and susceptibility indexes is

derived from the static IIM proposed by Y. Haimes and Jiang (2001). The IIM is

a simple model used for quantifying the effects of an infrastructure failure on an
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Table 3.2: Major categories of infrastructure interdependency models (Ouyang,
2014)

Model category Key features Examples

Empirical models • Use data related to historical infrastructure
failure and consequences.

• Identify frequency of failures.
• Quantify strength of interdependencies be-

tween systems.

Luiijf et al. (2009);
Mendonça and Wallace
(2006)

System
dynamics-based
models

• Apply theory of nonlinear dynamics and
feedback loops to define system.

• Feedback controls capture relationships be-
tween events and components.

• Stocks and flows capture flow of resources
and information.

Pasqualini and
Witkowski (2005);
Powell et al. (2008);
Santella et al. (2009)

Economic
theory-based
models

• Based on the well-known input-output mod-
els used for quantifying the impacts of fluc-
tuations in economic sectors.

Y. Haimes and Jiang
(2001); Y. Y. Haimes et
al. (2005)

Network-based
models

• Based on the concepts of graph theory.
• a system is viewed as a set of nodes and

(weighted) links.
• captures spatial and functional aspects of

large-scale networks.

Dunn et al. (2013);
Svendsen and Wolthusen
(2007)

Agent-based
models

• bottom-up approaches in which systems
components are modeled as agents interact-
ing with each other under a set of rules.

• capable of incorporating the behavior of de-
cision maker; can be used to model any level
of complexity.

Nilsson and Darley
(2006); Tesfatsion
(2003); Oliva et al.
(2010)

interdependent infrastructure network. The IIM was adapted from the well-known

input-output model (I-O model) used in economics for estimating the effect of dis-

ruptions to economic sectors to the national economy (Leontief, 1986). Several
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extensions of IIM such as dynamic IIM (Y. Y. Haimes et al., 2005; Oliva et al.,

2010) and fuzzy dynamic IIM (Oliva et al., 2011) also consider the temporal dy-

namic behavior of infrastructure networks affected by extreme effects.

Similar to Chapter 2, an agent-based static IIM (Oliva et al., 2010) is adopted

to simulate the interdependent effects of infrastructure node failures. The agent-

based IIM models the interdependent infrastructure network as a weighted bidi-

rected graph in which nodes represent infrastructure components that either pro-

duce or consume some type of infrastructure service or resource. The flow of re-

sources/services (dependency) is captured by the weights assigned to the directed

links on a scale of 0 to 1. For example, a weight of 0.2 for a link from nodeA to

node B suggests that if A fails, the performance level of B will decrease by 20%.

The agent-based IIM can incorporate minute details about interdependen-

cies and infrastructure components to imitate real-world operational characteris-

tics. Agent-based IIM can also efficiently capture the diffusion of effects of failure

of infrastructure components on large-scale networks with minimal computational

requirements. These factors make IIM a good choice for developing indicators

intended to quantify resilience of infrastructure networks and evaluate the implica-

tions of resilience enhancement strategies.

The IIM assumes that the degree of failure of any node in the network is

dependent on the following two factors:

1. the extent of failure caused by the direct impact of the event
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2. the degree of failure of the nodes on which the node depends on (dependee

nodes) for functioning.

Similar to a node, the failure of its dependee nodes can also occur due to

the above set of factors. In addition, it is also important to take the redundancies

in the network into consideration. If a node receives same resource from two inde-

pendent dependee nodes, then even if one of those nodes fails, the dependent node

is not affected as the redundant dependee node continues to provide the same re-

source. Therefore, the performance of a node is determined by the dependee node

with the highest performance level among the set of nodes supplying the same ser-

vice. Taking these factors into account, the propagation of failure of a node i on an

infrastructure network is modeled as follows (Equation 3.1):

P i
j (t) = max

0, P i
j (0)−

 ∑
k∗∈K∗j (t)

(
P i
k∗(0)− P i

k∗(t−∆t)
)
wjk∗

− ρjιHj
 : 0 ≤ P i

j (t) ≤ 1,

(3.1)

where P i
j (t) is the performance of node j at time t after node i fails, P i

j (0) is the

performance of j before the failure of i due to extreme event H , ∆t is the time-step

in the simulation, K∗j (t) is the set of dependee nodes of i with the highest per-

formance level corresponding to each infrastructure system r ∈ R in the previous

iteration, i.e., K∗j (t) =
{

arg maxk∈Kr
j
P i
k(t−∆t) : r ∈ R

}
where Kr

j is the set of

all nodes belonging to r ∈ R providing resources to i, wjk∗ is the dependency of

node j on node k∗, ρj is an indicator variable determining if the node j is directly

impacted by event H , and ιHj is the degree of impact of extreme event H on node j.
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3.3.2 Development of criticality and susceptibility indexes

For this chapter, two factors for node ranking and prioritization are con-

sidered. The first factor is the criticality of nodes, which is a term introduced to

indicate the importance of a node for the functioning of other nodes in the network.

The second factor is the susceptibility of nodes, which is introduced to denote the

exposure of a node to the failure of other nodes in the network. While the failure of

the most-critical nodes may cause large-scale disruptions in infrastructure networks

and they often may become the primary targets of intentional attacks, such as the

acts of terrorism or cyber-attacks, the most-susceptible nodes are more likely to fail

or be affected by the cascading effects triggered by the failure of other nodes in the

network. Critical nodes require initiatives to protect the nodes from extreme events,

whereas, susceptible nodes require capacity enhancement to reduce the impacts of

cascading effects on them. Similarly, the links connected to the critical nodes are

also of high criticality, as their failure would trigger large-scale cascading effects in

the network.

Table 3.3 lists the major functional aspects determining the criticality and

susceptibility of nodes in an infrastructure network. These factors are identified

based on the principles of agent-based interdependency models presented by Oliva

et al. (2010). While the criticality of a node is largely determined by the criticality

of its dependent nodes, its susceptibility is dependent on the susceptibility of those

nodes on which it is dependent on for functioning (dependee nodes).

Along with the functional characteristics of a network, the computation of

criticality and susceptibility of the constituent nodes is also dependent on the topol-
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Table 3.3: Major factors influencing criticality and susceptibility of a node in an
infrastructure network

Factors affecting node criticality Factors affecting node susceptibility

The number of nodes to which the node pro-
vides resources or services.

The number of nodes to which the node is de-
pendent on for critical resources or services.

The type of nodes to which the node provides
resources or services.

The type of nodes on which the node is depen-
dent.

The criticality of the nodes to which the node
provides resources or services.

The susceptibility of the nodes which provide
resource or services to the node.

ogy of the network; more specifically, on how the infrastructure nodes are depen-

dent on each other. Infrastructure networks can be broadly classified into three cat-

egories based on the presence of dependencies and interdependencies, as illustrated

in Figure 3.1.

A B C

D

A B C

D

A B C

D

wAB wBC

wCD

wAB wBC

wCDwDA

wAB

wBC

wCB

wCD

wDA

wAD

(a) (b) (c)

Figure 3.1: Basic infrastructure network topologies based on the presence of depen-
dencies and interdependencies: (a) network with only dependencies; (b) network
with dependencies and indirect interdependencies; (c) network with direct and in-
direct interdependencies

1. Network with only dependencies: There are no directed cycles in the network.

For example, in Figure 3.1a, between any pair of nodes, there are only uni-

directional dependencies and directed cycles are absent. Any disturbance in
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the functioning of node B will only impact its dependent node A, and not the

latter’s dependee node C.

2. Network with indirect interdependencies: There are no bidirectional depen-

dencies between any pair of nodes, but the network consists of at least one

n-cycle (n ≥ 3). Hence, disturbance in any node in the cycle can cause fur-

ther disturbance to its functioning as the initial disturbance can return to the

node through the directed cycle. In Figure 3.1b, the partial failure of node A

will indirectly impact itself through nodes D, C, and B as those nodes form

a directed 4-cycle in the network.

3. Network with direct interdependencies: There is at least one pair of infras-

tructure nodes that are interdependent; i.e., the network consists of at least

one 2-cycle. Hence, disturbance on one such node would cause a disturbance

on itself through the other nodes in the cycle. In Figure 3.1c, nodes A and D,

as well as nodes B and C are interdependent.

The presence of cycles in the network gives rise to interdependent effects,

leading to gradual degradation of performance of the whole network over time.

Therefore, criticality and susceptibility indexes must also take into account of the

higher-order interdependent effects.

Consider ψij ∈ Ψ and χij ∈ X, where ψij is the criticality value of node i

with respect to node j, which can be interpreted as the degree of failure of j induced

by a complete failure of i (including interdependent effects), and χij is the suscepti-

bility of node i with respect to j, which can be interpreted as the degree of failure of

i given j fails. Comparing the definitions of the two concepts presented above, the
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following relationship can be obtained between criticality and susceptibility values.

ψij = χji (3.2)

The agent-based method presented in this chapter attempts to compute the

individual effects of each node failure on other nodes in the network and aggregate

them appropriately to develop the criticality and susceptibility indexes. As in any

agent-based model, the computation is done by implementing a recursive proce-

dure.

Consider that a node i fails completely due to an extreme event at time t = 0.

At that time, only the functioning of that node in the network is affected, and other

nodes in the network remain unaffected (as evident in the interdependency model

in Equation 3.1). Hence, the individual criticality values of node i with respect to

every other node in the network remains zero at t = 0.

ψij(t = 0) = 0, ∀i, j ∈ N, j 6= i, (3.3)

where N is the set of all nodes in the network. In the next time-step t = 1, the

effect of failure of node i is reflected in the functioning of dependent nodes of i

and is proportional to the dependency of dependent nodes on node i. That is, if the

dependency of node j on i is wji, then the performance of node j will be reduced

by Pi(0)×wji. Hence, the criticality values for any node at time-step t = 1 is given

by,

ψij(t = 1) =

{
Pi(0)× wji if ∃(i, j)
0 otherwise

(3.4)

where (i, j) ∈ D represents the dependency of j on i.
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Using the above two initial conditions (Equations 3.3 and 3.4), the criticality

values of all the nodes can be simulated. In the subsequent iterations, the criticality

of i for other nodes which are indirectly dependent on it needs to be reflected in i’s

criticality values. Also, any higher-order interdependent effects of failure of node

i on other nodes (due to the presence of directed cycles in the network) needs to

be taken into account. The interdependency model presented in Equation 3.1 can

be adapted to compute the criticality values. Based on the definition, the general

function to derive criticality values of nodes at any time-step t ≥ 1 in the simulation

is given by the following equation.

ψij = lim
t→∞

P i
j (0)− P i

j (t) (3.5)

where P i
j (0) is the performance of j before i is set to fail and P i

j (t) is the perfor-

mance of j at the time-step t after i is set to fail (t ≥ 1). Now, substituting for P i
j (t)

in Equation 3.5,

ψij = lim
t→∞

P i
j (0)−max

0, P i
j (0)−

 ∑
k∗∈K∗j (t)

(
P i
k∗(0)− P i

k∗(t−∆t)
)
wjk∗

− ρj


(3.6)

where K∗j (t) is the set of dependee nodes of i with the highest performance level

corresponding to each infrastructure system r ∈ R in the previous iteration, ρj is

an indicator variable with value 1 if j = i and 0 otherwise to denote the complete
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failure of node i in the simulation. Equation 3.6 can be further reduced as follows:

ψij = lim
t→∞

min

P i
j (0),

 ∑
k∗∈K∗j (t)

(
P i
k∗(0)− P i

k∗(t−∆t)
)
wjk∗

+ ρj


= lim

t→∞
min

(
P i
j (0),

[∑
k∈K

ψik∗(t−∆t)× wjk∗
]

+ ρj

) (3.7)

Equation 3.7 provides a simulation framework for computing the criticality

values of i for other nodes in the network. Simulation is continued until all interde-

pendent effects are reflected in the criticality values of the all nodes i ∈ N , where

N is the set of all nodes in the network. The final critical values are represented by

ψij .

For homogeneous networks, where all the nodes belong to a particular in-

frastructure system, the node criticality index of i can be obtained by aggregating

the individual criticality values corresponding to i, ψij , except for j = i (since

criticality value of a node with respect to itself is meaningless).

ψi =
∑
j 6=i

ψij : 0 ≤ ψi ≤ n− 1 (3.8)

Similarly, the node susceptibility index of node i is obtained by aggregating

the susceptibility values corresponding to i as follows:

χi =
∑
j 6=i

χij =
∑
j 6=i

ψji : 0 ≤ χi ≤ n− 1 (3.9)

In heterogeneous networks, which consists of multiple infrastructure sys-

tems, it may be practically more useful to denote the criticality and susceptibility
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indexes of each node in the form of vectors as follows:

ψi =

{∑
j 6=i

δrjψij : r ∈ R

}
= {ψri : r ∈ R} (3.10)

χi =

{∑
j 6=i

δrjχij : r ∈ R

}
= {χri : r ∈ R} (3.11)

where δrj is an indicator vector with value 1 if j belongs to the infrastructure

system type r ∈ R, and 0 otherwise. Each element in the criticality index vector

of a node can be interpreted as the equivalent number of node failures in the cor-

responding infrastructure system triggered by the failure of that node. Similarly,

each element in the susceptibility index vector of a node represents the equivalent

number of nodes belonging to an infrastructure system that would trigger the fail-

ure of that node. As an alternative, the criticality and susceptibility values of a node

can also be visualized as distributions which could give a better picture of network

conditions due to node failures as follows:

Fψrij(x) = P
(
δrjψij ≤ x

)
: 0 ≤ x ≤ 1 (3.12)

Fχrij(x) = P
(
δrjχij ≤ x

)
: 0 ≤ x ≤ 1 (3.13)

where Fψrij(·) and Fχrij(·) are the cumulative distributions of criticality and suscep-

tibility values of i corresponding to the infrastructure system r ∈ R, respectively.

Finally, the network criticality indicator ψ and network susceptibility indicator χ,

which represents the aggregate criticality and susceptibility of a network, are ex-

pressed as follows (Equation 3.14):

ψ =
∑
i

ψi =
∑
i

∑
j 6=i

ψij; χ =
∑
i

χi =
∑
i

∑
j 6=i

ψji (3.14)
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The network criticality indicator or susceptibility indicator (both being equal)

essentially reflects the cumulative cascading failures induced by each node in the

network on other constituent nodes. Thus, they can be treated as a measure for

the resilience of the network and can be used for evaluating the effectiveness of

resilience measures, especially those measures intended to improve the robustness

and redundancy dimensions. The resilience-oriented investments should essentially

reduce the value of network criticality and susceptibility as they are intended to re-

duce the extent of the cascading failures in the network.

3.3.3 Prioritization of infrastructure nodes

The criticality index and the susceptibility index reflect the two important

aspects of resilience of components in interdependent infrastructure networks. Some-

times, in order to prioritize nodes within a system for resilience enhancement pro-

grams, both criticality and susceptibility of nodes may need to be considered. A

node that is more susceptible as well as critical must be allocated more resources

than nodes that are less susceptible and critical. A combined index is proposed for

this purpose and is defined as the weighted Euclidean distance between the critical-

ity index and susceptibility index of a node (Equation 3.15).

ϕi =

√√√√(∑
k

mkψki

)2

+

(∑
k

χki

)2

, (3.15)

where ϕi is the combined index of node i andmk is the weight factor corresponding

to infrastructure k. The weight factors for criticality indexes allow the combined

index to take the difference in the strategic and economic importance of various
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infrastructure systems into consideration. Since susceptibility indexes reflect the

effect of other node failures on a node, weight factors are equal and need not be

included explicitly.

For resilience-oriented investments focusing on hazards with historical data,

the probability of the occurrence of hazards at the geographical location of each

node may also be needed to be considered in the computation of criticality and

susceptibility indexes of nodes. Different nodes may experience different hazard

probabilities which could influence the criticality and susceptibility of other nodes

in the network. In such cases, criticality and susceptibility indexes can be computed

as follows:

ψi = piH ×
∑
j 6=i

ψij; χi =
∑
j 6=i

pjH × ψji (3.16)

where piH is probability of hazard H affecting node i in a given time frame.

The nodes can be prioritized using criticality index, susceptibility index or

combined index based on the type of the planned resilience investment program.

3.3.4 Prioritization of infrastructure links

Like nodes, links between infrastructure nodes are also equally important

as far as resilience is concerned. Failure of infrastructure links may delay pro-

duction node operations and result in network-wide disruptions. Using criticality

and susceptibility indexes, one can identify important links in the network and plan

strategies for improving their resilience. The most critical infrastructure link is the

one whose failure would cause the highest cascading failures in the network. The
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criticality of each link (i, j) can be calculated as ψ(i,j) = wjiψj : 0 ≤ ψ(i,j) ≤ n−1.

Then, the most critical link (p, q) is given by (p, q)← arg max(i,j)∈D ψ(i,j).

Once the most-critical link is identified, several resilience interventions can

be made. Among these, the most commonly adopted strategy is to create an al-

ternate source for the service provided by node p to node q. This can be done by

building a redundant link (s, q) where s belongs to the same infrastructure type as

that of p. A heuristic algorithm for selecting the redundant link (s, q) is presented

below.

Step 1: Run the agent-based IIM and update the node criticality and susceptibility

values.

Step 2: Identify the most-critical link (p, q) fromD, whereD is the set of all links.

Step 3: Identify the type of infrastructure system k ∈ K of the node p and all the

nodes belonging to k except p. Let the set of nodes be S.

Step 4: Select the node s ∈ S with lowest susceptibility index as follows: s ←

arg mini∈S χi. If (s, q) exists, set D ← D − {(p, q)} and go to Step 2.

Selection of s could also consider other factors, such as the geographical

proximity to q and the exposure and vulnerability of s to major hazards in

the region.

Step 5: Construct (s, q) and update criticality and susceptibility values by rerun-

ning the agent-based IIM. Set D ← D + {(s, q)} and go to step 1.

Selecting the least-susceptible nodes for constructing redundant links would

ensure that the new links are less likely to fail due to interdependent effects in the

network compared to other possible redundant links of the same type.
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The above algorithm does not consider the capacity limitations of the nodes

while developing the redundancy enhancement scheme. However, this limitation

can be easily overcome by adding a capacity constraint condition in the above algo-

rithm. After allocating a redundant link, the capacity residual of each node can be

updated in the algorithm so that unless there is enough capacity, further redundant

links will not be assigned from those nodes. Interestingly, the above algorithm, al-

though does not consider node capacity constraints, can be used to identify those

infrastructure nodes whose capacity needs to be increased while constructing re-

dundant dependencies for improving the overall network resilience.

3.4 Experiment Simulation
3.4.1 Description of infrastructure network

The infrastructure network and the dependency model used in this chapter

are adopted from Balakrishnan and Zhang (2018). It is a simplified infrastruc-

ture network based in Austin, Texas consisting of nine power plants (four outside

the region), 62 substations, two electrical maintenance centers, 40 hospitals, three

water treatment plants (WTPs), and four wastewater treatment plants (WWTPs).

The dependencies between infrastructure nodes are determined using the distance

criterion where service area data was not available (each infrastructure node is con-

nected to the nearest nodes belonging to other infrastructure systems) and system

redundancy is assumed to be absent (each node is connected to only one node for a

particular infrastructure service). In addition, nodes are assumed to have no capac-

ity to negate the effects of cascading failures arising from infrastructure disruptions.
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These assumptions make the network hypothetical, and the numerical results pre-

sented henceforth do not reflect the conditions of the actual infrastructure network

that the network used in this study is based off. The network used in this study is

presented in Figure 3.2. The dependency matrix used in the infrastructure network

is presented in Table 3.4. The definition of the dependency values is in accordance

with the interdependency model presented in Equation 3.1.

Table 3.4: Degree of dependencies between infrastructure nodes Balakrishnan and
Zhang (2018)

Consumer

Substation Electrical
Service

Hospital Power
Plant

WTP WWTP

Pr
od

uc
er

Substation 0 0.3 0.4 0.05 0.5 0.5
Electrical Service 0.1 0 0.1 0.1 0.1 0.1
Hospital 0.05 0.05 0 0.05 0.05 0.05
Power Plant 0.9 0 0 0 0 0
WTP 0.1 0.3 0.3 0.05 0 0.3
WWTP 0.1 0.2 0.3 0.05 0.2 0

3.4.2 Agent-based IIM simulation for computing criticality values

The simulation framework presented in Equation 3.7 to compute criticality

and susceptibility indexes of nodes is implemented in the simplified infrastructure

network using the agent-based IIM. The agent-based model consists of two types

of agents, namely a disaster initiator and subpopulations of infrastructure nodes

belonging to the six infrastructure systems constituting the network. In each sim-

ulation, the failure of a specific infrastructure agent is triggered and the effects on

other infrastructure nodes are computed. The behavior and actions of the infras-
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Figure 3.2: Simplified infrastructure network (The link colors represent the type of
resource/service flow between two links instead of arrows to reduce the complexity
of the network representation. For example, if the link color between two nodes is
dark green, one of the nodes is a water treatment plant (WTP) which is the producer
node and the other node is the consumer node)

tructure agents are defined using an agent state chart as shown in Figure 3.3. In the

model, each infrastructure agent is assigned with a state at every time-step of the
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functionalState attackedInterim

attackedState

affectedInterim

affectedState

initiation

"Attacked" "Affected" "Reset" Timed action

Figure 3.3: State chart used in the agent-based IIM illustrating how the behavior of
infrastructure agents are modeled

simulation, which decides the behavior and actions of the agents. Each simulation

is elapsed for 15 time-steps excluding the initiation. When the model is initiated,

all the infrastructure agent parameters are set to their default values, and the state

is set to “functionalState”, which denotes a performance level of 1 (fully func-
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tional). At the first time-step of every simulation, the disaster initiator identifies an

infrastructure agent which is to be failed and sends the message “Attacked” to that

agent. Consequently, the state of the agent changes to “attackedInterim” where it

updates the performance level using Equation . In the next time-step (timed action),

the agent switches to “attackedState” state where it sends the message “Affected”

to all its dependent infrastructure agents. The agents which receive the message

“Affected” would change their state to “affectedInterim”, which prompts them to

update their performance level to reflect the changes in the performance level of

their dependee agents. In the next time-step, these agents would shift to “affected-

State” (timed action), in which the agents will send the message “Affected” to all

their dependent nodes and update the performance level. Additional state changes

would be triggered based on the dependencies between infrastructure agents in sub-

sequent time-steps until the final time-step in the simulation, where the disaster

trigger agent would collect the latest performance levels of all infrastructure agents.

Subsequently, the disaster initiator agent would also send the message “Reset” to all

infrastructure agents, marking the termination of the simulation. The disaster trig-

ger would also convert the collected performance level data into criticality values

using Equation 3.5.

The above simulation is repeated for quantifying the network-wide effects

of failure of each infrastructure agent using an iterative loop that updates the initial

node to be “attacked”.
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3.4.3 Node criticality and susceptibility values and indexes

Figure 3.4 shows the criticality and susceptibility indexes of all nodes in

the network. Since the network is heterogeneous, the criticality and susceptibility

indexes are presented as vectors.

Figure 3.4a presents the criticality indexes of all the nodes in the network.

Each of the stacked bars in the radial bar chart represents the criticality index vector

of a node in the network. The node IDs of all nodes with a criticality index greater

than five are also marked adjacent to the bars. The colored segments in each bar

represent the node’s criticality index components corresponding to various affected

infrastructure systems (based on Equation 3.10). The infrastructure family of each

node is represented by the color-coded baseline.

The results suggest that there is a significant variation in the criticality of

nodes in the network. The most-critical nodes have a high chance of targeted attacks

compared to other nodes. The power plants are found to be most-critical (except for

a few which are outside the region under consideration) for the network, followed

by WTPs, electrical maintenance centers, WWTPs, and substations. The critical-

ity indexes of hospital nodes are comparatively lower, owing to its limited role

in providing services to other infrastructure systems as evident in the dependency

matrix (Table 3.4). In addition to the cross-system variations, there are variations

in criticality indexes among nodes belonging to specific infrastructure systems as

well. This is dominantly due to the geographical distribution of nodes and the net-

work structure. Though each of these nodes provides the same resource or service

to other infrastructure nodes, the number of dependent nodes varies. In addition,
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Figure 3.4: Criticality and susceptibility indexes of nodes in the infrastructure net-
work
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some nodes may not provide resources to all types of nodes due to their location

characteristics. These factors lead to within-system variations in criticality indexes.

Similarly, Figure 3.4b illustrates the susceptibility index vectors of various

infrastructure nodes (based on Equation 3.11). The most-susceptible nodes have a

higher chance of being affected by cascading failures. The results from the analysis

indicate that compared to the criticality indexes, susceptibility indexes are much

lower, implying that only a few nodes (mostly, the dependee nodes) can cause sig-

nificant performance reductions in every infrastructure system. The cross-system

variation in susceptibility indexes is more significant than the within-system vari-

ations. The most important reason for cross-system variations is the difference in

the strength of dependency with different infrastructure systems. For example, the

susceptibility indexes of all power plants are comparatively lower because power

plants are less dependent on other infrastructure systems (according to the depen-

dency matrix in Table 3.4). Meanwhile, with regard to the topology of the network,

each node is dependent on the nearest nodes corresponding to other infrastructure

systems for certain resources or services. Therefore, the number of dependee nodes

for each node in the network remains the same. Hence, the major contributors to a

node’s susceptibility index are the dependee nodes, though some other nodes can in-

directly affect its performance. Susceptibility indexes may vary if there are system

redundancies.

Alternatively, criticality and susceptibility values can also be represented as

cumulative distribution curves (based on Equations 3.12 and 3.13), which provide

a better picture of the network conditions affecting criticality and susceptibility of
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nodes. Figure 3.5 provides the cumulative distributions of criticality and suscep-

tibility values of the most-critical and the most-susceptible infrastructure nodes in

the network.

In Figure 3.5a, each subfigure corresponds to the most-critical node belong-

ing to one of the six infrastructure systems in the network. Each curve represents

the cumulative distribution of criticality values of the node with respect to an af-

fected infrastructure in the network. Color codes are used to differentiate among

various infrastructure systems. The curves can also be interpreted as the distribu-

tion of interdependent effects on each infrastructure system induced by the failure

of the node. For example, the cumulative distributions corresponding to the most-

critical power plant node are shown in the “Power Plant” subfigure in Figure 6a. It

can be seen that the distribution curves corresponding to the power plant node are

the most diverging from the origin, indicating that the failure of that node will have

significantly more effect on the network compared to the failure of the most-critical

nodes belonging to other infrastructure systems. The most-critical hospital node

(“Hospital” subfigure in Figure 6a) is the least critical node among the given nodes.

Similarly, Figure 3.5b shows the susceptibility distribution curves of the

most susceptible nodes belonging to each infrastructure system. Distribution curves

presented in each subfigure can be interpreted as the cumulative distributions of

interdependent effects induced by the failure of nodes belonging to various infras-

tructure systems on the most susceptible node shown. For example, in “Substa-

tion” subfigure in Figure 3.5b, the bright green curve represents the distribution

of interdependent effects of WTP node failures on the most-susceptible substation
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susceptibility values of most susceptible nodes
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node. The power plant node (“Power Plant” subfigure in Figure 3.5b) is the least-

susceptible among all the given nodes, as its susceptibility distribution curves are

the least divergent among all the most-susceptible nodes. On the contrary, the most-

susceptible node is the hospital node (“Hospital” subfigure in Figure 3.5b) as it has

the most divergent susceptibility distribution curves among all the nodes.

3.4.4 Combining criticality and susceptibility indexes

The combined index of each node, which is indicative of the combined crit-

icality and susceptibility is calculated using Equation 3.15. The weight factors for

criticality indexes corresponding to all infrastructure systems were assumed to be

equal. Figure 3.6 presents the combined indexes of nodes in the network. Since the

susceptibility indexes of nodes are much lower than the criticality indexes, it can

be seen that combined indexes are mostly determined by the criticality indexes of

nodes. The power plant with the highest criticality value has the highest combined

index, whereas, hospitals have the least combined index along with some substa-

tions, WTPs, power plants (which are located outside the region), and WWTPs.

The combined index could be used to rank nodes within infrastructure systems for

allocating resources for resilience enhancement.

3.4.5 Development of a redundancy enhancement plan for improving net-
work resilience

Building redundant links in the network is one of the methods often cho-

sen by utility companies and other infrastructure agencies to improve the resilience

of respective systems. The algorithm presented in this chapter for identifying re-
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Figure 3.6: Combined index of nodes in the infrastructure network

dundant links to be built into the infrastructure networks can effectively be used

for developing a resilience-enhancement plan. The algorithm was used to identify

the first twenty redundant links to be built in the simplified Austin network to im-

prove the resilience of the entire network. The effect of the sequential addition of

the prioritized redundant links on network criticality and susceptibility is illustrated

in Figure 3.7. The network criticality and susceptibility indicators are normalized

by that corresponding to the base network for the convenience of comparison of
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improvements. The redundant links are represented by the node pair.

As evident in Figure 3.7, the values of the network criticality and the net-

work susceptibility indicators drastically reduce with the initial additions of redun-

dant links and then slow down with further redundancy improvements. With the ad-

dition of only 20 redundant links (among n(n−1)−|D|= 120×119−551 = 13, 729

possible links), the network criticality (and susceptibility) was reduced by more

than 57% compared to that in the base network with no redundant links. This sug-

gests that the overall chance of cascading effects as well as the overall degree of

exposure of constituent nodes to cascading effects in the network were reduced by

more than a half due to the addition of the selected redundant links. The figure also

illustrates how the system-level criticality and susceptibility also reduces with the

addition of each of the redundant links.

An important point to note is that the reduction in the values of the network

criticality or susceptibility indicators is not smooth. This is because these indicators

are based on the cumulative sum of individual cascading effects across all node

pairs with links between them. Cascading failures of several nodes may overlap,

and therefore the improvement due to the addition of redundant links is not strictly

monotonous; nevertheless, the values of network criticality and susceptibility shall

reach zero when all nodes have redundant links for each of the infrastructure service

needed for functioning.
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Figure 3.7: Network-level and system-level reduction in criticality and suscepti-
bility metrics as a result of the implementation of the redundancy enhancement
program
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3.5 Conclusion

In this chapter, the authors presented two generic resilience indicators to

rank and prioritize infrastructure nodes (and thereby links) in terms of two aspects

related to cascading failures in infrastructure networks: (a) their necessity to oper-

ate for the functioning of the whole network (criticality); and (b) their exposure to

cascading effects arising from disruptions in other components (susceptibility). The

indexes introduced in this chapter to measure the above two properties of infrastruc-

ture nodes can be used to identify the nodes (and links) which require resources for

protection from the direct impact of external hazards as well as the nodes which

require capacity enhancement to isolate them from cascading effects. This chap-

ter also presented a heuristic algorithm based on the developed indexes to identify

the most-critical links and build redundancies to reduce the network’s dependence

on them. This chapter also implemented the methodology on a simplified network

to demonstrate the computation of the resilience indexes and their application to

develop a redundancy scheme to enhance resilience against cascading failures in

the network. It must be noted that the case study was conducted based on several

assumptions with respect to the interdependencies in the network and the intrin-

sic resilience of infrastructure nodes. Therefore, the results are not indicative of

the conditions of the real network. However, the methodological framework and

process can be adapted to conduct similar analyses with real data when available.

There are several key advantages of using the indexes from the perspective

of infrastructure resilience management:

1. The indexes are not dependent on the specific model used for estimating the
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interdependent impacts of infrastructure failures (though IIM was used in

this chapter). The indexes are equally appropriate even if an interdependent

infrastructure model which captures the real-world operational characteristics

of the component infrastructure systems are used to model the network.

2. The indexes are well-suited for capturing the resilience improvements in the

network due to resilience interventions based on robustness and redundancy,

which are crucial to pre-disaster preparedness.

3. The indexes are easy to comprehend and could be easily communicated with

domain experts as well as the public.

4. The indexes can be combined with vulnerability metrics related to component

infrastructure systems to develop resilience indicators for specific external

hazards.

The key limitations of the proposed resilience indexes include:

1. The indexes do not take into account the social, economic, and ecological

significance of infrastructure network components. A node that has a low

criticality index in the given network may be significantly important for re-

siding communities or economic systems. Similarly, a node that has a low

susceptibility index in the network may still be vulnerable to changes in the

socio-economic landscape.

2. The indexes do not incorporate the rapidity and resourcefulness dimensions

of system resilience. Rapidity and, to an extent, resourcefulness are proper-

ties that are more crucial in immediate restoration of a disrupted system and

the recovery afterward, as the main objective during these phases is to op-
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timize network performance in the shortest possible time with the available

resources. However, the inclusion of rapidity and resourcefulness in the re-

silience indexes presented in this study requires additional information on the

amount of resources required for restoring various components and the speed

at which they could be restored/recovered. Nevertheless, the current form of

the indexes for prioritization of infrastructure components would still work

well for prioritizing post-disaster interventions, given there are no resource

constraints during restoration and recovery phases of disaster management.

3. The risk of failure of infrastructure links (direct or interdependent) due to an

extreme event is not considered in the present study. This may be relevant

in the case of physical infrastructure interconnections such as pipelines, elec-

tricity grids, or transportation networks. If the physical links also need to be

considered, the current agent-based IIM may be modified by including “link”

agents so that the impact of external effects on them can also be quantified.

However, this would neither change the basic definition of the resilience in-

dexes presented in this study, nor the way they are calculated.

The methodology has several potential applications in the area of infrastruc-

ture resilience management. During the planning phase of infrastructure systems,

the framework can be used to evaluate the best topological design for resilience

infrastructure networks in new cities. In the case of existing cities, the framework

can be used to identify the most-critical and most-susceptible infrastructure com-

ponents and can devise appropriate resilience enhancement programs. In addition,

the framework can also be used to incorporate the resilience criterion in current

103



infrastructure management practices which mostly focus only on infrastructure per-

formance criterion and do not account for failures due to extreme events where in-

frastructure interdependencies are of vital importance. To summarize, this chapter

provides an organized approach to planning, designing, and implementing projects

for resilience enhancement, especially in urban and rural settings where accurate

infrastructure interdependency data are either unavailable or non-existent.

Finally, though the resilience indexes are presented in the context of in-

frastructure networks, it can also be used for generic resilience evaluation of other

weighted bidirected networks with similar functional characteristics, such as certain

economic networks, global trade networks, etc.
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Chapter 4

Application of the Hybrid Risk Measure to Prioritize
Vulnerable Communities and Economic Centers for

Emergency Planning1

4.1 Introduction

Today, cities constitute the most critical element of the social and economic

development of nations. The two most important components of cities are the in-

frastructure network and the communities. The mutual dependence of these two

components has resulted in efficient and constantly evolving cities. However, this

integral nexus, while being an opportunity, is also a challenge for urban planners,

because disturbances on either of these two components by any external incident

will have far-reaching consequences in the other, and has the potential to bring a

city to halt. Due to the networked structure of urban infrastructure systems, failure

of a system could further trigger the failure of dependent systems in the network,

and consequently cause widespread disruptions in public utility services. This has

been evident in many past incidents like the World Trade Center attack in 2001,

the Northeast blackout in 2003, the Indian Ocean earthquake in 2004, etc. These

1based on Balakrishnan, S., and Z. Zhang. (2018). Developing Priority Index for Managing
Utility Disruptions in Urban Areas with Focus on Cascading and Interdependent Effects. Trans-
portation Research Record: Journal of the Transportation Research Board. 2672(1), 101–112,
https://doi.org/10.1177/0361198118774239
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events were unforeseen, and their consequences on infrastructure systems were ag-

gravated by the complex and interdependent structure of the urban infrastructure

network. Thus, during such disasters, urban communities are susceptible not only

to the direct impacts of the disaster but also to prolonged utility disruptions resulting

from the inability of infrastructure systems to function at satisfactory performance

levels. At present, there are vulnerability assessment tools to predict the direct im-

pact of disasters on communities. However, there is a lack of models to evaluate the

indirect impacts, such as large-scale utility disruptions. In this chapter, the authors

present a framework and modified measure called Priority Index (PI) to prioritize

relief operations during emergencies that would simultaneously augment the infras-

tructure and community resilience of a city.

The rest of this chapter is organized as follows: the Literature Review sec-

tion presents a review of existing literature pertaining to this chapter; the Methodol-

ogy section elaborates on the framework adopted for developing PI; the Case Study

section demonstrates the implementation of the methodological framework; and the

Conclusion section lists the findings.

4.2 Literature Review

The characteristics of a city are largely dependent on its infrastructure sys-

tems, such as utility services, economic institutions, and transportation infrastruc-

ture. Infrastructure systems are critical for ensuring an adequate supply of resources

and services to communities, economic sectors, and other social institutions in a

city. In addition, several studies in the past have validated the constructive role of
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urban infrastructure in stimulating the social and economic development of cities

and nations. Some of the areas in which infrastructure development made signifi-

cant improvements are economic development (Kumari & Sharma, 2017), poverty

alleviation (Ogun, 2010), social equity (Calderon & Serven, 2010), and agricultural

and regional development (Pinstrup-Andersen & Shimokawa, 2007).

A modern urban infrastructure network can be considered as a complex and

dynamic system of interconnected and interdependent infrastructures. Rinaldi et

al. (2001) classified the interdependencies existing among infrastructure systems

into four categories, namely, physical, geographic, cyber, and logical interdepen-

dencies. Physical interdependency is linked to material flows, whereas, cyber in-

terdependency pertains to information flows. Geographic interdependency relates

to physical proximity, and finally, logical interdependency encompasses all other

types of interdependencies. In an interconnected network, the performance of an

infrastructure system is influenced not only by its functional capability but also by

the performance of its dependee systems. Though the interdependent nature of ur-

ban infrastructure ensures the operational efficiency of component systems, it can

also increase system vulnerability (Ouyang & Wang, 2015). A disruptive event that

affects an infrastructure system could trigger cascading and interdependent effects

on its dependent systems, degrading their functional efficiency. The ability of com-

munities to endure such disruptions depends on their socio-economic characteris-

tics. However, major social and economic disparities among urban communities

are commonplace in cities. Hence, from an emergency management perspective,

the disaster risks arising due to such interdependencies on infrastructure systems
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and communities need to be assessed using an integrated approach. The first step in

the process of evaluating the vulnerability in an infrastructure network is to quantify

the consequences arising due to interdependencies.

4.2.1 Methods for quantifying interdependent effects of hazards

Ouyang (2014) identified and classified various methods for quantifying the

interdependent effects in networked infrastructures into five categories, namely,

empirical-, agent based-, system dynamics based-, economic theory based-, and

network based approaches. In the empirical approach, the interdependencies are

quantified based on historical failure patterns and expert experience (Chang, Mc-

Daniels, Mikawoz, & Peterson, 2007). Agent-based models consider each compo-

nent of a complex infrastructure network as an autonomous agent whose functions

are decided by a set of well-described rules. This is a bottom-up approach which

can be used to simulate the interdependent effects in large-scale urban systems (Du-

denhoeffer, Permann, & Manic, 2006). Studies like the one by Brown et al. (2004)

used principles of system dynamics to evaluate the potential risks to critical systems

arising from the interdependencies in infrastructure networks. Another important

approach is the inoperability input-output model (IIM) derived from the Leontief

Input-Output economic model used for assessing the stability of economic systems

(Y. Haimes & Jiang, 2001). This approach has been used in several hybrid mod-

els for evaluation of infrastructure interdependencies. Recent studies have focused

more on models based on network theory (Svendsen & Wolthusen, 2007). An in-

frastructure system can be treated as a graph, where nodes represent infrastructure
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components and links represent interdependent relationships.

4.2.2 Methods for evaluating social vulnerability to hazards

The approaches summarized in the previous section have been used for eval-

uating the effect of interdependencies in aggravating the risks on infrastructure net-

works arising from unanticipated events. The authors also conducted another phase

of the literature review to understand how hazard risks on urban communities are

evaluated, and whether interdependent effects are considered in the evaluation.

Social vulnerability indicates how sensitive communities are to hazards, and

their ability to respond during such events. The metrics to evaluate the vulnerabil-

ity of communities to hazards can be broadly classified into two categories: generic

vulnerability measures and event-specific vulnerability measures. The generic vul-

nerability measures use surrogate socio-economic, built-environment, and demo-

graphic variables to identify the most vulnerable communities. Cutter, Boruff,

and Shirley (2003) constructed a Social Vulnerability Index (SoVI) for evaluating

the social vulnerability of communities to environmental hazards. The researchers

identified 42 relevant variables from US Census data to develop SoVI for the coun-

ties in the United States. In a similar effort, Flanagan, Gregory, Hallisey, Heitgerd,

and Lewis (2011) developed another generic social vulnerability index (SVI) for

the Agency for Toxic Substances and Disease Registry using 15 census variables

pertaining to socio-economic status, household characteristics, demographic char-

acteristics, and housing characteristics. SVI is an ordinal measure that indicates the

percentile rank of census tracts based on the variables. Though the index provides

109



the vulnerability ranks of census tracts, relative comparisons about the magnitude of

vulnerability are not possible. Huang and London (2012) developed a census block

level social vulnerability index as a measure of the health challenges posed by haz-

ards, based on six variables, namely, proximity to health care facilities, poverty rate,

education, linguistic isolation, race/ethnicity, and age. The advantages of this index

are that it is a normalized value between 0 and 1, and that it can be used for relative

vulnerability comparisons.

Event- or hazard-specific social vulnerability measures, along with generic

vulnerability factors, also account for the factors or policies that can augment the

community’s response to that hazard. For example, Chakraborty, Tobin, and Montz

(2005) combined generic vulnerability index and geophysical risk index (an index

based on vulnerability to floods) to prioritize evacuation assistance needs in Florida.

Schmidtlein, Shafer, Berry, and Cutter (2011) simulated the potential earthquake

losses in South Carolina using the HAZUS-MH software (developed by the Federal

Emergency Management Agency) and assessed the correlations with SoVI values.

The study also identified the most significant census variables that are correlated

with losses to earthquakes. Rygel, O’sullivan, and Yarnal (2006) developed a so-

cial vulnerability indicator for assessing the impact of storm surges resulting from

hurricanes. The researchers performed the principal component analysis to identify

the most relevant set of factors affecting vulnerability to the hazard under consider-

ation.
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4.2.3 Gaps in the literature

The review revealed that literature is scarce when it comes to evaluating the

vulnerability of communities to widespread utility service outages resulting from

various types of hazards. The direct impacts of disasters on communities, such as

health hazards and physical harm, may be limited to the location of occurrence.

However, the indirect impacts, such as prolonged utility service disruptions arising

from infrastructure system failures during a disaster, are more likely to affect com-

munities in other regions of cities, as well. This warrants the need for a framework

to assess and prioritize communities that are most vulnerable to the indirect impacts

of disasters resulting from the interdependent nature of infrastructure systems.

4.3 Methodology

Figure 4.1 presents the methodological framework adopted for developing

the Priority Index (PI). The index is designed to rank census tracts based on their

vulnerability to utility disruptions resulting from an unanticipated event. The frame-

work consists of two independent components. The first component is the quantifi-

cation of impacts of the event on the performance of various utility systems in the

infrastructure network (from which a community’s exposure to such disruptions

can be quantified) using agent-based modeling (ABM) approach. The exposure

would depend on the structure of the infrastructure network, and the interdepen-

dent relationships existing among its various components. The second component

is the evaluation of the social vulnerability of communities residing in the affected

regions from publicly available American Community Survey (ACS) data. Social
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vulnerability variables could be used as surrogate measures to evaluate the capabil-

ity of communities in a census tract to endure prolonged utility disruptions. Once

the exposure and social vulnerability are quantified, they are combined to develop

the PI. In the rest of the section, the various stages in the development of PI are

elaborated.

4.3.1 Simulation of disruptive event and evaluation of post-event performance
of infrastructure network

Every urban infrastructure network consists of numerous interconnected and

interdependent infrastructure systems (or utility services) such as electricity grid,

water supply system, sewage disposal system, and so on. Though each of these

infrastructure systems is established independently, they depend on other infras-

tructure systems for their proper functioning. The degree of dependency of an

infrastructure system on another is affected by various factors, including the re-

sources and services required by the former, the resources and services produced

by the latter, geographical proximity, etc. Any degree of performance drop in one

infrastructure node in the network could trigger further performance drops in its de-

pendent nodes in the presence of such dependencies and or interdependencies. This

may disrupt the normal supply of multiple utility services in the affected regions.

As mentioned before, the first stage in the process of developing PI is to

analyze and estimate the network level performance drop in various utilities which

might occur due to the disruptive event. The network-wide effects of utility disrup-

tions are simulated using the agent-based model presented in Chapter 2 as shown
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in Equation 4.1. Note that instead of fuzzy interdependency values, deterministic

values are used in the simulation model for this study.

Pj(t) = max

0, Pj(0)−

 ∑
k∗∈K∗j (t)

(Pk∗(0)− Pk∗(t−∆t)) w̃jk∗

− ρjιHj
 : 0 ≤ Pj(t) ≤ 1,

(4.1)

where Pj(t) is the performance of node j at time t, Pj(0) is the performance of

j before the occurrence of the extreme event H ∆t is the time step in the simula-

tion, K∗j (t) is the set of dependee nodes of j with the highest performance level

corresponding to each infrastructure system r ∈ R in the previous iteration, w̃jk∗

is the dependency of node j on node k∗, ρj is the indicator variable with value 1 if

t−T >
`jp
ν

, and 0 otherwise, and ιHj is the degree of impact of extreme event H on

node j. The performance loss of a node j at any time t is given by Pj(0)− Pj(t).

4.3.2 Spatial analysis of hazard exposure and social vulnerability of commu-
nities

Once the post-event expected performance of utility services is estimated,

the analysis must identify how the disruptions affect the communities. For this

purpose, the following steps are adopted:

1. Create an adequate sample of buildings that are dependent on the disrupted

utility services based on the actual spatial distribution of building footprint in

the study area.

2. Identify and map the dependent utility service nodes to each building in the
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sample and their corresponding post-event performance levels.

3. Identify and map the buildings to the corresponding census tract to which

they belong.

4. Evaluate the distribution of utility service disruptions in each census tract

from the building data. This provides information about the exposure of each

census tract to the utility service disruptions resulting from the reduced per-

formance levels of the infrastructure nodes.

Next, the generic social vulnerability characteristics of communities are an-

alyzed. The underlying assumption is that those populations with higher social

vulnerability to disasters are more likely to be affected than their counterparts with

lower social vulnerability during a disaster or disruptive event. Data from censuses

and related updates can be used to obtain relevant information about the demog-

raphy, infrastructure, and socio-economic characteristics of communities residing

in the city. In the United States, the Census Bureau conducts the American Com-

munity Survey (ACS) to collect data regarding communities at various geographic

levels every year. Based on the ACS data, the Agency for Toxic Substances and

Disease Registry (Flanagan et al., 2011) has developed a Social Vulnerability Index

(SVI) for each of the census tracts using 15 social factors that describe a commu-

nity’s social vulnerability (Table 4.1). However, the limitation of SVI is that it is an

ordinal measure and hence does not convey the magnitude of relative differences in

vulnerability across regions. Hence, a modified Social Vulnerability Index (mSVI)

is developed based on the same set of variables, which also accounts for the relative

115



difference in social vulnerabilities. An approach like the one suggested by Huang

and London (2012) is adopted for developing mSVI.

Table 4.1: Social factors considered in developing Social Vulnerability Index
(Source: Agency for Toxic Substances and Disease Registry)

Category Variables
Socio-economic status • % of population below poverty

• % population unemployed
• per capita income†

• % population without high school diploma
Household composition & disability • % population older than 65 years of age

• % population younger than 17 years of age
• % civilians with disability
• % single parent household

Minority status and language • % population belonging to minority communities
• % population speaking English “less than well”

Housing and transportation • % multi-units structures
• % mobile homes
• % housing units with more people than rooms
• % households with no vehicle
• % persons in institutionalized group quarters

†During the calculation of mSVI, per capita income (pci) is converted into a percentage
variable which is equivalent to the ratio of the difference between the highest tract-level pci in
the region and that in the current census tract to the same highest tract-level pci.

Consider a census tract,m, with the social factors listed in Table 4.1 denoted

by a set, S. The corresponding mSVI is given by Equation 4.2.

mSV Im =

∑
s∈S sm

15× 100
(4.2)

In order to convert mSV Im to its normalized form, Equation 4.3 is em-

ployed.

mSV Im,norm =
mSV Im

max(mSV Im)
: 0 ≤ mSV Im,norm ≤ 1 (4.3)
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4.3.3 Development of Priority Indexe

The final step is to combine the exposure and social vulnerability of census

tracts to develop the Priority Index. If the expected performance of utility service

K in census tract m is denoted by Pm
K , then the weighted exposure in census tract,

Em is given by Equation 4.4.

Em =
∑
K

(1− Pm
K )× ωmK : 0 ≤ Em ≤ 1, (4.4)

where ωmK is the weight for utility service K in census tract m. PI of a census tract

for a given disruptive event, PIm, is defined as the product of weighted exposure

(Em), and normalized social vulnerability index (mSV Im,norm) corresponding to

m.

PIm = Em ×mSV Im,norm : 0 ≤ PIm ≤ 1 (4.5)

If a census tract has a high social vulnerability and high exposure to the event, the PI

will be close to 1. Conversely, if the census tract has a low social vulnerability and

is subjected to low exposure, the PI will be close to 0. Thus, the PI could be used

to identify those census tracts that require immediate attention after a hazard occurs

in the infrastructure network. This would help in making decisions that ensure the

rational utilization of available resources during emergencies.

4.4 Case Study

4.4.1 Description of infrastructure network

Similar to Chapter 3, the city of Austin, Texas is chosen for the case study.

The primary goal of this chapter is to present a methodology to prioritize urban
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regions for managing utility service disruptions during a hazard or disruptive event,

rather than the accurate quantification of interdependent risks. Hence, the author

created a semi-realistic network by limiting the number of utility services and

adopting hypothetical values for interdependencies. The infrastructure systems cho-

sen for the study are power plants, substations, electricity maintenance services,

water treatment plants, and sewage treatment plants. The location details of the in-

frastructure nodes are obtained from public data and reports published by the City

of Austin (2009, 2017), and are presented in Figure 4.2. For the simplicity of the

network, it is assumed that each of the infrastructure units has a unique service area,

which does not overlap with each other. The details regarding the service areas of

water treatment plants, sewage treatment plants, and electrical maintenance service

stations are obtained from respective utility websites and official reports published

by the City of Austin. For those infrastructure systems such as substations and

power plants (for which the service area details are not available), the service area

is decided by the distance criterion, i.e., all other utilities and buildings under study

depend on the nearest substation and every substation depends on the nearest power

plant for its functioning. In addition to the locations of infrastructure nodes and

their respective service areas, information regarding dependencies is also required

for simulating the indirect impacts of the disruptive event on the network. Since this

information was not available, appropriate values are assumed and are presented in

Figure 4.3. The values represent the reduction in performance at the consumer node

if the producer node, which it is dependent on, is completely failed.
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Figure 4.2: Semi-realistic infrastructure network and impacts of the failure event:
The initial failure occurs in the water treatment plant (marked in red line). Due to
the interdependencies, the effect propagates to other infrastructure systems. The
color of the infrastructure nodes represents their performance level after the event
occurs (red indicates that the node failed, and green indicates that the node is still
functioning).

4.4.2 Simulation results

As discussed earlier in this chapter, the agent-based modeling approach is

used to simulate the propagation of cascading and interdependent effects on the

119



0.3
0.4

0.05
0.5

0.5

0.1

0.1

0.1 0.1

0.1

0.05

0.05

0.05
0.05

0.05

0.9
0.1

0.3
0.3

0.05

0.3

0.1

0.2
0.3

0.05
0.2

Substation

Electrical 
Maintenance

Hospital

Power 
Plant

Water 
Supply

Sewage 
Disposal

Figure 4.3: Assumed dependencies among infrastructure systems: Every edge rep-
resents dependency, and the direction of the arrows represents the direction of de-
pendency (flow of resource or service). The number adjacent to each arrow rep-
resents the degree of dependency. For example, a dependency of 0.3 from the
water supply node to the sewage disposal node suggests that if the water supply
completely fails, the percentage of performance reduction in the sewage disposal
system dependent on it is 30%. An edge with arrows in both directions represents
interdependency.

infrastructure network. To demonstrate this, an artificial disruptive event is gener-

ated which caused a water treatment plant to stop functioning entirely as shown in

Figure 4.2 (denoted by the red rectangle). It is assumed that all the infrastructure

nodes in the network function at maximum performance levels prior to the event.

The Anylogic® software package (The Anylogic Company, 2017) is used to con-
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struct the infrastructure network model and simulate the impact of the event on the

network. A step size of 1 minute is used for the simulation.

Figure 4.4 presents the simulated progression of expected system perfor-

mance of various utility services after the disruptive event is generated. The failure

of the water treatment due to the initial event is reflected in the expected perfor-

mance of utility services such as health care, electricity, and sewage disposal, due

to the existing interdependencies in the network. As can be seen in the figure, the

initial reductions in expected performance (lower order) in all utility systems are

abrupt compared to the subsequent reductions. The initial reductions result from the

direct and cascading impacts caused by dependencies. The comparatively smaller,

and higher-order reductions in expected performance in the later stages could be

attributed to indirect and interdependent effects. Once the higher-order effects be-

come negligible, the affected utility systems stabilize and attain a new equilibrium,
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Figure 4.4: Simulated impact of the disruptive event on the expected performance
of infrastructure network
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but with reduced performance levels.

Figure 4.5 presents the distribution of the expected performance levels of

utility services in various census tracts. The expected performance level of elec-

tricity supply in various census tracts after the event ranges from 35 percent to 92

percent with an average of 70 percent (Figure 4.5a).

Similarly, the expected service level of hospitals ranges from 28 percent to

87 percent with an average of 52 percent (Figure 4.5b). The expected performance

of water supply service ranges between 0 percent and 84 percent with an average of

54 percent (Figure 4.5c), and that of sewage treatment service ranges between 39

percent and 89 percent with an average of 45 percent (Figure 4.5d).
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Figure 4.5: Distribution of expected utility service levels in census tracts after the
event: a) Electricity; b) Health Care; c) Water Supply; d) Sewage Disposal
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Though Figures 4.4 and 4.5 provide an overall idea about the post-event ex-

pected network performance, this is of insignificant use from a decision maker’s

perspective unless the spatial distributions of the utility services disruption levels

are understood. For this purpose, a random sample of 10,925 buildings (approxi-

mately 2% of total building footprint) distributed in the study area is selected. The

buildings are then classified according to the respective utility nodes they depend

on for their functioning (electricity, health care, water supply, and sewage treat-

ment), and corresponding performance levels are identified. The buildings are then

mapped to the census tracts to which they belong. In this way, the distribution of

utility disruptions in all the 222 census tracts under study is obtained. The expected

levels of utility disruptions in each of the census tracts are presented in Figure 4.6.

Figure 4.6a shows the levels of electricity supply in the study area after the

occurrence of the event. It can be observed that electricity supply disruptions are

more likely to occur in census tracts in the northeastern and southeastern parts as

shown in Figure 4.2. Similarly, Figure 4.6b shows that the functioning of hospitals

in the north and northeastern parts are more likely to be disrupted. This suggests

that a significant fraction of the communities will have access to no or less efficient

health care. In addition, Figures 4.6c and 4.6d illustrate how the failure of the

water treatment plant could affect the water supply and sewage treatment services

in different parts of the city, respectively.
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Figure 4.6: Spatial distribution of utility disruptions based on census tracts: (a)
electricity; (b) health care; (c) water supply; and (d) sewage disposal

4.4.3 Estimation of weighted exposure and social vulnerability

Analyzing the spatial distribution of the performance of utility services, it

is evident that the degree of utility disruptions differs significantly across census

tracts. For example, in the northeastern parts of the city, the simulation results pre-

dict that there will be almost no water supply and a considerable reduction in the

performance of health care and sewage disposal services. However, in the census

tracts in the southwest, the probability of disruptions in sewage disposal service
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is high, whereas, other utility services are expected to function satisfactorily. To

identify the most affected census tracts due to the disruption in utility services, a

weighted performance measure is calculated. In reality, the dependency of build-

ings and communities on utility services differ from one region to another, depend-

ing on socio-economic factors. In such scenarios, the decision-maker can provide

actual weights for the utilities to obtain the weighted exposure on the urban region.

For this case study, the weighted exposure is obtained by assuming a weight factor

of 0.25 for all the four utility services. The weighted exposure values of census

tracts are presented in Figure 4.7a.

In addition to the geographical distribution of exposure to the disruptive

event, it is also important to analyze the generic socio-economic, demographic, and

housing characteristics of the census tracts. To estimate the vulnerability of the

communities, normalized social vulnerability indexes (mSVInorm) of census tracts

were computed from the 2014 ACS data, based on the methodology explained in

the methodology section. The mSVInorm values are presented in Figure 4.7b. The

results show that the communities residing in the eastern part of the city are com-

paratively more vulnerable to disasters and service disruptions than those in the

western part. This can be directly linked to the socio-economic disparities existing

between the communities residing in the eastern and western sides of Interstate-35,

which runs north-south of Austin.
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Figure 4.7: Normalized social vulnerability index and weighted exposure of the dis-
ruptive event (a) Normalized mSVI values of census tracts; (b) weighted exposure
of the combined effect of the disruptive event on communities

4.4.4 Calculation of Priority Index

The Priority Indexes for the census tracts are calculated using Equation 4.5.

The results are presented in Figure 4.8. The results show that the northeastern

regions of the city have high index values, indicating that those regions are more

likely to be affected by the given water treatment plant failure. Communities in the
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southwestern region are the least likely to be affected by the same hazard. More

importantly, it is possible from the figure to easily identify the census tracts that

require immediate attention, and those do not. This property of PI makes it an easy

and efficient tool for managing utility disruptions.

0.0 0.5 1.0

Priority 
Index

Figure 4.8: Priority Index values of census tracts under study for the simulated
disruptive event (PI = 1: highly susceptible; PI = 0: not susceptible)

4.5 Conclusion

In the present chapter, a ratio-scale measure, Priority Index (PI), is proposed

to evaluate the susceptibility of communities to unanticipated events and the resul-

tant utility disruptions. The advantage of PI is that it is equally dependent on the

generic social vulnerability of communities, as well as the degree of exposure to a

given disruption on the network, enabling it to reflect the real conditions of com-

munities in various parts of the urban region during utility disruptions and hazards.
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In addition, it enables comparison of the susceptibility of two census tracts using

a linear scale. The performance drop in the infrastructure network is evaluated by

giving due consideration to both the direct and indirect impacts of hazards arising

from its interdependent structure.

The framework could be employed for emergency planning and disaster risk

assessment, as well as for managing immediate relief operations, such as the dis-

tribution of food, and water during a disaster. The framework could find potential

applications in cities where backup mechanisms to withstand prolonged and uncer-

tain utility service disruptions are unreliable or absent. The results from this chapter

underscore the importance of proper management of interdependent infrastructure

systems to ensure the well-being of urban communities.

A key limitation of the present chapter is that it has not accounted for the

ability of the infrastructure network to minimize the impacts of utility service fail-

ures through resource redistribution and backup systems. These factors warrant due

consideration while implementing the framework.
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Chapter 5

Evaluation of the Functional and Economic Risks
Posed by Natural Hazards to Infrastructure Systems:

A Case Study of the Texas Ports1

5.1 Introduction

Ports are critical infrastructure facilities with economic, social, and strategic

significance. Ports act as major multimodal transportation hubs and are responsible

for connecting inland and maritime transport with other modes of land transport,

such as road, rail, and pipelines. For a nation’s economy, ports are critical links in

both domestic and international supply chains, integrating local businesses with na-

tional and international markets. For example, in the U.S., ports facilitated US$5.4

trillion in economic activity in 2018, accounting for approximately 26% of the na-

tional gross domestic product. U.S. ports also generated approximately US$378

billion of tax revenue in the same year (Martin Associates, 2019).

Apart from their importance in the national economy, studies have domi-

nantly shown that port facilities attract port-dependent industries in the long-term,

driving economic growth and social development in the region (Bottasso, Conti,

1based on Balakrishnan, S., T. Lim, and Z. Zhang. A Framework to Predict Economic Risks
of Hurricane-caused Disruptions to Port Operations. submitted to Transportation Research Part A:
Policy and Practice.
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Ferrari, & Tei, 2014; Bryan, Munday, Pickernell, & Roberts, 2006; L. Song &

van Geenhuizen, 2014), though a few studies presented mixed evidence for the

role of ports in shaping up regional urban dynamics (Ducruet & Lee, 2006; B.-

m. Jung, 2011). In addition to this, port activity in the U.S. generated more than

3 million jobs in total, out of which approximately 652,000 are directly created by

the port sector (Martin Associates, 2019). With trade globalization, the increas-

ing reliance of domestic businesses on overseas commodities for production has

also increased and further strengthened the role of ports as enablers of regional and

national growth.

This increasing dependence of the economy on port operations has also be-

come a concern in recent decades. Maritime transportation systems are identified

as one of the vital infrastructure systems by the Presidential Policy Directive 21

(The White House, 2013) that are critical for security, national economic security,

and national public health or safety. Extreme-weather events pose severe threats to

ports and associated infrastructure due to their proximity to the oceans and rivers.

In the U.S., hurricanes and the resultant storms and winds are the most frequent

causes for a shutdown of port operations. While physical damages may lead to

operational shutdowns when ports are directly impacted by hurricanes, most fre-

quently, the uncertainties associated with hurricanes and their intensity also play

a crucial role in such decisions. The scale of indirect economic impacts of natu-

ral disaster-related damages to infrastructure systems is found to be larger than the

cost of physical damages and increases with the intensity of the disasters (National

Research Council, 1999).
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Each port is unique in the range of commodities and the quantities that are

handled. There are also seasonal fluctuations and long-term trend changes in port

activity. Therefore, the extent of economic impacts and the economic sectors that

are affected by port disruptions vary across ports and must be studied with due

consideration to the hurricane risks and the significance of such disruptions to the

U.S. economy. Understanding the economic impacts of port shutdowns is critical

in making risk-informed decisions on resilience enhancement investments in a port

system.

Through this chapter, the authors attempt to achieve the following three

objectives.

1. Introduce a risk analysis methodology for predicting the duration of port shut-

down using hurricane-related factors with due consideration to the associated

aleatory uncertainties.

2. Present a methodology to estimate the port-specific economic loss due to

hurricane-related shutdowns using the International Trade Inoperability Input-

Output Model (IT-IIM) factoring in the inconsistencies between port trade

data and I-O tables.

3. Link the above two methodologies to estimate the economic risks of port

shutdowns caused by hurricanes of various frequencies.

The hurricane-related risks to port shutdown and the resultant economic im-

pacts are characterized using the concept of return periods. In this study, the return
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period is defined as “the average time elapsing between two successive realizations

of the event itself” (Salvadori & De Michele, 2004)

The rest of this chapter is organized as follows: the Literature Review

presents an overview of existing methods for analyzing the operational and eco-

nomic impacts of natural disasters on port facilities; the Methodology discusses

the stages in the proposed study methodology; the Model Application presents the

findings from a case study for quantifying the economic risks of the hurricane-

related shutdown of ports along Texas coast on the U.S. economy; Implications of

the Methodology highlights some of the potential applications of the methodology;

and the Conclusion summarizes the major findings.

5.2 Literature Review

Unlike other critical infrastructure systems, ports do not specifically denote

a set of physical installations; rather it is defined as a geographic region with fa-

cilities for transferring commodities from a vessel to the land and vice versa. Key

infrastructure components at a port include berths, waterside access, channel, ter-

minal, loading and unloading equipment, modal connections, and cargo/container

storage and depots (Bureau of Transportation Statistics, 2017). The design and con-

struction of port structures and the channel are largely dependent on several factors,

such as the type and size of cargo and vessels handled at the port.
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5.2.1 Port disruptions and causes

Delays and disruptions have been identified as two of the major sources of

uncertainties in supply chain management (Sanchez-Rodrigues, Potter, & Naim,

2010; Sunil & ManMohan, 2004). Given ports’ role as inevitable links in any sup-

ply chain that relies on waterborne transport, the vulnerability of ports to natu-

ral disasters significantly contributes to business uncertainties and economic losses

(Chhetri, Jayatilleke, Gekara, Manzoni, & Corbitt, 2016; J. S. L. Lam & Lassa,

2017; Ng, Chen, Cahoon, Brooks, & Yang, 2013). Identifying the vulnerabilities

and evaluating the risks, therefore, are crucial for adopting mitigation measures to

ensure operational continuity of ports (J. S. L. Lam & Su, 2015; Ng et al., 2013)

as well as to incorporate resilience in individual supply chains (Loh & Van Thai,

2014).

Øyvind, Rice, and Bjørn (2011), from an operations standpoint, suggested

that port functionality could be considerably affected by the failure of the following

six components of ports– port supplies, financial flows, transportation, communi-

cation, internal operations, or capacity, and human resources. J. S. L. Lam and

Su (2015) identified major port disruption incidents in Asian nations between 2001

and 2011 and classified their causes into three categories, namely, natural disas-

ters (earthquakes, hurricanes, tsunami, and extreme winter conditions), man-made

accidents (oil spill and ship collisions), and port strikes. A recent study by John,

Yang, Riahi, and Wang (2016) conducted a holistic review of external port disrup-

tion risks pertaining to the functional and management aspects and classified them

into five categories– operational risks, security risks, technical risks, organizational
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risks, and natural risks. The other major sources of port disruptions discussed in the

literature include port congestion (Lewis, Erera, Nowak, & White, 2013), inadapt-

ability to the introduction of new port equipment, and management systems (Lun,

Lai, & Cheng, 2010), and governmental regulations (Nze & Onyemechi, 2018).

5.2.2 Common methods for disaster-related economic impact analysis

There are several methods that could be used for quantifying economic

losses resulting from various disasters and extreme events. Okuyama Okuyama

(2009) classified those methods into four categories, namely, input-output methods

(I-O), social accountability matrices (SAM), computable general equilibrium mod-

els (CGE), and econometric methods. Table 5.1 presents the major advantages and

limitations of these models along with examples of their applications. Models, such

as social accountability matrices, computable equilibrium models, and hypotheti-

cal extraction methods, are generalized or extended versions of the input-output

model to resolve specific limitations of the latter. Koks and Thissen suggested that

among the aforementioned models, input-output models and computable general

equilibrium models are the most common and well-documented approaches as far

as economic impacts of disasters are concerned Koks and Thissen (2016). These

models differ in the extent of flexibility in making assumptions, data requirements,

and accuracy of estimates. Several studies have shown that input-output models are

suitable for analyzing short-horizon disruptions whereas computable equilibrium

models are suitable for analyzing the long-horizon effects of disruptions. Galbusera

and Giannopoulos (2018); Oosterhaven and Bouwmeester (2016).
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However, these methods mostly focus specifically on the domestic demand-

and supply-side disruptions (e.g., bottlenecks/damages in the industry supply chains,

fall in consumption due to security concerns, etc.) resulting from domestic disrup-

tive events; they do not give much attention to disruptions in the total international

trade (comprising of imports and exports), which is the focus of the current study.

5.2.3 Port disruption-related economic impacts

Economic vulnerability and associated risks highly influence a port’s com-

petitiveness, which is a measure of the port’s ability to provide operational functions

(Yuen, Zhang, & Cheung, 2012). Studies on economic risks of ports can be broadly

classified into two: (a) those which analyze port disruptions from the perspective

of a single- or a group of supply chain(s) with a focus on a specific economic sec-

tor (J. S. L. Lam & Su, 2015); and (b) those which analyze port disruptions from

the perspective of a port agency or a government, with an emphasis on the overall

economic impacts to a region or a country, and with or without identifying sector-

wise losses (Y. Zhang & Lam, 2015). The mitigation strategies that are developed

in these two sets of studies are divergent; while the industry/supply chain-specific

studies aim at minimizing the cumulative delays/losses incurred by that industry due

to a port shutdown, the system-level analysis evaluates mitigation strategies that are

aimed at reducing the total duration of shutdowns by improving the resilience of

ports and related infrastructure. Table 5.2 enlists some examples of studies that be-

long to the above two categories along with the specific evaluation methodologies

used.

136



Ta
bl

e
5.

2:
E

xa
m

pl
es

of
po

rt
-c

en
tr

ic
an

d
su

pp
ly

ch
ai

n-
ce

nt
ri

c
st

ud
ie

s
fo

cu
si

ng
on

ec
on

om
ic

im
pa

ct
s

of
po

rt
di

s-
ru

pt
io

ns

Ty
pe

St
ud

y
Sh

ut
do

w
n

re
as

on
M

et
ho

d
fo

ra
na

ly
si

s
E

co
no

m
ic

im
pa

ct
s

an
al

yz
ed

Po
rt

-c
en

tr
ic

st
ud

ie
s

Y.
Z

ha
ng

an
d

L
am

(2
01

5)
E

xt
re

m
e

w
in

d
ev

en
ts

•
R

eg
re

ss
io

n
m

od
el

fo
r

pr
ed

ic
tin

g
cy

cl
ic

an
d

tr
en

d
co

m
po

ne
nt

s
of

te
rm

in
al

th
ro

ug
hp

ut
.

•
H

is
to

ri
ca

l
cl

im
at

e
da

ta
to

id
en

tif
y

po
rt

sh
ut

-
do

w
n

da
ys

.

D
ir

ec
t

lo
ss

to
re

pu
ta

tio
n,

sh
ip

pe
rs

,
ca

rr
ie

r,
an

d
po

rt
.

Pa
nt

,
B

ar
ke

r,
an

d
L

an
de

rs
(2

01
5)

G
en

er
ic

•
D

ir
ec

t
de

la
ys

us
in

g
di

sc
re

te
-e

ve
nt

qu
eu

in
g

m
od

el
.

•
In

te
rd

ep
en

de
nt

ef
fe

ct
s

us
in

g
M

ul
ti-

re
gi

on
al

in
pu

t-
ou

tp
ut

m
od

el
.

Po
rt

-l
ev

el
an

d
in

du
st

ry
-s

pe
ci

fic
ec

on
om

ic
lo

ss

R
os

e
an

d
W

ei
(2

01
3)

G
en

er
ic

•
In

pu
t-

ou
tp

ut
m

od
el

.
•

V
ar

io
us

re
si

lie
nc

e
st

ra
te

gi
es

ev
al

ua
te

d
as

su
m

-
in

g
90

-d
ay

s
sh

ut
do

w
n.

Po
rt

-l
ev

el
(d

ir
ec

t)
an

d
ec

on
om

ic
(i

nd
ir

ec
t)

lo
ss

es

J.
Ju

ng
,

Sa
nt

os
,

an
d

H
ai

m
es

(2
00

9)

L
ab

or
di

sp
ut

e
•

In
te

rn
at

io
na

l-
Tr

ad
e

In
op

er
ab

ili
ty

In
pu

t-
O

ut
pu

tM
od

el
.

Im
pa

ct
on

U
.S

.
gr

os
s

tr
ad

e
ec

on
-

om
y

an
d

do
m

es
tic

ou
tp

ut

R
os

of
f

an
d

Vo
n

W
in

te
r-

fe
ld

t(
20

07
)

Si
m

ul
at

ed
te

rr
or

is
t

at
-

ta
ck

s
•

Sc
en

ar
io

ge
ne

ra
tio

n
an

d
pr

un
in

g,
pr

oj
ec

tr
is

k
an

al
ys

is
,

di
re

ct
co

ns
eq

ue
nc

e
m

od
el

in
g

an
d

in
di

re
ct

ec
on

om
ic

im
pa

ct
as

se
ss

m
en

t.

H
um

an
he

al
th

an
d

di
re

ct
ec

on
om

ic
co

st
s.

Su
pp

ly
ch

ai
n-

ce
nt

ri
c

st
ud

ie
s

Y.
Z

ha
ng

an
d

L
am

(2
01

6)
G

en
er

ic
•

Pe
tr

in
et

m
od

el
s

to
m

od
el

su
pp

ly
ch

ai
ns

.
•

E
va

lu
at

ed
ef

fe
ct

of
m

iti
ga

tio
n

st
ra

te
gi

es
(o

p-
tim

al
in

ve
nt

or
y

co
nt

ro
l)

us
in

g
si

m
ul

at
io

ns
.

Se
ct

or
-w

is
e

ec
on

om
ic

lo
ss

of
in

-
du

st
ry

cl
us

te
rs

.

L
oh

an
d

T
ha

i
(2

01
5)

Su
pp

ly
ch

ai
n

di
sr

up
tio

ns
lik

e
po

rt
st

ri
ke

s
an

d
co

n-
ge

st
io

n

•
Si

m
ul

at
io

ns
us

in
g

ad
di

tiv
e

m
od

el
s

Su
pp

ly
ch

ai
n

m
an

ag
em

en
t

co
st

s
in

cl
ud

in
g

pr
od

uc
tio

n
co

st
s,

w
ar

e-
ho

us
in

g
co

st
,

an
d

tr
an

sp
or

ta
tio

n
co

st
s.

L
ew

is
,

E
re

ra
,

an
d

W
hi

te
(2

00
6)

G
en

er
ic

•
M

ar
ko

v
D

ec
is

io
n

Pr
oc

es
s

In
cr

ea
se

in
co

st
s

fo
r

su
pp

ly
ch

ai
n

m
an

ag
em

en
t.

137



The most widely used frameworks for quantifying system-level economic

impacts of port shutdowns are input-output models, gravity models, and computable

equilibrium models (J. S. L. Lam & Su, 2015). With regard to the methods that

focus on individual supply chain disruptions, multi-agent simulations, and network

models like Petri nets and Bayesian networks are commonly adopted.

Recently, Wei et al. Wei, Chen, Rose, Banks, and Miller (2017) presented a

detailed framework for evaluating the economic losses of port disruptions. Though

the study mainly focused on the petroleum industry, the methodology can be ex-

tended to other industries that are dependent on ports. The framework broadly clas-

sified the economic risks under two heads, namely, microeconomic and macroe-

conomic risks. Microeconomic impacts mainly deal with the cost incurred by

port agencies and dependent industries due to revenue losses, cargo damages, im-

port/export delays, etc. Macroeconomic costs are much more extensive and are

related to the fall in commodity production, raw material, intermediate commodity

shortage, etc.

5.2.4 Gaps in the literature

The review of the literature revealed that extensive research has been carried

out with regard to estimating the economic risks of port shutdowns (J. S. L. Lam &

Lassa, 2017; Loh & Van Thai, 2014; Wendler-Bosco & Nicholson, 2019). However,

a majority of studies focus on the economic losses incurred by economic sectors

and individual supply chains due to a given historical event. While quantification

of port shutdown consequences is integral for holistic risk evaluation, it must be
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highlighted that there have been very few attempts made in the past for developing

relationships between disaster characteristics and the extent of port shutdowns and

disruptions. The authors believe that these relationships are crucial in predicting

port-related economic risks arising from future natural disasters, such as hurricanes.

The current chapter intends to bridge the above gap in the literature and introduce

a detailed framework to predict the operational and economic risks to ports posed

by hurricanes with the support of appropriate statistical methods. The methodology

would also allow different stakeholders to analyze the different types of economic

impacts resulting from a given hypothetical hurricane event.

5.3 Methodology

Figure 6.1 summarizes the framework developed in this study for evaluating

the operational- and associated economic risks posed by hurricanes to ports. The

framework consists of four stages. In the first stage, prediction models are devel-

oped for estimating the expected duration of hurricane-related port shutdowns. In

the second stage, the models are applied to simulated hurricanes to estimate the

port shutdown risks from potential future hurricanes of various intensities. In the

third stage, International Trade Inoperability Input-Output models are used to esti-

mate the economic impacts of a single-day shutdown of ports. In the final stage,

port shutdown risks are combined with the single-day shutdown loss estimates to

quantify the economic risks (to the overall economy as well as to the constituent

industrial sectors) resulting from hurricane-related port shutdowns. The detailed

methodology adopted in each of the above stages is discussed in the rest of the
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section.

5.3.1 Development of prediction models based on historical port shutdown
data

In addition to the direct damage inflicted by hurricanes on port infrastruc-

ture, a number of other factors also lead to port shutdowns. Some of these factors

include: whether the port is along the predicted course of the hurricane, how far is

the eye of a hurricane from the location of the port, and the intensity and duration

of hurricane-related winds and storms, etc. The directive for a shutdown of port

operations is issued in such circumstances by the Captain of the Port (COPT) who

is responsible for maintaining a port’s safety and security (U.S. Coast Guard, 2018).

Since direct data on port shutdowns were not readily available, the authors devel-

oped a port shutdown data set based on surrogate data that reflected port shutdown

duration.

5.3.1.1 Extraction of port shutdown data

In recent years, the U.S. Department of Energy (DoE) (Office of Cyberse-

curity Energy Security and Emergency Response, 2019) began publishing detailed

situation reports with updates over the condition of major critical infrastructure

systems during extreme events like hurricanes. Among the various infrastructure

conditions, the operational statuses of major ports along the course of the hurri-

cane, as declared by respective COPTs, are also reported. The port statuses are

reported in four conditions, namely, Zulu, Yankee, X-Ray, and Whiskey, providing

relevant information on the port operations during hurricanes (Table 5.3). Among
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Table 5.3: U.S. Coast Guard system of port conditions and their definitions Legal
Information Institute (2015)

Port condition Criteria for directive Port regulations

Zulu The landfall with sustained gale wind
forces of magnitude 39-54 mph within
12 hours is expected to occur at the port.

All port waterfront operations are
suspended, except final preparations
to ensure safety of port facilities.

Yankee The landfall with sustained gale wind
forces of magnitude 39-54 mph within
24 hours is expected to occur at the port.

Port is closed to incoming vessels.

X-Ray The landfall with sustained gale wind
forces of magnitude 39-54 mph within
48 hours is expected to occur at the port.

Port is functional with a few restric-
tions on vessel movement.

Whiskey The landfall with sustained gale wind
forces of magnitude 39-54 mph within
72 hours is expected to occur at the port.

Port is functional with a very few re-
strictions on vessel movement.

these conditions, Zulu refers to a complete shutdown and Yankee refers to a partial

regulation of port operations. Port condition Zulu may be brought into effect as part

of pre-hurricane preparation and post-hurricane mitigation.

For this chapter, the authors compiled the information regarding the num-

ber of days in which affected ports were in Zulu condition from the DoE emer-

gency situation reports that were published during nine major hurricanes that af-

fected the states along East Coast and Gulf Coast between 2012 and 2019. The

hurricanes are, namely, Barry (2019), Dorian (2019), Nate (2019), Florence (2018),

Michael (2018), Harvey (2017), Irma (2017), Matthew (2016), and Sandy (2012).

Port shutdown information related to 46 unique U.S. ports along the Atlantic- and

Gulf Coasts were compiled in this exercise (Figure 5.2).
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Matthew
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Figure 5.2: Hurricanes and ports included in the port shutdown data set (blue circles
denote the port locations)

5.3.1.2 Extraction of hurricane- and port-related data

In the next step, the port-specific characteristics that could potentially in-

fluence the extent of shutdowns were analyzed. For this purpose, various factors

related to those ports (such as, geographic location, port type, harbor type and

size, and depth of channel) and their interaction with the hurricanes (such as, dis-

tance from port to hurricane eye, distance from port to nearest landfall, and wind

speed and duration at the ports) were extracted. For collecting information on port-

hurricane interactions, the hurricane characteristics were to be analyzed. The best

tracks of the nine hurricanes were obtained from the National Hurricane Center

(NHC) Hurricane Data Archive (National Hurricane Center, 2019). The informa-
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tion such as the nearest distance from affected ports to the eye of hurricane and

landfall location (if any) were manually measured using a Geographic Information

System (GIS) software package (Figure 5.3).

Sea

Land

Port

Hurricane 
best track

Distance 
to eye de

Distance to 
landfall, dl

Coastline

Figure 5.3: Definition of distance to landfall (dl) and distance to eye (de) variables

The hurricane wind-related historical data was not readily available. There-

fore, the wind speed and duration information (maximum sustained wind and gust

speeds, duration of gusts and sustained winds) were computed using the hurricane

wind model proposed by Willoughby, Darling, and Rahn (2006). The full hurricane

wind profile in this study is modeled as follows:

w

(
Rmax −R1

R2 −R1

)
=

∂Vi
∂r

∂Vi
∂r
− ∂Vo

∂r

=
nX1

nX1 +Rmax

(5.1)

where w is a weighing function, Vi and Vo are the tangential wind component in the

hurricane eye and beyond the transition zone, Rmax is the radius at which the max-

imum wind speed occurs, X1 is the exponential decay length in the outer vortex of
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the hurricane and n is the exponent for the power-law function inside the hurricane

eye. The transition zone limits are denoted by radii r = R1 and r = R2.

The computation of the wind variables was done using the stormwindmodel

package in R-statistical software (Anderson et al., 2018). The model is capable of

estimating the wind-related variables for each county in the U.S. using the hurri-

cane track information in North Atlantic Hurricane Databases (HURDAT) format

(Jarvinen & Caso, 1984) as the input. The counties were later matched with the

geographical locations of ports to derive the wind speed and duration at ports.

5.3.1.3 Model specification and construction

In this study, the duration of port shutdowns due to simulated hurricanes

are predicted using regression models. While the duration of shutdown is a non-

negative continuous variable, in this study, it is modeled as a count variable (non-

negative integer). This is because the available information on shutdown duration

reported in DoE emergency situation reports can be easily converted into days of

shutdown. Poisson regression and its variants are most widely used for modeling

count data (Colin & Pravin, 2013).

For the current study, the following two regression models were developed

based on the relative positions of the hurricane and the port.

1. Landfall model (L-model): Regression model developed to predict the ex-

pected days of ports shutdown due to hurricanes that make landfall before

approaching the port; and
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2. No landfall model (NL-model): Regression model developed to predict the

expected days of port shutdowns due to hurricanes that make landfall after

passing a port.

In order to identify the most relevant hurricane- and port-related variables

for constructing the regression models, a correlation analysis of the dependent and

independent variables was conducted (Figure 5.4).

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

D
is

ta
nc

e
to

 e
ye

In
te

ns
ity

at
 e

ye

D
is

ta
nc

e
to

 la
nd

fa
ll

m
ax

im
um

gu
st

 s
pe

ed

m
ax

im
um

su
st

ai
ne

d 
sp

ee
d

gu
st

s
du

ra
tio

n

su
st

ai
ne

d
du

ra
tio

n

Zulu

Distance
to eye

Intensity
at eye

Distance
to landfall

maximum
gust speed

maximum
sustained speed

gusts
duration

−0.49 0.17

−0.06

−0.59

0.62

−0.35

0.54

−0.72

0.41

−0.55

0.54

−0.72

0.41

−0.55

1

0.57

−0.63

0.02

−0.59

0.63

0.63

0.49

−0.4

0.25

−0.38

0.68

0.68

0.77

(a) Landfall condition

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

D
is

ta
nc

e
to

 e
ye

In
te

ns
ity

at
 e

ye

m
ax

im
um

gu
st

 s
pe

ed

m
ax

im
um

su
st

ai
ne

d 
sp

ee
d

gu
st

s
du

ra
tio

n

su
st

ai
ne

d
du

ra
tio

n

Zulu

Distance
to eye

Intensity
at eye

maximum
gust speed

maximum
sustained speed

gusts
duration

−0.66 −0.09

0.01

0.52

−0.79

0.37

0.52

−0.79

0.37

1

0.78

−0.57

−0.04

0.39

0.39

0.39

−0.59

0.38

0.86

0.86

0.28

(b) No landfall condition

Figure 5.4: Estimated Pearson’s correlation coefficients from the correlation analy-
sis of port- and hurricane-related factors based on historical data

The results show that for L-model, the most relevant covariates are the dis-

tance to landfall (dl) and length of time in minutes of surface-level wind gusts with

intensity greater than 18 m/s at the port (t18) at the port. In the case of NL-model,

the most relevant covariates are the distance to the hurricane eye (de) and length of
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time in minutes of surface-level wind gusts with intensity greater than 18 m/s at the

port (t18).

In order to select the type of Poisson regression model to be developed for

landfall and no landfall conditions, further analysis of the dependent variable (days

of shutdown) was conducted.

It was found that though shutdown duration in both cases follows a Poisson

distribution, the proportion of events with zero days of the shutdown was consider-

ably higher in the landfall condition (∼ 37%). In this case, a hurdle count model

was used for modeling the duration of port shutdown assuming that whether a port

is shut down and the duration of the shutdown are determined by two different pro-

cesses. In the model, a binary logit model with the distance between the landfall

location and the port (dl) as predictor variable governs if the port will be shut down

due to a given hurricane, and a truncated-at-zero Poisson regression model with the

duration of wind gusts greater than 18m/s (t18) as the predictor is used to model the

number of shutdown days given the port is predicted to shut down. Based on the

above hurdle model, the probability mass function of days of shutdown k is given

as follows (McDowell, 2003):

Pr (K = k) =

{
π if k = 0

(1− π) λk

(eλ−1)k!
if 1.2.3. . . .

(5.2)

where π is the Binomial distribution parameter and λ is the Poisson distribution

parameter.
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Consequently, the log-likelihood of ith observation can be written as:

lnL(πi, λi; ki) =

lnπi if ki = 0

ln

[
(1− πi) λki

(eλ−1)ki!

]
if ki = 1, 2, 3, . . .

(5.3)

Now using a logit link function
(
πi = exiβ1

1+exiβ1

)
for explaining the bino-

mial process and a log link function
(
λi = exiβ2

)
for the Poisson process, the log-

likelihood function can be constructed using Equation 5.3. Incorporating the link

functions along with the pertinent predictor variables and simplifying Equation 5.3,

the log-likelihood function for the hurdle model used in the present chapter can be

written as follows:

(5.4)

lnL(πi, λi; ki) = ln

{(
n0∏
i=1

eβ10+β11dl

1 + eβ10+β11dl

)
n1∏
i=1

(
1

− eβ10+β11dl

1 + eβ10+β11dl

) n1∏
i=1

(
eki(β20+β21(t18)p)

(eβ20+β21(t18)p − 1) ki!

)}

=

n0∑
i=1

ln

(
eβ10+β11dl

1 + eβ10+β11dl

)
+

n1∑
i=1

ln

(
1− eβ10+β11dl

1 + eβ10+β11dl

)
+

n1∑
i=1

ki (β20 + β21(t18)p) +

n1∑
i=1

ln
(
eβ20+β21(t18)p − 1

)
−

n1∑
i=1

ln (ki! )

where n0 and n1 are the number of observations with zero and more than zero

days of shutdown, β1j and β2j are model parameters corresponding to the Bino-

mial submodel and the Poisson submodel, respectively. p is the exponent of t18

which captures the nonlinear relationship with the duration of the port shutdown.

148



The value of p was computed by applying an iterative loop on the log-likelihood

function. As evident in Equation 5.4, the log-likelihood of the hurdle model is the

product of log-likelihood values of the binomial and Poisson submodels.

In the case of no landfall model (NL-model), since there is no abnormally

high number of events with zero days of shutdown, a Poisson regression model was

chosen. The probability mass function of days of shutdown k, if assumed to follow

a Poisson distribution, is given by Equation 5.5.

Pr(K = k) =
λke−λk

k!
k = 0, 1, 2, . . . (5.5)

Now, the log-likelihood function can be written as follows:

lnL(λi; ki) = ln

{
n∏
i=i

λkie−λ

ki!

}
(5.6)

Now, using a log link function (λi = exiβ3) using the predictor variables de and t18

and simplifying, the log-likelihood function can be rewritten in the following form.

lnL(λi; ki) = ln

(
n∏
i=i

e(β30+β31de+β32(t18)q)ki × e−(eβ30+β31de+β32(t18)
q)

ki!

)

=
n∑
i=1

ki(β30 +β31de+β32(t18)q)−
n∑
i=1

e(β30+β31de+β32(t18)q))−
n∑
i=1

ln ki!

(5.7)

where q is the exponent of t18 to capture its nonlinear relationship with the duration

of the port shutdown. The value of q was computed by applying an iterative loop

on the log-likelihood function.
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By maximizing the log-likelihood functions, the model parameters are ob-

tained. Further, the probability mass function of the shutdown duration at each port

due to a given hurricane can be derived.

5.3.2 Prediction of expected port shutdown duration for simulated hurri-
canes

Once the shutdown duration models were developed, the port shutdown

risks due to future hurricanes were to be evaluated. Hurricane Interactive Track

Simulator (HITS) for North Atlantic Basin is a non-parametric stochastic model,

based on the principle of non-homogeneous hidden Markov renewal model, de-

veloped by Nakamura, Lall, Kushnir, and Rajagopalan (2015) for simulation of

tropical cyclone tracks. The hurricane seasons are simulated based on the histor-

ical best-track North Atlantic Hurricane Databases (HURDAT). Currently, 60,000

years of simulated hurricane seasons are available in the HITS database. For the

current study, the authors extracted the first 5000 years of simulated hurricane sea-

sons (consisting of 76,577 unique hurricane tracks with non-empty observations)

from the HITS database2. The HITS hurricane tracks consist of the geographic

coordinates and wind intensity details of the eye of the simulated hurricanes at a

frequency of two hours throughout their life-cycle. For each of the hurricane in

the database, an algorithm, as illustrated in Figure 5.5, was used to compute the

distance and wind speed variables corresponding to the ports (de, dl, and t18) and

determine the regression model (L-model or NL-model) for predicting the expected

2http://rainbow.ldeo.columbia.edu/~jennie/HITS/
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duration of port shutdowns.

Hurricane 
makes landfall?

Yes

No

Nearest 
hurricane point

on land?

Calculate distance 
to nearest 

hurricane point

Yes

No

Calculate distance 
to nearest landfall

Predict using 
Landfall mode 

(L-model)

Predict using 
No landfall model 

(NL-model)

Figure 5.5: Algorithm used for determining the prediction model for estimating
port shutdown risks

The expected values of port shutdown durations corresponding to the sim-

ulated hurricanes were used to identify the hurricanes of various return periods for

each port under consideration. Return period is a concept closely linked to the

probability or chance of an event’s occurrence and is defined as “the average time

elapsing between two successive realizations of the event itself ” (Salvadori & De

Michele, 2004). The return period is used as the criteria in the current study to

estimate the severity of hurricanes based on the extent of port shutdowns and as-

sociated economic impacts. The following steps were implemented to identify the

hurricanes of various intensities in terms of the duration of the port shutdown.

Step 1: Estimate the expected days of the shutdown of a port r ∈ R due to hurri-

cane h ∈ H using the appropriate prediction model. This value is denoted by

k̄hr .

Step 2: Sort the N simulated hurricanes in the descending order of the expected
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days of shutdown and assign them a rank mh such that the most severe hurri-

cane gets rank 1.

Step 3: Calculate the return periods in years T hr of N simulated hurricanes as fol-

lows:

T hr =
N + 1

mhÑ
(5.8)

where Ñ = N/5000 is the average number of hurricanes in a simulated sea-

son.

Step 4: Identify the hurricanes with the return period estimates closest to the return

periods of interest (10-year, 20-year, 50-year, 100-year, 200-year, 500-year,

and 1000-year hurricanes).

Step 5: Repeat Steps 1–4 for all the ports for which the analysis is to be done.

5.3.3 Estimation of economic impacts of single-day port shutdown

In this study, the economic impact of port disruptions refers to the direct and

indirect economic losses incurred to the U.S. economy due to the shutdown of port

operations. The economic loss consists of the impacts on the gross domestic prod-

uct (due to forward- and backward linkage effects) and the disruptions to exports

and imports during the port shutdown. For the current study, the International Trade

Inoperability Input-Output Model (IT-IIM) was used for quantifying the economic

impact of a single-day port shutdown (J. Jung et al., 2009). The Input-Output Model

proposed by Leontief (1986) and its extensions, including IT-IIM, are systems of

linear equations representing the relationships between various economic sectors in

a region of interest. The input-output data are maintained and regularly updated by
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federal governments and international trade organizations.

The traditional IIM adopts Gross Domestic Product (GDP), which repre-

sents the total market value of all the final goods and services produced within a

country, as a measure of economic impact. The application of traditional IIM is,

therefore, limited to the analysis of perturbations in domestic infrastructure sectors

and their ripple effects on other sectors. The IIM is not capable of analyzing the

effects of disruptions to imports and exports of commodities.

The IT-IIM was specifically developed to investigate the effect of disrup-

tions on imports and exports at ports-of-entries on national and regional economies

using Gross Trade Economy (GTE) as a measure for quantifying economic im-

pacts. The GTE is the combined value of GDP and imports and is expressed as in

Equation 5.9.
GTE = GDP +M

= DD +X +M
(5.9)

where M is the imports, DD is the domestic products for domestic use, and X is

the exports. By replacing GDP with the concept of the GTE in the input-output

framework, all imports can be treated as if they were produced domestically. The

IT-IIM enables a more comprehensive evaluation of the importance of total interna-

tional trade to a nation’s economy, supplementing the traditional GDP perspective

for evaluating economic impacts.

The IT-IIM comprises two configurations (Case A and Case B) based on the

assumptions on how imports are used in the economy. The Case A model assumes

that all imports are used exclusively by domestic industries as intermediary goods.
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Therefore, the economic loss estimated by Case A model also reflects the interde-

pendent effects induced in domestic production due to disruptions in the import of

intermediary goods. On the other hand, the Case B model assumes that all the im-

ports are used for final consumption as a fall in imports will not have any impact on

domestic production.

In reality, a fraction of imports are used for domestic production, and the rest

is consumed as final products. Therefore, the economic impact estimates provided

by Case A and Case B models can be considered as the upper- and lower bounds,

respectively. A detailed methodology of IT-IIM can be found in the study by J. Jung

et al. (2009).

The overall economic impacts incurred by a single-day closure of a port r

according to IT-IIM models are computed using the following equations.

Cr,A =
∑
i∈I

[
x̄TOi − x̃TOi

]
(5.10)

Cr,B =
∑
i∈I

[(
x̄TOi − |m̄i|

)
−
(
x̃TOi − |m̃i|

)]
(5.11)

where Cr,A and Cr,B are the overall economic impacts calculated using IT-IIM Case

A and Case B models, x̄TOi and |m̄i| are the output value and import value corre-

sponding to industry i during normal port operating conditions (baseline values),

and x̃TOi and |m̃i| are the output value and import value corresponding to industry i

during port disruptions (degraded values), respectively. Considering the actual eco-

nomic loss lies between Cr,A and Cr,B, the two estimates, and their average value

were used for calculating the economic risks of a port shutdown in this study.
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The IT-IIM requires two types of data: (a) the demand-based interdepen-

dency table (input-output table) consisting of the details of the flow of goods and

services among different industries within a national economy; and (b) the demand-

based perturbation vector. Typically, industry input-output data can be retrieved

from several sources depending on the regions of interest. For instance, the Organi-

zation for Economic Co-operation and Development (OECD) publishes the national

input-output tables for all OECD countries and 28 non-member countries, covering

the years 2005 through 2015. As the purpose of this case study was to investigate

the economic impacts of port shutdowns in Texas on the U.S. economy, the 2015

U.S. input-output table published by Organization for Economic Cooperation and

Development (2019) was used. The OECD input-output table contains informa-

tion on the inter-industrial flow of goods and services among 36 industry clusters

based on the International Standard Industrial Classification of All Economic Ac-

tivities (ISIC Rev.4). The industry clusters that constitute the U.S. economy and the

corresponding ISIC Rev. 4 codes are presented in Table 5.4.

For constructing the perturbation vector, the 2015 port-level monthly ex-

ports and imports data for the ports in Texas during the hurricane season were ex-

tracted from USA Trade Online (U.S. Census Bureau, 2019). The port-specific

data related to imports and exports are available in terms of their monetary values

(U.S. Dollars) and are classified into 6,093 different product groups using the 6-

digit Harmonized System (HS). The single-day shutdown perturbation vector was

constructed by calculating the average daily values of imports and exports during

the hurricane season for port and each industry cluster. In the U.S., the official
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Atlantic hurricane season begins on June 1 and ends on November 30.

In order to conduct the input-output analyses, the inconsistency between the

classification systems based on which the input-output table (ISIC Rev. 4) and the

port perturbation vector (HS) were to be rectified. While HS is based on industry

products, ISIC Rev. 4 is based on economic activity. For this purpose, the port per-

turbation vector in HS format was converted into the ISIC Rev.4 format using the

concordance table developed by OECD ([Dataset] Directorate for Science Technol-

ogy and Innovation, 2019). By doing so, the import and export loss for different

product types resulting from port shutdown could be properly reflected in the final

uses of each industry sector defined in the input-output table.

5.3.4 Estimation of economic risks of hurricane-related port shutdown

Once the hurricanes corresponding to the return periods based on the shut-

down duration were identified, the corresponding expected days of the port shut-

downs and the port-specific economic impacts due to a single-day shutdown were

combined to calculate the expected economic risks. Additional analyses were also

carried out to identify the major industry clusters directly and indirectly affected by

the port disruptions. The economic risks to various industrial clusters as well as to

the overall economy were quantified.

In order to evaluate the economic risks of hurricane-related port disruptions,

two types of analyses were carried out. In the first analysis, the expected economic

impact of port shutdown corresponding to each port due to each hurricane in the

HITS database was calculated using Equation 5.12. Then, using the port-specific
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economic impacts as the criteria, the hurricanes were ranked and the economic im-

pacts of various return periods were calculated using Steps 2–4 in Subsection 5.3.2.

C̄h
r = k̄hr × Cr (5.12)

where C̄h
r is the expected economic loss if a port r is affected by hurricane h, and

Cr is the total economic impact of single-day shutdown of port r, calculated using

the IT-IIM models.

In the second analysis, each hurricane in the HITS database was investigated

and the cumulative economic impacts of a simultaneous shutdown of ports in Texas

were quantified using Equation 5.13.

C̄h =
∑
r∈R

C̄h
r (5.13)

where C̄h is the cumulative economic impact of port shutdowns due to hurricane h

(calculated using either IT-IIM Case A or Case B models).

The cumulative economic impact estimates were used to rank hurricanes

and the cumulative economic impact values corresponding to various return peri-

ods were identified. For this, a similar procedure as the one used for determining

port-specific economic impacts of different return periods was used; however, the

ranking was done based on the cumulative economic impacts of each simulated

hurricane using Equation 5.13.

5.4 Model Application on Texas Port System

In this section, the analysis results from the application of the economic

risks analysis methodology on the Texas port system are discussed. The Texas port
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system consists of 11 commercial deep-draft ports and five commercial shallow-

draft ports. The system is augmented by waterways and intermodal surface trans-

portation connectors. Texas ports have a significant role in the regional and national

economy as Texas is the largest exporting state in the U.S. Texas ports handled more

than 28% of total U.S. export tonnage in 2015. Texas ports also import commodi-

ties, such as crude oil and chemicals, which are important intermediary goods for

domestic industries. In the current chapter, the deep-draft ports (except Port of

Sabine Pass) were considered for analysis as they handle most of the commodities

being exported and imported through the Texas Coast (Figure 5.6).

Texas Coast is highly prone to hurricanes and hence the ports are suscep-

tible to hurricane-related shutdowns. For example, Hurricane Harvey, a Category

4 hurricane that affected the Houston region in 2017, disrupted the operations of

Port of Houston completely for a week, resulting in considerable economic loss.

The proposed methodology was implemented on the Texas Port System and the

hurricane-related disruptions and associated economic risks were evaluated.

5.4.1 Estimated model parameters for predicting port shutdown duration in
the North Atlantic Basin

Table 5.5 presents the estimated coefficients and model performance statis-

tics corresponding to L-model and NL-model. The model estimates were computed

using R-statistical software. In order to estimate the values of the exponents of t18

(p and q), the respective models were iterated by varying those parameters and the

models with the lowest value of Akaike information criterion (AIC) were chosen.
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Gulf of Mexico

Texas

Corpus Christi

Freeport

Galveston

Houston

Port Lavaca

Texas City

Brownsville

Beaumont Orange
Port Arthur

Sabine Pass

Figure 5.6: Major deep-draft ports in Texas and their locations along Texas Coast
(Source: Texas Department of Transportation)

The landfall model (L-model) consists of two components. The first com-

ponent is a zero hurdle model which calculates the probability that a port will be

closed due to a given hurricane. The model uses the distance between landfall

and the port in miles (dl) to predict the probability. The model suggests that the

expected duration of a port being closed due to a hurricane decreases by 6.67%

(= (e−0.006721 − 1) × 10 miles × 100%) for every 10 miles (16.1 km) increase in

the distance between the point of landfall and the port. According to the landfall

model, the probability of a port shutdown exceeds 50% when the distance between
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Table 5.5: Landfall and No Landfall models for prediction of port shutdown dura-
tion

Model Submodel Model statistics

Parameter Estimate Std. Error z-value p-value

L-Model
Zero Hurdle
Model

Constant 2.1381 0.5913 3.6160 0.0003
dl -0.0067 0.00207 -3.2410 0.0012

Zero-truncated
Poisson Model

Constant 0.5487 0.2354 2.3310 0.0198
[t18]

0.67 0.0047 0.0018 2.6900 0.0071

n 51
AIC† 160.02
LR χ2 22.694
Pr(> χ2

crit) 0.000018
pseudo R2 0.434

NL-Model Poisson Model
Constant 0.1644 0.4809 0.3420 0.7324
de -0.0074 0.0028 -2.6220 0.0086
[t18]

0.5 0.0331 0.0081 4.080 0.0000

n 40
AIC 129.750
LR χ2 47.047
Pr(> χ2

crit) 0.00000
pseudo R2 0.815

the port and the location of landfall is less than 318.1 miles (511.8 km).

The second component of the landfall model is a zero-truncated Poisson

model which calculates the conditional probabilities (and therefore the conditional

expected value) of various days of port shutdown, given the port is predicted to

be shut down. The duration of the port shutdown in the landfall model is deter-

mined by the power function of the duration of wind gusts (in minutes) of inten-

sity greater than 18 m/s experienced by the port due to a hurricane ([t18]0.67). The

model statistics suggest that the expected duration of shutdown increases by 0.47%

(=(e0.0047 − 1)× 100%) for every one unit increase in the value of [t18]0.67. Longer
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duration of high-intensity winds leads to longer port shutdowns either as a precau-

tion or due to direct physical damage.

For the no-landfall model (NL-model), a Poisson regression model was con-

structed using de and [t18]0.5 as the variables. The model suggests that the expected

number of days of shutdown decreases by 7.37% (= (e−0.0074 − 1) × 10 miles ×

100%) for every 10 miles increase in the distance between the port and the closest

location of the eye of the hurricane. At the same time, the expected days of port

shutdown increases by 3.37% (= (e0.0331−1)×100%) for every one unit increase in

the value of [t18]0.5, indicating a positive relationship between the days of shutdown

and the duration of wind gusts.

Log-likelihood ratio tests (LR tests) were employed to check the statistical

significance of both models fits. For the landfall model and no-landfall model,

the p−values obtained from the LR-tests were below 0.05, confirming that both

models are statistically significant. The models were validated using the k-folds

cross-validation method (with 10 folds). The average Root Means Squared Error

(RMSE) for the landfall model was 0.939 days, whereas the average RMSE for the

no-landfall model was 1.21 days. Furthermore, the goodness of fit of the models

was evaluated using rootograms and residual distributions (Figure 5.7). Rootograms

are graphical tools which compare the predicted and actual distributions of the count

variable, instead of directly comparing the predicted values with the actual counts

?. The red line represents the distribution fitted by the model, whereas the hanging

bars show the actual frequency (square-root) of shutdown days from the data set.

It can be seen that the models fit fairly well with a few discrepancies which are
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random across the shutdown duration. To add to this, it can be observed that the

residuals follow a normal distribution.
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Figure 5.7: Rootograms and residual distributions for evaluating model fit

5.4.2 Hurricane-related port shutdown risks to the Texas Port System

The prediction model (L-model or NL-model) for calculating the proba-

bilities and the expected values of shutdown durations are determined using the

algorithm presented in Figure 5.5. Based on the expected days of shutdowns of

each port, the simulated hurricanes corresponding to various return periods (10-,

20-, 50-, 100-, 200-, 500-, and 1000-years) were identified. Figure 5.8 presents the

expected shutdown durations corresponding to the hurricanes identified. For each
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port, the expected duration of shutdown increases as the severity of the hurricanes

increases. For example, the expected duration of the shutdown of Port Houston due

to a 1 in 10-year hurricane is estimated to be 3.0 days, whereas, the same due to a 1

in 1000-year hurricane is 8.6 days.

3.1 3.7 4.8 5.6 6.4 7.2 7.8

3.6 4.5 5.7 6.9 8 9.6 10.3

3.7 4.6 5.6 6.6 7.8 9.8 10.7

3.1 3.6 4.3 5 6.1 7.4 8.6

3.1 3.7 4.7 6 7.2 8 8.5

3.5 4.2 5.3 6.3 7.2 9.4 10.5

3.4 4.1 4.8 5.4 6.1 7.1 7.5

3 3.4 4.1 4.6 5.3 5.9 7.1

3 3.4 4.1 4.8 5.4 6.3 6.7

3.1 3.6 4.4 5.2 5.9 7.4 7.6

Beaumont

Brownsville

Corpus Christi

Freeport

Galveston

Houston
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Port Arthur

Port Lavaca

Texas City
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Return Period (years)

P
or

t
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Expected days
of shutdown

Figure 5.8: Expected duration of hurricane-related port shutdowns of various return
periods

The results indicate that the operational risks posed by low-intensity hurri-

canes (characterized by low return periods) to all ports in Texas are relatively uni-

form. For example, the expected number of days of shutdown due to 1 in 10-year

hurricanes on all ports is between three and four days. However, due to the geo-

graphical characteristics of locations, there is a large variation in the expected days

of shutdown resulting from low-probability high-intensity hurricanes in those re-

gions. For example, the duration of port shutdowns due to 1 in 500-year hurricanes
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range between 5.9 and 9.7 days. The ports that have very high risks to hurricane-

related port shutdowns are Texas City, Galveston, and Freeport. The higher risks to

the above ports are dominantly due to two reasons as follows:

1. The above ports are located along the coastal regions of Texas that are sus-

ceptible to more severe hurricanes.

2. The ports located close to the coast have higher exposure to severe hurricanes

than those situated on bays or rivers.

The ports with the lowest shutdown risks from hurricanes are Orange, Beau-

mont, Port Arthur, and Brownsville, which are located at regions with relatively

lower hurricane risks.

It must be noted that the above predictions are made using models that are

developed based on historical port shutdown data set with limited shutdown infor-

mation about low-probability high-intensity hurricanes. Therefore, several of the

port shutdown duration predictions presented in Table 5.8 corresponding to larger

return periods (for example, 1 in 1000-year events) are extrapolated values using

the developed models with predictor values outside the range of the model data set.

Therefore, those estimates are susceptible to errors and this fact must be taken into

account while drawing any inference about the operational and economic risks of

hurricanes events of very low probability.
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5.4.3 Predicted economic impacts of single-day shutdown of ports in Texas
Port System

The economic impacts of single-day port shutdowns were quantified by em-

ploying the IT-IIM (Case A and Case B) on port data retrieved from U.S. Trade

Online (U.S. Census Bureau, 2019) and the OECD U.S. input-output tables (Or-

ganization for Economic Cooperation and Development, 2019) for the year 2015

(Equations 5.10 and 5.11). The economic impacts of a single-day shutdown of

each port in the Texas port system on the U.S. economy, in terms of Gross Trade

Economy (GTE) (J. Jung et al., 2009), are presented in Table 5.6. Along with the

economic impacts on the overall economy, the direct and indirect impacts on vari-

ous industrial clusters were also evaluated. The directly impacted industry clusters

are those immediately affected by the shutdown due to import and export delays or

disruptions resulting from port shutdown. The indirectly impacted industries do not

necessarily depend on the disrupted ports for imports and exports; however, they

could also be affected due to forward and backward linkage effects in the economy.

From the estimated values, it is evident that single day disruption to Port

Houston will have the largest overall impact on the U.S. economy compared to

other ports in Texas. The overall economic impact due to a single-day shutdown

of Port Houston in 2015 estimated using IT-IIM Case A model (which assumes all

the imported are used as intermediary goods by domestic industries) was $706.5M,

whereas, the same estimated using IT-IIM Case B model (which assumes all im-

ports are used for direct domestic consumption) was $554.3M. The industry cluster

that could be most impacted by disruptions in imports due to a single-day shut-
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down of Port Houston is the Cluster 2 (mining and extraction of energy-producing

products) with an estimated loss of $23.1M, whereas the industry cluster that could

be most impacted by a delay in exports is the Cluster 10 (chemicals and pharma-

ceutical products) with an estimated loss of $62.8M. As far as the industry-specific

impacts are concerned (taking into account of both the direct and indirect economic

impacts), the industry cluster most affected is Cluster 10 (chemicals and pharma-

ceutical products) with an estimated economic impact of $157.8M according to

IT-IIM Case A model and $140.2M according to IT-IIM Case B model.

5.4.4 Predicted economic risks of hurricane-related shutdown of ports in Texas

5.4.4.1 Economic impacts of individual port shutdowns

In order to estimate the port-specific economic risks, the estimates of eco-

nomic impacts due to the single-day port shutdown were combined with the ex-

pected number of port shutdown days of various return periods. The expected port-

specific economic impacts corresponding to various return periods is presented in

Figure 5.9.

In the figure, the maximum and minimum values of error bars denote the

economic impacts estimated by IT-IIM Case A and Case B models respectively,

whereas, the bar heights represent the mean economic impact. Evidently, as the

intensity of hurricanes increases, there is a substantial increase in the economic risks

due to prolonged port shutdowns. Port Houston faces the highest economic risks

due to hurricane-related port shutdowns with an estimated mean economic impact

of $2.28 billion due to a 1 in 10-year hurricane and an estimated mean economic
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impact of $4.3 billion.

5.4.4.2 Economic impacts of simultaneous shutdown of ports

While understanding the economic impacts of the hurricane-related shut-

downs of each port in a port system is extremely useful in devising mitigation

measures, an equally important aspect to investigate is the cumulative economic

impacts of a simultaneous shutdown of multiple ports resulting from a single hur-

ricane event. For this purpose, the cumulative economic impacts of port shutdowns

in Texas resulting from each hurricane in the HITS database were calculated and

the cumulative economic impacts of various return periods were estimated.

Table 5.7 presents the cumulative economic impact due to hurricane-related

simultaneous shutdown of Texas ports considering various return periods. For a

return period of 10-years, the expected cumulative economic impact is estimated to

be $2.80 billion ($3.11 billion according to IT-IIM Case A model and $2.49 billion

based on Case B model). Similarly, for a 500-year return period, the expected

cumulative economic impact is $6.20 billion ($6.88 billion based on IT-IIM Case A

model and $5.52 billion according to Case B model).

The hurricane tracks corresponding to various return periods based on cu-

mulative impacts of simultaneous port shutdowns were identified from the HITS

database and are illustrated in Figure 5.10. The expected days of shutdown of

Texas ports due to each of the hurricanes are also presented for comparison. It

is observed that the cumulative economic impacts are largely the consequence of

the simultaneous shutdown of ports in the Houston and Beaumont regions. Due to

170



Table 5.7: Hurricanes of various return periods based on cumulative economic im-
pact due to simultaneous shutdown of ports

Return
Period∗

Cumulative economic impact† Top three most-affected ports in terms of economic impacts†

Case A Case B Mean I II III

10 3.107 2.494 2.800 Houston (1.980) Port Arthur
(0.190)

Texas City
(0.160)

20 3.578 2.857 3.218 Houston (2.482) Port Arthur
(0.198)

Texas City
(0.159)

50 4.326 3.475 3.900 Houston (2.577) Port Arthur
(0.401)

Beaumont
(0.219)

100 4.958 3.981 4.469 Houston (3.143) Port Arthur
(0.31)

Corpus Christi
(0.26)

200 5.470 4.665 5.256 Houston (4.103) Corpus Christi
(0.287)

Port Arthur
(0.218)

500 6.883 5.515 6.199 Houston (4.543) Texas City
(0.414)

Port Arthur
(0.364)

1000 8.412 6.708 7.560 Houston (5.928) Texas City
(0.469)

Port Arthur
(0.406)

∗Return periods in years.
†All loss estimates in billion US$. All values correspond to the year 2015.

the geographical proximity of the ports in the above two port-clusters, a hurricane

that affects these regions could lead to the shutdown of multiple ports and result in

significant economic impacts on the U.S. economy. The possibility of the simul-

taneous shutdown of ports in these clusters must be taken into consideration while

developing mitigation plans, such as rerouting or cargo capacity enhancement.

5.5 Implications of the Methodology on Port- and Supply Chain
Resilience Management

The presented methodology may be of interest to a wide range of port stake-

holders, including port authorities, private port operators, port-dependent industries,
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and different levels of governments. Given how critical the operational continuity

of ports are for the regional and national economies, the economic risks could be

integrated into decision-making processes related to port investments and manage-

ment. To be specific, the aleatory uncertainties associated with hurricane-related

shutdowns and resultant economic risks are characterized using return periods, a

widely adopted measure to represent the probability of occurrence of natural dis-

asters in a given year. For example, the expected economic impact on the U.S.

economy due to simultaneous shutdown of ports in Texas resulting from a 1 in 10-

year hurricane is approximately $280 millions (1/10× $2.8 billion) according to

Table 5.7, which is higher than the expected cumulative impacts due to hurricanes

of higher return periods. Such information could be of extreme importance for the

port agencies and various levels of governments to make decisions related to annual

spending on resilience interventions in the Texas port system. Similar methods can

be adopted by other port stakeholders to improve their capabilities to minimize

economic risks due to hurricane-related port shutdowns. Table 5.8 lists some of the

potential applications of the proposed methodology from the perspective of various

stakeholders responsible for the management of ports.

5.6 Conclusion

In this chapter, a methodology is presented for evaluating the operational

and associated economic risks posed by hurricanes to ports. As part of the study,

port shutdown prediction models were developed using the hurricane- and port-

related data based on historical port shutdown events. The prediction models were
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Table 5.8: Potential applications of proposed methodology for port resilience man-
agement from the perspective of different stakeholders

Stakeholders Role in ports Resilience improvement
strategies

Application of proposed
methodology

Port authorities
and private port
operators

Port investments
and management

Port expansions Compare disruption risks to
various alternatives

Port infrastructure de-
sign

Determine facility require-
ments based on hurricane in-
tensities

Industries and
logistics
companies

Dependent on ports
for imports/exports

Inventory manage-
ment and contingency
logistics

Estimate the value of com-
modities at risk for import
disruptions

Alternative routing strat-
egy

Identify ports which have
the least probability of si-
multaneous shutdown

Governments and
public agencies

Formulation of
policies and port
development

Resilience investment
decisions related to ports
and port systems

Estimate overall impact on
regional or national econ-
omy due to port shutdowns

later employed for estimating the future operational risks to Texas Port System due

to hurricanes using simulated hurricane tracks. The operational risks of ports were

combined with port-specific economic impact due to single-day shutdowns in order

to predict the direct and indirect economic risks of port closures in Texas. In the

process, the most critical ports in Texas and dependent industries were identified.

The economic risks of simultaneous port closures in Texas were also evaluated. It

was found that even though Port Houston has relatively lower shutdown risks com-

pared to many other ports in Texas, such as Freeport and Galveston, the significantly

large quantity of commodities being handled by Port Houston makes it the port in

Texas which has the highest impact on U.S. economy.

It must be emphasized that port shutdowns occur not only due to the phys-
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ical impacts of hurricanes, but are also ordered as a precautionary measure and to

prepare ports against any impending threat from hurricanes. In such cases, reduc-

ing the port shutdown duration may not be always possible. Nevertheless, for a

port authority, the proposed framework offers a systematic methodology to quan-

tify the economic risks of port shutdowns and make informed decisions on future

resilience enhancement investments which could significantly reduce the hurricane

damages and improve restoration capabilities. However, deciding the type of in-

vestments needs further investigation with due consideration to the technical, oper-

ational, geographical, and organizational aspects of the port. From the perspective

of port-dependent industries, understanding the shutdown risks could aid in plan-

ning and implementing mitigation measures to reduce the supply chain disruptions

by adopting measures, such as making alternative arrangements for transportation

of commodities and optimizing inventories.

While highlighting the numerous advantages of the methodology, there are

a few limitations that provide directions for further research.

• As discussed before, the port shutdown duration prediction models are based

on a very small number of recent hurricane events for which port shutdown

information is available. The current attempt is expected to highlight the need

for more extensive and systematic data collection efforts with regard to infras-

tructure system disruptions due to extreme weather events which could assist

stakeholders to make risk-informed decisions for resilience enhancement.

• The number of high-intensity hurricanes in the port shutdown data set is lim-
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ited and therefore the predictions using the developed models corresponding

to low-probability, high-intensity hurricanes may be susceptible to large vari-

ations.

• Additionally, the scope of the prediction models could be expanded by incor-

porating the specific resilience capabilities of the ports that could significantly

reduce the shutdown duration.

• Moreover, the current methodology could also be improved by considering

the potential changes in hurricane intensity and frequency that may result

from climate change.
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Chapter 6

Mapping Resilience of Infrastructure Systems Using
Historical Data: A Case Study of Houston Freeway

Network During Hurricane Harvey 1

6.1 Introduction

Severe natural disasters, such as hurricanes, floods, and earthquakes, can

severely impact critical infrastructure systems (CIS) leading to large-scale func-

tional disruptions in the dependent urban systems. As far as disaster management

is concerned, among the major critical infrastructure systems, road networks are

of utmost importance as they play a crucial role in evacuation, emergency response

and logistics, restoration of essential facilities, and recovery in affected areas. How-

ever, road networks are highly vulnerable to hazards due to their vast geographical

scale and direct exposure to the environment. Apropos hurricanes, transportation

infrastructure (such as bridges and pavements) are subjected not only to the direct

damage inflicted by the intense rainfall and powerful, sustained winds and wind

gusts but also to the resultant flooding and debris formation. In addition, traffic

signals, illumination, and Intelligent Transportation Systems (ITS) message signs

1based on Balakrishnan, S., Z. Zhang, R. Machemehl, M. Murphy. 2020, Mapping resilience of
Houston freeway network during Hurricane Harvey using extreme travel time metrics, International
Journal of Disaster Risk Reduction, https://doi.org/10.1016/j.ijdrr.2020.101565

177

https://doi.org/10.1016/j.ijdrr.2020.101565


may be disrupted, due to fallen transmission lines resulting in loss of electrical

power, communications, and other services. Such incidents heavily influence traf-

fic flow characteristics in cities before-, during- and immediately after hurricanes.

It is therefore of utmost importance to understand how traffic conditions vary due to

hurricanes and identify road segments which could be the worst-affected to make

improvements in existing disaster management practices. In addition, from a re-

silience point of view, understanding the extent and types of impacts and how the

traffic network recovered to normal conditions is extremely important to document

and understand (O’Rourke, 2007).

In this study, an attempt is made to understand the traffic variations on the

freeway network in the Houston region, Texas caused by Hurricane Harvey using

link-level travel times collected using Bluetooth® sensors. Instead of using con-

ventional travel time reliability measures, the metrics for measuring the effect of

the hurricane on the traffic conditions are developed based on extreme travel time

observations. An extreme travel time observation, in this study, is defined as one

that considerably deviates from normal travel times trends based on non-hurricane

travel time data. The underlying assumption is that the frequency and magnitude

of extreme travel time observations are correlated to the hurricane impacts on the

traffic network and driver travel choices. Time series analysis techniques com-

bined with anomaly detection algorithms were used to identify links that experi-

enced extreme travel times and to identify the worst-affected freeway links. For

this purpose, three transportation resilience metrics based on extreme travel time

observations were introduced and the hurricane-effects on the traffic and subse-
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quent recovery on freeway links were quantified. An alternative representation for

measuring the resilience of traffic networks, analogous to the well-known resilience

triangle (Bruneau et al., 2003), is also presented. While fluctuations in travel times

are the result of a combination of several potential causes, including high water over

a roadway or bridge and changes in traffic movements, the results provide consid-

erable insight into the extent of the impact on the freeway network and its recovery

to pre-disaster conditions.

The rest of this chapter is organized as follows: the Literature Review sec-

tion presents an overview of existing methods for analyzing transportation system

resilience; the Methodology section discusses the stages in the study methodology;

the Discussion of Results section presents an application of the methodology for

quantifying traffic impacts of Hurricane Harvey on the Houston freeway network;

and the Conclusion section summarizes major findings.

6.2 Literature Review

Disruption to transportation infrastructure is a major source of social and

economic loss during disasters. Therefore, the extent of such disruptions (physical

and socio-economic) and the rapidity with which the affected transportation infras-

tructure can be restored to pre-disaster conditions are crucial factors determining

urban resilience (Chang, 2003). While the rapid restoration of disrupted road links

and efficient real-time traffic management are top priorities of emergency manage-

ment in urban regions, it requires identification of the most vulnerable links based

on the physical and traffic impacts caused by historical extreme events in the region
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and the availability of alternate routes. Quantification of the effects on various links

can also be used to assess the effectiveness of existing emergency management

practices in order to make improvements to enhance preparedness and response

during future extreme events (Faturechi & Miller-Hooks, 2015).

6.2.1 Quantification of disaster-induced effects in transportation systems

Quantification of physical effects of extreme events on transportation sys-

tems is conducted by employing relevant performance measures that reflect the

functional- or road network characteristics. The effects of external stresses or in-

cidents on traffic networks are estimated by calculating the loss in functionality

experienced during the extreme event in terms of one or several performance in-

dicators. Faturechi and Miller-Hooks (2015) classified such measures of effec-

tiveness into five categories- travel time/distance-based, throughput/capacity-based,

accessibility-based, economic measures, and topology-based measures, among which

the first four are commonly used for evaluating direct and indirect effects of histor-

ical disasters. The performance measures are used to study a wide range of traffic-

and behavior-changing patterns, such as route choice, mode choice, and extent of

congestion, caused by extreme events. For example, Ganin et al. (2017) evaluated

the resilience of road networks in forty major urban areas in the U.S. by simulat-

ing random failure of road links and estimating the resultant cumulative increase

in network delays due to vehicle rerouting. In another study, Zhu, Levinson, Liu,

and Harder (2010) investigated the changes in traffic and travel behavior patterns

in Minneapolis, Minnesota caused by the I-35W Mississippi River bridge collapse
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by conducting before-after comparisons of several indicators, such as traffic counts

on adjacent bridges, mode choice, departure and arrival times of commuter, and

total commute time. A study by Giuliano and Golob (1998) based in Los Ange-

les evaluated the long-term effects of failure of two major highway corridors after

the Northbridge earthquake in 1994 on commuter mode choice, route choice, work

trip times, and home and work locations. In an attempt to quantify the effects of

potential targeted attacks on transportation networks, Murray-Tuite and Fei (2010)

employed performance indicators, such as adjacent and opposing direction capacity

reduction, bridge capacity reduction, and total and average trip times, to compare

the pre- and post-attack traffic conditions on a sample network based in the North-

ern Virginia area.

6.2.2 Methods for evaluation of transportation system resilience

Along with quantifying the network-wide extreme event effects, another

crucial factor determining the mitigation strategies is the resilience of the network

components. With regard to the transportation infrastructure systems, Sun, Boc-

chini, and Davison (2018) defined a resilient system as the one which “should

have a small probability of failure, redundant connectivity, minimal time of full

recovery, and limited propagations of the effects.” Methods developed for evaluat-

ing transportation system resilience could be broadly classified into two categories:

(a) functionality-based methods, and (b) socioeconomic methods.

Two approaches are commonly adopted in functionality-based methods. In

the first set of methods, the functionality measures, such as throughput or travel
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time, are compared before and after the occurrence of the disaster. In the second

set of methods, resilience is calculated as a function of the aggregate loss of func-

tionality of the network starting from the time of extreme event occurrence until the

network recovers to the normal state. Most of these methods are adapted from the

concept of the “resilience triangle” introduced by Bruneau et al. (2003) for char-

acterizing resilience in generic infrastructure networks. Mudigonda, Ozbay, and

Bartin (2018) extended the application of the resilience triangle for comparing the

resilience and vulnerability of public transit networks (rail, subway, and bus transit

networks) in New Jersey during Hurricane Sandy. In another study, D’Lima and

Medda (2015) developed resilience triangles based on passenger counts to quantify

the resilience of the London Underground rail network against simulated Poisson

shocks. As an alternative to resilience triangles, some studies introduced resilience

indices to represent system resilience as a single normalized value. The delay-based

metric developed by Ganin et al. (2017) for quantifying the resilience of major road

networks in the U.S. and the metric based on total lost service days developed by

Chan and Schofer (2016) for evaluating the resilience of transit systems in New

York against hurricanes are relevant examples. The functionality-based resilience

indices are also used for testing the effectiveness of disaster management strategies,

such as transportation system component restoration after disasters (Aydin, 2018;

Hu, Yeung, Yang, Wang, & Zeng, 2016).

Given the fact that transportation infrastructure plays a crucial role in the

community- and economic resilience, several studies have also considered the so-

cioeconomic impacts of disruptions while evaluating transportation system resilience.
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Cox, Prager, and Rose (2011) adapted the concept of direct static economic re-

silience (DSER) to estimate the impacts of the 2005 London subway and bus bomb-

ings on commuting choices in the city. Similarly, Franchin and Cavalieri (2015)

introduced a community resilience metric based on the proportion of population

displaced to quantify the resilience of civil infrastructure systems such as trans-

portation networks. In addition, community-based resilience indices have also been

applied for prioritizing disaster affected regions for emergency logistics with a fo-

cus on interdependencies among various infrastructure systems (Balakrishnan &

Zhang, 2018; Choi, Naderpajouh, Yu, & Hastak, 2019).

6.2.3 Gaps in the literature

The review of the literature revealed that there has been extensive research in

the area of transportation system resilience (Faturechi & Miller-Hooks, 2015; Sun

et al., 2018). With regard to the effects of extreme events on traffic conditions, the

most widely used metrics are based on traffic performance, such as travel time and

traffic counts. Several of these studies compare the values of traffic performance

measures during the extreme event with that in the pre-event scenario to quantify

the impacts and thereby the network resilience. However, the author thinks that

this might not be the best approach as the absolute traffic performance indicators

like travel times are also influenced by seasonal factors including time of the day

and day of the week, holidays, and less than severe weather events. The most-

affected links must be determined based on the true effects of extreme events on

the traffic, which requires further processing of observed performance indicators.
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In addition, performance measures like travel times alone may not be adequate

for evaluating traffic conditions as a significant number of roads get flooded or

damaged, preventing vehicle movements. Therefore, an alternative methodology is

needed for evaluating disaster effects as well as for quantifying network resilience.

6.3 Methodology

Figure 6.1 illustrates the methodology proposed in the study. While the

methodology was developed and implemented for analyzing the traffic fluctuations

induced by Hurricane Harvey on the Houston freeway network, it can also be gen-

eralized for any other natural disaster. During natural disasters, irrespective of the

type and magnitude of the disaster, their effects on traffic networks are caused by

both the direct and indirect consequences (Figure 6.2). Direct effects include phys-

ical damages to the transportation infrastructure, whereas, the road closures and the

evacuation-based trip decisions are the indirect consequences that determine the

immediate traffic conditions. Such generality among natural disaster effects makes

the current methodology flexible enough to study the traffic impacts caused by any

natural disaster.

For the convenience of demonstrating the application of the methodology,

the scope of the study was restricted to the freeway corridors in the Houston region

which were flooded by heavy rainfall during Hurricane Harvey.
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Emergency
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Figure 6.2: Effects of natural disasters on traffic conditions in affected regions

6.3.1 Data collection and pre-processing

For the study, three major data sets were used: (a) the Houston freeway

network; (b) historical speed data before-, during-, and after Hurricane Harvey; and

(c) road closure data during- and immediately after the hurricane event.

6.3.1.1 The Houston freeway network

The Houston freeway network considered in the study (Figure 6.3) consists

of 485 freeway links including those belonging to IH-10, IH-45, IH-610, US-59,

US-290, US-90, Beltway-8, Spur-330, SH-288 and SH-99. The data pertaining to

the links such as the location of start and end intersections/interchanges, length,

traffic direction, and geographic coordinates of the links were retrieved from the

traffic maps available in the Houston Transtar website ([Dataset] Houston Transtar,

2019). A major share of the corridors in the freeway network is designated as hur-

ricane evacuation routes (approximately 589 centerline miles out of the total 1,107

centerline miles in the network) by the Houston-Galveston Area Council ([Dataset]
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Figure 6.3: Houston freeway network considered in the study (Map tiles by Stamen
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL)

Houston-Galveston Area Council, 2017). Since the Gulf Coast is located South-

East of Houston, the direction of all evacuation routes is generally from the South-

East of Houston (coastal regions) to the West (toward San Antonio and Austin) and

to the North (toward Dallas).
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6.3.1.2 Traffic speeds

Traffic speeds or travel times can be used to track the performance of free-

way corridors and links. Unlike traffic density and flow parameters, speed/travel

time data is comparatively easier to obtain. Temporal variations in travel times or

speeds in the traffic networks have been widely used to detect incidents like crashes

(Abdel-Aty & Pande, 2007) or quantify the impact of special events (Jiann-Shiou

Yang, 2005).

For the current study, traffic speed data was obtained from the Houston

Transtar speed map archive. Houston Transtar has maintained a database consist-

ing of 15-minute average speeds of 485 freeway links in Houston since January

2009 ([Dataset] Houston Transtar, 2019). Houston Transtar employs Anonymous

Wireless Address Matching (AWAM) technology to detect Bluetooth enabled net-

working devices such as cellular phones, mobile GPS systems, telephone head-

sets, in-vehicle navigation, and hands-free systems. The time and location of the

Bluetooth enabled devices are recorded by roadside AWAM readers and are later

processed to estimate vehicle speeds and travel times. With prior permission from

Houston Transtar, the traffic speed data pertaining to all the 485 links from June 16,

2017 (Friday) through September 28, 2017, was extracted from the web archive.

The 15-minute average link speeds were later converted to 15-minute average link

travel times. Figure 6.4 shows the historical travel times from one of the links in

the Houston freeway network.

Once the travel times were computed, pre-processing of the data was per-

formed to eliminate issues associated with missing observations from the travel
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Historical travel time data of Beltway 8−South Eastbound (from Hillcroft to South Post Oak)
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Figure 6.4: 15-minute travel times between June 16, 2017 and September 30, 2017
on Beltway 8-South Eastbound (from Hillcroft to South Post Oak) derived from
historical 15-minute speed observations

time data sets. There were four major categories of missing data observations. The

details, such as potential causes for the missing data, the corresponding imputation

method used for each category of the missing data, and the amount of data affected,

are tabulated in Table 6.1.

The 15th percentile travel time (corresponding to the 85th percentile speed)

on the day of the missing data observation was chosen for imputing the periodic

missing data to reflect the roadway and weather conditions on that day. The pe-

riodic missing data observations (due to ideal free-flow conditions) were imputed

before the random missing data observations were imputed. This was done to pre-

vent the imputation algorithm from introducing unnecessary seasonality in imputed

values corresponding to the periodic missing data.

6.3.1.3 Road closure data

During natural disasters like hurricanes, roads are often closed due to traf-

fic rerouting, high water, emergency response, debris removal, and previously es-
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tablished work zones for maintenance and construction. Road closures may sig-

nificantly affect vehicle movement on the affected lanes. Therefore, these events

should also be considered while analyzing variations in travel times.

Since the road closure events related to Hurricane Harvey are relevant to

the present study, the data pertaining to the road closure events in the Houston

region between August 20, 2017, and September 10, 2017, was obtained from Tx-

DOT Houston District Office. The data was later manually matched with the free-

way links in the Houston network considered in the study. Out of the 218 events

recorded in the region, 98 were located on the Houston freeway network. Figure 6.5

shows the various categories of road closure events (Figure 6.5a), the distribution

of duration of closure events (Figure 6.5b) and the corresponding time and duration

of occurrence (Figure 6.5c).

As evident, the duration and frequency of road closure events increased dur-

ing and after the hurricane. These road closure events are dominated by high water,

construction and unknown/NA reasons. Given the association of these road clo-

sures to the time of occurrence of the hurricane, these events are most-likely related

to the hurricane and resultant rainfall and must be taken into account in the analysis

of travel time fluctuations.

6.3.2 Time series decomposition and extraction of extreme link travel times

The hurricane-induced effects on the traffic network could last for several

days or weeks. However, the travel times also fluctuate based on the time-of-the-

day and day-of-the-week traffic flow variations. In addition, travel times on freeway
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segments are also influenced by long-term and gradual land use changes in adjacent

regions as well as new transportation projects. Time series decomposition offers

an effective way to separate the seasonal variations and long-term trends from the

observed travel times so that hurricane effects can be quantified. Since the present

study focuses more on deviations from normal traffic behavior on links due to hurri-

canes, the traffic fluctuations were measured in terms of extreme travel time obser-

vations. An extreme travel time observation in this study is defined as a 15-minute

observation in the link travel time data sets that deviates significantly from what is

expected to be the normal travel time for a given time of the day and day of the week

or overlaps with a hurricane-related road closure event. In this study, an anomaly

detection algorithm was used to segregate unusual travel time observations (extreme

observations) from the data sets. Anomaly detection techniques find applications

in a wide range of domains, such as cybersecurity (Kumar, 2005; Ten, Hong, &

Liu, 2011), social media analytics (Savage, Zhang, Yu, Chou, & Wang, 2014), and

natural language processing (Gao, Kuo, Pieraccini, Quinn, & Wu, 2007), to iden-

tify unusual behavior in spatiotemporal data (Jiang, Yuan, Tsaftaris, & Katsaggelos,

2011).

6.3.2.1 Decomposition of travel time using Seasonal-Trend Decomposition us-
ing Loess method

Time series decomposition is the process of separating a time series into

three components, namely, the trend component, seasonality component and the re-

mainder component. This can be mathematically represented using Equation 6.1.

193



yt = Tt + St +Rt (6.1)

where yt, Tt, St and Rt are the observed time series, the trend component, the

seasonal component, and the remainder component, respectively, at time 0 ≤ t ≤ τ .

There are several time-series decomposition techniques available such as

classical decomposition, Box-Cox transforms, ARMA errors, Trend, and Seasonal

components (BATS), X11 decomposition, Seasonal Extraction in ARIMA Time Se-

ries (SEATS) and Seasonal-Trend Decomposition using Loess (STL). In this study,

the STL technique was used for travel time decomposition because of its greater

flexibility in choosing seasonality characteristics and the ability to handle series

with missing data. Moreover, STL also allows controlling the degree of robustness

against outliers (Cleveland, Cleveland, McRae, & Terpenning, 1990; Hyndman &

Athanasopoulos, 2018), which makes it appropriate for identifying the abnormal

variations in travel times due to external perturbations.

In STL decomposition, loess regression, which is a non-parametric smooth-

ing technique using neighborhood weights, is used to fit a polynomial curve over the

time series corresponding to the link travel time data of different links. The weights

used in loess regression reduce the effect of outliers, and the non-parametric nature

makes it an effective technique for detecting non-linear patterns in the time series.

The STL decomposition was applied to the travel time data sets using the algorithm

presented by Cleveland et al. (1990). The algorithm consists of two nested loops. In
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the outer loop, a set of robustness weights is applied to each set of time-series obser-

vations to reduce the effect of outliers. The inner loop is used to iteratively update

the seasonal and trend components from the observed data. To be specific, within

the second loop, the time series is split into cycle-subseries to extract seasonal vari-

ations. The cycles are smoothed using the loess function and are passed through a

low-pass filter. The seasonal components are obtained by subtracting the output of

the low-pass filter from the loess-smoothed cycle sub-series. This is followed by

subtracting the seasonal components from the actual time series and smoothing it.

The resultant series is again loess smoothed to obtain the trend component. Finally,

the remainder is obtained by subtracting the seasonal and trend components from

the original series.

As far as time series of travel times are concerned, the trend usually denotes

the long-term gradual change in travel times due to increases or decreases in traffic

demand. The seasonal component of travel times captures the time of the day and

day of the week variations in the travel times. The remainder (residual) component

captures other random fluctuations in the travel times, mostly induced by traffic

incidents such as crashes and special events. Since STL offers the flexibility to

choose the rate of change over time, it can capture the periodic variations in travel

times. For this study, the seasonal duration parameter in STL algorithm was set

to 672 observations ([60 minutes/15-minute data observation interval = 4] × 24

hours × 7 days) so that the long-term trends, seasonal (weekly) variations, and the

residual components can be separated from the observed travel times.
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6.3.2.2 Identification of extreme 15-minute intervals using Generalized Ex-
treme Studentized Deviate test

Once decomposition of travel time data sets using the STL method was

carried out, the next step in the analysis was to develop metrics for quantifying

the hurricane-effects on the network traffic conditions and subsequent recovery. In

this process, the worst-affected links in the network during the various stages of

recovery were also identified.

In this study, the worst-affected link is defined as the link which experienced

extreme travel times for the longest period during the hurricane both in terms of

magnitude and frequency. The number of extreme travel time observations is a

metric reflecting the duration for which the link experienced travel times that were

unexpectedly lower or higher than the normal link travel time (each point in the

time series is an aggregated 15-minute average link travel time observation). The

number of extreme travel times on a link is generally expected to be higher if a

perturbation in the traffic is induced by an external hazard like a hurricane. On

some links, the number of extreme observations may be lower than usual due to a

decrease in traffic flows.

In order to identify the extreme observations in the travel time data sets,

Generalized Extreme Studentized Deviate tests (Generalized ESD tests) were con-

ducted on the remainder components of the link-wise travel time data sets obtained

in the STL method. The Generalized ESD test is used to identify one or more

outliers in a univariate normal data set (Rosner, 1983). Since the remainder compo-

nent obtained from the STL analysis is relatively normal, the Generalized ESD test
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is an appropriate test for identifying travel time observations that have considerable

deviation from those during normal traffic conditions.

The Generalized ESD test checks if there are up to r outliers in a data set

against the null hypothesis that there are no outliers at all. The test statistic for each

observation in a sample of size n is given in Equation 6.2 where xi is the ith ob-

servation in the sample; x̄ is the mean and s is the standard deviation of the sample.

Ri =
maxi|xi − x̄|

s
(6.2)

Next, the observation maximizing the test statistic Ri is removed from the

sample and the test statistic for the remaining observations is recomputed. This

process is repeated until r observations (potential outliers) are removed. Next, cor-

responding to the r test statistics computed, r test critical values are calculated using

Equation 6.3.

λi =
(n− i)tp,n−i−1√

(n− i− 1 + t2p,n−i−1)(n− i− 1)
; i = 1, 2, . . . r (6.3)

where tp,n−i−1 is the value in the t-distribution corresponding to 100p percentage

value and (n− i− 1) degrees of freedom. The value of p is calculated as in Equa-

tion 6.4:

p = 1− α

2(n− i+ 1)
(6.4)
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where α is the confidence level. The number of outliers in the sample is determined

by the largest i such that Ri > λi. In the current study, the value of r was set as

20% of the total number of travel time observations on a link, and α was set to 0.05.

Selecting a relatively higher value for r would prevent any outliers from being not

identified at the chosen confidence level.

Figure 6.6 demonstrates how the STL method followed by anomaly detec-

tion using the Generalized ESD test is applied to identify extreme travel time ob-

servations (15-minute intervals) on a link in the Houston freeway network between

June 16, 2017, and September 28, 2017. The first subfigure shows the observed

travel times, the second one shows the long-term trend (since the time frame consid-

ered is short, this is a flat line implying no gradual changes in travel time patterns),

the third one is the seasonal component, and the last one is the remainder travel

time component. As expected, the seasonal component repeats every week (Fri-

day through Thursday). The concentration and magnitude of extreme observations

abruptly increase between August 25, 2017, and September 01, 2017, when Hur-

ricane Harvey struck the Houston-Galveston region (marked in light green). This

suggests that the two characteristics, namely, magnitude and frequency of extreme

observations, could be used for estimating the hurricane effects on network link

travel times.
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6.3.3 Analysis of hurricane-Induced travel time variations

6.3.3.1 Extreme observation-based metrics

For the ease of analysis of the hurricane-induced travel time variations de-

scribed by mean and variance and to identify the worst-affected links, the travel

times were categorized weekly (however, the analysis could be also done for shorter

time spans to obtain more disaggregate traffic variations, even though it could be

computationally expensive). Since the rainfall associated with Hurricane Harvey

started on August 25, 2017, every week in this study begins on Friday and ends on

the subsequent Thursday. With the objectives of capturing the travel time variations

and thereby to understand the network impacts and recovery patterns, two link met-

rics were introduced.

1. Relative change in number of extreme travel time observations:

∆niw = niw −med{N i
historical} (6.5)

where ∆niw is the relative change in number of extreme observations in week

w on link i; niw is the absolute count of extreme observations obtained in week

w; and med{N i
historical} is the historical median weekly count of extreme ob-

servations on that link. Choosing the median historical values for represent-

ing normal conditions would eliminate the effect of any abrupt travel time

fluctuations that occurred due to unknown reasons.
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2. Relative change in mean size of extreme travel time observations:

∆yiw = ȳiw −med{Y i
historical} (6.6)

where ∆yiw is the relative shift in mean size of the remainder component of

extreme observations in week w on link i, ȳiw is the absolute mean size of the

remainder components of the extreme observations and is obtained as the av-

erage of residual components of all the niw extreme observations reported in

week w excluding those corresponding to road closures (travel times during

road closures are undefined); and med{Y i
historical} is the historical median of

the weekly average size of the remainder components of the extreme obser-

vations.

The set of historical weekly values N i
historical and Y i

historical were obtained

from the remainder components of the travel time data between June 16, 2017 (Fri-

day) and August 10, 2017 (Thursday). From a driver’s perspective, the above two

metrics capture two distinct types of uncertainties: (a) ∆niw indicates the change

in probability by which a driver could experience an extreme travel time on a link

in a hurricane-affected week, and (b) ∆yiw indicates how much worse or better the

experienced travel time would be if a driver has to make a trip on the link during an

extreme 15-minute interval compared to that in a normal week.

The above two link metrics can be calculated using extreme travel time ob-

servations with either positive remainder components or negative remainder com-

ponents separately, depending upon the objective of the analysis. Metrics based on

201



extreme travel time observations with the positive remainder (∆niw,+ and ∆yiw,+)

may be used to identify those freeway links whose traffic conditions are worsened

during and after the hurricane (or any other natural disaster). On the other hand,

metrics developed based on extreme travel time observations with the negative re-

mainder (∆niw,− and ∆yiw,−) could identify those links which witnessed a reduction

in traffic flows due to the disaster. Since the focus of the present study is to evaluate

how worse the traffic network was affected, only extreme observations with positive

remainder were considered for computing the above two link metrics.

6.3.3.2 Mapping network disruptions and identification of the worst affected
links and corridors

In this study, worst-affected links are defined as those links which experi-

enced abnormal increases in travel times due to the hurricane. For identifying such

links, the extreme observation-based metrics (developed using travel time obser-

vations with positive remainder component) were combined to develop a relative

deviation in delay metric as in Equation 6.7.

∆kiw =
1

m× li
×
(
niw,+ × ȳiw,+ −med{N i

historical,+} ×med{Y i
historical,+}

)
(6.7)

where ∆kiw is the metric combining both magnitude and frequency of extreme ob-

servations; m is the number of travel time observations in a week in the original

series (692 observations); li is the length of the link i, niw,+ and ȳiw,+ are the weekly

count and mean size of positive remainder components of extreme observations,
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respectively; and N i
historical,+ and Y i

historical,+ are the corresponding historical val-

ues, respectively. The normalization of the metric based on the link length enables

comparison among links/corridors. The metric can be interpreted as the average

deviation in travel time delay experienced by a driver while traversing 1 km on a

link during a random 15-minute interval compared to that in a normal week.

Conversely, the metric can also be used to find the links which experienced

the highest reduction in travel times by considering only the negative remainder

components of extreme observations in Equation 6.7.

6.4 Discussion of Results

The hurricane analysis was focused on the six weeks between August 11,

2017, and September 21, 2017 – two weeks prior to hurricane (Week -2 and Week

-1), the hurricane week (Week 0), and three weeks after the hurricane (Week 1

through Week 3). Since road closures (hurricane-related) would have significantly

impacted the traffic conditions, the travel time observations during those events on

corresponding links were considered as extreme observations.

6.4.1 Network-wide traffic effects of Hurricane Harvey

Figure 6.7 shows the spatial and temporal distribution of absolute counts of

extreme travel time observations recorded on various links during the analysis pe-

riod. The extreme travel times and their frequency during the hurricane weeks are

indicative of significant slowing down or complete disruption of traffic movement

on a link due to the hurricane or associated reasons listed in Figure 6.5. Each of
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the subfigures corresponds to a specific week in the analysis period. The subfigures

capture the traffic impact caused by Hurricane Harvey and the gradual recovery of

the network once the hurricane effects subsided. The maximum impact in terms

of duration of extreme traffic conditions (represented by the extreme travel time

observation counts) in the network was recorded during the hurricane week (Week

0). Further analysis revealed that most of these extreme observations correspond

to an abrupt reduction in the magnitudes of travel times. This was due to reduced

traffic on freeway links as a large number of urban streets in the Houston region

were flooded Lazo, Powers, and Hasley III (2017). On the other hand, the high

concentration of road closures (Figure 6.5) in Week 0 could have contributed to

slowing down the traffic on several freeway segments which reported positive ex-

treme observations. In the post-hurricane week (Week 1), most of the links returned

to normalcy. However, on some links, the extreme traffic conditions still existed,

indicating damages caused by the hurricane and related incidents. From Week 1

through Week 3, the duration of extreme traffic conditions gradually decreased, in-

dicated by the decreasing numbers of extreme observations. However, the results

show that even in Week 3, many of the links still experienced longer durations of

extreme traffic conditions compared to that in a ’normal’ week.

Similarly, the variations in the magnitude of extreme travel time observa-

tions were also analyzed (Figure 6.8). It was found that the highest average size of

extreme observation was observed during Week 1 and Week 2, after the hurricane,

though the number of such links was small. This might be indicating extensive

damage to some links and the return of evacuated populations back into the city.
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It was also reported that floodwaters persisted for weeks in some of the road links,

slowing down the traffic on those links considerably.

6.4.2 Application of extreme observation metrics to quantify network im-
pacts and recovery

Findings from the analysis of frequency and size of extreme travel time

observations reiterate that the metrics discussed in Equations 6.5 and 6.6 can be

effectively used to capture spatiotemporal variations in traffic, such as the initial

network impact and the subsequent recovery to normal conditions. In this manner,

the metrics can also be used to quantify the resilience of the traffic network against

Hurricane Harvey. The extreme observation metrics were combined to depict the

network impact and recovery as shown in Figure 6.9.

The figure shows the moderate change in link metrics in Week -1, most-

likely indicating evacuation and related fluctuations in traffic conditions, the sud-

den change in the network in Week 0 when the hurricane struck the region, and

the gradual recovery of the network to the pre-disaster state from Week 1 through

Week 3. The largest impact of the hurricane on traffic conditions are observed

during Week 1 (post-hurricane week), with several major links having an average

additional delay (∆kiw) more than one minute relative to that in a normal week (It

must be noted that one minute is the average over the entire week including off-

peak hours). The above representation is analogous to the resilience triangle metric

introduced by Bruneau et al. (2003) for characterizing system resilience. However,

the representation generalizes the concept of resilience triangle by capturing the
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multi-dimensional aspects of resilience of system of systems (SoS), such as traffic

networks, and provides details regarding the overall system/network resilience as

well as component-level resilience.

Statistical analyses were performed to understand the difference in the dis-

tribution of the link metrics across weeks. The trends obtained by the analyses of

the extreme observation metrics are presented in Figure 6.10. The lines represent

the mean value of the extreme observation metric in a week, whereas, the ribbon

denotes the standard deviation of the same metric.

The results confirm the abrupt changes that occurred in the Houston free-

way network due to the hurricane and the slow recovery that followed. The highest

mean and the largest standard deviation of the number of extreme travel time obser-

vations were reported in Week 0 (hurricane week), reflecting the reduction in traffic

on the freeways as a large part of the city was flooded during the hurricane. The

highest increases in magnitudes of extreme travel times were observed in Week

1 (post-hurricane week) (indicating Week 1 experienced the worst traffic condi-

tions among all the six weeks under consideration). This sudden change is a result

of the combined effect of a spike in local and inbound traffic post-hurricane once

the hurricane subsided, even though several of the links were still recovering from

floodwaters Begley (2017). It is worth mentioning that the standard deviation of

relative change in the size of extreme travel time observations (∆yiw,+) significantly

increased in Week -1 (pre-hurricane week), while the increase in mean of the metric

remained almost the same as that in Week -2. This is indicative of the fluctuations

in the traffic conditions triggered by pre-hurricane evacuations and associated travel

209



Relative change in number of extreme observations

Week −2 Week −1 Week 0 Week 1 Week 2 Week 3
−100

0

100

200

300

M
ea

n 
ch

an
ge

 in
 n

um
be

r 
of

ex
tr

em
e 

ob
se

rv
at

io
ns

Relative change in size of extreme observations

Week −2 Week −1 Week 0 Week 1 Week 2 Week 3
−1.0

−0.5

0.0

0.5

1.0

M
ea

n 
ch

an
ge

 in
 s

iz
e 

of
ex

tr
em

e 
ob

se
rv

at
io

ns
 (

m
in

s)

Figure 6.10: Results of statistical tests to compare extreme observation-based link
metrics corresponding to Week -1 through Week 3 with that in Week -2

pattern changes. The sudden fall in the standard deviation of the mean change in the

size of extreme observations in Week 0 (while the mean change in size continue to

increase in the same week) points at the combined effect of high rainfall and reduc-

tion in traffic due to the hurricane. It can also be seen that the mean and standard

deviation of link-wise extreme observation metrics, though gradually reduced after

the hurricane week, were still significantly higher in Week 3 compared to that in
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pre-hurricane Week -2, indicating that several links were still recovering to normal

traffic conditions even three weeks after the hurricane.

6.4.3 Identification of worst-affected hurricane evacuation corridors

In order to understand the hurricane-induced impacts on evacuation routes

(Figure 6.3), the extreme observation metrics were calculated for various constituent

corridors. The analysis was also carried out for the six weeks to analyze the hurri-

cane effects on traffic conditions along the hurricane evacuation routes. In the ma-

jority of the corridors, the impact and recovery patterns followed the general trend

shown in Figure 6.9; i.e., the number of extreme travel time observations abruptly

increased in the hurricane week (Week 0), whereas the largest deviations in travel

times compared to that under normal conditions were observed during the week

after the hurricane subsided (Week 1). As expected, the extent to which the fre-

quency and magnitude of extreme travel time observations fluctuated was unique

to the evacuation corridors, indicating the differential impact of the hurricane on

various corridors.

In the next stage of analysis, the worst-affected evacuation corridors were

identified. First, the extreme observation metrics for all links that are part of those

routes were calculated from Week -2 through Week 3. Then, the worst-affected cor-

ridors in each week were identified by ranking them based on the mean values of

the extreme travel time metrics corresponding to each corridor. The worst-affected

links were identified in terms of the relative change in the number of extreme obser-

vations ∆niw,+ (Equation 6.5), relative change in mean size of extreme observations,
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∆yiw,+ (Equation 6.6), and additional weekly unexpected link travel time per km,

∆kiw (Equation 6.7) along with the value of the corresponding metric. Table 6.2

presents the worst-affected three corridors from Week -1 through Week 3.

The results suggest that the worst-affected corridor in terms of relative change

in the number of extreme travel times was US-59 Southwest Northbound with an

additional 455 extreme observations (approximately 114 hours of unusual traffic

conditions) in the hurricane week (Week 0). With respect to the relative change

in the mean size of positive extreme observations, IH-10 East Westbound was the

worst-affected with drivers experiencing an additional travel time of 1.36 minutes

if they made a trip during the extreme 15-minute intervals in Week 1. Lastly, the

worst-affected corridor according to the relative increase in delay was the SH-99

Lanier Parkway-West Southbound with an average increase of 0.44 minutes of un-

expected travel time for traversing 1 km in a random 15-minute interval in Week

1. It can be observed that the identified worst-affected corridors are different with

respect to each of the three metrics. This is because of the unique characteristics

of the traffic fluctuations that are captured by the three metrics as discussed in the

subsection 6.3.3.

The worst-affected corridors (as presented in Table 6.2) are illustrated in

Figure 6.11

6.5 Conclusion

In this study, the traffic impacts of Hurricane Harvey on the Houston free-

way network were analyzed. The application of time series decomposition along
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Freeway Corridor

Beltway 8−East Northbound
Beltway 8−North Westbound
Beltway 8−South Eastbound
Beltway 8−South Westbound
Beltway 8−West Northbound
Beltway 8−West Southbound
IH−10 East Eastbound
IH−10 East Westbound
IH−10 Katy Eastbound
IH−10 Katy Managed Lanes Westbound
IH−10 Katy Westbound
IH−45 Gulf Northbound
IH−45 Gulf Southbound
IH−45 North Northbound
SH−288 Northbound
SH−99 Lanier Parkway−West Northbound
SH−99 Lanier Parkway−West Southbound
US−290 Northwest Westbound
US−59 Eastex Southbound
US−59 Southwest Northbound

Figure 6.11: Locations of the most-affected freeway corridors presented in Ta-
ble 6.2.

with anomaly detection algorithms proved to be an effective method to identify the

hurricane-induced effects from the observed travel time data. Instead of conven-

tional travel time reliability methods, the study employed metrics based on extreme

travel time observations to quantify the traffic effects of the hurricane. It was found

that the proposed metrics are not only effective in capturing the traffic variations,

but also offer a practical method to represent, quantify, and evaluate the resilience

of large-scale traffic networks. A majority of links experienced longer durations of

extreme travel times during the hurricane and the analysis of their characteristics

provided very useful information on the traffic performance of network links and

corridors.

214



The study found that the extreme travel time observations were concentrated

more in the week of the hurricane (on an average, approximately 92 additional ex-

treme observations, equivalent to 23 hours of “unusual” traffic conditions), whereas,

the largest magnitudes of extreme observations were recorded in the weeks that fol-

lowed its occurrence (with an average increase of 0.22 minutes in extreme travel

time on links in Week 1) (Figure 6.10). Combining the metrics based on the extreme

observation characteristics, the overall impact of the hurricane on the network, and

the gradual recovery of traffic to pre-hurricane conditions were captured. It was

found that even three weeks after the hurricane, several links were experiencing

higher travel times, indicating the extensive pavement damage or prevalent flood-

ing. While the higher magnitude and frequency of extreme travel times may be due

to a vast range of events, such as high water, fluctuations in traffic flow, and egress

and ingress of affected populations, the findings provide insights into the potential

impacts on the network traffic conditions in the case of a similar hurricane in the

future.

The primary application of the metrics is in the quantification of the spatial

and temporal changes in network- and link-level traffic conditions induced by natu-

ral disasters as well as other traffic incidents. However, the proposed framework and

metrics could be extended to several applications in disaster management, includ-

ing improving existing evacuation plans and enhancing traffic management strate-

gies for first-responders and rescue personnel during and immediately after similar

natural disasters. A few of the potential applications (and associated limitations)

are listed below:
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1. Further analysis of traffic flows along the worst-affected corridors identified

using the extreme travel time metrics could potentially help to determine lo-

cations for pre-staging essential supplies and setting up temporary fuel supply

stations during future disaster events. Inadequate emergency supplies along

heavily used corridors during past hurricane evacuations had forced drivers

to abandon their vehicles in the midway leading to extreme congestion.

2. While the current methodology is not designed for predicting the disaster im-

pacts, its application on past hurricane events (or any other recurring natural

disasters) in a region could be used to identify major traffic segments that

are repeatedly disrupted (due to high-water, traffic congestion, etc.). Such

information could be used for re-planning evacuation routes and modify ex-

isting emergency traffic management plans. However, uncertainties over the

extent of traffic impact may still persist as the model is not able to predict the

impacts based on the characteristics of the extreme event.

3. The metrics can be effectively used for evaluating the overall effectiveness of

any mitigation- or adaptive strategies that were implemented for improving

the traffic network performance prior to extreme events.

A major challenge in the implementation of the proposed methodology is

that many cities currently lack the technology to collect, process, and store traffic

performance information related to major urban corridors, including arterial roads.

However, there has been a greater emphasis on the adoption of intelligent trans-

portation systems for monitoring traffic performance in major cities globally. In
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other cities, the applicability of data from alternative sources, including smartphone

navigation applications, could be explored.
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Chapter 7

Conclusions

Increasing risks from unanticipated events, including natural disasters and

targeted threats, have prompted decision-makers to adopt various strategies to en-

hance the resilience of infrastructure networks. In this dissertation, five indicator-

based methodological frameworks for evaluating infrastructure risks and resilience

and identifying vulnerable and critical infrastructure components were proposed.

Extensions of current methods to incorporate societal and economic impacts of in-

frastructure failures for infrastructure prioritization and selection were introduced.

The methodologies can be easily incorporated into the existing frameworks and de-

cision support systems related to infrastructure development and management to

improve the resilience of critical infrastructure networks. This chapter summarizes

the major findings and conclusions from various studies done as part of this disser-

tation research and provides recommendations for the application of the proposed

methodological frameworks. In addition, directions for potential future research are

also presented.
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7.1 Research Contributions

The primary objective of the research was to introduce methodological frame-

works to develop and apply network-based and performance-based indicators that

are reflective of the resilience characteristics of infrastructure systems. The efforts

were intended to address the gaps in the literature pertaining to the evaluation of

infrastructure network resilience under several constraints, such as a lack of in-

terdependency data and varying levels of technology adoption among component

systems. The dissertation focused on two broad categories of indicators for evalu-

ating the risks and resilience in large-scale interdependent infrastructure networks,

namely, graph-based methods and empirical methods.

The key findings and recommendations of the dissertation are as follows:

• Globally, infrastructure resilience has gained considerable attention due to the

increased disaster risks in recent decades. This trend has been further acceler-

ated by the emergence of new threats, such as cyber-attacks, acts of terrorism,

and climate crisis. With urban infrastructure systems becoming more interde-

pendent and technology-reliant, substantial changes in the manner in which

disaster risks are incorporated in the current infrastructure development and

management practices will be required.

• The first part of the dissertation introduced a hybrid risk measure developed

based on the principles of Inoperability Input-Output Model (IIM) to quan-

tify the network-wide effects of infrastructure failures. For developing the

risk measure, the use of linguistic descriptions of dependencies instead of
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quantitative infrastructure interdependency data was investigated. Linguistic

dependency data were comparatively easier to obtain and more cost-effective

than conventional flow-based dependency data. The dissertation proposed

that the network-wide impacts of extreme events can be better communicated

by combining a pair of extreme probability distributions (derived using pos-

sibility theory) and a most-likely distribution (derived using probability the-

ory). The infrastructure network vulnerability model developed based on the

topological characteristics and the expert judgments could be considered as

a preliminary form of an expert system. As more empirical or engineering

data of the specific network, with different levels of accuracy and sources of

uncertainty, become available, the expert system is capable of incorporating

them. The agent-based framework, which forms the back end of the model, is

capable of incorporating such sophisticated infrastructure-specific modeling

components and empirical evidence from historical events.

• The hybrid risk measure was extended to develop two generic resilience indi-

cators to rank and prioritize infrastructure nodes (and thereby links) in terms

of two aspects related to cascading failures in infrastructure networks: (a)

their necessity to operate for the functioning of the whole network (critical-

ity); and (b) their exposure to cascading effects arising from disruptions in

other components (susceptibility). Later, simulation-based algorithms were

proposed to rank and prioritize infrastructure nodes and links based on the

resilience indicators. The indexes can support decision-making for designing

and managing resilience in interdependent infrastructure networks before a
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disaster, for identifying the infrastructure components which warrant immedi-

ate restoration during or after a disaster, and for devising additional resilience

strategies to handle enhanced disaster risks during recovery. The indexes

are not dependent on the specific model used for estimating the interdepen-

dent effects of infrastructure failures (though IIM was used). The indexes

are equally appropriate even if an interdependent infrastructure model that

captures the real-world operational characteristics of the component infras-

tructure systems is used to model the network. The indexes are well-suited

for capturing the resilience improvements in the network due to resilience

interventions based on robustness and redundancy, which are crucial to pre-

disaster preparedness.

• The dissertation also proposed a socioeconomic indicator (Priority Index) to

evaluate the susceptibility of communities to unanticipated events and the

resultant utility disruptions. The Priority Index was developed by combin-

ing the generic social vulnerability of communities with the interdependent

effects of utility failures. In order to quantify the network-wide impacts of

utility failures, the hybrid risk measure proposed in the dissertation was used.

The methodology enables the comparison of the susceptibility of two census

tracts using a linear scale. The performance drop in the infrastructure network

was evaluated by giving due consideration to both the direct and indirect im-

pacts of hazards arising from its interdependent structure. The framework

could be employed for emergency planning and disaster risk assessment, as

well as for managing immediate relief operations, such as the distribution of
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food, and water during a disaster. The framework could find potential ap-

plications in cities where backup mechanisms to withstand prolonged and

uncertain utility service disruptions are unreliable or absent.

• In the later part of the dissertation, a data-driven methodology to analyze

the economic risks of such hurricane-related shutdowns using hurricane- and

port-related determinants was introduced. The risks of shutdowns were mod-

eled using regression analysis based on historical port shutdown data and are

combined with extensions of the well-known input-output model to predict

the operational and economic risks of ports to hurricanes. The application

of the methodology was demonstrated by conducting a case study based on

the Texas Port System to evaluate the economic risks of hurricane-related

port disruptions on the U.S. economy. The presented methodology may

be of interest to a wide range of port stakeholders, including port authori-

ties, private port operators, port-dependent industries, and different levels of

governments. Given how critical the operational continuity of ports are for

the regional and national economies, the economic risks could be integrated

into decision-making processes related to port investments and management.

While the data-driven methodological framework was developed specifically

for port systems, it can be generalized for any other infrastructure system,

enabling decision-makers to evaluate the effects of resilience interventions in

monetary terms leading to more cost-effective solutions.

• In addition, a methodological framework was presented for identifying the

traffic fluctuations induced by natural disasters on the urban traffic networks
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using historical disaster data. The dissertation relied on time series decom-

position and anomaly detection algorithms to investigate the spatiotemporal

effects of the hurricane on the traffic conditions. The results of a case study

based on the Houston traffic network during Hurricane Harvey suggested that

the metrics developed are effective in quantifying the resilience of traffic net-

works against natural disasters by capturing both the initial impact and re-

covery. The primary application of the metrics is in the quantification of the

spatial and temporal changes in network- and link-level traffic conditions in-

duced by natural disasters as well as other traffic incidents. However, the

proposed framework and metrics could be extended to several applications

in disaster management, including improving existing evacuation plans and

enhancing traffic management strategies for first-responders and rescue per-

sonnel during and immediately after similar natural disasters.

While infrastructure agencies have given attention to disaster resilience of

individual infrastructure systems, the resilience of urban infrastructure networks as

a whole is still in the conceptual stage. As infrastructure systems become more in-

terdependent, implementing reactive and uncoordinated measures to restore failed

infrastructure systems during and after disasters may not produce desired improve-

ments in the overall resilience of cities. It requires proper planning and imple-

mentation of resilience strategies to ensure that the disaster risks are minimized.

The methodologies presented in this dissertation research should provide directions

for evaluating the risks and resilience of large-scale infrastructure networks under

various data and modeling constraints and provide useful insights for prioritizing
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infrastructure system components.

7.2 Future Research

This dissertation research contributes to the existing body of knowledge in

the quantification of disaster risks on infrastructure networks and the prioritization

of infrastructure components for resilience enhancement. However, each study is

based on several assumptions and has a few limitations, which provide directions

for future research. The following are some of the potential areas for further inves-

tigation.

• The methodological frameworks presented in the dissertation do not incorpo-

rate the rapidity and resourcefulness dimensions of system resilience. Rapid-

ity and, to an extent, resourcefulness are properties that are more crucial in

immediate restoration of a disrupted system and the recovery afterward, as the

main objective during these phases is to optimize network performance in the

shortest possible time with the available resources. However, the inclusion of

rapidity and resourcefulness in frameworks requires additional information

on the amount of resources required for restoring various components and

the speed at which they could be restored/recovered. More research efforts in

this direction could improve the applicability of the presented methodologies.

• The hybrid risk measure and associated methodological frameworks devel-

oped for quantifying interdependent are based on the Inoperability Input-

Output Model (IIM) which does not consider the redistribution of resource
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flows which might occur after infrastructure failures. A flow-based inter-

dependent infrastructure model may capture the network-wide effects of in-

frastructure failures more accurately. However, this requires additional data

regarding resource exchanges among component infrastructure systems.

• Empirical approach is a powerful tool for understanding the aggregate dis-

aster impacts on infrastructure networks, communities, and economies. For

empirical modeling and estimation of infrastructure risks and resilience, ade-

quate and reliable historical data is required. However, the systematic record-

ing of disaster impacts has started only very recently. More data collection

efforts are required to develop critical infrastructure disruption databases for

furthering research in urban infrastructure resilience.
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