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Graph analytics systems are used in a wide variety of applications in-

cluding health care, electronic circuit design, machine learning, and cybersecu-

rity. Graph analytics systems must handle very large graphs such as the Face-

book friends graph, which has more than a billion nodes and 200 billion edges.

Since machines have limited main memory, distributed-memory clusters with

sufficient memory and computation power are required for processing of these

graphs. In distributed graph analytics, the graph is partitioned among the

machines in a cluster, and communication between partitions is implemented

using a substrate like MPI. However, programming distributed-memory sys-

tems are not easy and the recent trend towards the processor heterogeneity has

added to this complexity. To simplify the programming of graph applications

on such platforms, this dissertation first presents a compiler called Abelian that
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translates shared-memory descriptions of graph algorithms written in the Ga-

lois programming model into efficient code for distributed-memory platforms

with heterogeneous processors.

An important runtime parameter to the compiler-generated distributed

code is the partitioning policy. We present an experimental study of partition-

ing strategies for distributed work-efficient graph analytics applications on dif-

ferent CPU architecture clusters at large scale (up to 256 machines). Based on

the study we present a simple rule of thumb to select among myriad policies.

Another challenge of distributed graph analytics that we address in this

dissertation is to deal with machine fail-stop failures, which is an important

concern especially for long-running graph analytics applications on large clus-

ters. We present a novel communication and synchronization substrate called

Phoenix that leverages the algorithmic properties of graph analytics applica-

tions to recover from faults with zero overheads during fault-free execution

and show that Phoenix is 24x faster than previous state-of-the-art systems.

In this dissertation, we also look at the new opportunities for graph an-

alytics on massive datasets brought by a new kind of byte-addressable memory

technology with higher density and lower cost than DRAM such as intel Op-

tane DC Persistent Memory. This enables the design of affordable systems

that support up to 6TB of randomly accessible memory. In this dissertation,

we present key runtime and algorithmic principles to consider when perform-

ing graph analytics on massive datasets on Optane DC Persistent Memory

as well as highlight ideas that apply to graph analytics on all large-memory
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platforms.

Finally, we show that our distributed graph analytics infrastructure can

be used for a new domain of applications, in particular, embedding algorithms

such as Word2Vec. Word2Vec trains the vector representations of words (also

known as word embeddings) on large text corpus and resulting vector embed-

dings have been shown to capture semantic and syntactic relationships among

words. Other examples include Node2Vec, Code2Vec, Sequence2Vec, etc (col-

lectively known as Any2Vec) with a wide variety of uses. We formulate the

training of such applications as a graph problem and present GraphAny2Vec, a

distributed Any2Vec training framework that leverages the state-of-the-art dis-

tributed heterogeneous graph analytics infrastructure developed in this disser-

tation to scale Any2Vec training to large distributed clusters. GraphAny2Vec

also demonstrates a novel way of combining model gradients during training,

which allows it to scale without losing accuracy.
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Chapter 1

Introduction

Graph analytics systems are used in a wide variety of applications rang-

ing from ranking webpages using algorithms like PageRank, finding the most

influential people in social network graphs using betweenness-centrality, or

finding shortest routes in maps using algorithms like single-source shortest

path, etc. The other new emerging areas which are finding uses for graph an-

alytics include health care, electronic circuit design, and cybersecurity. Graph

sizes are rapidly increasing. Graph analytics systems must handle very large

graphs such as the Facebook friends graph, which has more than a billion

nodes and 200 billion edges, or the indexable Web graph, which has roughly

100 billion nodes and trillions of edges. Parallel computing is essential for

processing graphs of this size in a reasonable time. The shared-memory graph

analytics systems like Galois and Ligra process medium-scale graphs efficiently,

but these systems cannot be used for graphs with billions of nodes and edges

because of the limited main memory as well as processor count even on large

servers.

In order to break free from the limited amount of main memory present

on a single machine for shared-memory graph analytics, new kinds of byte-
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addressable memory technology with higher density and lower cost than DRAM

(such as Intel Optane DC Persistent Memory) can be used. This enables the

design of affordable systems that support up to 6TB of randomly accessible

memory. In this work, we present key runtime and algorithmic principles to

consider when performing graph analytics on extreme-scale graphs on Optane

DC Persistent Memory as well as highlight principles that can apply to graph

analytics on all large-memory platforms.

In order to provide more compute resources, distributed-memory clus-

ters with sufficient memory and computational power are required for pro-

cessing large graphs. In distributed graph analytics, the graph is partitioned

among the machines in a cluster, and communication between partitions is

implemented using a substrate like MPI. However, programming distributed-

memory systems are not easy and the recent trend towards processor hetero-

geneity has added to this complexity. To simplify the programming of graph

applications on such platforms, we present a compiler called Abelian that

translates shared-memory descriptions of graph algorithms written in the Ga-

lois programming model into efficient code for distributed-memory platforms

with heterogeneous processors.

An important runtime parameter to the compiler-generated distributed

code is the partitioning policy, which is left for the user to choose. We have ob-

served that the application performance is sensitive to the partitioning policy

chosen. However, there is no clear way to select the best partitioning policy

for a given application and input, especially for the state-of-the-art distributed
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work-efficient algorithms. In this work, we also present an experimental study

of partitioning strategies for distributed work-efficient graph analytics applica-

tions on different CPU architecture clusters at large scale (up to 256 machines).

Based on the study we present a simple rule of thumb to select among myriad

policies.

Another challenge of distributed graph analytics that we address in this

work is to deal with machine fail-stop failures, which is an important concern

especially for long-running graph analytics applications on large clusters. We

present a novel communication and synchronization substrate called Phoenix

that leverages the algorithmic properties of graph analytics applications to

recover from faults with zero overheads during fault-free execution and show

that Phoenix is ∼ 24× faster than state-of-the-art system (GraphX) and it

outperforms the traditional checkpoint-restart techniques.

Last but not the least, we show that systems and infrastructure devel-

oped for graph analytics can also be used for a new domain of applications,

in particular, the popular family of machine learning algorithms for unsuper-

vised training of dense vector representations of entities known as Any2Vec.

Word2Vec is a well-known example of Any2Vec, which trains vector repre-

sentations of words (also known as word embeddings) on large text corpus

and resulting vectors have been shown to capture semantic and syntactic re-

lationships among words. Other examples include Node2Vec, Code2Vec, Se-

quence2Vec, etc. (collectively known as Any2Vec) with a wide variety of uses.

We formulate the training of such applications as a graph problem and present
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GraphAny2Vec, a distributed Any2Vec training framework that leverages the

state-of-the-art distributed heterogeneous graph analytics infrastructure devel-

oped in this dissertation to scale Any2Vec training to large distributed clusters.

GraphAny2Vec also demonstrates a novel way of combining model gradients

during training, which allows it to scale without losing accuracy.

1.1 Distributed Graph Analytics

Section 1.1.1 and Section 1.1.2 outline the general details of the pro-

gramming model and distributed execution model used in this work respec-

tively. Any specific changes relevant to projects will be mentioned in their

respective chapters.

1.1.1 Programming Model

Like other distributed graph analytics systems [70, 106, 195], this work

uses a variant of the vertex programming model. Each node has one or more

labels that are updated by an operator that reads the labels of the node and

its neighbors, performs computation, and updates the labels of some of these

nodes. Edges may also have labels that are read by the operator. Operators are

generally categorized as push-style or pull-style operators. Pull-style operators

update the label of the node to which the operator is applied while push-

style operators update the labels of the neighbors. We also support updating

label(s) of the node as well as label(s) of it’s neighbors simultaneously within

a single operator.
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1.1.2 Distributed-Memory Execution

Distributed-memory graph analytics performs both computation and

communication. The graph is partitioned between hosts at the start of the

computation. Execution is done in rounds: in each round, a host applies

the operator to graph nodes in its own partition and then participates in a

global communication phase in which it exchanges information about labels of

nodes at partition boundaries with other hosts. Since fine-grain communica-

tion is very expensive on current systems, execution models with coarse-grain

communication, such as bulk-synchronous parallel (BSP) execution, are pre-

ferred [165].

1.2 Overview of Topics

Here is an overview of distributed graph analytics systems we devel-

oped:

1.2.1 Single Machine Graph Analytics on Massive Datasets Using
Intel Optane DC Persistent Memory

Chapter 2 investigates Intel Optane DC Persistent Memory (Optane

PMM), a new kind of byte-addressable memory with higher density and lower

cost than DRAM. This enables the design of affordable systems that support

up to 6TB of randomly accessible memory. In this chapter, we present key

runtime and algorithmic principles to consider when performing graph ana-

lytics on extreme-scale graphs on Optane PMM as well as highlight principles
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that can apply to graph analytics on all large-memory platforms. We evalu-

ate four existing shared-memory graph frameworks and one outof-core graph

framework on large real-world web-crawls using a machine with 6TB of Optane

PMM. Our results show that frameworks using the runtime and algorithmic

principles advocated in this chapter (i) perform significantly better than the

others and (ii) are competitive with graph analytics frameworks running on

large production clusters.

1.2.2 Abelian: A Compiler for Graph Analytics on Distributed,
Heterogeneous Platforms

Chapter 3 presents Abelian [63], a compiler to simplify complexities

of the programming model due to processor heterogeneity and distributed-

memory in graph analytics. Abelian translates shared-memory descriptions of

graph algorithms written in the Galois [118] programming model into efficient

code for distributed-memory platforms with heterogeneous processors.

In our results we show that code produced by Abelian compiler is able

to match the performance of handwritten distributed CPU and GPU programs

as well as give 2.4× speedup over the state-of-the-art distributed CPU-only

system (Gemini [195]), while boosting the programming productivity to write

distributed graph analytics applications.
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1.2.3 A Study of Partitioning Policies for Graph Analytics on Large-
scale Distributed Platforms

In Chapter 4, we give an overview of our new way of thinking about

graph partitioning as well as introduce various partitioning policies evaluated

in the experimental study [66]. We present our findings on 2 different CPU

architecture (KNL and Skylake) clusters with up to 256 machines using the

Gluon [51] communication runtime which implements partitioning-specific op-

timizations for the state-of-the-art distributed work-efficient algorithms.

Our results show that although simple 1D partitioning strategies like

Edge-Cuts perform well on a small number of machines, an alternative 2D

partitioning strategy called Cartesian Vertex-Cut (CVC) performs better at

scale even though paradoxically it has a higher replication factor and performs

more communication than Edge-Cut partitioning does. Based on the study

we also present a simple rule of thumb to select the best policy among myriad

policies.

1.2.4 Phoenix: A Substrate for Resilient Distributed Graph Ana-
lytics

Chapter 5 presents Phoenix [52], a communication and synchronization

substrate that implements a novel protocol for recovering from fail-stop faults

when executing graph analytics applications on distributed-memory machines.

The standard recovery technique in this space is checkpointing, which rolls

back the state of the entire computation to a state that existed before the

fault occurred. The insight behind Phoenix is that this is not necessary since
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it is sufficient to continue the computation from a state that will ultimately

produce the correct result.

Our evaluation shows that in the absence of faults, Phoenix is ∼24×

faster than GraphX [181], which provides fault tolerance using the Spark sys-

tem as well outperforms the traditional checkpoint-restart technique imple-

mented in D-Galois [51].

1.2.5 Distributed Training of Embeddings using Graph Analytics

Chapter 6 presents GraphAny2Vec, a distributed training framework

for a popular family of machine learning applications for unsupervised training

of dense vector representations of entities known as Any2Vec. GraphAny2Vec

exploits the fact that training of Any2Vec applications can be formulated as

graph problems as shown in this chapter. GraphAny2Vec, built on top of

our distributed heterogeneous graph analytics infrastructure, scales Any2Vec

training to large distributed clusters. GraphAny2Vec also demonstrates a

novel way of combining model gradients to honor data dependencies in SGD,

which helps it scale without giving up convergence. It shows linear scalability

up to 32 machines converging as fast as a sequential run in terms of epochs,

thus reducing training time by 14×.

1.3 Organization

The document is organized as follows: Chapter 2 investigates Intel Op-

tane DC Persistent Memory (Optane PMM), a new kind of byte-addressable
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memory for graph analytics for massive datasets. Chapter 3 describes Abelian

compiler to generate efficient distributed graph analytics programs from shared-

memory specification. In Chapter 4, we describe our experimental evaluation

of various partitioning policies for distributed graph analytics. Chapter 5 pro-

vides an overview of our novel resilient distributed graph analytics system.

Finally Chapter 6 shows how graph analytics infrastructure can be used for a

new class of machine leaning applications such as word2vec.
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Chapter 2

Single Machine Graph Analytics on Massive
Datasets Using Intel Optane DC Persistent

Memory1

2.1 Motivation

Graph analytics systems must process graphs with tens of billions of

nodes and trillions of edges. Since the main memory of most single machines

is limited to a few hundred GBs, shared-memory graph analytics systems like

Ligra [151], Galois [118], and GraphIt [190] cannot be used to perform in-

memory processing of these large graphs. Two approaches have been used in

the literature to circumvent this problem: (i) out-of-core processing and (ii)

distributed-memory processing (described in Chapter 3, 4, and 5).

In out-of-core systems, the graph is stored in secondary storage (SS-

D/disk), and portions of the graph are read into DRAM under software control

for in-memory processing. State-of-the-art systems in this space include X-

Stream [141], GridGraph [196], Mosaic [105], and BigSparse [87]. Secondary

storage devices do not support random accesses efficiently, therefore, data

1This work has been accepted to be published in the proceedings of VLDB Endowment,
13(8), Tokyo, Japan, 2020 [64]. The key ideas introduced in this work as well as the
experimental setup used were conceived by the first author while co-authors helped with its
presentation.
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must be fetched and written in blocks. As a consequence, algorithms that per-

form well on shared-memory machines often perform poorly in an out-of-core

setting, and it is necessary to rethink algorithms and implementations when

transitioning from in-memory graph processing to out-of-core processing. In

addition, the graph may need to be preprocessed to organize the data into a

layout that is friendly for out-of-core processing.

Large graphs can also be processed using distributed-memory clusters

that have a sufficient number of machines and memory for in-memory process-

ing of the graphs. The graph is partitioned among the machines in a cluster

using one of many partitioning policies that have been studied in the litera-

ture [65] (Chapter 4). Communication is required during the computation to

synchronize updates to node values across the entire cluster. State-of-the-art

systems in this space include D-Galois [51] and Gemini [195]. Distributed-

memory graph analytics systems have the advantage that they can be scaled

out by adding new machines to provide additional memory and compute power.

The overhead of communication can be reduced by choosing good partitioning

policies, avoiding small messages, and optimizing metadata, but communica-

tion remains the bottleneck in these systems [51]. Obtaining access to large

clusters may also be too expensive for many users.

Intel R© OptaneTM DC Persistent Memory (Optane PMM) is a new mem-

ory technology that promises to revolutionize this area. Optane PMM is byte-

addressable memory which has the same form factor as DDR4 DRAM modules

with higher memory density and lower cost. It has longer access times com-

11



pared to DRAM, but it is much faster than SSD. It can be set up to use the

DRAM in the system as a very large cache. This allows a single machine to

have up to 6TB of storage at relatively low cost, and in principle, it can be

used to run memory-hungry applications without requiring the substantial re-

working of algorithms and implementations that is required for out-of-core or

distributed-memory processing.

2.2 Contributions

In this work, we explore the use of Optane PMM for analytics of very

large graphs such as web-crawls up to 1TB in size. We design and present a

set of studies conducted to determine the best practices for running graph an-

alytics applications on Optane PMM (and large-memory systems in general).

In particular, our studies make the following points:

1. NUMA-aware memory allocation of graph data structures that maxi-

mizes near-memory (DRAM treated as cache) usage is important on

Optane PMM as cache misses on the platform are significantly slower

than cache misses on DRAM. (Section 2.5)

2. Avoiding kernel overhead in managing pages while using Optane PMM

is key to performance as kernel overhead on Optane PMM is higher due

to higher access latency. (Section 2.5)

3. Algorithms must be designed to avoid high amounts of memory accesses

on large memory systems: this means that graph frameworks should
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give users the flexibility to write non-vertex, asynchronous programs by

providing users with parallel data structures. (Section 2.6)

We evaluate four shared-memory graph analytics frameworks – Ga-

lois [118], GAP [15], GraphIt [190], and GBBS [56] – on Optane PMM to il-

lustrate the importance of these practices for graph analytics on large-memory

systems. We compare the performance of the best of these frameworks, Ga-

lois, with the state-of-the-art distributed graph analytics system, D-Galois,

and show that a system running on Optane PMM that takes into account

our best practices is competitive with the same algorithms run on D-Galois

with up to 256 machines, and since the Optane PMM system supports more

efficient shared-memory algorithms such as those using pointer-jumping which

are difficult to implement on distributed-memory machines, applications using

the more efficient algorithms can even outperform distributed-memory execu-

tion. We also evaluate the out-of-core graph analytics system GridGraph [196]

using Optane PMM as external storage in app-direct mode (explained in Sec-

tion 2.3) and show that using Optane PMM as main memory in memory

mode (explained in Section 2.3) is orders of magnitude faster than app-direct

as it allows OS to use DRAM as last-level cache and supports more sophis-

ticated algorithms from current shared-memory graph analytics systems that

out-of-core systems do not support (in particular, non-vertex programs and

asynchronous data-driven algorithms).
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Figure 2.1: Memory hierarchy of our 2 socket machine with 384GB of DRAM
and 6TB of Intel Optane PMM.

2.3 Optane PMM

Optane PMM is a new memory technology that delivers a combina-

tion of affordable large capacity and persistence (non-volatility). As shown in

Figure 2.1, this memory adds one more level in the memory hierarchy. This

memory comes in the same form factor as a DDR4 memory module and has the

same electrical and physical interfaces. However, it uses a different protocol

than DDR4 which means that the CPU must have Optane PMM support in its

memory controller. Similar to the DRAM distribution in NUMA systems, the

Optane PMM modules are also distributed among sockets. Figure 2.1 shows

an example of a two socket machine with 6TB of Optane PMM split among

the sockets. Optane PMM can be configured as volatile main memory (called

memory mode), persistent memory (called app-direct mode), or a combination

of both, as shown in Figure 2.2.

Memory Mode: In memory mode, the operating system treats Op-
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tane PMM as main memory, and DRAM acts as direct-mapped (physically

indexed and physically tagged) cache called near-memory. The Granularity of

caching from Optane PMM to DRAM is 4KB (small page size). This enables

the system to deliver DRAM-like performance at substantially lower cost and

power with no modifications to the application. Although the memory media

is persistent, the software sees it as volatile memory. This enables a common

two-socket system to provide up to 6TB of randomly accessible storage, which

is difficult and expensive to implement with DRAM.

Traditional code optimization techniques like blocking can be used to

tune applications to run well in this configuration. In addition, software needs

to be optimized for certain asymmetries in machines with Optane PMM. Op-

tane PMM modules on a given socket can use only the DRAM present in its

local NUMA node as near-memory. Therefore, in addition to NUMA alloca-

tion considerations, software using Optane PMM has to take the near-memory

hit rate into account as well because the cost of a local near-memory miss is

much higher than the remote near-memory hit (this is discussed in detail in

Section 2.5). Therefore, it is beneficial to allocate memory so that the system

can utilize more DRAM as near-memory even if it means more remote NUMA

accesses.

App-direct Mode: In app-direct mode, Optane PMM modules are

provisioned as byte-addressable persistent memory. The Persistent Mem-

ory Development Kit (PMDK) [5] is a library that can make programming

in app-direct mode efficient. One compelling case for app-direct mode is
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Figure 2.2: Modes in Optane PMM.

in large memory databases where indices can be stored in persistent mem-

ory to avoid rebuilding them on reboot, achieving a significant reduction in

restart time. Optane PMM modules can be configured and managed us-

ing an API or a command line interface provided by the ipmctl [49] OS

utility in Linux. For example, ipmctl can be used to configure the ma-

chine to use x% of Optane PMM modules capacity in the memory mode

and the rest in the app-direct mode (ipmctl create -goal MemoryMode=x

PersistentMemoryType=AppD-irect); for x > 0, all the DRAM present on

the machine is used as the cache (near-memory). When all the Optane PMM

modules are configured in app-direct mode using ipmctl, DRAM is used as

the main volatile memory.

Detailed specifications for the particular machine with Optane PMM

used in our study are given in Section 2.4. Tables 2.1 and 2.2 show the band-

width and latency of PMM that we observe on our machine. Although Optane

PMM is slower than DDR4, the large capacity offered by these DIMMs enables

us to analyze much larger datasets on a single machine than was possible ear-

lier. In this work, we focus mainly on memory mode; we use app-direct mode
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Mode Read Write
Local Remote Local Remote

Memory Random 90.0 34.0 50.0 29.5
Sequential 106.0 100.0 54.0 29.5

App-direct Random 8.2 5.5 3.6 2.3
Sequential 31.0 21.0 10.5 7.5

Table 2.1: Bandwidth (GB/s) of Intel Optane PMM.

Mode Local Remote

Memory 95.0 150.0
App-direct 164.0 232.0

Table 2.2: Latency (ns) of Intel Optane PMM.
for running the out-of-core graph analytics system GridGraph [196].

2.4 Platforms and Graph Analytics Systems

Optane PMM experiments were conducted on a 2 socket machine with

Intel’s second generation Xeon scalable processor ("Cascade Lake") with 48

cores (we use up to 96 threads with hyperthreading) with a clock rate of

2.2 Ghz. The machine has 6TB of Optane PMM, 384GB of DDR4 RAM,

and 32KB L1, 1MB L2, and 33MB L3 data caches, as shown in Figure 2.1.

The system has a 4-way associative data TLB with 64 entries for 2KB pages

(referred to as small pages), 32 entries for 2MB pages (referred to as huge

pages), and 4 entries for 1GB pages. Source code is compiled with g++ 7.3.

We used the same machine for DRAM experiments by configuring the Optane

PMM modules using ipmctl utility to run entirely in app-direct mode and

use DRAM as the main volatile memory (which is equivalent to removing

the Optane PMM modules). We also use Optane PMM modules in app-direct
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kron30 clueweb12 uk14 rmat32 wdc12

|V | 1,073M 978M 788M 4295M 3,563M
|E| 10,791M 42,574M 47,615M 68,719M 128,736M
|E|/|V | 16 44 60.4 16 36
max Dout 3.2M 7,447 16,365 10.4M 55,931
max Din 3.2M 75M 8.6M 10.4M 95M
Est. diameter 6 498 2498 7 5274
Size (GB) 136 325 361 544 986

Table 2.3: Inputs and their key properties.
mode to run GridGraph, an out-of-core graph analytics system: DRAM is used

as main memory and Optane PMM modules are used as external storage.

Transparent Huge Pages (THP) are enabled (default in Linux). To

collect hardware counters and analyze performance, we used Intel’s Vtune

Amplifier [48] and Platform Profiler [47].

To show that our study of algorithms for massive graphs (Section 2.6)

is independent of machine architecture, we also conducted experiments on a

large DRAM 4 socket machine that we call Entropy. Entropy uses Intel Xeon

Platinum 8176 ("Skylake") processors with a total of 112 cores with a clock

rate of 2.2 Ghz, 1.5TB of DDR4 DRAM, and 32KB L1, 1MB L2, and 38MB

L3 data caches. Source code is compiled with g++ 5.4. For our experiments

on Entropy, we only used 56 threads, restricting our experiments to 2 sockets.

Distributed-memory experiments were conducted on Stampede2 [155]

cluster at the Texas Advanced Computing Center using up to 256 Intel Xeon

Platinum 8160 ("Skylake") 2 socket machines with 48 cores with a clock rate

of 2.1 Ghz, 192GB DDR4 RAM, and 32KB L1, 1MB L2, and 33MB L3 data

caches. The machines are connected with a 100Gb/s Intel Omni-Path inter-
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connect. We use LCI [50] for message passing between machines. Source code

is compiled with g++ 7.1.

Table 2.3 specifies the input graphs: clueweb12 [134], uk14 [18, 22], and

wdc12 [110] are web-crawls (wdc12 is the largest publicly available one) used

throughout our study. kron30 and rmat32 are randomized scale-free graphs

generated using kron [102] and rmat [36] generators (using weights of 0.57,

0.19, 0.19, and 0.05, as suggested by graph500 [1]). kron30 and clueweb12 fit

into DRAM, so we use them to illustrate differences in workloads that fit into

DRAM and those that do not. The other graphs – uk14, rmat32, and wdc12 –

do not fit in DRAM on our Optane PMM machine. We observe that uk14 and

wdc12 have non-trivial diameters, whereas rmat32 has a very small diameter.

We believe that rmat32 does not represent real-world datasets, so we exclude

it in all our experiments except to show the impact of diameter in our study of

algorithms (Section 2.6). All graphs are unweighted, so we generate random

weights.

Our evaluation uses 7 benchmarks: single-source betweenness centrality

(bc), breadth-first search (bfs), connected components (cc), k-core decompo-

sition (kcore), pagerank (pr), single-source shortest path (sssp), and triangle

counting (tc). The only benchmark that uses weights is sssp. The source node

for bc, bfs, and sssp is the maximum out-degree node. The tolerance for pr is

10−6. The k in kcore is 100. All benchmarks are run until convergence except

for pr, which is run for up to 100 rounds. We present the mean of 3 runs for

the main experiments.
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The shared-memory graph analytics frameworks we use are Galois [118],

GAP [15], GraphIt [190], GBBS [56], and D-Galois [51]. These frameworks

are described in more detail in Section 5.6. D-Galois is a distributed-memory

framework; the rest are shared-memory frameworks. GridGraph [196] is an

out-of-core framework that streams graph topology and data into memory

from external storage (in this case, Optane PMM in app-direct mode).

2.5 Memory Hierarchy Issues

This section shows that on Optane PMM machines, the overhead of

memory operations such as NUMA memory accesses, handling cache misses,

and page table maintenance are higher than on regular DRAM machines. For

good performance, these overheads must be reduced by intelligent memory

allocation and by reducing the time spent in the kernel for page-table main-

tenance. There are three main issues to address: NUMA-aware allocation

(Section 2.5.1), NUMA-aware migration (Section 2.5.2), and page size selec-

tion (Section 2.5.3).

2.5.1 NUMA-aware Allocation

NUMA-aware allocation attempts to increase bandwidth and reduce

latency of memory accesses by allocating memory on the same NUMA node

as the cores that are likely to access that memory. Allocation policies fall

into three main categories: (a) NUMA local, which allocates memory on a

node specified at allocation time (if there is not enough memory available on
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Figure 2.3: Illustration of 3 different NUMA allocation policies on a 4-socket
system: each policy distributes blocks (size B, which is the size of a page) of
allocated memory among sockets differently
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the preferred node, other NUMA nodes will be used), (b) NUMA interleaved,

which allocates the memory by interleaving physical pages across NUMA nodes

in a round-robin fashion, and (c) NUMA blocked, which blocks the physical

pages to be allocated and distributes the blocks among NUMA nodes on the

system (illustrated in Figure 2.3).

There are several ways for application programs to specify the allocation

policy. The policy can be set globally by using OS utilities such as numactl

on Linux. To allow different policies to be used in different allocations, appli-

cations can use the OS-provided NUMA allocation library (numa.h in Linux),

which contains a variety of numa_alloc functions. OS-based approaches, how-

ever, can only use the NUMA local or interleaved policies. Another way to

get fine-grained NUMA-aware allocation is to manually allocate memory us-

ing anonymous mmap and have threads on different sockets inside the applica-

tion touch the pages (called as first-touch) to allocate them on the desired

NUMA nodes. This method, unlike OS-provided methods, allows applications

to implement application-specific NUMA-aware allocation policies.

To understand the differences in local, interleaved, and blocked NUMA

allocation policies on our Optane PMM setup, we use a simple micro-benchmark

that allocates different amounts of memory using different NUMA allocation

policies and writes to each location once using t threads where each thread gets

a contiguous block to write sequentially. To explore the effects of NUMA on

different platforms, we run this microbenchmark two machines: one with only

DDR4 DRAM and one using Optane PMM. The following micro-benchmark
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results show that on the Optane PMM machine, applications must not only

maximize local NUMA accesses, but must also use a NUMA policy that maxi-

mizes the amount of near-memory used to reduce DRAM conflict misses (recall

that DRAM acts like a direct-mapped cache called near-memory for Optane

PMM in this mode).

NUMA Local. Figure 2.4(a) shows the execution time of the microbench-

mark on DDR4 DRAM and Optane PMM for the NUMA local allocation

policy using t = 96 and different allocation amounts. Using NUMA local, all

the memory of socket 0 is used before memory from socket 1 is allocated. We

observe that going from 80GB to 160GB increases the execution time by 2×

for both DRAM and Optane PMM: this is expected since we are increasing

the work by 2×. Going from 160GB to 320GB also increases the work by 2×.

For DRAM, a 320GB allocation spills to the other socket (each socket has only

192GB), and this increases the effective bandwidth by 2×, so the execution

time does not change much. In Optane PMM , however, the 320GB is allo-

cated entirely on socket 0 as our machine has 3TB per socket. Since there is

no change in bandwidth, one would expect the performance to degrade by 2×,

but it actually degrades by 5.6×. This is because the machine only gets to use

192GB of DRAM as near-memory cache; this cannot fit 320GB, so the conflict

miss rate of the DRAM accesses increase by roughly 1.8×. This illustrates

that (i) near-memory conflict misses are detrimental to the performance for

Optane PMM and (ii) NUMA local policy is not suitable for allocations larger

than 192GB on our setup.
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NUMA Interleaved and Blocked. The execution times of the micro-

benchmark on DDR4 DRAM and Optane PMM for the NUMA interleaved

and blocked allocation policies using an allocation of 320GB and different

thread counts is shown in Figure 2.4(b). For DRAM, both policies are similar

for different t. When t ≤ 24 on Optane PMM, NUMA blocked only allocates

memory on socket 0 (because it uses first-touch), so performance degrades

39× compared to 48 thread execution as 320GB does not fit in the near-

memory of a single socket. This illustrates that the cost of local near-memory

misses is much higher than the cost of remote near-memory hits. In contrast,

the NUMA interleaved policy for 24 threads uses both sockets and improves

performance by 9× over NUMA blocked even though 50% of accesses are re-

mote when t ≤ 24. NUMA interleaved performs worse than blocked when

t = 48, as both allocation policies are able to fit 320GB in the near-memory

of 2 sockets (384GB); however, NUMA interleaved results in more remote ac-

cesses as compared to NUMA blocked.

2.5.2 NUMA-aware Migration

When an OS-level NUMA allocation policy is not specified (the appli-

cation-level NUMA policy is not visible to the OS), the OS can dynamically

migrate data among NUMA nodes to increase the proportion of local NUMA

accesses. NUMA page migrations are helpful for multiple applications sharing

a single system as they try to move pages closer to the cores assigned to each

application. However, for a single application running on the machine, this
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policy may not always be useful, especially when application has specified its

own NUMA allocation policy using its knowledge of memory access patterns.

OS-directed migration has many overheads: (a) it requires book-keeping

to track accesses to the pages to select pages for migration, and (b) migration

changes the virtual-to-physical address mapping, which makes the Page Table

Entries (PTEs) cached in CPU’s Translation Lookaside Buffers (TLBs) stale,

causing TLB shootdown on each core. TLB shootdown involves slow oper-

ations such as issuing inter-processor-interrupts (IPIs), and it also increases

TLB misses.

Graph analytics applications tend to have irregular access patterns:

accesses are arbitrary, so there may be many shared accesses across NUMA

sockets. To examine the effects of page migration on graph analytics applica-

tions, we run breadth-first search (bfs) (similar trends are observed for other

benchmarks) using Galois [118] using NUMA interleaved allocation for dif-

ferent input graphs on both Optane PMM and DDR4 DRAM with NUMA

migration on and off. We also examine the effects of page migration for dif-

ferent page sizes: (a) 4KB small page and (b) 2MB huge page. The results of

these experiments below suggest that NUMA migration should be turned off

for graph analytics applications on Optane PMM.

Figure 2.5 shows the effect of NUMA migration where the number on

each bar presents the % change in the execution time when NUMA migration

is turned off. A positive number means turning migration off improves per-

formance. Performance improves in most cases if NUMA migration is turned
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off. Figure 2.6 shows that the time spent in user code is not affected by the

NUMA migrations, which shows that migrations are adding additional kernel

time overhead without giving significant benefits. Another way to measure

the efficacy of the page migrations is to measure the % of local near-memory

(DRAM) accesses in Optane PMM: if migration is beneficial, then this should

increase. However, this does not change by more than 1%. Figure 2.6 shows

that NUMA migrations hurt performance more on Optane PMM as compared

to DRAM as time spent in the kernel is higher. This is due to (a) higher cost of

bookkeeping as memory accesses to kernel data structures are more expensive

on Optane and (b) higher cost of TLB shootdown as it increases the access

latency to the near-memory (DRAM) being used as a direct-mapped cache

since TLB translation is on the critical path.2. Larger graphs exacerbate this

effect as they use more pages.

4KB small page size shows more performance improvement than 2MB

huge pages when turning page migrations off. We observe that the number of

migrations is in the millions for small pages and in the hundreds for huge pages.

The finer granularity of small pages makes them more prone to migrations,

leading to more TLB shootdowns and data TLB misses. Therefore, for small

pages, the number of data TLB misses reduces by ∼ 2× by turning off the

NUMA migrations for all the graphs. The number of small pages being 512×

the number of huge pages also increases the bookkeeping overhead in the OS.

2Since near-memory (DRAM) is used as physically indexed and physically tagged direct-
mapped cache, virtual addresses need to be translated to physical addresses before cache
(near-memory) can be accessed.
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This is reflected in the amount of time spent in the OS kernel due to NUMA

migrations, as seen in Figure 2.6. The time spent in the kernel is more for the

smaller page size than for the larger page size if page migration is turned on.

2.5.3 Page Size Selection

When memory sizes and workload sizes grow, the time spent handling

TLB misses can become a performance bottleneck since large working sets

need many virtual-to-physical address translations that may not be cached in

the TLB. This bottleneck can be tackled either (a) by increasing the TLB size

in the hardware or (b) by increasing the page size. The TLB size is determined

by the micro-architecture and cannot easily be changed by a user. On the other

hand, processors allow users to customize page sizes as different page sizes may

work best for different workloads. For example, x86 supports traditional 4KB

small pages as well as 2MB and 1GB huge pages.

We studied the impact of page size on graph analytics using a 4KB small

page size and a 2MB huge page size, which are supported by Linux. We did

not include results for 1GB page size as it requires special setup; moreover, we

do not expect to gain much from 1GB page size as the hardware supports fewer

TLB entries for 1GB page size. We run bfs (similar behavior was observed for

other benchmarks) using Galois [118] with no NUMA migration and NUMA

interleaved memory allocation policy for various large graphs on (a) Optane

PMM and (b) DDR4 DRAM. The results below suggest that suggest that a

page size of 2MB is good for graph analytics on Optane PMM.
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Figure 2.5 shows the results of bfs with various page sizes, and we

observe that using huge pages is always beneficial on large graphs as huge

pages reduce the number of pages required by 512×, which reduces the number

of TLB misses (3.2× for clueweb12, 11.2× for uk14 and 1.9× for wdc12) and

CPU cycles spent on page walking on TLB misses (7.3× for clueweb12, 12.5×

for uk14 and 8.8× for wdc12). We also observe that the benefits of huge pages

are higher on Optane PMM than on DRAM because TLB misses increase the

near-memory access latency. Huge pages increase the TLB reach (TLB size ×

page size), thereby reducing the TLB misses.

2.5.4 Summary

For high-performance graph analytics on the Optane PMM system, we

recommend (i) using NUMA interleaved or blocked memory allocation rather

than NUMA local, particularly for large allocations (> 192GB), (ii) turning

off NUMA page migration, and (iii) using 2MB huge pages.

2.6 Efficient Algorithms for Massive Graphs

In general, there are many algorithms that can be used to solve a given

graph analytics problem; for example, the single-source shortest-path (sssp)

problem can be solved using Dijkstra’s algorithm, the Bellman-Ford algorithm,

chaotic relaxation, and delta-stepping. These algorithms may have different

asymptotic complexities and different amounts of parallelism. For example

for a graph G = (V,E), the asymptotic complexity of Dijkstra’s algorithm
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is O(|E|∗log(|V |)) while Bellman-Ford is O(|E|∗|V |), but for most graphs,

Dijkstra’s algorithm has little parallelism compared to Bellman-Ford. Com-

plicating the picture further is the fact that a given algorithm can usually be

implemented in different ways, and these implementation details may affect

parallel performance dramatically; implementations that use fine-grain locking

for example usually perform better than those that use coarse-grain locking.

This section presents a classification of graph analytics algorithms that

is useful for understanding parallel performance [130]. We also present exper-

imental results that provide insights into which classes of algorithms perform

well on very large input graphs that can run on Optane PMM.

2.6.1 Classification of Graph Analytics Algorithms

Operators: In graph analytics algorithms, each vertex has one or more labels

that are initialized at the start of the computation and then updated repeat-

edly during the computation until a quiescence condition is reached. Label

updates are performed by applying an operator to active vertices in the graph.

In some systems such as Galois [118], an operator may read and update an

arbitrary portion of the graph surrounding the active vertex; this portion is

called its neighborhood. Most shared-memory systems such as Ligra [56, 151]

and GraphIt [190] only support a limited class of operators called vertex op-

erators whose neighborhoods are only the immediate neighbors of the active

vertex. A push-style operator updates the labels of the neighbors of the active

vertex, while a pull-style operator updates the label of only the active vertex.

33



Direction-optimizing implementations [14] can switch between push and pull

style operators dynamically, but they require a reverse edge for every forward

edge in the graph, which doubles the memory footprint of the graph.

Schedule: To find active vertices in the graph, algorithms take one of two ap-

proaches. A topology-driven algorithm executes in rounds, and in each round, it

applies the operator to all the graph vertices; Bellman-Ford sssp is an example.

These algorithms are simple to implement, but they may not be work-efficient

if there are few active vertices in a lot of rounds. To address this, data-driven

algorithms track active vertices explicitly and apply the operator only to these

vertices. At the start of the algorithm, some vertices are active; applying the

operator to an active vertex may activate other vertices, and operator appli-

cation continues until there are no active vertices in the graph. Dijkstra and

delta-stepping sssp algorithms are examples. Active vertices can be tracked

using a bit-vector of size V if there are V vertices in the graph: we call this a

dense worklist [56, 151, 190]. Other implementations keep an explicit worklist

of active vertices [118]: we call this a sparse worklist.

Some implementations of data-driven algorithms execute in bulk-syn-

chronous rounds: they keep a current and a next worklist, and in each round,

they process only the vertices in the current worklist and add activated vertices

to the next worklist. The worklists can be dense or sparse. In contrast, asyn-

chronous data-driven implementations have no notion of rounds; they maintain

a single sparse worklist, pushing and popping active vertices from this worklist

until it is empty.
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2.6.2 Algorithms for Very Large Graphs

At present, very large graphs are analyzed using clusters or out-of-core

systems, but the programs on these systems are restricted to vertex programs

and round-based execution. This is not considered to be a serious limitation

for power-law graphs since they have a small diameter, and information does

not have to propagate many hops in these graphs. In fact, no graph analytics

framework other than Galois provides sparse worklists, so they cannot support

asynchronous data-driven algorithms and most of them are restricted to vertex

programs.

Using the Optane PMM system, we were able to use a single machine

to perform analytics on very large graphs, and our results suggest that con-

ventional wisdom in this area needs to be revised. The key issue is highlighted

by Table 2.3: clueweb12, uk14, and wdc12, which are real-world web-crawls,

actually have a very high diameter (shown in Table 2.3) compared to kron30

and rmat32, the synthetic power-law graphs. We show below that for standard

graph analytics problems, the best-performing algorithms for these graphs

may be (a) non-vertex programs and (b) asynchronous data-driven algorithms,

which require sparse worklists. This is because these algorithms have better

work-efficiency and because they make fewer memory accesses, which is bene-

ficial for performance especially on Optane PMM where memory accesses are

more expensive.

Figure 2.7 shows the execution time of different data-driven algorithms

for bfs, cc, and sssp on Optane PMM using the rmat32, clueweb12, and wdc12
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Figure 2.9: Execution time of benchmarks in GraphIt, GAP, GBBS, and Ga-
lois on Optane PMM using 96 threads.
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Figure 2.10: Execution time of benchmarks in GBBS and Galois for wdc12 on
Optane PMM using 96 threads.

graphs on the Galois system. For bfs, all algorithms are bulk-synchronous. A

vertex program with direction optimization (that uses dense worklists) per-

forms well for rmat32 since it has a low-diameter, but for the real-world web-

crawls, which have much higher diameter, it is outperformed by an imple-

mentation with a push-style operator and sparse worklists since this algo-

rithm has a lower memory footprint, makes fewer memory accesses, and is

more efficient in the later rounds when there are few active vertices. For cc,

bulk-synchronous label propagation combined with short-cutting (LabelProp-

SC) [156], which uses a non-vertex operator, is used. It is a variant of the

Pointer-Jumping algorithm where after every round of label propagation it

jumps one level unlike the Pointer-Jumping where it goes all way to the com-

mon descendent. LabelProp-SC exhibits better locality as compared Pointer-
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Jumping and significantly outperforms the bulk-synchronous algorithm that

uses a simple label propagation vertex operator for the real-world web-crawls.

For sssp, the asynchronous delta-stepping algorithm, which maintains a sparse

worklist, significantly outperforms the bulk-synchronous data-driven algorithm

with dense worklists. These findings do not apply only to Optane PMM: Fig-

ure 2.8 shows the same experiments for bfs, sssp, and cc conducted on Entropy

(DDR4 DRAM machine). The trends are similar to those on the machine with

Optane PMM.

Summary: Large real-world web-crawls, which are the largest graphs avail-

able today, actually have a high diameter, unlike synthetically generated rmat

and kron graphs. Therefore, conclusions drawn from experiments with rmat

and kron graphs can be misleading. On current distributed-memory and out-

of-core platforms, one is forced to use vertex programs, but on machines with

Optane PMM, it is advantageous to use algorithms with non-vertex operators

and sparse worklists of active vertices that allow for asynchronous execution.

Frameworks that support only vertex operators or that do not have sparse

worklists are at a disadvantage on this platform when processing large real-

world web-crawls, as we show next.

2.7 Evaluation of Graph Frameworks

In this section, we evaluate several graph frameworks on Optane PMM

in the context of the performance guidelines presented in Sections 2.5 and 2.6.

In Section 2.7.1, four shared-memory graph analytics systems - Galois [118],
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Figure 2.11: Strong scaling in execution time of benchmarks in Galois using
DDR4 DRAM and Optane PMM.

GAP [15], GraphIt [190], and GBBS [56] - are evaluated on the Optane PMM

machine using several graph analytics applications. Section 2.7.2 describes

experiments with medium-sized graphs stored either in Optane PMM or in

DRAM. These experiments provide end-to-end estimates of the overhead of

executing applications with data in Optane PMM rather than in DRAM. Sec-

tion 2.7.3 describes experiments with large graphs that fit only in Optane

PMM, and performance is compared with distributed-memory execution on a

production cluster with up to 128 machines. Section 2.7.4 presents our exper-

iments with GridGraph [196], an out-of-core graph analytics framework, using

Optane PMM’s app-direct mode to treat it as external memory.
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2.7.1 Galois, GAP and GraphIt on Optane PMM

Setup. To choose a shared-memory graph analytics system for our experi-

ments, we evaluate (1) Galois [118], which is a library and runtime for graph

processing, (2) GAP [15], which is a benchmark suite of expert-written graph

applications, (3) GraphIt [190], which is a domain-specific language (DSL)

and optimizing compiler for graph computations, and (4) GBBS [56], which is

a benchmark suite of graph algorithms written in the Ligra [151] framework.

They exemplify different approaches to shared-memory graph analytics.

GraphIt is a DSL that supports only vertex programs, and it has a

sophisticated compiler that uses auto-tuning to generate optimized code; the

optimizations are under the control of the programmer. Galois is a C++-based

general-purpose programming system based on a runtime that permits opti-

mizations to be specified in the program at compile-time or at runtime, giving

the application programmer a large design space of implementations that can

be explored. GBBS programs are expressed in a graph processing library and

runtime, Ligra. Thus, Galois and GBBS require more programming effort than

GraphIt. GBBS includes theoretically efficient algorithms written by experts.

GAP is a benchmark suite of graph analytics applications written by expert

programmers.

The kcore application is not implemented in GAP and GraphIt, so

we omit it in the comparisons reported in this section. We omit the the

largest graph wdc12 for GAP and GraphIt because neither of them can handle

graphs that have more than 231−1 nodes (they use a signed 32-bit int for
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storing node IDs). GAP, GraphIt, and GBBS do not use NUMA allocation

policies within their applications, so we use the OS utility numactl to choose the

NUMA interleaved policy. For Galois, we chose the best-performing algorithm

using a runtime option, and we did not try different worklists or chunk-sizes.

Galois allows application programmers to choose NUMA interleaved or blocked

allocation policies for each application by modifying a template argument in

the program, and we choose interleaved for bfs, cc, and sssp and blocked for

bc, and pr. For GraphIt, we used the optimizations recommended by the

authors [190] in the GraphIt artifact.

Results. Figures 2.9 and 2.10 show the execution times of the benchmarks

on Optane PMM (GraphIt does not have bc). Galois is generally much faster

than GraphIt, GAP, and GBBS: on the average, Galois is 3.8×, 1.9×, and 1.6×

faster than GraphIt, GAP, and GBBS respectively. There are many reasons

for these performance differences.

Algorithms and implementation choices are part of the story as dis-

cussed in Section 2.6.2. For all algorithms, GAP, GBBS and GraphIt use a

dense worklist to store the frontier, while Galois uses a sparse worklist except

for pr (large diameter graphs tend to have sparse frontiers). All systems use

the same algorithm for pr. For bfs, all systems, except Galois, use direction-

optimization that accesses both in-edges and out-edges (increasing memory

accesses). For sssp, GAP, GBBS, and Galois use delta-stepping, while GraphIt

does not support such algorithms. For cc, GAP, and GBBS use a union-find

based pointer-jumping algorithm, Galois uses label-propagation with shortcut-
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ting, and GraphIt uses a label propagation algorithm because it supports only

vertex programs. Furthermore, Galois uses asynchronous execution for sssp

and cc, unlike the others.

Another key difference is the way in which the three systems perform

memory allocations. Galois is the only framework that explicitly uses huge

pages of size 2MB, whereas GAP, GBBS and GraphIt use small pages of size

4KB and rely on the OS to use Transparent Huge Pages (THP). As discussed

in Section 2.5, huge pages can significantly reduce the cost of memory accesses

over small pages even when THP is enabled. Galois is also the only one to pro-

vide NUMA blocked allocation, and we chose that policy because it performed

observably better than the interleaved policy for some benchmarks such as bc

and pr (the performance difference was within 18%). In general, we observe

that NUMA blocked performs better for topology-driven algorithms, while

NUMA interleaved performs better for data-driven algorithms. In addition,

GAP, GBBS, and GraphIt allocate memory for both in-edges and out-edges

of the graph, while Galois allocates memory only for whichever direction is

needed by the algorithm. This not only increases the memory footprint but

leads to conflict misses in near-memory when both in-edges and out-edges are

accessed.

As Galois generally performs best as shown here, we use it for the rest

of our main experiments.
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2.7.2 Medium-size graphs: Using Optane PMM vs. DDR4 DRAM

Setup. We used kron30 and clueweb12 (Table 2.3) to measure the end-to-end

overhead of using Optane PMM for graphs that are small enough to fit in

DRAM (384 GB). We choose the algorithms in Galois that perform best on

96 threads.

Results. Figure 2.11 shows the strong scaling results on DRAM and on Op-

tane PMM with DRAM as cache. kron30 requires ∼ 136GB, which is a third

of the DRAM available, so Optane PMM delivers performance almost identi-

cal to DRAM by caching the graph in DRAM effectively. On the other hand,

clueweb12 requires ∼ 365GB, which is quite close to the DRAM available, so

there are significantly more conflict-misses (≈ 26%) in the near-memory of

Optane PMM. On 96 threads, Optane PMM can take up to 65% more execu-

tion time than DRAM, but on the average, it takes only 7.3% more time than

DRAM.

Another trend is that if the number of threads is less than 24, Optane

PMM can be much slower than DRAM because of the way Galois allocates

memory. Interleaved and blocked allocation policies in Galois interleave and

block among the threads and not among the sockets. If the number of threads

is less than 24, all threads run in a single socket and all memory ends up being

allocated there, leading to under-utilization of the DRAM in the entire system:

this results in more conflict-misses in near-memory.
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2.7.3 Very large graphs: Using Optane PMM vs. a Cluster

Table 2.4: Execution time (sec) of benchmarks in Galois on Optane PMM
(OB) machine using efficient algorithms (non-vertex, asynchronous) and D-
Galois on Stampede cluster (DM) using vertex programs with minimum number
of hosts that hold the graph (5 hosts for clueweb12, and uk14, and 20 hosts
for wdc12). Speedup of Optane PMM over Stampede cluster. Best times are
highlighted in green.

Graph App Stampede
(DM)

Optane PMM
(OB)

Speedup
(DM/OB)

clueweb12

bc 51.63 12.68 4.07×
bfs 10.71 6.43 1.67×
cc 13.70 11.08 1.24×
kcore 186.03 51.05 3.64×
pr 155.00 385.64 0.40×
sssp 33.87 16.58 2.04×

uk14

bc 172.23 11.53 14.9×
bfs 28.38 7.22 3.93×
cc 14.56 21.30 0.68×
kcore 56.08 7.94 7.06×
pr 82.77 254.95 0.32×
sssp 52.49 39.99 1.31×

wdc12

bc 775.84 56.48 13.7×
bfs 71.50 35.25 2.03×
cc 69.21 76.00 0.91×
kcore 105.42 49.22 2.14×
pr 118.01 1706.35 0.07×
sssp 136.47 118.81 1.15×

Setup. For very large graphs that do not fit in DRAM, the conventional

choices are to use either a distributed or an out-of-core system. We focus

on distributed execution in this section, using the state-of-the-art D-Galois

system [51] on the Stampede2 [155] cluster. To partition graphs between ma-

chines, we follow the recommendations of a previous study [65] and use Outgo-
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ing Edge Cut (OEC) for 5 and 20 hosts and Cartesian Vertex Cut (CVC) [23]

for 256 hosts. On each machine, D-Galois uses the same computation run-

time as Galois. D-Galois supports only bulk-synchronous vertex programs

with dense worklists, which simplifies communication and synchronization.

Therefore, it cannot support some of the more efficient non-vertex programs

in Galois. We exclude graph loading, partitioning, and construction time in

the reported numbers.

Results. Table 2.4 compares the performance of Optane PMM (on a single

machine) running Galois non-vertex, asynchronous programs (referred to as

OB) with the distributed cluster (Stampede2 [155]) running D-Galois vertex

programs and using the minimum number of hosts required to hold the graph

in memory (5 hosts for clueweb12, and uk14, and 20 hosts for wdc12; 48

threads per host and referred to as DM). We observe that Optane PMM

outperforms D-Galois in most of the cases (best times are highlighted), except

for pr on clueweb12, uk14, and wdc12 and cc on uk14, and wdc12. Optane

PMM gives the geomean speedup of 1.7× over D-Galois, even though D-Galois

is using more cores (240 cores for clueweb12, and uk14, and 960 cores of

wdc12), and memory bandwidth. In pr, almost all the nodes are updated

in every round (similar to the topology driven algorithms), therefore, on the

distributed cluster it primarily benefits from the better spatial locality in D-

Galois resulting from the partitioning of the graph into smaller local graphs

assigned to each host as well as more memory bandwidth.

Further Analysis. For logistical reasons, it is difficult to ensure that both
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Figure 2.12: Execution time of benchmarks in Galois on Optane PMM ma-
chine and D-Galois on Stampede cluster with different configurations :- DB:
Distributed Best (all threads on 256 hosts), DM: Distributed Min (all threads
on min #hosts that hold graph), DS: Distributed Same (total 80 threads on
min #hosts that hold graph), OS: Optane Same (same algorithm and threads
as DS), OA: Optane All (same algorithm as DS, DM, and DB on 96 threads),
OB: Optane Best (best algorithm on 96 threads).
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platforms use the exact same resources (threads and memory). We attempt

to get close to a fair comparison by limiting the amount of resources used

on both platforms. The bars labeled O_ in Figure 2.12 show times on the

Optane PMM system with the following configurations:- OB: Performance

using the best algorithm in Galois for that problem and all 96 threads (same

as shown in Table 2.4); OA: Performance using the best vertex programs

in Galois for that problem and all 96 threads; OS: Same as OA but using

only 80 threads. The bars labeled D_ show times on the Stampede2 system

with the following configurations:- DB: Performance using D-Galois vertex

programs on 256 machines (12,288 threads); DM: Performance using D-Galois

vertex programs using the minimum number of hosts required to hold graph

in memory (same as shown in Table 2.4). DS: Same as DM but using a total

of 80 threads across all machines.

Results. Figure 2.12 shows the results of our experiments. For bars DS and

OS, the algorithm and resources are roughly the same, so in most cases, OS

is similar or better than DS. The only notable exception to this is pr (reason

is explained above). On average, OS is 1.9× faster than DS for all inputs

and benchmarks. Bars OB and OA show the advantages of using non-vertex,

asynchronous programs on the Optane PMM system. Bars DB and OB show

that with the more complex algorithms that can be implemented on the Optane

PMM system, performance on this system matches the performance of vertex

programs on a cluster with vastly more cores and memory for bc, bfs, kcore,

and sssp. The main takeaway is that Optane PMM enables us to perform

47



analytics on massive graphs using shared-memory frameworks out-of-the-box

while yielding performance comparable or better than that of a cluster with the

same resources as the framework may support more efficient algorithms.

2.7.4 Out-of-core GridGraph in App-direct Mode vs. Galois in
Memory Mode

In addition to our main shared-memory experiments, we also used an

out-of-core graph analytics system with app-direct mode on Optane PMM to

examine its performance.

Setup. We used GridGraph [196], a state-of-the-art out-of-core graph ana-

lytics framework to compare Optane PMM’s app-direct (AD) with Memory

Mode (MM) running shared-memory Galois (used throughout this work). The

Optane PMM machine was configured in AD mode as described in Section 2.3.

In AD, GridGraph manages all of the available DRAM (memory budget given

as 384GB) unlike in MM where DRAM is managed by the OS as another level

of cache. The input graphs (preprocessed by GridGraph) are stored on the

Optane PMM modules which are then used by GridGraph during execution.

We used a 512 by 512 grid as the partitioning grid for GridGraph (the Grid-

Graph paper used larger grid partitions for larger graphs to better fit blocks

into cache). 3 GridGraph uses a signed 32-bit int for storing the node IDs,

making it impractical for large graphs with > 231 − 1 nodes such as wdc12.

We conduct a run of bfs and cc: it does not have bc, kcore, or sssp, and we

3We have tried a higher number of partitions, but preprocessing fails as GridGraph opens
more file descriptors than the machine supports.
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have observed pr failing to complete due to assertion errors in the code.

Table 2.5: Execution time (sec) of benchmarks in Galois on Optane PMM
in Memory Mode (MM) and the state-of-the-art out-of-core graph analytics
framework GridGraph on Optane PMM in App-direct Mode (AD). A 512 by
512 partition grid was used for GridGraph. Best times are highlighted in green.
"—" indicates that system failed to finish in 2 hours.

Graph App GridGraph
(AD)

Galois
(MM)

Speedup
(AD/MM)

clueweb12 bfs 5722.75 6.43 890.0×
cc 5411.23 11.08 488.4×

uk14 bfs — 7.22 NA
cc 5700.48 21.30 267.6×

Results. Table 2.5 compares the performance of Optane PMM in Memory

Mode (MM) running shared-memory Galois and app-direct mode (AD) run-

ning out-of-core GridGraph. We observe that Galois using MM is orders of

magnitude faster than GridGraph using AD for bfs, and cc on clueweb12, and

cc on uk14 (GridGraph bfs on uk14 failed to finish in 2 hours). This can be

attributed to the more sophisticated algorithms (in particular, non-vertex pro-

grams and asynchronous data-driven algorithms which are supported in Galois

using MM unlike out-of-core frameworks such as GridGraph that only support

vertex-programs) and the additional overhead of IO required by out-of-core

frameworks, especially for real-world web-crawls with very high diameter such

as clueweb12 (diameter ≈ 500). We note that after few rounds of computa-

tion on bfs for clueweb12, very few nodes get updated: however, the blocks

containing those nodes/corresponding edges are still fetched from the storage
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to be processed.

2.7.5 Discussion and Summary

While our study was specific to Optane PMM, the guidelines in sum-

marized below apply to other large-memory analytics systems as well.

• Studies using synthetic power-law graphs like kron and rmat can be

misleading because unlike these graphs, large real-world web-crawls have

large diameters (Section 2.6).

• For good performance on large diameter graphs, the programming model

must allow application developers to write work-efficient algorithms that

need not be vertex programs and the system must provide data structures

for sparse worklists to enable asynchronous data-driven algorithms to be

implemented easily (Section 2.6).

• On large-memory NUMA systems, the runtime must manage memory

allocation instead of delegating it to the OS. It must exploit huge pages

and NUMA blocked allocation. NUMA migration is not useful. (Sec-

tion 2.5)

2.8 Related Work

Shared-Memory Graph Processing. Shared-memory graph processing

frameworks like Galois [118], Ligra [56, 151], Polymer [188] and GraphIt [190]

provide users with abstractions to program graph computations that efficiently
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leverage a machine’s underlying properties such as NUMA, memory locality,

and multicores. Shared-memory machines are limited by the amount of avail-

able main memory on the system in which it loads the graph into memory

for processing: if a graph cannot fit, then out-of-core or distributed processing

must be used. However, if the graph fits in memory, the cost of shared memory

systems is less than out-of-core or distributed systems as they do not suffer

disk reading overhead or communication overhead, respectively.

Optane PMM increases the amount of available memory to shared-

memory graph processing systems, and our evaluation shows that algorithms

run with Optane PMM are competitive or better than D-Galois [51], a state-of-

the-art distributed graph analytics system. This is consistent with past work

in which it was shown that shared-memory graph processing on large graphs

can be efficient [56], and our findings extend to cases where a user has large

amounts of main memory (it is not limited to Optane PMM).

Out-of-core Graph Processing. Out-of-core graph processing systems such

as GraphChi [98], X-Stream [141], GridGraph [196], Mosaic [105], Lumos [169],

CLIP [10], and BigSparse [87] do graph computation by loading appropriate

portions of a graph into memory and writing it back out to disk in a disci-

plined manner to reduce disk access overhead. Therefore, these systems are

not limited by main memory like shared-memory systems. The overhead of

disk operations, however, greatly impacts performance of these systems com-

pared to shared-memory systems. The advent of Optane PMM provides an

opportunity to use shared-memory systems out-of-the-box as users are able to
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increase the main memory to run graph computations on large graphs without

a significant performance decrease as our evaluation shows.

Distributed Graph Processing. Distributed graph processing systems such

as PowerGraph [70], Gemini [195], D-Galois [51], and others [33, 39, 68, 79, 106,

181] are able to process large graphs by distributing the graph among many

machines which increases both available memory as well as computational

power. However, since computation is spread among many machines, commu-

nication among the machines is required, and this can add significant overhead

to the runtime of an algorithm. Additionally, getting access to a distributed

cluster can be expensive to an average user. Using Optane PMM to increase

the memory available to shared memory systems solves both the memory issue

and the cost issue that makes distributed systems difficult to use.

Persistent Memory. Prior work on non-volatile memory includes file sys-

tems designed for persistent memory [40, 46, 58, 182], making sure access to

persistent memory is efficient while being semantically consistent [45, 94, 109,

168], database systems in persistent memory [12, 166, 187]. Non-volatile mem-

ory is expected to improve performance in other areas too.

Optane PMM Evaluation. Since the official release of Optane PMM , many

studies have evaluated the potential of Optane PMM for different application

domains. Izraelevitz et al. [83] presented a detailed analysis of the performance

characteristics of Optane PMM with evaluation on SPEC 2017 benchmarks,

various file systems and databases. Optane PMM has also been evaluated for

HPC applications with high memory and I/O bottlenecks [174, 178]. Malicevic
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et al. [107] use app-direct-like mode to study graph analytics applications using

emulated NVM system. However, they only study vertex programs on very

small graphs. Peng et al. [126] evaluates the performance of graph analytics

applications on Optane PMM in memory mode. However, only use artificial

Kronecker [102] and RMAT [36] generated graphs, which, as we have shown

in this work, exhibit different structural properties as compared to real-world

graphs.

Our study evaluates graph applications on large real-world graphs using

more efficient and sophisticated algorithms (in particular, non-vertex programs

and asynchronous data-driven algorithms) and is also the first work, to the best

of our knowledge, to compare the performance of graph analytics applications

on Optane PMM using Galois with the state-of-the-art distributed graph ana-

lytics framework, D-Galois [51], on a production level cluster (Stampede [155])

as well as to the out-of-core framework, GridGraph [196], on Optane PMM.

53



Chapter 3

Abelian Compiler1

3.1 Motivation

Graph analytics systems must handle very large data-sets with billions

of nodes and trillions of edges [101]. Graphs of this size are too big to fit into the

memory of a single machine, so one approach is to use distributed-memory clus-

ters consisting of multicore processors. Writing efficient distributed-memory

programs can be difficult, so a number of frameworks and libraries such as

Pregel [106], PowerGraph [70], and Gemini [195], have been developed to ease

the burden of writing graph analytics applications for such machines. New

trends in processor architecture have made this programming problem much

more difficult. To reduce energy consumption, computer manufacturers are

turning to heterogeneous processor architectures in which each machine has a

multicore processor and GPUs or FPGAs. To exploit such platforms, we must

tackle the twin challenges of processor heterogeneity and distributed-memory

computing. Frameworks like Lux [86] and Gluon [51] permit graph analyt-

ics applications writers to use distributed GPUs, but they require writing

1This work was originally published in Euro-Par 2018: Parallel Processing - 24th Inter-
national Conference on Parallel and Distributed Computing, Italy, 2018, Proceedings [63].
The first author conceived the key compiler design ideas and abstractions while co-authors
helped with its implementation and presentation.
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platform-specific programs that are not portable.

Ideally, we would have a compiler that takes single-source, high-level

specifications of graph analytics algorithms and automatically translates them

into distributed, heterogeneous implementations while optimizing them for di-

verse processor architectures. This chapter describes such a compiler, called

Abelian. Application programs are generalized vertex programs written in

the Galois programming model, which provides programming patterns and

data structures to support graph applications [119]. Section 3.2 describes this

programming model in more detail. The Abelian compiler, described in Sec-

tion 3.3, targets the Gluon runtime [51], which implements bulk-synchronous

execution. Unlike other systems in this space, this runtime supports a num-

ber of graph partitioning policies including edge-cuts and vertex-cuts, and the

programmer can choose any of these policies. The compiler exploits domain-

knowledge to generate distributed code, inserting optimized communication

code. Back-end compilers generate optimized code for NUMA multi-cores and

GPUs from the output of Abelian.

3.2 Programming Model

Abelian supports the programming model described in Chapter 1 Sec-

tion 1.1.1 which is more general than other systems in this space. In particular,

an operator is allowed to update the labels of both the active node and its im-

mediate neighbors, which is useful for applications like matrix completion using

stochastic gradient descent. In addition, Abelian does not require updates to
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node labels to be reduction operations. For example, k-core decomposition

evaluated in Section 3.4 uses subtraction on node labels.

In addition to the operator, the programmer must specify how active

nodes are found in the graph [116]. The simplest approach is to execute the

program in rounds and apply the operator to every node in each round. The

order in which nodes are visited is unspecified, and the implementation is free

to choose whatever order is convenient. These topology-driven algorithms [130]

terminate when a global quiescence condition is reached. The Bellman-Ford

algorithm for single-source shortest-path (sssp) is an example.

An alternative strategy is to track active nodes in the graph and apply

the operator only to those nodes, which potentially creates new active nodes.

These data-driven algorithms [130] terminate when there are no more active

nodes in the graph. As before, the order in which active nodes are to be

processed is left unspecified, and the implementation is free to choose what-

ever order is convenient. Chaotic relaxation sssp uses this style of execution.

Tracking of active nodes can be implemented by maintaining a work-list of

active nodes. Alternatively, this can be implemented by marking active nodes

in the graph and making sweeps over the graph, applying the operator only

to marked nodes; we call this approach filtering. Fine-grain synchronization

in marking and unmarking nodes can be avoided by using Jacobi-style iter-

ation with two flags, say current and next, on each node; in a round, active

nodes whose current flag is set are processed, and if a node becomes active in

that round, its next flag is set using an ordinary write operation. The roles
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of these flags are exchanged at the end of each round. In our programming

model, data-driven algorithms are written using work-lists, but the compiler

transforms the code to use a filtering implementation. The correctness of this

transformation is ensured by the fact that active nodes can be processed in

any order.

3.2.1 Implementation:

This programming model is implemented in C++ using the Galois li-

brary [119]. Figure 3.1 shows a program for push-style data-driven algorithm

of pagerank. A work-list is used to track active nodes. TheGalois::for_each

in line 30 populates the work-list initially with all nodes in the graph and then

iterates over it until the work-list is empty. The operator computes the update

to the pagerank of the active node, and it pushes this update to all neighbors

of the active node. If the residual at a neighbor exceeds some user-specified

threshold, that neighbor becomes active and is pushed to the work-list.

The semantics of the Galois::for_each iterator permit work-list ele-

ments to be processed in any order. In a parallel implementation of the itera-

tor, each operator application must appear to have been executed atomically.

To ensure this, the application programmer must use data structures provided

in the Galois library which include graphs, work-lists, and accumulators. This

permits the runtime to manage updates to distributed data structures on het-

erogeneous devices and allows the compiler to treat data structures as objects

with known semantics, which enables program optimization and generation of
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1 s t r u c t NodeData{
2 // data on each node
3 unsigned i n t nout ; // out−degree
4 f l o a t rank ;
5 std : : atomic<f l o a t > r e s ; // r e s i d u a l
6 } ;
7

8 s t r u c t PageRank {
9 Graph∗ g ;

10 PageRank (Graph∗ g ) : g ( g ) {}
11 void operator ( ) (GNode src ,
12 Workl i st& wl ) {
13 auto& sd = g−>getData ( s r c ) ;
14 auto res_old=sd . r e s . exchange (0 ) ;
15 // apply r e s i d u a l to s e l f
16 sd . rank += res_old ;
17 auto de l t a=res_old ∗ alpha /sd . nout ;
18 f o r ( auto e : g−>getEdges ( s r c ) ) {
19 GNode dst = g−>getEdgeDst ( e ) ;
20 auto& dd = g−>getData ( dst ) ;
21 // update r e s i d u a l o f des t
22 dd . r e s += de l t a ;
23 i f ( dd . r e s > to l e r an c e ) {
24 wl . push ( dst ) ;
25 }
26 }
27 }
28 } ;
29

30Galois : : for_each ( g , PageRank{g }) ;

Figure 3.1: Pagerank source program

1 s t r u c t Add_contrib {
2 typede f f l o a t ValTy ;
3 s t a t i c ValTy ex t r a c t (NodeData& node ) {
4 r e turn node . con t r i b ;
5 }
6 s t a t i c bool reduce (NodeData& node ,
7 ValTy y ) {
8 add ( node . contr ib , y ) ;
9 r e turn true ;

10 }
11 s t a t i c void r e s e t (NodeData& node ) {
12 node . con t r ib = 0 ;
13 }
14 } ;
15

16 s t r u c t Bcast_contrib {
17 typede f f l o a t ValTy ;
18 s t a t i c ValTy ex t r a c t (NodeData& node ) {
19 r e turn node . con t r i b ;
20 }
21 s t a t i c void setVal (NodeData& node ,
22 ValTy y ) {
23 node . con t r ib = y ;
24 }
25 } ;

Figure 3.2: Compiler-generated syn-
chronization structures for field con-
trib in pagerank
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parallel code from implicitly parallel programs as described in Section 3.3.

3.2.2 Restrictions on operators

Like in other programming models for graph analytics [70, 86, 135, 195]

and compilers for data-parallel languages [13, 140, 164], operators cannot per-

form I/O operations. They also cannot perform explicit dynamic memory al-

location since some devices (like GPUs) have limited support for this in their

runtimes. The library data structures can perform dynamic storage allocation,

but this is done transparently to the programmer.

3.3 Abelian Compiler

Figure 3.4 is an overview of how input programs are compiled for exe-

cution on distributed, heterogeneous architectures. The Abelian compiler (im-

plemented as a source-to-source translation tool based on Clang’s libTooling)

analyzes the patterns of data accesses in operators, restructures programs for

execution on distributed-memory architectures, and inserts code for optimized

communication. The output of the Abelian compiler is a bulk-synchronous

parallel C++ program with calls to the Gluon [51] communication runtime

(Figure 3.3). Gluon transparently handles the graph partitioning while load-

ing the input graph. The generated code is independent of the partitioning

policy, but the partitioning policy determines which portions of this code are

executed. This permits Gluon’s optimization that exploits structural invari-

ants in partitioning without recompiling the program. The Abelian compiler
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1 s t r u c t NodeData {
2 // data on each node
3 unsigned i n t nout ; // out−degree
4 f l o a t rank ;
5 f l o a t r e s ; // r e s i d u a l
6 // compi le r added f i e l d
7 std : : atomic<f l o a t > cont r ib ;
8 } ;
9DistributedAccumulator work_done ;

10 . . . // f i e l d −s p e c i f i c b i tve c to r , f l a g s
11 . . . // f i e l d −s p e c i f i c sync s t r u c t u r e s
12 s t r u c t PageRank {
13 Graph∗ g ;
14 const f l o a t &l_alpha , &l_to l e rance ;
15 . . . // copy cons t ruc to r f o r members
16 void operator ( ) (GNode s r c ) {
17 auto& sd = g−>getData ( s r c ) ;
18 i f ( sd . r e s > l_to l e rance ) {
19 work_done += 1 ; // do not

terminate
20 auto res_old = sd . r e s ;
21 sd . r e s = 0 ;
22 sd . rank += res_old ;
23 Bitvec_rank . s e t ( s r c ) ;
24 auto de l t a=res_old ∗ l_alpha/sd .

nout ;
25 f o r ( auto e : g−>getEdges ( s r c ) ) {
26 GNode dst = g−>getEdgeDst ( e ) ;
27 auto& dd = g−>getData ( dst ) ;
28 dd . con t r i b += de l t a ;
29 Bitvec_contr ib . s e t ( dst ) ;
30 } } }
31 } ;
32 s t r u c t PageRank_splitOp {
33 Graph∗ g ;
34 PageRank_splitOp (Graph∗ g ) : g ( g ) {}
35 void operator ( ) (GNode s r c ) {
36 auto& sd = g−>getData ( s r c ) ;
37 sd . r e s += sd . con t r ib ;
38 Bitvec_res . s e t ( s r c ) ;
39 sd . con t r i b = 0 ;
40 }
41 } ;

42 . . . // 1 s t round f o r a l l nodes in
i n i t i a l work− l i s t

43do { // subsequent rounds : pred i ca te−
based f i l t e r

44 work_done . r e s e t ( ) ; // f o r
te rminat ion

45

46 . . . // sync r e s i f r equ i r ed : readSrc
47 Galois : : do_all ( g . ge tSources ( ) ,
48 PageRank{&g , alpha , t o l e r an c e }) ;
49 Flag_rank . se t_wr i teSrc ( ) ;
50 Flag_contr ib . set_reduceDst ( ) ;
51

52 i f ( Flag_contr ib . is_reduceDst ( ) ) {
53 graph . sync<reduceDst , readSrc ,
54 Add_contrib , Bcast_contrib>
55 ( Bitvec_contr ib ) ; // executed
56 Flag_contr ib . reset_reduceDst ( ) ;
57 } e l s e i f ( Flag_contrib . i s_reduceSrc ( )

) {
58 // sync con t r ib : reduceSrc ,

readSrc
59 } e l s e { . . . } // sync con t r ib i f

r equ i r ed
60 Galois : : do_all ( g . ge tSources ( ) ,
61 PageRank_splitOp{&g})

;
62 Flag_res . se t_wr i teSrc ( ) ;
63} whi l e (work_done . reduce ( ) ) ;

Figure 3.3: Compiler-generated pagerank program
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also generates IrGL [124] intermediate representation kernels corresponding to

each Galois::do_all call in the C++ program and inserts code in the C++

program to switch between calling the Galois::do_all and the corresponding

IrGL kernel depending on the configuration chosen for the host (these are

not shown in Figure 3.3 for brevity). The C++ program and the IrGL inter-

mediate code are then compiled using device-specific compilers. The output

executable is parameterized by the graph input, the partitioning policy, and

the number of hosts and their configuration (CPU or GPU). The user can thus

experiment with a variety of partitioning strategies and heterogeneous devices

with a single command-line switch.

3.3.1 Graph-data Access Analysis

The access analysis pass analyzes the fields accessed in an operator.

The results of this analysis are used to insert required communication code.

61



Field accesses are classified as follows:

• Reduction: The field is read and updated using a reduction operation

inside an edge iterator within the operator (e.g., addition to residual in

line 22 in Figure 3.1). This is a common and important pattern in graph

analytics applications.

• Read: The field is read, and it is not part of a reduction (e.g., read from

nout in line 17 in Figure 3.1).

• Write: The field is written, and it is not part of a reduction (e.g., write

to rank in line 16, Figure 3.1).

In addition, it is useful to abstract the context in which a field access

is made.

• At source: The field is accessed at the source node of an edge.

• At destination: The field is accessed at the destination node of an edge.

• At any: The field is accessed at a node independent of any edge or at

both endpoints of an edge.

3.3.2 Restructuring computation

The goal of computation restructuring is to bridge the semantic gap

between the programming model, which has a single address space, and the

execution model, which is distributed-memory and bulk-synchronous parallel.

The semantics of Galois iterators permit iterations to be executed in par-

allel as long as each iteration appears to execute atomically. This fine-grain,
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iteration-level parallelism must be converted to round-based, bulk-synchronous

parallelism by the Abelian compiler. This includes eliminating global vari-

ables (similar to closure conversion in functional languages) by adding them

as members of the structure. This also requires two key transformations.

3.3.2.1 Splitting operators

When active nodes are processed in parallel on a shared-memory ma-

chine, fine-grain synchronization may be needed for correct execution. This

problem appears in a different guise on distributed-memory machines: if the

two active nodes are on different hosts, proxies will be created on both hosts

for the common neighbor, and it is necessary to reconcile the values pushed to

these proxies so that the semantics of the program are respected. The bulk-

synchronous execution model does not permit fine-grain synchronization, so

these kinds of problems must be solved, in general, by breaking up the opera-

tor into phases if necessary and introducing sync calls between phases. There

are a number of cases to consider depending on the type of field access as

determined by the graph-data access analysis. We describe this for one such

case.

In the PageRank source code in Figure 3.1, the residual field is read (line

14) to update the rank field (line 16) and written (line 14 using exchange(0))

at the source, but it is also reduced (line 22) at the destination. Since different

hosts could update the residual, the hosts reading it should have the reduced

value. To handle this, the compiler splits any operator that has such a depen-
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dence into multiple operators (a form of loop fission): one with only Read and

Write accesses to the field and another with only Reduction accesses, as shown

in the PageRank and PageRank_splitOp operators (lines 12-41) respectively

in Figure 3.3. This may involve introducing new fields to store the intermedi-

ate values (e.g., contrib). The compiler also transforms some non-reduction

read-after-write operations (e.g., subtraction) to equivalent reduction opera-

tions (e.g., addition) in a similar way. After this transformation, sync calls

are introduced between the parallel phases, as described in Section 3.3.3.

3.3.2.2 Eliminating work-lists

The Abelian compiler eliminates work-lists by using filtering, as ex-

plained in Section 3.2: in a given round, all nodes in the graph are visited and

the operator is applied to nodes whose current flag is set. This flag is reset,

and if a node becomes active in that round, its next flag is set; the roles of the

flags are exchanged at the end of each round.

In some algorithms, the predicate used in the source program to push

an active node to the work-list can be used during filtering to check if the node

is active. Extracting this predicate involves a form of loop fission, and it avoids

introducing flags and synchronizing their accesses. For example, in Figure 3.1,

the code in lines 23-24 adds active nodes to the work-list. In the generated

code, this is eliminated, and a new operator is created to conditionally activate

nodes as shown in line 18 in Figure 3.3. Another operator is created to execute

all nodes that would have been on the initial work-list (line 42). Abelian
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can also directly take filter-based implementation of data-driven algorithms as

an input, in which case this transformation is not required. Termination is

detected using a distributed accumulator (lines 19 and 63) provided by Gluon.

3.3.3 Inserting communication

The final pass of the Abelian compiler inserts code for communication

and synchronization. A simple approach is the following: in each round, every

mirror sends its value to its master where these values are combined, and the

result is broadcast back to all the mirrors. This is essentially the gather-apply-

scatter model used by most systems in this space, and it can be implemented

by inserting a Gluon [51] sync call after each operator for every field that

might be updated by that operator. Compilers for heterogeneous systems,

such as Falcon [164], Dandelion [140], LiquidMetal [13], and DMLL [32], take

a similar approach since their granularity of synchronization is an object or

field. This coarse-grained approach can be seen as a more elaborate version of

the write-broadcast cache coherence protocol used in systems with hardware

cache-coherence. Abelian implements a different, fine-grained communication

protocol to reduce the communication volume: a host sends the value of a field

to other hosts only if that field has been updated in the previous rounds and if

this value will be read in the current round. Static analysis is not adequate to

determine these properties, so instrumentation code is inserted to track this

dynamically. The actual communication is performed by the Gluon runtime,

and it is invoked by inserting sync calls into the code.
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3.3.3.1 Fine-grained communication

In graph analytics applications, each round typically updates the field

of only a small subset of graph nodes. A device-local, field-specific bit-vector

is used to track updates to nodes’ fields that participate in communication.

The analysis pass determines points in the operator where these fields might

be updated, and the compiler inserts instrumentation code at those points to

also update the node’s bit in the bit-vector for that field (lines 23, 29, 38 in

Figure 3.3). The Gluon sync interface permits this bit-vector to be passed to

the runtime system, which uses it to avoid sending node values that have not

been updated in the current round.

3.3.3.2 On-demand communication

Using the bit-vector ensures only updated values are communicated,

but it does not permit Gluon’s communication optimization that exploits

structural invariants in partitioning policies [51]. To do so, the domain-specific

knowledge of abstract write and read locations for the last reduction access(es)

and next read access of the field must be specified, respectively. If it is un-

specified or imprecise, Gluon may conservatively perform some redundant syn-

chronization. The Abelian compiler can only precisely identify the abstract

locations of fields accessed within an operator and cannot be precise about

the future accesses. Therefore, after an operator, it inserts code that sets or

invalidates the sync-state invalidation flags for fields that could be written in

the operator using its write location (lines 49, 50, 62 in Figure 3.3). Before
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an operator, it inserts the synchronization structures, as shown in Figure 3.2

(equivalent GPU functions generated for a vector of nodes are omitted for

brevity), and the communication code for fields that could be read in the

operator (lines 46, 52-59 in Figure 3.3). The code checks the field-specific

sync-state flags and calls the Gluon sync routine with the precise write and

read locations if the flag is invalidated.

3.3.4 Device-specific compilers

The Abelian compiler outputs C++ code that can be compiled using

existing compilers like g++ to execute on shared-memory NUMA multicores

using the Galois runtime [119]. A naive translation of this C++ code to

CUDA or OpenCL is not likely to yield high-performance code because it will

not exploit SIMD execution. We instead use the IrGL [124] compiler, which

produces highly optimized CUDA and OpenCL code from an intermediate

representation that is intended for graph applications. This compiler exploits

nested parallelism, which is important when processing scale-free graphs. To

interface with the IrGL compiler, the Abelian compiler generates IrGL inter-

mediate code, translating data layout of fields from arrays of structures to

structures of arrays.

3.4 Experimental Evaluation

To evaluate the performance of programs generated by the Abelian

compiler, we studied a number of graph analytical applications: betweenness
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Table 3.1: Inputs and their key properties

clueweb12 [134] kron30 [102] rmat28 [36] amazon [74]

|V | 978M 1073M 268M 31M
|E| 42,574M 10,791M 4,295M 82.5M
|E|/|V | 44 16 16 2.7
max Dout 7,447 3.2M 4M 44557
max Din 75M 3.2M 0.3M 25366

centrality (bc), breadth-first search (bfs), connected components (cc), k-core

decomposition (kcore), pagerank (pr), single-source shortest path (sssp), and

matrix completion using stochastic gradient descent (sgd). We specify the pro-

grams in Galois C++: pull-style topology-driven algorithm for pr, push-and-

pull-style topology-driven algorithm for sgd, and push-style work-list-driven

algorithms for the rest. The Abelian compiler analyzes the program, restruc-

tures the operators, and synthesizes precise communication. Unless otherwise

noted, all optimizations are applied in our evaluation, including eliminating

work-lists. The programs work with different partitioning policies. In our

evaluation, we choose incoming edge-cut for pr, cartesian vertex-cut for sgd,

and outgoing edge-cut for all other benchmarks. We have empirically found

these policies to work well in practice; an exhaustive search to find the best

policy is outside the scope of this work.

Table 3.1 shows the input graphs we used along with their properties.

All the CPU experiments were done on the Texas Advanced Computing Cen-

ter’s [4] Stampede [155] KNL Cluster. For GPU experiments, the Bridges [162]

supercomputer at the Pittsburgh Supercomputing Center [3, 161] was used.

Table 3.2 shows the configuration of these clusters used in our experiments.

In all our experiments, we choose the max-degree node as the source for bc,
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bfs, and sssp. For kcore, we solve for k = 100. We present the mean execution

time of 3 runs, excluding graph partitioning time. We run pr and sgd for 100

and 50 iterations, respectively; all other algorithms are run until convergence.

Table 3.2: Cluster configurations

Stampede (CPU) Bridges (GPU)

NIC Omni-path Omni-path
Machine Intel Xeon Phi KNL 4 NVIDIA Tesla K80s
No. of hosts 32 16
Each host 272 threads 1 Tesla K80
Memory 96GB DDR4 128GB DDR5
Compiler g++ 7.1 g++ 5.3

Table 3.3: Bridges: execution time (in seconds) on 16 GPUs for rmat28

D-IrGL Abelian
bc 9.6 9.6
bfs 1.1 1.2
cc 2.6 2.7
kcore 1.5 1.5
pr 32.9 30.5
sssp 2.5 2.5

3.4.1 Comparison with the state-of-the-art

We compare the performance of Abelian compiler-generated programs

with handwritten D-Galois programs for CPU-only systems [51] and handwrit-

ten D-IrGL programs for GPU-only systems [51]. D-Galois and D-IrGL pro-

grams have explicit synchronization specified by the programmer; in contrast,

synchronization in programs produced by the Abelian compiler is introduced

automatically by the compiler. However, all these programs use Gluon [51],
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Table 3.4: Stampede: execution time (in seconds) (H: hosts)

Gemini D-Galois Abelian

8H 32H 8H 32H 8H 32H

bc clueweb12 - - OOM 430.4 OOM 437.6
kron30 - - 41.3 27.0 39.7 27.3

bfs clueweb12 OOM 69.9 11.6 9.1 12.0 10.1
kron30 5.1 7.1 5.1 4.0 5.2 4.2

cc clueweb12 39.3 38.8 OOM 16.5 OOM 18.3
kron30 15.8 14.8 7.6 4.6 7.7 4.0

kcore clueweb12 - - OOM 290.4 OOM 289.1
kron30 - - 4.4 3.0 4.5 3.0

pr clueweb12 OOM 257.9 395.1 248.0 402.1 277.4
kron30 245.1 232.4 278.1 221.9 281.0 232.5

sssp clueweb12 OOM 128.3 OOM 14.3 OOM 15.8
kron30 14.0 14.9 9.4 8.2 9.3 8.2

sgd amazon - - 1570.2 701.6 1570.2 696.2

a communication substrate that optimizes communication at runtime by ex-

ploiting structural and temporal invariants in partitioning (Gluon uses LCI [50]

for message transport between hosts). In addition, D-Galois and Abelian use

the same Galois [119] computation operators on the CPU while D-IrGL and

Abelian use the same IrGL [124] computation kernels on the GPU. Therefore,

differences in performance between Abelian-generated code and D-Galois/D-

IrGL code arise mainly from differences in how synchronization code is inserted

by the Abelian compiler.

We also compare Abelian-generated programs with distri-buted-CPU

programs written in the Gemini framework [195] (Gemini does not have kcore

and sgd; bc in Gemini uses bfs while that in Abelian uses sssp, so it is omitted).

Gemini has explicit communication messages in the programming model, and

it provides a third-party baseline for our study.

Table 3.3 and Table 3.4 show the distributed-GPU and distri-buted-
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CPU results. Abelian programs match the performance of D-Galois and D-

IrGL programs; the difference is not more than 12%. Gemini is 15% faster

than Abelian for pr with kron30 on 8 hosts. In all other cases, Abelian matches

or outperforms Gemini. The geometric mean speedup of Abelian over Gemini

on 32 KNL hosts is 2.4×. These results show that Abelian is able to compile

a high-level, shared-memory, single address space specification into efficient

implementations that either match or beat the state-of-the-art graph analyt-

ics platform. Although the Abelian compiler produces code for heterogeneous

devices, we do not report numbers for distributed CPU+GPU execution be-

cause the 4 GPUs on a node on Bridges outperform the CPU by a significant

margin.

3.4.2 Impact of communication optimizations

We analyze the performance impact of the communication optimiza-

tions in Abelian (Section 3.3.3) by comparing three levels of communication

optimization.

1. Unoptimized (UO): the Gluon sync call is inserted for a field after an op-

erator if it could be updated in that operator. The bit-vector as well as

the abstract write and read locations are left unspecified, so all elements

in the field are synchronized. Existing compilers for heterogeneous sys-

tems like Falcon [164], Dandelion [140], and Liquid Metal [13] do similar

field-specific, coarse-grained synchronization.

2. Fine-grained communication optimization (FG): the compiler instruments
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the code to use a bit-vector that dynamically tracks updates to fields.

The Gluon sync call used is the same as in UO, but it only synchronizes

the elements in the field that have been updated using the bit-vector.

This is similar to existing graph analytical frameworks [39, 70, 195] that

synchronize only the updated elements.

3. Fine-grained and on-demand communication optimization (FO): this (de-

fault of Abelian compiler) uses on-demand communication along with

fine-grained optimization. It instruments invalidation flags to track fields

that have been updated and inserts Gluon sync calls before an operator

for fields that could be read in the operator, thereby precisely identifying

both the abstract write and read locations. This enables Gluon’s commu-

nication optimization that exploits structural invariants in partitioning

policies.

We compare these three communication optimization variants with hand-tuned

(HT) programs written in D-Galois and D-IrGL on distributed CPUs and dis-

tributed GPUs respectively. In these programs, the programmer (with global

control-flow knowledge) specified the precise communication using Gluon sync

calls.

Figure 3.5 and Figure 3.6 present the comparison results on 32 KNL

hosts of Stampede and 16 GPU devices of Bridges respectively. Each bar in

the figures shows the execution time (maximum across hosts). We measure the

maximum computation time across hosts in each round and take their sum,
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Figure 3.5: 32 KNL hosts on Stampede: clueweb12 and kron30. Different
variants are: UnOpt (UO), Fine-Grained opt (FG), Fine-grained+On-demand
opt (FO), Hand-Tuned(HT)
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Figure 3.6: 16 GPU devices on Bridges: rmat28

which is the total computation time (top). The rest of the execution time

is non-overlapped communication time (bottom). We also measure the total

communication volume across all rounds, shown in text on the bars.

The trends are clear in the figure. Each optimization reduces commu-

nication volume and time, improving execution time further. FG significantly

reduces communication volume and time over UO, with the exception of pr.

FG performs atomic updates to the bit-vector, which could be overhead when

the updates are dense, like in pr. FO optimizes the communication volume

and time further to match the performance of HT. FO reduces communication

volume by 23× over UO, yielding a geometric mean execution time speedup

of 3.4×. Fine-grained and on-demand communication optimizations (FO) are

thus essential to match the performance of HT on both CPUs and GPUs.

Abelian compiler-generated programs can support different partitioning
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Figure 3.7: 32 KNL hosts on Stampede: partitionings for
bc on clueweb12

policies, and we study whether they can fully exploit Gluon’s partition-aware

optimizations like HT. Figure 3.7 presents the comparison results for bc on

clueweb12 using different partitioning policies namely, cartesian vertex cut [23]

(cvc), hybrid vertex-cut [39] (hvc), and outgoing edge cut (ec). This shows

that FO matches the performance of HT, although FG does not. This shows

that the compiler can capture sufficient domain-specific knowledge to aid the

Gluon runtime in performing partition-aware optimizations.

3.5 Related Work

Distributed graph processing systems: Many frameworks [39, 51, 70, 86,

106, 181, 195] exist which provide a runtime to simplify writing distributed

graph analytics algorithms. Like Abelian, these systems use a vertex pro-

gramming model and bulk-synchronous parallel (BSP) execution. Abelian is

the first compiler that synthesizes the required communication. Our evalu-
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ation shows that the programs generated by the Abelian compiler that use

the Gluon [51] runtime match hand-tuned programs in the Gluon system and

outperform those in the Gemini [195] system.

Single-host heterogeneous graph processing systems: There are several

frameworks for graph processing on a single GPU [124], multiple GPUs [16,

125, 194] and multiple GPUs with a CPU [62]. All of these are restricted

to a single physical node that connects all devices unlike our system, and

consequently, they cannot handle graphs as large as the ones our system can.

Abelian leverages the throughput optimizations in the IrGL [124] compiler

that are essential for performance on power-law graphs. Unlike IrGL, which

compiles an intermediate-level program representation to CUDA, the Abelian

compiler not only generates this from a high-level C++ program but also

synthesizes synchronization code to execute the compiled code on multiple

devices in multiple hosts.

Compilers for distributed or heterogeneous architectures: For heteroge-

neous architectures, Liquid Metal [13] compiles the Lime language to hetero-

geneous CPUs, GPUs, and FPGAs. Dandelion [140] compiles high-level LINQ

programs to distributed heterogeneous systems. Green-Marl [78] is a DSL that

is compiled to Pregel. Brown et al. [32] compile a data-parallel intermediate

language DMLL to multicores, clusters, and GPUs. Upadhyay et al. [164] com-

pile a domain-specific language, Falcon, to Giraph code for CPU clusters and

MPI+OpenCL code for GPU clusters, but it does not do GPU-specific com-

putation restructurings like nested parallelism which Abelian compiler does
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using IrGL. In all these compilers, the granularity of communication is an ob-

ject or field, whereas Abelian identifies fine-grained elements of a label-array

and communicates them precisely using the Gluon runtime. Moreover, none of

the existing compilers use domain-specific analysis and computation restruc-

turings for graph analytical applications like Abelian.
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Chapter 4

Experimental Study of Partitioning Policies1

4.1 Motivation

An important runtime parameter to the compiler-generated distributed

code in Chapter 3 is the partitioning policy, which is left for the user to choose.

The application performance is sensitive to the partitioning policy chosen.

When a graph is partitioned, a node in the graph may be replicated on several

machines, and communication is required to keep these replicas synchronized.

Good partitioning policies attempt to reduce this synchronization overhead

while keeping the computational load balanced across machines. A number

of recent studies have looked at ways to control replication of nodes, but

these studies are not conclusive because they were performed on small clusters

with eight to sixteen machines, did not consider work-efficient data-driven

algorithms, or did not optimize communication for the partitioning strategies

they studied.

1This work was originally published in the proceedings of VLDB Endowment, 12(4),
2018 [66]. The development of the key ideas as well as implementation of all the partitioning
policies used in this work were done by the first author while co-authors helped with the
experimentation, data collection, and presentation.
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4.2 Background

Graph partitioning must balance two concerns:

The first concern is computational load balance. For the graph algo-

rithms considered in this work, computation is performed in rounds: in each

round, active nodes in the graph are visited, and a computation is performed

by reading and writing the immediate neighbors of the active node [101]. For

simple topology-driven graph algorithms in which all nodes are active at the

beginning of a round, the computational load of a host is proportional to the

numbers of nodes and edges assigned to that host, so by dividing nodes and

edges evenly among hosts, it is possible to achieve load balance [39]. However,

work-efficient graph algorithms like the ones considered in this work are data-

driven: nodes become active in data-dependent, statically unpredictable ways,

so a statically balanced partition of the graph does not necessarily result in

computational load balance.

The second concern is communication overhead. We consider graph

partitioning with replication: when a graph is partitioned, its edges are divided

up among the hosts, and if edge (n1→n2) is assigned to a host h, proxy nodes

are created for n1 and n2 on host h and connected by an edge. A given node in

the original graph may have proxies on several hosts in the partitioned graph,

so updates to proxies must be synchronized during execution using inter-host

communication. This communication entirely dominates the execution time

of graph analytics applications on large scale clusters as shown by the results

in Section 4.6, so optimizing communication is the key to high performance.
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Substantial effort has gone into designing graph partitioning strategies

that reduce communication overhead. Overlapping communication with com-

putation (as done in HPC applications) would reduce its relative overhead, but

there is relatively little computation in graph analytics applications. There-

fore, reducing the volume of communication has been the focus of much effort

in this area. Since communication is needed to synchronize proxies, reducing

the average number of proxies per node (known in the literature as the average

replication factor) while also ensuring computational load balance can reduce

communication [28, 89, 152, 154, 163]. This is one of the driving principles be-

hind the Vertex-Cut partitioning strategy (Vertex-Cuts and other partitioning

strategies are described in detail in Section 4.4) used in PowerGraph [70] and

PowerLyra [39]. Partitioning policies developed for efficient distribution of

sparse matrix computation such as 2D block partitioning [23, 35] can also be

used since sparse graphs are isomorphic to sparse matrices.

Several papers [6, 23, 39, 167, 195] have studied how the performance of

graph analytics applications changes when different partitioning policies are

used, and they have advocated particular partitioning policies based on their

results. We believe these studies are not conclusive for the following reasons.

• Most of the evaluations were done for small graphs on small clusters, so

it is not clear whether their conclusions extend to large graphs and large

clusters.

• In some cases, only topology-driven algorithms were evaluated, so it is

not clear whether their conclusions extend to work-efficient data-driven
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algorithms.

• The distributed graph analytics systems used in the studies optimize

communication only for particular partitioning strategies, putting other

partitioning strategies at a disadvantage.

4.3 Contributions

This study makes the following contributions:

1. We present the first detailed performance analysis of state-of-the-art,

work-efficient graph analytics applications using different graph parti-

tioning strategies including Edge-Cuts, 2D block partitioning strategies,

and general Vertex-Cuts on large-scale clusters, including one with 256

machines and roughly 69K threads. These experiments use a system

called D-Galois, a distributed-memory version of the Galois system [118]

based on the Gluon communication runtime [51]. Gluon performs com-

munication optimizations that are specific to each partitioning strategy.

Our results show that although Edge-Cuts perform well on small-scale

clusters, a 2D partitioning policy called Cartesian Vertex-Cut (CVC) [23]

performs the best at scale even though it results in higher replication

factors and higher communication volumes than the other partitioning

strategies.

2. We present an analytical model for estimating communication volumes

for different partitioning strategies, and an empirical study using micro-
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benchmarks to estimate communication times. These help estimate and

understand the performance differences in communication required by

the partitioning strategies. In particular, these models explain why at

scale, CVC has lower communication overhead even though it performs

more communication.

3. We give a simple decision tree that can be used by the user to select a

partitioning strategy at runtime given an application and the number of

distributed hosts. Although the chosen policy might not be the best in

some cases, we show that the application’s performance using the chosen

policy is almost as good as using the best policy.

4.3.1 Lessons:

This work’s contributions include some important lessons for designers

of high-performance graph analytics systems.

1. It is desirable to support optimized implementations of multiple parti-

tioning policies including Edge-Cuts and Cartesian Vertex-Cuts, like D-

Galois does. Existing systems either support general partitioning, using

approaches like gather-apply-scatter (PowerGraph, PowerLyra), without

optimizing communication for particular partitioning policies like Edge-

Cuts, or support only Edge-Cuts (Gemini). Neither approach is flexible

enough.

2. An important lesson for designers of efficient graph partitioning poli-
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cies is that the communication overhead in graph analytics applications

depends on not only the communication volume but also the commu-

nication pattern among the partitions as explained in Section 4.5. The

replication factor and the number of edges/vertices split between parti-

tions [39, 70, 152, 163] are not adequate proxies for communication over-

head.

4.4 Partitioning Policies

The graph partitioning policies considered in this work divide a graph’s

edges among hosts and creating proxy nodes on each host for the endpoints

of the edges assigned to that host. If edge e : (n1→n2) is assigned to a host

h, h creates proxy nodes on itself for nodes n1 and n2, and adds an edge

between them. For each node in the graph, one proxy is made the master,

and the other proxies are made mirrors. Figure 4.1a shows an example graph

and Figure 4.1b shows one of the many ways of partitioning it among 4 hosts.

In Figure 4.1b, colored nodes with solid border are master proxies whereas

nodes without color and dotted border are mirror proxies. Intuitively, the

master holds the canonical value of the node during the computation, and it

communicates that value to the mirrors as needed. Each partitioning strategy

represents choices made along two dimensions: (i) how edges are partitioned

among hosts and (ii) how the master is chosen from the proxies of a given node.

To understand these choices, it is useful to consider both the graph-theoretic

(i.e., nodes and edges) and the adjacency matrix representation of a graph.
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4.4.1 1D Partitions

In 1D partitioning, nodes are partitioned among hosts. If a host owns

node n, all outgoing (or incoming) edges connected to n are assigned to that

host, and the corresponding proxy for node n is made the master. In the graph

analytical literature, this partitioning strategy is called outgoing (or incoming)

Edge-Cut [89, 152, 154, 195]. Figure 4.1c shows an example of OEC for the

example graph 4.1a along with the communication pattern (for push-style

operators) required for OEC i.e reduce among hosts during synchronization.

In matrix-theoretic terms, this corresponds to assigning rows (or columns)

to hosts. 1D partitioning is commonly used in stencil codes in computational

science applications; the mirror nodes are often referred to as halo nodes in that

context. Stencil codes use topology-driven algorithms on meshes, which are

uniform-degree graphs, and computational load balance can be accomplished

by assigning roughly equal numbers of nodes to all hosts. For power-law

graphs, the adjacency matrix is irregular, and ensuring load balance for data-

driven graph algorithms through static partitioning is difficult.

A number of policies are used in practice.

1. Balanced nodes: Assign roughly equal numbers of nodes to all hosts.

2. Balanced edges: Assign nodes such that all hosts have roughly the same

number of edges.

3. Balanced nodes and edges [195]: Assign nodes such that a given linear
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combination of the number of nodes and edges on a host has roughly the

same value on all hosts.

The first policy is the simplest and does not require any analysis of

the graph. However, it may result in substantial load imbalance for power-law

graphs since there is usually a large variation in node degrees. The other two

policies require computing the degree of each vertex and the prefix-sums of

these degrees to determine how to partition the set of nodes.

4.4.2 2D Block Partitions

In 2D block partitioning, the adjacency matrix is blocked along both

dimensions, and each host is assigned some of the blocks. Unlike in 1D parti-

tioning, both outgoing and incoming edges of a given node may be distributed

among different hosts. In the graph analytical literature, such partitioning

strategies are called Vertex-Cuts. 2D block partitioning can be viewed as a

restricted form of Vertex-Cuts in which the adjacency matrix is blocked.

This work explores three alternative implementations of 2D block par-

titioning, illustrated in Figure 4.2 using a cluster of eight hosts in a 4×2 grid.

The descriptions below assume that hosts are organized in a grid of size pr×pc.

1. CheckerBoard Vertex-Cuts (BVC) [35, 97]: The nodes of the graph are

partitioned into equal size blocks and assigned to the hosts. Masters are

created on each host for its block of nodes. The matrix is partitioned

into contiguous blocks of size N/pr×N/pc, and each host is assigned
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Figure 4.2: 2D partitioning policies.

one block of edges as shown in Figure 4.2(a). This approach is used

by CombBLAS [33] for sparse matrix-vector multiplication (SpMV) on

graphs. There are several variations to this approach; the one used in

this study is shown in Figure 4.2(a).

2. Cartesian Vertex-Cuts (CVC) [23]: Nodes are partitioned amo-ng hosts

using any 1D block partitioning policy, and masters are created on hosts

for the nodes assigned to it. Unlike BVC, these node partitions need not

be of the same size, as shown in Figure 4.2(b). This can happen, for

example, if the 1D block partitioning assigns nodes to hosts such that

the number of edges is balanced among hosts.

The columns are then partitioned into same sized blocks as the rows.

Therefore, blocks along the diagonal will be square, but other blocks may

be rectangular unlike in BVC. These blocks of edges can be distributed

among hosts in different ways. This study uses a block distribution along

rows and a cyclic distribution along columns, as shown in Figure 4.2(b).
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Figure 4.3: Communication patterns in BVC and CVC policies: red arrows
are reductions and blue arrows are broadcasts for host 4.

3. Jagged Vertex-Cuts (JVC) [35]: The first stage of JVC is similar to CVC.

However, instead of partitioning columns into same sized blocks as the

rows, each block of rows can be partitioned independently into blocks for

a more balanced number of edges (non-zeros) in edge blocks. Therefore,

blocks will not be aligned among the column dimension. These edge

blocks can be assigned to hosts in any fashion, but in this study, the

host assignment is kept the same as CVC as shown in Figure 4.2(c).

Although these 2D block partitioning strategies seem similar, they have

different communication requirements.

Consider a push-style graph algorithm in which active nodes perform

computation on their own labels and push values to their immediate outgoing

neighbors, where they are reduced to compute labels for the next round. In a

distributed-memory setting, a proxy with outgoing edges of a node n on host
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h push values to its proxy neighbors also present on h. These proxies may be

masters or mirrors, and it is useful to distinguish two classes of mirrors for a

node n: in-mirrors, mirrors that have incoming edges, and out-mirrors, mirrors

that have outgoing edges. For a push-style algorithm in the distributed setting,

the computation at an active node in the original graph is performed partially

at each in-mirror, the intermediate values are reduced to the master, and the

final value is broadcast to the out-mirrors. Therefore, the communication

pattern can be described as broadcast along the row dimension and reduce

along the column dimension of the adjacency matrix as shown in Figure 4.1c

for CVC. The hosts that participate in broadcast and/or reduce depends on

the 2D partitioning policy and the assignment of edge blocks to the hosts.

To illustrate this, consider Figure 4.3 which shows the 4×2 grid of hosts

and the reduce and broadcast partners for host 4 in BVC and CVC. For BVC,

by walking down the fourth block column of the matrix in Figure 4.2(a), we

see that incoming edges to the nodes owned by host 4 may be mapped to hosts

{1,3,5,7}, so labels of mirrors on these hosts must be communicated to host

4 during the reduce phase. Similarly, the labels of mirrors on host 4 must

be communicated to masters on hosts {5,6,7,8}. Once the values have been

reduced at masters on host 4, they must be sent to hosts that own out-mirrors

for nodes owned by host 4. Walking over the fourth block row of the matrix,

we see that only host 3 is involved in this communication. Similarly, the labels

of masters on the host {3} must be sent to host 4.

The same analysis can be done on CVC and JVC partitionings. For

89



JVC, a given host may need to involve all other hosts in reductions and broad-

casts, leading to larger communication requirements than CVC.

4.4.3 Unrestricted Vertex-Cut Partitions

Unrestricted or general Vertex-Cuts are partitioning strategies that as-

sign edges to hosts without restriction, and they do not correspond to 1D or 2D

blocked partitions. The partitioning strategies used in the PowerGraph [70]

and PowerLyra systems [39] are examples of this strategy. For example, in

PowerLyra’s Hybrid Vertex-Cut (HVC), nodes are assigned to hosts in a man-

ner similar to an Edge-Cut. However, high-degree nodes are treated differently

from low-degree nodes to avoid assigning all edges connected to a high-degree

node to the same host, which creates load imbalance. If (n1→n2) is an edge

and n2 has low in-degree (based on some threshold), the edge is assigned to

the host that owns n2; otherwise, it is assigned to the node that owns n1.

Figure 4.1c shows HVC for graph 4.1a along with its communication pattern

which requires reduction and broadcast among all the hosts as it lacks any

structural constraints.

4.4.4 Discussion

A small detail in 2D block partitioning is that when the number of pro-

cessors is not a perfect square, we factorize the number into a product px×py

and assign the larger factor to the row dimension rather than the column di-

mension. This heuristic reduces the number of broadcast partners because the
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reduce phase communicates only updated values from proxies to the master

and the number of these updates decrease over iterations, whereas the broad-

cast phase in each round sends the updated canonical value from the master

to all its proxies.

In our studies, we observed that for Edge-Cuts and HVC, almost all

pairs of hosts have proxies in common for some number of nodes. Therefore,

for these partitioning policies, Edge-Cut partitioning performs all-to-all com-

munication while HVC performs two rounds of all-to-all communication (from

mirrors to masters followed by masters to mirrors). On the other hand, CVC

has pc number of parallel all-to-all communications among pr ≈
√
P hosts

followed by pr number of parallel all-to-all communications among pc ≈
√
P

hosts. Therefore, each host in CVC sends fewer messages and has fewer com-

munication partners than EC and HVC, which can help both at the application

level (a host need not wait for another host in another row) and at the hard-

ware level (less contention for network resources). The next section explores

these differences among partitioning policies quantitatively.

4.5 Performance Model for communication

This section presents performance models to estimate communication

volume and communication time for three partitioning policies: Edge-Cut,

Hybrid Vertex-Cut, and Cartesian Vertex-Cut. We formally define replication

factor (Section 4.5.1), describe a simple analytical model for estimating the

communication volume using the replication factor (Section 4.5.2), and use
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Figure 4.4: Performance of different communication patterns on different
number of hosts on Stampede for different CPU architectures.

micro-benchmarks to estimate the communication time from the communica-

tion volume (Section 4.5.3).

4.5.1 Replication Factor

Given a graph G=(V,E), and a strategy S for partitioning the graph

between P hosts, let v be a node in V and let rP,S(v) denote the number

of proxies of v created when the graph is partitioned. rP,S(v) is referred to
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Figure 4.5: Communication volume of each computation round on clueweb12.

as the replication factor, and it is an integer between 1 and P . The average

replication factor across all nodes is a number between 1 (no node is replicated)

and P (all nodes are replicated between all hosts), and it is given by the

following equation:

rP,S =

∑
v∈V rP,S(v)

|V |
(4.1)

4.5.2 Estimating Communication Volume

For simplicity in the communication volume model, assume that the

data flow in the algorithm is from the source to the destination of an edge.

A similar analysis can be performed for other cases. Assume that u nodes

(0≤u≤|V |) are updated in a given round and that the size of the node data

(update) is b bytes.
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4.5.2.1 Edge-Cut (EC)

Consider an incoming Edge-Cut (IEC) strategy (1D column partition-

ing), and let rP,E(v) be the replication factor for a node v. In IEC, the destina-

tion of an edge is always a master, so only the master node is updated during

computation. At the end of a round, the master node updates its mirrors on

other hosts. Since an update requires b bytes, the master node for v in the

graph must send (rP,E(v)− 1) ∗ b bytes. If u nodes are updated in the round,

the volume of communication is the following:

CIEC(G,P ) ≈ (rP,E−1)∗u∗b (4.2)

For an outgoing Edge-Cut (OEC) strategy (1D row partitioning), the source

of an edge is always a master, so the mirrors must send the updates to their

master, and only the master needs the updated value. The communication

volume remains the same as IEC’s only if all the mirrors of u nodes are updated

in the round. In practice, only some mirrors of the nodes in u are updated.

Let fE denote the average fraction of mirrors of nodes in u that are updated.

The communication volume in the round is the following:

COEC(G,P ) ≈ (fE ∗ rP,E−1) ∗ u ∗ b (4.3)

4.5.2.2 Hybrid Vertex-Cut (HVC)

In a general Vertex-Cut strategy like Hybrid Vertex-Cut, the mirrors

must communicate with their master, and the masters must communicate

with their mirrors. If rP,H is the average replication factor, the volume of
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communication in a round in which an average fraction fH of mirrors are

updated is

CHV C(G,P ) ≈ ((fH ∗ rP,H−1)+(rP,H − 1))∗u∗b (4.4)

Comparing this with (4.2) and (4.3), we see that the volume of communication

for OEC and IEC can be much lower than HVC if they have the same repli-

cation factor, and it will be greater than HVC only if their replication factor

is almost twice that of HVC.

4.5.2.3 Cartesian Vertex-Cut (CVC)

Consider a Cartesian Vertex-Cut with P = pr∗pc. Unlike HVC, at most

pr mirrors must communicate with their master, and the masters must com-

municate with at most pc of their mirrors. Let rP,C be the average replication

factor, and let fC and f ′C be the fractions of mirrors that are active along rows

and columns respectively. Then, the volume of communication in a round is

CCV C(G,P ) ≈ ((fC ∗ rP,C − 1) + (f ′C ∗ rP,C − 1)) ∗ u ∗ b (4.5)

Comparing this with (4.4), we see that the communication volume for CVC

can be less than the volume for HVC even with the same replication factor.

This illustrates that the replication factor is not the sole determinant for com-

munication volume.
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4.5.3 Micro-benchmarking to Estimate Communication Time

To relate communication volumes under different communication pat-

terns to communication time, we adapted the MVAPICH2 all-to-allv micro-

benchmark. For a given total communication volume across all hosts, we sim-

ulate the communication patterns of the three strategies (the message sizes

differ for different strategies): (1) IEC/OEC: one round of all-to-all commu-

nication among all hosts, (2) HVC: two rounds of all-to-all communication

among all hosts, (3) CVC: a round of all-to-all communication among all row

hosts followed by a round of all-to-all communication among all column hosts.

In a given strategy, the same message size is used between every pair of hosts.

In practice, the message sizes usually differ and point-to-point communication

(instead of a collective) is typically used to dynamically manage buffers and

parallelize serialization and deserialization of data.

Figures 4.4(a) and 4.4(b) show the communication time of the different

strategies on different number of KNL hosts and Skylake hosts, respectively,

on the Stampede cluster[155] (described in Section 4.6) as the total commu-

nication volume increases. As expected, the communication time is dependent

not only on the communication volume but also on the communication pat-

tern. The performance difference in the communication patterns grows as the

number of hosts increases. While EC, HVC, and CVC perform similarly on 32

KNL hosts, CVC gives a geomean speedup of 4.6× and 5.6× over EC and HVC

respectively to communicate the same volume on 256 KNL hosts; the speedup

is higher for low volume (≤ 100MB) than for medium volume (> 100MB and
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≤ 1000MB). The communication volume in work-efficient graph analytical

applications changes over rounds and several rounds have low communication

volume in practice. For example, Figure 4.5 shows the percentage of compu-

tation rounds of pagerank and sssp with communication volume in the low,

medium, and high ranges for different partitioning policies on 32 and 256 KNL

hosts of Stampede. In Figure 4.4, CVC communicates more data in the same

amount of time on 256 KNL hosts; e.g., CVC can synchronize 128 to 256 MB

of data in the same time that EC and HVC can synchronize 1 MB of data.

Similar behavior is also observed on Skylake hosts. Thus, CVC can reduce

communication time over EC and HVC for the same communication volume

or can increase the volume without an increase in time.

4.5.4 Discussion

The analytical model and micro-benchmark results described in this

section show that although communication time depends on the communica-

tion volume (which in turn depends on the average replication factor), it is

incorrect to conclude from this alone that partitioning strategies with larger

average replication factors or communication volume will perform worse than

those with smaller replication factors or communication volumes. In partic-

ular, CVC might be expected to perform better at scale because it requires

fewer messages and fewer pairs of processors to communicate than other par-

titioning strategies like EC and HVC do. While the micro-benchmarks used

MPI collectives with the same message sizes, most distributed graph analytics
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Table 4.1: Inputs and their properties.

kron30 clueweb12 wdc12

|V | 1073M 978M 3,563M
|E| 10,791M 42,574M 128,736M
|E|/|V | 16 44 36
Max Dout 3.2M 7,447 55,931
Max Din 3.2M 75M 95M
Size on disk 136GB 325GB 986GB

Table 4.2: Execution time of Gemini and D-Galois with EC.

32 hosts Gemini (sec) D-Galois (sec)

kron30

bfs 7.8 3.0
cc 16.0 4.8
pr 213.2 211.6
sssp 17.5 6.1

clueweb12

bfs 72.9 8.9
cc 38.0 16.9
pr 231.9 219.6
sssp 115.8 13.1

systems use MPI or similar interfaces to perform point-to-point communica-

tion with variable message sizes. For example, the D-Galois [51] system uses

LCI [50]2 instead of MPI for sending and receiving point-to-point messages

between hosts. Even in such systems, CVC can be expected to perform bet-

ter at scale than EC and HVC because it needs fewer messages and fewer

pairs of processors to communicate. We study this using the D-Galois system

quantitatively in the next section.
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4.6 Experimental Evaluation

All experiments were conducted on the Texas Advanced Computing

Center’s Stampede Cluster (Stampede2) [4, 155]. Stampede2 has 2 distributed

clusters: one with Intel Knights Landing (KNL) nodes and another with Intel

Skylake nodes. Each KNL cluster host has 68 1.4 GHz cores with 4 hardware

threads per core, 96 GB RAM, and 16 GB MC-DRAM, which serves as a

direct-mapped L3 cache. Each Skylake cluster host has 48 2.1 GHz cores on

2 sockets (24 cores per socket) with 2 hardware threads per core and 192 GB

RAM. Both clusters use 100Gb/sec Intel Omni-Path (OPA) network. We limit

our experiments to 256 hosts on both the clusters and we use 272 threads per

host (69632 threads in total) on the KNL cluster and 48 threads per host

(12288 threads in total) on the Skylake cluster. All code was compiled using

g++ 7.1.0. Unless otherwise stated, all results are presented using the KNL

cluster.

We used three graphs in our evaluation: synthetically generated ran-

domized power-law graph kron30 (using kron [102] generator with weights of

0.57, 0.19, 0.19, and 0.05, as suggested by graph500 [1]) and the largest pub-

licly available web-crawl graphs, clueweb12 [19, 20, 134] and wdc12 (Web Data

Commons) [110, 111]; we present results for wdc12 only at scale (256 hosts).

Properties of these graphs are listed in Table 4.1.

To study the impact of graph partitioning on application execution

2LCI [50] is an alternative to MPI that has been shown to perform better than MPI for
graph analytical applications.
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Table 4.3: Different initial Edge-Cut policies used for different benchmarks,
inputs, and partitioning policies: IE: Incoming Edge-Cut, OE: Outgoing Edge-
Cut, UE: Undirected Edge-Cut.

bc/bfs/sssp cc pr

kron30

XEC OE UE IE
EC IE UE IE
HVC IE UE IE
BVC OE UE IE
JVC OE UE IE
CVC OE UE IE

clueweb12

XEC OE UE IE
EC OE UE OE
HVC OE UE OE
BVC OE UE IE
JVC OE UE IE
CVC OE UE IE

wdc12

XEC OE UE IE
EC OE UE OE
HVC OE UE OE
BVC OE UE IE
JVC OE UE IE
CVC OE UE IE

time, we use five graph analytics applications: betweenness centrality (bc),

breadth-first search (bfs), connected components (cc), pagerank (pr), and

single-source shortest path (sssp). We implement topology-driven algorithm

for pagerank and data-driven algorithms for the rest. We run bc with only one

source. The source nodes for bc, bfs, and sssp are the maximum out-degree

node. The directed graph is given as input to bc, bfs, pagerank, and sssp

(bc and sssp use a weighted graph), while an undirected graph (we make the

directed graph symmetric by adding reverse edges) is given as input to cc. We

present the mean execution time of 3 runs (each being maximum across all

hosts) excluding graph partitioning time. All algorithms are run until conver-
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gence except for pagerank, which is run for up to 100 rounds or iterations.

4.6.1 Implementation

Existing graph analytics systems implement a single partitioning strat-

egy, so they are not suitable for comparative studies of graph partitioning.

Moreover, these frameworks do not optimize communication patterns to ex-

ploit structure in the partitioning policy. Therefore, we used a system called

D-Galois: it uses the shared-memory Galois system [101, 118] for computing on

each host and the Gluon communication runtime [51] for inter-host communi-

cation and synchronization. Gluon is an efficient bulk-synchronous communi-

cation substrate, which enables existing shared-memory CPU and GPU graph

analytics frameworks to run on distributed heterogeneous clusters. Gluon

is partition-aware and optimizes communication for particular partitioning

strategies by exploiting their structural invariants. Instead of naively reduc-

ing from mirrors to masters and broadcasting from masters to mirrors during

synchronization (as done in gather-apply-scatter model), it avoids redundant

reductions or broadcasts by exploiting structural invariants in the partitioning

strategy, as described in Section 4.5. Gluon also exploits the fact that the

partitioning of the graph does not change during computation and it uses this

temporal invariance to reduce the overhead and volume of communication by

optimizing metadata like node IDs that needs to be communicated along with

the node values or updates.

To ensure that D-Galois is a suitable platform for this study, we com-
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pared it with Gemini [195], a state-of-the-art system that uses only Edge-Cuts.

Table 4.2 shows the execution times for Gemini versions of our benchmarks

on 32 KNL hosts; wdc12 is omitted because Gemini runs out of memory while

partitioning it (even on 256 hosts). Since Gemini supports only Edge-Cuts, we

compare it with D-Galois using Edge-Cut (EC). We see that D-Galois outper-

forms Gemini. Gemini also does not scale beyond 32 hosts [51]. These results

support the claim that D-Galois is a reasonable state-of-the-art platform for

performing studies of graph partitioning.

For our study, graphs are stored on disk in CSR and CSC formats (size

for directed, weighted graphs in Table 4.1). The synthetic graphs (kron30) are

stored after randomizing the vertices (randomized order) while the web-crawl

graphs (clueweb12 and wdc12) are stored in their natural (crawled) vertex

order. D-Galois’s distributed graph partitioner reads the input graph such

that each host only reads a distinct portion of the file on disk once.

D-Galois also supports loading partitions directly from disk, and we use

this to evaluate XtraPulp [152], the state-of-the-art graph partitioner for large

scale-free graphs. XtraPulp generates (using command line parameters “-e

1.1 -v 10.0 -c -d -s 0” and 272 OpenMP threads) partitions for kron30

and clueweb12, and it runs out of memory for wdc12 (the authors have been

informed about this). We write these partitions to disk and load it in D-Galois.

We term this the XtraPulp Edge-Cut (XEC) policy.

We implement five partitioning policies in D-Galois: (1) Edge-Cut

(EC), (2) Hybrid Vertex-Cut (HVC), (3) CheckerBoard Vertex-Cut (BVC),
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Table 4.4: Graph partitioning time (includes time to load and construct graph)
and static load balance of edges assigned to hosts on 256 KNL hosts.

Partitioning Max-by-mean
time (sec) edges

bc bc
bfs cc pr bfs cc pr
sssp sssp

kron30

XEC 304 448 312 1.05 1.08 1.06
EC 51 76 51 1.01 1.01 1.01
HVC 102 130 101 1.02 1.02 1.02
BVC 345 379 365 1.02 1.02 1.02
JVC 1006 1006 1016 1.00 1.00 1.00
CVC 261 288 241 1.00 1.00 1.00

clueweb12

XEC 381 647 373 3.18 8.93 14.69
EC 27 152 38 1.00 1.11 1.00
HVC 308 374 308 3.39 1.64 3.39
BVC 1179 12907 12843 20.24 20.24 20.24
JVC 1904 1924 1960 1.82 1.53 1.01
CVC 573 1239 1119 9.16 2.03 3.26

wdc12

XEC OOM OOM OOM OOM OOM OOM
EC 109 251 236 1.00 1.03 1.00
HVC 3080 2952 3068 1.18 1.13 1.18
BVC 8039 OOM OOM 15.44 OOM OOM
JVC 5263 6570 8890 1.09 1.05 1.01
CVC 2487 4276 3221 1.79 1.17 1.27

(4) Jagged Vertex-Cut (JVC), and (5) Cartesian Vertex-Cut (CVC). Direc-

tion of edges traversed during computation is application dependent. bc, bfs,

and sssp traverse outgoing edges of a directed graph, pr traverses incoming

edges of a directed graph, and cc traverses outgoing edges of a symmetric,

directed graph (Gluon handles undirected graphs in this way). Due to this,

each application might prefer a different EC policy:

• Outgoing Edge-Cut (OE): Nodes of a directed graph are partitioned

into contiguous blocks while trying to balance outgoing edges and all
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outgoing edges of a node are assigned to the same block as the node, like

in Gemini [195].

• Incoming Edge-Cut (IE): Nodes of a directed graph are partitioned into

contiguous blocks while balancing incoming edges and all incoming edges

are assigned to the same block.

• Undirected Edge-Cut (UE): Nodes of a symmetric, directed graph are

partitioned into contiguous blocks while trying to balance outgoing edges

and all outgoing edges are assigned to the same block.

EC does not communicate during graph partitioning as each process reads its

portion of the graph directly from the file. All Vertex-Cut policies use some

EC 3 to further partition the edges of some vertices, which are sent to the

respective hosts. Table 4.3 shows the initial Edge-Cut used by the partitioning

policies for each benchmark and input. HVC as described in Section 4.4.3 is

used for graphs with skewed in-degree (e.g., wdc12 and clueweb12). For graphs

with skewed out-degree (e.g., kron30), if (n1→n2) is an edge and n1 has low

out-degree (based on some threshold), the edge is assigned to the host that

owns n1; otherwise, it is assigned to the node that owns n2. BVC, JVC, and

CVC are as described in Section 4.4.2.

3The Vertex-Cut policies could also have used XEC instead of EC to further partition
the edges of some vertices, but we chose EC to show that CVC can do well at scale even
with a simple Edge-Cut.
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Table 4.5: Dynamic load balance: maximum-by-mean computation time on
256 KNL hosts.

bc bfs cc pr sssp

kron30

XEC 3.4 1.47 3.49 1.75 1.66
EC 1.06 1.64 3.60 1.71 1.63
HVC 1.09 1.70 1.37 1.61 1.57
BVC 1.16 1.54 1.55 1.19 1.48
JVC 1.17 1.50 1.55 1.17 1.43
CVC 1.19 1.45 1.50 1.16 1.36

clueweb12

XEC 2.96 2.09 11.81 27.80 2.14
EC 33.19 2.17 28.76 4.12 2.08
HVC 8.86 2.12 3.03 7.93 2.26
BVC 5.04 2.39 19.50 32.46 4.09
JVC 21.17 2.13 5.69 3.23 2.08
CVC 7.71 2.20 5.42 6.73 2.65

wdc12

XEC OOM OOM OOM OOM OOM
EC — 2.20 6.31 13.30 2.19
HVC — 2.06 2.31 6.32 2.05
BVC OOM 1.94 OOM OOM OOM
JVC — 1.59 1.78 1.81 1.59
CVC — 1.67 2.74 6.53 1.75

4.6.2 Partitioning Time

Although the time to partition graphs is an overhead in distributed-

memory graph analytics systems, shared-memory systems must also take time

to load the graph from disk and construct it in memory. For example, Ga-

lois [118] and other shared-memory systems like Ligra [151] take roughly 2

minutes to load and construct rmat28 (35GB), which is relatively small com-

pared to the graphs used in this study. This time should be used as a point

of reference when considering the graph partitioning times shown in Table 4.4

for different partitioning policies and inputs on 256 KNL hosts. XEC excludes

time to write partitions from XtraPulp to disk, load it in D-Galois, and con-
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struct the graph. All other policies include graph loading and construction

time. Note that some partitioning policies run out-of-memory (OOM). EC is

a lower bound for partitioning as each host loads its partition of the graph

directly from disk in parallel. Vertex-Cut policies are slower than Edge-Cut

policies because they involve communication and more analysis on top of EC.

Comparing partitioning time for different partitioning strategies is not

the focus of this work. In particular, graphs can be partitioned once, and

different applications can run using these partitions. The main takeaway for

partitioning time is that it can finish within a few minutes. CVC partitioning

time is better than or similar to that of XEC. CVC takes around 5 minutes,

10 minutes, and 40 minutes for directed kron30, clueweb12, and wdc12, re-

spectively.
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Table 4.6: Execution time (sec) for different partitioning policies, benchmarks,
and inputs on KNL hosts.

32 hosts

XEC EC HVC BVC JVC CVC

kron30

bc 32.7 40.9 51.7 75.5 26.0 22.6
bfs 4.6 3.0 4.4 5.1 2.6 2.9
cc 10.1 4.8 10.7 13.9 5.6 4.2
pr 230.1 211.6 293.0 287.8 191.9 339.9
sssp 9.7 6.1 8.3 10.4 5.6 4.8

clueweb12

bc 136.2 439.1 627.9 961.9 660.6 539.1
bfs 10.4 8.9 17.4 41.1 38.7 19.2
cc OOM 16.9 7.5 OOM 25.9 19.6
pr 272.6 219.6 193.5 OOM 354.6 217.9
sssp 16.5 13.1 26.6 63.7 63.2 31.7

256 hosts

XEC EC HVC BVC JVC CVC

kron30

bc 23.6 39.1 51.2 20.4 13.6 10.0
bfs 3.8 2.4 4.0 1.3 1.3 1.0
cc 4.3 4.2 3.9 2.4 2.2 1.9
pr 57.6 64.2 84.1 65.7 78.7 72.9
sssp 5.4 3.8 5.9 2.0 2.0 1.8

clueweb12

bc 413.7 420.0 1012.1 404.6 627.6 266.9
bfs 36.4 27.1 46.5 25.1 36.1 14.6
cc 43.0 84.7 8.4 21.2 12.5 7.3
pr 286.7 82.3 97.5 267.4 58.6 60.8
sssp 43.0 32.5 54.7 44.5 44.7 21.8

4.6.3 Load Balance

We first compare the quality of the resulting partitions. The number

of edges assigned to a host represents the static load of that host. Table 4.4

shows the maximum to mean ratio of edges assigned to hosts. We see that
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Table 4.7: Execution statistics of wdc12 on 256 KNL hosts.

EC HVC JVC CVC

bfs 422.8 832.9 974.6 373.4
Execution cc 118.8 135.8 178.4 74.2
Time (sec) pr 230.9 193.1 173.3 138.3

sssp 633.1 1238.3 1395.6 567.9

bfs 1.4 2 4.6 3.4
Replication cc 4.4 2.3 7.2 5.3
Factor pr 1.4 2.0 5 3.1

sssp 1.4 2 4.6 3.4

Total bfs 15 27 101 54
Communication cc 100 36 278 147
Volume (GB) pr 604 628 3019 1394

sssp 66 159 697 352

static load balance not only varies with different policies but also with the

input graphs. For both directed and undirected graphs, kron30 is very well

balanced for all policies. For clueweb12 and wdc12, EC is well balanced while

the rest are not.

Dynamic load may be quite different from static load, especially for

data-driven algorithms in which computation changes over rounds. To mea-

sure the dynamic load balance, we measure the computation time of each

round on each host and calculate the maximum and mean across hosts. Sum-

ming up over rounds, we get the maximum and mean computation time re-

spectively. Table 4.5 shows the maximum-by-mean computation time for all

policies, benchmarks, and inputs on 256 hosts. Note that bc, bfs, and sssp use

the same partitions. Firstly, it is clear that although kron30 is statically well

balanced for all policies, it is not dynamically load balanced. Moreover, the

load balance depends on the dynamic nature of the algorithm. Even though bc
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Table 4.8: Execution time (sec) on Skylake hosts for EC and CVC.

8 hosts 256 hosts

EC CVC EC CVC

bc 45.9 35.9 21.1 5.5
bfs 3.3 3.4 4.0 0.7

kron30 cc 8.2 9.4 7.1 1.0
pr 230.3 259.2 38.1 28.4
sssp 6.3 7.1 6.0 1.2

bc 339.1 669.2 197.7 152.4
bfs 6.0 16.1 6.1 6.0

clueweb12 cc 10.9 9.5 64.9 3.6
pr 121.5 130.1 20.6 17.9
sssp 16.9 33.2 8.6 9.7

and bfs use the same graph, their dynamic load balance is different. CVC on

clueweb12 is well-balanced for bfs, but highly imbalanced for bc. The policy

significantly impacts dynamic load balance, but this need not directly corre-

late with their static load balance. For example, for bfs and sssp, although

CVC on clueweb12 is statically severely imbalanced while EC is not, both EC

and CVC are fairly well balanced at runtime. This demonstrates that dynamic

load balance is difficult to achieve since it depends on the interplay between

policy, algorithm, and graph.

4.6.4 Execution Time

Table 4.6 shows the execution time of D-Galois with all policies on 32

and 256 KNL hosts for kron30 and clueweb12. Table 4.7 shows the execution

time for wdc12 on 256 KNL hosts (all policies run out of memory on 32 hosts;

XEC and BVC run out of memory on 256 hosts too). These tables also high-
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light which policy performs best for a given application, input, and number of

hosts (scale). It is clear that the best performing policy is dependent on the

application, the input, and the number of hosts (scale). Although there is no

clear winner for all cases, CVC performs the best on 256 hosts for almost all

applications and inputs.

Table 4.8 shows the execution time of D-Galois with EC and CVC on

8 and 256 Skylake hosts for kron30 and clueweb12. Even on Skylake hosts,

the best performing policy depends on the application, the input, and the

number of hosts (scale), without any clear winner. Nonetheless, similar to

KNL hosts, CVC performs the best on 256 hosts for almost all applications

and inputs, whereas EC performs the best on 8 hosts for almost all applications

and inputs. This suggests that the relative merits of the partitioning policies

are not specific to the CPU architecture.
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Figure 4.6: Execution time of D-Galois with different partitioning policies on
KNL hosts.
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Figure 4.7: Compute time of D-Galois with different partitioning policies on
KNL hosts.
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4.6.5 Strong Scaling

We measure the time for computation of each round or iteration on

each host and take the maximum across hosts. Summing up over iterations,

we get the computation time. Figure 4.7 shows the strong scaling of execu-

tion time (left) and computation time (right) for kron30 and clueweb12 (most

partitioning policies run out of memory for wdc12 on less than 256 hosts).

Some general trends are apparent. At small scale on 32 hosts, EC performs

fairly well for almost all the benchmarks and is comparable to the best, but

as we go to higher number of hosts, EC, XEC, and HVC do not scale. On

the other hand, all 2D partitioning policies scale relatively better for almost

all benchmarks and inputs. Among them, JVC scales better than BVC, and

CVC scales better than JVC. In most cases, CVC has the best performance

at scale and scales best.

CVC does not scale well for bfs and sssp on clueweb12 due to compu-

tation time not scaling well. In all other cases, both computation time and

execution time scale. For bfs and sssp, CVC is still better than the others

in execution time since computation times of all policies do not scale. This

is likely due to the computation being too small for it to scale (both execute

more than 180 iterations, so each iteration has little to compute on each host

at scale).

Computation time of all policies scales similarly in most cases. How-

ever, their execution time scaling differs. This is most evident in EC and CVC.
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This indicates that the difference in the policies arises due to the communica-

tion. We analyze this next.
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Figure 4.8: Replication factor of D-Galois with different partitioning policies
on KNL hosts.
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Figure 4.9: Communication volume of D-Galois with different partitioning
policies on KNL hosts.
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Figure 4.10: Breakdown of execution time on 256 hosts: kron30.
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Figure 4.11: Breakdown of execution time on 256 hosts: clueweb12.
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Figure 4.12: Breakdown of execution time on 256 hosts: wdc12 (XEC and
BVC run out-of-memory).

4.6.6 Communication Analysis

The total communication volume is the sum of the number of bytes

sent from one host to another during execution. Table 4.7 shows the replica-

tion factor and total communication volume for wdc12 on 256 hosts (XEC and

BVC run out of memory). Figure 4.9 shows how the replication factor (left)

and the total communication volume (right) scale as we increase the number

of hosts for kron30 and clueweb12. The replication factor increases with the

number of hosts for all partitioning policies as expected. Similarly, the total

communication volume increases with the number of hosts as more data needs

to be exchanged to synchronize those proxy nodes across hosts. However, the

difference in replication factor across policies can vary from that of commu-

nication volume. This is most evident for kron30: although EC has a much
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higher replication factor than the other policies, the communication volume of

EC is close to that of others. This demonstrates that replication factor need

not be the sole determinant for the communication volume.

For kron30, EC corresponds to IEC, so there are no updates sent from

mirrors to masters; only masters send updates to mirrors. Vertex-Cut policies

like HVC and CVC, however, send from mirrors to masters and then from

masters to mirrors. Thus, if EC has roughly twice the replication factor of

HVC, EC would still communicate the same volume as HVC. This can analyzed

using our analytical model in Section 4.5.2. We estimate the communication

volume for EC, HVC, and CVC using Equations 4.2, 4.4, and 4.5, respectively.

The values to use for the replication factor r and the size of the data b are

straightforward to determine. We assume that if a node is updated, all its

mirrors are updated, so we use a value of 1 for f . These equations estimate the

volume for a given round or iteration. To get the total communication volume,

we can sum over all rounds. We instead replace the number of updates u in

a round with the total number of updates performed on the graph across all

the rounds to estimate the total communication volume.

Table 4.9 presents the estimated communication volume of different

applications and policies for kron30 along with the replication factor and the

observed communication volume. The estimated volume can be more than the

observed volume because we assume f is 1, which is an over-approximation.

The observed volume can be higher than the estimated volume as the esti-

mation does not account for the metadata like node IDs communicated along
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Table 4.9: Communication volume estimated by the model vs. observed com-
munication volume on 128 KNL hosts for kron30.

IEC HVC CVC

Replication Factor 5.53 3.58 3.81
bfs Estimated Volume(GB) 15.63 19.73 2.82

Observed Volume(GB) 19.26 20.29 11.69

Replication Factor 7.89 5.07 4.84
cc Estimated Volume(GB) 30.07 71.02 20.44

Observed Volume(GB) 44.51 50.40 26.08

Replication Factor 5.53 3.58 3.81
pr Estimated Volume(GB) 1153.56 1243 932.06

Observed Volume(GB) 1797.30 1867.06 1715.68

Replication Factor 5.53 3.58 3.81
sssp Estimated Volume(GB) 36.97 40.60 6.99

Observed Volume(GB) 44.63 35.55 27.64

with node values or updates, which is an under-approximation. Such approx-

imations are fine because the relative ordering of the communication volume

among different partitioning policies is important, not the absolute values.

From the estimated volume for all the benchmarks, we can see that our ana-

lytical model predicts CVC to communicate the least amount of volume even

if CVC has higher replication factor than HVC. A similar pattern can also

be seen in the observed communication volume for all the benchmarks, where

CVC has the minimum volume but not necessarily the minimum replication

factor. This validates our analytical model, stating that the replication factor

is not the sole determinant for communication volume.

In Figure 4.9, we see that CVC may have a higher replication factor and

communication volume than the other policies, yet it performs better than the

other policies in most cases. Figures 4.10, 4.11 and 4.12 show the breakdown
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of execution time into computation time and non-overlapped communication

time (the rest of the execution time) on 256 hosts. It is clear that CVC is

doing better (except pagerank on kron30) because the communication time

is lower. We can see that more communication volume does not always im-

ply more communication time. For example, in pr and sssp on clueweb12,

CVC has higher replication factor and more communication volume than EC

and HVC but lower communication time. Figure 4.5 shows the percentage of

rounds in those applications and policies that have low (≤ 100MB), medium

(> 100MB and ≤ 1000MB), and high (> 1000MB) communication volume.

CVC increases the number of high volume rounds of pr and sssp over EC on

both 32 and 256 hosts. Our micro-benchmarking in Section 4.5.3 shows that

CVC yields significant speedups over EC on 256 hosts in both low and high

volumes, which outweighs the increase in high volume rounds. In contrast,

the increase in high volume rounds on 32 hosts for CVC over EC causes a

slowdown in communication time since there is very little difference between

CVC and EC at this scale for the same communication volume. This validates

the claim that the communication time depends on both the communication

volume and the communication pattern and shows that CVC has much less

communication overhead than other policies at large scale.

4.7 Choosing a Partitioning Policy

Based on the results presented in Section 4.6, we present a decision

tree (Figure 4.13) to help users choose the most suitable partitioning strategy
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based on the following parameters:

No

Yes Yes

No

CVC

EC

PI == Y 
or 

T == L
CS > 32 Start

Estimated
Execution Time
T = Long/Short

Offline Partitioned
Input?

PI = Yes/No

Cluster Size
CS = #Hosts

Figure 4.13: Decision tree to choose a partitioning policy.

1. Whether the input is partitioned offline: The time it takes to partition

and load the graph (online) depends on the complexity of the parti-

tioning strategy. EC takes least amount of time, whereas strategies like

XEC [152] and CVC [23] take more time as they involve analysis and

communication during partitioning. It makes sense to use complex par-

titioning strategies if the benefits gained from them outweigh the time

spent in partitioning. D-Galois also supports direct loading of offline

partitioned graphs, in which case partitioning time is not a factor as the

partitioned graph is on disk.

2. Whether the execution time is estimated to be long or short: The amount

of time spent in execution of the application plays a vital role in deter-

mining if it makes sense to invest time in a good partitioning strategy.

Spending more time in partitioning makes more sense for long-running
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Table 4.10: % difference in execution time (excluding partitioning time) on
KNL hosts between the partitioning strategy chosen by the decision tree and
the optimal one (wdc12 is omitted because chosen one is always optimal; 0%
means that chosen one is optimal).

32 64 128 256

kron30

bc 44.74% 0% 0% 0%
bfs 13.33% 13.68% 0% 0%
cc 12.5% 26.63% 0% 0%
pr 9.31% 36.38% 30.63% 20.99%
sssp 21.31% 23.26% 0% 0%

clueweb12

bc 68.98% 60.59% 21.32% 0%
bfs 0% 37.24% 0% 0%
cc 55.62% 52.16% 51.35% 0%
pr 11.89% 18.69% 26.09% 3.62%
sssp 0% 43.83% 17.33% 0%

applications as they involve more rounds of communication which can

benefit from a well-chosen partitioning strategy. The user can easily

identify whether the application is expected to run for a long time (e.g.,

by using algorithm complexity). Applications such as bc tend to be more

complex as they have multiple phases within each round of computation,

and they involve floating-point operations; therefore, they are expected

to have longer execution times. On the other hand, applications like bfs

are relatively less complex and can be classified as short-running appli-

cations.

3. Cluster size: Our results show that the performance of different par-

titioning strategies also depend on the number of hosts on which the

application is run.
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Table 4.11: % difference in execution time (excluding partitioning time) on
Skylake hosts between the partitioning strategy chosen by the decision tree and
the optimal one.

8 256

kron30

bc 21.79% 0%
bfs 0% 0%
cc 0% 0%
pr 0% 0%
sssp 0% 0%

clueweb12

bc 0% 0%
bfs 0% 0%
cc 12.84% 0%
pr 0% 0%
sssp 0% 11.34%

Figure 4.13 illustrates our decision tree to choose a partitioning strat-

egy. For short running applications, if the graph is not already partitioned,

we recommend using simple EC. Additionally, if the graph is already parti-

tioned and the number of hosts is less than 32, simple EC should suffice. For

long-running applications, the decision to use EC or CVC primarily depends

on the cluster size. If the number of machines is more than 32, it makes sense

to invest partitioning time in CVC. Otherwise, EC is recommended.

Choosing the best partitioning strategy is a difficult problem as it de-

pends on several factors such as properties of input graphs, applications, num-

ber of hosts (scale), etc. Therefore, the decision tree may not always suggest or

choose the best partitioning strategy. Tables 4.10 and 4.11 illustrate this point

by showing the percentage difference in the application execution time between

the chosen partitioning strategy and the best-performing or optimal strategy
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at different number of hosts assuming the input graphs used are already par-

titioned (i.e., graph construction time for all strategies are same). A value of

zero means that the chosen partitioning strategy performs the best. In many

cases, the chosen strategy performs best, particularly at 128 and 256 hosts.

For kron30, this difference in most of the cases is under 20%. For clueweb12,

the difference is slightly higher, especially for bc at 32 hosts, for which XEC

performs best rather than simple EC (XEC uses a community detection tech-

nique for partitioning which provides compute locality for the compute-heavy

bc algorithm). Nonetheless, the decision tree chooses a partitioning strategy

that performs well in most cases.

4.8 Related Work

Several distributed-memory graph processing frameworks have been

published in the past few years [33, 39, 43, 68, 70, 79, 80, 84, 91, 99, 106, 117, 170,

180, 181, 183, 195] These systems use graph partitioning to scale out compu-

tations on graphs or sparse matrices that do not fit in the memory of a sin-

gle node. In the graph analytics literature, partitioning strategies are clas-

sified into Edge-Cuts [7, 88–90, 152, 154, 189, 195] and Vertex-Cuts [28, 39, 70,

92, 100, 129, 150, 163]. In the matrix literature, they are classified into 1D and

2D partitionings [23, 35]. 1D partitionings are equivalent to the class of Edge-

Cuts, whereas 2D partitionings are strictly a sub-class of Vertex-Cuts as they

are more restricted.

1D partitionings or Edge-Cuts: METIS [7, 89] and XtraPulp [152] par-
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tition the graph based on connected components. XtraPulp has been shown to

partition large graphs in a few minutes, but they do not compare against gen-

eral Vertex-Cuts. Streaming Edge-Cut policies [154, 195] partition the graph in

a pass or two over the edges. This work evaluates XtraPulp and edge-balanced

Edge-Cuts to represent non-streaming and streaming Edge-Cuts, respectively.

2D partitionings: 2D partitionings have been studied in both dense

matrix and sparse matrix communities [97]. CheckerBoard 2D partitioning

(BVC) [35] is used in CombBLAS, a sparse matrix library. Jagged-like parti-

tioning (JVC) [35] and Cartesian Vertex-Cut (CVC) [23] have been evaluated

for generalized sparse matrix vector computation. However, these strategies

have never been evaluated on work-efficient data-driven graph algorithms, and

there are no comparisons with other policies like Hybrid Vertex-Cut [39].

Vertex-Cuts that are neither 1D nor 2D partitionings: PowerGraph [70]

is the first graph analytical system to develop a streaming Vertex-Cut par-

titioning heuristic targeting power-law graphs. PowerLyra [39] proposed a

streaming Vertex-Cut heuristic called Hybrid Vertex-Cut (HVC) that handles

high-degree nodes differently from low-degree nodes. Bourse et al. [28] analyze

balanced Vertex-Cut partitions theoretically and propose a least incremental

cost (LIC) heuristic with approximation guarantees. Petroni et al. [129] pro-

posed High-Degree (are) Replicated First (HDRF), a novel streaming Vertex-

Cut graph partitioning algorithm that exploits skewed degree distributions by

explicitly taking into account vertex degree in the placement decision. These

papers do not compare their approaches to 2D block partitionings.
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Studies of partitioning policies: There are several studies [6, 61, 100,

167] that have compared the impact of partitioning strategies on application

execution time. Yun et al [61] compares various distributed graph analyt-

ics systems on different design aspects including graph distribution policies

and concludes that the Vertex-Cut partitioning strategy always outperforms

the Edge-Cut on vertex (neighbor-based) programs, which is not the case as

shown by this work. LeBeane et al. [100] studies the impact of relative compu-

tational throughput of hosts in heterogeneous setting on various partitioning

strategies for graph analytics workloads using PowerGraph. Verma et al. [167]

evaluates different partitioning strategies provided by distributed graph ana-

lytics systems, namely, PowerGraph, GraphX, and PowerLyra, and it suggests

the best partitioning strategy for each system among the strategies provided

by that system. These studies were done at a very small scale of 10 to 25 hosts.

Verma et al. [167] also compares various partitioning strategies on PowerLyra.

However, PowerLyra does not optimize communication for the non-native par-

titioning strategies adopted from other systems. In a recent study, Abbas et

al. [6] compares various streaming partitioning policies using a distributed

runtime based on Apache Flink [34] and concludes that low-cut algorithms

(with low replication factor) perform better for communication-intensive ap-

plications. However, the study was done on a small 17 host cluster, and the

largest graph considered was Friendster, which easily fits in the memory of a

single host in the cluster used in our study.

To the best of our knowledge, no previous study performs a quantitative
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comparison of partitioning strategies with communication optimized for each

partitioning strategy at scale for work-efficient graph analytics applications. In

this work, we used D-Galois, an efficient distributed-memory graph processing

system based on Gluon runtime [51] that optimizes communication specifically

for each partitioning strategy, on 256 KNL hosts with a total of 69K threads.

However, our study and observations are not limited to D-Galois, and they

should generalize to other systems that optimize communication based on the

partitioning strategy.
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Chapter 5

Phoenix: A Substrate for Resilient Distributed
Graph Analytics1

5.1 Motivation

For the distributed systems mentioned in Chapter 3 and 4, fault tol-

erance is an important concern for long-running graph analytics applications

on large clusters. Some state-of-the-art high-performance graph analytics sys-

tems such as D-Galois [51] and Gemini [195] do not address fault tolerance;

since the mean time between failures in medium-sized clusters is of the order

of days [147], the approach taken by these systems is to minimize overheads

for fault-free execution and restart the application if a fault occurs. Older dis-

tributed graph analytics systems rely on checkpointing [68, 70, 103, 106, 142,

148, 172], which adds overhead to execution even if there are no failures. Fur-

thermore, all hosts have to be rolled back to the last saved checkpoint if even

one host fails.

1This work was originally published in the proceedings of ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
April 2019 [52]. The first and the second authors contributed equally to this work and were
responsible for the key concepts, abstractions, and implementation of ideas for the resilient
graph analytics in the distributed setting. Other co-authors helped with the experiments,
data collection, and presentation.
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More recent systems such as GraphX [181], Imitator [172], Zorro [136],

and CoRAL [171] have emphasized the need to avoid taking checkpoints and/or

to perform confined recovery in which surviving hosts do not have to be rolled

back when a fault occurs. The solution strategies used in these systems are

quite diverse and are described in Section 6.3. For example, GraphX is built on

top of Spark [186], which supports a dataflow model of computation in which

computations have transactional semantics and only failed computations need

to be re-executed. Imitator requires an a priori bound on the number of

faulty hosts, and it uses replication to tolerate failure, which constrains the

size of graphs it can handle on a cluster of a given size. Zorro provides zero

overhead in the absence of faults, but it may provide only approximate results if

faults happen. CoRAL takes asynchronous checkpoints and performs confined

recovery but it is applicable only to certain kinds of graph applications.

In this work, we present Phoenix, a communication and synchronization

substrate to provide fail-stop fault tolerance for distributed-memory graph

analytics applications. The insight behind Phoenix is that to recover from

faults, it is sufficient to restart the computation from a state that will ultimately

produce the correct result. These states, called valid states in this work, are

defined formally in Section 5.4. All states that are reached during fault-free

execution are valid states, but in general, there are valid states that are not

reachable during fault-free execution. On failure, Phoenix sets the state of

revived hosts appropriately with the aid of the application programmer so

that the global state is valid and continues execution, thus performing confined
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recovery in which surviving hosts do not lose progress.

5.2 Contributions

This work makes the following contributions.

• We present Phoenix, a substrate that can be used to achieve fault toler-

ance to fail-stop faults for distributed graph analytics applications with-

out any observable overhead in the absence of faults. Phoenix does not

use checkpoints, but it can be integrated seamlessly with global and local

checkpointing.

• We describe properties of graph analytics algorithms that can be ex-

ploited to recover efficiently from faults and classify these algorithms

into several categories based on these properties (Section 5.4). The key

notions of valid states and globally consistent states are also introduced

in this section.

• We describe techniques for recovering from fail-stop faults without losing

progress of surviving hosts for the different classes of algorithms and

show how they can be implemented by application developers using the

Phoenix API (Section 5.5).

• We show that D-Galois [51], the state-of-the-art distributed graph ana-

lytics system, can be made fault tolerant without performance degrada-

tion by using Phoenix while outperforming GraphX [181], a fault toler-

ant system, and Gemini [195], a fault intolerant system, by a geometric
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Figure 5.1: An example of partitioning a graph for two hosts in two different
ways.

mean factor of ∼ 24× and ∼ 4×, respectively. In addition, when faults

occur, Phoenix generally outperforms the traditional checkpoint-restart

technique implemented in D-Galois (Section 5.6).

5.3 Background

Background and prior work on fault tolerance in these systems is sum-

marized in the following Section 5.3.1. Phoenix’s programming and execution

models are same as described in Chapter 1 Section 1.1.1 and Section 1.1.2 re-

spectively. Figure 5.1 shows a sample graph and its partitioning across hosts

and will be used as a running example throughout this chapter.

5.3.1 Fault Tolerant Distributed Graph Analytics

A fail-stop fault in a distributed system occurs when a host in the

cluster fails without corrupting data on other hosts. Such faults can be han-

dled with a rebirth-based approach, in which the failed host is replaced with

an unused host in the cluster, or a migration-based approach [149], which dis-
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tributes the failed host’s partition among the surviving hosts. We describe and

evaluate Phoenix using rebirth-based recovery, but it can also be used with

migration-based recovery.

Several fault tolerant distributed graph analytics systems rely on check-

pointing [68, 70, 103, 106, 142, 148, 172]: the state of the computation is saved

periodically on stable storage by taking a globally consistent snapshot [37],

and when a fail-stop fault is detected, the computation is restarted from the

last checkpoint [185]. One disadvantage of checkpointing is that every host

has to be rolled back to the last checkpoint even if only one host fails. Some

existing distributed graph analytics systems have devised ways to avoid taking

global checkpoints or rolling back live hosts, as described below.

GraphX [181] is built on Spark [186], and achieves fault tolerance by

leveraging Resilient Distributed Datasets (RDD) from Spark to store informa-

tion on how to reconstruct graph states in the event of failure; if the reconstruc-

tion information becomes too large, it checkpoints the graph state. GraphX

is very general and can recover from failure of any number of hosts, but un-

like Phoenix, it does not exploit semantic properties of graph applications to

reduce overhead.

Table 5.1 compares the performance of GraphX and Phoenix on 32

hosts of the Wrangler cluster (experimental setup described in Section 5.6).

The table also shows the performance of D-Galois [51] and Gemini [195], which

are state-of-the-art distributed graph analytics systems that do not support

fault tolerance. The Phoenix system in Table 5.1 is D-Galois made resilient by
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Table 5.1: Fault-free execution on 32 hosts of Wrangler.

App Input Total Time (s) Phoenix Speedup

GraphX Gemini D-Galois Phoenix GraphX Gemini

cc
twitter50 110.8 29.0 8.2 8.2 13.5 3.5
rmat28 166.5 80.0 20.6 20.6 8.1 3.9
kron30 1538.2 347.1 56.2 56.2 27.4 6.2

pr
twitter50 2111.6 75.1 31.6 31.6 66.7 2.4
rmat28 5355.5 180.9 47.7 47.7 112.3 3.8
kron30 797.6 426.4 78.9 78.9 10.1 5.4

sssp
twitter50 153.1 24.2 8.5 8.5 18.0 2.8
rmat28 158.1 77.7 11.1 11.1 14.3 7.0
kron30 1893.2 346.7 46.0 46.0 41.2 7.5

using the Phoenix substrate. In fault-free execution, Phoenix performance is

the same as D-Galois, and the system does not have any observable overhead.

Phoenix programs also run on average ∼ 4× faster than the same programs

in Gemini. In addition, Phoenix programs are ∼ 24× faster, on average, than

GraphX programs in the absence of faults while providing the same level of

fault tolerance.

Imitator [172] is designed to tolerate a given number of faults: if n-way

fault tolerance is desired, the system ensures that at least n+1 proxies are

created for every graph node, and it updates the labels of all these proxies

at every round to ensure that at least one proxy survives simultaneous host

failure. The memory requirements of Imitator grow proportionately with n,

and keeping these additional proxies synchronized adds overhead even when

there are no failures. As shown in [172], the ability to tolerate a single fault

results in an overhead of ∼ 4% even if no faults occur; similarly, tolerating 3

faults increases the overhead to ∼ 8%. In contrast, Phoenix does not require
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an a priori bound on the number of simultaneous faults, and it does not require

creating any more proxies than are introduced by graph partitioning.

Like Imitator, Zorro [136] relies on node proxies for recovery, but it only

uses the proxies created by graph partitioning. If no proxies of a given node

survive failure, execution continues but may produce an incorrect answer. An

advantage of Zorro is that it does not have any overhead in the absence of

failures, unlike GraphX and Imitator in which fault tolerance comes at the

cost of overhead even when no failures occur. Phoenix shares this advan-

tage with Zorro. While both Phoenix and Zorro incur overhead when failures

happen, Phoenix is guaranteed to produce the correct answer unlike Zorro.

Specifically, for self-stabilizing and locally-correcting algorithms (defined in

Section 5.4), Zorro will yield the correct result if run till convergence2. How-

ever, for globally-correcting algorithms, Zorro will yield an incorrect result even

if run till convergence. With respect to Zorro, our contributions are (1) defining

the different classes of algorithms and (2) designing recovery mechanisms, spe-

cific to that class, that yield the correct result. For self-stabilizing algorithms,

Phoenix uses a simpler recovery mechanism than Zorro. For locally-correcting

algorithms, the recovery mechanisms of Phoenix is similar to that of Zorro.

For globally-correcting algorithms, Phoenix uses a novel recovery approach

with the help of the programmer.

2The algorithms evaluated in Zorro [136] are self-stabilizing or locally-correcting. They
were only run for a fixed number of total iterations when faults occur and a loss of precision
was reported. However, if they were run until convergence, they would have been precise.
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CoRAL [171] is based on asynchronous checkpointing [108, 157]: hosts

take local checkpoints independently, so no global coordination is required

for checkpointing. Nonetheless, it incurs overhead during fault-free execu-

tion. CoRAL is applicable only to a subset of the algorithms that can be

handled by Phoenix. Specifically, CoRAL can handle only self-stabilizing or

locally-correcting algorithms (defined in Section 5.4). In CoRAL, like in other

systems based on confined recovery [106, 148], the surviving hosts wait for the

revived hosts to recover their lost state before continuing execution. Phoenix,

in contrast, performs confined recovery without waiting for the revived hosts

to recover their lost state.

5.4 Classes of Graph Analytics Algorithms

This section describes the key properties of graph analytics algorithms

that are exploited by Phoenix. Although Phoenix handles fail-stop faults in

distributed-memory clusters, these algorithmic properties are easier to under-

stand in the context of data corruption errors3 [153] (or transient soft faults)

in shared-memory programming, so we introduce them in that context. Sec-

tion 5.4.1 introduces the key notions of valid and globally consistent states.

Section 5.4.2 shows how these concepts can be used to classify graph analytics

algorithms into a small number of categories. Section 5.4.3 shows how this

classification is applicable to a distributed-memory setting.

3Data corruption means some bits in the data are flipped. In this work, we consider
fail-stop faults in distributed-memory and data corruption errors in shared-memory. We do
not consider data corruption in distributed-memory.
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5.4.1 Overview

In shared-memory execution, the state of the computation can be de-

scribed compactly by a vector of node labels in which there is one entry for

each node. If s is such a vector and v is a node in the graph, let s(v) re-

fer to the label of node v in state s. For example, if the initial state in a

breadth-first search (bfs) computation is denoted by si and the source is node

r, then si(r) = 0 and si(v) = ∞ for all other nodes v in the graph. During

the computation, these labels are updated by applying the relaxation operator

to nodes in the graph to change the state. When the algorithm terminates,

the final state sf will contain the bfs labels of all nodes. Therefore, the evo-

lution of the state can be viewed as a trajectory beginning at si and ending

at sf in the set S of all states. In general, there are many such trajectories,

and since the scheduler is permitted to make non-deterministic choices in the

order of processing nodes, different executions of a given program for a given

input graph may follow different trajectories from si to sf . Figure 5.2 shows

a trajectory for an application.

We define these concepts formally below.

Definition 5.4.1. For a given graph analytics program and input graph, let

S be the set of states, and let si and sf denote the initial and final states,

respectively.

Definition 5.4.2. For sm, sn ∈ S, sn is said to be a successor state of sm if

applying the operator to a node when the computation is in state sm changes

the state to sn.
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A trajectory is a sequence of states s0, s1, ..., sl such that for all 0 ≤ j <

l, sj+1 is a successor state of sj.

Two subsets of the set of states, which we call valid states (SV ) and

globally consistent states (SGC), are of interest.

Definition 5.4.3. A state sg is globally consistent if there is a trajectory si, ..., sg

from the initial state si to sg. Denote SGC the subset of globally consistent

states in S.

A state sv is valid if there is a trajectory sv, ..., sf from sv to the final

state sf . Denote SV the subset of valid states in S.

Intuitively, a state is globally consistent if it is “reachable” (along some

trajectory) from the initial state, and a state is valid if the final state (the

“answer”) is reachable from that state [57, 77, 123, 144, 145]. Every globally

consistent state is valid; otherwise, there is a state s reachable from si from

which sf is not reachable, which is impossible. Therefore,

SGC ⊆ SV ⊆ S (5.1)

In general, both containments can be strict, so there can be valid states

that are not globally consistent, and there can be states that are not valid.

This can be illustrated with bfs. Consider a state sx in which the label of the

root is 0, the labels of its immediate neighbors are 2, and all other node labels

are ∞. This is not a state reachable from si, so sx 6∈ SGC . However, it is a

valid state since applying the operator to the root node changes the labels of
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Figure 5.2: States during algorithm execution and recovery.

the neighbors of the root to their correct (and final) values. This shows that

SGC ⊂ SV in general. To show that not all states are valid, consider the state

sz where sz(v) = 0 for all nodes v. No other state is reachable from this state;

in particular, sf is not reachable, so sz is not a valid state. Therefore, SV ⊂ S

in general.

The recovery approach used in Phoenix can be explained using the

notions of valid states and globally consistent states. Consider Figure 5.2,

which shows a trajectory of states from the initial state si to the final state

sf in fault-free execution. Every intermediate state in the trajectory between

si and sf is a globally consistent state. Checkpointing schemes save (some)

globally consistent states on stable storage and recover from a fault by restoring

the last globally consistent state saved. Figure 5.2 shows this pictorially: sb

is an invalid state and a checkpoint-restart scheme, denoted by CR, recovers
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by restoring the state to a globally consistent state. In contrast, as illustrated

in Figure 5.2, the key insight in Phoenix is that for recovery, we can restart

the computation from a valid state that is not necessarily a globally consistent

state.

5.4.2 Classification of Graph Algorithms

The way in which Phoenix generates a valid state for recovery depends

on the structure of the algorithm. There are four cases, discussed below in

increasing order of complexity.

Self-stabilizing graph algorithms: All states are valid.

SGC ⊂ SV = S (5.2)

Examples are topology-driven algorithms for collaborative filtering us-

ing stochastic gradient descent (cf), belief-propagation, pull-style pagerank,

and pull-style graph coloring. In these algorithms, node labels are initialized

to random values at the start of the computation, and the algorithm converges

regardless of what those values are. Therefore, every state is valid, and no cor-

rection of the state is required when a data corruption error is detected in the

shared-memory case.

Locally-correcting graph algorithms: The set of valid states is a proper

superset of the set of globally consistent states and a proper subset of the set
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of all states. In addition, each node v has a set of valid values Lv, and the set

of valid states SV is the Cartesian product of these sets.

SGC ⊂ SV ⊂ S

SV = L1 × L2 × ...× LN
(5.3)

Some examples are breadth-first search (bfs), single-source shortest

path (sssp), connected components using label propagation (cc), data-driven

pagerank, and topology-driven k-core. For example, in bfs, all values are valid

for the root node since the operator sets its label to 0. Therefore, Lr = [0,∞].

For an immediate neighbor v of the root node, Lv = [1,∞], and so on for the

neighbors of those nodes. Data corruption in the shared-memory case can be

handled by setting the label of each corrupted node to∞; the labels of all other

nodes can remain unchanged. This may produce a state that is not globally

consistent, but the properties of the algorithm guarantee that the final state

is reachable from this valid state.

Globally-correcting graph algorithms: Valid states are distinct from

globally consistent states and from the set of all states, but unlike in the

previous case, validity of a state depends on some global condition on the

labels of all nodes and cannot be reduced to the Cartesian product of valid

values for individual node labels.

These algorithms are usually more work-efficient than their equivalent

locally-correcting counterparts. Some examples are residual-based data-driven
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pagerank (pr), data-driven k-core (kcore), and latent Dirichlet allocation. In

these algorithms, the label of a node is dependent not only on the current

labels of its neighbors but also on the history or change of these labels. Hence,

to recover from data corruption errors in shared-memory, re-initializing the

label of each corrupted node is insufficient. After re-initializing the corrupted

nodes, all nodes can re-compute their labels using only the current labels

of their neighbors. This restores a valid state from which the work-efficient

algorithm would reach the final state.

Globally-consistent graph algorithms: Only a globally consistent state

is a valid state.

SGC = SV ⊂ S (5.4)

Betweenness centrality [76] is an example. Globally consistent snap-

shots [37] are required for recovery. In such cases, Phoenix may be used along

with traditional checkpointing. We list this class only for the sake of complete-

ness, and we do not discuss this class of algorithms further in this chapter.

5.4.3 Distributed Graph Analytics

The concepts introduced in this section for shared-memory can be ap-

plied to distributed-memory implementations of graph analytics algorithms as

follows. The main difference from the shared-memory case is that a given node

in the graph can have proxies on several hosts that can be updated indepen-

dently during the computation. In BSP-style execution, all proxies of a given
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node are synchronized at the end of every round, and at that point, they all

have the same labels. Therefore, in the distributed-memory case, we consider

a round to constitute one step of computation, and the global state at the end

of each round is simply the vector containing the labels of the nodes at that

point in time.

Definition 5.4.4. For sm, sn ∈ S, sn is said to be a successor state of sm if a

single BSP round transforms state sm to state sn.

A trajectory is a sequence of states s0, s1, ..., sl such that for all 0 ≤ j <

l, sj+1 is a successor state of sj.

Globally consistent states and valid states can be defined as in Defini-

tion 5.4.3, and the classification of graph algorithms in Section 5.4.2 can now

be used in the context of distributed-memory implementations.

5.5 Fault Tolerance in Distributed Memory

In this section, we describe how Phoenix performs confined recovery

when a fault occurs without incurring overhead during fault-free execution.

Section 5.5.1 presents Phoenix in the context of distributed execution of graph

analytics applications. Sections 5.5.2, 5.5.3, and 5.5.4 illustrate Phoenix’s

recovery mechanisms for the three different classes of algorithms introduced

in Section 5.4. Section 5.5.5 summarizes the Phoenix API and discusses how

programmers can use it when writing applications.
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Input : Partition Gh = (Vh, Eh) of graph
G = (V,E)

Output: A set of colors s(v) ∀v ∈ V
Let t(v) ∀v ∈ V be a set of temporary colors
Function Init(v, s):
s(v) = random color

foreach v ∈ Vh do
Init(v, s)

end
repeat

foreach v ∈ Vh do
t(v) = s(v)

end
foreach v ∈ Vh do

foreach u ∈ adj(v) and u < v do
nc = nc ∪ {t(u)}

end
s(v) = smallest c such that c /∈ nc

end
while Runtime.Sync(s) == Failed do

Phoenix.Recover(Init, s)
end

until ∀v ∈ V, s(v) = t(v);

algorithm 1: Greedy graph coloring
(self-stabilizing).

Function Recover(Init, s):
if h ∈ failed hosts Hf then

foreach v ∈ Vh do
Init(v, s)

end
end

algorithm 2: Phoenix API for
self-stabilizing algorithms.

5.5.1 Overview

Fail-stop faults are detected and handled during the synchronization

phase of a BSP round. Once a fail-stop fault is detected, the program passes

the control to Phoenix using the Phoenix API. Phoenix reloads graph parti-

tions from stable storage on the revived hosts that replace the failed hosts.

Some of the nodes on these hosts may have proxies on surviving or healthy

hosts, and if so, their state can be recovered from their proxies. In Phoenix,

this is done using a minor variation of the synchronization call used to rec-
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Figure 5.3: States of the graph in Figure 5.1(a), treated as an undirected graph,
during the execution of greedy graph coloring.

oncile proxies during fault-free or normal execution. If the entire state can

be recovered in this way, execution continues. However, if there are nodes for

which no proxy exists on a healthy host, Phoenix restores the global state to

a valid state using the approach described in detail in this section.

All algorithms presented use a generic interface called Sync to synchro-

nize the state of all proxies of all nodes. Synchronization of different proxies of

a node involves an all-reduce operation, and different systems support this in

different ways. For example, the interface maps directly to Gluon’s [51] Sync

interface used in D-Galois. In Gather-Apply-Scatter (GAS) models like Power-

Graph [70], the interface can be implemented using gather and scatter. During

normal execution, Sync only synchronizes proxies that have been updated. In

contrast, proxies of all nodes are synchronized during Phoenix recovery. The

reduction operation for the same field could be different during normal execu-

tion and Phoenix recovery (e.g., addition in normal execution corresponds to
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maximum during recovery). In addition, Gluon exploits the structural invari-

ants of partitioning policies to avoid performing an all-reduce during normal

execution, but we do not use this during Phoenix recovery. We omit these

variations of Sync in the algorithms presented for the sake of simplicity.

Algorithms for each class are presented in pseudocode since they can

be implemented in different programming models or runtimes. Each host h

executes the algorithm on its partition of the graph. The work-list, when

used, is local to the host. The foreach loop denotes a parallel loop that can

be executed on multiple threads, using fine-grained synchronization to update

the local state. For example, the loop can be implemented using the do_all

construct in D-Galois with atomic updates to the local state. All algorithms

use the generic interface, Sync or SyncW, to synchronize the state of all proxies;

SyncW is similar to Sync, but it also adds nodes whose state is updated locally

during synchronization to the work-list. Without the explicit synchronization

or Phoenix calls, these algorithms can be executed on shared-memory systems.

Sync and SyncW fail when at least one host has crashed, and when that occurs,

the algorithms call a generic API for Phoenix that recovers from the failure.

The Phoenix API calls Sync at the end of its recovery. In the algorithms

presented, we push this Sync call to the user code and omit the loading of

partitions on the hosts replacing the crashed hosts. If the failures cascade, i.e.,

if failures occur during recovery, then the Sync called at the end of Phoenix’s

recovery will fail and Phoenix’s recovery is re-initiated after partitions are

loaded on the hosts replacing the failed hosts.
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5.5.2 Self-Stabilizing Graph Algorithms

To illustrate how self-stabilizing algorithms are handled by Phoenix,

Algorithm 1 shows greedy graph coloring for an undirected or symmetric graph.

Every node has a label to denote its color which is initialized randomly. Nodes

and colors are ordered according to some ranking function. The algorithm is

executed in rounds. In each round, every node picks the smallest color that

was not picked by any of its smaller neighbors in the previous round. The

algorithm terminates when color assignments do not change in a round.

The programmer calls the Phoenix API (line 14) if Sync fails. Fig-

ure 5.3 shows possible state transitions after each round of algorithm execution

for the graph in Figure 5.1(a). In this figure, colors are encoded as integers.

Suppose that faults are detected in the fourth round when performing the Sync

operation. To recover, Phoenix will initialize the colors of the proxies of the

nodes on each failed host to a random color using the programmer supplied

function. Some of these nodes might have proxies on healthy hosts, which will

be recovered by the subsequent Sync call (line 13). The nodes which do not

have any proxies on healthy hosts are shaded red in Figure 5.3. Algorithm exe-

cution then continues, converging in three more rounds. Phoenix supports such

confined recovery by providing a thin API defined in Algorithm 2. Phoenix

recovers a valid state for all self-stabilizing algorithms in this way because any

state is a valid state (Equation 5.2).

146



Input : Partition Gh = (Vh, Eh) of graph G =
(V,E)

Input : Source vs
Output: A set of distances s(v) ∀v ∈ V
Function InitW(v, s, Wn):

if v == vs then
s(v) = 0 ; Wn =Wn ∪ {v}

else
s(v) =∞

end
foreach v ∈ Vh do

InitW(v, s, Wn)
end
repeat

Wo =Wn ; Wn = ∅
foreach v ∈Wo do

foreach u ∈ outgoing_adj(v) do
if s(u) > s(v) + 1 then

s(u) = s(v)+1 ; Wn =Wn∪{u}
end

end
end
while Runtime.SyncW(s, Wn) == Failed do

Phoenix.Recover(InitW, s, Wn)
end

until global_termination;

algorithm 3: Breadth first search (locally-
correcting).

Function Recover(InitW, s, Wn):
if h ∈ failed hosts Hf then

foreach v ∈ Vh do
InitW(v, s, Wn)

end
end

algorithm 4: Phoenix API for
locally-correcting algorithms.

Figure 5.4: Breadth first
search (locally-correcting).

5.5.3 Locally-Correcting Graph Algorithms

We use data-driven breadth-first search (bfs), shown in Algorithm 3,

to explain how locally-correcting algorithms are handled by Phoenix. Every

node has a label that denotes its distance from the source, which is initialized

to 0 for the source and ∞ for every other node. The algorithm is executed in

rounds, and in each round, the relaxation operator is applied to nodes on the

bfs frontier, which is tracked by work-lists. Initially, only the source is in the
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Figure 5.5: State of the graph in Figure 5.1(a) during the execution of data-
driven breadth first search (locally-correcting).

work-list. If the neighbor’s distance changes when relaxed, then it is added to

the work-list for the next round. The algorithm terminates when there are no

nodes in the work-list on any host.

The program calls the Phoenix API (line 15) when SyncW fails. When

a fault occurs, Phoenix uses the given function to initialize the labels of the

proxies on the failed hosts and update the work-list. Some of the nodes on

the failed host may have proxies on healthy hosts, which are recovered in the

subsequent SyncW call (line 14). This call also adds the proxies whose labels

were recovered to the work-list. For all locally-correcting algorithms, the state

is now valid because (i) the initial label of a node is a valid value (Equation 5.3)

and (ii) the work-list ensures that all values lost will be recovered eventually.

Phoenix supports such confined recovery by providing a thin API defined in

Algorithm 4.

Figure 5.5 illustrates this for the graph in Figure 5.1(a). Hosts fail
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Input : Partition Gh = (Vh, Eh) of graph G =
(V,E)

Input : k
Output: A set of flags and degrees s(v) ∀v ∈ V
Function DecrementDegree(v, s):

foreach u ∈ outgoing_adj(v) do
s(u).degree = s(u).degree− 1

end
Function ReInitW(v, s, Wn):

s(v).degree = |outgoing_adj(v)|
Wn =Wn ∪ {v}

Function InitW(v, s, Wn):
s(v).f lag = True
ReInitW(v, s, Wn)

Function ComputeW(v, s, Wn):
if s(v).degree < k then

s(v).f lag = False
DecrementDegree(v, s)

else
Wn =Wn ∪ {v}

end
Function ReComputeW(v, s, Wn):

if s(v).f lag = False then
DecrementDegree(v, s)

else
Wn =Wn ∪ {v}

end
foreach v ∈ Vh do

InitW(v, s, Wn)
end
repeat

Wo =Wn ; Wn = ∅
foreach v ∈Wo do

ComputeW(v, s, Wn)
end
while Runtime.SyncW(s, Wn) == Failed do

Phoenix.Recover(InitW, ReInitW,
ReComputeW, s, Wn)

end
until global_termination;

algorithm 5: Data-driven k-core (global-
correcting).

Function Recover(InitW,
ReInitW, ReComputeW, s, Wn):

if h ∈ failed hosts Hf then
foreach v ∈ Vh do

InitW(v, s, Wn)
end

else
foreach v ∈ Vh do

ReInitW(v, s, Wn)
end

end
if Runtime.SyncW(s, Wn)
== Failed then

return
end
Wo =Wn ; Wn = ∅
foreach v ∈Wo do

ReComputeW(v, s, Wn)
end

algorithm 6: Phoenix API
for globally-correcting algo-
rithms.
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during the third round. CR would restore the state to that at the end of round

2, and this will need three more rounds to converge. Consider the nodes on

the failed hosts that do not have proxies on the healthy hosts (shaded in red).

Phoenix will initialize the distances of their proxies to ∞ since none of them

is the source. The incoming neighbors of these nodes that have proxies on the

healthy hosts will be recovered by the subsequent SyncW call and added to the

work-list. Phoenix will resume execution and converge in three more rounds.

5.5.4 Globally-Correcting Graph Algorithms

To illustrate how Phoenix handles globally-correcting graph algorithms,

we use degree-decrementing, data-driven k-core (kcore), shown in Algorithm 5.

The k-core problem is to find the sub-graphs of an undirected or symmetric

graph in which each node has degree at least k. Most k-core algorithms execute

by removing nodes with fewer than k neighbors in the graph since these nodes

cannot be part of a k-core. The removal of these nodes lowers the degrees of

other nodes, which may enable more nodes to be removed from the graph.

Since explicitly deleting nodes and edges from the graph is expensive,

implementations usually just mark a node as dead and decrement the degree

of its neighbors. Therefore, each node has two labels, a flag and a degree,

that denote whether the node is dead or alive and the number of edges it has

to other alive nodes in the graph. A work-list maintains the currently alive

nodes. The algorithm is executed in rounds. In each round, every node in the

work-list marks itself as dead if its degree is less than k or adds itself to the
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Figure 5.6: State of the graph in Figure 5.1(a), treated as undirected, during
the execution of data-driven k-core (k = 4).

work-list for the next round otherwise. When a node is marked as dead, it

decrements the degrees of its immediate neighbors. The algorithm terminates

(global_termination) when no node is marked as dead in a round on any host.

To present the fault recovery strategy for this algorithm, we first note

that the state is valid if and only if (i) the degree of each node is equal to the

number of the edges it has to currently alive nodes and (ii) all the currently

alive nodes are in the work-list. During algorithm execution, a node’s degree is

updated only when its neighbor changes (its flag) from alive to dead. Hence,

when a node is lost, re-initializing its flag and degree does not restore the

state to a valid state: the degree of all nodes needs to be recalculated based

on currently alive nodes. To do so, new functions are required to reinitialize

the degree of a healthy node and recompute the degree of a node using only

the current flags (alive or dead) of its neighbors (in Algorithm 5, ReInitW and

ReComputeW).

Figure 5.6 shows state transitions after each round of execution for the

graph in Figure 5.1(a). Consider detection of a fault after two rounds. CR
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restores the state to that at the end of the first round. In contrast, Phoenix

resets both the flag and the degree of proxies on failed hosts to the initial value

and resets only the degree of the proxies on healthy hosts to the initial value.

All proxies are added to the work-list in both. SyncW is called to recover the

flags of nodes on failed hosts that have proxies on healthy hosts. After that, all

the dead nodes decrement the degree of their outgoing-neighbors and all the

alive nodes are added to the work-list. The subsequent SyncW will synchronize

the degrees of the proxies and restore the state to a valid state. Algorithm

execution then converges in a round.

For all globally-correcting algorithms, a node’s state is updated using

the change of its neighbors’ state. In kcore, degree is updated using the change

in flag, while in residual-based pagerank (pr), residual is updated using the

change in rank. Due to this, re-initializing the labels of failed proxies is in-

sufficient. Some labels of healthy proxies must also be reinitialized. In kcore

and pr, only degree and residual are reinitialized, respectively, which ensures

that the progress of flag and rank, respectively, on healthy proxies is not lost.

The new state must be recomputed using only the current state. In kcore and

pr, degree and residual must be recomputed using only the current flag and

rank, respectively. Given re-initialization and re-computation functions, the

Phoenix API, defined in Algorithm 6, supports such confined recovery.

152



5.5.5 Phoenix API

The Phoenix API is specific to the class of algorithm, as defined in

Algorithms 2, 4, and 6. For self-stabilizing algorithms, the API takes the

initialization function as input and updates the state. For locally-correcting

algorithms, the API takes the initialization function as input and updates

both the state and the work-list. For globally-correcting algorithms, the API

updates the state and the work-list by taking functions for initialization, re-

initialization, and re-computation as input.

Instrumenting self-stabilizing and locally-correcting algorithms to en-

able Phoenix is straight-forward because the initialization function required

by the API would be used in fault-free execution regardless. On the other

hand, for globally-correcting algorithms, the programmer must write new re-

initialization and re-computation functions to use the Phoenix API. These

functions can be written by considering algorithm execution in shared-memory

where node labels are corrupted, which is much simpler than considering algo-

rithm execution in distributed-memory with synchronization of proxies. This

typically involves writing a naive topology-driven algorithm instead of the

data-driven, work-efficient algorithm used by default. This can be learned

from the pattern in Algorithm-5.

While we described Phoenix using BSP-style rounds, the recovery mech-

anisms of Phoenix do not assume that the execution preceding or following

the recovery is BSP-style. Phoenix recovery itself is BSP-style and involves at

least one computation and communication round. Phoenix restores the state
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to a valid state, regardless of whether the prior updates to the state were

bulk-synchronous or asynchronous.

The Phoenix API replaces the checkpoint and restore functions in

Checkpoint-Restart (CR) systems, and it can be incorporated into existing

synchronous or asynchronous distributed graph analytics programming models

or runtimes. Phoenix can also be combined with existing checkpointing tech-

niques that take globally consistent or locally consistent snapshots [106, 171].

In this case, the failed hosts initialize their labels from the saved checkpoint

instead of calling the initialization function, thereby leading to faster recovery

of nodes for which no proxy exists on a healthy host.

5.6 Experimental Evaluation

D-Galois [51, 118] is the state-of-the-art distributed graph analytics sys-

tem, but it does not support fault tolerance. The Phoenix fault tolerance

approach presented in this work was implemented in D-Galois (adding ∼ 500

lines of code); for brevity, the resulting system is called Phoenix too. We also

implemented a checkpoint-restart technique in D-Galois, and this is termed

CR. We compare these with GraphX [181] and Gemini [195], which are fault

tolerant and fault intolerant distributed graph analytics systems respectively.

Section 5.6.1 describes the experimental setup, including implementation de-

tails of Phoenix and CR. Sections 5.6.2 and 5.6.3 present the results in the

presence and absence of faults respectively.
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Stampede Wrangler

NIC Omni-path Infiniband
Machine Intel Xeon Phi KNL Intel Xeon Haswell
No. of hosts 128 32
Threads per host 272 48
Memory 96GB DDR4 128GB DDR4
Compiler g++ 7.1 g++ 4.9.3

Table 5.2: Configuration of clusters.

amazon twitter50 rmat28 kron30 clueweb12 wdc12

|V | 31M 51M 268M 1,073M 978M 3,563M
|E| 82.5M 1,963M 4,295M 10,791M 42,574M 128,736M
|E|/|V | 2.7 38 16 16 44 36
max Dout 44,557 779,958 4M 3.2M 7,447 55,931
max Din 25,366 3.5M 0.3M 3.2M 75M 95M
Size on Disk (GB) 1.2 16 35 136 325 986

Table 5.3: Inputs and their key properties.

5.6.1 Experimental Setup

Experiments were conducted on the Stampede [155] and Wrangler clus-

ters at the Texas Advanced Computing Center [4]. The configurations used

are listed in Table 5.2. We used Wrangler to compare Phoenix with D-Galois,

Gemini, and GraphX (GraphX cannot be installed on Stampede). All other

experiments were conducted on 128 KNL hosts of Stampede.

Table 5.3 specifies the input graphs: wdc12 [110, 111] and clueweb12 [19,

20, 134] are the largest publicly available web-crawls; kron30 [102] (Kronecker),

and rmat28 [36] (RMat) are randomized synthetic scale-free graphs (we used

weights of 0.57, 0.19, 0.19, and 0.05, as suggested by graph500 [1]); twit-

ter50 [21] is a social network graph; amazon [74] is the largest publicly avail-
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Table 5.4: Fault-free execution of Phoenix and CR (R stands for the number
of BSP-style rounds).

App Input R Total Time (s) Execution Time (s)

Phoenix CR-50 CR-500 Phoenix CR-50 CR-500

cc clueweb12 24 73.1 72.8 78.5 12.6 14.8 17.4
wdc12 401 303.8 356.5 306.1 90.5 146.0 95.5

kcoreclueweb12 680 254.5 309.3 266.9 166.4 221.7 177.6
wdc12 270 563.6 625.7 573.0 269.5 334.2 279.5

pr clueweb12 570 290.8 326.8 303.0 243.7 280.6 249.8
wdc12 747 871.4 1012.8 893.2 732.2 875.1 748.4

sssp clueweb12 200 85.1 87.6 85.3 26.0 32.8 30.5
wdc123779 777.8 1183.7 822.2 620.1 1020.2 659.2

cf amazon 908 266.1 342.2 273.3 254.1 330.5 262.3

able bipartite graph. Smaller inputs are used for comparison with GraphX

because it exhausts memory quickly.

Our evaluation uses 5 benchmarks: connected components (cc), k-core

decomposition (kcore), pagerank (pr), single-source shortest path (sssp), and

collaborative filtering using stochastic gradient descent (cf). In D-Galois (con-

sequently, Phoenix and CR), cf is a self-stabilizing algorithm, cc and sssp are

locally-correcting algorithms, and kcore and pr are globally-correcting algo-

rithms. We used GraphX and Gemini implementations of the same bench-

marks (they use self-stabilizing algorithm for pr); they do not have kcore or cf.

GraphX does not use edge-weights in its sssp, so Gemini and Phoenix also do

not use it when compared with it. We present cf results only with the amazon

graph because it requires a bipartite graph. The tolerance used for cf is 10−9.

The source node for sssp is the maximum out-degree node. The tolerance for

pr is 10−7 for kron30, 10−4 for clueweb12, and 10−3 for wdc12. The k in kcore

is 100. All benchmarks are run until convergence. We present the mean of 3
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Figure 5.7: Overheads in total time (%) of different fault scenarios with
Phoenix and CR over fault-free execution.

runs.

We implemented Phoenix recovery for each benchmark depending on

the class of its algorithm. Most of the effort was spent for kcore and pr, which

are globally-correcting algorithms. They took an estimated day’s worth of

programming with ∼ 150 lines changed or added (original code was ∼ 300

lines). The rest of the benchmarks were self-stabilizing or locally-correcting

algorithms, so they took little time and needed only ∼ 30 lines of changes or

additions.

CR only checkpoints the graph node labels and not the graph topol-

ogy (which is read-only). Since D-Galois is bulk-synchronous parallel (BSP),
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CR takes a globally consistent snapshot soon after bulk-synchronization and

checkpoints it to the Lustre network filesystem [2] using stripe count 22 and

stripe size 2 MB (Asynchronous checkpointing techniques like CoRAL [171]

that do not take a globally consistent snapshot cannot be used because it is

not applicable for all benchmarks we evaluate). The periodicity of checkpoint-

ing can be specified at runtime. We evaluated checkpointing after every 5, 50,

and 500 rounds of BSP-style execution, and these are called CR-5, CR-50, and

CR-500 respectively.

5.6.2 Fault-free performance

Table 5.1 compares the performance of GraphX, Gemini, D-Galois, and

Phoenix on Wrangler in the absence of faults. All systems read the graph from

a single file on disk and partition it among hosts. The total time includes the

time to load and partition the graph. Phoenix is on average ∼ 24× and ∼ 4×

faster than GraphX and Gemini, respectively. Using the Phoenix substrate to

make D-Galois resilient adds no overhead during fault-free execution. GraphX

is more than an order of magnitude slower than Phoenix during fault-free exe-

cution, and Gemini and D-Galois do not tolerate faults, so we do not evaluate

them with different fault scenarios.

For the rest of our experiments, we assume that the graph is already

partitioned, and we load graph partitions directly from disk. Table 5.4 com-

pares the fault-free performance of Phoenix and CR on Stampede (D-Galois is

omitted as it is identical to Phoenix). We present the total time and execution

158



NoFault Faults at 25% Faults at 50% Faults at 75% Faults at 99%

k
ro

n
3

0
c
lu

e
w

e
b

1
2

w
d

c
1

2

P
h

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

0

2

4

0

10

20

0

50

100

150

Fault tolerance techniques (# of faults in parentheses)

E
x
e

c
u

tio
n

 T
im

e
 (

s
)

Algorithm Recovery Checkpointing

(a) cc

NoFault Faults at 25% Faults at 50% Faults at 75% Faults at 99%

k
ro

n
3

0
c
lu

e
w

e
b

1
2

w
d

c
1

2

P
h

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

0.0

2.5

5.0

7.5

10.0

0

100

200

300

0

200

400

Fault tolerance techniques (# of faults in parentheses)

E
x
e

c
u

tio
n

 T
im

e
 (

s
)

Algorithm Recovery Checkpointing

(b) kcore
NoFault Faults at 25% Faults at 50% Faults at 75% Faults at 99%

k
ro

n
3

0
c
lu

e
w

e
b

1
2

w
d

c
1

2

P
h

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

0

100

200

300

400

0

100

200

300

400

0

500

1000

1500

Fault tolerance techniques (# of faults in parentheses)

E
x
e

c
u

tio
n

 T
im

e
 (

s
)

Algorithm Recovery Checkpointing

(c) pr

NoFault Faults at 25% Faults at 50% Faults at 75% Faults at 99%

k
ro

n
3

0
c
lu

e
w

e
b

1
2

w
d

c
1

2

P
h

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

P
h

(1
)

P
h

(4
)

P
h

(1
6

)
P

h
(6

4
)

C
R

-5
0

C
R

-5
0

0

0

2

4

6

0

20

40

0

250

500

750

1000

1250

Fault tolerance techniques (# of faults in parentheses)

E
x
e

c
u

tio
n

 T
im

e
 (

s
)

Algorithm Recovery Checkpointing

(c) sssp

Figure 5.8: Execution time (s) of Phoenix (Ph) and CR with different fault
scenarios.
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Figure 5.10: Execution time (s) of Phoenix (Ph) and CR with different fault
scenarios for cf.
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time separately. Execution time includes the algorithm time and checkpoint-

ing time, while total time includes graph loading time and execution time.

Phoenix has 0% overhead in the absence of faults. We omit CR-5 from the

table since its overhead is too high. CR-5, CR-50, CR-500 have an execu-

tion time overhead of 542%, 31%, and 8%, respectively, on the average, over

Phoenix in the absence of faults.

5.6.3 Overhead of fault tolerance

To evaluate the behavior of Phoenix and CR when fail-stop faults occur,

we simulate a fault by clearing all in-memory data structures on the failed hosts

and running recovery techniques on the failed hosts (rebirth-based recovery).

We simulate various fault scenarios by varying the number of failed hosts (1,

4, 16, 64 hosts) as well as by causing the hosts to fail at different points

in the algorithm execution (failing after executing 25%, 50%, 75%, 99% of

rounds). These fault scenarios are used for all results presented in this section,

including Figures 5.7, 5.8, 5.9, 5.10, and 5.11. The number of failed hosts does

not impact CR because all hosts rollback to the last checkpoint (the graph

partition re-loading time does not vary much because we are limited by the

host’s bandwidth, not the network’s bandwidth). Note that these scenarios

are designed to test the best and worst fault scenarios for Phoenix, and we

do not choose the point of failure to test the best or worst fault scenarios for

checkpointing.

For each benchmark and input, Figure 5.7 shows the total time overhead
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of faults for Phoenix and CR-50 over fault-free execution of Phoenix using a

box-plot4 to summarize all fault scenarios. We omit CR-5 and CR-500 because

the overheads are more than 100% in several cases. Phoenix has lower overhead

than CR-50 in most cases. For all benchmarks, the overhead reduces as the

size of the graph increases. Smaller graphs have very little computation, so

almost all of the recovery overhead is from re-loading the partitions from disk

on the failed hosts. Except for the smaller kron30, Phoenix has at most 50%

overhead when faults occurs in most cases.

We now analyze the overhead of faults with Phoenix and CR in more

detail by comparing execution time, which excludes initial loading of graph

partitions as well as re-loading of graph partitions on failed hosts. Figures 5.8

and 5.10 compare the execution time of Phoenix and CR in different fault sce-

narios, including no faults. Execution time is divided into algorithm, recovery,

and checkpointing time. Recovery time in Phoenix and CR is the time to re-

store the state to a valid state and globally consistent state, respectively. We

omit CR-5 in the figure because its overhead is too high. We observe that for

realistic fault scenarios [147] such as up to 16 hosts failing, Phoenix outper-

forms CR-50 and CR-500, except for kcore on clueweb12. When 4 hosts fail,

the mean execution time overhead over fault-free execution of Phoenix, CR-50,

and CR-500 is ∼14%, ∼48.5%, and ∼59%, respectively. CR-500 is worse than

CR-50 in many cases because it loses more progress when faults occur due to

4The box represents the range of 50% of the values, the line dividing the box is the
median of those values, and the circles are outliers.
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less frequent checkpointing. For Phoenix, as we increase the number of failed

hosts, the execution overhead increases. The mean execution time overhead

for 16 failed hosts is ∼20.8%, and it increases to ∼44% when 64 hosts fail. In

contrast, the point of failure does not increase the overhead of CR by much in

most cases. The takeaway is that even in the worst case scenario for Phoenix

(64 hosts fail after 99% of rounds), the performance of Phoenix is comparable

or better than CR.

When some state is lost due to faults, Phoenix and CR-50 restore the

state to a valid and globally consistent state, respectively. However, the algo-

rithm may need to execute more computation and communication to recover

the lost state. For Phoenix and CR-50, Figure 5.9 shows the % increase in

rounds and communication volume due to failures over fault-free execution

of Phoenix (box-plot summarizes all fault scenarios). The overhead is un-

der 100% for Phoenix and CR-50; therefore, both schemes of fault tolerance

are better than simply re-executing applications in case of failure. In most

cases, Phoenix has lower overhead than CR-50. Furthermore, the overhead of

Phoenix is less than 50% in almost all cases.

Combining Phoenix with checkpointing: As observed in our analysis of

CR-50 and CR-500, reducing the frequency of checkpointing reduces overhead

in fault-free execution, but it can lead to high overheads in case of failure as

more progress can be lost. On the other hand, Phoenix has no overhead in

fault-free execution, but in worst case scenarios (such as 64 hosts crashing after

164



99% of execution), it can have considerable overhead. To overcome this, we

can combine Phoenix with checkpointing (CPh) so that we take checkpoints

less frequently (every 500 rounds), but in case of failures, crashed hosts can

rollback to the last saved checkpoint, and all hosts can use Phoenix to help

crashed hosts recover faster. Figure 5.11 shows the evaluation of CPh in case

of 64 hosts crashing at different points of execution for all benchmarks on

wdc12. CPh is similar to or faster than CR-500 in all cases, as expected.

5.7 Related Work

System-level checkpointing: Many systems [9, 44, 60, 69, 95, 104, 108, 121,

137, 143] implement checkpointing or message logging to rollback and recover

from faults [59]. Although these system-level mechanisms are transparent

to the programmer, exploiting application properties like Phoenix does can

reduce the execution time with or without faults.

Application-level checkpointing: Instead of checkpointing the entire state

or memory footprint of the application like in system-level checkpoint-restart

approaches, many checkpointing approaches [115, 159, 191] allow the program-

mer to instrument their code to checkpoint only the live application state;

Bronevetsky et al. [29–31] automate this using a compiler. Some of these ap-

proaches checkpoint to memory [159, 191] or use a combination of memory,

local disk, and network filesystem [115]. In Section 5.6, we showed that in the

presence of faults, Phoenix generally outperforms even a checkpoint-restart

165



(CR) approach that checkpoints only node labels (and not the graph topol-

ogy) to the network filesystem. Although CR can be further improved by using

in-memory or multi-level checkpointing, there will always be overhead even in

fault-free execution, unlike in Phoenix.

Fault tolerant data-parallel systems: Some data-parallel systems [55, 82,

132, 186] save sufficient information transparently to re-execute computation

and restore lost data when faults occur. Schelter et al. [146] allow users to

specify functions that can recover state when faults occur, but their technique

is applicable only to self-stabilizing and locally-correcting algorithms. Phoenix,

in contrast, does not require the user to define new functions for these classes

of algorithms, and it supports globally-correcting algorithms with user-defined

functions. Moreover, Phoenix does not store any additional state information

in memory or stable storage.

Fault tolerant graph-analytical systems: Many systems for distributed

graph analytics [68, 70, 103, 106, 132, 133, 136, 148, 149, 171, 172, 181] support fa-

ult tolerance transparently. Greft [133] is the only one that tolerates Byzantine

(data corruption) faults; the rest tolerate only fail-stop faults. Section 5.3.1

contrasts Phoenix with other fail-stop fault tolerant systems in detail.

Fault tolerant algorithms: Algorithm-Based Fault Tolerance (ABFT) ap-

proaches [24, 41, 42, 53, 81, 173, 179, 184] have modified several computational
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science algorithms to tolerate faults without checkpointing. In a similar vein,

many iterative solvers [77, 123, 145] have used self-stabilization [57] to toler-

ate failures. Sao et al. [144] build on this to design and implement a self-

correcting topology-driven connected components algorithm. Some of these

algorithms detect and recover from data corruptions (transient soft faults)

in shared-memory systems. Phoenix generalizes the concept of self-stabilizing

and self-correcting algorithms as explained in Section 5.4. In addition, Phoenix

provides a simple API to implementing such algorithms on distributed-memory

as explained in Section 5.5.

167



Chapter 6

Distributed Training of Embeddings using
Graph Analytics1

6.1 Motivation

Many applications today, such as natural language processing, network

analysis, and code analysis, rely on semantically embedding objects into low-

dimensional fixed-length vectors. Such embeddings naturally provide a way

to perform useful downstream tasks, such as identifying relations among ob-

jects or predicting objects for a given context, etc. Word2Vec [112, 113] is

a popular algorithm for learning word embeddings. Follow-on work extends

the ideas of mapping entities to embeddings to biological sequences[93], pro-

gram code[11], and online social networks[127], and collectively these machine

learning algorithms are referred to as Any2Vec.

Unfortunately, the training necessary for accurate embeddings is usu-

ally computationally intensive and requires processing large amounts of data.

For example, some of the largest datasets used in this work take days to

1This work was originally published in the proceedings of CS arXiv, 2019 [67]. The main
idea of formulating word3vec training problem as a graph application was conceived by the
first author. The first author was also responsible implementation and experimentation
while the co-authors helped with the presentation.
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train sequentially on a single machine. Furthermore, distributing this train-

ing is challenging. Most embedding training uses stochastic gradient descent

(SGD) [25, 26], an "inherently" sequential algorithm where at each step, the

processing of the current example depends on the parameters learned from the

previous examples. Prior approaches to parallelizing SGD do not honor these

dependencies and thus potentially suffer poor convergence.

6.2 Contributions

This work presents a distributed training framework for a class of ap-

plications that use Skip-gram-like models, like the one used in Word2Vec [112],

to generate embeddings. We call this class Any2Vec and includes, in addition

to Word2Vec [112], DeepWalk [128] and Node2Vec [72] among others. Ap-

plications in this class maintain a large embedding matrix, where each row

corresponds to the embedding for each object. Given sequences of objects

(text segments for Word2Vec and graph paths in DeepWalk), the training in-

volves looking up the embedding matrix for the objects in the sequence and

updating them through stochastic gradient descent (SGD). The details of the

how the sequences are generated and the cost functions used to update the

embeddings varies with the application.

The key challenge in distributing Any2Vec training is that SGD is in-

herently sequential. Two approaches for parallelizing SGD are asynchronous

SGD, where multiple nodes racily update [138] a model that may be housed

in a global parameter server [54], or synchronous SGD, where nodes bulk-
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synchronously combine individual gradients in a mini-batch update before up-

dating the model [8]. It is well known that the staleness of updates affects

the scalability of the former, while the increase in mini-batch size affects the

scalability of the latter. This is substantiated in our evaluation.

To improve the scalability over prior methods, this work introduces

GraphAny2Vec, a distributed machine learning framework for Any2Vec. We

first demonstrate that the Any2Vec class of machine learning algorithms can

be formulated as a graph application and leverage the ease of programming

and scalability of the state-of-the-art distributed graph analytics frameworks,

such as D-Galois [51] and Gemini [195]. To support this new application,

we extend D-Galois to support dynamic graph generation and re-partitioning,

and implement communication optimizations for reducing the communication

volume, the main bottleneck for these applications at scale. Finally, we intro-

duce a novel way to combine gradients during distributed training to prevent

accuracy loss when scaling. Rather than simply averaging the gradients, as

in a synchronous mini-batch SGD, our Gradient Combiner (GC) performs a

weighted combination on gradients based on whether they are parallel or or-

thogonal to each other.

We evaluate two applications: Word2Vec [112] and Vertex2Vec [128],

in our GraphAny2Vec framework on a cluster of up to 32 machines with 3

different datasets each. We compare GraphAny2Vec training time and ac-

curacy with the state-of-the-art shared-memory implementations (original C

implementation [113] and Gensim [139] for Word2Vec and DeepWalk [128]
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for Vertex2Vec) as well as with the state-of-the-art distributed parameter-

server Word2Vec implementation in Microsoft’s Distributed Machine Learning

Toolkit (DMTK) [160]. We show that compared to shared-memory implemen-

tations, GraphAny2Vec can reduce the training time for Word2Vec from 21

hours to less than 2 hours on our largest dataset of Wikipedia articles while

matching the SGD accuracy of shared-memory implementations, and gives a

geo-mean speedup of 12× and 5× for Word2Vec and Vertex2Vec respectively.

On 32 hosts, GraphAny2Vec is on average 2× faster than DMTK.We also show

the superiority of our Gradient Combiner (GC) independent of GraphAny2Vec

by incorporating it in DMTK, which raises its accuracy by > 30% so that it

matches its own shared-memory implementation.

6.3 Background

In this section, we first briefly describe how stochastic gradient descent

is used to train machine learning models (Section 6.3.1), followed by how

Any2Vec models are trained with Word2Vec as an example (Section 6.3.2).

We then provide an overview of graph analytics (Section 6.3.3).

6.3.1 Stochastic Gradient Descent

We express the training task of a machine learning model as a set of

multivariable loss functions Li(w) : IRn → IR where w is the model and each Li

corresponds to the training sample i. The output of Li(w) is a positive value

that correlates the prediction of the model w to the label of sample i. Perfect
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prediction has a loss of 0. The ultimate goal is to find w that minimizes the

loss function across all samples: argminw :
∑

i Li(w).

Stochastic Gradient Descent (SGD) [25] is a popular algorithm for ma-

chine learning training. The model is initially set to a random guess w0 and

at iteration or sample i,

wi := wi−1 − α ·
∂Li
∂w

∣∣∣∣
wi−1

where α is the learning rate and ∂Li

∂w

∣∣
wi−1

is the gradient of Li at wi−1. Training

is complete when the model reaches a desired loss or evaluation accuracy. An

epoch of training is the number of updates needed to go through the whole

dataset once.

The fact that SGD’s update rule for wi depends on wi−1 makes SGD an

inherently sequential algorithm. A well-known technique to introduce paral-

lelism is mini-batch SGD [27], wherein the gradient is calculated as an average

over n training examples, where n is the mini-batch size. When n is 1 this is

equivalent to normal SGD.

Hogwild! [138] is another well-known SGD parallelization technique,

wherein multiple threads compute gradients for different training examples in

parallel and update the model in a racy fashion. Surprisingly, this approach

works well on a shared-memory system, especially with models where gradients

are sparse.

This work uses intuitions based on the Taylor expansion of SGD to

develop new techniques for parallelizing SGD. Applying the SGD update rule
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Figure 6.1: Viewing Word2Vec in Skip-gram model as a graph.

to a loss function Li and expanding with the Taylor approximation gives:

Li(wi) = Li(wi−1 − α · gi) ≈ Li(wi−1)− α · gTi ·
∂Li
∂w

∣∣∣∣
wi−1

= Li(wi−1)− α · gTi · gi

= Li(wi−1)− α · ‖gi‖2

(6.1)

As it is clear from Equation 6.1, moving in the direction of the gradient reduces

the loss. Note that the learning rate, α, is a delicate hyper-parameter: a

small α decays the loss insignificantly and for large α, the Taylor expansion

approximation breaks and the model diverges.
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6.3.2 Training Any2Vec Embeddings

An embedding is a mapping from a dataset D to a vector space IRN

such that elements of D that are related are close to each other in the vector

space. The length N of the embedding vectors is typically much smaller than

the dimension of D.

Many models have been proposed for learning word embeddings [112,

113]. We will focus on the popular Skip-gram model together with the negative

sampling introduced in [113], and explain it here in a form suitable for a graph

analytic understanding.

Skip-gram uses a training task where it predicts if a target word wO

appears in the context of a center word wI . Figure 6.1 (left) illustrates this

for an example sentence, with “fox” as the center word. The context is then

defined as the words inside a window of size c (a hyper-parameter) centered

on “fox”. In Figure 6.1 these positive samples are shown in green and have a

label of 1. For each positive sample Skip-gram picks k (a hyper-parameter)

random words as negative samples and gives them a label of 0.

The Skip-gram model consists of two vectors of size N for each word w

in the vocabulary: an embedding vector ew and a training vector tw. For a pair

of words the model predicts the label with σ(eTwI
· twO

), which should be close

to 1 for related words and close to 0 otherwise. The loss term for a sample is

then − log(1− |y − σ(eTwI
· twO

)|), where y is the true label of the sample.

174



We base the work in this chapter on Google’s Word2Vec tool2, which

uses the Hogwild! parallelization technique. Each thread is given a subset of

the corpus and goes through the words in it sequentially (skipping some due to

sub-sampling frequent words as described in [113]). For each pair of a central

word and a target word in its context Word2Vec calculates a gradient using a

sum of the loss term for the positive sample itself and loss terms for k negative

samples. This gradient is then applied to the model shared by all threads in a

racy manner and the thread continues onto the next pair of words.

6.3.3 Graph Analytics

In typical graph analytics applications, each node has one or more la-

bels, which are updated during algorithm execution until a global quiescence

condition is reached. The labels are updated by iteratively applying a com-

putation rule, known as an operator, to the nodes or edges in the graph. The

order in which the operator is applied to the nodes or edges is known as the

schedule. A node operator takes a node n and updates labels on n or its neigh-

bors, whereas an edge operator takes an edge e and updates labels on source

and destination of e.

To execute graph applications in distributed-memory, the edges are

first partitioned [75] among the hosts and for each edge on a host, proxies

are created for its endpoints. As a consequence of this design, a node might

have proxies (or replicas) on many hosts. One of these is chosen as the master

2https://code.google.com/archive/p/word2vec/
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proxy to hold the canonical value of the node. The others are known as mirror

proxies. Several heuristics exist for partitioning edges and choosing master

proxies [65].

Most distributed graph analytics systems [51, 70, 195] use bulk-syn-

chronous parallel (BSP) execution. Execution is done in rounds of computa-

tion followed by bulk-synchronous communication. In the computation phase,

every host applies the operator inside its own partition and updates the labels

of the local proxies. Thus, different proxies of the same node might have dif-

ferent values. Every host then participates in a global communication phase

to synchronize the labels of all proxies. Different proxies of the same node are

reconciled by applying a reduction operator, which depends on the algorithm

being executed.

6.4 Distributed Any2Vec

In this section, we first describe the formulation of Any2Vec as a graph

application and provide an overview of our distributed GraphAny2Vec (Sec-

tion 6.4.1). We then describe the different phases in our approach such as

dynamic graph generation and partitioning (Section 6.4.2), model synchro-

nization (Section 6.4.3), and communication optimizations (Section 6.4.4).

6.4.1 Overview of Distributed GraphAny2Vec

We formulate Any2Vec as a graph problem and call it GraphAny2Vec.

Each element in the dataset corresponds to a node in a graph, and the positive
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Procedure GraphAny2Vec(Corpus C, Num. of epochs R, Num. of sync round S,
Learning rate α):

Let h be the host ID
Stream C from disk to build set of vertices V
Read partition h of C that forms the work-list of vertices W
Build graph G from V
for epoch r from 1 to R do

for sync round s from 1 to S do
Let WLs be partition s of WL Build graph G = (V , E) where E are
samples in Ws Compute(G, Ws, α) . Updates G and decays α
Synchronize(G) . Updates G

end
end

Return

algorithm 7: Execution on each distributed host of GraphAny2Vec.

and negative samples correspond to edges in the graph with weights 1 and 0

respectively. Figure 6.1 (right) illustrates this for Word2Vec. Training the

Skip-gram model is now a graph analytics application. Each node has two

labels — e and t— for embedding and training vectors, respectively, of size N .

The model corresponds to these labels for all nodes. These labels are initialized

randomly and updated during training by applying an edge operator, that

takes the source src and destination dst of an edge with weight w, computes

σ(eTsrc · tdst) to predict the relation between the two nodes, and then applies

the SGD update rule to esrc and tdst so as to minimize the loss function

− log(1− |w−σ(eTsrc · tdst)|). The operator is applied to all edges once in each

epoch.

Algorithm 7 gives a brief overview of our distributed GraphAny2Vec

execution. The first step is to construct the set of vertices V (unique words in

case of Word2Vec) by making a pass over the training data corpus C on each
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host in parallel. As C may not fit in the memory of a single host, we stream

it from disk to construct V . The corpus C is then partitioned (logically)

into roughly equal contiguous chunks among hosts. All hosts read their own

partition of C in parallel. The list of elements in a given host’s partition

of C constitutes the work-list3 W that the host is responsible for computing

Any2Vec on. We introduce a new parameter for controlling the number of

synchronization rounds within an epoch. In each epoch on each host, W is

partitioned into roughly equal contiguous chunks among the rounds. In each

round s, positive and negative samples from partition s of W are used to

construct the graph. The Any2Vec operator is then applied to all edges in

the graph. The operator updates the vertex labels directly and decays the

learning rate continuously, as in shared-memory implementation of Any2Vec

applications. Then, all hosts participate in a bulk-synchronous communication

to synchronize the vertex labels.

We implement GraphAny2Vec in D-Galois [51], the state-of-the-art dis-

tributed graph analytics framework, which consists of the Galois [118] multi-

threaded library for computation and the Gluon [51] communication substrate

for synchronization. Galois provides efficient, concurrent data structures like

graphs, work-lists, dynamic bit-vectors, etc., which makes it quite straight-

forward to implement GraphAny2Vec. Gluon incorporates communication

optimizations that enable it to scale to a large number of hosts. However, D-

3The work-list W does not change across epochs, so we construct it once and reuse it for
all epochs and synchronization rounds. However, if it does not fit in memory, partition s of
W can be constructed from the corpus in each synchronization round.
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Galois only works with static graphs (nodes and edges must not change during

algorithm execution), whereas, for Any2Vec applications, edges are sampled

randomly and generated. We adapted D-Galois to handle dynamic graph gen-

eration efficiently during computation and communication, as explained in

Sections 6.4.2 and 6.4.4 respectively. Our techniques can be used to modify

other distributed graph analytics frameworks and implement GraphAny2Vec

in them.

6.4.2 Graph Generation and Partitioning

As explained in Section 6.3.2, the Skip-gram model generates positive

and negative samples using randomization. Consequently, the samples or edges

generated for the same element or node in the corpus in different epochs may

be different. As the same edge may not be generated again, one way to abstract

this is to consider that the edges are being streamed and each edge is processed

only once, even across epochs. Due to this, the graph needs to be constructed

in each synchronization round, as shown in Algorithm 7.

The graph can be explicitly constructed in each round. However, this

may add unnecessary overheads as each edge is processed only once before the

graph is destroyed. More importantly, this does not distinguish between edges

(samples) from different occurrences of the same node (element) in the corpus.

Consequently, the relative ordering of the edges from different nodes is not

preserved. We observed that the accuracy of the model is highly sensitive to

the order in which the edges are processed because the learning rate decays
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after each occurrence of the node is processed. Hence, the key to our graph

formulation is that on each host, the schedule of applying operators on edges

in GraphAny2Vec must match the order in which samples would be processed

in Any2Vec. Note that the work-list W preserves the ordering of element

occurrences in the corpus. Thus, GraphAny2Vec generates or streams edges

on-the-fly using partition s ofW in round s, instead of constructing the graph.

Each host generates edges for its own partition of the graph in each

synchronization round. In other words, the graph is re-partitioned in every

round. By design, each edge is assigned to a unique host. As mentioned in

Section 6.3.3, node proxies are created for the endpoints of edges on a host.

The master proxy for each node can be chosen from among its proxies thus

created, but this would incur overheads in every round. We instead (logically)

partition the nodes once into roughly equal contiguous chunks among the hosts

and each host creates master proxies for the nodes in its partition. Proxies for

other nodes on the host would be mirror proxies. Each mirror knows the host

that has its master using the partitioning of nodes. Each master also needs to

know the hosts with its mirrors. We provide two ways to do this: RepModel

and PullModel.

In RepModel, each host has proxies for all nodes, so the entire model

is replicated on each host. Thus, each host statically knows that every other

host has mirror proxies for the masters on it. This allows GraphAny2Vec to

assume that an edge between any two nodes can be generated on any host. In

PullModel, each hosts makes an inspection pass over W before computation
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Figure 6.2: Synchronization of the Skip-gram Model.

in each round to generate edges and track the nodes that would be accessed

during computation. Mirror proxies are then created for the nodes tracked.

For each mirror proxy created, the host communicates to the host that has its

master (bulk-synchronization).

RepModel requires the entire model to fit in the memory of a host, while

PullModel enables handling larger models. On the other hand, PullModel in-

curs overhead for determining masters and mirrors in each round, whereas

RepModel does not. Nonetheless, RepModel and PullModel require differ-

ent communication to synchronize the model, so we evaluate which of them

performs better in Section 6.7.

6.4.3 Model Synchronization

Prior work for distributed Word2Vec such as Microsoft’s Distributed

Machine Learning Toolkit (DMTK) [160] (and other machine learning algo-
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rithms) use a parameter server to synchronize the model, as illustrated in

Figure 6.2(a). One of the hosts (say P1) is chosen as the parameter server.

At the beginning of a round (or a mini-batch), every host receives the up-

dated model from the parameter server. The host then computes that round

and sends the model updates to the parameter server. GraphAny2Vec uses a

different synchronization model based on D-Galois [51], as illustrated in Fig-

ure 6.2(b). Abstractly, this can be viewed as a generalization of the parameter

server model where each host acts as a parameter server for a partition of the

model. In Figure 6.2(b), P1 has the master proxies for the first contiguous

chunk or partition of the nodes, P2 has the master proxies for the second

partition of the nodes, and so on. During synchronization in D-Galois, the

mirror proxies send their updated value to the host containing the master,

which reduces it and broadcasts it to the hosts containing the mirrors.

Figure 6.3 shows an example where proxies on two hosts need to be

synchronized after computation. Consider the word "fox" that is present on

both hosts. It may have different values for the embeddings on both hosts after
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computation. The reduction operator determines how to synchronize these

values and this is a parameter to synchronization in D-Galois. As described in

Section 6.5, averaging or adding the two values may lead to slower convergence,

so we introduce a novel way to combine them called Gradient Combiner.

6.4.4 Communication Optimizations

RepModel-Naive: During synchronization in RepModel, all mirrors

on each host can send their updates to their respective masters and the masters

can reduce those values and broadcast it to their mirrors. This is similar to

communication for dense matrix codes, so can be mapped quite efficiently to

MPI collectives. However, in Any2Vec, not all nodes are updated in every

round. Consequently, such naive communication would result in redundant

communication during both reduce and broadcast phases.

RepModel-Opt: The advantage of D-Galois is that it allows the user

to specify the updated nodes and it would transparently handle the sparse

communication that would entail. To do this, we maintain a bit-vector that

tracks the nodes that were updated in this round. During synchronization, only

the updated mirrors are sent to their masters and the masters broadcast their

values to the other hosts only if it was updated on any host in that round. This

avoids redundant communication during the reduce phase. However, there is

still some redundancy during the broadcast phase because the update sent

to a mirror might not be accessed by the mirror in the next round. This

information remains unknown in RepModel.
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PullModel-Base: In PullModel, mirrors are created after inspection

only if one of its labels will be accessed on that host. During synchronization,

only the mirrors updated in this round are sent to their masters (similar to

RepModel-Opt). However, we wait to broadcast after inspection of the next

round when new mirrors are created (re-partitioning). During broadcast, all

masters must be broadcast whether updated or not, because previous updates

may not have been sent to a host if it did not have a mirror during a previous

round. This is essentially pulling the model that will be accessed (like in

parameter server). While this avoids sending masters to mirrors that do not

access it, it may resend masters that have have been updated.

PullModel-Opt: Recall from Section 6.3.2 that embedding vectors e

are accessed only at the source and training vectors t are accessed only at

the destination of an edge. If a mirror proxy on a host has only outgoing

(or incoming) edges, then it will not access t (or e). This is not exploited

in PullModel-Base because masters and mirrors are not label-specific in D-

Galois. We modified D-Galois to maintain masters and mirrors specific to each

label. We also modified our inspection phase to track sources and destinations

separately, and create mirrors for e and t respectively. Due to this, masters

will broadcast e and t only to those hosts that access each.

6.5 Gradient Combiner

Section 6.3 discussed how in the mini-batch approach gradients from

multiple training examples are computed in parallel and they are reduced to a
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single vector by averaging. Although this is a widely-used practice, it does not

follow the semantics of the sequential algorithm. Suppose L1(w) and L2(w)

are two loss functions corresponding to two training examples. Starting from

model w0, sequential SGD calculates w1 = w0 − α∂L1

∂w
|w0 followed by w2 =

w1 − α∂L2

∂w
|w1 where α is a proper learning rate. With forward substitution,

w2 = w0 − α(∂L2

∂w
|w1 +

∂L1

∂w
|w0). Alternatively, in a parallel setting, ∂L1

∂w
|w0 and

∂L2

∂w
|w0 (note that gradients are both at w0) are computed and w is updated

with w′2 = w0 − α
2
(∂L1

∂w
|w0 +

∂L2

∂w
|w0). Clearly w′2 and w2 are different because

of the averaging effect. [71] and [96] have claimed that scaling up the learning

rate by the number of parallel processors (or square root of it) closes this gap.

However, if ∂L1

∂w
|w0 and ∂L2

∂w
|w0 are both in the same direction, scaling up the

learning rate might cause divergence as we assumed α was properly set for

the sequential algorithm. Our Gradient Combiner addresses this problem by

adjusting the gradients to each other.

Following the Taylor expansion for ∂L2

∂w
|w0+(w1−w0), we have:

∂L2

∂w

∣∣∣
w0+(w1−w0)

≈ ∂L2

∂w

∣∣∣
w0

+
∂2L2

(∂w)2

∣∣∣
w0

· (w1 − w0)

=
∂L2

∂w

∣∣∣
w0

− α ∂
2L2

(∂w)2

∣∣∣
w0

· ∂L1

∂w

∣∣∣
w0

(6.2)

where the approximation error is O(‖w1 − w0‖2) which alternatively can be

expressed as α2O
(∥∥∂L1

∂w
|w0

∥∥2 ). As the learning rate α gets smaller, the error

in Formula 6.2 shrinks quadratically. Usually as the training of a Any2Vec

model progresses, the learning rate is decayed and as a result this error be-

comes negligible. For the rest of this section, we denote gradients g1 = ∂L1

∂w
|w0 ,
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g2 = ∂L2

∂w
|w0 , g′2 = ∂L2

∂w
|w1 and the Hessian matrix H2 = ∂2L2

(∂w)2
|w0 . Therefore,

Equation 6.2 can be re-written by:

g′2 ≈ g2 − αH2 · g1 (6.3)

Equation 6.3 lets us compute g′2, however, computing H2 is expensive

as it is a n × n matrix where n is the number of parameters in the Any2Vec

model. Luckily because Any2Vec has a log-likelihood loss function, H2 can be

expressed by the outer product of the gradient: λg2 · gT2 where λ is a scalar

which depends on w0 [192]. The error for this approximation gets smaller

as w0 → w∗ where w∗ is the optimal model parameters [73, 192]. By using

Equation 6.3 and this approximation, g′2 can be approximated by:

g′2 ≈ g2 − αλg2 · gT2 · g1 (6.4)

Although Formula 6.4 makes calculation of g′2 feasible, finding the right λ for

every iteration of SGD is overwhelmingly difficult and it is yet another hyper-

parameter for the user to tune. However, if g1 was orthogonal to g2, then g′2

could have been easily estimated by g2. This is the intuition behind Gradient

Combiner .

Given that g1 and g2 are not always orthogonal, we project g1 on the

orthogonal space of g2 to make gO1 :

gO1 = g1 −
gT2 · g1
‖g2‖2

g2 (6.5)

gO1 has three important properties: (1) gT1 · gO1 ≥ 0, (2)
∥∥gO1 ∥∥ ≤ ‖g1‖, and (3)

gT2 · gO1 = 0. It is straight forward to check these properties (see Section 6.6
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for full proof). Suppose wO1 = w0−αgO1 . Then by using the Taylor expansion,

we have:

L1(w
O
1 ) = L1(w0 − αgO1 ) ≈ L1(w0)− αgT1 · gO1 ≤ L1(w0) (6.6)

where the last inequality comes from property (1). This means that moving

in the direction of gO1 decays the loss of L1. Also, because of property (2) and

the fact that the same learning rate as sequential learning rate is used, the

approximation in Equation 6.6 has the same or lower error as the one with

L1(w1) if we had the Taylor expansion for it (refer to Equation 6.1). Property

(3) and Equation 6.4 ensure that ∂L2

∂w
|wO

1
≈ ∂L2

∂w
|w0 = g2. Let’s assume that

sequential SGD uses gO1 to get to wO1 = w0 − αgO1 followed by computing
∂L2

∂w
|wO

1
which can be approximated by g2 to get to wO2 = wO1 − αg2. By

forward substituition:

wO2 = w0 − α(g2 + gO1 ) = w0 − α

(
g2 + g1 −

gT2 · g1
‖g2‖2

g2

)
(6.7)

Therefore, the direction Gradient Combiner (GC(g1, g2) for short) uses to move

is:

GC(g1, g2) = g2 + g1 −
gT2 · g1
‖g2‖2

g2 (6.8)

which allows computation of g1 and g2 in parallel. Note that our gradient

combiner requires slightly more computation than averaging but as we will

show in Section 6.7, this overhead is negligible.

The magnitude of GC(g1, g2) depends on how parallel or orthogonal

g1 and g2 are to each other. In the parallel case, gO1 becomes smaller and
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therefore, moving in the direction of gO1 decays the loss value of L1 slower than

g1. However, as we will show in Section 6.7, the gradients all start parallel to

each other in the begining of the training as they all point in the same general

direction and later in the training they become more orthogonal. This means

that Gradient Combiner conservatively takes small steps in the begining of the

training and larger ones as the training progresses.

Gradient Combiner extends to combining k gradients as well where the

gradients are combined in sequentially manner as discussed in Section 6.4.3

(GC(g1, . . . , gk) = GC(gk, . . . , GC(g3, GC(g2, g1)) . . . )). Section 6.6.1 proves

the convergence of Gradient Combiner in expectation.

The effectiveness of Gradient Combiner depends on the degree to which

the gradients are orthogonal. We define

O(g1, g2) =
‖GC(g1, g2)2‖
‖g1‖2 + ‖g2‖2

=

∥∥gO1 + g2
∥∥2

‖g1‖2 + ‖g2‖2
(6.9)

as a notion for orthogonality of g1 and g2. Note that because of property (3) gO1

and g2 are orthogonal and
∥∥gO1 + g2

∥∥2 = ∥∥gO1 ∥∥2+‖g2‖2 thanks to Pythagorean

theorem. Therefore,
∥∥gO1 + g2

∥∥2 =
∥∥gO1 ∥∥2 + ‖g2‖2 ≤ ‖g1‖2 + ‖g2‖2 which

concludes that t ≤ 1 and equality is met only when g1 and g2 are orthogonal.

On the other hand, if g1 = g2, gO1 becomes zero and O(g1, g2) = 1
2
. This can

be similarly expanded to k gradients O(g1, . . . , gk) = GC(g1,...,gk)
2∑

i‖gi‖
2 . Similarly for

k gradients, orthogonality is 1 when they are all orthogonal and 1
k
when they

are all the same.
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6.6 Proof of Properties of Gradient Combiner

The three properties of Gradient Combiner are (1) gT1 · gO1 ≥ 0, (2)∥∥gO1 ∥∥ ≤ ‖g1‖, and (3) gT2 · gO1 = 0 where gO1 = g1 − gT2 ·g1
‖g2‖2

g2. For the proof,

assume that the angle between g1 and g2 is θ.

Property (1): gT1 · gO1 ≥ 0.

gT1 · gO1 = gT1 · (g1 −
gT2 · g1
‖g2‖2

g2) = ‖g1‖2 −
gT2 · g1
‖g2‖2

gT1 · g2

= ‖g1‖2 −
‖g1‖2 ‖g2‖2 cos2 θ

‖g2‖2
= ‖g1‖2 sin2 θ ≥ 0

(6.10)

Property (2):
∥∥gO1 ∥∥ ≤ ‖g1‖.

∥∥gO1 ∥∥2 = ∥∥∥∥g1 − gT2 · g1
‖g2‖2

g2

∥∥∥∥2
= ‖g1‖2 +

(gT2 · g1)2

‖g2‖4
‖g2‖2 − 2

gT2 · g1
‖g2‖2

gT1 · g2

= ‖g1‖2 +
(gT2 · g1)2

‖g2‖2
− 2

(gT2 · g1)2

‖g2‖2
= ‖g1‖2 −

(gT2 · g1)2

‖g2‖2

= ‖g1‖2 −
‖g1‖2 ‖g2‖2 cos2 θ

‖g2‖2
= ‖g1‖2 − ‖g1‖2 cos2 θ

= ‖g1‖2 sin2 θ ≤ ‖g1‖2

(6.11)

Property (3): gT2 · gO1 = 0.

gT2 · gO1 = gT2 · (g1 −
gT2 · g1
‖g2‖2

g2) = gT2 · g1 −
gT2 · g1
‖g2‖2

‖g2‖2

= gT2 · g1 − gT2 · g1 = 0

(6.12)
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6.6.1 Gradient Combiner (GC) Convergence Proof

[131] discusses the requirements for a training algorithm to converge to

its optimal answer. Here we will present a simplied version of Theorem 1 and

Corollary 1 from [131].

Suppose that there are N training examples for a model with loss func-

tions L1(w), . . . , LN(w) where w is the model parameter and w0 is the initial

model. Define L(w) = 1
N

∑
i Li(w). Also assume that w∗ is the optimal model

where L(w∗) ≤ L(w) for all ws. A training algorithm is pseudogradient if:

• It is an iterative algorithm where wi+1 = wi−αihi where hi is a random

vector and αi is a scalar.

• ∀ε∃δ : E(hi)
T · ∇L(w) ≥ δ > 0 where L(w) ≥ L(w∗) + ε and w∗ is the

optimal model.

• E(‖hi‖2) < C where C is a constant.

• ∀i : αi ≥ 0,
∑

i αi = inf, and
∑

i α
2
i < inf.

The following Theorem is taken from [131].

Theorem 6.6.1. A pseudogradient training algorithm converges to the optimal

model w∗.

As a reminder, GC(g1, g2) = g2 + g1 − gT2 ·g1
‖g2‖2

g2 and for k gradients,

GC(g1, . . . , gk) = GC(gk, . . . , GC(g3, GC(g2, g1)) . . . ).
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Suppose G(wi) = {∂L1

∂w
|wi
, . . . , ∂LN

∂w
|wi
} is a random variable distribution

of the gradients at wi.

Theorem 6.6.2. Suppose hi = GC(g1, . . . , gk) where g1, . . . , gk are k indepen-

dently chosen gradients from G(wi). hi is pseudogradient.

Proof. To facilitate the proof of the pseudogradient properties of hi, we rewrite

GC formula as follows:

GC(g1, g2) = g2 + g1 −
gT2 · g1
‖g2‖2

g2 = g1 + g2 −
g2 · gT2
‖g2‖2

g1

=
(
I − g2 · gT2

‖g2‖2
)
g1 + g2

(6.13)

where g2·gT2
‖g2‖2

is a rank-1 matrix.

First by induction, we prove that E(GC(g1, . . . , gk)) and ∇L(wi) have

a positive inner product.

Base of the induction: because g1 and g2 are independently chosen,

E(GC(g1, g2)) can be calculated by:

E(GC(g1, g2)) = E
(
I − g2 · gT2

‖g2‖2
)
E(g1) + E(g2)

=
1

N

∑
a∈G(wi)

(
I − a · aT

‖a‖2
)
∇L(wi) +∇L(wi)

(6.14)

where the last equation comes from the fact that E(gj) = ∇L(wi) for any
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gj ∈ G(wi). Using the above formula, we have:

∇L(wi)T · E(GC(g1, g2)) = ∇L(wi)T
1

N

∑
a∈G(wi)

(
I − a · aT

‖a‖2
)
∇L(wi)

+∇L(wi)T · ∇L(wi) =
1

N

∑
a∈G(wi)

(
‖∇L(wi)‖2

−∇L(wi)T
a · aT

‖a‖2
∇L(wi)

)
+ ‖∇Lwi

‖2

=
1

N

∑
a∈G(wi)

(
‖∇L(wi)‖2 − ‖∇L(wi)‖2 cos2 θa

)
+ ‖∇Lwi

‖2

=
1

N

∑
a∈G(wi)

(
‖∇L(wi)‖2 sin2 θa

)
+
∥∥∇L(wi)

∥∥2 ≥ ∥∥∇L(wi)
∥∥2

(6.15)

where θa is the angle between a and ∇L(wi).

Induction step:

Now assume that ∇L(wi)T · GC(g1, . . . , gl−1) ≥
∥∥∇L(wi)

∥∥2. Also, as-

sume that the random vector distribution that is generated byGC(g1, . . . , gl−1)

is X with a size of M . Therefore, for the induction step, we have:

∇L(wi)T · E(GC(g1, . . . , gl−1, gl)) = ∇L(wi)T ·

(
E(gl)

+ E(GC(g1, . . . , gl−1))−
1

M

∑
a∈X

a · aT

‖a‖2
E(g1)

)
= ‖∇L(wi)‖2

+∇L(wi)T · E(GC(g1, . . . , gl−1))−
1

M

∑
a∈X

∇L(wi)T
a · aT

‖a‖2
∇L(wi)

= ∇L(wi)T · E(GC(g1, . . . , gl−1)) + ‖∇L(wi)‖2

− 1

M

∑
a∈X

‖∇L(wi)‖2 cos2 θa = ∇L(wi)T · E(GC(g1, . . . , gl−1))

+
1

M

∑
a∈X

‖∇L(wi)‖2 sin2 θa ≥ ‖∇L(wi)‖2

(6.16)
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where θa is the angle between ∇L(wi) and a and the last inequality is implied

by the induction assumption. Therefore, the inner product of GC and ∇L(wi)

is positive in expectation as ‖∇L(wi)‖2 is only zero at the optimal point.

Now we prove that norm of GC is bounded. We assume that norm of

the gradients of G(wi) for all wis are bounded.

‖GC(g1, g2)‖2 =
∥∥gO1 + g2

∥∥2 = ∥∥gO1 ∥∥2 + ‖g2‖2 ≤ ‖g1‖2 + ‖g2‖2 (6.17)

where the last equality is implied by the Pythagorean theorem (property

(3): gO1 and g2 are orthogonal) and the inequality is implied by
∥∥gO1 ∥∥ ≤

‖g1‖ (property (2)). This can be easily extended to GC for k gradients:

‖GC(g1, . . . , gk)‖2 ≤
∑

j ‖gj‖
2.

Therefore, E(‖GC(g1, . . . , gk)‖2) ≤
∑

j E(‖gj‖
2) = kE(‖g1‖)2. There-

fore, norm of GC for k gradients is also bounded. Given that GC uses the

same learning rate schedule as sequential SGD, the requirement for the learn-

ing rate of a pseudogradient training algorithm is already met. Thus, from

Theorem 6.6.1, the gradients computed with GC moves the model to the op-

timal point.

6.7 Experimental Evaluation

Section 6.7.1 outlines the evaluation methodology. We implement dis-

tributed Word2Vec and Vertex2Vec in our GraphAny2Vec framework, and we

refer to these applications as GraphWord2Vec (GW2V) and GraphVertex2Vec
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(GV2V) respectively. First, we compare these with the state-of-the-art third-

party implementations (Section 6.7.2). We then analyze the impact of our

Gradient Combiner (Section 6.7.3) and communication optimizations (Sec-

tion 6.7.4). Our evaluation methodology is described in detail in Section 6.7.1.

6.7.1 Experimental Methodology

Hardware: All our experiments were conducted on the Stampede2

cluster at the Texas Advanced Computing Center using up to 32 Intel Xeon

Platinum 8160 (“Skylake”) nodes, each with 48 cores with clock rate 2.1Ghz,

192GB DDR4 RAM, and 32KB L1 data cache. Machines in the cluster are

connected with a 100Gb/s Intel Omni-Path interconnect. Code is compiled

with g++ 7.1 and MPI mvapich2/2.3.

Datasets: Table 6.1 lists the training datasets used for our evalua-

tion: text datasets for Word2Vec and graph datasets for Vertex2Vec. These

datasets have different vocabulary sizes (# unique words or vertices), total

training corpus size (# occurrences of words or vertices), and sizes on disk.

Prior Word2Vec and Vertex2Vec publications used the same datasets. The

wiki (21GB) and Youtube (2.8GB) datasets are the largest text and graph

datasets respectively. We used DeepWalk [128]4 for generating training cor-

pus for Vertex2Vec by performing 10 random walks each of length 40 from all

vertices of the graph. We limit our Word2Vec and Vertex2Vec evaluation to

32 and 16 hosts of Stampedes respectively because these datasets do not scale

4https://github.com/phanein/deepwalk
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beyond that. We report the accuracy and the training (or execution) time for

all frameworks on these datasets, excluding preprocessing time, as an average

of three distinct runs.

Shared-memory third-party implementations: We evaluated the

Skip-gram [113] (with negative sampling) training model for both Word2Vec

and Vertex2Vec. We compared GraphWord2Vec (GW2V) with the state-of-

the-art shared-memory Word2Vec implementations, the original C implemen-

tation (W2V) [113] as well as the more recent Gensim (GEN) [139] python

implementation. We also compared our GraphVertex2Vec (GV2V) with the

state-of-the-art shared-memory Vertex2Vec framework, DeepWalk [128] (both

DeepWalk and Node2Vec [72] use Gensim’s [139] Skip-gram model).

Distributed-memory third-party implementations: We compared

GraphWord2Vec with the state-of-the-art distributed-memory Word2Vec from

Microsoft’s Distributed Machine Learning Toolkit (DMTK) [160], which is

based on the parameter server model. The model is distributed among pa-

rameter server hosts. During execution, hosts acting as workers request the

required model parameters from the servers and send model updates back to

the servers. Each host in the cluster acts as both server and worker, and it

is the only configuration possible. DMTK uses OpenMP for parallelization

within a host (GraphWord2Vec uses Galois [118] for parallelization within a

host). Both GraphWord2Vec and DMTK use MPI for communication be-

tween hosts. We modified DMTK to include a runtime option of configuring

the number of synchronization rounds. DMTK uses averaging as the reduction
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operation to combine the gradients. We refer to this as DMTK(AVG). We also

implemented our Gradient Combiner in DMTK and we call this DMTK(GC).

There are no prior distributed implementations of Vertex2Vec. Unless oth-

erwise specified, GW2V and GV2V uses GC to combine gradients and use

PullModel-Opt communication optimization.

Hyper-parameters: We used the hyper-parameters suggested by [113],

unless otherwise specified: window size of 5, number of negative samples of 15,

sentence length of 10K, threshold of 10−4 for Word2Vec and 0 for Vertex2Vec

for down-sampling the frequent words, and vector dimensionality N of 200.

All models were trained for 16 epochs. For distributed frameworks, GV2V,

GW2V, and DMTK, we compared 2 gradient combining methods: Averaging

(AVG) (default for distributed training of Any2Vec applications) and our novel

Gradient Combiner (GC) method. Unless otherwise specified, GV2V, GW2V,

and DMTK use the same number of synchronization rounds: 1 for 1 host, 3

for 2 hosts, 6 for 4 hosts, 12 for 8 hosts, 24 for 16 hosts, and 48 for 32 hosts.

Note that the default for DMTK is 1 synchronization round for any number

of hosts, but this yields very low accuracy, so we do not report these results.

Accuracy: In order to measure the accuracy of trained models of

Word2Vec on different datasets, we used the analogical reasoning task outlined

by original Word2Vec [113] paper. We evaluated the accuracy using scripts and

question-words.txt provided by the Word2Vec code base5. Question-words.txt

5https://github.com/tmikolov/word2vec
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Table 6.1: Datasets and their properties.

Datasets Vocabulary
Words

Training
Words Size Labels

Word2vec
(Text)

1-billion [38] 399.0K 665.5M 3.7GB N/A
news [120] 479.3K 714.1M 3.9GB N/A
wiki [175] 2759.5K 3594.1M 21GB N/A

Vertex2Vec
(Graph)

BlogCatalog [158] 10.3K 4.1M 0.02GB 39
Flickr [158] 80.5K 32.2M 0.18GB 195
Youtube [158] 1138.5K 455.4M 2.8GB 47

Table 6.2: Word2Vec training time (hours) on a single host.

Dataset W2V GEM DMTK(AVG) GW2V(GC)

1-billion 4.24 4.39 4.21 3.98
news 4.45 4.66 4.28 4.51
wiki 20.49 OOM 25.43 22.34

consists of analogies such as "Athens" : "Greece" :: "Berlin" : ?, which are

predicted by finding a vector x such that embedding vector(x) is closest to

embedding vector("Athens") - vector("Greece") + vector("Berlin") according

to the cosine distance. For this particular example the accepted value of x

is "Germany". There are 14 categories of such questions, which are broadly

divided into 2 main categories: (1) the syntactic analogies (such as "calm" :

"calmly" :: "quick" : "quickly") and (2) the semantic analogies such as the

country to capital city relationship. We report semantic, syntactic, and total

accuracy averaged over all the 14 categories of questions. For Vertex2Vec ,

we measured Micro-F1 and Macro-F1 scores using scoring scripts provided by

DeepWalk [128]6.

6https://github.com/phanein/deepwalk/blob/master/example_graphs/scoring.
py
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Table 6.3: Word2Vec accuracy (semantic, syntactic, and total) of different
frameworks relative to W2V.

Framework 1-billion news wiki

S
em

an
ti
c

W2V (1 Host) 75.86±0.07 70.79±0.54 79.10±0.31
GEN (1 Host) -0.22 -0.22 OOM

DMTK (1 Host) -13.79 -18.43 -7.46

DMTK(AVG) (32 Hosts) -57.36 -57.15 -34.39

DMTK(GC) (32 Hosts) -10.93 -17 -5.17

GW2V (1 Host) +0.07 -0.08 +0.26

GW2V(AVG) (32 Hosts) -7.00 -9.15 -4.03

GW2V(GC) (32 Hosts) +0.21 +0.07 -0.17

S
yn

ta
ct
ic

W2V (1 Host) 50.0±0.18 50.0±0.26 49.22±0.12
GEN (1 Host) -0.14 -0.12 OOM

DMTK (1 Host) -1.89 -0.67 -3.11

DMTK(AVG) (32 Hosts) -24.89 -25.11 -23.11

DMTK(GC) (32 Hosts) -3.56 -1.78 -1.44

GW2V (1 Host) -0.37 0.0 -0.12

GW2V(AVG) (32 Hosts) -4.89 -4.11 -7.55

GW2V(GC) (32 Hostss) +0.10 +0.11 +0.18

T
ot
al

W2V (1 Host) 72.36±0.21 69.21±0.42 74.10±0.42
GEN (1 Host) +0.0 -0.14 OOM

DMTK (1 Host) -11.65 -15.42 -3.03

DMTK(AVG) (32 Hosts) -51.29 -51.71 -32.03

DMTK(GC) (32 Hosts) -9.86 -14.78 -5.24

GW2V (1 Host) -0.14 -0.28 +0.1

GW2V(AVG) (32 Hosts) -6.79 -9.28 -5.17

GW2V(GC) (32 Hostss) +0.14 +0.29 -0.17

198



We implement distributed Word2Vec and Vertex2Vec in our GraphAn-

y2Vec framework, and we refer to these applications as GraphWord2Vec(GW2V)

and GrapVertex2Vec(GV2V) respectively. First, we compare these with the

state-of-the-art third-party implementations (Section 6.7.2). We then analyze

the impact of our Gradient Combiner (Section 6.7.3) and communication op-

timizations (Section 6.7.4). Our evaluation methodology is described in detail

in Section 6.7.1.

6.7.2 Comparing With The State-of-The-Art

Word2Vec: We compare GW2V with distributed-memory implementation

DMTK [160] and shared-memory implementations, W2V [113] and GEN [139].

Table 6.2 compares their training time on a single host. Figure 6.4 shows the

speedup of both GW2V and DMTK on 32 hosts over W2V on 1 host. Note

that averaging (AVG) and our Gradient Combiner (GC) methods are used to

combine gradients during inter-host synchronization, so they have no impact

on a single host.

Performance: We observe that for all datasets on a single host, the

training time of GW2V is similar to that of W2V, GEN, and DMTK. GW2V

scales up to 32 hosts and speeds up the training time by ∼ 13× on average

over 1 host. In comparison with distributed DMTK on 32 hosts, which uses

parameter servers for synchronization , GW2V is ∼ 2× faster on average for all

datasets. Figure 6.4 also shows that there is negligible performance between

using AVG and using GC to combine gradients in both DMTK and GW2V.
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Training wiki using GW2V takes only 1.9 hours, which saves 18.6 hours

and 1.5 hours compared to training using W2V and DMTK respectively.

To understand the performance differences between DMTK and GW2V

better, Figure 6.5 shows the breakdown of their training time into 3 phases: in-

spection, computation, and (non-overlapped) communication. Firstly, GW2V’s

inspection phase as well as serialization and de-serialization during synchro-

nization are parallel using D-Galois [51, 118] parallel constructs and concurrent

data-structures such as bit-vectors, work-lists, etc., whereas these phases are

sequential in DMTK as it uses non-concurrent data-structures such as set and

vector provided by the C++ standard template library. Moreover, in GW2V,

hosts can update their masters in-place. This is not possible in DMTK as

workers on each host have to fetch model parameters from servers on the same

host to update, incurring overhead for additional copies. Secondly, DMTK

communicates much higher volume (∼ 3.5×) than GraphWord2Vec. GW2V

memoizes the node IDs exchanged during inspection phase and sends only the

updated values during broadcast and reduction. In contrast, DMTK sends

the node IDs along with the updated values to the parameter servers during

both broadcast and reduction. In addition, GraphWord2Vec inspection pre-

cisely identifies both the positive and negative samples required for the current

round. DMTK, on the other hand, only identifies precise positive samples, and

builds a pool for negative samples. During computation, negative samples are

randomly picked from this pool. The entire pool is communicated from and

to the parameter servers, although some of them may not be updated, leading
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Table 6.4: Vertex2Vec training time (sec) of DeepWalk on 1 host vs. GraphVer-
tex2Vec (GV2V) on 16 hosts.

Dataset DeepWalk GV2V Speedup

BlogCatalog 115.3 28.8 4.0x
Flickr 976.7 183.1 5.3x
Youtube 11589.2 2226.2 5.2x

Table 6.5: Vertex2Vec accuracy (Macro F1 and Micro F1) of GV2V on 16
hosts relative to DeepWalk on 1 host.

% Labeled
Nodes 30% 60% 90%

Micro-F1
BlogCatalog Deepwalk 34.0 37.2 38.4

GV2V -0.1 +0.1 +0.7

Flickr Deepwalk 38.6 40.4 41.1
GV2V +0.1 -0.1 -0.2

Macro-F1
BlogCatalog Deepwalk 34.1 37.2 38.4

GV2V -0.3 +0.1 +0.7

Flickr Deepwalk 26.5 28.7 29.5
GV2V +0.1 -0.1 +0.3

to redundant communication.

Accuracy: Table 6.3 compares the accuracies (semantic, syntactic, and

total) for all frameworks on 1 and 32 hosts relative to the accuracies achieved

by W2V. On a single host, GW2V is able to achieve accuracies (semantic, syn-

tactic and total) comparable to W2V. DMTK on a single host is less accurate

due to implementation differences in the Skip-gram model training; DMTK

only updates learning rate between mini-batches, whereas others continuously

degrade learning rate, and DMTK uses a different strategy to choose negative

samples as described earlier. On 32 hosts, DMTK(AVG) has terrible accuracy

and GW2V(AVG) has poor accuracy. GC significantly improves the accura-

cies over AVG for both DMTK and GW2V. DMTK(GC) improves semantic by
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Figure 6.4: Speedup of DMTK and GW2V on 32 hosts over W2V
on 1 host.

37.91%, syntactic by 22.09%, and total by 34.79% to match its own single

host accuracy. GW2V(GC) improves all accuracies to match that of W2V.

Vertex2Vec: Table 6.4 compares the training time of DeepWalk [128] on a

single host with our GV2V on 16 hosts. We observe that for all datasets,

GraphVertex2Vec can train the model ∼ 4.8× faster on average. Similar to

GraphWord2Vec, this speedup does not come at the cost of the accuracy, as

shown in Table 6.5, which shows the Micro-F1 and Macro-F1 score with 30%,

60%, and 90% labeled nodes.

Discussion: GraphAny2Vec significantly speeds up the training time for

Word2Vec and Vertex2Vec applications by distributing the computation across

the cluster without sacrificing the accuracy. Reduced training time also accel-

erates the process of improving the training algorithms as it allows application

designers to make more end-to-end passes in a short duration of time.
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dataset on 1 host (SM) and on 32 hosts using GC and AVG.

6.7.3 Impact of Gradient Combiner (GC)

If time were not an issue, all machine learning algorithms would run

sequentially. A sequential SGD is simple to tune and converges fast. Unfor-

tunately, it is slow. A point (x, y) on Figure 6.7 denotes the total accuracy

(y) as a function of epoch (x). The blue line (SM) shows the accuracy of

GW2V on a single shared-memory host. It clearly converges to a high accu-

racy quickly. In contrast, the red lines plot accuracy of distributed GW2V

that uses averaging the gradients (AVG) with different learning rates on 32

hosts. The learning rate of 0.025 is the same as SM while the learning rate of

0.8 is 32 times larger. The former converges slowly while the latter does not
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converge at all (accuracy is 0) because the learning rate is too large. Finally,

the green line plots accuracy of distributed GW2V that uses GC and 0.025 as

the learning rate on 32 hosts. GC has no problem meeting the accuracy of the

sequential algorithm. In addition to providing the same accuracy as SM, it is

12× times faster on 32 hosts than SM. Not having to tune the learning rate

and still getting accuracy at scale is a significant qualitative contribution of

our work as tuning is a difficult task, in general.

In each round, we count the number of gradients that are being com-

bined and the percentage of them that are orthogonal to each during com-

bining. Figure 6.8 shows this percentage as function of the rounds. In later

rounds, more and more gradients are orthogonal to each other. As explained

in Section 6.5, GC is more effective when the gradients are orthogonal. This
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Figure 6.9: Breakdown of training time of GW2V with different
communication schemes on 32 hosts.

is validated by the increase in accuracy for GC in later epochs in Figure 6.7.

Synchronization Rounds: Gradient Combiner (GC) improves the accura-

cies significantly but in order to get accuracies comparable to shared-memory

implementations, the number of synchronization rounds in each epoch is an

important knob to tune. We observe that accuracies improve as we increase

the number of synchronization rounds within an epoch for both GC and AVG.

Nonetheless, accuracies show more improvement for GC (for example, seman-

tic: 3.07%, syntactic: 3.99% and total: 3.36% when synchronization frequency

is increased from 12 to 48 on 32 hosts) as opposed to AVG, which shows very

little change in accuracies with synchronization rounds. In general, we have

observed that in order to maintain the desired accuracy, the synchronization

frequency needs to be increased (roughly) linearly with the number of hosts.
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We have followed this rule of thumb in all our experiments.

6.7.4 Impact of Communication Optimizations

Figure 6.6 shows the strong scaling of GraphWord2Vec with different

communication optimizations (described in section 6.4.4): RepModel-Naive

(RMN), RepModel-Opt (RMO), PullModel-Base (PMB), and PullModel-Opt

(PMO). The 3 latter variants scale well up to 32 machines.

For 1-billion dataset, RepModel-Naive gives 4.7× speedup on 32 hosts

over 2 hosts. RepModel-Opt, which uses D-Galois to only communicate the

updated values for both reduction and broadcast, gives a speedup of 5.5× by

reducing the communication volume. RepModel-Opt shows 16% improvement

over RepModel-Naive on 32 hosts, showing that RepModel-Opt is able to ex-

ploit the sparsity in the communication. The benefits of RepModel-Opt over

RepModel-Naive increases with the number of hosts for two main reasons: (a)

synchronization frequency doubles with the number of hosts, thus communi-

cating more data, and (b) as training data gets divided among hosts, sparsity

in the updates increase.

PullModel-Base not only avoids replication of the model on all hosts

(thus can fit bigger models), but helps reduce communication volume over

RepModel-Opt by only broadcasting model parameters required by hosts for

the next round. PullModel-Opt further reduces communication volume by

taking into consideration the location of access as well: it only broadcasts em-

bedding vector for sources and training vector for destinations. These benefits
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come with an additional overhead of inspection phase before every synchro-

nization round, but our evaluation shows that these overheads are offset by

runtime improvements due to communication volume reduction. PullModel-

Opt yields an average speedup of 8.1× on 32 hosts over 2 hosts and is ∼ 20.6%

on average faster than RepModel-Opt for all text datasets on 32 hosts.

Figure 6.9 shows the breakdown of the training time into inspection,

computation, and communication time of the variants on 32 hosts. It is clear

that all variants have similar computation time. RepModel-Opt communicates

∼ 2× less communication volume on average as opposed to RepModel-Naive,

thus improving the overall runtime. PullModel-Opt not only allows to train

bigger models, it also further reduces communication volume by ∼ 11% on

average over RepModel-Opt by only broadcasting specific vectors to the proxies

to be used in the next batch.

Summary: PullModel-Opt in GraphAny2Vec always performs better than

the other variants by reducing the communication volume. These improve-

ments are expected to grow as we scale to bigger datasets and number of

hosts. Hence, PullModel-Opt not only allows one to train bigger models, but

also gives the best performance.

6.8 Related Work

Many different types of models have been proposed in the past for esti-

mating continuous representations of words, such as Latent Semantic Analysis

(LSA) and Latent Dirichlet Allocation (LDA). However, distributed represen-
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tations of words learned by neural networks are shown to perform significantly

better than LSA [114, 193] and LDA is computationally very expensive on large

data sets. Mikolov et al. [112] proposed two simpler model architectures for

computing continuous vector representations of words from very large unstruc-

tured data sets, known as Continuous Bag-of-Words (CBOW) and Skip-gram

(SG). These models removed the non-linear hidden layer and hence avoid dense

matrix multiplications, which was responsible for most of the complexity in

the previous models.

CBOW is similar to the feedforward Neural Net Language Models

(NNLM) [17], where the non-linear hidden layer is removed and the projection

layer is shared for all words. All words get projected into the same position

and their vectors are averaged.

SG on the other hand unlike CBOW, instead of predicting the current

word based on the context, tries to maximize classification of a word based on

another word within a sentence. Later Mikolov et al. [113] further introduced

several extensions, such as using hierarchical softmax instead of full softmax,

negative sampling, subsampling of frequent words, etc., to SG model that

improves both the quality of the vectors and the training speed.

Our work adapts the algorithm from this later work [113] for distri-

bution. This work, together with many current implementations [139] are

designed to run on a single machine but utilizing multi-threaded parallelism.

Our work is motivated by the fact that these popularly used implementations

take days or even weeks to train on large training corpus. Prior works on
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distributing Word2Vec either use synchronous data-parallelism [85, 176, 177]

or parameter-server style asynchronous data parallelism [160]. However, they

perform communication after every mini-batch, which is prohibitively expen-

sive in terms of network bandwidth. Our design was motivated by the need

to use commodity machines and network available on public clouds. Our ap-

proach communicates infrequently and uses our novel Gradient Combiner to

overcome the resulting staleness.

Ordentlich et al. [122] propose a different method designed for models

that do not fit in the memory of a single machine. They partition the model

vertically with each machine containing part of the embedding and training

vector for each word. These partitions compute partial dot products locally but

communicate to compute global dot products. For all the publicly available

benchmarks we could find, the models fit in the memory in our machines.

Nevertheless, our design allows for horizontal partitioning of large models if

such a need arises in the future.
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Chapter 7

Conclusion

Graph analytics systems are used in a wide variety of applications in-

cluding health care, electronic circuit design, machine learning, and cyberse-

curity. Graph analytics systems must handle very large graphs such as the

Facebook friends graph, which has more than a billion nodes and 200 billion

edges. Single machines used for shared-memory graph analytics are limited in

main memory and compute resources.

In order to break free from the main memory limitation, this disserta-

tion looks at the new opportunities for graph analytics on massive datasets on

a single machine brought by a new kind of byte-addressable memory technol-

ogy with higher density and lower cost than DRAM such as intel Optane DC

Persistent Memory. This enables the design of affordable systems that support

up to 6TB of randomly accessible memory. In Chapter 2, we present key run-

time and algorithmic principles to consider when performing graph analytics

on massive datasets on Optane DC Persistent Memory as well as highlight

ideas that apply to graph analytics on all large-memory platforms.

In order to provide more compute resource, distributed-memory clus-

ters with sufficient memory and computation power are required for process-
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ing of these graphs. In distributed graph analytics, the graph is partitioned

among the machines in a cluster, and communication between partitions is

implemented using a substrate like MPI. However, programming distributed-

memory systems are not easy and the recent trend towards the processor het-

erogeneity has added to this complexity. To simplify the programming of graph

applications on such platforms, this dissertation (Chapter 3) first presents a

compiler called Abelian that translates shared-memory descriptions of graph

algorithms written in the Galois programming model into efficient code for

distributed-memory platforms with heterogeneous processors.

An important runtime parameter to the compiler-generated distributed

code is the partitioning policy. Chapter 4 presents an experimental study of

partitioning strategies for distributed work-efficient graph analytics applica-

tions on different CPU architecture clusters at large scale (up to 256 machines).

Based on the study we present a simple rule of thumb to select among myriad

policies.

Another challenge of distributed graph analytics that we address in this

dissertation is to deal with machine fail-stop failures, which is an important

concern especially for long-running graph analytics applications on large clus-

ters. This dissertation presents a novel communication and synchronization

substrate called Phoenix that leverages the algorithmic properties of graph

analytics applications to recover from faults with zero overheads during fault-

free execution as described in Chapter 5 and show that Phoenix is 24x faster

than previous state-of-the-art systems.
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Finally, in Chapter 6, we show that our distributed graph analytics

infrastructure can be used for a new domain of applications, in particular,

embedding algorithms such as Word2Vec. Word2Vec trains the vector repre-

sentations of words (also known as word embeddings) on large text corpus and

resulting vector embeddings have been shown to capture semantic and syntac-

tic relationships among words. Other examples include Node2Vec, Code2Vec,

Sequence2Vec, etc (collectively known as Any2Vec) with a wide variety of uses.

We formulate the training of such applications as a graph problem and present

GraphAny2Vec, a distributed Any2Vec training framework that leverages the

state-of-the-art distributed heterogeneous graph analytics infrastructure devel-

oped in this dissertation to scale Any2Vec training to large distributed clusters.

GraphAny2Vec also demonstrates a novel way of combining model gradients

during training, which allows it to scale without losing accuracy.
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