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Abstract 

 

Advanced semi-classical Monte Carlo modeling of Si, Ge, InGaAs, and 

MoS2 n-channel FETs for novel CMOS 

 

Aqyan Ahmed Bhatti, Ph.D. 

The University of Texas at Austin, 2019 

 

Supervisor:  Sanjay K. Banerjee 

Co-Supervisor: Leonard F. Register 

 

Scaling-down of silicon (Si) based complementary-metal-oxide-semiconductor 

(CMOS) technologies are approaching material limits. For high-performance 

applications, high thermal velocity channel materials, such as indium-gallium-arsenide 

(InGaAs) and germanium (Ge), are viable alternatives to Si to extend the limits of CMOS 

downscaling. The unique mechanical and electrical properties of two-dimensional atomic 

crystals, such as single-layer molybdenum disulfide (MoS2), combined with soft, flexible, 

and curvilinear substrates, enable new device functionalities and concepts in the field of 

low-power flexible electronics not achievable with Si channels. While the intrinsic 

electron mobility of MoS2 is rather low, strain engineering may provide a pathway for 

improving electron transport. 

Silicon, InGaAs, Ge, and MoS2 n-channel MOSFETs were explored via first-

principles computational tools including density functional theory and particle-based 

ensemble semi-classical Monte Carlo methods to better understand and enable the 

rational design of end-of-the-roadmap CMOS and potential beyond-CMOS technologies. 
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The impact of contact geometry and transmissivity and gate length scaling on quasi-

ballistic nanoscale Si, Ge, and InGaAs n-channel FinFETs was studied. FinFETs with 

end, saddle/slot, and raised source and drain contacts and the same saddle/slot contact 

geometry with different gate lengths, according to the projections of industry roadmaps, 

were simulated. Simulated Si FinFETs exhibited relatively limited degradation in 

performance due to non-ideal contact transmissivities, more limited sensitivity to contact 

geometry with non-ideal contact transmissivities, some contact-related advantage for Si 

〈110〉 channel devices, and limited sensitivity to gate length scaling. Simulated InGaAs 

FinFETs were highly sensitive to modeled contact geometry, specific contact resistivity, 

the band structure model, and gate length scaling. Simulated Ge FinFETs showed 

substantial degradation due to non-ideal contact transmissivities, sensitivity to gate length 

scaling, and a large orientation-related advantage for Ge 〈110〉 channel devices. The 

impact of tensile strain on the intrinsic performance limits of monolayer MoS2 n-channel 

MOSFETs was studied. 200 and 15 nm gate length MoS2 MOSFETs with end contacts 

subject to different types and amounts of strain were simulated. Simulated MoS2 

MOSFETs displayed improved performance with strain due to lower effective mass and 

larger inter-valley separation, which is largely reduced due to non-ideal contact 

transmissivities. 
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Chapter 1:  Introduction and Background 

1.1 MARCHING TOWARDS THE END-OF-THE-ROADMAP 

According to the International Technology Roadmap for Semiconductors (ITRS), 

the next-generation of electronic devices need to be smaller, faster, and lower power [1]. 

Silicon (Si) has been the most widely used material for complementary-metal-oxide-

semiconductor (CMOS) technology due to its abundance, low-cost, and favorable 

material properties, including a wide band gap and good thermal conductivity. However, 

Si-based CMOS technology is rapidly approaching limitations based on fundamental 

physics [2]–[4]. Performance degradation with continued scaling such as gate leakage 

current due to dielectric scaling, short-channel effects, relatively greater variation of 

threshold voltage over the die, and increasing lithography challenges and cost pose 

challenges to meeting roadmap specifications [4]–[6]. As a result, a consideration to 

novel materials, innovative device designs, or a combination of both are needed to extend 

the life of CMOS technology. 

1.2 ADVANCING CMOS BEYOND THE SI ROADMAP 

For faster circuitry and possibly allow for a lower operating voltage, a high drain-

to-source current (𝐼'() in the ON state is desired. For quasi-ballistic transport, 𝐼'( is 

determined by the product of the total cross-sectional charge density, −𝑞𝑛, for n-channel 

FETs (where q is the magnitude of the fundamental unit of charge), the average source-

to-drain injection velocity, vinj, and the injection efficiency, 𝛾, at the top of the source-to-

channel potential barrier (which is unity in the ballistic limit) [7], 

 𝐼'( = 𝑞𝑛,𝑣/01𝛾. (1.1) 
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 One way to improve carrier injection velocities, which depend on carrier mass as 

well as carrier energy, is by modifying the material properties, such as through the 

application of strain or changing the channel material entirely. On the one hand, the 

performance of strained Si may be reaching a plateau [8]. On the other hand, high 

mobility (μ) materials—indicative of some combination of light masses corresponding to 

high 𝑣/01 and/or long scattering lifetimes corresponding to high 𝛾, if both in sublinear 

fashion—such as III-V and germanium (Ge) are widely regarded as potential candidates 

to fill the performance gap left by Si. Binary IIIxV1-x compound semiconductors are 

obtained by combining group III elements (Al, Ga, In) with group V elements (N, P, As, 

Sb), while further combinations are possible yielding ternary (IIIxIII1-xVy) and quaternary 

(IIIxIII1-xVyV1-y) III-Vs. III-V materials boast excellent electron mobility (μe), for 

example, electrons are nearly 30 times more mobile in indium arsenide (InAs) than in Si. 

However, low band-gap III-V materials such as InAs also display significant band-to-

band tunneling, which leads to large off-state leakage currents. An indium-gallium-

arsenide alloy of In0.53Ga0.47As (henceforth referred to as simply InGaAs) has been 

preferred because it is lattice-matched to InP substrates for fabrication-friendly thin film 

growth, has a higher mobility than GaAs, and a larger, more tunneling resistant band gap 

than InAs. Although excellent InGaAs n-channel FETs (nFETs) have been demonstrated, 

comparably performing p-channel FETs (pFETs) remain elusive due to the substantial 

(significantly greater than in Si) disparity between the electron and hole mobilities and 

thermal velocities [9]–[11]. Although both the electrons and holes mobilities of Ge are 

significantly higher than in Si at room temperature, early Ge-based devices suffered from 

significant engineering challenges precluding Ge’s widespread adoption, including the 

poorer quality and less stable native oxide (GeOx), higher interface state density (Dit) near 

the conduction band edge, and difficulty in developing low resistance ohmic contacts to 



 3 

n-type Ge [12]. The advent of new manufacturing technologies have addressed some of 

these issues, and progress made on Ge pFETs have led to a reconsideration of Ge 

channels for future advanced devices [13], [14]. Driven by this renaissance for p-channel 

Ge, there is associated heightened incentive to develop high-performance Ge nFETs. 

Higher mobility materials, which can enable faster switching times and higher on-

currents, typically have smaller band gaps, which increases standby power consumption 

via band-to-band tunneling leakage. Table 1.1 lists common material and electrical 

properties of Si, Ge, and InGaAs, including its constituent binary compounds. 
 Si Ge GaAs InAs In0.53Ga0.47As 

Electron mobility at 300 K, μe 
[cm2 V⁻1 s⁻1] 1,350 3,900 8,500 40,000 >8,000 

Hole mobility at 300 K, μh 
[cm2 V⁻1 s⁻1] 

450 1900 400 <500 350 

Lattice constant, ao 
[Å] 

5.431 5.646 5.653 6.058 5.868 

Band gap, Eg 
[eV] 1.12 0.66 1.42 0.35 0.75 

Dielectric constant, εr 12 16 13 15 14 
𝒎𝐜𝐨𝐧𝐝

∗ /𝒎𝒆 
(𝒎𝐝𝐨𝐬

∗ /𝒎𝒆) 
0.26 

(0.32) 
0.16 

(0.26) 0.067 0.023 0.043 

Electron thermal velocity 
[×107 cm/s] 2.3 2.9 4.5 7.7 5.6 

Thermal conductivity 
[W cm⁻1 K⁻1] 1.5 0.58 0.5 0.27 0.05 

Critical electric field 
[×106 V/cm] 0.25 0.1 0.004 0.002 0.2 

Table 1.1: Basic material parameters and electrical properties of Si, Ge, and InGaAs 
compiled from [15].  

Along with integrating high-mobility semiconductors, innovative designs 

continue to extend the limits of CMOS scaling. Alternative architectures include 

partially-depleted silicon on insulator (SOI), fully-depleted SOI, dual-gate SOI, and 

multi-gate FET [16]–[18]. In particular, the FinFET is a three-dimensional (3D) transistor 
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design for the 24-nm technology node and beyond that wraps the gate around the channel 

instead of placing it only on the top, resulting in steeper subthreshold slope and a 

corresponding reduced threshold voltage and higher ON-state transconductance, 𝑔> =

𝑑𝐼'( 𝑑𝑉A⁄ , where 𝑉A is the gate voltage [16], [19]–[21]. Traditionally, CMOS circuits 

have been fabricated on Si {100} substrates, substantially because this orientation 

resulted in low gate Si-SiO2 interface trap densities for planar devices [22], [23]. The 

standard channel orientation, now as before multi-gate devices were developed, is then on 

that plane along a 〈110〉 direction. In this work we again assume {100} substrates, but 

consider two channel orientations: a still standard 〈110〉 channel direction [24], which, as 

compared to it planar device predecessors, produces a non-traditional gate oxide-channel 

interface orientation of {110}; and a non-standard 〈100〉 channel direction, which, again 

as compared to its planar device predecessors, produces a traditional gate oxide-channel 

interface orientation of {100}. Production FinFETs are oriented with a 〈110〉 channel 

direction, which optimizes the hole channel mobility for both Si and Ge [25], [26]. 

1.3 A FORK IN THE ROAD 

Two-dimensional (2-D) atomic crystals, such as the prototypical graphene, have 

attracted a lot of attention due to their superb electrical and mechanical properties [27]–

[29]. In particular, single-layered transition metal dichalcogenides (TMDs) of the form 

MX2, where M is a transition metal (M = Mo, W, Nb, Ta, Ti, Re) and X is a chalcogen (X 

= S, Se, or Te), have been gaining popularity. Within this family of materials, monolayer 

molybdenum disulfide, MoS2, exhibits extraordinary mechanical, thermal, and electronic 

properties, which enables it to be used in a myriad of applications such as field-effect 

transistors, integrated circuits, non-volatile memory cells, solid lubricants, 

photodetectors, and gas sensors [30]–[35]. MoS2 possess many desirable material 



 5 

properties well-suited for applications in transistors, including low leakage current 

because of a substantial band gap—in contrast to gapless graphene—excellent 

electrostatic control due to its atomic scale thickness (the ultimate ultra-thin body), 

absence of dangling bonds at the surface to reduce interface traps and defects, and high 

mechanical flexibility. Moreover, MoS2 integration is compatible with state-of-the-art 

nanofabrication processes [36] and wafer-scale device fabrication [37]. On the other 

hand, the challenges of fabricating MoS2 devices include large contact resistance, 

interaction with surrounding environment not well-studied (environmental stability), low 

intrinsic charge carrier mobility, and difficult to dope. The earliest work on a single-layer 

MoS2 transistor on silicon (Si) substrate was performed by B. Radisavljevic et al. in 

2011, who reported an electron channel mobility and current on/off ratio of 200 cm2 V⁻1 

s⁻1 and 1×108, respectively, at room temperature [38].  

Looking beyond rigid Si-based technologies, single-layer MoS2 devices can also 

be integrated with soft, flexible, and curvilinear surfaces to unlock new opportunities in 

the field of flexible electronics such as flexible displays, wearable electronics up to 

“electronic skin” and tattoos, and biosensors [39]–[41]. Flexible electronics is a 

disruptive technology offering devices with ultra-thin form factors and high-performance 

at low-cost that will be able to perform functions that conventional electronic devices 

cannot, including bending, rolling, folding, and stretching. Recent studies on flexible 

multi-layer and monolayer MoS2 transistors on a plastic substrate of polyimide with 

integrated high-k dielectric in a back-gated device structure have shown good electrical 

and mechanical properties, including an on/off ratio of greater than 107, subthreshold 

slope of 82 mV per decade, and device low-field carrier mobility of 30 cm2 V⁻1 s⁻1 [42], 

[43]. Figure 1.1 shows a comparison of the electron mobility and band gap for several 

candidate semiconductors. Strain in MoS2, which may be introduced during fabrication 
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due to lattice mismatch [44] or through mechanical deformation [45], has been shown to 

alter MoS2’s electronic and transport properties [46], [47]. Therefore, a careful study on 

the effects of strain on MoS2 device performance is warranted to advance flexible 

electronics. 

 

Figure 1.1: Intrinsic electron mobility versus band gap for various semiconductors, 
including typical III-V and transition metal dichalcogenides materials [48], 
[49]. 

1.4 SEMICONDUCTOR DEVICE MODELING AND SIMULATION 

Simulation is becoming an indispensable tool for device engineers, and together 

with experiments can be used to understand physical phenomena that are either difficult 

or impossible to measure, test hypothetical devices concepts and explore complex design 

spaces, and provide insights and predictions into device behavior. As feature sizes shrink 

into the nanometer scale regime, physical models have to be refined and extended to 

more accurately capture transport phenomena occurring on these scales. Degenerate 
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carrier concentrations that exceed the effective density of states found in modern 

MOSFETs, such as that in the source and drain (S/D) to reduce series resistance, 

invalidate classical statistics (Boltzmann statistics in the equilibrium limit). As supply 

voltages have not scaled accordingly, the resulting large electric fields inside devices 

(which rapidly change over small length scales) gives rise to hot-carrier and non-local 

effects. The latter include far-from-equilibrium carrier statistics, making the use of even 

Fermi-Dirac statistics, particularly in the channel, invalid. And an electric field in the 

direction perpendicular to the semiconductor channel and dielectric interface can create a 

narrow potential well, and the resulting quantum mechanical confinement of the free 

electron gas leads to quantized energy levels, valley degeneracy breaking (even without 

strain), and modification of the density of states. 

Non-equilibrium Green’s Function based (NEGF-based) quantum transport 

models and/or sub-band-based transport models, while offering several advantages for 

modeling nanoscale devices, also generally employ simplified, end-to-end source/drain 

carrier injection topologies. At the other end of the scale, while more realistic contact 

geometries can be included readily, contact orientation effects are substantially obscured 

in drift-diffusion or hydrodynamic simulations because even hot carriers move purely 

diffusively in proportion to the Fermi-level gradient as they enter the device. However, 

ensemble semi-classical Monte Carlo (SCMC) simulators allow for both complex contact 

geometries and fully- and quasi-ballistic through diffusive transport, providing an 

opportunity for modeling contact geometry effects in modern nanoscale devices not 

otherwise available. Additionally, the SCMC approach allows for, among other things, a 

description of carries under quantum-confinement, far-from-equilibrium transport, and 

the ability to include a variety of scattering mechanisms such as phonons, surface 

roughness, and ionized impurities. 
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1.5 DISSERTATION OVERVIEW 

The focus of this work is to understand and model the essential underlying 

physics in the operation of Si, Ge, InGaAs, and MoS2 n-channel field-effect transistors 

(FETs) to identify potential performance bottlenecks and provide guidance to device 

designers. The organization of this dissertation is as follows. Chapter 1 reviews the 

challenges of scaling conventional Si-based CMOS technology and the proposed use of 

high mobility and thermal velocity channel materials for high-performance logic 

transistors and strained MoS2 channel materials for low standby and operating power 

flexible electronic devices. Chapter 2 presents an advanced quantum-corrected SCMC 

tool for modeling the end-of-the-roadmap Si, Ge, InGaAs, and MoS2 n-channel FETs, 

outlining the essential elements of our simulation methodology, including the main 

building blocks of the Monte Carlo algorithm, surface roughness scattering, and contact 

transmissivity. Chapter 3 addresses the impact of contact geometry and transmissivity on 

quasi-ballistic nanoscale Si 〈110〉	and 〈100〉 and In0.53Ga0.47As n-channel FinFETs. 

Chapter 4 addresses gate length scaling, and associated fin width scaling, impact on 

quasi-ballistic nanoscale Si 〈110〉 and 〈100〉, Ge 〈110〉 and 〈100〉, and In0.53Ga0.47As n-

channel FinFETs. Chapter 5 addresses the impact of tensile strain on the intrinsic 

performance limits of monolayer MoS2 n-channel MOSFETs. Chapter 6 concludes with a 

dissertation recap and recommendations for future work. 
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Chapter 2:  University of Texas Monte Carlo Software 

2.1 MONTE CARLO HISTORY 

Since the late 1970s, the Monte Carlo method has been used for studying carrier 

transport in semiconductors and detailed reviews can be found in [50]–[53]. The Monte 

Carlo method is a numerical technique for solving the Boltzmann transport equation 

(BTE) by following the motion of carriers in both real space and momentum space, 

subject to stochastic scattering events determined by sequences of random numbers with 

specified probability distributions. Without the need for any additional physical 

approximations, the Monte Carlo method allows for the incorporation of carrier transport 

effects in a rather complete and comprehensive manner 

 
FG
FH
+ 𝒗 ∙ ∇𝐫𝑓 +

O𝑭
ℏ
∙ ∇𝐤𝑓 = SFG

FH
T
UVW

. (2.1) 

Where q is the fundamental charge, ℏ is the reduced Plank’s constant, r is the 

carrier position in real space, k is the carrier wave vector in momentum space, v is the 

group velocity, F is the electric field at position r, t is the time, and the distribution 

function f(r,k,t) represents the probability for a carrier to occupy position r with 

momentum k at time t. The collision term depends on the microscopic scattering 

mechanisms present in the material system 

 

 SFG
FH
T
UVW

= ∑ {𝑆(𝒌[, 𝒌)𝑓(𝒓, 𝒌[, 𝑡)[1 − 𝑓(𝒓, 𝒌, 𝑡)] − 𝑆(𝒌, 𝒌[)𝑓(𝒓, 𝒌, 𝑡)[1 −𝒌a

𝑓(𝒓, 𝒌[, 𝑡)]}. 
(2.2) 

Where 𝑆(𝐤[, 𝐤) is the transition probability between states 𝒌 and 𝒌′ and [1 −

𝑓(𝐫, 𝐤[, 𝑡)] term is the probability that the state 𝒌′ is not occupied. To calculate these 

scattering rates, the Fermi Golden Rule is used 
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 𝑆(𝒌, 𝒌′) = cd
ℏ
|𝑀(𝒌, 𝒌′)|cδh𝐸𝒌 − 𝐸𝒌a ± ℏω𝒒m. (2.3) 

	

Where ℏ is the reduced Plank’s constant, M is the matrix element, 𝐸𝒌 and 𝐸𝒌a are 

the energy of the states before and after scattering, respectively, and ℏω is the energy of 

the absorbed or emitted phonon with wave vector q. 

2.2 SIMULATION METHODOLOGY 

We employed our in-house quantum-corrected three-dimensional (3-D) SCMC 

methodology, University of Texas Monte Carlo (UTMC) [54], to study contact geometry 

and crystal orientation effects on carrier injection in Si, Ge, and InGaAs n-channel 

FinFETs and strain effects on carrier transport in MoS2 n-channel MOSFETs, while also 

modeling far-from-equilibrium degenerate statistics, non-ideal contact resistivities, and 

quantum-confinement effects on carrier distributions in real-space and among energy 

valleys, and on phonon, impurity, and surface roughness scattering. The strength of our 

method is that no a priori assumption of an equilibrium or any specific carrier distribution 

is made and, no adjustable parameters are needed, unlike the effective potential 

approximation, to calculate the quantum-correction potentials [55]. Here we summarize 

some of the basic features of our simulator that impact our simulation results. 

UTMC models carrier transport within 3-D device geometries considering intra- 

and inter-valley phonon (acoustic, optical, and polar optical), surface roughness, alloy, 

and (Brooks-Herring [56]) ionized impurity scattering. Intra-valley acoustic phonon 

scattering, alloy scattering, ionized impurity scattering, and surface roughness scattering 

are treated as elastic scattering processes; intra-valley optical phonon scattering, and 

inter-valley acoustic and optical phonon scattering are treated as inelastic scattering 

processes. Following the approach of Jacoboni and Fischetti, the electron energy bands 



 11 

are modeled analytically with non-parabolicity corrections [50], [52], which is reasonable 

for the limited carrier energies encountered here. Within this approximation, the 

relationship between the carrier energy E and the wave vectors 𝑘o (d =1, 2 or 3, for the 

dimensionality of the system) in the reference frame of the principal axes of the valley is 

 𝐸(𝒌)h1 + 𝛼𝐸(𝒌)m = ∑ ℏqrs
q

c>s

t
ouv ,	 (2.4) 

Where ℏ is the reduced Plank’s constant, a is the non-parabolicity correction, 𝑚o is the 

component of the mass tensor along the 𝑘o direction in the principal axes coordinate 

system. 

Except as otherwise noted below, simulation parameters for Si and InGaAs are 

provided in [54]. Simulations of bulk velocity-field curves during UTMC development 

[54] produced excellent agreement to experimental data [50]–[52], [57], [58]. Accurate 

modeling of sidewall surface roughness scattering in FinFETs is more challenging, with 

scattering being likely dependent on channel and dielectric material and any strain 

thereof, materials growth and etching methods, and even detailed device geometry [59]. 

In this work, surface roughness parameters for 〈100〉 Si simply were adjusted to 

reproduce available channel mobility data for planar MOSFETs with high-quality Si-SiO2 

interfaces [60], as in [54]. These same surface roughness parameters then are used for Si 

〈100〉 and Si 〈110〉 channel FinFETs, as well as for InGaAs FinFETs, which also leads to 

much the same channel mobility for simulated 〈100〉 and 〈110〉 planar Si MOSFETs. 

While the latter result is not consistent with mobility measurements in planar Si devices 

[26], it is consistent with mobility measurements in (100) and (110) sidewall Si 

FinFETs [59], [61]. We also have observed a relatively modest effect of surface 

roughness scattering in the simulated drive current of these deeply scaled FinFETs, 

consistent with [62] and an overall reduction in relative effect of changes in scattering on 

drive current as compared to mobility as the ballistic limit is approached. Others, 
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however, have observed greater and important effects of surface roughness scattering in 

simulation of deeply scaled gate-all-around FETs [63]. Thus, this modeling of sidewall 

surface roughness of FinFETs introduces additional uncertainty in simulated absolute and 

relative performance of the considered technologies, and our approach to modeling 

sidewall surface roughness of FinFETs may be optimistic for all devices of this work to 

varying degrees. However, it also provides a control and perhaps somewhat compensates 

for immature InGaAs MOSFET gate dielectric technology [64]. 

Source and drain (S/D) doping densities, such as simulated in this work, are 

approaching solid-solubility limits that far exceed the effective density of states of the 

conduction band. Because of high doping concentrations, degenerate statistics must be 

addressed. However, because of the far-from-equilibrium conditions encountered in 

nanoscale FinFETs, carrier statistics cannot be described accurately using Fermi-Dirac 

distributions. Instead, UTMC directly models Pauli-Blocking (PB) of scattering to obtain 

the far-from-equilibrium local electron occupation probabilities 𝑓(𝒓, 𝑔, 𝐸, ±) from the 

local electron populations, 𝑁(𝑟, 𝑔, 𝐸, ±), as a function of position (r), energy valley (g) 

and energy (E), and propagation direction, forward toward the drain end (+) or backward 

toward the source end (−) 

 𝑓(𝒓, 𝑔, 𝐸, ±) = 𝑁(𝒓, 𝑔, 𝐸, ±)/𝐷(𝑔, 𝐸)/2,	 (2.5) 

Where 𝐷(𝑔, 𝐸)/2 is the position independent density of states per energy valley reduced 

by a factor of two for forward-going and backward-going carrier contributions. 

Energy valley and position dependent quantum-corrected potentials (QCPs) are 

calculated to match the calculated quantum-corrected (as an approximation, for 

computational efficiency, for this purpose only) equilibrium semi-classical carrier 

distributions to the quantum mechanical distributions. The latter distributions are 

obtained via self-consistent coupling of Schrӧdinger’s time-independent equation with 
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the Poisson’s equation, while allowing for barrier penetration effects, which can 

moderate the effects of confinement significantly. For practicality, the QCPs are 

computed within two-dimensional cross sections normal to the channel direction within 

an effective mass approximation with a non-parabolicity correction. To approximate 

three-dimensional effects, the quantum corrections are ramped on starting at the onset of 

confinement at the source and drain extension boundaries, over a distance equal to the 

actual channel width. The quantum corrections then serve to increase thresholds and alter 

relative valley occupancy, redistribute the carriers in real-space away from potential 

barriers, generally increase even intra-valley phonon scattering rates, particularly for 

randomizing processes, and determine the surface roughness scattering rate. In this latter 

way, although the employed surface roughness parameters for all FinFETs here are taken 

as the same, the resulting surface roughness scattering rates are not. 

2.3 SURFACE ROUGHNESS 

As the oxide thickness decreases with each technology generation, the effective 

vertical electric field increases which degrades the effective surface mobility due to 

increased surface roughness scattering. Surface roughness of an interface, characterized 

by the statistical parameters of root mean square height Δrms and correlation length Lc, 

typically causes fluctuations in the width of the quantum well, which leads to fluctuations 

in the electron energy levels, and that adds to the scattering [65]. The effect of surface 

roughness on bound electrons was studied by Prange and Nee [65], and on carrier 

transport in silicon inversion layers in MOSFETs later by Fischetti et al. [66] in more 

detail. Two common models to describe the potential fluctuations at the surface are either 

a Gaussian or exponential distribution. The rate of surface roughness scattering is 

distribution independent if the product of the correlation length and carrier momentum is 
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much smaller than unity, an approximation that is valid to a correlation length of a couple 

of nanometers [67], [68], and, in this limit, the scattering process becomes randomizing. 

This assumption is justified based on the parameters found in the work of Goodnick et al. 

of a correlation length of 1.3 nm and a roughness height of 0.4 nm for a (100) Si-SiO2 

interface [69]. We lump all the parameters and constants, including Δrms and Lc that 

characterize the Si-SiO2 interface, into a single adjustable parameter, C, determined by 

fitting our model to available experimental data, and the surface roughness scattering 

rates becomes 

 
v
|}~

= 𝐶𝑚U𝑉��� 𝐷(𝐸). (2.6) 

Where 𝑚U is the confinement mass, 𝑉���  is the quantum-corrected potential, and 

𝐷(𝐸) is the 3-D density of states. The confinement mass is calculated by rotating the 

effective mass tensor in the direction of the vector containing the rate of change of the 

electric field components in the x-, y-, and z-directions, respectively, computed using 

finite differences  

A mixed approach of a device simulation followed by a bulk simulation is 

employed to calibrate the quantum-confinement-dependent surface roughness scattering 

model. The quantum-corrected potentials for each valley at the middle of the channel are 

obtained from a self-consistent planar Si 〈100〉 MOSFET simulation without surface 

roughness scattering and the drain-to-source voltage set to 0 V as a function the average 

transverse electric field, i.e. the electric field normal to the interface. Next, these quantum 

potentials are fixed into a bulk simulation, modifying the bulk phonon scattering rates, to 

calculate the velocity versus field curve with the surface roughness scattering now 

included, and in effect, we a simulating an extremely long channel length device. Then 

the low-field mobility is extracted and plotted as a function of transverse electric field 

and the surface roughness scattering C coefficient is adjusted to match with measured 
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data [60], [70]. As shown in Figure 2.1, with a single adjustable parameter, reasonable 

agreement with experimental curves is achieved. For “bulk” channel mobility of Si (100) 

and Si (110), the same surface roughness leads to roughly the same surface roughness 

scattering.  

 

 

Figure 2.1: Comparison between UTMC electron mobility as a function of the effective 
electric field obtained by bulk simulations considering surface roughness 
scattering as well as quantum-confined phonon scattering and the 
experimental universal mobility curves for bulk Si-SiO2 interface channel 
MOSFETs [60], [70]. 

The importance of surface roughness in deeply scaled FinFETs is still a matter of 

debate. Actual surface roughness may be different for FinFETs versus planar MOSFETs 

due to the quality of the sidewall surfaces [71] as well as different gate stack materials or 

material combinations [59]. Additionally, in a combination of first-principles and 

0 0.2 0.4 0.6 0.8 1 1.2
Effective Vertical Electric Field (MV/cm)

0

100

200

300

400

500

600

700

800

Ef
fe

ct
iv

e 
El

ec
tro

n 
M

ob
ili

ty
 

e (c
m

2 V
-1

s-1
)

UTMC Si (100)
EXPT Si (100)
UTMC Si (110)
EXPT Si (110)



 16 

experimental work [61], [62], C. D. Young et al. found that electron mobility is not 

significantly degraded between (100) vs. (110) fin sidewall orientations, despite 

substantial differences in planar devices [26]. We found surface roughness scattering to 

be fairly modest in these very small devices in our simulations. 

2.4 ON CONTACTS 

Parasitic source and drain (S/D) series resistance Rseries can be divided into the 

four components: (1) extension-to-gate overlap resistance (ROV), (2) S/D extension 

resistance (REXT), (3) deep S/D resistance (RS/D), and (4) contact resistance between the 

semi-metallic silicide and the heavily doped semiconducting S/D interface (RC). 

However, decreases in channel resistance increase the importance of series resistance. 

Rseries plays an increasingly limiting role in the performance of MOSFETs near the end of 

the International Technology Roadmap for Semiconductors (ITRS) [1]. For nodes since 

2008, Rseries has been approximately 25% of Ron for Si technologies. Moreover, 

continually decreasing device sizes have increased the contribution to Rseries of the contact 

resistance RC between the semi-metallic silicide and the heavily doped semiconducting 

S/D interface, already about 40% of Rseries at 50 nm gate lengths in planar Si MOSFETs 

[72]. 

The contacts are modeled as in equilibrium. At the beginning of each timestep, 

carriers are injected into the simulation region. The valley the carrier is injected into is 

determined by the ratio of the transverse density of available states, i.e. the projection of 

the energy contour onto the transverse k-plane, to the total density of available states to 

inject into. The current is computed by counting the net number of carriers that enter or 

exit a particular contact. Under overall equilibrium conditions, the net current through the 
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contacts vanishes on average even while electrons continue to be injected and absorbed. 

Details of the models and methodology can be found in [54]. 

To obtain the Landauer-Büttiker limit [73], [74] of specific contact resistivity, 

ρLB, electrons are injected from the contacts into the S/D from a surface-normal-velocity-

weighted half-space Fermi-Dirac distribution, while electrons reaching the contact 

surface from the S/D region are perfectly absorbed. To then account for larger realistic 

specific contact resistivities, one method would be to add a distributed specific contact 

resistivity by which there is a corresponding localized voltage drop at the contact surface 

in proportion to the local current density [75], [76]. For this work, however, realistic 

contact resistivities are obtained by equally scaling down the electron injection and 

absorption probabilities—the electron transmissivity T—across the contact surface. 

Specular reflection then is used to model carriers reaching, but not being transmitted 

across the contact interface from the inside. Both energy and momentum parallel to the 

interface is conserved by reflecting into the mirror-image energy valley across the 

Brillouin zone, producing equal angle reflection in both r and k. One way to obtain the 

specific contact resistivity ρsp is as one-half of 𝜌0��,,�W, the extrapolation of net resistivity 

𝜌0�� for current flow between two identical contacts to an inter-contact distance of zero to 

eliminate the contributions of scattering between the contacts to the resistivity, which can 

thus be related to T as follows. Consider a ballistic conduction channel (although 

neglecting coherence) characterized by Landauer-Büttiker resistivity, ρLB (reciprocal of 

conductivity σLB) between imperfect contacts modeled by transmission (T) and reflection 

(R) probabilities, 𝑇v = 1 − 𝑅v, and, 𝑇c = 1 − 𝑅c . Considering the (power) series of all 

possible transmission trajectories with or without internal reflections between the 

contacts, the net inter-contact conductivity is, 

 𝜎0��,,�W = 𝜎��𝑇v𝑇c ∑ (𝑅v𝑅c)��
�u� = 𝜎��𝑇v𝑇c/(1 − 𝑅v𝑅c). (2.7) 
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For 𝑇v = 𝑇c as in this work, this result reduces to, 

 𝜎0��,,�W = 𝜎��𝑇/(2 − 𝑇). (2.8) 

 The corresponding net resistivity is then,  

 𝜌0��,,�W = 𝜌��(2 − 𝑇)/𝑇. (2.9) 

The resulting apparent specific contact resistivity corresponding to the transmission 

modeled probability T is, thus, [73], [74], 

 𝜌�� = 	𝜌��(𝑇�v − 1 2⁄ ). (2.10) 

Note that, intrinsically, 𝑇 ≤ 1 and 𝜌��/𝜌�� ≥ 1/2. In this way, half of the Landaur-

Büttiker resistivity, which is fundamentally a non-local quantity, nevertheless is 

associated with each contact by this measure of specific contact resistivity. In this way 

we both preserve contact geometry and surface orientation effects and avoid fully 

localizing the voltage drop to the contact surface in significantly ballistic devices. 

2.5 TIME EVOLUTION  

Before device simulation, users of UTMC define the device geometry to be 

simulated, the physical models to be used, and the bias conditions for which electrical 

characteristics are to be simulated. The device structure is defined according to a 

rectangular coordinate system with its x-axis along the transport direction, the y-axis 

along the width, and z-axis along the height. The simulation ends when the total time 

allotted for the simulation ends, typically, on the order of tens of picoseconds. The basic 

building block of our SCMC algorithm is summarized with the flowchart in Fig. 2.2. 
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Figure 2.2: Flowchart of a self-consistent Monte Carlo device simulation. 
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UTMC simulates the motion of several thousand carriers, including subcarriers, 

through the semiconductor. This number is limited by memory constraints, but good 

statistics can be obtained if the simulation time is long enough. Subcarriers are used to 

eliminate classical artifacts of carrier-carrier scattering not subject to Pauli-Blocking to 

stop hot carriers, eliminate fictious self-images forces, and provide better statistics 

overall. The carriers are initialized with a Fermi-Dirac distribution, although that is not 

necessary as the correct distribution will eventually emerge, and randomly oriented 

momenta. During a single simulation timestep or Monte Carlo iteration, carriers undergo 

free flight motion and then scatter. Free flight times t are generated according the 

probability distribution 

 𝜏 = − v
��
ln(𝑟). (2.11) 

Where the constant Go is the sum of all scattering rates at the maximum carrier 

energy with negligible probability of being achieved by the carrier during simulation and 

r is a uniform random number between 0 and 1. During free flight, the carriers drift under 

the influence of the electric fields according to Newton's laws of motion,  

 
t𝒓
tH
= v

ℏ
∇𝒌[𝐸(𝒌)], 

t𝒌
tH
= − O𝑭(𝒓)

ℏ
. 

(2.12) 

Where q is the fundamental charge, ℏ is the reduced Plank’s constant, r is the 

carrier position in real space, k is the carrier wave vector in momentum space, F is the 

electric field at position r, and t is the time. The timestep set by the program is divided by 

the free flight time. If the free flight time is longer than the timestep, then the carrier 

drifts according to the timestep. If the free flight time is less than the timestep, then the 

electron will drift and then scatter. In the worst case, an electron with thermal velocity 

108 cm/s and timestep of 0.24 fs could move a distance of 0.24 nm, which is less than the 

grid spacing of 1 nm set by the program. The carrier free flight time is further sub-
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divided by the time to the nearest grid site to reduce self-image forces, as discussed later. 

If a scattering event occurs, the carrier’s state after scattering is selected based on the 

comparison of a random number with the scattering probability and taking into account 

energy conservation and probability that the state is occupied. Then, another random free 

flight time is generated. This process repeats for all carriers until the end of the timestep. 

The Poisson equation must be solved to self-consistently to update the 

electrostatic potential at each grid site as the carriers move inside the device. The cloud-

in-cell method is most often employed for assigning the carrier charge to the grid sites 

because it gives a better description of charge density but is more susceptible to self-

image forces. If we move a carrier to a new position and attempted the evaluate the force 

on the that carrier using the forces from grid locations at the previous timestep, the carrier 

will feel a repulsive self-force from itself. Spurious self-image forces are reduced by 

solving the Poisson equation at each timestep, using the nearest grid site charge 

assignment to assign carrier charge to the mesh, introducing subcarriers to reduce the 

charge of each carrier, and decreasing the simulation timestep.  
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Chapter 3:  Semi-Classical Monte Carlo Study of the Impact of Contact 
Geometry and Transmissivity on Quasi-Ballistic Nanoscale Si and 

In0.53Ga0.47As n-channel FinFETs 

3.1 INTRODUCTION AND BACKGROUND 

New materials and new device designs continue to emerge as candidates for 

extending CMOS scaling, including the possible use of high electron mobility and 

thermal velocity channel materials [6]. In direct gap III-V materials, including 

In0.53Ga0.47As (InGaAs), conduction band Γ-valley electron mobilities and thermal 

velocities can be much greater than in silicon (Si). Substantial ballistic transport can 

occur on scales greater than 100 nm [50], versus on the scale of 10s of nm for Si (based 

on average velocity magnitude and scattering rate for thermal electrons). MOSFETs have 

moved to multi-gate geometries such as FinFETs for improved short channel effects [16], 

[19]–[21].  

However, decreases in channel resistance increase the importance of series 

resistance. Parasitic source and drain (S/D) series resistance Rseries plays an increasingly 

limiting role in the performance of MOSFETs near the end of the International 

Technology Roadmap for Semiconductors (ITRS) [1]. For nodes since 2008, Rseries has 

been approximately 25% of Ron for Si technologies. Moreover, continually decreasing 

device sizes have increased the contribution to Rseries of the contact resistance RC between 

the semi-metallic silicide and the heavily doped semiconducting S/D interface, already to 

about 40% of Rseries at 50 nm gate lengths in planar Si MOSFETs [72].  

Common options for making contacts to multi-gate MOSFET/FinFET geometries 

includes dumbbell-shaped source and drain contacts, saddle or slot contacts, and raised 

source and drain contacts (RSD) contacts. The dumbbell S/D contact layout is like that of 

planar MOSFET S/D contacts in that contact holes (vias) are etched using a contact 
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window mask down to the surface to be contacted. However, dumbbell layouts are not 

area efficient, and FinFETs are moving toward pad-less fin structures, such as saddle 

contacts or contacts to epitaxially-thickened S/D regions [77], [78]. Saddle contacts are 

attractive because of a significantly smaller device footprint than the dumbbell layout, 

and because the saddle metal contact couples to the fin top and sidewall surfaces through 

a thin metal silicide interface, potentially giving rise to a larger contact area to reduce 

contact resistance. If making a simple saddle contact to individual fins is not possible due 

to tight alignment tolerances, slot contacts, a variant on the theme, can be used instead, 

where a thicker layer of metal silicide is deposited across the S/D of all the fins, followed 

by metal contact across the top of the silicide as a whole. However, the extra contact 

metal between the fins in slots contacts increases the parasitic gate-to-contact 

capacitance, which can limit circuit performance. An attractive option is to increase the 

fin width in the S/D semiconductor regions by epitaxial growth, even to the point of 

merging adjacent fins (although not modeled as such here), in the RSD structure to 

eliminate the contact-to-fin pitch matching requirements and increase the surface area of 

the contact. In addition, the RSD structure has been shown to reduce the parasitic S/D 

resistance and capacitance, but not at the expense of fin pitch [79]–[81]. One drawback of 

the RSD approach is that the conformation of the source and drain surface depends on the 

source and drain epitaxial faceting. For (110) sidewalls, the final fin cross section is 

hexagonal or diamond-shaped, and hence, the contact will land on a non-planar surface. 

For (100) sidewalls, the cross section of the epitaxially grown semiconductor is 

rectangular and contacts will land on a flat surface. In any case, a common trait of these 

saddle/slot and RSD contacts relevant to this work is that each may be considered as a 

“side” or “wrapped” contact with respect to the channel orientation. 
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Although not the focus of this work, a contributing device performance and 

modeling consideration is that direct band gap III-V materials provide high electron 

mobilities and thermal velocities only so long as carriers remain in the Γ-valley. Within 

FinFET channels, the inter-valley separations will be reduced under quantum 

confinement relative to the bulk due to the greatly differing effective masses, while 

limited quantum (density of states) capacitance will move the Fermi level up rapidly in 

the Γ-valley with increasing channel carrier concentration. Moreover, in near-ballistic 

MOSFETs channels in saturation, with primarily drain-directed electrons, that quantum 

capacitance is effectively halved, relative to equilibrium. This consideration of quantum 

confinement and quantum capacitance impacts not only potential device performance, but 

the types of modeling tools which can be used to assess it. Moreover, the inter-valley 

separations between the light-mass Γ-valley and heavy-mass peripheral L-valleys (ΔEΓ-L) 

and X-valleys (ΔEΓ-X) are not reliably known [82]. For In0.53Ga0.47As, a commonly cited 

tight-binding calculation places the bulk values of ΔEΓ-L at 460	meV [83], while the only 

experimental determination places ΔEΓ-L at 550 meV [83], [84]. Recent density-

functional calculations have even estimated ΔEΓ-L to be as large as 1.31 eV [85]. 

The performance of indium-gallium-arsenide (InGaAs) MOSFETs have been 

explored through simulation for years [86]–[92], [75], [93]. However, with varying 

device geometries and scales, band structure models, and simulation methods, a 

consistent picture has not emerged. Multi-sub-band Monte Carlo and quantum transport 

simulations have been performed, which intrinsically address quantum confinement 

effects including, but not limited to, effects on inter-valley separation [90]–[94]. These 

methods generally have predicted that high-mobility channel materials will lead to 

substantially better MOSFET performance. However, complex contact geometries are 

difficult to address with these tools, so the focus often is on transport through the 
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channel, with the S/D contacts often modeled as essentially perfect electron reservoirs via 

simple perfectly injecting and absorbing end contacts. Semi-classical Monte Carlo 

(SCMC) simulations also have been performed, allowing consideration of more realistic 

contact geometries, although with varying band structure models and, if any, quantum 

confinement models. One theme emerging from these latter simulations for high-mobility 

channel materials MOSFETs is source starvation associated with contact surface 

orientations running parallel to the channel [75], [86]–[88], along with a less clear picture 

of the degree of advantage, if any, of high-mobility channel materials for nanoscale 

devices. A recent full-band Monte Carlo simulation study of nanoscale FinFETs [75] 

compared the performance of a side contact geometry and of an end contact geometry of 

the same area (although of qualitatively different character from the one considered here 

and for different purposes) for Si and InGaAs FinFETs, although without modeling 

quantum confinement in the channel. The authors also found source starvation effects 

associated with side contacts, as well as with non-ideal specific contact resistivities, for 

all devices but more so for InGaAs devices. However, InGaAs FinFETs continued to 

perform better than their Si counterparts. 

In this work, the effects of contact geometry and specific contact resistivity on 

In0.53Ga0.47As and silicon (Si) nanoscale (18 nm channel length) n-channel FinFET 

performance, and the effects of models thereof, are studied, using our in-house quantum-

corrected semi-classical Monte Carlo tool, UTMC. Saddle/slot contacts, RSD contacts, 

and a reference end contact were modeled, each with both perfectly injecting and 

absorbing contacts, and with contacts of more realistic specific contact resistivities, 

modeled here via sub-unity electron transmission probabilities (transmissivities) across 

the contact surface. Far-from-equilibrium degenerate statistics, and quantum-confinement 

effects on carrier distributions in real-space and among energy valleys and on scattering 
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rates are addressed. We consider Si 〈110〉 and Si 〈100〉 channel orientations, and multi-

valley InGaAs (MV-InGaAs) and Γ-valley-only InGaAs (Γ-InGaAs) channel devices. 

The idealized Γ-InGaAs channel represents the possibility of substantially larger valley 

offsets than otherwise modeled here, or perhaps weaker quantum confinement in 

channels, as well as simulation limitations such as not modeling quantum confinement 

within the channel and the associated reduction in inter-valley separation, or fully 

ballistic simulations, whereby electrons injected into the Γ-valley in the source are unable 

to scatter to peripheral valleys even when energetically available. 

Among our findings, echoing those of [75], G-InGaAs FinFETs were highly 

sensitive to contact geometry and specific contact resistivity, while Si FinFETs showed 

still significant but much less sensitivity to contact models. For idealized unity 

transmissivity contacts, Γ-InGaAs channel FinFETs performed best for all contact 

geometries, at least in terms of transconductance, and end contacts provided the best 

performance for all considered channel materials. For realistic contact resistivities, 

however, results are essentially reversed. Silicon channel FinFETs performed best for all 

contact geometries, and saddle/slot and RSD contacts outperformed end contacts. We 

also find that results for InGaAs FinFETs are sensitive to the peripheral valley energy 

offsets and their modification by quantum confinement within the channel. These 

simulation results challenge the potential of InGaAs FinFETs, but also suggest that the 

relative insensitivity of Si FinFET performance to contact design, and perhaps other 

device features, have allowed design choices that must be reconsidered to optimize 

InGaAs FinFET performance.  
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3.2 SIMULATED FINFET STRUCTURES AND INGAAS BAND STRUCTURE MODELS 

3.2.1 FinFET structure 

We model 18 nm gate length (LG) and 6 nm fin width (WFIN) InGaAs and Si-

channel FinFETs, with reference end, saddle/slot [95], and RSD contact geometries, as 

shown in Fig. 3.1(a)-(c), respectively, with device geometry parameters listed in Table 

3.1. The surface area of these source and drain contacts are 228 nm2, 574 nm2, and 752 

nm2, respectively.  

A 〈100〉 substrate orientation is considered for all devices. For Si FinFETs, we 

considered both 〈110〉 and 〈100〉 channel orientations with corresponding {110} and 

{100} fin sidewall orientations, respectively. With elliptical energy valleys in Si, these 

different channel orientations produce different degrees of quantum confinement within 

the channel between channel orientations, and between otherwise-equivalent Δ-valleys 

for the same channel orientation. However, for the RSD contact geometry, for both Si 

channel orientations, we use the same rectangular geometry characteristic of 〈100〉 

channel orientations. For InGaAs FinFETs, with the Γ-valley being spherical, we 

consider only the 〈100〉 channel orientation. We assume a 3.0 nm thick HfO2 layer (𝜀� =

22.3) gate oxide for an effective oxide thickness of 0.52 nm for all FinFETs for 

electrostatic calculations. To address near-surface barrier penetration of the wave-

function for the InGaAs FinFETs, we model the oxide effective mass as that of HfO2, 

0.15𝑚� [96]. However, for Si channel FinFETs, because there is a commonly-occurring 

thin SiO2 gate-oxide interfacial layer even with high-k gate dielectrics, we model the 

oxide effective mass as that of SiO2, 0.55𝑚� [97]. The fin height (HFIN) and oxide 

substrate thickness (HBOX) of all FinFETs are 35 nm and 10 nm, respectively. The source 

and drain regions, located 5 nm away from the edge of the gate region, are uniformly 
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doped to 2×1020 cm⁻3 for silicon, and 5×1019 cm⁻3 for InGaAs, the maximum 

experimentally observed electrically active dopant concentrations of arsenic in silicon, 

and of silicon in In0.53Ga0.47As, respectively [98]–[100]. The FinFETs have a decade/nm 

doping profile in the 5 nm source and drain extensions (LEXT). 
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Figure 3.1: Schematics of the simulated FinFET geometries with (a) reference end 
contacts, (b) saddle/slot contacts, and (c) raised source and drain (RSD) 
geometries. For each, a side view (lower left), a top view (top), and an end 
view (right) are shown. The spacer regions are not shown in order to show 
the underlying semiconductor fin, shaded in grey. The hatched region 
represents the gate metal. The gate oxide located underneath the gate metal 
is visible in the end views of end and saddle/slot contact FinFETs. The 
source and drain contact surfaces are shown in black. For the saddle/slot 
geometry, the source and drain contacts extend further to the side and above 
than shown, to the edge of the simulation region; however, only the near-
source/drain-surface portions are shown for visual clarity. 
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Dimension End, Saddle/Slot Raised Source/Drain 
Lc [nm] 8 8 

LEXT [nm] 5 5 
LG [nm] 18 18 

HFIN [nm] 35 35 

WFIN [nm] 6 6 
HBOX [nm] 10 10 
TOX [nm] 3 3 

ΔWS/D [nm] 0 6 

Table 3.1: Modeled FinFET dimensions. 

3.2.2 InGaAs band structure models 

As noted, we considered two models of the In0.53Ga0.47As band structure, a MV-

InGaAs model and, for reasons discussed in the introduction, a Γ-InGaAs model. In our 

MV-InGaAs model, we take the inter-valley separation between the light-mass Γ-valley 

and heavy-mass peripheral L-valleys and X-valleys as ΔEΓ-L = 487 meV and ΔEΓ-X = 610 

meV, respectively, as determined by a set of bowing parameters recommended by 

Vurgaftman and colleagues in their comprehensive review article [101]. These values lie 

between the previously-noted tight-binding and experimental values of [83] and [84], 

respectively. With the assumed 5×1019 cm⁻3 doping for MV-InGaAs, the equilibrium 

Fermi energy is found nearly 500 meV above the conduction band edge, high enough to 

place approximately 40% of the equilibrium bulk carrier concentration in the L-valleys 

for the assumed Γ-to-L energy valley separation, as a consequence of the degenerate 

statistics, the much larger L-valley than Γ-valley mass, and four-fold L-valley degeneracy 

[54]. In contrast, in Si the Fermi energy is found only approximately 100 meV above the 

conduction band edge with the degenerate statistics, despite the four-fold larger assumed 

doping. For the Γ-InGaAs model, ΔEΓ-L → ∞, ΔEΓ-X → ∞. Note that this work is mute on 
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which model of InGaAs is physically more realistic, Γ-InGaAs or MV-InGaAs, we 

simply consider the consequences of both. 

We would be remiss not to note that at degenerate doping levels, charge carriers 

are not created by ionization of donor states to the conduction band with a commensurate 

rise in the Fermi level, but by merging the donor states with energy valley edges and a 

commensurate lowering of the conduction band edge below the Fermi level [102], [103]. 

In this way, in particular, the effective peripheral valley separations in MV-InGaAs in the 

S/D would be larger than otherwise expected, and the peripheral valley occupations 

would be reduced or eliminated, accordingly. This physics is not addressed in the simple 

band-structure models of this work. However, as discussed later, the modeled ideal and 

non-ideal specific contact resistivities of InGaAs are only weakly dependent on the 

assumed energy valley separations. Within the undoped channel region, energy valley 

separations are not impacted by the doping, while being reduced considerably by 

quantum confinement. And, although there may be some advantage to reducing the 

fraction of carriers in the peripheral valleys in the S/D, we found previously [54] that the 

peripheral valleys in the channel become heavily occupied in the ON-state in modeled 

MV-InGaAs FinFET through inter-valley scattering even when not occupied in the 

modeled source and drain under lower doping, because of the previously noted quantum-

confinement-reduced valley separation in the channel and limited Γ-valley quantum 

capacitance, particularly in saturation. 

3.3 COMMON PERFORMANCE MEASURES AND RESULTS FOR UNITY TRANSMISSIVITY 
CONTACTS 

To analyze device performance, we initially compare transconductance (𝑔¥) and 

the peak thereof, on-current (Ion), subthreshold swing (S), and drain-induced barrier 
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lowering (DIBL) in the off-state, as well as the turn-on abruptness, as measured by the 

difference (∆𝑉§) between two different estimates of threshold voltage (𝑉§). 𝑔¥ =

𝜕𝐼'(/𝜕𝑉A( where 𝐼'( and 𝑉A( are the drain-to-source current and gate-to-source voltage, 

respectively, is obtained from a centered moving average over an interval of ten 𝑉A( 

samples to reduce noise in the data. The drain-to-source voltage VDS is set to the supply 

voltage VDD = 0.6 V in accordance with ITRS predictions [1]. VGS then was swept from 

OFF to ON in steps of 25 mV (and somewhat beyond the 0 to 0.6 V range in practice to 

allow for initially unknown thresholds and exhibition of some behavior beyond the 

normal operating regime). 𝐼'( was divided by the fin perimeter (2𝐻ª«¬ +𝑊ª«¬ in Fig. 1) 

for the purpose of calculating current density. The turn-on abruptness measure is ∆𝑉§ =

𝑉§®�¯ − 𝑉§��. Here, 𝑉§�� is the threshold voltage, as obtained by the constant current (CC) 

method, which is widely used in industry and serves as a reference for our Ion 

calculations, where the threshold is defined by a fixed IDS target. In this work, we take 

𝐼'(h𝑉A( = 𝑉§��m = 0.01	mA/µm at VDS = VDD. 𝑉§®�¯ is the threshold voltage as obtained 

by extrapolation in the linear region (ELR) [104], i.e., by linear extrapolation from the 

point of maximum slope (peak 𝑔¥) of the IDS vs. VGS curve in the ON-state, back to the 

intercept with the VGS axis. The ON-state current, Ion, is then calculated at the gate 

overdrive voltage above threshold of 𝑉A( − 𝑉§�� = 0.35	V with, again, VDS = 0.6 V and 

VT = 0.25 V. Thus, the reported ON-state currents are dependent on the values of both 

peak 𝑔¥ and ∆𝑉§. (We note that with a 𝑉§�� of 0.25 V and a constant S of 65 mV below 

threshold, which is roughly consistent with our results to follow, the off-state current 

would be on the scale of 1 nA/µm, which lies between ITRS specifications for high-

performance and low-power MOSFETs [1]). DIBL = −𝑑𝛷,/𝑑𝑉'(, where Φb is the 

channel potential barrier, is calculated well below threshold with VDS = 0.6 V. 

Subthreshold swing, 𝑆 = (ln 10)𝑑𝑉A(/𝑑(ln 𝐼'(), is calculated well below threshold in 
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terms of Φb within a simple thermionic emission model due to the lack of sufficient 

statistics for direct calculation with the small currents well-below threshold, and under 

zero VDS representing the linear regime of operation. Simulation results are provided in 

Figs. 3.2 and 3.3 and discussed in detail below. 

 

Figure 3.2: IDS-VGS simulation results for LG = 18 nm Si á110ñ (open circles), Si á100ñ 
(solid circles), MV-In0.53Ga0.47As (open triangles), and Γ-In0.53Ga0.47As 
(open squares) FinFETs for (a) end injection, (b) saddle/slot, and (c) raised 
source and drain. VDS = 0.6 V. For visual clarity with respect to 
transconductance, the threshold voltage is that obtained using the 
extrapolation in the linear regime method. 
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Figure 3.3: Dependence of (a) (centered moving average of) the peak of the 
transconductance gm, (b) subthreshold swing S, (c) turn-on transition voltage 
DVT, (d) on-current for the constant current defined threshold, Ion(CC), and 
(e) drain-induced barrier lowering, DIBL, for the end, saddle/slot, and RSD 
contacts to an 18 nm gate length FinFETs. 
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As shown in Fig. 3.2(a) and 3.3(a), Γ-InGaAs had by far the greatest peak 𝑔¥ for 

end injection. The small transport mass in the Γ-valley of Γ-InGaAs produces a high 
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quantum capacitance. In contrast, for MV-InGaAs, the limited density of states in the Γ-

valley pushes the carriers high into that valley, while quantum mechanical confinement 

substantially reduces the band offsets between the low density-of-states Γ-valley and high 

density-of-states L-valleys. Now, more readily than in the bulk considered previously, 

electrons transfer to L-valleys, with an accompanying decrease in group velocity and 

increase in scattering rate. As a result, peak 𝑔¥ is reduced not only as compared to that of 

Γ-InGaAs-channel FinFETs, but also as compared to Si channel FinFETs in these 

simulations (analogous to reduction of the high-field electron velocity in bulk GaAs 

below that in bulk Si).  

For the modeled saddle/slot and RSD contact geometries, the advantage of Γ-

InGaAs over the other systems in peak 𝑔¥ decreases substantially, as shown in Figs. 2(b) 

and (c), and 3(a). Moreover, both the RSD and saddle contacts somewhat favor a 〈110〉 

channel orientation for Si, while, if anything, end contacts slightly favor a 〈100〉 channel 

orientation, which suggests that the 〈110〉 channel orientation advantage for RSD and 

saddle contacts is associated with contact geometry and not transport through the 

quantum-confined channel.  

Informative of the transport physics is that, from Fig. 3.3(a), FinFET performance 

in terms of peak 𝑔¥ degrades for each material system when going from the end contact 

geometry to the saddle/slot and RSD contact geometries, most so for Γ-InGaAs FinFETs 

and least so for the Si 〈110〉 FinFETs. For diffusive transport, however, 𝑔¥ should be 

greatest for the saddle geometry, and worst for the end-contact geometry, because of the 

proximity of the S/D contacts to the channel and contact surface area. The juxtaposition 

of these two results suggests that transport in all of these simulated FinFETs leans toward 

ballistic, strongly so for Γ-InGaAs FinFETs and to a lesser degree for the remaining 

devices. 
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To better understand the effects of the contact geometries and source starvation 

for FinFETs as the ballistic limit is approached, we conceptually consider perfectly 

injecting and absorbing contacts and specularly-reflecting hard wall closed boundaries in 

the source and drain regions, as used in simulations throughout this work. To those 

assumptions, we add a few more chosen for illustrative value in the immediate discussion 

here (only): drain voltages sufficiently large that electron injection from the drain to 

source can be neglected; a unity transmission probability for electrons reaching the 

source extension with sufficient kinetic energy along the channel to overcome the 

channel potential barrier, and a zero transmission probability otherwise, which makes the 

former electrons the only ones of interest here and the source extension a perfectly 

absorbing boundary for these electrons of interest; and a uniform (i.e., a perfectly-

screened) potential (flat-band conditions) within the source region. As illustrated in Fig. 

3.4, ballistic ray tracing (as well as simple symmetry across the reflecting end contact) in 

this system shows that the saddle/slot contact FinFET with a reflecting boundary at the 

end of the source region located at LC from the edge of the source extension boundary 

(Fig. 1), may be replaced by two mirror image FinFETs with a saddle/slot contact around 

a common source region of length 2LC connected to the source extensions of both 

FinFETs, without affecting injection of the electrons of interest into the source extension 

and channel beyond. Similarly, by ballistic ray tracing, the end contact FinFET with 

source length LC may be replaced by one with an end contact and source length 2LC (or of 

any other length), which, in turn, may be replaced by one with a source length of 2LC 

with both an end contact and a saddle/slot contact. Thus, under these assumptions, the 

difference between the here-considered end contact FinFET and saddle/slot contact 

FinFET corresponds to the difference between having a both injecting and absorbing 

contact, or just an absorbing contact, respectively, at the end of a source region of length 
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2LC, with an injecting and absorbing saddle/slot contact about the source sides and top in 

either case. This difference is enhanced by electron injection probabilities that are peaked 

naturally about the surface normal direction, which selects for surfaces that are aligned 

perpendicular to the drain extension entry, as illustrated in Fig. 3.5 for injection about the 

end-contact-normal plane running along the vertical plane of Si semiconductor fins. We 

also note that a ray-tracing analysis under these conditions for the raised source and drain 

geometry gives the same results as for the saddle geometry, consistent with the similar 

results observed in the full simulations here. Also, consistent with this discussion, full 

simulation results (not shown) of the strongly ballistic G-InGaAs FinFETs with end-plus-

saddle contacts were very similar to those provided here for end contacts. 

Moreover, Si 〈100〉 (〈110〉) channel FinFETs have {100} ({110}) contact 

surfaces that promote still greater (somewhat diminish) peaking of the electron injection 

about the surface normal, as also shown in Fig. 3.5. As a result, the loss of injection from 

the end contact for the hypothetical effective 2LC source length saddle/slot and RSD 

FinFETs relative to the reference end contact FinFETs should be at least somewhat less 

of a loss for Si 〈110〉 channel FinFETs than for Si 〈100〉 channel FinFETs. This 

expectation also is borne out in the simulation results of Fig. 3(a), where a small 

disadvantage in 𝑔> for the Si 〈110〉 channel FinFETs vs. 〈100〉 channel FinFETs with 

the reference end contacts becomes a small advantage with wrapped contacts, despite the 

simulations not being in the flat-band ballistic limit. This advantage in our simulations 

also exists despite any contribution in the source from the small high-field advantage in 

bulk Si for 〈110〉 transport over 〈100〉 transport [105], also captured by UTMC, which 

would provide a greater loss for wrapped contacts relative to end contacts for Si 〈110〉 

channel FinFETs. The simulated contact-related performance difference with channel 

orientation is more modest than the contact-shape effects and perhaps smaller than the 
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previously discussed uncertainty in the channel-related performance differences with 

orientation. Even if so, it further illustrates the common concept by which we 

qualitatively explain both this smaller effect and the larger contact shape effects observed 

in simulation. 

 

Figure 3.4: Injection of ballistic electrons under flat-band conditions into the source 
extension from perfectly injecting and absorbing saddle (left) and end (right) 
contacts, and equivalent contact geometries under these conditions. Note for 
the saddle contact geometry the direct injecting paths, illustrated by Path 1, 
and the reflection-mediated injection paths, illustrated by Path 2, and their 
counterpart paths in the equivalent geometry. There are corresponding paths 
into the source extension for the end contact, again illustrated by Paths 1 and 
2, although those represented by Path 1 are now reflection-mediated and 
those represented by Path 2 are direct injecting, and their counterparts in its 
equivalent geometries. However, there is another category of paths for the 
end contact geometry, illustrated by Path 3, for which there are no 
counterparts for the saddle geometry. For these paths, electrons are 
effectively injected from an end contact at a distance 2Lc from the source 
extension, directly into the source extension. 
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Figure 3.5: (a) Alignment of the conduction channel relative to the Si conduction band 
energy valleys for (on the left) á100ñ and (on the right) á110ñ channel 
orientations on a {100} substrate. (b) UTMC-simulated carrier injection 
probability density per degree of the carrier injection angle with respect to 
the plane of the channel for channel-end-injected carriers, for Si á100ñ (solid 
line) and á110ñ (dashed line) channel orientations. 
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stronger electrostatic coupling for InGaAs to the source and drain regions. Moreover, this 

difference is most significant for the saddle/slot geometry with the potential pinned at the 

outer edges of the separate confinement regions, and the least significant for end contacts 

where coupling to the source and drain is weaker as the band bending extends a few 

screening lengths into the source and drain. 

Turn-on behavior, as measured by ΔVT, (Fig. 3.3(c)) is the slowest for Γ-InGaAs 

and, unlike for S and DIBL, also differs substantially from that of MV-InGaAs. These 

differences suggest that it may be related to the smaller quantum capacitance of the Γ-

InGaAs as compared to the Si and even to MV-InGaAs channel FinFETs. As a result of 

this slow turn-on characteristic, the Γ-InGaAs channel FinFET has a lower Ion with a 

constant-current-defined threshold for the saddle/slot and RSD contact geometries 

compared to Si, despite better peak 𝑔¥. The Γ-InGaAs channel, still provides an Ion 

advantage for end contacts, but considerably less than for 𝑔¥. Moreover, we note that 

these relative difference in ΔVT and the corresponding impact on Ion are conservative 

given our use of a large constant current threshold. 

3.3.3 Drain current vs. drain voltage 

The drain current also was calculated at the overdrive gate voltage of 𝑉A( −

𝑉§�� = 0.35	V as a function of drain voltage 𝑉'( swept from 0 V to 0.6 V in steps of 25 

mV, consistent with the transistor in the on-state with 𝑉§�� = 0.25	V and a 𝑉'' = 0.6	V, 

as shown in Fig. 3.6. All FinFETs with all contact configurations showed onset of current 

saturation between approximately 𝑉'( = 𝑉'(,��� 	=	0.20 V and 0.25 V, except for the Γ-

InGaAs with end contacts, where the onset was delayed by approximately 0.05 V. 

However, the current saturation was the best, i.e., had the least dependence on 𝑉'( above 

𝑉'(,���, for the Γ-InGaAs FinFETs for each contact geometry.  
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Figure 3.6: IDS-VDS simulation results for LG = 18 nm Si á110ñ (open circles), Si á100ñ 
(solid circles), MV-In0.53Ga0.47As (open triangles), and Γ-In0.53Ga0.47As 
(open squares) channel FinFETs at the gate overdrive voltage of 0.35 V 
above the constant current threshold voltage for (a) end injection, (b) 
saddle/slot, and (c) raised source and drain. 
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characteristic. S and DIBL are calculated in the absence of any significant current flow, 

so the specific contact resistivity is irrelevant.  

For all considered FinFETs, we employ an illustrative fixed value of 

transmissivity of T = 0.2 as a control, which produces ρsp = 4.5ρLB from Eq. (1). For 

silicon, 𝜌�� = 3.0×10⁻10 Ω-cm2 at the considered 2.0×1020 cm−3 doping concentration. 

Therefore, the corresponding specific contact resistivity is, 𝜌�� = 1.35×10−9 W-cm2, 

which is reasonably near a state-of-the-art reported value of 1.2×10−9 W-cm2 [106]. For 

the Γ-InGaAs and MV-InGaAs channel FinFETs with 𝜌�� values of 1.3×10⁻9 Ω-cm2 and 

1.4×10⁻9, respectively, at the considered 5.0×1019 cm−3 doping concentration, this control 

value of T results in substantially larger 𝜌�� values, of 5.9×10⁻9 Ω-cm2 and 6.3×10⁻9 Ω-

cm2, respectively, which is still somewhat better than reported values of 7×10⁻9 Ω-cm2 

[107] for InGaAs. 

3.4.1 Peak gm, DVT, and Ion 

Overall, Fig. 3.7 shows that, as expected, non-ideal transmissivity contacts 

decrease the peak transconductances and on-currents, and, with the RSD and the model 

saddle/slot contact geometries having approximately 3.3 and 2.5 times the contact surface 

area as the end contact geometry, the relative reduction is the greatest for the end-

contacts. The RSD geometry to some degree has greatest peak 𝑔> for all materials 

systems. However, the saddle/slot geometry produces an 𝐼V0 comparable to that of the 

RSD geometry for silicon 〈110〉 channel FinFETs, and greater than that of the RSD 

geometry for silicon 〈100〉 channel FinFETs. Moreover, also as expected, detrimental 

effects are the greatest on the Γ-InGaAs channel FinFETs, followed by the MV-InGaAs 

channel FinFETs. All Si channel FinFETs with all contact geometries now outperform all 

of their InGaAs channel counterparts in terms of peak 𝑔¥ and, more so due to the slower 
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turn-on characteristic for InGaAs channel FinFETs, on-current with respect to a constant 

current threshold 𝐼V0
(��). Despite substantially reduced contact transmissivity, there 

remains a contact-related advantage for the silicon 〈110〉 channel saddle/slot and RSD 

contact FinFETs over their silicon 〈100〉 channel counterparts in this work. For the 

ballistic flat-band approximation to the source (and, indeed, for any potential with a 

vanishing source-end normal field), either wrapped contact FinFET of source length LC 

still can be replaced by two mirror images devices with a common wrapped contact of 

length 2LC by symmetry, despite only partially transmitting boundary conditions. And the 

resulting loss of injection from the end contact for these hypothetical effective 2LC source 

length wrapped contact FinFETs still should be less significant for the Si 〈110〉 channel 

FinFETs than for Si 〈100〉 channel FinFETs, providing an advantage for the former. 

However, the detailed explanation varies somewhat. With the partially reflecting 

boundary conditions, the number of electrons reaching the source extension from an end 

contact would be much more comparable among device orientations. However, off-

normally injected electrons would do so with a smaller component of energy along the 

channel direction on average, and so be less likely to make it over the channel barrier to 

be among the electrons of interest. Therefore, the contact-related orientation advantage 

for the Si 〈110〉 channel FinFET on average per (not) injected electron, while weakened, 

remains. Moreover, with the reduced transmissivity, the contacts and any dependence on 

their geometry becomes more important to overall device performance as already seen. 
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Figure 3.7: Comparison of contacts with perfect transmissivity and imperfect 
transmissivity contacts on the (a) peak of the transconductance gm, (b) turn-
on transition voltage DVT, and (c) the on-current Ion with a constant current 
defined threshold (Ion(CC)), for the end, saddle/slot, and RSD contacts to an 
18 nm gate length FinFETs at VDS of 0.6 V. Here, bar pairs corresponding to 
unity transmissivity (with no added specific contact resistivity) “NC” and to 
0.2 transmissivity (with added specific contact resistivity) “WC”, 
respectively, are shown side by side on the same gray scale for each 
considered material system, including channel orientation for Si. 
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Fig. 3.8 shows drain current IDS vs. drain voltage VDS for the considered Si and 

InGaAs channel FinFETs. Performance degradation consistent with the Ion of Fig. 3.7 is 

evident. However, for InGaAs with end contacts in particular, the lack of stretch-out of 

this IDS-VDS characteristic with respect the saturation drain voltage when compared to the 

data of Fig. 3.6 contrasts to what would be expected using a lumped external resistance or 

distributed specific contact resistivity localized to the contact surface. With the latter 

END SADDLE RSD
0

2

4

6

8

Pe
ak

 g
m

 (m
A

/
m

/V
)

(a) NC

WC

END SADDLE RSD
0

0.2

0.4
V

T (V
)

(b)

END SADDLE RSD
0

0.5

1

I on
 (m

A
/

m
) (c)

Si <100>
Si <110>

MV-InGaAs
-InGaAs



 45 

models, a significant portion of the energy of an injected electron gained from VDS is be 

dropped before electron enters the source contact surface. However, in the ballistic limit, 

that energy is not dropped until after the electron is absorbed (if not back reflected) by the 

drain reservoir, just as for perfectly injecting and absorbing contacts. 
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Figure 3.8: Simulated IDS-VDS, as for Fig. 3.6 but with non-unity transmissivity contacts: 
IDS-VDS simulation results for LG = 18 nm Si á110ñ (open circles), Si á100ñ 
(solid circles), MV-In0.53Ga0.47As (open triangles), and Γ-In0.53Ga0.47As 
(open squares) FinFETs. The gate overdrive voltage above the constant 
current threshold voltage is 0.35 V with supply VDD and threshold VT 
voltages of 0.6 V and 0.25 V, respectively, for (a) end injection, (b) 
saddle/slot (where the MV-InGaAs and Γ-InGaAs data are difficult to 
distinguish), and (c) raised source and drain. For InGaAs with end contacts 
in particular, the lack of stretch-out of this IDS-VDS characteristic with 
respect the saturation drain voltage (VDS,sat) as compared to the data of Fig. 
3.6 contrasts to what would be expected using a lumped external resistance 
or distributed specific contact resistivity. 

0 0.1 0.2 0.3 0.4 0.5 0.6
VDS (V)

0

0.2

0.4

0.6

I D
S (m

A
/

m
)

(a) end injection

0 0.1 0.2 0.3 0.4 0.5 0.6
VDS (V)

0

0.2

0.4

0.6

I D
S (m

A
/

m
)

(b) saddle/slot

0 0.1 0.2 0.3 0.4 0.5 0.6
VDS (V)

0

0.2

0.4

0.6

I D
S (m

A
/

m
)

(c) raised source and drain

Si <100>
Si <110>

MV-InGaAs
-InGaAs



 47 

3.5 CONCLUSION 

The effects of contact geometry and specific contact resistivity on In0.53Ga0.47As 

and Si nanoscale (18 nm channel length) n-channel FinFETs performance, and the effects 

of models thereof, were studied using a quantum-corrected semi-classical Monte Carlo 

method. Saddle/slot, raised source and drain (RSD), and reference end contacts were 

modeled. Both ideal perfectly injecting and absorbing contacts and those with more 

realistic specific contact resistivities were considered. Far-from-equilibrium degenerate 

statistics, quantum-confinement effects on carrier distributions in real-space and among 

energy valleys and on scattering, and quasi-ballistic transport were modeled. Silicon 

〈110〉 channel and Si 〈100〉 channel FinFETs, multi-valley InGaAs channel FinFETs 

with conventionally-reported InGaAs energy valley offsets (MV-InGaAs), and a 

reference idealized Γ-valley-only InGaAs (Γ-InGaAs) channel FinFETs were simulated. 

Among our findings, echoing those of [75], InGaAs FinFETs were highly sensitive to 

contact geometry and specific contact resistivity and to the band structure model, while Si 

FinFETs showed still significant but much less sensitivity to contact models. For 

example, for idealized unity transmissivity contacts, Γ-InGaAs channel FinFETs 

performed best for all contact geometries, at least in terms of transconductance, and end 

contacts provided the best performance for all considered channel materials. For realistic 

contact resistivities, however, results of this work are essentially reversed. Silicon 

channel FinFETs performed best for all contact geometries, and saddle/slot and RSD 

contacts outperformed end contacts. These simulation results challenge the potential of 

InGaAs channel FinFETs, but they also suggest that the relative insensitivity of Si 

channel FinFET performance to contact design, and perhaps other device features, have 

allowed design choices that must be reconsidered to optimize InGaAs channel FinFET 

performance. 
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Chapter 4:  Semi-Classical Monte Carlo Study of Gate Length Scaling 
Impact on Quasi-Ballistic Nanoscale Si, Ge, and In0.53Ga0.47As n-channel 

FinFETs 

4.1 INTRODUCTION AND BACKGROUND 

To assess the viability of silicon (Si), germanium (Ge), and indium-gallium-

arsenide (InGaAs) channel materials in future CMOS technology nodes, realistic S/D 

contact geometries and the effects of quantum mechanical confinement must be 

considered. In quasi-ballistic devices, “wrapped” contact geometries can limit device 

performance because it becomes harder to get charge into the channel, which otherwise 

would not be expected with end contacts as typically employed in full quantum [93], [94] 

or multi-sub-band Boltzmann transport (Monte Carlo or deterministic) simulations [63], 

[90]–[92]. These types of simulations have predicted InGaAs MOSFETs to perform 

better than their Si counterparts. However, it has also been shown that relative 

performance expectations can vary significantly with contact geometry [75]. 

Additionally, quantum-confinement can remove band degeneracy even without the 

application of strain, and thus, Si and Ge MOSFET performance would depend on the 

sidewall surface orientation [94], [108], [109]. 

Our work explores the limitations and challenges of gate length scaling, and 

associated fin width scaling, on n-channel Si, Ge, and In0.53Ga0.47As (InGaAs) FinFET 

performance, while considering more realistic contact geometries and specific contact 

resistivities, surface sidewall orientation effects in Si and Ge, and peripheral valleys in 

InGaAs. Si 〈110〉, Si 〈100〉, multi-valley In0.53Ga0.47As with conventionally-reported 

energy valley offsets (MV-InGaAs), idealized Γ-valley-only In0.53Ga0.47As (Γ-InGaAs), 

Ge 〈110〉, and Ge 〈100〉 channel devices were modeled.  
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To this end, we employed our in-house quantum-corrected 3D semi-classical 

Monte Carlo (SCMC) tool, University of Texas Monte Carlo (UTMC), which allows for, 

among other things, modeling of far-from-equilibrium degenerate statistics, non-ideal 

contacts, quantum-confinement effects on carrier distributions in real-space and among 

energy valleys and confinement-dependent scattering rates, quasi-ballistic transport, short 

and long-range inelastic scattering, and complex contact geometries [54]. 

Gate length scaling and associated fin width scaling is demonstrated to have 

deleterious effects on device performance, most so for InGaAs and Ge 〈100〉 channel 

FinFETs and least so for Si 〈110〉 and Ge 〈110〉 channel FinFETs. We identified source 

starvation and quantum-confinement as performance issues for the scalability of 

FinFETs. Use of realistic contact geometries and transmissivities exacerbates source 

starvation, the inability of the source and drain (S/D) regions to replenish carriers in the 

channel [75], [86]–[88]. Fin width scaling further exacerbated source starvation effects 

and increase quantum-confinement effects in the channel for better (Si 〈100〉 channels 

and Ge 〈110〉 channels) or worse (MV-InGaAs channels), in the channel. The relative 

effect of source starvation is greater for longer mean-free path particles, such as G-valley 

electrons in InGaAs. The performance of Si and Ge FinFETs also depends on channel 

orientation via injection through the contacts and transport within the channel. Major 

results include 〈110〉 channel Ge scaled the best, and Γ-InGaAs scaled the worst with the 

most realistic contact model. Also include 〈110〉 channel Ge performed the best and MV-

InGaAs performed worst under all simulation conditions. However, particularly with 

regard to comparing absolute device performance among channel materials, we 

acknowledge an uncertainty associated with using the same surface roughness (but not 

surface roughness scattering) for all materials as a control given uncertainties in the 

actual surface roughness with being dependent on channel and dielectric material and any 
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strain thereof, materials growth and etching methods, and even detailed device geometry 

[59], [110]. Our results are substantially influenced by quantum confinement in the 

channel and wrapped saddle/slot contact geometries and sub-unity transmissivities. 

4.2 SIMULATED FINFET STRUCTURE AND BAND STRUCTURE MODELS 

4.2.1 FinFET structure 

The simulated device structure, illustrated in Fig. 4.1, is a saddle-contacted 

FinFET with either Si 〈110〉, Si 〈100〉, MV-InGaAs, Γ-InGaAs, Ge 〈110〉, and Ge 〈100〉 

as the channel material with device geometry parameters listed in Table 4.2. Model 

devices included a 3 nm thick HfO2 (𝜀� = 22.3) gate oxide for an effective oxide 

thickness of 0.52 nm for all FinFETs for electrostatic calculations. To address near-

surface barrier penetration of the wave-function for the InGaAs and Ge FinFETs, we 

model the oxide effective mass as that of HfO2, 0.15𝑚� [96]. However, for Si channel 

FinFETs, because there is a commonly-occurring thin SiO2 gate-oxide interfacial layer 

even with high-k gate dielectrics, we model the oxide effective mass as that of SiO2, 

0.55𝑚� [97]. The doping gradient within the 5 nm source and drain extensions (LEXT) is 1 

nm/decade and the channel is intrinsic with uniform doping, corresponding to no gate 

overlap or underlap. 

We performed two gate length (LG) scaling studies. In the first study, we scaled 

the gate length via LG = 27, 21, 18, and 15 nm, while all other parameters were fixed, to 

obtain a design rule between the gate length and fin width (WFIN) with respect to 

electrostatic control. In the second study, using the gate length to fin width design rule for 

Si as a control, we further scaled the FinFET gate length to LG = 18, 15, 12, and 9 nm 

with all other parameters fixed [1]. 
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Figure 4.1: Schematic of the simulated modeled FinFET geometry with saddle/slot 
contacts. A side view (lower left), a top view (top), and an end view (right) 
are shown. The spacers regions are not shown in order to show the 
underlying semiconductor fin, shaded in grey. The hatched region represents 
the gate metal. The gate oxide located underneath the gate metal is visible in 
the end views of the saddle/slot contact model devices. We note that for the 
saddle/slot geometry, the source and drain contacts extend further to the side 
and above than shown, to the edge of the simulation region; however, only 
the near-source/drain-surface portions are shown for visual clarity. The 
source and drain contact surfaces are shown in black. 

 
Dimension Saddle/Slot 

Lc [nm] 8 
LEXT [nm] 5 
LG [nm] 18, 15, 12, 9 

HFIN [nm] 35 

WFIN [nm] 6, 5, 4, 3 
HBOX [nm] 10 
TOX [nm] 3 

Table 4.1: Modeled FinFET dimensions. 

L
G

H
FIN

L
EXT

L
C

H
BOX

T
OX

T
OX

L
C

L
EXT

W
FIN

FIN

S
/D

 C
O

N
T

A
C

T
GATE

METAL

BOX

OXIDE



 52 

4.2.2 Band structure models 

In our Si model, we considered 6 ellipsoidal Δ-valleys for the conduction band. 

Solid solubility data of Si suggests that arsenic might be active up to concentrations of 

2×1021 cm⁻3, but in practice it is difficult to actually achieve electrically active arsenic 

concentrations above 2×1020 cm⁻3, where the corresponding equilibrium Fermi level is 

100 meV above the conduction band edge considering degenerate statistics [99], [100]. 

We considered Si 〈110〉 channel devices and Si 〈100〉	channel devices due to differences 

in the conduction band-edge quantization mass can alter the effects quantum-

confinement.  

In our Si model, we considered 6 ellipsoidal Δ-valleys for the conduction band. 

Solid solubility data of Si suggests that arsenic might be active up to concentrations of 

2×1021 cm⁻3, but in practice it is difficult to actually achieve electrically active arsenic 

concentrations above 2×1020 cm⁻3, which we use, where the corresponding equilibrium 

Fermi level is 100 meV above the conduction band edge considering degenerate statistics 

[99], [100].  

In our conventional MV-InGaAs model, we considered 1 Γ-, 4 L-, and 3 X-

valleys for the conduction band. The Γ-valley is modeled as spherical; the L- and X-

valleys are modeled as ellipsoidal. In-situ Si doping during the epitaxial growth of 

InGaAs have yielded carrier concentrations of up to 5×1019 cm⁻3 [111], [112], which we 

use here. Because of the uncertainty in valley band-edge separations between the light-

mass Γ-valley and heavy-mass peripheral L-valleys (ΔEΓ-L) and X-valleys (ΔEΓ-X) [82], 

[85], we also decided to study transport in the limiting case of a single Γ-valley-only 

InGaAs model with no satellite valleys. Γ-InGaAs also represents transport behavior 

where carriers injected into the Γ-valley from the contacts are not allowed to scatter into 

the peripheral valleys in the channel, such as for fully ballistic models of transport, for 
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larger valley offsets than those considered here, or for neglecting quantum-confinement 

in the channel, which reduces peripheral valley. For such highly degenerate doping, the 

equilibrium Fermi levels for MV-InGaAs and Γ-InGaAs are nearly 500 meV and 650 

meV above the conduction band edge, respectively. 

In our Ge model, we considered 1 Γ-, 4 L-, and 6 Δ-valleys for the conduction 

band, as in [52]. The Γ-valley is modeled as spherical; the L- and X-valleys are modeled 

as ellipsoidal. Maximum activated carrier concentrations of 2×1020 cm⁻3 have been 

obtained in heavily doped phosphorous n-type Ge thin films [113], which we use here, 

and which places the equilibrium Fermi level 160 meV above the conduction band edge.  

While an attempt is made at simulating devices that are realistic, despite the very 

different technological maturities between Si, Ge, and InGaAs FinFETs, and obey 

physical limits, we note many assumptions inherent in the employed models (e.g. band 

structure for InGaAs, conservative estimates of surface roughness scattering, control 

value of contact transmissivity) invite improvement and led to optimistic, at least for 

now, but not necessarily unphysical, scenarios. Yet, the results presented in this work 

provide a good compromise between the necessary levels of sophistication to capture 

enough of the essential physics so as to be qualitatively accurate and view relevant trends 

and the computational burden. 

Our simulation approach and its physical models that are used have been 

validated by comparing program output against several bulk and interface mobility 

experimental data sets, achieving excellent agreement, and requiring only small tuning of 

various phonon coupling constants [50]–[52], [57], [58], [60]. All our final simulation 

parameters such as valley-specific effective masses, non-parabolicity constants, and 

deformation potentials for Si and InGaAs are assembled in [54] and for Ge are tabulated 

in the Appendix. 
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4.3 DESIGN RULE FOR ELECTROSTATIC INTEGRITY 

We determined a design rule relationship between LG and WFIN with respect to 

electrostatic control by calculating both DIBL and S well-below threshold. Holding all 

parameters constant including WFIN = 6 nm, the device in Fig. 4.1 is scaled via LG = 27, 

21, 18, and 15 nm. Setting a benchmark for electrostatic control of 𝑆 < 70	mV/decade 

and DIBL < 70	mV/V, a design rule of 𝐿A ≥ 3 ×𝑊ª«¬ is more than sufficient for Si and 

Ge FinFETs, whereas MV-InGaAs FinFETs require somewhat longer channels, 

approximately 𝐿A ≥ 3.5 ×𝑊ª«¬, as shown in Fig. 4.2, to meet these metrics. Electrostatic 

control is poorer in InGaAs devices most likely due to its higher dielectric permittivity, 

which leads to stronger coupling of the channel with the source and drain. Ge devices 

behave more like Si devices, despite having a larger dielectric constant than InGaAs, 

pointing to the combined effects of channel quantum capacitance and dielectric 

permittivity as a more important consideration than channel dielectric alone, which under 

these simulated conditions, favors Si devices. As LG increases, S appears to converge to 

the thermodynamic limit of 60 mV/decade at room temperature. Thereafter, we simulated 

all devices using the gate length to fin width design rule for Si of 𝐿A = 3 ×𝑊ª«¬ as a 

control, acknowledging that the subthreshold behavior would be worse for InGaAs 

devices. 
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Figure 4.2: Dependence of (a) subthreshold swing S and (b) drain-induced barrier 
lowering, DIBL, in Si á100ñ (solid circles), Ge á100ñ (solid squares), and 
MV-InGaAs (open triangles) channel FinFETs with gate length with all 
other device parameters have been kept unchanged. 
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regions coupling more strongly to the channel. However, upon reducing the contact 

transmissivity to T = 0.2, Si devices with the S/D doped to 2×1020 cm⁻3 show about a 

factor of two enhancement in peak 𝑔¥ and more similar ∆𝑉§ compared to Si devices with 

S/D doped to 5×1019 cm⁻3. Higher S/D doping not only improves the S/D injection 

efficiency by increasing the number of available electrons, but also increases the ionized 

impurity scattering rate due to increased doping and become more momentum 

randomizing due to decreased screening length, which can help to redirect side-injected 

carriers in the S/D into the channel to ameliorate source starvation. But increasing the 

S/D doping in InGaAs has diminishing returns once the Fermi level moves into the 

satellite L-valleys. 
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Figure 4.3: Comparison of contacts with perfect transmissivity and imperfect 
transmissivity contacts on the (a) peak of the transconductance gm, (b) turn-
on transition voltage DVT, and (c) the on-current Ion with a constant current 
defined threshold (Ion(CC)), for 18 nm gate length Si á110ñ FinFETs with 
S/D doping concentrations of 5×1019 cm⁻3 and 2×1020 cm⁻3 at VDS of 0.6 V. 
Here, bar pairs corresponding to unity transmissivity (with no added specific 
contact resistivity) “NC” and to 0.2 transmissivity (with added specific 
contact resistivity) “WC”, respectively, are shown side by side on the same 
gray scale for each considered material system. 
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including the oxide thickness. As before, we simulated InGaAs devices using the same 

gate length to fin width ratio even though in practice they would require somewhat longer 

channel lengths to achieve the same level of electrostatic control as Si devices. At these 

gate lengths, the fin aspect ratio, HFIN/WFIN, ranges from 6 to 12, increasing with 

decreasing fin width, which is comparable to 7.57 (53/7~7.57), currently used in Intel’s 

10 nm FinFET technology [114]. Figs. 4.4(a) and 4.4(b) shows the IDS-VGS curves with 

LG = 18 nm and LG = 9 nm, respectively. Fig. 4.5 reports common performance measures 

and results at all the gate lengths considered in this study. 
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Figure 4.4: IDS-VGS simulation results for (a) LG = 18 nm and (b) LG = 9 nm Si á100ñ 
(solid circles), Si á110ñ (open circles), MV-In0.53Ga0.47As (open triangles), 
Γ-In0.53Ga0.47As (asterisks), Ge á100ñ (solid squares), and Ge á110ñ (open 
squares) FinFETs. VDS = 0.6 V. For visual clarity with respect to 
transconductance, the threshold voltage is that obtained using the 
extrapolation in the linear regime method. The S/D doping concentrations 
were 2×1020 cm⁻3 for Si or Ge FinFETs and 5×1019 cm⁻3 for InGaAs 
FinFETs. 
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Figure 4.5: Dependence of (a) (centered moving average of) the peak of the 
transconductance gm, (b) subthreshold swing S, (c) turn-on transition voltage 
DVT, (d) on-current for the constant current defined threshold, Ion(CC), and 
(e) drain-induced barrier lowering, DIBL, with gate length scaling according 
to LG = 3´WFIN. 
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gradually reduces the top gate device area, effectively leaving only the fin sidewalls to 

carry the majority of the current. At LG = 18 nm, Ge 〈110〉 channel devices show a factor 

of two enhancement in peak 𝑔¥, and to a lesser extent by Ge 〈100〉 channel devices, over 

Si devices due to higher injection velocities and comparable channel quantum (density of 

states) capacitance provided by Ge L-valleys, which is consistent with Ge n-channel 

nanowire simulations [108]. A limiting InGaAs device modeled with a Γ-valley-only 

shows a factor of 1.4 enhancement in peak 𝑔¥ over Si devices as the large injection 

velocity is able to compensate for reduced carrier concentration in the channel due to the 

limited quantum capacitance. On the other hand, MV-InGaAs devices perform the worst 

as peripheral valleys in the channel become heavily occupied in the ON-state through 

inter-valley scattering, and even when not occupied in the unconfined S/D regions under 

conditions of lower doping, carriers will inevitably transfer to the peripheral valleys in 

the channel [54]. Silicon 〈110〉 channel devices perform somewhat better than Si 〈100〉 

channel devices as a result of favorable alignment of the conduction band energy valleys 

relative to the channel direction. In all material systems, gate length scaling reduces 𝑔¥. 

Source starvation removes the peak 𝑔> advantage by G-InGaAs devices over Si devices 

at LG = 12 nm (WFIN = 4 nm), which is consistent with the performance reduction found 

in high-aspect ratio InGaAs FinFETs [115] and ultra-thin-body InAs MOSFETs [116]. 

Stronger quantum confinement causes Ge 〈100〉 channel devices to underperform Si 

devices at LG = 9 nm, whereas Ge 〈110〉 channel devices, for all gate lengths, outperform 

Si devices by factor of two in peak 𝑔¥ owing to the smallest conductivity mass of the L-

valley and moderated quantum confinement. At LG = 9 nm, Si devices slightly favor 

〈100〉 channel orientations over 〈110〉 channel orientations in terms of peak 𝑔¥ and even 

more so in terms of Ion. Scaling performance in FinFETs can be divided into two regimes 

separated by a critical fin width of about 4 nm in our simulations, above which, device 
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performance is source-limited via source starvation and below which, device 

performance is, or at least also is substantially, channel-limited via quantum-

confinement. 

Gate length scaling impact on device performance can be decomposed into 

relative contributions from carrier transport in the source region and the channel region. 

The inability to redirect side-injected carriers into the channel causes source starvation in 

saddle/slot and raised source and drain contact geometries, and the relative effect is 

greater for high thermal velocity materials as transport becomes increasingly quasi-

ballistic transport at device scales. It becomes even harder to inject carriers into the 

channel for all material systems as the fin width becomes narrower, i.e. carriers are 

unable to pass through the narrow slit of the channel (fin) cross-section because of their 

injection orientation. InGaAs FinFETs are highly sensitive to source starvation due to 

carriers occupying the light-mass G-valley as seen by the rapid reduction in peak 𝑔> with 

scaling in Fig. 4.5(a). Source starvation due to contact orientation and narrow-slit 

injection in Si FinFETs is somewhat counterbalanced as carriers are able to enter into the 

channel via momentum scattering and due to higher S/D doping. Additionally, the 

alignment of the L- and D-valleys in Ge 〈100〉 and Si 〈110〉 channel devices, 

respectively, results in injected carriers to be peaked naturally away from the contact 

normal, which means carriers have a greater probability to enter into the channel when 

considering ray tracing. Although, the loss of the perfectly reflecting boundary at the end 

of a source region with narrower fins may diminish this contact-related advantage. Yet as 

the fin width decreases, the transconductance in Ge 〈100〉 channel devices decrease 

further due to increased occupancy of D-valleys in the channel via stronger quantum-

confinement, as detailed subsequently, relative to Si devices. We did not shrink the 

contact length, which would reduce the impact of narrower fin widths by reducing the 
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transfer time carriers potentially spend in the S/D regions, where they can be absorbed at 

the contacts, before they are injected into the channel. However, any reduction in contact 

area would otherwise increase contact resistance. 

Device performance is also limited by transport in the channel as a result of 

stronger quantum-mechanical confinement. The decrease in carriers in the channel is 

consistent with the reduction in normal field at fixed gate voltage as narrower fins are 

unable to pull down the symmetric triangular quantum wells formed at the channel 

sidewalls. We do not scale the oxide, which would mitigate this loss through increased 

gate capacitance; however, it should be noted that the effective oxide thickness modeled 

in this work has already been extended (scaled) to end-of-the-roadmap for FinFETs [1]. 

As a consequence, quantum-confinement effects are exacerbated, the triangular quantum 

well begins to resemble a square well, the latter having a greater degree of confinement, 

and carriers are redistributed among the energy valleys through scattering via reduced 

inter-valley separations, which results in worse device performance. For MV-InGaAs, the 

limited density of states in the Γ-valley, 𝑚�
∗ = 0.042𝑚�, pushes carriers high into that 

valley, while quantum mechanical confinement substantially reduces the band offsets 

between the low density-of-states Γ-valley and high density-of-states L-valleys, and 

electrons readily transfer into the L-valleys in the channel, which have much slower 

carriers and much higher scattering rates. Likewise in Ge devices, quantum-confinement 

reduces the bulk inter-valley separation between the L- and Δ-valleys, nominally ΔEL-D = 

173 meV, enabling electrons to readily transfer from the L-valleys, 𝑚�
∗ = 0.26𝑚�, into 

the Δ-valleys, 𝑚∆
∗ = 0.48𝑚�, where transport in these valleys is expected to behave 

similar to that of a heavier-mass version of Si 〈100〉 devices. A competing effect 

emerges, as the ostensible benefit of greater occupation of larger density of states and 

heavier-mass subsidiary valleys would be increased quantum capacitance and moderated 
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quantum-confinement, respectively; however, the larger amounts of scattering in these 

valleys reduces the carrier’s average injection velocity and injection efficiency 

(backscattering) at the barrier-top to reduce the drive current of these transistors further. 

Quantum-confinement also increases the average energy of carriers, which can overall 

reduce carrier velocities via the combination of substantial non-parabolicity and higher 

energy, most notably in G-InGaAs devices. Furthermore, the gate oxide-semiconductor 

interface can also modify the degree of confinement of the wavefunction that follows 

from their spreading into the oxide barriers, which in this work, penalizes InGaAs more 

so than Si [95].  

There are very little differences in electrostatics among the two orientations of Si 

and Ge considered, and the orientation-dependent performance with scaling, beyond that 

of source starvation, can be attributed to quantum-confinement, or at least these two 

sources become convolved. Channel orientation leads to different degrees of quantum-

confinement within the channel and source and drain extensions for electrons within the 

various otherwise-equivalent band-edge Δ-valleys or L-valleys in Si and Ge, respectively, 

as shown in Fig. 4.6, including the G-valley in InGaAs. In Si 〈100〉 channel devices, 

quantum-confinement breaks the six-fold degeneracy of the Δ-valleys, resulting in two 

lower-lying valleys, with circular constant-energy contours, and four higher-lying valleys 

with elliptical constant-energy contours once projected onto the {100} surface due to the 

differences in the confinement mass of the valleys. The confinement mass (𝑚U) and 

channel (conductivity) effective mass (𝑚UÂ), i.e. mass along the direction of transport, of 

the lower two valleys is 𝑚U = 0.98𝑚� and 𝑚UÂ = 0.19𝑚�, respectively. Meanwhile, in 

Si 〈110〉 channel devices with {110} sidewall surfaces, quantum-confinement lifts a pair 

of Δ-valleys above four Δ-valleys. The lower four valleys have a 𝑚U = 0.32𝑚� and 

𝑚UÂ = 0.585𝑚�, respectively, and the latter channel effective mass is much heavier than 
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Si 〈100〉 channel devices, which leads to lower velocities. As a result of having the 

largest quantization mass and lightest channel effective mass, Si 〈100〉 devices begin to 

somewhat outperform Si 〈110〉 devices for fin widths less than 4 nm, which is consistent 

with the limit of ideal end injection. Compared to Ge 〈100〉 channel devices with 𝑚U =

0.16𝑚� and 𝑚UÂ = 0.20𝑚�, Ge 〈110〉 channel devices results in a larger confinement 

mass and lighter channel mass of 𝑚U = 0.29𝑚� and 𝑚UÂ = 0.112𝑚�, respectively, and 

the latter mass is about halfway between the channel mass of InGaAs and Si 〈100〉. 
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Figure 4.6: Projection of constant energy surfaces onto the (a) {110} plane of Si, (b) 
{100} plane of Si, (c) {100} plane of Ge, (d) {110} plane of Ge, and (e) 
{100} plane of InGaAs. The shaded regions correspond to the sub-band of 
lower energy and concentric circles or ellipses are shown as dashed lines to 
indicate two-fold degeneracy. The direction of confinement lies into the 
plane of the page. For Ge, the L-valleys are located at the zone boundary, 
and thus, one-half of each L-valley is inside the first Brillouin zone. 
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4.5.2 S, DIBL, turn-on characteristic, and on-state current 

According to Figs. 4.5(b), (e), gate length scaling worsens (increases) S and 

DIBL. Silicon and Ge devices exhibit better gate control than both models of InGaAs due 

to the high dielectric constant in InGaAs, resulting in the channel to couple strongly to 

the S/D regions. DIBL is severely aggravated as gate length scaling brings the source and 

drain regions into closer proximity of the channel and to each other. Shortening of the 

gate length not only increases the parasitic capacitance, but also decreases the gate 

contact area along the fin sidewalls leading to reduced gate capacitance.  

In all cases, Figs. 4.5(c), (d) show that gate length scaling and fin width scaling 

cause the on-current to decrease due to reduced charge density and/or reduced injection 

velocity as a result of source starvation and quantum-confinement, whereas the effect of 

scaling on the turn-on transition voltage is mixed. We also note that Von increases for all 

studied devices with scaling as stronger confinement increases the sub-band energy 

splitting and therefore larger carrier concentrations are required to achieve the same 

performance defined at a fixed gate voltage above constant-current threshold, which is 

consistent with reduced DOS and increased threshold voltage experimentally observed in 

thin body SOI FinFETs [117]. Although Γ-InGaAs devices show promising 𝑔¥, the turn-

on transition voltage ∆𝑉§ is the longest, which differs from otherwise equivalent MV-

InGaAs devices with the exception of included satellite valleys, suggesting limited 

quantum capacitance as to the reason for the slower turn-on. At LG = 9 nm, Ge 〈110〉 

channel devices deliver the largest Ion and ∆𝑉§, whereas Ge 〈100〉 channels have 

progressively worse turn-on behavior due to stronger threshold voltage shift. Meanwhile, 

∆𝑉§ for both MV-InGaAs and Si 〈100〉 devices remained relatively constant with scaling, 

whereas Si 〈110〉 devices showed an increase, which is consistent with stronger 



 68 

quantum-confinement. Si 〈100〉 devices show a greater on-current than Si 〈110〉 devices 

after WFIN = 4 nm due to the poorer turn-on characteristic in the latter orientation. 

4.5.3 Drain current vs. drain voltage 

The drain current also was calculated at the overdrive gate voltage of 𝑉A( −

𝑉§�� = 0.35	V as a function of drain voltage 𝑉'( swept from 0 V to 0.6 V in steps of 25 

mV, consistent with the transistor in the on-state with 𝑉§�� = 0.25	V and a 𝑉'' = 0.6	V, 

as shown in Fig. 4.7. At LG = 18 nm, all devices showed onset of current saturation at 

𝑉'( = 𝑉'(,��� 	= 0.20 V and 0.30 V, except for Ge 〈100〉 FinFET, where the onset was 

delayed by approximately 0.1 V, and Ge 〈110〉 FinFET struggles to saturate. The greater 

depth of the Fermi-level in InGaAs devices compared to Si devices causes V'(,��� to be 

stretched-out. MV-InGaAs FinFETs performed the worst attributed to confinement-

reduced inter-valley energy separations leading to transfer of electrons to heavier-mass 

satellite valleys, consistent with our 𝑔¥ results. At LG = 9 nm, the V'(,��� for Si 〈110〉 

devices increased by 0.05 V and decreased by 0.05 V for Ge devices. Meanwhile, V'(,��� 

for both InGaAs materials systems was weakly dependent on gate length and showed 

better current saturation. 
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Figure 4.7: ID-VDS simulation results for Si á100ñ (solid circles), Si á110ñ (open circles), 
MV-In0.53Ga0.47As (open triangles), Γ-In0.53Ga0.47As (asterisks), Ge á100ñ 
(solid squares), and Ge á110ñ (open squares) FinFETs at the gate overdrive 
voltage of 0.35 V above the constant current threshold voltage for gate 
lengths (fin widths) of (a) LG = 18 nm (WFIN = 6 nm) and (b) LG = 9 nm 
(WFIN = 3 nm). Source and drain doping concentrations were taken to be 
2×1020 cm⁻3 and 5×1019 cm⁻3 for Si or Ge and InGaAs devices, respectively. 
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peak 𝑔>, turn-on characteristic Δ𝑉 , on-state current 𝐼V0, and the 𝐼'( vs. 𝑉'( 

characteristic of LG = 18 nm and LG = 9 nm FinFETs is re-examined. An illustrative 

control value of T = 0.20 was chosen, which, for Si, with 𝜌�� = 3.0×10⁻10 Ω-cm2 at the 

considered 2.0×1020 cm−3 doping concentration, corresponds to a specific contact 

resistivity of 1.35×10⁻9 Ω-cm2, near a state-of-the-art reported value of 1.2×10⁻9 Ω-cm2 

[106]. For the Γ-InGaAs and MV-InGaAs devices with 𝜌�� values of 1.3×10⁻9 Ω-cm2 and 

1.4×10⁻9, respectively, at the considered 5.0×1019 cm−3 doping concentration, this control 

value of T results in substantially larger 𝜌�� values, of 5.9×10⁻9 Ω-cm2 and 6.3×10⁻9 Ω-

cm2, respectively. For the Ge devices with a 𝜌�� value of 3.5×10⁻10 Ω-cm2 at the 

considered 2.0×1020 cm−3 doping concentration, a control value of T = 0.20 corresponds 

to a specific contact resistivity of 1.6×10⁻9 Ω-cm2. Nevertheless, these values of 𝜌�� may 

be optimistic for InGaAs systems with reported specific resistivities of 7×10⁻9 Ω-cm2 

[107] and even more so for Ge systems with lowest specific resistivities reported of 

6.8×10⁻8 Ω-cm2 [118]. 

4.6.1 Peak gm, DVT, and Ion 

Overall, Fig. 4.8 shows contact resistance decreased peak 𝑔¥ and 𝐼V0, as 

expected. The relative effect of fixed contact resistivity is greatest for G-InGaAs and Ge 

〈110〉 FinFETs, even considered optimistically so, and least so for Si 〈110〉 FinFETs. In 

fact, at LG = 18 nm, the peak 𝑔> advantage over Si devices by G-InGaAs devices 

assuming ideal contacts dissipates upon considering non-ideal contacts, owing to worse 

source starvation which now starts earlier. MV-InGaAs FinFETs perform the worst 

overall. Ge FinFETs continue to have the largest peak 𝑔¥, but only a slight advantage for 

Ge 〈110〉 channel devices over Ge 〈100〉 devices. At LG = 9 nm, both orientations of Si 

devices now outperform all of their InGaAs and Ge 〈100〉 counterparts in terms of peak 
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𝑔¥ and even more so in terms of Ion because of the poorer turn-on characteristic in the 

latter material systems. However, there remains a distinct advantage for Ge 〈110〉 

channel devices over all other materials systems because the quantum-confined band 

structure results in large channel capacitance (multiple valley degeneracy) and high 

injection velocity (light channel effective mass).  

Initially (LG = 18 nm) with ideal contacts, device performance is primarily source-

limited via source starvation due to contact and surface orientation effects, but scaling of 

the fin width introduces narrow-slit injection issues, including the loss of the perfectly 

reflecting boundaries at the end of the source region, and the effect of source starvation 

saturates, whereas the effect of quantum confinement would continue to increase such 

that device performance is, or at least also is substantially, channel-limited via quantum-

confinement. As the contact transmissivity is reduced, source injected carriers can reflect 

off the contact surfaces in the source and enter the channel. However, for electron 

injection probabilities that are peaked naturally about the surface normal direction, such 

as in Si 〈100〉 and Ge 〈110〉 channel devices, carriers possibly spend more time reflecting 

of the contacts and the likelihood of being absorbed at a contact surface increase. For 

these reasons, Si 〈110〉 channel devices help against source starvation and outperform Si 

〈100〉 devices in terms of peak 𝑔> at LG = 9 nm. A similar contact-related advantage also 

exists for Ge 〈100〉 channel devices, but the differences in quantum confinement between 

〈100〉 and 〈110〉 channel devices are more important. 
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Figure 4.8: Comparison of contacts with perfect transmissivity and imperfect 
transmissivity contacts on the (a) peak of the transconductance gm, (b) turn-
on transition voltage DVT, and (c) the on-current Ion with a constant current 
defined threshold (Ion(CC)), for the end, saddle/slot, and RSD contacts to an 
18 nm and 9 nm gate length FinFETs at VDS of 0.6 V. Here, bar pairs 
corresponding to unity transmissivity (with no added specific contact 
resistivity) “NC” and to 0.2 transmissivity (with added specific contact 
resistivity) “WC”, respectively, are shown side by side on the same gray 
scale for each considered material system, including channel orientation for 
Si and Ge. 
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saturation was insensitive to contact transmissivity at the longest and shortest gate length 

devices studied because the voltage drop due to specific contact resistivity is not 

localized to the contact surface. Instead, modeling of specific contact resistivity in this 

limit corresponds to reducing the S/D injection efficiency and the primary limitation of 

InGaAs devices is the limited S/D doping leads to source starvation with realistic 

contacts. 
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Figure 4.9: As for Fig. 4.7 but with non-ideal contacts, ID-VDS simulation results for Si 
á100ñ (solid circles), Si á110ñ (open circles), MV-In0.53Ga0.47As (open 
triangles), Γ-In0.53Ga0.47As (asterisks), Ge á100ñ (solid squares), and Ge 
á110ñ (open squares) FinFETs the gate overdrive voltage of 0.35 V above 
the constant current threshold voltage for gate lengths (fin widths) of (a) LG 
= 18 nm (WFIN = 6 nm) and (b) LG = 9 nm (WFIN = 3 nm), respectively. 
Source and drain doping concentrations were taken to be 2×1020 cm⁻3 and 
5×1019 cm⁻3 for Si or Ge and InGaAs devices, respectively. 
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4.7 CONCLUSION 

Silicon CMOS scaling is approaching limitations of fundamental physics, and 

thus, new materials and new structures have been proposed to reach the end-of-the-

roadmap. For instance, high-mobility and high thermal velocity channel materials such as 

InGaAs and Ge present an alternative to Si channels. The FinFET design offers higher 

drive current per unit area per input voltage and tighter confinement for better 

electrostatic control than conventional planar MOSFETs. Unlike drift-diffusion and 

hydrodynamic simulations or quantum simulations, Monte Carlo methods provide a more 

detailed microscopic picture of carrier transport. The limitation and challenges of gate 

length scaling, channel orientation, and more reasonable contact transmissivities on Si, 

Ge, and InGaAs nanoscale n-channel FinFET performance with saddle/slot contacts are 

explored using a quantum-corrected semi-classical Monte Carlo method. Our simulation 

framework allows for quantum corrections to address quantum mechanical confinement, 

direct calculation of the occupation probabilities without assuming Fermi statistics to 

account for far-from-equilibrium degenerate carrier populations and to model the Pauli-

blocking of scattering, and reduced contact transmissivity to model experimental contact 

resistivities. Silicon 〈110〉, Si 〈100〉, MV-InGaAs with conventionally reported energy 

valley offsets, idealized Γ-valley only InGaAs, Ge 〈110〉, and Ge 〈100〉 channel devices 

were modeled. A design rule for the gate length to fin width ratio of 𝐿A ≥ 3 ×𝑊ª«¬ was 

obtained for Si and Ge FinFETs such that S and DIBL lie below 70 mV/decade and 70 

mV/V, respectively, compared to InGaAs FinFETs, which required longer channels to 

achieve these benchmarks.  

We found that source starvation and quantum-confinement pose a challenge to 

gate length and fin width scaling in FinFETs. Although conduction in the light mass Γ-

valley in InGaAs devices leads to high injection velocities, such carriers experience 
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greater quasi-ballistic transport, which leads to the earlier onset of source starvation, the 

choking of source injected carriers into the channel, compared to Si devices. In MV-

InGaAs devices, quantum-confinement effects enable electrons to populate and conduct 

in heavier-mass peripheral valleys in the channel, and thus reducing both the injection 

velocity and efficiency and carrier concentration in the channel. Adding the effect of 

reduced contact transmissivity significantly degrades the performance of InGaAs devices 

even further due to reduced S/D injection efficiency. In Ge 〈100〉 devices, increased 

confinement pushes L-valley electrons into relatively heavier-mass Δ-valleys, and their 

advantage over Si devices vanishes at LG = 9 nm even with ideal contacts. Ge 〈110〉 

channel devices outperform all other devices in terms of 𝑔¥ and Ion with and without 

reduced contact transmissivity due to high density of states, including multiple valley 

degeneracy, heavy confinement mass, and high injection velocity. Device performance in 

Si devices possess greater robustness against gate length scaling by mitigating 

undesirable quantum-confinement and source starvation side-effects, even using the 

former effect to remove valley degeneracy, and reduced contact transmissivity that 

typically hinder device performance in Ge or InGaAs devices. Both channel orientations 

in Si and Ge devices are expected to converge in the ray tracing limit from decreasing the 

fin width as devices become equally source starved and the loss of the perfectly reflecting 

boundary at the end of a source region but pick up an additional effect of quantum-

confinement, which is exacerbated for 〈110〉 channels in Si and 〈100〉 channels in Ge. 

Our results provide deeper insights to the material options for scaled FinFETs, which had 

not been discussed in the literature previously. Our findings show the relative importance 

of source and drain contacts than any intrinsic channel advantage at these devices scales, 

and current drivability depends on the S/D injection efficiency, which can improved 

through better contact design. 
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Chapter 5: Semi-Classical Monte Carlo Study of the Impact of Tensile 
Strain on the Intrinsic Performance Limits of Monolayer MoS2 n-

channel MOSFETs 

5.1 INTRODUCTION AND BACKGROUND 

In order to overcome the bulk nature of silicon (Si), two-dimensional (2-D) 

channel materials offer greater immunity to short-channel effects [38], [119], [120]. 

Despite the extraordinary mobility of electrons in graphene, the gapless band structure 

restricts its employment in field effect transistor (FET) applications [121], [122]. 

Transition metal dichalcogenides (MX2) are layered materials composed of a transition 

metal (M) layer sandwiched between two chalcogen (X) atomic layers, such as 

molybdenum disulfide, MoS2, that possess outstanding electrical, optical, and mechanical 

properties. MoS2 offers several attractive properties as a channel material in FETs, 

including a sizable band gap, lack of surface dangling bonds, ultra-thin body, and a high 

degree of mechanical flexibility. Molybdenum disulfide is not a direct replacement for 

silicon in high-speed, high-performance applications but present a departure from 

traditional roadmaps, with the potential to forge a new path of low-cost and high volume, 

ultra-low power, transparent, ultra-thin and ultra-light, flexible electronics. Potential 

applications include flexible displays, wearable electronics, smart fabrics, and sensing 

devices that can be rolled, stretched, folded, and bent without losing functionality [39]–

[41]. Additionally, MoS2 can be easily isolated and stacked with other layered materials, 

e.g. graphene and hexagonal boron nitride, to form flexible contacts and dielectrics [123]. 

Meanwhile, some of the challenges facing fabrication of MoS2 devices include large 

scale and defect-free film growth with controllable thickness, environmental stability, 

mitigating substrate and dielectric interface effects, reducing specific contact resistivity, 

and difficulty doping [124]. 
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For this work, the intrinsic, i.e., phonon-limited, performance limits, of monolayer 

MoS2 n-channel metal-oxide-semiconductor field effect transistors (MOSFETs) as a 

function of peripheral valley energy, contact transmissivity, gate length, and type and 

amount of tensile strain has been studied using a semi-classical Monte Carlo (SCMC) 

method. Electron effective masses, non-parabolicity constants, and conduction band-edge 

energy offsets are extracted from density functional theory (DFT) calculations of the 

electronic band structures of strained MoS2. Multi-valley MoS2 with DFT-calculated 

energy valley offsets, and reference idealized K-valley-only MoS2 (K-MoS2) are 

considered. The idealized K-MoS2 material system represents the possibility of 

substantially larger valley offsets than otherwise modeled here and provides a reference 

point for the effects of the higher-lying energy valleys. The bulk drift velocity versus 

electric field characteristics of MoS2 are simulated. We found tensile strain enhances the 

bulk low-field electron mobility, primarily due to reduced K-valley effective mass, 

increases peak and saturation velocities, and leads to negative differential resistance 

(NDR) at high fields. 200 and 15 nm gate length MoS2 channel MOSFETs are modeled, 

the former representative of long-channel experimental devices and the latter of 

ultimately desired nanodevices. Both perfect and imperfect transmissivity contacts are 

simulated. These MoS2 channel MOSFETs were highly sensitive to non-ideal contact 

transmissivities, most so with strain, and to the band structure model, relatively 

insensitive to the amount of strain, and some orientation-related advantage for biaxial 

tensile strain. And while our results suggest more limited improvement in device 

performance, it may bear out the motivation for the use of tailored strain profiles to tune 

device characteristics. 
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Strain effects, whether intentional or unintentional, potentially can alter the 

electronic structure of MoS2, leading to lowering of the electron effective mass and 

improvement in mobility [125], [126]. Various methods to strain MoS2 has been 

demonstrated in a number of studies [45], [123], [127]–[131], including biaxial strains of 

up to 6% using pressure differences across a suspended MoS2 membrane. A common 

method to apply biaxial strain to MoS2 is via thermal coefficient of expansion mismatch 

[127], [129], with a maximum reported strain of 1% [127]. During fabrication, the lattice 

mismatch between a deposited gate oxide layer of HfO2 and monolayer MoS2 channel 

could introduce 0.3% to 0.6% tensile train [44], which results in a substantial 

enhancement in the carrier mobilities from 0.5 and 3 cm2 V⁻1 s⁻1 [132], typically observed 

in bulk films, to 200 cm2 V⁻1 s⁻1 [38]. Local biaxial straining has also been recently 

proposed to generate a funnel for excitons, useful for photovoltaics and photodetectors 

[133]. Uniaxial strain via bending is ubiquitous in flexible electronics applications where 

the two most common failure mechanisms are cracks in the gate dielectric and buckling 

delamination, limiting the applied strain to 0.8% [45]. Another aspect of the weakly 

bonded 2-D TMDs atomic layers is that they can be isolated and stacked with other 

layered semiconductors to construct a wide range of Van der Waals heterostructures 

without the limitation of lattice matching. For example, MoS2 channel transistors with 

hexagonal boron nitride gate dielectrics can support larger amounts of strain than with 

conventional dielectrics with little performance degradation [123]. Nevertheless, these 

reported strain limits are far less than highly crystalline and defect-free monolayer MoS2, 

which can sustain up to 11% strain [134], because the efficiency of transfer of strain from 

the substrate to the MoS2 layer depends on the Young’s modulus of the substrate. 

Non-equilibrium Green’s functions (NEGF-based) (full-quantum) ballistic 

simulations [119], [135], analytical ballistic models (top-of-the-barrier model) [136], or 
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compact models fit to experimental data [137] are commonly used to study the 

performance of MoS2 transistors. However, electron-phonon scattering can be expected 

to continue to play an important role in carrier transport at feature sizes in targeted 

applications. The effects of uniaxial strain on polar optical phonon scattering [138] and 

full-quantum simulations with electron-phonon scattering [139] in MoS2 transistors has 

been studied, but both of these studies neglected the effects of strain on the electronic 

structure. For this work, we simulated the phonon-limited device performance of strained 

monolayer MoS2 using a SCMC method that allows for far-from-equilibrium degenerate 

statistics, non-ideal contacts, quasi-ballistic transport inaccessible through drift-diffusion 

and hydrodynamic simulations, and scattering mechanisms not readily accessible through 

NEGF simulations, among other things. Our results provide a greater understanding of 

the electronic structure of MoS2 under strain, and associated MOSFET device physics. 

5.2 SIMULATED MOSFET STRUCTURE AND BAND STRUCTURE MODELS 

5.2.1 MOSFET structure 

The 200 nm and 15 nm gate length (LG) monolayer MoS2 channel MOSFETs with 

end-injecting contacts and a 50 nm channel width (WCH), sufficiently wide that edge 

effects are negligible, are shown in Fig. 5.1. The device geometry parameters are listed in 

Table 5.1. An electron mean free path of 15 to 22 nm for MoS2 has been suggested [119], 

[140], such that phonon scattering is expected to occur at these device scales. In-plane 

end contacts have been reported to achieve a small contact resistance [141]. The width of 

these end contacts are equal to the width of the channel. For electrostatic modeling, we 

assumed a 3 nm thick HfO2 (𝜀� = 22.3) gate oxide, corresponding to an effective oxide 

thickness of 0.52 nm, a channel thickness (HCH) of 6.5 Å, corresponding to the single 

layer thickness of a mechanically exfoliated MoS2 flake using the scotch-tape method 
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[132], and an SiO2 substrate thickness (HBOX) of 10 nm. The source and drain (S/D) 

regions are uniformly doped to a sheet donor doping of 1×1013 cm⁻2, which results in 

degenerate electron statistics with the Fermi level 11.6 meV above the conduction band 

edge under equilibrium conditions. Such degenerate doping concentrations has been 

reported to be possible for MoS2 using potassium as an adatom dopant [142] and nearly 

achievable using chloride molecular doping [143]. Devices have a decade/nm doping 

profile in the 5 nm source and drain extensions. 

 

Figure 5.1: A side view (left) and an end view (right) of the simulated modeled 
MOSFET geometry. The spacers regions are not shown in order to show the 
underlying semiconductor fin, shaded in grey. The hatched region represents 
the gate metal. The gate oxide located underneath the gate metal is visible in 
the end views the saddle/slot contact model device. The source and drain 
contact surfaces are shown in black.  

 
Dimension MoS2 MOSFET 

Lc [nm] 8 
LEXT [nm] 5 
LG [nm] 200, 15 

HCH [nm] 0.65 

WCH [nm] 50 
HBOX [nm] 10 
TOX [nm] 3 

Table 5.1: Modeled MOSFET dimensions. 
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5.2.2 MoS2 band structure models 

For our conventional multivalley MoS2 model, we included two K-valleys, 

located at the corners of the hexagonal Brillouin zone, and six Q-valleys, located within 

the Brillouin zone along the same directions as the K-valleys, corresponding to the lowest 

and second lowest sets of band minima in the conduction band, respectively, as shown in 

Fig. 5.2. The energy separation between the K-valleys and Q-valleys, DEK-Q, is unsettled 

in the literature. Theoretical estimates range from 80 meV to 300 meV [144]–[148]. The 

only experimental evidence to date does not provide a separation but only places it at ≈ 

60 meV [149]. However, these experimental results were performed on potassium 

intercalated MoS2 to induce electron doping into the conduction band, which causes 

structural changes in MoS2, which, in turn, is expected to alter the MoS2 electronic 

properties [150]. Given such ambiguity, and possibly within our own results, we also 

considered a limiting K-valley-only MoS2 model (K-MoS2) with no satellite valleys 

(DEK-Q → ∞). 

 

Figure 5.2: Alignment of the on-axis and off-axis K and Q conduction band valleys in 
the hexagonal Brillouin zone of monolayer MoS2. 
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DFT simulations for this work were performed with the Vienna Ab-initio 

Simulation Package (VASP) [151], [152], using the Projector augmented-wave (PAW) 

pseudopotential formalism and Perdew-Burke-Ernzerhof (PBE) modification of the 

generalized gradient approximation (GGA) for approximating the exchange-correlation 

potential for Mo and S atoms [153], [154]. A 10 Å vacuum spacer along the z-axis was 

created to eliminate spurious interlayer interactions due to periodic boundary conditions. 

Illustrative (i) asymmetrical uniaxial tensile strain 𝜖Æ ≠ 𝜖È, (ii) symmetrical biaxial 

tensile strain 𝜖Æ = 𝜖È, and (iii) positive symmetrical pure shear strain 𝛾v = −𝛾c were 

modeled by deforming the unit cell along the x- and/or y-direction. Uniaxial tensile strain 

along the x-direction (y-direction), with associated compression along the y-direction (x-

direction) according to Poisson’s ratio, i.e. 𝜀È(Æ) = −𝑣𝜀Æ(È), was considered. Here, the 

Poisson ratio was taken to be 0.27 [134]. Also, uniaxial tensile strain only along the x-

direction (y-direction) is considered 𝜀È(Æ) = 0 , which models the situation in which a 

MoS2 layer is strongly adhered to a mismatched substrate that stretches it only along one 

direction, but not along the other. For symmetrical biaxial tensile strain, the unit cell is 

stretched uniformly along both the x-and y-directions, 𝜀Æ = 𝜀È, which preserves the 

hexagonal symmetry of the lattice. Pure shear strain of	𝛾 > 0 corresponds to a rotation of 

the lattice vectors and modeled by decreasing the angle between in-pane lattice vectors. 

The atomic positions were allowed to relax while keeping the lattice vectors fixed until 

an energy and force convergence of 10−6 eV and 10−3 eV/Å, respectively, was reached for 

each of the strained structures. A Monkhorst-Pack Brillouin-zone grid of 6×6×1 k-points 

and a cut off energy of 500 eV was adopted for obtaining the relaxed structure. 

Subsequently, the optimized structures were used to carry out band structure calculations 

with an identical set of simulation parameters to extract valley energy separations, 

effective masses, and non-parabolicity constants. 



 84 

 

Figure 5.3: Sketch of (a) symmetrical biaxial tensile strain (ϵx = ϵy), (b) uniaxial tensile 
strain only along the x-direction (ϵy = 0), (c) uniaxial tensile strain only 
along the y-direction (ϵx = 0), (d) uniaxial tensile strain along the x-direction, 
with associated compression along the y-direction (ϵy = −nϵx), (e) uniaxial 
tensile strain along the y-direction, with associated compression along the x-
direction (ϵx = −nϵy), and (f) pure shear strain (𝛾), which is equivalent to (d), 
but with a Poisson ratio of n = 0.57 and no change in the lattice constant. 

Assuming a non-parabolic dispersion relation [50], the effective masses along the 

x-direction (𝑚Æ) and y-direction (𝑚È), and the non-parabolicity constants (a) for the K- 

and Q-valleys are extracted from the DFT-calculated electronic band structure. The 

allowable scattering mechanisms and corresponding phonon energies have been 

determined from first-principles calculations by Li et al. [147], and we use these in our 

simulations. However, the coupling constants for the various phonon modes have been 

adjusted to reproduce available experimental velocity-field data [155]. All simulation 

parameters for unstrained MoS2, such as valley-specific effective masses, non-

parabolicity constants, and deformation potentials are assembled in the Appendix. 
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A combination of theoretical studies and experimental data have identified 

Coulomb impurities arising from fixed ionized impurity charges at the bottom substrate, 

remote interfacial phonons from the oxide dielectric, traps, and defects as key 

performance bottlenecks to MoS2 device performance. Coulomb scattering dominates at 

low temperatures and can be suppressed with high-k dielectrics [156], [157]. However, 

the high dielectric constant and soft polar phonon vibration mode in HfO2 may lead to 

exacerbated surface polar optical phonon scattering. A thin buffer layer of parylene 

between the MoS2 channel and HfO2 gate oxide can be used to reduce the surface polar 

phonon scattering from HfO2 [158]. Atomically flat TMDs exhibit negligible surface 

scattering, in contrast to the severe surface scattering exhibited by Si. Thus, the focus of 

this work is the performance limits of unstrained and strained MoS2 MOSFETs subject to 

intrinsic scattering, i.e., electron-phonon scattering. We adopted the deformation 

potentials and phonon energies from [147], while the former have been adjusted to 

reproduce available experimental data [155]. While strain induces shifts in the phonon 

modes [138], [159], we have assumed fixed deformation potentials and phonon energies 

as the strains considered here are small and even certain phonon mode energies are 

relatively insensitive to strain [160]. We have considered acoustic and optical intravalley 

and intervalley phonon scattering; contributions from other phonon modes have been 

found to be relatively modest due to weak coupling [161]. 

5.2.3 MOSFET simulation methodology (essential elements) 

Our in-house University of Texas Semi-Classical Monte Carlo (UTMC) software 

[54] models carrier transport within complex device geometries and materials considering 

intra- and inter-valley phonon (acoustic, optical, and polar optical), surface roughness 

(SR), alloy, and ionized impurity scattering. The electron energy bands are modeled 
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analytically with non-parabolicity corrections, which is appropriate at these energy scales 

[50], [52]. For this work we have created a version of UTMC with 2D transport, while 

retaining the 3D electrostatics. 

Because of high doping concentrations, we must consider degenerate statistics. 

However, because of the far-from-equilibrium conditions encountered in these devices, 

we cannot approximate the carrier statistics accurately using Fermi-Dirac distributions. 

Instead, we directly model Pauli-Blocking (PB) of scattering to obtain the far-from-

equilibrium local electron occupation probabilities from the local electron populations, 

𝑁(𝑟, 𝐸, 𝑔, ±), as a function of position (r), energy valley (g) and energy (E), and 

propagation direction, forward toward the drain end (+) or backward toward the source 

end (−).  

Contact non-ideality is simulated directly within our SCMC framework via a 

reduction below unity in the probability for an electron to be transmitted across the 

contact interface in either direction, T. Equal angle reflection is used to model carriers 

reaching, but not being transmitted across the contact interface from the inside. The 

resulting apparent specific contact resistivity is, 𝜌�� = 	𝜌��(𝑇�v − 1 2⁄ ), where ρLB is the 

Landauer-Büttiker ballistic resistivity [73], [74]. In this the electron energy loss associate 

the added contact resistivity is dropped gradually within the device on the scale of the 

carrier mean-free path, rather than being dropped outside of the device as within a 

lumped contact resistance model, which also avoids computationally burdensome post-

processing of contact resistance effects associated with the latter model [162]. (Moreover, 

although the contact geometry is simple, here, effects of more complicated contact 

geometries also would be preserved in this way). In this work, we use a position and 

energy independent transmission probability for simplicity, but not as a limit of the 

method.  
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5.3 ELECTRONIC BAND STRUCTURE 

We extracted pertinent band structure parameters of MoS2 with 0% to 3% strain 

in steps of 1% strain using the GGA functional in DFT framework as detailed above. 

Effective masses were computed using central finite differences at the local minima of 

the K-valley and Q-valley. Non-parabolicity constants were obtained by fitting the 

valleys to analytic bands [50], [52]. Fig. 5.4 shows the change in the band gap Eg and the 

K-valley to Q-valley energy separation, DEK-Q. Fig. 5.5. shows the change in the electron 

effective mass along the x-direction (𝑚Ê) and y-direction (𝑚Ë) of the on-x-axis K and Q-

valleys of MoS2 subject to the here-considered strain profiles. 

The optimized lattice constant and calculated direct band gap, with electron and 

valence band edges at the K-points, of unstrained monolayer MoS2 was 3.14 Å and 1.8 

eV, respectively, which is consistent with previous theoretical studies [147], [148] and 

close to the experimentally determined values [163] [164]. The inter-valley separation 

between the light-mass K-valleys and heavy-mass peripheral Q-valleys is ΔEK-Q = 139 

meV. The extracted masses along the x- and y-directions of the K-valley are nearly 

identical, 𝑚Ê
Ì = 𝑚Ë

Ì = 0.47𝑚Í, where me denotes the electron rest mass, in agreement 

with previous first-principles calculations [165], [166]. These estimates are below the 

only experimental estimates reported to date of 𝑚Ì = 0.67𝑚� [149], but the 

experimental results employed potassium intercalation, which may cause structural 

transformations. On the other hand, the Q-valleys are highly anisotropic with masses of 

𝑚Æ
� = 0.58𝑚� and 𝑚È

� = 1.1𝑚�. 

After strain is applied, direct-to-indirect band gap and even semiconductor-to-

metal transitions are induced, which is consistent with previous first-principles 

calculations [128], [167] and with photoluminescence measurements of the optical band 

gap [160]. The Eg is linearly reduced by 212 meV/%, 107 meV/%, 104 meV/%, and 70 
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meV/% for symmetrical biaxial tensile strain (𝜖Æ = 𝜖È), pure shear strain (𝛾), uniaxial 

tensile strain only along the x-direction (𝜖È = 0) or uniaxial tensile strain only along the 

y-direction (𝜖Æ = 0), and uniaxial tensile strain along the x-direction (𝜖Æ) or uniaxial 

tensile strain along the y-direction (𝜖È), respectively. Our results are significantly larger 

than the reported shrinkage of the optical band gap at a rate of 100 meV/% [128] and 50 

meV/% [168] with biaxial and uniaxial tensile strain, respectively. DEK-Q increases by 

139 meV/%, 120 meV/%, 90 meV/%, 75 meV/%, 74 meV/%, and 54 meV/%, for biaxial 

tensile strain, pure shear strain, uniaxial tensile strain only along the x-direction, uniaxial 

tensile strain only along the y-direction, uniaxial tensile strain along the x-direction, and 

uniaxial tensile strain along the y-direction, respectively.  

Non-parabolicity constants were found to be relatively insensitive to strain. 

Except for symmetrical biaxial tensile strain, strain breaks the hexagonal symmetry of the 

lattice, and consequently can remove the isotropy of the K-valley and warp the shape of 

the off-axis Q-valleys. The effective masses of the K-valley decrease with all forms of 

strain. For illustrative purposes, the effect of strain on the on-axis Q-valley effective 

masses were calculated. We found the change in 𝑚Æ
� to be more mixed than the K-valley 

mass change, and all forms of strain raise 𝑚È
�. These trends are consistent with previous 

theoretical studies [169], [170]. Overall, the relative effect of strain on the effective 

masses of the K- and Q-valleys, DEK-Q, and Eg depend on the type and amount of strain, 

within the ranges of strain considered. Strain along the y-direction (face-to-face of the 

hexagonal lattice) has a greater relative effect on distorting the lattice, e.g. increasing the 

lattice constant, increasing the Mo-S bond distance, and decreasing the S-Mo-S bond 

angle, decreasing 𝑚Æ
Ì, and increasing 𝑚È

�, whereas strain along the x-direction (point-to-

point of the hexagonal lattice) and shear strain has a greater relative effect on decreasing 

𝑚È
Ì, increasing 𝑚Æ

�, and increasing DEK-Q. Based on these initial results, strain can 
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potentially be employed to improve electron transport in MoS2 by reducing inter-valley 

transfer to heavier-mass Q-valleys via increased DEK-Q and increasing carrier velocities 

and reducing scattering in the K-valleys via reduced K-valley effective mass. 

 

Figure 5.4: Dependence of (a) band gap Eg and (b) band edge valley separation of the of 
the K- and Q-valleys DEK-Q under 0% to 3% biaxial tensile strain ϵx = ϵy 
(asterisks), uniaxial tensile strain along the x-direction ϵx (solid circles), 
uniaxial tensile strain along the y-direction ϵy (open circles), uniaxial tensile 
strain only along the x-direction ϵy = 0 (solid squares), uniaxial tensile strain 
only along the y-direction ϵx = 0 (open squares), and pure shear strain g 
(open triangles).  
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Figure 5.5: Dependence of (a) K-valley effective mass along the x-direction, (b) K-
valley effective mass along the y-direction, (c) Q-valley effective mass 
along the x-direction, and (d) Q-valley effective mass along the y-direction 
under 0% to 3% biaxial tensile strain ϵx = ϵy (asterisks), uniaxial tensile 
strain along the x-direction ϵx (solid circles), uniaxial tensile strain along the 
y-direction ϵy (open circles), uniaxial tensile strain only along the x-direction 
ϵy = 0 (solid squares), uniaxial tensile strain only along the y-direction ϵx = 0 
(open squares), and pure shear strain g (open triangles).  
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5.4 BULK DRIFT VELOCITY 

While other types of strain were considered in DFT, biaxial tensile strain and 

uniaxial tensile strain only along the x- and y-directions not only had the largest effect on 

the inter-valley energy separation and effective mass of the K-valley, but also are most 

likely to occur physically, and are studied in further detail in these subsequent sections. 

For biaxial strain, the hexagonal symmetry of the lattice is preserved, and the off-axis K-

valley and Q-valley effective masses, i.e. longitudinal and transverse effective mass, are 

changed according to DFT calculations of the on-axis values. On the other hand, for 

uniaxial strain, the off-axis K-valley masses are similarly changed according to on-axis 

DFT results, whereas both the on-axis and off-axis Q-valley effective masses are fixed to 

their unstrained values as a good approximation because strain has a much larger effect 

on increasing inter-valley band-edge separation and lowering the K-valley effective mass 

than changing the Q-valley mass. Moreover, the change in mass of Q-valley mass is 

small compared to the change in mass of the K-valley and the decrease in Q-valley 

occupancy due to larger inter-valley offset is expected to diminish their relative 

importance. Also, consistent with this discussion, mobility results of MoS2 with biaxial 

strain at 1% and no mass change of the Q-valley were very similar to those provided here 

for MoS2 with biaxial strain at 1% and Q-valley mass change. 

UTMC is used to compute bulk charge carrier characteristics of MoS2, including 

drift velocity (vd) versus electric field (F), phonon-limited low-field electron mobility 

(µe), saturation velocity (vd,sat), and peak velocity (vd,peak). µ� = 𝜕𝑣t/𝜕𝐹 is calculated by 

centered moving average of the central finite differences of the drift velocity at low 

electric fields. vd,sat is evaluated at 100 kV/cm and vd,peak is the maximum drift velocity 

before velocity saturation. Figs. 5.6 and 5.7 show the vd versus F curves and µe for 1% 

and 3% strain obtained from UTMC simulations at 300 K, respectively. The main 
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features of these results are that with increasing strain (i) µe increases, (ii) vd,sat increases, 

(iii) vd,peak increases, and (iv) negative differential resistance (NDR) behavior at high 

electric fields increases. Having been calibrated to reproduce experimental data, 

unstrained MoS2 µe and vd,sat are 126 cm2 V⁻1 s⁻1 and 3.6×106 cm/s, respectively, which is 

in agreement with theoretical estimates of µe and vd,sat of 130 cm2 V⁻1 s⁻1 [147] and 

3.4×106 to 4.8×106 cm/s [146], respectively. Considering only intra- and inter-valley 

scattering in the K-valleys, µe and vd,sat are 134 cm2 V⁻1 s⁻1 and 5.0×106 cm/s, 

respectively, and the former mobility is only slightly larger than unstrained MoS2, which 

illustrates the small effect of increasing DEK-Q has on transport. Our calculated mobility is 

significantly lower than theoretically predicted phonon-limited mobility in K-MoS2 of 

320 cm2 V⁻1 s⁻1 [147] and 410 cm2 V⁻1 s⁻1 [166]. Predicted mobilities as large as 690 cm2 

V⁻1 s⁻1 have been reported elsewhere when inter-valley transfer to the Q-valleys is not 

considered [146]. This large difference between mobility predictions stems from our 

simulation approach to calibrate our unstrained model to reproduce experimental data. In 

realistic devices, defects such as charged-impurity scattering from sulfur vacancies, 

substrate screening, and effects of the dielectric environment such as remote phonon or 

surface optical phonon scattering operate at low-fields to further reduce mobility, and to 

compensate for the extra scattering mechanisms not accounted for in our model, the 

intrinsic electron-phonon coupling constants in both the K- and Q-valleys are increased. 

With 1% strain, µe and vd,sat ranges from 142 to 168 cm2 V⁻1 s⁻1 and 3.8×106 to 

4.1×106 cm/s, respectively, which increases due to lighter K-valley effective mass and 

reduced inter-valley scattering via increased inter-valley separation, respectively. 

Uniaxial tensile strain along the y-direction show a greater enhancement in mobility than 

uniaxial tensile strain along the x-direction because the latter type of strain had a smaller 

change in 𝑚Æ
Ì as compared to the former type of strain. As expected, µe is further 
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enhanced with 3% strain, ranging from 156 to 191 cm2 V⁻1 s⁻1, whereas significant NDR 

behavior with 3% strain causes the increase in vd,sat (4.2×106 to 4.4×106 cm/s) to be 

smaller relative to µe. NDR is caused by hot-electron transfer from the light-mass K-

valleys into the heavier mass Q-valleys, which have much slower carriers and much 

higher scattering rates. Larger amounts of strain increase the relative energy separation 

between these two valleys and more electrons occupy the K-valleys; however, with 

increasing electric field, the population of the K-valleys decreases as carriers scatter into 

the Q-valley, which results in a more pronounced NDR. The electric field at which vd,peak 

occurs of 5×104 V/cm is somewhat unchanged with the type and amount of strain. From a 

bulk perspective, strained monolayer MoS2 for n-channel MOSFETs should be 

beneficial. 
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Figure 5.6: Drift velocity vd vs. electric field F simulation results for monolayer MoS2 at 
300 K considering only phonon-limited electron transport subject to (a) 1% 
and (b) 3% biaxial tensile strain ϵx = ϵy (solid triangles), uniaxial tensile 
strain only along the x-direction ϵy = 0 (solid squares), and uniaxial tensile 
strain only along the y-direction ϵx = 0 (open squares), including unstrained 
MoS2 ϵ = 0 (asterisks) and K-MoS2 (solid line). 
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Figure 5.7: Dependence of (centered moving average of) low-field phonon-limited 
electron mobility with strain profile at strain amounts of 1% and 3%, 
including unstrained MoS2 and K-valley-only MoS2. 
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Figure 5.8: IDS-VGS simulation results for LG = 200 nm monolayer MoS2 MOSFETs 
subject to (a) 1% and (b) 3% biaxial tensile strain ϵx = ϵy (solid triangles), 
uniaxial tensile strain only along the x-direction ϵy = 0 (solid squares), and 
uniaxial tensile strain only along the y-direction ϵx = 0 (open squares), 
including unstrained MoS2 ϵ = 0 (asterisks) and K-MoS2 (solid line). VDS = 
0.6 V. For visual clarity with respect to transconductance, the threshold 
voltage is that obtained using the extrapolation in the linear regime method. 
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Figure 5.9: IDS-VGS simulation results for LG = 15 nm monolayer MoS2 MOSFETs 
subject to (a) 1% and (b) 3% biaxial tensile strain ϵx = ϵy (solid triangles), 
uniaxial tensile strain only along the x-direction ϵy = 0 (solid squares), and 
uniaxial tensile strain only along the y-direction ϵx = 0 (open squares), 
including unstrained MoS2 ϵ = 0 (asterisks) and K-MoS2 (solid line). VDS = 
0.6 V. For visual clarity with respect to transconductance, the threshold 
voltage is that obtained using the extrapolation in the linear regime method. 
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Figure 5.10: Comparison of strain on the (centered moving average of) the peak of the 
transconductance gm for 200 nm and 15 nm gate length monolayer MoS2 
MOSFETs at VDS of 0.6 V. Here, bar pairs corresponding to 1% and 3% 
strain, respectively, are shown side by side on the same gray scale for each 
considered strain profile, including unstrained MoS2 and K-valley-only 
MoS2. 
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lowering of the K-valley mass, and continue to perform worse than unstrained K-MoS2 

devices in terms of transconductance. 

At LG = 15 nm, electron transport at these device scales is expected to be quasi-

ballistic, and as a result, the increase in peak 𝑔¥ with strain relative to unstrained devices 

is greater compared to 200 nm channel length devices due to the stronger effect of 

lowering the K-valley effective mass and less backscattering. For example, MoS2 

MOSFETs show about a 20% enhancement in peak 𝑔¥ from 1% to 3% strain as we pick 

up a greater effect of lowering the effective mass of the K-valley, but, uniaxial tensile 

strain continues to underperform K-MoS2 MOSFETs. Based on our results, the relative 

effect of strain primarily depends on the change of the K-valley effective mass and, to a 

lesser extent, on DEK-Q. The inconsistency of the latter value in the DFT calculations adds 

difficulty to accurately evaluating the role of strain, but if DFT is more accurate than 

experiment, than strain would have less impact than would otherwise be expected.  

5.5.2 Drain current vs. drain voltage 

The drain current also was calculated at the overdrive gate voltage of 𝑉A( −

𝑉§�� = 0.35	V as a function of drain voltage 𝑉'( swept from 0 V to 0.6 V in steps of 25 

mV, consistent with the transistor in the on-state with 𝑉§�� = 0.25	V and a 𝑉'' = 0.6	V, 

as shown in Figs. 5.11 and 5.12. At LG = 200 nm, unstrained and strained MoS2 

MOSFET showed onset of current saturation at 𝑉'( = 𝑉'(,��� =	0.35 V, which is 

consistent with long-channel device behavior, in that, drain current saturation occurs 

when 𝑉'( ≥ 𝑉A( − 𝑉§. For all devices, the current had little dependence on 𝑉'( above 

𝑉'(,���. The onset of current saturation for LG = 15 nm unstrained MoS2 MOSFET 

decreases to 𝑉'(,��� 	= 0.3 V, which points towards more quasi-ballistic transport than 

diffusive transport. For MoS2 MOSFETs with 1% biaxial tensile strain, uniaxial tensile 
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strain only in the x-direction, and uniaxial tensile strain only in the y-direction, 𝑉'(,��� 	= 

0.4 V, 0.32 V, and 0.3 V, respectively, which also decreases compared to the results at LG 

= 200 nm. Additionally, the current saturation above 𝑉'(,��� is worse for the strained 

MoS2 MOSFETs, especially with biaxial strain. With 3% strain, increasing VDS above 

about 0.48 V and 0.42 V for biaxial and uniaxial tensile strain, results in NDR from inter-

valley transfer between the lighter-mass K-valleys and heavier-mass Q-valleys. 
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Figure 5.11: IDS-VDS simulation results for LG = 200 nm monolayer MoS2 MOSFETs at 
the gate overdrive voltage of 0.35 V above the constant current threshold 
voltage subject to (a) 1% and (b) 3% biaxial tensile strain ϵx = ϵy (solid 
triangles), uniaxial tensile strain only along the x-direction ϵy = 0 (solid 
squares), and uniaxial tensile strain only along the y-direction ϵx = 0 (open 
squares), including unstrained MoS2 ϵ = 0 (asterisks) and K-MoS2 (solid 
line). 
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Figure 5.12: IDS-VDS simulation results for LG = 15 nm monolayer MoS2 MOSFETs at 
the gate overdrive voltage of 0.35 V above the constant current threshold 
voltage subject to (a) 1% and (b) 3% biaxial tensile strain ϵx = ϵy (solid 
triangles), uniaxial tensile strain only along the x-direction ϵy = 0 (solid 
squares), and uniaxial tensile strain only along the y-direction ϵx = 0 (open 
squares), including unstrained MoS2 ϵ = 0 (asterisks) and K-MoS2 (solid 
line). 
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section, the impact S/D electrical contact resistance on the performance of unstrained and 

3% biaxially and uniaxially tensile strained MoS2 MOSFETs is examined via sub-unity 

electron transmission probabilities across the contact surface. An illustrative control 

value of T = 0.23 was chosen, which, for MoS2, with 𝜌�� = 52.85 Ω-µm at the considered 

1.5×1020 cm−3 doping concentration, corresponds to a specific contact resistivity of 200 

Ω-µm, consistent with a reported state-of-the-art specific contact resistivity value using 

phase engineered contacts [171]. 

5.6.1 Peak gm and drain current vs. drain voltage 

Overall, Fig. 5.13 shows contact resistance decreased peak 𝑔¥ as expected. The 

relative effect of specific contact resistivity is greatest for strained MoS2 devices and least 

so for unstrained MoS2 devices. The peak transconductance and on-current advantage 

over unstrained MV-MoS2 devices by MoS2 devices with 3% biaxial or uniaxial tensile 

strain assuming ideal contacts is largely reduced or entirely vanishes, respectively, upon 

considering non-ideal contacts at both 200 nm and 15 nm channel length devices. At LG = 

200 nm, carriers experience more bulk channel resistance and the S/D contacts have less 

of an effect, and biaxially strained MoS2 devices continues to provide an improvement in 

peak 𝑔¥ over its unstrained counterparts, but poorer turn-on behavior. As the channel 

length is scaled down to 15 nm, the relative contribution of contact resistance to the total 

device resistance grows, and strained MoS2 devices are more sensitive to specific contact 

resistivity due to the smaller on-channel resistance than unstrained devices. As a result, 

the performance advantage in peak 𝑔¥ by biaxially strained MoS2 MOSFETs is largely 

reduced or somewhat vanishes over unstrained MV-MoS2 and K-MoS2 MOSFETs, 

respectively. While our results challenge the potential of strain in MoS2 MOSFETs, it 
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does motivate the use of biaxial strain over uniaxial strain for boosting device 

performance. 

 

Figure 5.13: Comparison of 3% biaxial tensile strain ϵx = ϵy, uniaxial tensile strain only 
along the x-direction ϵy = 0, and uniaxial tensile strain only along the y-
direction ϵx = 0 with perfect transmissivity and imperfect transmissivity 
contacts on the peak of the transconductance gm for 200 nm and 15 nm gate 
length monolayer MoS2 MOSFETs at VDS of 0.6 V. Here, bar pairs 
corresponding to unity transmissivity (with no added specific contact 
resistivity) “NC” and to 0.23 transmissivity (with added specific contact 
resistivity) “WC”, respectively, are shown side by side on the same gray 
scale for each considered material system, including unstrained MoS2 ϵ = 0 
and K-valley-only MoS2. 

Fig. 5.14 shows drain current IDS vs. drain voltage VDS for LG = 200 nm and LG = 

15 nm monolayer MoS2 MOSFETs subject to 3% biaxial tensile strain ϵx = ϵy (dashed 

line) and unstrained MoS2 ϵ = 0 (solid line). We found that the drain saturation voltage to 

achieve current saturation was insensitive to contact transmissivity both for long channel 

and short channel length devices for these material systems.  
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Figure 5.14: ID-VDS simulation results with perfect transmissivity and imperfect 
transmissivity contacts for (a) LG = 200 nm and (b) LG = 15 nm monolayer 
MoS2 MOSFETs at the gate overdrive voltage of 0.35 V above the constant 
current threshold voltage subject to 3% biaxial tensile strain ϵx = ϵy (dashed 
line) and no strain MoS2 ϵ = 0 (solid line). 

5.7 CONCLUSION 

Two-dimensional materials such as MoS2 are undergoing rapid development for 

flexible, transparent, lightweight, low-cost, and ultra-low power applications due to their 

atomically thin body with sizeable band gaps, absence of dangling bonds, and mechanical 
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robustness. Unlike silicon, which typically breaks at strain levels of 1.5%, MoS2 can 

sustain much larger strain levels and even opens up the possibility of time-dependent and 

local straining. Strains may arise in MoS2 during fabrication due to differences between 

the thermal expansion coefficient of the film and substrate, or introduced during 

mechanical deformations due to folding, stretching, and bending. In this work, we study 

the intrinsic performance limits of MoS2 n-channel MOSFETs using a semi-classical 

Monte Carlo method as a function of tensile strain, ideality of peripheral valley energy, 

and reduced contact transmissivity. Uniaxial tensile strain the x- or y-directions, 

symmetrical biaxial tensile strain in both x- and y-directions, and symmetrical pure shear 

strain are modeled. Band structure parameters, including valley effective masses, non-

parabolicity constants, and band offsets are extracted from density functional theory 

calculations. The considered phonons and related coupling constants for unstrained MoS2 

have been calibrated to reproduce experimental data and are also used for strained MoS2, 

which is reasonable given the applied strain is within linear limits. Among our findings, 

the electronic structure is highly sensitive to the type of strain and amount of strain 

applied due to changes in bond lengths and bond angles to modulate the coupling 

strengths of the Mo and S orbitals. Tensile strain can decrease the size of the band gap, 

including cause an indirect-to-direct gap transition, increase inter-valley offsets, and 

decrease K-valley effective masses. As a result, low-field mobility is substantially 

enhanced due to lighter K-valley effective mass and reduction in inter-valley scattering to 

heavier-mass Q-valleys. Simulated devices included 200 nm and 15 nm gate length MoS2 

n-channel MOSFETs with end contacts. Strain in MoS2 channel devices can enhance the 

on-state transconductance and current; however, the relatively weak effect of strain on 

the K-valley effective mass causes the enhancement in performance to saturate. For 

instance, K-valley only MOSFETs, representative of the inconsistencies of the inter-
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valley energy separation between the K- and Q-valleys reported in recent publications, 

outperformed otherwise identical strained devices within the entire range of strain values 

simulated, expect for MoS2 with biaxial strain, which had strongest effect on the K-valley 

effective mass. With reduced contact transmissivity, the performance advantage of 

strained MoS2 MOSFETs over unstrained MoS2 MOSFETs is more limited, especially 

for short channel length devices.  

Evaluating the practical role of strain is difficult to ascertain as details and 

magnitude of the predicted effect of strain depend on the estimation of DEK-Q. The choice 

of pseudopotential and exchange-correlation functional, [146], [172] within density 

functional theory calculations give different theoretical estimates of DEK-Q; however, we 

use the generalized gradient approximation to the exchange-correlation energy because it 

more closely reproduces experimental parameters such as the lattice constant and band 

gap. Ultimately, strain can alter the electronic structure of monolayer MoS2 devices and 

presents both challenge and opportunities for device performance. Our theoretical 

simulations will help to interpret experiments and guide strain engineering in monolayer 

MoS2 MOSFETs.   
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Chapter 6:  Conclusion 

6.1 DISSERTATION RECAP 

Novel materials and device designs for end-of-the-roadmap CMOS and potential 

beyond CMOS applications have been considered, including the use high electron 

mobility and thermal velocity channel materials, FinFET device geometries, and 

emerging two-dimensional channel materials. I have shown the need for simulation, and, 

in particular, particle-based Monte Carlo methods, to understand the essential physics 

underlying the operation of Si, Ge, InGaAs, and MoS2 n-channel field-effect transistors 

(FETs). The goal was not merely to reproduce experimental results, but also to yield 

physical insight on device operation by decomposing relevant device metrics into the 

contribution of different fundamental transport mechanisms. The results of this work will 

provide guidance to device designers, assist researchers in directing future research and 

development, and benchmarking of compact models. Additionally, this project will 

provide a basis for future modeling efforts made by our research group. This dissertation 

is organized in six chapters and one appendix, as follows.  

Chapter 1 describes how scaling of Si FETs is reaching the limits of performance, 

which has spurred the development of novel channel materials and device designs for 

end-of-the-roadmap CMOS technology. High mobility and thermal velocity channel 

materials are being considered for high-performance complementary logic applications, 

for increased switching speeds, reduction in power dissipation density, and better gate 

control of the channel. In addition, two-dimensional materials have potential beyond-

CMOS applications and are forging their own path, going where Si cannot follow, in the 

field of low-standby and operating power flexible electronics. Chapter 1 also compares 

various simulation approaches for modeling transport in semiconductors. For providing a 
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detailed picture of transport in deeply scaled FETs, the Monte Carlo method is a flexible, 

general, and powerful numerical approaching to solving the Boltzmann Transport 

Equation with room for quantum corrections for non-classical effects.  

Chapter 2 summarizes some of the essential elements of our advanced ensemble 

semi-classical Monte Carlo transport simulator, UTMC, which address the effects of 

quantum-confinement, degenerate carrier populations, non-ideal contacts, and allows 

exploration of both conventional and un-conventional CMOS device geometries. Chapter 

2 also addresses other critical details of UTMC implementation, such as the main Monte 

Carlo algorithm, our semi-empirical approach to modeling surface roughness, and 

modeling of the source and drain contacts. 

Chapter 3 addresses the impact of contact geometry and transmissivity on quasi-

ballistic nanoscale Si 〈110〉	and 〈100〉 and In0.53Ga0.47As n-channel FinFETs. The effects 

of contact geometry and specific contact resistivity on In0.53Ga0.47As (InGaAs) and silicon 

(Si) nanoscale (18 nm channel length) n-channel FinFETs performance, and the effects of 

models thereof, are studied using a quantum-corrected semi-classical Monte Carlo 

method. Saddle/slot, raised source and drain (RSD), and reference end contacts are 

modeled. Both ideal perfectly injecting and absorbing contacts and those with more 

realistic specific contact resistivities are considered. Far-from-equilibrium degenerate 

statistics, quantum-confinement effects on carrier distributions in real-space and among 

energy valleys and on scattering, and quasi-ballistic transport are modeled. Silicon 〈110〉 

channel and Si 〈100〉 channel FinFETs, multi-valley InGaAs channel FinFETs with 

conventionally-reported InGaAs energy valley offsets (MV-InGaAs), and reference 

idealized Γ-valley-only InGaAs (Γ-InGaAs) channel FinFETs are simulated. Among our 

findings, InGaAs channel FinFETs are highly sensitive to modeled contact geometry and 

specific contact resistivity and to the band structure model, while Si channel FinFETs 
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showed still significant but much less sensitivity to contact models. For example, for 

idealized unity transmissivity contacts, Γ-InGaAs channel FinFETs performed best for all 

contact geometries, at least in terms of transconductance, and end contacts provided the 

best performance for all considered channel materials. For realistic contact resistivities, 

however, results are essentially reversed. Silicon channel FinFETs performed best for all 

contact geometries, and saddle/slot and RSD contacts outperformed end contacts. 

Chapter 4 addresses gate length scaling impact on quasi-ballistic nanoscale Si 

〈110〉 and 〈100〉, Ge 〈110〉 and 〈100〉, and In0.53Ga0.47As n-channel FinFETs. The effects 

of gate length scaling and specific contact resistivity on silicon (Si), In0.53Ga0.47As 

(InGaAs), and germanium (Ge) nanoscale n-channel FinFETs performance are explored 

again using our quantum-corrected semi-classical Monte Carlo method. The saddle/slot 

contact geometry is assumed. We found InGaAs channel FinFETs performance to be 

most sensitive to gate length scaling, reduced contact transmissivity, and sensitive to the 

assumed peripheral energy valley offset. Quantum-confinement can eliminate otherwise 

expected benefits of light-mass Γ-valley electrons in MV-InGaAs devices over otherwise 

identical Si devices, despite higher injection velocities, due to increased occupation of 

heavier-mass satellite valleys in the channel and performed the poorest under all 

simulation scenarios. Without consideration of the peripheral valleys, illustrative of the 

uncertainties about peripheral valley energy offsets and degree of quantum-confinement, 

source starvation of Γ-valley electrons arises to depress transconductance. Ge offers 

greater channel quantum capacitance than InGaAs and a lighter conductivity effective 

mass than Si. However, the transconductance advantage over Si devices is limited for Ge 

〈110〉 channel devices due to substantial degradation with reduced contact transmissivity, 

and the advantage vanishes for Ge 〈100〉 channel devices due to increased occupancy of 

heavier-mass Ge D-valleys via quantum-confinement with scaling. In contrast, simulated 



 111 

Si devices exhibited relatively limited sensitivity to gate length scaling and more limited 

degradation in performance due to non-ideal contact transmissivities. FinFET 

performance can be divided into two regimes separated by a critical fin width of about 4 

nm in our simulations, above which, device performance is source-limited via source 

starvation and below which, device performance is, or at least also is substantially, 

channel-limited via quantum-confinement.  

Chapter 5 discusses the impact of tensile strain on the intrinsic performance limits 

of monolayer MoS2 n-channel MOSFETs. The effects of tensile strain, peripheral valleys, 

and contact transmissivity on the intrinsic performance limits of monolayer molybdenum 

disulfide (MoS2) nanoscale n-channel MOSFETs are studied using a semi-classical 

Monte Carlo method, that of the preceding chapters adapted for the 2D geometry 

considered here. Density functional theory calculations were performed to parametrize 

the electronic band structure of MoS2 subject to tensile and shear strain. Tensile strain 

decreases the band gap, increases the inter-valley band-edge energy separation between 

the light-mass K-valleys and heavier-mass Q-valleys, and decreases the K-valley 

effective mass. These changes strongly depend on the direction and the amount of the 

applied strain. We found symmetrical biaxial tensile strain and uniaxial tensile strain only 

along the x- or y-directions to have the largest effect. Bulk drift velocity versus electric 

field simulation showed the low-field phonon-limited electron mobility is enhanced, peak 

and saturation drift velocities are increased, and high-field negative differential resistance 

is more pronounced with increasing strain. Both 200 and 15 nm gate length MoS2 

MOSFETs with end-contacts with perfect and reduced contact interface transmissivity 

were simulated. Simulated MoS2 devices exhibited large sensitivity to specific contact 

resistivity, most so with strain, and to the band structure model, limited sensitivity to the 

amount of strain, and some direction-related advantage for biaxial tensile strain. Our 
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results elucidate the interplay between strain and electron transport in MoS2 transistors 

and suggests that strain engineering may provide a pathway to improve electron mobility 

and boost device performance in MoS2 MOSFETs. 

The appendix contains the simulation and materials parameters for Ge and MoS2 

developed during the course of this dissertation work. 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

Although the amount of experimental work on novel electronic devices has 

increased, there still exists a chasm between interpreting experimental results and 

microscopic mechanistic details of transport. Our work attempts to bridge the two 

together as the ability to predict a range of important physics at an unprecedented level of 

detail is making atomic-scale computational methods an invaluable research tool to gain 

unique insight into device physics in combination with experimental studies. Possible 

pathways to continue the work established by this dissertation include using the MC 

simulator to investigate emerging channel materials and device geometries and adding 

more physics to the existing MC simulator.  

Going forward, it is suggested that similar studies be carried out for other material 

systems and device geometries to compare the merits and shortcomings of competing 

end-of-the-roadmap technologies. The role of electrical contact resistance also may 

deserve further study as this work has shown how contact resistance can comprise a 

significant fraction of the on-state resistance in ultra-scaled devices. Accurate simulation 

of off-state subthreshold leakage current is critical to technology projection and device 

design. Addition of rare-event enhancements would be beneficial because in the 

subthreshold thermionic emission of electrons from the tail of the quasi-equilibrium 

electron distribution in the source can overcome the energy barrier in the channel 
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producing leakage current, but, necessarily for good device performance, not enough to 

otherwise overcome sampling error substantially below threshold. 

For continued studies of end-of-the-roadmap CMOS applications, MC simulation 

of strained silicon or silicon-germanium (SixGe1-x) n-channel FinFETs would help further 

reveal the extent, if any, of the performance advantage Ge devices have over other 

competing material systems. Epitaxial growth of silicon on SiGe substrates is well-known 

to improve carrier mobilities by removing band degeneracy via strain. Silicon-germanium 

channels with their Si-like DOS and III-V-like conductivity effective mass could lead to 

optimized FinFET sidewall orientations that moderate quantum-confinement effects and 

provide large along-channel thermal velocities. A challenge of CMOS scaling is that it 

must be done for both n-channel and p-channel devices and understanding both electron 

and hole transport is important to the assessment alternative channel materials. Hole 

transport for the channel materials studied in this work and those proposed here can be 

implemented in MC software, as detailed subsequently. Even FinFETs are expected to hit 

scaling limits and therefore, device design is expected to become increasingly more 

important. Highly geometrically confined device structures such as gate-all-around 

nanosheets and nanowires may be studied to understand their performance limits for 

possibly extending the limits of CMOS technology. 

Novel transistor concepts based on low-dimensional materials are currently being 

explored as potential replacements or extensions to CMOS technology. Through the work 

of this dissertation, the MC simulation software is capable of simulating transport in 2-D 

materials. 2-D crystals such as the graphene family (e.g. graphene, hexagonal boron 

nitride, boron and nitrogen co-doped graphene, fluorographene, graphene oxide), 

transition metal dichalcogenides (e.g. WS2, MoSe2, WSe2), Xenes (e.g. silicene, 

germanene, phosphorene), MXenes (i.e. 2-D carbides and nitrides), and exotic 
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topological insulators (spin-dependent DOS and transport required) present rich physics 

to be studied. Moreover, Van der Waals heterostructures, which combine disparate 

materials together with novel hybrid properties, offer stackable platforms to build devices 

and can also be investigated. For this pursuit, band structures (shape of the energy bands, 

values of the effective masses, valley energy positions), phonon dispersion relations, and 

electron-phonon interaction potentials for these materials may be obtained using density 

functional theory calculations. Calibration of the scattering models are obtained by 

matching MC simulation of drift velocity versus electric field curves with measured data. 

While there has been an increasing number of theoretical studies of 2-D semiconducting 

materials, experimental studies have been sparse thus far, and calibration may be 

difficult. However, once the band structure is known and scattering coupling constants 

are verified, the Monte Carlo simulator can be calibrated to bulk transport properties, to 

then model device characteristics. In addition to 2-D material systems, the simulator 

could be further amended to handle 1-D or 0-D (where carriers merely change states by 

scattering) materials by updating appropriate energy, velocity, and density of states 

relationships. 

Further improvements to UTMC include more comprehensive physical models 

and more efficient computer algorithms. To be able to better estimate the device 

performance of modern scaled MOSFETs, material models that incorporate all relevant 

physical mechanisms are required to capture the full microscopic picture of carrier 

transport. New physics such as hole transport, calculation of contact transmissivity, and 

exchange-correlation effects are some of the opportunities to be pursued. Monte Carlo 

transport of holes is identical to that of electrons; however, accurate modeling of holes 

using analytical bands is not as straightforward as that for electrons due to their warped, 

quartic ellipsoidal valleys. The complex band structure in some case perhaps can be 
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approximated by parabolic and spherical energy valleys for some purposes, but analytic 

models based on k-dot-p methods could provide a more accurate and general approach. 

Subsequent calculations of velocity field curves can be used to calibrate scattering 

strengths with available experimental data. In this work, we employed a fixed 

transmission probability to model the effects of specific contact resistivity. Further 

refinement of this approach could include modeling the potential barrier that is formed at 

the metal-semiconductor interface as a 1-D triangular barrier. One possibility, would be 

directly solving the 1-D Schrödinger equation normal to the interface coupled with the 

Poisson solution. Alternatively, a modified Wentzel-Kramers-Brillouin (WKB) 

approximation could be employed to more efficiently estimate the interface 

transmissivity as a function of energy [173], [174].  

While advances in computer power have enabled femtosecond simulations, 

simulation timescales still remain a challenge for collecting good statistics with Monte 

Carlo. For instance, the ITRS high‐performance target for Ioff of 100 nA/µm is an order of 

magnitude smaller than what we can practically achieve with direct simulation, i.e., 

without rare event statistical enhancement. Statistical enhancement in Monte Carlo 

simulations are especially useful when the device behavior is governed by rare events 

such as device operation in the subthreshold regime. Two approaches to enhance 

statistics are population control and event-biasing. Population control techniques are 

based on the heuristic idea of splitting of the carriers entering a given phase space region 

of interest. Event-biasing techniques enrich the statistics by biasing the probabilities 

associated with the transport of classical carriers and apply a weight to the carriers to 

correct for the bias. To accurately simulate off-state behavior and compute Ion/Ioff ratios, 

rare event statistical enhancement could be implemented.  
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Ge Monte Carlo Simulation Parameters 

Listed are the simulated band structure and scattering parameters for Ge including 

the lattice constant (a0), mass density (ρ), speed of sound (vs), relative dielectric 

permittivity (𝜀��), electron affinity (qχ), non-parabolicity constant (α), valley effective 

mass (m), acoustic deformation potential (Δac), deformation field (DK), phonon energy 

(ℏ𝜔), and inter-valley separation (E). Simulation parameters are consistent with previous 

Monte Carlo studies except for adjusting the values of the deformation potential. 
Parameter Ge Units 

a0 5.658 Å 
ρ 5.32 g/cm3 
𝑣�W 5.4 ×105 cm/s 
𝑣�� 3.2 ×105 cm/s 
𝜀�� 16.2 - 
qχ 4.00 eV 
𝐸�� 0.135 eV 
𝐸�Ð 0.173 eV 
𝛼� 0.85 eV⁻1 
𝑚� 0.062 - 
𝛥�U�  6.25 eV 

𝐷𝐾(�→�) 4.88 ×108 eV/cm 
ℏ𝜔(�→�) 269 K 
𝐷𝐾(�→Ð) 4.78 ×108 eV/cm 
ℏ𝜔(�→Ð) 267 K 
𝛼� 0.33 eV⁻1 
𝑚�
� 0.112 - 

𝑚W
� 1.454 - 

𝛥�U�  6.25 eV 
𝐷𝐾(�→Ð) 4.65 ×108 eV/cm 
ℏ𝜔(�→Ð) 265 K 
𝐷𝐾(�→�) 5.26 ×108 eV/cm 
ℏ𝜔(�→�) 278 K 
𝐷𝐾(�→�)

V�  3.5 ×108 eV/cm 
ℏ𝜔(�→�)

V�  430 K 
𝛼Ð 0.14 eV⁻1 
𝑚�
Ð 0.288 - 
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𝑚W
Ð 1.353 - 

𝛥�UÐ  6.25 eV 
𝐷𝐾(Ð→Ð) 3.78 ×108 eV/cm 
ℏ𝜔(Ð→Ð) 356 K 
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MoS2 Monte Carlo Simulation Parameters 

Listed are the simulated band structure and scattering parameters for unstrained 

single-layer MoS2 including the lattice constant (a0), mass density (ρ), speed of sound 

(vs), relative dielectric permittivity (𝑒��), electron affinity (qχ), non-parabolicity constant 

(α), valley effective mass (m), acoustic deformation potential (Δac), deformation field 

(DK), phonon energy (ℏ𝜔) and the corresponding phonon wave-vector is shown in 

parenthesis, and inter-valley separation (E). Simulation parameters are consistent with 

previous Monte Carlo studies except for adjusting the values of the deformation potential. 
Parameter MoS2 Units 

a0 3.14 Å 
ρ 3.1×10−7 g/cm2 
𝑣�W 6.6 ×105 cm/s 
𝑒�� 6.4 - 
qχ 4.3 eV 

∆𝐸Ì�� 0.139 eV 
𝛼Ì 0.5 eV⁻1 
𝑚Ì 0.47 - 

𝐷�U
(Ì→Ì) (G) 8.1 eV 

𝐷ÔÕ
(Ì→Ì) (G) 5.8 ×108 eV/cm 

ℏ𝜔ÔÕ
(Ì→Ì) (G) 49.5 meV 

𝐷�U
(Ì→Öa) (K) 1.4 ×108 eV/cm 

ℏ𝜔×Ø
(Ì→Öa) (K) 26.1 meV 

𝐷ÔÕ
(Ì→Öa) (K) 2 ×108 eV/cm 

ℏ𝜔ÔÕ
(Ì→Öa) (K) 46.8 meV 

𝐷�U
(Ì→�) (Q) 1.40 ×108 eV/cm 

ℏ𝜔×Ø
(Ì→�) (Q) 20.7 meV 

𝐷ÔÕ
(Ì→�) (Q) 2.85 ×108 eV/cm 

ℏ𝜔ÔÕ
(Ì→�) (Q) 48.1 meV 

𝐷�U
(Ì→�) (M) 6.6 ×108 eV/cm 

ℏ𝜔×Ø
(Ì→�) (M) 24.2 meV 

𝐷ÔÕ
(Ì→�) (M) 8.4 ×108 eV/cm 
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ℏ𝜔ÔÕ
(Ì→�) (M) 47.5 meV 
𝛼� 0.5 eV⁻1 
𝑚H
� 1.07 - 

𝑚Ù
� 0.582 - 

𝐷�U
(�→�) (G) 2.8 eV 

𝐷ÔÕ
(�→�) (G) 7.1 ×108 eV/cm 

ℏ𝜔ÔÕ
(�→�) (G) 49.5 meV 

𝐷�U
(�→�) (Q) 2.1 ×108 eV/cm 

ℏ𝜔×Ø
(�→�) (Q) 20.7 meV 

𝐷ÔÕ
(�→�) (Q) 4.8 ×108 eV/cm 

ℏ𝜔ÔÕ
(�→�) (Q) 48.1 meV 

𝐷�U
(�→�) (M) 2.0 ×108 eV/cm 

ℏ𝜔×Ø
(�→�) (M) 24.2 meV 

𝐷ÔÕ
(�→�) (M) 4.0 ×108 eV/cm 

ℏ𝜔ÔÕ
(�→�) (M) 47.5 meV 

𝐷�U
(�→�) (K) 4.8 ×108 eV/cm 

ℏ𝜔×Ø
(�→�) (K) 26.1 meV 

𝐷ÔÕ
(�→�) (K) 6.5 ×108 eV/cm 

ℏ𝜔ÔÕ
(�→�) (K) 46.8 meV 

𝐷�U
(�→Ì) (Q) 2.25 ×108 eV/cm 

ℏ𝜔×Ø
(�→Ì) (Q) 20.7 meV 

𝐷ÔÕ
(�→Ì) (Q) 3.6 ×108 eV/cm 

ℏ𝜔ÔÕ
(�→Ì) (Q) 48.1 meV 

𝐷�U
(�→Öa) (M) 6.6 ×108 eV/cm 

ℏ𝜔×Ø
(�→Öa) (M) 24.2 meV 

𝐷ÔÕ
(�→Öa) (M) 9.9 ×108 eV/cm 

ℏ𝜔ÔÕ
(�→Öa) (M) 47.5 meV 
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