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Abstract 

 

BIOPHYSICAL BASIS OF SKIN CANCER DETECTION USING 

RAMAN SPECTROSCOPY 

 

Xu Feng, Ph.D. 

The University of Texas at Austin, 2019 

 

Supervisor:  James W. Tunnell 

 

The goal of this dissertation is to study the potential of Raman spectroscopy in 

improving the clinical diagnosis of skin cancer, including two main applications: 

noninvasive screening of melanoma skin cancer and surgical margin detection of 

nonmelanoma skin cancer.  

Skin cancer is the most common type of malignancy, accounting for over 5.4 

million cases and 10 thousand deaths per year in the United States alone. Like most cancers, 

the current “gold standard” diagnosis relies on biopsy and histopathology, which is 

invasive, time-consuming, and costly. Moreover, large numbers of benign lesions are 

biopsied for melanoma diagnosis, resulting in substantial financial burden and patient 

discomfort. Therefore, an urgent need exists to develop a noninvasive, fast, and accurate 

method for skin cancer detection.  

The first part of the dissertation focuses on exploring the biophysical origin of in 

vivo melanoma detection. Our group has previously reported on the development of a 

clinical Raman spectroscopy system towards spectral biopsy of skin; however, the 

biochemical changes that Raman spectroscopy relies on for accurate melanoma diagnosis 
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remained unclear. As a result, we proposed a biophysical inverse model to address this 

issue. To build the model, we established a custom confocal Raman microscope to extract 

in situ human skin constituents spanning normal and various diseased states. Our results 

indicate collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin, and water are 

the most important model components. Furthermore, collagen and triolein are the most 

relevant markers to discriminate malignant melanoma from benign nevi.  

The second part of the dissertation discusses the biophysical basis of nonmelanoma 

skin cancer margin delineation. We discovered the diagnostic markers to accurately 

differentiate tumor from normal skin, which is critical to maximize positive patient 

outcomes in skin cancer surgery. The biochemical changes derived from our model were 

highly correlated with histopathological diagnosis. We further demonstrated the feasibility 

of a superpixel acquisition approach for rapid classification of tumor boundaries in skin 

biopsies. Our results suggest Raman spectroscopy will be a powerful tool for intraoperative 

surgical guidance. 
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Chapter 1: Introduction  

This chapter will start from an introduction of skin cancer, followed by the 

conventional method for skin cancer detection. Next, the optical methods will be 

introduced, including our primary research tool – Raman spectroscopy. The two main 

challenges of Raman spectroscopy in cancer research will be discussed, which becomes 

the motivation of this dissertation. Finally, this chapter will introduce the outline of this 

dissertation.  

1.1 BACKGROUND OF SKIN CANCER  

Skin cancer is the most common type of malignancy, accounting for over 5.4 

million cases and 10,000 deaths per year in the US alone [1]. Skin cancer can be divided 

into two types: melanoma and nonmelanoma skin cancer. Basal cell carcinoma (BCC) and 

squamous cell carcinoma (SCC) are the two most common types of nonmelanoma skin 

cancer. BCC accounts for approximately 75% of all skin cancers, while SCC makes up 

approximately 20% of all skin cancers. Although nonmelanoma skin cancer is usually not 

fatal, it can cause significant local damage and can metastasize if left untreated [2]. On the 

contrary, melanoma accounts for less than 2% of all skin cancer cases, but it contributes to 

a vast majority of skin cancer deaths. When detected at an early stage, most of the 

melanomas can be treated and cured by standard surgical excision. While at later stages, 

the risk of progression to lethal metastatic disease dramatically increases [3].  

1.2 STANDARD OF CARE IN SKIN CANCER DETECTION 

Detection is a general term that defines the action or process of identifying the 

presence of tumor. Current standard-of-care in skin cancer detection involves both 

screening and treatment.   

At present, the standard-of-care for skin cancer screening relies on visual inspection 

of suspicious lesions followed by biopsy and histopathology. The biopsies are performed 
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in a dermatologist’s office and then sent to the histopathology lab for further examination. 

A few additional days may be needed to deliver the final results. These biopsy procedures 

are invasive, inefficient, and inconvenient. More importantly, the process has low 

diagnostic accuracy (49-81% among dermatologists for melanoma [4]). The number of 

pigmented lesions needed to be excised to identify one melanoma, also called “negative 

biopsy ratio”, varies among dermatologists, new and experienced general practitioners [5]. 

The negative biopsy ratio varies between 6.3:1 and 8.7:1 by dermatologists, and between 

20:1 and 30:1 for general practitioners [6]. The negative biopsy ratio can be even higher 

for female patients and young patients (less than 30 years old) [7]. Large numbers of 

biopsies are performed on benign skin, leading to a substantial financial burden to the 

healthcare system and the patients. According to a recent study, the estimated cost of 

biopsied benign tumors ranges from $624 million to $1.7 billion [8]. As a result, a critical 

need exists to develop a noninvasive, accurate, fast, and inexpensive method for early skin 

cancer screening. 

The standard-of-care for skin cancer treatment is surgery. As to melanoma skin 

cancer, standard surgical excision or wide excision is commonly employed to remove the 

melanoma and a small margin of normal skin around it. The margin of normal skin depends 

on the thickness and location of the melanoma [9]. For nonmelanoma skin cancer, common 

types of surgery include standard surgical excision, Mohs micrographic surgery (Mohs), 

curettage and electrodesiccation, and cryosurgery [10]. Particularly, Mohs surgery is a 

precise surgical technique that aims to remove all the tumor cells, while preserving as much 

of the surrounding healthy tissue as possible. Mohs surgery is by far the most effective 

treatment for high-risk BCC and SCC. According to one study, the 5-year recurrence rate 

of Mohs is 1 – 3% for primary BCC and 5 – 7% for recurrent BCC. In contrast, the 5-year 

recurrence rate of standard surgical excision is 3 – 10% in primary BCC and >17% in 

recurrent BCC [11].  
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1.3 OPTICAL TECHNIQUES FOR SKIN CANCER DETECTION 

The maturing of photonic technologies has created an opportunity to develop the 

optical biopsy – a minimally invasive or noninvasive alternative to the traditional biopsy. 

The basic principle of optical biopsy is to interact with a tissue using light, and then decode 

the returned signal containing the characteristic of the tissue.  

Ideally, an optical biopsy needs to meet four main requirements in order to achieve 

the maximum clinical significance. An optical biopsy needs to have (1) high resolution to 

reveal cellular or subcellular content; (2) high speed for real-time measurement; (3) high 

penetration depth to investigate a lesion in three-dimension; (4) molecule-specific and 

label-free detection [12]. Unfortunately, optical techniques can hardly meet all the 

requirements, because interrelationships exist among those requirements. For example, in 

spectroscopic field, high resolution imaging often results in slow acquisition speed. High 

resolution image acquired at high speed is often at the tradeoff of the spectral content. 

Another tradeoff exists between penetration depth and resolution: improving axial 

resolution may decrease the maximum possible imaging depth, as in the case of optical 

coherence tomography.  

The remainder of this section will introduce several optical biopsy methods that 

have demonstrated to be promising in skin cancer detection. They are divided into non-

spectroscopic techniques (including reflectance confocal microscopy, coherence optical 

tomography, two-photon-excited fluorescence, second-harmonic generation), and 

spectroscopic techniques (including diffuse reflectance, laser-induced fluorescence, 

infrared, and Raman spectroscopy). All the methods introduced here are label-free, so 

techniques such as surface-enhanced Raman scattering (SERS) [13-15] that involves 

exogenous enhancement mechanism are not within the scope of this introduction.  

1.3.1 Non-spectroscopic Techniques 

Reflectance confocal microscopy (RCM) allows for the evaluation of skin at the 

cellular level (0.5 – 1.0μm lateral resolution, and 1 – 3μm optical sectioning). The basic 
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contrast mechanism is the changes in refractive index. RCM has become a valuable adjunct 

to dermoscopy, and has been successfully translated from benchtop to bedside (Vivascope 

1500 and Vivascope 3000 (a handheld version), Caliber I.D. Inc., Rochester, NY, USA) 

[16-18]. RCM is a promising tool for the diagnosis of melanocytic lesions. RCM is 

particularly accurate for light-colored lesions (specificity was 39% for dermoscopy and 

84% for RCM) [19]. In a preliminary study, a sensitivity/specificity of 94%/94% was 

obtained for detecting BCC cancer margin [20]. Limitations of RCM include: (1) limited 

imaging depth of approximately 250μm, so information deeper than the upper reticular 

dermis cannot be captured; (2) time required to scan and training needed to read the images; 

(3) low contrast of nucleus as compared to hematoxylin and eosin (H&E) histopathology. 

To solve (3), aluminum chloride is routinely used to enhance for nuclear contrast. 

Aluminum chloride generates compaction of chromatin, which can result in increased 

backscatter and brightening of nuclear morphology [17, 18].  

Optical coherence tomography (OCT) imaging also detects the changes in 

refractive index. OCT is the optical analog of ultrasound. One major advantage of OCT is 

it can provide real-time 1D depth, 2D cross-sectional, and 3D volumetric images in real-

time. Besides, OCT has a deep penetration depth. Frequency domain OCT can probe as 

deep as 2mm with enough cellular clarity to diagnose nonmelanoma skin cancers [21]. 

OCT has demonstrated promising outcomes by enabling accurate margin mapping of 

nonmelanoma skin cancer in advance of Mohs micrographic surgery [22]. In another study, 

OCT can predict BCC with an overall sensitivity of 89% and specificity of 60% [23]. OCT 

has been combined with RCM in a handheld device for detecting and delineating the 

margins of BCC in vivo. The result demonstrated that using combined OCT and RCM 

facilitated the identification of superficial and nodular BCCs, as well as lateral and deep 

margins [24]. Despite of the success, the technical challenges associated with OCT have 

limited its application in oncology. For instance, large volumes of tissue need to be imaged 

at high cellular resolution to detect cancer. Besides, OCT image interpretation may also be 

challenging for oncologists [25].  
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Two-photon-excited fluorescence (TPEF), and second-harmonic generation (SHG) 

are the two major types of nonlinear optical imaging tools. TPEF and SHG both depend on 

simultaneous interaction of two photons with the tissue. Different from TPEF, SHG does 

not have energy loss, so the excited photon has exactly twice the energy of the interacting 

photons (thus the emission frequency is the twice of the excitation frequency). The contrast 

mechanism of TPEF is the endogenous fluorescent molecules found in tissues, such as the 

mitochondrial matrix protein nicotinamide adenine dinucleotide (NADH), flavin adenine 

dinucleotide (FAD), the structural proteins elastin, keratin, and collagen, and the pigments 

melanin. On the contrary, SHG is highly sensitive in detecting collagen fibers, a clinically 

relevant biomarker. TPEF, SHG, combined with coherent anti-stokes Raman scattering 

(CARS) can be used to generate H&E-like histopathology to differentiate BCC and SCC 

from normal skin [26]. In another study, TPEF was used to examine the pigmented 

melanoma in human in vivo. By using a six-axes diagnostic matrix and machine learning, 

benign nevi could be distinguished from melanoma with 75% sensitivity and 80% 

specificity [27]. A recently developed nonlinear optical imaging platform can 

simultaneously acquire autofluorescence, and second/third harmonic generation from a 

single excitation source. This technique has been successfully used to image cellular and 

extracellular components, and may be a promising tool in cancer research [28].  

1.3.2 Spectroscopic Techniques 

As mentioned earlier in this chapter, one significant aspect of optical biopsy is 

obtaining molecule-specific information. Molecular contrast is typically achieved by 

spectroscopy. Major spectroscopic techniques for cancer detection include diffuse 

reflectance, laser-induced fluorescence, infrared, and Raman spectroscopy.  

Diffuse reflectance spectroscopy (DRS) and laser-induced fluorescence 

spectroscopy (LIFS) detects the optical scattering, absorption and fluorescence properties 

of sampled tissue. Because the physiological parameters of the tissue are associated with 

the progression of disease, DRS and LIFS provides a quantitative and objective 
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measurement for tissue diagnosis. A previous study in our lab found a significantly lower 

amount of scattering and higher amount of absorption parameters in cancerous lesions as 

compared to normal skin. The clinical DRS-LIFS system classified BCC with a 

sensitivity/specificity of 94%/89% [29]. In another clinical study, oblique incidence DRS 

system distinguished malignant melanoma with 90% sensitivity and specificity, and also 

classified BCCs and SCCs with 92% sensitivity and specificity [30].  

   Infrared (IR) and Raman spectroscopy are two major vibrational spectroscopic 

techniques. Although both techniques can provide chemical composition and molecular 

structural information in cells and tissues, their physical mechanisms are fundamentally 

different. Raman spectroscopy is due to the inelastic scattering of light by the molecular 

vibrations, while IR spectroscopy results from the absorption of light. Water is an 

extremely strong absorbing medium for IR spectroscopy. To bypass the water absorption 

obstacle, sample is commonly either sliced into micrometer sections for transmission 

measurements, or measured under attenuated total reflection [31]. Therefore, IR is 

preferably used as a visualization tool to aid pathologists in assessing tissue specimens 

[32]. Fourier transform IR has been successfully translated into clinic for rapid all-digital 

histopathology of human breast and prostate sections [33, 34].  

Raman spectroscopy is first observed by Indian Nobel Laureate C.V. Raman in 

1928 [35]. The first biological application was reported in 1970 [36]. Spontaneous Raman 

scattering is weak, and always comes with the Rayleigh scattering light and tissue 

autofluorescence. In the recent decades, advances in near-infrared lasers, optical filters, 

fiber optics and CCD cameras have greatly improved its sensitivity in detecting the 

chemical composition of biological tissues. For instance, Rayleigh scattering light can be 

well separated from Raman scattered light using a high optical density notch filter, and 

tissue autofluorescence can be greatly reduced by using near-infrared excitation.  

Raman spectroscopy has the following advantages: First, it is highly sensitive and 

specific to the alternations in molecular signatures (lipids, proteins, DNA, etc.). For 

instance, Kochan et al. used Raman imaging to detect the changes of lipid droplets content 
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in fatty liver disease, and found that the drug treatment resulted in an increased degree of 

unsaturation of lipids forming droplets in a mouse model [37, 38]. Those molecular 

signatures can in turn be correlated with tissue pathology or physiology for diagnosis. 

Bergner et al. used Raman imaging to correlate the concentration of proteins, lipids, nucleic 

acids, and lipid to protein ratios with the glioma brain tumor grades [39]. Secondly, Raman 

spectroscopy is minimally-invasive and label-free, making it a safe and attractive tool for 

clinical applications. Finally, it can provide an objective diagnosis with minimum tissue 

processing [40, 41].  

Raman spectroscopy has also been combined with other optical biopsy tools to 

improve diagnosis. For instance, a combination of Raman spectroscopy with reflectance 

confocal microscopy has been used to explore the in vivo water concentration profiles and 

natural moisturizing factor for the stratum corneum [42]. Raman spectroscopy has been 

combined with three label-free nonlinear imaging modalities (CARS, TPEF, and SHG) to 

generate H&E-like images [43]. Raman spectroscopy has also been integrated with optical 

coherence tomography (Raman-OCT system) to precisely visualize tissue morphology and 

simultaneously determine tumor type [44]. OCT image can provide an initial 

morphological analysis of the lesion, and then guide acquisition of biochemically specific 

Raman data [45, 46].  

1.4 CHALLENGES OF RAMAN SPECTROSCOPY IN CANCER RESEARCH 

Although Raman spectroscopy is promising in cancer detection, it has several well-

understood shortcomings that must be overcome so that it can become a reliable and 

common diagnostic tool. This involves two main challenges: (1) exploring the biophysical 

origin of Raman detection, and (2) increasing the acquisition speed. These challenges 

become the motivations of this dissertation.  

1.4.1 Revealing the Biophysical Origin  

The first challenge of Raman spectroscopy (or optical biopsy methods in general) 

in cancer research is unveiling the biophysical basis of detection. For image-based 
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detection, the challenge exists in interpreting the images in a way that a pathologist is 

familiar reading. In traditional detection method, tissue samples are commonly stained 

using hematoxylin and eosin (H&E) stain to review by a pathologist. The hematoxylin 

stains the nuclei of a cell blue, and eosin stains the extracellular matrix and cytoplasm pink. 

However, optical imaging modalities rely on different contrast mechanisms, thus 

substantial training is required to read the images. To identify basal cell carcinoma from a 

reflectance confocal image, pathologists were trained to read five criteria, such as the 

presence of elongated monomorphic basaloid nuclei, increased vasculature, and prominent 

inflammatory infiltrate [47].  

Machine learning and deep learning have opened up a new era in image-based 

cancer detection. Digitally stained histopathology has been developed for various optical 

imaging modalities. Examples are autofluorescence [48], Fourier Transform infrared 

spectroscopy [49], and nonlinear microscopy [50-52]. Furthermore, machine learning and 

deep learning make it possible to automatically classify the images for presence or absence 

of cancer [33, 53, 54].  

In contrast, spectrum-based detection is commonly achieved by fiber probe-based 

approaches. To date, most fiber probe-based approaches have used statistical algorithms to 

describe the spectral differences of Raman spectra, such as principal component analysis 

(PCA) [55] and independent component analysis (ICA) [56]. However, those statistical 

methods are like “black box” – the principal or independent components are difficult to 

relate to the biophysical origin of disease, such as the microstructural organization of 

proteins and lipids and the functional state of cellular metabolism. These microstructural 

changes are what pathologists and dermatologists use to make diagnostic decisions and 

decide on the most appropriate treatment [57].  

1.4.2 Increasing the Acquisition Speed  

The fundamental limitation of spontaneous Raman spectroscopy is the small 

Raman scattering cross-section, which is on the order of 10-30 cm2 per molecule [58]. 
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Therefore, integration time needs to be long enough to generate a Raman spectrum with 

acceptable signal-to-noise ratio. The typical integration time is ~1s for tissue. Using higher 

laser power can reduce the integration time, but may lead to tissue damage.  

One solution is to use Raman optical fiber probe for large-volume screening. The 

sampling volume is typically on the order of mm3, but can vary depending on the probe 

design. For instance, the sampling depth of spatially offset Raman spectroscopy in on the 

order of cm, while a confocal probe is on the order of 10 – 100μm [59]. Raman optical 

fiber probe is preferably used in pointwise sampling mode rather than the imaging mode. 

Raman optical fiber probe has allowed for fast and accurate cancer diagnostics, including 

ex vivo study of breast [60, 61], prostate [62], lung [63] and skin [64, 65], and in vivo study 

of breast [57], cervical [66], and skin [4, 67].  

Another solution is to use coherent Raman scattering (CRS) microscopy to for rapid 

label-free imaging. Different from spontaneous Raman scattering, which depends on 

spontaneous interactions, the Raman processes in coherent Raman scattering are driven 

coherently, leading to an enhancement of the scattering signals by several orders of 

magnitude [68]. Two types of coherent Raman scattering have been developed favorably 

for biomedical applications: coherent anti-stokes Raman scattering (CARS) [69], and 

stimulated Raman scattering (SRS) [70]. While spontaneous Raman scattering involves 

only a pump beam as the excitation source, coherent Raman scattering involves both the 

pump beam and Stokes beams, where the difference in frequency between the two beams 

is tuned to match molecular vibrations of interest [58].  

CARS is commonly combined with second harmonic generation and multiphoton 

fluorescence to generate label-free chemical imaging. By using intrinsic signals from CH2 

and CH3 vibrations of lipids and protein, high resolution images can be generated for 

various tissue types, including brain [71, 72], skin [26, 73], lung [74], and liver [75, 76]. 

An in vivo CARS endoscope has been developed for real-time histopathology diagnosis 

[77].  
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SRS is developed more recently and offers further several advantages over CARS: 

(1) it does not have non-resonant background; (2) the Raman spectrum is identical to 

spontaneous Raman spectrum, but with a much narrower range; (3) the signal and 

concentration of target molecules have a linear relationship [78]. One highlight of in vivo 

SRS is its application to brain tumor margin assessment [79]. A 97.5% sensitivity and 

98.5% specificity were achieved in detecting brain tumor infiltration in human [80]. SRS 

microscopy built upon fiber laser source also has the promise to facilitate the use for 

clinical applications [81, 82].  

Spontaneous Raman spectroscopy allows for acquiring full spectrum content, and 

has much simpler and less inexpensive setup. Therefore, techniques have also been 

developed upon spontaneous Raman spectroscopy for rapid measurement. Examples to 

speed up spontaneous Raman acquisition include line-scan [83], wide-field imaging [84], 

Weiner estimation [85], multi-focal array [86], and DuoScan [87]. Line-scan Raman 

spectroscopy used cylindrical lens to generate a uniform laser line of approximately 100 

μm [83], and simultaneously record the Raman spectra on the line using a two-dimensional 

imaging sensor [88, 89]. Wide-field Raman spectroscopy used a fiber bundle array as the 

collection fibers combined with a tunable filter to generate fast images [84]. Weiner 

estimation method could rapidly reconstruct full Raman spectrum at each pixel of the 

Raman narrow-band image. Multi-focal array method used micro-lens [90], scanning 

galvanometer mirrors [86], or spatial light modulator [91, 92] to generate multipoint 

illumination. DuoScan method generated a square illumination by continuously scanning 

the laser beam, and was used to characterize human bone composition [93].  
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1.5 OVERVIEW OF DISSERTATION STUDY 

The goal of this dissertation is to study the potential of Raman spectroscopy in 

improving the clinical diagnosis of skin cancer. We addressed two main challenges of 

Raman spectroscopy in cancer research as mentioned in Chapter 1.4: we explored the 

biophysical origin of accurate melanoma and nonmelanoma skin cancer detection, and we 

expedited Raman acquisition for rapid skin cancer surgical margin assessment.  

In an effort to explore the biophysical origin, we proposed a biophysical human 

skin cancer model in Chapter 2. Our model is innovative because the model components 

are in situ skin constituents extracted from fresh human skin sections spanning normal and 

various disease states. In order to extract in situ skin constituents, we built a custom 

confocal Raman microscope integrated with a reflectance confocal microscope. Chapter 

2 resulted in eight Raman active biomarkers to describe the spectral differences of various 

skin pathologies.   

In Chapter 3, we applied our biophysical model for the first time to an in vivo 

clinical melanoma dataset. Our lab has previously developed a fiber-probed based clinical 

system [94], and achieved high accuracy in detecting malignant melanoma from benign 

nevi [67]; however, the biophysical origin of accurate in vivo melanoma detection remains 

unclear. One of our key findings is that collagen and triolein are the most relevant 

diagnostic markers to discriminate melanoma from benign nevi. Our results would increase 

fundamental knowledge of cancer processes as well as lay the groundwork for improving 

the diagnostic performance of the technology. 

 In Chapter 4, we explored the biophysical basis of ex vivo nonmelanoma skin 

cancer surgical margin detection. Although previous studies have demonstrated that 

confocal Raman microscope is highly accurate in detecting the tumor margins of basal cell 

carcinoma, the biophysical basis of this accurate detection remains unclear. Therefore, we 

discovered the most relevant diagnostic markers for accurate discrimination of basal cell 

carcinoma from surrounding normal tissues. The biophysical changes derived from our 

model was consistent with histopathological diagnosis. 
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Chapter 5 describes a superpixel acquisition method to overcome the technical 

hurdle of traditional Raman imaging in speed. We then applied this method for the first 

time to rapid skin cancer surgical margin assessment. Our findings suggest that Raman 

spectroscopy is a promising surgical guidance tool for identifying tumors in the resection 

margins. 

We conclude this dissertation in Chapter 6. 
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Chapter 2: Establishing a Raman biophysical inverse model for skin 

cancer detection1 

2.1 INTRODUCTION 

This chapter describes a novel Raman “biophysical model” of human skin cancer. 

The morphological and biochemical composition of skin tissue are derived from the model, 

and then used to classify skin cancers.  

Previous biophysical models used model components either measured directly from 

synthetic/purified chemicals [65, 95-98], or extracted from tissue sections in situ [39, 99, 

100]. The advantage of using synthetic/purified chemicals as model components is that 

they can be easily measured without the need for Raman imaging. This concept has been 

applied successfully to a previous Raman model of excisional skin biopsies [65] and has 

given us some prior knowledge about skin composition. Other groups used in situ 

constituents to build biophysical models of other disease processes, such as coronary 

atherosclerosis [99], breast cancer [100], and brain tumor [39].  

Here, we expand upon this approach by developing a biophysical human skin model 

using in situ skin constituents. In situ constituents better represent the milieu of biological 

tissues that cannot be recapitulated in a synthetic environment. In human skin many 

constituents are present in various forms and each has a slightly different Raman spectrum. 

For instance, both collagen type I and III are abundant in human dermis; however, if both 

of them are included in the model, it may lead to overfitting and unstable results. In 

addition, skin constituents synthesized in the lab or from commercial sources are not in 

their natural states as in the human skin. For instance, the Raman features of a protein may 

change when it is exposed to organic solvents during synthesis. As a result, a single 

spectrum of skin constituent extracted from its microenvironment can provide a more 

 
1Portions of this chapter are adapted from X. Feng, A. J. Moy, H. T. Nguyen, J. Zhang, M. C. Fox, K. R. 

Sebastian, J. S. Reichenberg, M. K. Markey, and J. W. Tunnell, "Raman active components of skin cancer," 

Biomedical optics express 8, 2835-2850 (2017). 
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general picture of the biophysical origins of skin spanning normal and abnormal disease 

states. 

Furthermore, we applied the model for the first time to in vivo human skin cancer 

screening data that covers a wide range of normal, nonmelanoma and melanoma skin 

cancers and precancers [67]. Previous Raman models of human skin were either built for 

ex vivo tissue specimens [65] or in vivo normal skin [101]; however, Raman biophysical 

models have not been applied to in vivo skin cancer screening to interpret biophysical 

changes between pathologies.  

In this chapter, we performed Raman imaging of tissue sections using a custom 

confocal Raman microscope. Multivariate curve resolution (MCR) analysis [102] was used 

to resolve in situ skin constituents from Raman images. Our results suggest that eight skin 

constituents are the most relevant building blocks, illustrating some variances with their 

corresponding synthetic components. The basis spectra of those skin constituents were then 

combined linearly to describe in vivo human skin spectra. The fit coefficients provided 

insight into the biochemical and structural composition of normal, benign and malignant 

skin tissues. Our model revealed the most important skin constituents representing the 

spectral features of skin tissues, and provided significant guidance to develop diagnostic 

algorithms for real-time noninvasive skin cancer diagnosis in future. 

2.2 MATERIALS AND METHODS 

2.2.1 Raman Instrumentation 

Raman images were collected with a custom-built confocal Raman microscope 

illustrated in Figure 2.1. The system was also integrated with a reflectance confocal 

microscope (RCM) and a bright-field microscope, which provided the morphology image 

for assisting in locating the region of interest for Raman imaging.  
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Figure 2.1: Schematic of confocal Raman and confocal laser-scanning microscope 

used for skin measurements. The flip mirror and CMOS camera were used 

for bright-field imaging. ISO, isolator; D1, D2: dichroic mirror; P1 – P3: 

pinhole; L1 – L6, lens; GM, galvanometer mirror; FM, flip mirror. 

 

The Raman excitation source was an 830nm single mode diode laser (LM830-

PLR200, Ondax). The laser beam was reshaped, expanded and delivered to the sample 

through a microscope objective (Olympus, NA = 1.2, 60x). The galvanometer mirror 

performed 2D raster scanning on the tissue. The backscattered Raman signal was collected 

by a spectrograph (f/1.8i, Kaiser) and a deep cooling CCD camera (IDUS, Andor) through 

an optical fiber (50 μm, NA=0.22), which also acted as a pinhole. The Rayleigh scattering 

light was collected by a PMT (C10709, Hamamatsu), and amplified by a current 

preamplifier (SR570, Stanford Research Systems). A data acquisition board (PCIe-6351, 

National Instruments) and LabVIEW software (National Instruments) were used to control 

the system. The power delivered to the sample was approximately 45mW. Lateral 

resolution was measured from the FWHM (full width at half maximum) of the point spread 

function using 0.2 and 0.5 μm microbeads. Axial resolution was measured from the FWHM 

of the intensity profile by translating a mirror towards the objective. The lateral, axial and 
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spectral resolution of the Raman system was around 1 μm, 8 μm and 8 cm-1, respectively. 

A more detailed characterization of the system can be found in Appendix A.  

2.2.2 Tissue Preparation and Raman Imaging 

Our study was approved by the Institutional Review Board at The University of 

Texas at Austin and Seton Medical Center. Fresh frozen human skin tissue samples were 

acquired from biopsy specimens during routine skin cancer surgery at Austin Dermatologic 

Surgery Center. After being transferred to the lab, the samples were stored at -80C. They 

were then thawed to -22C in a cryostat and sliced into 10 μm thin sections. The sections 

were transferred to magnesium fluoride slides (Edmund Optics) for the Raman 

measurement, and serial sections were transferred on standard microscope slides for 

hematoxylin and eosin (H&E) staining. Prior to Raman imaging, the sections were warmed 

to room temperature and kept moisturized with 0.9% saline solution.  

Next, we performed Raman imaging on skin sections. Typical integration time at 

each pixel location was 2s. Typical step size in both the x and y directions was 1μm, but 

sometimes to achieve a large of view a step size of 5 μm was used. Imaging area varied 

from 30×30 μm2 to 150×150 μm2. We then correlated the Raman image with the 

histopathology image of the serial stained section. A board-certified dermatologist assisted 

in identifying and confirming the morphology and biochemical components measured. In 

total, we collected more than 40 Raman images from samples of different disease states, 

including 24 images from 11 basal cell carcinoma (BCC) patients, 15 images from 5 

squamous cell carcinoma (SCC) patients and 4 images from 1 malignant melanoma (MM) 

patient.  

2.2.3 Data Preprocessing and MCR Analysis 

Raman data preprocessing was performed using MATLAB (R2015b, MathWorks). 

All spectra underwent wavelength calibration, background subtraction, cosmic ray removal 

and smoothing. The system spectral response was calibrated using a tungsten halogen lamp 
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(LS-1-CAL, Ocean Optics). The fluorescence background was then removed by modifying 

a 5th order polynomial fitting routine [103]. The effective spectral range was 800 to 1800 

cm-1.  

A multivariate curve resolution (MCR) method was employed to resolve individual 

morphological or biochemical components from the Raman image. This method has been 

successfully applied to stimulated Raman imaging data by Zhang et al. [104]. The basic 

concept of MCR is to decompose the raw spectra matrix D (unfolded from Raman imaging) 

into the product of two smaller matrices C and ST by a bilinear model: 

 

 𝐷 = 𝐶 ∙ 𝑆𝑇 + 𝐸 (2.1) 

 

𝑆𝑇 corresponds to the matrix of the pure spectra, 𝐶 is the related concentration 

profiles for each of the components and E is the error matrix. As an unsupervised learning 

method, the number of components contributing to 𝐷  was determined either by prior 

knowledge or by assessing the results obtained using singular value decomposition (SVD). 

After initial estimation is given for 𝑆𝑇, the 𝐶 and 𝑆𝑇 are optimized iteratively using an 

alternative least-squares algorithm (ALS) until convergence is reached.  

Here, we used a MATLAB based MCR-ALS toolbox [102] to determine 𝐶 and 

𝑆𝑇. The initial estimates of 𝐶 and 𝑆𝑇 were determined by means of a purest variable 

detection method [105]. The basic idea is to resolve highly overlapping near-infrared 

spectra with baseline problems by using the second-derivative spectra [105]. A 

nonnegative constraint and a 10% of tolerance were added to the ALS optimization. The 

concentration images for each individual component were reconstructed from 𝐶, and the 

corresponding basis spectra were obtained from 𝑆𝑇. We then categorized the basis spectra 

according to their biochemical or structural origin, such as elastic fibers, collagen fibers 

and cell nucleus.  

We obtained a library of basis spectra from various skin sections spanning normal 

skin, and various skin disease states. The spectra in the same category were then averaged 
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to create a single basis spectrum to represent that biochemical or structure. Although the 

basis spectra collected from different patients had minor differences, after averaging 

spectra from many patients we could ensure that the inter-patient variation was minimized.  

2.2.4 Clinical Screening Data Description 

In vivo human skin spectra came from our previous skin cancer screening study 

[67]. Data were collected from an optical fiber probe [106] integrated in a multimodal 

spectroscopy system [94] on different sites, such as scalp, nose, earlobe, shoulder and 

thigh. Lesion types including basal cell carcinoma (BCC, 19 lesions), squamous cell 

carcinoma (SCC, 38 lesions), actinic keratosis (AK, 14 lesions), benign pigmented lesion 

(PL, 17 lesions) and malignant melanoma (MM, 12 lesions). BCC and SCC are the most 

common types of nonmelanoma skin cancers, whereas AK and PL are the most common 

precancers of SCC and MM, respectively. Raman spectra of adjacent normal skin for each 

individual lesion were also collected. Although normal skin measurements were not 

verified by histopathology, they were visually verified to be normal by an experienced 

dermatologist/physician assistant.  

2.2.5 Model Establishment 

A sample’s Raman spectrum can be represented as a linear combination of the 

Raman spectra of the sample’s individual constituents. The signal intensity is then 

proportional to the chemical concentration [107]. Therefore, if one knows the spectra of 

the basis tissue constituents a priori, one can determine the concentration of those basis 

constituents. We used linear least-squares fitting with a nonnegative restraint for model 

fitting, according to the following equation: 

 

 𝑋 = 𝑐 ∙ 𝑠 + 𝑒 (2.2) 

 



19 

 

While  𝑋 is the sample’s spectrum (in vivo human skin spectrum). 𝑠 is the spectra 

matrix of the sample’s individual constituents. 𝑐 is the relative spectral contribution (fit 

parameter) predicted by the model. 𝑒 is the noise related with the clinical Raman system. 

Next, a combination of forward selection and backward elimination methods was 

performed to derive the most relevant basis constituents to the spectroscopic model. 

Finally, after applying the model to all the in vivo human skin data, we could obtain the 

biochemical and structural makeup of tissues spanning normal and various disease states.  

One important factor that may influence the performance of the model is 

collinearity of the basis spectra. Collinearity is a common issue in linear regression that 

may lead to an unstable result [108]. The following equation is to calculate the collinearity 

coefficients 𝑅 between two basis spectra, 𝑥 and  𝑦: 

 

 
𝑅 =  

𝑥𝑇𝑦

(𝑥𝑇𝑥)(𝑦𝑇𝑦)
  

(2.3) 

 

A value of 0 means the two basis spectra 𝑥 and 𝑦 do not have collinearity, and 1 

indicates the two vectors are the same. This equation was used for the initial evaluation of 

the model components.  

2.3 RESULTS 

2.3.1 Extraction of Primary Skin Constituents in Situ 

The basis spectra were categorized into: (1) cellular components, (2) epidermal 

extracellular matrix (ECM), (3) dermal ECM, (4) lipids, (5) pigments, and (6) 

miscellaneous. We will illustrate each category in the following part of this section.  
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2.3.1.1 Cellular Components 

To identify cellular tumor components, Raman imaging was performed within a 

tumor cluster in a BCC section (Figure 2.2). Using MCR analysis, we reconstructed three 

concentration images (Figure 2.2 a-c) corresponding to cell nucleus, cell cytoplasm, and 

the Raman substrate. Those structures correlated well with the bright field, RCM, and 

histopathology images (Figure 2.2 d-f), and their Raman spectra had similar characteristic 

peaks with the known spectra measured from the pure chemicals (Figure 2.2). This 

approach was used to resolve the other skin constituents in the following sections as well. 

As seen from the plots on the right, the basis spectra of in situ nucleus and synthetic DNA 

(Sigma-Aldrich) are similar, which both have the pronounced contribution from 

phosphodioxy group PO2
-1 at 1093 cm-1. However, the difference spectrum shows that in 

situ nucleus has substantial differences from synthetic DNA. For example, in situ nucleus 

appears to have a higher contribution from DNA backbone at 835 cm-1 [109]. 

The spectra of in situ cytoplasm and synthetic actin also have high similarity, but 

major differences can be found at 1003 cm-1 phenylalanine peak, 1081 and 1092 cm-1 lipid 

band. Numerous other peaks can also be appreciated in the difference spectra. These 

differences indicate the morphologically derived basis spectra of nucleus and cytoplasm 

include features related to other elements found in the cell.  
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Figure 2.2: Extracting cellular components from a BCC lesion. Raman images of 

nucleus (a) and cytoplasm (b) and Raman substrate (c) are compared with 

bright-field image (d), RCM image (e) and histopathology image (f). The 

boxes on (e) and (f) mark the location of Raman imaging. The contrast of 

the RCM image was provided by the relative difference in refractive index 

of cells and the surrounding stroma. Plots on the right show Raman 

spectra of in situ nucleus, synthetic DNA and their difference spectrum. 

Also in situ cytoplasm, synthetic actin and their difference spectrum. Scale 

bar: 10 μm. 
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2.3.1.2 Epidermal ECM 

The epidermal layer of skin provides the barrier to water permeation and abrasion 

resistance. It is produced by continuous cell division of keratinocytes in the basal layer. 

Ultimately, the keratinocytes cornify and produce the stratum corneum, which is the dead, 

flattened cells at the outermost layer of the skin [110]. Because keratin is the main chemical 

component of epidermal ECM, we use in situ keratin to represent epidermal ECM.  

 

Figure 2.3: Extracting the epidermal component from a normal skin section. Raman 

images of in situ keratin (a) and Raman substrate (b) are compared with 

bright-field image (c) and histopathology image (d). Plots on the right 

show Raman spectra of in situ, synthetic keratin and their difference 

spectrum. Scale bar:10 μm. 

 

Figure 2.3 illustrates Raman imaging performed on epidermis from a normal skin 

section. Tissue architecture correlates well with the histopathology image. The 

concentration images of epidermal ECM and the Raman substrate were reconstructed using 

MCR analysis. The Raman spectra of in situ and synthetic keratin are similar with 

substantial differences found at the protein bands at 855, 1318 and 1409 cm-1 [111].   
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2.3.1.3 Dermal ECM 

Dermal ECM comprises fibrillar collagens and associated proteins. Collagen fibers 

account for about 70% of the weight of dry dermis, while elastin maintains skin elasticity 

through a durable cross-linked array. Large diameter elastin-rich elastic fibers reside in the 

reticular dermis [112].  

Figure 2.4 illustrates Raman imaging performed on a BCC skin section to extract 

dermal ECM proteins. The in situ collagen (collagen fiber), in situ elastin (elastic fiber), 

dye, and Raman substrate were resolved from the image by MCR analysis. The thin blue-

gray elastic fibers and the pink collagen fibers can be identified from the histopathology 

image. The plots on the right compares the Raman spectrum of in situ collagen with 

synthetic type I and III collagen. Major differences are found at 856, 1248 and 1665 cm-1 

protein bands between in situ and type I collagen, and 1157 and 1514 cm-1 between in situ 

and type III collagen. In situ and synthetic elastin have very similar spectra, which indicates 

that elastin is the major chemical component of elastic fibers.  

2.3.1.4 Lipids 

Skin’s epidermal surface is comprised of sebaceous and stratum corneum lipids. 

Epidermal lipids act like a cement to fill the spaces between the cells. The major 

constituents of sebaceous lipids are triglycerides (triolein), wax esters and squalene, while 

the epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol [42, 113]. 

Ceramide is an important epidermal surface lipid as it composes almost half of the SC 

lipids [110].  
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Figure 2.4: Extracting dermal components from a BCC skin section. In situ collagen 

(a) and elastin (b) are resolved from the image. The dye used by the 

dermatologist to mark the orientation of the tissue was also detected (c). 

Raman images are compared with the bright-field image (d), RCM image 

(e) and histopathology image (f). The box on (e) marks the location of 

Raman imaging. The arrow in (f) points to a thin blue-gray elastic fiber. 

Plots on the right displays Raman spectrum of in situ collagen, synthetic 

collagen and the difference spectrum. Also Raman spectrum of in situ 

elastin, synthetic elastin, and their difference spectrum. Scale bar: 10 μm.  

 

Raman imaging was also performed to derive the basis spectra of lipids. Figure 2.5 

illustrates extracting in situ ceramide and triolein within a hair follicle from a SCC skin 

section. The synthetic spectra are not shown because they look similar to in situ spectra. 

Instead, we compare the difference spectra between in situ lipids. Although in situ ceramide 

and palmitic acid look similar, they have different spectral intensity in C-C stretching mode 
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at 1063 and 1128 cm-1, CH2 twisting mode at 1296 cm-1, CH2 bending mode at 1440 cm-1 

and C=C stretching mode at 1656 cm-1. Larger variance was observed in those bands 

between in situ ceramide and triolein. Triolein is not only abundant in skin lipid, but also 

in subcutaneous fat [100]. As triolein has a very strong Raman scattering cross-section, it 

contributes greatly to Raman spectrum of human skin.  

 

 

Figure 2.5: Extracting lipids within a hair follicle from a SCC skin section. In situ 

ceramide (a), triolein (b) and Raman substrate (c) are resolved from the 

image. Raman images are compared with the bright-field image (d), RCM 

image (e) and histopathology image (f). Some lipids in (f) were lost during 

the staining processing. The box on (e) and (f) marks the location of 

Raman imaging. Difference spectrum between in situ ceramide and 

palmitic acid and difference spectrum between in situ ceramide and 

triolein are also shown. Scale bar: 10 μm. 
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2.3.1.5 Pigments 

Skin pigments include melanin and beta carotene. Melanin is produced by 

melanocytes in the basal layer of the epidermis. In Figure 2.6, we identified melanin from 

a MM skin section. As expected, melanin provides strong contrast in RCM image [114]. 

We lowered the laser excitation to 20mW to reduce tissue burning caused by strong 

absorption of melanin. As this led to a worsening in the SNR, we further smoothed the 

melanin spectrum by fitting it to Gaussian functions [115]. The two broad peaks located at 

1378 cm-1 and 1573 cm-1 were consistent with the spectrum of in vivo cutaneous melanin 

[115]. Beta carotene is a plant-derived carotenoid. It was extracted from skin sections 

adjacent to fatty tissue. The characteristic peaks of beta carotene at 1008, 1156 and 1515 

cm-1 are consistent with a previous study [116].  

 

 

Figure 2.6: Extracting melanin from a MM skin section. Raman image of melanin (d) 

are compared with bright field image (a) RCM image (b) and 

histopathology image (c). Basis spectra of melanin and beta carotene are 

shown on the right. Scale bar: 50 μm. 
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2.3.1.6 Miscellaneous 

In Raman imaging, water came from the saline used to keep the skin section moist. 

We found water plays an important role in fitting the broad Raman band at 1645 cm-1. 

Hemoglobin and calcium hydroxyapatite (CaH) were only detected in one skin section but 

were included in our library. Morphologies such as hair follicle (HF) and keratin pearl (KP) 

were also obtained. KP was extracted from SCC lesions with acceleration of keratinization. 

Figure 2.7 shows the basis spectra of these constituents. Although the spectra of HF and 

KP are similar, the difference spectrum suggested that the former contained cellular 

information (DNA backbone at 835 cm-1 and phosphodioxy group PO2
-1 at 1093 cm-1). 

Finally, we included a spectrum of fiber background generated from the Raman optical 

fiber probe. This component is used to fit the broad peak between 1000 – 1100 cm-1 in the 

in vivo data.  

 

Figure 2.7: Basis Raman spectra of water, calcium hydroxyapatite (CaH), hemoglobin 

(Hb), hair follicle (HF) and keratin pearl (KP) collected in situ are 

displayed. The difference spectrum between HF and KP is also shown. 
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2.3.2 Biophysical Modeling Results 

A total of fifteen candidate model components were derived. The basis spectra were 

peak normalized with a minimum value of 0 and maximum value of 1. Their collinearity 

coefficients are displayed in Table 2.1. Beta carotene and calcium hydroxyapatite are not 

shown because they have low collinearity (< 0.50) with other components. Several 

components have high collinearity, such as in situ keratin in epidermis, keratin pearl (KP), 

and hair follicle (HF), likely because keratin dominates their chemical composition. As a 

result, we selected only one model component to represent keratin. In addition, we 

observed high collinearity between cell cytoplasm (Cyt) and other protein-rich components 

(elastin (Ela), keratin, KP, and HF). These components share common features of many 

functional groups, such as C-C stretching around 939 cm-1, Amide III around 1270 cm-1, 

CH modes around 1454 cm-1 and amide I around 1660 cm-1. Considering that (1) cell 

cytoplasm has a much smaller Raman scattering cross-section and less quantity than 

keratin, and (2) the spectrum of keratin may contain some cell features due to their close 

proximity, we finally excluded cytoplasm from our model.  In addition, Raman spectrum 

of palmitic acid (PA) has a high degree of overlap with triolein (0.94) and ceramide (0.96), 

so PA was also excluded from the model. In total, we arrive at eight primary Raman active 

components: collagen, elastin, triolein, cell nucleus, keratin, ceramide, melanin and water 

(Figure 2.8). The peak positions of main Raman bands are displayed in Table 2.2.   
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Table 2.1: Collinearity measurement for candidate model componentsa. 

  Col Ela Ker KP HF Cyt Nuc Trio Cer PA Mel Hb Water 

(a) 

Col 1.00             

Ela 0.89 1.00            

Ker 0.88 0.93 1.00           

KP 0.86 0.94 0.97 1.00          

HF 0.77 0.90 0.94 0.95 1.00         

(b) 
Cyt 0.86 0.93 0.95 0.97 0.95 1.00        

Nuc 0.64 0.76 0.70 0.75 0.78 0.77 1.00       

(c) 

Trio 0.70 0.78 0.82 0.82 0.84 0.86 0.59 1.00      

Cer 0.56 0.62 0.66 0.66 0.70 0.72 0.44 0.85 1.00     

PA 0.65 0.75 0.79 0.79 0.82 0.83 0.51 0.94 0.96 1.00    

(d) Mel 0.47 0.58 0.56 0.61 0.56 0.57 0.48 0.39 0.33 0.42 1.00   

(e) 
Hb 0.64 0.73 0.68 0.72 0.67 0.69 0.61 0.41 0.34 0.44 0.78 1.00  

Water 0.56 0.58 0.58 0.65 0.57 0.62 0.48 0.33 0.20 0.29 0.55 0.60 1.00 

aComponents are sorted according to their major composition: (a) protein, (b) cell, (c) lipid, (d) pigment, (e) miscellaneous. 

Components include collagen (Col), elastin (Ela), keratin (Ker), keratin peal (KP), hair follicle (HF), cell cytoplasm (Cyt), cell nucleus 

(Nuc), triolein (Trio), ceramide (Cer), palmitic acid (PA), melanin (Mel), hemoglobin (Hb) and water. 

 

 

Figure 2.8: Basis spectra used in the biophysical model of skin. Model components 

include collagen (a), elastin (b), triolein (c), nucleus (d), keratin (e), 

ceramide (f), melanin (g), water (h).  
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Table 2.2: Peak positions of main Raman bands in the Raman active components.  

Raman peaks  

[cm-1] 
Band assignments  Components 

835 DNA backbone: O-P-O/ tyrosine nucleus 

855 CCH bending (aromatic) of protein elastin, keratin 

856 C-C vibration of the collagen backbone collagen 

937 C-C stretching of proline and valine and protein backbone keratin 

940 C-C stretching of protein backbone collagen, elastin 

1003 C-C vibration of phenyl ring 
collagen, elastin, 

keratin 

1063 C-C asymmetric skeletal stretching of lipids (trans-conformation);  ceramide 

1080 C-C skeletal stretching triolein 

1093 O-P-O symmetric stretching vibration of the DNA backbone nucleus 

1128 C-C symmetric skeletal stretching ceramide 

1248 Amide III (β-sheet and random coil conformations) collagen, elastin 

1254 β sheet/ thymine/ cytosine (DNA base/ DNA & RNA base) nucleus 

1269 Amide III (α-helix conformation), C-N stretching, N-H in-plane bending 
collagen, elastin, 

keratin 

1301 C-H modes (CH2 twisting and wagging) of lipids; CH2/CH3 bands triolein 

1336 desmosine/isodesmosine  elastin 

1337 adenine, guanine (DNA & RNA base) nucleus 

1378 linear stretching of the C-C bonds within the rings melanin 

1440 CH2/CH3 bands triolein, ceramide 

1450 C-H bending of proteins keratin 

1454 C-H stretching, C-H asymmetric deformation collagen, elastin 

1573 in-plane stretching of the aromatic rings melanin 

1645 O-H bending mode of liquid water water 

1653 C-O stretching model of amide I keratin 

1656 C-C lipids triolein 

1665 C-O amide I vibration collagen, elastin 

 

 
 



31 

 

 

Figure 2.9: Model fitting results for in vivo human skin spectra categorized as Normal, 

BCC, SCC, AK, PL and MM. Mean Raman tissue spectra (solid lines), 

model fits (dotted lines), residuals are plotted on the same scale. Fit 

coefficients in percentage are listed on the right. The arrow indicates the 

most characteristic changes for each lesion type.  

 

In an effort to validate that these eight components captured the primary skin 

constituents as measured on in vivo human skin cancers, we fit this linear component model 

to the clinical data set. We determined the relative contribution from the eight model 
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components of each of the pathology groups. Figure 2.9 shows the fitting result of the 

mean Raman spectra. Considering the order of magnitude of the residuals with respect to 

the bulk tissue spectra, most of the spectroscopic features are well represented. The fit 

coefficients across each model component are normalized to sum to 1.  

 The results illustrate key biophysical changes of skin with different tissue types. 

For instance, normal skin has an average of 41% triolein, 30% of dermal ECM (collagen 

and elastin), and minor contribution from nucleus, ceramide, melanin and water. However, 

the contribution of triolein drops significantly from normal skin (41%) to nonmelanoma 

skin cancer/precancer (BCC, SCC, AK) (28%, 32%, 32%) and to MM, PL (11%, 23%). As 

expected, melanin content is much higher in MM (29%) and PL (19%) compared to other 

tissue types (3 – 7%). In addition, keratin concentration is higher in SCC (11%) as 

compared to other tissue types (1 – 3%). 

2.4 DISCUSSION 

In this chapter, we establish a Raman “biophysical model”, an inverse model for 

determining biophysical skin components using in vivo Raman spectroscopy. We built a 

confocal Raman microscope to identify eight of the most relevant skin constituents 

contributing to the spectral differences among different skin malignancies.  

Our model components were found to be consistent with previous studies. Some 

were commonly used in skin and non-skin models. For instance, collagen and triolein are 

known to be important contributors to the Raman signal of breast, gastric, and artery tissues 

[97, 99, 100]. We demonstrated these two components also played an important role for 

fitting in vivo skin data. Other components were more specific to skin. For instance, 

Caspers et al. used ceramide to model epidermal lipid in human stratum corneum layer 

[117]. Silveira et al. included elastin to model skin dermal protein [65]. Keratin was 

important for in vivo skin to consider the impact of epidermis [101, 117] but not necessary 

for excisional skin fragments because the measurement was on the dermis side [65]. 
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Melanin was important only when pigmented lesions were considered, so it was used to 

model melanoma skin tissue [65].  

However, our model is different from previous biophysical Raman skin models in 

the following two aspects. First, we used skin constituents in their microenvironment as 

the basis spectra. Our results showed that it was possible to use a single morphologically 

derived basis spectrum rather than synthetic/purified chemicals. As demonstrated in the 

Results section, in situ skin constituents had substantial differences from their 

corresponding synthetic chemicals, even if their major chemical components were the 

same. Since in situ constituents are extracted from skin in their natural state, without any 

further processing, they can better represent the skin microenvironment that cannot be 

recapitulated in a synthetic environment. Second, our model was validated by a previous 

in vivo clinical screening study [67] acquired by a Raman optical fiber probe [106]. 

Currently, the only biophysical Raman skin cancer model was based on excised fragments 

of BCC and melanoma skin tissues [65]. We expanded upon this research to apply our 

model to in vivo skin spectra study and covered a wider range of nonmelanoma and 

melanoma skin cancers and precancers.  

While we found a total of 15 measurable Raman components in skin, we found the 

most consistent model outcomes were achieved when minimizing this number to only eight 

components. Our approach was to select only one Raman constituent to represent those in 

situ components that were chemically similar and with high collinearity. Similarly, Stone 

et al. demonstrated that including both amino acids and the proteins containing them in a 

linear model skewed the fit coefficients [96]. Our experience is that minimizing the number 

of protein components resulted in the most consistent fit coefficients.  

The biophysical changes of skin derived by our model follow known morphological 

and biochemical changes in skin malignancy. We observed that there is less triolein in skin 

cancer/pre-cancer lesions relative to the amount of triolein in normal skin. Triolein is a 

major form of triglyceride in human skin, which presents as subcutaneous fat and 

epidermal surface lipid. The apparent decrease in triolein as cancer progresses could be due 
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to: (1) the reduction of subcutaneous fat sampled by the probe, caused by the thickening 

epidermis during lesion formation; and/or (2) the reduction of membrane lipid synthesis 

induced by UV damage [34]. Because subcutaneous fat exists in a substantial amount and 

has large Raman scattering cross section [118] we believe (1) is the major reason. The 

thickening of epidermis originates from the progression of malignancy [119].  

While both melanoma and nonmelanoma skin cancers were included in this study, 

the direct comparison between BCC or SCC and MM is much less clinically relevant [120]. 

Thus, we compared nonmelanoma (BCC, SCC, AK) versus normal skin and MM versus 

PL separately. We observed that the amount of collagen was substantially lower in 

nonmelanoma skin cancer lesions as compared to normal skin. This could be explained by 

the breakdown of collagen in dermis due to the role metalloproteinases (MMP) play in 

degrading collagen and prohibiting procollagen biosynthesis [35]. The thickening of the 

epidermis also leads to reduced collagen signal collected by the probe. Furthermore, we 

observed the amount of elastin was higher in BCC lesions as compared to normal skin, 

potentially resulting from the existence of solar elastosis. Elastosis is characterized by the 

accumulation of disorganized elastic fibers in the dermis and commonly found in 

photoaging skin [36]. Finally, we found keratin was substantially higher in SCC compared 

to the other groups, which suggests massive keratinization disorders during SCC tumor 

progression [37].  

By visual inspection, the mean spectra of MM and PL appear very different than 

the mean spectra of other pathologies. The spectral flattening between 1500 and 1700 cm-

1 is caused by increased melanin and pigmentation, indicating Raman is sensitive to 

pigment-related variations. However, discriminating MM from PL remains the most 

challenging discrimination in skin cancer screening, resulting in high negative biopsy ratios 

clinically. In our study, we observed melanin content in MM is substantially higher as 

compared to PL, indicating massive melanocyte proliferation. The significantly lower level 

of triolein in MM than PL could be explained by both the reasons given above and by the 

strong absorption of melanin, which further reduced the signal sampled from subcutaneous 
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fat. In addition, collagen is substantially lower in MM than PL. This suggests that tumor 

formation is closely related to the changes in its stroma microenvironment in favor of its 

proliferation and eventual metastasis [37, 38]. Our model demonstrated that collagen, 

triolein, and melanin are the most important cancer identifiers for MM. Future work will 

explore the diagnostic potential of these biophysical parameters in discriminating skin 

cancers.   

We observed a higher fitting residual in MM than the other tissue types. The basic 

assumption of our linear fitting model is that the scattering properties of tissue do not 

significantly distort the Raman spectrum [107], but this assumption may not hold for 

melanin due to its strong absorption and scattering. Intrinsic Raman spectroscopy may help 

correct this distortion by relating the observed and intrinsic Raman spectra through diffuse 

reflectance using light transport model [121]. We will also explore nonlinear fitting models 

to improve the fitting, such as partial least-squares (PLS) and support vector machine 

(SVM). Other factors also contribute to the residuals in general. One factor is that the basis 

spectra and bulk tissue spectra were acquired from two independent Raman systems, which 

were composed of different detectors, lenses, beam splitters, etc. Spectral response 

calibration was used to match the spectral response of the two systems, but it could not 

completely eliminate the differences in the spectra measured by the two systems. Another 

factor is the signal generated by probe components, such as the fiber background, epoxy 

and sapphire [106].  

In general, we did not find site-specific constituents that are not covered by the 

current model, but the concentration of the 8 components may vary due to location. For 

example, when the measurement was taken on the scalp surround with dark hairs we would 

detect melanin signal. Future work will examine how sensitive our model is in picking up 

such information.  
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2.5 CONCLUSION 

In this chapter, we proposed the first Raman biophysical model that used in situ 

Raman active components as the building blocks, and applied to in vivo skin cancer 

screening data. Our results indicate that eight basis spectra derived from collagen, elastin, 

triolein, cell nucleus, keratin, ceramide, melanin, and water are the most relevant to 

describe the spectral features of human skin Raman data. In the next chapter we will 

evaluate the performance of this model in discriminating skin cancer pathologies within 

the context of ongoing clinical studies of Raman spectroscopy for skin cancer screening in 

our group. We envision our model being used with the Raman probe for analyzing 

individual lesions pointed out by patents or providers. We think it would be reasonable to 

scan the top ten concerning lesions on any patients without affecting the current patient 

flow in a physician’s office.  
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Chapter 3: Biophysical basis of in vivo skin cancer screening using 

Raman spectroscopy2  

3.1 INTRODUCTION 

This chapter aims to explore the diagnostic markers that Raman spectroscopy relies 

on for accurate in vivo melanoma detection.  

 Previous studies have shown that Raman spectroscopy is highly sensitive in 

differentiating malignant melanoma (MM, the deadliest version of skin cancer) from 

benign pigmented lesion (PL, frequently confused in the clinic with MM) [4, 67, 122]. Our 

group has demonstrated that MM (12 lesions) can be discriminated from PL (17 lesions) 

with 100% sensitivity and specificity by using a novel Raman probe-based system [94] and 

principal component analysis (PCA) with a logistic regression classifier [67]. Schleusener 

et al. discriminated MM (23 lesions) and PL (33 lesions) with a balanced accuracy of 91%  

using partial least squares discriminant analysis (PLS-DA) [123]. Lui et al. discriminated 

MM (44 lesions) from PL (286 lesions) with 90 - 99% sensitivity and 15% - 68% specificity 

[4] using principal component analysis with generalized discriminant analysis (PCA-

GDA). A follow up independent validation study from the same group showed consistent 

results for discriminating MM (53 lesions) from PL (336 lesions) [124]. Their research 

later led to the commercial launch of a clinical skin cancer detection device (Verisante 

Aura) in Canada [4].  

Raman spectroscopy also has been used to detect nonmelanoma skin cancer 

(NMSC), mainly basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and actinic 

keratosis (AK, a precancerous state). Lieber et al. developed a portable confocal Raman 

system with a handheld probe, and achieved 100% sensitivity and 91% specificity in 

discriminating BCC, SCC and inflamed scar tissues from normal tissues (21 versus 21). 

 
2Portions of this chapter are adapted from X. Feng, A. J. Moy, H. T. Nguyen, Y. Zhang, J. Zhang, M. C. 

Fox, K. R. Sebastian, J. S. Reichenberg, M. K. Markey, and J. W. Tunnell, "Raman biophysical markers in 

skin cancer diagnosis," J Biomed Opt 23, 057002 (2018). 
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The spectral differences were extracted through the maximum representation and 

discrimination feature (MRDF) statistical method [120]. Silveira et al. discriminated BCC, 

SCC, and AK from non-tumorous tissue (44 versus 55) with approximately 91.9% 

accuracy by using a dispersive Raman system and PLS-DA [125]. Schleusener et al. 

discriminated BCC from normal skin (35 versus 104) and SCC from normal skin (22 versus 

104) based on PLS-DA with a balanced accuracy of 73% and 85%, respectively [123]. Lui 

et al. distinguished skin cancer and AK from benign lesions with 90 - 99% sensitivity and 

24% - 66% specificity based on PLS [4].  Despite these successes, these studies have 

employed statistical classifiers, sometimes called “black box” methods, to describe the 

spectral differences between pathologies. The challenge with these statistical algorithms 

lies in interpreting the biophysical basis for their discriminant ability. That is, they do not 

provide insights into the most relevant cancer biomarkers that Raman spectroscopy relies 

on to make an accurate diagnosis. Therefore, we aim to determine the biophysical basis of 

skin cancer detection based on Raman spectroscopy. This may enable the pathologist to 

interpret the spectral data in a familiar manner (such as a thickening epidermis, the change 

of collagen and lipid content, etc.) and guide a dermatologist in determining the most 

appropriate treatment.  

In Chapter 2, we proposed a Raman biophysical inverse model to derive the skin’s 

biochemical makeup from its Raman spectrum [126]. The model described the Raman 

spectra from in vivo human skin as a linear combination of eight Raman active skin 

constituents extracted from skin in situ, including collagen, elastin, keratin, triolein, 

ceramide, nucleus, melanin, and water. We have validated the model using previous in vivo 

human skin cancer screening data [126] and identified distinct biophysical changes 

between pathologies. However, we have not evaluated the diagnostic potential of those 

biophysical parameters in discriminating skin cancers. We also have not identified the 

important biophysical features used as diagnostic tools.    

In this chapter, we present a preliminary study of in vivo diagnosis of melanoma 

and NMSC on the biophysical basis. We demonstrated that the biophysical model captures 
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the diagnostic power of the previously used statistical classification model while also 

providing the skin’s biophysical composition. Our work demonstrates the ability of Raman 

spectroscopy in sensing the biochemical composition of skin cancers, thus allowing for 

better interpretation of the diagnostic results from a pathological basis.  

3.2 MATERIALS AND METHODS 

3.2.1 Clinical Instrument and Dataset 

The clinical skin cancer screening study [67] was conducted using a Raman optical 

fiber probe [106] integrated in an optical fiber probe-based system [94]. An 830nm 

wavelength excitation was used to minimize tissue autofluorescence. Collected signals 

entered a spectrograph and were imaged onto a camera. Integration time for each 

measurement was 3s. Spectral resolution of the probe-based system is around 10 cm-1. This 

study was approved by the Institutional Review Board at The University of Texas at Austin 

and The University of Texas MD Anderson Cancer Center (trial registration ID: NCT 

00476905). Informed consents were acquired from all patients prior to the study.  

In vivo Raman spectra were obtained from 65 patients diagnosed with basal cell 

carcinoma (BCC), squamous cell carcinoma (SCC), actinic keratosis (AK), dysplastic nevi 

(DN, a dysplastic form of PL), and malignant melanoma (MM). Details of the clinical data 

are provided in Table 3.1. In total there are 100 lesions and 99 adjacent normal tissues 

because one normal tissue was shared between two lesions. Fourteen out of 38 SCC lesions 

containing both SCC and AK were grouped into SCC. Multiple spectra were taken from 

each lesion by moving the probe to different locations to sample as much of the lesion as 

possible. Multiple spectra were also taken from the normal skin adjacent to each individual 

lesion. Although not verified by histopathology, normal skin was visually verified to be 

normal by an experienced dermatologist or physician assistant.  

 

  



40 

 

Table 3.1: Summary of clinical data. 

Lesion type # patients 
# lesions  

(# spectra) 

# adjacent normal tissues 

 (# spectra) 

MM 10 12 (33) 11 (23) 

DN 11 17 (37) 17 (33) 

BCC 14 19 (39) 19 (38) 

SCC 20 38 (81) 38 (76) 

AK 10 14 (30) 14 (28) 

Total 65 100 (220) 99 (198) 

 

Table 3.2: Patient age for MM and DN. 

MM patient # Age DN patient # Age 

1 70 1 75 

2 58 2 69 

3 81 3 31 

4 - 4 34 

5 69 5 29 

6 33 6 69 

7 68 7 34 

8 70 8 28 

9 60 9 35 

10 78 10 22 

  11 34 

Average age 65  42 

 

3.2.2 Data Preprocessing 

Spectra underwent wavenumber calibration, dark noise removal, cosmic ray 

removal, and smoothing, followed by a fifth-order polynomial fitting [103] to remove 

tissue fluorescence background. Spectral data were spectral response calibrated using a 

tungsten halogen lamp (LS-1-CAL, Ocean Optics). Spectral band between 800 and 900 
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cm-1 was excluded due to a strong broad fiber background peak around 800cm-1. A sharp 

room light peak at 1100 cm-1 was removed from five spectra from one MM patient.  

3.2.3 Diagnostic Algorithms 

3.2.3.1 Classification Tasks 

We used four classification tasks in this study: (1) MM versus DN; (2) MM, DN 

versus normal (Norm); (3) NMSC (BCC, SCC, AK) versus Norm; and (4) SCC, BCC 

versus AK. Diagnostic algorithms were implemented within MATLAB (version R2015a, 

MathWorks).  

We chose these four classification tasks not only to be consistent with our previous 

study, but also based on their clinical significance. Task (1) is significant because it directly 

affects the decision of a clinician to remove the lesion or continue to observe when facing 

a pigmented lesion of concern. Task (4) is significant because while a BCC or SCC will 

require surgical excision, it is often sufficient to treat an AK with cryotherapy or a topical 

chemotherapeutic agent. Both task (1) and (4) are highly related to reducing the number of 

unnecessary excisional skin biopsies. Although Task (2) and (3) are not currently clinically 

actionable, they are very relevant to the perspective of tumor margin detection. We used 

normal skin as a placeholder for these other diagnoses, with the hope that in the future we 

can perform the analysis on enough benign lesions to allow the device to distinguish these 

benign issues from cancer. 

3.2.3.2 Receiver Operating Characteristic (ROC) 

An ROC curve was used to determine a model’s performance in discriminating 

between two groups. An ROC curve is a graphical representation of the trade-off between 

sensitivity and specificity. Sensitivity is the ability of the model to correctly identify the 

positive group, whereas specificity is the ability of the model to correctly identify the 

negative group. For good discrimination, the ROC curve is predominately in the left and 
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top boundaries of the graph, while for poor discrimination, the ROC curve approaches the 

diagonal line drawn from the bottom-left to the top-right of the plot. ROC curves were 

calculated separately for PCA and biophysical model, and for each of the four classification 

tasks. 

By default, the ROC curves were calculated by treating each lesion as an 

experimental unit. The method is described elsewhere [29]: if one or more spectra from a 

site were classified as cancer, the site was classified as cancer. If all spectra from a site 

were classified as normal, the site was classified as normal. We used this conservative 

technique to approximate the dermatologist’s tendency to err on the side of caution. 

3.2.3.3 Statistical Model  

The statistical model (PCA) was adopted from our previous publication [67]. For 

each classification task, we limited the number of principal components (PCs) to 5, because 

the diagnostic improvements dropped significantly beyond 4 [67]. Firstly, we performed 

PCA for a given classification task and then generated all the possible combinations of 1, 

2, 3, 4, or 5 PCs from the first 15 PCs. Next, we selected one combination of PCs and built 

a logistic regression classifier. Specifically, for each PC-logistic regression analysis, a 

successive single lesion was left out for testing, with the remaining lesions being used for 

training. After the posterior probabilities of all lesions were calculated according to the 

leave-one-lesion-out cross validation protocol, an ROC curve was then calculated. Using 

this method, we generated different ROC curves for different combinations of PCs. The 

combination of PCs that yielded the largest area under the ROC curve (AUC) was selected 

for subsequent analyses.  

3.2.3.4 Biophysical Model 

In vivo Raman spectra were fit into the biophysical model with eight primary model 

components: collagen, elastin, triolein, nucleus, keratin, ceramide, melanin, and water, as 
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shown in Figure 3.1. Those components were collected from human skin in situ and were 

averaged over multiple patients.   

 

Figure 3.1: (a) Eight model components: (1) collagen, (2) elastin, (3) triolein, (4) 

nucleus, (5) keratin, (6) ceramide, (7) melanin, (8) water. Peak positions of 

the main Raman bands are labeled. (b) Fitting results for the average 

Raman spectra of normal tissue, BCC, SCC, AK, DN, and MM. Black 

solid lines: average Raman tissue spectra. Red dotted lines: model fits. 

Residuals are also plotted on the bottom. Images are adapted from 

Reference [126]. 
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The model components contain both biochemical and structural information. For 

instance, nucleus refers to the nuclear material in the cell. Collagen and elastin refer to 

dermal extracellular matrix. Keratin represents epidermal extracellular matrix. Triolein 

mainly represents subcutaneous fat. Peak positions of the main Raman bands and their 

physical origin are summarized in Table 2.2 [126-129]. The sub-bands (or sub-peaks) were 

not listed but also played a role in the fitting. The fit coefficients provide the relative 

concentration of those components and were used as the input variables of the discriminant 

analysis. Similar to PCA model, for each classification task, we generated all the possible 

combinations of 1, 2, 3, 4, or 5 components from the 8 primary model components and 

built logistic regression classifiers. We then selected the combination of model components 

that yielded the largest AUC. 

3.2.4 Comparison of Discriminative Capability between Statistical and Biophysical 

Models 

Statistical analysis was performed using an open-source package written in R 

software (version 3.3.3) [130]. The AUC of two paired ROC curves were compared using 

the bootstrap test, with a goal to determine if the biophysical model provides at least 

equivalent potential for classification compared to statistical model.  

3.2.5 Interpretation of Biophysical Model Result 

The fit coefficients of the 8 model components generated by the biophysical model 

were visualized using scatter plots. Each scatter point represents one spectrum. The error 

bar generated by the 95% CI are used to represent the variance of the fit coefficient. 

Unpaired Student’s t-test was employed, and the corresponding p values were labeled to 

compare if the fit coefficients have any statistically significant difference between 

pathologies.  
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3.3 RESULTS 

3.3.1 Statistical Model versus Biophysical Model 

In Table 3.3, the diagnostically relevant model components in statistical and 

biophysical models are displayed and the AUCs are compared. Figure 3.2 compares the 

corresponding ROC curves. The AUCs of the ROC curves of the two models are not 

statistically distinguishable for the classification tasks of MM versus DN, [MM, DN] 

versus Norm, and [BCC, SCC] versus AK. However, the AUC of the ROC of the 

biophysical model for [BCC, SCC, AK] versus Norm is statistically significantly better 

than the corresponding statistical model (p < 0.0001). Table 3.4 compares the specificities 

of the two models corresponding to sensitivities of 90% and 95%, respectively.  

Table 3.3: Comparison of diagnostic performance of statistical model and biophysical 

model. 

Classification 

tasks 
# lesion 

Diagnostically relevant components ROC AUC  

Statistical 

model 
Biophysical model 

Statistical 

model 

Biophysical 

model 

MM vs DN 12 vs 17 PC 3,4,5,8,9 
collagen, triolein, 

melanin 
1.00 0.99  

[MM, DN] vs 

Norm 
29 vs 28 PC 1,6,9 triolein, melanin 0.89 0.93 

[BCC, SCC, AK] 

vs Norm 
72 vs 64 PC 3,4,8,9 

collagen, triolein, elastin, 

nucleus, ceramide 
0.58  0.76  

[SCC, BCC] vs 

AK 
68 vs 55 PC 3,6,7,8 collagen, keratin, water 0.62  0.65  
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Figure 3.2: Comparison of ROC curves between statistical model (thin line) and 

biophysical model (thick line) for the 4 classification tasks: MM vs DN, 

MM, DN vs Norm (adjacent normal tissue), BCC, SCC, AK vs Norm, and 

BCC, SCC vs AK. The ROC curves are statistically compared, and the p 

values are labeled. p ＞ 0.05 indicates no significant difference between 

the two curves. 
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Table 3.4: Comparison of specificities derived from ROCs according to sensitivities of 

95% and 90%. 

Classification tasks 

Statistical model  Biophysical model 

Sensitivity  

(%) 

Specificity  

(%)  

 
Sensitivity  

(%) 

Specificity  

(%) 

MM vs. DN 95 100  95  94  

 90  100  90 94  

[MM, DN] vs. Norm 95  64   95  71  

 90  71    90  75  

[BCC, SCC, AK] vs. Norm 95 10  95 18 

 90 6  90 39 

[SCC, BCC] vs. AK 95  21   95 11  

 90  21   90  21  

 

3.3.2 Biophysical Basis of Classification Results 

3.3.2.1 Malignant Melanoma (MM) versus Dysplastic Nevi (DN) 

The biophysical model reveals the biomarkers responsible for the variances 

between pathologies. Major bands used for fitting and their physical origin was shown in 

Table 3.3 and reported in literature [126-129]. The fit coefficients of the eight model 

components in DN and MM are displayed in Figure 3.3. Statistical analysis indicates 

significant differences in collagen, elastin, triolein, nucleus, and melanin content between 

MM and DN. Collagen and triolein contributed greatly to the spectral variance between 

MM and DN. By using the fit coefficients of collagen and triolein, 29 out of 33 MM spectra 

and 35 out of 37 DN spectra are correctly classified (Figure 3.4).  

The best result was achieved by employing 3 components: collagen, triolein and 

melanin, resulting in 12 out of 12 MM lesions and 16 out of 17 DN lesions being correctly 

classified.  ROC AUC is 0.99, and specificity is 94% (90% – 95% sensitivity, Table 3.4). 
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Figure 3.3: Fit coefficients of the 8 model components computed from the biophysical 

model. Each point represents a spectrum data. Significance tests are 

conducted for the fit coefficients of DN norm (the adjacent normal tissue 

of DN) versus MM norm (the adjacent normal tissue of MM), DN versus 

MM, and [DN norm and MM norm] versus [DN and MM]. ** p ≤ 0.01, * 

p ≤ 0.05. 

3.3.2.2 Pigmented Lesions (MM, DN) versus Adjacent Normal Tissue 

Figure 3.3 shows that pigmented lesions and their adjacent normal tissue have 

significant differences in triolein, collagen, ceramide, keratin, and melanin content. Our 



49 

 

results show that triolein and melanin are the most relevant model components to 

discriminate MM and DN from adjacent normal skin. The ROC AUC is 0.93 (Table 3.3) 

for sensitivities from 95% to 90% and specificities of 71% to 75% (Table 3.4).  

 

Figure 3.4: Scatter plot drawn from triolein and collagen content. The solid logistic 

regression line separates MM from DN.  

3.3.2.4 Nonmelanoma Skin Cancers (BCC, SCC) versus AK 

Figure 3.5 shows significant differences in collagen, nucleus, keratin and water 

between SCC and AK, as well as significant differences in keratin and ceramide between 

BCC and AK. The fit coefficients of collagen, keratin and water discriminated BCC, SCC 

from AK with a ROC AUC of 0.65 (Table 3.3), and specificities range from 11% to 21% 

for sensitivities corresponding to 95% to 90% (Table 3.4). 
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Figure 3.5: Fit coefficients of the 8 model components computed from the biophysical 

model. Each point represents a spectrum data. Significance tests are 

conducted for the fit coefficients of adjacent normal tissue of BCC (BCC 

norm) versus BCC, the adjacent normal tissue of SCC (SCC norm) versus 

SCC, SCC vs AK, and BCC vs AK. ** p ≤ 0.01, * p ≤ 0.05. 
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3.4 DISCUSSION  

In our previous work [67], we demonstrated the capability of Raman spectroscopy 

in detecting skin cancers using a statistical model. Here we show that a biophysical model 

can achieve consistent diagnostic performance with the statistical model while 

simultaneously extracting the relevant biomarkers accounting for the diagnosis.  

Our model reveals a markedly different biochemical and structural composition 

between pathologies. First, the amount of triolein is significantly lower in all skin lesions 

than surrounding normal skin. Triolein mostly originates from adipose tissue in the 

subcutaneous layer, with a small contribution from epidermal surface lipids [113]. Triolein 

has a large Raman scattering cross-section, thus contributing greatly to normal skin spectra. 

The decrease of triolein in skin lesions does not necessarily indicate the actual amount of 

fat decreases in skin lesions, only that there is a decrease in the triolein sampled by the 

probe. One possible reason is epithelial thickening associated with dysplastic progression 

[131, 132]. An increased thickness of epidermis would mean the total volume of tissue 

sampled would include more epidermis and less adipose tissue, thereby decreasing the 

amount of Raman emission from deeper skin layers (adipose). Another possible reason for 

the decrease of triolein in pigmented lesions relative to the adjacent normal skin is that 

melanin strongly absorbs excitation laser power and therefore reduces the contribution of 

triolein in Raman signal.  

Next, we found that the collagen content is significantly lower in nonmelanoma 

skin cancers than their adjacent normal tissue and AK. For instance, collagen does not 

change significantly in the progression from normal to AK (benign), but it decreases 

significantly from AK to SCC (cancer). This trend of decreased collagen in cancer was also 

observed in previous biophysical models of ex vivo human skin fragments [65], urological 

tissue [96], gastric/esophagus tissue [97], and cervical tissue [133]. This may be partially 

explained by the thickening of the epithelium as mentioned above. Other reasons may 

include the release of metalloproteinases (MMP) by cancerous cells to degrade dermal 
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connective tissue [134, 135], and extracellular-degrading enzymes secreted from 

fibroblasts that damage the stroma [136].  

Discriminating MM from benign pigmented lesions (especially DN) usually leads 

to large negative biopsy ratio. Due to their highly similar appearance, the ratio of negative 

versus positive biopsies ranges from 22:1 to 59:1 for experienced versus new general 

practitioners [5]. Understanding the biophysical basis of melanoma skin cancer progression 

is essential to reduce large negative biopsy ratio and save considerable associated costs and 

efforts. In our study, we discovered that collagen and triolein are the two most important 

biomarkers to differentiate MM from DN, and NMSCs from normal tissue. Two previous 

ex vivo studies based on Raman biophysical models also showed collagen and triolein (or 

fat) had important roles in tissue Raman spectra. Bodanese et al. discovered the amount of 

collagen and fat extracted from tissue Raman spectra can classify BCC from normal skin 

with sensitivity and specificity of 95% and 83% [64]. Haka et al. found the fit coefficients 

of collagen and fat can distinguish cancerous breast tissues from normal and benign tissues 

with 94% sensitivity and 96% specificity [118]. 

Our results show that melanin is an important biomarker for classifying pigmented 

lesions from adjacent normal tissue, which is as expected because pigmented lesions 

typically contain more melanin than the surrounding normal skin. However, we also found 

melanin is not as relevant as collagen and triolein in differentiating MM from DN. In fact, 

melanomas do not always have more melanin than do benign pigmented lesions. The 

existence of amelanotic melanoma is a good example – we estimated zero melanin content 

for the one amelanotic melanoma lesion in our sample. Blue nevi, on the other hand, 

contain abundant pigment but are not cancer. Thus, more data from amelanotic melanomas 

is needed to clarify the role that melanin may play in differentiating MM and DN. 

We were best able to classify NMSCs from normal skin by employing a model that 

considered collagen, triolein, elastin, nucleus, and ceramide. To better understand the 

biophysical changes of each pathology, we examined the lesion-normal pairs for BCC and 

SCC separately. We found that melanin content is significantly lower in BCC than in 
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adjacent normal skin, likely because the invasion of basal cells takes over the space 

normally occupied by the melanocytes. Although not statistically significant, the amount 

of nucleus and elastin is larger in BCC compared to its adjacent normal skin, which may 

be explained by the proliferation of cancer cells and the enlargement of nuclei. Elastin 

content is also larger in BCC than adjacent normal, probably because of the existence of 

solar elastosis [137]. On the contrary, SCC appears to have a higher amount of keratin, 

ceramide, and water as compared to its adjacent normal skin. The increase of keratin may 

be attributed to large areas of keratinization in response to malignant epithelial cells [138]. 

Ceramide indicates abnormal epidermal surface lipid synthesis and thus is a key component 

to differentiate SCC from normal skin.  

AK is the most common precursor lesion of SCC among lightly pigmented 

individuals. Almost every SCC that arises on sun-damaged skin has evidence of AK in the 

epidermis, either directly contiguous with or adjacent to the neoplasm [139]. However, AK 

and SCC have a similar crusted appearance, making it difficult to differentiate by visual 

examination. We found the most important components to discriminate SCC from AK are 

collagen, keratin and water. AK is confined to foci within the epidermis, whereas SCC may 

further invade into dermis. Thus, SCC is expected to have a higher amount of keratin than 

AK. Nucleus content is lower in SCC than AK, likely because the prominent keratinization 

in SCC occupies the space of cells. We also observed a higher amount of water content in 

SCC than AK. High wavenumber Raman will be an ideal tool to study the significance of 

water in NMSC diagnosis.  

An interesting discovery is that the normal tissue adjacent to a DN has significantly 

more collagen than normal tissue adjacent to a MM (Figure 3.2). We were suspicious that 

the observed difference in collagen could be simply due to aging since the average age of 

the MM patients (N = 9) in our study was 65 years (one patients did not have age 

information on record), while the average age of the DN patients (N = 11) was 42 years 

(Table 3.2). To control for the effect of aging, we built a generalized linear mixed-effect 

model [140] using patient age and collagen as fixed effects predictors, and tissue type as 
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the response variable (0 = normal tissue adjacent to DN, 1 = normal tissue adjacent to MM). 

We also included a random-effects term for intercept grouped by patient to account for 

patient-specific variations. Our result shows that the p value of collagen is 0.041, indicating 

the amount of collagen is a significant predictor of tissue type, even after controlling for 

age. It is plausible that there is more collagen in normal skin adjacent to DN than in that 

adjacent to MM because melanoma growth is not only associated with malignant growth 

of cancer cells, but also changes in its stroma microenvironment to support metastasis 

[141]. Paidi et al. discovered that the use of Raman spectroscopy is feasible to detect 

changes in the stroma of the lung microenvironment in response to primary breast tumors 

[142]. Sahu et al. found that early malignancy-associated changes in normal contralateral 

sites of oral cancer may lead to anatomical variability and cause misclassification between 

contralateral and tumor [143]. Boppart et al. raised the question that molecular surgical 

margin may be a better way to define tumor boundary than the “gold standard” structural 

tumor margin [144].  Further studies are needed to study changes in normal stroma in 

response to dysplastic progression.  

One limitation of this study is that it simplifies the model to only eight Raman active 

components. Although originally we had 15 components, we narrowed down to 8 to avoid 

collinearity issues [126]. We found including multiple chemically similar components (e.g. 

various proteins) would result in fitting results with high variance. However, as there are 

far more molecules in skin, this method may underestimate the contribution of other 

molecules to the Raman signal. Another limitation is the limited sample size, which is also 

the main reason that we used leave-one-out cross validation to compute the ROC AUC. It 

is worth mentioning that this method comes with the risk of over-optimism. This may be 

the cause for the discrimination of MM from DN being better than that of (MM, DN) from 

normal (Figure 3.2). Alternative methods include (1) k-fold cross validation (such as k = 

10), and (2) bootstrapping [145]. The former utilizes 10% of the data as a test set, and the 

other 90% as the training set. Although it avoids the caveat of using single observation to 
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estimate the model performance in each split of the data, it requires a larger sample size. 

The latter approach may provide a better estimate of internal validity [146].  

3.5 CONCLUSION 

In this chapter, we have demonstrated that the biophysical model has consistent 

diagnostic capability as our previously published statistical model. By comparing with the 

statistical model, we have demonstrated that the biophysical model captures the spectral 

variances between skin pathologies in four distinct classification tasks. More importantly, 

the biophysical model captures the relevant biophysical changes accounting for the 

diagnosis. In particular, we found that collagen and triolein were the most important 

biomarkers in discriminating malignant melanoma from benign pigmented lesions, and 

nonmelanoma skin cancers and precancers from surround normal skin. Our work 

demonstrated that Raman spectroscopy has great potential in diagnosing skin cancer 

noninvasively while extracting the skin’s biophysical composition.  
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Chapter 4: Biophysical basis of ex vivo skin cancer surgical margin 

detection using Raman spectroscopy3 

4.1 INTRODUCTION 

Achieving adequate margins during tumor margin resection is critical to minimize 

the recurrence rate and maximize positive patient outcomes during skin cancer surgery. 

Previous studies have demonstrated Raman spectroscopy can accurately detect basal cell 

carcinoma (BCC) from surrounding normal tissue; however, the biophysical basis of the 

detection remained unclear. Therefore, the goal of this chapter is to explore the relevant 

Raman biomarkers to guide basal cell carcinoma margin resection.  

Nonmelanoma skin cancer is by far the most common malignancy worldwide. 

Among more than 5 million new cases diagnosed annually in the US, approximately 80% 

are BCC [147]. Currently, Mohs micrographic surgery (Mohs) is the most effective method 

for the treatment of BCC. The 5-year recurrence rate of Mohs (1 – 3% for primary BCC 

and 5 – 7% for recurrent BCC) is much lower than standard surgical excision (3 – 10% in 

primary BCC and >17% in recurrent BCC) [11]. Mohs involves iterative excision of 

surgical margins of each stage, followed by frozen section histopathology. If the 

histopathological diagnosis indicates tumor still exists, further tissue layers will be 

removed until the margins are clear.  

Although effective, Mohs has several limitations, including time, expense, training 

requirements and lab infrastructure. Most tumors require 1 to 3 stages (sometimes as many 

as 5 – 6) for complete removal, with patients waiting under local anesthesia between each 

stage [148]. The total time for Mohs surgery can be anywhere from one to five hours. 

Infrastructure requirements may also be limiting, including the building and maintenance 

of histology lab, staff training and physician training. As these requirements pose 

 
3Portions of this chapter are adapted from X. Feng, M. C. Fox, J. S. Reichenberg, F. C. Lopes, K. R. 

Sebastian, M. K. Markey, and J. W. Tunnell, "Biophysical basis of skin cancer margin assessment using 

Raman spectroscopy," Biomedical Optics Express 10, 104-118 (2019). 
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significant barriers to its use, Mohs is used in less than half (~40%) of cases, and less 

effective treatments such as standard surgical excision are more frequently employed 

[149]. Moreover, disparities in access to care, such as in among different geographic 

regions and racial and ethnic groups, leads to substantial underutilization of Mohs in 

underserved populations [149, 150]. Therefore, a critical unmet need exists for low-

infrastructure technologies that would enable general dermatologists to perform resections 

with high accuracy.  

Raman spectroscopy is a nondestructive and label-free optical technique, and has 

demonstrated great clinical merits for tumor margin assessment in numerous types of 

cancer, including skin [151], brain [152, 153], oral cavity [154, 155], breast [57, 156], and 

stomach [157]. Those studies either use fiber-optical Raman probe for single point 

sampling or Raman microscopy (also called Raman microspectroscopy) for optical 

imaging. One major advantage of Raman microscopy is that it has high resolution and 

sectioning comparable with that of conventional histology. Moreover, it provides an 

objective diagnosis with minimal tissue processing. Previous studies have demonstrated 

Raman microscopy can discriminate BCC from normal skin tissues with sensitivity of 90 

– 100% and specificity of 85 – 93%. Nijssen et al. was among the first to discriminate BCC 

from surrounding normal tissue using Raman spectroscopy and reached 100%/93% 

sensitivity/specificity (15 patients, 59 spectra) [158]. Lieber et al. developed an in vivo 

Raman microscopy and achieved 100%/91% sensitivity/specificity (19 patients, 42 

spectra) in classifying BCC and squamous cell carcinoma from paired normal skin tissues 

[120]. Larraona-Puy et al. demonstrated the ability of Raman microscopy in discriminating 

BCC from surrounding normal tissue with 90%/85% sensitivity/specificity (20 patients, 

329 spectra) [159]. Kong et al. combined Raman microscopy with autofluorescence 

imaging to increase acquisition speed and achieved 100% sensitivity and 92.9% specificity 

for discriminating BCC [151]. 

Prior studies mostly utilized statistical algorithms to extract the spectral differences 

between BCC and normal tissue, such as principal component analysis [151, 158], linear 
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discriminant analysis [160] and maximum representation and discrimination feature [120]. 

Although such methods provided high diagnostic accuracy, they did not elucidate the 

nature and biochemical processes responsible for the spectral differences. Understanding 

the biophysical basis of the discriminatory power of Raman spectroscopy would increase 

fundamental knowledge of cancer processes as well as lay the groundwork for improving 

the diagnostic performance of the technology [40]. Therefore, our aim in this study is to 

obtain biophysically relevant markers from Raman spectra of BCC and surrounding normal 

tissue, and then build diagnostic model to guide BCC tumor margin delineation.  

In Chapter 2, we proposed a biophysical human skin cancer model, an inverse 

model that infers the skin’s biochemical makeup from its Raman spectrum [161]. Different 

from previous studies that selected a number of Raman bands as “fingerprints” to 

discriminate between healthy skin and tumor regions [159, 162], our method is based on 

the fitting of pure spectral components. We validated the model using previous in vivo 

human skin cancer screening data [67], and demonstrated the feasibility of Raman 

spectroscopy to capture relevant biophysical changes accounting for the in vivo diagnosis 

[163]. Later, we presented a preliminary study of BCC tumor margin detection using the 

biophysical model based on a small dataset from 14 patients [164]. This study 

demonstrated the feasibility of detecting biophysical changes between BCC and five 

primary normal structures (epidermis, dermis, hair follicle, sebaceous gland and fat), but 

has several limitations: firstly, the number of patients is small; secondly, inflamed dermis 

was not included in the study, which may be confused with BCC in histopathological 

diagnosis [151, 159]; finally, a more comprehensive analysis is needed to link our 

biophysical approach with molecular vibrational approaches [128, 129].  

In this chapter, we demonstrate that Raman spectroscopy is highly sensitive in 

capturing the biochemical differences between BCC and surrounding normal skin 

structures. Based on these biochemical differences, we can develop diagnostic algorithms 

to accurately discriminate BCC in Mohs excisions, which supports the future development 

of intraoperative assessment of tumor margins.    
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4.2 MATERIALS AND METHODS 

4.2.1 Patients and Sample Preparation 

This study was approved by the Institutional Review Board (IRB) at The University 

of Texas at Austin and the Seton Healthcare Family. A total of 30 frozen tissue blocks were 

collected from 30 patients who had undergone Mohs at Austin Dermatologic Surgery 

Center. 18 samples were found to have both BCC tumors and surrounding normal tissue, 

and 12 samples contained only normal tissue. Before the Raman experiment, 20μm tissue 

sections were sliced from frozen tissue blocks at -22C and transferred onto low Raman 

background glass slides (MgF2 substrates). Serial sections were transferred onto 

microscope slides for hematoxylin and eosin (H&E) staining. The H&E technique stains 

cell nuclei in purple (hematoxylin), and intracellular or extracellular protein in red (eosin). 

Tissue structure identification and histopathological diagnosis were provided by a board-

certified dermatologist.  

4.2.2 Raman Imaging Experiment and Data Preprocessing 

Raman imaging was performed using a custom-built confocal Raman microscope. 

We used a longer wavelength laser (830nm) to minimize tissue autofluorescence. 

Reflectance confocal and bright-field images are also collected simultaneously. A detailed 

system description can be found elsewhere [161]. The power delivered to the sample was 

approximately 45mW. Raman images were collected from “tissue-level” regions varying 

from 60×60 μm2 to 100×100 μm2 (2μm steps, 2s per step). The “tissue-level” regions 

consist of ~10 – 100 cells, approximating the resolution of a dermatologist reading an H&E 

slide.    

Raw Raman spectra underwent wavenumber calibration, dark noise removal, 

cosmic ray removal, smoothing, and a fifth-order polynomial fitting [103] to remove tissue 

fluorescence background. Spectral response calibration was conducted using a tungsten 
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halogen lamp (LS-1-CAL, Ocean Optics, FL, USA). The effective spectral range was 800 

to 1790 cm-1. Data were normalized to the area under curve.  

4.2.3 Clustering Analysis 

Raman pseudo-color images were generated by k-means clustering. K-means is an 

unsupervised algorithm for cluster analysis and can easily handle large amounts of Raman 

spectroscopy data for cell [165] and tissue [158] imaging. The first 100 principal 

components accounting for 95% - 99% of the variation in the dataset served as input for 

K-means. The number of clusters was determined by visual comparison of the pseudo-

color image and histopathology. Each cluster was represented by a centroid Raman 

spectrum and assigned a different color. To eliminate spectral outliers, any spectrum that 

belonged to a cluster that was more than three times the standard deviation from the mean 

of that cluster was omitted [158]. We then annotated the centroid Raman spectrum of each 

cluster as either BCC or normal skin structures: inflamed dermis (Inf), epidermis (Epi), 

dermis (Der), hair follicle (HF), hair shaft (HS), sebaceous gland (SG), and fat. HS is a 

long filament in the center of the follicle extended above the surface of epidermis (also 

called hair). HF is the sheath of cells and connective tissue that surrounds the root of a hair. 

HF and HS were separated because they had heterogenous biochemical composition [160]. 

While muscle tissue can be present in Mohs sections and has been studied in other Raman 

studies [151, 162], it generally appears in a small minority of cases; thus, we have excluded 

it from this study.     
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4.2.4 Raman Biophysical Model 

A previously developed biophysical model [161] was used to extract the 

biochemical composition from the centroid Raman spectra of BCC and normal tissue 

structures. The model consists of seven Raman active components: collagen, elastin, 

triolein, keratin, nucleus, ceramide, and water, as shown in Fig. 1. Melanin was not 

included because melanin played a minor role in fitting the spectra of normal tissue and 

non-pigmented BCC. All the model components were extracted from human skin sections 

in situ and contained rich biochemical and structural information. For instance, collagen 

and elastin were the major constituents in dermal extracellular matrix, while keratin was 

rich in epidermal extracellular matrix. Nucleus represented the nuclear material in the cell. 

Ceramide was important constituent in epidermal lipid, while triolein existed in small 

amount in sebaceous lipid and large amount in subcutaneous fat.  

4.2.5 Model Fitting and Statistical Analysis 

Each centroid Raman spectrum was described as a linear combination of the model 

components according to a non-negative linear least-squares fitting criteria. The fit 

coefficients were then visualized using scatter plots. The variation of the fit coefficient is 

represented by the error bar generated by the 95% confidence interval. The fit coefficients 

of BCC and individual normal tissue structures were statistically compared. To account for 

dependencies in the data inherent from measuring multiple skin structures per patient, 

linear fixed-effects models were employed with the skin structures (epidermis, dermis, etc.) 

treated as a fixed effect and the patient treated as a random effect. The models were fitted 

using restricted maximum likelihood and p-values were derived from t-tests using 

Satterthwaite approximations [166, 167]. 

4.2.6 Diagnostic Algorithm 

A logistic regression classifier was built to discriminate BCC from normal tissue 

structures based on their fit coefficients. Leave-one-patient-out receiver operator 
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characteristic (ROC) analysis was used to determine the optimum number of input model 

components., i.e., the models were trained using a subset of 29 patients and tested on the 

remaining one patient. To avoid overfitting, the number of input model components was in 

all cases no more than 4. Leave-one-spectrum-out ROC analysis was also performed for 

inspection of the misclassified spectra. The area under the ROC curve (AUC) was 

calculated to measure the discriminatory power of the classification model. The 

combination of sensitivity and specificity with of greatest clinical value was obtained from 

the ROC curve. Sensitivity determines the ability of the model to correctly identify the 

positive group, whereas specificity is the ability of the model to correctly identify the 

negative group. Positive predictive value (PPV) and negative predictive value (NPV) were 

derived from the following equation. PPV is the probability that the positive group (BCC) 

identified by the model is truly positive. NPV is the probability that the negative group 

(normal tissue) identified by the model is truly negative.  

 

 
𝑃𝑃𝑉 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(4.1) 

   

 
𝑁𝑃𝑉 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

(4.2) 
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4.3 RESULTS  

4.3.1 Annotated Tissue Spectra Database 

In total, we obtained 223 centroid Raman spectra from 30 patients, including 50 

spectra from BCC, and 173 spectra from normal structures (including inflamed dermis (N 

= 19), epidermis (N = 26), dermis (N = 47), hair follicle (N = 31), hair shaft (N = 18), 

sebaceous gland (N = 22), and fat (N = 10)).  

Reflectance confocal images were also collected from each region. The images 

could also be stitched together to generate a larger field of view. Reflectance confocal 

images of various skin structures are displayed in Appendix B.  

Figure 4.1 shows a typical example of Raman experiment. Good visual 

correspondence was observed between Raman pseudo-color images and H&E images of 

the serial section. Figure 4.2 shows the mean Raman spectra of BCC and normal structures. 

The main differences between BCC and epidermis/hair follicle/inflamed dermis can be 

found at 1093, 1577, 1663 cm-1 (assigned to nucleus), while the main differences between 

dermis and BCC can be found at 856, 940, 1248 cm-1 (assigned to collagen).  

4.3.2 Biophysical Model Fitting Results 

Figure 4.3 shows the mean Raman spectra fit to the model components in Fig. 1. 

The fit coefficients of the model components computed from the biophysical model were 

visualized in Figure 4.4. Statistical significance for BCC versus inflamed dermis, BCC 

versus epidermis, BCC versus dermis, and BCC versus hair follicle was demonstrated in 

Figure 4.4. A complete list of statistical comparison between BCC and individual normal 

structures was displayed in Table 4.1.  
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Figure 4.1: Raman experiment on a typical skin tissue section. (a) H&E image shows 

six measured regions of 100×100 μm2, being represented as empty 

squares. Scale bar: 500 μm. (b) H&E image of the serial section. (c) 

Bright-field image. (d) Reflectance confocal images. (e) Raman pseudo-

color image generated by k-means. Region 1 and 2 contains BCC (yellow) 

and dermis (blue), region 3 contains sebaceous gland (yellow) and MgF2 

substrate (blue), region 4 contains hair shaft (yellow) and hair follicle 

(blue), region 5 contains inflamed dermis (yellow) and dermis (blue), and 

region 6 contains epidermis (yellow) and MgF2 substrate (blue).  
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Figure 4.2: Mean Raman spectra ± SD of all individual tissue structures, including 

BCC, Inf (inflamed dermis), Epi (epidermis), Der (dermis), HF (hair 

follicle), HS (hair shaft), SG (sebaceous gland) and fat. (b) Spectral 

differences of mean spectra of BCC minus Epi, BCC minus HF, and BCC 

minus Inf are compared with the basis spectrum of nucleus. (c) Spectral 

difference of mean spectra of dermis minus BCC is compared with the 

basis spectrum of collagen. Peak positions of the main Raman bands are 

labeled.  
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Figure 4.3: Mean Raman spectra of BCC, Inf (inflamed dermis), Epi (epidermis), Der 

(dermis), HF (hair follicle), HS (hair shaft), SG (sebaceous gland) and fat 

fit to the model components in Fig. 1. Black solid lines: mean tissue 

spectra. Red dotted lines: model fits. Residuals are also plotted on the 

bottom.  
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Figure 4.4: Fit coefficients of the biophysical markers for BCC (N = 50), Inf 

(inflamed dermis, N = 19), Epi (epidermis, N = 26), Der (dermis, N = 47), 

HF (hair follicle, N = 31), HS (hair shaft, N = 18), SG (sebaceous gland, N 

= 22) and fat (N = 10). Each point represents a spectrum data. Statistical 

significance of BCC versus Inf, BCC versus Epi, BCC versus Der, and 

BCC versus HF are labeled. *p≤0.05, **p≤0.01. 
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Table 4.1: Statistical comparison between BCC and individual normal structures (*p≤

0.05, **p≤0.01). 

  Collagen Elastin Triolein Nucleus Keratin Ceramide Water 

 

 

 

BCC vs. 

Inflammation **   ** **   

Epidermis  *  ** **   

Dermis ** * * ** ** **  

Hair follicle    ** **  ** 

Hair shaft   ** **  **  

Sebaceous 

gland 

 ** ** ** ** ** ** 

Fat  ** ** ** **  * 

 

4.3.3 Discrimination between BCC and Normal Tissue Structures 

The optimum results to classify BCC from all normal structures were reached by 

using the fit coefficient of nucleus alone, leading to an AUC of 0.94 for leave-one-patient-

out ROC analysis, and 0.97 for leave-one-spectrum-out ROC analysis (Figure 4.5). 

Additional inclusion of keratin, triolein, and collagen in the classification model did not 

further improve the diagnostic performance (Table 4.2). A summary of misclassifications 

is displayed in Table 4.3. One may see that hair follicle and epidermis are more commonly 

misclassified as BCC compared to other normal structures. The discrimination threshold is 

chosen to prioritize either high sensitivity or high specificity, or a balanced combination of 

sensitivity and specificity (both ≥90%). By prioritizing high sensitivity, classification 

result achieved 100% sensitivity, 84% specificity, 65% PPV, and 100% NPV; while by 

prioritizing high specificity, classification result reached 52% sensitivity, 99% specificity, 

93% PPV, and 88% NPV.  
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Figure 4.5: ROC analysis for classifying BCC from all normal structures.  Black 

thick line: leave-one-spectrum-out ROC curve. Blue thin line: leave-one-

patient-out ROC curve.  

Table 4.2: Discriminating between BCC and all normal structures using optimum 

combination of components. 

# components Optimum combinations 

Leave-one-

patient-out 

ROC AUC 

Leave-one-

spectrum-out 

ROC AUC 

1 [nucleus] 0.94 0.97 

2 [nucleus, keratin] 

0.94 0.97 
[nucleus, triolein] 

[nucleus, collagen] 

3 nucleus, triolein, keratin] 

0.94 0.97 [nucleus, triolein, collagen] 

4 [nucleus, keratin, triolein, 

collagen] 
0.93 0.96 
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Table 4.3: Summary of misclassifications by prioritizing high sensitivity or specificity. 

 

 Sensitivity/ 

Specificity 

(%) 

PPV/ 

NPV 

(%) 

BCC 

Normal tissue structures 

 
Inf Epi Der HF HS SG Fat 

Prioritizing 

high 

sensitivity 

 

100/84 65/100 0/50 3/19 6/26 0/47 15/31 2/18 1/22 0/10 

Prioritizing 

high 

specificity 

 

52/99 93/88 24/50 1/19 1/26 0/47 0/31 0/18 0/22 0/10 

Balanced 

sensitivity 

and 

specificity 

 

90/92 76/97 5/50 2/19 5/26 0/47 6/31 1/18 0/22 0/10 

 

Figure 4.6 represents separating BCC from different categories of normal 

structures using the fit coefficients of two primary model components. Figure 4.6(a) shows 

that epidermis and hair follicle have the largest overlap with BCC compared to other 

normal structures. The overlap occurs when epidermis and hair follicle have comparable 

level of keratin and nucleus content as BCC. Figure 4.6(b) shows that fat and sebaceous 

gland can be easily separated from BCC because they have distinct nucleus and lipid 

content. Figure 4.6(c) (d) demonstrate inflamed dermis/dermis can also be separated from 

BCC using their distinct differences in nucleus and collagen.  
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Figure 4.6: Scatter plots demonstrates the performance of two primary model 

components in discriminating BCC from normal structures. (a) Nucleus 

and keratin content of BCC, epidermis and HF. (b) Nucleus and triolein 

content of BCC, fat and SG. (c) Nucleus and ceramide content of BCC 

and inflamed dermis. (d) Nucleus and collagen content of BCC and 

dermis. Red dots: BCC. Black crosses: normal tissue structures. Each 

point represents a spectrum data. The black line is the decision line drawn 

by logistic regression.  
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4.4 DISCUSSION AND CONCLUSION 

In this chapter, we evaluated the accuracy of Raman to discriminate between BCC 

and normal skin structures in excised Mohs skin sections. In contrast to previous studies, 

our discriminatory model was built upon the biochemical differences of Raman active 

components extracted from a previously developed model [161]. 

Our results show markedly different biochemical and structural compositions 

between BCC and normal tissue (Figure 4.4 and Table 4.1). One important finding is that 

the spectra of BCC has statistically significantly larger contribution of nucleus material 

compared to normal tissue structures, which is consistent with previous Raman studies 

[158, 159, 168]. As seen in Figure 4.2(b), mean BCC spectra have stronger contribution 

from 1093, 1577 and 1663 cm-1 assigned to nucleus compared to epidermis, hair follicle 

and inflamed dermis. This is also consistent with the H&E image in Figure 4.1(b), where 

there are smaller amounts of cytoplasm and higher density of cells present in the BCC 

tumor. Other studies have pointed out similar or increased nucleic contributions in inflamed 

regions according to the presence of specific Raman bands [151, 162].  

Another important finding is that BCC has significantly larger contribution from 

keratin compared to inflamed/normal dermis, and lower contribution from keratin than 

epidermis and HF. Keratin is a fibrous structural protein produced by keratinocytes and is 

abundant in normal epidermis. Keratinocytes are the predominant cells originating in the 

basal layer between epidermis and dermis, which then move towards the skin surface in a 

process of maturation and differentiation. The outermost skin layer, stratum corneum, 

consists about 80% of keratin in dry weight [128]. HF is also rich in keratin. The epithelium 

of HF forms a cylinder with different concentric layers, including the inner and outer root 

sheath, with each one expressing a distinct pattern of keratin [169]. Because keratin 

expression is closely related to differentiation of tumors, it plays a significant role in 

identifying the origin of BCC. Several studies have discovered that BCC may arise from 

germinative cells within the basal layer of epidermis or follicular structures [170, 171]. 
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Furthermore, BCC has significantly smaller amounts of collagen and elastin 

compared to dermis. The difference spectra in Figure 4.2(c) shows that BCC spectra have 

weaker contribution from 856, 940, 1248 cm-1 assigned to the vibrational modes of 

collagen type I and elastin. This is likely the result of the epidermal origin of the BCC, high 

in cellular content and low in connective tissue. We also found collagen in inflamed dermis 

is higher than BCC, but lower than normal dermis. This confirms the observation of an 

early study that a dense inflammatory infiltrate appears to have less collagen than normal 

dermis [158].  

Finally, BCC has significantly larger amount of triolein and ceramide compared to 

dermis, and larger amount of triolein compared to epidermis. The difference spectrum of 

BCC and dermis also shows higher contribution at 1080, 1128, 1440 cm-1 associated with 

lipids. A previous biophysical model built upon nonmelanoma skin cancer found an 

increased contribution of triolein to BCC spectra [65]. Another biophysical model also 

found an increase in triolein in urological carcinoma lesions [96]. Those studies suggested 

that maintaining sufficient lipid levels may be necessary to sustain fast tumor growth.   

Some normal structures have high biochemical similarity. For instance, the 

biochemical compositions of epidermis and HF are highly similar, which agrees with the 

fact that HF is an invagination of normal dermis [160]. As a result, a previous study 

grouped epidermis and HF together for clustering analysis [151]. The biochemical 

composition of HS may resemble either HF or SG. This is because HS consists of 

terminally differentiated keratinocytes that are produced by HF [169], but it is sometimes 

coated by the sebum secreted by SG [172]. This also explains why the fit coefficients of 

HS have larger variation compared to the other components. Fat and SG both have low 

nucleus and high triolein content, so they can be easily discriminated from BCC (Figure 

4.6(b)). 

We evaluated the diagnostic performance by prioritizing either high sensitivity or 

high specificity (Table 4.3). Achieving high specificity is clinically significant in tissue-

conserving surgeries such as Mohs, when preserving normal tissue is a critical concern. 
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Appropriate use criteria of Mohs include tumor location (such as “mask areas” of face), 

size, and patient type [173]. On the other hand, achieving high sensitivity is more clinically 

significant when the primary goal is to capture the entire margin based on aggressive 

growth histology rather than preserving normal tissue.  

By prioritizing high sensitivity, we achieved 100% sensitivity and 84% specificity 

in discriminating BCC from all normal tissue structures. Our results show that that nucleus 

accounts for most of the discriminant ability. By using the fit coefficient of nucleus alone, 

100% of the spectra annotated as dermis (40/40) and fat (10/10) were correctly classified. 

Most of the spectra annotated as SG (95%, 21/22) and HS (89%, 16/18) were also correctly 

classified. The misclassification in these latter two categories may be due to unknown 

tissue structures grouped as the same cluster as SG or HS, leading to high fitting error. On 

the contrary, HF, epidermis and inflamed dermis were the normal structures that were more 

easily misclassified as BCC. 16 out of 31 spectra annotated as HF were correctly classified 

(52%), 20 out of 26 spectra annotated as epidermis were correctly classified (77%), and 16 

out of 19 spectra annotated as inflamed dermis were correctly classified (84%). 

HF and epidermis were most easily misclassified as BCC. Figure 4.6(a) 

demonstrates that those misclassifications occur due to high nucleus content in some of HF 

and epidermis. The main reason is that HF may have abundant basal cells in inner and outer 

root sheath layer, whereas epidermis is rich in basal keratinocyte stem cells in stratum 

basale layer and polyhedral keratinocytes in stratum spinosum layer. About 16% of 

inflamed dermis was also misclassified as BCC. Corresponding with the H&E images 

indicated that inflamed dermis regions have higher number of nucleus than normal dermis, 

so their spectra were more similar to BCC than normal dermis.   

By prioritizing high specificity, we achieved 99% specificity, 52% sensitivity and 

93% PPV. High specificity indicates a region has high risk, so a dermatologist could 

remove more tissue from the corresponding region with high confidence of it being tumor 

[174]. In a Mohs guidance setting, this approach could reduce the number of skin samples 

processed for histopathology. The dermatologist would still make a histopathological 
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diagnosis on the final stage to ensure all the tumors are entirely removed; thus, one may be 

able to tolerate lower sensitivity. Ultimately, this system would need to be tested in an 

intraoperative setting to determine its impact on reducing the number of tissue samples 

needing histology processing. Our results showed 24 out of 50 spectra annotated as BCC 

were misclassified as normal structures. All the spectra annotated as dermis, HF, HS, SG 

and fat were classified correctly. Most of the spectra annotated as inflamed dermis (95%, 

18/19) and epidermis (96%, 25/26) were correctly classified.  

Although we have demonstrated Raman microscopy is highly accurate in 

evaluating skin tumor surgical margin, one major limitation is lengthy acquisition time. To 

raster scan a tissue 1mm2 in size, it would take around 10 – 20 hours, making it unpractical 

for intraoperative use. To overcome this limitation, several wide-field imaging techniques 

could be employed. Kong et al. integrated Raman microscopy with tissue autofluorescence 

imaging and achieved one or two orders of magnitude faster speed [151]. Karen et al. 

developed fluorescence confocal mosaicking microscopy and proved its potential for rapid 

assessment of BCC margins during Mohs [175]. Flores et al used fluorescence confocal 

mosaicking microscopy to enable rapid detection of residual tumor directly in the surgical 

wounds on patients [18]. Further directions for this work include speeding up Raman 

acquisition without losing molecular specificity, and combining Raman spectroscopy with 

wide-field imaging technique for fast intraoperative surgical guidance.  
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Chapter 5: Superpixel Raman spectroscopy for rapid skin cancer 

surgical margin assessment  

5.1 BACKGROUND 

Although confocal Raman microscope has demonstrated high accuracy in detecting 

tumor margin, one major challenge is the acquisition speed is slow. A good signal-to-noise 

ratio spectrum typically takes 1 second in tissue; thus, to scan a centimeter scale sample 

would take hours or even days. This makes histopathology impractical for use during 

surgery for most cancer types. As a result, this chapter centers on expediting the acquisition 

speed of Raman spectroscopy for cancer margin detection.  

5.2 BASIC PRINCIPLE OF SUPERPIXEL ACQUISITION 

We describe a superpixel acquisition method for rapid human skin cancer margin 

assessment. Figure 5.1 demonstrates its basic principle. While sparse point-by-point 

scanning requires 1s for each pixel, superpixel acquisition only takes 1s for the whole area, 

thus substantially speeding up the acquisition. When the laser spot size is 1μm and 

superpixel size is 100μm, speed gain would be 10,000x.  

 

 

Figure 5.1: Comparison between sparse point-by-point scanning and superpixel 

imaging.  
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As seen in Figure 5.2, a tradeoff exists between speed up factor and spatial 

resolution. Our preliminary superpixel acquisition data were obtained based on 100μm 

superpixel size, because reasonable resections are a least a few hundreds of microns. In the 

future, we will perform experiment on different superpixel sizes to determine the optimum 

size.  

 

Figure 5.2: Tradeoff between superpixel size and speed up factor. Here show three 

different sizes: 25μm, 50μm, and 100μm. 

5.3 PRELIMINARY RESULTS OF SUPERPIXEL ACQUISITION 

We have obtained some preliminary results on both tissue-simulating phantom and 

human skin samples. Figure 5.3(a) shows an example experiment on a basal cell carcinoma 

(BCC) section. We sampled on both BCC and normal tissue structures (epidermis, dermis, 

inflamed dermis, hair follicle, hair shaft, sebaceous gland, and fat). In total, we collected 

data from 154 sites from 10 samples in 8 patients undergoing Mohs surgery. We then 

applied the biophysical inverse model to the average tissue spectra and extracted the 

concentration of the biomarkers. Finally, we used the diagnostic model described in 

Chapter 4 to classify BCC from normal tissue structures. Our initial results demonstrated 
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that the optimum classification result can be achieved by combining the biochemical 

changes of nucleus, collagen, keratin, and ceramide. Figure 5.3(b) showed that superpixel 

acquisition has consistent diagnostic performance as compared to point-by-point scanning.  

 

Figure 5.3: (a) Example of superpixel experiment on a basal cell carcinoma (BCC) 

section. From each superpixel (100×100μm2), we generated one average 

Raman spectrum. The reflectance confocal images and average tissue 

spectra are shown on the right. The white squares label the location of the 

superpixel (100×100μm2). (b) ROC curves of superpixel acquisition 

versus point-by-point scanning.   

5.4 SUPERPIXEL IMAGING 

5.4.1 Instrumentation 

After demonstrating the capability of superpixel acquisition, our next step is to 

perform superpixel imaging on a large field of view (e.g. 1×1mm2). Our previous system 

only allows for scanning a maximum of 300×300μm2 by steering the laser beam using 2D 

galvanometer mirrors. Therefore, we added a 2D motorized translation stage to translate 

the sample. Figure 5.4 compares the optical system before and after adaption. We changed 



79 

 

the system from inverted objective setup to upright setup due to the mechanical restraint of 

the motorized stages. However, in our future work we will replace it with a high-speed 

linear stage (e.g. HLD117, Prior Scientific [33]), which has a fast translation speed, and 

can be easily mounted on a commercial microscope base. Another system upgrade in the 

future is adding autofocusing in the z axis [33]. For the preliminary study, we placed a 

quartz slide on the top of the sample to improve surface flatness. However, the image blurs 

when the stage moves a few millimeters. An autofocusing algorithm would keep the sample 

within focus at all times, enabling a larger scan area. Appendix D Table D.1 summarizes 

the key components of this system. 

 

Figure 5.4: (a) Previous system (inverted objective setup, the tissue is stationary). (b) 

Current system (upright objective setup, the tissue is mounted on a 2D 

motorized translation stage). (b) is adapted from (a) for superpixel 

imaging.  

 

Figure 5.5 displays the LabVIEW program for automated superpixel imaging. The 

user records the X and Y value of the initial position, defines the size of the superpixel (25, 

50, 75, or 100 μm), the number of steps, and the integration time. Once click “Run”, the 

galvanometer mirrors will scan continuously to generate the superpixel, and the reflectance 
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confocal image will be displayed and saved in real time. Meanwhile, the motorized stage 

will translate the sample in 2D, and the CCD camera will capture one spectrum for each 

step. To repeat the measurement for the same region, the user only needs to move the 

motorized stage back to its original X and Y position.    

  

 

Figure 5.5: LabVIEW program for automated superpixel imaging.   

5.4.2 experiment 

In Figure 5.6, we imaged two Mohs surgical specimens, one positive margin and 

one negative margin. The positive margin contains basal cell carcinoma and normal tissue, 

and the negative margin contains only normal tissue. We tested three superpixel sizes 

within the same 1×1mm2 area. A prior classification model was applied to each superpixel, 

labeling each superpixel as positive or negative. The results showed Raman correctly 

classified most of the positive and negative margins for the 100 μm, 50 μm and 25 μm 

superpixel images. In the future, we will collect more superpixel images, and correlate each 

pixel with the ground truth diagnosis. We will then optimize the classification model to 

improve the diagnostic performance.  
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Figure 5.6: An example superpixel imaging experiment. (a) Positive margin. (b) 

Negative margin. Three superpixel sizes were tested: 100μm, 50μm, and 

25μm. The classification maps shown here targeted at high specificity. 

Yellow: positive. Blue: negative. Scale bar: 200μm. 
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Chapter 6: Conclusion  

The goal of this dissertation is to explore the biophysical origin of skin cancer 

detection using Raman spectroscopy. We built a mathematical inverse model (Chapter 2) 

and demonstrated that Raman spectroscopy is a promising tool for early cancer screening 

(Chapter 3), and surgical guidance of tumor margin delineation (Chapter 4 & 5).  

Our previous clinical study showed that Raman spectroscopy has high accuracy in 

detecting malignant melanoma, the deadliest version of skin cancer. However, the 

statistical method we used for classification does not reveal the key diagnostic markers that 

Raman spectroscopy relies on to make an accurate diagnosis. Therefore, we built a 

biophysical inverse Raman model using eight primary Raman active biomarkers, including 

proteins (collagen, elastin, keratin), lipids (ceramide, triolein), cell nucleus, pigment 

(melanin), and water. We found those biomarkers are the most relevant in describing the 

spectral differences between normal skin and various diseased states.  

For in vivo melanoma detection, we concluded that collagen and triolein are the two 

primary diagnostic markers. An interesting result we found is that the decrease of triolein 

(or subcutaneous fat) signal in melanoma is partially due to the epidermal thickening effect. 

Thickened epithelium prevents light from entering deeper layer of the skin, leading to a 

substantial decrease of Raman emission from fat. The biophysical changes we observed is 

based on our non-confocal probe, which has a relatively large tissue probing volume and 

deep tissue interrogation. It is worth noticing that the biophysical changes detected by 

Raman spectroscopy may vary depending on the probe design, as discussed by the Huang 

group [176]; however, the eight Raman active components will not change with the probe 

design. To further improve our study, we can include patient information in the diagnostic 

model (gender, race, family history, etc.), and confirm the biophysical changes (such as the 

epidermal thickening process) from histopathology and other optical imaging modalities 

(such as optical coherence tomography).  

For ex vivo surgical margin detection, our results showed that Raman spectroscopy 

is highly accurate in discriminating basal cell carcinoma. Significant differences were 
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observed for nucleus, keratin, collagen, triolein, and ceramide content between basal cell 

carcinoma and surrounding normal tissue structures. Particularly, nucleus accounted for 

most of the discriminant power. We also highlighted a few classification tasks that the 

dermatologists are mostly interested, such as basal cell carcinoma versus epidermis and 

hair follicle, and basal cell carcinoma versus normal and inflamed dermis. Our results 

indicated that epidermis and hair follicle are mostly easily misclassified as basal cell 

carcinoma, especially in regions where the nucleus content is high. Besides, inflamed 

dermis has an increased amount of nucleus, and decreased amount of collagen compared 

to normal dermis. These results are consistent with standard histopathological diagnosis.  

Finally, we described a superpixel acquisition approach for rapid human skin 

cancer surgical margin assessment. We envision this approach being used to develop an 

accurate, inexpensive, and efficient cancer imaging device, to aid Mohs surgeons and 

general practitioners in skin margin assessment during surgery.   
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Appendices 

APPENDIX A: SYSTEM CHARACTERIZATION 

A.1 Confocal Raman Microscope 

Lateral, axial, and spectral resolution of the confocal Raman microscope is 1μm, 

8μm, 8 cm-1, respectively. System was characterized using the method described in 

Reference [177].   

 

Figure A.1: Lateral, axial, and spectral resolution of the confocal Raman microscope.  
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A.2 Reflectance Confocal Microscope (RCM) 

The maximum field of view of reflectance confocal microscope (RCM) is 300μm 

in diameter, as shown in Figure A.2. The field of view is limited by the aperture of the 

scanning lens. Currently, two achromatic doublets act as the scanning lens and tube lens to 

conjugate the 2D galvanometer mirrors to the back aperture of the microscope objective. 

However, a doublet has limited aperture and severe optical aberrations on the periphery of 

the image. Therefore, only the central 200×200 μm2 region is used. In our future work, we 

should replace the doublet with a scanning lens or F-theta lens.  

 

Figure A.2: Characterizing the field of view of RCM image using an USAF 1951 

resolution target. A neural density filter with OD = 2.0 was used to 

attenuate the laser power to ~1% to prevent damage to the coating of the 

resolution target. The voltage of the current preamplifier was increased 

from 0.48V to 0.65V. Group 4 element 2 corresponds to 17.96 line pairs 

per mm (arrow). (a) +/- 3.0V input voltage. (b) +/- 1.0V input voltage. (b) 

is a 100×100μm2 superpixel.  
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The lateral resolution of RCM is better than 1μm, as seen from Figure A.3. 

Individual polystyrene beads can be clearly resolved.    

 

Figure A.3: Characterizing the lateral resolution of RCM using 1μm polystyrene 

beads.  
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APPENDIX B: RCM IMAGE OF SKIN 

B.1 RCM Image of Tissue Sections 

 

Figure B.1: RCM images of various tissue structures on Mohs skin sections. Each 

image has a size of 200×200μm2. 

 

 

Figure B.2: Left: RCM image of a basal cell carcinoma (BCC) section. Right: H&E 

stained image of the serial section. BCC tumor is highlighted in red in 

both images. The RCM images were stitched together using Microsoft 

Image Composite Editor (ICE).  
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Figure B.3: Left: RCM image of a normal section. Right: H&E stained image of the 

serial section. Two hair follicles can be clearly identified from the image 

(yellow arrows).  

B.2 RCM Image of Unsectioned Tissue Blocks 

RCM images can be obtained directly from the unsectioned tissue blocks. This 

indicates that diagnosis can be obtained directly by analyzing the surface of tissue blocks 

removed during surgery without cutting thin sections [151]. In Figure B.4, stratum 

corneum and dermis can be clearly identified from a skin tissue block. The RCM image of 

stratum corneum matches with a previous study [42]. 

 

Figure B.4: RCM image of a skin tissue block. (a) (b) Stratum corneum side. (c) (d) 

Dermal side. 
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APPENDIX C: RCM VS TWO-PHOTON-EXCITED FLUORESCENCE IMAGE  

High correlation is found between RCM image and two-photon-excited 

fluorescence (TPEF) image, as shown in Figure B.5.  

 

Figure B.5: Comparison between RCM and TPEF image. (a) TPEF image of a human 

skin section. (b) Zoom-in. Excitation wavelength: 820nm. Objective lens 

20x. (c) Bright-field image. (d) RCM image. Comparison is also made 

between TPEF image of (e) human skin and (f) porcine skin. Red: keratin 

(excitation: 780nm, emission: 525±35nm). Green: collagen (excitation: 

1020nm, emission: 525±35nm). 
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APPENDIX D: COMPLETE LIST OF SYSTEM COMPONENTS  

Table D.1 A summary of the system components. Hardware abbreviations can be 

found in Figure 2.1.  

Hardware Description Part Number Manufacturer 

Laser 830nm free-space single 

mode diode laser, maximum 

power 200mW 

LM830-PLR 200 

The new version 

was degraded to 

170mw 

Ondax 

CF 830nm Maxline laser clean-up 

filter 

LL01-830-25 Semrock 

OI Free space isolator, 830nm IO-3D-830-VLP Thorlabs 

Mirrors Protected silver mirror, 1” ME1-P01 Thorlabs 

SF Spatial filter system (L1, P1, 

& L2) 

KT310 Thorlabs 

L1 Aspheric lens, f = 11mm A397TM-B Thorlabs 

P1 25um pinhole P25S Thorlabs 

L2 Achromatic doublet, f = 

25mm 

AC254-025-B-

ML 

Thorlabs 

D1, D2 830 nm LPF, RazorEdge 

Dichroic laser-flat 

beamsplitter 

LPD01-830RU-

25x36x2.0 

 

Semrock 

GM 2D small beam diameter 

(<5mm) scanning galvo 

mirror systems 

GVSM002 Thorlabs 

L3 Achromatic doublet, f = 

100mm 

AC254-100-B-

ML 

Thorlabs 

L4 Achromatic doublet, f = 

200mm 

AC254-200-B-

ML 

Thorlabs 

FM 30 mm Cage Cube-Mounted 

Non-Polarizing Beamsplitter, 

700 - 1100 nm, 50:50 split 

ratio 

CM1-BS014 

 

Thorlabs 

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4129&pn=CM1-BS014
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Table D.1 Continued. 

Microscope 

objective 

60x, NA = 1.2, WD = 

0.28mm, water 

UPLSAPO60XW

IR 

Olympus 

Low bgd Raman 

substrate 

Magnesium fluoride window  64-094 Edmund Optics 

Low bgd Raman 

substrate (for cell 

study) 

Quartz cover slip for 

microscope slide, fused, 1” 

dia, 0.15-0.25mm thick 

43211 Alfa Aesar 

  

  

Sample stage 

(manual 

translation), used 

for inverted 

objective setup 

Aperture platform two-Axis 

linear stage, 1/4-20 with two 

vernier micrometer, 13 mm 

Travel 

406 with SM-13 New Focus 

CMOS MP monochrome CMOS 

camera, 12-bit 

BTE-B050-U  Mightex 

Motorized 

Stage 

2-axis 1” motorized 

translation stage  

PT1-Z8  Thorlabs 

Axial translation 

(manual) 

1" Translation Stage with 

Standard Micrometer 

PT1 Thorlabs 

Notch filter 830nm, 25mm Diameter, OD 

4 Notch Filter 

86-703 

 

Edmund Optics 

 

L5, L6 Aspheric lens f = 18.4mm  Thorlabs 

P2, P3 50um fiber, NA = 0.22, multi-

mode, Low OH 

M14L01 Thorlabs 

Spectrograph Holographic Imaging 

Spectrograph  

HoloSpec f/1.8i - 

NIR 

Kaiser Optical 

Systems 

CCD Back-illuminated deep-

depletion CCD, Broad band 

UV-Near IR detection, 

1024x256 pixels 

Andor iDus 420, 

DU420ABEXDD 

Oxford 

Instruments 

Current 

preamplifier 

Low noise current 

preamplifier 

SR570 Stanford 

Research 

Systems 

https://www.thorlabs.com/thorproduct.cfm?partnumber=M14L01
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Table D.1 Continued.  

DAQ board Data acquisition board  PCIe-6351 National 

Instruments 

Future work    

Axial translation 

(autofocusing) 

NanoFlex 5 mm Translation 

Stage with Diff. Drive and 

Piezo 

NFL5DP20 

(already 

purchased) 

Thorlabs 

High-speed linear 

stage 

ProScan 121mm x 81mm 

travel DC linear motor stage 

for inverted microscope 

HLD117NN Prior Scientific 
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