
Copyright

by

Jiahan Liu

2019

The Thesis Committee for Jiahan Liu

certifies that this is the approved version of the following thesis:

Federated Learning Model Complexity vs Robustness

to non-IID data and Selective Federated Learning

Supervising Committee:

Christine Julien, Supervisor

Jonathan Valvano

Haris Vikalo

Federated Learning Model Complexity vs Robustness

to non-IID data and Selective Federated Learning

by

Jiahan Liu

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

The University of Texas at Austin

December 2019

Dedication

To the Zhou Family, Tyler Simmons, Tyler Chen, and my parents, Weize Liu,

Mingzhi Liu

Acknowledgments

I would like to thank Christine Julien for her advice and guidance in support my

research. Thank you Jonathan Valvano and Haris Vikalo for reading this thesis.

The Mobile and Pervasive Computing Lab, Chenguang Liu, Sangsu Lee, Tomasz

Kalbarczyk, Jie Hua, Grace Lee, and Yosef Saputra have all provided insightful

discussion and reading group contributions.

To my family, the Zhou family, Tyler Chen, and Tyler Simmons who have

always been there, I couldn’t have done it without you all.

Finally, I would also like to thank Josie Mallery, Yale Patt, and all my

teachers for all the kindness and inspiration they have shown me throughout my

education.

Jiahan Liu

The University of Texas at Austin

December 2019

v

Federated Learning Model Complexity vs Robustness

to non-IID data and Selective Federated Learning

Jiahan Liu, MSE

The University of Texas at Austin, 2019

Supervisor: Christine Julien

Federated learning trains a global model using data distributed across local nodes,

and differs from centralized machine learning by moving the computation to the

data in order to address the challenges of data ownership, privacy, computational

power, and data storage. Previous federated learning research has addressed the

effect of non independent and identically distributed data on federated learning [6].

Meanwhile, local models may have better performance if the test set is also non-IID

[7]. However, there may be insufficient data on a node to train a local model for

every node; hence the purpose of federated learning.

This research is the first, to our knowledge, to consider model performance

on both a global test set and non-IID test set. Our experiments provide a original

finding in that federated learning is only robust to non-IID data with constraints

on the width and depth of a neural network. There is a tradeoff, however, between

vi

model complexity and feasibility of training the model on edge devices. Thus, we

propose selective federated learning algorithm which greatly allows simpler models

that fit on edge devices to be robust to highly non-IID data. For non-IID test sets,

we prove that a converged federated model may converge to weights which do not

provide the optimal local loss for an arbitrary chosen number of training samples on

each node. Additionally, this thesis discusses the experiments that were conducted

to examine the effects of model complexity, percentage of unbalanced data, and the

current modes of model aggregation on model accuracy. For the experiments, we

deployed federated learning library for multiple devices, Jetson Nano, Raspberry Pi,

Macbook Pro, and Linux server and provide hardware benchmarks.

vii

Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Contributions . 3

1.3 Technical Problem Statement . 3

Chapter 2 Literature Review 6

2.1 Federated Learning of Deep Networks using Model Averaging [6] . . 6

2.2 Federated Learning: Strategies for Improving Communication Effi-

ciency [3] . 8

2.3 Federated Multi-Task Learning [7] 8

2.4 On the Converge of FedAvg on Non-IID Data [5] 9

Chapter 3 Implementation Details 10

3.1 Requirements . 10

viii

3.2 Dataset Division . 11

3.2.1 Training Set Division . 11

3.3 Software Library and Design . 12

3.3.1 Federated Learning . 12

3.3.2 Hyperparameter Search . 13

3.3.3 Deployed Version . 13

3.4 Model Complexity . 15

3.4.1 Initialization, Activation Function and Hyper Parameter Search 17

Chapter 4 Hardware and Time Constraints 18

4.1 Number of Multiply And Accumulate 19

4.1.1 Single Layer ReLu Model Computation Requirements 19

4.1.2 Four Layer Convolutional and ReLu Model Computation Re-

quirements . 20

4.1.3 Six Layer Extra Wide Convolutional and ReLu Model Com-

putation Requirements . 21

Chapter 5 Federated Convergence of Global vs Local Losses 22

Chapter 6 Selective Federated Averaging 26

6.1 Time Complexity Analysis . 29

Chapter 7 Experimental Results 30

7.1 Experiments: Test Set of Original 10,000 MNIST Images 31

7.2 Experiments: Test Set from N% Balanced Paritioned 33

7.3 Centralized Learning Baseline . 35

Chapter 8 Conclusion 36

8.1 Future Work . 36

ix

Bibliography 38

Vita 41

x

List of Tables

1.1 Average prediction error percentages and standard deviation for 10

experiments (Multi-task Federated Learning paper) 5

3.1 Data Partition . 11

4.1 Single Layer ReLu Model . 20

4.2 Software time for Single Layer ReLu Model 20

4.3 Four Layer Convolutional and ReLu Model Computation Requirements 20

4.4 Software time for Four Layer Convolutional and ReLu Model 21

4.5 Six Layer Extra Wide Convolutional and ReLu Model MACs 21

7.1 Centralized Training Test Accuracies 35

xi

List of Figures

2.1 Federated Averaging Algorithm . 7

3.1 Software Design . 12

3.2 Federated averaging . 15

6.1 Selection Function . 27

6.2 Selective Federated Averagin . 28

7.1 Single Layer ReLu Model Accuracy for IID Test Set 32

7.2 Four Layer Convolutional and ReLu Model Accuracy for IID Test Set 32

7.3 Six Layer Extra Wide Convolutional and ReLu Model Accuracy for

IID Test Set . 33

7.4 Single Layer ReLu Model Accuracy for non-IID Test Set 34

7.5 Four Layer Convolutional and ReLu Model Accuracy for non-IID Test

Set . 34

7.6 Six Layer Extra Wide Convolutional and ReLu Model Accuracy for

non-IID Test Set . 35

xii

Chapter 1

Introduction

1.1 Background

The current paradigm for machine learning trains model(s) using data stored at a

centralized location. The data, however, is often collected on personalized devices

or edge devices. This introduces the challenges of data privacy, ownership, com-

munication, and computation. Federated learning is a form of distributed machine

learning first proposed by Konecny et al. in 2015[4] that seeks to tackle these chal-

lenges. Federated learning brings the training computation to the data instead of

bringing the data to the computation and averages the model weights to create an

aggregate model.

Federated learning works by optimizing weights locally on each node then

aggregating the weights on a centralized server before updating all the local mod-

els with the new weights to start another round of training. We consider this one

round of training between communications. Rounds of training continue until model

convergence. Federated learning addresses of data ownership because the raw data

never leave the device. While a backdoor to federated learning has been proposed

by Bagdasaryan et al. [1], the paper exposes how the performance of the federated

1

model can be attacked, and not how the privacy of the model can be compro-

mised. There are currently no known methods to reverse engineer the data from

the weights; hence federated learning is a potential paradigm that preserves data

privacy. Federated learning is better than centralized learning in terms of commu-

nication bandwidth in the cases where the memory size of the weights is less than

the memory size of the data. While the memory size of weights is fixed as a func-

tion of a model architecture, the amount of data collected by a node devices can

vary greatly from application to application. While it’s true that models can have

millions or billions of parameters, raw data can be even larger; for example, lidar

data for the city of Dublin is 0.5 terabytes [2]. Finally, as personalized and edge

devices are getting more powerful and numerous, they can be leveraged to perform

the computations required in federated learning.

An example application where federated learning has been successfully ap-

plied is Google’s Gboard which uses federated learning to improve query suggestions

by training on personal phone data without collecting the data itself in a centralized

location [13]. Federated learning, however, still faces both systems and theoretical

challenges. The systems challenges are currently bottlenecked by communication

efficiency and has been researched by Konecny et al., 2017[3]. These communica-

tion challenges stem from the fact that the training time is dominated by the time

between communication rounds rather than the computation time because participa-

tion of the devices in the aggregation step needs to be synchronized. The theoretical

challenges involve the convergence of the federated model and robustness to non-IID

data. While Xi et al. have proven the convergence of FedAvg on non-IID Data [5],

Smith et al. has shown that federated models may underperform models trained

using only local data [7]. However, in practice, nodes may not have enough data to

train it’s own local node; hence, the purpose of federated learning.

2

1.2 Contributions

To the best of our knowledge, we are the first to conduct experiments for federated

learning in which both the training and test sets are distributed IID and non-IID.

Testing with a non-IID test is significant because the nodes that collect non-IID

training data may keep encountering non-IID data during inference time. We then

prove that it is possible for the global objective to converge to an acceptable loss Q,

but for the local loss on a node N to be an unacceptable magnitude times larger,

regardless of the number of data points on node N. The loss is empirically chosen to

be a proxy for model accuracy, and for a non-IID test set, the local loss is arguably

a better proxy than the global loss for model accuracy for each node. We then

conduct and show the results of experiments for federated learning to find that

neural network models trained in the federated setting are only robust to non-IID

data once the network is wide or deep enough. The key finding from our experiments

is that a single layer 30-neuron neural network can achieve achieve 96.40% accuracy

on MNIST but only 33.2% in the federated setting on completely unbalanced data.

This was missed in the Federated Learning of Deep Networks using Model Averaging

paper [6] where the smallest model tested was a 2 layer hidden neural network that

was 200 neurons wide. This makes complexity vs feasibility on edge devices an

even more significant tradeoff. To improve the performance of simpler models, we

propose a selective federated learning. We provide our federated learning library in

the Mobile and Pervasive Computing repository for future research.

1.3 Technical Problem Statement

The weights of a centralized mode are trained from a set of n training examples

tpxi, yiq|1 ď i ď nu by applying a form of gradient descent to minimize 1
n

řn
i“1 fipwq

where fipwq = lpxi, yi;wq is the loss function on each training example. We denote

3

this optimization the global objective.

Definition 1.3.1. Global Objective

min
wPRd

F pwq s.t. F pwq
def
“

1

n

n
ÿ

i“1

fipwq (1.1)

In the federated learning setting, the training data is partitioned over K

nodes indexed by k and of size nk into partitions Pk. Grouping the training data

by node, we can rewrite the global objective:

F pwq “
K
ÿ

k“1

nk
n
Fkpwq s.t. Fkpwq “

1

nk

ÿ

iPPk

fipwq (1.2)

The rate of convergence of F pwq in a federated model with FedAvg as the

aggregation step is proportional to Γ, the degree of non-iid across all the nodes [5].

Definition 1.3.2. Degree of non-iid [5]. Let F ˚ and F ˚k be the the minimum

values of F pwq and Fkpwq, respectively. The degree of non-iid, Γ, is defined as:

Γ “ F ˚ ´
N
ÿ

k“1

pkF
˚
k (1.3)

The performance premise behind using federated learning is that a model

with weights wG trained over the global set of data will perform better than a model

with weights wk trained over data from a partition Pk. Empirical results from Smith

et al. in the team’s federated multi-task learning paper [7] provides counterexamples

to this premise and shows that for support vector machine models trained on the

the google glass, human activity recognition, and vehicle sensor datasets, the global

federated model performs worse in terms of accuracy than the local model. In table

1.1 is the average prediction error percentages from the paper averaged over ten

experiments:

4

Model Human Activity Google Glass Vehicle Sensor

Global 2.23 (0.30) 5.34 (0.26) 13.4 (0.26)

Local 1.34 (0.21) 4.92 (0.26) 7.81 (0.13)

Table 1.1: Average prediction error percentages and standard deviation for 10 ex-

periments (Multi-task Federated Learning paper)

At first glance, these results conflict with the results published by Konecny

et al., 2014 [6]. Upon closer inspect, we see that Konecny’s results use a global test

set and more complex models than Smith’s experiments. Thus we would like to

observe the effects of model complexity and unbalanced training as well as test sets

in federated learning. Then we propose selective federated learning to improve the

performance of simple models in the federated setting for non-IID data.

5

Chapter 2

Literature Review

We cover four key papers that lead up to the ideas present in this thesis. Federated

Learning of Deep Networks using Model Averaging [6] is the first detailed paper that

conducts experiments to examine effects of non-IID training data. Federated Learn-

ing: Strategies for Improving Communication Efficiency [3] is a systems paper that

provided the foundation for how federated learning was implemented in this thesis.

Virgina Smith’s paper, Federated Multi-Task Learning [7] was the first paper to ob-

serve that local models could outperform federated global models which motivated

our experiments. Finally, On the Converge of FedAvg on Non-IID Data [5] was the

first proof on the convergence of federated averaging with realistic constraints and

is the prerequisite for the proof in in chapter 5.

2.1 Federated Learning of Deep Networks using Model

Averaging [6]

McMahan’s paper covers the FederatedAveraging algorithm which uses the weighted

average of the model parameters as the aggregation step of federated learning. Fed-

eratedAveraging is a concrete way to implement federated learning which uses the

6

weighted average for the aggregation step which is the key step in federated learning.

In figure 2.1 is the algorithm presented by the paper.

Algorithm 1: Federated Averaging

Server executes:

initialize w0

for each round t = 1,2,... do

St “ (random set of maxpC ¨K, 1qclients

for each client k P St in parallel do

wkt`1 Ð ClientUpdate(k,wt)

end

wkt`1 Ð
řK
t“1

nk
n w

k
t`1

end

ClientUpdate(k,w): //Executed on client k

for each local epoch i from 1 to E do

batches Ð (data Pk split into batches of size B)

for batch b in batches do

w Ð w ´ η∇lpw; bq

end

end

return w to server

Figure 2.1: Federated Averaging Algorithm

McMahan’s paper shows empirically that FederatedAveraging is robust to

non-iid data by showing in experiments which data was distributed non-IID and

then tested on a single test set that spans examples from each node. The dataset

that is uses are MNIST and a non-IID modified version of MNIST and the IID

and non-IID dataset built from The Complete Works of William Shakespeare. This

experiments in this thesis differs from the ones conducted in Federated Learning of

Deep Neural Networks using Model Averaging because it creates test sets which are

7

unbalanced as well and has greater variation in model complexity.

2.2 Federated Learning: Strategies for Improving Com-

munication Efficiency [3]

Bonawitz’s paper examines the engineering challenges associated with deploying a

federated learning algorithm to a large number of devices. In practice, the network

could be slow and the availability of the clients may be unreliable. The paper

proposes two methods to improve communication costs, structured updates which

systematically chooses a subset of devices to aggregate each round, and sketched

updates, which uses quantization, random rotations, and subsampling of the local

dataset before sending it to the server.

We implement a simpler version of the federated learning presented here.

Our paper focuses on the performance aspect of federated learning in terms of model

accuracy and we build a simple deployed model as a preliminary test for feasibility.

We did not incorporate structured updates and sketched updates into our tests, but

our algorithm could incorporate the two methods as well.

2.3 Federated Multi-Task Learning [7]

In the Federated Multi-Task Learning paper, Smith et al. proposes multi-task learn-

ing for federated learning on non-iid datasets. In multi-task federated learning, the

data from the other nodes are incorporate indirectly as part of the loss function in-

stead of directly by averaging the weights. Her team uses support vector machines

to classify three unbalanced datasets, the Google Glass dataset, the Human Activ-

ity Recognition dataset, and the Vehicle Sensor dataset. In each dataset, the local

model performs better than the global federated model and the multi-task learning

model performs better than the local model.

8

Smith’s paper led to the experiments for this thesis. It indirectly suggests

that the test set should be distributed the same as the training set which the exper-

iments form the FederatedAveraging did not do. This thesis builds upon Smith’s

research by exploring another method which train a model to perform better on

non-IID test sets. This thesis also explores more model complexity by using multi-

layer neural networks with convolutional networks rather than just support vector

machines. One key takeaway from the experiments performed in our paper is that

exploring performance on different architectures is important as the results of this

thesis show that complex models are more robust to non-IID datasets. There is a

tradeoff, however, as complex models may not fit the constraints of edge devices.

2.4 On the Converge of FedAvg on Non-IID Data [5]

This paper was selected from all the proofs of the convergence of federated learning

[16, 15, 14, 12, 11, 10, 8, 9] because it was the only work which allows the data to be

both non-iid and partial device participation, critical characteristics of the federated

setting.

The key concept of this paper shows that the the global loss converges under

FederatedAveraging converges to a global minimum with the dominant variable

being the number of iterations. Namely, FederatedAveraging converges at rate Op 1
T

where T is the number of iterations.

This thesis builds upon the proof presented by Li et al. by showing that in the

FederatedAveraging algorithm as even as the global loss converges to a minimum,

the local loss at each node may not be the minimum.

9

Chapter 3

Implementation Details

3.1 Requirements

Federated learning must be deployable to edge devices of varying computation and

storage capabilites. In our implementation, we require that the selective federated

learning algorithm be deployable on network with both CPU-only device as well

as GPU-devices. In our experiments, we deployed federated learning algorithm

onto a Raspberry Pi 4, Nvidia Jetson Nano, and Macbook Pro with a Linux server

performing the aggregation step of federated learning. We limit the time it takes to

complete one round of training to model the fact that training should only occur on

personal devices when charging.

To ensure our experiments are generalize, we followed current machine learn-

ing practices. We random shuffle the MNIIST dataset between experiments. At the

time of this thesis, ReLu is a popular activation function and Kaiming He is a pop-

ular initialization for it. We use Kaiming He initialization with ReLu non-linearity

for the weights. The results of this experiment assume ideal device participation.

Federated Learning of Deep Networks by Model Averaging [6] also makes this as-

sumption.

10

As with the experiments in Federated Averaging of Deep Networks by Model

Averaging [6], the majority experiments were conducted on servers with GPUs.

To ensure that the results in this thesis are generalize to a real deployment, we

conducted a small subset of the experiments on a test bed with a Nvidia Jetson

Nano, Raspberry Pi 4, and Macbook Pro as the node devices. The deployed software

design used the same code for the federated learning and networking was added to

service the device to server communication.

3.2 Dataset Division

In each experiment, we partition the MNIST training set into partitions to represent

different degrees of non-IID (unbalanced). Then we assigned nodes to a unique

partition and distributed the data in each partition to it’s nodes. We performed two

sets of experiments. For our unbalanced test experiments we partitioned the test

set to create unbalanced test sets in the same fashion we created the training set.

For our balanced tests, we used the global test set of 10,000 images provided by the

original MNIST dataset (Balanced Tests)

3.2.1 Training Set Division

Ours partitions can be distinguished by the percentage with which they contain

balanced data. In table 3.1 the data partitions are described. We first remove

10,000 images from the original MNIST training set to create a validation set. The

term random data refers to MNIST images which have been randomly assigned, this

represents the balanced data.

Partition 1 Partition 2 Partition 3

N% Balanced
N% Random Data

(100-N)% Labels 0-3
N% Random Data

(100-N)% Labels 4-6
N% Random Data

(100-N)% Labels 7-9

Table 3.1: Data Partition

11

For example, to create datasets for 9 nodes, we would divide partition 1

equally among nodes 1-3, divide partition 2 equally among nodes 4-6, and divide

partition 3 equally among nodes 7-9. Likewise, the test set can be made non-IID.

3.3 Software Library and Design

All of the code can be found in the Mobile and Pervasive Computing repository on

GitHub under Christine Julien’s research group. In figure 3.1 is the software design

diagram.

Figure 3.1: Software Design

3.3.1 Federated Learning

The software library is built using the Pytorch, a popular python library for machine

learning. Federated.py contains all the code to perform a single round of federated

learning in both the experiments as well as the deployed test setup. It allows cre-

ation of a local and global classes to represent or be deployed on local nodes and the

aggregating server respectively. The data loaders and model architecture are con-

12

figurable and passed in as parameters to allow for flexibility in future experiments.

All configurations for the hyperparameters, results file, networking were refactored

out and put inside a json formatted configuration file. The programs are also setup

to use CPU or GPU to do the training through the program args.

The bulk of the experiments was conducted in synthesize results.py and

train.py which reduce the networking and communication time of federated learning

to communication through shared memory. Model parameters are passed in mem-

ory and different objects from the Federated.py classes are created to represent each

local node and the aggregation server.

3.3.2 Hyperparameter Search

To perform the hyperparameter search, the hyperparameter search.py program uses

random search to train models using different learning rates and batch sizes. Each

configuration is averaged over N runs where N is configurable. A separate validation

set is create by the data loader to perform the hyperparameter optimizations. Ran-

dom search is used because it is possible that one of the hyperparamaters is more

important than the other so we want to be able to sample finer resolution than grid

search. Each training session runs until the validation accuracy not improved for

20 epochs. The hyperparameter search provides the 20 highest validation accuracy

and then the researcher manually chooses the hyperparameter configuration and

entered into the configuration file. The parameters themselves are also optimized

using ADAM which is a one of the top momentum based optimizers being used at

the time of this writing.

3.3.3 Deployed Version

In the deployed version of the experiments, each client runs client.py which will

perform the local training and send the model weights to a central server. The

13

model parameters themselves are saved inside a file and sent to the central server

running node.js using a HTTP request. The clients periodically poll the server until

all the federated averaging has been done. The server listens for all HTTP request

and saves each file. Once the server has received all the HTTP request and files,

it calls server.py to perform federated averaging on all the local parameters. Once

the federated averaging is finished, then it sends the updated parameters to all the

clients. The implemented networking for the federated learning follows is shown in

figure 3.2.

14

Algorithm 2: Deployed Federated Learning

Server Executes

for each round t = 1,2,... do

waits for each client to upload their model parameters through a

HTTP request

saves the model parameter files as each local node uploads their

model parameters

if all the clients have uploaded their model parameters then

take the average of all the weights to create the new weights

wait for all the clients to request the new model parameters
else

end

Client Executes, done in parallel on local nodes

for each round t = 1,2,... do

for Total Datasize / Batch Size do

perform ADAM to update the local model parameters

end

send the model parameter to the aggregating server through a

HTTP request

poll the aggregating server for when the new parameters are ready

download the new model parameters

end

Figure 3.2: Federated averaging

3.4 Model Complexity

The amount of data needed to train a neural network depends on model complexity,

and as neural networks get larger they need more data to train. Since we are

varying the distribution of data, it is also important to take the effects of model

15

complexity into consideration. We conduct our experiments on three models of

different complexity. We would like to see the effects of this on federated learning

with data distributed non-IID.

Single Layer ReLu Model

This is our simplest model. Fully Connected Neural Network with one hidden layer

composed of thirty neurons. Each neuron uses the ReLu activation function. A

output is generated using a log softmax.

Four Layer Convolutional and ReLu Model

This is our second most simplest model. A convoluted neural network with two

5x5 convolutional layers. Both convolutional layers have a max pooling layer. The

second convolutional layer has a drop out of 0.5. The convolutional layers are

followed by two fully connected layers. The first has 320 hidden neurons and the

second has 50 hidden neurons and. The first hidden layer has a drop out of 0.5. The

output is generated using log softmax.

Six Layer Extra Wide Convolutional and ReLu Model

This is our most complex model. The convlution block has three 3x3x2 convolutional

layers of stride 1 and padding 1. Each convolutional layer is followed by a batch

norm layer, a ReLu layer. The second and third layers have a max pooling layer.

The convolutional layers are followed by three fully connect layers with 6272, 64,

and 10 hidden neurons. Each fully connected layer is followed by a batch norm layer

and has a drop out of 0.5. The output is generated using log softmax.

16

3.4.1 Initialization, Activation Function and Hyper Parameter Search

We used ReLu activation function and Kaiming He initialization modeled by ReLu

non-linearity. At the time of the writing, squeaky ReLu has been shown to be

decisively better or worse. For networks with drop out, we used a fixed 0.5 drop

out. Then we performed random search for the batch size and learning rate. For

each search, we train for N epochs where for epochs N+1 to N+20 there was no

improvement in the validation accuracy. We constrained the batch size to be a

power of two because GPU memory is configured in powers of two.

17

Chapter 4

Hardware and Time Constraints

Although our experiments show that non-IID data can be fixed by introducing more

complex models, models that are trained on the edge have real computation and

memory constraints. From an engineering perspective, one must trade off model

complexity vs edge device computation, memory capabilities and power consump-

tion. The selective federated algorithm proposed in this paper, makes the tradeoff

easier and boosts the performance of simpler models for non-IID data. We de-

vote this section to describing the hardware constraints associated with federated

learning to see why selective federated learning is valuable.

We deployed and tested federated learning onto three devices, the Raspberry

Pi 4 with 4GB of memory, Nvidia Jetson Nano, and Macbook Pro. We either ran

the training to competition or until error. The Raspberry Pi 4 was the least powerful

of the three devices. On the Raspbery Pi 4, both the Single Layer ReLu Model and

Four Layer Convolutional and ReLu Model training was able to run to completion

while training the Six Layer Extra Wide Convolutional and ReLu Model cause the

Raspberry Pi 4 to crash. We measure the real, system, and user times and provide

them in tables 4.2, 4.4. The real time is the total time it takes to train the model.

The system time is the time which the operating system spends making system calls,

18

page swap or other tasks in kernel mode. The user time is the time spent running

the user program.

In addition to running experiments on the local models, we calculate the

number of multiply accumulate (MAC) operations for federated learning to do the

backpropgation part of the training as a reference for compatibility with future

devices. This is the dominant part of the training process. The MACs described

in tables 4.1, 4.3, 4.5 are approximate calculations and only include the operations

required to calculate the gradient of the loss for each parameter. The computations

not accounted for in the calculations ones associated with the dropout, batchnorm

layer, and max pooling layers.

In 4.1, 4.3, 4.5, the activation shape together with the layer allows us to

calculate the number of parameters. To obtain the number of parameters for a fully

connected layer denoted in the tables as FC1, we multiply the number of input

activations by the number of output activations plus one for the bias. To obtain the

number of parameters in a convolutional layer we multiply by the activation shape

height by width and then we add one. The number of parameters in the current,

and next layers allow us to calculate the number of MACs.

4.1 Number of Multiply And Accumulate

4.1.1 Single Layer ReLu Model Computation Requirements

In the Single Layer ReLu Model, backpropagation on a single image takes 23821

MACs. For 13333 images, this would take over 300,000,000 MACs. Both federated

learning and selective federated learning works on the Raspberry Pi 4, and we timed

the average training time per round to complete training (21 rounds). The calcu-

lations for the MAC are shown in table 4.1 and the software timings are shown in

table 4.2.

19

Layer Activation Shape Number of Parameters Number of MACs

Input 784 0 0

FC1 (30,10) 23521 23521

Softmax (10, 1) 300 300

Table 4.1: Single Layer ReLu Model

Type Time (Seconds)

Real 57.90

User 83.42

System 40.56

Table 4.2: Software time for Single Layer ReLu Model

4.1.2 Four Layer Convolutional and ReLu Model Computation Re-

quirements

In the Four Layer Convolutional and ReLu Model, training on one image takes 21852

MACs. For 13333 images, this would take over 291,000,000 MACs. This model takes

less MACs to train because it is deep instead of wider. Training computation scales

linearly with depth but is proportional to the width of a neural network. On the

Raspberry Pi 4, we time the average training time per round to complete training

(83 rounds). The calculations for the MAC are shown in table 4.3 and the software

timings are shown in table 4.4.

Layer Activation Shape Number of Parameters Number of MACs

Input (28,28) 0 0

Conv1 (5,5) 26 250

Conv2 (5,5) 26 5000

FC1 (320, 50) 16001 16001

FC2 (50 , 10) 501 501

Softmax (10, 1) 100 100

Table 4.3: Four Layer Convolutional and ReLu Model Computation Requirements

20

Type Time (Seconds)

Real 169.98

User 503.14

System 133.86

Table 4.4: Software time for Four Layer Convolutional and ReLu Model

4.1.3 Six Layer Extra Wide Convolutional and ReLu Model Com-

putation Requirements

In the Six Layer Extra Wide Convolutional and ReLu Model, each round of commu-

nication takes 904188 MACs. For 13333 images, we would have over 12,000,000,000

MACs. In the runtime of the training, the Raspberry Pi error as and threw an mem-

ory error stating that a python library function could not allot 1GB of memory. The

calculations for the MACs are shown in table 4.5.

Layer Activation Shape Number of Parameters Number of MACs

Input (28,28) 0 0

Conv1 (3,3) 10 288

Conv2 (3,3) 10 18432

Conv3 (3,3) 10 73728

FC1 (5280, 128) 802816 802816

FC2 (128 , 64) 8193 8193

FC2 (64 , 10) 641 641

Softmax (10, 1) 100 100

Table 4.5: Six Layer Extra Wide Convolutional and ReLu Model MACs

21

Chapter 5

Federated Convergence of

Global vs Local Losses

For non-IID dataset, it is reasonable to expect the test set should also be distributed

non-IID with the same percentage of unbalanced data. For a non-IID test set, the

local loss may be a better proxy for local accuracy than the global loss. In a

federated model in which the global loss converges to a minimum, the local loss not

be at the minimum for every node. We build upon the proof of the convergence of

FederatedAveraging by Li et al. [5] to show this.

In proof of convergence of FedAvg [5], Li assumes the following assumptions:

Assumption 1. All the subproblems, F1, ..., FN are L-smooth.

Assumption 2. All subproblems, F1, ..., FN are all µ-strongly convex.

Assumption 3. The variance of stocastical gradients in each device is

bounded by σ2
k.

Assumption 4. That the expected squared norm of stochastic gradients is

uniformly bounded by G2.

Let T be the total number of steps, F ˚ be the minimum value of F, pk be

the probablity of choosing partition k uniformaly sampled without replacement, E

22

be the number of local iterations between two rounds of communication, κ = L
µ , γ

is maxt8κ,Eu for learning rate chosen to be nt “
2

µpγ`tq . Li proved that:

ErF pwT qs ´ F
˚ ď

2κ

γ ` T

ˆ

B ` C

µ
` 2L‖w0 ´ w

˚‖2

˙

where

B “
N
ÿ

k“1

p2
kσ

2
k ` 6LΓ` 8pE ´ 1q2G2

and

C “
4

K
E2G2

For an arbitrary fixed model and dataset, the only variable in the root con-

vergence rate is T, and as T approaches to infinity we have ErF pwT qs ´ F ˚ ď 0.

Now, let’s use Li’s proof on the convergence of FedAvg to prove theorem 1.

Theorem 1. Worse Case Local Loss for Convergent Federated Model

Arbitrarily pick any federated learning objective minwPRd F pwq satisfyingly

assumptions 1-4 that uses FedAvg as the aggregation step, any unacceptable loss

constant multiplier C, and any number of training data for some node s. We want

to show there exist a dataset P distributed into partitions Pk such that as ErF pwT qs

converges to F ˚, FspwT q converges to C ¨ F ˚s . Let N be the number of partitions

greater than 1.

Proof. Construct dataset P with the following properties. Without loss of generality,

let node s to be the last of the nodes, node N. Populate nodes 1 to N ´ 1 such that

FkpwT q converges to F ˚k for 1 ď k ď pN´1q or in other words F pwq is a good model

for nodes 1 to N ´ 1. Choose the degree of non-iid, Γ, and and the probability

of choosing from node N, pN , such that Γ
pN

= pC ´ 1q ¨ F ˚N . In other words, we

can increase the amount of unacceptable loss on node N by increasing the degree of

23

non-iid or increasing the number of data points on the other nodes to decrease pN .

To show that the loss on node N converges to C ¨F ˚s , we must be able to find

T for any ε ą 0 that satisfies |FN pwT q ´ C ¨ F
˚| ď ε. The proof of the convergence

of FedAvg by Li et al. shows ErF pwT qs ´F
˚ converges at rate Op 1

T q, so we choose

T such that |ErF pwT qs´F
˚| ď ε

2 and |FkpwT q´F
˚
k | ď

ε¨pN
2pN´1q for 1 ď k ď pN ´ 1q.

ErF pwT qs ´ F
˚ ď

ε

2

ErF pwT qs ď F˚ `
ε

2

ErF pwT qs ď Γ`
N
ÿ

k“1

pkF
˚
k `

ε

2

N
ÿ

k“1

pkFkpwT q ď Γ`
N
ÿ

k“1

pkFm
˚
k `

ε

2

N
ÿ

k“1

pkFkpwT q ´

N
ÿ

k“1

pkF
˚
k ď Γ`

ε

2

N
ÿ

k“1

ppkpFkpwT q ´ F
˚
k qq ď Γ`

ε

2

N´1
ÿ

k“1

ppkpFkpwT q ´ F
˚
k qq ` pN pFN pwT q ´ F

˚
N q ď Γ`

ε

2

N´1
ÿ

k“1

ˆ

pk

ˆ

´ε ¨ pN
2pN ´ 1q

˙˙

` pN pFN pwT q ´ F
˚
N q ď Γ`

ε

2

pN pFN pwT q ´ F
˚
N q ď Γ`

ε

2
`

N´1
ÿ

k“1

ˆ

pk

ˆ

ε ¨ pN
2pN ´ 1q

˙˙

FN pwT q ´ F
˚
N ď

Γ

pN
`
ε

2
`

N´1
ÿ

k“1

ˆ

pk

ˆ

ε

2pN ´ 1q

˙˙

FN pwT q ´ F
˚
N ď pC ´ 1qF˚

N `
ε

2
`

N´1
ÿ

k“1

ˆ

pk

ˆ

ε

2pN ´ 1q

˙˙

FN pwT q ´ C ¨ F
˚ ď

ε

2
`

N´1
ÿ

k“1

ˆ

pk

ˆ

ε

2pN ´ 1q

˙˙

FN pwT q ´ C ¨ F
˚ ď ε pk ď 1

24

The same can be done to show that FN pwT q ´ C ¨ F˚ ě ´ε, hence we have

|FN pwT q ´ C ¨ F˚| ď ε. In other words the loss at Node N converges to C ¨ Fs˚
˚, a

loss that is unacceptable magnitude times larger than the acceptable loss observed

at the central server.

25

Chapter 6

Selective Federated Averaging

Here we proposed selective federated averaging to boost the performance of simple

federated learning non-IID data. In extremely non-IID data, complex models do

well in the federated setting. Local models also do well cannot be trained if there

is insufficient data on each node. Selective federated averaging partitions the set of

nodes N into k groups and then create k different models for each of the groups.

The algorithm is described in figure 6.2. In selective federated averaging, each of

the local nodes first trains their own local model. In the selective grouping process,

the local models uses the validation set V “ tv1, v2, v3...u to generate a selection

vector by the selection function given in figure 6.1. For every pair of nodes, a, b

are in the same group if the percentage of overlap in their selection vector meets

a similarity threshold. The similarity threshold is calculated as a hyperparameter

using a seperate validation set. In our experiments, we split the validation set in

half. Finally, a separate federated model is trained using federated average on all

the nodes in each group. The end result is that there is a model for every group.

26

Selection Function S(validation set V, model M)

spvkq “

$

’

’

&

’

’

%

sk “ 0 M’s prediction for vk is incorrect

sk “ 1 M’s prediction for vk is correct

Figure 6.1: Selection Function

27

Algorithm 3: Selective Federated Averaging

Train local models for all nodes

for each node i P |N | do

request central server for validation set V “ tv1, v2, v3...u

form selection vector SpV,miq

end

initialize set of ungrouped nodes U = N

initialize set of groups G = H

initialized added = False

for each node ni P |U | do

added = False

if G == H then

create group g = tniu

insert g into G

continue

end

for each group gj P G do

if (Si ¨ Skq{|V | ă similarity threshold for all nodes k in gj then

insert node i into gj

added = True

end

end

if False == added then

create group g = {node i}

insert g into G

end

end

Train federated model for all group

Figure 6.2: Selective Federated Averagin

28

6.1 Time Complexity Analysis

Time complexity in Federated Learning is dominated by communication time [3].

For federated learning model that requires N rounds of communication, selective

federated averaging requires N+1 rounds of communication. The extra round is

required communicate the validation vector to the central server for group selection.

29

Chapter 7

Experimental Results

We perform two sets of experiments. The first calculates test accuracy with the

10,000 image test set from MNIST to represent the performance of a model exposed

to all a test set of classes during inference time. The second calculates test accuracy

with unbalanced partitioned test set as described in section 3.2.1. In each set of

experiments, we test all three models from section 3.4. We then display the accuracy

on the graph represents in which the x-axis is the percentage of balanced data in the

training set. We also provide the centralized accuracy for each model architecture

as a benchmark.

A key finding in our experiments that was not found in previous research is

that robustness of federated learning models requires a model certain depth or width.

In the Federated Learning of Deep Networks using Model Averaging paper [6], the

smallest model tested was a 2 layer hidden neural network that was 200 neurons

wide. We found that a 1 layer network with 30 neurons wide can achieve 96.40%

accuracy in the centralized setting but only 33.21% accuracy in the federated setting.

There is, however, a tradeoff between model complexity vs computation, storage and

power constraints of an edge device. The Six Layer Extra Wide Convolutional and

ReLu Model in the federated setting, which is robust to a completely unbalanced

30

data distribution, cannot run on the Raspberry Pi 4. There are many embedded

systems which run slow CPU’s and have less memory than a Raspberry Pi 4. Thus

we found edge device capabilities to be a constraint.

7.1 Experiments: Test Set of Original 10,000 MNIST

Images

In this set experiments, ordinary federated averaging had the best performance.

Wider or deeper models performed better in the federated setting when given un-

balanced data. Six Layer Extra Wide Convolutional and ReLu Model Accuracy for

IID Test Set is almost completely robust to non-balanced data. In our experiments,

models of all complexity perform poorly if trained locally with 0% balanced data.

Models of all complexity cannot learn to recognize images that it does not see. Se-

lective federated averaging performs poorly if it’s tested on a global dataset because

it only creates federated models for similar nodes whose collective dataset is unbal-

anced. For federated, selective federated and local models, performance increases

rapidly as the amount of balanced data increases. For federated learning models

trained on 0% balanced data, the performance increases from 32.66% accuracy to

84.32% accuracy to 97.31% accuracy as the model’s width and depth increases. Fig-

ures 7.4, 7.5, 7.6 show the test accuracy vs percentage of unbalanced data in the

training set.

31

Figure 7.1: Single Layer ReLu Model Accuracy for IID Test Set

Figure 7.2: Four Layer Convolutional and ReLu Model Accuracy for IID Test Set

32

Figure 7.3: Six Layer Extra Wide Convolutional and ReLu Model Accuracy for IID

Test Set

7.2 Experiments: Test Set from N% Balanced Pari-

tioned

In these experiments, we distribute the test set data so that each test set contained

the same percentage of unbalanced data as the training set. This is an important

test not covered in the Federated Learning of Deep Networks using Model Averaging

paper [6] because if an edge device encounters unbalanced data during training time,

it is reasonable to expect the edge device to encounter unbalanced data during

testing time. Simpler models using selective federated averaging a model perform

better than simple models using federated averaging. Selective federated averaging

has the performance of local models but since it aggregates multiple node’s datasets

together, it is more likely to have sufficient for training.

33

Figure 7.4: Single Layer ReLu Model Accuracy for non-IID Test Set

Figure 7.5: Four Layer Convolutional and ReLu Model Accuracy for non-IID Test

Set

34

Figure 7.6: Six Layer Extra Wide Convolutional and ReLu Model Accuracy for

non-IID Test Set

7.3 Centralized Learning Baseline

These are the baselines for each of the models trained the entire training set.

Model Accuracy (percent)

1 96.40

2 99.12

3 99.54

Table 7.1: Centralized Training Test Accuracies

35

Chapter 8

Conclusion

In this paper we examine theoretically and experimentally the effects non-IID train-

ing data on Federated Learning with both IID and non-IID test sets. We found that

model complexity is an significant constraint in federated learning performance. In

the federated setting, however, there is a tradeoff between model complexity and

hardware constraints. In our experiments, we find that the model that performs the

best in the federated setting cannot be deployed to the Raspberry Pi 4, a common

edge device. Additionally for non-IID test sets, we propose selective federated av-

eraging, which is more robust to non-IID data than federated averaging. However

given the rapid growth of the performance of edge nodes, one can predict complex

Federated Learning models will be possible.

8.1 Future Work

While our experiments show that selective federated learning is suitable for non-IID

datasets, it may also be suitable for data which is distributed among nodes that

are systematically different. In other words, the feature that explains the difference

between nodes is not found in the inputs, so training samples from different nodes

36

have the same input but different output. In the future, we would like to experiment

by grouping systematically different nodes using selective grouping to obtain better

prediction accuracy. Other grouping algorithms such as k-means clustering should

also be considered.

A further question is whether models trained by federated learning and cen-

tralized variants of stochastic gradient descent learn the same mode. Do they pro-

duce model with similar parameters? Do the models make similar predictions on

a common validation set? If not, what are the factors that determine whether a

federated model and centralized model is similar. Is model complexity a factor?

37

Bibliography

[1] Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and Shmatikov, V.,

“How to backdoor federated learning,”CoRR, vol. abs/1807.00459, 2018. [On-

line].Available: http://arxiv.org/abs/1807.00459

[2] Cao, V., Chu, K., Le-Khac, N., Kechadi, M., Laefer, D., and Truong-Hong, L.,

“Toward a new approach for massive lidar data processing,” in2015 2ndIEEE

International Conference on Spatial Data Mining and Geographical Knowledge

Services (ICSDM), July 2015, pp. 135–140.

[3] Konecny, J., McMahan, H. B., Yu, F. X., Richt arik, P., Suresh, A.

T., and Bacon, D., “Federated learning: Strategies for improving com-

municationefficiency,”CoRR, vol. abs/1610.05492, 2016. [Online]. Available:

http://arxiv.org/abs/1610.05492

[4] Konecny, J., McMahan, B., and Ramage, D., “Federated optimization: Dis-

tributed optimization beyond the datacenter,”CoRR, vol. abs/1511.03575,2015.

[Online]. Available: http://arxiv.org/abs/1511.03575

[5] Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z., “On the convergence of

fedavg on non-iid data,” 2019.

[6] McMahan, H. B., Moore, E., Ramage, D., and y Arcas, B. A., “Federated learn-

38

ing of deep networks using model averaging,”CoRR, vol. abs/1602.05629,2016.

[Online]. Available: http://arxiv.org/abs/1602.05629

[7] Smith, V., Chiang, C., Sanjabi, M., and Talwalkar, A., “Federated

multi-task learning,”CoRR, vol. abs/1705.10467, 2017. [Online]. Avail-

able:http://arxiv.org/abs/1705.10467

[8] Stich, S. U., “Local sgd converges fast and communicates little,” 2018.

[9] Stich, S. U., Cordonnier, J.-B., and Jaggi, M., “Sparsified sgd with memory,”

2018.

[10] Wang, J. and Joshi, G., “Cooperative SGD: A unified framework for

the design and analysis of communication-efficient SGD algorithms,”CoRR,

vol.abs/1808.07576, 2018. [Online]. Available: http://arxiv.org/abs/1808.07576

[11] Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T.,

and Chan, K., “When edge meets learning: Adaptive control for resource-

constraineddistributed machine learning,”CoRR, vol. abs/1804.05271, 2018.

[Online]. Available: http://arxiv.org/abs/1804.05271

[12] Woodworth, B., Wang, J., Smith, A., McMahan, B., and Srebro, N., “Graph

oracle models, lower bounds, and gaps for parallel stochastic optimization,”2018.

[13] Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong, N., Ramage,

D., and Beaufays, F., “Applied federated learning: Improving google key-

boardquery suggestions,”CoRR, vol. abs/1812.02903, 2018. [Online]. Available:

http://arxiv.org/abs/1812.02903

[14] Yu, H., Yang, S., and Zhu, S., “Parallel restarted sgd with faster conver-

gence and less communication: Demystifying why model averaging works for

deeplearning,” 2018.

39

[15] Zhang, Y., Duchi, J. C., and Wainwright, M., “Comunication-efficient algo-

rithms for statistical optimization,” 2012.

[16] Zhou, F. and Cong, G., “On the convergence properties of a k-step averaging

stochastic gradient descent algorithm for nonconvex optimization,”CoRR,vol.

abs/1708.01012, 2017. [Online]. Available: http://arxiv.org/abs/1708.01012

40

Vita

Jiahan Liu was born in Guangzhou, China. After completing his work at Klein

High School, Houston, Texas in 2014, he entered the University of Texas at Austin

in Ausitn, TX. He enrolled in the Intergrated BSEE/MSE program at the University

of Texas at Austin in 2017. He will be graduating in December, 2019 and working

in industry in California.

Permanent Address: 8422 Glenn Elm Dr.

Spring, TX 77379

This thesis was typeset with LATEX 2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark
of the American Mathematical Society. The macros used in formatting this thesis were written by
Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

41

