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Abstract 

 

Accounting for Multi-Dimensional Dependencies Among Decision-

makers Within a Generalized Model Framework: An Application to 

Understanding Shared Mobility Service Usage Levels 

 

Pragun Vinayak, M.S.E. 

The University of Texas at Austin, 2017 

 

Supervisor:  Chandra R. Bhat 

 

Activity-travel choices of decision makers are influenced by spatial dependency 

effects.  As decision makers interact and exchange information with, or observe the 

behaviors of, those in close proximity of themselves, they are likely to shape their 

behavioral choices accordingly.  For this reason, econometric choice models that account 

for spatial dependency effects have been developed and applied in a number of fields, 

including transportation.  However, spatial dependence models to date have largely 

defined the strength of association across behavioral units based on spatial or geographic 

proximity.  In the current context of social media platforms and ubiquitous internet and 

mobile connectivity, the strength of associations among decision makers is no longer 

solely dependent on spatial proximity.  Rather, the strength of associations among 

decision makers may be based on shared attitudes and preferences as well.  In other 

words, behavioral choice models may benefit from defining dependency effects based on 

attitudinal constructs in addition to geographical constructs.  In this thesis, the frequency 
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of usage of car-sharing and ride-sourcing services, collectively termed as shared mobility 

services, is modeled using a sequential generalized heterogeneous data model – spatial 

ordered response probit (GHDM - SORP) framework that incorporates multi-dimensional 

dependencies among decision-makers.  

The model system is estimated on the 2014-2015 Puget Sound Regional Travel 

Study survey sample, with inter-dependence in attitudinal space defined using latent 

psychometric constructs reflecting inherent attitudes, lifestyle preferences and habits. 

These latent constructs are based on variables in the data set that represent observed 

travel and locational choice behavior, as well as responses to attitudinal questions. Model 

estimation results show that social dependency effects arising from similarities in 

attitudes and preferences are significant in explaining shared mobility service usage, over 

and above what is explained by spatial dependency.  Ignoring such effects may lead to 

erroneous estimates of the adoption and usage of future transportation technologies and 

mobility services.   

 

Keywords: spatial dependence, social interactions, attitudinal proximity, values and 

behavior, shared mobility service usage, latent constructs 
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Chapter 1: Introduction and Background 

1.1. OVERVIEW 

Incorporating notions of interdependency in explaining travel patterns and 

locational choice behavior of decision makers has garnered much interest in the recent 

past (Dugundji and Walker, 2005; Blume and Durlauf, 2003; Bhat et al, 2016). A key 

differentiating factor in these studies is that they account for the nature of proximity 

amongst decision makers, which results in varied forms of networks over which feedback 

or inter-dependency effects propagate. Proximity is defined as the degree of closeness 

between decision makers and can be measured along different dimensions - geographic 

space, social space, and attitudinal space (lifestyle preferences, attitudes and values).  

Proximity in geographic space has traditionally accrued importance in econometric 

models that account for dependency amongst decision makers (Dugundji and Walker, 

2005; Bhat et al, 2016), largely due to the idea that decision makers’ preferences and 

choice behavior are shaped by dyadic exchanges between decision makers in close spatial 

proximity of one another. However, several studies have pointed out that social influence 

is pervasive, and a decision maker’s choices are not isolated from the influence of other 

decision makers in his or her social sphere (Brock and Durlauf, 2001; Arentze and 

Timmermans, 2008).  

 

Recent advances in technology and the accompanying growth in social media 

platforms such as Facebook and Twitter have rendered spatial separation practically moot 

as much of social interaction occurs virtually (Hackney and Axhausen, 2006). Research 

in social interactions has considered associations within tight social networks such as 

among family members (Arentze and Timmermans, 2009) as well as wider networks 
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extending to colleagues, friends, and virtual social media connections (McPherson et al, 

2001; Axhausen, 2008; Carrasco et al, 2008; Bhat, 2015a). However, there is limited 

knowledge of (a) the topology of such networks and their influence on transportation 

decisions, (b) the feasibility of using global networks of decision makers in such a social 

space, and (c) methods to operationalize the strength of relationships in such networks 

(Hackney and Axhausen, 2006). Adding to this is the arduous and often intractable task 

of extracting information about social network connections from conventional travel and 

land-use survey data (Axhausen, 2008). As a result, research that accounts for the 

influence of social networks in shaping travel behavior is rather sparse. Even in the 

limited literature on this topic, studies have utilized associative, aggregate-level networks 

where decision makers are grouped by planning zone and observed socio-demographic or 

economic characteristics (Yang and Allenby, 2003; Dugundji and Walker, 2005) as 

opposed to innate lifestyle preferences, values, and attitudes). In such a socio-spatial 

network, the feedback effects within apparently homogenous spatial or socio-economic 

groups do not account for self-selection effects attributable to the decision maker’s 

underlying perceptions, attitudes and preferences towards built environment and travel 

behavior (van Wee et al., 2002; Anable, 2005; Mokhtarian and Cao, 2008; Van Acker et 

at., 2010).   

In pursuit of a framework that can accommodate social dependency effects in 

studying travel behavior, this thesis extends the concept of proximity-based dyadic 

interactions by introducing the idea of attitudes, habits and lifestyle preferences as a new 

dimension and measure of proximity. As opposed to the physical networks that are based 

on observable socio-spatial variables, latent social networks are introduced in this thesis.  

In this paradigm, the inter-dependency among decision makers originates from similarity 
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in the attitudinal space. Unlike previous formulations, where extracting the topology of 

social networks and operationalizing strength of influence amongst decision makers in 

such complex networks maybe infeasible (if not impossible), social dependence can be 

parsimoniously expressed using latent psychometric constructs, which link decision 

makers with similar attitudes and lifestyle preferences.  

 

The methodology applied in this study accounts for both interdependencies 

amongst decision makers in spatial-attitudinal space and dynamics of self-selection due 

to inherent attitudes, preferences, and habits affecting a decision maker’s frequency of 

using car-sharing and ride-sourcing mobility services. This topic is of particular relevance 

as the urban transportation landscape has been significantly disrupted by the emergence 

of shared mobility services, inspired by the concept of a sharing economy (Hannon et al, 

2016). Two such services that figure prominently in this era of smart- mobility are car-

sharing and ride-sourcing services. While many studies on car-sharing and ride-sourcing 

services have explored the role of socio-economic and built environmental factors (Coll 

et al, 2014; Kim, 2015; Clewlow, 2016; Rayle et al, 2016) in shaping usage of such 

services, there is a paucity of literature that examines inter-dependencies in attitudinal 

space that impact usage patterns of these shared mobility services.  

 

The effort reported in this thesis uses data from the 2015 Puget Sound Regional 

Travel Study (PSRC, 2015) to model the monthly usage of ride-sourcing and car-sharing 

services for adults, which constitutes the ordinal variable of interest. The study considers 

two latent constructs relevant to urban travel and locational behavior: pro-environment 

attitude and neo-urban (active) lifestyle propensity. It should be noted that the thesis’s 
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focus is only on short-term travel choices, and hence variables reflecting long-term 

household decisions, such as residence type and vehicle ownership, are included only as 

exogenous covariates to explain the ordinal variable of interest.  The next section presents 

an overview of shared mobility services and gaps in literature that motivate this study. 

The third section in this chapter presents the foundation for accommodating social 

dependency in attitudinal space.  

 

1.2. SHARED MOBILITY SERVICES: REDEFINING URBAN MOBILITY ECOSYSTEM 

1.2.1. An Overview 

The emergence of ride-sourcing and car-sharing services have ushered in a new 

era of shared mobility that leverages technology to connect service providers with the 

customers (Hannon et al, 2016). These services have changed how people move around 

and participate in different activities – commuters can forgo the need to own cars or pre-

arrange car pools; social and recreational activities can be scheduled on-the-fly without 

worrying about multiple trips or parking; cabs can be hailed at any point in time with a 

mere tap on people's smartphones.  

 

Ride-sourcing, offered by Transportation Network Companies (TNC), refers to a 

mobility-on-demand service that offers a lower cost alternative to taxis, provides door-to-

door service and hailed, monitored and paid for using technology-based platforms (e.g. 

smart-phones) (Dias et al. 2017). Besides the more popular ride-sourcing service 

providers like Uber and Lyft, many other services across the globe such as Ola (India), 

Didi Chuxing (China), Grab (South-East Asia) have seen consistent increases in their 
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riderships. Lyft completed 160 million trips in 2016 – more than a 300% increase over 

2015 (Lyft, 2017). Similarly, in June 2017, Uber ferried its 5 billionth customer in just 

over a year after surpassing the two billion mark (Uber, 2017). Despite the obviously 

increasing demand for ride-sourcing services, such services have elicited mixed reactions 

from policy makers and planners. On one hand, it affords an alternative to driving and a 

prospective last-mile connector to public transportation systems, it can potentially reduce 

auto-ownership and, hence, ameliorate environmental concerns (Metcalfe and Warburg, 

2012; Silver and Fischer-Baum, 2015). Critics, on the other hand, argue that ride-

sourcing services increase the vehicle-miles travelled by inducing a latent demand, 

compete and erode the share of green modes (public transportation, walking and 

bicycling) and cater to mostly young, economically sound decision makers (Sabatini, 

2014; Rayle et. al, 2016). Latent demand refers to the additional trips on the 

transportation network, previously suppressed due to behavioral reasons and limited 

service supply levels, that originate due to the availability of a new service. However, the 

true impacts of ride-sourcing on vehicle miles traveled and impacts on other 

transportation modes are still unclear, owing mostly to the lack of disaggregate data 

sources (Rayle et al. 2016) and limited understanding of the true nature of such services.   

 

Car-sharing services, which in their most basic form are car-rentals by the hour or 

minute, afford consumers all the benefits of automobile ownership without incurring high 

fixed costs of purchase, insurance and maintenance (Shaheen et al., 2009). ZipCar and 

Car2Go are two of the main examples of commercial car-sharing services. While similar 

programs have existed since the 90’s, ZipCar and Car2Go have heavily benefitted by 

riding the Internet wave and have rapidly expanded their customer base, with young and 
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educated decision makers in metropolitan areas constituting the biggest chunk of the 1.5 

million estimated members in 2015 (Shaheen, 2016). Car-sharing systems have 

potentially substantive benefits, such as efficient mobility with lower car-ownership 

levels, lower demand for parking, and lower acquisition and usage costs (Baptista, 2004). 

Firkorn and Muller (2011) found that more than 25% of German respondents would be 

willing to forgo personal cars if they had access to car-share services. 

 

1.2.2. Literature and Gaps 

A growing body of literature has explored the interplay of socio-demographic, 

socio-economic and built environmental factors on usage patterns of ride-sourcing and 

car-sharing services (Clewlow 2016, Coll et al. 2014, Rayle et al., 2016). However, the 

social dependence amongst decision makers stemming from attitudes and lifestyle 

preferences is yet to be fully explored. Studies by Costain et al. (2012), Efthymous et al. 

(2013) and Dias et al. (2017) have acknowledged the crucial role of underlying attitudes 

and lifestyle preferences in the adoption of and participation in such services. Anable 

(2005) found that attitudes are important predictors of an decision maker’s mode 

switching potential.  

 

Almost all early studies of shared mobility services (except Dias et al. 2017) have 

scrutinized the two mobility platforms independently. However, both services are 

technology enabled, involve vehicles not owned by decision makers, are off-shoots of 

shared economy, and are predominantly urban phenomena, which means there ought to 

be underlying unobserved factors that simultaneously affect the usage of both services. 

Due to these reasons, both services are considered concomitantly in this thesis, and the 
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analysis does not evaluate whether such services are synergistic or competitive with each 

other. Inspired by the availability of a rich dataset and recent studies that have alluded to 

such unobserved factors, this thesis posits latent constructs to capture underlying attitudes 

and lifestyle preferences that may influence the usage patterns of these services. 

Additionally, the present work accommodates dependency effects based on interactions 

in a unique spatial-attitudinal space, and evaluate the complex interplay between different 

dimensions of proximity. 

1.3. BEYOND SPATIAL MEASURES OF DEPENDENCE 

The study of attitudes, perceptions, habits, and lifestyle preferences has been of 

interest to travel behavior researchers due to their role in shaping human activity-travel 

choices (Kitamura et al, 1997; Bagley and Mokhtarian, 2002). This notion is further 

reinforced by theories in social psychology which evaluate how such personality traits 

shape short-term and long-term behavior, and recognize that a decision maker’s behavior 

often tends to conform to the social constraints and norms of the individual’s cohort or 

reference group. Theory of Reasoned Action (Fishbein, 1980) and Theory of Planned 

Behavior (Ajzen, 1991) suggest that attitudes and lifestyle preferences play an important 

role in shaping behavior in different contexts. Subjective norms – the sum of normative 

beliefs due to social pressure to conform to one’s reference group – also influence 

behavior. For example, people who perceive themselves to be pro-environmental may 

bicycle to work or buy a clean-fuel vehicle to align their actions with those of other pro-

environmental decision makers. These three influences (attitudes, lifestyle preferences, 

and subjective norms), which contribute to consistent patterns of behavior, have been 

termed as reasoned influences. In addition to reasoned influences, Van Acker et al (2010) 

consider unreasoned influences as an additional determinant of travel behavior. 
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Unreasoned influences include habits and dependencies, and trace their origins to the 

Theory of Repeated Behavior (Ronis et al, 1989). This theory suggests that repeated 

behavior is motivated more by habit than attitudes.  

 

Unlike some of the social networks mentioned previously, a decision maker may 

not necessarily interact with group members in the same attitudinal space either 

physically or virtually (refer to example of bicycling to work). Social inter-dependency 

engendered through passive observation of individuals in a similar attitudinal space is a 

simple and powerful construct that is yet to be fully explored. It is therefore hypothesized 

that a decision-makers’ position in attitudinal space can suppress or promote different 

courses of action, a behavioral phenomenon that policy makers can leverage to achieve 

mobility goals. Within the context of accommodating dependencies, this study adopts a 

spatial lag structure for the outcome variable of interest. The latent constructs reflecting 

attitudes, habits, and preferences are based on observed psychometric indicators and/or 

other variables describing observed behavior (e.g., smartphone ownership) and scores for 

these latent constructs are estimated using Bhat’s (2015b) Generalized Heterogeneous 

Data Model (GHDM). These latent constructs serve to introduce dependencies amongst 

decision makers in the attitudinal space.  

 

In conventional spatial econometric models, the autocorrelation among decision 

makers is diffused via a weight matrix that is based on a spatial network measuring 

distances between decision makers (e.g., Paleti et al, 2013). Elements in each row of the 

matrix reflect the absolute spatial influence of all decision makers on a given decision 

maker. In this paper, the network topology is determined by both spatial (geographical) 
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and attitudinal (non-spatial) proximities, the latter incorporating attitudes, preferences, 

and habits. The influence of attitudinal and spatial networks is disentangled by using 

coefficients for each proximity measure. This opens up the possibility for one measure 

counteracting the influence of another; for example, even when decision-makers are in 

close geographical proximity, differences in their attitudes, preferences, and habits may 

outweigh their spatial proximity.  
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Chapter 2: Data Preparation and Descriptive Analysis 

The data for this study is derived from the Puget Sound Regional Travel Study 

that involved survey data collection in 2014 and 2015 covering a five-county area in the 

State of Washington. In addition to collecting information about socio-economic, 

demographic, and activity-travel characteristics, the survey asked respondents to provide 

information about attitudes, preferences, and technology (e.g., smartphone) ownership 

and usage.  Data about residential location choice preferences, and membership and 

usage of shared mobility services such as ride-hailing, bike-share, and car-share services, 

was collected through the survey.  All relevant variables used in this study were extracted 

from the 2015 edition of the survey data set, except for two variables that capture the 

usage patterns of technology platforms (frequency of use of smartphone apps and 

frequency of use of websites) for obtaining travel-related information.  These two 

variables are available in the 2014 edition of the survey; these variables are imputed into 

the 2015 data set based on ordered response probit models of technology use estimated 

on the 2014 data. The imputation exercise is described below, followed by descriptive 

statistics for the final sample that is used for modelling purposes.  

2.1. IMPUTATION OF VARIABLES 

For this exercise, only respondents above the age of 18 were chosen. Respondents 

in 2014 provided information frequency of deriving travel-related information in the past 

month via (1) smart-phone apps and (2) websites using a scale of one to seven, with an 

increasing level of usage. The ordinal frequency variables (frequency of using smart-

phone apps and frequency of using websites for travel-related information) are recoded 

into a five-level scale to ensure there are enough sample data points under each level of 

usage:  
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1) Never 

2) Less than once a week 

3) One day per week 

4) Two to four days per week 

5) More than 4 days per week 

 

Since the levels indicate an increasing degree of use, the two frequency variables 

from the 2014 sample are treated as ordinal outcomes and separate ordered response 

probit models are developed using exogenous variables reflecting individual socio-

demographic characteristics (age, education level, employment status, income) and other 

relevant variables (smart-phone ownership and household density expressed in number of 

households per square mile). The results are consistent with expectations as well as 

findings reported in the literature (Pew Research Center, 2014). Assuming the effects of 

the above variables remain constant over the course of a year, the estimated models are 

applied to the 2015 sample, with coefficients fixed at their 2014 values. The model 

application provides a probabilistic assignment to the five usage levels for each ordinal 

frequency variable, thus, resulting in two sets of five probability values for every 

respondent. The naive approach to impute the 2015 usage levels for smart-phone apps 

and websites for travel information is adopting the levels corresponding to the highest 

probability values. However, the sample, though considered representative of the 

population of interest, cannot fully capture behavioral heterogeneity amongst decision 

makers. To account for this heterogeneity and introduce greater variability in the sample, 

pseudo-random draws from a uniform distribution (0,1) are performed. The interval (0,1) 

is split into five blocks (labeled as five levels of the ordinal variable) with thresholds 
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based on the predicted probabilities from the model application step. These thresholds 

vary amongst respondents due to differences in socio-demographic and other 

characteristics. The respondent’s imputed level of usage is decided by the block into 

which the pseudo-random number falls. This procedure results in the imputed levels of 

usage for smart-phone apps and websites for travel information in 2015. To generate a 

new composite variable, frequency of using technology-based platforms for travel 

information, we transform the two imputed ordinal variables into monthly counts using 

the follow rubric: 

1) 0 times 

2) 0.3 times 

3) 4 times 

4) 8 times 

5) 16 times 

The monthly counts for app and website usage are summed to obtain monthly instances 

of using technology-based platforms, and then reconverted to an ordinal scale variable 

“frequency of using technology-based platforms for travel info” with four levels (five 

levels are collapsed into four to ensure a more equitable distribution of sample points and 

improve computational tractability) namely,  

1) Never 

2) Less than once a week 

3) One day per week 

4) Two or more days per week 
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2.3. DATA DESCRIPTION 

The analysis is limited to adults (age 18 years or above). Respondents below the age 

of 18 were excluded since perceptions about attitudes and lifestyle preferences amongst 

youngsters are not expected to be fully matured. Additionally, all records with proxy 

reporting were filtered out as it was deemed potentially challenging to report attitudes 

and preferences, and true usage patterns of shared mobility services on behalf of other 

household members. The dependent variable of interest is the frequency of using ride-

sourcing services (e.g., Uber and Lyft) and/or car-sharing services (e.g., ZipCar and 

car2go) in the past 30 days. Information on this variable is derived from ordinal 

indicators measuring level of usage as reported by the respondents.  The seven-level 

ordinal scale includes the following:  

1) Never 

2) I do this, but not in the past 30 days 

3) 1-3 times in the past 30 days 

4) 1 day per week 

5) 2-4 days per week 

6) 5 days per week 

7) 6-7 days per week 

The two disruptive mobility services are considered together in this study because 

both are technology-enabled, and involve the use of vehicles not owned by the traveler.  

To account for very small sample sizes in some categories, and for computational 

tractability, a more aggregate three-point ordinal scale was used to represent the level of 

usage:  

1) Never 
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2) Occasionally, but not in the past 30 days 

3) Used service in past 30 days with any frequency 

 

The final cleaned and filtered sample used for analysis and model estimation 

included 2170 adults. Table 2.1 summarizes the characteristics of the final sample. A 

majority of the decision makers in the analysis sample are in the middle age groups.  

There are more females than males, and full-time employed decision makers constitute 

nearly one-half of the sample.  About 36 percent of the sample is unemployed. Only 

about six percent of the sample reported being a student, a similar percent reported not 

having a driver’s license, and about 70 percent of the sample reported owning a 

smartphone.  About 12 percent of the sample resides in households with no vehicles, 

about 30 percent of the sample report living in high-density census blocks of 5000 or 

more households per square mile.  Nearly 20 percent of the sample reside in single-

person households, and an almost equal percent reside in nuclear family households with 

children.  Most of the respondents (over 68%) have bachelor or graduate degrees, 

indicative of Puget Sound Region’s prominence as one of the technology hubs in the US, 

that attracts highly skilled workers. The income distribution shows that 34 percent of 

decision makers reside in households that make over $100,000 per year. Only 10 percent 

of the sample has membership in car- or bike-share services.  An examination of the 

dependent variable of interest shows that 81 percent of the sample has never used car-

share or ride-sourcing services in the past 30 days.  This is consistent with the notion that 

shared mobility services are relatively new entrants in the transportation landscape.   
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Table 2.1: Descriptive Statistics of Sample 

Person Variables Household Variables 

Variable Count % Variable Count % 

Age   Vehicle Ownership   

18-24 

25-34 

35-44 

45-54 

55-64 

65-74 

75-84 

85 or older 

55 

396 

370 

354 

487 

338 

139 

31 

2.53% 

18.25% 

17.05% 

16.31% 

22.44% 

15.58% 

6.41% 

1.43% 

0  

1 

2 or more 

265 

877 

1028 

12.21% 

40.41% 

47.37% 

Residence Type   

One HH – Detached Unit   

One HH – Attached Unit  

Multiple HH – Apt/Dorms 

1206 

115 

849 

55.58% 

5.30% 

39.12% 

Gender   Residential Density   

Male 

Female 

943 

1227 

43.46% 

56.54% 

Upto 5000 HH per sq.mi 

Above 5000 HH per sq.mi  

1519 

651 

70.00% 

30.00% 

Employment Status   Family Structure   

Employed full-time  

Employed part-time 

Self-employed 

Unemployed 

1061 

183 

141 

785 

48.89% 

8.43% 

6.50% 

36.18% 

Single Person HH 

Single Parent HH 

Couple HH 

Nuclear Family HH 

Other (joint-families) HH 

423 

46 

775 

441 

485 

19.49% 

2.12% 

35.71% 

20.32% 

22.35% 

Student   Number of kids   

Yes 

No 

134 

2036 

6.18% 

93.82% 

0 

1 

2 or more 

1772 

207 

191 

81.66% 

9.54% 

8.80% 

Driving License   Annual income   

Yes 

No 

2042 

128 

94.10% 

5.90% 

Under $25,000 

$25,000-$49,999 

$50,000-$74,999 

$75,000-$99,999 

$100,000 or more 

303 

442 

353 

328 

744 

13.96% 

20.37% 

16.27% 

15.12% 

34.29% 

Owns a smart-phone   

Yes 

No 

1519 

651 

70.00% 

30.00% 

Education Level   Car / Bike-share membership  

Less than Bachelor Degree 

Bachelor Degree 

Any Graduate Degree 

689 

828 

653 

31.75% 

38.16% 

30.09% 

Yes 

No 

226 

1944 

10.41% 

89.59% 
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Chapter 3: Behavioral and Methodological Frameworks 

This section offers a detailed description of the behavioral and methodological 

frameworks adopted in this study. 

3.1 LINKING LATENT CONSTRUCTS WITH USAGE PATTERNS –  BEHAVIORAL 

FRAMEWORK 

The behavioral framework adopted in this study is shown in Figure 3.1.  Latent 

constructs that describe a decision maker’s innate attitudes and lifestyle preferences are 

linked to the proclivity to adopt and use shared mobility services in this framework.  

Latent attitudinal constructs are modeled as functions of exogenous variables and 

manifest themselves in the data set as indicator variables (specifically, binary, ordinal 

frequency, and ordinal attitudinal indicator variables) that represent observed travel and 

locational choice behavior as well as responses to attitudinal questions.  Instead of 

explicitly modeling the impacts of these latent constructs on shared mobility service 

usage, the latent constructs are used to induce dependency effects over a latent social 

network of decision makers who are proximally located in attitudinal space over and 

above the dependency effects attributed to spatial proximity.  

 

 Latent factors considered in this study include a decision maker’s “neo-urban 

lifestyle propensity” and “pro-environmental attitude”, both of which have surfaced 

repeatedly in the literature as determinants of activity-travel choices, especially in the 

context of shared mobility service usage (Lavieri et al, 2017; Astroza et al, 2017). 

 

A pro-environmental attitude has been found to be significantly associated with 

shared mobility use (e.g., Efthymiou et al, 2013; Burkhardt and Millard-Ball, 2006). 
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Figure 3.1: Overview of Behavioral Framework 

It has been shown in these studies that pro-environmental decision makers eschew use of 

personal vehicles in favor of the use of transit and non-motorized modes and exhibit a 

higher affinity towards use of ride-sourcing and car-sharing services.  In this study, two 

ordinal attitudinal variables and two ordinal frequency variables in the data set are 

considered representative of a pro-environmental attitude:  

• Importance of residing close to transit (measured on a five-point scale: very 

unimportant to very important) 
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• Importance of residing in a walkable neighborhood with access to local activities 

located nearby (measured on a five-point scale: very unimportant to very 

important) 

• Frequency of bicycling episodes (more than 15 minutes) in past 30 days 

(measured on a four-point scale: never, I do – but not in past 30 days, more than 

once in past 30 days – but at most one day per week, and two or more days per 

week) 

• Frequency of walking episodes (more than 15 minutes) in past 30 days (measured 

on the same four-point scale as frequency of bicycling episodes) 

 

The neo-urban lifestyle propensity is comprised of three unique features – use of 

technology to access travel-related information, proclivity for shared-space and 

collaborative ownership (i.e., proclivity to participate in the shared economy), and level 

of importance attached to residing in locations close to work and social-recreational 

activities. Previous studies have shown that these three attitudinal traits are significantly 

associated with the use of car-share and ride-sourcing services (Astroza et al, 2017; 

Montgomery, 2015). Since GPS-based technology, especially incarnated in the form of 

smart-phones, has paved the way for the rising popularity of mobility-on-demand 

services, dependency on technology certainly plays a pivotal role in adoption and 

continued usage of these services. Smart-phones allow decision makers to have a greater 

spatial-temporal control over how they plan and allocate time to activities – decision 

makers can now make decisions-on-the fly and participate in complex tours with multiple 

stops (Astroza et al., 2017). The second feature is embodied in an emerging trend in 

urban agglomerates. Attitudes and preferences associated with renting, borrowing and 
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leasing have ushered in a new era of “disownership", flipping the consumerism idea of 

ownership. Over 52% of respondents in a survey in the US by Sunrun (2013) eschewed 

ownership and chose to borrow or lease traditionally-owned items. When it comes down 

to vehicle ownership, millennials are more willing to embrace shared vehicles than 

decision makers from previous generations (Montgomery, 2015). Individuals with such 

lifestyle preferences have also shown interest in car-sharing systems with fully 

autonomous vehicles (Lavieri, 2017). Neo-urban lifestyles are also characterized by 

preferences for dense neighborhoods, shorter commutes to work and proximity to social 

and recreational places (New Urbanite Study, 2016). In this study, one ordinal frequency 

indicator, one binary indicator, and three ordinal attitudinal/interest indicator variables 

are tested as indicators of a neo-urban lifestyle propensity:  

• Frequency of using technology-based platforms (smartphone apps and/or 

websites) for travel information in past 30 days (measured on same four-point 

scale as frequency of walking and bicycling episodes) 

• Smartphone ownership (binary indicator) 

• Level of interest in participating in an autonomous vehicle car-share system 

(measured on a five-point scale: not at all interested to very interested) 

• Importance of residing in a home location close to highways or major roads 

(measured on a five-point scale: very unimportant to very important) 

• Importance of living within a 30-minute work commute (measured on a five 

scale: very unimportant to very important) 
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Table 3.1 presents a summary of the indicator variables for the analysis sample. 

Being close to highways and major roads is generally considered less important than 

being within a 30-minute work commute and having a walkable neighborhood with local 

activities nearby. Availability of public transit is also considered an important criterion in 

determining residential location. A majority of the sample is not at all interested in using 

an autonomous car-share system for daily travel. The frequency of walking is 

substantially larger than the frequency of bicycling, with over 66 percent respondents 

engaging in walking trips two or more times a week.  About 22 percent own a 

smartphone, but never use apps for travel information. About 30 percent own a 

smartphone and use apps one or more days per week for travel information.  About 31 

percent of the sample never uses technology platforms for travel information. On the 

other hand, 23 percent do so two or more times per week.  The statistics in the table show 

that there is considerable heterogeneity in the population with respect to residential 

location preferences, interest in autonomous car-share adoption, and use of technology 

platforms for travel information. 
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Table 3.1: Descriptive Statistics of Indicator Variables 

Attitudinal (Ordinal) Indicator Variables  

Importance of factor in choosing  

home location 

Response Distribution 

Very 

Unimporta

nt 

1 

Unimporta

nt 

2 

Neutral 

3 

Important 

4 

Very  

Important 

5 

Close to major roads/highways 14.8% 16.0% 22.2% 34.6% 12.4% 

Being within 30-minute commute to 

work  

11.0% 6.1% 17.7% 20.4% 44.8% 

Being close to public transit 15.4% 10.4% 17.8% 25.3% 31.1% 

Having a walkable neighborhood and 

being near local activities 

5.3% 6.7% 10.3% 33.2% 44.4% 

Level of interest in use of… 

Response Distribution 

Not at all 

interested 

Somewhat 

unintereste

d 

Neutral 

Somewha

t 

interested 

Very 

Interested 

Autonomous car-share system for daily 

travel 

55.4% 6.7% 11.9% 14.0% 11.7% 

Frequency (Ordinal) Indicator Variables  

Frequency of participating in… 

Response Distribution 

Never 

I do, but not in 

the past 30 

days 

More than once 

in past 30 days 

but at most 1 

day/week 

Two or 

more 

days/week 

Bicycling (15 min or more) 62.7% 20.7% 8.4% 8.2% 

Walking (15 min or more) 8.3% 6.0% 18.7% 66.9% 

Frequency of… 

Smartphone ownership 

and app use for travel 

info Frequency of: 

Technology-based 

platforms for travel info  

Don’t own smartphone 30.0% Never 31.1% 

Own smartphone but 

never use apps for 

travel info 

21.8% 
Less than one day per 

week 
33.2% 

Own smartphone and 

use apps less than one 

day per week for travel 

info  

18.9% One day per week 12.9% 

Own smartphone and 

use apps one or more 

days per week for 

travel info 

29.4% 
Two or more times per 

week 
22.8% 
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3.2. MODELLING FRAMEWORK 

The modeling framework consists of two primary components, namely, the 

Generalized Heterogeneous Data Model (GHDM) and the spatially lagged ordinal 

response model with a composite weight matrix that includes both spatial and aspatial 

(attitudinal) components.  Within the GHDM, there are two submodels – a latent 

structural equation model (SEM) and a latent measurement equation model (MEM).  In 

the latent SEM, the latent psychological constructs are represented as linear functions of 

exogenous variables with the usual stochastic error terms.  In the latent MEM component, 

psychometric indicators along with observed travel behavior indicators are posited as 

functions of latent constructs, exogenous variables, and other endogenous outcomes. The 

SEM and MEM sub-models are estimated jointly in a simultaneous equations modeling 

framework. The second component of modelling framework is the spatially lagged 

ordinal response model with a composite weight matrix, populated using expected latent 

variable scores from the GHDM model, that embodies the multi-dimensional dependency 

in spatial-attitudinal space.   

 

In the following discussion, consider a sample of Q  decision makers denoted by 

index (1, 2,3..., )q Q and L  latent variables denoted by index l  (L=2 in this study). Let 

there be a total of N  ordinal indicators and G  nominal indicators (binary or multinomial 

outcomes) for the MEM submodel of GHDM.  

3.2.1. Latent Structural Equation Model (SEM) 

For a given decision maker q , the L latent constructs can be compactly written as a 

vector qz  (L×1) , which in turn, is a function of observed covariates and a vector of 

stochastic error components, as specified below.   
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 q q qz = αw + η   (3.1) 

where, α  (L× F) is the vector of coefficients associated with the covariates (excluding a 

constant) given by qw (F×1)  and q (L×1)   is the vector of stochastic error terms. q  

follows a multivariate normal (MVN) distribution which allows for a correlation structure 

to accommodate interactions amongst latent variables i.e.  MVN q ~η 0,Γ  where 0

(L×1)  is a zero vector and Γ (L× L)  denotes the correlation matrix. We assume q  is 

independent across decision makers i.e. Cov( )q q'η,η  = 0 q q' .  

3.2.2. Latent Measurement Equation Model (MEM) 

The measurement equation system (MEM) component is expressed in matrix form for all 

indicators. Let G be the number of nominal indicators with gI  alternatives in nominal 

variable g . Let the total number of alternatives across all nominal indicators be given by 
G

g

g=1

G = I . Then for decision maker q ,  

 q q q qy = γx + dz + ε   (3.2) 

 q q q qU bx z      (3.3)  

where y (N×1)  is a vector of underlying latent continuous variables (onto which the 

actual ordinal outcomes are mapped),  (N × A)  captures the effects of exogenous 

variables expressed as vector qx  (A×1)  and d (N × L)  is a vector of loadings associated 

with the latent variables vector qz . Let q (N×1)  be specified as the vector of respective 

error terms and we allow a multi-variate structure such that  MVN ,q N~ 0 IDEN , 

where 0 (N×1)  is a zero vector and NIDEN  is an identity vector of dimension N . qU is 

the (G 1)  vector of utilities for the nominal outcomes, b (G A)  is the matrix of 



 

 

24 

exogenous covariates and q is the error term with zero mean and Λ  correlation matrix 

(refer to Bhat, 2015).  

 

Collect all parameters to be estimated in the SEM and MEM models as an ( R×1 ) vector 

1θ , where R = (N + F)+(N + A)+(N + L)+(G+ A)+(G+ L)+G . The model system 

(SEM and MEM) is jointly estimated using the Maximum Approximate Composite 

Marginal Likelihood (MACML) approach (Bhat, 2011).  

3.2.3. Capturing Dependency Effects Using a Spatial Lag Structure 

This section describes the approach to model the ordinal variable of interest with spatial-

attitudinal dependency effects. The ordinal variable has three levels corresponding to 

usage of shared mobility services: never, occasionally but not in the past 30 days, and one 

or more times in the past 30 days. The use of a spatial lag structure allows choice 

behavior of a decision maker to be influenced by that of peers in the geographic-

attitudinal space. While proximity in geographic space is derived using spatial distances 

between residence locations of decision makers, the proximity in attitudinal space is 

based on a latent social network defined by similarities in attitudes and lifestyle 

preferences. These are captured by the two latent constructs considered in the study: pro-

environment attitude and neo-urban lifestyle propensity. The dependency effects due to 

each dimension of proximity are disentangled using separate coefficients for each 

proximity measure. 

 

With the sample of Q  decision makers denoted by index (1, 2,3..., )q Q and L  latent 

variables denoted by index l  (L=2), collect all of the constructs for latent variable l 
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across all decision makers in the vector .),...,,(
21


lQll

zzz
l

z  Also, let the expected value 

of this vector, as obtained from the GHDM, be ˆlz . The ordinal variable of interest for 

decision maker q , in the spatial lag structure, is specified in terms of exogenous 

covariates as follows,  

 qγ' x
Q

q qq' q' q

q'=1

y = ρ w y + +ξ  , 
q

y = k  if 
q,k-1 q,kq

yψ < < ψ   (3.4) 

where qy  is the underlying continuous latent response variable whose partitioning relates 

to the K  levels of the ordinal variable, and γ (A×1)  is the vector of coefficients 

associated with the qx  (A×1)  vector of exogenous covariates (excluding the constant). 

Let the idiosyncratic error term qξ  be standard normally distributed and independently 

and identically distributed across decision makers. Let qq'w be the (q,q')  element of the 

row-normalized multi-dimensional weight matrix W  (Q×Q)  with zeros on the diagonal 

( 0qqw  , 
Q

qq'

q q'

w = 1


 ) and ρ (0 < ρ < 1)  be the auto-regressive parameter. In vector 

notation, the consolidated formulation for all individuals Q  is given as, 

 

  y Wy x   ρ   (3.5) 

where y 
1 2 Q

(y , y ,..., y )' and  
1 2 Q

(ξ ,ξ ,...,ξ )' are (Q×1)  vectors, x  is (Q× A)  matrix 

of exogenous variables for individuals. Through a simple matrix operation, the equation 

can now be rewritten as:  

 y Tx T     (3.6) 

 
1( )QT I W
  ρ   (3.7) 

where QI is an identity matrix of size 𝑄. The vector y  is multivariate normally 

distributed with mean Tx and covariance matrix 'TT , i.e., ~ ( , ')Qy MVN Tx TT . 
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The crux of this paper lies in the formulation of the composite weight matrix W , 

which engenders the interdependencies amongst decision makers in geographic and 

attitudinal space. The composite weight matrix is a combination of spatial and non-spatial 

(one corresponding to each latent construct) weight matrices. Unlike previous 

formulations (e.g., Yang and Allenby, 2003), the number of constituent weight matrices 

does not explode with an increasing number of non-spatial measures of proximity. 

Instead the non-spatial proximity (in attitudinal space) is parsimoniously expressed using 

a reduced number of latent variable - distance matrices. The composite weight matrix W

(Q×Q) is specified as follows,  

 
1

( ( ))
L

spatial non spatia

l

l

l

DW exp D 



   lκ   (3.8) 

where, 
spatial

D  is a (Q×Q)  spatial distance matrix that is derived using latitude-longitude 

coordinates of decision makers’ residential locations. non sp

l

atialD  is the (Q×Q)  non-spatial 

distance matrix, based on attitudinal proximity on latent variable l (1,2,...,L) . Further, 

 1 2, ,..., L    are coefficients associated with the non-spatial proximity measures 

derived from each of the L latent variables. The element-by-element exponentiation 

operator allows for negative values for kappa while still ensuring non-negativity of the 

final weights. The coefficient associated with spatial distance is fixed to unity to ensure 

econometric identification.  

 

The non-spatial distance matrix non sp

l

atialD  , associated with latent variable l , is 

populated using a (Q×Q)  matrix ˆ l  that is expressed as the Kronecker product of ˆlz  

(Q×1)  vector of predicted values for latent variable l  and a (1×Q)  row vector of ones. 

Due to the non-directionality of differences in latent lifestyles and preferences across 
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decision makers, the absolute difference of ˆ l  with its transpose  ˆ 'l
 is taken. This 

results in a (Q×Q)  distance matrix of attitudinal proximity on latent variable l  given by,   

  

ˆ

ˆ
ˆ ˆ

ˆ

l lz

 
 
   
 
 
  

1,l

2,l

1×Q

Q,l

z

z
ones(1,Q)= 1 1 ... 1

...

z

  (3.9) 

 

1, 2, 1, ,

2, 1, 2, ,

, 1, , 2,

ˆ ˆ ˆ ˆ0 | | ... | |

ˆ ˆ ˆ ˆ| | 0 ... | |
ˆ ˆ| ( ) ' |

... ... ... ...

ˆ ˆ ˆ ˆ| | | | ... 0

l l l Q l

l l l Q ll

l l

Q l l Q l

non spatia

Q

l

l Q

z z z z

z z z z
D

z z z z





  
 

 
   
 
 

   

 (3.10) 

 

An important note here is that the non-spatial proximity measures among decision 

agents, as constructed above, are based on the expected values of the latent constructs as 

opposed to their actual values. The main reason for this formulation is that the sample is 

but a random fraction of the population of interest. It is impossible to represent every 

individual in spatial or social space, and therefore more appropriate to consider a sampled 

neighbor in spatial or social space as representative of many others in the population who 

may be in that space. It may then be intrinsically more appropriate to consider the 

expected value of a sampled neighbor’s latent construct (representing the larger set of 

individuals in the population with the same observed characteristics that impact the latent 

variable of the sampled neighbor), and examine the distance of this expected value from 

the expected value of the sampled individual in question.  

 

From a methodological standpoint, applying the stochastic values of latent constructs 

for individuals, in lieu of the expected values, would entail specifying the joint-

distribution of latent constructs and underlying propensities for the ordinal outcome of 
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interest. However, hypothesizing a joint-distribution for such a complex system of 

models may be impractical or difficult to associate with theoretical underpinnings 

(Murphy and Topel, 2002). Additionally, joint-estimation of a model system with 

stochastic weights can also be computationally taxing, which motivates the use of a two-

step modeling procedure illustrated in this thesis. 

 

The spatial distances matrix (
spatial

D ) and the non-spatial distance matrices (

non sp

l

atialD  ) are normalized (divided by the maximum value) before they enter Equation 

(6) to adjust for scale differences. Prior to feeding the composite weight matrix W  into 

the SORP model (Equation 2), the diagonal elements of W are set to zero and W is row-

normalized to ensure that each decision maker gets the same net influence from all other 

decision makers. 

 

The parameters to be estimated in the ordered probit model with spatial and non-

spatial dependencies are the vector of exogenous coefficients  , the auto-correlation 

parameter ρ , (𝑀 − 1) thresholds of the ordinal variable (

0 K 1 2 K -1
ψ = - ,ψ = ,- < ψ < ψ ...< ψ <    ), and κ  1 2, ,..., L   coefficients associated 

with the non-spatial weight matrices. The likelihood function θL( )  for the model takes 

the following form, 

 ( | , ')Qy = m F y Tx TT y 
yD

L( )= P( )= d   (3.11) 

where ,γ' 1 2 L 1 2 K -1= ( ρ,κ ,κ ,...,κ ,ψ ,ψ ,...,ψ )'  is the ((A+ L+ K)×1)  vector of coefficients 

to be estimated,  y 1 2 Q= y , y ,..., y ,   m 1 2 Q= m ,m ,...,m  is the (Q×1)   vector of actual 

observed level of frequency of using car-sharing and/or ride-sourcing. yD  is the domain 

of integration defined as yD =  : 
q,m-1 q,mq

ψ < < ψ ,  q = 1,2,y y ...,Q . QF (.) is the Q -
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variate normal cumulative function with mean Tx  and correlation matrix 'TT . The 

autoregressive parameter ρ is reparametrized as 
exp(ρ)

ρ =
1+exp(ρ)

 to ensure that 0 < ρ < 1  

and the likelihood function is maximized with respect to ρ . The true value of ρ  can be 

easily extracted after the estimation process. The likelihood function is maximized using 

a pair-wise composite marginal likelihood (CML) approach (Bhat, 2011). Dependency 

effects dilute very quickly as distance between observations increases (Castro et al, 

2013).  Based on statistical tests discussed in Bhat (2011), a distance threshold of eight 

miles is adopted and only those pairs of observations falling within this distance band are 

included in the CML function.  

3.2.5. Standard Error Corrections 

The two-stage estimation procedure allows for easy implementation of the 

composite marginal likelihood (CML) inference approach, which is backed by the well-

established asymptotic properties of applying exogenous weight matrices in spatial 

models. The application of expected values of latent constructs, in lieu of actual 

stochastic values, makes the composite weight matrix essentially exogenous. For such 

two-stage models, which entail inclusion of predicted values of variables from one model 

into another, standard errors need to be corrected because the first-stage parameters are 

themselves estimated with sampling error. 

 

The CML estimators in the second-stage model can be argued to be consistent. 

The first step estimators, as well as the covariance matrix, from GHDM are 

asymptotically consistent (Bhat, 2011) and this implies that under the usual regularity 

conditions, the CML estimators in the second-stage are asymptotically consistent too. 
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This is because the sampling error for the first-stage estimators vanishes in the limit (as 

sample size increases). However, the covariance matrix and the associated inference 

statistics for the second-stage estimators are biased, even with large samples. The 

standard errors for the second-stage parameter estimates are corrected using the 

procedure suggested by Murphy and Topel (2012). This procedure exploits the limiting 

distribution of the sampling error for first-stage estimators to consistently estimate the 

variances of the second-stage estimators. In this thesis, the GHDM model serves as the 

first-stage model (auxiliary model) and SORP with multi-dimensional dependencies is 

subsequently referred to as the second-stage model (model of interest).  

 

Continuing the notations from previous sections, parameters estimated in the first-

stage GHDM model are compactly expressed using vector 1θ ( R×1 ), and parameters 

estimated in the second-stage SORP model are represented with vector 2θ (S×1) , where 

S = (A+ L+ K) . Let the composite marginal likelihood (CML) values for individual 

q (1,2,...,Q)  in the two models be denoted using functions ( )1θ1,qL  and 2,q 2( , )1θ θL . 

Parameters from the first-stage model are reflected in the likelihood function of the 

second-stage model by virtue of imputed variables (expected values of latent constructs 

in composite weight matrix) that are exogenously introduced in the second-stage model. 

Then the two-step CML estimators satisfy the following equations,    

 
ˆlog 1

1

θ

θ






Q
1,q

q=1

L ( )
= 0   (3.12) 

 
2

2

ˆ ˆlog 1θ θ

θ






Q
2,q

q=1

L ( , )
= 0   (3.13) 
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The next step in the process focuses on deriving the asymptotic joint distribution of the 

two vectors of parameters, using the central limit theorem and the law of large numbers. 

A priori define four matrices 1M (R× R) , 2M (S× S) , 3M (R× S)  and 4M (R× S)  as 

follows, 

 
2

1E Hess( )
'

1 1

1 1

M θ
θ θ


  



L
  (3.14) 

 
2

2
2

2 2

E Hess( )
'

2M θ
θ θ


  



L
  (3.15) 

 2 2 2 2

1 2 1 2 max

' '

E3M
θ θ θ θ

      
    

      

L L L L
  (3.16) 

  1 2 1 2

1 2 1 2 max

' '

E4M
θ θ θ θ

      
    

      

L L L L
  (3.17) 

Expected values of these matrices can be substituted with matrices evaluated with 

parameter values at convergence (denoted by subscript max). While 1M  and 2M are the 

hessian matrices of the parameter estimates from the two models, 3M  and 4M  are 

obtained through manipulation of gradient functions at convergence. The vector 2

1θ





L
 in 

3M  is vector ( R×1 ) that takes non-zero gradient values (from second-stage model at 

convergence) for the parameters 1θ  present in both models and zero for parameters 1θ  

present only in first-stage model. Note that 1 1 1( , )θ θ θ . 

 

Denoting the true parameter values for first-stage and second-stage parameters as *

1θ  and 

*

2θ respectively, the central limit theorem can be used to approximate the distribution of 

the first-order partial derivatives of the two-step log (CML) functions,  
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where 0 is a zero vector ((R+ S)×1)and  is ((R+ S)×(R+ S))  covariance matrix. Under 

the standard assumptions of maximum likelihood estimation, the asymptotic distribution 

of first-stage and second-stage parameters can be expressed as: 
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Using the joint distribution stated in equation (3.18), the asymptotic distribution of the 

second-stage parameters can be written as,  

 
A

*

1
ˆ( )1θ θ 0 ΣQ N( , )   (3.22) 
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           (3.23) 

where 0 is a zero vector (S×1) and Σ is (S× S)  corrected asymptotic covariance matrix 

for the second-stage parameters.   
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Chapter 4: Model Estimation Results 

This section presents a detailed discussion of the model estimation results of the 

GHDM and Spatial Ordered Response Probit (SORP) model components with various 

forms of dependency effects among decision-makers.  The final model specification was 

adopted, after testing an extensive number of alternative specifications, based on a 

combination of behavioral interpretation and statistical significance. In the following 

sections, results for the SEM and MEM submodel of the GHDM (which determines the 

latent constructs) and the SORP model component are presented. The MEM submodel is 

not of primary importance; it simply serves as the vehicle to estimate the SEM submodel 

by establishing correspondence between latent constructs and their observed indicators. 

 

4.1 STRUCTURAL EQUATION MODEL (SEM) COMPONENT OF GHDM 

Table 4.1 presents estimation results for the SEM component of the GHDM. In 

general, results are behaviorally intuitive and consistent with expectations.  Young people 

are more likely to be pro-environment and show a proclivity for neo-urban lifestyles. 

Young adults are more sensitive to the environment as compared to their older 

counterparts. This is consistent with other studies (Garikapati et al. 2016, Lavieri et al. 

2017) that found out young individuals are more likely to use alternative travel modes 

(transit and non-motorized modes). The impact of age on neo-urban lifestyle propensity 

is even more profound. Young adults, growing up in realm of ubiquitous presence of 

technology and emerging sharing economy that eschews ownership and promulgates 

leasing and renting, and attaching a higher importance to social contact through 

participation in social and recreational activities are more likely to conform to a neo-

urban lifestyle, as compared to their older peers.    
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Females exhibit a greater sensitivity to the environment, a finding consistent with 

previous research (Kalof et al, 2002; McCright 2010).  Income is strongly related to pro-

environmental attitudes, with decision makers in lower income households exhibiting 

greater levels of the pro-environmental attitude. Lack of wherewithal also restricts the 

overall level of consumption and induces a higher dependence on alternative modes. 

Surprisingly, income effects do not significantly influence the likelihood of a decision 

maker exhibiting a preference for neo-urban lifestyles. A possible explanation maybe 

counter-acting effects of income in explaining different dimensions of a neo-urban 

lifestyle – lower incomes are associated with lower levels of technology-ownership and 

usage (Astroza et al. 2017) but higher inclination to participate in car and bike share 

programs owing to lower levels of car-ownership. Decision makers with a college 

education are likely to be pro-environmental and favor active neo-urban lifestyles, 

consistent with the notion that they are likely to have greater awareness of the ill-effects 

of pollution.  Households with children are more likely to reside in suburban locations in 

larger homes; consistent with such a lifestyle, individuals in these households express 

lower levels of the pro-environmental attitude or preference for a neo-urban lifestyle. 

Also, the flexibility afforded by personal vehicles to chauffeur kids and freedom to 

undertake complex trips makes them less affine to transit and other active modes (Nolan, 

2010).  

 An interesting finding is that the correlation between error terms is insignificant.  

The model specification may have captured all key effects, or it is possible that positive 

and negative correlations due to unobserved effects canceled out. 
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Table 4.1: Estimation Results for Structural Equation Model of GHDM 

Structural Equation Component Pro-environment attitude Neo-urban lifestyle 

propensity 

Variable Coefficient t-stat Coefficient t-stat 

Age (base: 55 + years old) 

    18 to 24 years old 

    25 to 34 years old 

    35 to 44 years old 

    45 to 54 years old 

 

0.565 

0.374 

0.423 

0.183 

 

3.12 

4.31 

4.35 

1.99 

 

1.648 

1.396 

1.208 

-- 

 

4.22 

4.55 

4.65 

-- 

Female (base: male) 0.137 2.13 -- -- 

Education (base: lower than 

Bachelor’s) 

    Bachelor’s Degree 

    Graduate Degree 

 

0.432 

0.678 

 

5.64 

7.84 

 

0.489 

0.500 

 

4.75 

4.65 

Income (base: $75,000 or more per 

year) 

    Less than $24,999 per year 

    $25,000 - $49,999 per year 

    $50,000 - $74,999 per year 

 

0.552 

0.110 

0.104 

 

4.94 

1.34 

1.27 

 

-- 

-- 

-- 

 

-- 

-- 

-- 

Employment Status (base: 

Unemployed) 

   Full-time, part-time or self-

employed 

 

0.164 

 

2.33 

 

1.032 

 

4.73 

Household Structure (base: no kids) 

  Atleast 1 kid (0-17 years) 

 

-0.325 

 

-3.79 

 

-0.306 

 

-1.78 

Correlation between latent variables -- 

 

4.2 MEASUREMENT EQUATION MODEL (MEM) COMPONENT OF GHDM  

 

Table 4.2 and Table 4.3 provide the results of the measurement equation 

component of GHDM associated with nominal and ordinal indicator variables 

respectively. The two nominal variables include smart-phone ownership and membership 

in car and/or bike-share programs. The ordinal variables include a mix of attitudinal 

indicators (e.g. importance of being close of transit) and frequency variables that capture 

the degree of participation in certain activities (e.g. frequency of walking) or usage of 

facilities (e.g. frequency of using technology for travel information).     
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Affluent decision makers are more likely to own smart-phones, as reflected in the 

negative coefficients associated with the lower income groups. Younger decision makers 

have a higher tendency to own smart-phones as they embrace new technology more 

readily as compared to their older counterparts (Astroza et al, 2017). Smart-phone owners 

are more reliant on apps and websites to derive travel information which is evidenced in 

the positive and significant coefficient of the endogenous effect of smart-phone 

ownership on frequency of using technology platforms for travel information, consistent 

with findings for “technophiles” by Seebauer et al (2015). Living in a high-density 

locality further increases the dependency on such media to plan travel. Prior information 

about travel times and prevalent traffic conditions can impact travel decisions in 

multifarious ways – change the tour start and end times, mode opted or number/type of 

stops on the tour.  

 

Young decision makers are also likely to make decisions on the fly and access to 

technology can help in planning such impromptu trips and convey the same to others via 

social media (Astroza et al, 2017). Females are more likely to own smart-phones, as 

access to smart-phones makes the travel more reliable and brings down uncertainties 

associated with travelling, especially when travelling alone.  A preference for neo-urban 

lifestyle is an important predictor of smart-phone ownership, as evident in the positively 

significant loading of the latent construct.     

 

Membership in car and bike-share programs is strongly related to vehicle 

ownership patterns – decision makers in households without vehicles are more likely to 

resort to such programs that allow them to experience the convenience and flexibility 
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afforded by vehicle (or bike) ownership sans the burden of ownership, maintenance, 

insurance etc. These results are akin to those reported by Coll et al. (2014) and Clewlow 

(2016). Such programs draw more interest from patrons living in dense developments, 

presumably due to better accessibility to such services and costs associated with vehicle 

usage (for e.g. parking costs). Students show a greater interest in such programs. An 

intrinsic preference for a neo-urban lifestyle to eschew ownership and opt for mobility 

services when needed may attribute to their interest in enrolling for such programs. 

 

Attitudinal indicators are strongly related to the latent lifestyle constructs posited 

in this study. Pro-environment attitude is associated with a high importance attached to 

living in a walkable neighborhood with proximity to transit, as can be observed from the 

positive factor loadings of the pro-environment latent construct. Closely related to these 

are the higher frequency of walking and bicycling episodes. On the other hand, decision 

makers conforming to a neo-urban lifestyle gravitate towards residential locations that 

offer short commutes and instant connectivity to locations of interest. Neo-urbanists, as 

the more technology affine folk, exhibit more interest in embracing future mobility 

systems that integrate autonomous driving in a sharing economy setup.                        
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Table 4.2: Estimation Results for Nominal Measurement Equations 

Measurement Equation Component for Nominal Indicators 

Latent Variable Indicators Constant (t-stat) Factor Loading (t-stat) 

Neo-urban lifestyle 

propensity 

Smart-phone ownership 

Car/Bike-share membership 

0.017 

-2.057 

0.61 

-21.30 

0.556 

0.641 

5.98 

6.33 

Exogenous variables - smart-phone ownership Exogenous variables – car/bike-share membership 

 
Age (base: 55+ years) 

  18 to 34 years old 

  35 to 44 years old  

Income (base: $75,000+) 

   Below $24,999 

   $25,000 - $49,999 

   $50,000 - $74,999  

Female (base: male)  

Coefficient 

 

1.099 

0.265 

 

-0.939 

-0.665 

-0.430 

0.290 

t-stat 

 

7.62 

4.55 

 

-18.86 

-17.91 

-14.05 

12.40 

 
Vehicles owned (base:0)  

   One vehicle 

   Two or more vehicles 

Residential Density  

More than 5000 hh/mi2 

Student (base: not a 
student)   

Coefficient 

 

-0.817 

-1.211 

 

0.471 

 

0.166 

 

t-stat 

 

-15.82 

-18.02 

 

14.55 

 

3.76 

 

 

Table 4.3: Estimation Results for Non-Nominal Measurement Equations 

Latent Variable Indicators Constant (t-stat) Factor Loading (t-stat) 

 

Pro-environment 

attitude 

Importance of being close to 

transit 

Importance of having walkable 

neighborhood 

Frequency of bicycling 

Frequency of walking 

0.692 

 

1.500 

 

-0.617 

1.171 

6.06 

 

13.78 

 

-3.16 

16.00 

1.066 

 

0.870 

 

0.343 

0.503 

17.80 

 

33.60 

 

2.42 

16.38 

 

Neo-urban lifestyle 

propensity 

 

 

Importance of staying close to 

major roads/ highways 

Importance of being within 30 

minutes of commute to work 

Interest in participating in car-

share with fully AV 

Frequency of using technology 

based platforms for travel info 

 

 

1.326 

 

0.903 

 

-0.809 

 

-0.187 

 

18.85 

 

12.71 

 

-3.41 

 

-2.18 

 

 

0.105 

 

0.281 

 

0.434 

 

0.215 

 

-2.67 

 

5.13 

 

2.36 

 

3.51 

Endogenous effects on frequency of using technology-

based platforms for travel info 

Coefficient t-stat 

Smart-phone ownership (base: no smart-phone) 

 

0.412 4.44 

Exogenous effects on frequency of using technology-

based platforms for travel info 

Coefficient t-stat 

High Residential Density (more than 5000 hh/mi2) 

Age (base: above 35 years old) 

    18 to 24 years old 

    25 to 34 years old 

0.256 

 

0.650 

0.242 

3.93 

 

2.47 

3.93 
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4.3 SPATIAL ORDERED RESPONSE PROBIT (SORP) MODEL WITH DEPENDENCY 

EFFECTS 

Table 4.4 presents estimation results for the SORP model with spatial and non-

spatial (attitudinal) dependencies.  The dependent variable is the frequency of using 

shared mobility services. For comparison purposes, models with no dependency effects 

and only spatial dependency effects (autocorrelation) are also presented alongside the 

SORP model that incorporates multi-dimensional spatial and non-spatial dependencies.  

The last column indicates the t-stat values obtained through the post-estimation 

correction procedure stated in section 3.2.5. 

 

In general, more frequent users of these services are young, more educated 

workers living in high density locations where mobility-on-demand services have higher 

penetration rates. All of these indications are consistent with findings reported elsewhere 

in the literature (e.g., Smith 2016, Dias et al 2017). However, decision makers in 

households with young kids engage in complex tours with multiple stops, making it 

challenging to effectively manage time, cost and incorporate uncertainties in travel plans 

through relying on mobility-on-demand services (see Dias et al. 2017). Thus, the 

presence of kids diminishes the positive effect of staying in high density areas on 

frequent use of such services. Those who own smartphones are more likely to use shared 

mobility services; this is presumably because the use of shared mobility services often 

requires the ownership of a smartphone. Female smartphone owners who use apps fairly 

regularly for travel information are less likely to use shared mobility services, possibly 

due to safety considerations and the consistent finding reported in the literature that 

females carry a greater burden of chauffeuring and household maintenance activities, thus 

engendering greater levels of trip chaining and joint travel (Garikapati et al, 2014).  Such 
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travel patterns are not as conducive to shared mobility service usage.  Higher levels of 

vehicle ownership are associated with lower levels of shared mobility service use 

frequency, a finding that is consistent with expectations and prior literature (Coll et al, 

2014).  

 

What is particularly noteworthy is that the model coefficients differ in magnitude 

among the model forms.  This suggests that the use of models that do not account for 

dependencies may offer erroneous forecasts and estimates of policy impacts.  Also, the 

auto-correlation term, , is statistically significant in both models. In addition, parameters 

representing social dependency arising from proximity in the attitudinal space are also 

statistically significant for both attitudinal constructs considered in this thesis. They are 

positive in value, suggesting that diffusion effects are at play. Taken together, and 

comparing coefficients on the non-spatial proximity contributions with the normalized 

value of one for the spatial proximity contribution, the net result is that both social and 

spatial proximity contributions are important, statistically significant, and of the same 

order of magnitude in diffusion effects. As more people use shared mobility services, the 

more visible they become to the rest of the population – both from a spatial perspective 

and a social (attitudinal and lifestyle) perspective.   

 

4.4 MODEL FIT  

Model selection procedures allow for statistical comparison of model fit between 

different model specifications, typically between nested models where one model is a 

restricted version of the other. Analogous to the log-likelihood ratio test (LRT) statistic 

used for comparing models using ordinary maximum likelihood estimation, the 
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composite likelihood ratio test (CLRT) statistic is an appealing statistic for models 

estimated using composite marginal likelihood (CML) approach. The CLRT statistic can 

be expressed as,  

 ˆ ˆ= 2[ ]0θ θCML CMLCLRT logL ( )- logL ( )   (4.1) 

where ˆ( )CMLL θ   and ˆ( )0CMLL θ   are the CML values for the restricted and 

unrestricted models respectively. θ̂   is the CML estimator for the unrestricted model and   

ˆ
0θ  is the CML estimator for the restricted model. Although the construction and 

calculation of the CLRT statistic is straight-forward, it does not have a standard chi-

squared asymptotic distribution. This can be traced to the fact that the CML function does 

not correspond to the parametric model from which the data originates. Pace et al (2011) 

proposed a parameterization invariant adjustment to the CLRT statistic that yields a 

statistic that is asymptotically chi-squared distributed with known degrees of freedom. 

The present study uses the adjusted CLRT statistic to compare the fit between the SORP 

with multi-dimensional dependencies with its restrictive versions (only spatial 

dependency and no dependency). 

 

 Table 4.5 presents the results of the data fit comparisons between the different 

models. The number of parameters and composite log-likelihood (CLL) values for each 

of the three models are provided in the second and third rows, while the fourth row shows 

the results of the ADCLRT tests which clearly shows the superior performance of the 

SORP with multi-dimensional dependencies over its restrictive versions. The ADCLRT 

computations yield 2 statistics that are statistically significant at any level of confidence, 

demonstrating the importance of accounting for multi-dimensional dependency effects in 

activity-travel choice models. 
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Table 4.4: SORP Model with Spatial and Non-Spatial Dependencies 

Exogenous effects on frequency of using ride-sourcing and/or car-

sharing in past 30 days 

Aspatial ORP 
SORP with Spatial 

Dependencies Only 

SORP with Spatial & Non-Spatial 

Dependencies 

Coefficient t-stat Coefficient t-stat Coefficient t-stat 
t-stat 

(corrected) 

Age (base: 45 or more years)        

18 to 24 years old 0.881 4.49 0.906 10.97 0.598 5.26 5.31 

25 to 34 years old 0.661 6.90 0.777 16.11 0.492 5.04 5.11 

35 to 44 years old 0.527 5.41 0.573 12.05 0.336 3.77 3.85 

Work Status        

Full-time, part-time or self-employed (base: unemployed) 0.381 3.95 0.432 9.02 0.227 3.37 3.49 

Student (base: not a student) 0.253 1.93 0.172 2.94 0.254 12.95 12.24 

Income (base: above $100,000)        

Below $25,000 -0.684 -4.57 -0.445 -6.57 -0.741 -19.34 -17.58 

$25,000 - $49,999 -0.581 -5.10 -0.513 -8.49 -0.736 -23.31 -20.33 

$50,000 - $74,999 -0.366 -3.26 -0.194 -3.30 -0.385 -19.21 -17.25 

$75,000 - $99,999 -0.397 -3.51 -0.156 -2.59 -0.318 -17.27 -16.17 

Educational attainment (base: less than a bachelor’s degree)        

Bachelor’s degree 0.386 3.78 0.217 4.10 0.184 4.87 4.96 

Graduate degree 0.430 4.00 0.249 4.66 0.182 4.13 4.21 

Smart-phone ownership and frequency of usage for travel information 

in past 30 days (base: don’t own a smart-phone) 
      

 

Own smart-phone but never use apps 0.881 6.42 0.923 14.25 0.959 22.52 19.65 

Own smart-phone and use apps less than once a week 0.800 5.77 0.799 12.22 0.834 22.81 20.08 

Own smart-phone and use apps once or more a week 1.080 7.62 1.079 16.49 1.116 23.31 20.26 

Own smart-phone and use apps once or more a week x Female -0.249 -2.28 -0.222 -4.27 -0.263 -14.16 -13.37 

Residential Location Density (base: Low Density)        

High Density 0.694 7.64 0.246 5.83 0.497 25.40 22.61 

High Density x Presence of atleast one kid -0.416 -2.15 -0.293 -2.95 -0.300 -11.25 -10.82 

Vehicle Ownership and Residence Type (base: no vehicles)        

One Vehicle and single-family residence -0.505 -3.51 -0.344 -4.85 -0.606 -21.45 -18.99 

Two or more Vehicles and single-family residence -1.207 -8.32 -0.892 -12.58 -1.259 -26.21 -21.85 

One Vehicle and multi-family residence -0.653 -5.43 -0.564 -10.57 -0.648 -23.19 -20.01 

Two or more Vehicles and multi-family residence -0.608 -3.79 -0.383 -5.41 -0.597 -20.69 -18.27 
ρ  -- -- 0.562 2.24 0.895 2.02 1.96 

1κ  (pro-environment attitude) 

2κ  (neo-urban lifestyle propensity) 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

0.883 

1.151 

2.79 

2.53 

2.66 

2.50 
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Table 4.5: Measures of fit 

Summary Statistic Aspatial ORP 
SORP with Spatial 

Dependencies Only 

SORP with Spatial & 

Non-Spatial 

Dependencies 

Number of observations 2170 

Number of parameters 23 24 26 

Composite log-likelihood (CLL) at 

convergence 
-837,319 -680,959 -637,788 

Adjusted composite likelihood 

ratio test (ADCLRT) between SORP 

with Spatial & Non-Spatial 

Dependencies and corresponding 

model 

 

581.99 > Chi-Squared 

statistics with 3 degrees 

of freedom at any 

reasonable level of 

significance 

 

125.92 > Chi-Squared 

statistics with 2 degrees 

of freedom at any 

reasonable level of 

significance 

Not Applicable 
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Chapter 5: Discussion and Conclusions 

Decision makers interact with one another as an inevitable part of living in a 

society.  People observe what others do, interact and exchange information with others, 

and modify their own behaviors, choices, attitudes, and goals in response to societal 

forces.  Yet, many travel models continue to ignore the forces of inter-dependency when 

simulating activity-travel choices.  Models (largely in the research domain) that recognize 

inter-dependency are often limited to accounting for intra-household interactions among 

family members.  Models that purport to capture influences beyond the immediate 

confines of the household do so through spatial dependency effects that are purely based 

on measures of geographic proximity.  For example, people may purchase 

environmentally friendly vehicles, bicycle and walk, use transit, or let their children walk 

to school in response to observing what their neighbors do and interacting with them.   

 

However, in an era of social media platforms and ubiquitous connectivity, inter-

dependencies may no longer be solely influenced by geographic proximity. Rather, the 

strength of association among decision makers may be influenced by attitudes, values, 

preferences, and perceptions.  Those with similar attitudes and lifestyle preferences may 

interact more closely (for example, in online communities and forums), thus enhancing 

social dependency effects among such decision makers who share comparable 

perspectives.   

 

This thesis makes a fundamental contribution to the literature by proposing an 

econometric methodology that is capable of simultaneously accounting for both spatial 

and non-spatial (attitudinal) dependency effects.  The model system takes the form of a 
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simultaneous equations model system with latent constructs that describe decision maker 

attitudes and lifestyle preferences as a function of measured indicators in survey data. 

The proximity among decision makers with respect to the latent constructs is explicitly 

incorporated (along with spatial measures of separation) into the weight matrix that 

captures the strength of association across observations. The formulation is able to 

disentangle the strength of the inter-dependency due to attitudinal proximity from that 

due to spatial proximity. 

 

The model system is applied to the study of the frequency of use of shared 

mobility services, including car-sharing and ride-sourcing services. Two latent constructs, 

representing pro-environmental attitude and preference for a neo-urban lifestyle, are used 

to account for non-spatial dependency effects.  A spatially ordered response model 

(SORP) is estimated within a larger Generalized Heterogeneous Data Model (GHDM) 

framework to examine the dependency effects.  It is found that both spatial and non-

spatial (attitudinal) dependency effects are significant in explaining the use of emerging 

shared mobility services and that both of these effects are comparable in magnitude.  The 

model that accounted for both sources of dependency offered statistically better 

goodness-of-fit than models that ignored one or both sources.   

 

The model system shows that diffusion effects are at play, not just based on 

distance but also based on non-spatial attitudinal and lifestyle variables.  Such models can 

help in developing estimates of market adoption of emerging transportation technologies 

as they capture the diffusion effects engendered by multiple sources. Policy strategies 

aimed at enhancing shared mobility service usage can be better informed via models that 
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capture various inter-dependency effects.  Agencies interested in seeing greater adoption 

of these services could identify virtual groups and forums that may be targeted for 

information campaigns, incentives and rebates, and seeking assistance in spreading the 

word. Through such mechanisms, agencies may be able to realize significant change in 

behavior in response to various strategies by leveraging the power of diffusion effects 

that influence people’s activity-travel choice behaviors. 
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