

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin

April 4-6, 2018

Reverse Engineering Environment for Teaching Secure Coding in

Java

Young Lee1, Jeong Yang2

1Dept. of Electrical Engineering and Computer Science

Texas A&M University-Kingsville

Kingsville, TX 78414, U.S.A

young.lee@tamuk.edu

2Dept. of Computing and Cyber Security

Texas A&M University-San Antonio

San Antonio, TX 78224 U.S.A.

jeong.yang@tamusa.edu

Abstract
Few toolsets for program analysis and Java learning system

provide an integrated console, debugger, and reverse

engineered visualizer. We present an interactive debugging

environment for Java which helps students to understand

the secure coding by detecting and visualizing the data flow

anomaly. Previous research shows that the earlier students

learn secure coding concepts, even at the same time as they

first learn to write code, the better they will continue using

secure coding practices. This paper proposes web-based

Java programming environment for teaching secure coding

practices which provides the essential and fundamental

skills in secure coding. Also, this tool helps students to

understand the data anomaly and security leak with

detecting vulnerabilities in given code.

1. Introduction
Visualizing the interactions among objects in object-

oriented software is difficult in the presence of inheritance,

polymorphism, and dynamic binding. This visualization

includes an object’s state information in a collection of

variables, and object’s behaviors implemented by methods

that use those variables. [2]

This project focuses on a teaching environment for teaching

secure coding practices to the students using the proposed

reverse-engineering tool. Our tool supports Java source

code development along with synchronized static and

dynamic visualizations, interactive debugging in a web-

based programming environment. It aims to help students

better understand dynamic control flow and data flow of

Java programs by detecting the code of the security leak.

This paper presents an initial evaluation of this tool to

investigate its effectiveness and user satisfaction through

quantitative and qualitative experiments.

Data flow analysis can identify data flow anomalies in the

sequence of actions performed upon a program’s data

elements [1]. Tools based on data flow analysis of object-

oriented software must analyze the object’s behavior as

well as object’s status. This research aims to develop an

approach for performing dynamic data flow analysis for

object-oriented programs synced with source code, class

diagram, object diagram, and sequence diagram.

We present an interactive debugging environment for Java

which helps students to understand the secure coding by

detecting and visualizing the data flow anomaly.

This paper makes several contributions about the reverse

engineering tools for secure coding.

These contributions are:

1. Proposed reverse engineered tool presents a dynamic and

static visualization for UML diagrams and data flow.

2. The paper presents a synced approach for dynamic

visualizations (data flow, sequence diagram, object

diagram) and static visualizations (class diagram, source

code) to understand how the Object-Oriented design affect

the behavior of objects at run-time.

3. A case study for detect data anomalies is presented. This

case study allows to students to understand what causes the

data anomaly or security leak.

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin

April 4-6, 2018

2. Reverse Engineering Environment
The proposed tool visualizes the integrated structure and

behavior of Java program in a platform-independent web-

based environment. It provides synchronized static and

dynamic visualization of Java programs such as class

diagram, object diagram, sequence diagram, and data flow

diagram. An overview of the system (see figure 1) and

applied design principles are presented in [3, 4].

Through those synchronized diagrams, students get a better

perspective of the structure of the Java code, the behavior,

and interaction of the objects, and data flow along with

control flow.

3. Case Study: Data Anomaly Detection
Overridden methods and polymorphism can cause a

problem called the yo-yo effect with a simple inheritance

hierarchy that is only three-level classes deep [2]. With an

overridden method ‘bounced’ up and down among levels of

an inheritance hierarchy, overridden methods and

polymorphism can result in a data flow anomaly. The

reverse-engineered diagrams such as class diagram, object

diagram, sequence diagram, and data flow diagram can

efficiently visualize the data flow along with control flow

for these types of overridden methods in the presence of

dynamic binding and polymorphism. Therefore, it is

anticipated that the diagram helps programmers perform

with less difficulty and required effort in tracing the

sequence of calls and detecting data flow anomalies.

The arrows on figure 2 (a) show the overriding: h() and i()

methods of class B override the methods in class A. The

table shows the state variable definitions and uses for some

of the methods in the hierarchy. Suppose that A is an actual

type of an object o and call d(), which calls g(), which calls

h(), which calls i(), which finally calls j(). In this case, the

variables u and w are first defined in h(), then used in

i() and j(). But, when class B is an actual type of object

o and a call d() is made. This time B’s version of h() and i()

are called, u and w are not given values, and thus the call to

j() of class A can result in a data flow anomaly. Figure 2 (b)

is a yo-yo graph of this situation and illustrates the

actual sequence of calls in case of actual type A, B, and C.

In figure 3 (b) shows that the variable u and w are declared

and used without the defining the values.

Figure 4 shows the user interface of the proposed reverse

engineered tool. This tool visualizes each step of program

execution on the class diagram, object diagram, sequence

diagram, and data flow diagram. Students can step forward

and step backward to see how each line of code affects the

control flow (method call in sequence diagram), object

status (object diagram), where the methods and variables

are defined (class diagram), and define-use path (data flow

diagram).

4. Conclusion
This project focused on a teaching environment for

teaching secure coding practices to the students using the

proposed reverse-engineering tool. The case study showed

that the tool visualized the data anomalies of the Java

source code with synchronized static and dynamic

visualizations, and data flow diagrams. In conclusion, the

proposed reverse engineered tool helps students better

understand dynamic control flow and data flow of Java

programs by detecting and visualizing the code of the ta

anomalies and security leak.

References
[1] Scott F. Smith and Mark Thober, “Refactoring

Programs to Secure Information Flows,” ACM SIGPLAN

Workshop on Programming Languages and Analysis for

Security, (2006)

[2] Offutt, J., Alexander, R., Wu, Y., Xiao, Q., Hutchinson,

C., “A fault model for subtype inheritance and

polymorphism,” In: Proceedings of the 12th International

Symposium on Software Reliability Engineering. pp. 84-

93, (2001)

[3] Jeong Yang, Young Lee, David Hicks, and Kai Chang,

“Enhancing Object-Oriented Programming Education using

Static and Dynamic Visualization,” IEEE Frontiers in

Education 2015: Launching a New Vision in Education

Engineering, pp. 806-810, (2015)

[4] Jeong Yang, Young Lee, and David Hicks,

“Synchronized Static and Dynamic Visualization in a Web-

Based Programming Environment,” IEEE International

Conference on Program Comprehension (ICPC), May 16-

17, (2016)

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin

April 4-6, 2018

(a) (b)

Fig. 2 Data flow anomalies with polymorphism. Source from Offutt, 2011

Fig. 1 Architecture Overview

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin

April 4-6, 2018

(A) Actual type of Class A

(B) Actual type of Class B

Fig. 3 Data Flow Diagram (Define-Use Path)

Fig. 4 User Interface of Reverse Engineered Tool

