
a2) United States Patent
Johnet al.

US008041931B2

US 8,041,931 B2
*Oct. 18, 2011

(0) Patent No.:

(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(60)

(51)

(52)
(58)

(56)

BRANCH PREDICTION APPARATUS,

SYSTEMS, AND METHODS

Inventors: Lizy K. John, Austin, TX (US); Tao Li,

Gainesville, FL (US)

Assignee: The Board of Regents, The University
of Texas System, Austin, TX (US)

Notice: Subject to any disclaimer, the term ofthis

patent is extended or adjusted under 35
U.S.C. 154(b) by 222 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 12/046,066

Filed: Mar. 11, 2008

Prior Publication Data

US 2008/0215866 Al Sep. 4, 2008

Related U.S. Application Data

Continuation of application No. 10/822,553, filed on

Apr. 12, 2004, now Pat. No. 7,370,183.

Provisional application No. 60/462,513, filed on Apr.
11, 2003.

Int. Cl.

GO6F 9/48 (2006.01)

DLS. C1. icececescneescneceesessesensesseseneens 712/239

Field of Classification Search. ...
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,577,217 A 11/1996 Hoyt etal.
5,935,241 A 8/1999 Shiell etal.
6,092,187 A * 7/2000 Killian oe 712/239

6,108,775 A 8/2000 Shiell etal.
6,721,877 B1* 4/2004 Chenetal. wo... 712/239
6,938,151 B2* 8/2005 Bonannoetal. w 712/239
7,058,795 B2* 6/2006 Kacevasetal. . w 712/239
7,185,183 B1* 2/2007 Uhler0.. we 712/224
7,370,183 B2* 5/2008 John et al. w 712/240

2002/0029333 Al* 3/2002 Talcott w 712/239
2003/0065912 Al* 4/2003 Humetal. 0... 712/239
2005/0114637 Al 5/2005 John etal.

OTHER PUBLICATIONS

M.Petrovicet al., “Two Branch Predictor Schemes for Reduction of

Misprediction Rate in Conditions of Frequent Content Switches,”

SRDS,The 17th IEEE Symposium on Reliable Distributed Systems,

pp. 354-359, 1998.
“U.S. Appl. No. 10/822,553final office action mailed Feb. 21,2007”,

18 Pgs.

“U.S. Appl. No. 10/822,553 non-final office action mailed Aug. 9,

2007”, 10 Pgs.
“U.S. Appl. No. 10/822,553 non-final office action mailed Sep. 12,

2006”, 18 Pgs.
“U.S. Appl. No. 10/822,553 Response filed Dec. 1, 2006 non-final

office action mailed Sep. 12, 2006”, 16 Pgs.

(Continued)

Primary Examiner — Eric Coleman

(74) Attorney, Agent, or Firm — Schwabe, Williamson &
Wyatt, P.C.

(57) ABSTRACT

An apparatus and a system, as well as a method andarticle,

mayoperate to predict a branch withina first operating con-

text, such as a user context, using a first strategy; and to
predict a branch within a second operating context, such as an

operating system context, using a secondstrategy. In some

embodiments, apparatus and systems may comprise one or

morefirst storage locations to store branch history informa-
tion associated with a first operating context, and one ore

more second storage locations to store branch history infor-

mation associated with a second operating context.

18 Claims, 4 Drawing Sheets

180

va ie)

CJ we
PROCESSOR STATUS REGISTER

AA

~ Vee,

Vea 16

BHT OF 2 ENTRIES 1

> PREDICTION

H
E
S

 ~
140

US 8,041,931 B2
Page 2

OTHER PUBLICATIONS

“U.S. Appl. No. 10/822,553 Responsefiled Apr. 20, 2007final office

action mailed Feb. 21, 2007”, 7 Pgs.

“U.S. Appl. No. 10/822,553, Notice of Allowance mailed Dec. 21,

2007”, NOAR.6 pgs.
“Non-Final Office Action Mailed Aug. 9, 2007 in U.S. Appl. No.

10/822,553 10 pgs”, OARN,10.
Li, T. , et al., “Improving Branch Predictability in Java Processing”,

University ofTexas Project Publications, (2001).

Li, T, et al., “Modeling and Evaluation of Control Flow Prediction

Schemes Using Complete System Simulation and Java Workloads”,

Dept. of Electrical and Computer Engineering, the University of

Texas at Austin, Research paper, 10 pages, IEEE (2002).

Li, T , et al., “Understanding and Improving Operating System

Effects in Control Flow Prediction”, Dept. ofElectrical and Com-

puterEngineering, the University ofTexas atAustin, Paper,(2002), 13

pages,

* cited by examiner

U.S. Patent Oct. 18, 2011 Sheet 1 of 4 US 8,041,931 B2

{80

uae tug)

C1 Ad <u)

PROCESSOR STATUS REGISTER OS CONTENT

ltl 128 136

[Ee | USER CONTENT

10> | execution mode bit 13
O

170

~ BHT OF 2! ENTRIES M59

118

ye” PEitee]l=
134 |» PREDICTION

yO at x

14 140
FIG. 1A

U.S. Patent Oct. 18, 2011 Sheet 2 of 4 US 8,041,931 B2

180

we gS

C1 Ak RW
0S CONTENTPROCESSOR STATUS REGISTER

lM 28 186

Eel USER CONTENT

80| |execution mode bit -18
"0 Ud K-BHSR jay _KBHT OF 2! ENTRIES
. 1 bits poe |“Xi

er {hf ys
Me | 0

i

~-j ee © |-—

BRANCH ADDRESS R

ibits | ve

Jits —Ne pREDICTION| 7 $94

— rE
aits | a

\A\ THA

U-BHTOF 2! ENTRIES \
nee

SPLIT BRANCH 48
HISTORY TABLE

FIG, 1B

US 8,041,931 B2Sheet 3 of 4Oct. 18, 2011U.S. Patent

NOMWOICTad

NOLLOIGHad

 i

LI ONISVIA

ale

 HEYOVSIC/ATIOV

L
d
SYSLN109

NOLLOATSS
NOMOAUICLa

qaoweld
T
°

L
i
]

O
F

O
l
d

CRIGAB-LLTAN
(IN)IHENOWIRUC

|
L
(
g
)

uayerskempy
L
i
]

C
T

C
o

vee
«

|
~

L
i
]

~
L
i
]

IHG
—
_
1

—

*
p
o
o

SSHUCCV
HONVUE]

(p/7)aueys
C
1
]

\
L
t

J

(1)IBANOLOTUIG
a

<
L
i

TAVHSO
L
a
d

(IHO.UdS
“YSHALITS))

=
«

laa
DIVAY-S0

S
HUAN

SOVd
R

3
C
O
:

S
d
o

eo
p
o
o

\
f

M
e
L
T
I

I

i
iia

YSHA
(3/1)8¥9

C
O
O
N

ATTOORG)
|
L
i

 (SsqavHonvaa

L
i
]
<
—
_
>
+
—

C
i
)

w
e
a
v
i
n
g
)

(6)2097
P
r
e
t
t
y

t
T

L
i
|

iHa

U.S. Patent Oct. 18, 2011

Aut~\

385
\

Sheet 4 of 4

25 een)
< fad

SEPARATE SEPARATE
CONTEXT USERAND O§
HISTORIES HISTORIES

20
Yo wv

DETERMINE
CONTEXT

245 200
} r Pa

ACCESS READ/WRITE
HISTORIES HISTORIES

Po
209

Pa

PREDICT
BRANCHES

FIG, 2

389
~

gg, (MEM
w.

DATA

MOT
/

CPU

FG, 3

US 8,041,931 B2

US 8,041,931 B2

1
BRANCH PREDICTION APPARATUS,

SYSTEMS, AND METHODS

PRIORITY CLAIM

This application is a continuation application of U.S.

patent application Ser. No. 10/822,553, titled “Branch Pre-

dictor Comprising a Split Branch Register” filed Apr. 12,

2004, now U.S. Pat. No. 7,370,183 which application claims

the benefit of priority under 35 U.S.C. §119(e) to U.S. Pro-

visional Patent Application Ser. No. 60/462,513, titled

“Branch Prediction Apparatus, Systems, and Methods”’,filed

on Apr. 11, 2003, which applications are incorporated herein

by reference in their entirety.

STATEMENT OF GOVERNMENTRIGHTS

The invention was made,at least in part, with a grant from

the Governmentofthe United States ofAmerica (grant NSF

EJA-9807112 from the National Science Foundation). The

Government may have certain rights in the invention.

TECHNICAL FIELD

Various embodiments described herein relate generally to

program execution, including apparatus, systems, and meth-

ods used to predict the outcome of branch operations.

BACKGROUND INFORMATION

Computer system performance may be highly dependent

on associated memory system operational efficiency. For

example, processing that stalls when data is unavailable can

render results at an unacceptably slow rate. Some micropro-

cessors provide aggressive support for Instruction level Par-

allelism (ILP) and have deep pipelines to keep cycle times

low. However, the actual level of ILP and pipelining perfor-

mance delivered may depend on the accuracy ofbranch pre-

diction; mispredictions can stall/squash the pipeline.

Manyapplications include a significant Operating System

(OS) component, which can also affect control flow transfer

(i.e., branching) in the execution environment. For example,

exception-driven, intermittent invocation of OS code may

significantly increase branch misprediction in both user and

OS (e.g., kernel) code operating contexts. Thus, there is a

need to improve the accuracy of program branch prediction

mechanisms, especially for systems having a significant OS

system component, and/or systems using pipelined proces-

sors.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A, 1B and 1Care block diagramsofapparatus and

systems according to various embodiments;

FIG.2 is a flow chart illustrating several methods accord-

ing to various embodiments; and
FIG. 3 is a block diagram ofan article according to various

embodiments.

DETAILED DESCRIPTION

For the purposes of this document, the following defini-

tions may be observed:
Branch History Information—can be information stored in a

branch history shift register or table;

10

15

20

25

30

35

40

45

50

55

60

65

2
Branch History Table—maycontain branch history informa-

tion and may be used to makepredictions with respect to

appropriate branches for program execution;

Operating Context—caninclude an operating system context

(e.g., a kernel context), a user context, and others;

Split Branch History Table—a branch history table that has

branch history information separated according to various

operating contexts. For example, a split branch history

table may have onearea set aside to store branch history

associated with an OS context, and anotherarea set aside to

store branch history associated with a user context;

Storage Location—maybe abitwithin aregister, aregister, or

a series ofregisters; may also be one or more locations ina

table, as well as one or morelocations in a memory, includ-

ing volatile and nonvolatile memories; and

Transceiver—inay bea device including a transmitter and a

receiver, andmay be used in place ofeither “transmitter” or

“receiver” throughout this document. In addition, any-

where the term transceiver is used, “transmitter” and/or

“receiver” may be substituted.

Evaluating the suitability ofhardware for executing a given
program application, as well as with respect to OS perfor-

mance, is an ongoing process. The three subsystems

involved—application (workload), OS, and hardware—are
constantly evolving, sometimes quite independently.In par-

ticular, it is worthwhile to note the increasing importance of
the OS in emerging application environments, since the num-

ber of times OS services are invoked by various applications
continues to grow.

Recentstudies indicate that invoked OS operations may in

fact contribute significantly to overall application execution
time. For example, in some commercial applications (e.g.,

databases and web services), OS components have been
observed to occupy as much as 55% ofthe execution time.

This may occur because many applications are multi-

threaded, exercising the input/output (1/O) subsystem exten-
sively. This trend is likely to continue, and various solutions

to reduce the impact ofOS components on performance have
been sought.

Anotheraspect of the problem deals with ILP andpipelin-
ing performance, which may dependgreatly on being able to

accurately predict the control flow ofa program. Thus, branch

prediction, in addition to OSeffects, has been studied exten-
sively. For example, branches may have biased behavior such

that certain branches are predicted to be usually “taken” or
usually “not taken”. Branch history table (BHT) counters can

exploit this behavior to predict future outcomes for a given
branch. However, when branches showingdifferent biases are

mapped into the same entry of the predictor table, aliased

branches update BHT counters with different directions,
leading to aliasing mispredictions. OS operations may com-

plicate the situation. For example, the OS may affect control
flow predictability by introducing additional user/OS branch

aliasing in branch predictor tables. In some benchmarktests,
kernel code operation has been notedto nearly double mispre-

diction rates.

To summarize, user/OS branch aliasing can significantly
affect (and reduce) branch prediction accuracy. In somecir-

cumstance, this may beattributed to exception-driven and
intermittent kernel branch execution that results in BHSR

(branch history shift register) branch history information that
is inaccurate. Moreover, user and kernel branches may have a

different bias distribution, which in turn spreads user-kernel

branch aliasing references across a wide range of BHT
entries. These observations motivate the need for OS-aware

branch prediction techniques.

US 8,041,931 B2

3
To discover a mechanism that mayalleviate the destructive

impact ofOS branch execution on branch predictability, con-

sider that during the initial period of a context switch, both

user and kernelhistory patterns may coexist in history capture
structures. In Gshare (andother correlation based predictors),

shift registers (e.g., BHSRs) may operate to capture correla-
tions between branches and/or branch history tables (BHTs).

Onesolution to the challenges described maybe to use sepa-
rate shift registers to individually keep track ofbranch corre-

lation; another solution maybe to utilize separate BHTs.

While the OS-aware mechanisms described herein may be
illustrated in the context of a Gshare predictor for reasons of

simplicity, it should be noted that various embodiments can
be applied to other correlation-based predictors as well. In

fact, the various embodiments disclosed herein may provide
solutions that one can incorporate into almost any predictor

mechanism to alleviate the impact of the OSactivity on con-

trol flow prediction. For more information on Gshare branch
predictors, as well as other prediction mechanisms, please see

the following, incorporated herein by reference in their
entirety: Combining Branch Predictors, S. McFarling, WRL

Technical Note TN-36, Digital Equipment Corporation, June,
1993; and The Interaction of Architecture and Operating

System Design, T. E. Anderson, et al., Proceedings of the

Fourth International Conference onArchitectural Support for
Programming Languages and Operating Systems, pgs. 108-

120, 1991.
Thus, various embodiments described herein may advo-

cate separating branch prediction logic for user and kernel
modesto reduce, and perhaps eliminate interference between

the two. In some embodiments, this approach may beinte-

grated into existing prediction schemes without significant
logic complication.

FIGS. 1A, 1B, and 1C are block diagrams of apparatus and
systems according to various embodiments. FIG. 1A illus-

trates some embodiments of the invention using a split or

separated correlation history approach. FIG. 1B illustrates
some embodiments of the invention utilizing a split correla-

tion history approach, combined with a split or separated
BHT.FIG.1Cillustrates some embodimentsofthe invention

where an OS-Aware Gshare branch predictor having a split
BHSRandsplit BHTis substituted for various components of

the Multi-Hybrid, Agree, and Bi-Mode branch prediction

apparatus.

In some embodiments, the apparatus 100 may comprise a

first storage location 114 to store branch history information
118 associated with afirst operating context 122 (e.g., an OS

context, including a kernel context) selected from a plurality
ofoperating contexts 128. The plurality ofoperating contexts

128 mayin turn be selected to form a preselected grouping of

operating contexts 128. In some embodiments, the apparatus
100 may also have a second storage location 132 to store

branch history information 134 associated with a second
operating context 136 (e.g., a user context) selected from the

plurality of operating contexts 128.
Referring specifically to FIG. 1B,it is to be noted that the

apparatus 100 may also make use of a split BHT 137 includ-

ing a first storage location 138 to store branch history infor-
mation 118 associated with the first operating context 122

(e.g, an OS context, including a kernel context) selected from
a plurality of operating contexts 128 (e.g., a preselected plu-

rality). The apparatus 100 mayalso include a second storage
location 139 as a portion of a split BHT 137 to store branch

history information 134 associated with a second operating

context 136 (e.g., a user context) selected from the plurality of
operating contexts 128. In either case (i.e., considering the

apparatus 100 in FIG. 1A or 1B), the first and second storage

20

30

40

45

55

4
locations 114, 138 and 132, 139, respectively, may comprise
a single location or a set of locations, such as a register, a

memory location, a group of registers, and/or a group of

memory locations, or combinationsthereof.
Thus, in some embodiments, and apparatus 100 may com-

prise one or morefirst storage locations 114 to store branch
history information 118 associated with a first operating con-

text 122, and one or more second storage locations 132 to
store branch history information 134 associated with a second

operating context 136. The first and second operating con-

texts 122, 136 maybeselected from a preselected plurality or
grouping of operating contexts 128. For example, in some

embodiments,the preselected plurality of operating contexts
128 mayinclude at least one of a user context, an operating

system context, and other contexts.
In some embodiments, the first and second storage loca-

tions 114, 132 maybe includedinfirst and second designated

portions of amemory 141, respectively. The designated por-
tions of the memory 141 may, or may not overlap. As noted

previously, the first and second storage locations 114, 132
may each comprise one or moreregisters, as well as one or

more bits within a single register.
In some embodiments, the apparatus 100 may include a

BHT137having a dynamically switched input 143 coupled to

at least one bit includedinthefirst storage location andatleast
one bit included in the second storage location. The dynami-

cally switched input 143 can be switched according to an
indication of the current operating context included in the

preselected plurality of operating contexts provided by a pro-
cessorstatus register (PSR) 147. The split BHT 137 may also

be capable ofreceiving an indication 151 of a selected branch

address modified by the indication of the current operating
context.

In some embodiments, the apparatus 100 may include a
split BHT 137 havinga first portionto receive at least one bit

includedin thefirst storage location 114 and a secondportion

to receive at least one bit included in the second storage
location 132. The apparatus 100 mayalso include a PSR 147

to provide an indication ofa current operating context includ-
ing the preselected plurality of operating contexts 128 to a

prediction resource coupledto the split BHT 137.
In some embodiments, an apparatus 100 may includea first

storage location(ora first set ofstorage locations) 114to store

branch history information associated with an execution of a
plurality of instructions, such as operating system instruc-

tions; anda secondstorage location (or a secondset ofstorage
locations) 132 to store branch history information associated

with an execution of a plurality of instructions, such as user
instructions. Thefirst and second storage locations 114, 132

maybe located in a single physical location, or in separate

locations.
Thefirst storage location(or first set of storage locations)

114 maybe usedto store branch history information associ-
ated with a first operating context 122, and the secondstorage

location (or secondset of storage locations) 132 may be used
to store branch history information associated with a second

operating context 136. The first and second operating con-

texts 122, 136 maybe selected from any numberofcontexts.
In some embodiments, the apparatus 100 may include a BHT

137 having a dynamically switched input 143 coupledto the
first storage location 114 and the secondstorage location 132.

Other embodiments may berealized.
For example, a system 140 mayinclude an apparatus 100,

similar to or identical to the apparatus 100 described previ-

ously, as well as a processor 142 to execute a plurality of
instructions within afirst operating context 122 and a second

operating context 136, each selected from the plurality of

US 8,041,931 B2

5
operating contexts 128. The first storage location 114 may be
used to store branch history information associated with the

first operating context 122, and the second storage location

132 may be usedto store branch history information associ-
ated with the second operating context 136.

In some embodiments, the system 140 may include a
memory 141 coupled to the processor 142, the memory 141

includingthefirst storage location 114 andthe secondstorage
location 132. The memory 141, in turn, may include one or

moreshift registers. The system 140 may include a PSR 147

(e.g., included in the processor 142) to provide an indication
of a current operating context included in the plurality of

operating contexts. The system 140 mayalso includea split
BHT 137 including the first storage location 114 and the

second storage location 132, wherein the split BHT 137 is
coupledto the processor 142.

The processor 142 may in turn comprise a microprocessor,

a digital computer, a digital signal processor, or a hybrid
(digital/analog) computer. The processor 142 may be coupled

to a network adapter 144 and/andor a wireless transceiver
148. The system 140 mayinclude multiple processors 142,

including one or more pipelined processors. The transceiver
148 maybe coupled to an energy conduit 149, including any

type of device or apparatus having the capability to transmit

and/or receive energy to and/or from space. Examples ofsuch
energy conduits include antennas, infra-red transmitters,

infra-red receivers, photo-emitters (e.g., light emitting
diodes), photo-receptors (e.g., a photocell), and charge-

coupled devices, among others.
In some embodiments, a device 150, such as a computer, a

memory system, a magnetic or optical disk, some otherstor-

age device, and/or any type of electronic device or system,
may comprise a machine-accessible medium such as a

memory 160 (e.g., a memory includingan electrical, optical,
or electromagnetic conductor) having associated data 170

(e.g. computer program instructions), which when accessed,

results in a machine performing various activities. These
activities may include, for example, accessing branch history

information associated with a current operating context from
a plurality of designated branch history storage locations,

wherein each one ofthe plurality ofdesignated branch history
storage locationsis associated with a corresponding plurality

ofoperating contexts including the current operating context.

Tt is noted that in the apparatus 100 and system 140
described herein may be implemented in the form ofa Gshare

predictor. The disclosed embodiments can be applied to other
correlation-based predictors as well. For example, a Gshare

predictor with split correlation history shift registers (e.g., a
split BHSRpredictor) 152 can be seen in FIG. 1A. Thesplit

BHSRpredictor 152 may operate so that two dedicated

BHSRs (i.e., U-BHSR for user context and K-BHSR for
kernel context) are used to gather branch correlation patterns

and to generate BHT indexing. By using K-BHSRfor kernel
branches, the split BHSR predictor may overcomethe loss of

branch history patterns in kernel mode. The split BHSRpre-
dictor 152 may operate to dynamically switch between

BHSRs(e.g., the U-BHSRand the K-BHSR) whena context

switch occurs, preventing BHT indexing ambiguity during
the initial stages of a context switch.

The proposed split BHSR predictor 152 aims to preserve
accurate BHT counter indexing during a context switch.

However, user/OS aliasing may still occur when user and
kernel branches have the same XORed(exclusive-ORed)glo-

bal history pattern, but opposite biases. Due to different

branch biasdistributions, user and kernel branches can update
BHTcounters in different manners. To reduce destructive

user/OS branch aliasing in BHT, the split BHT 137 for user

10

15

20

25

30

35

40

45

50

55

60

65

6
and kernel code, which yields a split BHT predictor 154, can

be used. This split BHT predictor 154 may reduce or even

eliminate destructive user/OS aliasing by using separate cor-

relation and history information with respect to user mode

and kernel mode.It is also observed that when BHTsare split

into user and kernelparts, the kernel BHT can be smaller than

the user BHT because there may be fewer active branchsites

in kernel.

Separating kernel branches can be accomplished at run

time by using the PSR 147. In some embodiments, a set of

PSR bits associated with a microprocessor may be used to

record and identify kernel-user execution modeorprivilege

level. For example, a MIPS R10000 processor may use the

KSUfield in its PSR to identify the current execution mode,

and the Intel® JA-64 Itanium processor may use its PSR.cpl

field to determine one of four privilege levels (e.g., levels

0-3).
The corresponding PSR field can be used to select the

appropriate predictor. For example, at runtime, instructions

from a fetch unit may befiltered into an active part of the

prediction resource (e.g., user or kernel, depending on the
execution mode).

As mentioned previously, OS-aware prediction techniques

maybe integrated with other predictors. For example, Multi-
Hybrid, Agree, and Bi-Mode schemes do contain mecha-

nismstailored for branches with heterogeneous characteris-
tics and/or de-aliasing. All these predictors may contain a

Gshare predictor and/or Gshare indexing. To integrate the
proposed mechanisms, a conventional Gshare component

maybe replaced with the proposed OS-aware (split-BHSR

Gshare) split BHSR predictor 152 and/or the (split Gshare)
split BHT predictor 154. For more information on the Multi-

Hybrid, Agree, and Bi-Modeprediction schemes, please see
the following references, incorporated herein by reference in

their entirety: Using Hybrid Branch Predictors to Improve

Branch Prediction Accuracy in the Presence of Context
Switches, M. Evers et al., Proceedings of the 23rd Annual

International Symposium on Computer Architecture, pgs.
3-11, 1996; TheAgree Predictor: A Mechanismfor Reducing

Negative Branch History Interference, E. Sprangle et al.,
Proceedings ofthe 24thAnnual International Symposium on

Computer Architecture, pgs. 284-291, 1997; and The Bi-

Mode Branch Predictor, C. C. Leeet al., Proceedings of the
30th Annual IEEE/ACM International Symposium on

Microarchitecture, pgs. 4-13, 1997.
Some embodiments, such as those having a split BHSR

predictor 152 (see FIG. 1A), may be constructed so as to
separate the BHSRs. In some embodiments, including those

having a split BHT predictor 154 (see FIG. 1B), partitioning

of the BHT 137 between user code and OS code or kernel
code mayoccurstatically, or may happen dynamically (e.g.,

as needed).
The apparatus 100, storage locations 114, 132, 138, 139,

branch history information 118, 134, operating contexts 122,
136, plurality of operating contexts 128, split BHT 137, sys-

tem 140, memories 141, 160, processor 142, input 143, net-

work adapter 144, PSR 147, transceiver 148, energy conduit
149, device 150, indication 151, split BHSR predictor 152,

split BHT predictor 154, and data 170 mayall be character-
ized as “modules” herein. Such modules may include hard-

ware circuitry, and/or one or more processors and/or memory
circuits, software program modules, including objects and

collections of objects, and/or firmware, and combinations

thereof, as desired by the architect of the apparatus 100 and
the system 140, and as appropriate for particular implemen-

tations of various embodiments.

US 8,041,931 B2

7
Tt should also be understood that the apparatus and systems

of various embodiments can be used in applications other

than desktop computers and workstations, and thus, the vari-

ous embodiments disclosed herein are not to be so limited.
The illustrations of an apparatus 100 and system 140 are

intended to provide a general understanding ofthe structure
ofvarious embodiments, and they are not intendedto serve as

a complete description of all the elements and features of
apparatus and systems that might makeuseofthe structures

described herein.

Applications that may include the novel apparatus and
systemsof various embodiments include electronic circuitry

used in high-speed computers, communication and signal
processing circuitry, modems, processor modules, embedded

processors, data switches, and application-specific modules,
including multilayer, multi-chip modules. Such apparatus

and systems may further be included as sub-components

within a variety of electronic systems, such as televisions,
cellular telephones, personal computers, personal digital

assistants (PDAs), workstations, radios, video players,
vehicles, and others.

FIG.2 is a flow chart illustrating several methods accord-
ing to various embodiments. For example, in some embodi-

ments ofthe invention, a method 211 may include separating

branch history information according to various operating
contexts at block 215, such as separating branch history infor-

mation according to an OS context(e.g., a kernel context) and
auser context at block 225. Other operating contexts may also

be usedasa basis for separation.
The method 211 mayalso include determining the current

operating context from among various operating contexts,

including a preselected grouping of operating contexts, at
block 235. For example, the method 211 may include deter-

mining the current operating context based on a type of
instruction previously executed.

The method 211 may continue with accessing branch his-

tory information associated with the current operating con-
text from a plurality of designated branch history storage

locations (e.g., registers and/or BHTs, or a split BHT),
wherein each one ofthe plurality ofdesignated branch history

storage locations may be associated with a corresponding
plurality of operating contexts (e.g., OS contexts, user con-

texts, etc.) including the current operating context, at block

245. Thus, for example, the method 211 mayincludestoring
branch history information associated with a first operating

context includedin the plurality ofoperating contexts in afirst
location (orset of locations) includedin the plurality of des-

ignated branch history storage locations. The method 211
mayalso include storing branch history information associ-

ated with a second operating context includedin the plurality

ofoperating contexts in a second location (or set oflocations)
includedin the plurality of designated branch history storage

locations. Thefirst and second locations may be included in a
pair ofregisters. In some embodiments, several(e.g., each) of

the plurality of designated branch history storage locations
may be included in a substantially contiguous series of

memory locations forming an addressable memory block

Accessing the histories may include reading(e.g., retriev-
ing) and/or writing (e.g., storing) the histories at block 255.

The method 211 may also include predicting branches at
block 265. Thus, for example, the method 211 may include

determining a course ofaction based on a condition ofbranch
history information associated with a selected context, further

associated with a selected one of the plurality of designated

branch history storage locations.
In some embodiments, a method 211 may comprise sepa-

rating a first branch history from a second branch history at

10

15

20

25

30

35

40

45

50

55

60

65

8
block 225. The method 211 mayinclude accessing the first
branchhistory (e.g., associated with a first operating context,

perhapsincluding a plurality ofuser instructions), and access-

ing a second branchhistory (e.g., associated with a second
operating context, perhaps including the execution of a plu-

rality of operating system instructions) at block 245.
In some embodiments, the method 211 mayfurther include

predicting a branch within the first operating context based
upon information stored in the first branch history at block

265. The method 211 may also include predicting a branch

within the second operating context based upon information
stored in the second branchhistory at block 265.

In some embodiments, the method 211 mayinclude sepa-
rating a first branch history associated with afirst operating

context from a second branch history associated with a sec-
ondoperating contextat block 215. The method 211 mayalso

include predicting a branch within a first operating context

using a first strategy, and predicting a branch within a second
operating context using a second strategy at block 265. In

some embodiments,the first operating context may comprise
a user context, and the second operating context may com-

prise an operating system context. The first strategy may
include accessing a branch history associated with a user

context, and the second strategy may include accessing a

branch history associated with an operating system context.
It should be noted that the methods described herein do not

have to be executed in the order described, or in any particular
order. Moreover, various activities described with respect to

the methods identified herein can be executed in serial or
parallel fashion. For the purposes ofthis document, the terms

“information” and “data” may be used interchangeably.

Information, including parameters, commands, operands,
andother data, can be sent and received in the form of one or

more carrier waves.
Upon reading and comprehending the content of this dis-

closure, one of ordinary skill in the art will understand the

mannerin which a software program can be launched from a
computer-readable medium in a computer-based system to

execute the functions defined in the software program. One of
ordinary skill in the art will further understand the various

programming languages that may be employedto create one
or more software programs designed to implementand per-

form the methods disclosed herein. The programs may be

structured in an object-orientated format using an object-
oriented language such as Java or C++. Alternatively, the

programscan be structured in a procedure-orientated format
using a procedural language, such as assembly or C. The

software components may communicate using any of a num-
ber ofmechanisms well-knownto those skilled in the art, such

as application program interfaces or inter-process communi-

cation techniques, including remote procedure calls. The
teachings of various embodiments are not limited to any

particular programming language or environment, including
Hypertext Markup Language (HTML) and Extensible

Markup Language (XML). Thus, other embodiments may be
realized.

FIG. 3 is a block diagram of an article 385 according to

various embodiments, such as a computer, a memory system,
a magneticor optical disk, some other storage device, and/or

any type ofelectronic device or system. Thearticle 385 (simi-
lar to or identical to the device 150 of FIGS. 1A and 1B) may

comprise a processor 387 (similar to or identical to the pro-
cessor 142 of FIGS. 1A and 1B) coupled to a machine-

accessible medium such as a memory 389(e.g., a memory

including anelectrical, optical, or electromagnetic conductor,
similar to oridentical to the memory 141 ofFIGS. 1A and 1B)

having associated information 391 (e.g., computer program

US 8,041,931 B2

9
instructions, and/or other data, similar to or identical to the

data 170 ofFIGS. 1A and 1B)), which whenaccessed,results

in a machine(e.g., the processor 142, 387) performing such

actions as accessing branch history information associated

witha current operating context from a plurality ofdesignated

branch history storage locations, wherein each one of the

plurality of designated branch history storage locations is

associated with a corresponding plurality of operating con-

texts including the current operating context.

Other actions may include determining the current operat-

ing context based on a type of instruction previously

executed, as well as storing branch history information asso-

ciated with a first operating context included in the plurality

of operating contexts in a first location included in the plu-

rality of designated branch history storage locations, and

storing branch history information associated with a second

operating context included in the plurality of operating con-

texts in a second location includedin the plurality of desig-

nated branch history storage locations. Several (e.g., each

one) of the plurality of designated branch history storage

locations maybe included in a substantially contiguousseries

ofmemory locations forming an addressable memory block.

Further actions may include predicting a branch within a

first operating context using a first strategy, and predicting a

branch within a second operating context using a second

strategy. Additional actions may include separating a first

branch history associated with the first operating context

from a second branch history associated with the second

operating context. In some embodiments, the first operating

context may include a user context, and the second operating

context may include an operating system context. As noted

previously, the first strategy may include accessing a branch

history associated with a user context, and the secondstrategy

may include accessing a branch history associated with an

operating system context.

Implementing the apparatus, systems, and methods

described herein may result in reducing the amountof user/

OSbranch aliasing experienced during execution of various

applications without adding extra hardware for branch de-

aliasing. As a consequence, the number of resources con-

sumed may be reduced.

For example, testing has demonstrated the potential, using
a 32,000 entry BHT, of an OS-aware Gshare-based split

BHSRpredictor and split BHT predictor to reduce mispre-
diction by 34% and 22%,respectively. OS-aware split BHSR

and split BHT Multi-Hybrid, Agree and Bi-Modepredictors
may yield up to 23%, 27% and 9% prediction accuracy

improvement respectively. Other advantages that can be

obtained by implementing various embodiments may be
observedbyreferring to Understanding andImproving Oper-

ating System Effects in Control Flow Prediction, by Li, et al.,
Proceedings of the Tenth International Conference on Archi-

tectural Support for Programming Languages and Operating
Systems, October 2002, incorporated herein by reference in

its entirety.

The accompanying drawingsthat form a part hereof show
by wayofillustration, and notoflimitation, specific embodi-

ments in which the subject matter may be practiced. The
embodiments illustrated are described in sufficient detail to

enable those skilled in the art to practice the teachings dis-
closed herein. Other embodiments may be utilized and

derived therefrom, such that structural and logical substitu-

tions and changes may be made without departing from the
scopeofthis disclosure. This Detailed Description, therefore,

is not to be taken in a limiting sense, and the scope ofvarious

5

10

15

20

25

30

35

40

45

50

55

60

10
embodiments is defined only by the appended claims, along
with the full range of equivalents to which such claims are

entitled.

Thus, although specific embodiments have beenillustrated
and described herein, it should be appreciated that any

arrangementcalculated to achieve the same purpose may be
substituted for the specific embodiments shown.This disclo-

sure is intended to cover any andall adaptations or variations
ofvarious embodiments. Combinationsofthe above embodi-

ments, and other embodiments not specifically described

herein, will be apparent to those of skill in the art upon
reviewing the above description.

The Abstract of the Disclosure is provided to comply with
37 C.E.R. §1.72(b), requiring an abstract that will allow the

reader to quickly ascertain the nature of the technical disclo-
sure. It is submitted with the understandingthatit will not be

used to interpret or limit the scope or meaning of the claims.

In addition, in the foregoing Detailed Description, it can be
seen that various features are grouped together in a single

embodimentfor the purpose of streamlining the disclosure.
This methodofdisclosureis not to be interpretedasreflecting

an intention that the claimed embodiments require more fea-
tures than are expressly recited in each claim. Rather, as the

following claimsreflect, inventive subject matter lies in less

thanall features of a single disclosed embodiment. Thus the
following claims are hereby incorporated into the Detailed

Description, with each claim standing on its own as a separate
embodiment.

The invention claimed is:

1. A method, comprising:

storing correlated branch history information associated
with an execution of a plurality ofnon-operating system

instructions ina first branch history register and ina first
portion of a split branch history table;

storing correlated branch history information associated

with an execution of a plurality of operating system
instructions in a second branchhistory register and in a

second portion ofthe split branch history table, wherein
the first and second branch history registers are sepa-

rated, and the first and secondportionsofthe split branch
history table are different portions; and

making branch prediction, by an agree branch predictor,

for the execution of the non-operating system or operat-
ing system instructions based on the correlated branch

history information of the non-operating system and
operating system instructions stored in the first and sec-

ond branch history registers, and the first and second
portionsofthe split branch history table.

2. The method of claim 1, wherein the agree branch pre-

dictor comprises a Gshare branch predictor.
3. A method, comprising:

storing correlated branch history information associated
with afirst operating context selected from a preselected

plurality of operating contexts in a first branch history
register anda first portion of a split branch history table;

storing correlated branch history information associated

with a second operating context selected from the pre-
selected plurality of operating contexts in a second

branch history register and a secondportion ofthesplit
branch history table, wherein the first and second branch

history registers are separated, and the first and second
portions of the split branch history table are different

portions; and

making branch prediction, by an agree branch predictor,
for the first or the second operating context based on the

correlated branch history information stored in thefirst

US 8,041,931 B2

11
and second branch history registers, and the first and
second portions ofthe split branch history table.

4. A method, comprising:

storing correlated branch history information associated
with an execution of a plurality ofnon-operating system

instructions in a first branch history register;
storing correlated branch history information associated

with an execution of a plurality of operating system
instructions in a second branchhistory register, wherein

the first and second branch history registers are sepa-

rated; and
making branch prediction, by a multi-hybrid branch pre-

dictor having a Gshare branch predictor, for the execu-
tion of the non-operating system or operating system

instructions based at least in part on the correlated
branch history information stored in thefirst and second

branch history registers.

5. The method of claim 4, further comprising:
storing correlated branch history information associated

with an execution ofthe plurality of non-operating sys-
tem instructions in a first portion ofa split branch history

table; and
storing correlated branch history information associated

with an execution of the plurality of operating system

instructions in a second portion of the split branch his-
tory table, wherein the first and second portions of the

split branch history table are different portions;
wherein making branch prediction, by the multi-hybrid

branch predictor, for the execution ofthe non-operating
system or operating system instructionsis further based

on the correlated branch history information stored in

the first and secondportions of the split branch history
table.

6. A method, comprising:
storing correlated branch history information associated

with afirst operating context selected from a preselected

plurality of operating contexts in a first branch history
register;

storing correlated branch history information associated
with a second operating context selected from the pre-

selected plurality of operating contexts in a second
branch history register, wherein the first and second

branch history registers are separated; and

making branch prediction, by a multi-hybrid branch pre-
dictor having a Gshare branch predictor,for the first or

the second operating context based on the correlated
branch history information stored in thefirst and second

branch history registers.
7. A method, comprising:

storing correlated branch history information associated

with an execution of a plurality ofnon-operating system
instructions in a first branch history register;

storing correlated branch history information associated
with an execution of a plurality of operating system

instructions in a second branchhistory register, wherein
the first and second branch history registers are sepa-

rated; and

making branch prediction, by a bi mode branch predictor
having a Gshare branch predictor, for the execution of

the instructions based at least in part on the correlated
branch history information stored in thefirst and second

branch history registers.
8. The method of claim 7, further comprising:

storing correlated branch history information associated

with an execution ofthe plurality of non-operating sys-
tem instructions in a first portion ofa split branch history

table; and

5

30

40

45

50

55

60

65

12
storing correlated branch history information associated

with an execution of the plurality of operating system

instructions in a second portion of the split branch his-

tory table, wherein the first and second portions of the
split branch history table are different portions;

wherein making branch prediction, by the bi mode branch
predictor, for the execution of the non-operating system

or operating system instructions is further based on the
correlated branch history information stored in thefirst

and secondportionsofthe split branch history table.

9. A method, comprising:
storing correlated branch history information associated

with afirst operating context selected from a preselected
plurality of operating contexts, in a first branch history

register;
storing correlated branch history information associated

with a second operating context selected from the pre-

selected plurality of operating contexts, in a second
branch history register, wherein the first and second

branch history registers are separated; and
making branch prediction, by a bi mode branch predictor

having a Gshare branch predictor, for the first or the
second operating context based at least in part on the

correlated branch history information stored in thefirst

and second branchhistory registers.
10. A method, comprising:

storing separately, by an apparatus, correlated branch his-
tory information associated witha first operating context

and a secondoperating context ofthe apparatusin afirst
branch history register and a second branchhistory reg-

ister, respectively, wherein the first and second branch

history registers are separated;
storing separately, by an apparatus, correlated branch his-

tory information associated withthefirst operating con-
text and the second operating context ofthe apparatus in

a first portion ofa split branch history table and a second

portion of the split branch history table, respectively,
whereinthe first and secondportions ofthe split branch

history table are different portions;
determining, by the apparatus, whether a current operating

context of the apparatusis thefirst operating context or
the second operating context;

accessing, by the apparatus, the separately stored corre-

lated branch history information in the first and second
branch history registers, and the first and second por-

tions of the split ranch history table; and
making branch prediction for the current operating context,

by the apparatus, using the accessed correlated branch
history information, anda result of the determining.

11. The method of claim 10 whereinthe first context com-

prises non-operating system instructions, and the second con-
text comprises operating system instructions.

12. An article of manufacture, comprising:
a non-transitory computer-readable storage medium; and

instructions stored in the non-transitory computer-readable
storage medium, and configured to cause an apparatus,

in response to processing ofthe instructions by the appa-

ratus, to:

determine whether a current operating context of the

apparatusis a first operating context or a second oper-
ating context, wherein correlated branch history

information associated withthe first operating context
and the second operating context are separately stored

by the apparatusin a first and a second branchhistory

registers that are separated, and in afirst anda second
portion ofasplit branch history table thatare different

portions;

US 8,041,931 B2

13
access the separately stored correlated branch history

information in the first and second branch history

registers, and thefirst and secondportionsofthe split

branch history table; and

make branch prediction for the current operating con-

text, by an agree branch predictor, using the accessed

correlated branch history information anda result of

the determine.

13. Thearticle of claim 12 whereinthe first context com-

prises non-operating system instructions, and the second con-

text comprises operating system instructions.

14. The method of claim 10, wherein said determining
whether the current operating context of the apparatus is the

first operating context or the second operating context com-

prises determining the current operating context based at least
in part on a type of instruction previously executed.

15. An article of manufacture, comprising:
a non-transitory computer-readable storage medium; and

instructions stored in the non-transitory computer-readable

storage medium, and configured to cause an apparatus,
in responseto processing ofthe instructions by the appa-

ratus, to:

store correlated branch history information associated

with an execution ofa plurality ofnon-operating sys-
tem instructions in a first branch history register, and

a first portion of a split branch history table;

store correlated branch history information associated
with an execution of a plurality of operating system

instructions in a second branchhistory register, and a
second portion of the split branch history table,

wherein the first and second branchhistory registers
are separated, and thefirst and secondportions of the

split branch history table are different portions;

make branch prediction, by an agree branch predictor,
for the execution ofthe non-operating system or oper-

14
ating system instructions based on the correlated
branch history information storedin thefirst and sec-

ondbranch history registers, and thefirst and second

portions of the split branch history table.
16. The article of claim 15, wherein the agree branch pre-

dictor comprises a Gshare branch predictor.
17. The methodofclaim 6, further comprising:

storing correlated branch history information associated
with an execution ofthe first context in a first portion of

a split branch history table; and

storing correlated branch history information associated
with an execution of the second context in a second

portion ofthe split branch history table, whereinthefirst
and secondportions of the split branch history table are

different portions of the split branch history table;
wherein making branch prediction, by the multi-hybrid

branch predictor, for the execution of the first or the

second context is further based on the correlated branch
history information stored in the first and second por-

tions of the split branch history table.
18. The method of claim 9, further comprising:

storing correlated branch history information associated
with an execution ofthe first context in a first portion of

a split branch history table; and

storing correlated branch history information associated
with an execution of the second context in a second

portion ofthe split branch history table, whereinthefirst
and secondportions of the split branch history table are

different portions of the split branch history table;
wherein making branch prediction, by the bi-mode branch

predictor, for the execution of the first or the second

context is further based on the correlated branch history
information stored in the first and secondportions ofthe

split branch history table.

* * * * *

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 8,041,931 B2 Page | of 1
APPLICATION NO. : 12/046066

DATED : October 18, 2011

INVENTOR(S) : John etal.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shownbelow:

Title page, item (56), under “Other Publications”, in Column 2, Line 2, delete “Content” and

insert -- Context --.

Title page, item (57), under “Abstract”, in Column 2, Lines 8-9, delete “one ore more” and

insert -- one or more --.

Title Page 2, item (56), under “Other Publications”, in Column 2, Lines 7-8, delete “13 pages,” and

insert -- 13 pages. --.

Column 12, line 46, in Claim 10, delete “split ranch” andinsert -- split branch--.

Signed and Sealed this

First Day of May, 2012

David J. Kappos

Director ofthe United States Patent and Trademark Office

