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Database users face a tension between ease-of-programming and high

performance: ACID transactions can greatly simplify the programming effort

of database applications by providing four useful properties—atomicity, con-

sistency, isolation, and durability, but enforcing these properties can degrade

performance.

This dissertation eases this tension by improving the performance of

ACID transactions for scenarios where data contention is the bottleneck. The

approach that we take is federating concurrency control (CC) mechanisms. It

is based on the observation that any single CC mechanism is bound to make

trade-offs that cause it to perform well in some cases but poorly in others. A

federation opens the opportunity of applying each mechanism only to the set

of transactions or workloads where it shines, while maintaining isolation.
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In particular, this work builds upon Modular Concurrency Control

(MCC), a recent technique that federates CCs by partitioning transactions

into groups, and by applying different CC mechanisms in each group.

This dissertation addresses two critical shortcomings in the current em-

bodiment of MCC. First, cross-group data conflicts are handled with a single,

unoptimized CC mechanism that can significantly limit performance. Second,

configuring MCC is a complex task, which runs counter to MCC’s purpose: to

improve performance without sacrificing ease-of-programming.

To address these problems, this dissertation presents Tebaldi, a new

transactional database that brings Modular Concurrency Control to the next

level, both figuratively and literally. Tebaldi introduces a new, hierarchical

model to MCC that partitions transactions recursively to compose CC mech-

anisms in a multi-level tree. This model increases flexibility in federating CC

mechanisms, which is the key to realizing the performance potential of feder-

ation. Tebaldi reduces configuration complexity by managing the MCC feder-

ation automatically: it can detect performance issues in the current workload

in real-time, and automatically adjusts its configuration to improve its perfor-

mance.
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Chapter 1

Introduction

The ACID transaction is a vital primitive for developing many appli-

cations over storage systems. By providing four strong semantic guarantees—

atomicity, consistency, isolation, and durability—it offers an elegant and pow-

erful abstraction for structuring applications and simplifying reasoning about

correctness under failures and concurrency. Performance, however, is not tra-

ditionally one of its strong suits. In particular, the concurrency control (CC)

mechanisms used to enforce isolation can greatly limit the performance of

ACID transactions when there is heavy data contention.

As a result, application developers have been suffering from a tension

between two desired properties: high performance transaction processing, and

ease-of-programming.

This dissertation eases this tension by improving the performance of

ACID transactions, especially, for scenarios where data contention is the bot-

tleneck. The work it presents builds on Modular Concurrency Control, a new

approach to federate different concurrency control mechanisms in the same

database for better performance, that my co-authors and I introduced in prior

work [95], refining its design and implementation in ways that make it more
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powerful and practical.

This work is among a long history of works to improve the performance

of transaction processing, and people have tried to achieve this goal with many

different approaches. On the one side of this landscape, people stick with ACID

guarantees and explore various optimizations, such as introducing new and po-

tentially more efficient concurrency control mechanisms [32, 50, 59], or leverag-

ing static analysis to create some special optimizations [51, 80, 88, 95, 99]. There

are also works that improves the performance of certain types of transactions

(such as read-only transactions [40, 84]), or support only a limited transaction

model that can perform well [24, 67, 96]. On the other side of this landscape,

people try to give up ACID guarantees all together, and embrace the better

performance from BASE / NoSQL approach [1, 20, 38, 39, 45, 55, 60, 73]. And

some works also explored the middle ground by letting ACID and BASE co-

exist [94]. Each of these approaches has its own benefits and weakness.

For example, new concurrency control mechanisms, such as optimistic

concurrency control [59] and snapshot isolation [29, 35, 50, 72] can perform bet-

ter than the widely-used two-phase locking technique [30, 33, 53] under certain

scenarios. But they may also perform worse in other scenarios. Advanced op-

timization techniques that leverages static analysis, such as transaction chop-

ping [80, 99] and runtime pipelining [88, 95], can greatly improve the concur-

rency. But they often come with certain conditions or assumptions on trans-

actions that may not hold in many applications. Works that provide only a

limited transaction model, such as mini-transactions [24] or one-shot transac-
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tions [67], can often design efficient transaction protocols for these transactions.

The drawback, though, is that not all application logics can be implemented

easily in these limited models, thus complicating the programming effort.

Frustrated by the performance of ACID, some systems choose to give up

ACID properties for a better performance. For example, many NoSQL storage

systems [1, 20, 38, 39, 60] choose to give up ACID transactions and embrace the

BASE principles [55, 73]. Though their performance numbers are great, pro-

gramming in the BASE model is challenging and error-prone. Without ACID

guarantees, it is hard to reason about the correctness under concurrent exe-

cution, and failures can also put the database to an inconsistent state. There

are also works that explore the middle ground between the ACID and the

BASE approach to combine their benefits. For example, Salt [94] is such a

work that my co-authors and I proposed a few years ago. It allows develop-

ers to program most transactions with ACID guarantees, and handle a few

performance-critical transactions with a BASE transaction model that offers

weaker guarantees but better performance. Though programming in Salt is

much easier than that in a pure BASE system, it can still be a pain when it

comes to those BASE transactions. The loss of ACID guarantees (and ease-of-

programming) is often an unaffordable price, especially for applications where

data consistency is important [40, 81, 83].

The work in my dissertation takes a different approach: federating con-

currency control mechanisms [42, 68, 79, 82, 95].

The rationale for federating concurrency control mechanisms is straight-
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forward: any single concurrency control technique is bound to make trade-offs

or rely on assumptions that cause it to perform well in some cases but poorly in

others. For instance, pessimistic techniques such as two-phase locking [30, 33,

53] do not cause aborts for deadlock-free application even in highly-contended

workloads, but may lead to write transactions unnecessarily stalling read trans-

actions; likewise, multi-versioned concurrency control algorithms [29, 31, 32]

improve read performance, but may cause additional aborts, and introduce

non-serializable behaviors that are difficult to detect [50, 69]. Since concurrent

transactions interact in fundamentally different ways across these scenarios,

these trade-offs appear unavoidable. A promising approach is instead to fed-

erate different concurrency control mechanisms within the same database, ap-

plying each given mechanism only to the portion of transactions or workloads

where it shines, while maintaining the overall correctness of the database.

In practice, however, realizing the performance potential of a federated

solution is challenging. Such a solution should be modular : it should allow de-

velopers to reason about the correctness of any given concurrency control in

isolation, without being aware of other coexisting concurrency control mecha-

nisms. The solution should also be flexible in determining how to partition the

workload and assign them to different concurrency control mechanisms, and

be general—it should be capable of federating a large set of diverse techniques:

optimistic and pessimistic, single-version as well as multi-version.

Prior work has gone some way towards achieving these goals by en-

abling different concurrency controls to execute on disjoint subsets of either

4



data [79, 90], transactions [36, 37], or types of data conflicts [31]. But many

of these approaches are restricted to specific partitioning of transactions /

conflicts, or certain combinations of concurrency control mechanisms, so they

are not flexible or general enough [36, 42, 68, 82, 90]. For example, integrated

concurrency control [31] only partitions data conflicts into read-write and

write-write conflicts, and handles them with different mechanisms. Similarly,

multi-version two-phase locking [32, 36] only differentiates read-only and up-

date transactions, and adopts a single combination of concurrency control

mechanisms. Local atomicity properties [90] and the work from Sha et al. [79]

federate concurrency controls over disjoint data sets, but they place stringent

constraints on how they allow data to be partitioned and CCs to be combined.

The starting point of my work is Modular Concurrency Control (MCC),

a more general approach to federate CCs that my co-authors and I recently

introduced in the Callas database [95]. At a high-level, MCC partitions trans-

actions in groups, giving each group the flexibility to run the concurrency

control mechanism that is better suited to regulate concurrency for its trans-

actions. MCC imposes no restriction on the transactions that it works with,

or how to partition them. And in principle, it also does not depend on the

choice of the in-group concurrency controls: as long as the isolation property

holds within each group, MCC guarantees that it will also hold among all

transactions.

This dissertation revisits how Callas embodies Modular Concurrency

Control, and addresses two of its critical shortcomings.
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First, Callas assumes that applications can be partitioned such that

the conflicts across partitions are rare or inconsequential to their performance.

Consequently, Callas optimizes the concurrency controls within each group,

but handles all cross-group conflict using a single, undifferentiated mechanism.

I will show that this assumption is flawed: cross-group conflicts can in

fact throttle MCC’s performance benefits, as a perfect partitioning of conflicts

is, in general, unfeasible. In practice, there is often an inescapable tension

between minimizing cross-group conflicts and supporting aggressive CC mech-

anisms within each group, and Callas’ conservative cross-group mechanism can

become a performance bottleneck of the entire federation.

Second, the amount of performance benefit that one can gain from

Modular Concurrency Control largely depends on its configuration, that is,

how to partition transactions and what concurrency control mechanisms to

choose. But unfortunately, configuring MCC can be very hard. On the one

hand, designing a good MCC configuration often requires thorough exploration

of the application and workload to understand its performance characteristics

and potential bottlenecks, which can be a daunting task. On the other hand,

the MCC technique itself is highly flexible and complicated. There can be

exponentially many different ways to configure MCC, and the complicated

interaction between concurrency control mechanisms makes it hard to predict

the performance of a specific configuration. Also, configuring MCC requires

good understanding of different concurrency control techniques, and the MCC

framework itself. It is unreasonable to expect most database users to master
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such knowledge.

The configuration complexity can be a major challenge in making MCC

practical, and, if the job of configuring MCC is left to database users, it may

void the key motivation of developing MCC in the first place, namely, improv-

ing ACID’s performance without sacrificing its benefit of ease-of-programming.

The paper that describes Callas offers some basic guidelines on how to con-

figure MCC by iteratively optimizing transactions that are the most severe

performance bottlenecks, and how this procedure can be automated. But its

treatment of these issues is still very elementary. Many details are not justified

or simply missing, and reality is often more complicated than what Callas’

basic guidelines can handle.

To eliminate these shortcomings, this dissertation presents a new trans-

actional key-value store, Tebaldi [85], bringing Modular Concurrency Control

to a new level, both figuratively and literally. To address the first problem,

Tebaldi employs a new approach to MCC that is based on a simple, but pow-

erful, insight: the mechanism by which different concurrency controls are fed-

erated should itself be a federation. Instead of handling cross-group conflicts

through a single mechanism, Tebaldi regulates them by applying MCC re-

cursively, adding additional levels to its tree-like structure of federated CC

mechanisms. This design increases the flexibility in how conflicts are handled,

and is the key to realizing the performance potential of federation. Tebaldi can,

for example, combine the benefits of multi-versioning [32, 35] with aggressive

single-version techniques such as runtime pipelining [95] at the cross-group
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layer.

Realizing this vision in Tebaldi presents two main technical hurdles.

First, directly applying CCs hierarchically does not guarantee serializability.

We derive a sufficient condition—consistent ordering—that CCs must enforce

to ensure correctness, and highlight how this property can be achieved in prac-

tice. Second, federating different CC mechanisms requires seamlessly managing

the different expectations upon which their correctness depends (in terms of

protocol, storage, failure recovery, etc.): Tebaldi allows CCs to independently

implement the execution logic (including maintaining the necessary metadata)

for making ordering decisions, but provides a general framework for composing

the CCs execution hierarchically and determining the appropriate version of

data to read or write.

To address the second problem, I extended the Tebaldi database with

the ability to fully automate how Modular Concurrency Control federates CC

mechanisms. The goal is to make the use of Tebaldi as easy as a traditional

database: users simply run their applications with real workloads, and the

database system automatically optimizes itself by configuring MCC properly.

The key technique to achieve this goal is an iterative approach to optimize the

MCC federation. In each iteration, the optimization algorithm automatically

monitors the database performance, accurately detects the data contention

bottleneck, and proposes new MCC configurations to optimize the bottleneck.

There are several technical challenges that are raised by this approach,

including how to accurately detect the performance bottlenecks, how to au-
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tomatically design new MCC configurations to optimize these bottlenecks,

and how to switch the database system between these different configurations.

With the careful design to address each of these challenges, our system can re-

tain most of the performance benefits of a manually-configured MCC database,

while remove almost all the user interference in programming, performance de-

bugging, and configuration.

In summary, this dissertation makes the following contribution:

• It presents an overview of related work towards the problem of enhancing

transaction’s performance, and discusses the strength and weakness of

different techniques.

• It generalizes the theory of Modular Concurrency Control, a promising

technique to achieve high performance ACID, by introducing a new hier-

archical model that allows data conflicts to be handled more efficiently,

while preserving modularity.

• It identifies a condition for the correct composition of concurrency con-

trol techniques in hierarchical MCC, and shows that several existing

concurrency controls can be modified to enforce it.

• It presents the design and evaluation of Tebaldi, a transactional key-value

store that implements hierarchical MCC.

• It presents a new technique to automatically configure MCC federations

in Tebaldi that drastically reduces the complexity of configuring MCC.
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Evaluation results show that our technique can retain most of MCC’s

performance benefit while removing almost all user interferences.

The rest of this dissertation is organized as follows. Chapter 2 provides

an overview of ACID transactions, and presents related works in addressing the

tension between high performance and strong semantics. Chapter 3 discusses

the federated approach to concurrency control. It presents the current design

of Modular Concurrency Control, and summarizes its strength and weakness.

Chapter 4 discusses in detail how we generalize the theory of Modular Con-

currency Control to a hierarchical model in the Tebaldi database. Chapter 5

presents how we automate the procedure of configuring MCC in Tebaldi. Fi-

nally, Chapter 6 summarizes this dissertation.
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Chapter 2

ACID Transactions

This chapter overviews ACID transactions and sets up the background

of this dissertation. It articulates why ACID transactions are a powerful prim-

itive for developing applications, and why their performance tends to lag. Fi-

nally, it summarizes the strengths and weaknesses of existing efforts towards

improving the performance of ACID transactions.

2.1 The ACID Properties

A transaction consists of a sequence of read and write operations that

are carried out atomically by the storage system, just as if they were a sin-

gle operation. As such, transactions allow applications to execute a piece of

storage-access logic in an indivisible, all-or-nothing manner. To achieve this,

transactions provide four very useful properties: Atomicity, Consistency, Iso-

lation, and Durability. Together, they are often called ACID properties.

• Atomicity states that a transaction always changes database states in

an all-or-nothing manner: either all of its changes are applied, or none

of them is. In the former case, we say a transaction is committed ; and in

the later case, we say it is aborted.
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• Consistency states that transactions always move database from a con-

sistent state to a consistent state. In general, the definition of consistent

states is application dependent, but they can often be expressed as a

list of predefined invariants / constraints in the database. In such cases,

consistency ensures that committed transactions will not violate these

predefined constraints. If a transaction does violate them (e.g., because

of buggy input / implementation), it will be aborted.

• Isolation regulates how concurrent transactions interact with each other

when they have conflicting data accesses. Different isolation properties

(normally referred to as isolation levels) allow different sets of interleav-

ings for concurrent transactions. For example, the serializable isolation

level [21, 29] states that, despite concurrent execution of transactions,

the effect of the concurrent execution is always equivalent to a serial

execution of the committed transactions in some order. Techniques to

enforce isolation are concurrency control mechanisms.

• Durability states that committed transactions are durable. That is, once

committed, the effects of a transaction on the storage system will not be

lost even if the storage system may fail (e.g., crash, power loss) in the

future.

Together, the four ACID properties make it easier to both develop

applications and reason about their correctness. Atomicity and durability free

developers from worrying that failures will leave the database in an inconsistent
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state, or cause the loss of committed changes. With proper isolation, developers

no longer need to worry about the concurrent execution of transactions, and

instead mainly focus on implementing each transaction correctly. In particular,

serializable isolation ensures that as long as each transaction, when running

alone, transits data from consistent states to consistent states, and the initial

state is consistent, the data will always be consistent.

ACID transactions are supported by various storage systems, no matter

in commercial SQL databases [7, 8, 10, 13, 15], key-value stores [4, 18, 19], or in

the cloud [2, 3, 6].

But ACID transactions do not come at free, and enforcing ACID prop-

erties can reduce the performance of transaction processing. My dissertation

mainly focuses on the enforcement of the isolation property, and its impact

on transactions’ semantics and performance. In fact, to pursue better perfor-

mance, the database community has long been exploring more efficient con-

currency control techniques, as well as various isolation levels that are weaker

than serializable isolation, and thus allow more concurrent interleavings of

operations from different transactions. I will briefly introduce some popular

isolation levels and discuss how they are usually enforced in storage systems.

2.2 Isolation and Concurrency Control Mechanisms

Concurrent transactions can access overlapping data objects. When two

transactions access the same data, and at least one of the data accesses is
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a write, a data contention (or data conflict1) occurs. An isolation property

(a.k.a., isolation level) then restricts the possible concurrent interleavings by

defining the set of allowed executions for concurrent transactions.

The database community has proposed many different isolation levels,

each with different semantic guarantees and performance implications. Perhaps

surprisingly, precise definitions for these isolation levels have, for a long time,

proved elusive.

2.2.1 ANSI Isolation Definitions

The ANSI SQL-92 document [21] introduces four different isolation

levels: Serializable, Repeatable Read, Read Committed, and Read Uncommitted.

These isolation levels are defined in terms of whether or not they three types

of anomalies : Dirty Read, Non-repeatable Read and Phantom. The anomalies

are described in English, as follows [21, 29]:

• Dirty Read : transaction T1 modifies a data item. Another transaction

T2 then reads that data item before T1 performs a commit or abort.

If T1 then performs an abort, T2 has read a data item that was never

committed and so never really existed.

• Non-repeatable Read : Transaction T1 reads a data item. Another trans-

action T2 then modifies or deletes that data item and commits. If T1

1In this dissertation, I treat data contention and data conflict as synonyms.
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then attempts to reread the data item, it receives a modified value or

discovers that the data item has been deleted.

• Phantom: Transaction T1 reads a set of data items satisfying some search

condition. Transaction T2 then creates data items that satisfy T1s search

condition and commits. If T1 then repeats its read with the same search

condition, it gets a set of data items different from the first read.

Table 2.1 shows the anomalies proscribed by each isolation level. The

ANSI prefix is intended to distinguish these definitions from alternative for-

mulations that will be discussed later in this chapter.

Isolation Level Dirty Read Non-repeatable Read Phantom
ANSI Serializable ✗ ✗ ✗

ANSI Repeatable Read ✗ ✗ ✓

ANSI Read Committed ✗ ✓ ✓

ANSI Read Uncommitted ✓ ✓ ✓

Table 2.1: Isolation level definitions from ANSI SQL-92 document.

Intuitively, anomalies correspond to concurrent interleavings that can-

not occur in serializable executions. By defining isolation levels using anoma-

lies, the ANSI document aims to define isolation levels independently of how

they are implemented by specific concurrency control mechanisms. In partic-

ular, disallowing all three anomalies, executions that are ANSI serializable

should be equivalent to an execution where transactions are executed sequen-

tially.
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Critique and Refinement to ANSI Definitions In their pointed critique,

Berenson et al. submit that any implementation independence gained through

the ANSI definition has been acquired at the cost of infusing them with am-

biguities [29]. They show that the three anomalies can be interpreted in at

least in two different ways: a strict interpretation that leads to broad isolation

level definitions, and a broad interpretation that leads to strict isolation level

definitions. In the strict interpretation, anomalies capture executions that are

actually not serializable. For example, Dirty Read under this interpretation

refers to a committed transaction reading from an aborted transaction:

T1.write(x), ..., T2.read(x), ..., (T1.abort and T2.commit in any order)

In the broad interpretation, instead, anomalies also include executions that

may lead to non-serializable results in the future. For example, Dirty Read will

now refer to any transaction T1 reading a value from an unfinished transaction

T2—it does not require T1 to actually abort, or T2 to actually commit:

T1.write(x), ..., T2.read(x), ..., (T1.commit or abort)

To distinguish these two interpretations, Berenson et al. called the broad ver-

sion of anomalies phenomena.

Berenson et al. find that just preventing the three anomalies in the strict

interpretation is not enough to ensure serializable. They give the following

example, where T1 transfers 40 dollars from x to y, while T2 checks the total

balance of x and y. The execution does not trigger any anomalies in the strict

16



interpretation, but it is not serializable, since T2 reads a wrong total balance:

T1.read(x = 50), T1.write(x = 10), T2.read(x = 10), T2.read(y = 50),

T2.commit, T1.read(y = 50), T1.write(y = 90), T1.commit

This execution, however, will be captured by the loose interpretation of Dirty

Read, and therefore disallowed.

Moreover, they found that even disallowing all three phenomena will

not guarantee serializable execution (in the common sense): running a set of

write-only transactions is not regulated by the three phenomena at all.

To address any ambiguity and inaccuracy in the original ANSI isolation

definitions, Bernenson et al. propose new and formal definitions of the four

isolation levels. These definitions take the loose interpretation of anomalies

(i.e., they focus on phenomena), and they include a fourth phenomenon, Dirty

Write, that all four isolation levels should prevent.

Formally, let an execution history be a linear order of read, write, com-

mit, and abort operations that represents the concurrent execution of a set

of transactions. Assume T1 and T2 are two transactions, x is a data object,

and P is a predicate used in search. The four phenomena are defined by the

following structures on execution histories:

• Dirty Write: T1.write(x), ..., T2.write(x), ..., T1.commit or abort.

• Dirty Read: T1.write(x), ..., T2.read(x), ..., T1.commit or abort.
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• Non-repeatable Read: T1.read(x), ..., T2.write(x), ..., T1.commit or abort.

• Phantom: T1.read(P ), ..., T2.write(x ∈ P ), ..., T1.commit or abort.

The four isolation levels are then defined by disallowing different sets

of phenomena, as shown in Table 2.2.

Isolation Level Dirty Write Dirty Read Non-repeatable Read Phantom
Serializable ✗ ✗ ✗ ✗

Repeatabler Read ✗ ✗ ✗ ✓

Read Committed ✗ ✗ ✓ ✓

Read Uncommitted ✗ ✓ ✓ ✓

Table 2.2: Refined definitions of ANSI isolation levels.

With the new definitions, the four isolation levels can indeed rule out

undesired concurrent interleavings, and any serializable history under this def-

inition is equivalent to a history where transactions are executed in some

sequential order.

These definitions, however, also bring new problems. First, they are un-

necessarily strict, ruling out many executions that are actually serializable. For

example, preventing dirty reads in this definition generally disallows any data

flow from an ongoing transaction to another, even if the writing transaction

eventually commits, or if both transactions abort. Second, they are no longer

implementation-independent. Indeed, Berenson et al. are the first to point out

that they amount to a disguised re-statement of two-phase locking [30, 33, 53],

a pessimistic concurrency control mechanism that implements these isolation

levels. Consequently, these definitions may be incompatible with concurrency
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control mechanisms based on optimistic or multi-versioned schemes, such as

serializable snapshot isolation (discussed below) that can often achieve better

performance than two-phase locking.

2.2.2 Snapshot Isolation

Snapshot isolation is also defined by Berenson et al. [29]. It is a multi-

versioned concurrency control mechanism that keeps multiple versions of the

same object in the database. In snapshot isolation, a transaction effectively

read data from a database snapshot taken at the time when the transaction

starts, and its updates create a new database snapshot at the time when the

transaction commits.

Each transaction is assigned two unique timestamps, a start timestamp

at its start time, and a commit timestamp at its commit time. The database

keeps all committed versions of a data object, with each version identified by

the commit timestamp of the writing transaction. When a transaction T1 reads

a data object, it returns the latest (committed) version whose timestamp is

smaller than T1’ start timestamp. T1’s writes are buffered until it commits.

At commit time, T1 checks for concurrent writes on data objects in its write

set, i.e., whether a transaction T2 updated one or more of objects modified by

T1, and committed between T1’s start and commit timestamp. If so, T1 has to

abort; otherwise, T1 commits.

Snapshot isolation differs from the four ANSI isolation levels. It is

weaker than serializable, in that it allows a non-serializable anomaly called
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Figure 2.1: The write skew anomaly in snapshot isolation.

write skew. Figure 2.1 shows an example: T1 writes the value of object x into

object y, while T2 writes the value of y into x. In snapshot isolation, both trans-

actions can read the original value of the two objects from an initial snapshot,

and update x and y separately. The end result is that the concurrent execution

of T1 and T2 swaps the value of x and y, an outcome that is impossible in any

serial history. However, snapshot isolation is stronger than read committed, in

that the set of non-serializable histories that are allowed by snapshot isolation

is a strict subset of that allowed by read committed. Finally, snapshot isolation

is not comparable with repeatable read, as either allows some non-serializable

histories that are disallowed by the other.

Fekete et al. [50] and Cahill et al. [35] explored how to achieve serializ-

able isolation level with the snapshot isolation technique. The result is a new

concurrency control mechanism called serializable snapshot isolation (SSI).

The key idea is to detect and prevent a dangerous structure in called the pivot

that all non-serializable executions in snapshot isolation exhibit. A pivot in-
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volves three transactions, T1, T2, and T3, where T2 is concurrent with both T1

and T3 (that is, the interval between T2’s start and commit timestamp overlaps

with that interval of both T1 and T3). Furthermore, there is a pair of conflicting

read and write operations between T1 and T2, where T1’s read misses T2’s write,

and a pair of conflicting read and write operations between T2 and T3, where

T2’s read misses T3’s write. Once detected, the pivot structure is removed by

aborting one of these transactions. SSI may cause unnecessary aborts though,

since not all pivot structures will eventually cause a non-serializable history.

2.2.3 A Graph-based Isolation Definition

To address problems in Bernenson et al.’s isolation theory (Section 2.2.1),

Atul Adya et al. proposed a new and elegant isolation definition that is based

on graphs [22, 23]. Their key observation is that though many consistency con-

ditions involve multiple data objects, the phenomena proscribed by Berenson

et al. are expressed in terms of accesses to a single object. To be sufficiently

expressive to nonetheless capture multi-object conditions, Berenson’s formu-

lations end up being overly restrictive. Adya’s new isolation theory avoids this

problem by directly expressing multi-object restrictions (with the help of a

graph), so it can more accurately capture the fundamental differences between

the allowed and disallowed interleavings in each isolation level.

Adya’s theory also aims to be implementation-independent, and be

compatible with both single-version and multi-versioned data models. Thus,

it adopts a database model where each write operation creates a new version
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of a data objects, so read operations can read different versions; committed

versions of each data object are totally ordered. The definition of an execution

history is also generalized to be a partial order of read, write, commit, and

abort operations2.

At the core of this new isolation theory is a data structure called Direct

Serialization Graph (DSG). It is a directed graph derived from a given execu-

tion history. Different isolation levels, then, are characterized by disallowing

specific cycles in the graph.

Each node in a DSG is a committed transaction in the underlying ex-

ecution history, and each edge represents a direct dependency, i.e., a logical

happen-before relationship on conflicting data accesses between the two trans-

actions. There are three types of direct dependencies between two transactions,

creating three different types of edges:

• There is a direct write-read dependency from T1 to T2 if T1 installs a ver-

sion on some object x that was read by T2. In a DSG, this is represented

by an edge T1
wr
−→ T2.

• There is a direct write-write dependency from T1 to T2 if T1 installs a

version on some object x, and T2 installs the next version on x with

respect to the version order. In a DSG, this is represented by an edge

T1
ww
−−→ T2.

2The single-version database model is a special case of this new model, so it can still
support single-versioned databases.
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• There is a direct read-write dependency, or direct anti-dependency from

T1 to T2 if T1 reads a version on some object x, and T2 installs the

next version on x with respect to the version order. In a DSG, this is

represented by an edge T1
rw
−→ T2.

We also say T2 depends on T1, or T1 happens before T2, if there is a

dependency from T1 to T2.

Figure 2.2: An example of execution history and its DSG.

Figure 2.2 gives an example of execution history and its corresponding

DSG. For simplicity, the example uses a single-version, totally-ordered history,

and it omits the commit operations.

Note that, Adya’s theory discusses dependency relationships not only

for operations that access a single data object (which form item-level depen-

dencies), but also for operations that affect all data objects that match a
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given predicate (which form predicate-level dependencies). But for the pur-

pose of this dissertation, I will only discuss item-level dependencies, since the

database system that we propose in this dissertation does not involve predicate

operations, such as searches.

Different ANSI isolation levels can now be characterized by proscribing

two anomalies defined directly on execution histories, and certain cycles in

DSGs associated with their execution histories, as follows.

First, let T1, T2 be two transactions, xi, xj be versions of data object x.

All ANSI isolation levels, except for read uncommitted, proscribe the following

two anomalies:

• Aborted Read : A committed transaction reads a version that was installed

by an aborted transaction. Formally,

T1.write(xi), ..., T2.read(xi), ..., (T1.abort and T2.commit in any order)

• Intermediate Read : A committed transaction reads a version other than

the last version of an object installed by another transaction. Formally,

T1.write(xi), ..., T2.read(xi), ..., T1.write(xj), ..., T2.commit

Second, each ANSI isolation level proscribes a corresponding type of

cycles in DSG:

• The read uncommitted isolation level disallows any execution history

whose DSG contains a cycle that only consists of ww-dependency edges.
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• The read committed isolation level disallows any execution history whose

DSG contains a cycle that only consists of ww- and wr-dependency edges.

• The repeatable read isolation level disallows any execution history whose

DSG contains a cycle that only consists of ww-, wr-, and item-level rw-

dependency edges.

• The serializable isolation level disallows any execution history whose

DSG contains a cycle of any kind.

Since we only discuss item-level dependencies here, repeatable read and

serializable are essentially the same.

This isolation theory can also describe snapshot isolation. To do so, it

extends the DSG with a new type of dependency edge that captures tempo-

ral dependencies: it connects two transactions if the first commits before the

second starts. Further details can be found in Adya’s paper [23].

This graph-based definition of ANSI isolation levels captures the essence

of isolation properties: fundamentally, isolation is about properly ordering con-

flicting operations, so that they can eventually induce certain ordering of trans-

actions. Unlike the phenomena-based definitions, Adya’s definition is indepen-

dent of the implementation of certain concurrency control mechanisms, and it

is not overly strict. For example, it allows concurrent transactions to write the

same set of data and commit: as long as the order of their writes is consistent,

they do not create any cycle in the DSG. It also allows concurrent transac-

tions to expose uncommitted data, as long as the no-cycle requirements are
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met, and both aborted reads and intermediate reads are avoided, if necessary,

by aborting the reader. For these reasons, the rest of this dissertation adopts

Adya’s isolation definitions.

2.2.4 Enforcing Isolation with Concurrency Control

Storage systems use concurrency control mechanisms to enforce the

desired isolation properties. A concurrency control mechanism must always be

correct : all execution histories that it generates must be a subset of the allowed

histories of the targeted isolation level. It does not need to be tight though:

indeed, many commonly-used concurrency control mechanisms disallow some

histories that are allowed by the targeted isolation level.

Different Concurrency control mechanisms can take very different ap-

proaches to enforce isolation. Pessimistic mechanisms use locks to prevent un-

desired interleavings from happening in the first place [53]. Optimistic mech-

anisms operate under the assumption that concurrent transactions do not

violate isolation properties in most cases, and check for isolation violation

just before a transaction commits [59]. Single-versioned concurrency control

mechanisms keep only the most recent committed value of each data object.

Multi-versioned mechanisms keep, in addition, some earlier values of each data

object, which can be returned by some read operations [32, 35].
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2.3 High Performance and ACID Guarantees

Concurrency control mechanisms used to enforce isolation can greatly

limit the performance of ACID transactions when there is heavy data con-

tention.

Consider, for example, the two-phase locking concurrency control mech-

anism [30, 33, 53], When a transaction accesses a data object, it acquires a lock

on that object, and does not release it until the transaction finishes (except for

read operations in weaker isolation levels). As a consequence, transactions can

prevent other transactions from accessing locked data objects for long periods

of time, which can become a major bottleneck if the workload contains heavy

data contentions.

Performance often worsens when the storage system is distributed over

a cluster of machines, as costly network round-trips further increase the dura-

tion of data conflicts. Distributed commit protocols, such as two-phase com-

mit [65], also delays the time when a transaction commits, so a transaction

must hold locks for a longer time.

This dissertation aims to improve the performance of ACID transac-

tions under heavy data contentions without compromising their semantic guar-

antees. To put my work in context, I discuss below earlier efforts at resolving

the tension between performance and ACID guarantees.
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2.3.1 Optimizing Transaction Protocols

The first category of work insists on providing strong ACID guarantees,

(e.g., serializable isolation level), and focuses on improving the transaction

protocols, including the concurrency control mechanisms.

Proposing New Concurrency Control Mechanisms As we have seen

in Section 2.2.4, the database community has introduced various concurrency

control mechanisms over the years. Techniques like optimistic concurrency con-

trol (OCC) [59], serializable snapshot isolation (SSI) [35] and multi-versioned

timestamp ordering (TSO) [32, 76] can perform better than two-phase locking

under certain workload scenarios. But in general, there are always trade-offs:

these mechanisms can suffer from new problems in other scenarios. SSI, for

example, handles write-read contentions more efficient than 2PL, but it may

experience high abort rates when write-write conflicts are frequent.

Leveraging Static Analysis Some concurrency control techniques perform

static analysis on transaction codes, or even maneuver them, to figure out more

efficient ways to run these transactions. The effectiveness of these techniques

can depend highly on whether the transaction codes exhibit certain structures

or properties that these techniques leverage: when the condition is in favor,

these techniques can be very efficient; otherwise, they may simply not work.

One example is transaction chopping [80, 99]. The basic idea of this

technique is to optimize 2PL by reducing locking period and allowing transac-
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tions to expose their intermediate states. To do so, it chops large transactions

that contain many operations into several smaller sub-transactions. The chop-

ping ensures that any serial history of the sub-transactions will be equivalent

to a serial history of the original transactions, so 2PL only needs to hold locks

during each sub-transaction, rather than the entire transaction. By reducing

the locking period, transaction chopping can enhance the performance when

data contention is the bottleneck.

But there are several limitations in this approach. First, it requires all

transaction codes to be known in advance, since it needs to perform a static

analysis to chop transactions. Second, to prevent aborted-read, a transaction

must commit once its first sub-transaction finishes. So user-issued aborts can

only be in the first sub-transaction. Third, the chopping must meet a global

condition called no SC-cycle [80]. Specifically, the static analysis constructs

an SC-graph where each node is a sub-transaction. Sub-transactions from the

same transaction are chained with an S-edge, and sub-transactions from differ-

ent transactions that may conflict are connected with a C-edge. The chopping

must ensure that the graph does not contain cycles with both S- and C-edges.

If an SC-cycle exists, sub-transactions need to be merged to remove the cycle,

but doing so will reduce the performance benefit. In reality, complicated ap-

plications may have many conflicting operations that cause many SC-cycles,

which can make transaction chopping inefficient.

Like transaction chopping, sagas [51] improves the performance of trans-

actions by breaking long-lived transactions into sub-transactions. The chal-
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lenge of using sagas, however, is that it does not retain isolation by-default:

users have to manually figure out how to chop transactions so that the in-

terleaving of sub-transactions does not violate application semantics. In case

a transaction fails in the middle, sagas relies on user-defined compensating

transactions to amend partial executions. Sagas ensures that either all sub-

transactions are executed, or compensating transactions are called.

Runtime pipelining (RP) [88, 95] is another technique to optimize 2PL,

introduced in the Callas project by my co-authors and me. RP also allows

transactions to expose intermediate states, but comparing to transaction chop-

ping, RP uses more sophisticated static analysis and runtime techniques to

allow finer chopping that contains SC-cycles. RP is based on an observation

that if transactions access data objects in the same global order, concurrent

transactions can run in a pipelined manner: once a transaction finishes access-

ing the i-th data object, the next transaction can start accessing that object.

RP’s static analysis detects such global order, or reorder operations to form

such order. It then chops transactions into steps according to the global data

access order. At runtime, transactions can release locks in a step once the step

completes. If T2 is ordered after T1 in a step, for future steps, T2 can only start

a step after T1 finishes that step.

Runtime pipelining has its own limitations: it is conditioned on a global

data access order. If such order does not exist (which can be common in com-

plicated applications), some data objects need to be logically combined into

a single step in the pipeline. This combination does not require the involved
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data objects to share the same lock, but it still results in coarser chopping and

less performance benefit.

ROCOCO [66] introduced another optimization technique that relaxes

the no SC-cycle requirement in transaction chopping. Transactions in RO-

COCO consists of several atomic pieces. At runtime, ROCOCO tracks de-

pendencies between concurrent transactions. At commit time, the dependency

information are interchanged among the participant database servers, and any

isolation violation is detected and resolved by reordering the conflicting pieces

deterministically across all servers.

ROCOCO’s static analysis still needs to construct an SC-graph, but

it distinguishes C-edges into immediate and deferrable ones, according to

whether the outputs of the involved transaction pieces are immediately used

in the next piece of the transaction. Only SC-cycles whose C-edges are all

immediate are prohibited in the static analysis.

Optimizing Certain Types of Transactions Many storage systems choose

to optimize certain types of transactions that are common or important in

many application workloads.

Many systems come with optimizations for read-only transactions, such

as Spanner [40], F1 [81], and Carousel [96]. Spanner, for example, uses multi-

versioning to support lock-free read-only transactions. It further reduces the

chance of blocking by carefully choosing read timestamps, and using the True-

Time API to manage clock synchronization.

31



Multi-version two-phase locking (MV2PL) [32, 36, 37, 47, 89] uses multi-

versioning to handle read-write conflicts between read-only and update trans-

actions. Read transactions are assigned read timestamps at their start time,

and they read the latest committed version of data that is smaller than the

read timestamp—no locks are needed for read-only transactions. Update trans-

actions acquire commit timestamps at their commit time, and they store their

write values with that timestamp. This way, read-only and update transactions

never block (or abort) each other. Among update transactions, data conflicts

are regulated with a standard 2PL, so operations in update transactions, in-

cluding reads, need to acquire locks.

Granola [42] optimizes one-round independent transactions, where each

involved database partition can execute the transaction without communicat-

ing with others, and achieve the same commit / abort decisions at end. Gra-

nola employs an efficient timestamp-based mechanism for these transactions to

avoid the cost of locking and two-phase commit. Likewise, H-Store [57, 84] han-

dles single-sited transactions (whose operations access the same partition) and

one-shot transactions (whose operations do not depend on each other) with op-

timized mechanisms. For example, H-Store can avoid the cost of unnecessary

network communication, concurrency control, and undo logs for single-sited

transactions.

Supporting a Limited Transaction Model Another common approach

to improve the performance of transaction processing is to only support a
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limited transaction model, so that storage systems can leverage additional

properties that may not hold in a more general transaction model to optimize

their performance.

Janus [67] limits its transaction model to one-shot transactions, which

we have mentioned in H-Store [57, 84]. Janus allows one-shot transactions to

have data or control-flow dependencies among operations in the same partition

(which is slightly different from H-Store), but disallows operations from dif-

ferent partitions to affect each other. This property can help storage systems

reduce the number of network round-trips during the transaction execution

and the commit protocol.

Sinfonia [24] restricts its transaction model to minitransactions. They

are lightweight transactions that consist of three data access sets: a compare

set, a read set, and a write set. All the object addresses, the values to write, and

the values to compare with, must be known at the beginning of the transaction.

A minitransaction checks if the data objects in the compare set match those

given values. If the check passes, data in the read set are retrieved, and data in

the write set are modified. Otherwise, the transaction aborts. This transaction

model allows Sinfonia to provide efficient and consistent data accesses, but it

also limits its use in many applications.

Carousel [96] introduced two-round fixed-set interactive (2FI) transac-

tions. A 2FI transaction consists of a read round followed by a write round. It

allows write values to depend on read results, even if they are from different

partitions. However, the address of all data accesses must be known at the
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beginning of the transaction, and cannot depend on prior operations. These

features make 2FI transactions more expressive than one-shot transactions.

But the lack of address-dependency still makes it hard to implement many

common data structures and logics, such as secondary indices.

Calvin [86] eliminates the cost of running distributed commit protocols

by determining the execution schedule for concurrent transactions in advance

(before they acquire locks and start to execute). But like Carousel, Calvin also

requires knowledge about transactions’ read and write sets at their beginning,

so it cannot natively support transactions whose read and write sets depend

on prior read results.

A common walk-around to the address-dependency problem is to mod-

ify the original transaction and introduce a reconnaissance transaction [86, 96],

which reads necessary data to generate the read and write sets. However, this

requires the actual transaction to re-read these reconnaissance queries, and

abort if any result changes. This may cause a lot of aborts when data con-

tentions are heavy, offsetting their performance benefits.

Optimizations for Geo-distributed Transactions The work presented

in this dissertation focuses on distributed databases that are deployed within

a single datacenter. There are other database systems [40, 58, 67, 96, 98] that

work in a geo-distributed setting, spanning multiple datacenters. These are

very different scenarios: sending and receiving a message in a single datacenter

usually takes tens to hundreds of microseconds (though this is still longer
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than the computational time of transaction protocols); but doing so across

datacenters can take much longer time (100s of milliseconds). Therefore, a

key focus in geo-distributed systems is to reduce the number of sequential

wide-area (i.e., cross-datacenter) network round-trips.

One technique to achieve this goal is to use a limited transaction model,

as running general-purpose, interactive transactions can be costly in a geo-

distributed setting. Indeed, some techniques that we have discussed, such as

one-shot (Janus [67]) and 2FI (Carousel [96]) transactions, are used in geo-

distributed systems.

Another common technique to reduce the number of wide-area round-

trips is to co-design the transaction and replication protocol, rather than lay-

ering one on top of the other. For example, TAPIR [98] co-designs the two

protocols so they can provide strongly consistent transactions with an incon-

sistent replication protocol, and commit most transactions in a single wide-area

round-trip. Similar techniques are also introduced in MDCC [58], Janus [67],

and Carousel [96].

2.3.2 Weakening Isolation

Another way to improve performance is to give up some ACID guaran-

tees by adopting an isolation level that is weaker than serializable. Weakening

the isolation property can bring more interleavings, increasing the overall per-

formance when data contention is the bottleneck. Applications can still enjoy

a well-defined (but weaker than serializable) isolation property, together with
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the other three ACID properties. In fact, some isolation levels, such as snapshot

isolation and repeatable read, are close to serializable, and some applications

can work correctly with them.

Indeed, many commercial database systems choose a weak isolation

level as their default settings. For example, MySQL database with InnoDB

backend uses repeatable read as its default isolation level [12]. MySQL database

with NDBCluster backend uses read committed as default—it is actually the

only isolation level supported by NDBCluster [11]. Microsoft’s SQL Server [9],

Oracle Database 18c [14], and PostgreSQL [17] also uses read committed as

their default settings. Their choices are not surprising at all: strong isolation

levels, such as serializable, when implemented with lock-based concurrency

control mechanisms, can cause severe blocking between read and write oper-

ations, which is often undesirable. This is yet another evidence of the tension

between high performance and strong semantic guarantees.

However, weakening isolation levels cannot address all data contention

bottlenecks. It is most effective to reduce the cost of read-write conflicts. Write-

write ones, though, are still regulated by most isolation levels, and therefore

cannot benefit from this approach. In fact, it may not even address all problems

in read-write conflicts. Two-phase locking, for example, still acquires short-

term read locks under read committed isolation level, so write operations may

still block read operations.
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2.3.3 Renouncing ACID Guarantees

In pursuit of better performance, some storage systems choose to give

up ACID properties all together. For example, many NoSQL storage sys-

tems [1, 20, 38, 39, 45, 60] choose to either provide very limited transaction sup-

port on single data object, or give up ACID transactions and embrace the

BASE principles [55, 73], which stands for only providing basically available,

soft state and eventual consistency guarantees.

By weakening or removing the transactional guarantees, these systems

can perform very well, but programming applications with these systems can

be very challenging. Without ACID properties, it is very hard to reason about

the correctness of applications under concurrent execution—it is now the ap-

plication developer’s job to ensure such correctness. Moreover, failures of ap-

plication or database can also put data to an inconsistent state. The lose of

ease-of-programming is often an unaffordable price, especially for applications

where data consistency is important. In fact, as Shute et al. mentioned in their

paper of F1 database [81], “Designing applications to cope with concurrency

anomalies in their data is very error-prone, time-consuming, and ultimately

not worth the performance gains”.

Some systems, like ElasTras [43] and G-Store [44] try to mitigate the

programming complexity by providing transactions within a single partition

or key group. But the lack of cross-partition transactions can still limit their

usages.
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Salt [94] tries to combine the benefit of the ACID and the BASE ap-

proach. It allows developers to program a few performance-critical transactions

in a BASE transaction model that offers weaker guarantees but better perfor-

mance, and to program the rest of transactions with ACID guarantees. As

such, programming in Salt is much easier than programming in a pure BASE

system. However, it can still be a pain when it comes to those BASE transac-

tions.
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Chapter 3

Federating Concurrency Control Mechanisms

Instead of proposing new and optimized concurrency control mecha-

nisms, my work takes a different approach to improve the performance of

ACID transactions: federation [42, 68, 79, 82, 95].

The idea is to compose multiple concurrency control mechanisms within

the same database. Each of these mechanisms only regulates the concurrent

execution of a fraction of the workload (e.g., a subset of transactions, data

conflicts, or data objects), while together, they ensure correct isolation over

the entire workload.

In this chapter, I will first explain why federating concurrency controls

is a promising approach to improve the performance of ACID transactions,

and provide an overview of some existing work that takes this approach. I

will then focus on Modular Concurrency Control (MCC), a more recent work

in this vein that my co-authors and I introduced in the Callas database [95].

Though Callas is not part of my dissertation, it serves as the basis of my work.

I will discuss the limitations of Callas’ implementation of MCC, and give a

brief overview of how they will be addressed in the rest of this dissertation.
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3.1 The Benefits of Federation

The rationale for federating concurrency control mechanisms is based

on the observation that any single concurrency control technique is bound to

rely on assumptions that cause it to perform extremely well in some cases

but poorly in others. For example, multi-versioned concurrency control mech-

anisms, such as snapshot isolation, can improve read performance, since reads

and writes do not block each other. But they can also cause aborts on write-

write conflicts, and introduce non-serializable behaviors, like write-skews, that

are difficult to detect [50, 69]. Meanwhile, pessimistic techniques such as two-

phase locking [33] do not cause aborts even in highly-contended workloads

(as long as the application is deadlock-free). But they may lead to write trans-

actions unnecessarily stalling read transactions. If a database uses only a sin-

gle concurrency control mechanism, these trade-offs appear unavoidable, since

even transactions within the same workload can interact with each other in

fundamentally different ways. Federating different concurrency control mech-

anisms within the same database opens the opportunity of applying each

given concurrency control mechanism only to the part of transactions or work-

loads where it shines, while maintaining the overall isolation property. For

example, it is possible to get better performance by combining the multi-

versioned snapshot isolation technique with two-phase locking, using locking

to handle write-write conflicts, and using multi-versioning to handle read-write

ones [32, 36, 37, 47, 89].

The drive towards federating concurrency controls also stems from a
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tension between a concurrency control’s generality and its ability to aggres-

sively handle conflicts. More general concurrency control mechanisms like two-

phase locking and optimistic concurrency control make few assumptions about

the application or the workload, but they are often overly pessimistic in deal-

ing with conflicts. More specialized optimizations, like transaction chopping

and runtime pipelining, however, rely on properties that are unlikely to hold

globally for an entire application workload: full knowledge of the read and write

set [49, 86], lack of SC cycles [80], the ability to statically determine a total

order of tables [95], or access locality [56, 61]. By federating these mechanisms,

the scope of these optimizations can be restricted only to the portions of the

application for which their assumptions hold, allowing for higher performance

without sacrificing generality.

Consider, for example, runtime pipelining (RP) [95] and deterministic

concurrency control (DCC) [49, 86]. As we have seen in the previous chapter

(Section 2.3.1), runtime pipelining efficiently pipelines transactions by allow-

ing operations to observe the result of uncommitted writes, but it requires

transactions to have a consistent global data access order. Therefore, runtime

pipelining is most effective when transactions generate few circular depen-

dencies when accessing tables. As the number of transactions grows, however,

such dependencies are increasingly likely. Runtime pipelining is, for instance, of

limited use when applied to the full TPC-C (Figure 3.1), as there exists a circu-

lar dependency in the new order and stock level transactions between the

stock, order line, and (the preferred execution order of) district tables,
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Figure 3.1: TPC-C new order/stock level transactions.

which prevents RP from efficiently pipelining these operations. If its scope were

instead restricted to regulating multiple concurrent instances of new order,

RP could choose a finer grained pipeline, improving performance [95].

Similarly, deterministic concurrency control (DCC) [49, 86] shines when

the complete data access set of transactions is known at start time, as then

DCC can pre-order transactions according to their data-access, removing the

overhead of runtime conflict detection. Otherwise, DCC’s benefit is limited by

its need for issuing pre-transaction reconnaissance reads to construct the data

access set, and the transaction may have to abort if these read results are

changed in between.
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3.2 Prior Work on Federating Concurrency Controls

The federated approach to concurrency control has a great performance

potential, but in practice, realizing this potential is challenging. A good solu-

tion should be modular in correctness: it should come with a well-defined cor-

rectness condition for participating concurrency control mechanisms, so that

the entire federation is correct as long as each individual mechanism meets the

condition. Also, each mechanism should be able to reason about such correct-

ness condition in isolation, without being aware of the implementation of other

coexisting mechanisms. Meanwhile, for better performance, the federated solu-

tion should also be flexible with how to partition the workload and assign them

to different concurrency control mechanisms, and be general enough to feder-

ate a large set of diverse techniques: optimistic and pessimistic, single-version

as well as multi-version.

Prior work has gone some way towards achieving these goals, enabling

different concurrency controls to execute on disjoint subsets of data [79, 90],

transactions [36, 37], types of data conflicts [31], and so on. This section will

introduce these related work, and discusses their strength and weakness. To

give a clear picture, I organize these work into several categories according

to how they compose concurrency control mechanisms (e.g., apply different

mechanisms among different transactions / conflicts / data, etc.).

Partitioning by Transactions or Conflicts Many systems seek to im-

prove performance by tailoring concurrency controls to specific transactions
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or conflicts. Integrated concurrency control [31], for instance, uses different

concurrency control mechanisms to handle write-write and write-read conflicts.

Likewise, multi-version two-phase locking (MV2PL) [32, 36, 37, 47, 89], which

we have mentioned in the Section 2.3.1, partitions transactions into read-only

and update transactions; the latter are regulated using 2PL, while read-only

transactions are allowed to read, without blocking, from a consistent snapshot

by using a multiversioned protocol. Section 2.3.1) also discusses H-Store [84],

which optimizes transactions that can execute on a single partition by remov-

ing unnecessary network communication, and Granola [42], which optimizes

independent distributed transactions, i.e., transactions where each site can

reach the same decision even without communication, by eliminating the two-

phase commit protocol. These techniques can be seen as federations, since they

optimize certain types of transactions with a different protocol.

But these federation techniques are not flexible enough, since they sim-

ply partition transactions or conflicts in a fixed manner, and apply one con-

currency control mechanism in each of these fixed partitions.

Partitioning by Data Other systems instead partition the database into

multiple disjoint components, allowing each component to execute its own con-

currency control while preserving consistency globally. Federated databases

[34, 74, 75, 78] for instance, support serializable global transactions that touch

multiple local databases running different concurrency control mechanisms,

and some systems [62] can even compose federated databases into a hierarchical
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structure. Unlike the work described in this dissertation, federated databases

are motivated primarily by functionality requirements (i.e., the ability to exe-

cute transactions across different databases) rather than performance: indeed,

they can perform worse than local DBs.

Some works in this category partition data so that global serializable

execution is directly guaranteed if transactions are per-partition serializable,

removing the need for cross-partition concurrency controls. For instance, the

work on local atomicity properties [90] explores the required properties of per-

object concurrency control needed to guarantee database-level serializability.

Likewise, Sha et al.[79] partitions the database into atomic datasets, each

with its own concurrency control, such that no consistency invariant spans

multiple datasets. Database-level consistency then directly follows from per-

dataset serializability. These approaches suffer from two main limitations: first,

they place stringent constraints on how they allow data to be partitioned and

concurrency controls to be combined. Second, they require all conflicts on the

same data partition to be handled by the same concurrency control.

Partitioning by Time Certain systems choose to partition the execution

of transaction protocol into distinct phases during which different concurrency

control mechanisms can execute. For example, Granola [42] uses time partition-

ing to assign different protocols to different types of transactions. Specifically,

Granola switches between a timestamp mode and a locking mode. In times-

tamp mode, it runs single-sited and independent transactions (i.e., transactions
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whose commit / abort decision is deterministic) using an efficient lock-less

timestamp-based protocol. Transactions that require coordination are instead

constrained to execute in the less efficient locking mode that relies on tradi-

tional two-phase locking. Likewise, Doppel [68] is a multi-core main-memory

database that distinguishes between joined, split and reconciliation phases.

Transactions in the joined phase use traditional optimistic concurrency con-

trol. Transactions in the split phase, assuming their operations commute, are

guaranteed never to conflict: instead, they modify split per-core state that is

subsequently merged in the reconciliation phase.

Hierarchical decomposition Multi-level serializability [28, 77, 91–93] ob-

serves that transactions can be hierarchically decomposed in a tree such that

each level captures operations at a different level of abstraction: operations

that appear to be atomic at a given level may be in fact be implemented by a

collection of operations at the preceding level, with different concurrency con-

trols used at different levels. A sufficient condition to ensure serializability in

this context is level-by-level serializability [27]: assuming conflicting operations

at level i+1 generate at least one conflicting operation at level i, serializability

is guaranteed if the serialization graph between levels i and i + 1 is acyclic.

Intuitively, this means that if a level orders conflicting operations, the cor-

responding operations at higher level should be ordered consistently. In the

context of multi-level serializability, individual concurrency controls regulate

the interactions of all transactions at a given level. In contrast, in our work,
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as I will show later, concurrency controls are responsible only for a subset of

transactions.

3.3 Modular Concurrency Control

The starting point of my work isModular Concurrency Control (MCC),

a technique introduced by my co-authors and me in the Callas database [95].

Unlike much of the work surveyed earlier in this chapter, MCC is not limited to

specific partitioning of transactions / conflicts, or specific concurrency control

combinations [36, 42, 68, 82, 90], but aims to provide a general approach to

federating concurrency controls. In this section, I will give a brief overview of

MCC, and introduce its design and implementation in the Callas database.

Callas’ Modular Concurrency Control implementation partitions trans-

actions in groups, allowing each group to run its own private concurrency con-

trol mechanism. Each mechanism is charged with regulating concurrency only

for the transactions within its group. As such, one can improve concurrency

by choosing the best-suited existing mechanism for each group, or even by

designing new and more aggressive mechanisms. Besides these in-group con-

currency control mechanisms, Callas’s MCC provides a special cross-group

mechanism to handle data conflicts that happen between transactions from

different groups to ensure isolation of all transactions.

Modular Concurrency Control emphasizes its generality and modular-

ity. It imposes no restriction on the transactions that it handles, or on how

to partition them. In principle, the MCC approach does not depend on the
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choice of the in-group concurrency controls, and how they are implemented:

no matter locks or OCC, single-versioned or multi-versioned. As long as the

isolation property holds within each group, MCC guarantees that it will also

hold among all transactions. In practice, the implementation in Callas only

explored an instance of the MCC design that works with single-version con-

currency controls. Indeed, realizing MCC’s full generality is a key contribution

of this dissertation.

I will next quickly discuss the design and implementation of the in-

group and cross-group layer in the Callas database, and finally, describe how

Callas groups transactions.

3.3.1 In-group Layer

This is the layer that gives Callas its performance benefits over mono-

lithic concurrency controls.

Concurrency control mechanisms in this layer have two goals. First,

they must ensure in-group correctness, namely, that transactions in each group

are isolated. Second, they are dedicated to optimize the performance of trans-

actions in their groups.

Following the isolation definition from Adya’s graph-based model [23],

Callas formally defines in-group correctness as following [95]:

In-group Correctness Concurrency controls in a group G must prevent

Aborted Reads and Intermediate Reads between transactions from G, and pre-
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vent Circularity if all transactions in the cycle are in G.

To optimize in-group performance, Callas explored both existing (trans-

action chopping [80, 99]) and new (runtime pipelining [95]) techniques as in-

group mechanisms. As I have mentioned in Section 2.3, both techniques im-

prove concurrency by splitting transactions into multiple pieces, which reduces

transactions’ locking periods and exposes their intermediate states. Splitting,

however, can only occur if certain conditions are met. In particular, transaction

chopping requires the absence of SC-cycles, while runtime pipelining requires

transactions to access data objects in the same order. These requirements are

hard to meet when they must apply to all transactions in a workload, which

often reduces the effectiveness of these techniques. Modular Concurrency Con-

trol limits the scope of these requirements only to the transactions within each

group, greatly improving their applicability.

3.3.2 Cross-group Layer

The goal of this layer is to regulate data conflicts across different groups,

so that all transactions are isolated properly. To achieve this, the cross-group

layer needs to ensure the following cross-group correctness property [95]:

Cross-group Correctness Aborted Reads and Intermediate Reads must be

prevented between transactions from different groups. Circularity must also be

prevented if at least two transactions in the cycle come from different groups.

Callas’ cross-group layer employs a single concurrency control mecha-
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nism based on two-phase locking. The key technique used by this mechanism

is a new type of locks called nexus locks [95]. As in two-phase locking, before

any transaction can access any data object, it must first acquire a nexus lock

on that data object, and these locks are not released until the transaction

commits. But unlike the traditional locks in 2PL, the behavior of nexus locks

depends on which group the transactions that are accessing the data object

belong to:

• If two transactions from different groups are trying to acquire the same

nexus lock, one of them must wait, unless both of them are reading that

data object.

• If transactions are from the same group, they can acquire the same nexus

lock simultaneously.

Intuitively, a nexus lock only regulates conflicting data accesses from

different groups, and it always allows transactions from the same group to

access the data object concurrently—it is up to their in-group mechanism to

handle such data conflicts.

However, these rules alone are not enough to ensure cross-group cor-

rectness. As it regulates conflicts between transactions in different groups, the

cross-group mechanism may develop, by transitivity, dependencies between

two transactions of the same group. Circularity can happen if the order im-

plied by these transitive dependencies conflicts with the order assigned to

these transactions by their in-group mechanism. It is possible to prove [95]
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that correctness can be ensured by adding the following requirement to the

management of nexus locks:

Nexus Lock Release Order If transaction T1 and T2 are from the same

group, and T2 depends on T1 within the group, then T2 cannot release its nexus

locks until T1 does.

3.3.3 How to Group Transactions

Modular Concurrency Control does not constrain how to group trans-

actions, or what concurrency controls to use in each group—these are simply

considered as configuration choices. In practice, however, configuring MCC can

be complicated, since there are exponentially many different ways to partition

transactions with respect to the number of transactions.

Callas offered some basic heuristics for configuring MCC. First, it rec-

ommended to place in separate groups, with specialized concurrency control

mechanisms, only the few transactions that are performance critical—all other

transactions can be kept in a single group, regulated by a simple 2PL mecha-

nism.

Second, it proposed an iterative algorithm to group transactions. In

each iteration, the algorithm identifies transactions that are suffering from

heavy data contention, and tries to improve performance by moving them

to different groups, or by creating new groups for them. To detect heavily

contended transactions, the algorithm increases the workload’s request rate,
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and looks for transactions whose latencies increase much faster than other

transactions.

These guidelines are good starting points for automatic configuration.

But as we will see later in Section 3.4.2, they are still very elementary, and

need to be improved.

3.4 Problems in the Current MCC Design

Callas’ design and implementation of MCC are not flawless. We identify

two problems. First, Callas’ inflexible and conservative cross-group mechanism

may limit its performance. Second, Callas does not fully address MCC’s con-

figuration complexity, which could become a major challenge in making this

technique practical. This section discusses them in detail.

3.4.1 Limitation of the Inflexible Cross-group Mechanism

Callas assumes that an application’s transactions can be cleanly parti-

tioned into groups such that conflicts across groups are rare or inconsequential

to performance. Consequently, its prescription to coordinate different groups is

to complement those efficient in-group concurrency control mechanisms with

a single, catch-all mechanism based on two-phase locking.

The findings in my work, however, tell a different story. We find that

combining aggressive in-group optimizations with an inflexible, conservative

cross-group mechanism exposes Callas’ embodiment of MCC to a dilemma. On

the one hand, in-group mechanisms, to be effective, must handle a very specific,
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Same group Separate - Deadlock Separate - No Deadlock Separate - No Conflict
3,207 ± 1 158 ± 9 3,598± 14 23,834 ± 5

Table 3.1: Impact of grouping on throughput (txn/sec).

and hence narrow, subset of conflicts. On the other, pushing the remaining

conflicts to the cross-group layer can cripple Callas’ conservative concurrency

control mechanism, and in turn the performance of the whole system.

The example from TPC-C that I introduced earlier in this chapter

(Section 3.1 and Figure 3.1) highlights this dilemma. Results are shown in Ta-

ble 3.1. The first column shows the throughput of running stock level and

new order in the same group (using runtime pipelining as the in-group mech-

anism). As we discussed, this arrangement creates circular dependencies that

void much of the potential benefit of runtime pipelining. Perhaps surprisingly,

placing these transactions in separate groups (using 2PL as cross-group con-

currency control mechanism) yields no benefit: throughput actually drops by

an order of magnitude, as runtime pipelining’s preferred ordering of read-write

accesses (Section 3.1) creates deadlocks at the cross-group level.

Removing these deadlocks by reordering new order’s access to the

district and stock table (third column) improves performance somewhat,

but the result is still only marginally better than placing the transactions in

the same group. To offer a sense for the role that the cross-group mechanism

plays in determining these results, the last row shows the throughput of a

best-case scenario for partitioning. Stock level and new order are placed in

separate groups, and artificially restricted to accessing different warehouses as
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a way to eliminate all cross-group read-write conflicts: performance soars by

almost an order of magnitude over the value reported in the third column.

These results suggest three observations. First, cross-group conflicts

matter. The performance bottleneck in our example is the 2PL concurrency

control mechanism at the cross-group layer, which cannot efficiently handle

the read-write conflicts on the district table between the two transactions.

Second, the cross-group mechanism matters. These read-write conflicts would

have been better handled using a multi-versioned concurrency control mecha-

nism. Third, no single cross-group mechanism can effectively address all con-

flicts. This same multi-versioned concurrency control would fare poorly under

write-write cross-group conflicts.

3.4.2 Revisiting MCC’s Configuration Complexity

MCC’s performance edge comes from the discrimination of different

data contention in a workload, and, as we have seen, this is achieved by prop-

erly configuring the grouping of transactions and in-group mechanisms. Conse-

quently, MCC’s performance largely depends on its configuration. A good con-

figuration can improve the performance by properly partitioning transactions

to separate major contention bottlenecks, and applying the right concurrency

control mechanism to handle each of them. A bad one, however, may miss such

opportunities, or even harm the performance, e.g., by introducing additional

computational costs or deadlocks.

But configuring MCC is not a trivial task, and if this task is left to
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database users, it can become a major burden.

First, to find a good configuration, one must thoroughly explore the

application and its workload to understand its performance characteristics

and potential bottlenecks. As we know, reasoning about performance requires

advanced skills and substantial efforts from application developers; this is espe-

cially true for database workloads that involve extensive concurrent execution.

Second, the MCC has itself many “turning knobs”, so configuring it can

be very complicated. On the one hand, there are exponentially many different

ways to partition transactions and assign concurrency control mechanisms to

each group. On the other hand, the performance of a configuration is often hard

to predict. As we have seen from the example in Section 3.4.1, there are many

factors that can affect MCC’s performance: they include not only how well

each concurrency control can handle its data conflicts, but also the interaction

between different mechanisms, which may end up producing deadlocks.

Third, configuring MCC manually also requires users to be familiar with

both the MCC technique and the specific concurrency control mechanisms that

the database supports. As concurrency control techniques are buried deep in

the implementation of a database, rather than part of its API, it is unreason-

able to ask users to master such domain-specific knowledge.

Indeed, if left unsolved, the complexity of configuring MCC may void

a key motivation for introducing this technique in the first place, namely, to

improve transactions’ performance without sacrificing ease of programming.
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Callas offered some basic guidelines to group transactions (Section 3.3.3),

but they are very elementary, and suffer from several problems. For example,

we find that the profiling technique proposed in Callas cannot reliably detect

the performance bottleneck (see Section 5.3.1). Also, these guidelines assume

the ability to adjust workload parameters, which may not hold if the con-

figuration algorithm is integrated into the database system to transparently

manage its configuration on-the-fly. In reality, configuring MCC is still largely

an ad-hoc procedure that involves a lot of human efforts, and this is especially

true after Tebaldi introduces hierarchical MCC, whose multi-layer structure

to federating concurrency control further complicates the configuration.

3.5 From Callas to Tebaldi

To address problems in the current MCC design, we present Tebaldi [85],

a distributed key-value store that takes significant steps towards harnessing the

performance opportunities offered by federating different concurrency control

mechanisms. Comparing to Callas, Tebaldi makes two major improvements.

First, it proposes a new, hierarchical approach to MCC. Second, it is capable

to automatically manage its configuration of MCC.

Hierarchical MCC Tebaldi employs hierarchical MCC to address the prob-

lem that Callas’ inflexible, conservative cross-group mechanism can limit the

performance of the entire federation. The design of hierarchical MCC starts

with the simple premise that the key to performance is, once again, a federation
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of concurrency control mechanisms, this time deployed to resolve cross-group

conflicts. The vision of this approach is to further increase the flexibility in

how data conflicts are handled in the federation, which, in turn, improves

performance.

To realize this vision, we need to clear several technical hurdles. First,

we need to determine the inner structure of the new federations that Tebaldi

enables: our goal is to ensure that these new degrees of freedom do not come

at the expense of modularity. Second, we need to identify the conditions that

ensure the correctness of Tebaldi’s more general federations. Finally, we need

to develop the system-level support needed to bring this vision to fruition.

In Chapter 4, I will address these challenges, and discuss the design,

implementation and evaluation of hierarchical MCC in Tebaldi.

Automatic Configuration To mitigate the challenge in configuring hier-

archical MCC, we equip Tebaldi with the ability to manage its own configu-

ration. The key technique is an automatic configuration algorithm that can

diagnose performance issues on-the-fly, and reconfigure MCC to improve the

performance.

Our algorithm takes an iterative approach that is similar to the ini-

tial proposal in Callas, but addresses many challenges that were not solved

in Callas. It adopts a new profiling technique that can detect and describe

performance bottlenecks more reliably and more accurately, and we propose

new strategies to adjust the federation that can better fit Tebaldi’s hierarchical
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approach to MCC. Our algorithm is fully integrated into the Tebaldi database,

runs in real time, and requires minimal, if any, user-involvement.

In Chapter 5, I will discuss the detail of automatic configuration in

Tebaldi, and evaluate its performance.
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Chapter 4

Tebaldi’s Hierarchical Approach to MCC

In this chapter, I will present hierarchical MCC, Tebaldi’s new approach

to federating concurrency controls for better performance. I will first introduce

the theoretical foundations of hierarchical MCC, and then go through its de-

sign and implementation in Tebaldi, highlighting its benefits and limitations.

Finally, I quantify the benefits of this new approach.

4.1 Overview of Hierarchical MCC

To harness the full power of the federated approach, Tebaldi seeks to

maximize its flexibility in federating concurrency controls while preserving

modularity. The benefits of flexibility are clear: finer control in determining the

mapping between sets of conflicts and concurrency control (CC) mechanisms

enables greater concurrency and higher performance. Unhinged flexibility can,

however, come at the cost of modularity, defined as the ability of individual

CCs to order conflicts independently while guaranteeing isolation.

This chapter, as well as part of Chapter 3, is based on the paper Bringing Modular

Concurrency Control to the Next Level by Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo
Alvisi and Chao Xie, which was published in SIGMOD 2017. I led this research project, and
made major contributions to the design, implementation, and evaluation of the Tebaldi
database.
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Figure 4.1: Unhinged flexibility in a federation may harm its modularity.

Consider, for instance, a set of three transactions, T1, T2, and T3, as

shown in Figure 4.1, and assume that, to maximize flexibility, conflicts between

each pair of transactions are governed by a separate CC mechanism. Suppose

CC1,2 orders T1 before T2, and that CC2,3 orders T2 before T3. CC1,3 is then left

with only one correct choice, i.e., ordering T1 before T3, and it needs to become

aware of that (as otherwise a circle will be created in the Direct Serialization

Graph). In general, a CC mechanism may have to learn the ordering decisions

of all other CCs to guarantee correctness.

Figure 4.2: Tebaldi’s hierarchical approach to Modular Concurrency Control.
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Tebaldi balances these competing concerns by applying the theory of

Modular Concurrency Control [95] recursively, organizing CC mechanisms in a

multi-level tree, as shown in Figure 4.2. Each node in the tree is a concurrency

control mechanism, and it is associated with a set of transactions T. The node

is then responsible for regulating data conflicts among that set of transactions.

Initially, the root node is assigned with all transactions; in turn, a non-leaf node

can choose to delegate some of its responsibility by assigning disjoint subsets of

T to children nodes better suited to handle their conflicts, while only retaining

responsibility for regulating conflicts across children.

We call this new approach to federating concurrency controls Hierar-

chical Modular Concurrency Control, or hierarchical MCC / HMCC for short.

The hierarchical refinement of MCC yields two key benefits. On the one hand,

it enables greater flexibility: applying MCC recursively largely removes the

concern that using aggressive in-group mechanisms may unnecessarily push

conflicts to the conservative cross-group CC. Instead, these “cross-group” con-

flicts are themselves further partitioned and mapped to various efficient CCs—

and so on recursively, until one reaches the root of the tree. On the other hand,

Tebaldi’s multi-level tree preserves a high-degree of modularity by retaining a

key feature of MCC: the mapping from sets of data conflicts to CCs is derived

by subdividing a given set of transactions into mutually disjoint subsets. This

makes it impossible for sibling nodes on Tebaldi’s tree to make conflicting or-

dering decisions, as they regulate disjoint portions of the Direct Serialization

Graph. Instead, CCs need only communicate their ordering choices to (and, in
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turn, have their ordering choices constrained by) the CC mechanism of their

parent node. As we will see in Section 4.2, this structural property is instru-

mental to guaranteeing that no two concurrency controls can make conflicting

decisions on how to order a pair of transactions.

4.2 Ensuring Correctness

Tebaldi builds upon Adya’s [22] general theory for expressing isolation.

As we saw in Chapter 2, this theory associates with every execution a direct

serialization graph whose nodes consist of committed transactions and whose

edges mark the dependencies (write-read, write-write, or read-write) that exist

between them. An execution satisfies a given isolation level if it disallows three

properties: aborted reads, intermediate reads, and circularity.

In the spirit of modularity, the MCC implementation in Callas [95]

articulates these global requirements separately for in-group and cross-group

mechanisms. In-group mechanisms must prevent circularity, aborted reads,

and intermediate reads that solely involve the subset of transactions that they

are responsible for. Cross-group CCs must prevent cycles, as well as aborted

and intermediate reads, involving transactions from different groups.

Tebaldi blurs the distinction between cross-group and in-group mecha-

nisms: every concurrency control in the CC tree acts as an in-group mechanism

in the eyes of its parent, and as a cross-group mechanism in the eyes of its

children. Correctness can then simply be defined as follows:
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Definition 4.2.1. A CC tree is correct if every concurrency control in the tree

prevents aborted reads, intermediate reads, and circularity for the committed

transactions in its group.

As it is, this definition says little about how CCs can achieve the cor-

rect isolation in a modular yet flexible fashion. In Callas, this is achieved by

introducing a single, 2PL-based instance of cross-group mechanism. Tebaldi is

more sophisticated: its goal is to establish a general model of federation that

allows a variety of CC mechanisms to regulate conflicts across groups (i.e., to

serve as an internal node of the HMCC tree). We then need a general condi-

tion on the composability of CC mechanisms, so that any combination of CC

mechanisms that meet the condition will isolate transactions correctly.

4.2.1 Consistent Ordering

The correctness condition that we propose is based on the key concept

in hierarchical MCC—delegation: a parent concurrency control delegates con-

flicts that its child is better suited to handle. So the parent’s only responsibility

is then to ensure that subsequent ordering decisions will be consistent with

those of its children. Formally:

Consistent Ordering For committed transactions T1 and T2, if a concurrency

control node in the tree creates a path from T1 to T2 in the DSG, then its

parent CC node must never create a path from T2 to T1 among the larger set

of transactions that it manages.
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In effect, each subtree in the CC tree defines a partial ordering on

the subset of transactions that it manages. Outer concurrency controls merge

different subtrees, extending the partial order and ensuring that the resulting

transaction ordering does not violate circularity.

(a) A 3-layer CC tree. (b) Each CC’s Ordering decisions.

Figure 4.3: Ordering responsibilities of each CC mechanism in the tree.

We illustrate this process in Figure 4.3. CC4 orders transactions T1

and T2 and CC5 orders transactions T3 and T4. CC2’s only responsibility is to

ensure that T1/T2 and T3/T4 are ordered consistently—in this case, by ordering

T3 after T2. Similarly, CC1 orders T5 before T1.

Most off-the-shelf concurrency control mechanisms, however, are not

quite as diligent as CC1 and CC2. In general, the parent CC can constrain the

ordering decisions between transactions assigned to one of its children both

directly (e.g., by timestamping transactions at their start time) and indirectly

(by making cross-group ordering decisions that limit, in the service of correct-

ness, a child CC’s discretion in deciding how to order its own transactions).

Ignoring these effects can lead to violations of consistent ordering.

For example, Consider a non-leaf node, CCn, in our tree, which runs
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2PL. Assume CCn has two children CCs: CC1, in charge of ordering transac-

tions T1 and T2, and CC2, in charge of T3. Suppose CC1 serializes T1 before

T2, and that T2 commits first, releasing all its 2PL locks at CCn. Nothing now

prevents CCn from letting T3 read a data object written by T2, thus forming

a cross-group dependency T2 → T3. Similarly, nothing forbids T3 from writing

some data object x and committing (thus releasing all locks at CCn). Suppose

T1 now reads x, causing a write-read cross-group conflict at CCn between T3

and T1. If CCn orders T1 after T3, its two ordering decisions (T2 → T3 and

T3 → T1) create a path from T2 to T1, violating consistent ordering.

4.2.2 Preserving Consistent Ordering in CC Mechanisms

We identify three general strategies by which nodes at adjacent levels

of the CC tree can coordinate their ordering decisions and preserve consis-

tent ordering. When a parent CC is faced with an ordering decision, it can

either straightforwardly adopt the decision of one of its children CCs, take

actions that constrain the future ordering decisions of its children, or procras-

tinate, leaving more time for its children to propose an ordering. The choice

among these strategies largely depends on the timing of the decision and on

the specifics of the parent’s CC mechanism; indeed, mechanisms that take

multiple steps to reach their final ordering decision may use a combination of

these strategies.

When the parent CC’s ordering decision comes after a child CC has

decided how to order the transactions in its group, the simplest strategy to
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ensure consistent ordering is to fully embrace Tebaldi’s emphasis on delega-

tion and adopt the child’s ordering decisions. This strategy proves particularly

useful when the parent CC orders transactions at commit time, since by then

it is likely to know its children’s ordering decisions. Consider again the above

example where CCn, the parent CC, runs 2PL. CCn, once it learns of its chil-

dren’s ordering decisions (e.g., T1 → T2), must simply respect that ordering

when committing transactions (so that the locks held by T2 are only released

after T1 commits). This is exactly the Nexus Lock Release Order [95] that we

adopted in Callas (See Section 3.3.2).

When instead the parent CC’s ordering decision comes before the child

has had time to decide, two strategies remain: constraining the child’s deci-

sions, or procrastinating until the child decides (and then adopting its deci-

sions).

The constraints imposed by the parent CC can vary from subtle to

overbearing. At the subtle end of the spectrum, how a parent resolves a cross-

group conflict (for instance, by blocking conflicting transactions across groups

in 2PL and runtime pipelining) can often indirectly limit how the children CCs

can serialize these transactions. At the other end of the spectrum, a parent

CC could simply dictate the order of transactions to its children (for exam-

ple, Timestamp Ordering [32] assigns each transaction a unique timestamp at

begin time). This degree of micromanagement, of course, would run counter

to Tebaldi’s design, which leverages delegation as the key to greater perfor-

mance. Nonetheless, such CCs can serve effectively as inner nodes in Tebaldi’s
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hierarchy by selectively procrastinating ordering decisions until their children

make theirs. For example, rather that labeling each transaction instance with a

unique timestamp, the parent CC could assign the same timestamp to a batch

of transactions from the same group. By waiving its chance to order these

transactions, the parent would in effect delegate their ordering to the child

CC responsible for that group, while still constraining the child by preventing

it from ordering the transactions in batch i+ 1 before those in batch i.

In Section 4.4, we will discuss in detail how Tebaldi uses adoption,

constraining, and procrastination to integrate several widely used CCs in its

hierarchical architecture.

4.3 Tebaldi’s Design

Having sketched out the correctness requirements of hierarchical MCC,

we describe next how Tebaldi, our new transactional key-value store, enforces

these requirements. Similarly to several distributed, disk-based, commercial

systems [10, 26, 40], Tebaldi separates its concurrency control logic from its

storage management and keeps metadata associated with CC protocols (like

timestamps and version lists in snapshot isolation, and locks in 2PL) as tran-

sient state in the concurrency control module.

The concurrency control module coordinates how the diverse CC pro-

tocols in Tebaldi’s hierarchy collectively determine the order of transactions.

Tebaldi’s framework for CC coordination leverages the observation that, de-

spite their diversity, the steps that most CC protocols take in determining the
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Figure 4.4: An overview of Tebaldi’s transaction execution protocol.

ordering of a transaction T can be grouped into four distinct phases: a start

phase, an execution phase, a validation phase, and a commit phase. Tebaldi

executes each phase in two passes, as shown in Figure 4.4. The first pass, top-

down, gives parent nodes the opportunity to constrain how their children’s

ordering decisions affect the ordering of T ; the second pass, bottom-up, lets

children (optionally) inform their parent of T ’s current dependency set, i.e.,

the list of transactions in its group on which T directly depends.

This structure gives Tebaldi its generality: Tebaldi can support a max-

imum of CC combinations by giving every concurrency control, in each phase,

the opportunity to constrain or delegate to its child, while the child can in turn

inform its parent as soon as dependencies become known. This generality does

not come at the cost of modularity: the implementation of each concurrency

control remains independent from that of its parents (or children) as they

communicate only via well-defined communication channels. Further, Tebaldi

is extensible: it provides a blueprint for adding a new CC to an existing CC

hierarchy tree: all that is required is to identify and integrate the new CC’s
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four phases in the tree.

The storage module stores and retrieves the appropriate version of a

data object according to the CCs’ ordering decisions. To support both single

version and multiversion concurrency control protocols, this module is imple-

mented as a multiversion storage that keeps all the committed and uncommit-

ted writes on each object.

Naturally, there might be exceptions: some specialized concurrency con-

trols may not fit well in Tebaldi’s four-phase model or may expect a specific

storage layout. Likewise, there may be inner CCs whose ordering decisions are

not known at the time when parent CCs need them (or even at commit time).

We discuss the limitations of our approach in Section 4.3.2.

4.3.1 Execution Protocol

Executing a transaction T in Tebaldi requires coordinating the actions

of all the CCs handling T . These CCs form a path π in the CC tree (starting

at the root and ending in CCn) as each CC delegates some of T ’s conflicts to

a child. Tebaldi executes T as follows:

Start phase In the top-down pass, each CC on π allocates the specific meta-

data that it requires. A CC may, for example, initialize data-structures that

either uniquely identify the transaction or order it relative to concurrently run-

ning transactions (e.g., start timestamps in serializable snapshot isolation and

timestamp ordering, or transaction id in lock-based protocols). More complex
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protocols, like Calvin [86], may also use the start phase to batch transac-

tions, pre-ordering transactions within a batch. At the end of the phase, the

bottom-up pass, starting from CCn, lets children inform their parent of T ’s

new dependency set.

Execution phase In this phase, each CC along π runs its execution phase

for each read and write operation in T . In doing so, CCs refine T ’s position in

the overall transaction schedule. For example, choosing to read from a version

created by a transaction Ti orders T after Ti, while inserting a new object

version before Tj orders T before Tj .

In the top-down pass, each CC executes its own CC-specific logic and

appropriately constrains the ordering decisions of its children by blocking (or

aborting) operations. Lock-based systems, for instance, delay operations until

conflicting locks have been released, before placing a lock on the chosen ob-

ject and executing their children’s execution phase. The process is similar for

multiversioned systems: though these techniques do not require blocking, they

may decide to abort T on write-write conflicts.

The bottom-up pass has two components. First, as in the start phase,

a child can forward T ’s dependency set to its parent. Second, the CCs on π

collaboratively identify the appropriate version to return on a read operation.

Specifically, a child CC proposes on a read operation a “candidate” version

to return. Its ancestors can then amend the child CC’s proposal based on

transactions that may have written to that same object in sibling groups.
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Figure 4.5: Read logic in the bottom-up pass of execution phase.

To illustrate, consider the CC tree in Figure 4.5. T1 is in one group,

while T2 and T3 are in another (controlled by CC2); the interaction between the

two groups is regulated by the cross-group concurrency control CC1. Suppose

transactions T1 and T2 both write object x (producing, respectively x1 and

x2) and that CC1 chooses to order T1 after T2 but before T3 (solid edges).

Now consider a read of x by T3: as T1 and T3 are in different groups, CC2 is

unaware that T1 wrote x1. It thus proposes T2’s write x2 as a candidate read

value (red dashed edges). Returning this value would create a cycle in the

final transaction schedule that consists of an anti-dependency edge from T3

to T1 (as T3 misses T1’s write) and an ordering edge from T1 to T3. CC1 thus

“corrects” CC2 and instead returns x1, removing the cycle (blue dotted edges).

Importantly, CC2 never becomes aware of the existence of x1. Restricting CC2

to this partial view is necessary to preserve Tebaldi’s modularity, which hinges

on concurrency controls making ordering decisions solely for transactions in

their group.
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Validation phase This phase makes the ultimate decision [33] on whether

T can commit and on its position in the final transaction schedule. In the

top-down pass, each CC along π determines whether T is committable and, if

desired, constrains its children’s ordering decisions by delaying their validation

phase. In the bottom-up pass, starting from the last CC on π, each CC forwards

to its parent either T ’s dependency set or its decision to abort T . The parent

CC can in turn use that information to determine whether it can commit T

in an order consistent with its child’s decision.

The process of deciding whether T can commit varies widely across

CCs. Validation is trivial in lock-based protocols, as having acquired all locks

is sufficient to ensure commit. Optimistic protocols must instead verify whether

the objects read by T are still current, or otherwise abort T . Likewise, the ease

with which the full set of dependent transactions can be reported also varies.

In most single-version systems, T always knows its dependency set by the

end of the validation phase. In contrast, that information is not available in

multi-versioned CC mechanisms like SSI [50] until all transactions that were

concurrent with T have committed.

Commit phase Tebaldi guarantees that T is committed atomically across

all CCs by ensuring that the chained commit phases execute uninterrupted,

starting from the leaf CC on π.
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4.3.2 Limitations

Tebaldi’s framework strives to be general, modular, and extensible.

These benefits, however, come at the cost of some efficiency, as, unlike systems

designed to work solely with a fixed subset of CCs, Tebaldi cannot co-design

components. Single-versioned concurrency controls, for instance, do not need

to keep version histories, whereas Tebaldi’s storage module must store them

to support multi-versioned CCs. Similarly, while many specialized systems can

benefit from co-locating concurrency controls’ metadata (such as locks and

timestamps) with the actual data, Tebaldi’s generality requires their separa-

tion. Finally, some CCs, such as 2PL, do not need a validation phase.

Moreover, Tebaldi’s ability to incorporate a given CC is based on the

assumption that the CC can be expressed using its protocol’s four phases

and modified to guarantee consistent ordering (Section 4.2). These assump-

tions, though valid for common concurrency controls, may not hold univer-

sally; and, even when they do, may reduce efficiency. For example, batching

increases the probability of write-write conflicts in snapshot isolation (Sec-

tion 4.4, Section4.6.4) and may reduce the scheduling flexibility of time-travelling

concurrency controls like TicToc [97]. Also, some CC mechanisms require their

children to report dependency information at certain phases (e.g., at execution

/ validation phase) to enforce consistent ordering, but not all children CCs can

meet these requirements. In such cases, the two CC mechanisms will not be

able to work together as parent and child.
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4.4 Use Cases

This section sketches the different concurrency control protocols cur-

rently supported by Tebaldi. This initial selection achieves a dual purpose.

First, it illustrates how one can guarantee consistent ordering for real, well-

known concurrency controls and how these CCs can be implemented in Tebaldi.

Second, it speaks to the generality of our approach: Tebaldi supports two lock-

based, single-versioned protocols (traditional two-phase locking [30, 48] and the

recently proposed runtime pipelining [95]), and two multiversioned protocols

(serializable snapshot isolation [35, 50, 72], and multiversioned timestamp or-

dering [76]). We describe each mechanism in turn.

4.4.1 Two-Phase Locking (2PL)

Our implementation directly follows the original algorithm [30, 48]:

transactions acquire shared read locks when executing a read operation and

exclusive write locks when executing write operations. Every transaction holds

these locks until commit, so as to guarantee serializability. Any deadlocks are

handled by timing out transactions.

Implementing 2PL as a non-leaf CC requires only two small changes to

the algorithm, which we have described in the Callas paper [95]. First, 2PL

delegates in-group concurrency control to its children CCs by marking all locks

acquired by transactions from the same group as non-conflicting. Second, 2PL

ensures consistent ordering by delaying a transaction’s commit until all its

in-group dependencies have also committed.
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2PL takes no action in the start phase. All necessary locks are acquired

in the top-down pass of the execution phase. The bottom-up pass of the exe-

cution phase decides the appropriate read version to return: 2PL accepts the

child’s proposal if it is an uncommitted value from its group or else returns

the latest committed value. The validation phase then gathers the committing

transaction’s dependency set from the child CC and delays commit until all

transactions in that set have committed. Finally, it releases the locks in the

commit phase.

4.4.2 Runtime Pipelining (RP)

As we have introduced in Chapter 2, Runtime pipelining [95] han-

dles data conflicts more efficiently than 2PL through a combination of static

analysis and runtime constraints. Specifically, RP first statically constructs a

directed graph of tables, with edges representing transactional data / control-

flow dependencies, and topologically sorts each strongly connected set of ta-

bles. Transactions are correspondingly reordered and split into steps, with step

i accessing tables in set i. A runtime pipeline ensures isolation: once T2 becomes

dependent on T1, T2 can execute step i only once either T1 has terminated,

or T1 is executing a step larger than i. Operations within a step are isolated

using 2PL.

RP’s start phase initializes the step counter and dependency set. In

the execution phase, RP delegates concurrency control within each group to

the child CC by allowing transactions from the same group to execute the
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same step concurrently. Upon starting a new step i, RP first “commits” the

previous step by releasing the step-level lock (after in-group dependencies have

also step-committed). It then waits both for all cross-group dependencies to

finish executing step i, and for all in-group dependencies to start executing step

i, before acquiring the step-level lock. The bottom-up pass of the execution

phase gathers in-group dependency reports from children CC. It also decides

the appropriate read version to return: RP accepts the child’s proposal if it

is a write from its group that has not step-committed. Otherwise, it returns

the latest step-committed value. The validation phase delays a transaction’s

commit until transactions in its dependency set have committed.

4.4.3 Serializable Snapshot Isolation (SSI)

Tebaldi supports a distributed implementation of serializable snapshot

isolation [35, 50, 72], a multiversioned protocol that rarely blocks readers. As

we have mentioned in Chapter 2, SSI orders transactions using start/commit

timestamps: transactions read from a snapshot at the start timestamp, while

writes become visible at the commit timestamp. SSI ensures serializability by

detecting (and preventing) “pivot” transactions that have both incoming and

outgoing anti-dependency edges.

Enforcing consistent ordering in SSI requires care. Firstly, unlike 2PL

and RP, SSI partially decides transaction ordering through start timestamp

assignment. Consider for example two transactions T1 and T2 from the same

group, with T1 having a smaller start timestamp. Consistent ordering can
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be violated if the child CC orders T2 before T1, as T2 may observe a write

from another group that T1 cannot see. To address this, Tebaldi uses batch-

ing. Instances of transactions from the same group are placed in a batch and

assigned the same start timestamp, delaying their relative ordering until com-

mit. A child CC is then free to order batched transactions without violating

consistent ordering. Though transactions in a batch share a start timestamp,

they can commit individually with different commit timestamps (once all their

in-group dependencies have already committed). Introducing grouping and

batching means that SSI must detect and prevent pivot batches, with both

incoming and outgoing anti-dependencies.

The start phase assigns the batch’s start timestamp to the transaction

(determined by a centralized timestamp server). During the execution phase,

SSI tracks pivot batches by asynchronously querying a group manager that

keeps track of batches’ anti-dependencies. Cross-group write-conflicting trans-

actions are aborted. In the bottom-up pass of the execution phase, SSI decides

on the appropriate read version: SSI accepts the child’s proposal if it is a value

from its own batch, and otherwise returns the latest committed version whose

commit timestamp is smaller than the transaction’s start timestamp. Finally,

the validation phase waits for the asynchronous pivot-check replies, and for de-

pendent transactions to commit, before acquiring the final commit timestamp

and reporting the transaction’s dependency set to the parent CC. Doing so

may require additional waiting: the full set of anti-dependencies is not known

until all transactions with a smaller start timestamp finish executing.
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As we mentioned in the previous section, batching may reduce effi-

ciency of SSI, since it increases the possibility of write-write conflicts (and

write-skews). Luckily, the SSI protocol can be further optimized under certain

assumptions. For instance, if SSI is used as the CC at the root of the CC tree

to separate read-only transactions from update transactions (as is often the

case), the protocol can be optimized as follows. First, SSI does not need to

wait for concurrent transactions to finish executing, as root CC does not need

to report a transaction’s dependency set. Second, in the presence of a single

update child group (which can be further partitioned), batching is no longer

necessary. Indeed, as transactions in the update group will never observe values

from the read-only group, it is not necessary to assign them start timestamps.

Consistent ordering can be achieved simply by committing transactions in the

update group according to their in-group order. Finally, checking for pivot

batches is not necessary, as a pivot batch must involve at least two update

groups.

4.4.4 Multiversioned Timestamp Ordering (TSO)

Multiversioned timestamp ordering [32, 76] minimizes snapshot isola-

tion’s high abort rates under heavy write-write conflicts. TSO decides the

serialization order by assigning a timestamp to every transaction at their start

time. A writer creates a new object version marked with its timestamp, unless

a reader with a larger timestamp has read the prior version (i.e., has missed

this write), in which case the writer is aborted. A read returns the latest ver-
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sion with a timestamp smaller than the reader’s. To prevent aborted reads, a

transaction logs the write-read dependencies, and only commits after all these

dependencies have committed. Tebaldi, inspired by Faleiro et al. [49] imple-

ments an optimization: promises. Transactions can optionally specify at start

time object keys that they will write during their execution. Tebaldi then de-

lays any transactions that attempt to read those values until the corresponding

write occurs (instead of eventually having to abort the write transaction).

To enforce consistent ordering in TSO, Tebaldi can once again use

batching. The start phase creates a batch of transactions for each child group

and assigns the same timestamp to all transactions in the same batch. As in

SSI, batching delays TSO’s ordering decisions for a batch until commit time,

giving children CCs complete freedom in how they order transactions.

In the execution phase, the write logic remains identical. For reads,

TSO accepts the child’s proposal if it is a write from its own batch. Otherwise,

it returns the latest version of that object with a smaller timestamp. In the

validation phase, TSO uses the in-group dependency reports to decide on the

order of transactions within a batch, and commits a transaction only after all

its in-group dependencies have committed. As TSO exposes uncommitted val-

ues across groups (unlike SSI), the protocol must additionally verify that later

batches read the latest write from previous batches: consistent ordering can be

violated if the final order of writes differs from their execution order. Suppose,

for instance, that two transactions T1 and T2 in the same batch B write the

same object. If T1 executes the write before T2, a reader from another group,
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ordered after B, will read T2 instead of T1, even if the child CC eventually or-

ders T1 after T2. To prevent this, TSO delays committing a transaction T until

all batches with lower timestamps have committed. It aborts T if there exists

a later object version that has the same timestamp as the version observed by

T . Finally, TSO can conservatively report a transaction’s dependency set to

its parent to include all transactions with a smaller timestamp.

As was the case in SSI, batching in TSO can degrade its performance.

In fact, TSO is most efficient when serving as a leaf node in hierarchical MCC.

In this case, it does not need to adopt batching to enforce consistent ordering.

4.5 Implementation

The current prototype of Tebaldi provides support for tables, variable

sized columns, and read-modify-write operations. It also supports durability.

It does not however currently support range operations or replication.

4.5.1 Cluster Architecture

A Tebaldi cluster consists of two major types of nodes. The transaction

coordinators (TC) manage transactions’ states, while data servers (DS) hold

partitions of the data and handle data access requests from TCs. Tebaldi can

be scaled up easily by adding more TC and DS nodes to the cluster.

The implementation of the four phases discussed in Section 4.3.1 is split

between TC and DS nodes and follows a common pattern: for each phase,

the TC issues request(s) to the appropriate DS and waits for the reply. In
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certain phases, some CCs may omit contacting the DS, while others may re-

quire additional communication. For example, in runtime pipelining the TC

for transaction T contacts the TCs for the transactions in T ’s dependency set

to determine when it is safe for T to begin executing a new step. The DS,

meanwhile, maintains a lock table and manages timeouts.

4.5.2 Optimizations

Phase optimizations We previously introduced each of the four protocol

phases as two-pass procedures: a top-down pass where the parent CC con-

strains the execution of its children, followed by a bottom-up pass where the

child CC informs the parent of its ordering decisions. In our experience how-

ever, few CCs leverage the bottom-up pass in the start phase or the top-down

pass in the validation phase. Our current implementation removes them for

efficiency.

Latency reduction Sequentially executing the respective phases of every

CC in a CC tree of height h could result in up to O(h) network round-trips, as

each CC’s logic may involve communication between the TC and DS. To side-

step this issue, Tebaldi, for each phase, first executes the TC component of

every CC, batching communication to the DS. The DS in turn executes the DS

part of every CC, and batches replies to the TC. This reduces the framework’s

latency to a single round-trip per phase, in line with prior non-hierarchical

approaches.
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4.5.3 Garbage Collection

Tebaldi implements a garbage collection service that prunes stale ver-

sions from multiversioned storage. Logically, a write can be GCed when all

CCs agree that it will never be read again. For efficiency, Tebaldi processes

records in batch within a GC epoch: Tebaldi assigns a GC epoch id to every

transaction, periodically incrementing the epoch. When all transactions in an

epoch finish, Tebaldi asks all CCs to confirm that they will never order ongoing

or future transactions before a transaction in this epoch. Once all CCs have

confirmed, all stale writes in the epoch can be GCed.

4.5.4 Supporting Durability

We implemented a durability module for Tebaldi. It is based on the

widely-used write-ahead logging and two-phase commit technique [52, 64, 65].

During the execution phase, data servers create operation logs to store

information of write operations. At the precommit phase, each participating

data server generates a precommit log when all the involved CCs pass the pre-

commit on that server. This log keeps the number of participating data servers

in the transaction and the ordering information for writes (to reconstruct lat-

est version on each data object in recovery). This log is saved to persistent

storage before the data server notifies the transaction coordinator. A transac-

tion is ready to commit (and is guaranteed to committed) once all precommit

logs have been made persistent on all involved data servers.

Tebaldi does not implement its own persistent storage; instead, it out-
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sources this responsibility to an underlying storage system. Besides ensur-

ing persistency, the only requirement on this storage system is to provide

a key-value interface. In this way, Tebaldi can transform a single-machine,

non-transactional key-value store into one that is distributed and offers trans-

actional support1. Tebaldi currently uses Redis [18] and RocksDB [19] as its

underlying storage; new ones can be added easily.

Recovery Protocol Recovery in Tebaldi is a three-step procedure. The first

step retrieves logs from the persistent storage on each data server. The second

step then reconstructs the database state: data servers coordinate with each

other (via transaction coordinators) to discard any transaction that has fewer

precommit logs than the number of participating data servers. The remain-

ing transactions are committed. Tebaldi reconstructs the database state by

keeping the latest committed version on each data object. Finally, the third

step reconstructs concurrency control’s internal states, such as data indices,

version maps, and lock tables. Here, Tebaldi only needs to reconstruct the root

CC’s state. Logically, this is equivalent to having a recovery transaction that

writes all the recovered data objects to an empty database, with the trans-

action coming from a virtual child node beneath the root, so that only the

root CC knows this transaction. After recovery, the read logic in the execution

phase will automatically fix any incorrect read result.

1The underlying storage has all the data in Tebaldi database, but in the form of trans-
action logs, rather than actual key-value pairs.
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Asynchronous flushing Flushing transactions synchronously can severely

reduce Tebaldi’s performance. To mitigate this problem, Tebaldi provides an

asynchronous flushing protocol. It separates commit notification from durable

notification: a committed transaction may still get lost if Tebaldi fails soon

after, until a durable notification is issued at a later time. This allows Tebaldi

to batch and flush logs asynchronously in background. Most importantly, to

CC mechanisms, a committed but not-yet-durable transaction is no different

from a committed and durable one, so durability won’t affect concurrency

(e.g., 2PL can release all locks at commit time). Applications can choose to

wait for either of the notifications, or both of them.

The key challenge is to ensure that Tebaldi can recover to a consis-

tent state: as committed transactions may get lost, a recovered transaction

may read from a committed transaction that was lost in the failure. This has

similar effects as an aborted read, rendering the database in an inconsistent

state. Our solution to this problem is to use a global checkpoint (GCP) pro-

tocol. Transaction logs are flushed in batches called GCP epochs. Each data

server holds the current GCP epoch id, and assigns this id to transactions’

precommit logs. The transaction coordinator then calculates a transaction’s

global epoch id to be the largest epoch id from participating data servers (data

servers may hold different epoch ids during an epoch change). At commit time,

the transaction coordinator notifies data servers with the transaction’s global

epoch id. If this id is larger than a data server’s current epoch id, the data

server updates its current epoch id before executing any CC’s commit phase.
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This protocol ensures that if transaction T2 reads data from transaction T1,

T2 will have a global epoch id larger than that of T1. During recovery, Tebaldi

discards transactions whose global epoch id is larger than the latest persistent

epoch id.

4.6 Evaluation

Tebaldi seeks to unlock the full potential of federating concurrency con-

trols by applying MCC hierarchically. To quantify its benefits and limitations,

we ask the following questions:

• How does Tebaldi perform compared to monolithic concurrency controls

and two-layered MCC systems? (Section 4.6.1 and Section 4.6.2)

• Is Tebaldi’s framework conducive to adapting CC trees to changes in the

workload? (Section 4.6.3)

• How do Tebaldi’s different features contribute to increasing concurrency?

(Section 4.6.4)

• What is the overhead of running multiple CCs? (Section 4.6.5)

Experimental setup We configure Tebaldi to run on a CloudLab [5] clus-

ter of Dell PowerEdge C8220 machines (20 cores, 256GB memory) connected

via 10Gb Ethernet. The ping time between machines ranges from 0.08ms to

0.16ms. The cluster contains 20 machines for the TPC-C and SEATS exper-

iments, and ten machines for microbenchmarks; each machine runs ten data
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server nodes and ten transaction coordinators (with one additional machine

for timestamp assignment and batch management under SSI). These experi-

ments were carried out before the durability feature was designed and added to

Tebaldi, so there is no durability in these experiments. We add an experiment

in the end of this section to measure the overhead of durability: with asyn-

chronous flushing, durability only leads to about 5% performance overhead.

Benchmarks We evaluate the performance of our system using several mi-

crobenchmarks, TPC-C [41], and SEATS [46]. TPC-C models the business

logic of a wholesale supplier and is the de-facto standard for OLTP workloads,

while SEATS simulates an airplane ticket selling service.

We adapt the TPC-C benchmark to our transactional key-value store

interface: we remove the scan over a customer’s last name in the payment

and order status transactions. We additionally use a separate table as a

secondary index on the order table to locate a customer’s latest order in the

order status transaction. Our current implementation does not contain the

1% of aborted new order transactions. In line with prior work that focuses

on contention-heavy workloads [66, 94, 95, 99], we run TPC-C test clients in a

closed-loop and populate ten warehouses.

We also adapt the SEATS benchmark: we keep its application logic but

reduce the number of available flights to demonstrate the benefits of hierarchi-

cal grouping under high-contention, and significantly increase the number of

seats in each “flight” to run the benchmark for sufficiently long. The configu-
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ration we ultimately adopt, though unrealistic for airlines, may model seating

assignments for a small number of sporting events, each with a large number

of seats. Specifically, we remove the scan over the customer name (in delete

reservation and update customer) and use separate tables as secondary in-

dices on the reservation table to locate the reservation id based on the flight

id and seat / customer id. Further, we reduce the number of available flights

to 50, increase the number of seats available per flight to 30,000, and reduce

the number of seats accessed in find open seats to 30.

Optimal grouping for both benchmarks is obtained manually in this

chapter: we recursively identify highly contended transactions with human

effort, and use our domain-specific experience to pair them with concurrency

controls well-suited to the transactions’ inherent structure. We give specific

details for each benchmark in Section 4.6.1 and Section 4.6.2.

4.6.1 Tebaldi’s performance on TPC-C

Baselines We compare Tebaldi against two monolithic concurrency controls

(2PL and SSI) and the federated system Callas [95]. These systems are im-

plemented within the Tebaldi framework, and hence make use of the same

network and storage stack. In SSI, we allow aborted transactions to backoff

for 5 milliseconds before retrying to reduce the resource consumption.

Grouping To configure the Callas system, we start with the grouping strat-

egy proposed in the Callas paper. This initial grouping (Callas-1, Figure 4.6a)
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(a) Callas-1 (b) Callas-2

(c) Tebaldi 2-layer (d) Tebaldi 3-layer

Figure 4.6: CC trees used in TPC-C. Leaf nodes are labeled with transactions:
payment (PAY), new order (NO), delivery (DEL), order status (OS), and
stock level (SL).

partitions transactions into three groups. The first group contains new order

and payment, whose conflicts can be aggressively optimized by runtime pipelin-

ing. The second group uses another instance of runtime pipelining for the

delivery transaction. Finally, the two read-only transactions are in the third

group. This grouping, when running under serializability (Callas originally runs

under read-committed), introduces a large number of cross-group read-write

conflicts between the stock level and new order / payment transactions.

Because of the fixed structure of Callas, these conflicts must be handled by

2PL. To mitigate this problem, we modify Callas-1 by moving stock level

in the first group, where it can be pipelined with new order (Callas-2, Fig-

ure 4.6b).

88



Thanks to the flexibility of hierarchical MCC, Tebaldi supports a wider

variety of grouping strategies than its cousin Callas. We propose two such

groupings, in Figure 4.6c and Figure 4.6d respectively. The first grouping

strategy (Tebaldi 2-layer) leverages Tebaldi’s ability to support cross-group

protocols other than 2PL by selecting a multiversion cross-group protocol, SSI.

It then partitions transactions into two groups: a read-only group containing

transactions order status and stock level that requires no in-group con-

currency control; and an update transaction group that uses runtime pipelining

to optimize the new order, payment, and delivery transactions.

The second grouping strategy (Tebaldi 3-layer) instead leverages Tebaldi’s

hierarchical model by creating a concurrency control tree of depth three. This

approach partitions transactions into the same leaf-level groups as the origi-

nal Callas grouping (Callas-1). However, it then uses two distinct cross-group

mechanisms to handle the remaining conflicts: 2PL for conflicts between new

order / payment group and the delivery group, and SSI for conflicts be-

tween the read-only group and all other groups.

Results Figure 4.7 compares the performance of Tebaldi’s grouping strate-

gies against those of Callas, and against two monolithic concurrency control

protocols: two-phase locking (2PL) and serializable snapshot isolation (SSI).

Consider first the performance of the two monolithic concurrency con-

trols: the peak throughput of SSI is 7× higher than that of 2PL, because of

the high read-write conflict ratio between new order and payment (the trans-
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Figure 4.7: Performance of TPC-C benchmark.

actions in fact read and write different columns, but Tebaldi, like most other

systems, takes row-level locks). As contention increases (by increasing the num-

ber of clients), the performance of SSI drops steeply as the high write-write

conflict rate causes SSI to repeatedly abort transactions.

When contention is high, the performance of SSI and 2PL is lower

than that of Callas and Tebaldi. Callas’s initial grouping strategy (Callas-1) is

bottlenecked by the heavy read-write conflicts between stock level and new

order / payment. Revising this partitioning (Callas-2) yields a 77% through-

put increase, but decreases the efficiency of RP (by moving stock level

and new order to the same group): new order’s writes to order, new order

and order line tables, which could never conflict in the previous grouping

(as order ids are unique), can now read-write conflict with stock level’s

reads (creating additional synchronization in RP). Additionally, combining
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stock level and new order creates circular table dependencies, resulting in

a coarser-grained pipeline. There is once again a tension between the potential

inefficiency of a monolithic cross-group mechanism, and the in-group mecha-

nism’s desire to handle few transactions.

To side-step this tension, Tebaldi has two options: select a more suitable

cross-group mechanism (Tebaldi 2-layer), or create a deeper grouping hierar-

chy (Tebaldi 3-layer). The former yields a 2.6× improvement over the best

grouping strategy in Callas: SSI, as a cross-group mechanism, can efficiently

handle the read-write conflict between stock level and new order, while the

three update transactions can be pipelined fairly efficiently. This pipelining re-

mains suboptimal however, as the potential conflict between new order and

delivery voids new order’s unique access to tables, creating additional syn-

chronization in new order’s execution. The latter grouping strategy (Tebaldi

3-layer) addresses this issue: the small and carefully selected scope of each

group gives every in-group concurrency control the opportunity to perform

well. The rare conflicts between the new order and delivery transactions

are regulated by 2PL, while the common read-write conflicts are resolved us-

ing SSI. This careful tailoring of cross-group CCs to cross-group conflicts allows

the three leaf groups to remain small. This narrow scope results in optimal

pipelines for the two groups running RP, while the read-only group can operate

without any concurrency control, leading to a further 44% improvement.
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4.6.2 Tebaldi’s performance on SEATS

Grouping We compare three grouping strategies. The baseline is a mono-

lithic 2PL system. To optimize the read-write conflicts, our second grouping

uses SSI to separate the read-only transactions (find flights and find open

seats) from the update transactions, and uses 2PL to regulate the remaining

update transactions. The third grouping further optimizes the conflicts among

the update transactions. Unlike TPC-C however, these highly contended read-

write transactions (create, update and delete of reservation) cannot be effi-

ciently pipelined using RP because of the circular dependency between tables

(flight, customer and reservation). Nonetheless, TSO can still pipeline

these transactions by preordering them at runtime using timestamps. In doing

so, however, it creates many spurious dependencies between non-conflicting

transactions. To alleviate this concern, we observe that transactions that ac-

cess different flights rarely conflict. We leverage Tebaldi’s flexible grouping to

create not one, but multiple TSO instances, one for each flight, and assign

transactions to their group at start time according to their input, using 2PL

as cross-group mechanism. This approach efficiently pipelines the (likely) con-

flicts for transactions that access the same flight but does not unnecessarily

order those that don’t (in the rare cases when conflicts between transactions

accessing different flights arise, they are still handled by 2PL).
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Figure 4.8: Performance of SEATS benchmark.

Results Figure 4.8 compares the performance of Tebaldi’s three-layer hier-

archy against those of two-phase locking (2PL) 2 and the two-layer hierarchy

(SSI+2PL). We find that, unsurprisingly, the peak throughput of the two-

layer setting is 2.6× higher than that of 2PL as it minimizes the effect of

the read-write conflicts introduced by the long-running read-only transactions

find flights and find open seats. As contention increases, however, new

reservation transactions spend a prohibitive time waiting to acquire exclu-

sive locks, hampering performance. Pipelining transactions that access the

same flights using TSO yields a further about 2× speedup: TSO can pipeline

operations and expose uncommitted writes to subsequent transactions without

2There was an error in the Tebaldi paper when we calculated the performance of the 2PL
baseline. The reported 2PL performance was about 33% higher than the actual value, and
we under-estimated MCC’s benefit. I fixed this error here by re-calculating the performance
of 2PL using the original experiment logs. This error only affected the 2PL baseline.
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1 // input: w id, d id
2 begin transaction

3 o id = district[w id, d id].next order id;
4 ol num = order[w id, d id, o id].ol num;
5 for (i = 0; i < ol num; ++i) {
6 item id = order line[w id, d id, o id, i].ol i id;
7 item stats[item id]++;
8 }
9 commit

Figure 4.9: Pseudocode of hot item.

delays. Tebaldi’s flexibility enables a “hybrid” type of grouping: first by trans-

action type, and then by transaction instances (according to their inputs),

once one knows whether two transaction instances will actually conflict. Thus,

Tebaldi gets the best of both worlds: the efficiency of 2PL when transactions

rarely conflict, and the localized performance gains of TSO’s pipeline when

transactions do.

4.6.3 Extensibility

For moderate changes in the workload, Tebaldi’s modular and flexible

design makes it possible to handle the new conflict patterns by adding new

concurrency controls to the existing CC trees. To showcase this benefit, we

add a new transaction hot item to TPC-C and sketch how the prior Tebaldi

3-layer hierarchy can be refined to account for the additional conflicts.

This new transaction (shown in Figure 4.9) computes popular or “hot”

items by randomly sampling recent orders in the database, and aggregating

the per-item sale count over all warehouses. We set the new TPC-C workload

distribution to be the following: 41.8% of transactions are new order trans-

actions, 41.8% are payment, while the remaining transactions all run 4.1% of
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the time.

The hot item and new order transactions read-write conflict heav-

ily: neither of the current cross-group 2PL or SSI are thus good choices for

regulating their behavior (the batching in SSI will periodically promote write-

write conflicts between new order instances to cross-group conflicts, causing

aborts). Instead, we have two solutions: we can keep the same three-layer hi-

erarchy, placing the new transaction in the same group as new order and

payment at the cost of a less efficient pipeline. Alternatively, we can leverage

Tebaldi’s flexibility to place the transaction in a separate group and use RP as

the cross-group mechanism to regulate conflicts with the new order/payment

group.

The experiment shows that the three-layer approach has a through-

put of 16,417± 192 txn/sec, while the four-layer approach gives 23,232± 111

txn/sec. Placing new order and hot item in the same group reduces the

pipeline’s efficiency as new order’s accesses to tables are no longer guaran-

teed to be non-conflicting. In the four-layer solution, we side-step this issue by

placing hot item and new order in their own group, yielding a 42% through-

put increase.

4.6.4 Impact of flexibility

We next investigate in more detail how Tebaldi’s higher flexibility en-

hances concurrency. Tebaldi increases flexibility over prior federated systems

in two ways: by supporting multiple cross-group CCs, and by enabling finer
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partitioning of conflicts.

Support for different cross-group protocols We first quantify the po-

tential gains associated with Tebaldi’s support for different cross-group con-

currency controls. To do so, we compare the performance of different cross-

group CCs for different conflict patterns. We use a two-layer hierarchy with

two groups; we fix the in-group CCs and set the cross-group CC to be either

2PL, SSI, or RP. In the first three workloads, each group contains an update

transaction consisting of seven write operations. The first operation writes

to a shared table consisting of n rows, so the conflict rate for both in-group

and cross-group is 1/n. The second operation writes to a group-local table of

ten rows, adding only in-group conflicts. The remaining operations within the

group conflict with low probability (1/10,000). Both groups use RP to handle

in-group conflicts. By tuning n, we vary the cross-group conflict ratio in each

workload (for benchmarks ww-1, ww-5, and ww-10, respectively 1%, 5%, and

10% of write-write conflicts). In the three remaining workloads, we replace

one of the write-only groups with a read-only group. As read-only transac-

tions never conflict with each other, we use an empty in-group concurrency

control protocol. As above, we vary the cross-group conflict rate, this time

of read-write conflicts, in each benchmark (for benchmarks rw-1, rw-5, and

rw-10, respectively 1%, 5%, and 10%).

Figure 4.10 summarizes the throughput for each workload. We report

the results in transactions per second as the average of three runs. We find that
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Figure 4.10: Cross-group CCs’ performance.

no single cross-group protocol outperforms the others in all cases, underscoring

the practical importance of selecting the cross-group mechanism most suitable

for a given workload. Specifically, we find that, SSI, unsurprisingly, performs

best when handling read-write conflicts across groups, as readers and writers

never block each other. In contrast, SSI performs worse in the presence of write-

write conflicts because of repeated aborts. Its poor performance is exacerbated

by the need for batching, as write-write conflicts cannot be resolved until the

next batch change (in ww-1 transactions already retry on average more than

2.5 times). Aborts in this benchmark are relatively cheap (they mostly happen

on the first operation). Costlier aborts would likely cause SSI’s performance to

drop. Runtime pipelining, in contrast, performs best in scenarios with medium

to high amounts of write-write contention (ww-10,ww-5 ). When write-write

conflicts are rare, however, the overhead of maintaining the pipeline outweighs
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its benefit: the more conservative but simple 2PL performs best (ww-1 ).

Hierarchical application of MCC The previous microbenchmark was re-

stricted to two-layer grouping strategies with a single cross-group mechanism

per configuration. We next quantify the benefits of using deeper hierarchies

in which we can combine multiple cross-group protocols. To do so, we focus

on a scenario in which no single cross-group mechanism can efficiently handle

the pairwise interactions of all transaction groups. This represents a best-case

scenario for Tebaldi; we quantify potential overheads associated with deeper

hierarchies in Section 4.6.5.

The microbenchmark consists of one read-only transaction, T1 and two

update transactions, T2, and T3. T1 read-write conflicts heavily with T2 and T3,

while T2 and T3 cannot be efficiently handled within a group. Table A suffers

from heavy contention as it contains only ten rows, while all other tables (B

to E) contain 10,000 rows and rarely contend. Transaction T1 reads a single

row in A, and ten rows from the remaining tables. Transaction T2 first writes

a row in A, and subsequently writes a random key from every table B to E.

Transaction T3 does not access table A. Instead, it reads a random key from

tables B to E, and subsequently writes back to B. Considering the previous

in-group mechanism, runtime pipelining: RP can handle T2 efficiently, but not

T2 and T3 (or T1).

Constructing a three-layer CC tree in Tebaldi side-steps this issue. The

read-write conflict between T1 and T2/T3 can be handled efficiently through
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selecting SSI as root CC, placing T1 and T2/T3 in separate groups. Next, as T2

and T3 rarely conflict with each other, they can be placed in separate groups

with 2PL as cross-group CC. Finally, conflicts between different instances of

T2 can be efficiently pipelined with RP. As contention is low for T3, we simply

use 2PL as its in-group mechanism.

We compare our solution to the four most promising two-layer hierar-

chies. The first two hierarchies use SSI as cross-group mechanism to optimize

the read-write conflict between T1 and T2, but differ in how they handle T2

and T3: the first grouping strategy (Two-layer 1) puts T2 and T3 in separate

groups. It allows T2 to be efficiently pipelined, but requires SSI to run with

batching enabled, which can periodically promote in-group conflicts to cross-

group conflicts. The second baseline (Two-layer 2) places T2 and T3 in the

same group. This gives SSI better performance at the cost of a less efficient

in-group pipeline. The third grouping strategy (Two-layer 3) has T1 and T2

in one group running RP, and T3 in another group running 2PL. 2PL is used

across these two groups. This avoids the issues associated with having SSI

across groups, yet still optimizes the conflict between T1 and T2 at the cost of

a less efficient pipeline for T2. The last baseline (Two-layer 4) runs all three

transactions in separate groups (2PL cross-group). It prioritizes T2 by using

the optimal pipeline. None of these four solutions is perfect: while T1, T2 and

T3 would all benefit from being in a single group, no single concurrency control

is well-suited to handle conflicts between T1/T2 and T2/T3.

Figure 4.11 confirms our intuition. The peak throughput achieved by
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Figure 4.11: Two-layer vs. three-layer.

the three-layer hierarchy is 63% higher than the best performing two-layered

grouping strategy. The fourth (Two-layer 4) grouping strategy performs worst

as 2PL cannot efficiently handle the frequent read-write conflicts between T1

and T2. The first baseline (Two-layer 1) performs best under moderate number

of concurrent clients but suffers from a high abort rate due to SSI’s sensitivity

to the write-write conflicts: its performance drops as the number of clients

increases. Finally, the performance of both the second and third grouping

options (Two-layer 2 and 3) is hampered by a sub-optimal runtime pipeline.

4.6.5 Overhead of Additional Layers

Tebaldi attempts to improve the performance of applications that are

bottlenecked on data conflicts. It does so by enhancing the concurrency of these

applications, at the cost of more complex control logic: each transaction needs
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Setting Latency (ms) Throughput (K txn/sec)
stand-alone RP 2.969 ± 0.004 490.0 ± 1.7

2PL - RP 3.068 ± 0.004 386.1 ± 0.4
SSI - RP 3.259 ± 0.006 368.4 ± 1.7
RP - RP 4.047 ± 0.004 291.9 ± 0.8

Table 4.1: Latency and resource cost of adding additional layers.

to percolate through every concurrency control in its path on the CC tree.

This additional complexity can negatively impact the application in two ways:

it can increase the latency of transactions, and can increase the application’s

resource consumption. We quantify these potential drawbacks in this section.

To do so, we run a microbenchmark with grouping strategies that do not

yield any additional concurrency, and measure the resulting cost increase. The

benchmark consists of a single transaction type with seven write operations,

and ensures concurrent transactions never conflict with each other. We use a

stand-alone runtime pipelining protocol as the baseline, and add either 2PL,

RP, or SSI cross-group layers to the hierarchy.

Latency overhead To measure the impact of the hierarchy’s depth on la-

tency, we run the benchmark with a small number of clients (20) to ensure

that the resource (CPU / network) consumption is low.

Our results are shown in the second column of Table 4.1 and denote the

transaction’s average latency over ten 60 seconds runs. We find that the rel-

ative latency increase of adding an additional layer in the hierarchy depends

heavily on the cross-group concurrency control being added. Adding a 2PL
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cross-group layer yields a small 3.3% increase in latency. This increase is ex-

clusively due to computational overhead: the number of round-trips in Tebaldi

is independent of the hierarchy depth (Section 4.5). Any necessary additional

round-trip is thus a property of the concurrency control itself: 2PL requires no

additional round-trips, while SSI requires an additional round-trip to contact

the timestamp server, and RP requires an additional round-trip per operation.

These additional network trips are reflected in our result: adding an SSI cross-

group layer increases latency by 9.8%, while adding an RP cross-group layer

increases latency by 36.3%.

Computation resources overhead Under high system load, the compu-

tational overhead of adding CCs could become prohibitive, bottlenecking the

system on CPU or network resources. To quantify this overhead, we increase

the workload to measure the peak throughput of the microbenchmark, ensur-

ing that the CPU is the bottleneck each time.

Our results are summarized in the third column of Table 4.1. Adding a

2PL layer over an RP in-group mechanism leads to a 21% decrease in through-

put while adding an SSI layer leads to 25% drop. The overhead is relatively

small, as 2PL and SSI remain fairly light-weighted when compared to RP.

The overhead of adding an RP layer is more significant: throughput drops by

40%, as RP is fairly complex. Note that, even when adding an RP layer over

the RP in-group mechanism, the throughput does not simply halve, as many

components of the framework are independent of the hierarchy depth.
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4.6.6 Overhead of Durability Protocol

To understand the overhead of the durability feature, we rerun the

TPC-C benchmark with our latest Tebaldi codebase that supports durability.

We use RocksDB [19] as the underlying persistent storage when durability

is ON, and employ the asynchronous flushing protocol (Section 4.5.4). When

committing transactions, testing clients wait for commit notifications (rather

than durability notifications). This reduces the latency, and allows us to reach

peak throughput with much fewer concurrent clients. The drawback, though,

is that committed transactions in the last GCP epoch may get lost in case

of failure. We configure the length of a GCP epoch to be one second, so a

transaction will become durable soon after it commits (one second plus time

to flush data to disks) as long as Tebaldi does not fail in that period.

Setting Throughput (txn/sec)
Durability ON 22,390± 60
Durability OFF 23,415± 81

Table 4.2: Overhead of durability protocol on TPC-C benchmark.

We run TPC-C benchmark with the 3-layer configuration shown in Fig-

ure 4.6d, and measure the peak throughput with durability turned on and off.

The performance numbers are shown in Table 4.2. As we can see, the dura-

bility feature only costs about 5% of performance. The asynchronous flushing

protocol is the key reason why we can achieve such low cost: as it decouples

concurrency control from durability, CC mechanisms can commit a transaction

and release its resources (such as locks) before it actually becomes durable.
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Chapter 5

Automatic Configuration

The performance benefits of MCC largely depend on the configuration

of the concurrency control federation, but as I have discussed in Chapter 3,

configuring MCC is a non-trivial task. This chapter focuses on this problem,

with the goal of a MCC-based database as easy to use as a traditional one: users

should be able to enjoy the performance benefits of MCC without paying much

additional effort in programming applications or configuring the database.

To achieve this goal, we equip Tebaldi with the ability to manage its

MCC configuration in a fully automatic manner. The key technique is a config-

uration algorithm that allows Tebaldi to monitor the workload, identify data

contention bottlenecks, and adjust automatically to improve the throughput of

the current workload.

The chapter starts with a discussion of the overall design of the algo-

rithm, and proceeds to detail each of its components, and finally, presents an

evaluation of how Tebaldi performs under automatic configuration.
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5.1 Towards Automatic Configuration

When configuring MCC, the ideal outcome is one that, for any given

workload, can produce the configuration that produces the highest through-

put. Two challenges make this goal hard to achieve efficiently. The first is

the size of the search space: even for Callas’ two-layer MCC, and even if we

only partition transactions by type (i.e., by the static transaction code), the

number of different configurations can grow exponentially with the number of

transaction types. Adopting hierarchical MCC, or partitioning transactions by

instances (like in the SEATS benchmark in Section 4.6.2) can further compli-

cate the problem: even a moderate number of transaction types can result in

a huge search space.

The second challenge is that predicting the performance of a given con-

figuration is hard. Many factors can affect MCC’s performance, including the

workload characteristics, how MCC partitions data conflicts, how effectively

the CC mechanisms handle their data conflicts, and how they interact with one

another. These factors can be very specific to CC mechanisms, and are highly

sensitive to any small changes in the MCC configuration or the workload. For

example, the change in data access patterns caused by adding one transaction

to a runtime pipelining group can fundamentally alter its performance (see

Section 4.6.3 for an example). Similarly, reordering operations in transactions

may introduce deadlocks in a 2PL group, spoiling its performance. Essentially,

the only reliable way to know how a given MCC configuration will perform

for a given workload is to run it, but doing so for a large set of configurations
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becomes quickly prohibitive.

These considerations lead us to adopt for this dissertation a more mod-

est goal: we aim to identify solutions that, though not optimal, can be cal-

culated efficiently, while still being likely to increase concurrency and yield

substantial performance benefits. As such, we make two simplifications. First,

unless otherwise stated (Section 5.4.2), our search only aims at configurations

that partition transactions by types. This assumption allows us to treat trans-

actions of the same type together, avoiding the complexity of a per-instance

analysis. While this simplification may lead us to miss some potential opti-

mizations, in most cases, partition-by-type is very effective: transactions of

the same type often share a similar data conflict pattern, so they can be opti-

mized in the same way. Second, rather than seeking a solution that addresses

at the same time all performance-limiting data conflicts, to achieve a good

balance between complexity and performance, we prioritize the most severe

performance bottlenecks, and only resolve one bottleneck at a time.

In the spirit of the above discussion, we take an iterative approach

to optimize MCC’s configuration. Each iteration of our algorithm (shown in

Figure 5.1) identifies the most severe data contention bottleneck in the MCC

configuration from the previous iteration, and proposes new configurations

to optimize it. It then evaluates each of the candidates, and picks the best

performing one as the new configuration from which to start the next iteration.

This approach follows common performance debugging practice, and

shares the same rationale. It is reasonable to prioritize different contention
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1 // Start with an initial configuration
2 // mcc config is the active configuration
3 mcc config := initial config;

5 // EndOfOptimization() defines the termination condition
6 while (!EndOfOptimization()) {
7 // Analyze current performance
8 bottleneck := FindFirstBottleneck();

10 // Propose optimization candidates
11 candidates := ProposeOptimization(mcc config, bottleneck);

13 // Test each candidate and make a decision
14 best config := mcc config;
15 best performance := CurrentThroughput();
16 foreach (new config in candidates) {
17 mcc config := new config;
18 performance := TestThroughput();
19 if (performance > best performance) {
20 best config := mcc config;
21 best performance := performance;
22 }
23 }
24 mcc config := best config;
25 }

Figure 5.1: Pseudocode of our configuration algorithm.

bottlenecks by their severity, since the end-to-end performance of a system is

often largely determined by its most severe bottleneck. In addition, the most

severe performance bottleneck is typically easier to isolate than secondary ones.

By always focusing on the most severe bottleneck, we are more likely to work

on a real performance problem. Meanwhile, by tackling only one bottleneck at

a time, we can reduce the search space significantly.

This iterative approach is similar in structure to the one adopted by

Callas, but besides addressing the novel challenges introduced by hierarchical

MCC, Tebaldi’s algorithm revisits, and improves upon, many of the major

components of Callas’ algorithm. In particular, it includes four significant in-

novations:
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• A new profiling algorithm that can more reliably and accurately detect

and describe performance bottlenecks.

• New strategies to adjust MCC’s configuration, designed to leverage the

benefit of hierarchical MCC.

• A new framework to deal with the additional preprocessing steps required

by specific CC mechanisms, such as the static analysis step used by

runtime pipelining, that enables Tebaldi to apply them automatically.

• New online reconfiguration protocols that allow Tebaldi to change the

configuration of hierarchical MCC efficiently at runtime.

The algorithm is fully integrated in the Tebaldi database, and can au-

tomatically manage Tebaldi’s configuration in real time with minimal, if any,

user involvement.

The rest of this chapter details each component in our algorithm. Sec-

tion 5.2 discusses how the algorithm is initialized and the condition under

which it terminates. Next, we discuss the three stages of each iteration of the

algorithm. Section 5.3 describes the analysis stage, whose purpose is to monitor

the performance of the database and determine the most significant remaining

performance bottleneck; Section 5.4 discusses the optimization stage, charged

with proposing new MCC configurations and dealing with CC-specific pre-

processing; and Section 5.5 presents the online reconfiguration protocols that

we use in the testing stage, which allows Tebaldi to efficiently switch among
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candidate configurations, measure their performance, and decide on the best

configuration.

5.2 Initial Configuration and Termination Condition

Initial Configuration The main requirement for the algorithm’s initial con-

figuration is that it should be general: it should work with most transactions

and workloads. One option is to start with all transactions in a single group

running two-phase locking, since this is the standard mechanism used by many

database systems [8, 10, 70].

Figure 5.2: The initial configuration used in our algorithm.

Tebaldi, however, takes advantage of MCC to instantiate a more so-

phisticated initial configuration that already optimizes some common types of

workloads. Inspired by various database systems that adopt optimizations for

read transactions [40, 42, 81, 96], Tebaldi’s initial configuration (shown in Fig-

ure 5.2) places serializable snapshot isolation (SSI) at the root node, with two
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children: a node with no CC mechanism grouping all read-only transactions,

and a node running two-phase locking grouping all update transactions. As I

have mentioned in Section 4.4.3, running SSI in this setting is effectively equiv-

alent to running multi-version two-phase locking (MV2PL) [32, 36, 37, 47, 89],

which ensures that read-only and update transactions do not interfere with

each other. Future optimizations proposed by the automatic configuration al-

gorithm may further partition transactions in the 2PL group, and handle their

data conflicts using more efficient CC mechanisms.

Terminating Condition Tebaldi currently uses a very simple terminating

condition to decide when to stop the iterative optimization process. It stops

when an iteration fails to find a data contention bottleneck, or when all the

proposed new configurations perform worse than the current configuration.

5.3 Analysis Stage

The analysis stage monitors the database’s performance and identifies

the most prominent source of data contention under MCC’s current config-

uration, which then becomes the target to optimize in the current round of

iteration.

To deliver on its mission, this stage’s performance analysis algorithm

aims for accuracy and high-resolution. The importance of accuracy is clear: if

the algorithm fails to detect the actual performance bottleneck, later stages

may miss optimization opportunities. Meanwhile, it is equally important to

110



detect the performance bottleneck with high resolution. Rather than simply

identifying a set of highly-contending transaction types, we aim for the exact

bottleneck conflict edge, i.e., the pair of transaction types whose data con-

tention limits the performance of the workload. This fine-grained information

allows later stages to fully leverage MCC’s capability to fine-tune CC mecha-

nisms for different data conflicts.

However, the complicated nature of concurrent execution in a database

system makes it hard to reason about its performance and to precisely identify

bottlenecks. One challenge, for example, is that a data conflict may have cas-

cading effects on other data conflicts, hiding the root cause of the performance

problem. As the following case study shows, simple profiling techniques such

as the one used by Callas may fail to reliably detect the real bottleneck.

5.3.1 Case Study: a Latency-based Technique

Callas proposed a latency-based performance profiling technique. It

leverages the observation that transactions with heavy data contention often

suffer from severe queuing delays on conflicting operations. To detect these

transactions, Callas increases the workload’s request rate (while keeping the

rest of the workload profile, such as the transaction mix ratio, unchanged),

and measures how end-to-end latencies change for different transactions and

operations. This technique suggests that the performance bottleneck is to be

found among operations (and their corresponding transactions) whose latency

increases disproportionately in this procedure.
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1 // payment transaction
2 // input: w id, d id, h amount, ...
3 begin transaction

4 warhouse[w id].w ytd += h amount;
5 district[w id, d id].d ytd += h amount;
6 // some rarely conflicting operations
7 commit

9 // stock level transaction
10 // input w id, d id
11 begin transaction

12 o id := district[w id, d id].next order id;
13 for (i := o id − 20; i < o id; ++i) {
14 ol num := order[w id, d id, i].ol num;
15 for (j := 0; j < ol num; ++j) {
16 item := order line[w id, d id, i, j].

ol i id;
17 quantity := stock[w id, item].

s quantity;
18 }
19 }
20 commit

Figure 5.3: Simplified logics of payment
and stock level.

Figure 5.4: The MCC configu-
ration under test.

Despite its appealing simplicity, this technique has several problems.

First, it requires control of the incoming database workload to change its re-

quest rate; this is hard to achieve unless additional testing infrastructure, such

as a workload generator, is available outside the database system. Even so, it

requires additional effort from users. Second, this technique can only describe

contention bottlenecks coarsely: it reports a set of highly-contending transac-

tion types, rather than exact data conflict edges. If multiple transactions are

reported, later stages in the configuration algorithm will not be able to identify

the exact conflict edge that they should optimize. Even worse, this technique

may miss the real cause of the data contention problem, as the following ex-

ample demonstrates.

Consider the payment and stock level transactions in the TPC-C
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benchmark [87], whose logic is summarized in Figure 5.3. The payment trans-

action modifies the warehouse and the district tables, and accesses some

other tables that rarely conflict. The stock level transaction is read-only:

it reads the district table, and then issues many reads to tables that rarely

conflict. The data model of TPC-C is such that each row in the warehouse ta-

ble corresponds to ten rows in the district table, i.e., each warehouse consists

of ten districts. Consider running this workload under the MCC configuration

of Figure 5.4, using Callas’ latency-based profiling technique. Without stock

level, runtime pipelining can efficiently handle payment transactions by run-

ning their operations in a pipeline. But as soon as a payment transaction and

a stock level transaction conflict on the district table, 2PL will block the

payment transaction. Indeed, the effect of this blocking can be amplified by

a cascading effect among payment transactions. All other payment instances

that access the same warehouse will be blocked by the stalling of the pipeline.

Thus, the initial blocking on a single district object (caused by 2PL) is mag-

nified to a more severe blocking on an entire warehouse (in the RP group).

As a result, when the profiling algorithm increases the workload’s request

rate, only the payment transaction will show significant latency increases. The

root cause of this performance issue—the conflict between payment and stock

level—remains outside of our purview.

This observation is confirmed by the experimental results shown in

Figure 5.5. We gradually increase the workload by adding more concurrent

clients, and measure the latency of each transaction type. As the figure shows,
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Figure 5.5: Test results of the latency-based profiling technique.

only the payment transaction suffers from significant latency increase, so the

simple latency-based profiling algorithm will conclude that the performance

bottleneck is due to conflict among payment transactions. But this conflict

has already been optimized by runtime pipelining, and Tebaldi cannot opti-

mize it further. To verify that the real problem is between payment and stock

level, we ran another experiment using SSI at the cross-group layer to effi-

ciently handle conflicts between these two transactions: throughput increased

to around 25,000 transactions per second.

5.3.2 Tracking Cascading Effects of Data Contention

To reliably detect the root cause of the performance problem, we need

not only to measure the severity of each data contention in the workload, but

also to analyze how different instances of data contention can affect each other.
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In most CC mechanisms, data contention can cause transactions to ei-

ther block or abort. Consequently, two kinds of interactions can arise among

multiple instances of data contention: cascading blocking and cascading aborts.

Cascading blocking occurs when a blocked transaction exacerbates the block-

ing of other transactions waiting for it, while cascading aborts arise when an

aborted transaction causes its depending transactions to abort if the CC mech-

anism exposes uncommitted states. Our new performance analysis algorithm

mainly focuses on cascading blocking, since it is ubiquitous for all blocking-

based CC mechanisms. Cascading abort, on the other hand, is a less pressing

issue, since most CC mechanisms are already equipped with techniques to

avoid or reduce cascading aborts.

To track cascading blocking, we adapt to our purposes an approach

originally used to profile the performance of multi-threaded programs [25, 54,

100]. In that context, one often needs to measure the severity of blocking caused

by the synchronization between different pairs of threads. This measurement is

usually based on the length of time a thread waits for another, but, to improve

the result’s accuracy, it also takes into consideration nested waiting. If thread

A waits for thread B, and during that period B also waits for thread C, when

considering the performance implications of B waiting for C, one should also

consider its impact on the waiting between A and B.

Our analysis algorithm adopts a similar approach. Its profiling tech-

nique consists of two parts: a sampling module distributed over all database

nodes, and a centralized performance monitor node. The sampling module in-
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struments all blocking-based CC mechanisms to log all blocking events that

are caused by data contention when they execute transactions. Each log entry

contains the id of the affected transaction, the id of the blocking transaction,

their static transaction types, and timestamps when the blocking begins and

ends. The database node batches these logs and periodically sends them to

the performance monitor.

The performance monitor periodically analyzes the collected logs, and

calculates a score for each ordered pair of transaction types: score(< Ti, Tj >)

is the total time spent by transactions of type Tj waiting for transactions

of type Ti in the period being analyzed. As in profiling multi-threaded pro-

grams, we do not simply add up all blocking times between the two types of

transactions, but instead adjust the score to account for nested waiting. If a

transaction ti (of type Ti) blocks tj (of type Tj), we only attribute to the score

of < Ti, Tj > the time during which ti is not blocked by others. If ti is blocked

by tk (of type Tk) for a time during that period, we charge that time to the

conflict between Tk and Ti (and if tk is also blocked, we recursively analyze

the inner conflict). This computation can be parallelized by multi-threading:

each thread computes scores starting with a portion of log entries.

To be more concrete, consider the example in Figure 5.6. We use yellow

intervals to indicate blocking events caused by data contention, and green in-

tervals to indicate the rest of time. In this example, transaction t2 blocks trans-

action t1 twice. The first time, there is no nested waiting, and our algorithm

simply increases score(< T2, T1 >) by 4 milliseconds. The second time, t1 waits
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Figure 5.6: An example for Tebaldi’s performance analysis algorithm.

for t2 for 8 milliseconds, but during this time, t2 is itself blocked by t3. Our

algorithm only increases score(< T2, T1 >) by the time when t2 is running (2

milliseconds), and increases score(< T3, T2 >) by 6 milliseconds. All together,

the three blocking events contribute 6 milliseconds to score(< T2, T1 >), and

13 milliseconds to score(< T3, T2 >) (7 milliseconds from t2 directly waiting

for t3, and 6 milliseconds from the nested waiting).

The end objective is to calculate a score for each conflict edge, which is

an unordered pair of transaction types. The score for the conflict edge between

Ti and Tj is the sum of score(< Ti, Tj >) and score(< Tj, Ti >) over the period

being analyzed (if Ti = Tj , it equals to score(< Ti, Ti >)). We identify as the

performance bottleneck the conflict edge with the highest score.

This new performance profiling algorithm tracks more accurately the

root cause of performance issues, and because it does not require tuning the

workload’s request rate, it can serve as an online algorithm to detect the

performance bottleneck in production environments. On the other hand, it

needs more computation, and in a distributed setting, it requires clocks of all
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participating database nodes to be well synchronized. Our system currently

relies on the Network Time Protocol (NTP) [63] to synchronize clocks. As

Callas and Tebaldi are designed to work within a single data center, we are able

to achieve fairly accurate results: NTP can achieve sub-millisecond precision

in most of our experiments.

5.4 Optimization Stage

After determining which conflict edge limits performance, the next step

is to find potential ways to optimize it. We achieve this by adjusting MCC’s

configuration so that the target conflict is handled by a better-suited CC mech-

anism. The key question is then how to adjust MCC’s configuration; an addi-

tional challenge is to integrate such adjustments with the preprocessing logics,

if any, required by various CC mechanisms (e.g., the static analysis needed by

transaction chopping [80, 99] and runtime pipelining [95]) so that the entire

reconfiguration can take place automatically.

5.4.1 Proposing New Configurations

In Callas, adjusting MCC’s configuration is relatively simple, since the

limited flexibility of its two-layer architecture leaves only a couple of possible

options: one can either move transactions to a different group, or create a new

group for them. With Tebaldi’s hierarchical MCC, things become more com-

plicated, as the new model brings both new opportunities and new challenges.

On the one hand, it allows more flexibility to fine-tune CC mechanisms for
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different conflict edges, and thus more opportunities for optimization. On the

other hand, the new model’s larger set of options introduces more complexity

in determining the new configuration. It also raises the question of how to

properly leverage this additional flexibility without inadvertently hurting per-

formance: in the end, hierarchical MCC is unable to independently assign CC

mechanisms for each individual conflict edge, and changing how one conflict

edge is handled may affect other edges.

Depending on where the target conflict lies in the current configuration,

our algorithm takes three different strategies to optimize it, but all of these

strategies follow a single overarching criterion: changes in MCC’s configuration

should be kept as local as possible with respect to the bottleneck conflict. The

intuition behind this policy is that, ideally, we only want to change how MCC

handles the bottleneck conflict without affecting any other conflicts in the

workload. Unfortunately, we cannot always achieve this ideal case; even so, we

strive to minimize side effects to other conflict edges, e.g., by limiting them

only to edges that involve one of the two transactions in the bottleneck edge.

Case 1: Multiple Instances of the Same Transaction We start with

a simple but quite common case, shown on the left side of Figure 5.7: the

bottleneck conflict is among transactions of the same type, say T1. In this

case, we are able to find an optimization strategy that makes purely local

adjustments, as shown on the right side of the figure. The new configuration

splits the leaf node containing T1 by moving T1 to a new leaf node managed
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Figure 5.7: Adjustment for single-transaction bottleneck.

by a better-suited CC mechanism (shown in red). It then adds a non-leaf node

with the original CC mechanism to regulate data conflicts between T1 and

other transactions (shown in blue). Thus, the new configuration only changes

the CC mechanism regulating conflicts among transactions of type T1, while

handling all other conflicts, including those between T1 and other transaction

types, as in the original configuration. To determine which concurrency control

mechanism should be associated with the new leaf (i.e., the best mechanism to

regulate conflicts among T1 transactions), Tebaldi iterates over all concurrency

control mechanisms, forming multiple candidate configurations.

Case 2: Transactions from the Same Group We can generalize the

previous strategy for handling single-transaction bottleneck to deal with bot-

tlenecks due to conflicts between two transaction types currently mapped to
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Figure 5.8: Adjustment for transactions from the same group.

the same group, such as T1 and T2 in Figure 5.8. The adjusted configuration,

shown on the right, introduces a new CC mechanism, CC1 (shown in red), to

handle conflicts between T1 and T2, without changing how other conflicts are

handled. The only difference from the single-transaction case is that T1 and

T2 are placed in individual groups, so conflicts among multiple instances of

transactions of type T1 (or respectively, T2) can be handled by the original CC

mechanism, CC0.

In our experience, these two cases already cover many bottleneck sce-

narios: much data contention originates from conflicts among multiple in-

stances of the same transaction, as they share the same data access pattern.

Moreover, as our initial configuration puts all update transactions in a single

group regulated by two-phase locking, many bottlenecks arise from conflicts

between two different transaction types from this group.
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(a) Move T2 to a node along the path from LCA to T1’s group...

(b) Or create a node along the path from LCA to T1’s group.

Figure 5.9: Strategies to handle conflicts across different groups.

Case 3: Transactions from Distinct Groups In this more general case,

shown in the left side of Figure 5.9, perfectly localized adjustments are not

usually possible. Nevertheless, we can minimize side-effects to other conflict

edges by only changing the structure of the subtree rooted at the lowest com-

mon ancestor (LCA) of the two groups that include the two transactions in
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the bottleneck edge. Specifically, we split the group that holds one of these

transactions and move that transaction beneath one of the nodes along the

path from the LCA to the other bottleneck transaction. For example, in Fig-

ure 5.9a, T2 is moved beneath a node on the path from the LCA to T1. This

approach gives us the flexibility to choose between any of the different CC

mechanisms along the two paths to handle conflicts between T1 and T2. Alter-

natively, we can create a new node along one of the two paths and add a new

CC mechanism to handle these conflicts, as shown in red in Figure 5.9b. The

location of the new node does not affect how we handle conflicts between T1

and T2, but changes the handling of the conflicts between T1 (or respectively,

T2) and other transactions in the subtree.

Filtering Candidate Configurations In theory, MCC can work with any

configuration, but in practice, not all candidate configurations are equally

likely to bring good performance. There are several reasons for this. First,

not all CC mechanisms are designed to optimize heavy data contention (e.g.,

2PL). Second, not all CC mechanisms, and not all combinations of paren-

t/child CCs, can enforce efficiently the consistent ordering that MCC requires

of participating CC mechanisms. For example, we mentioned in the previous

chapter (Section 4.3.2 and Section 4.4.3) that serializable snapshot isolation

needs to adopt an inefficient batching technique for consistent ordering, unless

all update transactions are placed in a single child group (as in our initial

configuration).
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These reasons motivate the introduction of CC-specific filters to remove

candidate configurations that are unlikely to perform well. At this time, we

support two types of filters. The first checks whether a CC mechanism is de-

signed to perform well under heavy data contention; the other checks whether

CC mechanisms on non-leaf nodes can efficiently support consistent ordering.

Only candidates that pass these checks are considered in the next stage.

5.4.2 Cooperating with CC-specific Preprocessing

Some CC mechanisms require special preprocessing steps that make

necessary changes to transaction codes and their own configurations (e.g.,

runtime pipelining performs a static analysis to reorder transactions and chop

them into steps).

Our system supports two kinds of CC-specific preprocessing interfaces

that can be invoked as necessary during the optimization stage. The first

one allows a CC mechanism to perform a static analysis and make neces-

sary changes to the code of the transactions in its group, such as reordering

operations and adding CC-specific markers. For example, runtime pipelining

(Section 4.4.2) uses this interface to implement the aforementioned static anal-

ysis; similarly, timestamp ordering (Section 4.4.4) analyzes transactions’ read

and write sets, and applies the promise optimization.

The second type of preprocessing is more interesting: it allows a CC

mechanism to locally change the proposed MCC configuration at its node, thus

allowing a CC mechanism to refine the candidate configuration with its own
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knowledge. In particular, this allows our system to support a useful feature: a

limited form of partition-by-instance configurations.

By default, our configuration algorithm only generates partition-by-

type configurations that assign an entire transaction type to the same CC

node. With CC-specific preprocessing, a CC node can choose to split itself into

several identical copies, and provide a new partitioning function that remaps

transactions in the original group to different copies on a per-transaction-

instance basis. This effectively creates hybrid configurations that partition

transactions first by types, and then by instances.

As an example, timestamp ordering (TSO) can often benefit from this

partition-by-instance feature. TSO orders transactions using timestamps that

are assigned at the beginning of transactions. But to enforce consistent or-

dering in Tebaldi, it needs to commit transactions in timestamp order (Sec-

tion 4.4.4). This can cause false conflicts among transactions: at commit time,

a transaction has to wait until all transactions with smaller timestamps fin-

ish, even if it does not have actual data conflicts with some or any of these

transactions. Partition-by-instance feature helps relieve this problem by fur-

ther partitioning transactions in a TSO group, separating transactions that

are unlikely to conflict into different groups.

Supporting Stored Procedures Our automatic configuration framework

does not require knowledge about the code run by each transaction, but those

concurrency control mechanisms that analyze or change transaction code do
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need such information. Therefore, our system supports both standard inter-

active transactions and stored procedures. We provide a basic programming

language for stored procedures that supports if/else, for loops, local variables

and arrays. We don’t require all transactions to be implemented in stored pro-

cedures. However, transactions that benefit from CC mechanisms that need

access to transaction code should be implemented as stored procedures.

Conflicts on Reordering Operations If multiple CC nodes in the same

path of the tree reorder operations, they may cause a conflict: different CC

mechanisms may prefer to order operations in different ways. We address this

problem by prioritizing CC nodes placed higher in the path: when a CC node

reorders operations in a transaction, it must not violate any existing decisions

made by its parent nodes. This is because higher-level CC nodes manage more

transactions than lower-level ones, so they may have more global restrictions

on how to order operations.

5.5 Testing Stage

The testing stage switches MCC’s configuration to each of the candidate

configurations proposed by the optimization stage, and measures their end-to-

end throughput. It then compares the best-performing candidate with the

original configuration to decide the final configuration of the current iteration

of the automatic configuration process.

Unlike Callas, which configures its concurrency control federation stati-
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cally when the system starts. Tebaldi keeps evolving its configuration and does

so dynamically, without requiring the database to be restarted for each recon-

figuration. During the transition, some transactions may be still running under

the old configuration, while others may have transitioned to the new one; we

need to ensure proper isolation between them. To this effect, our system sup-

ports two different reconfiguration protocols with different applicability and

performance: the partial restart protocol and the online update protocol.

5.5.1 The Partial Restart Protocol

The partial restart protocol is, in many ways, similar to a full database

restart, but it avoids some major sources of overhead, such as the cost of

retrieving logs from persistent storage and performing a full failure recovery.

This protocol leverages Tebaldi’s design choice that separates the concurrency

control module from the storage module (Section 4.3), and only restarts the

former module.

In this protocol, Tebaldi first stops accepting new transactions, and

waits for ongoing transactions to finish. It then completely re-initializes the

concurrency control module with the new configuration, and resumes the sys-

tem. The protocol consists of three phases: clean-up, prepare, and apply.

Clean-up Phase The reconfiguration protocol is initiated and managed by

a center node called the reconfiguration server. It starts the reconfiguration

by broadcasting a clean-up message to all the transaction coordinators. Upon
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receiving the message, a transaction coordinator buffers new transactions in a

queue, and waits for all the ongoing transactions that it manages to finish. Op-

tionally, a force-abort can be used to speed up reconfiguration after a timeout.

The reconfiguration server also sends clean-up messages to all management

nodes that manage background tasks, such as the garbage collection manager,

to pause their activities. A clean-up confirmation is sent to the reconfiguration

server when ongoing activities on a database node have finished.

Prepare Phase When the reconfiguration server receives all clean-up con-

firmations, it starts the prepare phase. The server broadcasts the new config-

uration and all CC-specific preprocessing instructions to all database nodes.

These nodes then re-initialize their concurrency control module with the new

configuration. All the old CC mechanism instances, together with all CC-

specific in-memory states, are destroyed or recycled, and new CC mechanism

instances are constructed. The data module is not affected in this procedure.

Tebaldi then populates the new concurrency control mechanisms’ inter-

nal state, including indices, version maps, and lock tables. Here, Tebaldi follows

the recovery protocol described in Section 4.5.4; but since the partial recovery

does not affect the database state in the storage module, Tebaldi can skip

the first two steps of the recovery protocol (retrieving logs and reconstructing

database states), and directly reconstruct the concurrency control module’s

states. Since this is a fully local and in-memory procedure, the partial restart

protocol is much cheaper than performing a full restart.
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Apply Phase After the prepare phase completes on all the involved database

nodes, the reconfiguration server broadcasts an apply request to all transac-

tion coordinators and other management nodes in the clean-up phase to resume

their execution. Transaction coordinators resume all pending new transactions

and handle them with the new configuration.

Tebaldi separates the prepare and apply phase in reconfiguration to

prevent a race condition: if we combine the two phases into a single recon-

figuration request, different database nodes may receive the combined request

at different times, and one node may start to issue transactions in the new

configuration before other participating nodes know of it, causing an error.

5.5.2 The Online Update Protocol

Although the partial restart protocol avoids the recovery cost of a full

restart, it can still cause temporary service interruption. In certain cases, we

can use an online update protocol to mitigate such interruptions. The basic

idea is that, since our optimization algorithm often makes only local changes

to MCC’s configuration, we may be able to substitute only a part of the

concurrency control tree, rather than replacing the entire tree.

In this alternative protocol, we compare the old and the new configu-

ration and find the lowest node in the old tree that is root of the subtress that

includes all the changes. If that node is not the root of the entire MCC tree,

we can perform reconfiguration without interrupting the database execution

in two steps, as shown in Figure 5.10. First, we merge the two configurations
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Figure 5.10: The Online Update Protocol.

by adding the new subtree to the parent node. Since the old subtree is not

removed, ongoing transactions can continue running within the old subtree,

while new transactions are handled by the new subtree. The concurrency con-

trol between transactions in the old and new configurations is handled by the

parent node 1. Second, once all transactions running within the old configura-

tion complete, the old subtree can be (optionally) removed.

This protocol has an additional requirement: the parent CC node must

allow changes in its children groups. Not all concurrency control mechanisms

can do this. For example, such changes are not supported by the special version

of SSI with only one read-write group (e.g., the root CC node of our initial

configuration), since the intermediate configuration may introduce a second

read-write group. In these cases, we fall back to the partial restart protocol.

1Note that the parent node may not be able to efficiently handle these data contentions,
so this protocol can still cause visible performance degradation during reconfiguration.
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5.6 Evaluation

This section reports on the performance of Tebaldi’s automatic config-

uration algorithm. Its purpose is to answer the following questions:

• How much performance benefit can the automatic configuration algo-

rithm reach?

• How close is that performance to that attainable from a manually con-

figured MCC database?

• How does each component of Tebaldi’s configuration algorithm perform,

and what is its contribution to the performance results?

System Implementation The automatic configuration algorithm is imple-

mented on top of the Tebaldi codebase; it is driven by an automatic configura-

tion manager that also serves as the performance monitor in our new profiling

algorithm (Section 5.3), and the reconfiguration server in our runtime recon-

figuration algorithms (Section 5.5).

Comparing to the codebase used to evaluate hierarchical MCC in the

previous chapter (Section 4.6), the new codebase also includes the durability

protocol I described in Section 4.5.4. All experiments in this chapter are car-

ried out with the durability feature enabled, and we use RocksDB [19] as the

underlying persistent storage. The new codebase also comes with many per-

formance optimizations. For example, when deploying multiple data nodes on
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the same machine, we pin the working thread of each data node to a separate

core. Because of these and other reasons discussed later, such as changes in

CloudLab cluster and the use of stored procedures, performance numbers in

this chapter are not directly comparable with those in previous chapters, even

when they refer to the same experiment.

Experimental Setup All experiments in this section are carried out in a

CloudLab [5] cluster of C8220 machines. Each machine is equipped with two

Intel E5-2660 CPUs (20 physical cores in total), 256GB of memory, and a 10Gb

Ethernet. Unless otherwise noted, our database system is distributed among

20 machines, and each machine runs 10 instances of transaction coordinators

and 10 instances of data servers. An additional machine hosts the database’s

management nodes, including the automatic configuration manager.

Although these experiments use the same type of hardware as those

in the previous chapter (Section 4.6), by the time we conducted these new

experiments, CloudLab had changed the BIOS settings on these machines.

Specifically, they set the machines’ power and performance profile to maximize

performance, and enabled I/O Acceleration Technology. These new BIOS set-

tings yield better performance in baseline experiments—an additional reason

why performance in this chapter are not directly comparable with those in the

previous chapter.
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Benchmarks We test our system with the same two benchmarks used in

the previous chapter: TPC-C [41], and SEATS benchmark [46]. We modify

these benchmarks in the same way described in Section 4.6 to adapt them to

the key-value store interface. We also use the same sets of contention-heavy

workloads to demonstrate MCC’s benefit in handling high-contention work-

loads. Specifically, we populate TPC-C benchmark with ten warehouses, and

run its test clients in a closed-loop. For SEATS, the workload was modified

to simulate ticket selling for sporting events rather than airline flights: there

are at most 50 “flights” at any single time, and each of them has 30,000 seats.

Workloads for both the TPC-C and SEATS benchmarks come with a large

numbers of concurrent clients (2,000) that saturate our database system (be-

cause of either contention, or resource bottlenecks), allowing us to measure the

peak throughput of our database system.

We use stored procedures to implement transactions that are opti-

mized by runtime pipelining or timestamp ordering. They are new order,

payment, and delivery transactions in TPC-C, and new / update / delete

reservation transactions in SEATS. These transactions always use stored

procedures throughout the experiments we report in this chapter, even if they

are not optimized in some of the tests 2. Other transactions are left as inter-

active transactions.

2Using stored procedures reduces network roundtrips, which in turn reduces the severity
of data contention. This is yet another reason why performance numbers in this chapter are
often higher than those in previous chapter, especially for baseline configurations.
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Unless otherwise specified, we run each experiment three times, and

report the average number and the 95% confidence interval.

Baselines For TPC-C and SEATS, we compare the performance of our sys-

tem with three baselines. The first baseline is a simple, stand-alone two-phase

locking mechanism. The second one consists of the initial configuration of our

iterative algorithm, as shown in Figure 5.2. Comparing against these two base-

lines tells us how much performance benefit our automatic configuration algo-

rithm can bring to database applications. The third baseline instead serves as

a performance upper bound: it runs Tebaldi with manually configured MCC

hierarchies as described in Section 4.6. All three baselines are implemented

within Tebaldi’s framework by configuring MCC manually.

5.6.1 Performance of the TPC-C Benchmark

There are five types of transactions in TPC-C: stock level and order

status are read-only transactions, while new order, payment and delivery

both read and write. When running under serializable isolation, this bench-

mark exhibits many different types of data contentions, making it hard to

manually identify performance bottlenecks and propose an appropriate MCC

configuration.

Baseline Performance First, we look at the performance of TPC-C with

two-phase locking. Figure 5.11 shows that stand-alone two-phase locking, at
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Figure 5.11: Performance of automatic configuration on TPC-C benchmark.

2,295 transactions per second, has the lowest throughput among all the con-

figurations we consider. The reason for its low performance is that 2PL, as a

conservative mechanism, cannot efficiently handle the heavy data contention

in TPC-C’s workload.

The initial MCC configuration of our optimization algorithm optimizes

read-only transactions using a multi-versioning technique similar to multi-

version 2PL. In TPC-C, this is enough to resolve the heavy conflict between

stock level and the update transactions. The throughput of this configu-

ration is 5,511 transactions per second (the second bar from the left of Fig-

ure 5.11): it is 2.4× higher than basic 2PL, but still relatively low, because of

the heavy data contention among update transactions.

The rightmost bar in Figure 5.11 shows the throughput of our third

baseline, which runs TPC-C with the 3-layer MCC configuration that we pro-
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Figure 5.12: Manual configuration for TPC-C. Leaf nodes are labeled with
transactions: payment (PAY), new order (NO), delivery (DEL), order

status (OS), and stock level (SL).

posed in the previous chapter (Figure 5.12). The throughput is 31,264 trans-

actions per second, which is 5.7× higher than the second baseline, and 13.6×

higher than 2PL. This result shows the significant performance potential of

Modular Concurrency Control. The key question is then, can we still get such

benefits without requiring users to configure MCC manually?

Performance of Automatic Configuration Our automatic configuration

algorithm takes four iterations to improve the performance of the TPC-C

workload. The final configuration is shown in Figure 5.13d, and its through-

put reaches 21,556 transactions per second (the third bar from the left in

Figure 5.11). This is 3.9× higher than our initial configuration, 9.4× higher

than 2PL, and 69% of what can be achieved through manual configuration.

We show the evolution of our automatically-generated configuration in

Figure 5.13. In the first iteration, our system determines that the most se-

vere bottleneck in the initial configuration (Figure 5.13a) is data contention
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(a) Initial Configuration (b) After the first round

(c) After the second round (d) After the third round

Figure 5.13: Automatic configuration in TPC-C. Leaf nodes are labeled with
transactions: payment (PAY), new order (NO), delivery (DEL), order

status (OS), and stock level (SL).
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between new order and payment transactions. This is indeed the case: both

transaction types access the warehouse table, which has only ten rows, and

with 2PL, payment needs to acquire a write lock here, blocking all other con-

current accesses. Our optimization algorithm proposes the candidate configu-

ration shown in Figure 5.13b, which optimizes the bottlenecking conflict with

runtime pipelining. The new configuration increases the throughput to 9,031

transactions per second.

In the second iteration, the conflicts among payment transactions be-

come the next major bottleneck. This is because the first round of optimization

did not change how conflicts within payment transactions are handled, and

two-phase locking cannot efficiently deal with that. To address this problem,

our system proposes to optimize the payment group with runtime pipelining,

as shown in Figure 5.13c, increasing the throughput to 16,870 transactions per

second.

The next major bottleneck, then, become the conflicts among new

order transactions. As in the second iteration, our optimization algorithm

chooses to optimize it with runtime pipelining. After this round, the end-to-

end throughput reaches the final number of 21,556 transactions per second.

In the last iteration, our system detects that once again, it is conflicts

among new order transactions that have become the most significant con-

tention bottleneck. However, this conflict edge has already been optimized

by runtime pipelining, and Tebaldi cannot find better optimizations, so the

automatic configuration algorithm stops.
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Comparing with the Manual Configuration The final MCC configu-

ration derived by our algorithm (Figure 5.13d) is similar to the manual con-

figuration of Figure 5.12. There are two differences: first, the algorithm does

not optimize delivery transactions with runtime pipelining, since it is not the

most significant data contention in the last round of iteration; second, the algo-

rithm does not merge the three runtime pipelining groups between new order

and payment transactions into a single group. In this particular case, having

three runtime pipelining groups does not bring better performance; instead,

the additional computation from these groups can degrade the performance.

In the end, our automatic configuration algorithm only reaches 69%

performance of the manual configuration. There are two major reasons for this

performance difference. First, as I have mentioned above, using three runtime

pipelining groups to handle data contentions among new order and payment

transactions degrades performance. Second, the quality of runtime pipelining’s

static analysis differs between the automatic and the manual configurations. In

particular, the manual configuration also performs the static analysis required

by runtime pipelining manually; this enables the uniqueness optimization [95],

which can remove concurrency control for operations that are guaranteed to

access different rows. Unfortunately, this optimization is hard to implement

with fully automatic static analysis, since it requires solving hard problems in

programming languages, such pointer and loop analysis.
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5.6.2 Seats benchmark

Like TPC-C, the SEATS benchmark has different sources of data con-

tentions, such as those between read-only and update transactions, and among

new reservation and delete reservation transactions.
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Figure 5.14: Performance of automatic configuration on SEATS benchmark.

Baseline Performance The first baseline experiment measures the through-

put of the SEATS benchmark with monolithic two-phase locking. As shown

by the left most bar of Figure 5.14, the throughput is 20,864 transactions per

second. The conservative locking mechanism can become a major bottleneck

when data contention is high in the workload, which is exactly the case in the

SEATS benchmark.

The second baseline adopts the initial MCC configuration used in our

automatic configuration algorithm. This configuration efficiently handles data
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conflicts between read-only and update transactions using a multi-versioned

mechanism, and its performance already reaches 60,452 transactions per sec-

ond (the second bar from the left in Figure 5.14), which is 2.9× higher than

2PL. But this configuration does not optimize update transactions, so its per-

formance is still limited by data contentions among these transactions.

Figure 5.15: Manual configuration for SEATS. Leaf nodes are labeled with
transactions: new reservation (NR) and delete reservation (DR).

The third baseline measures the performance of the manually config-

ured MCC federation for the SEATS benchmark. In Section 4.6.2 we proposed

a manual configuration that places new, update and delete reservation in

TSO groups, and uses a partition-by-instance technique to dispatch transac-

tions that operate on different “flights” to different TSO group instances. But

one can actually do better, by observing that update reservation transac-

tions in fact conflict much less often than the other two transactions. Both new

and delete reservation transactions modify the flight table, so they con-

flict as long as two transactions are on the same flight. Update reservation

transactions, however, do not modify the flight table: they only conflict when
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two transactions access the same seat. Hence optimizing only new and delete

reservation transactions with TSO (Figure 5.15) can actually result in bet-

ter performance, since it avoids the unnecessary overhead of TSO for update

reservation. With this new configuration, the throughput reaches 84,453

transactions per second (the rightmost bar of Figure 5.14), which is 4× higher

than 2PL, and 40% higher than the initial configuration used in our configu-

ration algorithm.

Performance of Automatic Configuration Starting with the initial con-

figuration, our algorithm takes three iterations to optimize the SEATS work-

load. The final configuration is the same as our manual configuration, and it

also leverages the partition-by-instance optimization (Figure 5.16c). Therefore,

it achieves a similar performance of (83,008 transactions per second, third bar

from the left in Figure 5.14). Figure 5.16 shows the evolution of the configu-

ration generated automatically by our algorithm.

The most severe bottleneck in the initial configuration (Figure 5.16a) is

the conflict within instances of the new reservation transactions. The conflict

between new and delete reservation transactions is also severe, but it scores

lower in our profiling algorithm, so in the first iteration, the optimization stage

only focuses on the conflict within new reservation transactions.

Our algorithm attempts to optimize this bottleneck by placing new

reservation transactions into a new group and by adopting a better-suited

CC mechanism. Two candidates are proposed: runtime pipelining and times-
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(a) Initial Configuration

(b) After the first round (c) After the second round

Figure 5.16: Automatic configuration in SEATS. Leaf nodes are labeled with
transactions: new reservation (NR) and delete reservation (DR).

tamp ordering (TSO). Furthermore, in the case of TSO, the CC-specific prepro-

cessing algorithm detects that new reservation transactions can be further

partitioned in a by-instance manner, using the flight id input as the parti-

tioning key (Figure 5.16b). After evaluating both candidates, our system finds

that TSO gives better performance. After this iteration, throughput increases

to 64,978 transactions per second. This is only slightly better than the initial

configuration, since another critical bottleneck, data conflicts between new and

delete reservation transactions, is not optimized.

In the second iteration, the most severe bottleneck become the con-
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flicts between new and delete reservation transactions. This conflict is

challenging, since it involves transactions from two different groups. Nonethe-

less, our optimization algorithm proposes two candidates following the strate-

gies described in Section 5.4: it either moves delete reservation to the new

reservation’s TSO group, or vice-versa. After testing both options, it deter-

mines that the best one is to move delete reservation to the group of new

reservation and to use TSO to handle all conflicts among those transactions

(Figure 5.16c).

Our algorithm also considers adding a non-leaf CC node somewhere

along the path from the two transactions’ lowest common ancestor to one of

the group. However, all such candidates do not pass the CC-specific filters.

In particular, the CC mechanism of the new non-leaf node cannot be TSO,

since TSO is not efficient when serving as a non-leaf mechanism. It cannot

be runtime pipelining either, since runtime pipelining requires a child node to

report in-group dependency information after each operation, which is hard to

achieve in TSO.

In the last iteration, Tebaldi finds that the performance bottleneck

once again become the conflicts among new reservation transactions. The

algorithm stops here, since it cannot further optimize this bottleneck.

5.6.3 Overhead of the Profiling Algorithm

Tebaldi’s performance profiling algorithm gathers information about

individual data contention events at runtime. Doing so raises the concern of
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the profiling overhead; further, if profiling is too costly, it can even change the

performance of the workload.

To address this concern, we run the TPC-C and SEATS benchmarks

and compare the their performance with the profiling logic turned on and

turned off, using a macro to remove the performance profiling code and data

structures at compile time. We evaluate four testcases, running TPC-C and

SEATS benchmarks under Tebaldi’s initial MCC configuration (Figure 5.13a

and Figure 5.16a), and under the manual configurations (Figure 5.12 and Fig-

ure 5.15). With Tebaldi’s initial MCC configuration, both benchmarks suffer

from severe contention bottleneck. We use these workloads to verify if the pro-

filing logic increases the size of critical sections in concurrency control. With

the manual configurations, these benchmarks have much higher throughput,

consume more computation resources, and generate more profiling logs. We

use these workloads to verify if the profiling logic has significant computa-

tional costs.

Figure 5.17 shows the performance of the four testcases. Workloads

with the “-I” suffix use Tebaldi’s initial MCC configuration, and workloads

with the “-M” suffix use manual configuration. Results are normalized with

the throughput when performance profiling is turned off. We find that, in

all testcases, enabling performance profiling reduces throughput by less than

2%, since the actual performance analysis does not take place on transaction

coordinator and data server nodes, where data and CC mechanisms reside.

Instead, these nodes only need to generate logs for data conflict events, and
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Figure 5.17: Overhead of Performance Profiling.

batch them before sending them to a separate performance monitor node for

further analysis.

5.6.4 Benefit of Supporting Partition-by-instance

Although our algorithm mainly focuses on MCC configurations that

partition transactions by their application-level types, it also supports a limited

form of partition-by-instance configurations by cooperating with CC-specific

preprocessing algorithms (see Section 5.4). We now measure the benefit of this

feature.

Consider again the SEATS benchmark (Section 5.6.2). In this work-

load, our configuration algorithm attempts to optimize the performance of

new and delete reservation transactions with timestamp ordering (TSO).

With the help of the partition-by-instance feature, the proposed MCC config-
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Configuration Partition-by-instance Throughput (Txn/sec)

After the first iteration
ON 64,978
OFF 15,566

After the second iteration
ON 83,008
OFF 13,131

Table 5.1: Performance of the SEATS benchmark with and without the
partition-by-instance optimization.

uration can separate transactions about different flights to different groups.

This additional flexibility in federating CC mechanisms prevents TSO from

unnecessarily ordering transactions that rarely conflict, and it is the key to

get any performance benefit from TSO.

Table 5.1 shows the results of running SEATS benchmark using the

MCC configuration proposed by the first and second iteration of our config-

uration algorithm, but without using the partition-by-instance feature. The

performance of the first configuration (putting new reservation transactions

into the TSO group) drops drastically from 64,978 to 15,566 transactions per

second. The performance of the second configuration (putting both new and

delete reservation transactions into the TSO group) drops even further,

from 83,008 to 13,131 transactions per second. The reason is that, with a sin-

gle TSO group, all transactions in the group are totally-ordered by an increas-

ing timestamp (even if two transactions don’t have data conflict), and they

must commit in this timestamp order to enforce consistent ordering. The un-

necessary cost from these additional ordering constraints overwhelms TSO’s

benefit for the transactions that actually conflict with each other, so much
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that the performance is even worse than for monolithic 2PL. Adding delete

reservation transactions to the group further increases such cost, and further

reduces performance.

5.6.5 Overhead of Different Reconfiguration Protocols

Finally, we measure the performance of Tebaldi’s two reconfiguration

protocols: partial restart and online update (Section 5.5). We adopt each of

them in the TPC-C benchmark, and measure the real-time performance when

reconfigurations occur. As we have seen in Section 5.6.1, there are three recon-

figurations in the TPC-C benchmark. Among them, the first one cannot be

handled by the online update protocol, since the SSI root node does not allow

children groups to change (see the limitation of the online update protocol in

Section 5.5); Tebaldi then falls back to the partial restart protocol. The other

two reconfigurations can be handled by both protocols. For simplicity, we only

present the last reconfiguration from Figure 5.18a to Figure 5.18b (CC nodes

are labeled with numbers for reference, and changes are marked in red). The

performance of the second reconfiguration is similar.

Figure 5.19a shows the real-time performance during reconfiguration

with the partial restart protocol. Reconfiguration starts at about the 5-second

mark in the figure, and takes 6 seconds to complete, from the first performance

drop to regaining full throughput. Within this interval, the clean-up phase

takes about 0.5 seconds to wait for ongoing transactions to finish (while the

throughput gradually drops to zero). Then, the prepare phase takes 3.5 seconds
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(a) The old MCC configuration (b) The new MCC configuration

Figure 5.18: The third reconfiguration in TPC-C.
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(a) Partial restart protocol
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(b) Online update protocol

Figure 5.19: Performance of the third reconfiguration in TPC-C.

to switch to the new configuration and recover the root CC’s internal states

(the throughput stays at zero). Finally, the database spends another 2 seconds

to resume the workload and ramp up.

In the online update protocol, we substitute the entire runtime pipelin-
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ing subtree rooted at node 5. This is achieved by appending the new subtree in

Figure 5.18b to the parent 2PL node (node 2) in the old configuration, and by

redirecting new transactions to the new subtree. Note that this reconfiguration

only changes node 7, but its parent, the runtime pipelining node 5, does not

allow change of children groups. So the online update protocol moves one level

up along the MCC hierarchy and changes the entire subtree at node 5.

Figure 5.19b shows the real-time performance of the online update pro-

tocol. There are two major differences with the partial restart protocol. First,

the entire reconfiguration only takes about 3 seconds to complete, which is half

the time of the partial recovery protocol. This is because the online update

protocol does not need to reconstruct CC’s internal state, as it seamlessly

transforms the old MCC hierarchy to the new one. Second, at no time the

throughput is zero (even in the one second period immediately following the

beginning of reconfiguration, when the throughput is lowest, Tebaldi still pro-

cesses about 230 transactions per second), since the online update protocol

itself does not block ongoing or incoming transactions—ongoing payment and

new order transactions continue to run in the old subtree, while new ones are

handled by the new subtree; conflicts between them are handled by the parent

2PL node. However, throughput during the reconfiguration is low, since 2PL

cannot handle those conflicts efficiently.

Finally, we compare our reconfiguration protocols with a straw-man

approach that simply restarts Tebaldi to change its configuration. We shut

down Tebaldi as soon as the third reconfiguration starts, and find that Tebaldi
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takes about 19 seconds to reload logs and recover from the failure. Therefore,

even the partial restart protocol is significantly more efficient than a full system

restart.

5.6.6 Comparing against Single-Machine Databases

Tebaldi’s hierarchical MCC technique is most effective in distributed

databases, where network roundtrips can increase the severity of data con-

tention bottlenecks. Therefore, this dissertation has mainly focused on a dis-

tributed setting, and compared Tebaldi’s performance against monolithic CCs

in that setting.

Indeed, there are many factors that can lead to choosing a distributed

database rather than a single-machine one. For example, the dataset may be

too large to fit in a single machine; the I/O or computational cost of a high

workload request rate may overwhelm what a single machine can provide;

further, if a database needs to be replicated, running transactions necessarily

involves network roundtrips that can increase the severity of data contention

for simple concurrency controls like 2PL.

Further, even when using a single-machine database is possible, it may

not solve the data contention problem, as it is hard to implement all transac-

tions in stored procedures, since doing so can largely increase the complexity

of programming and maintaining the application code [71]. So, even for a

single-machine database system, running interactive transactions can involve

one roundtrip for each operation (between the application and the database

151



system). This can reduce the efficiency of simple concurrency control tech-

niques, similar (though at a smaller scale) to what happens in a distributed

setting.

Even so, it is fair to ask whether running simple CCs (like 2PL and SSI)

in a single-machine setting can outperform Tebaldi cluster (with hierarchical

MCC) by avoiding the cost of network roundtrips. To answer this question, we

compare Tebaldi cluster’s performance against that of monolithic CC mech-

anisms in single-machine and single-threaded settings, including against the

widely-used single-machine database: PostgreSQL [16].

Experimental Settings We measure the performance of the TPC-C bench-

mark. As in Section 5.6.1, we implement new order, payment and delivery

transactions as stored procedures, and the rest as interactive transactions. We

compare the performance of Tebaldi in a cluster (which we have seen in Sec-

tion 5.6.1) against three single-machine / single-threaded baselines. In the first

baseline, we deploy Tebaldi on a single machine to simulate a single-machine

database, and use stand-alone 2PL as the concurrency control mechanism.

The second baseline is similar to the first one, but constrains Tebaldi to use

only one transaction coordinator and one data server, simulating a “single-

threaded” setting.

Of course, as Tebaldi is designed as a distributed system, it is not op-

timized for a single-machine setting. For example, Tebaldi’s message-passing

framework can still cause delays when passing messages between two database

152



nodes on the same machine. To provide more credible results, the third base-

line measures TPC-C’s performance on a widely-used single-machine database

system, PostgreSQL [16]. We use the latest version (11.0) of PostgreSQL, and

configure it to run transactions at the serializable isolation level. To achieve

a fair comparison with Tebaldi, we disable PostgreSQL’s replication and its

synchronous flushing (durability) features. PostgreSQL eventually needs to

write data to disk, so we configure it to run on top of an in-memory file sys-

tem (tmpfs) to prevent disk I/O from becoming a bottleneck. We also port

the TPC-C benchmark to the SQL language, and try to optimize it with SQL

features (such as marking order status and stock level as read-only trans-

actions, and using the UPDATE... RETURNING... clause to perform read and

modify in a single query). Unlike the previous two baselines, PostgreSQL uses

serializable snapshot isolation as its concurrency control mechanism [72].

For each of these baselines, we run TPC-C clients either on the same

machine as the database system, or on a different machine. We report the

configuration that gives the highest throughput.

Setting Throughput (txn/sec)
Tebaldi Single-Machine (2PL) 2,065± 48
Tebaldi Single-Thread (2PL) 1,073± 68

PostgreSQL (SSI) 6,964± 486
Tebaldi Single-Machine (3-layer) 4,005± 44

Table 5.2: TPC-C’s performance in single-machine settings.
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Experiment Results Table 5.2 summarizes the performance of the three

baselines. Running 2PL in Tebaldi in a single-threaded setting only handle

about 1,000 transactions per second, as the CPU bottlenecks performance.

Running 2PL in Tebaldi on a single-machine actually achieves a performance

similar to running 2PL in Tebaldi on a cluster (about 2,300 transactions

per second, see Section 5.6.1). The bottleneck here is data contention. Since

Tebaldi’s design and implementation (especially, its message-passing frame-

work) is not optimized for a single-machine setting, running 2PL on a single

machine in Tebaldi does not improve throughput.

Running TPC-C in PostgreSQL gives about 7,000 transactions per sec-

ond. This is higher than running 2PL in Tebaldi. This is expected: PostgreSQL

uses SSI for concurrency control, which, as we have seen in Section 4.6.1, can

handle TPC-C workload more efficiently than 2PL. Still, this number is much

lower than what hierarchical MCC can achieve when Tebaldi is run on a clus-

ter: more than 21,000 transactions per second with automatic configuration,

and more than 31,000 transactions per second with manual configuration (see

Section 5.6.1).

We also measure how Tebaldi’s hierarchical MCC performs on a single

machine: Tebaldi’s 3-layer federation (Figure 5.12) can process about 4,000

transactions per second. So, in a single-machine setting, hierarchical MCC still

outperforms 2PL, but fares worse than PostgreSQL (since hierarchical MCC

uses more CPU resources than a single CC, and Tebaldi is not optimized for the

single-machine setting). However, as we have seen in Section 5.6.1, hierarchical
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MCC allows us to easily scale out Tebaldi to a 20-machine cluster, which yields

about 8× higher performance despite the heavy data contention and network

roundtrips.
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Chapter 6

Conclusion

This dissertation takes a major step toward achieving high performance

ACID transactions without sacrificing its benefit of ease-of-programming. The

starting point of our work is Modular Concurrency Control, a recent approach

to federate concurrency control mechanisms for better performance. This dis-

sertation presents Tebaldi, a new distributed key-value store that addresses

two major problems in the current embodiment of MCC, bringing it to the

next level.

Chapter 4 introduces hierarchical MCC, Tebaldi’s new approach to har-

ness the performance opportunity of combining different specialized concur-

rency controls within the same database. With this new model, Tebaldi can

partition data conflicts at a fine granularity and match them to a wide variety

of concurrency control mechanisms, within a framework that is modular and

extensible.

Chapter 5 systematically explores how to automatically manage Tebaldi’s

MCC configuration, and presents an algorithm that iteratively adjust Tebaldi’s

configuration to improve its performance. This feature allows Tebaldi to hide

the complexity of configuring MCC from database users, making sure that such
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complexity will not nullify the initial motivation of MCC: improving ACID’s

performance without sacrificing ease-of-programming.

As a research prototype, Tebaldi has limitations. At this time, it only

supports four CC mechanisms—we design Tebaldi with the goal of making it

modular and extensible, but adding new CC mechanisms requires them to un-

dergo non-trivial changes to enforce consistent ordering, and not all CC mech-

anisms (and their combinations) can achieve this easily. Tebaldi uses heuristics

to manage its own configuration, but as performance profiling and optimiza-

tion are, in general, hard, these heuristics may not always work well.

There are many design aspects in a database system that can affect its

performance, such as the data model, the concurrency control mechanism, the

replication protocol, and the techniques to enforce atomicity and durability...

While this dissertation only addresses one of these aspects, as data contention

is ubiquitous and concurrency control can be costly, we believe this work is

an important building block towards achieving high performance for ACID

transactions.
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[35] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. Serializable Isolation

for Snapshot Databases. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’08, pages

729–738, Vancouver, Canada, 2008. ACM.

[36] Arvola Chan, Stephen Fox, Wen-Te K Lin, Anil Nori, and Daniel R Ries.

The Implementation of an Integrated Concurrency Control and Recov-

ery Scheme. In Proceedings of the 1982 ACM SIGMOD International

Conference on Management of Data, pages 184–191. ACM, 1982.

[37] Arvola Chan and Robert Gray. Implementing Distributed Read-Only

Transactions. IEEE Transactions on Software Engineering, (2):205–212,

1985.

[38] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-

rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E. Gruber. Bigtable: a distributed storage system for structured

data. In Proceedings of the 7th USENIX Symposium on Operating Sys-

tems Design and Implementation - Volume 7, OSDI ’06, Berkeley, CA,

USA, 2006. USENIX Association.

[39] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Sil-

berstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,

and Ramana Yerneni. PNUTS: Yahoo!’s hosted data serving platform.

Proceedings of the VLDB Endowment, 1(2):1277–1288, 2008.

162



[40] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-

pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-

gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,

David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,

Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford.

Spanner: Google’s Globally Distributed Database. In Proceedings of the

10th USENIX Conference on Operating Systems Design and Implemen-

tation, OSDI’12, pages 251–264, Berkeley, CA, USA, 2012. USENIX As-

sociation.

[41] Transaction Processing Performance Council. TPC benchmark C, Stan-

dard Specification Version 5.11, 2010.

[42] James Cowling and Barbara Liskov. Granola: Low-overhead Distributed

Transaction Coordination. In Proceedings of the 2012 USENIX Confer-

ence on Annual Technical Conference, USENIX ATC’12, pages 21–21,

Berkeley, CA, USA, 2012. USENIX Association.

[43] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: an

elastic transactional data store in the cloud. In Proceedings of the 2009

conference on Hot topics in cloud computing, HotCloud’09, Berkeley,

CA, USA, 2009. USENIX Association.

[44] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: a scal-

able data store for transactional multi key access in the cloud. In Pro-

163



ceedings of the 1st ACM symposium on Cloud computing, pages 163–174.

ACM, 2010.

[45] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly

available key-value store. In Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles, SOSP ’07, pages 205–220,

New York, NY, USA, 2007. ACM.

[46] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-

Mauroux. OLTP-Bench: An Extensible Testbed for Benchmarking Re-

lational Databases. Proceedings of the VLDB Endowment, 7(4), 2013.

[47] Deborah DuBourdieux. Implementation of Distributed Transactions. In

Berkeley Workshop, pages 81–94, 1982.

[48] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions

of Consistency and Predicate Locks in a Database System. Communi-

cations of the ACM, 19(11):624–633, November 1976.

[49] Jose M. Faleiro and Daniel J. Abadi. Rethinking Serializable Multi-

version Concurrency Control. Proceedings of the VLDB Endowment,

8(11):1190–1201, July 2015.

[50] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and

164



Dennis Shasha. Making Snapshot Isolation Serializable. ACM Transac-

tions on Database Systems, 30(2):492–528, June 2005.

[51] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceedings of

the ACM SIGMOD International Conference on Management of Data,

1987.

[52] Jim Gray. Notes on data base operating systems. In Advanced Course:

Operating Systems, pages 393–481, 1978.

[53] Jim N Gray, Raymond A Lorie, Gianfranco R Putzolu, and Irving L

Traiger. Granularity of locks and degrees of consistency in a shared

data base. In IFIP Working Conference on Modelling in Data Base

Management Systems, pages 365–394, 1976.

[54] Robert J Hall. Cpprofj: Aspect-capable call path profiling of multi-

threaded java applications. In Proceedings of the 17th IEEE Interna-

tional Conference on Automated Software Engineering, pages 107–116.

IEEE, 2002.

[55] Pat Helland. Life beyond Distributed Transactions: an Apostate’s Opin-

ion. In Third Biennial Conference on Innovative Data Systems Research,

pages 132–141, 2007.

[56] Evan P. C. Jones, Daniel J Abadi, and Samuel Madden. Low Over-

head Concurrency Control for Partitioned Main Memory Databases. In

165



Proceedings of the 2010 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’10, pages 603–614. ACM, 2010.

[57] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,

Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Mchop-

pinoadden, Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J.

Abadi. H-Store: a high-performance, distributed main memory transac-

tion processing system. Proceedings of the VLDB Endowment, 1(2):1496–

1499, 2008.

[58] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and

Alan Fekete. MDCC: Multi-Data Center Consistency. In Proceedings

of the 8th ACM European Conference on Computer Systems, EuroSys

’13, pages 113–126, New York, NY, USA, 2013. ACM.

[59] Hsiang-Tsung Kung and John T Robinson. On Optimistic Methods for

Concurrency Control. ACM Transactions on Database Systems (TODS),

6(2):213–226, 1981.

[60] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized

structured storage system. ACM SIGOPS Operating Systems Review,

44:35–40, April 2010.

[61] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,

and Zhengkui Wang. Towards a Non-2PC Transaction Management in

Distributed Database Systems. In Proceedings of the 2016 International

166



Conference on Management of Data, SIGMOD ’16, pages 1659–1674,

San Francisco, California, USA, 2016. ACM.

[62] Sharad Mehrotra, Henry F Korth, and Avi Silberschatz. Concurrency

Control in Hierarchical Multidatabase Systems. The VLDB Journal

- The International Journal on Very Large Data Bases, 6(2):152–172,

1997.

[63] David Mills, Jim Martin, Jack Burbank, and William Kasch. Network

time protocol version 4: Protocol and algorithms specification. Technical

report, 2010.

[64] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter

Schwarz. Aries: a transaction recovery method supporting fine-granularity

locking and partial rollbacks using write-ahead logging. ACM Transac-

tions on Database Systems (TODS), 17(1):94–162, 1992.

[65] C Mohan, Bruce Lindsay, and Ron Obermarck. Transaction manage-

ment in the R* distributed database management system. ACM Trans-

actions on Database Systems (TODS), 11(4):378–396, 1986.

[66] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Ex-

tracting More Concurrency from Distributed Transactions. In Proceed-

ings of the 11th USENIX Symposium on Operating Systems Design and

Implementation, OSDI’14, pages 479–494, Broomfield, CO, October 2014.

USENIX Association.

167



[67] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating

concurrency control and consensus for commits under conflicts. In Pro-

ceedings of the 12th USENIX Conference on Operating Systems Design

and Implementation, OSDI’16, pages 517–532, 2016.

[68] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Morris. Phase

Reconciliation for Contended In-memory Transactions. In Proceedings

of the 11th USENIX Conference on Operating Systems Design and Im-

plementation, OSDI’14, pages 511–524, Broomfield, CO, 2014. USENIX

Association.
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