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Improving power/performance efficiency is critical for today’s micro-

processors. From edge devices to datacenters, lower power or higher perform-

ance always produces better systems, measured by lower cost of ownership or

longer battery time. This thesis studies improving microprocessor power/per-

formance efficiency by optimizing the pipeline timing margin. In particular,

this thesis focuses on improving the efficacy of Active Timing Margin, a young

technology that dynamically adjusts the margin.

Active timing margin trims down the pipeline timing margin with a

control loop that adjusts voltage and frequency based on real-time chip envir-

onment monitoring. The key insight of this thesis is that in order to maximize

active timing margin’s efficiency enhancement benefits, synergistic manage-

ment from processor architecture design and system software scheduling are

xii



needed. To that end, this thesis covers the major consumers of pipeline timing

margin, including temperature, voltage, and process variation. For temperat-

ure variation, the thesis proposes a table-lookup based active timing margin

mechanism, and an associated temperature management scheme to minimize

power consumption. For voltage variation, the thesis characterizes the limiting

factors of adaptive clocking’s power saving and proposes application schedul-

ing to maximize total system power reduction. For process variation, the

thesis proposes core-level adaptive clocking reconfiguration to automatically

expose inter-core variation and discusses workload scheduling and throttling

management to control critical application performance.

The author believes the optimization presented in this thesis can po-

tentially benefit a variety of processor architectures as the conclusions are

based on the solid measurement on state-of-the-art processors, and the re-

search objective, active timing margin, already has wide applicability in the

latest microprocessors by the time this thesis is written.
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Chapter 1

Introduction

Power efficiency is critical in designing and operating modern micro-

processors. In the early 2000s, microprocessor designers have put low power as

a first-order concern in designing digital integrated circuits [76, 80], pointing

out that the power density of a microprocessor could exceed that of a nuc-

lear reactor should the clock rate continues the conventional Dennard Scal-

ing [81], making heat dissipation a key constraint for estimating total chip

power budget. More recently, as the information ecosystem has shifted to-

wards the cloud-edge paradigm, power efficiency has been classified as a key

design constraint by researchers on both ends. For datacenters, higher hard-

ware power efficiency entails a lower total cost of ownership (TCO), which

increases the profit margin of an enterprise [3]. For mobile devices, higher effi-

ciency prolongs battery life, which improves user satisfaction [110]. Therefore,

improving microprocessor power efficiency is an important goal for computer

architecture researchers today.

While there is significant motivation to improve microprocessor power

efficiency, the end of Dennard scaling and Moore’s law [29, 98] have made our

design arsenal increasingly limited to achieve this goal. Specifically, it has
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become increasingly difficult to continue pushing more active cores onto the

silicon real estate and relying on parallelism for improving performance while

keeping power under control, as is the common practice in the past 10 years,

leaving aside the difficulty of programming parallel software. As techniques

are being exhausted to optimize conventional general purpose hardware, many

researchers have turned to application-specific proposals, notably customized

hardware design (i.e. accelerators) to reduce the power wastage of data move-

ment and instruction decoding in general purpose chips [79]. While this ap-

proach has proven to be successful in key emerging applications domains, e.g.,

machine learning [17, 49, 16, 22], its design, verification, and manufacturing

costs are, however, non-negligible in the fast development cycle of today’s tech-

nology world. As a result, alternative proposals with lower overhead, wider

applicability, and practical power efficiency gains are still highly desirable for

chip vendors as well as consumers.

This thesis seeks to improve microprocessor power efficiency by optim-

izing pipeline’s timing margin, a long-neglected, but possibly one of the last

opportunities where processor efficiency can yet be improved. The signific-

ance of this thesis topic is based on three findings. First, over 10% power

or performance gain can be achieved simply by squeezing down modern mi-

croprocessor’s existing timing margin, based on real hardware measurement

on production CPUs and GPUs [89, 56], which proves practical benefit can be

realized by working on the excess timing margin. Second, timing margin exists

for all processor architectures, from CPUs [88, 89] to GPUs [58, 57, 56], and
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inevitably in the upcoming accelerators. This is because all pipelined architec-

tures need to prevent timing failure, caused by chip environment changes, such

as unusual temperature, voltage noise, or process corners. Thus, some amount

of margin is always required, indicating the opportunity from timing margin

is pervasive. Third, to date, there is no comprehensive thesis that system-

atically studies a practical solution that can effectively reduce timing margin

in production processors, and hence the implication for the whole computing

system layers are yet to be discovered.

Specifically, this thesis focuses on studying the system-level implication

of Active Timing Margin, a young technique proposed to reduce timing mar-

gin. Active timing margin uses a hardware loop to adjust chip supply voltage

and frequency based on real-time monitored load environment. It has been

tested rigorously on various production processors to pass load environment

corner cases [54, 14, 100, 35, 13, 104, 103, 31]. Compared with other proposals

that try to trim down the timing margin [36, 28, 78, 39, 38, 88, 89, 69, 56, 74],

active timing margin’s low implementation overhead and execution correctness

guarantee make it the more favorable design solution. Thus, understanding

how active timing margin behaves and saves timing margin in the field, and

trying to maximize its efficiency gain with appropriate management has prac-

tical impact for designing future computing systems.

Thesis Statement Active timing margins full efficiency gain can only be

unlocked through cross-layer management, covering hardware, platform, and
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software configurations. At the hardware level, we need fine-tuning core-level

adaptive clocking to address process variability. At the platform level, we need

power and temperature management to leverage temperature inversion. At the

software level, we need application scheduling to work with voltage variation.

The rest of this chapter is organized as follows. Chapter 1.1 provides

an overview of my research contributions. Chapter 1.2 discusses the long-term

practical impact of my thesis. Chapter 1.3 outlines the rest of the disserta-

tion and Chapter 1.4 lists previously published materials that this dissertation

draws upon.

1.1 Research Contributions

My Ph.D. research’s objective is to study and optimize the active timing

margin. In this pursuit, the thesis first provides an instrumental explanation

over active timing margin’s design and working mechanism, including one pre-

valent design flavor that is based on timing margin sensors that directly meas-

ures the saving room and automatically triggers voltage/frequency adjustment,

and one alternative lower-cost design that uses environmental sensor such as

temperature sensors to correlate the saving potential. Compared against prior

proposals that optimize timing margin, the introduction highlights the signi-

ficance of active timing margin as a practical and convenient solution that

effectively captures the power efficiency opportunity in timing margin.

Secondly, the thesis brings the notion that to maximize active tim-

ing margin’s efficiency enhancement utility, a collaborative hardware/software
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design that works in synergy to dynamically and safely provision timing mar-

gin is needed. This insight is based on comprehensive hardware measurement

and instrumentation, which shows the proposed methods provide over 10%

measured power, or performance improvement, a highly lucrative benefit for

production chips.

Thirdly, the thesis provides a complete analysis of the different system-

level effects for which cross-layer management can help improve active timing

margin’s gain, at the author’s best effort. Because timing margin in modern

microprocessor pipeline is designed to combat against a wide variety of system

effects, the optimization and management of active timing margin necessitate

a solid understanding of all major effects that affect load environments, so

that the power efficiency improvement does not hamper pipeline timing cor-

rectness. In this effort, my Ph.D. research dissects timing margin into three

major components that it protects against - temperature (T), voltage (V), and

process (P) variation. Although TVP variation has been thoroughly studied

for static margin, their behavior are less understood in active timing margin

because the technique is still new and there are not many systems available

for study. I take a holistic view across system stack, spanning circuit, archi-

tecture, and application to decide for each effect what the appropriate active

mechanism is to help active timing margin perform at its best.

• For temperature variation: I first propose Ti-states, an active timing

margin solution based on the temperature sensor, that leverages a lucrat-

ive phenomenon called temperature inversion to reduce processor power.
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Then, I analyze how to help Ti-states maximize its power reduction

benefits, depending on the workload characteristics, the manufacturing

technology node, and the chip operating temperature.

Ti-states replaces the conventional static margin design where a worst-

case high temperature scenario is guarded against by allocating enough

margin with an active timing margin solution that tracks runtime tem-

perature change and the resulting circuit speed variation to adjust the

real-time margin dynamically. In particular, Ti-states exploit the highly

beneficial temperature inversion effect of CMOS transistors as technology

scales down, where circuit speed accelerates significantly under higher

temperature. We further show that with Ti-states, runtime processor

temperature can be properly managed to maximize chip power reduction,

depending on the workload’s activity level, and the chip’s manufacturing

technology.

• For voltage variation: I study a production active timing margin sys-

tem, the POWER7+ multicore, where a responsive per-core hardware

feedback loop is implemented that adjusts core frequency and chip supply

voltage based on real-time monitored timing margin amount. Through

comprehensive hardware measurements, I show that among all voltage

noise components, active timing margin deals with the notorious di/dt

effects very effectively, which in conventional systems excess margin tar-

geting worse-case di/dt needs to be allocated. However, I find active tim-

ing margin falls short in dealing with long-term DC voltage drop, which
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is related to workload characteristics and chip-wide multicore activities.

To maximize active timing margin’s gains, we propose workload map-

ping management to balance compute loads on different active timing

margin “domains”. Our management points to power delivery network

co-design for active timing margin. We show proper workload mapping

can at least double active timing margin’s power improvement.

• For process variation: I take an alternative perspective and investig-

ate how to make active timing margin automatically push the highest

performance out of each core on a multicore system. To achieve this

goal, I perform in-depth per-core characterization and instrumentation

on POWER7+’s shipped active timing margin design. The instrument-

ation exposes significant performance variation across cores, which is

caused by the process variation of the pipeline itself, the variation of the

active timing margin hardware loop, as well as the workloads’ impact on

DC voltage drop, discovered in the voltage variation research aforemen-

tioned. The inter-core performance heterogeneity has previously been

hidden by the multicore’s default active timing margin setting, which

produces uniform frequency target across all cores. Our per-core active

timing margin customization automatically brings out the core’s highest

speed, subject to frequency and application performance variation. To

manage the performance variation of the resulting system, we propose

a management scheme to improve application performance controllably.

Measurement shows the proposed management boosts target application
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performance by over 10%.

Put in the system layer context, the contribution of this thesis and

the research effort I conducted to arrive at the aforementioned contributions

covers circuit, architecture, and software level, illustrated by Figure 1.1.

At circuit and device level: I perform hardware measurement to un-

derstand what is the granularity that timing margin sensor measures available

margin, and map circuit speed/delay to temperature or voltage variation. In

the Ti-states proposal, the characterization of how temperature affects CMOS

transistor speed, and hence available margin, is critical in building the active

timing margin loop. In the voltage variation study, the dissecting of voltage

noise into different components that active timing margin can, or can not deal

with is built upon the understanding of how voltage affects circuit speed, using

timing margin sensors.

At architecture design level: I propose designs that implement, or

helps active timing margin perform at its best. Ti-states are a set of power

management states stored as tables in system firmware, which are later indexed

using runtime temperature sensor readings. Ti-state is essentially an evolution

of classic power management states, such as P-states For voltage variation, the

analysis we make points to an alternative power delivery network design which

is separated into different domains, with each domain covering a few cores to

minimize per-domain DC voltage drop and maximize active timing margin’s

voltage reduction capability.
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At system software and application level: I propose application

mapping and throttling technique on multicore systems to manage a micro-

processor’s DC voltage drop, with the goal of reducing total processor power

or enhancing target application performance. The software solution serves as

a complement to the hardware-only active timing margin mechanism and is

proven by measurement to double the power reduction, or performance im-

provement gain.

1.2 Long-term Impact

As Dennard scaling and Moore’s law approaching their end, and general-

purpose architectures becoming ripe, it is vital that the research contributed to

enhancing processor power efficiency have practical long-term impact, or they

perish. The long-term impact of my thesis lies in three fundamental aspects:

First, my thesis on optimizing microprocessor timing margin has wide

applicability in the semiconductor industry. It is not dependent upon one

processor architecture and does not affect and interfaces between hardware and

software. Ti-states was carried out on the GPU of an APU System-on-Chip

(SoC), while the study on optimizing timing margin for voltage and process

variation was conducted on a multicore platform. In principle, any processor

architecture can benefit from the insights and proposals in this dissertation,

including accelerators, if ultra power efficiency is desired.

Second, the active timing margin technique has seen proven commercial

success by the time this dissertation is made. When I first initiated this
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research topic five years ago, only a few processors are designed with active

timing margin, mostly for experimenting and testing purpose [54, 14]. Today,

the latest high-end chips almost all adopt this technique to squeeze out the

last bit of power efficiency from silicon [100, 35, 13, 104, 103] because of its

effectiveness and convenience for implementation. In this context, our work

that tries to optimize active timing margin provides a free extra mile for chip

vendors to increase the efficiency gain, proving its long-term impact.

Thirdly, all results and analysis presented in this thesis are acquired

from solid, real hardware measurement. Acquiring and interpreting the type

of data in this thesis is very difficult, which involves a deep study of a hardware

platform’s internals. The measurement data not only proves the improvements

and insights we made can sustain future work’s tests, but also provide trust-

worthy, valuable guidance for other researchers who need a reference. Thus,

this dissertation’s impact is of high practicality.

1.3 Dissertation Organization

The rest of my dissertation is organized as follows. Chapter 2 intro-

duces the basics of pipeline timing margin, prior proposals that try to optim-

ize it, and why active timing margin is the design choice today. Chapter 3,

Chapter 4, and Chapter 5 describe the proposed active timing margin man-

agement schemes for temperature, voltage, and process variation, respectively.

The work in these chapters are built upon solid characterization and analysis

using hardware measurement, and the proposed work cross architecture and
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software design. Chapter 6 provides a retrospective and prospective view of

my dissertation work. The retrospective part summarizes the principles dis-

tilled from this work on building a maximally efficient active timing margin

system; the prospective part suggests next steps for generalizing our work into

massive industry adoption.

1.4 Previously Published Material

This dissertation contains materials that are previously published in

peer-reviewed conferences and journals:

Chapter 2. The introduction on timing margin sensors, environmental

sensors, and the control loop for active timing margin is a collection of the

part of the materials published in the following papers: Ti-states: Processor

Power Management in the Temperature Inversion Region. Yazhou Zu, Wei

Huang, Indrani Paul and Vijay Janapa Reddi. In International Symposium

on Microarchitecture (MICRO), 2016 [113]; Adaptive guardband scheduling

to improve system-level efficiency of the POWER7+. Yazhou Zu, Charles

R. Lefurgy, Jingwen Leng, Matthew Halpern, Michael S. Floyd and Vijay

Janapa Reddi. In International Symposium on Microarchitecture (MICRO),

2015 [115]; Active Timing Margin Management for Maximizing Multi-Core

Efficiency on an IBM POWER7+ Server. Yazhou Zu, Daniel Richins, Charles

R. Lefurgy and Vijay Janapa Reddi. In International Symposium on High

Performance Computer Architecture (HPCA) [116].

Chapter 3. The design and management of active timing margin for
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temperature variation are based on the following paper: Ti-states: Processor

Power Management in the Temperature Inversion Region. Yazhou Zu, Wei

Huang, Indrani Paul and Vijay Janapa Reddi. In International Symposium

on Microarchitecture (MICRO), 2016 [113]. A modified version of this paper

is also published in IEEE’s annual Top Picks selection: Ti-states: Power Man-

agement in Active Timing Margin Processors. Yazhou Zu, Wei Huang, Indrani

Paul and Vijay Janapa Reddi. In IEEE Micro, June 2017, 37(3):106-114 [114].

I am the lead author of these papers, and I was responsible for proposing the

idea, experimenting with it and evaluating the final results.

Chapter 4. The characterization of on-chip voltage noise, as well as its

active timing margin management for power saving is based on the following

paper: Adaptive guardband scheduling to improve system-level efficiency of the

POWER7+. Yazhou Zu, Charles R. Lefurgy, Jingwen Leng, Matthew Halpern,

Michael S. Floyd and Vijay Janapa Reddi. In International Symposium on

Microarchitecture (MICRO), 2015 [115]. I am the lead author of this paper.

I conducted all the comprehensive characterization experiments, proposed the

idea to improve microprocessor power saving, and performed the associated

evaluation.

Chapter 5. The work on active timing margin management for mul-

ticore process variation is is based on the following paper: Active Timing Mar-

gin Management for Maximizing Multi-Core Efficiency on an IBM POWER7+

Server. Yazhou Zu, Daniel Richins, Charles R. Lefurgy and Vijay Janapa

Reddi. In International Symposium on High Performance Computer Archi-
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tecture (HPCA), 2019 [116]. I am the lead author of this paper. I proposed

the idea, performed the design space exploration, and conducted all perform-

ance improvement evaluation.

Other publications: During the length of my Ph.D., I’ve also worked

on other related topics and made joint publications in GPU voltage analysis,

Integrated Voltage Regulator analysis, etc. The co-authored papers are GPU-

Volt: Modeling and characterizing voltage noise in GPU architectures. Jing-

wen Leng, Yazhou Zu, Minsoo Rhu, Meeta Gupta and Vijay Janapa Reddi.

In International Symposium on Low Power Electronics and Design (ISLPED),

2014 [58]; GPU voltage noise: Characterization and hierarchical smoothing of

spatial and temporal voltage noise interference in GPU architectures. Jingwen

Leng, Yazhou Zu and Vijay Janapa Reddi. In International Symposium on

High Performance Computer Architecture (HPCA), 2015 [57]; Ivory: Early-

stage design space exploration tool for integrated voltage regulators. An Zou,

Jingwen Leng, Yazhou Zu, Tao Tong, Vijay Janapa Reddi, David Brooks,

Gu-Yeon Wei and Xuan Zhang. In Design Automation Conference (DAC)

2017 [112]; Efficient and reliable power delivery in voltage-stacked manycore

system with hybrid charge-recycling regulators. An Zou, Jingwen Leng, Xin He,

Yazhou Zu, Vijay Janapa Reddi and Xuan Zhang. In Design Automation Con-

ference (DAC) 2018 [111]; Voltage-Stacked GPUs: A Control Theory Driven

Cross-Layer Solution for Practical Voltage Stacking in GPUs. An Zou, Jing-

wen Leng, Xin He, Yazhou Zu, Christopher D. Gill, Vijay Janapa Reddi and

Xuan Zhang. In International Symposium on Microarchitecture (MICRO),
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2018 [1]. As co-authors of these papers, I help brainstorm ideas, carry out

necessary experiments with the lead author, and refine the writing of these

papers.
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Chapter 2

Timing Margin: A Perpetual Role in

Modern Microprocessors

This section explains the basics of the microprocessor’s timing mar-

gin and motivates why active management of timing margin is necessary to

improve power efficiency. This section first goes over the necessity of timing

margin in modern microprocessors. Then it enumerates the main components

involved in timing margin. We end this section with a brief discussion of the

working mechanism of active timing margin.

2.1 The Importance of Pipeline Timing Margin

Timing margin is a necessary component in modern microprocessors,

whether it is a general purpose CPU, Graphics Processing Unit (GPU), or

specialized accelerators like Tensor Processing Unit (TPU) [49].

Almost all today’s processors are pipelined for higher instruction through-

put and workload performance. All pipeline stages have the same time dur-

ation to complete their computing, or circuit toggling tasks, synchronized by

a global clock signal. Each cycle, circuits constructed by CMOS transistors

take some time to switch and then produce a stable output electric level to be
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fed into latches, or registers. Ideally, the circuit’s switch time can be calcu-

lated, or simulated using CMOS device’s charge and discharge time formula

given certain supply voltage levels and transistor parameters, and pipeline

cycle time should be equal to the simulated switch time if all pipeline stages

have balanced design and have the same switch time.

However, in practice the pipeline circuit’s switch time have a lot of un-

certainty. The uncertainty of pipeline timing can be caused by, for instance,

transistor performance variation due to environment temperature variation,

unstable supply voltage levels delivered to the transistors, and imperfect tran-

sistor size caused by manufacturing lithography, transistor aging, etc. These

sources of timing uncertainty make circuit switch time deviate from their sim-

ulated normal points, which could make circuits complete their jobs faster,

or slower than design simulation. To assure all circuits have plenty of time

to complete their toggling, pipeline cycle time is always longer than the the-

oretical circuity switch time, the added time duration in clock cycle is called

timing margin, as illustrated in Figure 2.1a.

Timing margin can be implemented as tuning supply voltage higher

while leaving frequency target untouched, which makes circuits operator faster

and thus leaving margin in the cycle time, or tuning the frequency slower while

leaving supply voltage the same, which makes cycle time longer and creating

margin. These two methods are equivalent. The former approach is widely

known as voltage guardband as described in Figure 2.1b. In this thesis, we

explore opportunities in both designs, i.e., reduce the voltage to save power in a
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CMOS circuit’s  
useful work

latch

pipeline stage:

clock cycle: circuit time timing 
margin

(a) Timing margin is the time left in clock cycle after circuit completes its work.

voltage needed to 
complete pipeline 
circuit toggling

total 
supply 
voltage

guardband

(b) Voltage guardband

reduce voltage 
save power

increase frequency 
save performance

original timing 
margin

(c) Power/Performance saving

Figure 2.1: Timing margin ensures processor execution correctness by allocat-
ing extra room in pipeline’s clock cycle time. Timing margin can be delivered
by providing extra voltage, known as the voltage guardband, or alternatively
slowing down frequency. Safely reducing the timing margin can improve power
via undervolting, or improve performance via overclocking.
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voltage guardband approach, and increase frequency to improve performance.

A good analogy of the microprocessor pipeline’s timing margin in every-

day life is the relationship between cars and lanes. Ideally, a lane would have

the same width as a car if cars can strictly move with the shape of the lane.

Yet, in reality, lanes are always much wider than cars because cars often de-

viate from lane orbits. The deviation uncertainty may be caused by a human

driver’s improvisation, or the inherent control error of the vehicle (e.g., a mis-

match between the left and right tires). The extra space between a lane and a

car allows tolerates these errors and make sure no accidents occur. The extra

room between lane width and car width works just like how pipeline timing

margin protects against circuit’s timing uncertainty.

Failing to provide enough timing margin is catastrophic for modern

processors as it can lead to pipeline timing errors, causing incorrect applic-

ation execution results, or even system crash. Circuits need enough time to

deliver the correct signal for the next pipeline stage to compute on. With

not enough margin, the circuit may not have enough time to produce the

correct bit, due to the unusual load environment like extreme temperature

environments. The erroneous bits can be meaningless, pointing to a wrong

data address, or representing an invalid instruction that cannot be decoded,

breaking microprocessor’s correct execution stage.

This dissertation addresses the timing margin issue on a processor,

primarily CPUs and GPUs. However, timing margin widely exists on other

kinds of chips that use pipeline microarchitecture, and are equally important to
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guarantee correct chip functioning. One intuitive example is the “rowhammer”

in DRAM chips [50]. The authors in [50] found that stressing one row in

DRAM chips can cause adjacent row’s cells to have erroneous bit storage. The

underlying mechanism is because frequency access to a row creates electrical

interference to the supply voltage of the adjacent row’s wordline, which makes

DRAM cell capacitor to leak charge quicker than designed bit retention period.

To protect against this situation, DRAMs need to allocate more margin to bit

refresh frequency, making sure the cell’s charge leakage time does not exceed

the threshold for retaining the correct bit in the worst runtime environment.

Though DRAM is not exactly the same as a microprocessor’s logic circuit

structure, this case illustrates the importance of timing margin in pipelined

chips.

2.2 What Consumes the Timing Margin?

Timing margin is excessively high in today’s processors, costing over

20% extra supply voltage in shipped chips [89, 57]. Our work, along with

much prior art try to reduce timing margin magnitude and saves power or

performance. The first step to achieve this goal is to understand what timing

margin is allocated for, or at runtime what phenomenon makes pipeline circuit

time deviates from normal and erodes, or consumes the margin. Although

the uncertainty in pipeline circuit timing is caused by parasitic effects in the

computer system, they are not completely random. In this dissertation, we

dissect the modern processor’s timing margin into three main components
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follwing prior art’s study on static margin, namely temperature, voltage, and

process variation (TVP variation [87]). These three effects are deemed the

biggest consumers that contribute to timing margin’s high amount, and they

happen mostly in independent manners which facilitate us to optimize them

one by one.

Temperature variation is one important source of timing uncertainty.

When temperature changes, transistor performance varies because temper-

ature variation alters the activity level of the particles flowing in CMOS tran-

sistor’s channel, which changes transistor switch speed and circuit completion

time. In practice, processor temperature variation is unavoidable because

during workload run the charge and discharge of semiconductor transistors

inevitably raise the temperature. Depending on workload intensity, the tem-

perature profile of the chip varies temporarily and spatially, affecting circuit

timing. To tolerate timing uncertainty caused by temperature variation, mar-

gin must be added in the cycle time. In Chapter 3 we perform an in-depth

study on how temperature affects timing margin and propose a feedback loop

with corresponding management to combat against it.

Voltage variation is a very dangerous source of timing uncertainty. It is

caused by the interaction between the parasitics of the power delivery sub-

system of a microprocessor and the processor’s varying power draw under

workload execution. Figure 2.2 from [58] gives an intuitive overview of the

electrical mechanism of voltage variation.
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Figure 2.2: An electrical model of a computer’s power delivery subsystem,
from the voltage regulator module (VRM) to on-chip transistors. Resistive,
capacitive, and inductive impedance exist on this path, adding noise to the
voltage delivered to transistors which causes timing uncertainty.

The supply voltage delivered to the CMOS transistors contains lots of

noise because the path from the source of the voltage supply to the end tran-

sistors has electrical parasitics, including resistive, capacitive, and inductive

components. Typically, the power supply subsystem can be modeled as four

parts: the voltage regulator module (VRM), the printed circuit board (PCB),

the package, and on-die power delivery network (PDN). Each part contributes

to the total impedance. The impedance exists because the power delivery

subsystem is made of real, physical materials - on-chip and off-chip wires have

resistance even the magnitude can be small, wires can form loops by chance

and create inductive impedance, the alignment between wires and the added

decoupling capacitors create capacitance, etc.

Resistive parasitics cause supply voltage’s IR drop following Ohm’s law.

Higher power causes a higher IR drop. Inductive and capacitive parasitics
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further worsen supply voltage with the di/dt effects. The di/dt effect happens

when there is a rapid change in the current draw or the power consumption

of the microprocessor. The di/dt effect happens very rapidly, typically over

tens of cycles, yet very rarely. The combined IR drop and di/dt effects make

the supply voltage experienced by transistors very noisy, adding uncertainty

to circuit timing. In Chapter 4, we perform an in-depth analysis on how state-

of-the-art hardware tries to reduce voltage noise and propose management

techniques to squeeze out power efficiency from voltage noise.

Process variation is another source of uncertainty if pipeline circuit timing.

Unlike temperature and voltage variation which change dynamically during

runtime, process variation is a static effect that is formed during chip’s man-

ufacturing lithography process. During lithography, transistor performance

variation occurs because the lithography instruments cannot perfectly con-

trol the various lithography steps, such as etching and doping. Wire width,

transistor gate width, and length can be etched with noise. Dopant density

can deviate from the ideal density level. All these effects make transistor and

wire’s performance deviate from the ideal case, and make the speed of different

transistors and wires differ. A microprocessor’s performance is determined by

the slowest part of the chip. The result is that faster circuits are forced to have

some amount of timing margin because it is synchronized using the same clock

as the slow circuits. In Chapter 5 we devise automatic methods to expose a

multicore’s performance variation caused by process variation, and propose
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management schemes to manage the resulting non-deterministic application

performance.

We acknowledge there are other effects that also contribute to the tim-

ing margin, such as transistor aging and processor testing inaccuracy. How-

ever, these effects are not as strong as the temperature, voltage, and process

variation aforementioned in a processor’s typical lifetime, and the condition

for it to occur is too extreme. For this reason, we leave out these effects in

this dissertation.

2.3 The Need for Active Timing Margin

While it is intuitive to allocate timing margin in pipeline cycles to

combat various effects that cause circuit timing uncertainty, the specifics of

how the amount of margin is calibrated is intricate.

In traditional designs, the margin is estimated during the chip design

and testing stage, following a worst-case design approach. Under this ap-

proach, the amount of timing margin is a static value that is able to tolerate

the most extreme conditions that slow down microprocessor circuits, such as

very heavy di/dt voltage droops, very large IR drop caused by high power work-

loads, and unusual operating temperature that degrade transistor performance

significantly. Because timing margin is a fixed value in this design, failing to

consider all corner cases or allocating margin not conservatively enough may

neglect an extreme corner case the user might create to hamper pipeline tim-

ing. Thus, the static worst-case timing margin must aggregate corner case of
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all effects to determine the total amount of margin is added to the chip.

The cost of the worst-case margining approach, however, is prohibit-

ively high despite its straightforward and low-overhead implementation. Prior

art has shown that the extreme conditions that will utilize all the margin hap-

pen extremely rarely, for voltage noise the heavy di/dt droops over 10% of

the supply Vdd happens less than 1% of the time [89, 58], while timing mar-

gin must protect against these rare worst cases, leaving the margin unused

most of the time. In [56], researchers reported that 20% of the supply voltage

of a commercial GPU can be safely reduced without causing program execu-

tion errors, which reflects the huge amount of voltage guardband and timing

margin in today’s chips. The wastage is significant not only because of the

power and energy wasted, but also because today’s microprocessors are inher-

ently power limited, and wasting power means limiting processor performance.

Therefore it is imperative that we investigate what leads to timing uncertainty

and consumes timing margin.

Many research efforts have been made to reduce the magnitude of the

conventional static worst-case margin, ranging from benchmarking and sim-

ulation efforts to understand the worst-case limit [51, 8, 91], microarchitec-

ture analysis to characterize the events that lead to rare extreme noise condi-

tions [78, 37, 38, 88], low-overhead architecture design for error toleration and

noise smoothing [39, 88, 57, 28], to software techniques including compilation,

scheduling, and runtime management to avoid high timing margin consump-

tion [86, 69, 74, 56]. Many of these works have shed useful insights and are
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partly incorporated into the latest designs. However, most of these proposals

are not adopted as a whole by industry, either because of their high design

overhead, lack of reliability guarantee, or unacceptable performance overhead.

This dissertation concentrates on one particular design flavor widely

adopted for reducing timing margin, Active Timing Margin. The idea of active

timing margin is very intuitive - instead of providing margin for the worst case,

active timing margin provides just enough margin under the present condition,

and dynamically stretches the margin when emergent event occurs, whether

temperature goes to extreme, voltage falls very low, or threads are running

on a flow core. Active timing margin relies on environment sensors to check

runtime load conditions, including timing margin sensors, temperature sensors,

power sensors, etc, rather than performance event counters to predict when a

high-stake event may occur as the cost of misprediction can be high.

Figure 2.3 illustrates a high-level design of active timing margin. It

uses a control loop between the sensor and the voltage/frequency controller

to adjust the timing margin based on real-time monitored load environment.

Because active timing margin has very low design and verification overhead,

and it has been proven to be effective in mitigating process, voltage, and

temperature variation, active timing margin has become the de facto approach

for modern chips to reduce margin [54, 14, 100, 35, 13, 104, 103, 113].

Figure 2.4 from [54] illustrates how active timing margin deals with

the dangerous di/dt effect. Starting at 1500 ns, a heavy voltage droop caused

by strong di/dt effect slows down circuits and necessitates some amount of
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Figure 2.3: Active timing margin is a control loop that detects timing margin
and related chip load environment, and accordingly adjust supply voltage or
operating frequency in real-time to supply just enough margin.
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Figure 2.4: Active timing margin protects di/dt effect by making frequency/c-
lock cycle track supply voltage, which improves performance and reduces tim-
ing margin wastage.
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timing margin to protect against it, losing performance under the same supply

voltage. The static margin needs to set at the lowest frequency at 3050 MHz

to tolerate the di/dt effect. However, only small voltage ripple occurs on the

power delivery network when heavy di/dt effect is over. During these periods,

the large timing margin is not needed, yet the static approach still provisions

the timing margin set by the worst case, wasting a lot of performance under

the same voltage.

To reclaim the wasted frequency, active timing margin dynamically

adjusts clock frequency to match the magnitude of voltage variation. When

the di/dt effect occurs, clock frequency ramps down quickly to provide the

need timing margin. When there’s no di/dt effect, clock frequency stays at a

higher level to reclaims the unused timing margin. Overall, the system enjoys

a higher performance.
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Chapter 3

Ti-states: Active Timing Margin Management

in the Temperature Inversion Region

Temperature has an intuitive impact on circuit speed, timing, and

pipeline timing margin because CMOS transistor performance varies under

different chip temperature levels. Conventionally, chip designer’s view is that

transistor slows down a lot under a higher temperature, so timing margin is

set against the worst-case high temperature. However, we find this view no

longer holds in today’s CMOS technologies owing to an effect called temper-

ature inversion. In today’s state-of-the-art technology nodes, the temperature

inversion effect is the major temperature-related effect that changes circuit

performance and hence affect pipeline timing margin, and this phenomenon

induces high speed variation. Therefore, we devise an active timing margin

solution for temperature variation, with a focus on the temperature inversion

effect, and explore system-level management scheme to achieve the highest

power saving.

Formally, temperature inversion refers to the phenomenon that in cer-

tain voltage regions transistors speed up and operate faster at a higher tem-

perature. Figure 3.1a illustrates the temperature inversion effect we measured
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formance as technology scales.

on an AMD® A10-8700P processor [70]. It shows the normalized circuit per-

formance under different temperature with respect to a 0℃ baseline. At 1.1

V, as temperature increases, circuit performance becomes slightly slower at

80℃, as expected from conventional wisdom. However, at 0.7 V circuit be-

comes much faster as temperature increases to 80℃ owning to the temperature

inversion phenomenon. Between 1.1 V and 0.7 V there exists a special inflec-

tion voltage level at 0.9 V where circuit speed remains almost constant at all

product specified temperatures.

At a high level, the reason why temperature inversion occurs is a result-

ing of two fundamentally conflicting effects - when the temperature increases

both carrier mobility and threshold voltage decrease. Carrier mobility de-

crease causes devices to slow down while threshold voltage reduction causes

the devices to speed up. Temperature inversion happens in the region where

the supply voltage is low enough to make the second factor (i.e., threshold
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voltage reduction) dominate, which is 0.7 V in Figure 3.1a. Otherwise, the

devices slow down at the higher temperature, degrading performance as in the

case of 1.1 V.

In the past, temperature inversion has been safely discounted by pro-

cessor designers because the nominal supply voltage at which this effect starts

to occur is too low in prior technologies. At 250 nm, when temperature inver-

sion was first discovered, the inflection voltage was more than 1.5 V lower than

the nominal supply voltage [75, 6, 21]. With such a wide margin of separation,

temperature inversion does not interfere with the processor’s normal operating

voltage region.

However, with technology scaling, today’s processors are operating close

to the temperature inversion’s voltage region. Thus, the impact of this effect

can no longer be safely discounted. Figure 3.1b shows a detailed device analysis

based on predictive technology models [105, 109]. As technology scales down

from 90 nm to 22 nm, the inflection voltage increases with smaller feature

sizes. At the 32 nm node, the inflection voltage is predicted to closer to the

nominal supply voltage. Scaling into future FinFET and FD-SOI devices with

smaller feature sizes, it is likely that temperature inversion will occur for all

of a processor’s operating voltage range [53, 15].

Silicon measurements performed on the AMD® A10-8700P processor

confirm this behavior in practice. At the 28 nm node, the inflection voltage

in Figure 3.1b falls within the range of the processor’s different P-states. The

integrated GPU’s highest P-state is only slightly above the inflection point.
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The fact that temperature inversion is the major temperature-related

effect that varies circuit speed and timing margin today, and the fact that it

has been neglected by the architecture community in the past make it imperat-

ive to thoroughly investigate the potential implications temperature inversion

imposes on timing margin and architecture design. For this reason, we focus

on exploiting temperature inversion for actively provisioning timing margin

depending on runtime temperature level and transistor temperature inversion

intensity. The rest of this section is organized as follows: Chapter 3.1 explains

our experimental setup, Chapter 3.2 systematically characterize how temper-

ature affects circuit speed in contemporary microprocessors, Chapter 3.3 pro-

poses our Ti-state solution for active timing margin, Chapter 3.4 discusses

how to manage systems equipped with Ti-states, and Chapter 3.5 addresses

related work.

3.1 Experimental Setup

In this subsection, we provide an overview of the experimental plat-

form to study temperature inversion, including the chip under study and our

temperature control mechanism. In particular, we explain the timing margin

sensor we use, which serves as power supply monitor in this chip. Timing

margin sensor is the key element of our work.
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Figure 3.2: Die photo of the A10-
8700P SoC.
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Figure 3.3: Temperature control
setup.

3.1.1 AMD® A10-8700P Accelerated Processing Unit

The AMD® A10-8700P Accelerated Processing Unit (APU) is a System-

on-Chip manufactured in 28 nm HKMG planar bulk technology. It integrates

two CPU core-pairs, eight GPU cores, and other components as shown in Fig-

ure 3.2. Each CPU core-pair contains two out-of-order cores that share the

front-end and floating point units. Each GPU core includes four 16-lane wide

single instruction multiple data (SIMD) units.

We conducted temperature inversion studies on both the CPU and

GPU. A separate power delivery network allows us to control the CPU and

GPU voltage independently. But in this work, we present the results for the

GPU only because the GPU’s throughput-oriented architecture allows low-

voltage region operation with meaningful and realistic performance. However,

because the temperature inversion effect we study depends solely on the sup-

ply voltage, and not necessarily the underlying architecture, the analysis and

benefits we present on the GPU naturally do extend to the CPU as well.

The GPU clock is set at 300 MHz in the voltage region we explore
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around 0.7 V. We pick 300MHz because its associated low voltage is within

the temperature inversion region, and makes it possible to explore the po-

tential impact of temperature inversion on future near-threshold technologies.

The 300 MHz frequency corresponds to the GPU’s lowest P-State, and in prac-

tice, we have observed this P-State being exercised frequently during normal

workload execution.

We use the ATITool [2] to set the GPU’s voltage and frequency over

a wide operating range. To measure power, we use a National Instrument’s

DAQ that reads the GPU’s isolated supply voltage rail once every 10 ms.

3.1.2 Temperature Control Setup

To characterize temperature inversion’s effect on performance and power

under different operating conditions, we have to carefully regulate the pro-

cessor’s on-die temperature. In our work, we generally sweep temperature

range from 0℃ to 80℃. This temperature range falls within the product’s

operating temperature range and does not affect aging significantly.

Figure 3.3 shows our temperature control setup. A thermal head is

attached to the processor package. To stabilize the die temperature, which is

measured via an on-chip thermal diode, at a user-specified target value, the

thermal head’s temperature is adjusted every 10 ms. Physically, the thermal

head’s temperature is controlled via a water pipe and a heater. The water

pipe is connected to an external chiller to offer low temperatures while the

heater increases temperature to reach the desired temperature setting. Under
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feedback control, we see a 2℃ temperature variation on the diode in the worst-

case. So, for instance, Figure 3.3 shows the thermal head sets its temperature

to 37℃ to let the die temperature stay at 40℃.

3.1.3 Timing Margin Sensors: On-chip Power Supply Monitors
(PSMs)

We use power supply monitors (PSMs) [35, 34] to accurately measure

circuit speed changes in the chip under different temperature conditions. A

PSM is a time-to-digital converter that reflects circuit time-delay or speed in

numeric form. Originally designed as a voltage noise sensor, a PSM can sense

minute circuit timing changes due to di/dt droops [35]. We use the PSM as a

means to characterize circuit performance under temperature variation.

…
…

……
…

…

log 
module

min
max
ave
sample

Signal travels

Figure 3.4: Power supply monitors (PSMs) measures pipeline speed/timing
margin with an inverter ring. By counting how many inverters an edge has
traveled through, the PSM reports a digital value that reflects circuit speed.

Figure 3.4 shows the structure of a PSM. Its core component is a ring

oscillator that counts the number of inverters an “edge” has traveled through
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in each clock cycle. When the circuit is faster (e.g., under smaller di/dt effects

or stronger temperature inversion), an edge can pass more inverters and PSM

will produce a higher count output. A supporting module logs ring oscillator’s

per-cycle output and accumulates the minimum, maximum, and average values

over a time.

The A10-8700P processor has ten PSMs in each CPU core-pair and

two PSMs in each GPU core, distributed across the cores to account for pro-

cess variation and spatial differences in di/dt effect. Through measurements

we determined that the changes in the different PSM readings under different

temperatures are nearly identical, thus we only show the result of one repres-

entative PSM in GPU. The results are representative of using other or more

than one PSM.

For reasons that prevent us from showing absolute values, we normalize

the PSM reading to a reference value measured under 0.7 V, 300 MHz, 0℃,

and idle chip condition. We log the minimum, maximum, and average output

of all the PSMs.

3.2 Characterizing Timing Margin Under Temperature
Inversion Variation

In this section, we first view the timing margin sensor (i.e., PSM) as a

normal logic path to understand circuit performance under different temperat-

ure environment (Chapter 3.2.1). Then, we use the circuit speed difference to

extrapolate how much extra margin can be squeezed out due to timing margin
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change caused by temperature inversion variation (Chapter 3.2.2).

3.2.1 Circuit Speed Variation Under Different Temperature

The PSM by itself is a digital circuit located between the pipeline

latches with other normal logic paths [95], and therefore its speed charac-

teristics are representative of a pipeline’s overall performance. For this reason,

we use the PSM’s output to quantify circuit performance across a wide range

of different steady-state temperatures.

We keep the chip idle (i.e., the clock is still running) and read the PSM’s

“average” value to exclude the di/dt effect caused by workload dynamics.

Figure 3.5 shows the circuit speed under different supply voltages and die

temperatures. Speed is reflected by the PSM’s normalized output – higher

value implies a faster circuit. At a higher supply voltage, the circuit switches

37



faster, and the PSM can travel more inverters in a cycle which produces a

higher count. The voltage-to-PSM relationship conforms to similar analysis

as in [115].

We find that temperature’s impact on circuit performance depends on

the supply voltage. In the high supply voltage region around 1.1 V, the PSM’s

reading becomes progressively smaller as the temperature rises from 0℃ to

100℃. The circuit is operating slower at a higher temperature, which aligns

with conventional belief [56]. The reason for this circuit performance degrada-

tion is that the transistor’s carrier mobility decreases at a higher temperature,

leading to smaller switch-on current (Ion) and longer switch time [105].

Under a lower supply voltage, the PSM’s reading increase with higher

temperature, which means the circuit switches faster (i.e., the temperature in-

version phenomenon). Under temperature inversion the transistor’s threshold

voltage (Vth) decreases linearly as temperature increases [105, 75, 21]. Thus,

for the same supply voltage, a lower Vth provides more drive current (Ion)

which makes the circuit switch faster. The speedup effect is more dominant

when the supply voltage is low because then the supply voltage is closer to

Vth.

When the supply voltage is low enough, the speedup contribution from

the reduced Vth, at some point, will balance out the carrier mobility slowdown.

We call this voltage point the inflection voltage. The inflection voltage may

change from chip to chip due to Vth variations, and it can be characterized

during the binning process. In Figure 3.5, we show that the tested processor’s
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inflection voltage is between 0.9 V and 1 V. In this region, the temperature

does not have a notable impact on circuit performance. Below the inflection

voltage (0.95 V) is the temperature inversion region while above it is the non-

inversion region. Half of the GPU’s P-states, which range from 0.75 V to

1.1 V, operate in the temperature inversion region.

In Figure 3.5’s temperature inversion region, the speed change between

any two temperatures increases when the supply voltage scales further away

from the inflection point. As voltage scales into the lower voltage region around

0.6 V, the PSM reading varies by more than 40%, indicating the drastic spee-

dup at a higher temperature. As voltage goes lower towards the near-threshold

region, the overdrive voltage (Vdd− Vth) becomes small and it is very sensitive

to small Vth changes. Thus, temperature inversion’s Vth reduction has a more

significant impact on device performance.

Figure 3.6 zooms into the low voltage region between 0.6 V and 0.86 V

and has a clearer view of temperature inversion. The figure shows temperature

inversion’s performance benefit at 100℃ over the 0℃ baseline, and this benefit

increases as the supply voltage decreases. Hereon forward we use temperature

inversion at 0.7 V as a case study to dive deeper and get more insights. Al-

though we restrict ourselves to this single voltage, there is ample opportunity

to demonstrate how temperature inversion may add new ingredients to overall

system management.
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3.2.2 Estimating Active Timing Margin’s Undervolting Opportun-
ity

In this subsection, we provide a “design space exploration” of active

timing margin’s voltage reduction opportunity. When running workloads, chip

temperature frequently goes up and speeds up circuits because of temperature

inversion. This adds extra timing margin in the pipeline, and the extra margin

can be exploited via undervolting.

To determine the amount of extra timing margin that can be exploited,

we first need a “baseline margin” where timing margin is not overprovisioned

for temperature variation. In other words, the “baseline margin” is the tim-

ing margin allocated for the worst-case temperature. It can tolerate all other

effects such as di/dt and aging at worst-case temperature, yet circuit speed
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cannot be degraded anymore compared to worst-case temperature. When un-

dervolting, it is crucial that the system only reclaims the extra timing margin

added from this “baseline margin” and does not reclaims anymore. Otherwise,

pipeline timing may fail under some worst-case workloads, such as in the case

of voltage stressmarks [51, 8].

We use the timing margin measured at 0℃ as the “golden” reference

when reclaiming temperature inversion’s extra margin. In other words, the

timing margin delivered by our active timing margin scheme should match

the “golden” reference. Under this constraint, we can undervolt to maximize

power saving.

We choose 0℃ as the reference because under temperature inversion

lower temperature degrades circuit performance. Even though 0℃ rarely oc-

curs in desktop, mobile, and datacenter applications, the timing margin still

needs to be set to tolerate this worst-case condition. In the industry, 0℃

or below is used as a standard circuit design guideline [44]. In certain scen-

arios, such as military use, an even more conservative reference of -25℃ is

considered [21].

Figure 3.6 shows our estimation process of how much voltage can be

reduced via active timing margin. The PSM difference between the high-

temperature 100℃ line and the “golden reference” line at 0℃ represents the

extra timing margin in the units of inverter delays. In other words, it reflects

how much faster the circuits can run at a higher temperature. To bring the

faster circuit back to the original speed, supply voltage needs to reduce such
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that under a higher temperature the PSM will ideally read the same value.

We estimate the voltage reduction potential with linear extrapolation. Fig-

ure 3.7 shows the estimated opportunity at different temperatures. As supply

voltage scales down, the voltage reduction potential goes up almost linearly.

Temperature inversion effect is stronger in the lower voltage regions, and hence

the greater timing margin opportunity. At 0.6 V and 100℃, the extra timing

margin provided by temperature inversion can turn into almost 10% voltage

reduction compared to 0℃. As a reference, 5% voltage reduction is considered

significant in previous works [104]. At 0.7 V in our study, we can have 1.5%

to 7% voltage reduction potential depending on the processor temperature.
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3.3 Temperature Inversion States (Ti-States)

Having understood temperature inversion’s potential for active timing

margin, we propose a systematic method to establish a precise and reliable

temperature to voltage mapping that implements active timing margin. The

temperature to voltage mapping is discrete as voltage regulator module’s out-

put voltage is quantized in small steps [45]. The final mapping is, therefore, in

a table format, which we call Ti-states. Similar to the way P-states functions

for DVFS, Ti-state is a natural evolution of power management mechanisms

for active timing margin.

3.3.1 Methodology to Construct the Ti-States Table

We propose a workload-centric methodology that constructs a set of

temperature-voltage states in the inversion region (Ti-states) at test-time. A

workload-centric approach ensures Ti-states will work in the face of workload-

induced uncertainties like di/dt and IR effects. We use a subset of workloads as

the “training” set to first get a tentative temperature-voltage mapping. Then

we validate this mapping with another set of “test” workloads to establish the

final Ti-state. During training the Ti-state is constructed in a manner that is

agnostic to workload-specific settings, so we can be sure our voltage selection

will provide enough margin for any workload that is run on the processor.

For each of the training workloads, we first measure their “golden” ref-

erence margin at 0℃ under our controlled temperature setup. Then, at the

temperature being characterized, we select four candidate voltages. These can-
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didate voltage are picked such that they are around the extrapolated voltage

value from Figure 3.7. The candidates voltages are chosen such that they are

two VRM steps above and two VRM steps below the extrapolated value.

Algorithm 1 Ti-state Construction Methodology

1: procedure Get Reference Margin
2: set voltage and temperature to reference
3: for each training workload do
4: workloadMargin← PSM measurement
5: push RefMarginArr, workloadMargin

return RefMarginArr

6: procedure Explore Undervolt
7: initVdd← idle PSM extrapolation
8: candidateVddArr← voltage around initVdd
9: minErr← MaxInt

10: set exploration temperature
11: for each Vdd in candidateVddArr do
12: set voltage to Vdd
13: for each training workload do
14: workloadMargin← PSM measurement
15: push TrainMarginArr, workloadMargin

16: err← diff(RefMarginArr,TrainMarginArr)
17: if err < minErr then
18: minErr← err
19: exploreVdd← Vdd

return exploreVdd

Once we have the set of candidate voltages, we step through each can-

didate voltage and record the training workloads’ timing margin using the

PSM at every temperature that is being characterized. The timing margin

measured at the candidate voltage is compared against the reference margin.

Finally, we select the candidate voltage that has the minimum PSM difference

from the golden reference.
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Figure 3.8: Exploring Ti-state at 80℃: we measure the “training” workloads’
timing margin, and choose the Vdd that best tracks the standard margin.

It is worthwhile to note that on our particular chip the data variation for

the 16 PSMs on our GPU is under 2%, so it makes little difference to use worst-

case versus average. However, under severe intra-chip variation, transistor’s

undervolting potential can differ significantly. In that case, worst-case PSMs

values need to be used for comparison.

Algorithm 1 summarizes our methodology. Figure 3.8 shows an example

at 80℃. At this temperature, Figure 3.7’s extrapolated voltage is 0.65625 V.

The candidate voltages are 0.6625 V, 0.65625 V, and 0.65 V. Our platform’s

smallest VRM step is 6.25mV. The original four candidate voltage is capped

by a lower hard limit of 0.65 V, and so we cannot set the voltage any lower.

Algorithm 1 chooses 0.6625 V as the Ti-state voltage for 80℃ because it has

the closest timing margin compared to “golden” reference. Other candidate
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Figure 3.9: Ti-state undervolting decision at 80℃ closely tracks the “golden”
reference runs’ timing margin, which is needed for reliability.

voltages with less timing margin run the risk of hampering the timing safety

under potentially worst-case workloads.

Figure 3.9 verifies Algorithm 1’s Ti-state selection at 80℃. At 0.7 V,

going from 0℃ to 80℃ offers more than 15% extra timing margin. After voltage

reduction, the workload timing margins closely track the golden reference with

some workloads showing slightly higher margin.

Figure 3.9 proves yet another important point. It shows that the voltage

explored using a small set of training workloads can be safely applied to fu-

ture unknown workloads. The reason that the approach we present works in

practice is because the extra margin that arises from temperature inversion is

mainly a device property and it is workload-independent.
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20℃ 40℃ 60℃ 80℃ 100℃

693.75mV 3.7% - - - -
687.50mV 2.2% - - - -
681.25mV 8.4% 2.3% - - -
675.00mV 13.9% 5.3% 4.9% - -
668.75mV - 9.5% 2.5% - -
662.50mV - 13.5% 6.5% 1.9% -
656.25mV - - 12.2% 5.6% 9.9%
650.00mV - - - 9.3% 5.1%

Table 3.1: PSM error compared to the reference setting for different <
temperature, voltage > configurations.

3.3.2 Evaluating Ti-State’s Voltage and Power Reduction Effects

Algorithm 1 will repeat the same process at different temperatures.

Using results similar to Figure 3.8 and Figure 3.9, our methodology will even-

tually construct a temperate-voltage pairing table with all the proper Ti-

states. Table 3.1 shows the measured results on our A10-8700P processor for

20℃, 40℃, 60℃, and 80℃. For each temperature, there is one voltage that

has the smallest deviation from the “golden” reference margin, as highlighted

and bolded in the table. These points are selected as the final Ti-states for

the processor to use.

Ti-state table construction would add little overhead to existing sil-

icon test procedures. Per-bin or even per-part characterization is already an

industry-standard practice, especially for the high-end server market sector.

Therefore, we believe that Ti-state table construction is a practical approach.

At runtime, the power management scheme can use temperature sensor
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data to index into a Ti-state table and determine a suitable supply voltage [95].

In our work and the restricted scope of this paper, Ti-states are constructed for

the GPU clock frequency of 300 MHz. In practice, however, the Ti-state table

can be constructed across different frequencies, and the power management

unit can index into the right table by frequency during runtime.

We use a representative subset of all workloads to evaluate Ti-state’s

power reduction at different temperatures. We start with Figure 3.10, which

shows the Vdd reduction at various Ti-states. One temperature range corres-

ponds to one voltage and this is because of the VRM’s quantized output. To

make the VRM reduce voltage by one step, the temperature has to be high

enough to speed up the circuit beyond the current point. Between 20℃ and

40℃, the VRM can reduce Vdd by exactly one step, yet from 40℃ to 60℃

there are two VRM steps in between. The results show that Vdd reduction
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is larger at a higher temperature because the extra timing margin offered by

temperature inversion is larger than at a lower temperature.

In Figure 3.11 we compare the average power savings of the various

GPU workloads as a result of the Vdd reduction at different temperatures.

We set the die temperature manually using our temperature control setup to

40℃, 60℃, and 80℃ to mimic the various temperature conditions that the

processor typically faces. We manually set the temperature because the GPU

on the A10-8700P does not heat up the chip often in the voltage region we

study, which limits the temperature range we can use to thoroughly charac-

terize. Therefore, rather than examine the workloads under a “free run,” we

interject with external temperature control. But on the more high-end and

power-hungry server parts, the GPU would hit the higher temperatures we are

characterizing.

An added benefit of temperature control is that it facilitates controlled

and repeatable experiments. Our choice of temperatures is reasonable because,

usually, for a high-end cooling system that has around 0.2℃/W ambient-silicon

thermal resistance, a workload consuming 60 W will have a steady state tem-

perature of 40℃. For a less capable 0.5℃/W cooling system the same workload

will stabilize around 60℃ [93, 41, 30]. So we cover different cooling options.

Figure 3.11 shows that on average the Ti-states can save 6.2%, 9.5%,

12.2% power at 40℃, 60℃ and 80℃, respectively. The power saving primar-

ily comes from dynamic power reduction. Leakage power consumption also

reduces at lower voltages, but only by a little. At each temperature, the relat-
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ive power saving does not vary much between different workloads, but this is

to be expected because Ti-state’s voltage reduction is workload independent.

Hence, the relative dynamic power saving for each workload should stay the

same for each temperature. In practice, different workloads stabilize at differ-

ent temperatures at runtime, and Ti-state will reduce the operating voltage

accordingly. When the temperature varies under workload phase changes, a

VRM can index into Ti-state table in real-time and adjust the supply voltage

step by step [95].

3.4 Managing Ti-State Processors in Advanced Tech-
nology Nodes

In this section, we compare and contrast the benefits of Ti-state’s power

savings on traditional planar bulk CMOS versus the more recent FinFET

and FD-SOI process technologies. FinFET is already present in latest pro-

cessors [46, 90] at the time of this proposal, and both technologies will be more

broadly adopted in the coming years [107, 72, 61, 62]. Because we do not have

access to a FinFET or FD-SOI processor to continue our measurement-based

study, we scale our measurement results to these technologies. We first ex-

plain our scaling approach for FinFET and FD-SOI, then we detail a careful

analysis of Ti-states in these technologies to show that Ti-states may promise

an important trade-off between leakage and dynamic power consumption. Fi-

nally, we discuss a runtime power management control loop to minimize power

consumption under Ti-states (Chapter 3.4.3).
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Scaling
setting

Leakage
power

Dynamic
power

Dynamic-leakage
Power scale ratio

A 0.1 1.5 15 (aggressive)
B 0.1 1 10 (test-chip [82])
C 0.2 1.5 7.5 (modest)
D 0.2 1 5 (modest)
E 0.2 0.6 3 (conservative)

Table 3.2: FinFET and FD-SOI scaling settings: for completeness, we scale
dynamic and leakage power with different factors to cover both aggressive and
conservative scenarios.

3.4.1 Scaling to FinFET and FD-SOI

FinFET and FD-SOI technologies can potentially alter high temper-

ature impact total processor power because these technologies’ dynamic-to-

leakage power ratios are very different from traditional planar bulk CMOS.

Here, we set up five reasonable scaling scenarios (ranging from aggressive to

conservative leakage reductions) based on lessons from a 14 nm FinFET NTC

prototype chip [82] as well as prior report [77]. Compared to 28 nm planar

bulk CMOS, FinFET can reduce the off-current (Ioff ) by more than 10× un-

der the same supply voltage for all device types, and FD-SOI can achieve even

more leakage reduction. We mimic this scenario as setting B in Table 3.2.

Furthermore, the FinFET test chip runs at 650 MHz at 0.55 V [82], over 2×

of the 300 MHz frequency we study at 0.7 V. In setting A, we scale dynamic

power by 1.5 to simulate possible dynamic power changes.

Setting C, D, and E account for possible FinFET threshold voltage

engineering by modestly scaling leakage power by 0.2. Setting C mimics a
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performance-centric scenario where lower threshold is utilized for higher fre-

quency. We include setting E as a conservative scenario where dynamic power

reduces with lower supply voltage. Overall, scaling setting A is an aggress-

ive projection for FinFET, but it is a good example of FD-SOI’s application

scenario. Setting B reflects FinFET and FD-SOI’s leakage power reduction

capability, while settings C and D represent FinFET’s more realistic use cases.

Temperature inversion will continue to exist in FinFET and FD-SOI.

Prior work concludes FinFET processors will entirely work in temperature

inversion range [53, 15], and its inflection voltage will be around the same as

we measure in 28 nm [53]. Therefore, we assume the same Ti-state’s voltage

and power reduction capability within these technologies.

3.4.2 Ti-state Power Analysis under FinFET and FD-SOI

Thus far, we have shown the total power savings from Ti-state as a

result of voltage reduction under a particular temperature level, which is set

by the thermal headset. However, the high temperature still increases leakage

power exponentially, especially in planar bulk CMOS technology, which is

against the dynamic power savings from Ti-state with voltage reduction at

high temperature. The overall effect of these two opposite factors in bulk

CMOS is that processors still favor lower temperature for power reduction.
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Figure 3.12: Power versus temperature at different scaling factors for different
workloads. In FinFET and FD-SOI, Ti-state makes GPU power smaller at
high temperature. The optimal temperature is different for the workloads and
the different scaling settings, and this is because the ratio of static to dynamic
power across the workloads varies.

In FinFET and FD-SOI, the scenario above will fundamentally change.

FinFET and FD-SOI have much less leakage power, therefore the leakage

power increase has a smaller effect on overall processor power under higher

temperature. The opposite side is the more salient dynamic power improve-

ment caused by Ti-state’s voltage reduction. These two opposite trends form
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a trade-off: an optimal temperature may exist where Ti-state’s dynamic power

reduction balances leakage power increase at higher temperatures and the over-

all processor power is minimized. Carefully evaluating this trade-off is crucial

for Ti-state to be practical in runtime processor temperature and power man-

agement control.

We examine Ti-state’s power benefits on FinFET and FD-SOI for

three different types of workloads that are representative of different typical

dynamic-to-leakage power ratios. The workloads include FFT, particlefilter

and Reduction, going from high to low dynamic power consumption. Fig-

ure 3.12 shows Ti-state’s GPU power under different scaling settings. Power

is normalized to 0℃ to show how power scales as temperature increases.

Figure 3.12a shows that when the dynamic power is more dominant in

settings A and B then FFT prefers to stay at 80℃. Under more conservative

settings where leakage power is higher, the temperature sweet spot drops to

60℃. In these scaling settings, FinFET’s leakage power increase beyond 60℃

is more than Ti-state’s dynamic power reduction.

For medium dynamic power, Figure 3.12b shows that particlefilter’s

temperature sweet spot is around 60℃ for the scaling ratios. Particlefilter’s

dynamic power is not high enough to make Ti-state’s power saving override

leakage power at 80℃.

In contrast to FFT and particlefilter, the workload Reduction does not

consume much dynamic power. Figure 3.12c shows that it prefers to stay at
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a lower temperature to minimize leakage power. Its dynamic power occupies

a smaller portion of total power, therefore Ti-state’s power reduction has a

lesser effect. In the optimistic scaling settings A and B, Reduction’s sweet spot

temperature is 60℃, whereas, in conservative settings D and E, the optimal

temperature is at 40℃ to avoid the exponential leakage power at a higher

temperature.

In general, Figure 3.12 shows that when leakage power is less prominent

(i.e., leakage scaling is more aggressive in Table 3.2), Ti-states have higher

power saving and the optimal temperature is also higher. With smaller leakage,

dynamic power occupies a larger portion of the total power, which is when

Ti-state’s improvement has a bigger power saving impact. In the extreme

assumption where leakage power is completely agnostic of temperature, Ti-

state would prefer to operate at the highest allowed temperature to maximize

the magnitude of voltage reduction from temperature inversion.

We also find when the optimal temperature is higher, the corresponding

optimal power tends to be lower as well. Ti-state’s power saving capability

increases with higher temperature. When a workload has a larger share of dy-

namic power and prefers to run under a higher temperature, Ti-state’s higher

power saving manifests as total power improvement.

Another observation that we can make from Figure 3.12 is that high-

power workloads typically have higher temperature sweet spots. For such

workloads, the dynamic power is more dominant than the leakage power.

Therefore, in such scenarios, for a given temperature, the percentage of dy-
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Figure 3.13: Ti-state temperature and voltage control: two loops work in
synergy to minimize power. Loop 1 is a fast control loop that uses Ti-state
table to keep adjusting voltage in response to silicon temperature variation.
Loop 2 is a slow control loop that sets the optimal temperature based on
workload steady-state dynamic power profile.

namic power saving from Ti-state contributes more to the bottom-line.

3.4.3 Runtime Temperature Control

We notice that different temperature sweet spots under all workloads

and scaling scenarios are essentially a result of processor’s dynamic-to-leakage

power ratio. To leverage this fact, we propose a set of temperature and voltage

control algorithms in Figure 3.13 to steer future FinFET and FD-SOI pro-

cessors for maximum power efficiency. The solution consists of two stages:

test-time and runtime.

At test time, the methodology described in Algorithm 1 establishes

Ti-state’s temperature-voltage tables. The process starts with characterizing

the circuit speed behavior with on-chip timing sensors like the PSM, which

are subsequently verified by workload timing margin measurements as we de-

scribed earlier. The final temperature-voltage table can be fused into firmware
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for runtime lookup. For each chip, we envision less than 40 entries to be added

in total. Constructing such tables is already in practice [95]. It only extends

the existing test flow by a few steps and adds minimal overhead.

At runtime, two loops work in synergy. Loop 1 is a fast loop that

addresses quick yet small temperature variations from workload phase changes.

It measures silicon temperature and index into Ti-state table in real time to

get and set the desired voltage, similar to a typical DVFS table lookup. We

envision this loop to occur at millisecond-level granularity, as in with other

systems [54]. Loop 2 is a slow control loop that monitors the workload’s

average activity factor over a longer time period to estimate its dynamic-

to-leakage power ratio. This ratio is used to find the optimal temperature

in Figure 3.12, and hence discovers the Ti-state’s optimal long-term average

voltage.

We envision that loop 2 will target the average power savings over a

relatively long time (seconds or longer). This is because runtime temperature

control by adjusting the cooling system is a relatively slow process. Many of

today’s workload have steady state behavior suitable for this behavior, such

as scientific and deep learning applications, as well as web service workloads

that have diurnal patterns [64]. Thus, it is feasible to enable power saving in

this scenario.
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3.5 Related Work

Temperature inversion has been reported for CMOS devices long be-

fore [75, 6, 21, 105]. These works address the reason for this phenomenon,

largely at the device level. Recent works study temperature inversion in Fin-

FETs [53, 15]. Our work, however, is the first to systematically measure and

characterize temperature inversion under 28 nm process and discuss its im-

plications to the architecture and its power management.

Adaptive voltage setting for temperature variation has been recently

proposed [95]. Ti-states work in a similar way to the lookup table that the

authors propose. However, our work focuses on the temperature’s effect in the

inversion region and provides an in-depth analysis, while the solution in [95]

mixes process and temperature variation together. Moreover, prior work does

not address the implications of temperature control in future technologies, as

we do with our FinFET analysis.

Active timing guardband management using on-chip sensors has been

recently proposed [54, 115]. These prior works focus mostly on transient di/dt

droop and its effect on the timing margin. In contrast, we use PSMs to char-

acterize temperature inversion and its effect on the timing margin. We also

study temperature inversion’s effect in an integrated manner with di/dt droop

and discuss the relationship between the two.

Many papers have addressed architecture-level temperature manage-

ment [93, 41, 30, 83]. These works try to avoid excess high temperature.
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But we demonstrate experimentally how temperature inversion can make high

temperature a friendly environment for runtime power management.
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Chapter 4

Voltage Noise-aware Scheduling for Power

Reduction on Adaptive Clocking Systems

Unlike temperature variation, pipeline circuit’s timing uncertainty caused

by voltage variation/noise typically happens very fast, at the order of tens of

cycles, and have a large magnitude, reaching over 10% of total supply voltage

under worst cases, i.e., the di/dt effects [89]. Other effects that make supply

voltage deviate from standard also contribute to timing margin, such as the

IR drop across the power delivery network (PDN).

To safely combat voltage noise while successfully reducing the margin,

active timing margin that dynamically provisions timing margin in response

to the degree of voltage noise must act very promptly. A hardware-centric

active timing margin solution is a natural fit for this problem, as is the prac-

tice in many recent chips [52, 54, 14, 35, 100, 13]. These chips often feature

Adaptive Clocking, or Adaptive Instruction Throttling [104] techniques, where

core frequency, or core front-end instruction issue rate is adaptively lowered

when a low voltage is detected by sensors. The response time of the control

loop is at the level of several cycles, guaranteeing time margin safety.

In this dissertation, we make a detailed, full-system analysis of the ad-
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aptive clocking style, active timing margin hardware designed specifically for

tolerating voltage noise. Using measurements and running real-world work-

loads, we study the factors that affect these processors’ behavior. Using a fully

built production POWER7+ system, we systematically characterize the bene-

fits and limitations of active timing margin in terms of multicore scaling and

workload heterogeneity. In our analysis, we cover both active timing margin’s

undervolting and overclocking modes to fully characterize the system effects

under different usage scenarios.

We find when only one core is active, the current hardware active tim-

ing margin schemes can efficiently turn the underutilized timing margin into

significant power and performance benefits while tolerating voltage swings.

However, as more cores are progressively utilized by a multithreaded applica-

tion, the benefits of active margin begin to diminish in both power and per-

formance improvements. Using POWER7+’s sensor-rich features, we system-

atically characterize and decompose the on-chip voltage drop that affects the

active timing margin’s efficiency into its different components, and analyze

the root cause of the problem. Under heavy load, the IR drop across the chip

and the voltage regulator module’s (VRM) loadline effect limit active timing

margin’s ability to the point of almost no benefit.

The magnitude of the efficiency drop aforementioned, however, varies

significantly from one workload to another. Thus, given the workload sensitiv-

ity of hardware active timing margin techniques, and the long-term nature of

the observed effects, we introduce the notion of voltage noise-aware schedul-
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ing. The intent behind our scheduling proposal is to compensate for active

margin’s inefficiencies in system software. The remainder of this section is

structured as follows: Chapter 4.1 provides background for the POWER7+

architecture and its implementation of active timing margin for voltage vari-

ation. Chapter 4.2 characterizes active margin’s limitations when scaling up

the number of active cores under different workload scenarios. Chapter 4.3

analyzes the root cause of the active timing margin’s behavior as seen in

the previous section. Chapter 4.4 proposes active timing margining schedul-

ing to improve POWER7+’s efficiency when the load is light versus heavy.

Chapter 4.5 compares our work with prior work.

4.1 Active Timing Margin in the POWER7+ Multicore
Processor

The POWER7+ is an eight-core out-of-order processor manufactured

on a 32-nm process. It supports 4-way simultaneous multithreading, allowing

a total of 32 threads to execute simultaneously on the system [66]. The server

runs Redhat 6.4 operating system, and all workloads are compiled with GCC

4.8.5.

A POWER7+ processor has two main power domains, each with its

own on-chip power delivery network (PDN). The Vdd domain is dedicated to

the logic circuits in the core and caches, and the Vcs domain is dedicated to

the on-chip storage structures [117, 5]. The PDNs are shared among all eight

cores to reduce voltage noise [48]. In our study, we primarily focus on voltage
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Figure 4.1: In POWER7+, Critical Path Monitor (CPM), Digital Phase
Locked Loop (DPLL), and off-chip voltage controller work synergistically to
let active timing margin provide just enough margin [55].

noise and power under the logic circuit’s power domain as it is the main power

consumer.

The processor supports both coarse-grained and fine-grained power

management. Coarse-grained power management includes per-core power gat-

ing to reduce idle power consumption, and dynamic and voltage frequency scal-

ing (DVFS) which adjusts p-states from 2.1 GHz to 4.2 GHz in 28 MHz steps

by controlling Vdd with a static timing margin. Fine-grained power manage-

ment is the active timing margin that further tunes Vdd and frequency around

each p-state.

POWER7+’s active timing margin features adaptive clocking to toler-

ate circuit timing emergencies caused by di/dt effects [54, 55, 33]. Although

the implementation of active timing margin for voltage noise can vary from one
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platform to another [31, 101, 52, 54, 14, 35, 100, 13], the general building blocks

and principles largely remain the same, and consists of three parts: (1) the

timing margin sensor [25, 26], (2) the adaptive frequency control loop [99], and

(3) the overclocking/undervolting policy controller, as depicted in Figure 4.1.

Timing Margin Sensor is the basis of adaptive clocking by mon-

itoring the excess timing margin and driving frequency adjustment. In the

POWER7+, the timing margin sensor is implemented as a Critical Path Mon-

itor (CPM). A CPM mimics real circuit delay with a set of synthetic paths

and monitors the timing slack after the synthetic paths complete execution.

On each cycle, a signal is launched through the synthetic paths and into an in-

verter chain, similar to the Power Supply Monitor described in Chapter 3.1.3.

When the next cycle arrives, the number of inverters the edge has propagated

through in the edge detector corresponds to the CPM output, ranging from

digital value 0–11 which corresponds to the position of the edge in the inverter

chain and directly tells how much margin is available.

Because voltage noise and other effects that cause timing variation

has spatial characteristics as illustrated in Figure 4.2, POWER7+ allocate

40 CPMs distributed across the chip to provide chip-wide, cycle-by-cycle tim-

ing margin measurement. Each core has five CPMs, integrated inside the

instruction fetch unit, instruction scheduling unit, fixed point unit, floating

point unit, and last level cache as shown in Figure 4.1. The worst of the five

CPM measurements is reported every cycle.

Adaptive Frequency Control Loop is a hardware loop that operates
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Figure 4.2: Critical path monitors (CPMs) are distributed across the chip to
measure spatially variant timing margin consumption, caused by local voltage
noise and other system effects.

between the timing margin sensor and an agile clock generator. Each cycle,

the measured timing margin is sent to the clock generator, which compares

the margin against a preset threshold and adjusts the clock frequency at very

fast and short intervals.

In POWER7+, the per-core DPLL frequency control lets the processor

tolerate transient voltage droops by reducing clock frequency for each core

with no impact on other cores. The DPLLs can rapidly adjust the frequency,

as fast as 7% in less than 10 ns [103], while the clock is still active; thus, the

processor can tolerate transient voltage droops. Every cycle, the lowest-value

CPM in each core is compared against the calibration position. In response,

the DPLL will slew the clock frequency up or down to control the timing

margin to the calibrated amount.

Off-chip Voltage Control determines whether to turn the reclaimed

timing margin into power savings via undervolting or into higher performance
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via overclocking based on user preferences. Often the goal is to reach a certain

frequency target and convert the remaining timing margin into power savings.

In the overclocking mode, the CPM and DPLL hardware form a closed-loop

controller. At the fixed nominal voltage, the DPLL continuously adjusts fre-

quency on the basis of the CPM’s timing sense to operate at the calibrated

timing margin. In the undervolting mode, the firmware observes CPM-DPLL’s

frequency and over a longer term (32ms) adjusts the voltage to make clock fre-

quency hits the target. In this chapter, we investigate optimizing power in the

undervolting mode, while in Chapter 5 we discuss performance management

issues in the overclocking mode

4.2 Efficiency Analysis of Active Timing Margin on Mul-
ticore

Most prior art studied the benefits of mitigating voltage variation and

reducing timing margin at the circuit- [52, 14, 35, 100, 13] and architecture

levels [54, 88, 39, 78, 89, 8] using homogeneous single-core workloads. This

thesis focuses on understanding the efficiency of active timing margin on a

multicore system, specifically as the system activity (i.e., core usage) begins

to increase using real workloads.

Using an enterprise-class server (Chapter 4.2.1), we characterize the ef-

ficiency of active timing margin at the system level. In particular, we measure,

analyze and characterize active timing margin’s effectiveness under different

architectural configurations and workload characteristics. We make two fun-
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damentally new observations about the effectiveness of active timing margin

on a multicore system. First, the efficiency of the active timing margin can

diminish as the number of active cores increases (Chapter 4.2.2). Second, the

inefficiency is highly subject to workload characteristics (Chapter 4.2.3).

4.2.1 Experimental Infrastructure

We perform our analysis on a commercial IBM Power 720 Express

server (7R2) that has two POWER7+ processors on the motherboard. The

processors share the main memory and other peripheral resources, such as

storage and network. We focus on one of the two processors, although we

validated our conclusions by conducting experiments on the other processor

as well. Unless stated otherwise, the first processor is configured to idle and

runs background tasks. The system runs RedHat Enterprise Linux, configured

with 32 GB RAM.

We use PARSEC [11] and SPLASH-2 [106, 10] in this section because

they are scalable workloads and we need to the control the applications’ par-

allelism to carefully study the impact of core scaling. The workloads run four

threads on each core to maximize hardware utilization.

We characterize the efficiency of active timing margin across two modes

of operation: 1) undervolting to reduce power consumption and 2) overclocking

to boost performance. Hooks in the firmware let us place the system in either

operating mode. The hardware and firmware autonomously select frequency

and voltage depending on the configured operation mode.
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Figure 4.3: Active timing margin can save power effectively. However, the
benefits decrease as more cores are used to actively run the application.

4.2.2 Core Scaling

Using raytrace from PARSEC (as an example), we show active timing

margin’s impact on processor’s power consumption. We study both average

chip power consumption and total CPU energy savings using Figure 4.3. We

find that active timing margin is always effective at improving the performance

or lowering power consumption. However, it cannot always scale up efficiently

with more cores.

Figure 4.3a shows the program’s power consumption as we use more

cores, i.e., more threads to process the workload. We measure the micropro-

cessor Vdd rail power by reading physical sensors available on the server, which

represents most of the total processor power. In the undervolting mode, active

timing margin turns the unused margin into energy savings by scaling back

the voltage, which reduces unnecessary power consumption. When one core is

active and the others are idle, active timing margin reduces the average power
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consumption by 13% compared to no active timing margining.

Although active timing margin always saves power, a more important

and crucial observation from Figure 4.3a is the decreasing power-saving trend

as the number of active cores increases in the system. The power improvement

from active timing margin decreases as the parallelism in the workload is

(manually) increased, forcing the usage of the additional cores. Although

active timing margin can save as much as 13% power when only one core is

active, the savings drop sharply to about 3% when the activity scales up to

eight cores.

When examining the workload’s overall energy-delay product (EDP),

Figure 4.3b shows notable energy efficiency improvement when only a small

set of cores is actively processing the workload. However, beyond four cores,

the improvement drops significantly. When only one core is active, processor

energy efficiency improves by as much as 20% compared to using a static

margin. But the additional improvement beyond activating more than four

cores becomes negligible.

Our observations hold true for frequency-boosting as well. Active tim-

ing margin’s ability to boost frequency decreases as core counts increase. Fig-

ure 4.4 shows experimental results for lu cb from the SPLASH-2 benchmark

suite. Compared to using a fixed target frequency of 4.2GHz under a static

margin, active timing margin can achieve substantial frequency improvement,

as shown in Figure 4.4a. When only one core is actively processing the work-

load, frequency increases by up to 10% compared to the static margin baseline.
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Figure 4.4: Active timing margin can improve performance by increasing fre-
quency. However, the overclocking benefits decrease as more cores are used.

However, when all eight cores are running the workload the frequency gain

drops to only 4%.

Frequency improvement turns into program execution time speedup,

especially for computing-bound workloads. For lu cb the execution speedup

varies gradually, decreasing from 8% when only one core is used to 3% when

all cores are running the workload. This trend of diminishing benefit as core

count scales up is similar to what we observe when the extra guardband is

turned into energy savings for this workload.

4.2.3 Workload Heterogeneity

Variations in workload activity (i.e., heterogeneity) are known to strongly

impact system performance from cache performance to bandwidth utiliza-

tion. In this section, we demonstrate workload heterogeneity also impacts

active timing margining’s runtime efficiency. We focus our analysis on the
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architecture-level observations and later in Chapter 4.3 we explore the causes

of the observed behaviors.

Figure 4.5 shows the results for power and frequency improvement for

all PARSEC and SPLASH-2 workloads compared to the same number of cores

active when the active timing margin is disabled. The improvements are with

respect to the system using a static guardband. The results are from two

experiments, one in which the control loop is operating in energy-saving mode

(Figure 4.5a) and the other in which it is operating in frequency-boosting mode

(Figure 4.5b). Each line in both figures corresponds to one benchmark.

From Figure 4.5a and Figure 4.5b, we draw four conclusions. First,

active timing margining consistently yields improvement, regardless of its op-

erating mode and workload diversity. Across all of the workloads, active timing

margining reduces power consumption somewhere between 10.7% and 14.8%

and improves processor clock frequency by as much 9.6% on average, when one

core is active. Even when all eight cores are active, improvements are at least

above 4%. Power-saving improvements are slightly larger than frequency im-

provements because of the quadratic relationship between voltage scaling and

power, as opposed to the linear relationship between frequency and power.

Second, the improvements monotonically decrease as the number of

active cores increases. Across all the workloads, we observe a consistent drop in

active timing margining’s efficiency. The average power efficiency improvement

across the workloads drops from 13.3% when one core is active to 10% when

two cores are active to 6.4% when all cores are actively processing the workload.
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Figure 4.5: Improvements reduce at different rates for each of the PARSEC
and SPLASH-2 workloads when cores are progressively activated, leading to
magnified workload variation when all cores are active.

We observe a similar trend with frequency.

Third, the rate of monotonic decrease for each workload varies signific-

antly. For instance, radix’s power improvement drops from 15% when one core

is active to around 12% when all eight cores are active. However, in swaptions,

the improvement drops drastically from 13% to 3%. In the frequency-boosting

mode, the decreasing magnitude is slightly smaller, although the variation in

improvements is still strongly present. Frequency for radix and ocean cp al-

most remains unchanged at 9%, but the frequency of lu cb, swaptions and

raytrace drops notably from 10% to 4%.

Fourth, regardless of the active timing margining operating mode (i.e.,

power saving or frequency boosting), workload heterogeneity significantly im-

pacts the mechanism’s efficiency when all cores are active. This finding is

especially important in the context of enterprise systems because server work-

loads are ideally configured to fully use all computing resources to reduce the
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operator’s total cost of ownership (TCO) [4].

In multicore systems that rely on active timing margining, the sys-

tem’s behavior will vary significantly depending on how many cores are being

used and what workloads are simultaneously scheduled for execution on the

processor. To prove this point, we later discuss the implications of workload

co-location using our system. In the future, we suspect workload heterogeneity

could be a major source of inefficiency, especially as we integrate more cores

into the processor unless we identify the problem’s source for mitigation.

4.3 Root-Cause Analysis of Active Timing Margin’s In-
efficiencies

In this section, we analyze the root cause of active timing margin’s in-

efficiency under increasing core counts and workload heterogeneity to under-

stand how to reclaim the loss in efficiency. We present an approach for charac-

terizing active timing margin’s inefficiency using CPM sensors (Chapter 4.3.1).

On this basis, we characterize the voltage drop in the chip across both core

counts and workloads because the on-chip voltage drop affects active timing

margin’s efficiency. Our analysis reveals that core count scaling results in

a large on-chip voltage drop (Chapter 4.3.2), whereas workload heterogen-

eity plays a dominant role in affecting the processor’s IR drop and loadline

(Chapter 4.3.3).
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4.3.1 Measuring the On-chip Voltage Drop

We developed a novel approach to capture and characterize active tim-

ing margin’s behavior using CPMs. We use CPM output to capture the on-chip

voltage drop that affects the timing margin, which in turn affects the active

timing margin’s efficiency. In effect, we use CPMs as “performance counters”

to estimate on-chip voltage, similar to how performance counters were first

shown to be useful for predicting power consumption [47, 42].

Because timing margin is determined by on-chip voltage, capturing the

CPM’s output would reflect the transient voltage drops between the VRM

output and on-chip voltage. Low on-chip voltage leads to less time for the

CPM’s synthetic-path edge to propagate through the inverter chain, and thus

the CPM will yield a low output value. Under high on-chip voltage, the circuit

runs faster, and the CPM yields a higher output.

To read the CPMs, we disable active timing margin because it dynamic-

ally adjusts the timing margin to keep the margin small and CPMs constant.

The CPMs typically hover around an output value of 2 when active timing

margin is active due to CPM calibration. By disabling active timing margin,

we allow the CPMs’ output values to “float” in response to on-chip voltage

fluctuations, and thus we can study how supply voltage affects the behavior

of CPMs.

We use the IBM Automated Measurement of Systems for Temperat-

ure and Energy Reporting software (AMESTER) [32, 43] to read the CPMs’
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output. We record CPM readings under different on-chip voltage levels to

determine how CPM responds to different on-chip voltage. AMESTER reads

the CPMs at the minimal sampling interval of 32ms, which is restricted by

the service processor. AMESTER can read the CPMs in either sticky mode or

sample mode. In the sticky mode, AMESTER reads the worst-case, i.e. smal-

lest, output of each CPM during the past 32 ms, which is useful for quantify-

ing worst-case droops. In the sample mode, AMESTER provides a real-time

sample of each CPM, which is useful for characterizing normal operation.

We use CPMs in sample mode to convert their output into on-chip

voltage. To minimize experimental variability, we let the operating system run

and throttle each core to fetch one instruction every 128 cycles. Figure 4.6

shows the mapping between CPM output and on-chip voltage. We sweep the

voltage range for all possible clock frequencies and look at the average output

of all 40 CPMs over 12,500 samples, which corresponds to about 1 minute

of measurement. Each line corresponds to one frequency setting, and the

system default voltage levels at DVFS operating points are highlighted with

the marked line. Starting from 2.8 GHz, each diagonal line, as we move to

the right, corresponds to a 28 MHz increase in frequency. The rightmost line

corresponds to the peak frequency of 4.2 GHz. For any frequency, the CPM

value gets smaller as we lower the voltage, confirming the expected behavior

that smaller voltages correspond to less timing margin. Also, for a fixed voltage

(x-axis), higher frequency yields smaller CPM values (y-axis) because of less

cycle time and a tighter timing margin.
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Figure 4.6: Mapping between on-chip voltage and CPM values.

Figure 4.6 lets us establish a direct relationship between CPM and on-

chip voltage. We observe a near-linear relationship between the two variables

under each frequency. Therefore, with a linear fit, we can determine each CPM

bit’s significance. On average, one CPM output value corresponds to 21 mV

of on-chip voltage. On this basis, we can estimate the magnitude of on-chip

voltage drop during any 32 ms interval. For instance, if the measured CPM

output drops from eight to four, the estimated on-chip voltage has dropped

by 84 mV.

Figure 4.7 shows the sensitivity of the CPMs within each processor

core. Although we see a near-linear relationship between frequency and all the

CPMs, there is variation among the CPMs in each core and between cores.

For instance, CPMs in Core 2, 6, 7 have steadier sensitivity compared to

Core 1, 3, 5. The latter have higher distribution across CPMs. We attribute

this behavior to process variation and CPM calibration error, as explained by
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Figure 4.7: CPMs can sense the chip supply voltage with a precision of about
21mV per CPM bit at peak frequency.
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prior work [33].

To ensure the robustness of our measurement results, we considered

both repeatability and temperature effects. We repeated our experiment on

another socket in the same server, and the result conforms to the same trend

shown in Figure 4.6. We observe that chip temperature varies between 27°C

at the lowest frequency to 38°C at the highest. Internal benchmark runs

show such temperature variation does not have significant influence over CPM

readings, and thus we can draw general conclusions from Figure 4.6.

4.3.2 On-chip Voltage Drop Analysis

Using our on-chip voltage drop measurement setup, we quantify the

magnitude of the on-chip voltage drop to explain the general core scaling

trends seen in Chapter 4.2.2. It is important to understand what factors, and

more importantly how those factors, impact the efficiency of active timing

margin as more cores are activated.

Figure 4.8 shows the measured results for the voltage drop across dif-

ferent cores within the processor, ranging from Core 0 through Core 7. The

cores are spatially located in the same order as they appear on the physical

processor [117]. The y-axis is the percentage of on-chip voltage drop from

the nominal. Given the magnitude of voltage drop and knowledge about the

system’s nominal operating voltage, we can determine the percentage change.

The x-axis indicates the total number of simultaneously active cores, specific-

ally as they are activated in succession from core 0 to 7. Keeping consistent
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Figure 4.8: On-chip voltage drop analysis across cores under different work-
loads.
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with Figure 4.5, each line in the subplots corresponds to one workload from

PARSEC and SPLASH-2. Each subplot shows a particular core’s character-

istics with respect to every other (active or inactive) core in the processor.

Figure 4.8 lets us understand several important factors that affect active

timing margin’s efficiency. First, voltage drop increases as more cores are

activated. For all workloads, voltage drop increases from about 2% to 8% as

the number of active cores increases. The trend is similar to the diminishing

benefits seen previously in the power and frequency improvement in Figure 4.5.

As the magnitude of voltage drop increases, the timing margin decreases and

thus active timing margin’s efficiency decreases at higher loads.

Second, the increasing on-chip voltage drop trend manifests as chip-

wide global behavior because voltage drop affects all cores at the same time,

regardless of whether they are idling or actively running a workload. For

instance, when cores on the upper row (Core 0 through Core 3) are actively

running a workload, they experience a voltage drop. Meanwhile, cores in the

bottom row also experience voltage drop even though Core 4 through Core 7

are not running any workloads.

The implications of the second finding are that global effects, such as

chip-wide di/dt noise [37, 69, 8] and off-chip IR drop, can affect active tim-

ing margin’s system-wide power-saving efficiency because active timing margin

makes decisions on the basis of the worst-case behavior of all cores. In partic-

ular, this behavior impacts the power-saving mode because the processor has

a single off-chip VRM that will need to supply the highest voltage to match
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the most demanding core’s voltage requirement. So, even if some cores are

lightly active, the system may have to forgo their active timing margin bene-

fits to support the activity of the busy core(s). In applications where workload

imbalance exists, this can become a major efficiency impediment.

Third, the on-chip voltage drop’s scaling trend, as the number of active

cores increases, tends to differ across cores, indicating that voltage drop has

localized behavior in addition to the global behavior described previously. For

instance, across all the cores the magnitude of voltage drop shifts upward

significantly whenever that particular core is activated. For instance, Core 7’s

voltage drop increases by 2% when it is activated, as evident in Core 7’s voltage

drop plot.

More generally, cores that are activated earlier have a higher voltage

drop at first, and thereafter their voltage drop begins to saturate and plateau.

For instance, Core 0 and Core 1 have a higher voltage drop when Core 0

through Core 3 are activated. These cores’ voltage drop increase quickly when

the number of active cores is less than four. On the contrary, the voltage drop

for Core 4 through Core 7 does not change much while Core 0 through Core 3

are activated, but thereafter their voltage drop increases much more quickly.

Localized effects impact the operation of the per-core frequency-boosting

mode. Each POWER7+ core has its own DPLL that can dynamically per-

form frequency scaling to improve performance when required. However, each

core’s performance can be boosted only when it is not affected by activity on

its neighboring cores. In general, our observations imply that it is easier to
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Figure 4.9: Voltage drop component analysis, including di/dt droop, IR
drop and the loadline effect.

boost clock frequency and, hopefully, performance – at least for computing-

bound workloads – over reducing voltage, because frequency-boosting is largely

affected by localized voltage drop. By comparison, the global voltage drop typ-

ically tends to have a more pronounced effect on the chip-wide power-saving

mode.

4.3.3 Decomposing the On-chip Voltage Drop

To understand how workload heterogeneity affects the power-saving and

frequency-boosting modes when all cores are active, we must understand why

the on-chip voltage drop varies significantly from one workload to another with

an increasing number of cores. For example, in Figure 4.8 lu cb’s voltage drop

increases more quickly compared to radix, whose voltage drop does not change

much as the number of active cores increases. We decompose the on-chip

voltage drop into its three primary components (see Figure 4.9): worst-case

di/dt noise, also called voltage droops due to sudden current surges caused
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by microarchitecture activities; typical-case di/dt noise due to regular current

ripples; and passive voltage drop due to IR drop across the PDN and the

loadline effect [54] at the VRM.

We use a mixture of current sensing techniques and CPM measure-

ments to decompose the voltage drop. To measure passive voltage drop (i.e.,

loadline effect + IR drop), we use VRM’s current sensors. The IR drop and

loadline effects are quantified using a heuristic equation verified against hard-

ware measurements. The input to the equation is the current going from the

VRM into the POWER7+ processor, sampled periodically.

We use CPMs to calculate the magnitude of typical and worst-case

voltage noise. To get the typical di/dt value, we put the CPMs in sample

mode to get real-time samples of on-chip voltage and subtract the passive

component from it which represents static DC voltage drop. To get the worst-

case di/dt value, we put the CPMs in the sticky mode to get the largest voltage

droop seen in every 32 ms time window and subtract the sampled long-term

average on-chip voltage from it.

We select several representative benchmarks from previously discussed

data and decompose their on-chip voltage drop into di/dt noise and passive

drop in Figure 4.10. The subplots are in the form of a stacked area chart,

showing the trend as more cores are progressively activated. Only Core 0 data

simplifies the presentation of our analysis, although we have verified that the

conclusions described in the following paragraphs hold true for the other cores

as well.
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Figure 4.10: Different components of on-chip voltage drop for some PARSEC
and SPLASH-2 benchmarks. In general, as more of the processor’s cores are
activated, voltage drop increases by varying magnitudes across workloads.

By analyzing the data, we conclude that passive voltage drop, including

IR drop across PDN and VRM’s loadline is the dominant factor contributing

to increasing voltage drop. Intuitively, these two passive effects have the most

direct influence over active timing margin’s behavior because they always exist

steadily during execution as compared to di/dt noise.

As we scale the number of active cores, the worst-case di/dt noise
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increases slightly across all of the benchmarks, and typical-case di/dt noise

decreases. For instance, the worst-case di/dt noise growth is noticeable in

bodytrack, vips and water nsquared. When multiple cores are active simultan-

eously, they can have synchronous behavior or random alignment, that can

cause large and sudden current swings leading to voltage droops [89, 69, 51].

However, our droop frequency analysis (not shown here) indicates that such

large worst-case droops occur infrequently. On the contrary, typical-case di/dt

noise gets smaller when core count scales. With more active cores, microar-

chitectural activities stagger among different cores, which can lead to noise

smoothing [69, 89].

Compared to di/dt noise, we find a clear scale-up trend of passive

voltage drop from Figure 4.10, and it contributes most to the scale-up of total

voltage drop. IR drop and loadline effects increase almost linearly with the

number of active cores because the passive voltage drop is caused by processor

current draw, which is further determined by chip power. When more cores

are used, the whole chip consumes more dynamic power and will lead to higher

IR drop and loadline effects.

Because active timing margin can deal with occasional di/dt voltage

droops by slowing down frequency quickly, the rare voltage drop caused by

this effect does not strongly influence the power-saving and frequency-boosting

capability of active timing margin, even though they consume a significant

portion of the total voltage guardband. Thus, we believe passive voltage drop

is the main source of impact to active timing margin’s efficiency.
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Figure 4.11: Power-intensive workloads induce large loadline and IR drop,
which severely limits the active timing margin system’s undervolting capabil-
ity, and thus impacts the system’s overall power-saving potential.

We confirm that loadline and IR drop cause active timing margin’s

inefficiency at full load by quantifying the relationship between their voltage

drop under static guardbanding with respect to the system’s two optimization

modes: power saving (i.e., undervolting) and frequency boosting (i.e., over-

clocking). Figure 4.11 shows the causal relationship between workload power

consumption, loadline and IR drop, and the active timing margin’s two modes.

To ensure we have enough data points, we consider 27 SPECrate workloads on
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top of the existing 17 PARSEC and SPLASH-2 workloads used before. Each

point represents the data we experimentally measured for one benchmark.

In Figure 4.11, across all the subfigures, we see a strong correlation

between passive voltage drop and the power-saving and frequency-boosting

modes. Figure 4.11a shows a strong linear relationship between power and

passive voltage drop. Figure 4.11b shows when a workload has a high loadline

and IR drop, the voltage guardband is highly utilized, and so active timing

margin has less room for undervolting. Thus, the voltage selected by active

timing margin is higher. The result is fewer energy savings for high-power

workloads, as the data in Figure 4.11c demonstrates. The same holds true for

active timing margin’s frequency-boosting mode. Here as well, a high loadline

and IR drop reduce the timing margin; thus, the DPLL has limited room left

to overclock the frequency as shown in Figure 4.11d.

4.4 Voltage Noise-aware Scheduling

We propose system-level scheduling techniques to improve the bene-

fits of active timing margin. Our scheduler’s overarching goal is to minimize

the impact that loadline and IR drop have on an active timing margin pro-

cessor’s power and performance efficiency. We demonstrate voltage noise aware

scheduling in Chapter 4.4.1, and evaluates its effect in runtime power reduction

in Chapter 4.4.2

In a multi-socket server, conventional wisdom says to consolidate work-

loads onto fewer processors so that the idle processor can be shut down to
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eliminate wasted power [71, 64, 59]. However, this principle does not apply to

servers with active timing margin and per-core power-gating capability. Our

measured results show consolidation actually leads to higher power of these

systems. We propose voltage noise-aware scheduling to maximize active tim-

ing margin’s power-saving benefits for the underlying processors. Compared to

workload consolidation, our noise-aware scheduling achieves up to 12% power

savings.

4.4.1 Solution for Recovering Multicore Scaling Loss

We use Figure 4.12 to introduce how voltage noise-aware scheduling

optimizes workload distribution among a server’s VRM-multiprocessor sub-

system. In Figure 4.12, multiple processor sockets share a common VRM

chip, each with its own power delivery path from the VRM to the die. The

VRM can generate multiple Vdd levels for different processors, which is nor-

VRM
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Core 4 Core 5

Core 2 Core 3
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(a) Workload consolidation.
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(b) Noise-aware Scheduling.

Figure 4.12: Voltage noise-aware scheduling balances workloads across mul-
tiple sockets to reduce per-socket voltage drop and create room for active
timing margin.
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mal for contemporary systems. In the following discussion, we use Figure 4.12a

and Figure 4.12b to analyze the scenarios of workload consolidation and noise-

aware scheduling and highlight the necessity of considering VRM’s role in sys-

tems with active timing margin processors. Other components such as memory

chips and disks are powered on steadily throughout our analysis.

Figure 4.12a shows a traditional consolidation schedule for a multisocket

server. Workloads are all mapped to socket 0 so that socket 1 can be shut

down. Because all power goes to socket 0, the passive voltage drop along the

power-delivery path from VRM to processor 0 is very high, which limits active

timing margin’s potential to undervolt.

Voltage noise-aware scheduling balances workloads equally among all

available sockets, and power gates off unneeded cores to eliminate idle power

consumption. Figure 4.12b illustrates a loadline-borrowing schedule. In Fig-

ure 4.12b active cores are distributed to each socket evenly, and each socket

power gates off a set of unused cores to achieve the same idle power elimina-

tion effect as in a consolidated schedule. In this schedule, each socket draws

less power, reducing the passive voltage drop each processor experiences. This

allows active timing margin to reduce more voltage from each processor and

hence improve total processor power.

We use our two-socket platform to illustrate the benefits of voltage

noise-aware scheduling. We compare the case of conventional workload con-

solidation, which places all loaded cores on one processor as the baseline, to

noise-aware scheduling, which balances the loaded core count across both pro-
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Figure 4.13: Distributing raytrace across two processors reduces passive
voltage drop, allowing more power saving under high core count.

cessors. We keep eight of the total 16 cores turned on to respond instantly to

utilization levels of up to 50%. The remaining eight cores are assumed to be

not instantly needed, and therefore are put into a deep sleep (power-gated)

state. The power of the on-chip memory controller left powered on is negligible

for total processor power across two sockets and total system power.

We run the workloads using one to eight cores. In the conventional

case, all of the turned-on cores reside on a single processor. In the noise-aware

scheduling case, each processor has four cores that are turned on and active.

In either case, we measure and compare the two processors’ total chip power.

As an example, Figure 4.13 shows the results for raytrace with voltage

noise-aware scheduling. Figure 4.13a shows that noise-aware scheduling offers

a better undervolting benefit no matter how many cores are used. There are

two reasons. First, noise-aware scheduling lets each processor power on fewer

cores, which cuts down leakage power, and thus substantially reduces the idle
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power. For raytrace, less idle power gives 20mV more undervolting benefit

when one core is active. Second, balancing application activity (threads) and

system requirements (idle cores) across the processors’ loadline distributes

dynamic power across each processor, which further reduces the passive drop

for each processor. When eight cores are active, reduced dynamic power allows

an additional 20mV reduction.

Figure 4.13b shows noise-aware scheduling can reduce a significant

amount of total chip Vdd power. The biggest effect is achieved when more

cores are used. In Figure 4.13b noise-aware scheduling reduces power con-

sumption by 1.6%, 4.2% and 8.5% when two, four and eight cores are used,

respectively. The result is intuitive because each processor’s passive voltage

drop is reduced when fewer cores are active. Thus, distributing the workload

when more cores are active yields larger benefits.

Loadline-borrowing is suitable only for workload scheduling within a

multisocket server. In this setting, all other resources, such as memory, disk,

and network I/O, remain active when workloads are consolidated onto a few

processors. When workloads are consolidated across multiple servers, the idle

power reduction from turning off the used memory and hard drive outweigh

active timing margin’s processor power savings. In this case, the scheduler will

consolidate workloads onto fewer servers first, then on each server noise-aware

scheduling can be used to further improve cluster power consumption. We

leave this discussion to future studies.
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Figure 4.14: Voltage noise-aware scheduling’s power and energy improvement
under different numbers of active cores. Compared to the baseline, noise-aware
scheduling consistently shifts up every workload’s power improvement.

4.4.2 Power Reduction Improvement

Current operating systems are unaware and do not incorporate loadline

knowledge into process scheduling. We use the Linux kernel’s “taskset” affin-

ity mechanism to emulate a schedule that dynamically performs noise-aware

scheduling. We evaluate noise-aware scheduling on a wider set of benchmarks

including all of PARSEC and SPLASH-2 workloads to capture the general

trends. Briefly, the key highlight is that loadline-aware OS-level software

scheduling can effectively double the efficiency of active timing margin at high

core counts.

Figure 4.14 shows active timing margin’s scaling power improvement

against static guardbanding under workload consolidation and noise-aware

scheduling. Ideally, active timing margin’s power improvement will not scale

down, and it will be identical across workloads. noise-aware scheduling ap-

proaches this goal by increasing active timing margin’s power-saving capab-
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ility for all active cores, shown by the clustered lines at the top of the fig-

ure. When fewer cores are active, noise-aware scheduling’s power improvement

comes mainly from the reduced idle power on each processor. The improve-

ment increases when more cores are active because each chip’s dynamic power

also reduces when the workload is distributed. Figure 4.14 shows that on aver-

age consolidated active timing margin achieves 5.5% power improvement over

static guardbanding when eight cores are active, whereas noise-aware schedul-

ing improves by 13.8%, over 50% improvement atop the original system design.

We study more benchmarks along with PARSEC and SPLASH-2, in-

cluding SPEC CPU 2006 workloads running in the form of SPECrate [18],

to further demonstrate noise-aware scheduling’s power and energy improve-

ment when all eight cores are active. SPECrate is commonly used to measure

system throughput, typical of evaluating performance when running differ-

ent tasks simultaneously. We use 32 PARSEC and SPLASH-2 threads and

eight SPECrate workload copies to match POWER7+’s eight-core architec-

ture. The results are shown in Figure 4.15. On average, noise-aware scheduling

achieves 6.2% and 7.7% reduction in processor power and energy, respectively,

across the workloads. For power-intensive workloads such as lu cb, noise-aware

scheduling can achieve 12.7% power improvement. For all workloads, total

server power improves by 2.1% on average.

A handful of benchmarks fall into one of two extremes. On one extreme,

some benchmarks that are to the leftmost side on the x-axis, such as lu ncb

(not to be confused with lu cb) and radiosity, suffer from severe performance
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loss. Performance decreases by more than 20% due to interchip communication

overhead (not shown). This in part leads to reduced core power consumption

during noise-aware scheduling (see left y-axis), but the longer execution time

negatively offsets the benefit and increases total energy consumption.

On the other extreme, some other benchmarks that are to the rightmost

side on the x-axis, such as radix, zeusmp, lbm, fft and GemsFDTD, experience

large performance improvements from load balancing because there is less

memory subsystem contention. This performance improvement increases chip

activity that could sometimes lead to higher power consumption than the

baseline system, such as in the case of radix and fft. Nonetheless, the improved

performance brings about large energy reductions for these workloads, as the

right y-axis in Figure 4.15 shows. Improvements range between 50% and 171%.

4.5 Related Work

The di/dt effect and its impact on reliability has been well noted [48, 89,

51, 8]. A plethora of work aims at reducing inductive noise in microprocessors,

ranging from the circuit [28, 12], architecture [36, 78, 37, 39, 38, 88, 89, 69, 108]

and software [86]. These works usually require intrusive design changes to

the hardware [28, 12, 39, 88] and rely on simulation, microarchitecture event

detection and activity throttling [36, 78, 38, 88, 86, 69].

Unlike the prior work, we use a measurement-based approach to study-

ing adaptive guardbanding processors [31, 101, 52, 54, 14] that handles droops

in a fundamentally new way. Because adaptive guardbanding can effectively
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improve efficiency and guarantee reliability at the same time, it has gained

more attention recently [35, 100, 13].

Prior work on adaptive guardbanding focuses on voltage droop toler-

ance and system-efficiency analysis at one core or one processor level [31,

101, 52, 54, 14, 35, 100, 13]. In our work, we showcase adaptive guardband-

ing’s system-level implications for core scaling and workload heterogeneity,

and we investigate its root causes. Our analysis incorporates di/dt noise and

extends to total on-chip voltage drop. Our multicore di/dt noise character-

ization confirms prior observations [37, 89, 69]. We also observe mitigated

typical-case noise and magnified worst-case noise [69] due to on-chip noise

propagation [37, 89]. Because adaptive guardbanding deals with di/dt noise

well, further investigation should focus on improving its performance with

respect to passive voltage drop.
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Chapter 5

Managing Enhanced Performance Variation

on Adaptive Clocking Multicore Processors

In this chapter, we discuss how to leverage active timing margin’s auto-

matic timing margin tracking ability to expose a multicore’s static core-to-core

performance heterogeneity caused by process variation, and explore how to

manage the dynamically occurring inter-core frequency interference caused by

the cores sharing the power delivery on an active timing margin system.

On multi-core and many-core chips, it is critical that we push down

timing margin that not only deals with the dynamically occurring effects such

as temperature and voltage variation but also covers the core-to-core perform-

ance heterogeneity caused by lithography’s manufacturing process variation.

To investigate this issue, we fine-tune the hardware active timing margin solu-

tion designed to cope with voltage noise, such as the adaptive clocking fabric

in the POWER7+ multicore in Chapter 4. We study enhancing a multicore’s

active timing margin capability according to each core’s characteristics, as

well as the running applications’ characteristics. Adaptive clocking’s per-core

configurable control loop provides a new opportunity to expose the inter-core

speed variation and to provide more performance gain than the conventional
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Figure 5.1: Fine-tuning active timing margin (ATM) exposes both process
(P) and voltage (V) variation, and improves frequency compared with the de-
fault active timing margin configuration and the per-core <v, f> static margin
setpoints.

multicore process variation, i.e., calibrating static frequency levels separately

for each core [91, 97, 85, 24, 84].

The conventional approach to expose core-to-core variation uses per-

core <v, f> setpoint with static margins and thus requires guarding against

worst-case voltage variation, such as the di/dt effect and the DC voltage drop

across the chip’s power delivery path, each of which can consume 3% of the

Vdd [115]. But because active timing margin can handle these adaptively, it

provides more performance gain by exploiting the inherent inter-core variation

in the processor.

Figure 5.1 illustrates the performance enhancement and heterogeneity

exposed by “fine-tuning” the adaptive clocking control loop for each core. On

the tested POWER7+ platform, we (re)configure active timing margin via its

Critical Path Monitors (CPMs). The CPM is the chip’s programmable canary
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circuit that measures the timing margin [54, 26].Similar interfaces exist on

other adaptive clocking systems for test-time calibration of margin measure-

ment accuracy and for configuring margin reduction aggressiveness [68, 104, 7],

an example is Power Supply Monitor (PSM) on AMD processors [35]. The fig-

ure exposes the pros and cons of different approaches.

Starting with the baseline where there is no active timing margin, un-

der a chip-wide static margin (i.e., first bar), all cores have a fixed frequency

of 4.2 GHz. Setting the static margin for each core (second bar) with fixed

<v, f> improves performance by exposing the fast cores; we estimate the

fastest cores can run around 4.5 GHz, based on prior art’s voltage noise char-

acterization [115].

Next, the default active timing margin (third bar) carefully programs

each CPM to provide uniform core performance, following the conventional

contract between processors and users. When idle, all cores run near 4.6 GHz,

higher than static margin’s fastest cores because of active timing margin’s

highly effective mitigation of di/dt effects [54]. However, when high power

workloads are run, the induced DC voltage drop across the power delivery grid

can create long-term steady degradation of the supply voltage delivered, erod-

ing timing margin and reducing active timing margin’s frequency gain [115],

which lowers the worst-case performance to around 4.4 GHz. Setting fixed

<v, f> points for each core requires that this worst-case be guarded against,

whereas active timing margin handles it adaptively and frequency only suffers

when power consumption is high.
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Fine-tuning (fourth bar) at the per-core adaptive clocking control loop

level exposes similar inter-core speed variation as static per-core <v, f> set-

points, but it provides much higher performance under typical conditions be-

cause of active timing margin’s adaptive margin provisioning capability. Fine-

tuning active timing margin also removes any margin left not trimmed in the

default system, which further pushes processor efficiency to the extreme. For

instance, when the chip is idle, power consumption and DC voltage drop is

minimal, pushing the fastest core to nearly 5 GHz, 10% higher than the fastest

static margin core.

While fine-tuning active timing margin provides high frequency gain,

it exacerbates variability and induces performance predictability issues. In

the worst case, e.g., when DC voltage drop is maximized when running eight

high power daxpy threads, the slowest core, which runs at 4.7 GHz under idle

conditions, slows down to 4.5 GHz, a 500 MHz drop from the fastest 5 GHz

case. Thus, application performance can vary widely, depending on the core

chosen for execution and any co-located workloads.

Figure 5.2 shows a POWER7+ processor core’s performance under dif-

ferent timing margin settings [92, 32]. We instrument POWER7+’s active

timing margin via its Critical Path Monitors (CPMs), a programmable in-

terface of the chip’s canary circuit that measures available margin [54, 26].

We illustrate with the inference latency of SqueezeNet, a compressed con-

volutional neural network (CNN). Under conventional static timing, the chip

clocks at 4.2 GHz, producing an average inference latency of 80 ms. Under the
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Figure 5.2: SqueezeNet inference latency on a POWER7+ core under dif-
ferent timing margin settings. Aggressively fine-tuning active timing margin,
and co-locating it with “friendly” low-power applications significantly enhance
performance.

chip’s default active timing margin, a poorly managed system that co-locates

SqueezeNet with high-power co-runners such as daxpy increases frequency to

4.4 GHz, yielding a limited 7.5% latency improvement. However, customiz-

ing each core’s active timing margin and wisely managing the system to let

SqueezeNet run alone boosts core frequency to 5 GHz and reduces latency by

15%, a 2X the performance gain over the default production system.

Inspired by the benefits shown in Figure 5.2, this chapter detail how to

fine-tune active timing margin at the core-level to robustly reveal each core’s

performance limit and to expose inter-core speed differences. We perform

extensive hardware measurement to analyze active timing margin’s operating

limits under different application scenarios, which leads to a low-overhead

solution for deploying active timing margin systems with their highest speed

at scale, while delivering controllable application performance in the presence
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of the exposed process and voltage variation. We present a software solution

to actively fine-tune and manage active timing margin. In summary, we make

the following contributions:

5.1 Fine-tuning Core-level Active Timing
Margin Operation

In our study, we convert all of active timing margin’s reclaimed timing

margin into frequency and keep Vdd unchanged. This process bypasses the

restriction on undervolting wherein a chip’s worst-case core limits the amount

of undervolting. Overclocking allows each core to independently adapt to its

conditions and can fully expose a chip’s inter-core speed differential, potentially

producing more performance benefit. We let active timing margin boost each

core’s frequency at Vdd 1.25 V, the 4.2 GHz P-state.

We explain how to customize a multicore’s active timing margin oper-

ation to be more aggressive, which extracts more timing margin and increases

frequency. Reconfiguring active timing margin’s control loop to its operat-

ing limit is unexplored before, thus we propose a systematic procedure to

characterize how the processor behaves under different scenarios and timing

margin reclamation levels. The insights we gain when executing this proced-

ure is instrumental in deploying customized active timing margin systems in

production.
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Figure 5.3: CPM has three cascaded parts: programmable inserted delay,
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5.1.1 Programming Critical Path Monitors
to Reconfigure Margin Reclamation

We configure the POWER7+’s Critical Path Monitors (CPMs) to fine-

tune active timing margin’s margin reclamation behavior. By design, CPMs

are programmable to set how aggressively active timing margin trims the mar-

gin and, more importantly, to cover speed variation and deliver uniform per-

formance to users. We leverage this interface to fine-tune each core’s active

timing margin control loop.

Figure 5.3 shows a CPM uses three stages to measure margin [25, 26]:

(1) inserted delay, (2) synthetic paths, and (3) an inverter chain. The inserted

delay is a configurable circuit. A user can specify the number of inverters a

signal passes through to select its timing delay length. The synthetic path

simulates a pipeline circuit’s delay with a set of paths, including AND, OR,

and XOR gates and wires. The final inverter chain quantifies the time left after
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Figure 5.4: Pre-set inserted delay of the CPMs in two POWER7+ chips,
grouped by core. There exists wide variation between different CPM
sensors.

the signal propagates past the inserted delay and synthetic path by counting

the number of inverters a signal passes. The inverter count is a CPM’s final

output and is sent to the DPLL for clock adjustment.

Before a POWER7+ processor is shipped, each CPM’s inserted delay

is pre-set at test-time with a default value that serves as extra “protection”

for the control loop to function robustly. The pre-set delay makes CPMs

report less margin than it could have, leaving some margin not trimmed as

protection. The pre-set delay also smooths out the speed differences between

different corners of a chip by adding more delay to fast corners in order to fill

the empty time after a circuit finishes switching and adding less delay to slow

corners.

Figure 5.4 shows the preset inserted delays in each core of the two

POWER7+ chips (we exclude CPMs in the LLC because it lies in a different

clock domain). Intuitively, each unit of the delay represents some amount of
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Figure 5.5: Reducing inserted added delay makes the CPM count more time
margin after a signal travels through the synthetic path. The DPLL then
increases frequency to harvest the excess margin reported by CPM’s inverter
chain.

timing. Under static margin at 4.2 GHz, reducing the inserted delay by one

step lets the CPM detect one to three units more timing margin, equivalent

to the speed variation caused by 20-60 mV Vdd difference [26, 115]. The mag-

nitude of the preset delay shows the amount of “protection” built into the

default active timing margin system. The pre-set inserted delays range from

7 to 20, nearly a 3X range, indicating significant silicon speed variation.

By programming the inserted delay to different values, active timing

margin’s perception of the amount of available timing margin changes, and

thus it is induced to become more or less aggressive in reclaiming timing mar-

gin. Figure 5.5 shows, for four example cores (C), across two processors (P)

on the same system, how active timing margin converts more margin into fre-

quency as the CPM inserted delay is reduced. The default delay (normalized

to 0) makes active timing margin push core frequency to around 4.6 GHz, but
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reducing inserted delay (reduction steps beyond 0) pushes frequency to over

5 GHz, a 20% improvement over the static timing margin baseline. Program-

ming the inserted delay to a smaller value (higher delay reduction) decreases

the time to the end of the synthetic path, leaving more margin to be coun-

ted by the inverter chain. The DPLL loop harnesses the excess margin by

overclocking.

Before a POWER7+ processor is shipped, each CPM’s inserted delay

is configured with some default “protection” delay to keep the CPM timing

margin conservative, which guarantees correct active timing margin execution.

The protection delay also smooths out the speed differences between different

corners of a chip. For the 64 CPMs in our two-socket system (we exclude

CPMs in the LLC because it lies in a different clock domain), the protection

delays range from 7 to 20, nearly a 3X range, indicating significant silicon

speed variation.

In the POWER7+, we configure the inserted delay by programming it

with a discrete step count through the server’s accompanying service processor.

Each step represents some amount of timing delay. Under the static margin

at 4.2 GHz, reducing the inserted delay by one step lets the CPM detect one

to three units more timing margin, equivalent to the speed variation caused

by 20-60 mV Vdd difference [26, 115].

We reduce each core’s CPM delay from the default amount to increase

active timing margin aggressiveness. To simplify the exploration space, we

reduce the four CPMs within a core (excluding the LLC CPM) by the same
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amount.

5.1.2 Characterizing active timing margin Limits

As shown by Figure 5.5, active timing margin has great potential for

more aggressive operation to achieve higher frequency. But to unlock active

timing margin’s full potential, we need a methodology to characterize the

system. Figure 5.6 outlines our procedure.

We profile an active timing margin chip on a per-core basis. System

idle is our starting point for the analysis; micro-benchmarks (uBench) cover

major paths in a core; and single-threaded benchmarks representing real use

cases.

System Idle Running background operating system tasks, an idle sys-

tem imposes the least stress on the processor. Understanding each core’s active

timing margin operating limits under system idle provides us with valuable in-

sight into inherent core-to-core differences.

Micro-benchmarks (uBench) Traditionally, micro-benchmarks are

used to measure the performance of individual processor modules, such as

the branch predictor, floating point unit, and caches. In active timing mar-

gin, micro-benchmarks serve an additional purpose because each one primarily

touches only one part of the core, avoiding complex microarchitectural interac-

tions. We thus use uBench to get a more comprehensive profile of core-to-core

microarchitecture level variation.
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Figure 5.6: Our active timing margin characterization methodology iterates
over each core and follows a step-by step approach, going from the simplest
system idle scenario to the complex real-world workloads.
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Realistic Workloads For the final step, we profile the system with

complex applications from SPEC CPU 2017 and PARSEC. These benchmarks

cover a wide spectrum of program space in the real world and have diverse

architecture behavior [94, 10]; hence they can touch more corner-case timing

paths or create more active di/dt effects than uBench, all of which threatens

the safe execution of aggressively reconfigured active timing margin. The

single-threaded workloads help identify application, chip-wide, and individual

core level heterogeneity.

In each of the above setups, failure may occur as a result of timing viol-

ation, manifested as an abnormal application termination (e.g., segmentation

fault), silent data corruption (SDC), or a system crash. For SDC related error,

we rely on SPEC and uBench’s inherent result checking tool for guaranteeing

execution correctness. All these failures may occur because either the CPM’s

delay has become so short that it does not capture real circuit delays or system

noise events, such as the di/dt effect, overwhelms the control loop’s ability to

respond in time. Because the effects that cause active timing margin failure

might be not fully deterministic, we repeat the profiling in each setup at lest

20 times to produce a distribution of active timing margin operating limits.

We expect the distributions to be tight because timing violations will not be

entirely random. These distributions provide a holistic view of active timing

margin’s margin reclamation capability, so we study them from here on.

Our methodology progresses through increasing workload complexity.

Thus we often need to roll back the CPM delay setting that was successful
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in a previous less complex setup to a less aggressive point, reflecting a work-

load setup’s unique impact on active timing margin’s operation. Although

the worst-case scenario might determine practical active timing margin re-

configuration in the real world, the middle point analysis shed useful insights

on what affects the core-level customization of active timing margin’s margin

reclamation.

There is no guarantee that a particular circuit path or system noise

event will deterministically lead to a timing violation, so we repeat the profiling

in each of the above setups at least 20 times to produce a distribution of active

timing margin operating limits. On the other hand, the effects that lead

to a timing violation are not entirely random. Reconfiguring CPM inserted

delay beyond a limit often leads to certain critical paths having much higher

probabilities of experiencing timing errors; thus, the resulting distributions of

successful CPM delays tend to be very tight. These distributions provide a

holistic view of active timing margin’s margin reclamation capability, so we

study distributions here onward.

A timing violation manifests as an abnormal application termination

(e.g., segmentation fault) or a system crash. It happens because either the

CPM’s delay has become so short that it does not capture real circuit delays,

or system noise events, such as the di/dt effect that overwhelms the DPLL.

Our profiling methodology progresses through increasingly complex

workloads. Thus we often need to roll back the CPM delay setting to a less ag-

gressive point, reflecting a workload’s unique impact on active timing margin’s

111



P0C0 P0C1 P0C2 P0C3 P0C4 P0C5 P0C6 P0C7 P1C0 P1C1 P1C2 P1C3 P1C4 P1C5 P1C6 P1C7
idle limit 9 8 4 11 10 7 8 2 4 8 5 8 7 5 10 3
uBench limit 9 8 4 10 9 7 8 2 4 8 5 5 6 4 10 2
thread normal 8 7 4 9 8 6 7 2 3 7 5 4 5 3 8 2
thread worst 6 6 3 6 6 5 5 2 3 3 5 3 3 2 6 2

Table 5.1: ATM customization limits under system idle, uBench, and real-
world application. Data is collected on two eight-core (C) POWER7+ pro-
cessors (P). ATM limits are reflected as the number of stepped reduced from
CPM’s default inserted delay configuration.

operation.

5.2 Idle System Characterization

Understanding active timing margin’s margin reclamation limits in an

idle system sets a starting point for further, more complex analysis. With no

application code running, the system exerts minimal stress on active timing

margin’s reconfigured control loop, enabling us to use active timing margin to

expose the silicon’s inherent maximum speed.

Running only the operating system, we build a distribution of the most

aggressive yet safe CPM configuration points for each core, depicted in Fig-

ure 5.7 by the amount of CPM delay reduction from the chip’s default setting,

along with the resulting frequencies. As expected, the distributions are tight,

covering no more than two configurations. Each core’s idle limit is the lowest

(most conservative) CPM delay reduction plotted, e.g. 9 in Figure 5.7a. These

are summarized in Table 5.1.

The different core-to-core idle limits reveal lucrative performance po-

tential for aggressive active timing margin customization (Chapter 5.2.1), and
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Figure 5.7: The limit configuration of each POWER7+ core (i.e., the most
aggressive reduction of CPM’s inserted delay from its default setting, beyond
which ATM operation can cause system failure under idle condition) distrib-
utes over a narrow range (red bar, left y axis). The operating frequency at
each core’s limit delay config is over 4800 MHz, more than 15% higher than
static margin’s 4200 MHz level (blue mark, right y axis).

the significant core-to-core performance variation (Chapter 5.2.2) which is

partly caused by the non-linearity in CPM configuration (Chapter 5.2.3).
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5.2.1 Significant Performance Potential

For most cores, the inserted delay can be aggressively reduced, making

active timing margin’s control loop see more timing margin for reclamation.

As Figure 5.7 shows, more than half the cores (e.g., P0C0 and P0C1) can

tolerate reductions of at least seven steps of CPM inserted delay, elevating

frequencies to over 5000 MHz: a 7% improvement over default active timing

margin’s 4600 MHz and a 20% improvement over static margin’s 4200 MHz

baseline, showing customized active timing margin can substantially improve

performance.

5.2.2 Exposed Inter-core Frequency Variation

Programming the CPM to change active timing margin operation yields

different frequency levels for each core, despite the performance improvement.

For instance, at the idle limit P1C2 runs at about 4850 MHz but P0C3 achieves

about 5200 MHz. Even within a chip, there is a wide range (e.g., P0C2

and P0C3). The core-to-core frequency variation is essential for application

performance management, which we discuss later.

The core to core differences are understood to be a result of manufac-

turing process variations [24, 84], i.e., some core’s circuits are faster due to

imperfection in the lithography process. For instance, as Figure 5.7 shows,

P0C3 can safely reduce its CPM delay by 11 steps, while P0C7 can only mit-

igate its delay by two, reflecting the varying amount of timing margin available

for reclamation, which is caused by the two cores’ speed difference.
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However, because on the POWER7+ each core’s performance poten-

tial is unlocked via active timing margin control loop’s automatic harness of

available timing margin, the functioning of active timing margin control loop

also plays a critical role in the inter-core performance variation.

5.2.3 Nonlinearity of CPM Configuration

The CPM inserted delay’s configurable inverter chain is designed to

have linear timing delay graduation for timing margin measurement. How-

ever, the manufacturing process makes it have non-linear graduation when

configured to measure timing margin. The non-linearity magnifies the inter-

core performance heterogeneity.

The inserted delay’s non-linear configuration manifests as significant

idle limit variation between cores. Consider P0C4 and P1C7, which are both

able to increase frequency from 4600 MHz to 5100 MHz but do so with very

different CPM changes: P0C4 reduces the delay by ten steps, while P1C7 only

needs two steps. Hence, although the two cores have similar excess timing

margins, P0C4’s CPM encodes smaller timing delays in each step than P1C7.

Within each core, CPM’s non-linearity makes the timing margin en-

coded by one CPM delay step vary. Figure 5.5 shows that P1C6’s frequency

increases by over 200 MHz when going from step zero to one, jumping from

the baseline 4600 MHz to over 4800 MHz. But in going from step one to two,

there is an almost negligible change in frequency. Similarly, the frequency is

nearly unchanged when increasing the CPM delay reduction from step five to
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six for P1C3, but reducing the delay by one additional step (i.e., going from

six to seven) increases the frequency by over 100 MHz.

As another example, in Figure 5.7k reducing P1C2’s CPM delay by

six is too aggressive and can crash the system; rolling back its delay by one

step ensures safety but at the cost of 300 MHz. P1C1 (Figure 5.7j) similarly

needs its CPM delay reduction rolled back by one step (from nine to eight) for

safe operation but at the cost of only 100 MHz. Though P1C2 could operate

safely at a higher frequency, the large CPM jump forces the 300 MHz drop

and amplifies the differences between the two cores.

In summary, the non-linearity configuration of the CPM and active

timing margin control loop demands that customization of multi-core Active

Timing Margin operation be carried out carefully on the per-core basis because

no single CPM configuration works uniformly for all cores.

5.3 Micro-bench Characterization

While idle system characterization reveals insights on the performance

benefits and the inter-core variation issues of multicore active timing margin

customization, it does not evaluate the system’s behavior under stress from

real-world application codes. Before using more complex applications, we use

micro-benchmark (uBench) as a valuable tool that controls program behavior

to analyze individual processor components [73]. Because uBench imposes

more stress than idling, the CPM configuration tends to be more conservative,

creating a practical point for processor deployment in the real world.
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Figure 5.8: For 6 out of 16 cores, ATM configuration (i.e., CPM’s inserted delay
setting) needs to be rolled back from its idle limit in order for micro-benchmark
(uBench) to run successfully. The FP (daxpy), MEM (stream), and INT
(coremark) uBench have similar distribution of their pass config, indicating
the core’s mismatch between its reconfigured CPM timing measurement and
its actual circuit speed. The other 10 cores not shown can run uBench safely
at their idle limits.

5.3.1 Workload Selection

We evaluate system behavior under aggressive active timing margin

customization using three uBench programs. These programs collectively cover

all main parts of the microarchitecture, as well as the dispersed CPMs in a

core.

We use coremark [27] to stress the core’s control, branch, and integer

units; daxpy to stress the floating point unit; and stream [20] for its ability to

generate cache misses and exercise the load-store unit. Prior work has used
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such benchmarks to exercise the functional units and validate the active timing

margin [54, 55]. We check the programs’ run result to evaluate processor exe-

cution correctness. All incorrect runs manifest as system crashes or abnormal

application exits.

Using these benchmarks ensures we challenge a reconfigured active tim-

ing margin by touching more paths than system idle. Meanwhile, these uBench

programs create little system noise, especially the di/dt effect. They have

controlled, smooth program behaviors and avoid complex microarchitectural

activity such as periodic pipeline flush, which is the root cause of workload-

induced voltage droops [36, 78, 88, 89, 69]. The di/dt effect is dangerous

for aggressively reconfigured active timing margin because its fast drooping

voltage can prevent the control loop from engaging in time [103], resulting in

application failure.

5.3.2 What Makes Some Cores Fail?

We start the uBench characterization from the idle limit because it

is the point that sustains stable system state. If this initial starting point

fails, the CPM inserted delay is rolled back to have a longer timing delay to

make active timing margin harness timing margin more conservatively until

the program runs correctly. We find most cores’ idle limits sustain correct

uBench execution, which entails they can safely accommodate the major paths

activated by the instructions used by uBench programs.

For the server’s two physical processors, uBench characterization ex-
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poses six cores that fail for the three programs. Figure 5.8 shows the distribu-

tions of reintroduced delays for these cores, using the “rollback steps” relative

to the idle limit, which reflects the stress impact from uBench program execu-

tion compared with system idle. For those six cores, rollback ranges from one

to three steps and sustains all uBench workloads.

All three programs, despite their different characteristics, show similar

behaviors on the six problematic cores. The implication is that the microar-

chitecture blocks that limit active timing margin fine-tuning are the common

structures used by all programs, such as instruction fetch and scheduling,

rather than specific modules stressed by each application (e.g., FP unit). We

also find uBench limit sustains voltage and power stress-test, which will be

detailed later in this paper. We, therefore, use the uBench limit as a reference

point for further characterization using realistic applications.

5.4 Realistic Workload
Characterization

To run real applications, a production active timing margin system

today adds some amount of protection margin to CPM’s uBench limit con-

figuration [54]. To conservatively guarantee execution correctness, the added

margin can be up to 50% of the static guardband. But this leaves room for

improvement as demonstrated by the 2X frequency gain during our system

idle characterization.

However, adding additional guardband as a conservative precaution ig-
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nores the application-dependent behavior and can waste valuable performance

benefit. In this section, we profile with a variety of integer and floating point

workloads from SPEC CPU 2017 [19] and PARSEC 3.0 [11]. We use these

workloads because their result-checking tool provides a convenient method for

checking execution correctness. Understanding per core active timing margin

operating limits under these heterogeneous workloads offer helpful insights for

deploying aggressively customized active timing margin chips in real-world use

cases.

To understand all system factors that impact an aggressively fine-tune

active timing margin processor, we profile with a variety of integer and floating

point workloads from SPEC CPU 2017 [19] and PARSEC 3.0 [11]. These real-

istic workloads provide helpful insight for deploying aggressively fine-tuned

active timing margin chips in real-world use cases. They often have more

complicated code patterns that may touch corner timing paths in a core, or

introduce complex microarchitectural behaviors that can lead to severe di/dt

effects, both of which threaten to violate the aggressively tuned CPM config-

uration after uBench profiling, even though the uBench limits already ensure

the active timing margin control loop protects major core paths.

5.4.1 Application Heterogeneity

Figure 5.9 shows x264 often requires significant CPM delay rollback

from the uBench limit, whereas gcc needs relatively little, allowing active tim-

ing margin to more aggressively boost frequency. The rollback reflects an ap-
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Figure 5.9: x264 stresses active timing margin more heavily and needs a more
conservative CPM configuration compared to gcc, as indicated by the larger
CPM rollback that is required for x264 over gcc.

plication’s unique system noise effects. Configuring active timing margin for

the worst application in all cases, e.g., x264, wastes active timing margin’s

margin reclamation potential when running more benign workloads. This

is the approach taken by today’s deployed active timing margin processors,

which still rely on a safety margin as large as 50% of the original static guard-

band [54]. This is the case for today’s active timing margin processors deployed

into the field which still rely on some safety margin, approximately 50% of the

original static guardband [54].

To get a complete picture of the behavior of aggressively configured

active timing margin cores on different workloads, we profile CPM rollback

from the uBench limit for all < app, core > pairs in Figure 5.10. We use the

weighted average CPM rollback as it quantifies the application’s unique stress

level. Two applications may have quite a different delay reduction distributions

even when they show the same lower bound in their CPM delay profile.
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From the individual rows in Figure 5.10, we see that each workload

imposes a different amount of stress but does so consistently across cores. For

instance, x264 and ferret needs much more conservative active timing margin

setting than gcc and leela, indicating these workloads have exerted a higher

pressure on active timing margin’s control loop.

We classify the workloads as “heavy,” “medium,” or “light” as shown in

Table 5.2. “Heavy” workloads pose the greatest threat to aggressively recon-

figured active timing margin and often force a rollback of CPM inserted delay

for more conservative operation. In contrast, “light” applications exert little

pressure on active timing margin and often need no rollback from the uBench

limit. The “medium” workloads show more sensitivity to a core’s active timing

margin control loop.

In Table 5.1, thread-worst is the worst CPM configuration limit of all

workloads and represents the most severe application stress in our profiling.

The thread-normal is less conservative and lets most medium, and light ap-

plications safely pass. From our realistic single-threaded workload profiling,

we draw the following two key insights:

From the individual columns in Figure 5.10, we see that different cores

exhibit varying levels of “robustness”, where we define robustness as the im-

munity to CPM rollback from the core’s CPM uBench limit. The cores on

the right of Figure 5.10 has the highest robustness, requiring the least rollback

across all applications, indicating their active timing margin control loops can

deal with the system effects of any application. We anticipate they will con-
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stress level benchmark
heavy x264, exchange2, ferret

medium
perlbench, xalancbmk, xz,

facesim, omnetpp, mcf,
bodytrack, dedup

light
gcc, bodytrack, deepsjeng, leela,
freqmine, barnes, streamcluster,
fluidanimate, fft, blackscholes

Table 5.2: Benchmark classification based on their stress level to aggressively
configured active timing margin.

tinue to be robust on untested applications since the profiled workloads already

cover different behaviors [94].

The reason why certain applications and cores are more vulnerable after

aggressive active timing margin customization is a combination of the core’s

inherent speed and the running application’s characteristics. We conducted a

best-effort static instruction analysis on the applications and concluded that

more detailed insight into the running instructions is needed to predict each

application’s best-fit CPM setting on each core. For instance, gcc covers a

much richer set of instructions than exchange2, likely touching more corner

timing paths, yet stresses active timing margin much less. As another example,

x264 has similar performance counter profiles as leela, but their rollback

requirements differ substantially. We, therefore, defer the root-cause analysis

and the prediction of applications’ heterogeneous CPM configuration to future

work and focus on the variations already exposed.
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Figure 5.10: Application’s average CPM delay rollback from the core’s uBench
limit. The top workloads stress active timing margin heavily and need more
delay rollback for less aggressive margin reclamation.

5.4.2 Core Robustness Heterogeneity

Cores have varying levels of “robustness” to application heterogeneity,

where we define robustness as the immunity to CPM rollback from the core’s

inherent speed (the uBench limit profile). From the columns in Figure 5.10, the

cores on the right exhibit the highest robustness, requiring the least rollback

across all applications, indicating their active timing margin control loops can
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deal with the system effects of any application.

Figure 5.11 sorts cores’ average rollbacks across all workloads. The

rightmost cores, P0C7, P1C2, and P1C7 are immune to workload effects, flaw-

lessly executing all applications at their uBench limit. We anticipate they will

continue to be robust on untested applications since the profiled workloads

already cover various behaviors [94]. These “robust cores” can be relied upon

in a production environment to execute any application. Among the robust

cores, P1C7, however, is notable because its CPM delay was rolled back from

the idle test to the uBench test, significantly reducing its frequency to a rather

conservative 4800 MHz, possibly accounting for its apparent robustness. Con-

trariwise, P0C7 remains robust even at its CPM delay from the idle test. As

such, there is no clear correlation between a core’s speed and its active timing

margin robustness.

Figure 5.11 also summarizes different cores’ frequency variation under

the profiled scenarios. At the uBench limit configuration, core-to-core speed

varies by 300 MHz from the fastest, P0C6, to the slowest, P1C7. The speed gap

shrinks to 200 MHz at the thread-worst limit, caused by CPM delay rollback of

the non-robust active timing margin cores. Nevertheless, the non-uniform core

frequency is still impressive and deserves proper management. The arithmetic

mean frequency is 4908 MHz, under thread-worst setting, and the standard

deviation is 63.5 MHz.
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Figure 5.11: Aggressively configured active timing margin cores exhibit differ-
ent CPM rollback steps and frequencies when running realistic workloads.

5.5 Managing Fine-tuned Active Timing Margin

In this section, we discuss how to deploy and manage a fine-tuned

active timing margin system into the field in the presence of significant vari-

ability. Fine-tuning improves application performance because frequency is

higher. However, pushing active timing margin to its operation limit requires

execution correctness guarantee, and the varying frequency levels of different

cores and application scenarios create obstacle for the processor to delivering a

promised performance level to end users. Hence, we discuss how to determine

CPM settings for each core to robustly expose variation, and show how to

schedule and throttle co-running workloads to deliver predictable performance

for latency sensitive critical applications.

126



5.5.1 Deploying Fine-tuned Active Ting Margin Configuration

The insights we gather while analyzing the operating limits of a fine-

tuned active timing margin system under idle, micro-benchmarks, and realistic

workload scenarios are useful for understanding the performance opportunity

from exposed inter-core variability, but overhead of our procedure is too high

for finding a processor’s fine-tuned configuration in a real-world deployment.

Because programs have heterogeneous CPM settings on different cores,

one might try to predict each application’s best CPM setting on each core.

However, such a prediction scheme would demand essentially perfect predic-

tion accuracy because any misprediction can lead to system failure or incorrect

execution. Achieving this accuracy is difficult because it relies on deep know-

ledge of a program’s di/dt behavior as well as the circuit paths touched by the

program, all of which derives from the dynamic instruction streams and may

incur high overhead [88]. We leave CPM prediction for future work.

Rather than predict CPM settings, we propose a test-time stress-test

procedure to identify active timing margin fine-tuning limits while maintaining

a correctness guarantee. The approach and evaluation presented here is an

example of the process we recommend, and not meant to be literally the exact

steps to follow. For instance, the stressmarks we use in the paper are different

from what we use in production. Nonetheless, the general approach we discuss

is useful.

During test-time, we iterate over each core and run worst-case work-
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loads, such as a di/dt stressmark [51, 8], power stressmark [9], and ISA test

suites to create high voltage noise and high operating temperatures and to

cover all potential circuit paths. The combined stress-test finds each core’s

limit active timing margin configuration, providing a guarantee of correctness

for any realistic workload because, by definition, a stress-test pushes the sys-

tem beyond the requirements of any other workload.

In our work, we try our best to create a stress-test with a voltage virus

that repeatedly and synchronously throttles all cores’ instruction issue rate

to operate only one out of every 128 cycles while simultaneously running 32

daxpy threads. The daxpy workloads create high power consumption, raising

chip power to 160 W and temperature to 70℃; the issue throttling creates

a synchronous power surge across the chip, inducing concurrent di/dt effects

from adjacent cores, representing worst-case voltage noise [54, 103]. We recog-

nize that better power stressmarks can be constructed using more systematic

procedures [9], but we do not expect power and temperature to be the limiting

factors for active timing margin operation because these are long-term effects

and are well within active timing margin control loop’s nanosecond-level re-

sponse time. Though the realistic workload characterization in Chapter 5.4

covers a variety of instructions, in practice, chip vendors have tailored ISA

verification suites that provide wider coverage and execute in less time.

On the two tested POWER7+ chips, the thread worst CPM configur-

ations sustain correct execution under all our stressmarks. To provide addi-

tional correctness guarantees, the vendor can optionally rollback the stress-
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Figure 5.12: To ensure execution correctness, fine-tuning active timing margin
goes through worst-case stress-test during test time. Vendors can optionally
roll back stress-test active timing margin configurations, providing additional
safety guarantee. Either way, speed variability is exposed.

test-determined active timing margin limit by several steps.

Figure 5.12 shows the core frequencies across the two POWER7+ chips

after executing the above test-time procedure. At their limit, P0C1 and P0C7

have over 200 MHz speed differential. Rolling back each core’s CPM from the

limit by one or two steps keeps the same inter-core variation trend and provides

an additional safety guarantee. In the management scheme we propose, we will

use the limit thread-worst configuration, though the conclusions we present

and the scheme we propose can be applied to more conservative (rolled back)

configuration points.

5.5.2 Per-core Frequency Predictor

To manage active timing margin’s performance variability, we first de-

velop a predictor that informs frequency and performance for a candidate ap-

129



5000

4900

4800

4700F
re

qu
en

cy
 (

M
H

z)

140120100
Chip Power (W)

 P0C1  P0C4
 P1C3  P1C7   
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plication schedule. We develop this predictor by modeling each core’s runtime

average frequency f , as a linear function of the transistors’ supply voltage,

Vchip. Among different dynamic effects, long-term stable effects such as tem-

perature variation and DC voltage drop caused by high power determines core

frequency —infrequent, transient di/dt events are handled transparently by

the active timing margin control loop.

Because past research has shown that speed is only modestly affected by

temperature [113], we base our model strictly on IR voltage drop. Subtract-

ing the IR voltage drop, which is proportional to current and hence power

consumption, we derive a linear relationship between active timing margin’s

dynamic frequency and the chip’s total power consumption as shown in Equa-

tion. 5.1. The value b represents a core’s static CPM setting, while k′ · P

represents the dynamic variation, dominated by the IR voltage drop.
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f = k · Vchip = k · (Vvrm −R · I)

= k · (Vvrm −R ·
P

Vvrm
)

= −k′ · P + b

(5.1)

Figure 5.13 shows the linear model fitted for each core’s customized

CPM configuration. The measured data points align with Equation. 5.1’s

predictions. Each additional watt degrades the frequency by about two MHz.

In practice, each core stores its frequency prediction model and the model

is indexed by the chip’s total power consumption during job scheduling and

runtime.

5.5.3 Delivering Critical App’s Performance

Frequency directly affects application performance. Figure 5.14 shows

application performance scales linearly with frequency, with different coeffi-
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cients depending on the workload’s memory behavior. A memory-bound work-

load, such as mcf, enjoys less performance improvement from higher frequency

compared with a compute-bound workload like x264 because cache misses lim-

its the compute throughput. We, therefore, build a performance predictor for

each application, using frequency as the input. In this way, thread perform-

ance on each core can be inferred by the chip’s total power, using each core’s

frequency predictor as the intermediate step.

On a customized active timing margin system, each application’s per-

formance depends on both the core it runs on as each core has different CPM

configuration which leads to varying frequency levels, and the applications

running on other neighboring cores, as all applications contribute to the chip’s

total power which in turn affects each core’s frequency through the DC voltage

drop on the shared power delivery path. For some critical applications that

the users are interested in, it is crucial that they get mapped to the customized

cores that are high performance and robust. Meanwhile, it is also crucial that

the co-located background applications are adequately managed so that the

total chip power does not exceed the level that hampers critical app’s core

frequency. To handle this issue, we propose a scheme to selectively throttle

background application performance to control total chip power, and indirectly

frees up frequency potential for critical applications.

We use the applications in Table 5.3 for evaluation. The critical

workloads are user-facing and require high performance for lower latency.

They include deep learning inference (CNN, RNN, and LSTM models), ob-
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Mem behavior Critical Background

Intensive
resnet, vgg,

ferret,
fluidanimate

mlp, gcc,
facesim, lu cb,

streamcluster, etc.

Non-intensive
squeezenet,

seq2seq, babi,
bodytrack, vips

blackScholes, x264,
swaptions,
raytrace,

Table 5.3: Classifying critical and background applications, based on their
memory subsystem interference behavior.

ject detection, real-time image processing, content similarity search, etc. The

background workloads can tolerate lower performance and include workloads

such as stock price estimation, 3D image rendering, compression, compilation,

and machine learning training. For our work, we focus on the performance

issue caused by the active timing margin system’s shared power delivery prob-

lem and excludes performance interference from the memory subsystem which

is a general issue for all multicores. Thus, we avoid co-locating two memory-

intensive workloads at the same time to simplify the problem.

Figure 5.15 outlines our management scheme. It takes into account the

core-to-core performance and robustness variation as characterized in Chapter 5.4,

and the inter-core application power interference on the power delivery sub-

system. First, the user selects how he/she would like to set different core’s

CPM. The default policy uses the chip’s thread-worst CPM configuration as

shown in Table 5.1, obtained through our earlier characterization.

The default thread-worst policy represents a balanced trade-off between

performance and reliability. Most likely workloads can execute correctly while
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still providing better performance. The critical and background workloads

all execute correctly under thread-worst.

For higher performance, the user selects an “aggressive” governor, which

chooses an application’s most aggressive CPM configuration that guarantees

correct execution. In the current approach, this can be achieved by repetitive

profiling an application’s CPM limits in a tier of testing servers before ship-

ping the application to production server clusters. For most medium and light

workloads in Table 5.3, thread-normal represents the high-performance policy.

For higher robustness, the user can select a “conservative” governor,

which only schedules background workloads onto robust cores picked by active

timing margin characterization. The robust cores are scarce and may not

provide the highest performance, but they have the highest guarantee of correct

execution. The conservative policy is best for unknown applications or when

application correctness is paramount.

The operating system then automatically sets each core’s CPM setting

according to user-selected policy. The faster cores after CPM customization

are selected for running critical application. In parallel with CPM reconfig-

uration, the scheme reads user-specified QoS target for the critical applica-

tion and infers the chip power needed to meet the performance goal using per-

application performance predictor and per-core frequency predictor. To meet

the QoS goal, total chip power under critical and co-running background

workloads cannot exceed the calculated power budget.
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The manager subtracts the estimated power of the critical workloads

from the total chip power budget to get the power envelope available for the co-

running background jobs. The background jobs can then be scheduled to the

same chip under this envelope by carefully tuning their power consumption.

On POWER7+ where Vdd is shared for all cores, we adjust power consump-

tion by changing core frequency. Depending on the power envelope, we can

1) allow workloads to use aggressive active timing margin that has the highest

frequency, 2) set cores to different DVFS states’ frequency levels or 3) use

power-gating to disable cores.

5.5.4 Performance Improvement

We evaluate our solution(s) against the static margin and the default

active timing margin. Some customers turn off active timing margin for pre-

dictability. Hence the static margin is one of the fair baselines we compare

with for evaluation. The system is running the stock DVFS operating sys-

tem governors that already strive to improve system efficiency. Therefore, our

results include that comparison implicitly. Since active timing margin sys-

tems are still new and rare, there is little other prior work to compare against

directly.

Our evaluation is carried out when all cores are scheduled to run an

application. In practice, power gating idle cores off when not enough workloads

are available can further free up chip power and boost the performance of target

workload [115]. For all our tests, die temperature is maintained under 70℃,
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and no side effect on-chip cooling is observed.

Figure 5.16 summarizes the performance benefit of managing an ag-

gressively customized active timing margin system. To highlight frequency

interference’s impact, we use one core to run critical application, which is

a natural fit for many applications, such as LSTM and RNN inference. We

co-locate all critical and background applications on processor 0 (P0) of our

two-socket server.

Under static margin, the default DVFS governor makes POWER7+

processors clock at fixed 4.2 GHz to run applications, providing predictable

but low performance.

In Figure 5.16a, the default active timing margin improves perform-

ance uniformly for all cores, not with the highest efficiency. An unmanaged

system ignores the sensitivity of core frequency to total chip power. active tim-

ing margin may be indiscriminately activated on all cores, both for critical

and background workloads, which significantly raises total chip power, erod-

ing timing margin and reducing all cores’ frequency, thereby diminishing the

critical application performance. This unmanaged system still increases fre-

quency thanks to active timing margin’s harnessed margin, but the improve-

ment is restricted to only 6.1% on average.

Aggressively customized active timing margin provides more frequency

gain, but an unmanaged system prevents the processor from providing max-

imum benefit. Compared with the default active timing margin, an unmanaged
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processor system may carelessly assign the slowest core after CPM reconfigur-

ation to a critical job, limiting the peak performance that can be achieved.

The unmanaged system may also let all co-located background workloads

run under their highest frequency, increasing total chip power and reducing

critical workload frequency. However, in this scenario critical applications

still enjoy 10.2% improvement over static margin because customizing active

timing margin unlocks substantial frequency gain.

In Figure 5.16b, a managed active timing margin system can opt to

maximize the performance of critical applications. Specifically, critical

applications get assigned to the fastest cores, and background application

power is minimized by applying the lowest p-state. In this way, critical

application frequency is maximized, at the cost of background workload per-

formance. On average, critical workload performance improves by 15.2%.

Alternatively, a managed active timing margin system can opt to bal-

ance critical and background jobs by letting critical applications just

meet their performance goal, and maximizing background performance under

that promise. Suppose the user targets 10% performance improvement for

a critical workload over the static margin run, our managed system then

throttles background core frequencies with the minimal amount to control

total chip power, letting the frequency of the core running critical workload

reach the level that delivers target performance. Compared with the schedule

that maximizes critical application performance, the managed schedule on

average doubles the frequency of cores running background workloads, which
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is estimated to provide over 50% performance background application per-

formance improvement.

In Figure 5.16 the performance of squeezenet, ferret, vgg19, and

fluidanimate exceeds the 10% improvment target when the chip aims at max-

imizing their performance. However, their performance drops below the target

when the chip puts all cores into customized active timing margin states. A

balanced point can be obtained by controlling background workload frequency.

In this case, the frequency of co-located lu cb, raytrace, swaptions, and x264

is set to the 4.2 GHz p-state.

On the contrary, seq2seq outperform the 10% improvement goal when

its co-located streamcluster runs under customized active timing margin.

This is because streamcluster consumes little power even when the frequency

is high. The extra available power budget can be exploited by swapping

streamcluster with a more power-hungry co-runner, lu cb, with core fre-

quency properly throttled.

The other critical and background workloads combinations meet the

QoS target when active timing margin is aggressively customized for all cores.

The high-frequency gain of active timing margin customization provides this

benefit. For these cases, no core throttling needs to take place.

In summary, core-level active timing margin customization and active

timing margin-aware application power management provide 5% to 10% steady

performance improvement over the original active timing margin system. This
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result is notable because the improvement comes on a production-grade system

where even a 1% performance gain is considered significant.

5.6 Related Work

There is a plethora of work on process variation, inter-core performance

heterogeneity, and multicore scheduling [60, 91, 97, 85, 24, 84]. We leverage

active timing margin’s capability of tracking a core’s inherent speed and do

not need prior knowledge on the core’s max frequency. Our proposal for core-

level active timing margin customization conveniently expose the inter-core

performance heterogeneity and help users leverage it.

Prior art has shown multi-core performance interference through the

memory subsystem [67, 96, 23, 65, 102, 63]. Our work is the first to show

that on an active timing margin system, the shared power delivery subsystem

introduces a new dimension of resource contention, and proper management

is required to reap active timing margin’s full performance benefits in a pre-

dictable way.
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Chapter 6

Conclusion

This chapter provides the conclusion of my dissertation work. The

retrospective part (Chapter 6.1) summarize my Ph.D. research work and distill

some of the important lessons learned during this process. The prospective

part (Chapter 6.2) envisions how to apply and generalize this dissertation’s

research effort into more general computing systems, and provides the author’s

own remark on how computing will move forward, and how to steer one’s

research focus as well as the career path at the time this dissertation is written.

6.1 Retrospective

My dissertation provides comprehensive, measurement-based analysis

of a microprocessor’s timing margin characteristics under different environ-

mental variation, namely temperature, voltage, and process. The data and

insights presented in this thesis is extracted all using in-silicon sensor meas-

urement, thus providing critical guidance on what causes the timing margin to

be overprovisioned, how to reclaim it using active timing margin style solution,

and how to design system from software to hardware in order to help active

timing margin performs the best.
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The timing margin problem is admittedly rooted in the microprocessor’s

circuit level and even device level behavior. Yet, this dissertation shows that

to extract the full efficiency, architecture and software level co-design and

management that impacts hardware behavior, specifically power consumption

which indirectly affects chip temperature and voltage loss, are of significant

benefits. Specifically:

For temperature variation (Chapter 3), we identify the huge timing

margin slack caused by the significant circuit timing variation in the temper-

ature inversion region and propose a table lookup named based feedback loop,

i.e., Ti-states, for active timing margin. We note the time scale of temperature

variation is typically at the order of ms, so the table storage and lookup action

can be put in off-chip hardware, or in system software, such as the OS or device

driver. Furthermore, we find that for the system that employs Ti-states, high

workload temperature can reduce total system power, by balancing leakage

power increase with dynamic power decrease. Thus, whole-system manage-

ment of processor temperature can be in place to reduce total chip power.

For voltage variation/noise, hardware, or circuit level solution is man-

datory to deal with the fast-occurring nature of di/dt effects, as is the case of

the adaptive clocking system we study in Chapter 4 and Chapter 5. For these

systems, we conduct in-depth measurement to understand the mitigation of

voltage noise, after a decade of meaningful investigation of its architecture-

level causes [36, 78, 37, 39, 38, 88, 89, 69, 108], and find that, similar to

the case of temperature variation, longer-term IR voltage loss caused by ap-
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plication power consumption limits the efficiency improvement we can gain.

We propose load-balanced application scheduling to help individual processors

achieve its best power saving.

For process variation, it has been long known that each individual core

has their own operating frequency [60, 91, 97, 85, 24, 84], although providing

per-core frequency points in a multicore induces substantial test effort and per-

formance variation issues, which is also the reason why existing multicores all

employ uniform frequency determined by the slowest core. We explore lever-

aging the core-level adaptive clocking loop to track individual core’s speed,

which not only frees up frequency from runtime effects that occasionally erode

the timing margin such as temperature and voltage variation but also brings

up the fast cores which are suffering from the excess margin, dictated by the

slow cores. We further propose application scheduling and throttling mech-

anism to manage performance variation, in the presence of static frequency

heterogeneity caused by core-to-core process variation, as well as the runtime

frequency variation caused by power delivery system sharing on these active

timing margin systems.

6.2 Prospective

This dissertation provides an in-depth study on timing margin and its

optimization across system stack. Based on commercial hardware measure-

ment, the insights presented thus render itself useful for industrial practice.

Although the active timing margin techniques we study are explored on CPU
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and GPU architectures, they ideally apply to any other platforms. To facilitate

ease of adoption, future work can be carried out to put the research fruition

in this dissertation into more detail for robust production adoption.

For Ti-states, an automatic procedure to build the temperature to

voltage conversion table can be implemented and tested. It is worthwhile

to understand the max within-die temperature gradient due to local hotspots

and its impact of voltage reduction magnitude. It is also worthwhile to un-

derstand how different circuit cell types affect the Ti-state tables as their

threshold voltage varies. For latest 7nm technology, a thorough evaluation

is needed to understand to the trade-off between leveraging the device’s low

leakage power for frequency and performance enhancement, or power reduction

which exposes space for temperature management in synergy with Ti-states.

For adaptive clocking, or adaptive instruction issue system, an auto-

matic procedure is also needed to speedup per-core timing margin sensor calib-

ration for identifying the safe customization point for ultimate performance, as

proposed in Chapter 5.5.1. With shared power delivery, application schedul-

ing and throttling are needed for performance management. Alternatively,

architecture-level re-design of on-chip power delivery network can also reduce

inter-core interference from IR voltage drop loss. Combined with Integrated

Voltage Regulators (IVRs), the complete design space is yet to be covered.

Active timing margin management for voltage and process variation

can be effectively combined with adaptive clocking’s programmable interface,

as discussed in Chapter 5.1. However, unified timing margin optimization that
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additional incorporates temperature variation does not exist yet. The spee-

dup effect of temperature inversion provides new opportunity for chip power

and performance optimization. Unlike the management for voltage variation,

where power reduction is favored to reduce static DC voltage drop, temperat-

ure inversion may favor high power scenarios that increase chip temperature

and opens up more timing margin slack, as Chapter 3.4 projects. The trade-off

between circuit speedup caused by temperature inversion, DC voltage vari-

ation, and leakage power is yet to be explored.

Moving forward, the era of general purpose processor performance be-

nefits through Moore’s law and Dennard scaling has undoubtedly ended. The

future of computing system enhancement will depend on domain-specific ac-

celerator hardware design, accompanying software toolchain design, and con-

venient tools for low-cost, fast prototyping and testing [40]. The timing margin

optimizations proposed in this dissertation can be embedded into the resulting

system, should ultra power/performance efficiency is demanded. The author

believes as a computer architect, identifying key application domains, and ship-

ping the accompanying hardware-software system that is of economic value is

a major task for the coming decade.
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