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In this dissertation, we consider important optimization problems that

arise in three different domains, namely network models, clustering problems

and queueing models. To be more specific, we focus on devising efficient traf-

fic routing models, deriving exact convex reformulation to the well-known K-

means clustering problem and studying the classical Naor’s observable queues

under uncertain parameters. In the following chapters, we discuss these prob-

lems in detail, design efficient and tractable solution methodologies, and assess

the quality of proposed solutions.

In the first part of the dissertation, we analyze a limited-adaptability traffic

routing model for the Austin road network. Routing a person through a traffic

network presents a tension between selecting a fixed route that is easy to navi-

gate and selecting an aggressively adaptive route that minimizes the expected

travel time. We develop non-aggressive adaptive routes in the middle-ground

seeking the best of both these extremes. Specifically, these routes still adapt
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to changing traffic condition, however we limit the total number of allowable

adjustments. This improves the user experience, by providing a continuum

of options between saving travel time and minimizing navigation. We design

strategies to model single and multiple route adjustments, and investigate

enumerative techniques to solve these models. We also develop tractable al-

gorithms with easily computable lower and upper bounds to handle real-size

traffic data. We finally present the numerical results highlighting the benefit

of different levels of adaptability in terms of reducing the expected travel time.

In the second part of the dissertation, we study the well-known classical

K-means clustering problem. We show that the popular K-means clustering

problem can equivalently be reformulated as a conic program of polynomial

size. The arising convex optimization problem is NP-hard, but amenable to a

tractable semidefinite programming (SDP) relaxation that is tighter than the

current SDP relaxation schemes in the literature. In contrast to the existing

schemes, our proposed SDP formulation gives rise to solutions that can be

leveraged to identify the clusters. We devise a new approximation algorithm

for K-means clustering that utilizes the improved formulation and empirically

illustrate its superiority over the state-of-the-art solution schemes.

Finally, we study an extension of Naor’s analysis [74] on the joining or balk-

ing problem in observable M/M/1 queues, relaxing the principal assumption

of deterministic arrival and service rates. While all the Markovian assumptions

still hold, we assume the arrival and service rates are uncertain and study this

problem under stochastic and distributionally robust settings. In the former

setting, the exact rates are unknown but we assume the distribution of rates

are known to all the decision makers. We derive the optimal joining threshold

strategies from the perspective of an individual customer, a social optimizer

viii



and a revenue maximizer, such that expected profit rate is maximized. In

the distributionally robust setting, we go a step further to assume the true

distributions are unknown and the decision makers have access to only a finite

set of training samples. Similar to the stochastic setting, we derive optimal

thresholds such that the worst-case expected profit rates are maximized. Fi-

nally, we compare our observations, both theoretically and numerically, with

Naor’s classical results.
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Chapter 1

Introduction

1.1 Non-aggressive Adaptive Routing in Traffic

Traffic congestion, resulting from rapid population growth, is a major

problem faced by growing cities like Austin. Commuters spend a significant

amount of time in traffic and devising an efficient routing strategy to cope

with this situation is a major challenge.

Two of the most commonly used products in day-to-day traffic routing are

Google Maps and Waze. These products follow different routing strategies and

serve different purposes. Given a road network with driving times between

road intersections, Google Maps yields a static route between a source and

destination pair minimizing the total drive time. It is a non-adaptive routing

strategy where the route generated does not dynamically change based on the

traffic. At the other extreme, Waze produces a completely adaptive route

where the path keeps updating with the traffic conditions encountered. This

adaptive routing policy results in significantly shorter drive times compared

to Google maps, however, the frequent route changes may lead to very high

level of navigation stress. In Chapter 2, we aim to develop a middle-ground

strategy, which we refer to as a non-aggressive adaptive routing, that combines

the advantages of both the policies.

A non-aggressive adaptive route adapts dynamically to changing traffic

conditions but in a limited way – for example by allowing only a certain number
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of route-shifts at critical junctures. These routes seek to provide both low

travel times and low stress of navigation. We first propose a single route

adjustment policy, where the driver has the potential to observe and adapt at

only one intersection. We compute a best adjustment edge that minimizes the

expected travel time, through complete enumeration.

Next, we extend our study to multiple route adjustment policies, where

the driver has the potential to make k route adjustments. We consider three

different routing strategies what we call, series unforced, series forced and par-

allel models, which differ by how the adjustments are performed on the routes.

We develop dynamic programming based algorithms to compute a best set of

k adjustment edges that minimizes the expected travel time. We also propose

easily computable lower and upper bounds to improve the tractability of the

dynamic programming algorithms and handle large-sized networks. Finally,

the performance of our algorithms are evaluated on the Austin road network,

in terms of the trade-off between the savings in travel time and increasing lev-

els of adaptability. We highlight the contributions of the chapter and suggest

some future research directions in Chapter 5.

1.2 Convex Reformulations for K-means Clustering

Consider a set of entities together with observations or measurements de-

scribing them. Cluster Analysis deals with the problem of finding subsets of

interest called clusters within such a set. Usually, clusters are required to be

homogeneous and/or well separated. Homogeneity means that entities within

the same cluster should resemble one another. The separation is that enti-

ties in different clusters should differ one from the other. This problem is old

and can be traced back to Aristotle. It is also ubiquitous, with applications
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in natural sciences, psychology, medicine, engineering, economics, marketing

and other fields, and, as a consequence, the literature on cluster analysis is

vast. Closely related fields are pattern recognition, computer vision, compu-

tational geometry and subfields of operations research such as location theory

and scheduling.

A natural measure for homoegeneity/separation is given by the within-

cluster sum of squares. This setting gives rise to the K-means clustering

[70, 68] which is one of the most popular approaches and is widely regarded

as the de facto standard for cluster analysis [70, 68, 54]. Given a set of N

data points in real D-dimensional space RD, and an integer K, the problem

is to determine a set of K points in RD, called centroids, to minimize the

mean-squared Euclidean distance from each data point to its nearest centroid.

A closely related problem to K-means is non-negative matrix factorization

with orthogonality constraints (ONMF). The ONMF problem seeks to factor-

ize the input data matrix X into two non-negative matrices F and U such

that the distance between FU> and X is minimized subject to orthogonality

constraints.

Given the apparent difficulty of solving the K-means and ONMF problems

exactly, it is natural to consider approximations. One of the most popular

heuristics for the K-means problem is Lloyd’s algorithm. The algorithm alter-

nates between calculating centroids of proto-clusters and reassigning points to

the nearest centroid, may in general, converge to local minima. Another recent

popular solution scheme is due to convex relaxations [80, 11, 84]. Specifically,

Peng and Wei [80] develop a tractable semidefinite programming (SDP) lower

bounds for the K-means problem.

In Chapter 3, we attempt to derive exact convex reformulations to the

3



ONMF and the K-means clustering problems through conic programming.

We adapt and extend the results by Burer and Dong [28] to reformulate the

(non-convex) quadratically constrained quadratic program (QCQP) as a linear

program over the convex cone of completely positive matrices. The resulting

optimization problem is still NP-hard but replacing the cone of completely

positive matrices with its outer-most approximation yields a tractable SDP

relaxation to the original problem. We also show that our SDP relaxation is

tighter than the well-known relaxation by Peng and Wei [80]. As byproducts

of our derivations, we identify a new condition that makes the ONMF and

the K-means clustering problems equivalent. We devise a new approximation

scheme based on our SDP relaxation, and numerically highlight its superiority,

in terms of clustering quality, over the well-known existing approximation

schemes. We summarize the contributions of the chapter and suggest potential

future research directions in Chapter 5.

1.3 Distributionally Robust Strategic Queues

We consider the balking model for a first-come-first served M/M/1 sys-

tem where reneging is not allowed. In Naor’s model for observable queueing

systems with known arrival and service rates [74], a newly arriving customer

can potentially join the existing queue only if the observed system length is

less than a optimal threshold. In other words, he decides to join only if the

net benefit from joining is non-negative, otherwise he chooses to balk without

any gain or loss. In case of tie, the customer is assumed to join the queue.

The sole means to control the non-admission of newly arriving customers be-

yond the threshold is by levying tolls. This condition is in striking contrast

to the usual assumption (in M/M/1 queue) of serving all the arriving cus-
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tomers, assuming the system is stable (λ < µ). In other words, we implement

a strategic M/M/1/n queue where n denotes the maximum system length we

aim to maintain, and thus eliminating the need to assume any steady-state

condition. Finally, a reward $R and loss (or cost) $C per unit time in the

system is chosen such that any newly arriving customer to an empty server

should decide to join, i.e., expected loss C ≤ Rµ otherwise the optimal policy

is to disband the server and divert the customer stream altogether.

In Chapter 4, we extend the classical Naor’s observable model by relax-

ing the principal assumption of a deterministic arrival rate λ and service rate

µ. For each scenario, we derive the optimal threshold strategies for individ-

ual or self optimization, social optimization and revenue maximization control

schemes. These schemes differ in the logic by how the net profit rate is con-

ceived by the decision makers. While individuals wish to maximize their own

expected monetary utility, social optimizers seek to maximize the social benefit

rate and revenue maximizers aim to maximize the server’s profit rates.

We study the models in stochastic and distributionally robust settings,

and compare our observations with Naor’s classical results. In the stochastic

setting, we assume the rates are random and drawn from a known distribution.

In contrast, we assume the underlying distribution of the rate parameters is

unknown in the distributionally robust setting, and we only have access to

N training samples drawn from the true distribution. We derive the optimal

threshold strategies that maximize the worst-case expected profit rates, where

the worst case is taken over all the distributions in the ambiguity set generated

from the training samples. We summarize the contributions of the chapter and

suggest probable future research directions in Chapter 5.
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Chapter 2

Non-aggressive Adaptive Routing in Traffic

2.1 Introduction

Some major cities in the US are facing the problem of rapid population

growth. Figure 2.1(a) shows the fastest growing cities in the US based on recent

census data [91] and the vast majority of US population growth is concentrated

in Texas state. The city of Austin in Texas tops the list, as it has over the

past five years, with 2.95 percent growth between 2014 and 2015 [17]. Forbes

[30] also lists Austin as the fastest growing American city. The population

in Austin has increased from 650K in 2000 to 900K in 2015 [33] as shown in

Figure 2.1(b) and is expected to increase by at least 30 percent by 2030 [4].

This rapid population growth creates unprecedented problems, major among

them being traffic congestion [17]. Already Austin is ranked as the fourth

most congested city for the year 2013 by INRIX Inc. [58]. According to their

report, due to poor traffic conditions, commuters in Austin spent about 41

hours on average in traffic (three hours more than in 2012) and the the overall

travel time increased by 22 percent. Future predicted population growth will

worsen the situation. In order to manage the increasing traffic congestion, it

is vital to devise efficient routes to avoid traffic in a metro city like Austin.

There are various strategies and tools currently available to develop routes.

For example, Google maps and Waze route in different ways and serve a dif-

ferent clientele. Google maps creates a fixed static route which is easier to

6



(a) Percent population growth in US

(b) Austin population growth

Figure 2.1: (a) Top ten US cities ranked based on its percent population
growth between 2014 to 2015. (b) Population history of Austin city
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(a) Google maps: An example (b) Waze: An example

Figure 2.2: Sample routes generated using Google Maps and Waze on Austin
road network.

navigate but could be potentially slow. On the other extreme, Waze provides

an aggressive adaptive route. A snapshot of routes generated using Google

maps and Waze are shown in Figure 2.2(a) and Figure 2.2(b). An (aggres-

sive) adaptive route is a potentially faster route that dynamically changes and

adapts to traffic conditions but the frequent route changes may lead to high

stress in navigation. To alleviate this issue and to create a middle-ground that

seeks the best of both extremes, in this chapter, we develop methodology to

compute non-aggressive adaptive routes.

A non-aggressive adaptive route adapts dynamically to changing traffic

conditions but in a limited way – for example by allowing only a certain num-

ber of route-shifts at critical junctures. These routes seek to provide both low

travel times and low stress of navigation. At the start of the route, the condi-

tions on the roads are only known through a probability distribution. As the

driver approaches closer to individual intersections, specific road conditions

8



are observed and the routes are adjusted to minimize the travel time.

The main contributions of this chapter are: 1) We propose several strate-

gies to model and compute the non-aggressive adaptive routes, based on where

and how route adjustments are performed. 2) We develop exact mathematical

methods such as complete enumeration and dynamic programming algorithms

for each of the strategies. 3) We derive easily computable bounds to solve

the models efficiently for large networks. 4) We evaluate and analyze the

performance of the models using the Austin road network.

The remainder of the chapter is organized as follows. Section 2 discusses

the related work on adaptive routing. Section 3 describes in detail the pro-

posed modeling strategies and the respective solution methodologies. Section

4 presents a computational evaluation of the proposed models on the Austin

road network. Finally, Section 5 presents our conclusion.

Notation: We denote by E[(a, b)] the expected travel time on edge (a, b) in

the network. The expected travel time of the shortest path from node i to

node j is denoted by E[i → j]. In addition, we denote by E[i → j|duv] the

expected travel time of the shortest path from i to j, given the edge (u, v)

is congested. Similarly, E[i → j|D] denote the expected travel time of the

shortest path given that the edges in the set D are congested.

2.2 Related Work

Consider routing a driver from point s to t in a traffic network. Adaptive

routing is a stochastic shortest path problem where the edge costs are unknown

until arriving at one of its endpoints. The decision to continue or change the

9



route is based on the traffic condition at that edge. Croucher [34] appears

to be the first to have studied a model of this type but in a fairly restricted

setting. In that model, a first-choice arc is selected for every node, there is

some probability that arc fails, and if it fails a second outgoing arc is selected

at random. Andretta and Romeo [5] considered a similar model with the choice

of recourse computed in an optimal way. In their work a recourse path to the

destination is computed for every edge, assuming the edge is inactive. In our

work, if an edge has traffic congestion, it is still considered active with greater

time delay for traversal. However, if an edge is selected for observation and

found to be congested, the driver may revert to a recourse route. Unlike the

past literature, our work describes a sequence of models in which the driver

may observe between one to all edges for traffic congestion.

Another widely studied variant of adaptive routing is the Canadian Trav-

eller Problem (CTP). CTP was first defined in [77] (see also ([22])). The goal is

to find an optimal routing policy that guarantees a good route under uncertain

road conditions, minimizing the expected cost of travel. In this problem, the

arc costs are deterministic but unknown and once a road is considered blocked

it remains blocked forever. In general, CTP is known to be #P-hard and there

has been no significant progress on approximation algorithms. Several variants

to this problem such as k−CTP, k−vital edges problem, and deterministic and

stochastic recoverable CTP are defined in [16]. Polychronopoulos and Tsit-

siklis [82] present another variation to CTP where the realization of arc costs

is learned progressively as the graph is traversed. They provide dynamic pro-

gramming algorithms to solve models with both dependent and independent

arc costs and they establish that the running time of these algorithms is expo-

nential in number of arcs. In our work we assume independent arc costs and

10



limit the number of re-routing decisions, as opposed to CTP and its variants.

We also present tractable dynamic programming algorithms solvable in poly-

nomial time. Special cases of CTP are studied by Nikolova and Karger [75]

to explore exact solutions. They explain the connection of CTP to Markov

Decision Processes (MDPs) solvable in polynomial time. They also present

polynomially solvable dynamic programming algorithms for standard version

of CTP on directed acyclic graphs (DAGs). It is important to note that our

problem is a generic version of CTP. CTP can be derived by equating the

number of re-routing decisions to total number of edges in the network, in one

of our proposed routing models. Many recent extensions to adaptive routing

have been proposed, primarily focusing on route planning under uncertainty

for different modes of transportation [25, 24, 73], stability of transportation

networks [26], stochastic time dependent networks [45], application to online

decision problems [55], and competitive analysis of CTP [95].

To the best of our knowledge, this is the first work on examining non-

aggressive adaptive routing, identifying an optimal yet small number of de-

cision points on a route. The focus of our work is to derive the benefits of

adaptive routing but with limited number of adaptations to reduce driving

stress. In lieu of this we propose, compare, and contrast several models for

defining the decision points, and develop tractable algorithms to compute the

optimal routing policy.

2.3 Model Description

Consider a directed acyclic network G = (N,A), with specified source s

and destination t nodes as shown in Figure 2.3(a). On a city road network G,

N represents the set of road intersections and A represents the set of roads or

11



(a) A sample network (b) Traffic Model

Figure 2.3: Two state traffic model: Red solid line indicates the possibility
of high traffic on a edge, for example edge (a, b) with probability 1 − pab and
travel time dab. Black solid line indicates the possibility of low traffic with
probability pab and travel time cab.

edges connecting those intersections. We consider potential traffic congestion

on the edges given by the set A.

We consider a simple model of traffic congestion where each edge is in

either a high traffic state or low traffic state, independently of other edges. The

traffic probability distribution is assumed to be known ahead of time. Every

edge e = (a, b) is defined by three inputs: e = (c, d, p) where cab represents the

travel time under low traffic, dab represents the travel time due to high traffic,

and pab represents the probability of low traffic on the edge. This is visually

depicted in Figure 2.3(b).

Given these inputs, we determine the edges to be observed for traffic con-

gestion and the corresponding adjustment routes should high traffic states be

observed on those edges. We call an edge selected for observation and for pos-

sible route adjustment as adjustment edge. When the driver reaches the source

12



node of an adjustment edge and observes low traffic, they proceed through the

edge. If the driver observes high traffic, then they take an adjustment route.

To simplify the exposition, we start with a single route adjustment and then

provide several extensions to multiple route adjustments. A detailed discussion

on these route adjustment strategies is presented in the following subsections.

We begin with a simple example presented in Figure 2.4. This example

shows that the optimal adjustment edge need not be a part of the fixed non-

adaptive shortest route. The shortest path from s to t can be computed as

s→ b→ t with expected travel time 10. If edge (a, t) is observed, there is 20%

chance of low traffic with zero travel time. However, there is 80% chance of

high traffic at edge (a, t), and if the driver adjusts the route to a→ b→ t then

the travel time is 11. With the single observation of edge (a, t), the expected

travel time is 11 · 0.8 + 0 · 0.2 = 8.8, which is lower than the expected travel

time without any adjustments (=10). An interesting aspect of this example is

that the edge (a, t) is not on the no-adjustment shortest path.

2.3.1 Single Route Adjustment Policy

A pictorial representation of a single route adjustment policy is shown

in Figure 2.5, where the route from source s to destination t has a single

adjustment edge, (u, v). In this policy, the driver takes the shortest path from

s to u, and observes edge (u, v) for traffic. In case of low traffic, the driver

continues on the edge (u, v) and takes the shortest path from v to t. In case

of high traffic, the driver takes an adjustment route from u to t. The overall

expected travel time for any adjustment edge (u, v) is computed using

E1[(u, v)] = E[s→ u] + puv(cuv + E[v → t]) + (1− puv)E[u→ t|duv], (2.1)

13



Figure 2.4: An example to show that an adjustment edge need not be a part of
fixed shortest route: Edge weights represent expected travel time. We assume
low traffic with probability 1.0 on all the edges except edge (a, t). At edge
(a, t) we assume pat as 0.2, cat as 0 and dat as 100 with expected travel time
80.

where E[i→ j] represents the expected travel time of a no-adjustment shortest

path from node i to j, E[i → j|dik] represents the expected travel time of a

no-adjustment shortest path given edge (i, k) is congested, and E1[(u, v)] rep-

resents the expected travel time of a single route adjustment policy using the

adjustment edge (u, v). One could determine the adjustment edge that yields

minimal expected travel time, arg min(u,v) E1[(u, v)], using complete enumera-

tion given by

Z1[s→ t] =min
{
E[s→ t];

min
(u,v)∈A

E1[(u, v)]
}
, (2.2)

where Z1[s → t] represents the overall minimum expected travel time from s

to t due to single route adjustment policy. An equivalent integer programming

formulation is presented in Appendix A.1.
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Figure 2.5: Single Route Adjustment Policy: Solid black line represents an
edge. Grey dotted lines represent the shortest paths between the nodes with
expected travel time as edge lengths. Solid red line represents the edge to
observe for traffic.

2.3.2 Multiple Route Adjustment Policy

There are several potential models for multiple route adjustments. We

present and explore three different strategies that we call the series unforced,

series forced and parallel models. We develop dynamic-programming-based

algorithms to solve these route adjustment models, and finally compare their

performances.

Series Unforced Model

Let us start with two adjustment edges as shown in Figure 2.6, which

follow what we call a series unforced model. In this model, once the driver

makes a route adjustment he loses the potential to observe the other edges for

traffic. Say for instance the source s and destination t nodes are connected by

a highway. The driver enters the highway from source s, and upon arriving

at u1 observes edge (u1, v1) for traffic. In case of high traffic, driver adjusts

the route to reach the destination t and never gets to make any other route

adjustments. In case of low traffic, driver traverses the edge (u1, v1), continues

on the highway until u2 where they observe edge (u2, v2) for traffic. In case of

high traffic at (u2, v2), driver adjusts the route to destination t. In case of low

traffic, driver traverses the edge (u2, v2), continues on the highway to reach
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the destination t.

Let Esuf [(u1, v1), (u2, v2)] denote the expected travel time with respect to

the adjustment edges (u1, v1) and (u2, v2). One could find a pair of edges that

yield a minimum expected travel time, arg min(u1,v1)(u2,v2) Esuf [(u1, v1), (u2, v2)],

through complete enumeration using

Esuf [(u1, v1), (u2, v2)] =

E[s→ u1]+(1− pu1v1)E[u1 → t|du1v1 ]

+pu1v1

{
cu1v1 + E[v1 → u2] + pu2v2 [cu2v2 + E[v2 → t]]

+ (1− pu2v2)E[u2 → t|du2v2 ]

}
.

(2.3)

The first summand is the expected travel time from s to u1. The second

summand is the expected travel time from u1 to t if high traffic is observed

at (u1, v1). The third summand is the travel time from u1 to t if low traffic

is observed at (u1, v1). This third summand includes within it a version of

(2.1), computing the travel time from v1 to t dependent on the observation

of traffic at edge (u2, v2). Similarly, one could express the computation of the

minimum expected travel time with k adjustment edges recursively with the

equation for k − 1 adjustment edges as follows. Let Zsuf
k [s → t] denote the

overall minimum expected travel time when k adjustment edges are observed
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Figure 2.6: Series Unforced Model with two adjustment edges

for traffic. We can then write

Zsuf
1 [s→ t] = Z1[s→ t], and

Zsuf
k [s→ t] = min

{
Zsuf
k−1[s→ t];

min
(u,v)∈A

[
E[s→ u] + (1− puv)E[u→ t|duv]

+ puv(cuv + Zsuf
k−1[v → t])

]}
. (2.4)

The basecase Zsuf
1 [s → t] represents the minimum expected travel time for

a single adjustment edge. The recursive equation to compute Zsuf
k [s → t]

includes a Zsuf
k−1[s → t] in case it is unnecessary to observe k edges. The

second term involves picking the first edge (u, v) for observation, and the

remaining length of the paths to destination is based on the probabilities of

that observation.

The recursive equation yields a dynamic programming algorithm for com-

puting the best set of adjustment edges. The dynamic programming algorithm

reduces the computational effort from O(mk), roughly what is required with

complete enumeration, to O(mk) where m = |A|. This brings significant com-

putational savings, though as we’ll discuss later, still insufficient for practical

applications.
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Series Forced Model

An alternate model with two adjustment edges, which we call series forced,

is depicted in Figure 2.7. In this model, the driver is forced to observe all the

adjustment edges, hence has the potential to adjust the route at every such

adjustment edge. Consider the same instance where the driver enters the

highway from source s and observes an edge (u1, v1) for traffic. In case of

high traffic, driver adjusts the route but returns to the next source node u2

to observe adjustment edge (u2, v2). In case of low traffic, driver traverses

the edge (u1, v1), continues on the highway until u2 where they observe edge

(u2, v2) for traffic. In case of high traffic at (u2, v2), driver adjusts the route to

destination t. In case of low traffic, driver traverses the edge (u2, v2), continues

on the highway to reach the destination t. In this model, driver always observes

all the adjustment edges irrespective of the traffic states of previous adjustment

edges.

Let Esf [(u1, v1), (u2, v2)] denote the expected travel time if adjustment

edges (u1, v1) and (u2, v2) are selected. One could find a pair of adjust-

ment edges that yield a minimum expected travel time, which is given by

arg min(u1,v1)(u2,v2) Esf [(u1, v1), (u2, v2)], through complete enumeration using

Esf [(u1, v1), (u2, v2)] ={
E[s→ u1] + pu1v1 [cu1v1 + E[v1 → u2]] + (1− pu1v1)E[u1 → u2|du1v1 ]

}
+

{
pu2v2 [cu2v2 + E[v2 → t]] + (1− pu2v2)E[u2 → t|du2v2 ]

}
.

(2.5)
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Figure 2.7: Series Forced Model with two adjustment edges

The first summand is the expected travel time from s to u2. This first

summand includes within it a version of (2.1), computing the travel time from

s to u2 dependent on the observation of edge (u1, v1). The second summand

is the expected travel time from u2 to t with traffic state observed at (u2, v2).

Thus (2.5) can be expressed as a recursive equation as follows,

Zsf
1 [s→ t] = Z1[s→ t], and

Zsf
k [s→ t] = min

{
Zsf
k−1[s→ t];

min
(u,v)∈A

[
Zsf
k−1[s→ u] + puv(cuv + E[v → t]) + (1− puv)E[u→ t|duv]

]}
,

(2.6)

where Zsf
k [s → t] denotes the overall minimum expected travel time obtained

using the series forced model when k adjustment edges are observed for traf-

fic. Though inefficient, an integer programming formulation for this model is

presented in Appendix A.2.

Neither the series unforced nor the forced models are always better in

terms of reducing expected travel time. Let us consider the example network

in Figure 2.8(a). The edge weights (c, d, p) represent the travel time under

low traffic, the travel time under high traffic and the probability of low traffic

respectively. The expected travel time of the series models are computed

using (2.4) and (2.6), and the resulting best adjustment edges are highlighted
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in Figure 2.8(b) and Figure 2.8(c) respectively. We obtain Zsuf
2 [s→ t] as 34.8

and Zsf
2 [s→ t] as 35.6, with series unforced model performing better than the

series forced model. Let us now consider another example network as in Figure

2.9(a). We follow the same routine to obtain Zsuf
2 [s→ t] as 55.4 and Zsf

2 [s→ t]

as 50.8. In this network, series forced model performs better than the series

unforced model. This shows that the performance of the series models are

incomparable, and it depends on the network instance considered. Generally

one may think that the series forced model should perform better, because it

has the ability to execute several observations in sequence as opposed to just

one. However, as these examples demonstrate, it may be too expensive to

execute the secondary observations, as compared to the series unforced model.

Parallel Model

Another model with two adjustment edges, which we call parallel, is de-

picted in Figure 2.10. In this model, the driver has the potential to observe

edges and make route adjustments, in both the original and adjustment routes.

Consider the same instance where the driver enters the highway from source

s and observes an edge (u11, v11) for traffic. In case of low traffic, driver

traverses the edge (u11, v11), continues on the highway until u12 where they

observe edge (u12, v12) for traffic. In case of high traffic at (u11, v11), driver

adjusts the route to reach node u22 and observes an edge (u22, v22) for traffic

in the adjusted route. In case of high traffic at the second adjustment edge

((u12, v12) or (u22, v22)), driver adjusts the route to destination t. In case of low

traffic, driver traverses the edge, continues on the route to reach the destina-

tion t. Unlike series models, driver observes different adjustment edges based

on the traffic state of the previous adjustment edges.
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(a) An example network to compare series models with two adjustment edges

(b) Solution: Series Unforced Model (c) Solution: Series Forced Model

Figure 2.8: Example 1 – Expected travel time comparison of series models:
Red solid lines represent the two best adjustment edges for the respective
models.
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(a) Another example network to compare series models with two adjustment edges

(b) Solution: Series Unforced and Forced Models

Figure 2.9: Example 2 – Expected travel time comparison of series models:
Red solid lines represent the two best adjustment edges for the respective
models.

Figure 2.10: Parallel Model with two adjustment edges
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Let Epll[(u11, v11), (u12, v12), (u22, v22)] denote the expected travel time if

adjustment edges (u11, v11), (u12, v12), and (u22, v22) are selected. One could

find a set of adjustment edges that yield a minimum expected travel time,

arg min(u11,v11),(u12,v12),(u22,v22) Epll[(u11, v11), (u12, v12), (u22, v22)], through com-

plete enumeration using

Epll[(u11, v11), (u12, v12), (u22, v22)] = E[s→ u11]

+ pu11v11 [cu11v11 +

{
E[v11 → u12] + pu12v12 [cu12v12 + E[v12 → t]]

+ (1− pu12v12)E[u12 → t|du12v12 ]

}
]

+ (1− pu11v11)

{
E[u11 → u22|du11v11 ] + pu22v22 [cu22v22 + E[v22 → t]]

+ (1− pu22v22)E[u22 → t|du22v22 ]

}
(2.7)

The first summand is the expected travel time from s to u11. The second

and third summands together represent the weighted sum of expected travel

times from u11 to t, with weights representing the traffic state at (u11, v11). The

second summand includes within it a version of (2.1), computing the travel

time from v11 to t dependent on the observation of edge (u12, v12). The third

summand includes within it a modified version of (2.1). The difference being

in the first term where we compute the expected travel time from u11 to u22

given high traffic is observed at (u11, v11).

Let Zpll
k [s → t] denote the overall minimum expected travel time from s

to t with k adjustment edges. It is to be noted that the driver’s policy may

include more than k adjustment edges, but only k edges will be observed in
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total as they travel from s to t. We now express (2.7) as recursive equations

as follows,

Zpll
1 [s→ t] = Z1[s→ t],

Zpll
k [s→ t] = min

{
Zpll
k−1[s→ t];

min
(u,v)∈A

[
E[s→ u] + puv(cuv + Zpll

k−1[v → t])

+ (1− puv)Zpll
k−1[u→ t|{duv}]

]}
, and

Zpll
1 [g → i|D] = min

{
min

(g,v)∈A−D

[
pgv(cgv + E[v → i])

+ (1− pgv)E[g → i|D ∪ {dgv}]
]
,

min
(u6=g,v)∈A

[
E[g → u|D] + puv(cuv + E[v → i])

+ (1− puv)E[u→ i|{duv}]
]}
,

Zpll
k [g → i|D] = min

{
min

(g,v)∈A−D

[
pgv(cgv + Zpll

k−1[v → i])

+ (1− pgv)Zpll
k−1[g → i|D ∪ {dgv}]

]
,

min
(u6=g,v)∈A

[
E[g → u|D] + puv(cuv + Zpll

k−1[v → i]) (2.8)

+ (1− puv)Zpll
k−1[u→ i|{duv}]

]}
,

where Zpll
k [g → i|D] denotes the minimum expected travel time from any g to i

given that high traffic is observed at all edges in setD = {dg,j1 , dg,j2 , . . . , dg,jk−1
}.

It is easy to see that the series models are the special cases of parallel

model, i.e., a solution to a series model can be expressed as a solution to

the corresponding parallel model. Hence, the parallel model always outper-

forms the series models in terms of reducing travel time, but at the expense of
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more computational effort. It also follows that a parallel model reduces to a

Canadian Traveller Problem (CTP) on directed acyclic graphs (DAGs) when

all the edges in the network are observed for traffic, i.e., k equals |A|. Thus

the proposed dynamic programming algorithm can be used to solve CTP on

DAGs. The dynamic programming algorithm proposed in [75] differs from our

algorithm mainly by the following two points: 1) In [75], an optimal outgoing

edge is computed upon arrival at a node as the graph is traversed. This is dif-

ferent from our dynamic programming approach where we pre-compute both

the original and the adjustment routes to the destination. 2) The algorithm

[75] iterates over all the edges in the network whereas our algorithm is made

to stop when observing more adjustment edges no longer reduces the expected

travel time.

2.4 Large Scale Tractable Algorithms

We use the Austin road network (Figure 2.11) to evaluate the performance

of our proposed models. The travel times c on the edges are known1, and

we assume the probability of low traffic and delay offsets based on the street

type. The network consists of about 100,000 edges and it is impractical to find

the best adjustment edges, even in a single route adjustment policy, through

complete enumeration. For example, it takes about 6 hours to find a single

adjustment edge for the example source-destination pair shown in Figure 2.11.

Inspired by the traditional branch and bound techniques, we develop easily

computable lower and upper bounds to eliminate many possibilities and create

truly tractable algorithms.

1Source URL: http://austintexas.gov/department/gis-and-maps/gis-data
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Figure 2.11: Map of Austin Road Network: Brown colored edges assume p =
0.4 and d = 5 * c. Red colored edges assume p = 0.5 and d = 4 * c. Remaining
edges assume p = 0.6 and d = 3 * c. Blue solid dots represent an example
source-destination pair.
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2.4.1 Network Pruning

We first focus on developing some easily computable upper and lower

bounds to prune the network size. This improves the run time of the shortest

path procedures and consequently, the tractability of the proposed dynamic

programming algorithms.

Let ZM
k [s→ t] represent the minimum expected travel time with k adjust-

ment edges and any route adjustment model M.

Lemma 2.4.1. The minimum expected travel time between two nodes s and

t are non-decreasing with k adjustment edges, i.e., E[s → t] ≥ Z1[s → t] ≥

ZM
2 [s→ t] ≥ · · · ≥ ZM

k−1[s→ t] ≥ ZM
k [s→ t].

Proof. The recursive equation (2.8) shows that Zpll
k [s → t] ≤ Zpll

k−1[s → t],

for any k ≥ 2. Recursively we can write, Z1[s → t] ≥ Zpll
2 [s → t] ≥ · · · ≥

Zpll
k−1[s → t] ≥ Zpll

k [s → t]. To show E[s → t] ≥ Z1[s → t], consider an

edge (u, v) on the shortest path from s to t. Then the expected travel time of

shortest path, E[s→ t] can be written as

E[s→ t] = E[s→ u] + puvcuv + (1− puv)duv + E[v → t]. (2.9)

A term-by-term comparison of (2.9) with (2.1) shows that E[s → t] is an

upper bound to E1[(u, v)] because going through a high traffic edge (u, v) is

one potential routing for E[u→ t | duv]. Thus, E[s→ t] is an upper bound to

Z1[s → t]. Using similar logic, the lemma can be proved for the series forced

and unforced models as well.

Let us assume there exists an optimal policy π that includes edge (i, j) on

one of the paths generated and let Zk(π) be the corresponding expected travel
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time. A lower bound on the travel time of any path going through edge (i, j)

can be given by,

LBP (i, j) = cs→i + cij + cj→t. (2.10)

where ci→j represents the shortest path from i to j with edge lengths c, i.e.,

assuming low traffic on all the edges.

Let ρ = min
(u,v)∈A

{puv, 1−puv}. In other words, the probabilities of low traffic

are bounded away from (0, 1) by at least ρ. Under a single route adjustment,

every path occurs in policy π with probability at least ρ. Under k route

adjustments, every path occurs with probability at least ρk. This leads to the

following lemma defining a lower bound on any policy that uses edge (i, j).

Lemma 2.4.2. Every k-route adjustment policy π that includes edge (i, j) on

some path has Zk(π) ≥ ρkLBP (i, j) + (1− ρk)cs→t.

Proof. Any path with edge (i, j) occurs with probability at least ρk and has

length at least LBP (i, j). All other paths in the policy π have length at least

cs→t.

Now, we are ready to present our theorem on network pruning.

Theorem 2.4.3. An edge (i′, j′) with ρkLBP (i′, j′) + (1−ρk)cs→t > E[s→ t],

for any k ≥ 1, will not be on any path in the optimal routing policy.

Proof. Let π denote the optimal routing policy. By Lemma 2.4.2, we have

Zk(π) ≥ ρkLBP (i′, j′) + (1 − ρk)cs→t. If Zk(π) > E[s → t], by Lemma 2.4.1,

π is not an optimal routing policy. Hence the edge (i′, j′) will not be on any

path of the optimal policy π.
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Using the result of Theorem 2.4.3, one can prune the network eliminating

several possibilities. For the example source-destination pair considered, and

for k = 1 and ρ = 0.4, the network is pruned to 17,328 edges.

2.4.2 Critical Adjustment Edges

In addition to pruning the network size, it is also possible to obtain a set

of critical adjustment edges that contain the optimal solution. To do this, we

employ different lower bounds as discussed in this section.

Lemma 2.4.4. An optimal single route adjustment policy π with adjustment

edge (u, v) has Z1(π) ≥ LBA1(u, v), where LBA1(u, v) is given by

LBA1(u, v) = E[s→ u] + cuv + E[v → t].

Proof. By definition, we have duv > cuv. Edge (u, v) is an optimal adjustment

edge, so using (2.1) and (2.2) we get,

Z1(π) = min
(u′,v′)∈A

E1[(u′, v′)]

= E[s→ u] + puv(cuv + E[v → t]) + (1− puv)E[u→ t|duv].

We proceed to complete the proof by contradiction.

Assume E[u → t | duv] < cuv + E[v → t]. Consider a policy π′ that uses

no adjustment edge and the route E[s→ u] is followed by E[u→ t|duv]. Thus

the policy π′ has length E[s → u] + E[u → t|duv] < E[s → u] + puv(cuv +

E[v → t]) + (1 − puv)E[u → t|duv], implying π is not optimal. This yields

E[u→ t|duv] ≥ cuv + E[v → t].
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Using this result, we have

Z1(π) = E[s→ u] + puv(cuv + E[v → t]) + (1− puv)E[u→ t|duv]

≥ E[s→ u] + puv(cuv + E[v → t]) + (1− puv)(cuv + E[v → t])

≥ E[s→ u] + (cuv + E[v → t]).

We define the following variables to simplify our notations in the remainder

of the section. One can easily pre-compute these quantities and use as required

in the upcoming lower bounds for multiple route adjustment policies.

∫ [j] = max
(a,b)∈A

(1− pab)
[
dab + E[b→ j]− E[a→ j|dab]

]
,

§[j] = max
(a,b)∈A

(1− pab)
[
E[a→ j|dab]

]
,

α = max
(a,b)∈A

pab and β = max
j∈N
∫ [j]. (2.11)

Lemma 2.4.5. (Series unforced model) An optimal route adjustment policy π

with edge (u, v) as its first adjustment edge has Zsuf
k (π) ≥ LBAsuf

k (u, v), where

LBAsuf
k (u, v) is given by

LBAsuf
k (u, v) = E[s→ u] + cuv + E[v → t]− ∫ [t]

k−2∑
k′=0

αk
′
. (2.12)

Proof. Because π is an optimal policy and edge (u, v) is the first adjustment

edge, using (2.4) we have

Zsuf
k (π) = E[s→ u] + (1− puv)E[u→ t|duv] + puv(cuv + Zsuf

k−1[v → t]).

We show E[u → t|duv] ≥ cuv + Zsuf
k−1[v → t], by contradiction. Assume

E[u→ t|duv] < cuv+Zsuf
k−1[v → t]. Consider a policy π′ that uses no adjustment
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edges and the route E[s → u] is followed by E[u → t|duv]. Thus the policy

π′ has length E[s → u] + E[u → t|duv] < E[s → u] + (1 − puv)E[u → t|duv] +

puv(cuv + Zsuf
k−1[v → t]), implying π is not optimal. Thus E[u → t|duv] ≥

cuv + Zsuf
k−1[v → t].

Using this result we have,

Zsuf
k (π) = E[s→ u] + (1− puv)E[u→ t|duv] + puv(cuv + Zsuf

k−1[v → t])

≥ E[s→ u] + (1− puv)(cuv + Zsuf
k−1[v → t]) + puv(cuv + Zsuf

k−1[v → t])

≥ E[s→ u] + cuv + Zsuf
k−1[v → t]. (2.13)

This is a valid yet intractable lower bound to Zsuf
k (π). To alleviate this

issue, we derive a lower bound for Zsuf
k−1[v → t]. The potential saving in travel

time from i to j due to single route adjustment policy (using (2.1) and (2.4)),

is given by

E[i→ j]− Z1[i→ j] ≤ E[i→ j]− min
(u,v)∈A

(E[i→ u] + puv(cuv + E[v → j])

+ (1− puv)E[u→ j|duv])

≤ max
(u,v)∈A

(
E[i→ u] + puv(cuv + E[v → j])

+ (1− puv)(duv + E[v → j])

− (E[i→ u] + puv(cuv + E[v → j])

+ (1− puv)E[u→ j|duv])
)

≤ max
(u,v)∈A

(1− puv)
[
duv + E[v → j]− E[u→ j|duv]

]
= ∫ [j]. (2.14)

It is important to note that (2.14) holds for all route adjustment models

since Zsuf
1 [i→ j] = Zsf

1 [i→ j] = Zpll
1 [i→ j] = Z1[i→ j].
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The potential savings in travel time from i to j due to two route adjustment

policy is given by,

Z1[i→ j]− Zsuf
2 [i→ j] ≤ max

(u,v)∈A

(
E[i→ u] + puv(cuv + E[v → j])

+ (1− puv)E[u→ j|duv]

− (E[i→ u] + puv(cuv + Z1[v → j])

+ (1− puv)E[u→ j|duv])
)

≤ max
(u,v)∈A

puv(E[v → j]− Z1[v → j])

≤ max
(u,v)∈A

puv∫ [j] = α.∫ [j].

The penultimate inequality is due to (2.14). Combining this result with

(2.13) for k = 3, we get

Zsuf
3 (π) ≥ E[s→ u] + cuv + Zsuf

2 [v → t]

≥ E[s→ u] + cuv + Z1[v → t]− α∫ [t]

≥ E[s→ u] + cuv + E[v → t]− ∫ [t]− α∫ [t].

Extending this logic to any k yields,

Zsuf
k (π) ≥ E[s→ u] + cuv + E[v → t])− ∫ [t]

k−2∑
k′=0

αk
′
.

Lemma 2.4.6. (Series forced model) An optimal route adjustment policy π

with edge (u, v) as its last adjustment edge has Zsf
k (π) ≥ LBAsf

k (u, v), where

LBAsf
k (u, v) is given by

LBAsf
k (u, v) = E[s→ u]− ∫ [u]− (k − 2)β + cuv + E[v → t].
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Proof. Because π is an optimal policy and edge (u, v) is the last adjustment

edge, using (2.6) we have

Zsf
k (π) = Zsf

k−1[s→ u] + puv(cuv + E[v → t]) + (1− puv)E[u→ t|duv].

Given edge (u, v) is the optimal adjustment edge, we show E[u→ t|duv] ≥
cuv + E[v → t] following the same procedure as in the proof of Lemma 2.4.5.

Assume E[u→ t|duv] < cuv +E[v → t]. Consider a policy π′ that uses only

the first k − 1 adjustment edges of π in the same sequence and does not use

the last adjustment edge. In other words, the route Zsf
k−1[s → u] is followed

by E[u→ t|duv]. Thus the policy π′ has length Zsf
k−1[s→ u] + E[u→ t|duv] <

Zsf
k−1[s → u] + (1 − puv)E[u → t|duv] + puv(cuv + E[v → t]), implying π is

not optimal. Thus E[u → t|duv] ≥ cuv + E[v → t], given (u, v) is the last

adjustment edge.

Using this result we have,

Zsf
k (π) = Zsf

k−1[s→ u] + puv(cuv + E[v → t]) + (1− puv)E[u→ t|duv]

≥ Zsf
k−1[s→ u] + puv(cuv + E[v → t]) + (1− puv)(cuv + E[v → t])

≥ Zsf
k−1[s→ u] + cuv + E[v → t]. (2.15)

We now proceed to obtain a tractable lower bound on Zsf
k−1[s → u]. The

potential saving in travel time from i to j due to two route adjustment policy

using (2.6), is given by

Z1[i→ j]− Zsf
2 [i→ j] ≤ max

(u,v)∈A

(
Z1[i→ j]− (Z1[i→ u] + puv(cuv + E[v → j])

+ (1− puv)E[u→ j|duv])
)

≤ max
(u,v)∈A

(E[i→ u]− Z1[i→ u])

≤ max
(u,v)∈A

∫ [j] = β.
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The penultimate inequality is due to (2.14). Combining this result with

(2.15) for k = 3 yields,

Zsf
3 (π) ≥ Zsf

2 [s→ u] + cuv + E[v → t]

≥ Z1[s→ u]− β + cuv + E[v → t]

≥ E[s→ u]− ∫ [u]− β + cuv + E[v → t].

By extending the logic to a generic k, we obtain

Zsf
k (π) ≥ E[s→ u]− ∫ [u]− (k − 2)β + cuv + E[v → t].

Lemma 2.4.7. (Parallel model) An optimal route adjustment policy π with

edge (u, v) as its first adjustment edge has Zpll
k (π) ≥ LBApll

k (u, v), where

LBApll
k (u, v) is given by

LBApll
k (u, v) = E[s→ u] + cuv + E[v → t]− ∫ [t]

k−2∑
k′=0

αk
′ − (k − 2)§[t].

Proof. Because π is an optimal policy and edge (u, v) is the first adjustment

edge, using (2.8) we have

Zpll
k (π) = E[s→ u] + (1− puv)Zpll

k−1[u→ t|{duv}] + puv(cuv + Zpll
k−1[v → t]).

We show Zpll
k−1[u→ t|{duv}] ≥ cuv+Zpll

k−1[v → t], by contradiction. Assume

Zpll
k−1[u → t|{duv}] < cuv + Zpll

k−1[v → t]. Consider a policy π′ that uses the

k− 1 adjustment edges of the first adjusted route of π (in the same sequence)

and does not use any other adjustment edges. In other words, route E[s→ u]

is followed by Zpll
k−1[u → t|{duv}]. Thus the policy π′ has length E[s → u] +
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Zpll
k−1[u → t|{duv}] < E[s → u] + (1 − puv)Z

pll
k−1[u → t|{duv}] + puv(cuv +

Zpll
k−1[v → t]), implying π is not optimal. Thus Zpll

k−1[u → t|{duv}] ≥ cuv +

Zpll
k−1[v → t].

Using this result we have,

Zpll
k (π) = E[s→ u] + (1− puv)Zpll

k−1[u→ t|{duv}] + puv(cuv + Zpll
k−1[v → t])

≥ E[s→ u] + (1− puv)(cuv + Zpll
k−1[v → t]) + puv(cuv + Zpll

k−1[v → t])

≥ E[s→ u] + cuv + Zpll
k−1[v → t]. (2.16)

We follow the same procedure as in proof of Lemma 2.4.5 and 2.4.6 to

obtain a lower bound on Zpll
k−1[v → t]. The potential saving in travel time from

i to j due to two route adjustment policy using (2.8),is given by

Z1[i→ j]− Zpll
2 [i→ j] ≤ max

(u,v)∈A

(
Z1[i→ j]− (E[i→ u] + puv(cuv + Z1[v → j])

+ (1− puv)Z1[u→ j|duv])
)

≤ max
(u,v)∈A

(
puv(E[v → j]− Z1[v → j])

+ (1− puv)(E[u→ j|duv]− Z1[u→ j|duv])
)

≤ max
(u,v)∈A

(
puv∫ [j]

)
+ max

(u,v)∈A

(
(1− puv)E[u→ j|duv]

)
= α∫ [j] + §[j].

The penultimate inequality is due to the fact that Z1[u→ j|duv] ≥ 0 and due

to (2.14).

Similarly, the potential saving in travel time from i to j due to three route
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adjustment policy is given by,

Zpll
2 [i→ j]− Zpll

3 [i→ j] ≤ max
(u,v)∈A

(
puv(Z1[v → j]− Zpll

2 [v → j])

+ (1− puv)(Z1[u→ j|duv]− Zpll
2 [u→ j|duv])

)
≤ max

(u,v)∈A

(
puv(α∫ [j] + §[j]) + (1− puv)E[u→ j|duv]

)
≤ α2∫ [j] + §[j].

The penultimate inequality is due to the fact that Zpll
2 [u → j|duv] ≥ 0 and

Z1[u→ j|duv] ≤ E[u→ j|duv]. Using the above results in (2.16) for k = 4, we

get

Zpll
4 (π) ≥ E[s→ u] + cuv + Zpll

3 [v → t]

≥ E[s→ u] + cuv + Zpll
2 [v → t]− α2∫ [t]− §[t]

≥ E[s→ u] + cuv + Zpll
1 [v → t]− α∫ [t]− §[t]− α2∫ [t]− §[t]

≥ E[s→ u] + cuv + E[v → t]− ∫ [t](1 + α + α2)− 2§[t].

By similar logic we derive for any k,

Zpll
k (π) ≥ E[s→ u] + cuv + E[v → t])− ∫ [t]

k−2∑
k′=0

αk
′ − (k − 2)§[t].

Since Zpll
k (π|D) ≥ Zpll

k (π) by definition, LBApll
k (u, v) is a valid lower bound

to Zpll
k (π|D).

Now, we present our theorem to obatin a set of feasible adjustment edges.

Theorem 2.4.8. For any k ≥ 1, an edge (u′, v′) with LBA1(u′, v′) > E[s→ t]

or LBAM
k (u′, v′) > ZM

k−1[s → t], cannot be the first adjustment edge (for M

being series unforced or parallel model) or the last adjustment edge (for M

being series forced model) in an optimal routing policy.
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Figure 2.12: Pruned network and the set of critical adjustment edges for the
single route adjustment policy: Shaded portion represents the pruned network
and the red solid line represents the set of feasible adjustment edges.

Proof. Let π be a routing policy using series unforced model and edge (u′, v′)

as the first adjustment edge.

We show that π is not optimal if LBAsuf
k (u′, v′) > Zsuf

k−1[s→ t].

If π is optimal, we have Zsuf
k (π) ≥ LBAsuf

k (u′, v′), using the result of

Lemma 2.4.5. Since LBAsuf
k (u′, v′) > Zsuf

k−1[s → t] (by assumption), we have

Zsuf
k (π) > Zsuf

k−1[s → t], implying π is not optimal. This completes our proof.

Similar logic can be used along with Lemma 2.4.6 and Lemma 2.4.7 to prove

this claim for series forced and parallel route adjustment models.

We can now apply the result of Theorem 2.4.8 to find a set of feasible

adjustment edges in the pruned network. For the example source-destination

pair and k = 1, we obtain a set of 21 feasible adjustment edges, as shown in

Figure 2.12.
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Figure 2.13: Optimal single route adjustment policy: Red solid line represents
the optimal adjustment edge. Blue and green lines represent the non-adjusted
and the adjusted shortest route respectively.

This pre-processing step of pruning the network size and eliminating the

possibilities of adjustment edges reduce the computation time from several

hours to seconds. Specifically, it takes about 10 seconds to prune the network

from 108,000 edges to 17,328 edges and to find a set of 21 feasible edges. As

a result, the algorithm computes the optimal single route adjustment policy

in less than 12 seconds. The solution pertaining to the example considered is

presented in Figure 2.13.

For the same source-destination pair, k = 2 and ρ = 0.16, Theorem 2.4.3

prunes the original network to 50,628 edges and Theorem 2.4.8 yields a set of

2091 feasible adjustment edges. The solutions are presented in Figure 2.14.
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(a) Solution to series unforced model.

(b) Solution to series forced model.

(c) Solution to parallel model.

Figure 2.14: Optimal two route adjustment policy: Red solid line represents
the optimal adjustment edges. Blue and green lines represent the non-adjusted
and the adjusted shortest routes respectively.
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2.4.3 Performance Evaluation

To summarize the performance of our algorithms with two adjustment

edges, parallel model performs better than the other models in terms of re-

ducing expected travel time. We save about 7% of travel time when compared

to the single route adjustment policy and about 13% compared to the no-

adjustment shortest path. This is followed by the series forced model with

close to 3% and 9.5% savings compared to the single route adjustment and

no-adjustment shortest paths respectively. Finally, series unforced model pro-

vides least saving of about less than 1% and 7% respectively.

One can achieve more savings with increasing number of route adjust-

ments, however with a huge leap in the computational effort. For example,

the pruned network size for two adjustment edges is about 50% of the original

network size and that of the three edges is almost the same as the original

network. Thus a trade-off arises between the number of edges to be observed

for traffic and the potential savings in expected travel times. In order to un-

derstand this trade-off, we solve the dynamic programming algorithms, for

different route adjustment models, on a smaller network consisting of 17,328

edges (given by the pruned network of single route adjustment model). The

graph summarizing the benefit of adaptability is presented in Figure 2.15.

It can be inferred from the graph that there is not much improvement in the

expected travel time beyond two adjustment edges using series unforced model.

However the series forced model yields about 2% reduction in expected travel

time for three adjustment edges, after which the reduction deteriorates and

tends to saturate. Similarly parallel model results in 3% - 5% reduction in the

travel time up to seven adjustment edges, after which the reduction saturates.

Thus we can conclude that observing more than 7 edges in the network, as
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Figure 2.15: Benefit of Adaptability: This graph summarizes the expected
travel time across varying number of adjustment edges. Brown dashed and
brown solid lines represent the non-adaptive and completely adaptive expected
travel times. Red, green and blue bars represent the summary of series un-
forced model, series forced and parallel models respectively.

opposed to CTP where all edges are observed, does not contribute significantly

to the reduction in travel time. We emphasize the fact that this summary is

specific to the problem instance considered and the performance graph is likely

to vary for different instances. Thus choosing the right adjustment model and

the right number of adjustments is a decision to be made by the user, based

on the trade-off between the computational effort required and the anticipated

reduction in the expected travel times.

41



Chapter 3

Improved Conic Reformulations for K-means

Clustering

3.1 Introduction

Given an input set of data points, cluster analysis endeavors to discover a

fixed number of disjoint clusters so that the data points in the same cluster are

closer to each other than to those in other clusters. Cluster analysis is funda-

mental to a wide array of applications in, among others, science, engineering,

economics, psychology and marketing [54, 57]. One of the most popular ap-

proaches for cluster analysis is K-means clustering [54, 68, 70]. The goal of

K-means clustering is to partition the data points into K clusters so that the

sum of squared distances to the respective cluster centroids is minimized. For-

mally, K-means clustering seeks a solution to the mathematical optimization

The work in this chapter was published by the author: Madhushini Narayana Prasad,
Grani A. Hanasusanto. “Improved Conic Reformulations for K-means Clustering.” SIAM
Journal on Optimization (2018). Madhushini Narayana Prasad is the lead author and Dr.
Grani supervised the work.
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problem

min
K∑
i=1

∑
n∈Pi

‖xn − ci‖2

s.t. Pi ⊆ {1, . . . , N}, ci ∈ RD ∀i ∈ {1, . . . , K}
ci =

1

|Pi|
∑
n∈Pi

xn

P1 ∪ · · · ∪ PK = {1, . . . , N}, Pi ∩ Pj = ∅ ∀i, j ∈ {1, . . . , K} : i 6= j.
(3.1)

Here, x1, . . . ,xN are the input data points, while P1, . . . ,PK ⊆ {1, . . . , N}

are the output clusters. The vectors c1, . . . , cK ∈ RD in (3.1) determine the

cluster centroids, while the constraints on the last row of (3.1) ensure that the

subsets P1, . . . ,PK constitute a partition of the set {1, . . . , N}.

Due to its combinatorial nature, the K-means clustering problem (3.1)

is generically NP-hard [3]. A popular solution scheme for this intractable

problem is the heuristic algorithm developed by Lloyd [68]. The algorithm

initializes by randomly selecting K cluster centroids. It then proceeds by al-

ternating between the assignment step and the update step. In the assignment

step the algorithm designates each data point to the closest centroid, while in

the update step the algorithm determines new cluster centroids according to

current assignment.

Another popular solution approach arises in the form of convex relaxation

schemes [80, 11, 84]. In this approach, tractable semidefinite programming

(SDP) lower bounds for (3.1) are derived. Solutions of these optimization

problems are then transformed into cluster assignments via well-constructed

rounding procedures. Such convex relaxation schemes have a number of theo-

retically appealing properties. If the data points are supported on K disjoint

balls then exact recovery is possible with high probability whenever the dis-
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tance between any two balls is sufficiently large [11, 53]. A stronger model-free

result is achievable if the cardinalities of the clusters are prescribed for the

problem [84].

A closely related problem is the non-negative matrix factorization with

orthogonality constraints (ONMF). Given an input data matrixX, the ONMF

problem seeks for non-negative matrices F and U such that both the product

FU> is close to X in view of the Frobenius norm and the orthogonality

constraint U>U = I is satisfied. Although ONMF is not precisely equivalent

to K-means, solutions to this problem have the clustering property [38, 65,

40, 59]. In [83], it is shown that the ONMF problem is in fact equivalent to a

weighted variant of the K-means clustering problem.

In this chapter, we attempt to obtain equivalent convex reformulations for

the ONMF and K-means clustering problems. To derive these reformulations,

we adapt the results by Burer and Dong [28] who show that any (non-convex)

quadratically constrained quadratic program (QCQP) can be reformulated as

a linear program over the convex cone of completely positive matrices. The

resulting optimization problem is called a generalized completely positive pro-

gram. Such a transformation does not immediately mitigate the intractability

of the original problem, since solving a generic completely positive program is

NP-hard. However, the complexity of the problem is now entirely absorbed in

the cone of completely positive matrices which admits tractable semidefinite

representable outer approximations [78, 35, 63]. Replacing the cone with these

outer approximations gives rise to SDP relaxations of the original problem that

in principle can be solved efficiently.

As byproducts of our derivations, we identify a new condition that makes

the ONMF and theK-means clustering problems equivalent and we obtain new
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SDP relaxations for the K-means clustering problem that are tighter than the

well-known relaxation proposed by Peng and Wei [80]. The contributions of

this chapter can be summarized as follows.

1. We disclose a new connection between ONMF and K-means clustering.

We show that K-means clustering is equivalent to ONMF if an additional

requirement on the binarity of solution to the latter problem is imposed.

This amends the previous incorrect result by Ding et al. [38, Section 2]

and Li and Ding [65, Theorem 1] who claimed that both problems are

equivalent.1

2. We derive exact conic programming reformulations for the ONMF and

K-means clustering problems that are principally amenable to numeri-

cal solutions. To the best of our knowledge, we are the first to obtain

equivalent convex reformulations for these problems.

3. In view of the equivalent convex reformulation, we derive tighter SDP

relaxations for the K-means clustering problem whose solutions can be

used to construct high quality estimates of the cluster assignment.

4. We devise a new approximation algorithm for the K-means clustering

problem that leverages the improved relaxation and numerically high-

lights its superiority over the state-of-the-art SDP approximation scheme

by Mixon et al. [72] and the Lloyd’s algorithm.

The remainder of the chapter is structured as follows. In the following

section we present a survey of approximation and recovery gurantees by sev-

1To the best of our understanding, they have shown only one of the implications that
establish an equivalence.
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eral existing schemes to solve ONMF and K-means clustering problem. In

Section 3.3, we present a theorem for reformulating the QCQPs studied in

the chapter as generalized completely positive programs. In Section 3.4, we

derive a conic programming reformulation for the ONMF problem. We extend

this result to the setting of K-means clustering in Section 3.5. In Section

3.6, we develop SDP relaxations and design a new approximation algorithm

for K-means clustering. Finally, we empirically assess the performance of our

proposed algorithm in Section 3.7.

Notation: For any K ∈ N, we define [K] as the index set {1, . . . , K}. We

denote by I the identity matrix and by e the vector of all ones. We also

define ei as the i-th canonical basis vector. Their dimensions will be clear

from the context. The trace of a square matrix M is denoted as tr(M ). We

define diag(v) as the diagonal matrix whose diagonal components comprise the

entries of v. For any non-negative vector v ∈ RK
+ , we define the cardinality

of all positive components of v by #v = |{i ∈ [K] : vi > 0}|. For any matrix

M ∈ RM×N , we denote by mi ∈ RM the vector that corresponds to the

i-th column of M . The set of all symmetric matrices in RK×K is denoted

as SK , while the cone of positive semidefinite matrices in RK×K is denoted

as SK+ . The cone of completely positive matrices over a set K is denoted as

C(K) = clconv{xx> : x ∈ K}. For any Q,R ∈ SK and any closed convex cone

C, the relations Q � R and Q �C R denote that Q−R is an element of SK+
and C, respectively. The (K + 1)-dimensional second-order cone is defined as

SOCK+1 = {(x, t) ∈ RK+1 : ‖x‖ ≤ t}, where ‖x‖ denotes the 2-norm of the

vector x. We denote by SOCK+1
+ = SOCK+1 ∩ RK+1

+ the intersection of the

K + 1-dimensional second-order cone and the non-negative orthant.
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3.2 Survey of Approximation Guarantees

In this section, we present a brief survey of approximation guarantees of

several existing relaxation schemes proposed for ONMF and classical K-means

clustering problems. ONMF problem was first explicitly proposed in [40] and

can be viewed as the well-known non-negative matrix factorization (NMF)

problem with an additional orthogonality constraint. Given X ∈ RD×N data

matrix with N data points {xn}n∈[N ] in RD, the ONMF optimization problem

is given by,
ζ∗ = min ‖X −HU>‖2

F

s.t. H ∈ RD×K
+ , U ∈ RN×K

+

U>U = I.
(3.2)

Compared to NMF, ONMF problem provides better decomposition [64] and

clustering interpretation [40], especially in applications such as document and

image classification, pattern recognition and multimedia [9] due to the non-

negativity and orthogonality requirements of the encoding matrix U .

Majority of the proposed schemes to solve ONMF involve suitable mod-

ifications to the algorithms developed for original NMF problem, where they

enforce non-negativity at each step and strive to attain orthogonality at the

limit. This is done either by using a proper penalization term [40], by a projec-

tion matrix formulation [97] or by choosing a suitable search direction [32, 98].

In [40], an optimization problem with orthogonality constraints is solved by

introducing a Langrangian with a penalty term. Further, an approximation

to the Langrangian multiplier is used to compute the gradient of the objective

function leading to a multiplicative update rule. The well-known projective

non-negative matrix factorization algorithm is extended to ONMF in [97] in

which an iterative Langrangian solution based on Frobenius norm is proposed.

And for the final category of approaches, [32, 98] present algorithms with
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multiplicative update rules based on the structure of the manifold arisen from

constrained matrices. The rule is built on the gradient of the Steifel manifold so

as to satisfy the orthogonality constraints while preserving the non-negativity

of the factor matrix. Note that, for a given data matrix X, different methods

may converge to different matrices (H ,U), where the objective function may

take different values. Furthermore, most of these approaches use random ini-

tialization and two runs of the same method may even yield different results.

This situation is due to the multimodal nature of the ONMF problem. It may

have multiple local minima along with the inability of practical methods to

guarantee more than covergence to non-global minimizers [83].

In contrast to the above methods, an augmented Lagrangian formulation

with a projected gradient scheme is proposed in [83] in which orthogonality

is enforced at each step while non-negativity is achieved asymptotically, us-

ing a quadratic penalty. An alternative approach called the EM algorithm

is proposed in [83], based on the equivalence between ONMF and weighted

variant of spherical K-means clustering problems. Note that the spherical

K-means problem is a variant of K-means where both data points and cen-

troids are constrained to have unit norm. The EM algorithm is similar to the

standard spherical K-means algorithm (see [15]), except for the computation

of centroids. Here, K independent rank-one NMF problems are solved com-

bining Eckart-Young and Perron-Frobenius theorems to obtain the centroids

at each iterative step. Another similar idea to solve ONMF is to relax the

non-negativity constraint on one of the factor matrices [39]. A Non-linear Rie-

mannian Conjugate Gradient ONMF (NRCG-ONMF) algorithm is proposed

in [101] where the matrix H and U are updated alternatively and iteratively.

Here, H is updated via a (non-linear) NRCG method to preserve the orthog-

48



onality on a Steifel manifold setting and U is updated in a coordinate descent

manner.

Another interesting approach to solve ONMF is by imposing non-negativity

as a constraint on Principal Component Analysis (PCA). This problem is

known as the Non-negative Principal Component Analysis (NNPCA) and the

goal is to obtain K orthogonal components with non-negative entries, that

jointly capture most of the variance of centered data X. The problem first

appeared in [100] where it seeks to find a collection of sparse non-negative

principal components spanning a low-dimensional space preserving as much

variance as possible, through an iterative coordinate-descent type of scheme.

Another EM based algorithm is proposed in [89] which involves computing

a single non-negative component and sequentially obtaining multiple compo-

nents through a heuristic deflation step. In spite of their good performances

in both real and synthetic data sets, all the above methods lack provable per-

formance guarantees. Asteris et al. [10] are the first to present an algorithm

for ONMF with a global approximation guarantee, with no requirements on

input matrix X beyond non-negativity. They first develop an algorithm to

solve the NNPCA problem (approximately) on a low rank-r matrix X̄. While

the time is exponential in r, higher rank approximation leads to better results,

hence the trade-off arises between the solution quality and the running time

of NNPCA algorithm. Using the NNPCA algorithm as a building block, they

propose a novel algorithm to solve ONMF yielding an additive EPTAS for

the relative approximation error, for any given accuracy parameter and target

K. Given a non-negative matrix X ∈ RD×N , target K and desired accuracy

ε ∈ (0, 1) setting r = dK
ε
e, the ONMF algorithm computes a pair (H ,U) such
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that ‖X −HU>‖2
F ≤ ζ∗ + ε · ‖X‖2

F , in time

TSV D(r) +O

((
1

ε

)K2/ε

·K ·D

)

where TSV D(r) denotes the time required to obtain a rank-r approximation of

input matrix X using truncated singular value decomposition (SVD). Once

again, the accuracy parameter r controls a trade-off between the quality of

ONMF factors and the complexity of the algorithm. While the algorithm

depends on r exponentially, the complexity is polynomial in input matrix

dimensions D.

Similar to ONMF, K-means clustering problem and its relaxations have

been extensively studied from an approximation point of view. Given the prob-

lem in general is non-convex and NP-hard to optimize, it is natural to consider

approximations with some guarantees on quality of solution, or heuristics with

no guarantees. One of the most popular heuristics to K-means is Lloyd’s al-

gorithm [68]. Provable guarantees have been established in some special cases

[31, 60], but in general, it eventually converges to a locally optimal solution

[86] and it is easy to construct scenarios that converges to a local solution

with a huge optimality gap. It is shown in [93] that the convergence-time of

K-means may be 2Ω(N) even in the plane and a O(N30) smoothed complexity

bound is established in [7].

Another variant to Lloyd’s algorithm is a random initialization algorithm

popularly known as k-means++ algorithm [8]. The main idea is to choose

the centers one by one in a controlled fashion. Ostrovsky et al. [76] present a

simple O(1) algorithm for finding an initial set of clusters for Lloyd’s iteration

under some data separability assumptions. A similar method is independently
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developed by Arthur and Vassilvitskii [8] in which the current set of cho-

sen centers stochastically bias the choice of the next center. This step itself

yields an (8 logK)-approximation to the optimal cost in expectation and the

k-means++ algorithm achieves an logK-approximation without any assump-

tions on the data. A parallelized version of this algorithm is proposed by

Bahmani et al. [13] that obtains the same O(logK) guarantee with a com-

plexity of Θ(NDK logN). Here, the main idea is to replace the K sequential

rounds of k-means++ by O(logN) rounds and in each round O(K) points

are sampled in parallel. In the final step, the O(K logN) sampled points are

reclustered using k-means++ to produce the final seeding of K points. As a

result, the computational complexity is higher than k-means++ but can be

efficiently distributed across different machines. Another seeding algorithm

is proposed in [12] where the sequential sampling step in k-means++ is re-

placed with a Markov Chain Monte Carlo based sampling method. Here, an

independent Markov chain of length m is built at every iteration using the last

element as the new cluster center and the complexity of this algorithm is given

by O(mK2D). There are many other meta-heuristics like simulated annealing

and genetic algorithms, and methods based on branch-and-bound search and

gradient descent for K-means [14, 44, 92], but with no proven approximation

bounds.

An important breakthrough is achieved with asymptotically efficient (1 +

ε)-algorithms in [61, 71]. For a given K and D, the run time complexity

of the former is O(n(log n)Kε−2K2D) and the latter is 2(K/ε)O(1)
ND, however

the constant factor for these algorithms are huge unless D and K are very

small. Another local search (swapping) based algorithm is proposed in [56]

with running time O(N3ε−D) and an approximation ratio 9 + ε. They also
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show that this bound is essentially tight for the class of local search algorithms

that are based on performing a constant number of swaps.

Awasthi et al. [11] study the exact recovery conditions for convex relax-

ations such as linear programming (LP) and SDP relaxations of K-means

problem. They show that even for K = 2 clusters, for any constant ε > 0, and

K balls of unit radius in RD whose centers are separated by ∆, for sufficiently

large number of random points drawn uniformly and independently from each

of the K balls, a simple LP relaxation fails to recover the exact clusters with

high probability at separation ∆ < 4. They also consider the SDP relaxation

to the problem [80]. If N points are drawn from K distributions in RD, where

each distribution is isotropic and supported on a ball of unit radius, and if

the centers of these balls are separated at a distance at least 2
√

2(1 +
√

1/m),

then there exists n such that for all N ≥ n, the K-means SDP recovers the

exact clusters with probability exceeding 1 − 2DK exp( −cN
(logN)2D

). They con-

jecture this result could be pushed to center separation ∆ > 2+ ε for all ε > 0.

Xiaodong et al. [67] show that ∆ > 2 + O(
√
K/D) is sufficient to guaran-

tee the exact recovery of SDP relaxation in [80]. Under the same setting as

above, Lloyd’s algorithm can fail even with arbitarily large cluster separation,

Lloyd’s algorithm with overseeding by any constant factor > 1 fails to recover

the clusters exactly with high probability. In this work, we employ a different

setting where the data points are generated from balls of same radius and the

centers are chosen such that two out of three balls overlap with each other and

the third ball is far away from the other balls. It follows that our proposed

SDP-based approximation algorithm consistently performs better in terms of

cluster assignments compared to the Lloyd’s algorithm and the SDP relaxation

in [80].
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While it is already shown that SDP relaxation is quite tight for a stochastic

ball model with center separation of atleast min{2+ K2

D
, 2
√

2(1+
√

1/D)} [11],

SDP is not quite tight under the generic model where the points are drawn

from a subgaussian mixture model. To this end, Mixon et al. [72] propose

a model-free relax-and-round algorithm where the SDP output is interpreted

as a denoised version of data and is rounded to produce a good estimate for

the centers and a good clustering. The SDP approximation performs well

for sub-gaussian mixtures, provided the minimum distance between centers

is greater than the standard deviation of the sub-gaussian times the num-

ber of clusters, i.e., ∆min & Kσ/ε. Furthermore, the denoising rounding step

yields a mean-squared error between the estimated and actual centers . K2σ2

with high probability if the centers are separated by at least ∆min & Kσ.

Yan and Sarkar [96] use a similar semidefinite program in the context of co-

variate clustering, where the network has nodes and covariates, and define a

dimensionality reduction scheme in which the separation condition requires

∆min = Ω(
√

min(K,D)). For the Gaussian mixture model which is another

special case of subgaussian mixture model, Mixon et al. [72] show that the

centers of Gaussian mixture can be accurately estimated by SDP [80] pro-

vided the minimal separation is O(K). A different separation condition of

O(K1/2 + log1/2(KN)) is given in [67] which is smaller than O(K) for large K

and N not too large.

In this work, our main focus is to derive an exact convex reformulation

to the non-convex ONMF and classical K-means clustering problems. Conse-

quently, we derive an SDP relaxation tighter than [80] and devise an iterative

approximation algorithm based on this relaxation. We empirically show the

superiority of our algorithm in terms of quality of cluster assignments over
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classical Lloyd’s algorithm and Mixon et al. [72] algorithm, and defer the the-

oretical study on approximation guarantees and/or separation results of our

algorithm to the future work.

3.3 Completely Positive Programming Reformulations
of QCQPs

To derive the equivalent completely positive programming reformulations

in the subsequent sections, we first generalize the results in [28, Theorem

1] and [27, Theorem 3]. Consider the (nonconvex) quadratically constrained

quadratic program (QCQP) given by

min p>C0p+ 2c>0 p
s.t. p ∈ K

Ap = b
p>Cjp+ 2c>j p = φj ∀j ∈ [J ]

(3.3)

Here, K ⊆ RD is a closed convex cone, while A ∈ RI×D, b ∈ RI , C0,Cj ∈ SD,

c0, cj ∈ RD, φj ∈ R, j ∈ [J ], are the respective input problem parameters. We

define the feasible set of problem (3.3) as

F =
{
p ∈ K : Ap = b, p>Cjp+ 2c>j p = φj ∀j ∈ [J ]

}
and the recession cone of the linear constraint system as F∞ := {d ∈ K :

Ad = 0}. We further define the following subsets of C(K × R+):

Q =

{[
p
1

] [
p
1

]>
: p ∈ F

}
and Q∞ =

{[
d
0

] [
d
0

]>
: d ∈ F∞

}
. (3.4)

A standard result in convex optimization enables us to reformulate the QCQP

(3.3) as the linear convex program

min tr(C0Q) + 2c>0 p

s.t.

[
Q p
p> 1

]
∈ clconv (Q) .

(3.5)
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Recently, Burer [27] showed that, in the absence of quadratic constraints

in F , the set clconv (Q) is equal to the intersection of a polynomial size linear

constraint system and a generalized completely positive cone. In [28], Burer

and Dong showed that such a reformulation is achievable albeit more cum-

bersome in the presence of generic quadratic constraints in F . Under some

additional assumptions about the structure of the quadratic constraints, one

can show that the set clconv (Q) is amenable to a much simpler completely pos-

itive reformulation (see [28, Theorem 1] and [27, Theorem 3]). Unfortunately,

these assumptions are too restrictive to reformulate the quadratic program-

ming instances we study in this chapter. To that end, the following theorem

provides the required extension that will enable us to derive the equivalent

completely positive programs.

Theorem 3.3.1. Suppose there exists an increasing sequence of index sets

T0 = ∅ ⊆ T1 ⊆ T2 ⊆ · · · ⊆ TM = [J ] with the corresponding structured feasible

sets

Fm =
{
p ∈ K : Ap = b, p>Cjp+ 2c>j p = φj ∀j ∈ Tm

}
∀m ∈ [M ]∪{0},

(3.6)

such that for every m ∈ [M ] we have

φj = min
p∈Fm−1

p>Cjp+2c>j p or φj = max
p∈Fm−1

p>Cjp+ 2c>j p ∀j ∈ Tm\Tm−1,

(3.7)

and there exists a vector p ∈ F such that

d>Cjd+ 2d>(Cjp+ cj) = 0 ∀d ∈ F∞ ∀j ∈ [J ]. (3.8)

Then, clconv (Q) coincides with

R =

{[
Q p
p> 1

]
∈ C(K × R+) :

Ap = b, diag(AQA>) = b ◦ b
tr(CjQ) + 2c>j p = φj ∀j ∈ [J ]

}
. (3.9)
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Theorem 3.3.1 constitutes a generalization of the combined results of [28,

Theorem 1] and [27, Theorem 3], which we state in the following proposition.

Proposition 3.3.2. Let L = {p ∈ K : Ap = b}. Suppose φj = minp∈L p
>Cjp+

2c>j p, and both minp∈L p
>Cjp+2c>j p and maxp∈L p

>Cjp+2c>j p are finite for

all j ∈ [J ]. If there exists p ∈ F such that d>(Cjp + cj) = 0 for all d ∈ F∞

and j ∈ [J ], then clconv (Q) coincides with R.

To see this, assume that all conditions in Proposition 3.3.2 are satisfied. Then,

setting M = 1 and T1 = [J ], we find that condition (3.7) in Theorem 3.3.1 is

satisfied. Next, for every j ∈ [J ], the finiteness of both minp∈L p
>Cjp+ 2c>j p

and maxp∈L p
>Cjp+2c>j p implies that d>Cjd = 0 for all d ∈ F∞. Combining

this with the last condition in Proposition 3.3.2, we find that there there exists

a vector p ∈ F such that d>Cjd + 2d>(Cjp + cj) = 0 for all d ∈ F∞ and

j ∈ [J ]. Thus, all conditions in Theorem 3.3.1 are indeed satisfied.

In the remainder of the section, we define the sets

Qm =

{[
p
1

] [
p
1

]>
: p ∈ Fm

}
and

Rm =


[
Q p
p> 1

]
∈ C(K × R+) :

Ap = b
diag(AQA>) = b ◦ b
tr(CjQ) + 2c>j p = φj ∀j ∈ Tm


for m ∈ [M ]∪ {0}. The proof of Theorem 3.3.1 relies on the following lemma,

which is established in the first part of the proof of [27, Theorem 3].

Lemma 3.3.3. Suppose there exists a vector p ∈ F such that d>Cjd +

2d>(Cjp + cj) = 0 for all d ∈ F∞ and j ∈ [J ], then we have conv(Qm) +

cone(Q∞) ⊆ clconv(Qm) for all m ∈ [M ].

Using this lemma, we are now ready to prove Theorem 3.3.1.
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Proof of Theorem 3.3.1. The proof follows if clconv(Qm) = Rm for all m ∈
[M ]. By construction, we have clconv(Qm) ⊆ Rm, m ∈ [M ]. It thus remains

to prove the converse inclusions. By Lemma 3.3.3, it suffices to show that

Rm ⊆ conv(Qm) + cone(Q∞) for all m ∈ [M ]. We proceed via induction.

The base case for m = 0 follows from [27, Theorem 1]. Assume now that

Rm−1 ⊆ conv(Qm−1) + cone(Q∞) holds for a positive index m − 1 < M . We

will show that this implies Rm ⊆ conv(Qm)+cone(Q∞). To this end, consider

the following completely positive decomposition of an element of Rm:[
Q p
p> 1

]
=
∑
s∈S

[
ζs
ηs

] [
ζs
ηs

]>
=
∑
s∈S+

η2
s

[
ζs/ηs

1

] [
ζs/ηs

1

]>
+
∑
s∈S0

[
ζs
0

] [
ζs
0

]>
.

(3.10)

Here, S+ = {s ∈ S : ηs > 0} and S0 = {s ∈ S : ηs = 0}, where S is a finite

index set. By our induction hypothesis, we have ζs/ηs ∈ Fm−1, s ∈ S+, and

ζs ∈ F∞, s ∈ S0. The proof thus follows if the constraints

tr(CjQ) + 2c>j p = φj ∀j ∈ Tm \ Tm−1

in Rm imply

(ζs/ηs)
>Cj(ζs/ηs) + 2c>j (ζs/ηs) = φj ∀j ∈ Tm \ Tm−1.

Indeed, for every j ∈ Tm \ Tm−1, the decomposition (3.10) yields

φj = tr(CjQ) + 2c>j p

=
∑
s∈S+

η2
s

[
(ζs/ηs)

>Cj(ζs/ηs) + 2c>j (ζs/ηs)
]

+
∑
s∈S0

ζ>s Cjζs

=
∑
s∈S+

η2
s

[
(ζs/ηs)

>Cj(ζs/ηs) + 2c>j (ζs/ηs)
]
.

Here, the last equality follows from our assumption that there exists a vector

p ∈ F such that d>Cjd+2d>(Cjp+cj) = 0 for all d ∈ F∞. Thus, d>Cjd = 0
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for all d ∈ F∞. Next, since ζs/ηs ∈ Fm−1, the j-th identity in (3.7) implies

that (ζs/ηs)
>Cj(ζs/ηs) + 2c>j (ζs/ηs) ≥ φj if φj = min

p∈Fm−1

p>Cjp + 2c>j p or

(ζs/ηs)
>Cj(ζs/ηs) + 2c>j (ζs/ηs) ≤ φj if φj = max

p∈Fm−1

p>Cjp+ 2c>j p. The proof

thus follows since η2
s > 0 and

∑
s∈S+

η2
s = 1.

3.4 Orthogonal Non-Negative Matrix Factorization

In this section, we first consider the ONMF problem given by

min ‖X −HU>‖2
F

s.t. H ∈ RD×K
+ , U ∈ RN×K

+

U>U = I.
(3.11)

Here, X ∈ RD×N is a matrix whose columns comprise N data points {xn}n∈[N ]

in RD. We remark that problem (3.11) is generically intractable since we are

minimizing a non-convex quadratic objective function over the Stiefel mani-

fold [1, 9]. By expanding the Frobenius norm in the objective function and

noting that U>U = I, we find that problem (3.11) is equivalent to

min tr
(
X>X − 2XUH> +H>H

)
s.t. H ∈ RD×K

+ , U ∈ RN×K
+

U>U = I.
(3.12)

We now derive a convex reformulation for problem (3.12). We remark that this

problem is still intractable due to non-convexity of the objective function and

the constraint system. Thus, any resulting convex formulation will in general

remain intractable. In the following, to reduce the clutter in our notation, we

define the convex set

W(B, K) =

((pi), (Qij))i,j∈[K] :


Q11 · · · Q1K p1

...
. . .

...
...

QK1 · · · QKK pK
p>1 · · · p>K 1

 ∈ C (BK × R+

) ,
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where pi ∈ B and Qij ∈ R(N+1+D)×(N+1+D)
+ , i, j ∈ [K]. Here, B is a given

convex cone, K is a positive integer, and BK is the direct product of K copies

of B.

Theorem 3.4.1. Problem (3.12) is equivalent to the following generalized com-

pletely positive program:

min tr(X>X) +
∑
i∈[K]

tr(−2XWii +Gii)

s.t.
(
(pi)i∈[K], (Qij)i,j∈[K]

)
∈ W

(
SOCN+1

+ × RD
+ ,K

)
ui ∈ RN

+ , Vij ∈ RN×N
+ , hi ∈ RD

+ , Gij ∈ RD×D
+ , Wij ∈ RN×D

+ ∀i, j ∈ [K]

pi =

ui

1
hi

 , Qij =

 Vij ui Wij

u>j 1 h>j
W>

ji hi Gij

 ∀i, j ∈ [K]

tr(Vii) = 1 ∀i ∈ [K]
tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j.

(3.13)

Proof. By utilizing the notation for column vectors {ui}i∈[K] and {hi}i∈[K], we

can reformulate problem (3.12) equivalently as the problem

min tr(X>X)− 2
∑
i∈[K]

tr(Xuih
>
i ) +

∑
i∈[K]

tr(hih
>
i )

s.t. hi ∈ RD
+ , ui ∈ RN

+ ∀i ∈ [K]
u>i ui = 1 ∀i ∈ [K]
u>i uj = 0 ∀i, j ∈ [K] : i 6= j.

(3.14)

We now employ Theorem 3.3.1 to show the equivalence of problems (3.14) and

(3.13). We first introduce an auxiliary decision variable p = (p1, . . . ,pK) that

satisfies

pi =

uiti
hi

 ∈ SOCN+1
+ × RD

+ ∀i ∈ [K].

Let M = 1 in Theorem 3.3.1 and set K = (SOCN+1
+ × RD

+)K . We then define
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the structured feasible sets

F0 = {p ∈ K : ti = 1 ∀i ∈ [K]} and

F1 = F =

{
p ∈ F0 :

u>i ui = 1 ∀i ∈ [K]
u>i uj = 0 ∀i, j ∈ [K] : i 6= j

}
.

Note that for every i ∈ [K], the constraints ‖ui‖2 ≤ ti and ti = 1 in F0

imply that the variables ui and ti are bounded. Thus, the recession cone of

F0 coincides with the set F∞ = {p ∈ K : ui = 0, ti = 0 ∀i ∈ [K]}. Next, we

set the vector p = (p1, . . . ,pK) ∈ F in Theorem 3.3.1 to satisfy

pi =

ui1
0

 ∈ SOCN+1
+ × RD

+ ∀i ∈ [K],

where the subvectors {ui}i∈[K] are chosen to be feasible in (3.14). In view of

the description of recession cone F∞ and the structure of quadratic constraints

in F , one can readily verify that such a vector p satisfies the condition (3.8)

in Theorem 3.3.1. It remains to show that condition (3.7) is also satisfied.

Indeed, we have

max
p∈F0

{
u>i ui

}
= 1 ∀i ∈ [K],

since the constraints ‖ui‖2 ≤ 1, i ∈ [K], are implied by F0, while equalities

are attained whenever the 2-norm of each vector ui is 1. Similarly, we find

that

min
p∈F0

{
u>i uj

}
= 0 ∀i, j ∈ [K] : i 6= j,

since the constraints ui ≥ 0, i ∈ [K], are implied by F0, while equalities

are attained whenever the solutions ui and uj satisfy the complementarity

property:

uin > 0 =⇒ ujn = 0 and ujn > 0 =⇒ uin = 0 ∀n ∈ [N ].
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Thus, all conditions in Theorem 3.3.1 are satisfied.

Next, we introduce new matrix variables that represent a linearization of

the quadratic variables, as follows:

Vij = uiu
>
j ,Wij = uih

>
j , and Gij = hih

>
j ∀i, j ∈ [K]. (3.15)

We also define an auxiliary decision variable Q = (Qij)i,j∈[K] satisfying

Qij = pip
>
j =

 Vij ui Wij

u>j 1 h>j
W>

ji hi Gij

 ∀i, j ∈ [K].

Using these new terms, we construct the set R in Theorem 3.3.1 as follows:

R =




Q11 · · · Q1K p1

...
. . .

...
...

QK1 · · · QKK pK
p>1 · · · p>K 1

 ∈ C(K × R+) :

∀i, j ∈ [K],

pi =

ui1
hi


Qij =

 Vij ui Wij

u>j 1 h>j
W>

ji hi Gij


tr(Vii) = 1
tr(Vij) = 0 ∀i 6= j


.

By Theorem 3.3.1, this set coincides with clconv (Q), where the set Q is

defined as in (3.4). Thus, by linearizing the objective function using the matrix

variables in (3.15), we find that the generalized completely positive program

(3.13) is indeed equivalent to (3.12). This completes the proof.

Let us now consider a special case of problem (3.11); if all components

of X are non-negative, then we can reduce the problem into a simpler one

involving only the decision matrix U .
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Lemma 3.4.2. If X is a non-negative matrix then problem (3.11) is equivalent

to the non-convex program

min tr(X>X −X>XUU>)
s.t. U ∈ RN×K

+

U>U = I.
(3.16)

Proof. Solving the minimization overH ∈ RD×K
+ analytically in (3.12), we find

that the solution H = XU is feasible and optimal. Substituting this solution

into the objective function of (3.12), we arrive at the equivalent problem (3.16).

This completes the proof.

By employing the same reformulation techniques as in the proof of Theorem

3.4.1, we can show that problem (3.16) is amenable to an exact convex refor-

mulation.

Proposition 3.4.3. Problem (3.16) is equivalent to the following generalized

completely positive program:

min tr(X>X)−
∑
i∈[K]

tr(X>XVii)

s.t.
(
(pi)i∈[K], (Qij)i,j∈[K]

)
∈ W

(
SOCN+1

+ ,K
)
, ui ∈ RN

+

pi =

[
ui

1

]
, Qij =

[
Vij ui

u>j 1

]
∀i, j ∈ [K]

tr(Vii) = 1 ∀i ∈ [K]
tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j.

(3.17)

3.5 K-means Clustering

Building upon the results from the previous sections, we now derive an

exact generalized completely positive programming reformulation for the K-

means clustering problem (3.1). To this end, we note that the problem can
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equivalently be solved via the following mixed-integer nonlinear program [50]:

Z? = min
∑
i∈[K]

∑
n:πin=1

‖xn − ci‖2

s.t. πi ∈ {0, 1}N , ci ∈ RD ∀i ∈ [K]

ci =
1

e>πi

∑
n:πin=1

xn ∀i ∈ [K]

e>πi ≥ 1 ∀i ∈ [K]∑
i∈[K]

πi = e.

(3.18)

Here, ci is the centroid of the i-th cluster, while πi is the assignment vector for

the i-th cluster, i.e., πin = 1 if and only if the data point xn is assigned to the

cluster i. The last constraint in (3.18) ensures that each data point is assigned

to a cluster, while the constraint system in the penultimate row ensures that

there are exactly K clusters. We now show that we can solve the K-means

clustering problem by solving a modified problem (3.16) with an additional

constraint
∑

i∈[K] uiu
>
i e = e. To further simplify our notation we will employ

the sets

U(N,K) =
{
U ∈ RN×K

+ : u>i ui = 1 ∀i ∈ [K], u>i uj = 0 ∀i, j ∈ [K] : i 6= j
}

V(N,K) =
{

(Vij)i,j∈[K] ∈ RN2×K2

+ : tr(Vii) = 1, tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j

}
in all reformulations in the remainder of this section.

Theorem 3.5.1. The following non-convex program solves the K-means clus-

tering problem:

Z? = min tr(X>X)−
∑
i∈[K]

tr(X>Xuiu
>
i )

s.t. U ∈ U(N,K)∑
i∈[K]

uiu
>
i e = e.

(Z)
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Proof. We first observe that the centroids in (3.18) can be expressed as

ci =
1

e>πi

∑
n∈[N ]

πinxn ∀i ∈ [K].

Substituting these terms into the objective function and expanding the squared

norm yield∑
i∈[K]

∑
n:πin=1

‖xn − ci‖2 =
∑
i∈[K]

∑
n∈[N ]

πin‖xn − ci‖2

=

∑
n∈[N ]

‖xn‖2

−
∑
i∈[K]

1

e>πi

∑
p,q∈[N ]

πipπiqx
>
p xq


= tr(X>X)−

∑
i∈[K]

1

e>πi
tr(X>Xπiπ

>
i ).

Thus, (3.18) can be rewritten as

min tr(X>X)−
∑
i∈[K]

1

e>πi
tr(X>Xπiπ

>
i )

s.t. πi ∈ {0, 1}N ∀i ∈ [K]
e>πi ≥ 1 ∀i ∈ [K]∑
i∈[K]

πi = e.

(3.19)

For any feasible solution (πi)i∈[K] to (3.19) we define vectors (ui)i∈[K] that

satisfy

ui =
πi√
e>πi

∀i ∈ [K].

We argue that the solution (ui)i∈[K] is feasible to Z and yields the same

objective value. Indeed, we have

u>i ui =
π>i πi
e>πi

= 1 ∀i ∈ [K]

because πi ∈ {0, 1}N and e>πi ≥ 1 for all i ∈ [K]. We also have∑
i∈[K]

uiu
>
i e =

∑
i∈[K]

πi√
e>πi

e>πi√
e>πi

= e,
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and

u>i uj = 0 ∀i, j ∈ [K] : i 6= j

since the constraint
∑

i∈[K] πi = e in (3.19) ensures that each data point is

assigned to at most 1 cluster. Verifying the objective value of this solution,

we obtain

tr(X>X)−
∑
i∈[K]

tr(X>Xuiu
>
i ) = tr(X>X)−

∑
i∈[K]

1

e>πi
tr(X>Xπiπ

>
i ).

Thus, we conclude that problem Z constitutes a relaxation of (3.19).

To show that Z is indeed an exact reformulation, consider any feasible

solution (ui)i∈[K] to this problem. For any fixed i, j ∈ [K], the complementary

constraint u>i uj = 0 in Z means that

uin > 0 =⇒ ujn = 0 and ujn > 0 =⇒ uin = 0 for all n ∈ [N ].

Thus, in view of the last constraint in Z, we must have ui ∈ {0, 1/u>i e}N for

every i ∈ [K]. Using this observation, we define the binary vectors (πi)i∈[K]

that satisfy

πi = uiu
>
i e ∈ {0, 1}N ∀i ∈ [K].

For every i ∈ [K], we find that e>πi ≥ 1 since u>i ui = 1. Furthermore, we

have ∑
i∈[K]

πi =
∑
i∈[K]

uiu
>
i e = e.

Substituting the constructed solution (πi)i∈[K] into the objective function of

(3.19), we obtain

tr(X>X)−
∑
i∈[K]

1

e>πi
tr(X>Xπiπ

>
i ) = tr(X>X)−

∑
i∈[K]

(u>i e)2

e>uiu>i e
tr(X>Xuiu

>
i )

= tr(X>X)−
∑
i∈[K]

tr(X>Xuiu
>
i ).
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Thus, any feasible solution to Z can be used to construct a feasible solution to

(3.19) that yields the same objective value. Our previous argument that (3.19)

is a relaxation of Z then implies that both problems are indeed equivalent.

This completes the proof.

Remark 3.5.1. The constraint
∑

i∈[K] uiu
>
i e = e in Z ensures that there

are no fractional values in the resulting cluster assignment vectors (πi)i∈[K].

While the formulation (3.16) is only applicable for instances of ONMF problem

with non-negative input data X, the reformulation Z remains valid for any

instances of K-means clustering problem, even if the input data matrix X

contains negative components.

Remark 3.5.2. In [38, Section 2] and [65, Theorem 1], it was claimed that

the ONMF problem (3.16) is equivalent to the K-means clustering problem

(3.1). Theorem 3.5.1 amends this result by showing that both problems become

equivalent if and only if the constraint
∑

i∈[K] uiu
>
i e = e is added to (3.16).

Remark 3.5.3. We can reformulate the objective function of problem Z as
1
2 tr
(
D
∑

i∈[K] uiu
>
i

)
, where D is the matrix with components Dpq = ‖xp−xq‖2,

p, q ∈ [N ]. To obtain this reformulation, define Y =
∑

i∈[K] uiu
>
i . Then we

have
1

2
tr(DY ) =

1

2

∑
p,q∈[N ]

‖xp − xq‖2Ypq

=
1

2

∑
p,q∈[N ]

(
x>p xp + x>q xq − 2x>p xq

)
Ypq

=
1

2

2
∑
p∈[N ]

∑
q∈[N ]

x>p xpYpq

− ∑
p,q∈[N ]

x>p xqYpq

=

∑
p∈[N ]

x>p xp

−
 ∑
p,q∈[N ]

x>p xqYpq

 = tr(X>X)− tr(X>XY ).

Here, the fourth equality holds because of the last constraint in Z which ensures
that

∑
q∈[N ] Ypq = 1 for all p ∈ [N ].
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We are now well-positioned to derive an equivalent generalized completely

positive program for the K-means clustering problem.

Theorem 3.5.2. The following generalized completely positive program solves

the K-means clustering problem:

Z? = min tr(X>X)−
∑
i∈[K]

tr(X>XVii)

s.t.
(
(pi)i∈[K], (Qij)i,j∈[K]

)
∈ W

(
SOCN+1

+ × RN+1
+ ,K

)
,

(Vij)i,j∈[K] ∈ V(N,K)

w ∈ RK
+ , zij ∈ R+ ,ui, si,hij , rij ∈ RN

+ , Yij ,Gij ∈ RN×N
+ ∀i, j ∈ [K]

pi =


ui

1
si
wi

 , Qij =


Vij ui Gij hij

u>j 1 s>j wj

G>ji si Yij rij
h>ji wi r>ji zij

 ∀i, j ∈ [K]

∑
i∈[K]

Viie = e

diag(Vii) = hii, ui + si = wie ∀i ∈ [K]
diag(Vii + Yii + 2Gii) + ziie− 2hii − 2rii = 0 ∀i ∈ [K].

(Z)

Proof. We consider the following equivalent reformulation of Z with two ad-

ditional strengthening constraint systems.

min tr(X>X)−
∑
i∈[K]

tr(X>Xuiu
>
i )

s.t. U ∈ U(N,K), S ∈ RN×K
+ , w ∈ RK

+∑
i∈[K]

uiu
>
i e = e

ui ◦ ui = wiui ∀i ∈ [K]
ui + si = wie ∀i ∈ [K]

(3.20)

Since si ≥ 0, the last constraint system in (3.20) implies that ui ≤ wie,

while the penultimate constraint system ensures that ui is a binary vector,

i.e., ui ∈ {0, wi}N for some wi ∈ R+. Since any feasible solution to Z satis-

fies these conditions, we may thus conclude that problems Z and (3.20) are
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indeed equivalent. As we will see below, the exactness of the generalized com-

pletely positive programming reformulation is reliant on these two redundant

constraint systems.

We now repeat the same derivation steps as in the proof of Theorem 3.4.1.

First, we introduce an auxiliary decision variable p = (pi)i∈[K] that satisfies

pi =


ui
ti
si
wi

 ∈ SOCN+1
+ × RN+1

+ ∀i ∈ [K].

We then set K = (SOCN+1
+ × RN+1

+ )K , and define the structured feasible sets

F0 =

{
p ∈ K :

ti = 1 ∀i ∈ [K]
ui + si = wie ∀i ∈ [K]

}
, (3.21)

F1 =

p ∈ F0 :
u>i ui = 1 ∀i ∈ [K]
u>i uj = 0 ∀i, j ∈ [K] : i 6= j
ui ◦ ui = wiui ∀i ∈ [K]

 , (3.22)

and F2 = F =
{
p ∈ F1 :

∑
i∈[K] uiu

>
i e = e

}
. Here, we find that the recession

cone of F0 is given by

F∞ =

{
p ∈ K :

ui = 0, ti = 0 ∀i ∈ [K]
ui + si = wie ∀i ∈ [K]

}
.

Next, we set the vector p = (p1, . . . ,pK) ∈ F in Theorem 3.3.1 to satisfy

pi =


ui
1
si
wi

 ∈ SOCN+1
+ × RN+1

+ ∀i ∈ [K],

where the subvectors {ui}i∈[K], {si}i∈[K], and {wi}i∈[K] are chosen so that they

are feasible in (3.20). In view of the description of the recession cone F∞ and

the structure of the quadratic constraints in F , one can verify that such a

vector p satisfies the condition (3.8) in Theorem 3.3.1.
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It remains to show that condition (3.7) is also satisfied. To this end, it is

already verified in the proof of Theorem 3.4.1 that

max
p∈F0

{
u>i ui

}
= 1 ∀i ∈ [K] and min

p∈F0

{
u>i uj

}
= 0 ∀i, j ∈ [K] : i 6= j.

We now show that

min
p∈F0

{
wiuin − u2

in

}
= 0 ∀i ∈ [K] ∀n ∈ [N ]. (3.23)

We first demonstrate that the constraint ui+si = wie in (3.21) implies ui◦ui ≤

wiui. Indeed, since si ≥ 0, we have wie−ui ≥ 0. Applying a componentwise

multiplication with the components of ui ≥ 0 on the left-hand side, we arrive

at the desired inequality. Thus, we find that each equation in (3.23) indeed

holds, where equality is attained whenever uin = 0. Finally, we verify that

min
p∈F1

∑
i∈[K]

uinu
>
i e

 = 1 ∀n ∈ [N ]. (3.24)

Note that the constraint ui ◦ ui = wiui in (3.22) implies that ui ∈ {0, wi}N ,

while the constraint u>i ui = 1 further implies that #uiw
2
i = 1. Moreover, the

complementary constraint u>i uj = 0 ensures that

uin > 0⇒ ujn = 0 and ujn > 0⇒ uin = 0 ∀n ∈ [N ] ∀i, j ∈ [K] : i 6= j.

Thus, for any feasible vector p ∈ F1, we have∑
i∈[K]

uinu
>
i e =

∑
i∈[K]

uinwi#ui =
∑
i∈[K]

uin
wi

=
wk
wk

= 1,

for some k ∈ [K] such that ukn = wk. Thus, the equalities (3.24) indeed hold.

In summary, we have shown that all conditions in Theorem 3.3.1 are satisfied.
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We now introduce new variables, in addition to the ones described in

(3.15), that linearize the quadratic terms, as follows:

zij = wiwj, hij = uiwj, rij = siwj, Yij = sis
>
j , Gij = uis

>
j ∀i, j ∈ [K].

(3.25)

We further define an auxiliary decision variable Qij, i, j ∈ [K], that satisfy

Qij = pip
>
j =


Vij ui Gij hij
u>j 1 s>j wj
G>ji si Yij rij
h>ji wi r>ji zij

 .
Using these new terms, we construct the set R in Theorem 3.3.1 as follows:

R =




Q11 · · · Q1K p1

...
. . .

...
...

QK1 · · · QKK pK
p>1 · · · p>K 1

 ∈ C(K × R+) :

∀i, j ∈ [K],

pi =


ui

1
si
wi


Qij =


Vij ui Gij hij

u>j 1 s>j wj

G>ji si Yij rij
h>ji wi r>ji zij


tr(Vii) = 1
tr(Vij) = 0 ∀i 6= j∑

i∈[K] Viie = e

diag(Vii) = hii, ui + si = wie
diag(Vii + Yii + 2Gii)

+ziie− 2hii − 2rii = 0



.

Here, the last constraint system arises from squaring the left-hand sides of the

equalities

uin + sin − wi = 0 ∀i ∈ [K] ∀n ∈ [N ],

which correspond to the last constraint system in (3.20). Finally by linearizing

the objective function using variables in (3.15) and (3.25), we arrive at the

generalized completely positive program Z. This completes the proof.
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3.6 Approximation Algorithm for K-means Clustering

In this section, we develop a new approximation algorithm for K-means

clustering. To this end, we observe that in the reformulation Z the difficulty

of the original problem is now entirely absorbed in the completely positive

cone C(·) which has been well studied in the literature [23, 27, 35]. Any

such completely positive program admits the hierarchy of increasingly accu-

rate SDP relaxations that are obtained by replacing the cone C(·) with pro-

gressively tighter semidefinite-representable outer approximations [35, 63, 78].

For the generalized completely positive program Z, we employ the simplest

outer approximation that is obtained by replacing the completely positive

cone C
((

SOCN+1
+ × RN+1

+

)K × R+

)
in Z with its coarsest outer approxima-

tion [90], given by the cone{
M ∈ S2K(N+1)+1 : M � 0, M ≥ 0, tr(JiM) ≥ 0 i ∈ [K]

}
,

where
J1 = diag

(
[−e>, 1,0>, 0, · · · ,0>, 0, 0]>

)
,

J2 = diag
(
[0>, 0,−e>, 1, · · · ,0>, 0, 0]>

)
,

· · ·
JK = diag

(
[0>, 0,−0>, 0, · · · , e>, 1, 0]>

)
.

IfM has the structure of the large matrix in Z, then the constraint tr(JiM) ≥
0 reduces to tr(Vii) ≤ 1, which is redundant and can safely be omitted in view

of the stronger equality constraint tr(Vii) = 1 in Z. In this case, the outer

approximation can be simplified to the cone of doubly non-negative matrices

given by {
M ∈ S2K(N+1)+1 : M � 0, M ≥ 0

}
.

To further improve computational tractability, we relax the large semidefinite

constraint into a simpler system of K semidefinite constraints. We summarize

our formulation in the following proposition.
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Proposition 3.6.1. The optimal value of the following SDP constitutes a

lower bound on Z?.

R?
0 = min tr(X>X)−

∑
i∈[K]

tr(X>XVi)

s.t. pi ∈ SOCN+1
+ × RN+1

+ , Qi ∈ R2(N+1)×2(N+1)
+ , Vi ∈ RN×N

+ ∀i ∈ [K]

wi ∈ R+, zi ∈ R+ ,ui, si,hi, ri ∈ RN
+ , Yi,Gi ∈ RN×N

+ ∀i ∈ [K]

pi =


ui

1
si
wi

 , Qi =


Vi ui Gi hi

u>i 1 s>i wi

G>i si Yi ri
h>i wi r>i zi

 ∀i ∈ [K]

∑
i∈[K]

Vie = e

tr(Vi) = 1, diag(Vi) = hi, ui + si = wie ∀i ∈ [K]
diag(Vi + Yi + 2Gi) + zie− 2hi − 2ri = 0 ∀i ∈ [K]
e>1 V1e = 1[
Qi pi
p>i 1

]
� 0 ∀i ∈ [K]

(R0)

Proof. Without loss of generality, we can assign the first data point x1 to the

first cluster. The argument in the proof of Theorem 3.5.1 indicates that the

assignment vector for the first cluster is given by

π1 = u1u
>
1 e = V11e.

Thus, the data point x1 is assigned to the first cluster if and only if the first

element of π1 is equal to 1, i.e., 1 = e>1 π1 = e>1 V11e. Henceforth, we shall

add this constraint to Z. While the constraint is redundant for the completely

positive program Z, it will cut-off any symmetric solution in the resulting SDP

relaxation.

We now replace the generalized completely positive cone in Z with the

corresponding cone of doubly non-negative matrices, which yields the following
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SDP relaxation:

min tr(X>X)−
∑
i∈[K]

tr(X>XVii)

s.t. pi ∈ SOCN+1
+ × RN+1

+ , Qij ∈ R2(N+1)×2(N+1)
+ , Vij ∈ RN×N

+ ∀i, j ∈ [K]

w ∈ RK
+ , zij ∈ R+ ,ui, si,hij , rij ∈ RN

+ , Yij ,Gij ∈ RN×N
+ ∀i, j ∈ [K]

pi =


ui

1
si
wi

 , Qij =


Vij ui Gij hij

u>j 1 s>j wj

G>ji si Yij rij
h>ji wi r>ji zij

 ∀i, j ∈ [K]

tr(Vii) = 1 ∀i ∈ [K]
tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j
diag(Vii) = hii, ui + si = wie ∀i ∈ [K]
diag(Vii + Yii + 2Gii) + ziie− 2hii − 2rii = 0 ∀i ∈ [K]
e>1 V11e = 1
Q11 · · · Q1K p1

...
. . .

...
...

QK1 · · · QKK pK
p>1 · · · p>K 1

 � 0

(3.26)

Since all principal submatrices of the large matrix are also positive semidefi-

nite, we can further relax the constraint to a more tractable system[
Qii pi
p>i 1

]
� 0 ∀i ∈ [K].

Next, we eliminate the constraints tr(Vij) = 0, i, j ∈ [K] : i 6= j, from (3.26).

As the other constraints and the objective function in the resulting formulation

do not involve the decision variables Vij and Qij, for any i, j ∈ [K] such that

i 6= j, we can safely omit these decision variables. Finally, by renaming all

double subscript variables, e.g., Qii toQi, we arrive at the desired semidefinite

program R0. This completes the proof.

The symmetry breaking constraint e>1 V1e = 1 in R0 ensures that the solution

V1 will be different from any of the solutions Vi, i ≥ 2. Specifically, the

constraint
∑

i∈[K] Vie = e in R0 along with the aforementioned symmetry
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breaking constraint implies that e>1 Vie = 0 for all i ≥ 2. Thus, any rounding

scheme that identifies the clusters using the solution (Vi)i∈[K] will always assign

the data point x1 to the first cluster. It can be shown, however, that there

exists a partially symmetric optimal solution to R0 with V2 = · · · = VK . This

enables us to derive a further simplification to R0.

Corollary 3.6.2. Problem R0 is equivalent to the semidefinite program given

by

R?
0 = min tr(X>X)− tr(X>XW1)− tr(X>XW2)

s.t. αi ∈ SOCN+1
+ × RN+1

+ , Γi ∈ R2(N+1)×2(N+1)
+ , Wi ∈ RN×N

+ ∀i = 1, 2

ρi ∈ R+, βi ∈ R+ ,γi,ηi,ψi,θi ∈ RN
+ , Σi,Θi ∈ RN×N

+ ∀i = 1, 2

αi =


γi
1
ηi
ρi

 , Γi =


Wi γi Θi ψi

γ>i 1 η>i ρi
Θ>i ηi Σi θi
ψ>i ρi θ>i βi

 ∀i = 1, 2

tr(W1) = 1, tr(W2) = K − 1
diag(Wi) = ψi, γi + ηi = ρie, ∀i = 1, 2
diag(Wi + Σi + 2Θi) + βie− 2ψi − 2θi = 0 ∀i = 1, 2
W1e +W2e = e
e>1 W1e = 1[

Γ1 α1

α>1 1

]
� 0,

[
Γ2 α2

α>2 K − 1

]
� 0.

(R0)

Proof. Any feasible solution to R0 can be used to construct a feasible solution

to R0 with the same objective value, as follows:

α1 = p1, α2 =
K∑
i=2

pi, Γ1 = Q1, Γ2 =
K∑
i=2

Qi.

Conversely, any feasible solution to R0 can also be used to construct a feasible

solution to R0 with the same objective value:

p1 = α1, pi =
1

K − 1
α2, Q1 = Γ1, Qi =

1

K − 1
Γ2 ∀i = 2, . . . , K.

Thus, the claim follows.
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By eliminating the constraints diag(Wi) = ψi, γi + ηi = ρie, diag(Wi +

Σi + 2Θi) + βie− 2ψi − 2θi = 0, i = 1, 2, from R0 we obtain an even simpler

SDP relaxation.

Corollary 3.6.3. The optimal value of the following SDP constitutes a lower

bound on R?
0:

R?
1 = min tr(X>X)− tr(X>XW1)− tr(X>XW2)

s.t. W1,W2 ∈ RN×N
+

tr(W1) = 1, tr(W2) = K − 1
W1e +W2e = e
W1 � 0, W2 � 0
e>1W1e = 1

(R1)

We remark that the formulation R1 is reminiscent of the well-known SDP

relaxation for K-means clustering [80]:

R?
2 = min tr(X>X)− tr(X>XY )

s.t. Y ∈ RN×N
+

tr(Y ) = K
Y e = e
Y � 0.

(R2)

We now derive an ordering of the optimal values of problems Z, R0, R1, and

R2.

Theorem 3.6.4. We have

Z? ≥ R?
0 ≥ R?

1 ≥ R?
2.

Proof. The first and the second inequalities hold by construction. To prove

the third inequality, consider any feasible solution (W1,W2) to R1. Then, the

solution Y = W1 +W2 is feasible to R2 and yields the same objective value,

which completes the proof.
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Obtaining any estimations of the best cluster assignment using optimal

solutions of problem R2 is a non-trivial endeavor. If we have exact recovery,

i.e., Z? = R?
2, then an optimal solution of R2 assumes the form

Y =
∑
i∈[K]

1

e>πi
πiπ

>
i , (3.27)

where πi is the assignment vector for the i-th cluster. Such a solution Y allows

for an easy identification of the clusters. If there is no exact recovery then a

few additional steps need to be carried out. In [80], an approximate cluster

assignment is obtained by solving exactly another K-means clustering problem

on a lower-dimensional data set whose computational complexity scales with

O(N (K−1)2
). If the solution of the SDP relaxation R2 is close to the exact

recovery solution (3.27), then the columns of the matrix Y X will comprise

denoised data points that are near to the respective optimal cluster centroids.

In [72], this strengthened signal is leveraged to identify the clusters of the

original data points.

The promising result portrayed in Theorem 3.6.4 implies that any well-

constructed rounding scheme that utilizes the improved formulation R0 (or

R1) will never generate inferior cluster assignments to the ones from schemes

that employ the formulation R2. Our new SDP relaxation further inspires us

to devise an improved approximation algorithm for the K-means clustering

problem. The central idea of the algorithm is to construct high quality esti-

mates of the cluster assignment vectors (πi)i∈[K] using the solution (Vi)i∈[K],

as follows:

πi = Vie ∀i ∈ [K].

To eliminate any symmetric solutions, the algorithm gradually introduces sym-

metry breaking constraints e>niVie = 1, i ≥ 2, to R0, where the indices ni,
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i ≥ 2, are chosen judiciously. The main component of the algorithm runs

in K iterations and proceeds as follows. It first solves the problem R0 and

records its optimal solution (V ?
i )i∈[K]. In each of the subsequent iterations

k = 2, . . . , K, the algorithm identifies the best unassigned data point xn for

the k-th cluster. Here, the best data point corresponds to the index n that

maximizes the quantity e>nV
?
k e. For this index n, the algorithm then appends

the constraint e>nV
?
k e = 1 to the problem R0, which breaks any symmetry in

the solution (Vi)i≥k. The algorithm then solves the augmented problem and

proceeds to the next iteration. At the end of the iterations, the algorithm as-

signs each data point xn to the cluster k that maximizes the quantity e>nV
?
k e.

The algorithm concludes with a single step of Lloyd’s algorithm. A summary

of the overall procedure is given in Algorithm 1.

Before closing this section, we discuss briefly the computational cost in-

volved in this algorithm. In general, SDP can be solved efficiently via Interior

Point Methods with complexity O(max(m,N)mN2.5) where m = O(K) is the

number of constraints in SDP model. Typically, for most of the practial ap-

plications we have N >> K, simplifying the SDP complexity to O(N3.5). At

every iteration, the total complexity of finding a best unassigned data point

and solving the corresponding SDP is O(N + N3.5) u O(N3.5). While the

complexity of the cluster assignment step at the end of iterations is O(NK),

the overall complexity for fixed K number of iterations becomes O(KN3.5).

3.7 Numerical Results

In this section, we assess the performance of the algorithm described in

Section 3.6. All optimization problems are solved with MOSEK v8 using the

YALMIP interface [69] on a 16-core 3.4 GHz computer with 32 GB RAM.
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Algorithm 1 Approximation Algorithm for K-Means Clustering

Input: Data matrix X ∈ RD×N and number of clusters K.
Initialization: Let V ?

i = 0 and Pi = ∅ for all i = 1, . . . , K, and nk = 0 for
all k = 2, . . . , K.
Solve the semidefinite program R0 with input X and K. Update (V ?

i )i∈[K]

with the current solution.
for k = 2, . . . , K do

Update nk = arg max
n∈[N ]

e>nV
?
k e. Break ties arbitrarily.

Append the constraints e>niVie = 1 ∀i = 2, . . . , k to the problem R0.
Solve the resulting SDP with input X and K. Update (V ?

i )i∈[K].
end for
for n = 1, . . . , N do

Set k? = arg max
k∈[K]

e>nV
?
k e and update Pk? = Pk? ∪ {n}. Break ties arbi-

trarily.
end for
Compute the centroids ck = 1

|Pk|
∑

n∈Pk xn for all k = 1, . . . , K.

Reset Pk = ∅ for all k = 1, . . . , K.
for n = 1, . . . , N do

Set k? = arg min
k∈[K]

‖xn − ck‖ and update Pk? = Pk? ∪ {n}. Break ties

arbitrarily.
end for
Output: Clusters P1, . . . ,PK .

We compare the performance of Algorithm 1 with the Lloyd’s algorithm2

and the approximation algorithm3 proposed in [72] on 50 randomly generated

instances of the K-means clustering problem. While our proposed algorithm

employs the improved formulation R0 to identify the clusters, the algorithm

in [72] utilizes the existing SDP relaxation R2.

2k-means++ algorithm by [8] is implemented for cluster center initialization.
3MATLAB implementation of the algorithm is available at https://github.com/

solevillar/kmeans_sdp.
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We adopt the setting of [11] and consider N data points in RD supported

on K balls of the same radius r. We set K = 3, N = 75, and r = 2, and run the

experiment for D = 2, . . . , 6. All results are averaged over 50 trials generated

as follows. In each trial, we set the centers of the balls to 0, e/
√
D, and ce/

√
D,

where the scalar c is drawn uniformly at random from interval [10, 20]. This

setting ensures that the first two balls are always separated by unit distance

irrespective of D, while the third ball is placed further with a distance c from

the origin. Next, we sample N/K points uniformly at random from each ball.

The resulting N data points are then input to the three algorithms.

Table 3.1 reports the quality of cluster assignments generated from Al-

gorithm 1 relative to the ones generated from the algorithm in [72] and the

Lloyd’s algorithm. The mean in the table represents average percentage im-

provement of the true objective value from Algorithm 1 relative to other algo-

rithms. The pth percentile is the value below which p% of these improvements

may be found. We find that our proposed algorithm significantly outperforms

both the other algorithms in view of the mean and the 95th percentile statis-

tics. We further observe that the improvements deteriorate as the problem

dimension D increases. This should be expected as the clusters become more

apparent in a higher dimension, which makes them easier to be identified by

all the algorithms. The percentile statistics further indicate that while the

other algorithms can generate extremely poor cluster assignments, our algo-

rithm consistently produces high quality cluster assignments and rarely loses

by more than 5%.
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Statistic
Mean 5th Percentile 95th Percentile

D

2 47.4% 26.6% –4.4% 17.6% 186.7% 36.5%
3 21.3% 18.3% –2.3% 10.9% 168.9% 25.5%
4 5.7% 14.5% –1.5% 9.5% 10.8% 20.8%
5 9.5% 11.1% –2.1% 7.3% 125.8% 14.5%
6 4.8% 10.9% –0.7% 7.5% 8.4% 13.8%

Table 3.1: Improvement of the true K-means objective value of the cluster
assignment generated from the Algorithm 1 relative to the ones generated
from the algorithm in [72] (left) and the Lloyd’s Algorithm (right).
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Chapter 4

Distributionally Robust Strategic Queues

4.1 Introduction

Imposing tolls for the purpose of regulating queueing systems was first

studied by Naor [74]. He considers a single-server first-come-first-served (FCFS)

queue with stationary Poisson arrivals at known rate λ. Service times are in-

dependent, identically and exponentially distributed with rate µ. Customers

are assumed to be risk-neutral and homogenous from an economic perspective.

Each customer receives a reward of $R upon service completion and incurs a

cost of $C per unit time spent in the system (including in service). In the ob-

servable model, every arriving customer inspects the queue length and decides

whether to join (reneging is not allowed) or balk (i.e., not join the queue). This

strategic decision making is the key factor differentiating this model from the

classic M/M/1 queueing system.

Naor derives an optimal threshold strategy n: the customer joins the queue

if and only if the system length is less than n. He computes this threshold

value under three different control strategies: 1) individual optimization (ne)

where the customers act in isolation aiming to maximize their own expected

net benefit rate, 2) social optimization (ns) where the objective is to maximize

the long-run rate at which customers accrue net benefits and 3) revenue max-

imization (nm) where the agency imposes a toll on the customers joining the

queue with the goal of maximizing its own revenue. The most important result
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by Naor is the relation nm ≤ ns ≤ ne. This implies that the customers tend

to join the system at a higher rate, when left to themselves, than is socially

optimal. This is because customers do not consider the negative externalities

they impose on customers who arrive later. The result also implies that the

revenue maximizing firms allow fewer customers to join their system than the

socially optimal case. While the arrival and service rates are known in the

classical setting, in most practical situations, it is difficult to determine the

exact rates. In this dissertation, we develop a sequel to Naor’s model with

uncertain arrival and service rates, and compare our observations with the

aforementioned results.

Many authors have expanded on the seminal work by Naor [74] and a

detailed review of these game-theoretic models is presented in a recent book by

Hassin and Haviv [51]. Some of the other recent work [29], [41] and [46] involve

deriving threshold strategies in a classic Naor setting with server shutdowns.

While Economou and Kanta [41] study the system with server breakdowns

and repairs, Burnetas and Economou [29] analyze the system where the server

shuts off when idle and incurs a set-up time to resume. A slight variant of this

model is given by Guo and Hassin [46] where the server resumes only when

the queue length exceeds a given critical length. Also, Guo and Zipkin [47]

explore the effects of three different levels of delay information and identify

the specific cases which do and do not require such information to improve

the performance. Haviv and Oz [52] review the properties of several existing

regulation schemes and devise a new mechanism where customers are given

priority based on the queue length. Afec̀he and Ata [2] study the observable

M/M/1 queue with heterogenous customers, some patient and some impatient

of given proportion. Debo and Veeraraghavan [36] consider a system where the
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arriving customers cannot completely observe the service rate and value. They

assume that the server belongs to one of two known types, and that the service

rate and prior probability for each type is known. In all of the aforementioned

work, it is assumed that the arrival and service rates are known with certainty.

We extend the classical Naor’s model for observable systems by relaxing this

assumption.

We first study the stochastic version of Naor’s model where both the ar-

rival and service rates are random with known distributions. Taking a step

closer to reality, we consider an alternate modeling paradigm, distributionally

robust optimization ([85], [88], [99]). Unlike in the stochastic setting, here the

true distribution is unknown and the decision maker only has access to some

limited information, such as the distributions moments, structural properties,

or distance from a known empirical distribution. In this setting, the objective

is to derive optimal threshold strategies that maximize the worst-case expected

profit rate, where the worst case is taken over all distributions that are consis-

tent with the information about the true, but unknown, distribution. These

problems have been studied since the seminal work by Scarf [85] but have

received more attention with the advent of modern robust optimization tech-

niques [18, 21]. Since then, a substantial body of literature related to studying

well-known optimization problems in a distributionally robust setting. Some

examples of recent work in this area can be found in [6, 37, 49, 66, 87, 94].

To the best of our knowledge, there has been no prior work that considers

uncertainty of rates in the classical Naor’s model. In particular, this problem

has not been studied in the context of distributionally robust optimization.

We believe the ideal goal for any decision maker, in this context, would be

to settle for a more modest goal of determining an efficient and reliable data-
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driven solution. This goal is acheivable via data-driven distributionally robust

approach [43]. Here, we assume to have access to a finite number of indepen-

dent and identically distributed training samples collected from the unknown

distribution. We construct an ambiguity set called the Wasserstein ambiguity

set centered at the empirical distribution, computed using the collected sam-

ples. This ambiguity set contains all distributions (discrete or continuous) that

are sufficiently close to the empirical distribution and the closeness between the

distributions is defined in terms of Wasserstein metric. Wasserstein ambiguity

sets have been first used in the context of portfolio optimization [81]. It was

believed that the distributionally robust models using Wasserstein ambiguity

sets are harder to solve than the stochastic setting, but are later tackled using

global optimization techniques (refer [42] for a review of these techniques). A

detailed description of the Wasserstein ambiguity set is presented in Section

4.3.

Our main contributions of this chapter can be summarized as follows.

1. We first study the stochastic variant of M/M/1 observable strategic

queues where both the arrival and service rates are random with known

distributions. Under this assumption, we derive the optimal threshold

strategies for an individual customer, a social optimizer, and a revenue

maximizer.

2. Next, we consider the queueing system with uncertain arrival rate drawn

from an unknown distribution. We present a data-driven, distribution-

ally robust model, using a Wasserstein ambiguity set. In this setting, we

compute the worst-case expected profit rates by reformulating and solv-

ing the resultant univariate polynomial model as a semidefinite program

(SDP).
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3. We extend the distributionally robust study to queues where both the

arrival and service rates are uncertain with unknown distributions. We

derive a bivariate polynomial optimization model and develop a convex

reformulation using Sums-Of-Squares (SOS) techniques. The resulting

framework is then solved as a semidefinite program.

4. Finally, we compare our observations both theoretically and numerically

with Naor’s classical results.

The remainder of the chapter is structured as follows. In Section 4.2,

we derive the optimal threshold strategies for the stochastic variant of the

strategic queues and analyze the relationship between these thresholds. A

brief discussion on data-driven distributionally robust models with Wasserstin

ambiguity set is presented in Section 4.3. In Section 4.4, we consider the

strategic queues with uncertain arrival rate and derive the optimal thresholds

for the respective distributionally robust models. We then extend our study

to the setting where both the arrival and service rates are uncertain in Section

4.5. Finally, the out-of-sample performances of our distributionally robust

models are assessed empirically in Section 4.6.

Notation: We denote by EF [X] the expectation of random variable X under

distribution F . The covariance between two random variables X and Y is

denoted by Cov(X, Y ). In general, λ denotes the arrival rate and µ denotes

the service rate of an observable M/M/1 queue. Also, bnc denote the largest

integer less than or equal to n. Finally, ‖x‖ denotes the 2-norm of a vector x.
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4.2 Stochastic Strategic Queues

In this section, we assume both the arrival and service rates to be non-

degenerate positive random variables Λ and Ω respectively with known distri-

butions. We assume nature picks a realization λ > 0 of Λ and µ > 0 of Ω at

time 0, but are unknown to the strategic customers and managers throughout

the model horizon. Customers arrive according to Poisson process of realized

rate λ and the service time is exponentially distributed with realized rate µ.

Like in the traditional M/M/1 queue, we assume the arrival and service pro-

cesses are independent of one another. Given the distributions of Λ and Ω,

we compute the optimal system size thresholds for an individual customer, a

social optimizer and a revenue maximizer, given by n̂e, n̂s and n̂m respectively,

such that the (risk-neutral) expected profit rates are maximized.

4.2.1 Individual Optimization

We determine a pure threshold strategy in which every arriving customer

decides to join or balk the queue based on the observed queue length, inde-

pendent of the strategy adopted by other customers. The optimal threshold

ne when µ is certain [74] is given by,

ne =

⌊
Rµ

C

⌋
. (4.1)

It is important to note that the individual optimization model is independent of

the arrival rate λ and is affected only by the stochasticity of service rate Ω. We

now derive the analagous threshold value for the stochastic setting. A customer

decides to join the queue with i customers already in the system (including

the one in service) only if the expected benefit of joining, E[R − (i+1)C
Ω

] ≥ 0,

otherwise he balks. This yields i+ 1 ≤ R
E[1/Ω] C

and, consequently
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n̂e =

⌊
R

C E[ 1
Ω

]

⌋
. (4.2)

4.2.2 Social Optimization

We next analyze the social optimization model where the objective is to

compute an optimal threshold n̂s that maximizes the expected net benefit rate

for society. Let us denote by Zs(n) the expected social benefit rate per unit

of time, given a maximum queue length n. Assuming ρ 6= 1, the probability

of observing less than n customers, in other words, the probability that an

arriving customer joins an M/M/1/n queue is pn = 1−ρn
1−ρn+1 , and the expected

number of customers is Ln = ρ
1−ρ−

(n+1)ρn+1

1−ρn+1 . Thus, the expected social benefit

rate is defined as Zs(n) = E [RΛpn − CLn] and it follows that (see Equation

(2.3) in [51]),

Zs(n) := R EΛ,Ω

[
Λ

1− ρn

1− ρn+1

]
− C EΛ,Ω

[
Λ

Ω

(
1

1− ρ
− (n+ 1)ρn

1− ρn+1

)]
(4.3)

where ρ := Λ/Ω, and the threshold n̂s is such that n̂s ∈ arg maxn∈Z+
{Zs(n)}.

Lemma 4.2.1. For v ∈ R+ and ρ := Λ/Ω 6= 1 let

f(v,Λ,Ω) = Λ

[
vρv−1

1− ρv
− (v + 1)ρv

1− ρv+1

]
and g(v,Λ,Ω) =

Λ(1− ρ)2ρv−1

(1− ρv)(1− ρv+1)
.

If there exists a vs ∈ R+ such that

EΛ,Ω[f(vs,Λ,Ω)]

EΛ,Ω[g(vs,Λ,Ω)]
=

R

CE
[

1
Ω

] , (4.4)

then it is unique, otherwise we set vs = 0. Furthermore, we have n̂s = bvsc.

Proof. It is shown by Naor [74] that the function Zs(n) in (4.3) is discretely

unimodal in n. Hence we seek for the strategy n that is associated with the
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two inequalities: Zs(n) ≥ Zs(n− 1) and Zs(n) > Zs(n + 1). Substituting the

first condition in (4.3) yields

R EΛ,Ω

[
Λ

(1− ρn)2 − (1− ρn−1)(1− ρn+1)

(1− ρn)(1− ρn+1)

]
≥ CEΛ,Ω

[
Λ

Ω

nρn−1

1− ρn

]
−CEΛ,Ω

[
Λ

Ω

(n+ 1)ρn

1− ρn+1

]
.

(4.5)

It can be shown that,

Cov

(
Λ
nρn−1

1− ρn
,

1

Ω

)
− Cov

(
Λ

(n+ 1)ρn

1− ρn+1
,

1

Ω

)
≥ 0, (4.6)

and the proof is presented in Appendix B.1. Using this result, (4.5) can be

written as

R EΛ,Ω

[
Λ

(1− ρn)2 − (1− ρn−1)(1− ρn+1)

(1− ρn)(1− ρn+1)

]
≥ CE

[
1

Ω

]
EΛ,Ω

[
Λ
nρn−1

1− ρn
− Λ

(n+ 1)ρn

1− ρn+1

]
⇐⇒

R EΛ,Ω

[
Λ

(1− ρ)2ρn−1

(1− ρn)(1− ρn+1)

]
≥ CE

[
1

Ω

]
EΛ,Ω

[
Λ
nρn−1

1− ρn
− Λ

(n+ 1)ρn

1− ρn+1

]
⇐⇒

R EΛ,Ω [g(n,Λ,Ω)] ≥ CE
[

1

Ω

]
EΛ,Ω [f(n,Λ,Ω)] .

For any positive realization of λ and µ such that λ 6= µ and n ∈ R+, we
have E [1/Ω] > 0 and EΛ,Ω [g(n,Λ,Ω)] > 0 implying that

R

CE
[

1
Ω

] ≥ EΛ,Ω[f(n,Λ,Ω)]

EΛ,Ω[g(n,Λ,Ω)]
.

Replacing n+1 for n and reversing the direction of the inequality in (4.5),
the second condition yields

EΛ,Ω[f(n+ 1,Λ,Ω)]

EΛ,Ω[g(n+ 1,Λ,Ω)]
>

R

CE
[

1
Ω

] .
These two inequalities can be summarized as

EΛ,Ω[f(n,Λ,Ω)]

EΛ,Ω[g(n,Λ,Ω)]
≤ R

CE
[

1
Ω

] < EΛ,Ω[f(n+ 1,Λ,Ω)]

EΛ,Ω[g(n+ 1,Λ,Ω)]
. (4.7)
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One can verify that
EΛ,Ω[f(v,Λ,Ω)]

EΛ,Ω[g(v,Λ,Ω)]
≥ 0 and is non-decreasing in v for v ≥ 1. This

implies that any vs satisfying (4.4) is unique and it is clear that bvsc is the
maximizer of (4.3). It is to be noted that when ρ = 1, f(v,Λ,Ω) = 1

2
and

g(v,Λ,Ω) = Λ
v+v2 .

Theorem 4.2.2. n̂s ≤ n̂e, i.e., individual optimization leads to longer queues

than are socially desired.

Proof. We start with computing the difference between EΛ,Ω [f(v,Λ,Ω)] and

vEΛ,Ω[g(v,Λ,Ω)]:

EΛ,Ω [f(v,Λ,Ω)]− vEΛ,Ω[g(v,Λ,Ω)]

= EΛ,Ω

[
Λ

(
vρv−1

1− ρv
− (v + 1)ρv

1− ρv+1
− v (1− ρ)2ρv−1

(1− ρv)(1− ρv+1)

)]
= EΛ,Ω

[
Λ
ρv(ρv − vρ+ v − 1)

(1− ρv)(1− ρv+1)

]
≥ 0,

for all ρ ∈ R+ and v ≥ 1.

Thus, we have EΛ,Ω[f(v,Λ,Ω)] ≥ vEΛ,Ω [g(v,Λ,Ω)] for all v ≥ 1. We

combine this with (4.7) to get

R

CE
[

1
Ω

] ≥ EΛ,Ω[f(v,Λ,Ω)]

EΛ,Ω[g(v,Λ,Ω)]
≥ v.

Since v = vs satisfies (4.5), we have R
CE[1/Ω]

≥ vs, and n̂s ≤ n̂e.

To induce customers to follow the socially optimal joining strategy, we can

charge a static entrance fee f to each customer joining the system, such that

n̂s =

⌊
(R− f)

CE[ 1
Ω

]

⌋
.

This fee f is regarded as a transfer payment from the social welfare perspective

and hence is disregarded in the benefit rate equation (4.3).
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4.2.3 Revenue Maximizer

We now consider a profit maximizing firm which aims to maximize its

own revenue by imposing a toll t on every joining customer. As a result, the

customers base their joining decision on this imposed fee t and evaluate the

service completion only by R−t. Given the arrival rate Λ, the desired threshold

n and the joining probability pn in an M/M/1/n queue, the firm’s expected

profit rate is given by Λpnt. The firm seeks to determine a t that maximizes

this profit rate, by choosing a desired threshold n such that n =
⌊

(R−t)
CE[1/Ω]

⌋
.

Thus the expected profit rate of a firm is given by (see Equation (2.9) in [51]),

Zm(n) := EΛ,Ω

[
Λ

(
1− ρn

1− ρn+1

)(
R− Cn

Ω

)]
. (4.8)

where ρ := Λ/Ω, and the threshold n̂m is such that n̂m ∈ arg maxn∈Z+
{Zm(n)}.

Lemma 4.2.3. For v ∈ R+ and ρ := Λ/Ω 6= 1 let

u(v,Λ,Ω) = Λ
1− ρv−1

1− ρv
and w(v,Λ,Ω) = Λ

(1− ρ)2ρv−1

(1− ρv+1)(1− ρv)
.

If there exists a vm ∈ R+ such that

vm +
EΛ,Ω[u(vm,Λ,Ω)]

EΛ,Ω[w(vm,Λ,Ω)]
=

R

CE
[

1
Ω

] , (4.9)

then it is unique, otherwise we set vm = 0. Furthermore, we have n̂m = bvmc.

Proof. A profit-maximizing threshold n satisfies the following two conditions:

Zm(n) ≥ Zm(n− 1) and Zm(n) > Zm(n+ 1). Substituting the first condition

in (4.8) yields

EΛ,Ω

[
Λ

(
1− ρn

1− ρn+1

)(
R− Cn

Ω

)]
≥ EΛ,Ω

[
Λ

(
1− ρn−1

1− ρn

)(
R− C(n− 1)

Ω

)]
. (4.10)

It can be shown that,

Cov

(
Λ

1− ρn

1− ρn+1
, R− Cn

Ω

)
− Cov

(
Λ

1− ρn−1

1− ρn
, R− C(n− 1)

Ω

)
≤ 0, (4.11)
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and the proof of this claim is presented in Appendix B.2. Using this result,

(4.10) can be written as

EΛ,Ω

[
Λ

1− ρn

1− ρn+1

]
EΛ,Ω

[
R− Cn

Ω

]
≥ EΛ,Ω

[
Λ

1− ρn−1

1− ρn

]
EΛ,Ω

[
R− C(n− 1)

Ω

]
⇐⇒

EΛ,Ω

[
R− Cn

Ω

]
EΛ,Ω

[
Λ(1− ρ)2ρn−1

(1− ρn+1)(1− ρn)

]
≥ CEΛ,Ω

[
1

Ω

]
EΛ,Ω

[
Λ

1− ρn−1

1− ρn

]
⇐⇒(
R− CnE

[
1

Ω

])
EΛ,Ω [w(n,Λ,Ω)] ≥ CE

[
1

Ω

]
EΛ,Ω [u(n,Λ,Ω)] .

For any positive realization of λ and µ such that λ 6= µ and n ∈ R+, we have

E [1/Ω] > 0 and EΛ,Ω[w(n,Λ,Ω)] > 0, and

EΛ,Ω [u(n,Λ,Ω)]

EΛ,Ω [w(n,Λ,Ω)]
≤ R

CE
[

1
Ω

] − n
Substituting n+ 1 for n and reversing the direction of the inequality in (4.10),

the second condition becomes

R

CE
[

1
Ω

] − (n+ 1) <
EΛ,Ω [u(n+ 1,Λ,Ω)]

EΛ,Ω [w(n+ 1,Λ,Ω)]

These two conditions can be summarized as

n+
EΛ,Ω[u(n,Λ,Ω)]

EΛ,Ω[w(n,Λ,Ω)]
≤ R

CE
[

1
Ω

] < n+ 1 +
EΛ,Ω[u(n+ 1,Λ,Ω)]

EΛ,Ω[w(n+ 1,Λ,Ω)]
. (4.12)

Next, for any positive realization ρ := λ/µ 6= 1 and v ∈ R+ we have

∂u(v, λ, µ)

∂v
=
λ(ρ− 1)ρv−1 log(ρ)

(1− ρv)2
≥ 0, and

∂w(v, λ, µ)

∂v
=
λ(1− ρ)2ρv−1(1− ρ2v+1) log(ρ)

(1− ρv)2(1− ρv+1)2
≤ 0.

Hence, the term v +
EΛ,Ω[u(v,Λ,Ω)]

EΛ,Ω[w(v,Λ,Ω)]
is non-decreasing in v with values ranging

from 1 to∞ for v ≥ 1. This implies that any vm satisfying (4.9) is unique and
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bvmc is the largest n that satisfies (4.8). Also, when ρ = 1, it can be shown

that u(v,Λ,Ω) = Λ(v−1)
v

and w(v,Λ,Ω) = Λ
(v+v2)

.

Theorem 4.2.4. n̂m ≤ n̂e i.e, individual optimization leads to longer queues

than are revenue desired.

Proof. We have u(v, λ, µ) ≥ 0 and w(v, λ, µ) ≥ 0, for any positive realization

of λ and µ, and the expectation preserves this property. Thus it follows from

(4.9) that vm ≤ R
CE[1/Ω]

, so that n̂m ≤ n̂e.

We now extend our study to the distributionally robust strategic queues.

We first present a discussion on data-driven distributionally robust models

using Wasserstein ambiguity set, as a prelude to our analysis in the following

sections.

4.3 Data-Driven Distributionally Robust Model

For the remainder of the chapter we study distributionally robust opti-

mization models with a Wasserstein ambiguity set centered at the uniform

distribution P̂N on N independent and identically distributed training sam-

ples. The objective of a distributionally robust model is to find a decision that

maximizes the worst-case expected profit. Here, the worst-case is taken over

the Wasserstein ambiguity set P , that contains all the distributions (discrete

or continuous) that are sufficiently close to the discrete empirical distribu-

tion P̂N . The closeness between two distributions is measured in terms of the

Wasserstein metric [43].

Definition 4.1. (Wasserstein Metric) For any r ≥ 1, let Mr(Ξ) be the

set of all probability distributions P supported on Ξ satisfyting EP[‖ξ‖r] =

92



∫
Ξ
‖ξ‖rP(dξ) < ∞. The r-Wasserstein distance between two distributions

P1,P2 ∈Mr(Ξ) is defined as

Wr(P1,P2) = inf

{(∫
Ξ2

‖ξ1 − ξ2‖rQ(dξ1, dξ2)

) 1
r

}
where Q is a joint distribution of ξ1 and ξ2 with marginals P1 and P2, respec-

tively.

The Wasserstein distance Wr(P1,P2) can be viewed as the (r-th root of

the) minimum cost for moving the distribution P1 to P2, where the cost of

moving a unit mass from ξ1 to ξ2 amounts to ‖ξ1−ξ2‖r. The joint distribution

Q of ξ1 and ξ2 is therefore naturally interpreted as a mass transportation

plan [43].

We define the ambiguity set P as a r-Wasserstein ball inMr(Ξ) centered

at the empirical distribution P̂N and the Wasserstein ball of radius ε centered

at the empirical distribution P̂N is denoted by

Brε (P̂N)) =
{
P ∈Mr(Ξ) :Wr(P, P̂N) ≤ ε

}
. (4.13)

A key benefit of the Wasserstein ball is that they provide natural confidence

sets for the unknown distribution P of the uncertain problem parameters ξ.

Specifically, the Wasserstein ball around the empirical distribution on N in-

dependent historical samples contains the unknown true distribution P with

confidence 1 − β, if ε is a sublinearly growing function of log(1/β)/N [42].

Thus, the corresponding distributionally robust optimization problem offers

a 1 − β upper confidence bound on the optimal value of the true stochastic

program. One can also show that this data-driven distributionally robust op-

timization problem converges to the corresponding true stochastic program as

the sample size N tends to infinity [42].
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We confine our analysis in the remainder of the chapter to a 2-Wasserstein

ambiguity set. We are now ready to quote some important results discussed

in [42, 48]. Let us consider a worst-case expectation problem given by,

sup
P∈B2

ε (P̂N )

EP[`(ξ)] (4.14)

This can be equivalently written using the Definition 4.1 as

sup
1

N

∑
i∈[N ]

∫
Ξ

`(ξ)Pi(dξ)

s.t. Pi ∈M2(Ξ) ∀i ∈ [N ]

1

N

∑
i∈[N ]

∫
Ξ

‖ξ − ξ̂i‖2Pi(dξ) ≤ ε2

where ξ̂1, · · · , ξ̂N represent N training samples of unknown ξ. A strong dual

robust optimization model to this problem is given by [42],

inf
α∈R+,s∈RN

αε2 +
1

N

∑
i∈[N ]

si

s.t. `(ξ)− α‖ξ − ξ̂i‖2 ≤ si ∀ξ ∈ Ξ, i ∈ [N ].

(4.15)

By adjusting the radius of the ball ε, one can control the degree of con-

servatism of the underlying optimization model. If ε = 0, the Wasserstein ball

shrinks to singleton set containing only the empirical distribution P̂N . Prior

work [42, 48] has shown that the optimal value of supP∈B2
0(P̂N ) EP[`(ξ)] coin-

cides with the value of EP̂N

[
`(ξ̂i)

]
. Indeed, for ε = 0 the variable α can be set

to any positive value at no penalty. Since ‖ξ − ξ̂i‖2 is always non-negative,

the maximum of the left-hand side term in (4.15) occurs at ξ = ξ̂i, for every

i ∈ [N ]. Therefore at optimality, si takes the value `(ξ̂i) and the optimal

objective value evaluates to 1
N

∑
i∈[N ] `(ξ̂i).
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We now proceed to discuss our analysis on distributionally robust strategic

queues. To simplify our exposition we first study the queues with only arrival

rate uncertainty in the following subsection, as a prelude to our analysis in

Section 4.5.

4.4 Distributionally Robust Queues With Uncertain Ar-
rival Rates

In this section, we analyze Naor’s observable model with uncertain arrival

rate Λ (and deterministic service rate µ). Consequently, the traffic intensity

ρ := Λ/µ is ambiguous, and without loss of generality, we consider ρ as the

uncertain parameter throughout this section. While the true distribution P of

ρ is unknown, we assume that we have observed a finite set of N independent

realizations given by ρ̂1, · · · , ρ̂N where ρ̂i = λ̂i/µ. Using this data, we define an

empirical distribution P̂N = 1
N

∑
i∈[N ] δρ̂i , that is, the uniform distribution on

the samples, and an ambiguity set P that contains all the distributions close

to P̂N with respect to the 2-Wasserstein metric. We now proceed to derive the

optimal threshold strategies ñs and ñm for a social optimizer and a revenue

maximizer respectively. As stated in the previous section, the optimal joining

threshold ñe for an individual customer is independent of the arrival rate, and

we have ñe = ne from (4.1).

4.4.1 Social Optimizer

The objective is to obtain an optimal joining threshold ñs that maximizes

the worst-case expected benefit, i.e., ñs ∈ arg maxn∈Z+
{Z̃s(n)} where Z̃s(n) is
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given by (see Equation (2.3) in [51]),

Z̃s(n) := inf
P∈P

EP

[
Rµ

ρ(1− ρn)

1− ρn+1
− Cρ

1− ρ
+
C(n+ 1)ρn+1

1− ρn+1

]
. (4.16)

The worst-case expectation is computed over all the distributions in the

2-Wasserstein ambiguity set P defined by (4.13) with support set Ξ := {ρ ∈

R : ρ ≥ 0}.

Theorem 4.4.1. For any n ≥ 1 and P = B2
ε (P̂N), the worst-case expecta-

tion in (4.16) is equal to the magnitude of the optimal objective value of the

following semidefinite program

inf
1

N

∑
i∈[N ]

(yi0 − ρ̂2
i y

i
n+4) + y1

n+4ε
2

s.t. yi1 = Rµ− C − (yi0 + 2ρ̂iy
i
n+4), yi2 = −Rµ+ 2yin+4 ρ̂i + yin+4,

yi3 = −yin+4, y
i
4, · · · , yin = 0, yin+1 = −Rµ+ Cn+ C − yi0,

yin+2 = Rµ− Cn+ yi0 + 2yin+4 ρ̂i, y
i
n+3 = −2yin+4 ρ̂i − yin+4,

yin+4 = y1
n+4 ≥ 0 ∀i ∈ [N ]∑

u+v=2l−1

xiuv = 0 ∀l ∈ [n+ 4], i ∈ [N ]

∑
u+v=2l

xiuv = yil ∀l ∈ [n+ 4] ∪ {0}, i ∈ [N ]

Xi = [xiuv]u,v∈[n+4]∪{0} � 0. (4.17)

The proof of this theorem relies on the following lemma which expresses a

univariate polynomial inequality in terms of semidefinite constraints and this

is established in [Proposition 3.1(b), [20]].

Lemma 4.4.2. The polynomial g(x) =
∑k

r=0 yrx
r satisfies g(x) ≥ 0 for all

x ≥ 0 if and only if there exists a positive semidefinite matrix X = [xij]i,j=0,··· ,k,
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such that

0 =
∑

i,j:i+j=2l−1

xij ∀l = 1, · · · , k

yl =
∑

i,j:i+j=2l

xij ∀l = 0, · · · , k

X � 0.

Using this result, we are now ready to prove Theorem 4.4.1.

Proof. Let us denote f(n, ρ) = −
(
Rµρ(1−ρn)

1−ρn+1 − Cρ
1−ρ + C(n+1)ρn+1

1−ρn+1

)
. We know

that the worst-case expectation in (4.16) can equivalently be written as

− sup
P∈P

EP

[
−
(
Rµ

ρ(1− ρn)

1− ρn+1
− Cρ

1− ρ
+
C(n+ 1)ρn+1

1− ρn+1

)]
= − sup

P∈P
EP[f(n, ρ)].

The dual of supP∈P EP[f(n, ρ)] for P = B2
ε (P̂N) is given by (4.15),

inf
α∈R+,s∈RN

αε2 +
1

N

∑
i∈[N ]

si

s.t. f(n, ρ)− α‖ρ− ρ̂i‖2 ≤ si ∀i ∈ [N ], ρ ∈ R+.

While the objective function is linear, the constraints are polynomial of

degree n+ 4 in the uncertain parameter ρ ∈ R+. Expanding the 2-norm term

in the constraint and applying simple algebraic reductions yield the following

polynomial inequalities for every i ∈ [N ],

(si + αρ̂2
i )ρ

0 + (Rµ− C − si − αρ̂2
i − 2αρ̂i)ρ− (Rµ− α− 2αρ̂i)ρ

2 − αρ3

− (Rµ− Cn− C + si + αρ̂2
i )ρ

n+1 + (Rµ− Cn+ si + 2αρ̂i + αρ̂2
i )ρ

n+2

− (α + 2αρ̂i)ρ
n+3 + αρn+4 ≥ 0 ∀i ∈ [N ], ρ ∈ R+. (4.18)

This inequality is of the form gi(ρ) =
∑n+4

r=0 y
i
rρ
r ≥ 0 for all ρ ∈ R+, where

yi denote the coefficients of this polynomial inequality. Thus we invoke the
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result of Lemma 4.4.2 for all i ∈ [N ] with k = n+4, to express the inequalities

in (4.18) as semidefinite constraints. Finally, we redefine the original decision

variables α and si in terms of yi. This completes the proof.

Therefore, for every n ≥ 1 we compute the worst-case expected benefit

rate Z̃s(n) using the result of Theorem 4.4.1 and obtain an optimal joining

threshold ñs such that ñs ∈ arg maxn≥1{Z̃s(n)}.

4.4.2 Revenue Maximizer

Similar to a social optimizer, the objective here is to find an optimal

threshold ñm that maximizes the worst-case expected profit rate of a firm, i.e.,

ñm ∈ arg maxn∈Z+
{Z̃m(n)}, where the worst-case expectation is computed over

all the distributions in the 2-Wasserstein ambiguity set P defined by (4.13)

with support set Ξ = {ρ ∈ R : ρ ≥ 0}. The worst-case expected profit rate

Z̃m(n) is given by (see Equation (4.8)),

Z̃m(n) := (Rµ− Cn) inf
P∈P

EP

[
ρ(1− ρn)

1− ρn+1

]
. (4.19)

Theorem 4.4.3. Let f(n, ρ) = ρ(1−ρn)
1−ρn+1 . For any n ≥ 1 and P = B2

ε (P̂N),

the worst-case expectation infP∈P EP [f(n, ρ)] is equal to the magnitude of the

optimal objective value of the following semidefinite program
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inf
1

N

∑
i∈[N ]

(yi0 + ρ̂2
i y

i
n+3)− y1

n+3ε
2

s.t. yi1 = 1 + 2(yin+3ρ̂i), y
i
2 = −yin+3, yi3, · · · , yin = 0,

yin+1 = −(1 + yi0), yin+2 = 2yi2 ρ̂i,

yin+3 = y1
n+3 ≤ 0, zi = −yi ∀i ∈ [N ]∑

u+v=2l−1

xiuv = 0 ∀l ∈ [n+ 3], i ∈ [N ]

l∑
r=0

yir

(
n+ 3− r
l − r

)
=

∑
u+v=2l

xiuv ∀l ∈ [n+ 3] ∪ {0}, i ∈ [N ]

∑
u+v=2l−1

wi
uv = 0 ∀l ∈ [n+ 3], i ∈ [N ]

n+3∑
r=l

zir

(
r

l

)
=

∑
u+v=2l

wi
uv ∀l ∈ [n+ 3] ∪ {0}, i ∈ [N ]

Xi = [xiuv]u,v∈[n+3]∪{0} � 0,

W i = [wi
uv]u,v∈[n+3]∪{0} � 0 ∀i ∈ [N ]. (4.20)

The proof of this theorem relies on the following lemmas which show how to

express a univariate polynomial inequality in terms of semidefinite constraints

and it is established in [Proposition 3.1 (c), (d), [20]].

Lemma 4.4.4. The polynomial g(x) =
∑k

r=0 yrx
r satisfies g(x) ≥ 0 for all x ∈

[0, a] if and only if there exists a positive semidefinite matrix X = [xij]i,j=0,··· ,k,

such that

0 =
∑

i,j:i+j=2l−1

xij ∀l = 1, · · · , k

l∑
r=0

yr

(
k − r
l − r

)
ar =

∑
i,j:i+j=2l

xij ∀l = 0, · · · , k

X � 0.

Lemma 4.4.5. The polynomial g(x) =
∑k

r=0 yrx
r satisfies g(x) ≥ 0 for all

x ∈ [a,∞) if and only if there exists a positive semidefinite matrix X =
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[xij]i,j=0,··· ,k, such that

0 =
∑

i,j:i+j=2l−1

xij ∀l = 1, · · · , k

k∑
r=l

yr

(
r

l

)
ar−l =

∑
i,j:i+j=2l

xij ∀l = 0, · · · , k

X � 0.

Using these results, we are now ready to prove Theorem 4.4.3.

Proof. The worst-case expectation can equivalently be written as,

inf
P∈P

EP [f(n, ρ)]⇐⇒ − sup
P∈P

EP [−f(n, ρ)] .

It follows from (4.15) that the dual of supP∈P EP [−f(n, ρ)] is given by,

inf
α∈R+,s∈RN

αε2 +
1

N

∑
i∈[N ]

si

s.t. −f(n, ρ)− α‖ρ− ρ̂i‖2 ≤ si ∀i ∈ [N ], ρ ∈ R+.

Since the denominator of f(n, ρ) is negative for ρ > 1, we deal with this

constraint separately for the cases ρ ≤ 1 and ρ > 1, and consequently we have

inf αε2 +
1

N

∑
i∈[N ]

si

s.t. α ∈ R+, s ∈ RN
−ρ(1− ρn)− α(1− ρn+1)‖ρ− ρ̂i‖2 ≤ si(1− ρn+1) ∀i ∈ [N ], ρ ∈ [0, 1]
ρ(1− ρn) + α(1− ρn+1)‖ρ− ρ̂i‖2 ≤ −si(1− ρn+1) ∀i ∈ [N ], ρ ≥ 1.

While the objective function is linear, the constraints are polynomial in

the uncertain parameter ρ ∈ R+ with degree n+ 3. Expanding the norm term

in the constraints and applying simple algebraic reductions yield the following

100



polynomial inequalities for every i ∈ [N ],

(si + αρ̂2
i )ρ

0 + (1− 2αρ̂i)ρ+ αρ2 − (si + αρ̂2
i + 1)ρn+1

+ 2αρ̂iρ
n+2 − αρn+3 ≥ 0 ∀ρ ∈ [0, 1]

−(si + αρ̂2
i )ρ

0 − (1− 2αρ̂i)ρ− αρ2 + (si + αρ̂2
i + 1)ρn+1

− 2αρ̂iρ
n+2 + αρn+3 ≥ 0 ∀ρ ≥ 1 (4.21)

The inequalities are of the form gi1(ρ) =
∑n+3

r=0 y
i
rρ
r ≥ 0 for all ρ ∈ [0, 1] and

gi2(ρ) =
∑n+3

r=0 z
i
rρ
r ≥ 0 for all ρ ≥ 1, where yi and zi represent the coefficients

of the respective polynomial inequalities. We now invoke the result of Lemma

4.4.4 and Lemma 4.4.5 suitably for every i ∈ [N ], with k = n + 3 and a = 1,

to express the inequalities in (4.21) as semidefinite constraints. Finally, we

redefine the decision variables α and si in terms of yi and it is to be noted

that we let y1
n+3 ∈ R− since α = −y1

n+3. This completes the proof.

Given the values of R,C and µ, we compute the worst-case expected profit

rate Z̃m(n) for every n ≥ 1 using the result of Theorem 4.4.3, and obtain an

optimal joining threshold ñm such that ñm ∈ arg maxn≥1{Z̃m(n)}.

Corollary 4.4.6. ñs ≤ ñe and ñm ≤ ñe.

Proof. Recall that ne, ns and nm denote the optimal threshold strategies with

certain arrival rates, and ns ≤ ne and nm ≤ ne. By construction, we have

ñs ≤ ns and ñm ≤ nm. This along with the fact (as discussed in the beginning

of this section) that ñe = ne proves our claim.

4.5 Distributionally Robust Strategic Queues

In this section, we extend our analysis to the observable queues where

ξ = {λ, µ} is uncertain. While the true distribution of these rates are un-
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known, we assume to posses a finite set of N independent realizations of the

tuple λ and µ given by ξ̂1, · · · , ξ̂N where ξ̂i = (λ̂i, µ̂i). Using this data, we

define a new empirical (uniform) distribution P̂N = 1
N

∑
i∈[N ] δξ̂i and an am-

biguity set P that contains all distributions close to P̂N with respect to 2-

Wasserstein metric. It is important to note that this ambiguity set P is based

on two uncertain parameters as opposed to the ambiguity set assumed in Sec-

tion 4.4. The resulting optimization models contain polynomial constraints in

ξ ∈ R2
+ and these bivariate polynomial inequalities are handled via the SOS

decomposition technique. We first derive the optimal threshold strategy for

individual optimization n′e, as it is affected only by the service rate uncertainty.

We then briefly discuss the idea behind SOS decomposition in Section 4.5.2

followed by the derivation of the optimal threshold strategies n′s and n′m for a

social optimizer and a revenue maximizer respectively.

4.5.1 Individual Optimization

As discussed in earlier sections, this optimization is independent of the

arrival rate λ. Under service rate uncertainty, an arriving customer decides to

join the queue with i customers already in the system (including the one in

service) only if,
R

(i+ 1)C
≥ sup

P∈P
E
[

1

µ

]
,

otherwise he balks. Thus the optimal joining threshold n′e is given by

n′e =

⌊
R

C supP∈P E[ 1
µ
]

⌋
. (4.22)

The worst-case expectation is computed over all the distributions in the 2-

Wasserstein ambiguity set P defined by (4.13) with support set Ξ = {µ ∈
[µ,∞)}, given µ > 0. It is important to note that we need the lower bound µ
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to be positive to ensure µ is bounded away from zero, and this is required to

obtain a feasible solution to the problem. The context will be more clear in

the proof of the following theorem.

Theorem 4.5.1. For a given µ > 0 and P = B2
ε (P̂N), the worst-case expec-

tation supP∈P E[1/µ] is equal to the optimal objective value of the following

semidefinite program

inf
1

N

∑
i∈[N ]

(yi1 − µ̂2
i y
i
3) + y1

3ε
2

s.t. yi0 = −1, yi2 = −2yi3µ̂i, y
i
3 = y1

3 ≥ 0 ∀i ∈ [N ]∑
u+v=2l−1

xiuv = 0 ∀l ∈ {1, 2, 3}, i ∈ [N ]

∑
u+v=2l

xiuv =
3∑
r=l

yir

(
r

l

)
µr−l ∀l ∈ {0, 1, 2, 3}, i ∈ [N ]

X i = [xiuv]u,v∈{0,1,2,3} � 0. (4.23)

Proof. The dual of the worst-case expectation supP∈P E[ 1
µ
] is given by (4.15)

as:

inf
α∈R+,s∈RN

αε2 +
1

N

∑
i∈[N ]

si

s.t.
1

µ
− α‖µ− µ̂i‖2 ≤ si ∀i ∈ [N ], µ ∈ [µ,∞).

While the objective function is linear, the constraints are polynomial of

degree 3 in the uncertain parameter µ ∈ [µ,∞). Expanding the 2-norm term

in the constraint and applying simple algebraic reductions yield the following

polynomial inequalities for every i ∈ [N ],

siµ+ αµ3 − 2αµ2µ̂i + αµµ̂2
i − 1 ≥ 0 ∀i ∈ [N ], µ ∈ [µ,∞).
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It is to be noted that this is infeasible for µ = 0. Hence, we require a positive

lower bound µ to ensure µ is bounded away from zero.

This inequality is now of the form gi(µ) =
∑3

r=0 y
i
rµ

r ≥ 0 for all µ ∈ [µ,∞)

and we invoke the result of Lemma 4.4.5 with k = 3 and a = µ, for every

i ∈ [N ]. We finally redefine the original decision variables α and si in terms

of yi, and this completes the proof.

To summarize, given the values of R, C and µ, we first compute the worst-

case expectation invoking the result of Theorem 4.5.1 and obtain the optimal

joining threshold n′s using (4.22).

4.5.2 Sums-Of-Squares Decomposition

Consider a multivariate polynomial inequality in n variables,

p(ξ) ≥ 0, ∀ξ ∈ Ξ (4.24)

where p(ξ) is a polynomial function in the variables ξ1, · · · , ξn, Ξ = {ξ ∈ Rn :

gj(ξ) ≥ 0, ∀j ∈ [m]} and {gj}j∈[m] are all the polynomial functions describing

the compact uncertainty set Ξ. In other words, the problem (4.24) involves

testing the non-negativity of the polynomial p on a set defined by a finite

number of polynomial/ affine functions g. A sufficient condition for (4.24) to

hold is given by [19],

p = σ0 +
m∑
j=1

σjgj (4.25)

where σj, for all j ∈ [m] ∪ {0} are polynomials in ξ and furthermore are

SOS. Thus the non-negativity requirement of p on the set Ξ as defined by

(4.24) is translated into a system of linear equality constraints on matching

the coefficients of p and σj, and whether σj are SOS, for all j ∈ [m] ∪ {0}.
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Definition 4.2 ([62, 79]). A multivariate polynomial σ of degree 2d in n vari-

ables is a sum-of-squares (SOS) if and only if there exists a positive semidefi-

nite matrix Q such that

σ(ξ) = z>Qz (4.26)

where z is the vector of monomials of degree up to d given by

z = [1, ξ1, ξ2, · · · , ξn, ξ1ξ2, · · · , ξdn].

The feasible set defined by the constraints in (4.26) is the intersection of

the cone of positive semidefinite matrices (i.e., Q � 0) and an affine subspace

(due to the equality constraints that match the coefficients of σ with the

entries of Q). The size of the matrix Q is
(
n+d
d

)
×
(
n+d
d

)
, which for a fixed d is

polynomial in n.

Returning to the condition 4.25, the degree of σj polynomials are not

bounded apriori. Hence, we choose the degree following the guidelines in [19]

and is given by,

deg(σjgj) ≤ max

(
2d,max

j
(deg(gj))

)
,

deg(σ0) = max
j

(deg(σjgj)) . (4.27)

While such a restrictive setting yields a tractable SDP formulation, it might

also result in a conservative solution to (4.24). Indeed, since any σ that can

be represented as SOS of degree 2d can also be represented as SOS of degree

2d+1, one can obtain a family of tighter semidefinite relaxations with a trade-

off between the size of the resulting SDP formulation and the quality of the

solution to (4.24).

Using these techniques, we now proceed to derive the optimal threshold

strategies for a social optimizer and a revenue maximizer.
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4.5.3 Social Optimizer

Recall the objective of a social optimizer is to compute an optimal joining

threshold n′s such that the worst-case expected social benefit rate is maximized,

i.e., n′s ∈ arg maxn∈Z+
{Z ′s(n)} where Z ′s(n) is given by,

Z ′s(n) := inf
P∈P

EP

Rλ 1−
(
λ
µ

)n
1−

(
λ
µ

)n+1 −
C λ
µ

1− λ
µ

+
C(n+ 1)

(
λ
µ

)n+1

1−
(
λ
µ

)n+1

 . (4.28)

Let us denote the term inside the expectation as f(n, ξ) such that

f(n, ξ) = Rλ
1−

(
λ
µ

)n
1−

(
λ
µ

)n+1 −
C λ
µ

1− λ
µ

+
C(n+ 1)

(
λ
µ

)n+1

1−
(
λ
µ

)n+1 ,

and ξ = {λ, µ}, The 2-Wasserstein ambiguity set P is defined according to

(4.13) with support set Ξ := {ξ = {λ, µ} ≥ 0}.

Proposition 4.5.2. For any n ≥ 1 and P = B2
ε (P̂N) with support set Ξ :=

{ξ = (λ, µ) ≥ 0}, a lower bound to the worst-case expectation in (4.28) is

obtained by solving a semidefinite program.

Proof. The dual of the problem infP∈B2
ε (P̂N ) EP[f(n, ξ)] is given by (4.15) as:

inf
α∈R+,s∈RN

αε2 +
1

N

∑
i∈[N ]

si

s.t. −f(n, ξ)− α‖ξ − ξ̂i‖2 ≤ si ∀i ∈ [N ], ξ ∈ R2
+.

(4.29)

By substituting the expression for f(n, ξ), expanding the norm term, and

performing some algebraic reductions, we represent (4.29) in terms of polyno-

mial inequalities. To be more precise, for every i ∈ [N ] and for fixed values of

α and si, we express (4.29) in the form,

pi(λ, µ) ≥ 0 ∀(λ, µ) ∈ Ξ (4.30)
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where pi(λ, µ) is a polynomial of degree n + 4 in variables λ, µ and Ξ :=

{(λ, µ) ∈ R : λ ≥ 0, µ ≥ 0}.

We now apply a SOS decomposition to (4.30) and the sufficient condition

for (4.30) to hold is,

p = σ0 + σ1λ+ σ2µ. (4.31)

The degree is chosen such that deg(σ0) = deg(σ1λ) = deg(σ2µ) = n + 4,

satisfying the requirement (4.27). As a result, the polynomial constraint (4.30)

is replaced with a system of linear equality constraints on coefficients of the

condition (4.31) and the constraints that σ0, σ1, σ2 are SOS with a fixed degree,

which in turn is equivalent to solving a semidefinite program (see Definition

4.1).

To summarize, for every n ≥ 1 we compute a lower bound on Z ′s(n) using

Proposition 4.5.2, and obtain a conservative joining threshold n′s that maxi-

mizes the lower bound. As discussed in the end of Section 4.5.2, the quality

of the lower bound can be improved by increasing the degree of σj, but at the

expense of increasing the size of the resulting SDP formulation.

4.5.4 Revenue Maximizer

A profit maximization firm seek an optimal threshold n′m such that the

worst-case expected profit rate is maximized, i.e., n′m ∈ arg maxn∈Z+
{Z ′m(n)},

where Z ′m(n) is given by (see Equation (4.19)),

Z ′m(n) := inf
P∈P

EP

(R− nC

µ

)
λ

1−
(
λ
µ

)n
1−

(
λ
µ

)n+1

 (4.32)
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and let us denote the term inside the expectation as `(n, ξ) where ξ = {λ, µ}.

We use the same ambiguity set P and follow the same procedure as in the case

of social optimizer to derive an SDP approximation for (4.32).

Proposition 4.5.3. For any n ≥ 1 and P = B2
ε (P̂N) with support set Ξ :=

{(λ, µ) ≥ 0}, a lower bound to the worst-case expectation in (4.32) is obtained

by solving a semidefinite program.

Proof. The dual of the problem infP∈B2
ε (P̂N ) EP[`(n, ξ)] is given by (4.15) as:

inf
α∈R+,s∈RN

αε2 +
1

N

∑
i∈[N ]

si

s.t. −`(n, ξ)− α‖ξ − ξ̂i‖2 ≤ si ∀i ∈ [N ], ξ ∈ R2
+.

(4.33)

We already know from the proof of Theorem 4.4.3 that the constraints

need to be handled separately for the cases λ ≤ µ and λ ≥ µ, and that the

respective algebraic reductions yield polynomial inequalities of the form,

pi(ξ) ≥ 0 ∀ξ ∈ Ξ1 and qi(ξ) ≥ 0 ∀ξ ∈ Ξ2, (4.34)

for every i ∈ [N ]. For fixed values of α and si, pi(ξ) and qi(ξ) are polynomials

of degree n + 3 in variables λ, µ, and with support sets Ξ1 := {ξ ∈ R2 : λ ≥

0, µ ≥ 0, λ ≤ µ} and Ξ2 := {ξ ∈ R2 : λ ≥ 0, µ ≥ 0, λ ≥ µ}.

We now apply a SOS decomposition to both pi(ξ) and qi(ξ). As a re-

sult, every polynomial constraint in (4.34) is replaced with a system of linear

equality constraints on coefficients of the sufficient conditions given by,

p = σ10 + σ11λ+ σ12µ+ σ13(µ− λ) and

q = σ20 + σ21λ+ σ22µ+ σ23(λ− µ),
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and the constraints that σij are SOS. We also fix the degree of each SOS such

that deg(σ10) = deg(σ20) = n+ 3, satisfying the requirement (4.27). Thus the

resulting SOS model is equivalent to a semidefinite program (according to the

Definition (4.2)) and this completes the proof.

Thus, we compute a lower bound on Z ′m(n) using Proposition 4.5.3 for

every n ≥ 1, and obtain a conservative optimal joining threshold n′m such that

lower bound is maximized.

Corollary 4.5.4. n′s ≤ n′e and n′m ≤ n′e.

Proof. We first show that n̂s ≤ n′e and n̂m ≤ n′e. By following the same

procedure as in the proof of Lemma 4.2.1, we set Ω = µ′, a constant such that

E [1/µ′] = supP∈P E [1/µ]. With Ω now being a degenerate random variable,

(4.7) can be rewritten as

R

CE
[

1
µ′

] ≥ EΛ,Ω[f(v,Λ, µ′)]

EΛ,Ω[g(v,Λ, µ′)]
≥ v.

Since v = vs satisfies (4.5), we have R
C supP∈P E[1/µ]

≥ vs, and n̂s ≤ n′e. Using

similar logic of setting Ω = µ′, and following the same procedure as in proof

of the Lemma 4.2.3, we get

R

CE
[

1
µ′

] ≥ v +
EΛ,Ω[u(v,Λ, µ′)]

EΛ,Ω[w(v,Λ, µ′)]
≥ v.

The last inequality is due to EΛ,Ω[u(v, λ, µ′)] ≥ 0 and EΛ,Ω[w(v, λ, µ′)] ≥
0, for any positive realization of λ. Since v = vm satisfies (4.9), we have

R
C supP∈P E[1/µ]

≥ vm, and n̂m ≤ n′e.

Using these results along with the fact that n′s ≤ n̂s and n′m ≤ n̂m (which

is true by construction) yields n′s ≤ n′e and n′m ≤ n′e.
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4.6 Out-of-Sample Performance

We begin by reporting the numerical results that show how the optimal

decision thresholds vary under different control schemes. These results also

demontrate that the optimal threshold values decrease with increasing degrees

of uncertainty.

In Table 4.1, we present the optimal threshold values of an individual

customer (n?e), a social optimizer (n?s) and a revenue maximizer (n?m), obtained

under different paradigms. While the first set of three rows assume certain

rates, the second set of rows assume stochastic rates. For example, the row

λ̄ = 0.75δ0.5 + 0.25δ2.5 denotes a distribution such that Prob(Λ = 0.5) = 3/4

and Prob(Λ = 2.5) = 1/4, and µ̄ = 0.75δ0.5 + 0.25δ2.5 denotes a distribution

such that Prob(Ω = 0.5) = 3/4 and Prob(Ω = 2.5) = 1/4. The last set of

rows in the table presents the optimal threshold values when the distribution of

rates are unknown. To this end, we generate 5 training samples from Beta(0.5,

0.5) distribution and offset these values to lie in the range defined in the table.

We set R = 35, C = 1 and radius ε = 1.0. We choose the distributions for

the stochastic setting and the range of values for the distributionally robust

setting, such that the mean arrival and service rates are similar to the certain

rates. The numerical results agree with our observations in Theorem 4.2.2,

Theorem 4.2.4 and Corollary 4.5.4, that is, n?m ≤ n?e and n?s ≤ n?e.

We now assess the out-of-sample performance of the data-driven policies

for a social optimizer and a revenue maximizer, assuming the service rate µ

is certain and the arrival rate is unknown with true distribution P. We first

collect N samples from an unknown distribution P yielding ρ̂1, · · · , ρ̂N , and

set P to be the 2-Wasserstein ball B2
ε (P̂N) around the empirical distribution

formed from the collected samples (as discussed in Section 4.3). We then pro-
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Arrival and Service Rate Distributions n?e n?s n?m

λ̄ = δ0.5, µ̄ = δ1.0 35 18 4

λ̄ = δ1.0, µ̄ = δ1.0 35 7 5

λ̄ = δ2.0, µ̄ = δ1.0 35 4 4

λ̄ = 3
4 δ0.5 + 1

4 δ2.5, µ̄ = 3
4 δ0.5 + 1

4 δ2.5 21 5 3

λ̄ = 1
3 δ0.5 + 1

3 δ1.0 + 1
3 δ1.5, µ̄ = 1

5 δ0.5 + 2
5 δ0.75 + 2

5 δ1.5 29 5 4

λ̄ = 1
5 δ1.0 + 2

5 δ1.5 + 2
5 δ3.0, µ̄ = 1

3 δ0.5 + 1
3 δ1.0 + 1

3 δ1.5 28 4 4

P ∈ B2
1(P̂5) : λ̂ ∈ [0.75, 1.5], µ̂ ∈ [0.75, 1.25], µ = 0.5 17 4 3

P ∈ B2
1(P̂5) : λ̂ ∈ [0.5, 3.5], µ̂ ∈ [0.5, 2.0], µ = 0.5 17 3 2

Table 4.1: Joining Strategies with Uncertain Arrival and Service Rates

ceed to compute the distributionally robust threshold values that maximizes

the worst case expected profit rates, using (4.16) and (4.19). We evaluate the

stochastic variant of these models with the ambiguity set reduced to a sin-

gleton P = {P̂N}. In other words, this singleton ambiguity set corresponds

to a Wasserstein ball around the empirical distribution with radius of ball

ε = 0. Consequently, in this case, (4.16) and (4.19) simply reduces to the

corresponding sample average approximation (SAA) problems.

We conduct the out-of-sample experiments for the Wasserstein and SAA

models for the datasets containing N = 5, 10, 15, 30 and 50 independent sam-

ples. The true distribution of arrival rates P? is assumed to be Gamma (2, 2).

In each trial, we sample N independent training samples and obtain {ρ̂i}i∈[N ]

from P?. We then compute the optimal thresholds (n?w)so and (n?w)rm for the

Wassserstein models, as discussed in Sections 4.4.1 and 4.4.3 respectively with

ε set to 1.0. We also compute the SAA thresholds (n?s)so and (n?s)rm by solv-

ing (4.16) and (4.19) with ε = 0. The out-of-sample expected profit rates
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(a) Social Optimizer (b) Revenue Maximizer

Figure 4.1: Improvement of the Wasserstein policy relative to the SAA pol-
icy in terms of out-of-sample profit rate. The solid blue lines represent the
mean, and the error bars visualize the 20% and 80% quantiles of the relative
improvement, respectively.

EP? [f(n?, ρ)] is estimated for each of these strategies n?w and n?s at high ac-

curacy using 20,000 test samples from P?. The results of all experiments are

averaged over 100 random trials.

Figure 4.1(a) presents the out-of-sample performance of a social optimizer

with R = 4, C = 1 and µ = 1. Similarly, Figure 4.1(b) presents the out-of-

sample performance of a revenue maximizer with R = 8, C = 1 and µ = 0.8.

These figures visualize the out-of-sample profit rate of the Wasserstein model

relative to the respective SAA problem as a function of the training sample size

N . Observe that the Wasserstein model dominates the SAA model uniformly

across all sample sizes. Moreover, for training datasets of small sizes N ≤ 10,

the Wasserstein model outperform the SAA model with high confidence of

about 10% for social optimizer and about 4% for revenue maximizer. This

suggests that the distributionally robust policies are preferable whenever there

is significant ambiguity about the true distribution P?.
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Chapter 5

Conclusion and Future Work

In Chapter 2, we deal with the problem of developing non-aggressive adap-

tive routing models which has limited route adaptability and requires limited

decision making. To address this problem, we propose multiple routing strate-

gies which we call series unforced, series forced and parallel models, depending

on where and how the route adjustments are performed. The main goal of

these strategies is to determine the set of k best adjustment edges and the

corresponding adjustment and non-adjustment routes, that minimize the ex-

pected travel time.

To achieve this goal, we propose exact mathematical models such as com-

plete enumeration and dynamic programming algorithms for each of the afore-

mentioned strategies. While the complete enumeration method is an expo-

nential time algorithm with complexity roughly O(mk), we propose polyno-

mial time dynamic programming algorithms with complexity O(mk) (where

m = |A| and k is the number of adjustment edges). These dynamic program-

ming algorithms seem tractable for small to medium sized networks, however

finding solutions for large networks is difficult and rather quite intractable.

Thus, we develop easily computable bounds and present several theorems al-

lowing us to reduce the size of network and to find a set of potential adjustment

edges. These results lead to tractable algorithms, reducing the computational

effort to handle large-sized networks. We evaluate our proposed algorithms us-
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ing the Austin road network, and we assume the probability of delay and the

offset delay time values on every edge based on the street type. We compare

the performance of our models for single and two route adjustment policies,

and present the benefit of adpatability graph for a smaller portion (about

17,000 edges) of the Austin network.

While there is always scope to improve the tractability of algorithm by

developing more efficient/tighter lower bounds and eliminate many more pos-

sibilities, one of the other areas to explore is to study other multiple route

adjustment strategies. For example, one can consider a constrained model

where the driver is constrained to switch back and forth between two or more

pre-computed routes. Furthermore, instead of assuming the delay data, re-

alistic delay times and realistic probability distribution of traffic can be used

from suitable sources. In fact, factoring in the traffic information for different

times of a day might yield more accurate results.

In Chapter 3, we derive an exact convex reformulation to the well-known

K-means clustering problem. The resulting generalized completely positive

program is still NP-hard and intractable. To alleviate this issue, we relax

the cone of completely positive matrices to a cone of positive semidefinite

matrices, and the arising SDP formulation is proved to be tighter than the

well-known SDP relaxation by Peng and Wei [80]. Consequently, we propose

a new approximation algorithm based on our improved SDP relaxation and

numerically highlight its superiority, in terms of clustering quality, over the

existing schemes in the literature.

Several possible future research directions come out of this work. Although

we study only a specific distribution over data where points are drawn from

balls of equal radius, it may be of interest to study the behaviour of our
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SDP on other settings such as different radii balls, points drawn according to

mixture of Gaussians, etc. Having shown that our SDP relaxation is tighter

than the state of the art method presented in Peng and Wei (Theorem 3.6.4),

one possible direction is to find the settings where this inequality becomes

strict and quantify the gap, and to conjecture a better separation condition

for the stochastic ball model in lieu of our SDP relaxation. Another interesting

future work is to derive an approximation factor for our proposed SDP-based

approximation algorithm.

Finally, we extend the Naor’s joining or balking analysis for M/M/1 ob-

servable queues by incorporating parameter uncertainty. We first study the

stochastic version of the problem, where we assume the arrival and service

rates are randomly chosen from a given distribution. We derive the optimal

joining threshold for an individual customer, a social optimizer and a profit

maximizer. Next we study the system where we assume the true distribution of

the arrival rate is unknown and only have access to a set of N training samples.

We construct a Wasserstein ambiguity set that contains all the distributions

close to the empirical distribution computed from the training samples and

obtain the threshold strategies that maximizes the worst-case expected profit

rate. Then, we extend our analysis to a distributionally robust model with

both arrival and service rates being uncertain. We observe from the numerical

experiments that the out-of-sample profit rates for the distributionally robust

model is significantly higher than the empirical stochastic model, for sample

sizes N ≤ 10. This suggests to use distributionally robust policies in strategic

queues whenever the true distributions of rates are ambiguous. In all cases,

we show that the relationship from Naor’s classical work, i.e., ne ≥ nm and

ne ≥ ns hold even under uncertainty. In other words, individual customers
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join the queue at a higher rate and the social or revenue optimizer can control

the joining rate by imposing an appropriate entering fee. While the fee is con-

sidered as a transfer payment in social optimization, the firm tends to charge

a higher price to maximize its own revenue.

It is desirable to discover the relationship between ns and nm, in the

stochastic and distributionally robust settings. Numerical evidence suggests

ns ≥ nm, but for some parameters, numerical errors make it difficult to val-

idate this claim. This result is currently an open conjecture. Other possible

future work includes analyzing a system where arriving customers prefer wait-

ing outside the system at a lower cost. In addition, one could analyze an

observable model where only a few of the customers are strategic and all oth-

ers join by default. Although we relax the assumption of certain rates, it

may be of interest to study the behaviour of the model on other variants such

as risk-averse, non-homogenous customers, servers of different capacity and

service values, dynamic reward structure, etc. Another interesting direction

would be to consider other ambiguity sets in the distributionally robust model,

for example Chebyshev’s set (see [48] for related work), moment-related and

structural ambiguity sets.
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Appendix A

Integer Programming Formulations

A.1 IP Formulation - Single Route Adjustment Policy

An IP formulation for a single route adjustment policy is given by,

Min
(u,v)∈A

∑
(u,v)∈A

(E[s→ u] + puv(cuv + E[v → t]) + (1− puv)E[u→ t|duv]) ∗ Zuv

s.t.
∑

(u,v)∈A

Zuv = 1

where Zuv is a binary variable and Zuv is 1 if edge (u, v) is an adjustment

edge and 0 otherwise.

A.2 IP Formulation - Series Forced Adjustment Policy

An IP formulation to a series forced route adjustment policy with k-route

adjustments is given by,

Min
(u,v)∈A

∑
(u,v)∈A

E[s→ u]Z1
uv +

k∑
l=1

∑
(u,v)∈A

∑
m∈N

puv(cuv + E[v → m]
∑
n∈N

Z l+1
mn )Z l

uv

+
k∑
l=1

∑
(u,v)∈A

∑
m∈N

(1− puv)E[u→ m|duv]
∑
n∈N

Z l+1
mnZ

l
uv

s.t.
∑

(u,v)∈A

Z l
uv = 1 ∀l = 1, . . . , k
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where Z l
uv is a binary variable and Z l

uv is 1 if edge (u, v) is an adjustment

edge at lth route adjustment and 0 otherwise.

The objective function is quadratic and can be converted to a linear form

using any standard conversion technique. IP formulations for other models

can also be devised in the same manner.
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Appendix B

Additional Proofs for Stochastic Strategic

Queues

B.1 Social Optimizer - Proof of claim (4.6)

Lemma B.1.1.

Cov

(
Λ
nρn−1

1− ρn
,

1

Ω

)
− Cov

(
Λ

(n+ 1)ρn

1− ρn+1
,

1

Ω

)
≥ 0.

Proof. Using the definition of covariance Cov(X, Y ) = E[XY ]−E[X]E[Y ], we

have

E∆,Ω

[
Λ

Ω

nρn−1

1− ρn

]
− E∆,Ω

[
Λ
nρn−1

1− ρn

]
E
[

1

Ω

]
− E∆,Ω

[
Λ

Ω

(n+ 1)ρn

1− ρn+1

]
+ E∆,Ω

[
Λ

(n+ 1)ρn

1− ρn+1

]
E
[

1

Ω

]
= E∆,Ω

[
Λ

Ω

(
nρn−1

1− ρn
− (n+ 1)ρn

1− ρn+1

)]
− E

[
1

Ω

]
E∆,Ω

[
Λ
nρn−1

1− ρn
− Λ

(n+ 1)ρn

1− ρn+1

]
.

One can verify that the term ρ
(
nρn−1

1−ρn −
(n+1)ρn

1−ρn+1

)
is negatively correlated

with Ω, yielding E∆,Ω

[
Λ
Ω

(
nρn−1

1−ρn −
(n+1)ρn

1−ρn+1

)]
≥ E

[
1
Ω

]
E∆,Ω

[
Λ(nρ

n−1

1−ρn −
(n+1)ρn

1−ρn+1 )
]
.

This concludes the proof of our claim.

B.2 Revenue Maximizer - Proof of claim (4.11)

Lemma B.2.1.

Cov

(
Λ

1− ρn

1− ρn+1
, R− Cn

Ω

)
− Cov

(
Λ

1− ρn−1

1− ρn
, R− C(n− 1)

Ω

)
≤ 0.
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Proof. The left-hand side can be rewritten using the definition of covariance
Cov(X, Y ) = E[XY ]− E[X]E[Y ], as

E∆,Ω

[
Λ

1− ρn

1− ρn+1

(
R− Cn

Ω

)]
− (R− CnE[

1

Ω
])E∆,Ω

[
Λ

1− ρn

1− ρn+1

]
− E∆,Ω

[
Λ

1− ρn−1

1− ρn

(
R− C(n− 1)

Ω

)]
+ (R− C(n− 1)E[

1

Ω
])E∆,Ω

[
Λ

1− ρn−1

1− ρn

]
= CnE

[
1

Ω

]
E∆,Ω

[
Λ

(1− ρn)2ρn−1

(1− ρn+1)(1− ρn)

]
− CnE∆,Ω

[
Λ

Ω

(1− ρn)2ρn−1

(1− ρn)(1− ρn+1)

]
+ CE

[
1

Ω

]
E∆,Ω

[
Λ

1− ρn−1

1− ρn

]
− CE∆,Ω

[
Λ

Ω

1− ρn−1

1− ρn

]
≤ 0.

It is easy to verify that for a fixed Λ, Λ1−ρn−1

1−ρn is positively correlated with Ω

yielding E∆,Ω

[
Λ
Ω

1−ρn−1

1−ρn

]
≤ E

[
1
Ω

]
E∆,Ω

[
Λ1−ρn−1

1−ρn

]
.

Similarly, the term Λ (1−ρn)2ρn−1

(1−ρn+1)(1−ρn)
is negatively correlated with Ω for a

fixed Λ, yielding E
[

1
Ω

]
E∆,Ω

[
Λ (1−ρn)2ρn−1

(1−ρn+1)(1−ρn)

]
≤ E∆,Ω

[
Λ
Ω

(1−ρn)2ρn−1

(1−ρn)(1−ρn+1)

]
. This

completes our proof.
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