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Abstract 

 

A Tri-Axial Electromagnetic Induction Tool for 

Hydraulic Fracture Diagnostics 

 

Javid Shiriyev, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisor:  Mukul M. Sharma 

 

The monitoring and diagnostics of induced fractures are important for the real-

time performance evaluation of hydraulic fracturing operations. Previous electromagnetic 

(EM) based studies show that single backbone tri-axial induction logging tools are 

promising candidates for the real-time monitoring and diagnosis of fractures in uncased 

wells. To support the development of field deployable tools, the concept must be tested in 

experiments, in a controllable environment, before it is tested under field-like conditions. 

To this end, we have developed numerical tools which can simulate any wellbore 

environment while logging hydraulic fractures with the induction tool. We have designed 

and built a prototype induction tool and performed two sets of tests to compare with 

numerical simulation results. The computational and experimental setup consists of tri-

axial transmitter and receiver coils in co-axial, co-planar and cross-polarized 

configurations. Both lab and shallow earth measurements are shown to be in good 

agreement with simulations for all examined cases. The average relative and maximum 

discrepancies of the measured signals from the simulated ones were lower than 3% and 

10%, respectively. With the prototype tool, strong signals sensitive to the fracture’s 
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surface area and dip-angle were measured in the co-axial coil configuration, while 

weaker signals sensitive to the fracture’s aspect ratio were observed in the co-planar 

configuration. Cross-polarized signals are also shown to be strong and sensitive to the 

fracture’s dip. Lastly, we resolved the detectable components of the measured signal 

tensor to obtain parameters for simplified fracture geometries. The inversion algorithm, a 

derivative free directional search model, uses an objective function defined as a 

combination of co-axial and cross-polarized signals from different tool spacing, and the 

function provides a well behaved global minimum. The robustness of the inversion 

algorithm is tested on synthetic data for single cluster fractures in a homogeneous and 

heterogeneous background electrical conductivity. All the effective model parameters for 

different cases, electrical conductivity, size and dip-angle, are shown to be recovered 

with good accuracy. We also evaluated the effect of neighboring fractures and suggested 

a multi-cluster inversion path which can recover the proppant distribution in a stage very 

accurately. Based on the numerical and experimental results we suggest a tool with 

specifications that can effectively recover far-field proppant distribution in the fractures. 
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Chapter 1:  INTRODUCTION 

While traditional hydrocarbon recovery techniques are not applicable in shales 

because of their very small matrix permeability, a recent combination of hydraulic 

fracturing treatments with horizontal drilling has led to a breakthrough in hydrocarbon 

production. To evaluate the outcomes and performance of such hydraulic fracturing 

treatments, induced propped fractures must be monitored, appraised and quantified. 

Indeed, unpropped portions of induced fractures close under high net stress shortly after 

fracing and may not contribute to well productivity (Sharma and Manchanda, 2015); thus, 

it is crucial to determine the spatial distribution of proppants for successful fracture 

diagnostics. 

Conventional fracture diagnostic techniques are based on sensing physical events 

that occur during fracture growth. For example, microseismic detection is based on the 

monitoring of the shear waves generated due to rock failure in the vicinity of the 

hydraulic fracture or fracture network (Batchelor et al., 1983). Tiltmeter mapping is 

another commonly used technique, which is based on measuring fracture-induced rock 

deformations and relating them to the induced fracture geometry (Warpinski and 

Branagan, 1989). These techniques lack the correlation between the measured physical 

events and settled proppant locations and thus are not suitable for deducing proppant 

distributions and well productivity. 

More recent fiber optic based measurements provide data that can be qualitatively 

interpreted for the efficiency of proppant placement. The application of fiber optics has 

the advantage of providing continuous wellbore monitoring capabilities during the 

injection, shut-in and production phases of fracturing operations and full-length wellbore 

characteristics can be transferred to the surface in real-time. Moreover, it requires no 
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installation of any down-hole equipment to interfere with field operations. A single fiber 

optic cable temporarily/permanently installed in the well may provide characteristics such 

as temperature (DTS), acoustic (DAS), strain (DSS), etc. (Smolen and Spek, 2003). 

Monitoring with only DTS lacks the same correlation with proppant location, and in 

some applications, DAS/DTS data have been used to infer dominant perforation clusters 

that are taking most of the fracturing fluid and proppant (Sookprasong et al., 2014; 

Wheaton et al., 2016). Such measurements have been used to avoid frack-hits while 

fracturing and to determine and eliminate dominant clusters. The measurements have 

shown that the fractures are heel dominated and that special steps may need to be taken to 

optimize the number of clusters per stage, spacing between clusters/stages and fracturing 

fluid injection rate to avoid non-uniform fluid/proppant distribution (Ugueto et al., 2016; 

Wu et al., 2017). 

A more promising alternative for proppant detection is to use techniques that rely 

on sensing electromagnetic (EM) fields scattered due to the contrast in EM material 

properties between propped fractures and the surrounding formation. Although the 

contrast in EM properties can be enhanced by increasing the proppant’s electrical 

conductivity, magnetic permeability, electrical permittivity, or a combination of them 

(Heagy and Oldenburg, 2013), enhancing the conductivity contrast generally enables 

better detectability compared to the other alternatives (LaBrecque et al., 2016) and is 

more practical. In fact, numerous proppant types have been reported to exhibit large 

effective electrical conductivities (LaBrecque et al., 2016; Palisch et al., 2016; Zhang et 

al., 2016; Hoversten et al., 2015). 

A variety of field data acquisition techniques can be implemented to sense the EM 

fields scattered from proppants that display a large electrical conductivity contrast over 

the background shale. One acquisition technique, employed in LaBrecque et al. (2016), 
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Palisch et al. (2016), and Hibbs (2014), is to use receiver arrays densely deployed on the 

surface to sense the response to an electric current emitted into the subsurface by 

electrodes. While the spatially dense surface receiver array allows for relatively extensive 

coverage of the stimulated area, this transmitter-receiver coupling is inherently depth 

limited. As the source-observer distance increases, EM fields are significantly attenuated 

by the overburden layers greatly obfuscating the signals of interest. 

This limitation can be considerably mitigated by utilizing source/observers in the 

vicinity of propped hydraulic fractures. The electrically conductive proppant can then be 

mapped using a single-backbone, electromagnetic induction tool (Salies, 2012; Basu, 

2014). This has the potential to offer a cheap (Gul and Aslanoglu, 2018) far-field 

proppant detection technique that can be executed from a single wellbore at any time 

during the well’s life cycle. The method can provide a time-lapse analysis of fracture 

growth or closure which can decrease the uncertainties in reservoir parameters critical for 

long-term production forecasting (Balan et al., 2017) where data-driven analyses are not 

available (Eftekhari et al., 2018). Furthermore, the application of such measurements in 

the field can be incorporated with complex-fracture proppant transport models 

(Shrivastava and Sharma, 2018) to improve their reliability. 

In Pardo and Torres-Verdin (2013), Basu and Sharma (2014), Yang et al. (2015), 

and Zhang et al. (2016) such a low-frequency induction tool, where both sources and 

observers (tri-axial induction coils) are placed on the same backbone, were numerically 

studied and found to be sensitive to various propped fracture properties in open-hole hole 

completion wells. These findings were corroborated by independent laboratory 

experiments in Yu et al. (2016) that used a scaled-down co-axial induction tool and 

scaled-up electrical conductivities to evaluate orthogonal fractures. According to 

numerical forward studies and parametric inversion analyses with synthetic data (Yang et 
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al., 2015/2016), different transmitter/receiver coil configurations are sensitive to different 

propped fracture properties (area, shape and dip) and the best response occurs when the 

primary magnetic field is perpendicular to the plane of the target (Swift, 1988). In this 

dissertation, we further study the induction tool with fast and robust numerical forward 

and inversion models and conduct a complete set of experiments with a prototype tool.  

1.1. LOW FREQUENCY ELECTROMAGNETIC INDUCTION TOOL 

The low-frequency induction logging tool (Fig. 1.1) described in this dissertation 

is similar to those analyzed theoretically in Salies (2012), Pardo and Torres-Verdin 

(2013), Basu and Sharma (2014), Yang et al. (2015), and Zhang et al. (2016). It includes 

a tri-axial transmitter (Tx) coil that generates EM fields and a tri-axial receiver coil set 

composed of two coils, Rx1 and Rx2, measuring the EM response of the surrounding 

formation to those fields (Duesterhoeft et al., 1961). The measured total voltage on each 

of the receiver coils can be described as the superposition of two contributions: (i) a 

primary contribution corresponding to the fields in the shale formation in the absence of 

induced fractures and (ii) a secondary contribution that can be associated with fields 

arising due to the presence of a fracture filled with an electrically conductive proppant. 

To formulate the tool’s response we denote 𝐇𝑣
{p,s,t}(𝐫) the {primary, secondary, 

total} magnetic field at point 𝐫, excited by a transmitter coil oriented in the  𝑣 ∈ {𝑥, 𝑦, 𝑧} 

direction. We follow the e𝑗𝜔𝑡 time convention used in engineering. For all figures, the 

Cartesian coordinate system is defined such that the positive z-axis is the direction of a 

horizontal wellbore, and the positive x-axis is the vertical direction opposite to gravity 

(Fig. 1.1). The signals of interest, for a receiver set oriented in the  𝑢 ∈ {𝑥, 𝑦, 𝑧} direction, 

are given by 
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∆𝑈𝑢𝑣
{p,s,t}

= −𝑗𝜔𝜇0𝐴RX𝑁RX�̂� ∙ [𝐇𝑣
{p,s,t}(𝐫Rx2) − 𝐇𝑣

{p,s,t}(𝐫Rx1) (
𝑙1
𝑙2
)
3

] (1.1) 

where  ∆𝑈𝑢𝑣
{p,s,t}

 are the bucked voltages, 𝐴RX is the area of the receiver coils positioned 

at 𝐫RX1 and 𝐫RX2,  𝑁RX is number of turns in the receiver coils, 𝜇0 is free-space magnetic 

permeability, and (𝑙1 𝑙2⁄ )3 is a bucking coefficient used to approximately cancel the 

dominant imaginary component of the primary field (Lovell, 1993). Bucking increases 

the tool’s sensitivity to small variations in the total magnetic field but must be carefully 

calibrated: for thin coils, l1 and l2 are the distances between the receiver and the 

transmitter coil’s center. For such simple geometries, bucking can yield close to perfect 

primary component cancellation for low frequency signals in air, accounting for the 1 𝑅3⁄  

decay of the primary field at distance 𝑅 from the source. In practice, however, the coils 

are of finite length and thus should be calibrated for optimal cancellation of the primary 

signal prior to data acquisition in the well. 

 

Figure 1.1: An electromagnetic induction logging tool with a single spacing couple: tri-

axial transmitter (Tx) and receiver/bucking (Rx1/Rx2) coils. 
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The utilization of a tri-axial receiver coil system allows acquisition of more 

parameters of the fractures. In the previous numerical study, co-axial measurements were 

shown to be sensitive to the fracture cross-sectional area but cannot differentiate fractures 

of the same area with different cross-sectional shapes or dips. Transverse co-polarized 

measurements can discern axially symmetric from asymmetric ones and cross-polarized 

measurements can quantify fracture dip-angle and become more sensitive as the dip-

angle increases (Yang et al., 2015). 

An actual measurement in the field involves two passes of the tool along the 

wellbore, before and after the hydraulic fracturing operation, during which the bucked 

signals Δ𝑈𝑢𝑣
p

 (before the hydraulic fracturing) and Δ𝑈𝑢𝑣
t  (after the hydraulic fracturing) 

are recorded. The difference between these bucked signals is given by: 

∆𝑈𝑢𝑣
s = Δ𝑈𝑢𝑣

t − Δ𝑈𝑢𝑣
p

 (1.2) 

This is referred as the “differential signal” in this dissertation. Since the distance between 

transmitter and receiver coils dictates the depth of investigation of the tool, three receiver 

coil sets at different distances from the tri-axial transmitter coil have been suggested to 

investigate fractures far away from the wellbore (Fig. 1.2). The short spacing can detect 

smaller fractures but is insensitive to larger ones. The signals from the long spacing are 

inherently weak but can distinguish larger fractures. The upper bound of sensitivity was 

shown to be 10 m
2
 for the short spacing and 1000 m

2
 for the long spacing receiver 

couples. 

 



 7 

 

Figure 1.2: An electromagnetic induction logging tool with three spacings: short, 

intermediate and long spacing transmitter-receivers couples. 

Table 1.1 shows nominal spacings used for the tool in the previous studies; we 

will use the same nominal distances. 

Short Spacing Intermediate Spacing Long Spacing 

𝑙1
SS (m) 𝑙2

SS (m) 𝑙1
IS (m) 𝑙2

IS (m) 𝑙1
LS (m) 𝑙2

LS (m) 

1.2 1.5 5.0 5.6 18.0 19.2 

Table 1.1: Nominal tool spacings, the distance between transmitter and receiver/bucking 

coils, for short, intermediate and long spacings. 

1.2. PROBLEM STATEMENT 

Previous numerical studies presented for induction tools are more generic and not 

specialized for this range of frequencies. These models are computationally demanding 

and the time cost for these forward models do not allow inversion algorithms to be 

implemented in a time efficient manner. Moreover, the estimation of particular 

parameters from real signals measured in the field is likely to be limited by various 

factors not modeled in numerical studies, including the actual ambient noise and 

manufacturing uncertainties in the tool itself. To be able to judge the predictive value, 

and ultimately the potential of single backbone EM tools for propped fracture diagnosis, 

the detectability and differentiability of realistic signal levels corresponding to fractures 
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of various geometries must be studied experimentally with realistically sized tri-axial 

coils. 

All the previous work theoretically demonstrates the method’s capability to detect 

and characterize propped fractures, but numerous gaps still exist before this technology 

can be deployed in the field. These include, for example, specifications of transmitting 

and receiving components, uncertainty in their positioning, the required resolution of the 

processed signals, their sensitivity to the actual noise, etc. To bridge the gap between the 

theoretical proof of concept and a field deployable tool, the design, and testing of a 

lower-risk initial prototype is required. This testing should enable refining the tool 

specifications to guarantee its robustness while avoiding difficult and expensive down-

hole measurements. In this study we have experimentally verified this technique and 

developed a list of recommended specifications and practices for a field deployable tool. 

1.3. RESEARCH OBJECTIVES 

The main research objective of this study is to verify the proposed methodology 

in a lab and field-like scenario and validate the numerical forward models used both for 

the simulation of the experimental and downhole scenarios and later as the cornerstone 

for an inversion analysis. In particular: 

 To develop a laboratory measurement technique that can emulate hydraulic 

fractures in a controlled environment; 

 To build a prototype tool which is very close in design to a field deployable tool; 

 To develop a numerical forward model that can be compared with experimental 

results and is fast/robust enough to be used in the inversion analysis;  

 To develop an inversion algorithm that is automated, fast and robust and ready to 

be used in a field. 
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The efforts, results and conclusions of the dissertation will enable the design and 

manufacturing of a field deployable tool. 

1.4. DISSERTATION OUTLINE 

This dissertation is divided into five chapters. A numerical model shown in 

Chapter 2 is compared to the response of a prototype tool described in Chapter 3. Then, a 

stochastic inversion algorithm is developed and described in Chapter 4 which is ready to 

use with field data. The last chapter uses both numerical and inversion models to 

demonstrate the capabilities of the tool and to make recommendations for field 

deployment. All forward and inversion models can be found in the Appendix of this 

dissertation. 

Chapter 2 describes two numerical algorithms invoked to compute the response of 

the tool to the targets with EM contrast. The models developed here allow the regions of 

different EM properties to be included around the tool with little computational effort. 

We effectively utilize surface integral equations for the open-hole application and an 

axial hybrid method for the computation of tool response inside the production casing. 

In Chapter 3, we describe the experimental system, including the design of a 

particular prototype tool and target models and measurement procedures for tests in 

laboratory and field environments; importantly, the coil sizes and operation frequency are 

not scaled. The experimentally measured signals are described and compared to 

numerical simulations for various receiver and transmitter configurations. These fracture 

models have increased electrical conductivity and reduced thickness, designed to provide 

signal levels similar to those expected from realistic propped fractures. 

Chapter 4 develops a stochastic inversion algorithm for the full automated 

inversion of the tool’s response. The model is validated with testing function and used for 
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the parametrized fracture model. We used synthetic data to evaluate the sensitivity of the 

signals to fracture electrical conductivity, size and dip-angle. The chapter also studies the 

effect of neighboring fractures on the recorded signals to accurately identify proppant 

distribution among the clusters of a stage. 

In Chapter 5, we used numerical and forward models to evaluate the investigation 

area of the tool with the given optimized frequency and tool spacings. We further 

simulated inter-well deployment; showed the potential for the evaluation of proppant 

settlement. Finally, we simulated and presented results for proppants with enhanced 

electrical permittivity and magnetic permeability. 
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Chapter 2:  NUMERICAL MODELING OF ELECTRICALLY 

CONDUCTIVE TARGETS 

In this chapter, numerical modeling tools are presented to simulate the induction 

tool response while logging propped fractures both in open- and cased-hole applications. 

We are using methods which can simulate proppant distribution in fractures with 

arbitrary geometry which are not necessarily orthogonal to the wellbore. Wellbores may 

contain casing and/or fluid in the wellbore which may have electromagnetic properties 

that are very different than that of the proppant and background formation. 

We develop two numerical models to simulate the tool’s response in a time-

efficient manner. The first model is based on the implementation of impedance boundary 

conditions to the surface integral equations and solving this system with a method of 

moments (MOM) (Rao et al., 1982; Qian et al., 2007). The convergence, validation, 

possible approximation and computation time analyses are shown in the following 

subsections. The second model is based on the axial hybrid method which simulates 

transversely isotropic media (Zhang et al., 1999; Wang et al., 2009). The model is mainly 

used to understand the behavior of the tool’s response inside a production casing, and 

some analyses of the numerical features are shown at the end. In both cases, the 

governing equations are discussed in detail. 

2.1. LITERATURE REVIEW 

While logging a well with an induction tool, the tool is pulled along the wellbore 

and transmitter coils are excited at certain sampling points. The solution of the induction 

tool response to the propped fractures has to consider many excitation points. Therefore, 

a frequency domain computation is ideal for the analyses of the suggested single 

frequency tool where the system matrix obtained after deploying a numerical technique is 
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usually independent of excitations. Once this matrix is inverted or factorized, it can be 

used to obtain solutions to all excitations. Moreover, since the frequency-domain 

methods solve Maxwell’s equations at each frequency, they can deal with dispersive 

media1 easily. 

Maxwell’s equations in the frequency domain can be solved in 3-D using one of 

several numerical methods. The family of finite difference and finite element methods 

solves Maxwell’s equations or their weak form representations directly but requires the 

solution domain to be truncated and treated carefully so that the truncated computational 

domain mimics the original open space. The method of moments, on the other hand, 

solves Maxwell’s equations indirectly by dealing with integral equations formulated 

using the fundamental solution to a point source which is known as a Green’s function. 

This simulation method is especially well suited for our analysis because it confines the 

computational domain to the anomalous conductivity region only. 

The classical method of moment solution of the volume electric field integral 

equations is limited to small-scale problems because the integral equation methods yield 

fully populated matrices. In Yang et al. (2014; 2015), an adaptive integral method is used 

to accelerate the solution to the induction problem by making use of the translational 

invariance of Green’s functions. Approximately 150, 1500 and 1800 minutes are spent on 

filling matrices, and the memory requirement is 1.6, 13 and 34 GB for solving a problem 

with 20,729, 120,000 and 320,000 unknowns, respectively. This is still computationally 

intensive especially if we consider the inversion analysis which requires multiple runs of 

the forward model to determine the fracture parameters. Moreover, high conductivity 

                                                 
1The medium is called dispersive if electromagnetic properties are dependent on the frequency of the field.  
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contrast between the fracture and formation cannot be easily handled because of the 

failure in convergence in the iterative procedure. 

While simulating an open-hole induction tool response, Zhang et al. (2016) has 

shown negligible effects of the wellbore fluid on the results by testing different sizes of 

circular fractures with and without a borehole. This is due to the very high electrical 

conductivity contrast between the proppant filled fracture and the rock formation. In the 

same paper, a single thin bulk volume of a constant effective thickness was shown to be 

equivalent of a thin complex fracture showing that signal responses depend on fracture 

total volume rather than on fracture complexity. Removing the borehole not only 

significantly decreases the number of unknowns boosting the speed of the forward model 

but also allows deploying integral equations to be solved on the surface of the fracture. 

The number of unknowns resulting from surface discretization is significantly 

smaller than that from volume discretization; therefore, the method of moments is much 

more efficient when it deals with surface integral equations (SIE). It enables meshing the 

surface with a typical element length that is not dictated by the penetration depth inside 

the conductive fracture as would be required for a volumetric integral equation solution. 

In this current work, we are using surface integral equations for simulating the open-hole 

application of the induction tool. This technique allows simulation of all fracture 

parameters listed in Yang et al. (2016): fracture location, conductivity, size, shape factor 

and dip-angle. 

To avoid an outrageous increase in the number of unknowns when a casing pipe is 

introduced to the computational domain tremendous speed up can be obtained by 

decreasing the dimensions of the problem. In cylindrical coordinates, the 𝜙-direction of 

the problem can be eliminated by use of a Fourier series, and the set of 2D problems can 

be solved with different types of numerical solvers. Although we lose the capability of 
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simulating the fracture parameters such as shape factor and dip-angle, this technique 

provides a very practical solution to the original large problem. In this dissertation, we 

use the axial hybrid method to solve the reduced 2D problem where the numerical 

solution is obtained in the wellbore direction, and a family of normalized Bessel 

functions is used to describe the EM fields in the radial direction (Gianzero et al., 1985; 

Pai, 1991; Li and Shen, 1993). 

2.2. OPEN-HOLE SIMULATION OF INDUCTION TOOL 

In this application of induction tools, the thickness of fractures is much smaller 

than their length and skin depth. This allows us to make the assumption of a zero 

thickness surface for the fracture models, rather than a very thin volume (Yang et al., 

2015; Zhang et al., 2016), facilitating the use of surface integral equations (Ren et al., 

2016). The magnetic fields 𝐇𝑣
sca(𝐫) are computed in two main steps: 1) by discretizing 

the surface with triangular elements to calculate the surface currents on the anomalous 

region of conductivity by applying an impedance boundary condition; and 2) calculating 

the scattered fields on the observation points induced by these currents.  

A model to simulate responses for a given perfectly electrically conductive (PEC) 

geometry was formulated and described earlier in Rao et al. (1982). In this work, an 

impedance boundary condition is implemented due to the finite conductivity and 

thickness of fractures as described in Lindell (1992). Before proceeding to numerical 

results, the basic steps of the computation are shown below. First, we start with the 

formulation of an integral equation for the problem under consideration. Second, the 

equation is expanded and tested with the same basis functions to convert the integral form 

of equations into the linear system of equations. Finally, the matrix equation is solved for 

the unknown coefficients and the desired magnetic fields are calculated. In the numerical 
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solution of integral equations shown below, the reservoir is assumed to have a 

homogeneous electrical conductivity. 

2.2.1. Surface Integral Equation with Impedance Boundary Condition 

The electromagnetic field generated by a time-harmonic source, a source 

oscillating with a single frequency, defined by volume electric current density 𝐉 and 

volume magnetic current density 𝐌 satisfies Maxwell’s equations: 

∇ × 𝐄 = −𝑗𝜔𝜇𝐇 −𝐌 (2.1) 

∇ × 𝐇 = 𝑗𝜔휀̃𝐄 + 𝐉 (2.2) 

∇ ∙ (휀̃𝐄) = 𝜌𝑒 (2.3) 

∇ ∙ (𝜇𝐇) = 𝜌𝑚 (2.4) 

If we assume that both electric and magnetic fields exist only due to the electric 

source then the problem can be formulated as follows: 

𝐄 = −𝑗𝜔𝐀 − ∇𝜑 (2.5) 

𝐇 =
1

𝜇
∇ × 𝐀 (2.6) 

where the second component of the right-hand side in Eq. 2.5 can be represented in terms 

of 𝐀 as well. For the given surface, the solution of 𝐀 and 𝜑 are given by: 

𝐀(𝐫) = 𝜇∬𝐉𝑠(r′)𝐺R(𝐫, 𝐫′)

𝑆

𝑑𝑆′ (2.7) 

𝜑(𝐫) = −
1

𝑗𝜔휀̃
∬∇′ ∙ 𝐉𝑠(𝐫′)𝐺R(𝐫, 𝐫′)

𝑆

𝑑𝑆′ (2.8) 

in terms of surface current 𝐉𝑠. Here, 𝐫 and 𝐫′ are observer and source points, respectively; 

and the Green’s function is given as: 
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𝐺R(𝐫, 𝐫′) =
𝑒−𝑗𝑘|𝐫−𝐫

′|

4𝜋|𝐫 − 𝐫′|
 (2.9) 

The wavenumber is given as: 

𝑘 = √𝜔2𝜇휀̃ (2.10) 

and the complex permittivity is defined as: 

휀̃ = 휀 − 𝑗
𝜎

𝜔
 (2.11) 

As can be seen from the equations above, if we find 𝐉𝑠 then we can calculate the 

electromagnetic field on any observation point. To calculate 𝐉𝑠, we need to apply 

impedance boundary conditions on the surface of the fracture. This boundary condition is 

similar to the PEC condition but with non-zero fields on both sides of the surface: 

�̂� × �̂� × (𝐄sca + 𝐄inc) = −𝑍𝑠𝐉𝑠 (2.12) 

where �̂� is the unit normal vector of the surface, and 𝑍𝑠 is a surface impedance assigned 

to the target. Finite thickness and conductivity of fracture can be incorporated to the 

surface impedance as shown in Lindell (1992): 

𝑍𝑠 = [𝜎𝑡 +
𝑗

𝜂o
(휀𝑟 − 1)𝑘o𝑡]

−1

 (2.13) 

The inverse of this equation is referred as the shunt admittance. For the more 

generalized impedance boundary condition, one can refer to the study by Qian et al. 

(2007). In cases when the fracture model has a relative permittivity of one, only the first 

part of the right-hand side is non-trivial. After taking the cross product of both sides of 

Eq. 2.12 with a normal vector and substituting the expressions for the electric field and 

surface impedance, the integral equation can be formulated as follows: 
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�̂� × (𝑗𝜔𝐀 + ∇𝜑 ) +
�̂� × 𝐉𝑠
𝜎𝑡

= �̂� × 𝐄inc (2.14) 

To solve Eq. 2.14, Rao-Wilton-Glisson (RWG) basis functions (Rao et al., 1982) 

are defined on triangular patches (Fig. 2.1) used to discretize the surface, and then surface 

currents 𝐉𝑠 are approximated as follows: 

𝐉𝑠(𝐫) ≅ ∑ 𝐼𝑛𝚲𝑛(𝐫)

𝑁

𝑛=1

 (2.15) 

In Fig 2.1, the plus or minus sign designation of the triangles is determined by the 

choice of a positive current reference direction for the nth edge, the reference for which is 

assumed to be from 𝑇𝑛
+ to 𝑇𝑛

−. The same figure includes the equation for the vector basis 

function and its divergence associated with the 𝑛th edge. 

 

Figure 2.1: The equations of vector RWG basis function and its divergence for a given 

common edge (red) of two triangular elements. 

We substitute Eq. 2.15 into 2.14 and test all components of equation with the 

same RWG testing functions (Davidson, 2011) as in the equation shown below: 

𝑙𝑛

𝑛th e  e T𝑛
−

T𝑛
+

𝐫𝑛
c−

𝐫𝑛
c+ 𝑛

c+

 𝑛
c−

𝚲𝑛 𝐫 =

𝑙𝑛
2𝐴𝑛

+   
+

𝑙𝑛
2𝐴𝑛

−   
−

0

 ′ ∙ 𝚲𝑛 𝐫′ =

𝑙𝑛
𝐴𝑛
+

−
𝑙𝑛
𝐴𝑛
−

0

   er   e

𝐫   𝑇𝑛
+

𝐫   𝑇𝑛
−

   er   e

𝐫   𝑇𝑛
+

𝐫   𝑇𝑛
−
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⟨𝐟, 𝚲𝑚⟩ =
𝑙𝑚
2
(
1

𝐴𝑚
+ ∬𝐟 ∙  𝑚

+

T𝑚
+

𝑑𝑆 +
1

𝐴𝑚−
∬𝐟 ∙  𝑚

−

T𝑚
−

𝑑𝑆)

≅
𝑙𝑚
2
(𝐟(𝐫𝑚

c+) ∙  𝑚
c+ + 𝐟(𝐫𝑚

c−) ∙  𝑚
c−) 

(2.16) 

where 𝐟 can be 𝐀, ∇𝜑, 
𝐉𝑠

𝜎𝑡
 or 𝐄inc. The testing procedure results in a system of linear 

equations for the coefficients 𝐼𝑛 which can be written as a matrix equation: 

(𝐙 + 𝐁) 𝐈 = 𝐕inc (2.17) 

where the 𝑁 × 𝑁 matrix 𝐙 stores Eq. 2.18; 𝐁 is the 𝑁 × 𝑁 correction matrix to the 𝐙’s 

near diagonal elements due to the impedance boundary condition and filled with Eq. 

2.19; and 𝐕inc is a 𝑁 × 1 vector storing the tested primary field shown in Eq. 2.20: 

𝑍𝑚𝑛 = 𝑗𝜔𝜇 (𝐀𝑚𝑛
+ ∙

 𝑚
c+

2
+ 𝐀𝑚𝑛

− ∙
 𝑚
c−

2
+ 𝜙𝑚𝑛

− − 𝜙𝑚𝑛
+ ) (2.18) 

𝐵𝑚𝑛 =
𝚲𝑛(r𝑚

c+)

𝜎(𝐫𝑚
c+)𝑡(𝐫𝑚

c+)
∙
 𝑚
c+

2
+

𝚲𝑛(𝐫𝑚
c−)

𝜎(𝐫𝑚
c−)𝑡(𝐫𝑚

c−)
∙
 𝑚
c−

2
 (2.19) 

𝑉𝑚
inc = 𝐄𝑚

inc,c+ ∙
 𝑚
c+

2
+ 𝐄𝑚

inc,c− ∙
 𝑚
c−

2
 (2.20) 

where 

𝐀𝑚𝑛
± =∬𝚲𝑛(𝐫′)𝐺R(𝐫𝑚

c±, 𝐫′)

𝑆

𝑑𝑆′ (2.21) 

𝜙𝑚𝑛
± =

1

𝑘2
∬∇′ ∙ 𝚲𝑛(𝐫′)𝐺R(𝐫𝑚

𝑐±, 𝐫′)

𝑆

𝑑𝑆′ (2.22) 

and the corresponding incident electric fields (Balanis, 2005) are given as: 

𝐸𝑟
inc = 𝐸𝜃

inc = 0 (2.23) 

𝐸𝜙
inc = 𝑀TX

𝜔𝜇𝑘   n 𝜃

4𝜋|𝐫 − 𝐫′|
[1 +

1

𝑗𝑘|𝐫 − 𝐫′|
] 𝑒−𝑗𝑘|𝐫−𝐫

′| (2.24) 
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where the fields are also multiplied with the rotation matrix to change to Cartesian 

coordinates. A Gaussian quadrature rule is applied to numerically solve the integral 

equations of Eq. 2.21 and 2.22. To avoid the singularity due to the Green’s function, 

when 𝐫𝑚
𝑐± = 𝐫′, the order of quadrature can be selected as 2, 4 and 6 (Fig. 2.2). To use the 

other orders of quadrature, the singularity in the center of a triangle can be avoided as 

shown in Kaur and Yilmaz (2011). In all presented results of this dissertation, the order 

of quadrature is selected to be 2. 

 

Figure 2.2: Gaussian quadrature of order 2, 4, and 6 for standard triangles: red dots are 

singularity points (center of triangles) and black dots are the points where 

integrals (Eqs. 2.21 and 2.22) are calculated. 

The left-hand side of Eq. 2.17 is filled, factorized (LU-factorization) and stored 

for the next solution step. In the solution step, for each right-hand side of the same 

equation, unknowns are determined which are used to numerically compute 𝐇sca with the 

following equation: 

𝐇sca =∬∇𝐺R(𝐫, 𝐫′) × 𝐉𝑠(𝐫′)

𝑆

𝑑𝑆′ (2.25) 

where 

∇𝐺R(𝐫, 𝐫′) = −
𝐺R

|𝐫 − 𝐫′|2
(1 + 𝑗𝑘|𝐫 − 𝐫′|)(𝐫 − 𝐫′) (2.26) 

order 2 order 4 order 6
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As in the matrix filling step, Gaussian quadrature of order 2 is used to solve the 

integral in Eq. 2.25. 

2.2.2. Mesh Convergence 

In this subsection, we are trying to understand the desired mesh density to get the 

required level of accuracy. The term 𝜆 is introduced which defines node spacing on the 

inner and outer circumferences of the circular fracture, e.g. the distance between two 

adjacent nodes on the circumference is equal to radius over 𝜆. The node spacing factor, 𝜆, 

is sampled in between 2 and 20. In Fig. 2.3, the absolute signal levels for small and large 

fracture sizes have been shown both for short and long spacing transmitter-receiver 

couples and for the node spacing factor of 20. 

 

Figure 2.3: Absolute secondary signal levels for short (𝑙TR = 1 m) and long (𝑙TR = 18 m) 

spacing transmitter-receiver couples. Left and right plots show results for 

1 m and 20 m outer radius orthogonal and circular fractures, respectively. In 

both cases, fracture inner radius is 6 cm, conductivity is 333 S m⁄  and 

thickness is 5 mm; background (rock) conductivity is 0.333 S m⁄ ; tool is 

operated at 1 kHz frequency with transmitting magnetic dipole moment of 

1500 A ∙ m2; cross-sectional area of receiver is 30 cm2 and it has 600 turns. 

1m 20m

~11000 µV

~20 µV

~7500 µV

~1.5 µV
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The model with a division factor of 20 is the finest mesh and is selected to be the 

base case in the convergence analysis. The blue dashes in Fig. 2.3 show the interval 

where the values lying between those dashes are compared to the base case. The equation 

below defines the error in any iteration,  

𝜖 =
1

𝑁
√∑(𝑈𝑧𝑧,𝑖

sca(𝜆) − 𝑈𝑧𝑧,𝑖
sca(20))

2
𝑁

𝑖=1

 (2.27) 

This error, 𝜖, is shown in Fig. 2.4.  

 

Figure 2.4: Convergence rate of the secondary signals with respect to the node spacing 

factor for short (𝑙TR = 1 m) and long (𝑙TR = 18 m) spacing transmitter-

receiver couples. Left and right plots show results for 1 m and 20 m outer 

radius orthogonal and circular fractures, respectively. In both cases, fracture 

inner radius is 6 cm, conductivity is 333 S m⁄  and thickness is 5 mm; 

background (rock) conductivity is 0.333 S m⁄ ; tool is operated at 1 kHz 
frequency with transmitting magnetic dipole moment of 1500 A ∙ m2; cross-

sectional area of receiver is 30 cm2 and it has 600 turns. 

As it can be seen on the left plots of Fig. 2.3 and 2.4 the relative error is around 

0.1% for short spacing and 0.05% for long spacing when the division factor is 10. This 

1m

short

long

short

long

20m
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relative error percentage further decreases for the right plots of Fig. 2.3 and 2.4 

suggesting that coarser meshes can be used to minimize the computation time which will 

be a factor to consider when multiple runs are required such as in the inversion analysis.  

2.2.3. Model Validation 

The solution of surface integral equations is compared to analytical and numerical 

models. First, analytical equations for the scattered magnetic field are shown where a 

plane wave is propagating toward a PEC sphere, and then the same case is simulated with 

our numerical model. Later, scattered signals are computed for a representative fracture 

model and compared to the numerical results of Yang et al. (2015).  

2.2.3.1. Fields Calculated for Conducting Sphere 

In this section, an analytical solution for the scattering of a plane wave by a 

conducting sphere is presented and compared to the results of the numerical tool. Given 

the PEC sphere with radius 𝑎 at the origin of a spherical coordinate system and a plane 

wave propagating in the positive z-direction (Fig. 2.4), the scattering magnetic field 

outside of the sphere can be calculated with the following equations: 

𝐻𝑟
sca = 𝐻0

  n 𝜙

𝑗(𝑘𝑟)2
∑𝑏𝑛𝑛(𝑛 + 1)�̌�𝑛

(2)(𝑘𝑟)𝑃𝑛
1(c  𝜃)

∞

𝑛=0

 (2.28) 

𝐻𝜃
sca = −𝐻0

  n 𝜙

𝑘𝑟
∑ [𝑎𝑛�̌�𝑛

(2)(𝑘𝑟)
𝑃𝑛
1(c  𝜃)

  n 𝜃
+ 𝑏𝑛𝑗�̌�𝑛

(2)′(𝑘𝑟)
𝑑𝑃𝑛

1(c  𝜃)

𝑑𝜃
]

∞

𝑛=1

 (2.29) 

𝐻𝜙
sca = −𝐻0

c  𝜙

𝑘𝑟
∑ [𝑎𝑛�̌�𝑛

(2)(𝑘𝑟)
𝑑𝑃𝑛

1(c  𝜃)

𝑑𝜃
+ 𝑏𝑛𝑗�̌�𝑛

(2)′(𝑘𝑟)
𝑃𝑛
1(c  𝜃)

  n 𝜃
]

∞

𝑛=1

 (2.30) 

where 

𝑎𝑛 = −𝑗−𝑛
2𝑛 + 1

𝑛(𝑛 + 1)

𝐽𝑛
′ (𝑘𝑎)

�̌�𝑛
(2)′(𝑘𝑎)

 
(2.31) 
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𝑏𝑛 = −𝑗−𝑛
2𝑛 + 1

𝑛(𝑛 + 1)

𝐽𝑛(𝑘𝑎)

�̌�𝑛
(2)(𝑘𝑎)

 
(2.32) 

A detailed explanation of these equations can be found in Jin (2010), subsection 7.4.3. 

 

Figure 2.5: Plane wave scattering by a conducting sphere: a PEC sphere with radius 𝑎 

located at the center of spherical coordinate system and plane waves 

propagating in the positive z-direction; numerical surface discretization 

generated for the solver is shown to the right. 

In the numerical calculations, to fill the vector 𝐕inc, incident electric field is 

calculated with the following set of equations: 

𝐸𝑟
inc = 𝐸0

c  𝜙

𝑗(𝑘𝑟)2
∑𝑗−𝑛(2𝑛 + 1)𝐽𝑛(𝑘𝑟)𝑃𝑛

1(c  𝜃)

∞

𝑛=0

 (2.33) 

𝐸𝜃
inc = 𝐸0

c  𝜃 c  𝜙

𝑘𝑟
∑ 𝑗−𝑛(2𝑛 + 1)𝐽𝑛(𝑘𝑟)𝑃𝑛(c  𝜃)

∞

𝑛=0

 (2.34) 

𝐸𝜙
inc = −𝐸0

  n𝜙

𝑘𝑟
∑ 𝑗−𝑛(2𝑛 + 1)𝐽𝑛(𝑘𝑟)𝑃𝑛(c  𝜃)

∞

𝑛=0

 (2.35) 

𝜃
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1498 nodes
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For the comparison, the PEC sphere is selected to be 1 m in radius (Fig. 2.4), 

observer points are on the 𝑟 = 2 m, 0 < 𝜃 < π and 𝜙 = 90° line, the background is air 

(zero electrical conductivity), frequency is 100 MHz, and 𝐸0 = 1 where 𝐻0 = 𝐸0 𝜂⁄ . Fig. 

2.6 shows results for both real and imaginary components of the scattered magnetic field. 

Note that since 𝜙 is selected to be 90 degrees, 𝐻𝜙
sca is always zero as can be seen in Eq. 

2.30. The sufficient level of the agreement obtained for both components of the magnetic 

field increases the confidence in the numerical tool. In the next subsection, further 

validation study is carried for the representative model and incident signals. 

 

Figure 2.6: Comparison of analytical (solid line) and SIE solution (dots) of scattering 

from a meter radius PEC sphere; real (left) and imaginary (right) 

components of scattered magnetic fields are calculated for the observation 

points on the 𝑟 = 2 m, 0 < 𝜃 < 𝜋 and 𝜙 = 90° line. 

2.2.3.2. Numerical Results for a Representative Model 

For the comparison, the iterative solution of the volume integral equations (Yang 

et al., 2015) has been used. The simulated orthogonal fracture model is a circle with an 

outer radius of 3 m, inner radius of 10 cm, thickness of 5 mm, and conductivity of 30 

S/m. The background formation has a uniform conductivity of 0.333 S/m. The tool is 

𝐻𝜃
sca

𝐻𝑟
sca

𝐻𝑟
sca

𝐻𝜃
sca
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operated at 100 Hz frequency with 1500 A ∙ m2 magnetic dipole moment on the 

transmitter coil. The receiver coil has 30 cm
2
 cross-sectional area and 600 wire turns. The 

spacing between transmitter and receiver coil is 1.2 m.  

In the generated volume mesh, there are 57,808 unknowns, and the solution for 

VIE is obtained in about 2 minutes with 512 parallel processors. There are 6420 

unknowns in the generated surface mesh, and the solution for SIE is obtained in a minute 

with a single processor. Numerical results are shown in Fig. 2.7 where signal levels are 

shown with a solid line for the solution of surface integral equations (SIE) and absolute 

differences with the VIE are shown with dashed lines. For the real (blue) and imaginary 

(black) component of secondary signals it shows very good agreement for both numerical 

results, with a maximum discrepancy of less than 5%. It is important to note the 

significant dominance of real components over the imaginary signals. 
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Figure 2.7: Comparison of SIE and VIE solutions of scattering from a representative 

fracture model; solid lines show the real (blue) and imaginary (black) 

components of absolute secondary (scattered) signals for the SIE solution; 

dashed lines show the absolute differences between both solutions. 

2.2.4. In-Phase and Quadrature Components of Signals 

Following the observation made in the previous section (high ratio of real and 

imaginary components), in this section, the parameters affecting this ratio are 

investigated. Fig. 2.8 shows the signal levels at the middle of the hump (Fig. 2.7) for the 

different conductivity of fracture and background formation at the operating frequency of 

1 kHz. The fracture conductivity ranges between 10 and 10
4
 S/m, and the background 

conductivity ranges between 10
-2

 and 1 S/m. The fracture is 1 m in radius and is assumed 

to be an orthogonal circle with 10 cm of inner radius and 5 mm thickness. The magnetic 

dipole moment of the transmitter coil is 1500 A ∙ m2. The receiver coil has 30 cm
2
 cross-

sectional area and 600 wire turns. The spacing between the transmitter and receiver coil 

is 1 m.  

 

 

|S  −    |
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Figure 2.8: The relationship between real and imaginary components of secondary signals 

with changing background (bg) and fracture (frac) conductivity: left plot 

shows both real and imaginary components on upper and lower surfaces, 

respectively; right plot shows the ratio between them. 

An increase in the background conductivity does not affect the real component; 

however, it increases the imaginary component of the signal. An increase in the fracture 

conductivity increases both real and imaginary components. The ratio between 

them | (𝑈sca)  (𝑈sca)⁄ | stays above 10 for the selected region clearly showing the 

dominance of real components in the absolute signals. This may lead to a simplification 

in the forward model which is described in the next subsection. 

2.2.5. Approximation of Surface Currents 

In the previous section, the dominance of the real component is shown for an 

operating frequency of 1 kHz. If the magnitude of the signal is of interest, then the 

accurate calculation of only the real component is sufficient for the detailed analysis. It 

can be achieved with the simplification in the boundary condition shown in Eq. 2.12. If 

the scattered electric field is eliminated surface currents can be approximated as follows: 

J𝒔 ≈ −n̂ × n̂ × 𝑮 𝐢𝐧𝐜 (2.36) 
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This procedure does not require inversion of the matrices and reduces 

computational time. The accuracy level is shown for orthogonal and rotated fracture 

models with metallic conductivity (the conductivity and thickness of 34.6 MS/m and 

25.4 μm, respectively) and smaller size (this type of model is used in the next chapter). 

Transmitter coil is operated at 1 kHz frequency, and the magnetic dipole moment is 

12 A ∙ m2; receiver coil has the cross section of 30 cm
2
 with 600 turns. The background 

has zero conductivity and the distance between transmitter and receiver coils is 1 m. Fig. 

2.9 shows secondary signal magnitude for co-axial coil configuration and 10 cm radius 

orthogonal fracture. The relative error introduced due to the surface current 

approximation is always less than 1% along the sampling interval. 

 

Figure 2.9: Magnitude of secondary signals when surface currents are approximated: 

solid line shows the full SIE solution; dashed line shows the difference 

between the approximation-based solution and full computation. The 

fracture model is orthogonal and coils are in co-axial configuration. 

Fig. 2.10 shows secondary signal magnitude for the co-axial (left) and cross-

polarized (right) coil configurations and for 20 cm radius fracture rotated 30˚ about the x-
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axis. The relative error introduced due to the surface current approximation is always less 

than 10% for the co-axial coil configuration. For the cross-polarized configuration, 

however, approximation simulates the trend only; there is a poor quantitative match. 

 

Figure 2.10: Magnitude of secondary signals when surface currents are approximated: 

solid line shows the full SIE solution; and circle markers show the 

approximation based solution. The fracture model is rotated and coils are in 

co-axial (left) and cross-polarized (right) configurations. 

2.2.6. Computational Time 

In this section, the computational time required for a typical run is explored. Fig. 

2.11 shows the time required for the full numerical solution of SIE with an impedance 

boundary condition. Its solution has two stages: filling the impedance matrix and solving 

it for every excitation point. The first step dominates the computation time because 

integral equations yield a full matrix. LU-factorization of the matrix occurs once in a 

typical run, hence, for multiple excitation points, the total sampling time (factorization + 

solution for all excitations) is divided by the number of excitation points which is equal 

to 82 in this case. This step can be further accelerated by using numerical iterative solvers 

or parallelization. 
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Figure 2.11: Computation time for the different number of surface unknowns: red filled 

circles show matrix fill-times which includes the application of impedance 

boundary condition as well, and empty circles show matrix solution times 

for each sampling point. 

A typical run for the fracture size of 20 m yields 5,000-10,000 unknowns with 𝜆 

being equal to 10. This problem can be solved in a minute. For the inversion analysis, the 

speed will be further increased by using coarser meshes. 

2.3. SIMULATION OF INDUCTION TOOL RESPONSE IN PRODUCTION CASING 

In this computation, the set of 2D problems emerging from the Fourier series 

expansion is solved with an axial hybrid method where the wellbore axis (z-axis) is 

solved numerically and the radial part is solved analytically. After solving the generalized 

eigenvalue problem, normalized Bessel and Hankel functions are used to describe the 

fields in the radial direction. Amplitude and slope basis functions are defined over the 

discretized wellbore axis which allows the use of a coarse grid everywhere along the axis. 

This eliminates the need to refine the grid in the vicinity of the fracture. Before 

matrix fill time

matrix solution per

excitation number
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proceeding to the numerical results, the detailed steps of the computation are shown 

below (Wang et al., 2009), and the results are compared to that of the surface integral 

equations. 

2.3.1. Axial Hybrid Method 

In any radial layer, the electric and magnetic fields in the z-direction can be 

expressed with the following governing equations: 

∇𝑠
2𝐸𝑧 +

𝜕

𝜕𝑧
𝜎𝑠
−1

𝜕

𝜕𝑧
𝜎𝑧𝐸𝑧 − 𝑗𝜔𝜇o𝜇𝑟,𝑠𝜎𝑧𝐸𝑧 = ∇𝑠 ∙ (𝐌𝑠 × �̂�) (2.37) 

and 

∇𝑠
2𝐻𝑧 +

𝜕

𝜕𝑧
𝜇𝑟,𝑠
−1

𝜕

𝜕𝑧
𝜇𝑟,𝑧𝐻𝑧 − 𝑗𝜔𝜇o𝜎𝑠𝜇𝑟,𝑧𝐻𝑧 = 𝜎𝑠𝑀𝑧 −

1

𝑗𝜔𝜇o

𝜕

𝜕𝑧
𝜇𝑟,𝑠
−1∇ ∙ 𝐌 (2.38) 

where the subscript 𝑠 designates the transverse component and 𝑧 shows the wellbore 

direction. Excluding the source terms in the above equations they can both be written in 

the following form: 

∇𝑠
2𝑝𝜂

−1𝑓𝜂 +
𝜕

𝜕𝑧
𝑞𝜂
−1
𝜕𝑓𝜂

𝜕𝑧
+ 𝑘𝜂

2𝑝𝜂
−1𝑓𝜂 = 0 (2.39) 

where 𝑓𝜂 = {𝜎𝑧𝐸𝑧 , 𝜇𝑟,𝑧𝐻𝑧}, 𝑝𝜂 = {𝜎𝑧 , 𝜇𝑟,𝑧}, 𝑞𝜂 = {𝜎𝑠, 𝜇𝑟,𝑠}, 𝑘𝜂
2 = −𝑗𝜔𝜇o{𝑞ℎ𝑝𝑒, 𝑞𝑒𝑝ℎ} and 

𝜂 = {𝑒, ℎ}. The 𝜙 variation of 𝑓𝜂 is expressed in terms of a Fourier series. The solution of 

𝜌 dependence is obtained after solving the generalized eigenvalue problem, and it is in 

the form of a combination of normalized Bessel functions of the first kind 𝐽𝑛 and the 

normalized Hankel function �̂�𝑛
(1)

. To solve the 𝑧 dependence, basis functions are defined 

over one-dimensional elements along the z-axis. Local shape functions of each element 

are defined in the interval of (𝑧𝑛, 𝑧𝑛+1) as follows: 

𝐿1 =
𝑧𝑛+1 − 𝑧

𝑧𝑛+1 − 𝑧𝑛
 

(2.40a) 
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𝐿2 =
𝑧 − 𝑧𝑛

𝑧𝑛+1 − 𝑧𝑛
 (2.40b) 

and all elements, except the first and last one, have four basis functions defined as 

follows: 

𝑔𝜂,1(𝑧) = −2𝐿1
3 + 3𝐿1

2  (2.41a) 

𝑔𝜂,2(𝑧) = 𝑞𝜂(𝑧)Δ𝑧(𝑧)𝐿1
2𝐿2 (2.41b) 

𝑔𝜂,3(𝑧) = −2𝐿2
3 + 3𝐿2

2  (2.41c) 

𝑔𝜂,4(𝑧) = −𝑞𝜂(𝑧)Δ𝑧(𝑧)𝐿2
2𝐿1 (2.41d) 

Fig. 2.12 shows these basis functions (Eq. 2.41) when 𝑞𝜂 is unity. For the first 

element only 2.41c, d and for the last element only 2.38 a, b are defined. Each basis 

function is non-zero over two neighbor elements; 𝑔𝜂,1 and 𝑔𝜂,2 are non-zero on the 

neighbor element in the negative 𝑧-direction, and 𝑔𝜂,3 and 𝑔𝜂,4 are non-zero on the 

neighbor element in the positive 𝑧-direction. Hence, if we have 𝑁𝑛 number of nodes, we 

get 𝑁𝑒 = 𝑁𝑛 − 1 number of elements and 𝑁 = 2(𝑁𝑛 − 2) total number of basis 

functions. 
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Figure 2.12: Basis functions defined over a one-dimensional element along the wellbore 

axis; relative permeability of one is used. 

The solution of Eq. 2.39 is obtained after solving the generalized eigenvalue 

problem which is defined with the following equation: 

𝐀𝜂𝐂𝜂 = 𝐁𝜂𝐂𝜂𝚲𝜂
2  (2.42) 

where 𝐂𝜂 is the matrix of eigenvectors, 𝚲𝜂 is the diagonal matrix of eigenvalues and 𝐀𝜂 

and 𝐁𝜂 are defined as: 

𝐀𝜂 = −∫
1

𝑞𝜂

𝜕𝐠𝜂(𝑧)

𝜕𝑧

𝜕𝐠𝜂
𝑡 (𝑧)

𝜕𝑧
𝑑𝑧

∞

−∞

+∫
𝑘𝜂
2

𝑝𝜂
𝐠𝜂(𝑧)𝐠𝜂

𝑡 (𝑧)𝑑𝑧
∞

−∞

 (2.43) 

and 

𝐁𝜂 = ∫
1

𝑝𝜂
𝐠𝜂(𝑧)𝐠𝜂

𝑡 (𝑧)𝑑𝑧
∞

−∞

 (2.44) 

Integrals in Eq. 2.43 and 2.44 are solved analytically for each element. 𝐀𝜂 and 𝐁𝜂 

are six-diagonal matrices and 𝑁 × 𝑁 in dimensions. It should be emphasized that the 

orthogonality relationship still holds for the numerical eigenmodes. Hence, the following 

equation must be satisfied: 

𝑔𝜂,2

𝑔𝜂,3

𝑔𝜂,4

𝑔𝜂,1
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𝐂𝜂
𝑡𝐁𝜂𝐂𝜂 = 𝐈 (2.45) 

Now, the solution to Eq. 2.39 for each layer can be expressed in the form of basis 

functions (Eq. 2.41), eigenvalues and eigenvectors (Eq. 2.42), and normalized Bessel and 

Hankel functions. Then, in each radial boundary, local transmission and reflection 

matrices are defined as: 

𝐓𝑙,𝑙±1 = [𝛃(𝑙±1)∓
± − 𝛃(𝑙)±

∓ 𝐏𝑙,𝑙±1]
−1

[𝛃(𝑙)±
± − 𝛃(𝑙)±

∓ ] (2.46) 

and 

𝐑𝑙,𝑙±1 = 𝐏𝑙,𝑙±1𝐓𝑙,𝑙±1 − 𝐈 (2.47) 

where 𝑙 represents the number of layer. In the above, 

𝛃(𝑘)±
± = (

−𝑗
𝑛

𝜌
𝐃ℎ𝑒,𝑙,𝑘 𝑗𝜔𝜇o𝐏ℎ,𝑙,𝑘𝛘ℎ,(𝑘)±

± 𝚲ℎ,𝑘

−𝐏𝑒,𝑙,𝑘𝛘𝑒,(𝑘)±
± 𝚲𝑒,𝑘 −𝑗

𝑛

𝜌
𝐃𝑒ℎ,𝑙,𝑘

)𝚲𝑘
−2 (2.48) 

and 

𝐏𝜂,𝑙,𝑘 = 𝐂𝜂,𝑙
𝑡 ∫

1

𝑝𝜂,𝑘
𝐠𝜂,𝑙𝐠𝜂,𝑘

𝑡 𝑑𝑧
∞

−∞

𝐂𝜂,𝑘 (2.49) 

𝐏𝜂,𝑙,𝑘 = 𝐂𝜂,𝑙
𝑡 ∫

1

𝑝𝜂,𝑙
𝐠𝜂,𝑙𝐠𝜂,𝑘

𝑡 𝑑𝑧
∞

−∞

𝐂𝜂,𝑘 (2.50) 

𝐃ℎ𝑒,𝑙,𝑘 = 𝐂ℎ,𝑙
𝑡 ∫

1

𝑝ℎ,𝑙𝑞𝑒,𝑘
𝐠𝜂,𝑙

𝜕

𝜕𝑧
𝐠𝜂,𝑘
𝑡 𝑑𝑧

∞

−∞

𝐂𝑒,𝑘 (2.51) 

𝐃𝑒ℎ,𝑙,𝑘 = 𝐂𝑒,𝑙
𝑡 ∫

1

𝑝𝑒,𝑙𝑞ℎ,𝑘
𝐠𝑒,𝑙

𝜕

𝜕𝑧
𝐠ℎ,𝑘
𝑡 𝑑𝑧

∞

−∞

𝐂ℎ,𝑘 (2.52) 

where 𝑘 = 𝑙 or 𝑙 ± 1. Note that when 𝑘 = 𝑙 𝐏𝜂,𝑙,𝑘 = 𝐈 and 𝐏𝜂,𝑙,𝑘 = 𝐈. In the outermost 

layer, there is no incoming wave. Starting with this we can calculate a generalized 

reflection matrix at the wellbore 𝐐1
+ by using recursive relationships: 

𝐒𝑚,𝑚+1 = [𝐈 − 𝐑𝑚+1,𝑚𝐐(𝑚+1)−
+ ]

−1
𝐓𝑚,𝑚+1 (2.53) 
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𝐐(𝑚)+
+ = 𝐑𝑚,𝑚+1 + 𝐓𝑚+1,𝑚𝐐(𝑚+1)−

+ 𝐒𝑚,𝑚+1 (2.54) 

along with the propagation relationship: 

𝐐𝑚
+ (𝜌𝑎) = 𝛄𝑚

− (𝜌𝑎, 𝜌𝑏)𝐐𝑚
+ (𝜌𝑏)𝛄𝑚

+ (𝜌𝑎, 𝜌𝑏) (2.55) 

where 

𝛄𝑚
+ (𝜌𝑎, 𝜌𝑏) = 𝑒−𝑗𝚲𝑚(𝜌𝑏−𝜌𝑎)

�̂�𝑛
(1)(𝚲𝑚𝜌𝑏)

�̂�𝑛
(1)(𝚲𝑚𝜌𝑎)

 (2.56) 

𝛄𝑚
− (𝜌𝑎, 𝜌𝑏) = 𝑒−𝑗𝚲𝑚(𝜌𝑏−𝜌𝑎)

�̂�𝑛(𝚲𝑚𝜌𝑎)

�̂�𝑛(𝚲𝑚𝜌𝑏)
 (2.57) 

For the magnetic dipole oriented in the wellbore direction and when 𝜌′ = 𝜌TX =

𝜌RX: 

𝐛ℎ =
𝑗𝑀TX

4𝑝ℎ,1(𝑧TX)
�̂�𝑛
(1)(𝚲ℎ,1𝜌′)�̂�𝑛(𝚲ℎ,1𝜌′)𝚲ℎ,1

2 𝐂ℎ,1
𝑡 𝐠ℎ,1(𝑧TX) (2.58) 

and magnetic field will be given by: 

𝐻𝑧
inc =

1

𝑝ℎ,1(𝑧RX)
𝐠ℎ,1
𝑡 (𝑧RX)𝐂ℎ,1𝐛ℎ (2.59) 

𝐻𝑧
sca =

1

𝑝ℎ,1(𝑧RX)
𝐠ℎ,1
𝑡 (𝑧RX)𝐂ℎ,1𝐐ℎ,1

+ 𝐛ℎ (2.60) 

As in the previous method, Eq. 2.59 and 2.60 are solved for different excitation points. 

2.3.2. Numerical Validation 

The simulated orthogonal fracture model is a circle with the outer radius of 8 m, 

inner radius of 10 cm, thickness of 5 mm and conductivity of 333 S/m. The background 

(rock) formation has a uniform conductivity of 0.333 S/m. The tool is operated at 1 kHz 

frequency with 1500 A ∙ m2 magnetic dipole moment on the transmitter coil. The receiver 

coil has 30 cm
2
 cross-sectional area and 600 turns. The spacing between transmitter and 

receiver coils is 1.2 m for the short spacing and 17.8 m for the long coil spacing. For the 
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method of moments, the total computation time is 70 seconds with 8220 unknowns and 

82 sampling points. 

 

Figure 2.13: Meshing and radial layering scheme used in the axial hybrid method for the 

computation of fracture scattering in an open-hole completion. 

The gridding scheme used in the mode matching technique is shown in Fig. 2.13. 

A uniform grid is implemented between -2 and 2 m with an element size of 10 cm. The 5 

mm thickness of fracture is an additional orthogonal layer. The domain is truncated at 

150 m on both expanding parts of the grid with a 1.25 length ratio between two adjacent 

elements. The total number of basis functions is 274. The solution with 82 sampling 

points and with this gridding schemes is obtained in 10 seconds. 

wellbore

uniform expandingexpanding

fracture

𝜌

𝑧
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Figure 2.14: Comparison of MM and SIE solution of fracture scattering measured with 

short spacing (left plot) and long spacing (right plot) couples; solid lines 

show the real (blue) and imaginary (black) components of absolute 

secondary (scattered) signals for the SIE solution; dashed lines show the 

absolute difference between both solutions. 

Numerical results are shown in Fig. 2.14 where signal levels are shown with a 

solid line for the solution of surface integral equations (SIE) and absolute differences 

with the mode matching (MM) are shown with dashed lines. For the real (blue) and 

imaginary (black) component of secondary signals, Fig. 2.14 shows very good agreement 

for both short and long spacing couples, with a maximum discrepancy of less than 3% for 

the peak signals. 

2.3.3. Effect of Electromagnetic Properties of Casing on Differential Signals 

An additional radial layer is added to the previously used scheme to include 

production casing material properties. Fig. 2.15 shows the meshing and layering scheme 

used for understanding the effect of the casing electrical conductivity and magnetic 

permeability on the scattered field from the fracture. The fracture is an additional layer 

orthogonal to the wellbore axis with the radius of 8 m, thickness of 5 mm and 

conductivity of 333 S/m (conductivity anywhere else is 0.333 S/m). The inner and outer 
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radius of the casing pipe is 6.2 and 7 cm, respectively. The wellbore axis is discretized 

from -15 and 15 m, where the uniform part of the meshing is between -2 and 2 m with the 

ratio of element size of 1.25 in the expanding part. The total number of basis functions is 

230. The tool operating frequency is 1 kHz and the transmitter magnetic dipole moment 

is 1500 A ∙ m2. The number of turns on the receiver is 600 with 30 cm
2
 cross-sectional 

area. The spacings between the transmitter and receiver coils are 1.2 and 1.5 m. 

 

Figure 2.15: Meshing and radial layering scheme used in the axial hybrid method for the 

computation of fracture scattering in a cased-hole completion. 

Fig. 2.16 shows the short spacing differential signals when the electrical 

conductivity of the casing pipe increases from 10
1
 to 10

5
 S/m, and the relative magnetic 

permeability is one. Fig. 2.17 shows the same signals when the relative magnetic 

permeability of the casing pipe increases from 1 to 30, and the electrical conductivity is 

10
5
 S/m. The left column plots show the differential signals from the casing (no-frac 

case), and the right column plots show the differential signals from the fracture 
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(subtraction of frac and no-frac cases). For the given tool parameters and 0.333 S/m 

background (rock) conductivity, the real and imaginary components of incident signals 

are ~4.4∙10
3
 µV and 3.4∙10

6
 µV, respectively. 

 

 

Figure 2.16: The effect of electrical conductivity of casing on the differential signals: left 

and right columns show differential signals for casing and fracture; and 

upper and lower plots show real and imaginary components of differential 

signals, respectively. 

The increase in the electrical conductivity causes the scattered voltages from the 

casing to increase significantly suppressing the comparatively small fracture scattered 

voltages. For the 10
4
 times increase in the electrical conductivity, real and imaginary 

  casing fracture

  casing fracture
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components of primary signals increase ~10
4
 and ~4∙10

4
, respectively. The real 

components of the differential signals due to scattering by the fracture, however, are not 

affected by the increase. The imaginary components of fracture differential signals are 

increased ~15 times and get closer to the level of the real components. 

 

 

Figure 2.17: The effect of magnetic permeability of casing on the differential signals: left 

and right columns show differential signals for casing and fracture; and 

upper and lower plots show real and imaginary components of differential 

signals, respectively. 

The same observation is made for the relative magnetic permeability increase 

which causes a significant increase in the primary signals. For the 30 times increase in the 

  casing fracture

  casing fracture
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relative magnetic permeability, real and imaginary components of primary signals are 

increased ~15 and ~8 times, respectively. The real components of the differential signals 

due to the fracture scattering, however, are decreased ~11 times and there is only a slight 

increase (~1.6 times) in the imaginary components. 

2.3.4. Computational Time 

In this section, the computational time required for different runs are reported. 

Fig. 2.18 shows the time requirement for the solution steps of axial hybrid method for the 

different number of basis functions. The first step is the solution of the generalized 

eigenvalue problem; the second is the calculation of the generalized refraction matrix; 

and the third step is the solution for the scattered signals at different sampling points. As 

indicated previously, a typical run can be completed with a few hundred basis functions. 
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Figure 2.18: Computation time for different number of basis functions: blue dots show 

the generalized eigenvalue solution time for all layers; red dots show the 

generalized refraction matrix solution time; orange dots show the solution 

time for each sampling point and purple dots show the total run time for all 

41 sampling points. 

2.4. CONCLUSION 

In this chapter, the formulation and numerical schemes are presented. The 

numerical results are validated and the computational requirements for a typical fracture 

simulation are reported. The models allow us to include all the possible variations in 

electromagnetic properties inside and outside the fracture. An open-hole application of 

the induction tool can be best modeled with integral equations where the effect of fracture 

shape factor and rotation about the wellbore axis can be captured. A hybrid method can 

provide very time efficient results when the induction tool is logged inside the casing. 

The model development was done using Matlab and the codes are provided in the 

appendix of this dissertation. The key findings are: 
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 The method of moment solution of surface integral equations provides very 

accurate results with the node spacing less than ten and a typical run takes about 

one minute when a single core is used for the computation. 

 The fracture is simulated as an impedance sheet and all the permittivity and 

conductivity variation can be handled using this simulation. Since it is fast and 

includes all relevant fracture parameters, it is better suited for use with the 

inversion analysis presented in Chapter 4. 

 The axial hybrid method may easily include the variation in all electromagnetic 

properties of the media; heterogeneous background formation conductivity and 

production casing properties can be handled. A typical run can be conducted with 

a few hundred basis functions and the total run-time is a few seconds.  

 The scattered fracture signals at 10
5
 S/m casing conductivity and 30 relative 

magnetic permeability is tiny compared to the scattered casing signals making it 

very challenging to detect fractures in cased-hole applications when using 

induction tools. 

 

2.5. NOMENCLATURE 

Symbol  definition  Unit 

𝐄  electric field  V-m 

𝐇  magnetic field  A-m 

𝐉  electric current density  A-m
2
 

𝐉𝑠  surface electric current density  A-m 

𝐌  magnetic current density  V-m
2
 

     
�̂�  unit normal vector  - 

𝐫  observer point  M 

𝐫′  source point  M 

     
𝐴  area  m

2
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𝐺  conductance  S 

𝐺R  Green’s function  1-m 

𝑀TX  magnetic dipole moment of transmitter coil  A∙m
2
 

𝑁  number  - 

𝑆  surface  m2 

𝑈, 𝑉  voltage  V 

𝑍𝑠  surface impedance  Ω 

     
𝑔𝜂  one dimensional basis function   

𝑗  complex number  - 

𝑘  wave number  1-m 

𝑙  length, distance  M 

𝑡  thickness  M 

     
𝛬  RWG basis function defined over the triangle  - 

𝛬𝜂  eigenvalues  - 

     

𝛾  propagation constant  - 

휀  permittivity  F-m 

휀o  free space permittivity  F-m 

휀r  relative permittivity  - 

휀̃  complex permittivity  F-m 

𝜂  wave impedance  Ω 

𝜂o  free space wave impedance  Ω 

𝜆  node spacing factor  - 

𝜇  magnetic permeability  H-m 

𝜇o  free space magnetic permeability  H-m 

𝜇r  relative magnetic permeability  - 

𝜌e  electric charge density  C-m
3
 

𝜌   magnetic charge density  Wb-m
3
 

σ  conductivity  S-m 

𝜑  electric scalar potential  V 

ω  angular frequency  Hz 

     
�̂�𝑛
(1)  normalized Hankel function of the first kind   

𝐻𝑛
(2)  regular Hankel function of the second kind   

�̌�𝑛
(2)  spherical Hankel function of the second kind   



 45 

𝐽𝑛  regular Bessel function   

𝐽𝑛  normalized Bessel function   

𝐽𝑛  spherical Bessel function   

𝑃𝑛  Legendre polynomial   

𝑃𝑛
1  associated Legendre polynomial   

     
   real component of complex number   

   imaginary component of complex number   

     
𝑥, 𝑦, 𝑧  Cartesian coordinate system   

𝑟, 𝜃, 𝜙  spherical coordinate system   

     
SI derived unit  definition  SI base units 

C  Coulomb  s∙A 

F  Farad  s
4
∙A

2
-m

2
∙kg 

H  Henry  kg∙m
2
-s

2
∙A

2
 

Hz  Hertz  1-s 

S  Siemens  s
3
∙A

2
-kg∙m

2
 

V  Volt  kg∙m
2
-s

3
∙A 

Wb  Weber  kg∙m
2
-s

2
∙A 

Ω  Ohm  kg∙m
2
-s

3
∙A

2
 

 
𝑢 and 𝜈 show the coil orientation in the equation of 𝑈𝑢𝜈 

u  orientation of receiver coil 

v  orientation of transmitter coils 
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Chapter 3:  TESTING A PROTOTYPE TRI-AXIAL INDUCTION 

LOGGING TOOL IN-AIR AND IN A NEAR SURFACE TRENCH 

This chapter2 introduces a new prototype tool which is tested with scaled down 

fracture models. First, a review is provided on the physics of coil design, the essentials of 

the measurement set-up, and the theory of electromagnetic scaling. Then, the detailed 

specification of a developed field-sized prototype induction tool is shown and the design 

of two main experimental setups is presented. The tool works at the same operational 

frequency as in the field, and the tool sizes are selected based on the actual wellbore 

dimensions. 

The study comprises experiments in two different environments: (i) a laboratory 

environment where in-air measurements are performed, (ii) a field environment where 

measurements are performed near (below) the earth’s surface. The first experimental 

setup enables easy calibration of the tool, as well as the insertion and removal of targets, 

thus, facilitating the gathering of data for a range of targets with various parameters. 

Fracture models of various sizes, shapes, and dip-angles are tested. This set-up was built 

in the laboratory of E-Spectrum Inc. in San-Antonio, TX. The second setup enables 

measurement in a horizontal well close to the surface, in a lossy and more realistic earth 

background. This experiment was carried out in a test site in a ranch in Blanco County, 

TX. The measurements in both cases are compared to a numerical simulator introduced in 

the previous chapter. The results and set of conclusions are provided while discussing the 

potential capabilities of the current tool. 

                                                 
2 The experimental results shown in this chapter were first presented in Shiriyev et al. (2018). Shiriyev used 

the simulation results to obtain specifications for the induction coils, built an experimental setup to test the 

tool in a laboratory setting, demonstrated that the experiments and the model agree very well with each 

other, established the detectability and differentiability of signal levels with realistically sized tri-axial coils 

that can be deployed in a downhole tool and demonstrated the feasibility of the EM measurements for 

fracture diagnostics in a shallow earth experiment. 
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3.1. LITERATURE REVIEW 

In this section, three main questions are answered: 1) how to design the most 

efficient low frequency transmitter and receiver coils which will work in a typical oil 

well, 2) how to test them in a controllable environment, and 3) how to represent large 

field scale fractures in a relatively small lab environment. 

3.1.1. Induction Coil Design 

The magnetic dipole moment (or torque) is the main characteristic of a transmitter 

coil and determines the strength of induced magnetic fields. It is defined as: 

𝑀 = 𝜇r,core𝑁𝐴𝐼 (3.1) 

given that the cross-sectional area of windings is small compared with the coil diameter, 

inductance is ignored and the operation frequency is low (Frischknecht, 1988). The 

emphasis is usually placed on achieving large moments to obtain detectable signals on a 

receiving component. This can be accomplished by increasing any component in the 

right-hand side of the equation above, and in the following three paragraphs, we discuss 

each one of them. 

A typical transmitter coil does not have much flexibility in the cross-sectional 

area selection. It will be elongated along the wellbore direction (z-axis) to provide high 

magnetic dipole moments in restricted wellbore sizes (~4 inches). The elongations of x- 

or y-oriented transmitter coils allow an increase in the cross-sectional area of the coil. For 

the z-oriented coil, the elongation allows us to increase the number of turns.  

The amount of current that can be driven through a wire at any frequency is 

limited by thermal considerations. To assure the endurance of a coil in a given 

environment, the minimization of power loss is essential. This is defined as: 
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𝑃coil =
1

2
𝑅coil|𝐼coil|

2 (3.2) 

The minimization of power loss also limits increasing the number of turns by decreasing 

the cross-sectional area of the wire; the overall resistivity will increase limiting the 

maximum current. It can be avoided by sharing the current among parallel connected 

wires: 

𝐼coil = 𝐼coil,1 +⋯+ 𝐼coil,𝑛 (3.3) 

where 𝑛 represents the number of wires connected in parallel. Assuming that all coils are 

identical to each other, the total resistivity will be decreased in an amount equal to the 

number of parallel connections:  

𝑅coil =
𝑅wire,𝑖
𝑛

     ere   𝑅wire,𝑖 =
𝜌wire,𝑖𝑙wire,𝑖
𝐴wire,𝑖

 (3.4) 

When the relative magnetic permeability of a core is equal to one, the coil is 

referred as an air-core coil. It describes an inductor that uses plastic, ceramic or other 

nonmagnetic forms as a core, as well as those that have only air inside the winding. These 

types of coils are often used at high frequencies because they are free from energy (or 

core) losses that occur in ferromagnetic cores due to hysteresis and eddy currents in the 

core material. The losses increase with an increase in the frequency. To increase the 

dipole moment of transmitter coils at low frequency we use, a core with a relative 

magnetic permeability more than one can be used. In general, long and slender shapes of 

coils allow the effective use of a magnetic core material (Frischknecht, 1988). 

The transmitter coil suggested by Heagy and Oldenburg (2013) is a magnetically 

permeable core wrapped with several hundred turns of wire and has a magnetic dipole 

moment of 5,000 A ∙ m2 in the frequency range of 1-100 Hz, and only several hundred A ∙
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m2 at frequencies above 500 Hz. Lastly, the best practice for the use of transmitter coils 

in wells requires the monitoring of input currents to take into account any possible 

changes in coil parameters. Factors that are likely to cause changes are temperature or 

humidity that may cause an expansion or contraction of coil windings and proximity to a 

conductive material that may cause electrical loading. 

Design criteria to be used for transmitter coils can be applied to receiver coils in 

the same way. The main factors to consider in the design of receiving loops are the size, 

sensitivity and stability of loop characteristics, insensitivity to extraneous electric fields 

and disturbance of normal fields due to the loop itself. Correct measurements are not 

obtained if the probe significantly disturbs the fields in the vicinity of the model media; 

that is if the probe behaves as a secondary source. Receiver coils suggested in Heagy and 

Oldenburg (2013) are the magnetically permeable core wrapped with several thousand 

turns of wire. Magnetic fields in the order of 10
-8 A m⁄  can be detected with these coils. 

These receiver coils are directly connected to the recording apparatus which also contains 

an amplifier board to increase the power of a received signal. At low frequencies, this 

direct connection is not expected to introduce major errors (Frischknecht, 1988). 

3.1.2. Experimental Set-up 

In modeling moving source methods with targets placed in air, the coils can be 

fixed and the target may be placed on a moving carriage which moves by the coils. To 

avoid extraneous EM responses, large metallic parts or other conductive materials should 

not be used in the construction of mechanical parts that are within or near the working 

region. It is a good practice to construct carriages, tracks and other structures mostly of 

wood, plastic, concrete and other insulating materials. Measuring instruments should be 

placed far enough from the region so that their metal cases and chassis do not produce a 
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response. In our experiment, we conduct frequency domain measurements. Therefore, 

several of the required functions used in the measurement circuit can be combined in one 

unit known as a lock-in-amplifier. The frequency range of most lock-in-amplifiers is 

below 100-200 kHz which suits for our application well (Frischknecht, 1988). 

3.1.3. Electromagnetic Scaling 

Both the laboratory and field experimental environments have space limitations 

for the electromagnetic targets. They must be of a significantly reduced size compared to 

the ones likely to be detected in an actual oil and gas formation while the tool parameters, 

such as coil size and operation frequency, are kept similar to those expected in the field. 

Following the theory of EM scaling (Sinclair, 1948), it can be shown that similar signal 

magnitudes can be obtained only if the induction number defined as: 

𝑁i = 𝜎𝜇𝜔𝑙2 (3.5) 

is kept invariant for all electric conductivities σ, magnetic permeabilities µ and spatial 

dimensions l in the system operated at an angular frequency of ω. For some components, 

however, this requirement can be relaxed. For example, the dimensions of coils do not 

need to be scaled if their radii are smaller than one-tenth of the distance between them 

(and neglecting the mutual interactions between the coils). This condition is satisfied for 

the coils in this work; l1 and l2 in Fig. 1.1 are kept more than ten times larger than the 

radius of coils. The conductivity of the background, if sufficiently lower than that of the 

propped fracture, has little effect on the resulting secondary fields. As for the propped 

fracture’s conductivity, if the skin depth given as: 

𝛿 = √
2

𝜎𝜔𝜇
 (3.6) 
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is sufficiently larger than the thicknesses of both the original and scaled propped 

fractures, it is sufficient to only scale the propped fracture’s conductance, rather than its 

conductivity or thickness separately, to maintain similar signal levels (Frischknecht, 

1988, Eq. 3.5 becomes 𝑁i = 𝐺𝜇𝜔𝑙). At the operation frequency of 1 kHz and effective 

proppant conductivity of 333 S/m (Zhang et al., 2016), the skin depth is 872 mm – 

several times larger than the expected propped fracture thickness of 5 mm (Sharma and 

Manchanda, 2015). In this study, the propped fracture models are made of industrial 

aluminum foil with a mean conductivity of 34.6 MS/m at 20 ˚C temperature and a mean 

thickness of 25.4 µm. The skin depth of aluminum at an operating frequency of 1 kHz is 

2.7 mm – much larger than the foil’s thickness. 

3.2. BUILDING A PROTOTYPE TOOL 

In the design of the prototype tool, the goal is to keep the main characteristics the 

same as in the field deployable tool. Firstly, the operation frequency is selected to be 1 

kHz, low enough to detect fractures a few tens of meters away from the wellbore. 

Secondly, transmitter and receiver coils are designed based on the physical constraints of 

wellbores. Lastly, the prototype tool can be carried and tested in different environments, 

especially in conductive backgrounds. 

3.2.1. Transmitter and Receiver Coils 

This sub-section describes the induction tool and the measurement equipment that 

were used in the experiments. Solenoidal coils are used for transmitting and receiving 

(Fig. 3.1). The coils are designed to operate at the frequency of 1 kHz without 

overheating. The transmitter coils are made using a 16 AWG (American wire gauge) 

magnet wire and carry a nominal current of 2.3 A (x, y-oriented coil) and 4 A (z-oriented 
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coil) which was sufficient to provide detectable differential signals. To enable the tool’s 

passage in a narrow well, the coils are designed to be long in the wellbore direction: the 

z-oriented coil has a circular profile and a larger number of turns while the (x, y)-oriented 

coil is rectangular with a high aspect ratio. The z-oriented coil uses a magnetic core to 

provide an increased magnetic dipole moment. Table 3.1 summarizes the remaining 

properties of the transmitter coils. Note that, while the x- and y- oriented coils are single 

wires, z-oriented coil’s current is distributed among three wires wound in parallel. 

Orientation x and y z 

Number of parallel connection 1 3 

Total number of turns 90 114 

Cross-sectional area [cm
2
] 256 40 

Height [cm] 40.4 32 

Relative core permeability air core 14 

Table 3.1: Summary of the transmitter (Tx) coil properties. 

As for the receiver coils, these are identical regardless of their orientation, made 

with an air core and 600 turns of a 32 AWG magnet wire. Their cross-sectional area and 

height are 30 cm
2
 and 1.3 cm, respectively. 

 

Figure 3.1: Tri-axial transmitter (Tx) and receiver (Rx) coils. 
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3.2.2. Measurement System 

The circuit system used for the experiments is described schematically in Fig. 3.2. 

The Pre-Amp PCB (printed circuit board) connected to receiver coils (Rx1 and Rx2) 

includes the bucking and amplification of received signals. A bucking coefficient 

of 𝑙1
3/𝑙2

3 = 1/2 is hardwired. The lengths l1 and l2 are fine-tuned during the tool’s 

calibration to minimize the received signal when operated in air with no target. The 

bucked signals are amplified by a factor of 100. The set-up allows having a single 

receiver measurement without any amplification factor. 

 

Figure 3.2: Block diagram of the prototype tool: transmitter (Tx) and receiver (Rx1 and 

Rx2) coils; pre-amp circuit board shown with dashed rectangle; monitoring 

laptop with full control over the circuit; oscilloscope for measuring the 

transmitter coil input current; and lock-in-amplifier for signal referencing 

and decomposition. 
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The lock-in-amplifier receives amplified bucked signals, with the voltage on the 

transmitter coil being its reference signal (Fig. 3.2). It outputs, in two separate channels, 

the bucked signal’s in-phase and quadrature components with respect to the reference 

signal. If we assume the input current of the transmitter coil to be real (𝕽) then the 

following rotation matrix multiplication can be used: 

[
 
𝕴
] = [

−   n 𝜃 − c  𝜃
c  𝜃 −   n 𝜃

] [
𝑋
𝑌
] (3.7) 

where 𝜃 is the reference phase. The transmitter coil input current is measured with an 

oscilloscope. At selected time instances the monitoring unit continuously displays and 

records: the time, reference signal, reference frequency, phase with respect to the 

reference signal and the two output channels (X and Y). 

3.2.3. Coil Positioning 

Data were collected to see how close the receiver coils can get to the transmitter 

coil. Fig. 3.3 shows the results both for the receiving and bucking coils in a co-axial coil 

configuration and data were gathered by measuring the voltage on a single receiver coil 

for two minutes (30 data at least) as a function of distance from the transmitter. Both 

receiver coils exist in the setup during the recordings; however, one is disconnected from 

the circuit board (Fig. 3.2) when the measurements are made for the other coil. The 

results showed half a meter to be a minimum distance to get the noise sufficiently low. 
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Figure 3.3: Box charts for measured incident signals at different transmitter-receiver coil 

spacing; left and right plots show results for receiving and bucking coils, 

respectively. Transmitting magnetic dipole moment is calculated using coil 

properties and measured input current. 

3.2.4. Verification of Coil Parameters 

The effective magnetic induction properties of the transmitter and receiver coils 

both for co-axial and co-planar coil configurations are estimated to be used as an input 

into the numerical simulation results. By measuring the voltage on a single receiver coil 

as a function of distance from the transmitter, for a given (measured) transmitter current, 

and fitting it to the theoretically expected curve, the multiplication of the receiver area 

and turn number by the transmitter’s magnetic dipole moment (𝐴RX𝑁RX𝑀TX) is 

calculated. In this setup, only one receiver coil exists at a time. 

The theoretical curve is calculated from the field equation (Balanis, 2005) of a 

small circular loop. For a given source and sink points, voltages of co-axial configuration 

can be calculated with the following equation for free space: 

𝑈𝑧𝑧(𝑧, 𝑧
′) = −𝑗𝜔𝜇𝑜𝐴RX𝑁RX𝐻𝑧(𝑧, 𝑧

′) (3.8) 

where 

𝑓 =  1 kHz
𝑀tx t = 2  4 A ∙ m2

𝑓 =  1 kHz
𝑀tx t = 2  4 A ∙ m2

Rx1    ck n      Rx2  Rece   n      
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𝐻𝑧(𝑧, 𝑧
′)  = 𝑀TX

𝑗𝑘

2𝜋(𝑧 − 𝑧′)2
[1 +

1

𝑗𝑘(𝑧 − 𝑧′)
] 𝑒−𝑗𝑘(𝑧−𝑧

′) (3.9) 

𝑧 is an arbitrary point where the field is calculated (the center of a receiver coil) and 𝑧′ 

(the center of a transmitter coil which is assumed to be the origin of the coordinate 

system) is the location of a point source oriented in the z-direction. For the co-planar coil 

configuration, voltages will be calculated for free space with: 

𝑈𝑦𝑦(𝑧, 𝑧
′) = −𝑗𝜔𝜇𝑜𝐴RX𝑁RX𝐻𝑦(𝑧, 𝑧

′) (3.10) 

where 

𝐻𝑦(𝑧, 𝑧
′)  = −𝑀TX

𝑘2

4𝜋(𝑧 − 𝑧′)
[1 +

1

𝑗𝑘(𝑧 − 𝑧′)
−

1

𝑘2(𝑧 − 𝑧′)2
] 𝑒−𝑗𝑘(𝑧−𝑧

′) (3.11) 

Here, sampling is again along the z-direction and coils are oriented in the y-direction. The 

value of 𝐴RX𝑁RX𝑀TX minimizing the error between measured and calculated data is 

selected as an input into the numerical model: 

∑[𝑤𝑖(𝑈𝑖 − 𝑈𝑖
exp

)]
2

𝑖

= 0 (3.12) 

where w is the weight factor and is larger for the middle part of the data because both 

short spacing data and long spacing data are not as reliable as the data at middle 

distances. For the short spacing, more deviation is expected because of noise (see the 

previous sub-section). For the long spacing receiver, the sensitivity of measurements may 

decrease because of the low signal levels. 

In the measurements, signals are sampled at a rate of one sample per second, over 

a period of 30 seconds and averaged (shown as dots in Fig. 3.4). The magnetic dipole 

moments were extracted from the theoretical curves (solid line) such that the coefficient 

𝐴RX𝑁RX𝑀TX is ~21.7 Am
4 

and ~13.5 Am
4
 for the co-axial and co-planar configurations, 

respectively. These calculated values match the coil specifications very well. 
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Figure 3.4: Estimation of transmitting and receiving moments: dots show measurements 

for co-axial (left) and co-planar (right) coil configurations; and solid line is 

the analytical solution with the best calculated moment coefficient. 

3.2.5. Primary Bucked Signal 

In this section, results are shown for the measurements before the fractures are in 

place. At each configuration, two receiver coils are placed inside the tool’s inner shell 

(PVC pipe with a nominal size of 3 in. (~8 cm)) in a bucking configuration, at nominal 

distances 𝑙1 and 𝑙2 from the transmitter coils. The distance 𝑙2 is tuned to minimize the 

magnitude at the lock-in amplifier’s output. This tuning process is repeated for every test 

and if there is no other limitation 𝑙1 and 𝑙2 are not changed significantly. Once a 

minimum is obtained, the coils are fixed in place and the inner shell is inserted into an 

outer shell PVC pipe with a nominal size of 4 in. (~10 cm). No adjustments are made for 

centralizing the inner shell inside the outer shell. The test is conducted in a closed lab 

with a floor area of ~100 m
2
 and a height of ~4 m during the daytime. Surrounding 

materials are all made of wood and plastic; metallic targets are at least 3 meters away 

both from the transmitter and receiver coils.  

co-planarco-axial
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The transmitter coil input current (Fig. 3.5) and primary bucked signal (Fig. 3.6) 

are monitored over 10 minutes. Signals are sampled at a rate of one sample for every 5 

seconds. No significant drift was observed during this period and the variation in the 

primary bucked signal which is normalized with respect to transmitter coil input current 

was not more than 1 𝜇  in the co-axial and co-planar configurations and not more than 

0 2 𝜇  in the cross-polarized configuration. 

 

Figure 3.5: The variation in the measured transmitter input current over time; presented 

for the co-axial (upper), co-planar (middle) and cross-polarized (lower) coil 

configurations before the measurements with fracture models. 

co-axial

co-planar

cross-polarized
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Figure 3.6: The variation in the measured primary bucked signal over time; presented for 

the co-axial (upper), co-planar (middle) and cross-polarized (lower) coil 

configurations before the measurements with fracture models; the data are 

normalized with respect to transmitter coil input current. 

3.3. PROTOTYPE TOOL TESTING 

In this section, the design of small scale and highly conductive targets, intended to 

produce a response close in magnitude to that of realistic field propped fractures, is 

explained. The set-ups used in the lab-air and shallow near-surface experiments are 

discussed. 

3.3.1. In-Air Experiment 

The laboratory in-air experiments include primary and total bucked signal 

measurement for various targets. To emulate various hydraulic fracture geometries in the 

co-axial

co-planar

cross-polarized
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lab, three sets of propped fracture models are used for the in-air experiments, Fig. 3.7: (a) 

circular fractures of three different radii, (b) elliptical fracture of three different aspect 

ratios, and (c) circular fractures with five different dip-angles. 

 

Figure 3.7: Fracture models used for laboratory experiments: (a) orthogonal fractures of 

various areas; (b) orthogonal fractures with various aspect ratios, the major 

radius is 20 cm; and (c) fractures of various dips rotated about the x-axis. 

Measurements are acquired on a test bench at a height of roughly 1 m above the 

ground. The outer shell of the tool is held, by non-conductive (plastic) boxes, above the 

test bench (Fig. 3.8 and 3.9). Model targets are sandwiched between acrylic sheets that 

enable fixing them in a prescribed orientation and centralized with respect to the outer 

shell. After the tuning, the distances between the center of receivers and the center of the 

transmitter coil are 𝑙1 = 0 9  m and 𝑙2 = 1 21 m for all coil configurations. Throughout 

the measurement, the tool is kept stationary and the signal is first measured without 

model fractures. A typical response for different configurations of coils is shown in 

Section 3.2.5. Then, the fracture model is moved within a range of [-0.4, 0.4] m with 

respect to the midpoint between the receiver coils, in 2.5 cm intervals. At each model 

target position, signals are sampled at a rate of one sample per second, over a period of 
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30 seconds and the mean signal value measured without the fracture is subtracted to 

obtain the differential signal. 

 

Figure 3.8: Laboratory experimental setup: an outer shell backbone (horizontal pipe) 

containing coils, fracture model inside a holder (middle box), and two outer 

shell backbone holders (left and right boxes). 
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Figure 3.9: Laboratory experimental setup: top picture shows main set-up which allows 

moving fracture models across the center of receivers; during the tests, the 

surrounding of the tool was kept free of metal; bottom-left picture shows the 

plastic box which keeps fracture model in a given orientation; and bottom-

right picture shows centralization of the fracture model with respect to the 

outer shell of the tool.  

3.3.2. Near Surface Experiment 

To evaluate the performance of the tool in a more realistic medium, experiments 

were conducted in a shallow subsurface site as well. The field experiment includes a 

tuning stage similar to that in the laboratory experiment and uses the magnetic inductance 

properties measured in those tests. After the tuning, the distances between the center of 

receivers and the center of the transmitter coil are 𝑙1 = 0 9  m and 𝑙2 = 1 21 m. 

Following the tuning, the tool is used underground, but near the surface, to detect a 
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buried target. A single elliptical fracture model was placed at a certain dip-angle. This 

simulated fracture model was designed specifically for the near-surface field experiment, 

Fig. 3.10. 

 
 

Figure 3.10: Fracture model used for near surface experiment: left figure is the elliptical 

fracture model which is designed to be 37˚ rotated about the x-axis; right 

figure is field taken picture to verify the dip-angle. 

For this experiment, a 6 inch PVC pipe of 12 m length (serving as a well) was 

buried horizontally at a depth of 1 m below the surface (Fig. 3.11). An aluminum foil 

target (Fig. 3.10), sandwiched between acrylic sheets, was placed around and centralized 

with respect to the buried pipe at a dip-angle of 37˚ about the vertical axis (x-axis). While 

designed to be placed at the prescribed dip-angle, the positioning was also geometrically 

verified using an image taken at the test site. Here, the target is stationary and the tool 

(outer shell) is moved inside the buried pipe. The tool is lowered into a trench through an 

opening at the end of the buried pipe and is pushed such that the midpoint between 

receivers moves in the range [-0.5, 0.5] m with respect to the fracture’s center. No 

adjustments are made for centralizing the outer shell inside the buried pipe. Data is 

recorded at intervals of 5 cm and sampled in the same manner as in the laboratory 

experiment. Then, the primary signal (a measurement far away from the fracture model) 

3
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is subtracted to obtain differential signals. The background formation conductivity is 

independently measured with an earth/ground tester (Fluke, 2006). 

 

Figure 3.11: Near-surface field-experiment setup illustration: 6” PVC pipe buried 

together with the fracture model (Fig. 3.10); the tool is pushed and pulled 

inside the well with the plastic string attached from the transmitter coil end; 

and all cable connections are attached from the same end. 
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Figure 3.12: Near-surface field-experiment setup illustration: Top picture shows the 6” 

PVC pipe and fracture model before the hole is covered with soil; bottom-

left picture shows the prototype tool on the surface before logging the well; 

and bottom-right picture shows the prototype tool just before it was pushed 

into the well. 

3.4. RESULTS AND DISCUSSION 

In the previous sections, details of a prototype tool, experiment set-ups, fracture 

model targets and measurements performed were discussed. In this section, the results of 

these experiments are summarized for different coil configurations, fracture parameters, 

and surrounding properties in magnitude and phase plots. 
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3.4.1. Investigation of Different Model Parameters 

The differential signals obtained for the various coil configurations are 

summarized in Table 3.2 which lists typical signal levels observed around a fracture 

model for each coil configuration (table columns) and for the different parameter of 

fractures sets in Fig. 3.7 (table rows). It should be noted that, while the results are time 

averaged at each tool position, deviations from the average of up to 10 µV for strong 

signals (>100 µV) and 1 µV for weak signals (>10 µV) were observed and that signals 

weaker than 0.1 µV were not detectable. 

Parameter Co-axial Co-planar Cross-polarized 

Surface Area >100 µV >10 µV <1 µV 

Aspect Ratio >100 µV >10 µV <1 µV 

Dip Angle >100 µV >100 µV >100 µV 

Table 3.2: Summary of maximum differential signal levels obtained for different fracture 

parameters and coil configurations. 

In the following subsections, the signal magnitudes are plotted as a function of the 

distance between the location of the fracture model and the midpoint of receivers for the 

five cases corresponding to the: {co-axial, surface area}, {co-axial, aspect ratio}, {co-

planar, aspect ratio}, {co-axial, dip-angle}, and {cross-polarized, dip-angle}. For each of 

the cases, the plots show both simulated (solid line) and the measured (circles) results. 

Excellent agreement between the signal magnitudes are observed for all the cases tested. 

The maximum error observed was less than 10% with most cases showing less than 1% 

error. 
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3.4.1.1. Circular Fracture Models 

Beginning with the co-axial coil configuration, for which the measured signal 

levels are the largest (Table 3.2), Fig. 3.13 presents the signals measured for the model 

targets in Fig. 3.7(a). This configuration’s sensitivity to the target’s area is evident from 

the increase in the signal magnitude with the fracture area; however, fractures of greater 

aspect ratio can potentially produce similar signal levels in this coil configuration. 

 

Figure 3.13: In-air test results for the co-axial (zz) coil configuration and for the fracture 

model targets in Fig. 3.7(a). Solid lines mark the simulated results, and red 

dots mark the measured signals.  

3.4.1.2. Elliptical Fracture Models 

Only the co-planar configuration measurements were shown to be sensitive to the 

symmetry of a fracture, Yang et al. (2015). Hence, additional information from this 

configuration can be used for the determination of the fracture aspect ratio. First, in Fig. 

3.14, co-axial signals are shown for the targets of Fig. 3.7(b). As can be seen from the 
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plot, the magnitude of signals is strong; however, symmetric fractures of an equivalent 

size can potentially produce similar signal levels in this coil configuration. In Fig. 3.15, 

co-planar signals are shown for the same target where the signals are much weaker than 

those in the co-axial configuration. It is evident that these signals are sensitive to the 

aspect ratio of the fractures. 

 

Figure 3.14: In-air test results for the co-axial (zz) coil configuration and for the fracture 

model targets in Fig. 3.7(b). Solid lines mark the simulated results, and red 

dots mark the measured signals. 
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Figure 3.15: In-air test results for the co-planar (yy) coil configuration and for the fracture 

model targets in Fig. 3.7(b). Solid lines mark the simulated results, and red 

dots mark the measured signals. 

3.4.1.3. Rotated Fracture Models 

The response to the fracture’s dip-angle (models are shown in Fig. 3.7-c) is 

demonstrated for both co-axial (Fig. 3.16) and cross-polarized configurations (Fig. 3.17). 

As the dip-angle increases, the received signals get weaker for the co-axial configuration 

and stronger for the cross-polarized configuration. It should be noted that all three 

configurations show strong sensitivity to the dip-angle (Table 3.2). 
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Figure 3.16: In-air test results for the co-axial (zz) coil configuration and for the fracture 

model targets in Fig. 3.7(c). Solid lines mark the simulated results, and red 

dots mark the measured signals. 
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Figure 3.17: In-air test results for the cross-polarized (zy) coil configuration and for the 

fracture model targets in Fig. 3.7(c). Solid lines mark the simulated results, 

and red dots mark the measured signals. 

3.4.2. Near Surface Field Experiment: Effect of Conductive Background 

The signal magnitudes measured in the near-surface field experiment are 

presented next. During the measurements, soil conductivity in the range of 15-20 mS/m 

was measured (computed signals showed little dependence to the background 

conductivity). Only the co-axial configuration was used to produce the magnitude plot in 

Fig. 3.18. Once again, good agreement can be observed (<10 % of relative error) between 

the numerical and experimental results. 
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Figure 3.18: Near-surface buried target test results for the co-axial (zz) coil configuration 

and for the fracture model target in Fig. 3.10. Solid lines mark the simulated 

results, and red dots mark the measured signals. 

3.4.3. Phase Plots 

Finally, Fig. 3.19 presents the signals for all in-air lab and near-surface field tests 

(simulation – black dots, measurement – red dots) as polar plots. Examination of each of 

the sub-figures indicates that, while good agreement between the simulation and 

measurements was obtained for the magnitude, there is a phase mismatch between 

simulated and measured signals. The mismatch remains roughly constant across all 

measurements of a given coil configuration, and it can be attributed to the referencing; 

the simulated signals are referenced to the transmitter coil current while the measured 

signals are referenced to its voltage. Ideally, this should result in a phase difference of 

90˚; however, the plots suggest that this mismatch ranges between 92˚ and 102˚, 

depending on the coils. This might not be an issue; as Fig. 3.19 shows that, for all studied 
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cases, the in-phase (real) components with coil current dominate the quadrature 

(imaginary) components. 

 

 

Figure 3.19. 
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(c) (d)

(e) (f)
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Figure 3.19: Phase plots for the air-tests: (a) co-axial coils with orthogonal fractures of 

different areas, (b) co-axial coils with orthogonal fractures of different 

aspect ratio, (c) co-planar coils with orthogonal fractures of different aspect 

ratio, (d) co-axial coils with different orientation of fractures, (e) cross-

polarized coils with different orientation of fractures, and for the near-

surface test (f) co-axial coils with the orthogonal fracture. Black and red 

dots identify the numerical simulations and field measurements, 

respectively. 

3.4.4. Signal to Noise Ratio 

In the previous magnitude plots, results are shown with average values at each 

sampling point. In this section, the variation of total signals with respect to their 

magnitude is shown for some specified cases (Fig. 3.20). 
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Figure 3.20: Signal to noise ratio of air tests: (a) co-axial measurements with 10 cm 

radius symmetric and orthogonal fracture model; (b) co-axial measurements 

with 20 cm radius symmetric and orthogonal fracture model; (c) co-planar 

measurements with 20 cm major and 10 cm minor radius elliptical and 

orthogonal fracture model; and (d) cross-polarized measurement with 20 cm 

radius and 61˚ rotated fracture model; the magnitude of total bucked signals 

is shown on the left axis and the variation of magnitude on the right axis. 

As can be seen from Fig. 3.20, the variation of total signals is dependent on its 

magnitude. As the magnitude of the signal increases, the variation increases as well with 

the signal to noise ratio being more than 100 for all coil configurations. The same type of 
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plot for the near surface field test is shown in Fig. 3.21 where the signal to noise ratio is 

more than 100 again. Based on the results of this section, we will include one percent 

noise in the inversion analyses presented in the next chapter. 

 

Figure 3.21: Signal to noise ratio of near-surface field test: co-axial measurements with 

the fracture model shown in Fig. 3.10; the magnitude of total bucked signals 

is shown on the left axis and the variation of magnitude on the right axis. 

3.5. CONCLUSION 

A prototype fracture diagnostics tool, consisting of co-axial, co-planar, and cross-

polarized configurations of transmitter and receiver coils operated at 1 kHz, was built. 

Initial tests have been conducted to confirm the component properties and detectability 

range. Then, the prototype tool was tested in-air using a specially designed experimental 

setup with scaled targets that emulate propped hydraulic fractures. Tests were also 

conducted with the target buried underground in a near-surface trench. The measured 

results for both in-air and near-surface tests were in excellent agreement with those 
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simulated by the integral equation-based numerical model (average relative differences of 

less than 3% with a maximum difference of 10%). This agreement increases the 

confidence in the results of existing numerical studies which also cover conditions 

beyond those considered in the experiments. The high signal to noise ratios (over 100) of 

the measured signals indicate that, indeed, an EM induction tool can be used to extract 

the propped length (or area), orientation and height of propped hydraulic fractures in 

open-hole applications. 

Each pair of transmitters and receivers exhibits sensitivity to different properties 

of conductive fractures. The co-axial coil configuration signals are strong (>100 μV) and 

highly sensitive to the fracture’s surface area (or length). A combination of signals from 

the co-axial and cross-polarized configurations (both >100 μV) can enable estimation of 

the fracture’s dip-angle. The co-planar configuration signals, however, are of relatively 

lower magnitude (only >10 μV) and, while theoretically are sensitive to the fractures’ 

aspect ratios, might be too low to be sensed in a realistically noisy environment. While 

the design of (x, y)-oriented transmitter coils that can deliver greater power is 

challenging, due to geometrical constraints and heating considerations, improved 

sensitivity to the aspect ratio may be obtained by modifying the tool’s design and 

operating mode, as will be explored in Chapter 5. Further research in Chapter 4 is 

dedicated to the development of parametric inversion techniques tailored to such tools. 

Lastly, for the largest tested fracture model (circular model with 20 cm radius and 

orthogonal orientation), the scattered differential signals are approximately 100 times 

stronger than those produced by a circular hydraulic fracture of 1 m radius, 5 mm 

thickness (if the coil spacing is 1 meter, it can investigate fractures of ~1 meter radius) 

and the effective conductivity of 333 S/m (Zhang et al., 2016). However, the tool is 

expected to be operated downhole with a larger power supply, several hundred A ∙ m2 
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(Heagy and Oldenburg, 2013) giving rise to greater currents. As a result, in the field, 

signal levels for short spacing coil couples are going to be close to those obtained in this 

experiment. 

 

3.6. NOMENCLATURE 

Symbol  definition unit 

A  cross-sectional area m
2
 

B  magnetic field mG 

G  conductance S 

H  magnetic flux density A-m 

I  peak current A 

M  magnetic dipole moment A∙m
2
 

N  number of turns - 

N
i
  induction number - 

P  power W 

R  resistance Ω 

U, V  voltage V 

X, Y  lock-in amplifier readings V 

   real component of detected signal V 

   imaginary component of detected signal V 

    
d  diameter m 

f  frequency Hz 

h  the height of a coil m 

j  complex number - 

k  wave number 1-m 

l  length m 

r  radius m 

t  thickness m 

u  orientation of receiver coil - 

w  weight factor  

v  orientation of transmitter coils - 

    
δ  skin depth m 

µ  magnetic permeability H-m 

µr  relative magnetic permeability - 

µo  free space magnetic permeability H-m 

ρ  resistivity Ω∙m 

σ  conductivity S-m 
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ω  angular frequency Hz 
    

SI derived 

unit 

 definition SI base units 

F  Farad s
4
∙A

2
-m

2
∙kg 

T  Tesla kg-A∙s
2
 

H  Henry kg∙m
2
-s

2
∙A

2
 

Hz  Hertz 1-s 

Ω  Ohm kg∙m
2
-s

3
∙A

2
 

S  Siemens s
3
∙A

2
-kg∙m

2
 

V  Volt kg∙m
2
-s

3
∙A 

W  Watt kg∙m
2
-s

3
 

 

 
  

CGS unit  definition SI base units 

G  Gauss 1E-4[kg-A∙s
2
] 
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Chapter 4:  INVERSION OF EM DATA TO OBTAIN FRACTURE 

GEOMETRY AND CONDUCTIVITY 

In this chapter, we develop an inversion algorithm for the estimation of fracture 

geometry and conductivity. The main goal is to have a time efficient simulation tool 

where the same analysis can be carried out with real field data. The knowledge of the 

fracture geometry and conductivity will help to improve the efficiency of fracturing 

operations, and in the long run, it will help completion engineers to design operations 

with the optimum number of stages and clusters. The results presented in this chapter also 

provide insight into the resolution obtained with the low frequency induction tool. 

We developed a simulated annealing and neighbor-approximation based 

stochastic inversion algorithm, and first, examined it with a testing function to tune the 

optimization parameters. Then, several cases were run to invert the “measured data” and 

appraise the estimation of different fracture parameters such as conductivity, size, dip-

angle, etc. An approximation-based direct inversion technique is also proposed for 

orthogonal fractures to minimize the computation time. Lastly, the effect of neighbor 

fractures is evaluated, and the inversion algorithm is utilized to recover the fracture 

distribution along the well for different stages. In the computations, nominal values are 

used for the tool. Our inversion results are shown to be robust and in agreement with the 

true values. The hybrid inversion algorithm is shown in the Appendix of this dissertation. 

4.1. LITERATURE REVIEW 

After logging the well with the induction tool, information on the proppant 

distribution in the fracture can be extracted in two different ways. The more practical and 

computationally less intensive approach is the parametrization of fractures. Yang et al. 

(2016) used circular (or elliptical) fractures to characterize the hydraulic fractures and 
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utilized parametric inversion technique where the model parameters are evaluated 

independently in each iteration. This technique leads to a small number of model 

parameters increasing time efficiency. The other approach is the generation of a 

conductivity map which provides information about the secondary fracture branches. In 

this case, one challenge is the intensive computational time required for the 3D 

volumetric solution of Maxwell’s equations. The other challenge is the solution of the 

inherently under-determined problem where the number of model parameters will be 

dependent on the resolution requirements. In this chapter, we have selected the first 

approach with the main difference from the previously mentioned study (Yang et al., 

2016) being our application of the multidimensional stochastic inversion technique which 

is based on a simulated annealing and a neighbor-approximation methods. 

Typically, stochastic inversion techniques randomly select a starting point in the 

model space and moves are decided based on control parameters. Simulated annealing 

(Fouskakis and Draper, 2002; Sen and Stoffa, 1995) uses temperature as a control 

parameter for the search direction and jump distance which decreases the randomness of 

movements. In this study, we start with multiple models, and we use the neighbor 

approximation (Sambridge, 1999) to benefit from the data history and to avoid additional 

forward model runs. The tuning parameters are 1) the cooling schedule, 2) the model 

population and 3) the number of iterations. 

4.1.1. Tensor of Detected Signal 

In previous studies, Yang et al. (2015) and Zhang et al. (2016), it was shown that 

any electromagnetic induction tool aimed at fully diagnosing hydraulic fractures requires 

the use of a tri-axial transmitter and receiver coil system where a 3 × 3 tensor is 

measured for the scattered voltage at each sampling point: 
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[
𝑉𝑥𝑥 𝑉𝑥𝑦 𝑉𝑥𝑧

𝑉𝑦𝑥 𝑉𝑦𝑦 𝑉𝑦𝑧

𝑉𝑧𝑥 𝑉𝑧𝑦 𝑉𝑧𝑧
]

𝑖

 (4.1) 

where 𝑖 is the index of the sampling point. The following model parameters: 

conductance, area, aspect ratio (shape), and dip-angle are sensitive to the different coil 

orientations. Co-axial measurements (𝑉𝑧𝑧) are sensitive to the fracture cross-sectional area 

until a certain saturation point but cannot differentiate fractures of the same area with 

different shapes or dip-angles. The short spacing can detect small fractures but cannot 

distinguish large ones. The signals on the long spacing receiver are inherently weak but 

can distinguish large fractures. The saturation limits for the short and long coil spacings 

were shown to be 10 m
2
 and 1000 m

2
, respectively. Co-planar measurements (𝑉𝑥𝑥 or 𝑉𝑦𝑦) 

can differentiate axially symmetric fractures from asymmetric ones, but they were found 

to be weak in the previous chapter. Cross-polarized measurements (off-diagonal 

components) can quantify fracture dip-angle and become more pronounced as the dip-

angle increases (Yang et al., 2015). For an accurate estimation of all model parameters, 

we suggest using a combination of various orientations. In this study, we define an 

objective function in such a way that it includes all the signals from different coil 

spacings and configurations. 

4.2. INVERSION TECHNIQUES 

In this chapter, we will show results for a mono-axial transmitter (axis oriented in 

the wellbore direction) and tri-axial receiver coils. Two strong signals are obtained from 

this transmitter-receiver coupling: co-axial and cross-polarized signals. They are used in 

the cost function as follows: 

𝐸 = (𝐸𝑧𝑧 + 𝐸𝑦𝑧)
short

+ (𝐸𝑧𝑧 + 𝐸𝑦𝑧)
long

 (4.2) 
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This cost function combines all four signals effectively and enables a global 

search on the fracture parameters. The signal levels in the long coil spacing are inherently 

weaker than that of short spacing. Therefore, signals are normalized as follows to get an 

equal weight on the cost function for the short and long spacing: 

𝐸𝑢𝑣 =∑(
Δ𝑈𝑢𝑣

sca,𝑖 − Δ�̃�𝑢𝑣
sca,𝑖

Δ�̃�𝑢𝑣
sca,𝑖

)

2

𝑖

 (4.3) 

The tilde refers to the measured (true or observed) data. Fig. 4.1 shows the error map for 

a fracture with 8 m radius, 100 S/m conductivity and 30˚ dip-angle calculated with Eq. 

4.2 where it is clearly seen that there is a global minimum at the true model parameters. 

For all our presentations here, “calculated data” (differential signal without tilde in Eq. 

4.3) is generated using coarser surface meshes, a node spacing factor of four (ref. Chapter 

2). For the “measured data”, finer surface mesh, a node spacing factor of ten, is used with 

an additional one percent random noise. 
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Figure 4.1: Error map calculated for the 8 m radius fracture with a thickness of 5mm, 

conductivity of 100 S/m and dip-angle of 30˚: upper plot is the fracture 

conductivity vs. fracture radius, and lower plot is the fracture dip-angle vs. 

fracture radius. 
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4.2.1. Derivative Free Directional Search 

The main goal of the inversion algorithm is to minimize the error calculated using 

Eq. 4.2, and the work flow is outlined in Fig. 4.2. First, we define the limits for each 

individual model parameter. The lower bound is defined as 𝐦 in and upper bound 

as 𝐦 ax. Then the first population of models is randomly generated as follows: 

𝐦1 = 𝐦 in + 𝑟 ∙ (𝐦
 ax −𝐦 in) (4.4) 

where 𝑟  is the random number generated from the uniform distribution. Errors for the 

population are then evaluated, and the production of new parameters for each model in 

the population is carried out as follows: 

𝑚𝑖
new = 𝑚𝑖

old ∓ 𝑟𝑢 ∙ 𝑇 ∙ ∆𝑚𝑖 (4.5) 

where T is the control temperature which gradually decreases according to the predefined 

schedule: 

𝑇 = 0 01(𝑖−1) (𝑁−1)⁄  (4.6) 

When the iteration number, 𝑖 is one, 𝑇 is 1 and approaches 0.01 when 𝑖 is equal to the 

maximum number of iterations which is shown with 𝑁 in the equation above. The 

cooling schedule allows larger jumps at the beginning of the search and smaller jumps 

toward the end of the search. As a general rule, a faster cooling schedule may cause the 

solution to be stuck in a local minimum. A slower cooling schedule is more likely to find 

a global minimum at the cost of increasing the computation time. 

To avoid additional forward model runs, due to the one-dimensional search, data 

history is used to approximate error to the closest neighbor point. The distance from the 

point of interest is calculated with the following equation: 

‖𝑚a −𝑚b‖ = √((𝑚a −𝑚b)T ∙ 𝐶 ∙ (𝑚a −𝑚b)) (4.7) 
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𝐶𝑖𝑖 = (𝑚𝑖,𝑚𝑎𝑥 −𝑚𝑖,𝑚𝑖𝑛)
−2

 (4.8) 

The condition of accepting a new point is defined as follows: 

𝐸(𝐦new) ≤ 𝐸(𝐦old)     r    𝑇 > 𝑟  (4.9) 

Here, the temperature (𝑇) is used to decide whether to keep a larger error model or not. 

At the beginning of the search, we have a high chance of accepting new models with 

larger errors which decreases almost to zero toward the end of the search. Finally, the 

algorithm is terminated when the maximum number of iterations is achieved. 

 

 

Figure 4.2: Flow diagram of simulated annealing and neighbor approximation based 

hybrid inversion algorithm. 

To test the model the following equation is used as a testing function: 
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𝐸 = (1 −∏   n(  nc(𝑚𝑖))√|  nc(𝑚𝑖)|
4

𝑁

𝑖=1

)

2

 (4.10) 

This testing function allows having a different number of model parameters, and Fig. 4.3 

shows error plots for a one- and two-dimensional problem domain. 

 

Figure 4.3: One- and two-dimensional plot of the testing function shown in Eq. 4.10. 

The output of the algorithm for the test function is shown in Fig. 4.4. We start the 

search with 10 model samples. In the given iteration, the open black circles show errors 

for all models and the red filled circle is a model with the minimum error. In all 

dimensions, one to four, results converge to the global minima within 200 iterations. For 

the inversion analysis on synthetic data, we will use a smaller population and iterations to 

lower the computation time. 
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Figure 4.4: Inversion results for the test function in one, two, three, and four dimensions: 

open circles show errors for all models and red filled circles show a model 

with the minimum error in the given iteration. 

4.2.2. Approximation Based Linear Regression 

As discussed in Chapter 2, the approximation introduced in Eq. 2.36 has a linear 

relationship with the conductance. Implementing this equation into Eq. 2.25 and then into 

Eq. 1.1, the dependence of the received signal on the conductance for a given location of 

the tool will be as follows:  

𝑈𝑧𝑧,𝑛
sca = −𝑗𝜔𝜇o𝑁rx𝐴rx𝐺∬∇𝐺R(𝐫𝑛, 𝐫′) × 𝐄

inc(𝐫′)

𝑆

𝑑𝑆′ (4.11) 

2D

4D

1D

3D

2D

4D

1D
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where 𝑛 is the receiver number and the differential signal is calculated by subtracting the 

two receiver signals. If we change the error function to:  

𝐸𝑧𝑧 =∑(Δ𝑈𝑧𝑧
sca,𝑖 − Δ�̃�𝑧𝑧

sca,𝑖)
2

𝑖

 (4.12) 

and if we take the derivative with respect to conductance, then we can calculate the 

conductance for the given geometry as follows: 

𝐺 =∑(Δ�̃�𝑧𝑧
sca,𝑖 𝜕Δ𝑈𝑧𝑧

sca,𝑖

𝜕𝐺
)

𝑖

∑(
𝜕Δ𝑈𝑧𝑧

sca,𝑖

𝜕𝐺
)

2

𝑖

⁄  (4.13) 

Here, 𝑖 is the sampling point number. This approach will be limited to orthogonal 

fractures and can be used to reduce the computation time required for the inversion 

analysis. 

4.3. HYDRAULIC FRACTURE IMAGING 

In this section, the proposed inversion algorithms are applied to single fracture 

models, and then an inversion strategy is proposed for use in the presence of neighbor 

fractures. For all results, the number of iterations is 100, the population is 5, and the 

number of model parameters is either 2 or 3 depending on the fracture under 

consideration. The first two model parameters are fracture conductivity and radius. If the 

observed data has significant signal levels on the cross-polarized configuration, the model 

parameters include dip-angle as well. Gaussian noise with a mean of one percent of the 

signal level is added to the “measured data” after calculating them with a node spacing 

factor of ten. In the inversion analyses, meshes are coarsened by selecting the node 

spacing factor to be four. Typical single- and multi-cluster analyses take 10 minutes and 

10 hours, respectively. 
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4.3.1. Single Cluster Analysis 

The stochastic inversion results for a single fracture inversion are shown in error 

figures and box charts. The figures show error values calculated with Eq. 4.2: at the given 

iteration number, the open circles show errors for all evaluated models, and the red filled 

circle shows a model with the minimum error. The box plots show the statistical 

information for the fifty lowest error models. In each box, the central mark indicates the 

median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively. The whiskers extend to the lower and upper adjacent values, and outliers are 

shown with the ‘+’ symbol. The approximation based linear regression results are shown 

only for orthogonal fractures; lines of conductivity values calculated with Eq. 4.13 for 

short and long coil spacings is shown where the intersection point of lines refers to the 

estimated result. 

4.3.1.1. Circular Fracture 

In the first example, the true fracture model is an orthogonal circle with a radius 

of 8 m and a conductivity of 100 S/m. Fig. 4.5 shows the error and box plots: errors show 

a decreasing trend with the number of iterations, and the whiskers of both box plots cover 

the interval which includes the true parameters. The best inversion result (model with the 

lowest error) has a radius of 8.08 m and a conductivity of 100 S/m. 
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Figure 4.5: Inversion results for a circular and orthogonal fracture: true fracture model 

has the radius of 8 m and uniform conductivity of 100 S/m. Left figure 

shows a change in the error with the number of iterations: open circles show 

errors for all models and red filled circles show a model with the minimum 

error in the given iteration; and right figures show calculated conductivity 

and radius box plots for the best 50 cases. 

Fig. 4.6 shows a comparison of the differential signals calculated for the true and 

best inverted models in both short and long coil spacings. As it can be seen in the plots, 

the curves are essentially indistinguishable showing an excellent agreement for both real 

and imaginary components. 
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Figure 4.6: The comparison of true (solid black line) and the best inverted (dashed red 

line) differential signals for a circular and orthogonal fracture with uniform 

conductivity distribution: true fracture model has the radius of 8 m and 

constant conductivity of 100 S/m; differential signals are shown for a co-

axial coil configuration in short (left) and long (right) coil spacings. 

Fig. 4.7 shows results for an approximation based linear regression. The short and 

long spacing regression lines intersect at a radius of 8.1 m and a conductivity of 100 S/m, 

and these results are in a good agreement with the stochastic inversion results. 

 

 

 

 

 

 

 



 93 

 

Figure 4.7: Approximation based inversion for a circular and orthogonal fracture: true 

fracture model has a radius of 8 m and a constant conductivity of 100 S/m; 

calculated conductivity values are shown for short (red) and long (blue) coil 

spacings. 

4.3.1.2. Rotated Fracture 

In this example, the true fracture model is a circle with a radius of 8 m, a constant 

conductivity of 100 S/m and a dip-angle of 30˚ (rotated about the vertical axis). Fig. 4.8 

shows the error and box plots: errors show the same decreasing trend with the number of 

iterations, and the whiskers of all box plots cover the interval which includes the true 

parameters. The best inversion result (model with the lowest error) has a radius of 8.09m, 

a conductivity of 100S/m and a dip-angle of 30.2˚. 
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Figure 4.8: Inversion results for a circular and rotated fracture: true fracture model has a 

radius of 8 m, a uniform conductivity of 100 S/m and a dip-angle of 30
o
. 

Left figure shows a change in the error with the number of iterations: open 

circles show errors for all models and red filled circles show a model with 

the minimum error in the given iteration; and right figures show calculated 

conductivity, radius and dip-angle box plots for the best 50 cases. 

Fig. 4.9 shows a comparison of the differential signals calculated for the true and 

best inverted models for both short and long coil spacing including both co-axial and 

cross-polarized configurations. As can be seen in the plots, the curves are in good 

agreement for both real and imaginary components for all spacings and configurations. 
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Figure 4.9: The comparison of true (solid black line) and the best inverted (dashed red 

line) differential signals for a circular and rotated fracture with uniform 

conductivity distribution: true fracture model has a radius of 8 m, a constant 

conductivity of 100 S/m and a dip-angle of 30
o
; differential signals are 

shown for co-axial (upper row) and cross-polarized (lower row) coil 

configurations in short (left column) and long (right column) coil spacings. 

4.3.1.3. Elliptical Fracture 

In this example, the true fracture model is an orthogonal ellipse with a major 

radius of 8 m, an aspect ratio of 1.5 and a conductivity of 100 S/m. Fig. 4.10 shows the 

error and box plots: errors show a decreasing trend with the number of iterations, and the 

whiskers of the conductivity box plot cover the interval which includes the true 
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parameter. For the box plot of fracture radius, however, whiskers include the effective 

radius which is defined as the square root of the product of major and minor radii. The 

model with the lowest error is a circle with a radius of 6.46 m and a conductivity of 

100S/m. 

 

Figure 4.10: Inversion results for an elliptical and orthogonal fracture: true fracture model 

has a major radius of 8 m, an aspect ratio of 1.5 and a constant conductivity 

of 100 S/m. Left figure shows a change in the error with the number of 

iterations: open circles show errors for all models and red filled circles show 

a model with the minimum error in the given iteration; and right figures 

show calculated conductivity and radius box-plots for the best 50 cases. 

Fig. 4.11 compares the differential signals calculated for the true and best inverted 

models in both short and long coil spacings. It shows very good agreement for both real 

and imaginary components. 
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Figure 4.11: The comparison of true (solid black line) and the best inverted (dashed red 

line) differential signals for an elliptical and orthogonal fracture with 

uniform conductivity distribution: the true major radius is 8 m, the aspect 

ratio is 1.5 and the conductivity is 100 S/m. Differential signals are shown 

for a co-axial coil configuration in short (left) and long (right) coil spacings. 

Fig. 4.12 shows results for the approximation based linear regression. The short 

and long spacing regression lines intersect at a radius of 6.4 m and a conductivity of 100 

S/m, and these results are in a good agreement with the stochastic inversion results. 
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Figure 4.12: Approximation based inversion for an elliptical and orthogonal fracture: the 

true fracture model has a major radius of 8 m, an aspect ratio of 1.5 and a 

constant conductivity of 100 S/m; calculated conductivity values are shown 

for short (red) and long (blue) coil spacings. 

To see the effect of rotation in the inversion of elliptical fractures, we run the true 

model with a major radius of 8 m, an aspect ratio of 1.5, a conductivity of 100 S/m and a 

dip-angle of 30˚ (rotated about the x-axis). Fig. 4.13 shows the error and box plots: errors 

show a decreasing trend with the number of iterations, and the whiskers of conductivity 

and dip-angle box plots cover the interval which includes the true model parameters. For 

the fracture radius box plot, however, whiskers cover the range for an effective radius. 

The model with the lowest error is a circle with a radius of 6.47 m, a conductivity of 102 

S/m and a dip-angle of 31˚. 

Short Spacing
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Figure 4.13: Inversion results for an elliptical and rotated fracture: the true fracture model 

has a major radius of 8 m, an aspect ratio of 1.5, a conductivity of 100 S/m, 

and a dip-angle of 30˚. Left figure shows a change in the error with the 

number of iterations: open circles show errors for all models and red filled 

circles show a model with the minimum error in the given iteration; and 

right figures show calculated conductivity, radius and dip-angle box plots 

for the best 50 cases. 

Fig. 4.14 shows the comparison of the differential signals calculated for the true 

and best inverted models in both short and long coil spacings including both co-axial and 

cross-polarized configurations. It shows very good agreement for both real and imaginary 

components for all combinations. 
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Figure 4.14: The comparison of true (solid black line) and the best inverted (dashed red 

line) differential signals for an elliptical and rotated fracture with uniform 

conductivity distribution: the true fracture model has a major radius of 8 m, 

an aspect ratio of 1.5, a constant conductivity of 100 S/m, and a dip-angle of 

30˚; differential signals are shown for co-axial (upper row) and cross-

polarized (lower row) coil configurations in short (left column) and long 

(right column) coil spacings. 

4.3.1.4. Conductivity Distribution 

In this example, the true fracture model is a circle with a radius of 8 m, and its 

conductivity decreases linearly in the radial direction (Fig. 4.15); the conductivity is 100 

S/m at the wellbore and 0 S/m at the fracture tip. 
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Figure 4.15: A fracture model with varying conductivity: conductivity at the wellbore is 

100 S/m and 0 S/m at the fracture tip, decreasing linearly. 

Fig. 4.16 shows the error and box plots: errors show a decreasing trend with the 

number of iterations, and the whiskers of box plots cover the interval which includes the 

effective parameters. The model with the lowest error is a circle with a radius of 4.37 m 

and a constant conductivity of 85 S/m. 
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Figure 4.16: Inversion results for a circular and orthogonal fracture with varying 

conductivity: the true fracture model has a radius of 8 m, and the 

conductivity at the wellbore is 100 S/m and 0 S/m at the fracture tip, 

decreasing linearly. The left figure shows a change in the error with the 

number of iterations: open circles show errors for all models and red filled 

circles show a model with the minimum error in the given iteration; and 

right figures show calculated conductivity and radius box plots for the best 

50 cases. 

Fig. 4.17 shows a comparison of the differential signals calculated for the true and 

best inverted models in both short and long coil spacings. It shows a good agreement for 

both real and imaginary components. 
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Figure 4.17: The comparison of true (solid black line) and the best inverted (dashed red 

line) differential signals for a circular and orthogonal fracture with varying 

conductivity: the true fracture model has a radius of 8 m, and the 

conductivity at the wellbore is 100 S/m and 0 S/m at the fracture tip, 

decreasing linearly. Differential signals are shown for a co-axial coil 

configuration in short (left) and long (right) coil spacings. 

Fig. 4.18 shows results for the approximation based linear regression. The short 

and long spacing regression lines intersect at the radius of 4.5 m and conductivity of 86 

S/m, and these results are in a good agreement with the stochastic inversion results. 
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Figure 4.18: Approximation based inversion for a circular and orthogonal fracture with 

varying conductivity: the true fracture model has a radius of 8 m, and the 

conductivity at the wellbore is 100 S/m and 0 S/m at the fracture tip, 

decreasing linearly; calculated conductivity values are shown for short (red) 

and long (blue) coil spacings. 

To see the effect of rotation in the inversion of fractures with varying 

conductivity, we ran the true circular fracture model with a radius of 8 m and a dip-angle 

of 30˚ (rotated about the x-axis). The conductivity at the wellbore is 100 S/m, and it is 

decreasing linearly to 0 S/m at the fracture tips. Fig. 4.19 shows the error and box plots: 

errors show a decreasing trend with iteration numbers, and the whiskers of the dip-angle 

box plot cover the interval which is very close to the true parameter. For the box plot of 

fracture radius and conductivity, however, whiskers cover the range which includes the 

effective parameters. The inverted model with the lowest error has a dip-angle of 29˚, a 

radius of 4.57 m and a constant conductivity of 84 S/m. 

Short Spacing
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Figure 4.19: Inversion results for a circular and rotated fracture with varying 

conductivity: the true fracture model has a radius of 8 m and a dip-angle of 

30˚, and the conductivity at the wellbore is 100 S/m and 0 S/m at the 

fracture tip decreasing linearly. The left plot shows a change in the error 

with the number of iterations: open circles show errors for all models and 

red filled circles show a model with the minimum error in the given 

iteration; and right figures show calculated conductivity, radius and dip-

angle box plots for the best 50 cases. 

Fig. 4.20 compares the differential signals computed for the true and best inverted 

models in both short and long coil spacings with both co-axial and cross-polarized 

configurations. The results of both models show very good agreement for both real and 

imaginary components. 
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Figure 4.20: The comparison of true (solid black line) and the best inverted (dashed red 

line) differential signals for a circular and rotated fracture with varying 

conductivity: the true fracture model has a radius of 8 m and a dip-angle of 

30˚, and the conductivity at the wellbore is 100 S/m and 0 S/m at the 

fracture tip, decreasing linearly; differential signals are shown for co-axial 

(upper row) and cross-polarized (lower row) coil configurations in short 

(left column) and long (right column) coil spacings. 

4.3.1.5. Heterogeneous Background Conductivity 

All the previous forward/inversion models were run with homogeneous 

background (rock) conductivity. In this section, we simulate heterogeneous background 

conductivity using the axial hybrid method. Adopting the layering and meshing scheme 

shown in Fig. 2.13, the uniform region of the mesh is selected between -1 and 1 m with 
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10 cm intervals. The computation domain is truncated at 100 m on both sides with the 

grid size ratio of 1.25 in the expanding region. At every grid, in each of the three layers, 

we use a randomly selected conductivity between 0 and 1 S/m where the overall mean 

conductivity is 0.49 S/m. Fig. 4.21 shows the primary signals for the formation with the 

described conductivity properties.  

 

Figure 4.21: Tool response to the heterogeneous background formation; no-fracture case: 

real and imaginary components of primary signals are shown for co-axial 

coil configuration in short (left) and long (right) coil spacings. 

After introducing a fracture model to the formation with the background 

conductivity properties described above, we simulate the tool response and subtract the 

non-fracture case response. The true model of the fracture is an orthogonal circle with a 

radius of 8 m and a conductivity of 100 S/m. We then run the inversion algorithm with 

the background (rock) formation conductivity of 0.49 S/m. Fig. 4.22 shows the error and 

box plots: errors show a decreasing trend with the iteration number, and the whiskers of 

both box plots cover the intervals which include the true parameters. The model with the 

lowest error has a radius of 8.1 m and a conductivity of 99.4 S/m. 
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Figure 4.22: Inversion results for a circular and orthogonal fracture in the heterogeneous 

formation conductivity: true fracture model has a radius of 8 m and a 

uniform conductivity of 100 S/m. Left plot shows a change in the error with 

the number of iterations: open circles show errors for all models and red 

filled circles show a model with the minimum error in the given iteration; 

and the right figures show calculated conductivity and radius box plots for 

the best 50 cases. 

Fig. 4.23 compares the differential signals computed for the true and best inverted 

models in both short and long coil spacings. The results show good agreement for both 

real and imaginary components. 
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Figure 4.23: The comparison of true (solid black line) and the best inverted (dashed red 

line) differential signals for a circular and orthogonal fracture in a 

heterogeneous formation conductivity: true fracture model has the radius of 

8 m and uniform conductivity of 100 S/m. Differential signals are shown for 

a co-axial coil configuration in short (left) and long (right) coil spacings. 

Measurements with and without fracture are subtracted for the true 

differential signals; and for the best inverted signals, average formation 

conductivity is used in the simulation. 

This exercise shows the importance of an accurate subtraction of signals before 

and after fracturing. If we repeat the same analyses without the subtraction, the obtained 

accuracy is very poor; the result will be a circular fracture with the radius of 2 m and 

conductivity of 150 S/m. 

4.3.2. Multi-Cluster Analysis 

In a typical hydraulic fracturing operation, there are more than 20 stages and 

every stage includes 3 to 10 perforation clusters. Each of these fractures will affect the 

signals received by the tool. To evaluate this effect, we run many cases varying the 

number of fractures. Then, we implement a multi-fracture inversion algorithm to get the 

distribution of proppant in each fracture. 
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4.3.2.1. Effect of Neighboring Fractures 

After completing the single fracture analysis, we ran simulations for a fracturing 

stage while varying the number of propped fractures to estimate how the neighboring 

fractures affect the signals coming from the fracture of interest. Fig. 4.24 shows the index 

number for each fracture. 

 

Figure 4.24: Wellbore model used for the evaluation of neighbor effects: fractures are 

circular and orthogonal with a radius of 10 m and a separation distance of 9 

m; fractures are numbered with respect to the fracture of interest (middle 

fracture). 

Fig. 4.25 plots three different cases: a) one neighboring fracture [-1 0 1], b) two 

neighboring fractures [-2 -1 0 1 2], and c) three neighboring fractures [-3 -2 -1 0 1 2 3]. 

The following plots show in-phase components of the received signals for short and long 

coil spacings. 

9m

10 m

-2 -1 0 1 2 3-3
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Figure 4.25: The effect of neighbors on the differential signals recorded in short (upper) 

and long (lower) coil spacings: fractures are shown in Fig. 4.24; plots show 

differential signals for one (a), two (b) and three (c) neighbors on both sides 

of the middle fracture. 

In the short spacing receiver, we do not see any significant effect of the 

neighboring fractures. In the long spacing receiver, however, the two closest neighbors 

are interfering with the signal of interest. The cases with two and three neighbors give 

almost the same signals around the fracture of interest (with zero index number). Hence, 

in the next section, we include the effect of only the closest two neighboring fractures in 

the multi-fracture inversion to minimize the computation time. 
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4.3.2.2. Multi-Fracture Inversion 

The technique used for the inversion is to first invert the data for each fracture 

assuming that it has no neighbors. Then, we use the best inverted parameters as an initial 

guess for the inversion with multiple fractures. In this second iterative step, we include 

the two closest neighbor fractures on both sides of the fracture of interest (maximum of 

five total fractures in each forward model). To demonstrate this procedure we use two 

true models shown in Fig. 4.26.  

 

Figure 4.26: Two “true” fracture models used for the multi-fracture inversion analysis: 

(a) all fractures are orthogonal and (b) third and fourth fractures are tilted. 

The differential signals for case (a) are shown in Fig. 4.27. It is not easy to 

distinguish the distribution of fracture sizes by visual inspection. First, for each fracture, 

we invert the signals in the interval of (-1, 1) m. Second, the results obtained in the 

previous step are used as initial guesses for the multi-fracture inversion. We are using 

two model parameters, fracture conductivity and size. 
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Figure 4.27: Differential signals for the case shown in Fig. 4.26(a): real (black) and 

imaginary (red) components are shown for co-axial configurations for short 

(left) and long (right) coil spacings. 

After the single fracture inversion, we get the following error vs. iteration for each 

fracture in case (a). The increase in the error level, as we go from fracture number 1 to 5, 

can be related to the effect of neighboring fractures. 
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Figure 4.28: Single-fracture inversion results for the case shown in Fig. 4.26(a). A change 

in the error with the number of iterations is shown for each fracture 

numbered from left to right: open circles show errors for all models and red 

filled circles show a model with the minimum error in the given iteration. 

The best results for the single fracture inversion (the models with the lowest error) 

are shown in Fig. 4.30 – middle figure. The evolution of errors after two iterations in the 

multi-fracture inversion is shown in Fig. 4.29. As can be seen in the plots, final errors are 

less than the errors in the first step. The final output is shown in Fig. 4.30 – right plot. 

The calculated fracture parameters are in a sufficiently good agreement with the true 

parameters. 
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Figure 4.29: Multi-fracture inversion results after two iterations for the case shown in 

Fig. 4.26(a). A change in the error with the number of iterations is shown for 

each fracture numbered from left to right: open circles show errors for all 

models and red filled circles show a model with the minimum error in the 

given iteration. 

 

Figure 4.30: Multi-fracture inversion analysis for the model shown in Fig. 4.26(a): left 

figure shows the true model; middle and right figures show the best result 

after single- and multi-fracture inversions, respectively. 
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The differential signals for case (b) are shown in Fig. 4.31. Again, it is not easy to 

distinguish the distribution of fracture sizes by visual inspection. Based on two peaks in 

the signal observed in the cross-polarized configuration of short coil spacing (lower-left 

plot), we use three model parameters (conductivity, size and dip-angle) for the third and 

fourth fractures and two parameters (conductivity and size) for the rest. We apply the 

same inversion strategy as in the previous case. 

 

Figure 4.31: Differential signals for the case shown in Fig. 4.26(b): real (black) and 

imaginary (red) components are shown for co-axial (upper row) and cross-

polarized (lower row) configurations for short (left column) and long (right 

column) coil spacings. 
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After the single fracture inversion, we get the following error vs. iteration for each 

fracture in case (b). The high levels of error for all cases can be attributed to the effect of 

neighboring fractures. 

 

Figure 4.32: Single-fracture inversion results for the case shown in Fig. 4.26(b). A 

change in the error with the number of iterations is shown for each fracture 

numbered from left to right: open circles show errors for all models and red 

filled circles show a model with the minimum error in the given iteration. 

The best results for the single fracture inversion (the models with the lowest error) 

are shown in Fig. 4.34 – middle figure. The evolution of errors after two iterations in the 

multi-fracture inversion is shown in Fig. 4.33. As can be seen in the plots, final errors are 

much less than the error of the first step. The final output is shown in Fig. 4.34 – right 

plot. The calculated fracture parameters are in a sufficiently good agreement with the true 

parameters. 
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Figure 4.33: Multi-fracture inversion results after two iterations for the case shown in 

Fig. 4.26(b). A change in the error with the number of iterations is shown 

for each fracture numbered from left to right: open circles show errors for all 

models and red filled circles show a model with the minimum error in the 

given iteration. 

 

Figure 4.34: Multi-fracture inversion analysis for the model shown in Fig. 4.26(b): left 

figure shows the true model; middle and right figures show the best result 

after single- and multi-fracture inversions, respectively. 

1 2

3 4 5

18 m

333 S/m

14 m

333 S/m

7 m

333 S/m

5 m

333 S/m

6 m

333 S/m

25˚

15˚

17.9 m

334 S/m

14.5 m

325 S/m

6.3 m

341 S/m

5.0 m

333 S/m

24˚

15˚

6.0 m

334 S/m11.6 m

363 S/m

15.9 m

332 S/m

8.3 m

354 S/m

4.9 m

335 S/m

25˚

13˚

6.2 m

331 S/m

wellbore wellbore wellbore



 119 

4.4. CONCLUSIONS 

In this chapter, we developed a hybrid stochastic inversion algorithm to process 

tri-axial induction data to estimate the geometry and conductivity of hydraulic fractures. 

It is shown that this inversion analysis can successfully provide good estimates of 

fracture length, conductivity and dip-angle. The approximation based linear regression is 

also shown to be a very efficient inversion technique for single orthogonal fractures. 

When neighboring fractures are considered in the inversion, the hybrid inversion model 

provides excellent results. In all cases, good agreement is obtained between the true and 

estimated fracture parameters suggesting that a tri-axial EM tool has excellent potential to 

map the proppant distribution in hydraulic fractures. The following conclusions are 

obtained from this study: 

 By using a mono-axial transmitter coil and tri-axial receiver coils, it is possible to 

recover the effective properties of hydraulic fractures; two coil configurations (co-

axial and cross-polarized) and two coil spacings (short and long) are essential to 

provide the complete description of fracture geometries and conductivities. 

 For fractures that are assumed to be circular, parameters such as fracture conductivity 

and radius were shown to be recovered very accurately. For fractures that are 

assumed to be elliptical, we recover the effective radius for a circle which has the 

same area as the ellipse. When the proppant concentration varies radially in a fracture 

(linearly decreasing conductivities towards the fracture tip), the inverted conductivity 

value is approximately equal to the average conductivity of the fracture. In all these 

cases, the calculated dip-angle is always close to the true value. 

 For heterogeneous conductivity rock, an accurate estimate of fracture parameters is 

obtained only after the subtraction of the differential signals with and without a 

hydraulic fracture. The differential signals without a fracture can be large enough to 
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affect the inversion accuracy. This highlights the importance of logging the well 

before and after fracturing operations. 

 For a tool spacing of 18 m, differential signals for the fracture of interest are affected 

by two neighboring fractures on each side when 9 m spacing is used for the distance 

between fractures. To invert the results for multiple fractures in a time efficient 

manner, five fractures should be included in each forward model run. This approach 

is shown to provide a very accurate estimation of fracture parameters in the given 

stage. 
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Chapter 5:  DESIGN SPECIFICATIONS AND SIMULATIONS FOR A 

FIELD DEPLOYABLE TOOL 

The final chapter summarizes a suggested design of the tool and explores its 

potential based on the numerical models presented in the previous chapters. The results 

presented here provide quantitative insight into the differential signals by evaluating the 

tool properties and proppant characteristics. To minimize power requirements and to 

investigate large fracture surface areas, we studied the effect of tool operation frequencies 

including multi-frequency measurements. In addition, we studied the effect of tool coil 

spacing to improve the efficiency of primary field cancellation and suggested a trend-line 

for selecting the coil separation distances. Later, we present numerical results for an 

inter-well deployment of the tool where a treatment well is monitored by an offset well. 

We also showed how proppant settlement can be monitored and how the enhanced 

electrical permittivity and magnetic permeability of the proppants can improve the 

differential signals. Lastly, the effect of electrical anisotropy of shale rocks in the 

measurements is studied. At the end of the chapter, we suggest future possibilities to 

improve the tool capabilities. 

5.1. LITERATURE REVIEW 

In this review section, we provide information on how this tool can be deployed 

in the field by providing a summary of engineering reports obtained from E-Spectrum 

Technologies Inc. (2016). Fig. 5.1 shows the main two components needed for field 

deployment: a surface system and a modular downhole tool. The surface system includes 

computer hardware that allows the data to be downloaded and analyzed. For EM signals, 

deeper penetration into the rock is generally obtained by using lower frequencies. In 

practice, however, lower frequencies require higher power which necessitates a surface 
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power supply. Therefore, the surface system also consists of a power source that delivers 

currents to the downhole tool. Lastly, considering the depth of reservoirs, it is anticipated 

that the power loss will be minimized if DC signals are delivered to the downhole tool 

and then converted to AC. 

 

Figure 5.1: Low frequency electromagnetic induction tool consisting of a surface system 

and a modular downhole tool. 

As shown in Fig. 5.2, in the current suggested deployment, the power supply is 

located on the surface, and a wireline cable is used to communicate with the downhole 

tool. In the rest of this section, we focus on the design specifications of the downhole tool 

that is proposed to be built. 

 

Figure 5.2: Transmitter sub power delivery system. 
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The modular downhole tool is designed to be deployed as a bottom hole assembly 

that consists of a transmitter control and coil sub, a receiver sub and a wired space bar. 

The transmitter control sub, which could be composed of a metallic section (the effect of 

this metallic section on the detected differential signals has not been numerically 

studied), includes the necessary electronics and hardware to communicate with the 

surface and the other modules of the downhole tool. It is powered from the surface and 

provides AC signals to the transmitter coil sub. 

The transmitter coil sub is a tool section with a non-metallic housing which seals 

an LC tank shown with a dashed red box in Fig. 5.2. The LC tank is the most important 

component of the tool which acts as an energy storage device, and it consists of induction 

coils and capacitors. The tank stores energy in the magnetic field of induction coils and 

the electric field of capacitors and thus minimizes power demand. A detailed physics of 

the tank is presented in Section 5.1.2. 

The transmitter sub is connected to three receiver subs (short, intermediate and 

long spacing module subs) which are non-metallic tool sections sealing receiver coils and 

electronics. They contain a replaceable bucking/receiver coil pair, and the data is stored 

in the receiver sub’s logging memory which can be downloaded after tripping out and 

disassembling the tool. Each sub also has an Orientation Module (OM) which monitors 

the misalignment of the bucking/receiver coil pair with respect to transmitting coils. The 

module contains a tri-axial magnetometer and accelerometer providing information on 

the coil orientation with respect to the earth’s magnetic and gravitational fields. It enables 

the correction of misalignment errors while the data is used in the inversion analyses. 

The wired spacer bars are used to obtain the required spacing between 

transmitting and receiving coils while electrically and mechanically connecting the 

various modules. Lastly, a gamma ray attachment can be added to the tip of the downhole 
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tool to determine the tool’s location. This enables an accurate subtraction of the measured 

signals before and after fracturing. 

The maximum diameter of the tool must be less than 10 cm (4 inches), and the 

entire assembled tool is estimated to be about 23 m (76 ft.) long. The non-metallic 

sections of the downhole tool (transmitter coil sub, receiver subs, and spacer rods) can be 

made of fiberglass or plastic. 

5.1.1. Primary Field Cancellation 

In this dissertation, we have focused on single frequency analyses which allow us 

to use the frequency domain in all the experimental and computational set-ups. As 

already mentioned in Section 1.1, in the frequency domain, the primary fields need to be 

canceled in co-axial and co-planar configurations (the primary field in cross-polarized 

configuration is theoretically zero) to improve the tool’s sensitivity to small variations in 

the total magnetic field. The cancellation technique we have used is detailed both in 

Chapter 1 and 3. Another approach was implemented in Yu et al. (2016) where a 

transmitter coil is utilized as the bucking unit to cancel direct coil coupling in a small area 

near the receiving coil without affecting the primary field at other locations. This bucking 

coil is in a concentric arrangement with the receiver coil and minimizes incident field 

such that the total magnetic flux density at receiver locations can be approximated to the 

scattered field. They suggest this approach to have the capabilities of performing in situ 

bucking adjustments which can further increase the sensitivity of the tool in the downhole 

measurements (Liu et al., 2015). 

The implementation of the same electromagnetic induction concept in the time 

domain eliminates the need to cancel the primary field where the responses are measured 

in the absence of it. Measurements in the time domain, however, are more susceptible to 
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noise which can easily be filtered out in the frequency domain. If wide band analyses are 

required, the implementation of time domain methods will be more efficient because the 

same analyses in the frequency domain are overwhelming requiring many separate 

measurements. 

5.1.2. LC Tank 

The EM-based approach we are using for the hydraulic fracture monitoring 

supports many different types of waveforms: Gaussian, sinusoidal, square, etc. (Palisch et 

al., 2016). In this dissertation, we have considered a signal generator which pulses 

sinusoidal waves to the LC tank (Fig. 5.3) which is one of the main components of the 

tool. The tank circuit, which consists of transmitting coils and capacitors, is an energy 

storage device which stores energy in the magnetic field of coils and the electric field of 

capacitors. During each cycle, this field energy is circulated between these two 

components. In an ideal case, when the DC resistance of its components is negligible, no 

energy is lost per cycle, so no further energy needs to be supplied. In a real application, 

however, the tank circuit will lose energy in every cycle due to DC resistance, and this 

loss must be compensated for by the AC voltage source. The loss can be minimized if the 

tank is operated at a resonant frequency defined as: 

𝜔 =
1

√𝐿𝐶
 (5.1) 

where 𝜔 is the angular frequency, 𝐿 is the inductance and 𝐶 is the capacitance of the 

tank. It is possible to adjust the capacitance (number of capacitors in parallel, 𝑝) to 

maintain a required operation frequency for a given inductor (Fig. 5.3). In space limited 

tools, however, the addition of more capacitors is not always an easy task. The additional 

practical challenge is the temperature constraint of the capacitors. 
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Figure 5.3: LC transmitter tank diagram. 

For the induction coils used in the tank, the quality factor (Q) is an important 

design parameter to determine the efficiency of a coil’s power storage. It is defined by the 

ratio of the inductive reactance (X) and the DC resistance (R) as shown below: 

𝑄coil =
𝑋coil
𝑅coil

=
2𝜋𝑓𝐿

𝑅coil
 (5.2) 

As is the case for dipole moment, the larger the value of quality factor, the better the 

design. It is possible to connect several inductor coils in parallel to decrease the total 

resistivity of a coil and to produce higher quality factors. The number of inductor coils in 

parallel (n), however, decreases the total inductance (L): 

𝐿 <
𝐿𝑖
𝑛

 (5.3) 

where inductance on each coil is calculated as: 

𝐿𝑖 =
𝜇core𝐴coil𝑁coil

2

𝑛ℎ
 (5.4) 

This is due to mutual inductance. The lower inductivity not only gives a lower quality 

factor but it also requires a higher capacitance for the given resonant frequency (Eq. 5.1). 

As previously mentioned, this is a mechanical challenge for a tool development. 
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In summary, for a low frequency electromagnetic induction tool, coils can be 

designed with a thicker gauge wire with fewer turns to reduce the losses and to lower the 

driving source power. Another important design consideration for this application is the 

use of a ferrite core which acts as a magnetic field multiplier. We get more benefit from a 

ferrite core as the length to diameter ratio of the coil increases, and this ratio is very small 

for coils oriented orthogonal to the wellbore. Therefore, a coil core oriented in the 

wellbore direction (z-oriented transmitter coil) will produce the strongest magnetic field. 

5.2. TOOL SPECIFICATIONS 

In this application, scattered signal levels are proportional to the frequency and 

inversely proportional to the distance between the coils. As we decrease the operation 

frequency, the signals get too weak to be detected (in the frequency range of interest 

signal levels decrease ~𝜔2  as the frequency decreases). Hydraulic fractures, however, 

can be large and penetrate deep into the reservoir requiring large investigation areas 

which need lower operating frequencies and larger tool spacing. In this section, we 

provide optimum tool spacing maps to maximize received signals and to evaluate the 

bucking efficiency. Then, the investigation area of the tool is demonstrated by using the 

optimized spacing and frequency. The same analysis can be carried out for other 

frequencies and spacings with the numerical forward and inversion models provided in 

the Appendix. In the last sub-section, we performed a numerical study to appraise the 

applicability of the inter-well tool deployment where a transmitter coil is logging a 

fracture in a treatment well and observations are made in an offset well. 
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5.2.1. Tool Spacing 

From the previous chapter on inversion analyses, we know that the calculation of 

fracture parameters require responses both from relatively short and long coil spacings. 

Therefore, it is very important to have detectable differential signals in all spacings. The 

detectability of the signal depends on its absolute and relative values. In this sub-section, 

we evaluate the effect of tool aperture on the strength of signals of interest (presented in 

absolute and relative level). First, we look at the incident and scattered signals detected 

with one receiver coil at different background conductivities. Then, we compare the 

incident and scattered signals when the fracture size is changed. Finally, the same 

comparison is performed when we include the bucking-receiver coil into the system. 
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Figure 5.4: The effect of background conductivity on the incident (left) and scattered 

(right) signals: x-axis is the distance between transmitter and receiver coil; 

solid and dashed lines show real and imaginary components, respectively; 

black and blue lines are for a background formation conductivity of 0.01 

S/m and 1 S/m, respectively. The tool is operated at 1 kHz frequency and 

1500 A ∙ m2 transmitting moment; the cross-sectional area of the receiver 

coil is 30 mm2 with 600 turns. For the scattered field calculation, fracture is 

assumed to be a disc with 30 m radius, 333 S/m conductivity and 5 mm 

thickness.  

Fig. 5.4 shows the change of incident signals with the change of background 

conductivity and transmitter-receiver spacing. The interval selected for the formation 

conductivity covers the minimum and maximum electrical conductivities of shale 

(Adisoemarta, 1999). For the scattered signals, the receiver is positioned at the fracture 

location, and we adjust the distance between the transmitter and the receiver coils. 

Obviously, as the distance between coils increases both incident and scattered signals 

weaken. An increase in the background conductivity of the formation, however, increases 

the real component of incident signals and the imaginary component of scattered signals 

keeping the other components the same for most of the transmitter-receiver spacing. Note 
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that for a majority of the region that covers the nominal tool spacings, imaginary signals 

are stronger than the real signals for incident fields and vice versa for scattered fields. 

Fig. 5.5 shows incident and scattered signals for fractures with a radius of 1 m and 

20 m, and the background (rock) formation conductivity is 0.333 S/m. As already noted 

in Fig. 5.4, there is a phase difference between the dominant components of incident and 

scattered signals, however, in all cases, the real component of incident signals is 

significantly stronger compared to that of scattered signals. This suggests the importance 

of the bucking coil for both short and long coil spacings. For the short spacing receiver, 

even signal decomposition will improve the quality of detection and adding the bucking 

coil will improve it further. For the long spacing receiver, however, the implementation 

of the bucking coil is more vital. Further plots are proposed for the optimum spacing 

between the receiver and bucking coil. 
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Figure 5.5: Incident (blue) and scattered (black) signals for short (left column) and long 

(right column) coil spacings: real (solid lines) and imaginary (dashed lines) 

components of signals are shown for the background formation with 0.333 

S/m conductivity. The tool is operated at 1 kHz frequency and 1500 A ∙ m2 

transmitting moment; the cross-sectional area of the receiver coil is 30 mm2 

with 600 turns. For the scattered field calculation, a fracture is assumed to 

be a disc with 1 m (upper row) and 20 m (lower row) radius, 333 S/m 

conductivity and 5 mm thickness. 

To find the optimum bucking and receiver coil distances for the long coil spacing, 

we plotted the absolute and relative signal levels for the 30 m radius fracture in Fig. 5.6. 

long spacing (18m)short spacing (1m)

long spacing (18m)short spacing (1m)
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The y-axis of the plots is the distance between the transmitter and the center of the 

receiver couples, and the relative signal is calculated by dividing the secondary signals by 

primary signals. Based on these absolute and relative signals, we suggest a trend-line 

(shown with a dashed line) to select the distance between coils. The dashed line is the 

region where differential signals are strong enough to be detected and their ratio to the 

primary signals is sufficiently large. 

 

 

Figure 5.6. 
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Figure 5.6: The primary (top row), differential (middle row) and relative (bottom row) 

signals for different transmitter-receiver and receiver-receiver spacings: real 

(left column) and imaginary (right column) components of signals are 

shown for the background formation with the conductivity of 0.333 S/m. For 

the differential and relative signal calculation, the fracture is a disc with 30 

m outer radius, 10 cm inner radius, 333 S/m conductivity and 5 mm 

thickness. 

5.2.2. Depth of Investigation 

In this section, we estimate the investigation area of the tool by using the 

inversion algorithm developed in the previous chapter. We run multiple realizations by 

increasing the radius of fractures and calculating a variation in the inverted fracture 

parameters. Fig. 5.7 shows results for the tool with nominal spacings and properties. 

After running the forward model for the orthogonal and circular fractures with the node 

spacing factor of ten, we added one percent of random noise to the differential signals. A 

node spacing factor of four was used in the inversion analysis. There are at least five 

realizations for the given radius of a fracture and 300 of the most successful results are 

plotted in the figure. The measured variation is calculated by subtracting the true model 

parameter from the calculated value. In the runs, the fracture conductivity for the true 

model is 100 S/m. 
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Figure 5.7: Box plots for the inverted vs. actual parameters: calculated variation of 

fracture radius (upper) and fracture conductivity (lower) vs. the fracture 

radius of the true model. The boxes include 300 of the lowest error results 

from 5 different realizations. 
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The results show that once the radius surpasses 40 m, the tool with the nominal 

spacing and properties loses resolution. The variation of fracture conductivity, however, 

is not increasing for this uniformly distributed conductivity case. To determine fracture 

sizes larger than 40 m we can use longer spacings for the tool but we need to make sure 

that signals are detectable. One way to increase these signal levels is to deploy a receiver 

coil with a higher magnetic dipole moment (not taking into account the noise level in the 

field). Another way is to use proppants with further enhanced electromagnetic properties 

(see Section 5.3.4). 

5.2.3. Inter-well Testing 

To diagnose larger fractures, another potential deployment of the tool is the inter-

well monitoring of the treatment well. In this part, we numerically evaluate signal levels 

detected with receivers in an observation well while logging a treatment well with a 

transmitter coil. The fracture is an orthogonal circle with a radius of 30 m, conductivity 

of 333 S/m and thickness of 5 mm. The upper drawing of Fig. 5.8 shows the scheme used 

in the simulation, and in the lower graph, secondary (scattered) signals are plotted. Two 

separate lines are shown for the transmitter fracture distance: the lower line is the 

secondary signals when the transmitter coil is 30 m away from the fracture and the upper 

line shows signals when the transmitter coil is at the center of the fracture. The receiver is 

in the observation well where its z-coordinate is always the same as that of the fracture. 

The tool is operated at 1 kHz frequency and 1500 A ∙ m2 transmitting moment; the cross-

sectional area of the receiver coil is 30 mm2 with 600 turns. 



 136 

 

Figure 5.8: Inter-well hydraulic fracture monitoring: scattered signals are calculated for a 

receiver coil in the observation well and a transmitter coil in the treatment 

well (upper drawing). In the plot, upper and lower lines show signals when 

the transmitter coil is 0 m and 30 m away from the fracture, respectively. 

The fracture is a disc with an outer radius of 30 m, inner radius of 10 cm, 

conductivity of 333 S/m and thickness of 5 mm. The background formation 

(rock) conductivity is 0.333 S/m. The tool is operated at 1 kHz frequency 

and 1500 A ∙ m2 transmitting moment; the cross-sectional area of the 

receiver coil is 30 mm2 with 600 turns. 

As it can be seen in the plot (Fig. 5.8), for the transmitter coil at the center of the 

fracture (upper line), the scattered signals fall below 1 µV when the observation well is 

60 m away from the treatment well. To detect weak signals is practically challenging and 

this limits the deployment of the tool for inter-well diagnosis. 

x

y
z
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5.2.4. Multi-Frequency Analysis 

As shown in Section 4.3.1.4, operating the induction tool at a single frequency 

provides a single conductivity value for the model with radially decreasing conductivity. 

In this section, a sensitivity study is carried out to investigate if additional constraints on 

fracture geometry can be obtained with multi-frequency induction measurements. By 

using the integral equation solver a fracture with radially and linearly decreasing 

electrical conductivity is simulated at different frequencies, and results are compared to 

the signals at a nominal 1 kHz frequency. To obtain the relative signal, the differential 

signal at a given frequency is divided by that at 1 kHz. Fig. 5.9 shows real and imaginary 

components of these relative signals at short and long coil spacing. 
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Figure 5.9: The relative differential signals (normalized with respect to signals at 1 kHz) 

at different operation frequencies: the fracture model is orthogonal circle 

with a radius of 10 m, and the conductivity at the wellbore is 333 S/m and 0 

S/m at the fracture tip, decreasing linearly; real (left column) and imaginary 

(right column) differential signals are shown for co-axial coil configurations 

in short (upper row) and long (bottom row) coil spacing. 

An increase in the operation frequency decreases the investigation area of the 

tool, therefore, the signals are not expected to linearly scale with an increase in the 

frequency. As shown in Fig. 5.9, indeed, the differential signals do not scale linearly at all 

frequencies. The signal at 100 kHz frequency for the short coil spacing and the signals at 

10 and 100 kHz frequencies for the long coil spacing can provide additional information 

on conductivity distribution. 

 

 

 

 

short short

long long
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5.3. SIMULATING FIELD DEPLOYABLE TOOL 

In this section, we numerically investigate the tool’s potential to detect proppant 

settling. Later, a numerical study is carried out to see how proppants can be upgraded to 

scatter stronger signals. 

5.3.1. Proppant Settlement 

There has been a great deal of research conducted on the proppant transport in 

hydraulic fractures (Blyton et al. 2015). Investigating favorable conditions leading to 

efficient proppant delivery to induced fractures without letting them settle has been a 

long-standing challenge. Independent proppant monitoring techniques assist in these 

studies and improve operational efficiencies. Therefore, in this section, we evaluate the 

potential of the induction tool for settlement detection by changing the geometry of 

fractures, as shown in Fig. 5.10, and recording the variation in the differential signals. For 

all cases, we assume that the injected proppant volume is the same; as the area of fracture 

decreases, we linearly increase the conductivity. The surface area of fractures is 201 m
2
, 

162 m
2
, 101 m

2
 and 67 m

2
, hence the conductivity is selected as 100 S/m, 124 S/m, 200 

S/m and 300 S/m for the fractures from left to right (Fig. 5.10), and the thickness of 

fractures is 5 mm for all cases.
 

 

Figure 5.10: Fracture models used in the proppant settlement simulation: models are 

orthogonal to the wellbore, and the injected volume of proppant is constant. 
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Differential signals for the four different cases of fractures are plotted in Fig. 5.11. 

In the computation, the distances for the short spacing receivers are 0.8 m and 1.2 m, and 

17.8 m and 18.2 m for the long spacing receivers. The operational frequency is 1 kHz, 

and transmitting magnetic dipole moment is 1500 A.m
2
. The cross-sectional area of 

receiver coils is 30 cm
2
 with 600 turns. The formation (rock) conductivity is 0.333 S/m. 

 

Figure 5.11: Monitoring proppant settling: fracture models shown in Fig. 5.10 are used to 

compute the real (solid line) and imaginary (dashed line) components of 

differential signals in short (black) and long (blue) coil spacings. 

As the shape of fracture becomes more irregular, differential signals vary from 

that of the regular circle response. This proves that there is good potential for the tool to 

evaluate proppant settlement. 
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5.3.2. Enhanced Electrical Permittivity 

Till now, all results are demonstrated for the electrical conductivity of proppants 

where both the relative permittivity and magnetic permeability are one. In this sub-

section, we investigate how proppants with enhanced electrical permittivity affect the 

differential signals. In the next sub-section, the effect of enhanced magnetic permeability 

is studied. 

To evaluate the effect of enhanced electrical permittivity, we need to implement 

the boundary condition shown in Eq. 2.13. In the equation, shunt admittance is due to two 

parallel sheets: a resistive sheet with the admittance 𝜎𝑡 and a pure reactive sheet (the 

right component of the summation). In Fig. 5.12, we plot those components over a wide 

frequency range. The fracture conductivity is 333 S/m and thickness is 5 mm. As can be 

seen from the plot, in the 1 Hz - 1 MHz range of frequency, the resistive sheet strongly 

dominates shunt admittance and consequently surface impedance. As the relative 

permittivity of proppants increases the signals of interest will not be affected. 

 

Figure 5.12: Dependence of shunt admittance (Eq. 2.13) on the resistive (solid line) and 

pure reactive (dashed lines) sheet. 
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5.3.3. Enhanced Magnetic Permeability 

For evaluating the effect of enhanced relative magnetic permeability, we have 

used the axial hybrid method and the values are adjusted between 1, 5, 10, 20 and 50. In 

the simulation, the fracture has an outer radius of 8 m, inner radius of 10 cm, conductivity 

of 333 S/m and thickness of 5 mm, and the background formation (rock) conductivity is 

0.333 S/m. The uniform section of meshing ranges from -1 to 1 m with the step sizes of 

10 cm (Fig. 2.13). In the expanding mesh section, grid expansion ratio is 1.1, and the 

computation domain is truncated at 100 m on both edges. The operation frequency is 1 

kHz, and the magnetic dipole moment of transmitter coil is 1500 A.m
2
. The cross-

sectional area of receiver coil is 30 cm
2
, and the number of turns on the receiver coil is 

600. The distance between the transmitter and the first and second receivers is 0.8 and 1.2 

m, respectively. Fig. 5.13 shows real and imaginary components of differential signals for 

all relative permeabilities. 
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Figure 5.13: The effect of fracture relative magnetic permeability on the differential 

signals calculated with co-axial configuration of short coil spacing: relative 

magnetic permeability increases in the direction of arrow, and the values are 

selected as 1, 5, 10, 20 and 50; black solid line shows real component of 

signals for all simulated cases and dashed lines are imaginary components. 

It can be seen from the plot that the real part of the differential signal does not 

change while increasing the relative permeability; however, imaginary components 

increase significantly. A 50 times increase in the relative permeability results in 

imaginary differential signals 100 times stronger than the real components. 

5.3.4. Effect of Electrical Conductivity Anisotropy in Shale Rocks 

In this sub-section, we investigate the possible effect of formation electrical 

conductivity anisotropy in induction tool measurements. If we assume that the formation 

conductivity is different in the transverse and wellbore directions (note that this might not 

be an accurate representation of the anisotropy for horizontal wellbores), the axial hybrid 

method can be used to simulate the scenario (Eq. 2.37 and 2.38). We use anisotropic 
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conductivities for the background formation in the forward model to obtain the “true 

model”. The inversion model is run assuming isotropic conductivity, and the calculation 

is repeated twice for transverse and wellbore direction background conductivities. The 

results are shown in upper and lower rows of Fig. 5.14. The fracture is 10 m in radius and 

333 S/m in conductivity. The transverse and horizontal conductivities are selected to be 

0.5 and 0.25 S/m, respectively. The same meshing scheme shown in Section 4.3.1.5 is 

used. 

As shown in the box plots, the results are accurate for the run that uses the 

transverse background conductivity indicating that it has the dominant effect on the 

measured signals. The conclusion is the same when we repeat the forward and inversion 

runs with reversed transverse and horizontal background conductivities. 
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Figure 5.14: The effect of electrical conductivity anisotropy on the inversion of log data: 

the upper and lower rows show the inversion results when the transverse and 

vertical formation conductivities are selected in the inversion process, 

respectively. 

5.4. CONCLUSIONS 

In this chapter, first, we presented the current design of the induction tool. Then, 

we demonstrated the capabilities of the current tool with nominal spacing and properties. 

The signal levels for a range of shale rock electrical conductivities are presented and the 

improvement made with the bucking coil is evaluated to establish a trend-line to calculate 

the distance between the receiver and bucking coil for the given transmitter-receiver 

distance. For the investigation area, the resolution of the tool is sufficiently high, up to 40 
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m radii. Further improvement can be obtained by sustaining detectable signal levels for 

the increased tool spacing. This can be achieved with better coil design, large EM 

contrast proppants or both. We also evaluated an inter-well deployment of the tool and 

found it practically challenging to detect the signals from the observation well. In the last 

sub-section for tool specifications, the potential of multi-frequency analyses in the 

recovery of conductivity distribution is demonstrated. 

In the second half of the results, we demonstrated the potential of the induction 

tool in monitoring proppant settlement. By changing the shapes and keeping the total 

injected proppant volume the same, we have shown that the differential signals are 

distinguishable. Secondly, to improve the differential signals we can increase the 

magnetic permeability of the proppants ignoring related practical challenges. The 

differential signals are shown to be indifferent to the enhanced electrical permittivity. 

Lastly, the transverse component of background formation conductivity is shown to be 

dominating the accuracy of the inversion analyses. 

5.5. FUTURE WORK 

In this last section, we provide a list of several additional efforts that could be 

made to make the tool more efficient: 

 The current design of the tool cannot handle in-situ bucking. This is a practical 

challenge which can cause a loss of accuracy in the measured signals. The surface 

control of the bucking, which is suggested in Yu et al. (2016), can be studied and 

incorporated into the current tool. 

 Proppants with enhanced magnetic permeability can be used (ignoring practical 

limitations) in the field which was shown to further increase the signal levels 

compared to the case when only electrical conductivity is the contrast agent. 
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 The capability of multi frequency analysis can be added to the tool which may 

produce more information on a conductivity distribution inside the fracture. 

Although this may require only slight changes in the tool itself, significant 

changes in the computational study will be necessary. This may require time-

domain analyses for the computation efficiency. 

 In the inversion study, different shapes of fractures can be parametrized and used 

in the simulation to envision capabilities of the tool, especially in investigating 

proppant settlement. This will be more meaningful after obtaining field data. 

 Current inversion analysis will recover information about the main branch of 

fractures. They can be extended to the generation of a conductivity map where 

secondary branches of fractures can also be monitored. The use of axial hybrid 

methods will be less costly because of lower computation dimensions, and the 

study can be further extended to three-dimensional numerical solutions where 

variable background formation conductivities can be computed. 
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Appendix 

MOM SOLUTION 

This Matlab code simulates a tri-axial induction tool in a 3-D spatial domain, and 

a Cartesian coordinate system is used for the computation. To run the program, one needs 

three input files, i.e., fracture.txt, operation.txt and sampling.txt. Fracture.txt contains the 

specifics of the circular fracture geometry, conductivity and node spacing coefficient on 

the edges of ellipses. An example is shown as follows: 

0  % fracture location on the z-axis which is the wellbore axis, [m] 

1  % fracture radius, it is r_major on the y-axis, [m] 

1  % fracture aspect ratio, r_major/r_minor, [-] 

0  % dip-angle, rotated about the x-axis which is the vertical axis, [˚] 

100 100 % linearly decreasing conductivity, values at r_well and r_frac, [S/m] 

0.005  % fracture thickness, [m] 

0.1  % well radius, [m] 

10  % node spacing coefficient on the inner and outer radius of ellipse, [-] 

Operation.txt contains the specifics of the transmitter/receiver coils and the 

background formation (rock) conductivity. An example is shown as follows: 

1000  % operation frequency, [Hz] 

1500  % magnetic dipole moment, [A.m2] 

600  % number of turns on receiver coil, [-] 

0.003  % cross-sectional area of receiver coil [m2] 

0.333  % background formation conductivity [S/m] 

An example of sampling.txt is shown below where the first three columns show 

the Cartesian coordinates of transmitter, the second and third triads show the coordinates 

of the first and second receivers, respectively: 

0 0 -2 0 0 -1.2 0 0 -0.8 

0 0 -1.95 0 0 -1.15 0 0 -0.75 

0 0 -1.9 0 0 -1.1 0 0 -0.7 

0 0 -1.85 0 0 -1.05 0 0 -0.65 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 
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Main function: 

 

clear all; close all; clc 

  
string = strcat(pwd,'\Library\hfd_1m_0deg\'); 

  
timerVal = tic; 

  
muo = 4*pi*1E-7;          % free space electrical permeability, [H/m] 
epso = 8.854187817*1E-12; % free space permittivity, [F/m] 

  
opcon = load(strcat(string,'operation.txt')); 

  
omega = 2*pi*opcon(1);    % angular frequency, [rad.Hz] 

  
k1 = sqrt(muo*epso*omega^2-1j*muo*opcon(5)*omega); 

  
geometry(string); 

  
tic; [Zmn,Bmn] = impedance(k1); T1 = toc; 

  
Tmn = 1j*omega*muo*Zmn+Bmn; 

  
tic; Hsca = scattered(k1,Tmn,string); T2 = toc; 

  
Mtr = prod(opcon(2:4)); 

  
Vxz = -1j*(muo*omega)^2*Mtr*(Hsca(:,1))*1e6; 
Vyz = -1j*(muo*omega)^2*Mtr*(Hsca(:,2))*1e6; 
Vzz = -1j*(muo*omega)^2*Mtr*(Hsca(:,3))*1e6; 

  
out = [real(Vxz) imag(Vxz) real(Vyz) imag(Vyz) real(Vzz) imag(Vzz)]; 

  
dlmwrite(strcat(string,'out.dat'),out,'delimiter','\t'); 

  
T3 = toc(timerVal); 

  
fid = fopen(strcat(string,'info.dat'),'w+'); 

  
fprintf(fid,'%f \t %% matrix fill time\n',T1); 
fprintf(fid,'%d \t\t %% number of unknowns\n',size(Bmn,1)); 
fprintf(fid,'%f \t %% matrix solution time for all points\n',T2); 
fprintf(fid,'%d \t\t %% number of source points\n',size(Vzz,1)); 
fprintf(fid,'%f \t %% total run time\n',T3); 

  
fclose(fid); 
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Incident function calculates Eq. 2.23 and 2.24 in spherical coordinates and 

converts them to Cartesian coordinates: 

 

function Ec = Einc(k1,R1,R2) 

     
    % Given two coordinates: observation (R1) and source (R2) 
    % Es is the electrical field in spherical coordinates 
    % Ec is the electrical field in Cartesian coordinates [Ex,Ey,Ez] 

    % The source is z-oriented 

 
    global NofD 

     
    r(:,1) = R1(:,1)-R2(1,1); 
    r(:,2) = R1(:,2)-R2(1,2); 
    r(:,3) = R1(:,3)-R2(1,3); 

     
    R = sqrt(sum(r.*r,2)); 

     
    teta = acosd(r(:,3)./R);       % 0<teta<180 
    phi = atand(r(:,2)./r(:,1));   % 0<phi<360 

     
    v1 = r(:,1)<0; 
    v2 = r(:,2)<0; 

     
    phi = phi+v1*180; 
    phi = phi+(~v1.*v2)*360; 

     
    Es = k1*sind(teta)./(4*pi*R).*(1+1./(1j*k1*R)).*exp(-1j*k1*R); 
    Ec = [-sind(phi).*Es cosd(phi).*Es zeros(NofD,1)]; 

     
end 

 

Gauss function provides integration points and weight for all triangular elements; 

order of Gaussian quadrature is 2: 

 

function [Rn,Wn,Pn] = gauss(R1,R2,R3) 

     
    xw=[0.16666666666667 0.16666666666667 0.33333333333333; 
        0.16666666666667 0.66666666666667 0.33333333333333; 
        0.66666666666667 0.16666666666667 0.33333333333333]; 

     
    global NofT 
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    Pn = size(xw,1); 
    Wn = xw(:,3); 

     
    N1 = 1-xw(:,2)-xw(:,1); 
    N2 = xw(:,2); 
    N3 = xw(:,1); 

     
    Rn = zeros(NofT,3,Pn); 

     
    for k = 1:Pn 
        Rn(:,:,k) = R1*N1(k)+R2*N2(k)+R3*N3(k); 
    end 

     
end 

 

The geometry function creates nodes for the circles defined with the input 

parameters. The outputs also include connectivity and construction maps for the 

vectorized calculations. Any mesh generator can be adopted for this job. Details and 

structure of global outputs are shown below: 

 
function [] = geometry(string) 

     
    % NofV: number of vertices 
    % NofD: number of edges 
    % NofT: number of triangles 
    % TtoV  [NofTx3]: vertices of triangle 
    % VtoR  [NofVx3]: x,y,z coordinates of vertex 
    % TtoD  [NofTx4]: edges of triangle, no bndry edge: 4th-column 2or3 
    % TtoD1 [NofTx6]: edge for which triangle is Tp(1:3) && Tm(4:6) 
    % DtoT  [NofDx6]: [Tp,Tm,Vp,Vm,Ve,Vw] of edge 
    % AofT  [NofTx1]: area of triangles 
    % GofT  [NofTx1]: conductance of triangle 
    % RofC  [NofTx3]: coordinates of triangle's center 
    % lofD  [NofDx1]: edge length 
    % RofCp [NofDx3]: center of edge's positive triangle 
    % RofCm [NofDx3]: center of edge's minus triangle 
    % rhocp [NofDx3]: vector to center of edge's positive triangle 
    % rhocm [NofDx3]: vector from center of edge's minus triangle 

         
    fid = fopen(strcat(string,'fracture.txt')); 

     
    origin = str2num(strtok(fgetl(fid),'%')); 
    r_frac = str2num(strtok(fgetl(fid),'%')); 
    aspect = str2num(strtok(fgetl(fid),'%')); 
    dipang = str2num(strtok(fgetl(fid),'%')); 
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    S_frac = str2num(strtok(fgetl(fid),'%')); 
    t_frac = str2num(strtok(fgetl(fid),'%')); 
    r_well = str2num(strtok(fgetl(fid),'%')); 
    lambda = str2num(strtok(fgetl(fid),'%')); 
 

    fclose(fid); 

 

    … 

     
end 

 

 

 
 

The impedance function fills the impedance and boundary matrices: 

 
function [Zmn,Bmn] = impedance(k1) 

     
    global VtoR DtoT TtoD TtoD1 TtoV NofD NofT 
    global RofC rhocp rhocm lofD AofT GofT 

     
    R1 = VtoR(TtoV(:,1),:); 
    R2 = VtoR(TtoV(:,2),:); 
    R3 = VtoR(TtoV(:,3),:); 

     
    [Rn,Wn,Pn] = gauss(R1,R2,R3); 

     
    Lpn = zeros(NofD,3,Pn); 
    Lmn = zeros(NofD,3,Pn); 
    Gmn = zeros(NofT,NofT,Pn); 

     
    for k = 1:Pn 
        rhop = Rn(DtoT(:,1),:,k)-VtoR(DtoT(:,3),:); 
        rhom = VtoR(DtoT(:,4),:)-Rn(DtoT(:,2),:,k); 
        Lpn(:,1,k) = lofD.*rhop(:,1)/2; 
        Lpn(:,2,k) = lofD.*rhop(:,2)/2; 
        Lpn(:,3,k) = lofD.*rhop(:,3)/2; 
        Lmn(:,1,k) = lofD.*rhom(:,1)/2; 
        Lmn(:,2,k) = lofD.*rhom(:,2)/2; 
        Lmn(:,3,k) = lofD.*rhom(:,3)/2; 
        Gmn(:,:,k) = green1(k1,RofC,Rn(:,:,k)); 
    end 

     
    Zmn = zeros(NofD,NofD); 

     
    for n = 1:NofD 
        Pp = zeros(NofD,1); 
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        Pm = zeros(NofD,1); 
        Ap = zeros(NofD,3); 
        Am = zeros(NofD,3); 
        for k = 1:Pn 
            Gpp = Gmn(DtoT(:,1),DtoT(n,1),k); 
            Gmp = Gmn(DtoT(:,2),DtoT(n,1),k); 
            Gpm = Gmn(DtoT(:,1),DtoT(n,2),k); 
            Gmm = Gmn(DtoT(:,2),DtoT(n,2),k); 
            Pp = Pp+lofD(n)*(Gpp-Gpm)*Wn(k); 
            Pm = Pm+lofD(n)*(Gmp-Gmm)*Wn(k); 
            Ap(:,1) = Ap(:,1)+(Lpn(n,1,k)*Gpp+Lmn(n,1,k)*Gpm)*Wn(k); 
            Ap(:,2) = Ap(:,2)+(Lpn(n,2,k)*Gpp+Lmn(n,2,k)*Gpm)*Wn(k); 
            Ap(:,3) = Ap(:,3)+(Lpn(n,3,k)*Gpp+Lmn(n,3,k)*Gpm)*Wn(k); 
            Am(:,1) = Am(:,1)+(Lpn(n,1,k)*Gmp+Lmn(n,1,k)*Gmm)*Wn(k); 
            Am(:,2) = Am(:,2)+(Lpn(n,2,k)*Gmp+Lmn(n,2,k)*Gmm)*Wn(k); 
            Am(:,3) = Am(:,3)+(Lpn(n,3,k)*Gmp+Lmn(n,3,k)*Gmm)*Wn(k); 
        end 
        Zmn(:,n) = (sum(Ap.*rhocp+Am.*rhocm,2))/2+(Pm-Pp)/k1^2; 
    end 

     
    Lcpn = zeros(NofD+1,3); 
    Lcmn = zeros(NofD+1,3); 

  
    Lcpn(1:NofD,1) = lofD.*rhocp(:,1)/2./... 
                     AofT(DtoT(:,1))./GofT(DtoT(:,1)); 
    Lcpn(1:NofD,2) = lofD.*rhocp(:,2)/2./... 
                     AofT(DtoT(:,1))./GofT(DtoT(:,1)); 
    Lcpn(1:NofD,3) = lofD.*rhocp(:,3)/2./... 
                     AofT(DtoT(:,1))./GofT(DtoT(:,1)); 
    Lcmn(1:NofD,1) = lofD.*rhocm(:,1)/2./... 
                     AofT(DtoT(:,2))./GofT(DtoT(:,2)); 
    Lcmn(1:NofD,2) = lofD.*rhocm(:,2)/2./... 
                     AofT(DtoT(:,2))./GofT(DtoT(:,2)); 
    Lcmn(1:NofD,3) = lofD.*rhocm(:,3)/2./... 
                     AofT(DtoT(:,2))./GofT(DtoT(:,2)); 

     
    Lrp1 = rhocp.*(Lcpn(TtoD1(DtoT(:,1),1),:)+... 
                   Lcmn(TtoD1(DtoT(:,1),4),:)); 
    Lrp2 = rhocp.*(Lcpn(TtoD1(DtoT(:,1),2),:)+... 
                   Lcmn(TtoD1(DtoT(:,1),5),:)); 
    Lrp3 = rhocp.*(Lcpn(TtoD1(DtoT(:,1),3),:)+... 
                   Lcmn(TtoD1(DtoT(:,1),6),:)); 
    Lrm1 = rhocm.*(Lcpn(TtoD1(DtoT(:,2),1),:)+... 
                   Lcmn(TtoD1(DtoT(:,2),4),:)); 
    Lrm2 = rhocm.*(Lcpn(TtoD1(DtoT(:,2),2),:)+... 
                   Lcmn(TtoD1(DtoT(:,2),5),:)); 
    Lrm3 = rhocm.*(Lcpn(TtoD1(DtoT(:,2),3),:)+... 
                   Lcmn(TtoD1(DtoT(:,2),6),:)); 

     
    Bmn = spalloc(NofD,NofD+1,5*NofD); 

     
    Bmn = Bmn+sparse(1:NofD,TtoD(DtoT(:,1),1),... 
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                 sum(Lrp1,2)/2,NofD,NofD+1); 
    Bmn = Bmn+sparse(1:NofD,TtoD(DtoT(:,1),2),... 
                 sum(Lrp2,2)/2,NofD,NofD+1); 
    Bmn = Bmn+sparse(1:NofD,TtoD(DtoT(:,1),3),... 
                 sum(Lrp3,2)/2,NofD,NofD+1); 
    Bmn = Bmn+sparse(1:NofD,TtoD(DtoT(:,2),1),... 
                 sum(Lrm1,2)/2,NofD,NofD+1); 
    Bmn = Bmn+sparse(1:NofD,TtoD(DtoT(:,2),2),... 
                 sum(Lrm2,2)/2,NofD,NofD+1); 
    Bmn = Bmn+sparse(1:NofD,TtoD(DtoT(:,2),3),... 
                 sum(Lrm3,2)/2,NofD,NofD+1); 

     
    Bmn(:,NofD+1) = []; 

     
    display('impedance and boundary matrix is constructed') 

     
end 

  
function G = green1(k1,R1,R2) 

     
    % R1 is the observer 
    % R2 is the source point 

     
    global NofT 

     
    R = zeros(NofT); 

     
    for j = 1:NofT 
        r(:,1) = R1(:,1)-R2(j,1); 
        r(:,2) = R1(:,2)-R2(j,2); 
        r(:,3) = R1(:,3)-R2(j,3); 
        R(:,j) = sqrt(sum(r.*r,2)); 
    end 

     
    G = exp(-1j*k1*R)./(4*pi*R); 

     
end 

 

The scattered function calculates differential magnetic fields for all sampling 

points: 

 

function [Hsca] = scattered(k1,Tmn,string) 

     
    global VtoR DtoT TtoD1 TtoV NofD NofT 
    global RofCp RofCm rhocp rhocm lofD 

     
    R1 = VtoR(TtoV(:,1),:); 
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    R2 = VtoR(TtoV(:,2),:); 
    R3 = VtoR(TtoV(:,3),:); 

     
    [Rn,Wn,Pn] = gauss(R1,R2,R3); 

     
    Lpn = zeros(NofD,3,Pn); 
    Lmn = zeros(NofD,3,Pn); 

     
    for k = 1:Pn 
        rhop = Rn(DtoT(:,1),:,k)-VtoR(DtoT(:,3),:); 
        rhom = VtoR(DtoT(:,4),:)-Rn(DtoT(:,2),:,k); 
        Lpn(:,1,k) = lofD.*rhop(:,1)/2; 
        Lpn(:,2,k) = lofD.*rhop(:,2)/2; 
        Lpn(:,3,k) = lofD.*rhop(:,3)/2; 
        Lmn(:,1,k) = lofD.*rhom(:,1)/2; 
        Lmn(:,2,k) = lofD.*rhom(:,2)/2; 
        Lmn(:,3,k) = lofD.*rhom(:,3)/2; 
    end 

     
    sampling = load(strcat(string,'sampling.txt')); 

     
    RofS = sampling(:,1:3); 
    RofO1 = sampling(:,4:6); 
    RofO2 = sampling(:,7:9); 

     
    alfa = (sum((RofO1-RofS).^2,2)./sum((RofO2-RofS).^2,2)).^(3/2); 

     
    Nosp = size(RofS,1); 
    Hsca = zeros(Nosp,3); 

     
    [TLmn,TUmn] = lu(Tmn); 

     
    for i = 1:Nosp 

         
        Ep = Einc(k1,RofCp,RofS(i,:)); 
        Em = Einc(k1,RofCm,RofS(i,:)); 
        Vm = sum(rhocp.*Ep+rhocm.*Em,2)/2; 

  
        In = TUmn\(TLmn\Vm); 

         
        Jd = zeros(NofT,3,Pn); 

         
        LIpn = zeros(NofD+1,3,Pn); 
        LImn = zeros(NofD+1,3,Pn); 

         
        for k = 1:Pn 
            LIpn(1:NofD,1,k) = Lpn(:,1,k).*In; 
            LIpn(1:NofD,2,k) = Lpn(:,2,k).*In; 
            LIpn(1:NofD,3,k) = Lpn(:,3,k).*In; 
            LImn(1:NofD,1,k) = Lmn(:,1,k).*In; 
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            LImn(1:NofD,2,k) = Lmn(:,2,k).*In; 
            LImn(1:NofD,3,k) = Lmn(:,3,k).*In; 
        end 

         
        Jd = Jd+LIpn(TtoD1(:,1),:,:)+LImn(TtoD1(:,4),:,:); 
        Jd = Jd+LIpn(TtoD1(:,2),:,:)+LImn(TtoD1(:,5),:,:); 
        Jd = Jd+LIpn(TtoD1(:,3),:,:)+LImn(TtoD1(:,6),:,:); 

         
        GG1 = green2(k1,RofO1(i,:),Rn); 
        GG2 = green2(k1,RofO2(i,:),Rn); 

         
        G1J = permute(sum(cross(GG1,Jd),1),[3 2 1]); 
        G2J = permute(sum(cross(GG2,Jd),1),[3 2 1]); 

         
        Hsca1(1,1) = sum(G1J(:,1).*Wn,1); 
        Hsca1(1,2) = sum(G1J(:,2).*Wn,1); 
        Hsca1(1,3) = sum(G1J(:,3).*Wn,1); 
        Hsca2(1,1) = sum(G2J(:,1).*Wn,1); 
        Hsca2(1,2) = sum(G2J(:,2).*Wn,1); 
        Hsca2(1,3) = sum(G2J(:,3).*Wn,1); 

         
        Hsca(i,:) = Hsca2-Hsca1*alfa(i); 

         
    end 
end 

  
function GG = green2(k1,R1,R2) 

     
    % R1 is the observer; R2 is the source point 
    % GG is the gradient of Green's function 

     
    global NofT 

     
    Pn = size(R2,3); 
    GG = zeros(NofT,3,Pn); 

     
    for k = 1:Pn 
        r(:,1) = R1(1,1)-R2(:,1,k); 
        r(:,2) = R1(1,2)-R2(:,2,k); 
        r(:,3) = R1(1,3)-R2(:,3,k); 

         
        R = sqrt(sum(r.*r,2)); 
        G = exp(-1j*k1*R)./(4*pi*R); 
        const = -(1+1j*k1*R).*G./R.^2; 

  
        GG(:,1,k) = r(:,1).*const; 
        GG(:,2,k) = r(:,2).*const; 
        GG(:,3,k) = r(:,3).*const; 
    end 
end 
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Output file info.dat provides information on the computation time (matrix fill 

time, matrix solution time for all sampling points and total run time), number of 

unknowns and number of source points. The out.dat provides calculated real and 

imaginary voltages for all orientations of receiver coil (transmitter coil is z-oriented) and 

for all sampling points.  

AXIAL HYBRID SOLUTION 

This Matlab code simulates the tri-axial induction tool in axially symmetric and 

transversely isotropic formations. A cylindrical coordinate system is used for the 

computation. To run the program, one needs four input files, i.e., formation.txt, 

meshing.txt, operation.txt and sampling.txt. The formation.txt contains the horizontal and 

radial boundaries of a layered medium and electrical conductivity and magnetic 

permeability of layers. An example is shown as follows: 

3, 3  % number of horizontal layers, number of radial layers [-] 

-0.0025, 0.0025 % z values of horizontal boundaries [m] 

0.1, 18  % rho values of radial boundaries for given horizontal layer [m] 

0.3, 0.3, 0.3 % sigma values of radial layers for given horizontal layer [S/m] 

0.3, 100, 0.3 % sigma values of radial layers for given horizontal layer [S/m] 

0.3, 0.3, 0.3 % sigma values of radial layers for given horizontal layer [S/m] 

1, 1, 1 % relative permeability values of radial layers for given horizontal layer [-] 

1, 1, 1 % relative permeability values of radial layers for given horizontal layer [-] 

1, 1, 1 % relative permeability values of radial layers for given horizontal layer [-] 

The meshing.txt is the input of gridding scheme on the z-axis (horizontal wellbore 

axis). An example is shown as follows: 

-1  % start of uniform meshing section [m] 

1  % end of uniform meshing [m] 

0.1  % element size in the middle uniform part of the grid [m] 

1.25  % size ratio of two adjacent elements in the expanding part [-] 

10.0  % truncation of the domain on both edges [m] 
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The operation.txt contains the specifics of the transmitter/receiver coils. An 

example is shown as follows: 

1000  % operation frequency [Hz] 

1500  % magnetic dipole moment [A.m2] 

600  % number of turns on receiver coil [-] 

0.003  % cross-sectional area of receiver coil [m2] 

An example of sampling.txt is shown below: 

-2  % first logging point (Tx location) [m] 

0  % last logging point (Tx location) [m] 

41  % number of logging points [-] 

0.8  % distance between transmitter and the first receiver coil [m] 

1.2  % distance between transmitter and the second receiver coil [m] 

Main function: 

 

clear all; close all; clc 

  
string = strcat(pwd,'\Library\run_MM_short\'); 

  
timerVal = tic; 

  
global muo omega Nb 

  
muo = 4*pi*1E-7;    % free space electrical permeability, [H/m] 

  
MMtr = indata(string); 
stat = meshing(string); 

  
tic; [Cmat,Lambda] = eigencall(stat); T1=toc; 
tic; [Q,Hc0p,Jc0p] = refmatrix(stat,Cmat,Lambda); T2=toc; 
tic; [z_obsr,Hsca] = scattered(string,Cmat,Lambda,Q,Hc0p,Jc0p); T3=toc; 

  
Vzz_sca = 1j*muo*omega*MMtr*Hsca*1e6; 

  
out = [real(Vzz_sca) imag(Vzz_sca)]; 

  
dlmwrite(strcat(string,'out.dat'),out,'delimiter','\t'); 

  
T4 = toc(timerVal); 

  
fid = fopen(strcat(string,'info.dat'),'w+'); 
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fprintf(fid,'%f \t %% the solution of eigenvalue problem\n',T1); 
fprintf(fid,'%d \t %% number of basis functions\n',Nb); 
fprintf(fid,'%f \t %% calculation of refraction matrix\n',T2); 
fprintf(fid,'%f \t %% solution time for all points\n',T3); 
fprintf(fid,'%d \t %% number of source points\n',size(Vzz_sca,1)); 
fprintf(fid,'%f \t %% total run time\n',T4); 

  
fclose(fid); 

 

The indata function globally defines input values: 

 

function [Mtr] = indata(string) 

     
    global Nz Nr bnd_z bnd_r sigma_sz mur_sz omega nord Nord 

     
    fid = fopen(strcat(string,'formation.txt')); 

     
    Nzr = str2num(strtok(fgetl(fid),'%')); 

     
    Nz = Nzr(1);      % number of layers in the wellbore direction 
    Nr = Nzr(2);      % number of layers in the radial direction 

     
    bnd_z = str2num(strtok(fgetl(fid),'%')); 
    bnd_r = str2num(strtok(fgetl(fid),'%')); 

     
    sigma_sz = zeros(Nz,Nr); 
    mur_sz = zeros(Nz,Nr); 

     
    for i = 1:Nz 
        sigma_sz(i,:) = str2num(strtok(fgetl(fid),'%')); 
    end 

     
    for i = 1:Nz 
        mur_sz(i,:) = str2num(strtok(fgetl(fid),'%')); 
    end 

     
    fclose(fid); 

     
    fid = fopen(strcat(string,'operation.txt')); 

     
    freq = str2num(strtok(fgetl(fid),'%')); 
    Mtx = str2num(strtok(fgetl(fid),'%')); 
    Nrx = str2num(strtok(fgetl(fid),'%')); 
    Arx = str2num(strtok(fgetl(fid),'%')); 

     
    fclose(fid); 
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    Mtr = Mtx*Nrx*Arx; 
    omega = 2*pi*freq; 

     
    % ---------------------- Fourier series ------------------------ % 

     
    nordmin = 0; 
    nordmax = 1; 

     
    nord = (nordmin:nordmax)'; 
    Nord = length(nord); 

     
end 

 

The meshing function creates grids based on the scheme defined in the 

meshing.txt, adds additional grids due to the formation and creates construction vectors 

for the vectorized computation: 

 

function [stat] = meshing(string) 

     
    global Zglobal dz Nz Nr bnd_z Ne Nb B1 B2 

     
    fid = fopen(strcat(string,'meshing.txt')); 

  
    zlog1 = str2num(strtok(fgetl(fid),'%')); 
    zlogN = str2num(strtok(fgetl(fid),'%')); 
    Dz = str2num(strtok(fgetl(fid),'%')); 
    Qexp = str2num(strtok(fgetl(fid),'%')); 
    zmax = str2num(strtok(fgetl(fid),'%')); 

     
    fclose(fid); 

     
    zlog1 = zlog1-1; 
    zlogN = zlogN+1; 

     
    Zmiddle = (zlog1:Dz:zlogN)'; 

     
    Nright = ceil(log((zmax-zlogN)/Dz*(1-1/Qexp)+1)/log(Qexp))+2; 

     
    Zright = zeros(Nright,1); 

     
    for i = 1:Nright 
        Zright(i) = zlogN+Dz*sum(power(Qexp,(1:i))); 
    end 
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    Nleft = ceil(log((zmax+zlog1)/Dz*(1-1/Qexp)+1)/log(Qexp))+2; 

     
    Zleft = zeros(Nleft,1); 

     
    for i = 1:Nleft 
        Zleft(i) = zlog1-Dz*sum(power(Qexp,(1:i))); 
    end 

     
    Zglobal = [flipud(Zleft)',Zmiddle',Zright']'; 

     
    idx = zeros(Nz-1,1); 

  
    for i = 1:Nz-1 
        if sum(bnd_z(i)==Zglobal) 
            idx(i) = sum(bnd_z(i)>Zglobal)+1; 
        else 
            idx(i) = sum(bnd_z(i)>Zglobal); 
            Zglobal = [Zglobal(1:idx(i));bnd_z(i);... 
                       Zglobal(idx(i)+1:end)]; 
            idx(i) = idx(i)+1; 
        end 
    end 

     
    dz = Zglobal(2:end)-Zglobal(1:end-1); 

     
    Ng = length(Zglobal);       % number of grids 
    Ne = Ng-1;                  % number of elements 
    Nb = 2*(Ne-1);              % number of basis functions 

     
    idx = [1;idx;Ng]; 

     
    B1 = 1:Nb; 
    B2 = B1+Nb; 

     
    global muo omega sigma_sz mur_sz 

  
    stat.qe = zeros(Ne,Nr); 
    stat.qh = zeros(Ne,Nr); 

     
    for j = 1:Nr 
        for i = 1:Nz 
            stat.qe(idx(i):idx(i+1)-1,j) = sigma_sz(i,j); 
            stat.qh(idx(i):idx(i+1)-1,j) = mur_sz(i,j); 
        end 
    end 

  
    stat.k2 = 1j*omega*muo*stat.qe.*stat.qh; 

     
end 
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The integral function analytically calculates Eqs. 2.43-2.44 and 2.49-2.52: 

 

function GG = integral(cx,qx1,qx2,flag) 

     
    global Ne 

  
    gg = zeros(Ne,4,4); 

     
    if flag == 1 
        gg = gxgx(cx,qx1,qx2); 
    elseif flag == 2 
        gg = gxgxd(cx,qx1,qx2); 
    elseif flag == 3 
        gg = gxdgxd(cx,qx1,qx2); 
    end 

     
    GG = assembly(gg); 

  
end 

  
function gg = gxgx(cx,qx1,qx2) 

     
    global dz 

  
    gg(:,1,1) = 13/35*dz.*cx; 
    gg(:,1,2) = 11/210*qx2.*dz.*dz.*cx; 
    gg(:,1,3) = 9/70*dz.*cx; 
    gg(:,1,4) = -13/420*qx2.*dz.*dz.*cx; 

     
    gg(:,2,1) = 11/210*qx1.*dz.*dz.*cx; 
    gg(:,2,2) = 1/105*qx1.*dz.*qx2.*dz.*dz.*cx; 
    gg(:,2,3) = 13/420*qx1.*dz.*dz.*cx; 
    gg(:,2,4) = -1/140*qx1.*dz.*qx2.*dz.*dz.*cx; 

     
    gg(:,3,1) = 9/70*dz.*cx; 
    gg(:,3,2) = 13/420*qx2.*dz.*dz.*cx; 
    gg(:,3,3) = 13/35*dz.*cx; 
    gg(:,3,4) = -11/210*qx2.*dz.*dz.*cx; 

     
    gg(:,4,1) = -13/420*qx1.*dz.*dz.*cx; 
    gg(:,4,2) = -1/140*qx1.*dz.*qx2.*dz.*dz.*cx; 
    gg(:,4,3) = -11/210*qx1.*dz.*dz.*cx; 
    gg(:,4,4) = 1/105*qx1.*dz.*qx2.*dz.*dz.*cx; 

     
end 

  
function gg = gxgxd(cx,qx1,qx2) 
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    global dz Ne 

     
    gg(:,1,1) = -1/2*cx; 
    gg(:,1,2) = 1/10*qx2.*dz.*cx; 
    gg(:,1,3) = 1/2*cx; 
    gg(:,1,4) = -1/10*qx2.*dz.*cx; 

     
    gg(:,2,1) = -1/10*qx1.*dz.*cx; 
    gg(:,2,2) = zeros(Ne,1); 
    gg(:,2,3) = 1/10*qx1.*dz.*cx; 
    gg(:,2,4) = -1/60*qx1.*qx2.*dz.*dz.*cx; 

     
    gg(:,3,1) = -1/2*cx; 
    gg(:,3,2) = -1/10*qx2.*dz.*cx; 
    gg(:,3,3) = 1/2*cx; 
    gg(:,3,4) = 1/10*qx2.*dz.*cx; 

     
    gg(:,4,1) = 1/10*qx1.*dz.*cx; 
    gg(:,4,2) = 1/60*qx1.*qx2.*dz.*dz.*cx; 
    gg(:,4,3) = -1/10*qx1.*dz.*cx; 
    gg(:,4,4) = zeros(Ne,1); 

     
end 

  
function gg = gxdgxd(cx,qx1,qx2) 

     
    global dz 

     
    gg(:,1,1) = 6/5*cx./dz; 
    gg(:,1,2) = 1/10*qx2.*cx; 
    gg(:,1,3) = -6/5*cx./dz; 
    gg(:,1,4) = 1/10*qx2.*cx; 

     
    gg(:,2,1) = 1/10*qx1.*cx; 
    gg(:,2,2) = 2/15*qx1.*qx2.*dz.*cx; 
    gg(:,2,3) = -1/10*qx1.*cx; 
    gg(:,2,4) = -1/30*qx1.*qx2.*dz.*cx; 

     
    gg(:,3,1) = -6/5*cx./dz; 
    gg(:,3,2) = -1/10*qx2.*cx; 
    gg(:,3,3) = 6/5*cx./dz; 
    gg(:,3,4) = -1/10*qx2.*cx; 

     
    gg(:,4,1) = 1/10*qx1.*cx; 
    gg(:,4,2) = -1/30*qx1.*qx2.*dz.*cx; 
    gg(:,4,3) = -1/10*qx1.*cx; 
    gg(:,4,4) = 2/15*qx1.*qx2.*dz.*cx; 

     
end 
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function GG = assembly(gg) 

     
    global Ne Nb 

  
    GG = sparse(Nb,Nb); 

     
    idx1 = 1:2:Nb; 
    idx2 = 2:2:Nb; 

     
    GG = GG+sparse(idx1,idx1,gg(1:Ne-1,3,3)+gg(2:Ne,1,1),Nb,Nb); 
    GG = GG+sparse(idx1,idx2,gg(1:Ne-1,3,4)+gg(2:Ne,1,2),Nb,Nb); 
    GG = GG+sparse(idx2,idx1,gg(1:Ne-1,4,3)+gg(2:Ne,2,1),Nb,Nb); 
    GG = GG+sparse(idx2,idx2,gg(1:Ne-1,4,4)+gg(2:Ne,2,2),Nb,Nb); 

     
    GG = GG+sparse(idx1(2:Ne-1),idx1(1:Ne-2),gg(2:Ne-1,3,1),Nb,Nb); 
    GG = GG+sparse(idx1(2:Ne-1),idx2(1:Ne-2),gg(2:Ne-1,3,2),Nb,Nb); 

     
    GG = GG+sparse(idx1(1:Ne-2),idx1(2:Ne-1),gg(2:Ne-1,1,3),Nb,Nb); 
    GG = GG+sparse(idx1(1:Ne-2),idx2(2:Ne-1),gg(2:Ne-1,1,4),Nb,Nb); 

     
    GG = GG+sparse(idx2(2:Ne-1),idx1(1:Ne-2),gg(2:Ne-1,4,1),Nb,Nb); 
    GG = GG+sparse(idx2(2:Ne-1),idx2(1:Ne-2),gg(2:Ne-1,4,2),Nb,Nb); 

     
    GG = GG+sparse(idx2(1:Ne-2),idx1(2:Ne-1),gg(2:Ne-1,2,3),Nb,Nb); 
    GG = GG+sparse(idx2(1:Ne-2),idx2(2:Ne-1),gg(2:Ne-1,2,4),Nb,Nb); 

     
    GG = full(GG); 

     
end 

 

The eigencall function calculates eigenvalues and eigenvectors for each radial 

layer, and it verifies orthogonality condition shown in Eq. 2.45: 

 

function [Cmat,Lambda] = eigencall(stat) 

     
    global Nr Nb B1 B2 

     
    Cmat = zeros(2*Nb,2*Nb,Nr); 

  
    Lambda = zeros(2*Nb,Nr); 

  
    for l = 1:Nr 
        A1e = integral(-1./stat.qe(:,l),stat.qe(:,l),stat.qe(:,l),3); 
        A1h = integral(-1./stat.qh(:,l),stat.qh(:,l),stat.qh(:,l),3); 

  
        A2e = integral(stat.k2(:,l)./... 
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                       stat.qe(:,l),stat.qe(:,l),stat.qe(:,l),1); 
        A2h = integral(stat.k2(:,l)./... 
                       stat.qh(:,l),stat.qh(:,l),stat.qh(:,l),1); 

  
        Be = integral(1./stat.qe(:,l),stat.qe(:,l),stat.qe(:,l),1); 
        Bh = integral(1./stat.qh(:,l),stat.qh(:,l),stat.qh(:,l),1); 

  
        Ae = A1e+A2e; 
        Ah = A1h+A2h; 

  
        [CCe,DDe] = eig(Ae,Be,'vector'); 
        [CCh,DDh] = eig(Ah,Bh,'vector'); 

  
        Cmat(B1,B1,l) = orthog(CCe,Be); 
        Cmat(B2,B2,l) = orthog(CCh,Bh); 

  
        Lambda(B1,l) = sqrt(DDe); 
        Lambda(B2,l) = sqrt(DDh); 
    end 

     
end 

  
function Ceta = orthog(Ceta_old,Beta) 

         
    global Nb 

     
    Ceta = Ceta_old; 
    noneI = transpose(Ceta_old)*Beta*Ceta_old; 
    noneI = sqrt(1./diag(noneI)); 

     
    for i = 1:Nb 
        Ceta(:,i) = Ceta_old(:,i)*noneI(i); 
    end 

 
end 

 

The calculation of generalized refraction matrix: 

function [Q,Hc0p,Jc0p] = refmatrix(stat,Cmat,Lambda) 

     
    global Nr Nb B1 B2 

  
    P1p = zeros(2*Nb,2*Nb,Nr-1); 
    P1m = zeros(2*Nb,2*Nb,Nr-1); 
    P2p = zeros(2*Nb,2*Nb,Nr-1); 
    P2m = zeros(2*Nb,2*Nb,Nr-1); 

  
    Dhep = zeros(Nb,Nb,Nr-1); 



 166 

    Dehp = zeros(Nb,Nb,Nr-1); 

  
    Dhem = zeros(Nb,Nb,Nr-1); 
    Dehm = zeros(Nb,Nb,Nr-1); 

     
    for l = 1:Nr-1 

         
        pe1p = 

integral(1./stat.pe(:,l+1),stat.qe(:,l),stat.qe(:,l+1),1); 
        P1p(B1,B1,l) = transpose(Cmat(B1,B1,l))*pe1p*Cmat(B1,B1,l+1); 
        ph1p = 

integral(1./stat.ph(:,l+1),stat.qh(:,l),stat.qh(:,l+1),1); 
        P1p(B2,B2,l) = transpose(Cmat(B2,B2,l))*ph1p*Cmat(B2,B2,l+1); 

  
        pe1m = integral(1./stat.pe(:,l),stat.qe(:,l+1),stat.qe(:,l),1); 
        P1m(B1,B1,l) = transpose(Cmat(B1,B1,l+1))*pe1m*Cmat(B1,B1,l); 
        ph1m = integral(1./stat.ph(:,l),stat.qh(:,l+1),stat.qh(:,l),1); 
        P1m(B2,B2,l) = transpose(Cmat(B2,B2,l+1))*ph1m*Cmat(B2,B2,l); 

  
        pe2p = integral(1./stat.pe(:,l),stat.qe(:,l),stat.qe(:,l+1),1); 
        P2p(B1,B1,l) = transpose(Cmat(B1,B1,l))*pe2p*Cmat(B1,B1,l+1); 
        ph2p = integral(1./stat.ph(:,l),stat.qh(:,l),stat.qh(:,l+1),1); 
        P2p(B2,B2,l) = transpose(Cmat(B2,B2,l))*ph2p*Cmat(B2,B2,l+1); 

  
        pe2m = 

integral(1./stat.pe(:,l+1),stat.qe(:,l+1),stat.qe(:,l),1); 
        P2m(B1,B1,l) = transpose(Cmat(B1,B1,l+1))*pe2m*Cmat(B1,B1,l); 
        ph2m = 

integral(1./stat.ph(:,l+1),stat.qh(:,l+1),stat.qh(:,l),1); 
        P2m(B2,B2,l) = transpose(Cmat(B2,B2,l+1))*ph2m*Cmat(B2,B2,l); 

  
        dhep = 

integral(1./stat.ph(:,l)./stat.qe(:,l+1),stat.qh(:,l),stat.qe(:,l+1),2)

; 
        Dhep(:,:,l) = transpose(Cmat(B2,B2,l))*dhep*Cmat(B1,B1,l+1); 
        dehp = 

integral(1./stat.pe(:,l)./stat.qh(:,l+1),stat.qe(:,l),stat.qh(:,l+1),2)

; 
        Dehp(:,:,l) = transpose(Cmat(B1,B1,l))*dehp*Cmat(B2,B2,l+1); 

  
        dhem = 

integral(1./stat.ph(:,l+1)./stat.qe(:,l),stat.qh(:,l+1),stat.qe(:,l),2)

; 
        Dhem(:,:,l) = transpose(Cmat(B2,B2,l+1))*dhem*Cmat(B1,B1,l); 
        dehm = 

integral(1./stat.pe(:,l+1)./stat.qh(:,l),stat.qe(:,l+1),stat.qh(:,l),2)

; 
        Dehm(:,:,l) = transpose(Cmat(B1,B1,l+1))*dehm*Cmat(B2,B2,l); 

         
    end 
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    Dhe = zeros(Nb,Nb,Nr); 
    Deh = zeros(Nb,Nb,Nr); 

  
    for l = 1:Nr 

  
        dhe = 

integral(1./stat.ph(:,l)./stat.qe(:,l),stat.qh(:,l),stat.qe(:,l),2); 
        Dhe(:,:,l) = transpose(Cmat(B2,B2,l))*dhe*Cmat(B1,B1,l); 
        deh = 

integral(1./stat.pe(:,l)./stat.qh(:,l),stat.qe(:,l),stat.qh(:,l),2); 
        Deh(:,:,l) = transpose(Cmat(B1,B1,l))*deh*Cmat(B2,B2,l); 

  
    end 

     
    display('done with static part') 

     
    global muo bnd_r omega nord Nord 

     
    Hc0m = zeros(2*Nb,Nr-1,Nord); 
    Jc0m = zeros(2*Nb,Nr-1,Nord); 
    Hc0p = zeros(2*Nb,Nr-1,Nord); 
    Jc0p = zeros(2*Nb,Nr-1,Nord); 

  
    Hc1m = zeros(2*Nb,Nr-1,Nord); 
    Jc1m = zeros(2*Nb,Nr-1,Nord); 
    Hc1p = zeros(2*Nb,Nr-1,Nord); 
    Jc1p = zeros(2*Nb,Nr-1,Nord); 

  
    for l = 1:Nr-1 

  
        Lm = Lambda(:,l+1)*bnd_r(l); 
        Lp = Lambda(:,l)*bnd_r(l); 

         
        Am = imag(Lm)<0; 
        Ap = imag(Lp)<0; 

  
        for i = 1:Nord 
            Hc0m(:,l,i) = besselh(nord(i),1,Lm,1); 
            Jc0m(:,l,i) = besselj(nord(i),Lm,1).*exp(1j*real(Lm)); 
            Jc0m(Am,l,i) = Jc0m(Am,l,i).*exp(-2*imag(Lm(Am))); 
            Hc0p(:,l,i) = besselh(nord(i),1,Lp,1); 
            Jc0p(:,l,i) = besselj(nord(i),Lp,1).*exp(1j*real(Lp)); 
            Jc0p(Ap,l,i) = Jc0p(Ap,l,i).*exp(-2*imag(Lp(Ap))); 
        end 

  
        for i = 1:Nord 
            if i == 1 
                Left1 = besselh(nord(i)-1,1,Lm,1); 
                Left2 = besselj(nord(i)-1,Lm,1).*exp(1j*real(Lm)); 
                Left2(Am) = Left2(Am).*exp(-2*imag(Lm(Am))); 
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                Left3 = besselh(nord(i)-1,1,Lp,1); 
                Left4 = besselj(nord(i)-1,Lp,1).*exp(1j*real(Lp)); 
                Left4(Ap) = Left4(Ap).*exp(-2*imag(Lp(Ap))); 
            else 
                Left1 = Hc0m(:,l,i-1); 
                Left2 = Jc0m(:,l,i-1); 
                Left3 = Hc0p(:,l,i-1); 
                Left4 = Jc0p(:,l,i-1); 
            end 
            if i == Nord 
                Right1 = besselh(nord(i)+1,1,Lm,1); 
                Right2 = besselj(nord(i)+1,Lm,1).*exp(1j*real(Lm)); 
                Right2(Am) = Right2(Am).*exp(-2*imag(Lm(Am))); 
                Right3 = besselh(nord(i)+1,1,Lp,1); 
                Right4 = besselj(nord(i)+1,Lp,1).*exp(1j*real(Lp)); 
                Right4(Ap) = Right4(Ap).*exp(-2*imag(Lp(Ap))); 
            else 
                Right1 = Hc0m(:,l,i+1); 
                Right2 = Jc0m(:,l,i+1); 
                Right3 = Hc0p(:,l,i+1); 
                Right4 = Jc0p(:,l,i+1); 
            end 
            Hc1m(:,l,i) = (Left1-Right1)/2; 
            Jc1m(:,l,i) = (Left2-Right2)/2; 
            Hc1p(:,l,i) = (Left3-Right3)/2; 
            Jc1p(:,l,i) = (Left4-Right4)/2; 
        end 

  
    end 

     
    display('done with bessel') 

     
    Chipm = Hc1m./Hc0m; 
    Chimm = Jc1m./Jc0m; 
    Chipp = Hc1p./Hc0p; 
    Chimp = Jc1p./Jc0p; 

     
    display('done with Chi') 

     
    Yp = zeros(2*Nb,Nr-2,Nord); 
    Ym = zeros(2*Nb,Nr-2,Nord); 

     
    for l = 1:Nr-2 

  
        L_Drho = Lambda(:,l+1)*(bnd_r(l+1)-bnd_r(l)); 

  
        for i = 1:Nord 
            Yp(:,l,i) = exp(1j*L_Drho).*(Hc0p(:,l+1,i)./Hc0m(:,l,i)); 
            Ym(:,l,i) = exp(1j*L_Drho).*(Jc0m(:,l,i)./Jc0p(:,l+1,i)); 
        end 
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    end 

     
    display('done with gamma') 

     
    Q = zeros(2*Nb,2*Nb,Nr-1,Nord); 

  
    for i = 1:Nord 

  
        Tp = zeros(2*Nb,2*Nb,Nr-1); 
        Tm = zeros(2*Nb,2*Nb,Nr-1); 

  
        Rp = zeros(2*Nb,2*Nb,Nr-1); 
        Rm = zeros(2*Nb,2*Nb,Nr-1); 

  
        for l = 1:Nr-1 

  
            beta1pp = zeros(2*Nb,2*Nb); 
            beta1mp = zeros(2*Nb,2*Nb); 
            beta2pm = zeros(2*Nb,2*Nb); 

  
            beta1mm = zeros(2*Nb,2*Nb); 
            beta1pm = zeros(2*Nb,2*Nb); 
            beta2mp = zeros(2*Nb,2*Nb); 

  
            beta1pp(B1,B1) = 1j*nord(i)/bnd_r(l)*Dhe(:,:,l); 
            beta1pp(B2,B1) = -diag(Chipp(B1,l,i).*Lambda(B1,l)); 
            beta1pp(B1,B2) = -

1j*omega*muo*diag(Chipp(B2,l,i).*Lambda(B2,l)); 
            beta1pp(B2,B2) = 1j*nord(i)/bnd_r(l)*Deh(:,:,l); 

  
            beta1mp(B1,B1) = 1j*nord(i)/bnd_r(l)*Dhe(:,:,l); 
            beta1mp(B2,B1) = -diag(Chimp(B1,l,i).*Lambda(B1,l)); 
            beta1mp(B1,B2) = -

1j*omega*muo*diag(Chimp(B2,l,i).*Lambda(B2,l)); 
            beta1mp(B2,B2) = 1j*nord(i)/bnd_r(l)*Deh(:,:,l); 

  
            beta2mp(B1,B1) = 1j*nord(i)/bnd_r(l)*Dhem(:,:,l); 
            beta2mp(B2,B1) = -

P2m(B1,B1,l)*diag(Chimp(B1,l,i).*Lambda(B1,l)); 
            beta2mp(B1,B2) = -

1j*omega*muo*P2m(B2,B2,l)*diag(Chimp(B2,l,i).*Lambda(B2,l)); 
            beta2mp(B2,B2) = 1j*nord(i)/bnd_r(l)*Dehm(:,:,l); 

  
            beta1pm(B1,B1) = 1j*nord(i)/bnd_r(l)*Dhe(:,:,l+1); 
            beta1pm(B2,B1) = -diag(Chipm(B1,l,i).*Lambda(B1,l+1)); 
            beta1pm(B1,B2) = -

1j*omega*muo*diag(Chipm(B2,l,i).*Lambda(B2,l+1)); 
            beta1pm(B2,B2) = 1j*nord(i)/bnd_r(l)*Deh(:,:,l+1); 

  
            beta1mm(B1,B1) = 1j*nord(i)/bnd_r(l)*Dhe(:,:,l+1); 
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            beta1mm(B2,B1) = -diag(Chimm(B1,l,i).*Lambda(B1,l+1)); 
            beta1mm(B1,B2) = -

1j*omega*muo*diag(Chimm(B2,l,i).*Lambda(B2,l+1)); 
            beta1mm(B2,B2) = 1j*nord(i)/bnd_r(l)*Deh(:,:,l+1); 

  
            beta2pm(B1,B1) = 1j*nord(i)/bnd_r(l)*Dhep(:,:,l); 
            beta2pm(B2,B1) = -

P2p(B1,B1,l)*diag(Chipm(B1,l,i).*Lambda(B1,l+1)); 
            beta2pm(B1,B2) = -

1j*omega*muo*P2p(B2,B2,l)*diag(Chipm(B2,l,i).*Lambda(B2,l+1)); 
            beta2pm(B2,B2) = 1j*nord(i)/bnd_r(l)*Dehp(:,:,l); 

  
            beta1pp = beta1pp*diag(power(Lambda(:,l),-2)); 
            beta1mp = beta1mp*diag(power(Lambda(:,l),-2)); 
            beta2mp = beta2mp*diag(power(Lambda(:,l),-2)); 
            beta1pm = beta1pm*diag(power(Lambda(:,l+1),-2)); 
            beta1mm = beta1mm*diag(power(Lambda(:,l+1),-2)); 
            beta2pm = beta2pm*diag(power(Lambda(:,l+1),-2)); 

  
            Tp(:,:,l) = (beta2pm-beta1mp*P1p(:,:,l))\(beta1pp-beta1mp); 
            Tm(:,:,l) = (beta2mp-beta1pm*P1m(:,:,l))\(beta1mm-beta1pm); 

  
            Rp(:,:,l) = P1p(:,:,l)*Tp(:,:,l)-eye(2*Nb); 
            Rm(:,:,l) = P1m(:,:,l)*Tm(:,:,l)-eye(2*Nb); 

             
        end 

         
        display('done with local matrices') 

         
        for l = (Nr-1):-1:1 
            if l == Nr-1 
                Q(:,:,l,i) = Rp(:,:,l); 
            else 
                Q1 = diag(Ym(:,l,i))*Q(:,:,l+1,i)*diag(Yp(:,l,i)); 
                S = (eye(2*Nb)-Rm(:,:,l)*Q1)\Tp(:,:,l); 
                Q(:,:,l,i) = Rp(:,:,l)+Tm(:,:,l)*Q1*S; 
            end 
        end 

         
        display('done with generalized matrix') 

         
    end 
end 

 

The calculation of differential magnetic fields for all sampling points: 

 

function [z_obsrvr,Hsca] = scattered(string,Cmat,Lambda,Q,Hc0p,Jc0p) 
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    global bnd_r mur_sz nord Nord Nb B2 

  
    fid = fopen(strcat(string,'sampling.txt')); 

  
    Zstart = str2num(strtok(fgetl(fid),'%')); 
    Zend = str2num(strtok(fgetl(fid),'%')); 
    Nsamples = str2num(strtok(fgetl(fid),'%')); 
    Ltr1 = str2num(strtok(fgetl(fid),'%')); 
    Ltr2 = str2num(strtok(fgetl(fid),'%')); 

     
    alfa = (Ltr1/Ltr2)^3; 

     
    fclose(fid); 

  
    rhoa = 1e-6; 

     
    Lb = Lambda(:,1)*bnd_r(1); 
    La = Lambda(:,1)*rhoa; 

     
    Aa = imag(La)<0; 

  
    Hcap_a = zeros(2*Nb,Nord); 
    Jcap_a = zeros(2*Nb,Nord); 

  
    Q_a = zeros(2*Nb,2*Nb,Nord); 

  
    for i = 1:Nord 

         
        Hcap_a(:,i) = besselh(nord(i),1,La,1); 
        Jcap_a(:,i) = besselj(nord(i),La,1).*exp(1j*real(La)); 
        Jcap_a(Aa,i) = Jcap_a(Aa,i).*exp(-2*imag(La(Aa))); 

         
        Yp_a = exp(1j*(Lb-La)).*(Hc0p(:,1,i)./Hcap_a(:,i)); 
        Ym_a = exp(1j*(Lb-La)).*(Jcap_a(:,i)./Jc0p(:,1,i)); 

         
        Q_a(:,:,i) = diag(Ym_a)*Q(:,:,1,i)*diag(Yp_a); 

         
    end 

     
    display('all done before sampling') 

     
    z_source = linspace(Zstart,Zend,Nsamples)'; 
    z_obsrv1 = z_source+Ltr1; 
    z_obsrv2 = z_source+Ltr2; 

     
    Hsca1 = zeros(Nsamples,1); 
    Hsca2 = zeros(Nsamples,1); 

     
    for k = 1:Nsamples 
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        gh_source = sampling(z_source(k),mur_sz(1,1)); 
        gh_obsrv1 = sampling(z_obsrv1(k),mur_sz(1,1)); 
        gh_obsrv2 = sampling(z_obsrv2(k),mur_sz(1,1)); 
        for i = 1:Nord 
            bph = 

1/4j/mur_sz(1,1)*diag(Hcap_a(B2,i).*Jcap_a(B2,i).*Lambda(B2,1).^2)*... 
                  transpose(Cmat(B2,B2,1))*gh_source; 
            Hsca_n_1 = 

1/mur_sz(1,1)*gh_obsrv1'*Cmat(B2,B2,1)*Q_a(B2,B2,i)*bph; 
            Hsca_n_2 = 

1/mur_sz(1,1)*gh_obsrv2'*Cmat(B2,B2,1)*Q_a(B2,B2,i)*bph; 
            if i == 1 
                Hsca1(k,1) = Hsca1(k,1)+Hsca_n_1; 
                Hsca2(k,1) = Hsca2(k,1)+Hsca_n_2; 
            else 
                Hsca1(k,1) = Hsca1(k,1)+2*Hsca_n_1; 
                Hsca2(k,1) = Hsca2(k,1)+2*Hsca_n_2; 
            end 
        end 
    end 

     
    Hsca = Hsca2-Hsca1*alfa; 
    z_obsrvr = z_source+(Ltr2+Ltr1)/2; 

     
end 

  
function geta = sampling(z_dash,qeta) 

     
    % wellbore must be homogeneous 

     
    global Zglobal dz Ne Nb 

     
    geta = zeros(Nb,1); 

     
    for i = 1:Ne 
        if and(z_dash>=Zglobal(i),z_dash<Zglobal(i+1)) 
            L1 = (Zglobal(i+1)-z_dash)/dz(i); 
            L2 = (z_dash-Zglobal(i))/dz(i); 
            geta(2*i-3) = -2*L1^3+3*L1^2; 
            geta(2*i-2) = qeta*dz(i)*L1^2*L2; 
            geta(2*i-1) = -2*L2^3+3*L2^2; 
            geta(2*i) = -qeta*dz(i)*L2^2*L1; 
        end 
    end 
end 

 

The info.dat is an output file which provides information on the computation time 

(solving the generalized eigenvalue problem, refraction matrix fill time, solution time for 
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all sampling points and total run time), number of basis functions and number of source 

points. Another output file, the out.dat, provides calculated real and imaginary voltages 

for the z-oriented receiver coil (transmitter coil is also z-oriented) and for all sampling 

points.  

SIMULATED ANNEALING / NEIGHBOR APPROXIMATION 

The Matlab code inverts tri-axial induction tool data for recovering fracture 

parameters: conductivity, radius and dip-angle. To run the program, one needs the input 

file of inversion.txt in addition to the information required for the forward runs, i.e., node 

spacing, and well radius. An example for inversion.txt is shown below: 

100  % number of iterations 

5  % number of models in each iteration  

3  % number of model parameters 

10  % minimum value for fracture conductivity 

1  % minimum value for fracture radius 

0  % minimum value for fracture dip-angle 

500  % maximum value for fracture conductivity 

100  % maximum value for fracture radius 

80  % maximum value for fracture dip-angle 

Main function: 

 

clear all; close all; clc; 

  
string = strcat(pwd,'\Library\hfd_2_8m_30deg\'); 

  
indata = load(strcat(string,'inversion.txt')); 

  
nog = indata(1);        % number of generations 
now = indata(2);        % number of walkers in each generation 
nop = indata(3);        % number of parameters in each model 

  
m_min = indata(4:3+nop); 
m_max = indata(4+nop:3+2*nop); 

  
% R2 is saving any model and its energy which evaluated 
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R2 = vfsa(string,m_min,m_max,nog,now,nop); 

  
dlmwrite(strcat(string,'inv_R2.dat'),R2,'delimiter','\t'); 

     

The vfsa function iterates models by randomly selecting and evaluating: 

 

function R2 = vfsa(string,m_min,m_max,nog,now,nop) 

  
    R2 = zeros(nog*now,1+nop); 

  
    m_1 = zeros(nop,now); 
    m_2 = zeros(nop,now); 
    E_1 = zeros(1,now); 
    E_2 = zeros(1,now); 

     
    for j = 1:now 
        m_1(:,j) = m_min+rand(nop,1).*(m_max-m_min); 
        E_1(j) = errcall(string,m_1(:,j)); 
        R2(j,:) = [E_1(j),m_1(:,j)']; 
    end 

     
    for i = 2:nog 
        T = temperature(i,nog); 
        for j = 1:now 
            for k = 1:nop 
                m_2(:,j) = offspring(m_1(:,j),k,m_min,m_max,T); 
                if k < nop 
                    E_2(j) = neighbor(m_2(:,j),R2(1:(i-1)*now,:),... 
                                      m_min,m_max); 
                else 
                    E_2(j) = errcall(string,m_2(:,j)); 
                    R2((i-1)*now+j,:) = [E_2(j),m_2(:,j)']; 
                end 
                d_E = E_2(j)-E_1(j); 
                if d_E <= 0 
                    m_1(k,j) = m_2(k,j); 
                    E_1(j) = E_2(j); 
                else 
                    if exp(-d_E/T) > rand 
                        m_1(k,j) = m_2(k,j); 
                        E_1(j) = E_2(j); 
                    end 
                end 
            end 
        end 
        [m_1,E_1] = selection(m_1,E_1); 

         
        display(['Number of Generation is ' num2str(i)]) 
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    end 
end 

 

The errcall function calculates error based on Eq. 4.2 by comparing each forward 

model to the measured data. The MOM solution shown in the Appendix is attached to 

this function to evaluate the forward models: 

 

function E = errcall(string,param) 

  
    G_frac = param(1)*0.005; 
    r_frac = param(2); 
    dipang = param(3); 

         
    muo = 4*pi*1E-7;    % free space electrical permeability, [H/m] 
    epso = 8.854187817*1E-12;   % free space permittivity, [F/m] 

  
    opcond = load(strcat(string,'operation.txt')); 

  
    omega = 2*pi*opcond(1);     % angular frequency, [rad.Hz] 
    Mtr = prod(opcond(2:4)); 

  
    k1 = sqrt(muo*epso*omega^2-1j*muo*opcond(5)*omega); 

  
    geometry(r_frac,dipang,string); 

  
    [Zmn,Bmn] = impedance(k1,opcond(6)); 

     
    Tmn = 1j*omega*muo*Zmn+Bmn/G_frac; 
    Hsca = scattered(k1,opcond(7),Tmn,string); 

     
    Vhfd = load(strcat(string,'out.dat')); 
     

    Vdsh_yz = abs(Vhfd(:,3)+1j*Vhfd(:,4)); 
    Vsca_yz = abs(-1j*(muo*omega)^2*Mtr*(Hsca(:,2))*1e6); 
    Vdsh_zz = abs(Vhfd(:,5)+1j*Vhfd(:,6)); 
    Vsca_zz = abs(-1j*(muo*omega)^2*Mtr*(Hsca(:,3))*1e6); 

     
    Vdsh = [Vdsh_yz; Vdsh_zz]; 
    Vsca = [Vsca_yz; Vsca_zz]; 

     
    E = (Vsca./Vdsh-1)'*(Vsca./Vdsh-1); 
end 

 

The temperature function is a control parameter: 
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function T = temperature(i,nog) 

   
    To = 1;    % initial temperature, popular spec. is 1 
    Tf = 1e-2; % final temperature, popular specs. are [0.01 0.1] 
    T = To*power(Tf/To,(i-1)/(nog-1)); 

 
end 

 

In the given iteration, the exact error value is calculated only once for each model. 

The neighbor function uses history of forward models to estimate errors for one-

directional moves.  

 

function energy = neighbor(m,G_E,m_min,m_max) 

     
    nop = size(m,1);            % number of parameters 
    noE = size(G_E,1);          % number of previous forward runs 

     
    mb = G_E(:,2:1+nop)'; 
    distance = zeros(noE,1); 

     
    si = m_max-m_min; 

     
    Cm = diag(1./power(si,2));  % dimensionalize parameter space 

 
    for i = 1:noE 
        distance(i) = sqrt((m-mb(:,i))'*Cm*(m-mb(:,i))); 
    end 

 
    [~,n] = min(distance); 
    energy = G_E(n,1); 

 
end 

 

The offspring function generates new model from a given old model by the 

random shift in one dimension: 

 

function [m_n] = offspring(m_o,k,m_min,m_max,tmp) 

         
    m_n = m_o;         % produced new model 

  
    for ntry = 1:100 
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        dif = rand-0.5; 
        if dif < 0 
            sign = -1; 
        end 
        if dif >= 0 
            sign = 1; 
        end 
        m_t = m_o(k)+sign*rand*tmp*(m_max(k)-m_min(k)); 
        if m_t>=m_min(k) && m_t<=m_max(k) 
            break; 
        end 
    end 

     
    if ntry >= 100 
        error('could not find search point from cauchy distribution') 
    end 

     
    m_n(k) = m_t; 

  
end 

 

The out.dat is an output file which provides error and model parameters for every 

computed forward model. 
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