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Abstract

A Tri-Axial Electromagnetic Induction Tool for

Hydraulic Fracture Diagnostics

Javid Shiriyev, Ph.D.

The University of Texas at Austin, 2018
Supervisor: Mukul M. Sharma

The monitoring and diagnostics of induced fractures are important for the real-
time performance evaluation of hydraulic fracturing operations. Previous electromagnetic
(EM) based studies show that single backbone tri-axial induction logging tools are
promising candidates for the real-time monitoring and diagnosis of fractures in uncased
wells. To support the development of field deployable tools, the concept must be tested in
experiments, in a controllable environment, before it is tested under field-like conditions.
To this end, we have developed numerical tools which can simulate any wellbore
environment while logging hydraulic fractures with the induction tool. We have designed
and built a prototype induction tool and performed two sets of tests to compare with
numerical simulation results. The computational and experimental setup consists of tri-
axial transmitter and receiver coils in co-axial, co-planar and cross-polarized
configurations. Both lab and shallow earth measurements are shown to be in good
agreement with simulations for all examined cases. The average relative and maximum
discrepancies of the measured signals from the simulated ones were lower than 3% and

10%, respectively. With the prototype tool, strong signals sensitive to the fracture’s
vii



surface area and dip-angle were measured in the co-axial coil configuration, while
weaker signals sensitive to the fracture’s aspect ratio were observed in the co-planar
configuration. Cross-polarized signals are also shown to be strong and sensitive to the
fracture’s dip. Lastly, we resolved the detectable components of the measured signal
tensor to obtain parameters for simplified fracture geometries. The inversion algorithm, a
derivative free directional search model, uses an objective function defined as a
combination of co-axial and cross-polarized signals from different tool spacing, and the
function provides a well behaved global minimum. The robustness of the inversion
algorithm is tested on synthetic data for single cluster fractures in a homogeneous and
heterogeneous background electrical conductivity. All the effective model parameters for
different cases, electrical conductivity, size and dip-angle, are shown to be recovered
with good accuracy. We also evaluated the effect of neighboring fractures and suggested
a multi-cluster inversion path which can recover the proppant distribution in a stage very
accurately. Based on the numerical and experimental results we suggest a tool with

specifications that can effectively recover far-field proppant distribution in the fractures.
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Chapter 1: INTRODUCTION

While traditional hydrocarbon recovery techniques are not applicable in shales
because of their very small matrix permeability, a recent combination of hydraulic
fracturing treatments with horizontal drilling has led to a breakthrough in hydrocarbon
production. To evaluate the outcomes and performance of such hydraulic fracturing
treatments, induced propped fractures must be monitored, appraised and quantified.
Indeed, unpropped portions of induced fractures close under high net stress shortly after
fracing and may not contribute to well productivity (Sharma and Manchanda, 2015); thus,
it is crucial to determine the spatial distribution of proppants for successful fracture
diagnostics.

Conventional fracture diagnostic techniques are based on sensing physical events
that occur during fracture growth. For example, microseismic detection is based on the
monitoring of the shear waves generated due to rock failure in the vicinity of the
hydraulic fracture or fracture network (Batchelor et al., 1983). Tiltmeter mapping is
another commonly used technique, which is based on measuring fracture-induced rock
deformations and relating them to the induced fracture geometry (Warpinski and
Branagan, 1989). These techniques lack the correlation between the measured physical
events and settled proppant locations and thus are not suitable for deducing proppant
distributions and well productivity.

More recent fiber optic based measurements provide data that can be qualitatively
interpreted for the efficiency of proppant placement. The application of fiber optics has
the advantage of providing continuous wellbore monitoring capabilities during the
injection, shut-in and production phases of fracturing operations and full-length wellbore

characteristics can be transferred to the surface in real-time. Moreover, it requires no
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installation of any down-hole equipment to interfere with field operations. A single fiber
optic cable temporarily/permanently installed in the well may provide characteristics such
as temperature (DTS), acoustic (DAS), strain (DSS), etc. (Smolen and Spek, 2003).
Monitoring with only DTS lacks the same correlation with proppant location, and in
some applications, DAS/DTS data have been used to infer dominant perforation clusters
that are taking most of the fracturing fluid and proppant (Sookprasong et al., 2014;
Wheaton et al., 2016). Such measurements have been used to avoid frack-hits while
fracturing and to determine and eliminate dominant clusters. The measurements have
shown that the fractures are heel dominated and that special steps may need to be taken to
optimize the number of clusters per stage, spacing between clusters/stages and fracturing
fluid injection rate to avoid non-uniform fluid/proppant distribution (Ugueto et al., 2016;
Wu et al., 2017).

A more promising alternative for proppant detection is to use techniques that rely
on sensing electromagnetic (EM) fields scattered due to the contrast in EM material
properties between propped fractures and the surrounding formation. Although the
contrast in EM properties can be enhanced by increasing the proppant’s electrical
conductivity, magnetic permeability, electrical permittivity, or a combination of them
(Heagy and Oldenburg, 2013), enhancing the conductivity contrast generally enables
better detectability compared to the other alternatives (LaBrecque et al., 2016) and is
more practical. In fact, numerous proppant types have been reported to exhibit large
effective electrical conductivities (LaBrecque et al., 2016; Palisch et al., 2016; Zhang et
al., 2016; Hoversten et al., 2015).

A variety of field data acquisition techniques can be implemented to sense the EM
fields scattered from proppants that display a large electrical conductivity contrast over

the background shale. One acquisition technique, employed in LaBrecque et al. (2016),
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Palisch et al. (2016), and Hibbs (2014), is to use receiver arrays densely deployed on the
surface to sense the response to an electric current emitted into the subsurface by
electrodes. While the spatially dense surface receiver array allows for relatively extensive
coverage of the stimulated area, this transmitter-receiver coupling is inherently depth
limited. As the source-observer distance increases, EM fields are significantly attenuated
by the overburden layers greatly obfuscating the signals of interest.

This limitation can be considerably mitigated by utilizing source/observers in the
vicinity of propped hydraulic fractures. The electrically conductive proppant can then be
mapped using a single-backbone, electromagnetic induction tool (Salies, 2012; Basu,
2014). This has the potential to offer a cheap (Gul and Aslanoglu, 2018) far-field
proppant detection technique that can be executed from a single wellbore at any time
during the well’s life cycle. The method can provide a time-lapse analysis of fracture
growth or closure which can decrease the uncertainties in reservoir parameters critical for
long-term production forecasting (Balan et al., 2017) where data-driven analyses are not
available (Eftekhari et al., 2018). Furthermore, the application of such measurements in
the field can be incorporated with complex-fracture proppant transport models
(Shrivastava and Sharma, 2018) to improve their reliability.

In Pardo and Torres-Verdin (2013), Basu and Sharma (2014), Yang et al. (2015),
and Zhang et al. (2016) such a low-frequency induction tool, where both sources and
observers (tri-axial induction coils) are placed on the same backbone, were numerically
studied and found to be sensitive to various propped fracture properties in open-hole hole
completion wells. These findings were corroborated by independent laboratory
experiments in Yu et al. (2016) that used a scaled-down co-axial induction tool and
scaled-up electrical conductivities to evaluate orthogonal fractures. According to

numerical forward studies and parametric inversion analyses with synthetic data (Yang et
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al., 2015/2016), different transmitter/receiver coil configurations are sensitive to different
propped fracture properties (area, shape and dip) and the best response occurs when the
primary magnetic field is perpendicular to the plane of the target (Swift, 1988). In this
dissertation, we further study the induction tool with fast and robust numerical forward

and inversion models and conduct a complete set of experiments with a prototype tool.

1.1. LOW FREQUENCY ELECTROMAGNETIC INDUCTION TOOL

The low-frequency induction logging tool (Fig. 1.1) described in this dissertation
is similar to those analyzed theoretically in Salies (2012), Pardo and Torres-Verdin
(2013), Basu and Sharma (2014), Yang et al. (2015), and Zhang et al. (2016). It includes
a tri-axial transmitter (Tx) coil that generates EM fields and a tri-axial receiver coil set
composed of two coils, Rx; and Rx,, measuring the EM response of the surrounding
formation to those fields (Duesterhoeft et al., 1961). The measured total voltage on each
of the receiver coils can be described as the superposition of two contributions: (i) a
primary contribution corresponding to the fields in the shale formation in the absence of
induced fractures and (ii) a secondary contribution that can be associated with fields
arising due to the presence of a fracture filled with an electrically conductive proppant.

To formulate the tool’s response we denote H,{,p’s’t}(r) the {primary, secondary,
total} magnetic field at point r, excited by a transmitter coil oriented in the v € {x,y, z}
direction. We follow the e/t time convention used in engineering. For all figures, the
Cartesian coordinate system is defined such that the positive z-axis is the direction of a
horizontal wellbore, and the positive x-axis is the vertical direction opposite to gravity
(Fig. 1.1). The signals of interest, for a receiver set oriented in the u € {x,y, z} direction,

are given by
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where AUT%);S‘t} are the bucked voltages, Arx is the area of the receiver coils positioned
at rrx; and rryx,, Ngrx is number of turns in the receiver coils, p, is free-space magnetic
permeability, and (I;/l,)® is a bucking coefficient used to approximately cancel the
dominant imaginary component of the primary field (Lovell, 1993). Bucking increases
the tool’s sensitivity to small variations in the total magnetic field but must be carefully
calibrated: for thin coils, /; and /, are the distances between the receiver and the
transmitter coil’s center. For such simple geometries, bucking can yield close to perfect
primary component cancellation for low frequency signals in air, accounting for the 1/R3
decay of the primary field at distance R from the source. In practice, however, the coils
are of finite length and thus should be calibrated for optimal cancellation of the primary

signal prior to data acquisition in the well.
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Figure 1.1: An electromagnetic induction logging tool with a single spacing couple: tri-
axial transmitter (Tx) and receiver/bucking (Rx;/Rx;) coils.



The utilization of a tri-axial receiver coil system allows acquisition of more
parameters of the fractures. In the previous numerical study, co-axial measurements were
shown to be sensitive to the fracture cross-sectional area but cannot differentiate fractures
of the same area with different cross-sectional shapes or dips. Transverse co-polarized
measurements can discern axially symmetric from asymmetric ones and cross-polarized
measurements can quantify fracture dip-angle and become more sensitive as the dip-
angle increases (Yang et al., 2015).

An actual measurement in the field involves two passes of the tool along the
wellbore, before and after the hydraulic fracturing operation, during which the bucked

p

signals AU, (before the hydraulic fracturing) and AUY, (after the hydraulic fracturing)

are recorded. The difference between these bucked signals is given by:
AUS, = AUL, — AUY, (1.2)

This is referred as the “differential signal” in this dissertation. Since the distance between
transmitter and receiver coils dictates the depth of investigation of the tool, three receiver
coil sets at different distances from the tri-axial transmitter coil have been suggested to
investigate fractures far away from the wellbore (Fig. 1.2). The short spacing can detect
smaller fractures but is insensitive to larger ones. The signals from the long spacing are
inherently weak but can distinguish larger fractures. The upper bound of sensitivity was
shown to be 10 m” for the short spacing and 1000 m* for the long spacing receiver

couples.
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Figure 1.2: An electromagnetic induction logging tool with three spacings: short,
intermediate and long spacing transmitter-receivers couples.

Table 1.1 shows nominal spacings used for the tool in the previous studies; we

will use the same nominal distances.

Short Spacing Intermediate Spacing Long Spacing
13° (m) 15° (m) 11 (m) 13> (m) 11° (m) 15 (m)
1.2 1.5 5.0 5.6 18.0 19.2

Table 1.1: Nominal tool spacings, the distance between transmitter and receiver/bucking
coils, for short, intermediate and long spacings.

1.2. PROBLEM STATEMENT

Previous numerical studies presented for induction tools are more generic and not
specialized for this range of frequencies. These models are computationally demanding
and the time cost for these forward models do not allow inversion algorithms to be
implemented in a time efficient manner. Moreover, the estimation of particular
parameters from real signals measured in the field is likely to be limited by various
factors not modeled in numerical studies, including the actual ambient noise and
manufacturing uncertainties in the tool itself. To be able to judge the predictive value,
and ultimately the potential of single backbone EM tools for propped fracture diagnosis,

the detectability and differentiability of realistic signal levels corresponding to fractures



of various geometries must be studied experimentally with realistically sized tri-axial
coils.

All the previous work theoretically demonstrates the method’s capability to detect
and characterize propped fractures, but numerous gaps still exist before this technology
can be deployed in the field. These include, for example, specifications of transmitting
and receiving components, uncertainty in their positioning, the required resolution of the
processed signals, their sensitivity to the actual noise, etc. To bridge the gap between the
theoretical proof of concept and a field deployable tool, the design, and testing of a
lower-risk initial prototype is required. This testing should enable refining the tool
specifications to guarantee its robustness while avoiding difficult and expensive down-
hole measurements. In this study we have experimentally verified this technique and

developed a list of recommended specifications and practices for a field deployable tool.

1.3. RESEARCH OBJECTIVES

The main research objective of this study is to verify the proposed methodology
in a lab and field-like scenario and validate the numerical forward models used both for
the simulation of the experimental and downhole scenarios and later as the cornerstone
for an inversion analysis. In particular:

e To develop a laboratory measurement technique that can emulate hydraulic
fractures in a controlled environment;

e To build a prototype tool which is very close in design to a field deployable tool;

e To develop a numerical forward model that can be compared with experimental
results and is fast/robust enough to be used in the inversion analysis;

e To develop an inversion algorithm that is automated, fast and robust and ready to

be used in a field.



The efforts, results and conclusions of the dissertation will enable the design and

manufacturing of a field deployable tool.

1.4. DISSERTATION OUTLINE

This dissertation is divided into five chapters. A numerical model shown in
Chapter 2 is compared to the response of a prototype tool described in Chapter 3. Then, a
stochastic inversion algorithm is developed and described in Chapter 4 which is ready to
use with field data. The last chapter uses both numerical and inversion models to
demonstrate the capabilities of the tool and to make recommendations for field
deployment. All forward and inversion models can be found in the Appendix of this
dissertation.

Chapter 2 describes two numerical algorithms invoked to compute the response of
the tool to the targets with EM contrast. The models developed here allow the regions of
different EM properties to be included around the tool with little computational effort.
We effectively utilize surface integral equations for the open-hole application and an
axial hybrid method for the computation of tool response inside the production casing.

In Chapter 3, we describe the experimental system, including the design of a
particular prototype tool and target models and measurement procedures for tests in
laboratory and field environments; importantly, the coil sizes and operation frequency are
not scaled. The experimentally measured signals are described and compared to
numerical simulations for various receiver and transmitter configurations. These fracture
models have increased electrical conductivity and reduced thickness, designed to provide
signal levels similar to those expected from realistic propped fractures.

Chapter 4 develops a stochastic inversion algorithm for the full automated

inversion of the tool’s response. The model is validated with testing function and used for
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the parametrized fracture model. We used synthetic data to evaluate the sensitivity of the
signals to fracture electrical conductivity, size and dip-angle. The chapter also studies the
effect of neighboring fractures on the recorded signals to accurately identify proppant
distribution among the clusters of a stage.

In Chapter 5, we used numerical and forward models to evaluate the investigation
area of the tool with the given optimized frequency and tool spacings. We further
simulated inter-well deployment; showed the potential for the evaluation of proppant
settlement. Finally, we simulated and presented results for proppants with enhanced

electrical permittivity and magnetic permeability.
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Chapter 2: NUMERICAL MODELING OF ELECTRICALLY
CONDUCTIVE TARGETS

In this chapter, numerical modeling tools are presented to simulate the induction
tool response while logging propped fractures both in open- and cased-hole applications.
We are using methods which can simulate proppant distribution in fractures with
arbitrary geometry which are not necessarily orthogonal to the wellbore. Wellbores may
contain casing and/or fluid in the wellbore which may have electromagnetic properties
that are very different than that of the proppant and background formation.

We develop two numerical models to simulate the tool’s response in a time-
efficient manner. The first model is based on the implementation of impedance boundary
conditions to the surface integral equations and solving this system with a method of
moments (MOM) (Rao et al., 1982; Qian et al., 2007). The convergence, validation,
possible approximation and computation time analyses are shown in the following
subsections. The second model is based on the axial hybrid method which simulates
transversely isotropic media (Zhang et al., 1999; Wang et al., 2009). The model is mainly
used to understand the behavior of the tool’s response inside a production casing, and
some analyses of the numerical features are shown at the end. In both cases, the

governing equations are discussed in detail.

2.1. LITERATURE REVIEW

While logging a well with an induction tool, the tool is pulled along the wellbore
and transmitter coils are excited at certain sampling points. The solution of the induction
tool response to the propped fractures has to consider many excitation points. Therefore,
a frequency domain computation is ideal for the analyses of the suggested single

frequency tool where the system matrix obtained after deploying a numerical technique is

11



usually independent of excitations. Once this matrix is inverted or factorized, it can be
used to obtain solutions to all excitations. Moreover, since the frequency-domain
methods solve Maxwell’s equations at each frequency, they can deal with dispersive
media! easily.

Maxwell’s equations in the frequency domain can be solved in 3-D using one of
several numerical methods. The family of finite difference and finite element methods
solves Maxwell’s equations or their weak form representations directly but requires the
solution domain to be truncated and treated carefully so that the truncated computational
domain mimics the original open space. The method of moments, on the other hand,
solves Maxwell’s equations indirectly by dealing with integral equations formulated
using the fundamental solution to a point source which is known as a Green’s function.
This simulation method is especially well suited for our analysis because it confines the
computational domain to the anomalous conductivity region only.

The classical method of moment solution of the volume electric field integral
equations is limited to small-scale problems because the integral equation methods yield
fully populated matrices. In Yang et al. (2014; 2015), an adaptive integral method is used
to accelerate the solution to the induction problem by making use of the translational
invariance of Green’s functions. Approximately 150, 1500 and 1800 minutes are spent on
filling matrices, and the memory requirement is 1.6, 13 and 34 GB for solving a problem
with 20,729, 120,000 and 320,000 unknowns, respectively. This is still computationally
intensive especially if we consider the inversion analysis which requires multiple runs of

the forward model to determine the fracture parameters. Moreover, high conductivity

IThe medium is called dispersive if electromagnetic properties are dependent on the frequency of the field.

12



contrast between the fracture and formation cannot be easily handled because of the
failure in convergence in the iterative procedure.

While simulating an open-hole induction tool response, Zhang et al. (2016) has
shown negligible effects of the wellbore fluid on the results by testing different sizes of
circular fractures with and without a borehole. This is due to the very high electrical
conductivity contrast between the proppant filled fracture and the rock formation. In the
same paper, a single thin bulk volume of a constant effective thickness was shown to be
equivalent of a thin complex fracture showing that signal responses depend on fracture
total volume rather than on fracture complexity. Removing the borehole not only
significantly decreases the number of unknowns boosting the speed of the forward model
but also allows deploying integral equations to be solved on the surface of the fracture.

The number of unknowns resulting from surface discretization is significantly
smaller than that from volume discretization; therefore, the method of moments is much
more efficient when it deals with surface integral equations (SIE). It enables meshing the
surface with a typical element length that is not dictated by the penetration depth inside
the conductive fracture as would be required for a volumetric integral equation solution.
In this current work, we are using surface integral equations for simulating the open-hole
application of the induction tool. This technique allows simulation of all fracture
parameters listed in Yang et al. (2016): fracture location, conductivity, size, shape factor
and dip-angle.

To avoid an outrageous increase in the number of unknowns when a casing pipe is
introduced to the computational domain tremendous speed up can be obtained by
decreasing the dimensions of the problem. In cylindrical coordinates, the ¢-direction of
the problem can be eliminated by use of a Fourier series, and the set of 2D problems can

be solved with different types of numerical solvers. Although we lose the capability of
13



simulating the fracture parameters such as shape factor and dip-angle, this technique
provides a very practical solution to the original large problem. In this dissertation, we
use the axial hybrid method to solve the reduced 2D problem where the numerical
solution is obtained in the wellbore direction, and a family of normalized Bessel
functions is used to describe the EM fields in the radial direction (Gianzero et al., 1985;

Pai, 1991; Li and Shen, 1993).

2.2. OPEN-HOLE SIMULATION OF INDUCTION TOOL

In this application of induction tools, the thickness of fractures is much smaller
than their length and skin depth. This allows us to make the assumption of a zero
thickness surface for the fracture models, rather than a very thin volume (Yang et al.,
2015; Zhang et al., 2016), facilitating the use of surface integral equations (Ren et al.,
2016). The magnetic fields H;®(r) are computed in two main steps: 1) by discretizing
the surface with triangular elements to calculate the surface currents on the anomalous
region of conductivity by applying an impedance boundary condition; and 2) calculating
the scattered fields on the observation points induced by these currents.

A model to simulate responses for a given perfectly electrically conductive (PEC)
geometry was formulated and described earlier in Rao et al. (1982). In this work, an
impedance boundary condition is implemented due to the finite conductivity and
thickness of fractures as described in Lindell (1992). Before proceeding to numerical
results, the basic steps of the computation are shown below. First, we start with the
formulation of an integral equation for the problem under consideration. Second, the
equation is expanded and tested with the same basis functions to convert the integral form
of equations into the linear system of equations. Finally, the matrix equation is solved for
the unknown coefficients and the desired magnetic fields are calculated. In the numerical
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solution of integral equations shown below, the reservoir is assumed to have a

homogeneous electrical conductivity.

2.2.1. Surface Integral Equation with Impedance Boundary Condition

The electromagnetic field generated by a time-harmonic source, a source
oscillating with a single frequency, defined by volume electric current density J and

volume magnetic current density M satisfies Maxwell’s equations:

VXE=—jouH - M (2.1)
VxH=jwéE+] (2.2)
V- (£E) = p, (2.3)

V- (uH) = p,, (2.4)

If we assume that both electric and magnetic fields exist only due to the electric

source then the problem can be formulated as follows:

E=—jwA—-Vop (2.5)
1
H = ;V X A (2.6)

where the second component of the right-hand side in Eq. 2.5 can be represented in terms

of A as well. For the given surface, the solution of A and ¢ are given by:

A = u f f J(t)Gr(r, 1) dS’ .7
S
1
o) = - f f V' Jo(t)Gr(r, 1) dS’ 2.8)
S

in terms of surface current J. Here, r and r’ are observer and source points, respectively;

and the Green’s function is given as:
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e—jk|r—r’| 2.9)
Gr(r,r') = ——— :
r(T) At|r — 1’|
The wavenumber is given as:

k =+ w?ué (2.10)

and the complex permittivity is defined as:

E=¢e—]J 2.11)

ela

As can be seen from the equations above, if we find J; then we can calculate the
electromagnetic field on any observation point. To calculate J;, we need to apply
impedance boundary conditions on the surface of the fracture. This boundary condition is

similar to the PEC condition but with non-zero fields on both sides of the surface:
fi X fi x (ES + EIN¢) = —Z ] (2.12)

where 1 is the unit normal vector of the surface, and Z is a surface impedance assigned
to the target. Finite thickness and conductivity of fracture can be incorporated to the

surface impedance as shown in Lindell (1992):

. -1
Zg = [at +ni(sr — Dkt (2.13)

(0]

The inverse of this equation is referred as the shunt admittance. For the more
generalized impedance boundary condition, one can refer to the study by Qian et al.
(2007). In cases when the fracture model has a relative permittivity of one, only the first
part of the right-hand side is non-trivial. After taking the cross product of both sides of
Eq. 2.12 with a normal vector and substituting the expressions for the electric field and

surface impedance, the integral equation can be formulated as follows:
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nxJg

ix(wA+Ve)+ = fi x En¢ (2.14)

ot

To solve Eq. 2.14, Rao-Wilton-Glisson (RWGQG) basis functions (Rao et al., 1982)
are defined on triangular patches (Fig. 2.1) used to discretize the surface, and then surface

currents J are approximated as follows:

N
Js(r) = Z LA, (1) (2.15)
n=1

In Fig 2.1, the plus or minus sign designation of the triangles is determined by the
choice of a positive current reference direction for the nth edge, the reference for which is
assumed to be from T,f to T,; . The same figure includes the equation for the vector basis

function and its divergence associated with the n™ edge.

b,
ZA:{ Pn TE TT;I—
An(r) = ln _ T_
247 Pn TEIn
0 otherwise
b reT;}
AL n
VA" = l _
" -2 rely
Ay
0 otherwise

Figure 2.1: The equations of vector RWG basis function and its divergence for a given
common edge (red) of two triangular elements.

We substitute Eq. 2.15 into 2.14 and test all components of equation with the

same RWG testing functions (Davidson, 2011) as in the equation shown below:
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L[ 1 1
€an =2\ o [[£-omas+ = [[£-pmas
2 \ a3, J) A )
Tm m

l
= 2 (E(rh) - pir + £(r57) - p5)
2 (2.16)
J

where f can be A, Vo, —St or EI¢, The testing procedure results in a system of linear

equations for the coefficients I,, which can be written as a matrix equation:
(z+B)1=V" (2.17)

where the N X N matrix Z stores Eq. 2.18; B is the N X N correction matrix to the Z’s
near diagonal elements due to the impedance boundary condition and filled with Eq.

2.19; and V"¢ is a N X 1 vector storing the tested primary field shown in Eq. 2.20:

. . PR Pm, N
Zmn = jop Amn'T-l'Amn'T-l'(pmn_(pmn (2.18)
A (rC+ c+ A (rc—) c—
an _ CT-L|_ m . Pm Cn_ m . Pm (2.19)
o )tlny) 2 ol )ty ) 2
i pC+ . pC—
. : + m ,C— m
VT;lnC = E;rrzcc . T + E;:llcc . T (220)
where
Afy = J j A (r)Ggr(rst,x") dS'’ (2.21)
S
+ 1 ’ / ct L/ /
bin =15 || V- A ()G, 1) dS (2.22)
S
and the corresponding incident electric fields (Balanis, 2005) are given as:
Einc = Eln¢ = 0 (2.23)
, wuk sin 6 1 . ,
Einc — pp ] —jklr-r'|
¢ X 4n|r — r'| +jk|r—r’| ¢ (2.24)
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where the fields are also multiplied with the rotation matrix to change to Cartesian
coordinates. A Gaussian quadrature rule is applied to numerically solve the integral
equations of Eq. 2.21 and 2.22. To avoid the singularity due to the Green’s function,
when i = r’, the order of quadrature can be selected as 2, 4 and 6 (Fig. 2.2). To use the
other orders of quadrature, the singularity in the center of a triangle can be avoided as
shown in Kaur and Yilmaz (2011). In all presented results of this dissertation, the order

of quadrature is selected to be 2.

order 2 order 4 order 6

Figure 2.2: Gaussian quadrature of order 2, 4, and 6 for standard triangles: red dots are
singularity points (center of triangles) and black dots are the points where
integrals (Egs. 2.21 and 2.22) are calculated.

The left-hand side of Eq. 2.17 is filled, factorized (LU-factorization) and stored
for the next solution step. In the solution step, for each right-hand side of the same
equation, unknowns are determined which are used to numerically compute H5“® with the

following equation:

Hsca = J j V6o (r,') X J, (') dS’ (2.25)
5
where
, Gr . , ,
VGr(r,xr') = —m(l + jklr —r'D(r—r) (2.26)
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As in the matrix filling step, Gaussian quadrature of order 2 is used to solve the

integral in Eq. 2.25.

2.2.2. Mesh Convergence

In this subsection, we are trying to understand the desired mesh density to get the

required level of accuracy. The term A is introduced which defines node spacing on the

inner and outer circumferences of the circular fracture, e.g. the distance between two

adjacent nodes on the circumference is equal to radius over A. The node spacing factor, A,

is sampled in between 2 and 20. In Fig. 2.3, the absolute signal levels for small and large

fracture sizes have been shown both for short and long spacing transmitter-receiver

couples and for the node spacing factor of 20.
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Figure 2.3: Absolute secondary signal levels for short (lyg = 1 m) and long (ltg = 18 m)
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spacing transmitter-receiver couples. Left and right plots show results for

I m and 20 m outer radius orthogonal and circular fractures, respectively. In

both cases, fracture inner radius is 6 cm, conductivity is 333 S/m and

thickness is 5 mm; background (rock) conductivity is 0.333 S/m; tool is

operated at 1 kHz frequency with transmitting magnetic dipole moment of

1500 A - m?; cross-sectional area of receiver is 30 cm? and it has 600 turns.
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The model with a division factor of 20 is the finest mesh and is selected to be the

base case in the convergence analysis. The blue dashes in Fig. 2.3 show the interval

where the values lying between those dashes are compared to the base case. The equation

below defines the error in any iteration,

N

2.

i=1

€ =—

This error, €, is shown in Fig. 2.4.
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Figure 2.4: Convergence rate of the secondary signals with respect to the node spacing
factor for short (Ilrg = 1 m) and long (ltg = 18 m) spacing transmitter-
receiver couples. Left and right plots show results for 1 m and 20 m outer
radius orthogonal and circular fractures, respectively. In both cases, fracture
inner radius is 6 cm, conductivity is 333 S/m and thickness is 5 mm,;
background (rock) conductivity is 0.333 S/m; tool is operated at 1 kHz
frequency with transmitting magnetic dipole moment of 1500 A - m?; cross-

sectional area of receiver is 30 cm? and it has 600 turns.

As it can be seen on the left plots of Fig. 2.3 and 2.4 the relative error is around

0.1% for short spacing and 0.05% for long spacing when the division factor is 10. This
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relative error percentage further decreases for the right plots of Fig. 2.3 and 2.4
suggesting that coarser meshes can be used to minimize the computation time which will

be a factor to consider when multiple runs are required such as in the inversion analysis.

2.2.3. Model Validation

The solution of surface integral equations is compared to analytical and numerical
models. First, analytical equations for the scattered magnetic field are shown where a
plane wave is propagating toward a PEC sphere, and then the same case is simulated with
our numerical model. Later, scattered signals are computed for a representative fracture

model and compared to the numerical results of Yang et al. (2015).

2.2.3.1. Fields Calculated for Conducting Sphere

In this section, an analytical solution for the scattering of a plane wave by a
conducting sphere is presented and compared to the results of the numerical tool. Given
the PEC sphere with radius a at the origin of a spherical coordinate system and a plane
wave propagating in the positive z-direction (Fig. 2.4), the scattering magnetic field

outside of the sphere can be calculated with the following equations:

sca sin ¢ = ~
HE@ = H, WZ byn(n + 1A (kr)PL (cos 6) (2.28)
HER = 1, m;gbz:[ H(Z)(k )P n (co 29) b, H(Z)'(k )ml (2.29)
ija _ (2)(k )m b H(z)r(k )P (COS G)l (2.30)
where
o p2nt1l (k)
W= e DA (k) (231)
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. 2n+1 Jy(ka)

=T T D A ) (232)

A detailed explanation of these equations can be found in Jin (2010), subsection 7.4.3.

z

PEC

1 m radius sphere
1498 nodes
4488 edges

2992 elements

plane waﬁ‘_ -

E*

Figure 2.5: Plane wave scattering by a conducting sphere: a PEC sphere with radius a
located at the center of spherical coordinate system and plane waves
propagating in the positive z-direction; numerical surface discretization
generated for the solver is shown to the right.

In the numerical calculations, to fill the vector V", incident electric field is

calculated with the following set of equations:

inc cos ¢ i~
B = Fyzess Z 7@ + D] (kr)PE(cos 6) (2.33)
Eine EOMZ j72n + 1), (kr)P, (cos 6) (2.34)
Eébnc = —E, Sl]il ¢ Z]—"(Zn + 1)]n (kT')P (cos ) (2.35)
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For the comparison, the PEC sphere is selected to be 1 m in radius (Fig. 2.4),
observer points are on ther =2 m, 0 < 8 < m and ¢ = 90° line, the background is air
(zero electrical conductivity), frequency is 100 MHz, and E, = 1 where H, = E, /7. Fig.
2.6 shows results for both real and imaginary components of the scattered magnetic field.
Note that since ¢ is selected to be 90 degrees, Hfl‘,ca is always zero as can be seen in Eq.
2.30. The sufficient level of the agreement obtained for both components of the magnetic
field increases the confidence in the numerical tool. In the next subsection, further

validation study is carried for the representative model and incident signals.
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Figure 2.6: Comparison of analytical (solid line) and SIE solution (dots) of scattering
from a meter radius PEC sphere; real (left) and imaginary (right)
components of scattered magnetic fields are calculated for the observation

pointsonther =2m, 0 < 8 < mand ¢ = 90° line.

2.2.3.2. Numerical Results for a Representative Model

For the comparison, the iterative solution of the volume integral equations (Yang
et al., 2015) has been used. The simulated orthogonal fracture model is a circle with an
outer radius of 3 m, inner radius of 10 cm, thickness of 5 mm, and conductivity of 30

S/m. The background formation has a uniform conductivity of 0.333 S/m. The tool is
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operated at 100 Hz frequency with 1500 A-m? magnetic dipole moment on the
transmitter coil. The receiver coil has 30 cm? cross-sectional area and 600 wire turns. The
spacing between transmitter and receiver coil is 1.2 m.

In the generated volume mesh, there are 57,808 unknowns, and the solution for
VIE is obtained in about 2 minutes with 512 parallel processors. There are 6420
unknowns in the generated surface mesh, and the solution for SIE is obtained in a minute
with a single processor. Numerical results are shown in Fig. 2.7 where signal levels are
shown with a solid line for the solution of surface integral equations (SIE) and absolute
differences with the VIE are shown with dashed lines. For the real (blue) and imaginary
(black) component of secondary signals it shows very good agreement for both numerical
results, with a maximum discrepancy of less than 5%. It is important to note the

significant dominance of real components over the imaginary signals.
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distance [m]

Figure 2.7: Comparison of SIE and VIE solutions of scattering from a representative
fracture model; solid lines show the real (blue) and imaginary (black)
components of absolute secondary (scattered) signals for the SIE solution;
dashed lines show the absolute differences between both solutions.

2.2.4. In-Phase and Quadrature Components of Signals

Following the observation made in the previous section (high ratio of real and
imaginary components), in this section, the parameters affecting this ratio are
investigated. Fig. 2.8 shows the signal levels at the middle of the hump (Fig. 2.7) for the
different conductivity of fracture and background formation at the operating frequency of
1 kHz. The fracture conductivity ranges between 10 and 10* S/m, and the background
conductivity ranges between 10~ and 1 S/m. The fracture is 1 m in radius and is assumed
to be an orthogonal circle with 10 cm of inner radius and 5 mm thickness. The magnetic
dipole moment of the transmitter coil is 1500 A - m?. The receiver coil has 30 cm” cross-
sectional area and 600 wire turns. The spacing between the transmitter and receiver coil

is 1 m.
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Figure 2.8: The relationship between real and imaginary components of secondary signals
with changing background (bg) and fracture (frac) conductivity: left plot
shows both real and imaginary components on upper and lower surfaces,
respectively; right plot shows the ratio between them.

An increase in the background conductivity does not affect the real component;
however, it increases the imaginary component of the signal. An increase in the fracture
conductivity increases both real and imaginary components. The ratio between
them |R(US?)/J(US?)| stays above 10 for the selected region clearly showing the
dominance of real components in the absolute signals. This may lead to a simplification

in the forward model which is described in the next subsection.

2.2.5. Approximation of Surface Currents

In the previous section, the dominance of the real component is shown for an
operating frequency of 1 kHz. If the magnitude of the signal is of interest, then the
accurate calculation of only the real component is sufficient for the detailed analysis. It
can be achieved with the simplification in the boundary condition shown in Eq. 2.12. If

the scattered electric field is eliminated surface currents can be approximated as follows:
J¢ & —fi X fi X GEI"® (2.36)
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This procedure does not require inversion of the matrices and reduces
computational time. The accuracy level is shown for orthogonal and rotated fracture
models with metallic conductivity (the conductivity and thickness of 34.6 MS/m and
25.4 um, respectively) and smaller size (this type of model is used in the next chapter).
Transmitter coil is operated at 1 kHz frequency, and the magnetic dipole moment is
12 A - m?; receiver coil has the cross section of 30 cm” with 600 turns. The background
has zero conductivity and the distance between transmitter and receiver coils is 1 m. Fig.
2.9 shows secondary signal magnitude for co-axial coil configuration and 10 cm radius
orthogonal fracture. The relative error introduced due to the surface current

approximation is always less than 1% along the sampling interval.
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Figure 2.9: Magnitude of secondary signals when surface currents are approximated:
solid line shows the full SIE solution; dashed line shows the difference
between the approximation-based solution and full computation. The
fracture model is orthogonal and coils are in co-axial configuration.

Fig. 2.10 shows secondary signal magnitude for the co-axial (left) and cross-

polarized (right) coil configurations and for 20 cm radius fracture rotated 30° about the x-

28



axis. The relative error introduced due to the surface current approximation is always less

than 10% for the co-axial coil configuration. For the cross-polarized configuration,

however, approximation simulates the trend only; there is a poor quantitative match.
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Figure 2.10: Magnitude of secondary signals
solid line shows the full SIE
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when surface currents are approximated:
solution; and circle markers show the

approximation based solution. The fracture model is rotated and coils are in
co-axial (left) and cross-polarized (right) configurations.

2.2.6. Computational Time

In this section, the computational time required for a typical run is explored. Fig.

2.11 shows the time required for the full numerical solution of SIE with an impedance

boundary condition. Its solution has two stages: filling the impedance matrix and solving

it for every excitation point. The first step dominates the computation time because

integral equations yield a full matrix. LU-factorization of the matrix occurs once in a

typical run, hence, for multiple excitation points, the total sampling time (factorization +

solution for all excitations) is divided by the number of excitation points which is equal

to 82 in this case. This step can be further accelerated by using numerical iterative solvers

or parallelization.
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Figure 2.11: Computation time for the different number of surface unknowns: red filled
circles show matrix fill-times which includes the application of impedance
boundary condition as well, and empty circles show matrix solution times
for each sampling point.

A typical run for the fracture size of 20 m yields 5,000-10,000 unknowns with A
being equal to 10. This problem can be solved in a minute. For the inversion analysis, the

speed will be further increased by using coarser meshes.

2.3. SIMULATION OF INDUCTION TOOL RESPONSE IN PRODUCTION CASING

In this computation, the set of 2D problems emerging from the Fourier series
expansion is solved with an axial hybrid method where the wellbore axis (z-axis) is
solved numerically and the radial part is solved analytically. After solving the generalized
eigenvalue problem, normalized Bessel and Hankel functions are used to describe the
fields in the radial direction. Amplitude and slope basis functions are defined over the
discretized wellbore axis which allows the use of a coarse grid everywhere along the axis.

This eliminates the need to refine the grid in the vicinity of the fracture. Before
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proceeding to the numerical results, the detailed steps of the computation are shown
below (Wang et al., 2009), and the results are compared to that of the surface integral

equations.

2.3.1. Axial Hybrid Method

In any radial layer, the electric and magnetic fields in the z-direction can be

expressed with the following governing equations:

6 , 0
VSE; +5-05" -0, E; = j0ltoptrs0,E; = Vs + (Ms X 2) (2.37)
and
L, 9 _ 9 _ 19 _,
vSHZ + a_ZHr,s &#T,ZHZ _]w.uoo-s.ur,sz = O-SMZ _jw—'uog.ur,sv M (2.38)

where the subscript s designates the transverse component and z shows the wellbore
direction. Excluding the source terms in the above equations they can both be written in

the following form:
g _,0 f
Vipn o + 5,007 5, kapntfy =0 (2:39)

where f, = {0,E,, iy ;H,}. Py = {0, ttr 2} @y = {05 5}, kit = —jwpto{qnDe, qepr} and
n = {e, h}. The ¢ variation of f, is expressed in terms of a Fourier series. The solution of
p dependence is obtained after solving the generalized eigenvalue problem, and it is in
the form of a combination of normalized Bessel functions of the first kind f,, and the
normalized Hankel function ﬁfll). To solve the z dependence, basis functions are defined
over one-dimensional elements along the z-axis. Local shape functions of each element
are defined in the interval of (z,, z,,+1) as follows:

Zn41— Z (2.40a)

Ll -
Zpn+1 — Zn
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Z—Zy

L=+ (2.40b)

Zn+1 — Zn

and all elements, except the first and last one, have four basis functions defined as

follows:
gn1(2) = =213 + 315 (2.41a)
9n2(2) = qy(2)Az(2) L L, (2.41b)
Gn3(2) = —2L3 + 315 (2.41c)
Gna(2) = —qy(2)Az(2) 5L, (2.41d)

Fig. 2.12 shows these basis functions (Eq. 2.41) when g, is unity. For the first
element only 2.41c, d and for the last element only 2.38 a, b are defined. Each basis
function is non-zero over two neighbor elements; g, and g,, are non-zero on the
neighbor element in the negative z-direction, and g, and g,, are non-zero on the
neighbor element in the positive z-direction. Hence, if we have N,, number of nodes, we
get N, = N, —1 number of elements and N = 2(N, —2) total number of basis

functions.
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Figure 2.12: Basis functions defined over a one-dimensional element along the wellbore
axis; relative permeability of one is used.

The solution of Eq. 2.39 is obtained after solving the generalized eigenvalue

problem which is defined with the following equation:
A,C, =B,C A (2.42)

where C,, is the matrix of eigenvectors, A, is the diagonal matrix of eigenvalues and A,

and B77 are defined as:

© 1 0g,(2) 08, (2) © J2 t
An = _f_ma 0z oz “t f_ magn(z)gn(@dz (2.43)
and
B, :f p—gn(z)gn(z)dz (2.44)
—oo Py

Integrals in Eq. 2.43 and 2.44 are solved analytically for each element. A, and B,,

are six-diagonal matrices and N X N in dimensions. It should be emphasized that the
orthogonality relationship still holds for the numerical eigenmodes. Hence, the following

equation must be satisfied:
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CyB,C, =1 (2.45)

Now, the solution to Eq. 2.39 for each layer can be expressed in the form of basis
functions (Eq. 2.41), eigenvalues and eigenvectors (Eq. 2.42), and normalized Bessel and
Hankel functions. Then, in each radial boundary, local transmission and reflection

matrices are defined as:
Tty = [Bz_rlilﬁ - 52_?&1’1.&_1]_1 [By+ — Bzl (2.46)
and
Riis1 =Py Typeg — 1 (2.47)

where [ represents the number of layer. In the above,

. n .
N =] ) Dpe,ik Jowu, Ph,g,kXi(k)iAh,k ;
Blos = + n A (2.48)
—Pe ik Xe 1)+ Nk —J [—) Denik
and
e [ 1 t
Ppik =Gy ) pn_kgn,lgn,kdz Coxe (2.49)
t . 1 t
Py =Gy agn,lgn,kdz Cok (2.50)
t ° 1 d t
Dhei = Chy Mgn,l Egn,kdz Cek (2.51)
t ° 1 d t
Denii = Cey De1lni 8el Egh,kdz Cri (2.52)

where k = [ or [ + 1. Note that when k =1 P ;, =1 and P, ;; = L. In the outermost

layer, there is no incoming wave. Starting with this we can calculate a generalized

reflection matrix at the wellbore Q7 by using recursive relationships:

-1
Smm+1 = [l - Rm+1,ngm+1)—] Tnm+1 (2.53)
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QELm)+ = Rmm+1 + Tm+1,mQELm+1)—Sm,m+1 (2.54)

along with the propagation relationship:

Qrn(Pa) = Ym(Par ) Qi (0u) Y (Pas PB) (2.55)
where
A (1)
Y:;z(pa'pb) — e_jAm(pb—pa) M (256)
Hn (Ampa)
_ j. (A
Ym(Par pp) = e~ TAmP-Pa) b () (2.57)

in (Ampb)

For the magnetic dipole oriented in the wellbore direction and when p’ = pryx =

PRrRx:
j My
bh J

75 (1) AY 1 "\ A2 t
=———H A [y A P A C Z
A h,1(Z ) n ( h,1 )]n( h,1 ) h,1 h,1gh,1( IX) (2.58)

and magnetic field will be given by:

H}" = ————g} 1 (zrx)Cp1 b
z Pra(Zrx) 8h,1(Zrx)Ln,1Dp (2.59)
1
Hsca — t (Z )C Q+ b
z 1 (Zrg) 8r,1\Zrx)L1,1Qp,10n (2.60)

As in the previous method, Eq. 2.59 and 2.60 are solved for different excitation points.

2.3.2. Numerical Validation

The simulated orthogonal fracture model is a circle with the outer radius of 8 m,
inner radius of 10 cm, thickness of 5 mm and conductivity of 333 S/m. The background
(rock) formation has a uniform conductivity of 0.333 S/m. The tool is operated at 1 kHz
frequency with 1500 A - m? magnetic dipole moment on the transmitter coil. The receiver
coil has 30 cm” cross-sectional area and 600 turns. The spacing between transmitter and

receiver coils is 1.2 m for the short spacing and 17.8 m for the long coil spacing. For the

35



method of moments, the total computation time is 70 seconds with 8220 unknowns and

82 sampling points.

P
ik =3
=2
fracture
| “wellbore =1
[ || | I | I |
| | | I | ] | | ~Z
expanding uniform expanding
Zmin Zu,min Zu,max Zmax

Figure 2.13: Meshing and radial layering scheme used in the axial hybrid method for the
computation of fracture scattering in an open-hole completion.

The gridding scheme used in the mode matching technique is shown in Fig. 2.13.
A uniform grid is implemented between -2 and 2 m with an element size of 10 cm. The 5
mm thickness of fracture is an additional orthogonal layer. The domain is truncated at
150 m on both expanding parts of the grid with a 1.25 length ratio between two adjacent
elements. The total number of basis functions is 274. The solution with 82 sampling

points and with this gridding schemes is obtained in 10 seconds.
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Figure 2.14: Comparison of MM and SIE solution of fracture scattering measured with
short spacing (left plot) and long spacing (right plot) couples; solid lines
show the real (blue) and imaginary (black) components of absolute
secondary (scattered) signals for the SIE solution; dashed lines show the
absolute difference between both solutions.

Numerical results are shown in Fig. 2.14 where signal levels are shown with a
solid line for the solution of surface integral equations (SIE) and absolute differences
with the mode matching (MM) are shown with dashed lines. For the real (blue) and
imaginary (black) component of secondary signals, Fig. 2.14 shows very good agreement
for both short and long spacing couples, with a maximum discrepancy of less than 3% for

the peak signals.

2.3.3. Effect of Electromagnetic Properties of Casing on Differential Signals

An additional radial layer is added to the previously used scheme to include
production casing material properties. Fig. 2.15 shows the meshing and layering scheme
used for understanding the effect of the casing electrical conductivity and magnetic
permeability on the scattered field from the fracture. The fracture is an additional layer
orthogonal to the wellbore axis with the radius of 8 m, thickness of 5 mm and

conductivity of 333 S/m (conductivity anywhere else is 0.333 S/m). The inner and outer
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radius of the casing pipe is 6.2 and 7 cm, respectively. The wellbore axis is discretized
from -15 and 15 m, where the uniform part of the meshing is between -2 and 2 m with the
ratio of element size of 1.25 in the expanding part. The total number of basis functions is
230. The tool operating frequency is 1 kHz and the transmitter magnetic dipole moment
is 1500 A - m?. The number of turns on the receiver is 600 with 30 cm? cross-sectional

area. The spacings between the transmitter and receiver coils are 1.2 and 1.5 m.

p
\
background formation l=4
+— fracture model
. =3
casing
ST TR A
wellbore I=1
||| ‘ |__] || ‘ [ ‘ o Z
‘ | [ ‘ [ [ ‘ [ | ‘ -
expanding uniform expanding
Zmin Zy,min Zy,max Zmax

Figure 2.15: Meshing and radial layering scheme used in the axial hybrid method for the
computation of fracture scattering in a cased-hole completion.

Fig. 2.16 shows the short spacing differential signals when the electrical
conductivity of the casing pipe increases from 10" to 10° S/m, and the relative magnetic
permeability is one. Fig. 2.17 shows the same signals when the relative magnetic
permeability of the casing pipe increases from 1 to 30, and the electrical conductivity is
10> S/m. The left column plots show the differential signals from the casing (no-frac
case), and the right column plots show the differential signals from the fracture
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(subtraction of frac and no-frac cases). For the given tool parameters and 0.333 S/m

background (rock) conductivity, the real and imaginary components of incident signals

are ~4.4-10° uV and 3.4-10° pV, respectively.
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Figure 2.16: The effect of electrical conductivity of casing on the differential signals: left
and right columns show differential signals for casing and fracture; and
upper and lower plots show real and imaginary components of differential
signals, respectively.

The increase in the electrical conductivity causes the scattered voltages from the

casing to increase significantly suppressing the comparatively small fracture scattered

voltages. For the 10" times increase in the electrical conductivity, real and imaginary




components of primary signals increase ~10* and ~4:10%, respectively. The real

components of the differential signals due to scattering by the fracture, however, are not

affected by the increase. The imaginary components of fracture differential signals are

increased ~15 times and get closer to the level of the real components.
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Figure 2.17: The effect of magnetic permeability of casing on the differential signals: left
and right columns show differential signals for casing and fracture; and
upper and lower plots show real and imaginary components of differential

signals, respectively.

The same observation is made for the relative magnetic permeability increase

which causes a significant increase in the primary signals. For the 30 times increase in the
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relative magnetic permeability, real and imaginary components of primary signals are
increased ~15 and ~8 times, respectively. The real components of the differential signals
due to the fracture scattering, however, are decreased ~11 times and there is only a slight

increase (~1.6 times) in the imaginary components.
2.3.4. Computational Time

In this section, the computational time required for different runs are reported.
Fig. 2.18 shows the time requirement for the solution steps of axial hybrid method for the
different number of basis functions. The first step is the solution of the generalized
eigenvalue problem; the second is the calculation of the generalized refraction matrix;
and the third step is the solution for the scattered signals at different sampling points. As

indicated previously, a typical run can be completed with a few hundred basis functions.
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Figure 2.18: Computation time for different number of basis functions: blue dots show
the generalized eigenvalue solution time for all layers; red dots show the
generalized refraction matrix solution time; orange dots show the solution
time for each sampling point and purple dots show the total run time for all
41 sampling points.

2.4. CONCLUSION

In this chapter, the formulation and numerical schemes are presented. The
numerical results are validated and the computational requirements for a typical fracture
simulation are reported. The models allow us to include all the possible variations in
electromagnetic properties inside and outside the fracture. An open-hole application of
the induction tool can be best modeled with integral equations where the effect of fracture
shape factor and rotation about the wellbore axis can be captured. A hybrid method can
provide very time efficient results when the induction tool is logged inside the casing.
The model development was done using Matlab and the codes are provided in the

appendix of this dissertation. The key findings are:

42



e The method of moment solution of surface integral equations provides very
accurate results with the node spacing less than ten and a typical run takes about
one minute when a single core is used for the computation.

e The fracture is simulated as an impedance sheet and all the permittivity and
conductivity variation can be handled using this simulation. Since it is fast and
includes all relevant fracture parameters, it is better suited for use with the
inversion analysis presented in Chapter 4.

e The axial hybrid method may easily include the variation in all electromagnetic
properties of the media; heterogeneous background formation conductivity and
production casing properties can be handled. A typical run can be conducted with
a few hundred basis functions and the total run-time is a few seconds.

e The scattered fracture signals at 10° S/m casing conductivity and 30 relative
magnetic permeability is tiny compared to the scattered casing signals making it
very challenging to detect fractures in cased-hole applications when using

induction tools.

2.5. NOMENCLATURE
Symbol definition Unit
E electric field V-m
H magnetic field A-m
J electric current density A-m*
Js surface electric current density A-m
magnetic current density V-m?
n unit normal vector -
r observer point M
r source point M
A area m?
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conductance

Green’s function

magnetic dipole moment of transmitter coil
number

surface

voltage

surface impedance

one dimensional basis function
complex number

wave number

length, distance

thickness

RWG basis function defined over the triangle
eigenvalues

propagation constant
permittivity

free space permittivity

relative permittivity

complex permittivity

wave impedance

free space wave impedance
node spacing factor

magnetic permeability

free space magnetic permeability
relative magnetic permeability
electric charge density
magnetic charge density
conductivity

electric scalar potential
angular frequency

normalized Hankel function of the first kind
regular Hankel function of the second kind

spherical Hankel function of the second kind

Whb-m?®
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Jn

~

Jn

v

Jn
by
P
R

o~

N)

x,y,z
7,0,¢

Sl derived unit
C
F
H
Hz

V
Wb

regular Bessel function
normalized Bessel function
spherical Bessel function
Legendre polynomial
associated Legendre polynomial

real component of complex number
imaginary component of complex number

Cartesian coordinate system
spherical coordinate system

definition
Coulomb
Farad
Henry
Hertz
Siemens
Volt
Weber
Ohm

u and v show the coil orientation in the equation of U,,,,

u
\Y

orientation of receiver coil
orientation of transmitter coils

SI base units
s'A
s*A%-m*kg
kg'm?-s*A?
1-s

s> A%kg-m®
kg'm?-s*A
kg'm?-s*A
kg'm?-s>A?
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Chapter 3: TESTING A PROTOTYPE TRI-AXIAL INDUCTION
LOGGING TOOL IN-AIR AND IN A NEAR SURFACE TRENCH

This chapter? introduces a new prototype tool which is tested with scaled down
fracture models. First, a review is provided on the physics of coil design, the essentials of
the measurement set-up, and the theory of electromagnetic scaling. Then, the detailed
specification of a developed field-sized prototype induction tool is shown and the design
of two main experimental setups is presented. The tool works at the same operational
frequency as in the field, and the tool sizes are selected based on the actual wellbore
dimensions.

The study comprises experiments in two different environments: (i) a laboratory
environment where in-air measurements are performed, (ii) a field environment where
measurements are performed near (below) the earth’s surface. The first experimental
setup enables easy calibration of the tool, as well as the insertion and removal of targets,
thus, facilitating the gathering of data for a range of targets with various parameters.
Fracture models of various sizes, shapes, and dip-angles are tested. This set-up was built
in the laboratory of E-Spectrum Inc. in San-Antonio, TX. The second setup enables
measurement in a horizontal well close to the surface, in a lossy and more realistic earth
background. This experiment was carried out in a test site in a ranch in Blanco County,
TX. The measurements in both cases are compared to a numerical simulator introduced in
the previous chapter. The results and set of conclusions are provided while discussing the

potential capabilities of the current tool.

2 The experimental results shown in this chapter were first presented in Shiriyev et al. (2018). Shiriyev used
the simulation results to obtain specifications for the induction coils, built an experimental setup to test the
tool in a laboratory setting, demonstrated that the experiments and the model agree very well with each
other, established the detectability and differentiability of signal levels with realistically sized tri-axial coils
that can be deployed in a downhole tool and demonstrated the feasibility of the EM measurements for
fracture diagnostics in a shallow earth experiment.
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3.1. LITERATURE REVIEW

In this section, three main questions are answered: 1) how to design the most
efficient low frequency transmitter and receiver coils which will work in a typical oil
well, 2) how to test them in a controllable environment, and 3) how to represent large

field scale fractures in a relatively small lab environment.

3.1.1. Induction Coil Design

The magnetic dipole moment (or torque) is the main characteristic of a transmitter

coil and determines the strength of induced magnetic fields. It is defined as:
M = prcore NAI (3.1

given that the cross-sectional area of windings is small compared with the coil diameter,
inductance is ignored and the operation frequency is low (Frischknecht, 1988). The
emphasis is usually placed on achieving large moments to obtain detectable signals on a
receiving component. This can be accomplished by increasing any component in the
right-hand side of the equation above, and in the following three paragraphs, we discuss
each one of them.

A typical transmitter coil does not have much flexibility in the cross-sectional
area selection. It will be elongated along the wellbore direction (z-axis) to provide high
magnetic dipole moments in restricted wellbore sizes (~4 inches). The elongations of x-
or y-oriented transmitter coils allow an increase in the cross-sectional area of the coil. For
the z-oriented coil, the elongation allows us to increase the number of turns.

The amount of current that can be driven through a wire at any frequency is
limited by thermal considerations. To assure the endurance of a coil in a given

environment, the minimization of power loss is essential. This is defined as:
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1 2
Peoit = ERcoilllcoill (3.2)

The minimization of power loss also limits increasing the number of turns by decreasing
the cross-sectional area of the wire; the overall resistivity will increase limiting the
maximum current. It can be avoided by sharing the current among parallel connected

wires:
Ieonl = Icoil,l + et Icoil,n (3.3)

where n represents the number of wires connected in parallel. Assuming that all coils are
identical to each other, the total resistivity will be decreased in an amount equal to the

number of parallel connections:

Rwire,i pwire,ilwire,i
where Ryjrei =—(——

Reoil = 3.4)

Awire,i

When the relative magnetic permeability of a core is equal to one, the coil is
referred as an air-core coil. It describes an inductor that uses plastic, ceramic or other
nonmagnetic forms as a core, as well as those that have only air inside the winding. These
types of coils are often used at high frequencies because they are free from energy (or
core) losses that occur in ferromagnetic cores due to hysteresis and eddy currents in the
core material. The losses increase with an increase in the frequency. To increase the
dipole moment of transmitter coils at low frequency we use, a core with a relative
magnetic permeability more than one can be used. In general, long and slender shapes of
coils allow the effective use of a magnetic core material (Frischknecht, 1988).

The transmitter coil suggested by Heagy and Oldenburg (2013) is a magnetically
permeable core wrapped with several hundred turns of wire and has a magnetic dipole

moment of 5,000 A - m? in the frequency range of 1-100 Hz, and only several hundred A -
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m? at frequencies above 500 Hz. Lastly, the best practice for the use of transmitter coils
in wells requires the monitoring of input currents to take into account any possible
changes in coil parameters. Factors that are likely to cause changes are temperature or
humidity that may cause an expansion or contraction of coil windings and proximity to a
conductive material that may cause electrical loading.

Design criteria to be used for transmitter coils can be applied to receiver coils in
the same way. The main factors to consider in the design of receiving loops are the size,
sensitivity and stability of loop characteristics, insensitivity to extraneous electric fields
and disturbance of normal fields due to the loop itself. Correct measurements are not
obtained if the probe significantly disturbs the fields in the vicinity of the model media;
that is if the probe behaves as a secondary source. Receiver coils suggested in Heagy and
Oldenburg (2013) are the magnetically permeable core wrapped with several thousand
turns of wire. Magnetic fields in the order of 10® A/m can be detected with these coils.
These receiver coils are directly connected to the recording apparatus which also contains
an amplifier board to increase the power of a received signal. At low frequencies, this

direct connection is not expected to introduce major errors (Frischknecht, 1988).

3.1.2. Experimental Set-up

In modeling moving source methods with targets placed in air, the coils can be
fixed and the target may be placed on a moving carriage which moves by the coils. To
avoid extraneous EM responses, large metallic parts or other conductive materials should
not be used in the construction of mechanical parts that are within or near the working
region. It is a good practice to construct carriages, tracks and other structures mostly of
wood, plastic, concrete and other insulating materials. Measuring instruments should be

placed far enough from the region so that their metal cases and chassis do not produce a
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response. In our experiment, we conduct frequency domain measurements. Therefore,
several of the required functions used in the measurement circuit can be combined in one
unit known as a lock-in-amplifier. The frequency range of most lock-in-amplifiers is

below 100-200 kHz which suits for our application well (Frischknecht, 1988).

3.1.3. Electromagnetic Scaling

Both the laboratory and field experimental environments have space limitations
for the electromagnetic targets. They must be of a significantly reduced size compared to
the ones likely to be detected in an actual oil and gas formation while the tool parameters,
such as coil size and operation frequency, are kept similar to those expected in the field.
Following the theory of EM scaling (Sinclair, 1948), it can be shown that similar signal

magnitudes can be obtained only if the induction number defined as:
N' = guwl? (3.5)

is kept invariant for all electric conductivities o, magnetic permeabilities u and spatial
dimensions / in the system operated at an angular frequency of w. For some components,
however, this requirement can be relaxed. For example, the dimensions of coils do not
need to be scaled if their radii are smaller than one-tenth of the distance between them
(and neglecting the mutual interactions between the coils). This condition is satisfied for
the coils in this work; /; and /, in Fig. 1.1 are kept more than ten times larger than the
radius of coils. The conductivity of the background, if sufficiently lower than that of the
propped fracture, has little effect on the resulting secondary fields. As for the propped
fracture’s conductivity, if the skin depth given as:

§= |—
o (3.6)
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is sufficiently larger than the thicknesses of both the original and scaled propped
fractures, it is sufficient to only scale the propped fracture’s conductance, rather than its
conductivity or thickness separately, to maintain similar signal levels (Frischknecht,
1988, Eq. 3.5 becomes N' = Guwl). At the operation frequency of 1 kHz and effective
proppant conductivity of 333 S/m (Zhang et al., 2016), the skin depth is 872 mm —
several times larger than the expected propped fracture thickness of 5 mm (Sharma and
Manchanda, 2015). In this study, the propped fracture models are made of industrial
aluminum foil with a mean conductivity of 34.6 MS/m at 20 °C temperature and a mean
thickness of 25.4 pm. The skin depth of aluminum at an operating frequency of 1 kHz is

2.7 mm — much larger than the foil’s thickness.

3.2. BUILDING A PROTOTYPE TOOL

In the design of the prototype tool, the goal is to keep the main characteristics the
same as in the field deployable tool. Firstly, the operation frequency is selected to be 1
kHz, low enough to detect fractures a few tens of meters away from the wellbore.
Secondly, transmitter and receiver coils are designed based on the physical constraints of
wellbores. Lastly, the prototype tool can be carried and tested in different environments,

especially in conductive backgrounds.

3.2.1. Transmitter and Receiver Coils

This sub-section describes the induction tool and the measurement equipment that
were used in the experiments. Solenoidal coils are used for transmitting and receiving
(Fig. 3.1). The coils are designed to operate at the frequency of 1 kHz without
overheating. The transmitter coils are made using a 16 AWG (American wire gauge)

magnet wire and carry a nominal current of 2.3 A (x, y-oriented coil) and 4 A (z-oriented
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coil) which was sufficient to provide detectable differential signals. To enable the tool’s

passage in a narrow well, the coils are designed to be long in the wellbore direction: the

z-oriented coil has a circular profile and a larger number of turns while the (x, y)-oriented

coil is rectangular with a high aspect ratio. The z-oriented coil uses a magnetic core to

provide an increased magnetic dipole moment. Table 3.1 summarizes the remaining

properties of the transmitter coils. Note that, while the x- and y- oriented coils are single

wires, z-oriented coil’s current is distributed among three wires wound in parallel.

Orientation xandy z

Number of parallel connection 1 3
Total number of turns 90 114
Cross-sectional area [cm?] 256 40
Height [cm] 40.4 32
Relative core permeability air core 14

Table 3.1: Summary of the transmitter (Tx) coil properties.

As for the receiver coils, these are identical regardless of their orientation, made

with an air core and 600 turns of a 32 AWG magnet wire. Their cross-sectional area and

height are 30 cm” and 1.3 cm, respectively.

Tx coil (x,y)

Tx coil (z)

Figure 3.1: Tri-axial transmitter (Tx) and receiver (Rx) coils.
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3.2.2. Measurement System

The circuit system used for the experiments is described schematically in Fig. 3.2.

The Pre-Amp PCB (printed circuit board) connected to receiver coils (Rx; and Rx,)

includes the bucking and amplification of received signals. A bucking coefficient

of 3/13 = 1/2 is hardwired. The lengths /; and /, are fine-tuned during the tool’s

calibration to minimize the received signal when operated in air with no target. The

bucked signals are amplified by a factor of 100. The set-up allows having a single

receiver measurement without any amplification factor.

Pre-Amp PCB

monitoring

A

Rx2

A

Rx1

(i S R e B

Power Amp

oscilloscope

CH1

CH2

RP

Lock-in-Amplifier

SR830 DSP Lock-in-Amplifier

Figure 3.2: Block diagram of the prototype tool: transmitter (Tx) and receiver (Rx1 and
Rx2) coils; pre-amp circuit board shown with dashed rectangle; monitoring
laptop with full control over the circuit; oscilloscope for measuring the
transmitter coil input current; and lock-in-amplifier for signal referencing
and decomposition.
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The lock-in-amplifier receives amplified bucked signals, with the voltage on the
transmitter coil being its reference signal (Fig. 3.2). It outputs, in two separate channels,
the bucked signal’s in-phase and quadrature components with respect to the reference
signal. If we assume the input current of the transmitter coil to be real (R) then the

following rotation matrix multiplication can be used:

iR Pt o7

where 6 is the reference phase. The transmitter coil input current is measured with an
oscilloscope. At selected time instances the monitoring unit continuously displays and
records: the time, reference signal, reference frequency, phase with respect to the

reference signal and the two output channels (X and Y).

3.2.3. Coil Positioning

Data were collected to see how close the receiver coils can get to the transmitter
coil. Fig. 3.3 shows the results both for the receiving and bucking coils in a co-axial coil
configuration and data were gathered by measuring the voltage on a single receiver coil
for two minutes (30 data at least) as a function of distance from the transmitter. Both
receiver coils exist in the setup during the recordings; however, one is disconnected from
the circuit board (Fig. 3.2) when the measurements are made for the other coil. The

results showed half a meter to be a minimum distance to get the noise sufficiently low.
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Figure 3.3: Box charts for measured incident signals at different transmitter-receiver coil
spacing; left and right plots show results for receiving and bucking coils,
respectively. Transmitting magnetic dipole moment is calculated using coil
properties and measured input current.

3.2.4. Verification of Coil Parameters

The effective magnetic induction properties of the transmitter and receiver coils
both for co-axial and co-planar coil configurations are estimated to be used as an input
into the numerical simulation results. By measuring the voltage on a single receiver coil
as a function of distance from the transmitter, for a given (measured) transmitter current,
and fitting it to the theoretically expected curve, the multiplication of the receiver area
and turn number by the transmitter’s magnetic dipole moment (ArxNrxMtx) 1S
calculated. In this setup, only one receiver coil exists at a time.

The theoretical curve is calculated from the field equation (Balanis, 2005) of a
small circular loop. For a given source and sink points, voltages of co-axial configuration

can be calculated with the following equation for free space:

Uyz(2,2") = —jwu,ArxNrxHz (2, 2") (3.8)

where
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Jk —jk(z-2")

1
Hy(2,27) = Mrx g3 [1 TGz =—l¢ (3.9)

Z is an arbitrary point where the field is calculated (the center of a receiver coil) and z’
(the center of a transmitter coil which is assumed to be the origin of the coordinate
system) is the location of a point source oriented in the z-direction. For the co-planar coil

configuration, voltages will be calculated for free space with:

Uyy(z,2") = —jowp,ArxNrxHy (2, 2) (3.10)
where
k? 1 1 . ,
H ’ — _M 1 — _]k(Z_Z)
y(Z'Z ) TX 47_[(2 _ Z’) +]k(Z _ ZI) kZ(Z _ ZI)Z] e (311)

Here, sampling is again along the z-direction and coils are oriented in the y-direction. The
value of ArxNrxMrtx minimizing the error between measured and calculated data is

selected as an input into the numerical model:

Z[Wi(Ui —U) =0 (3.12)

l

where w is the weight factor and is larger for the middle part of the data because both
short spacing data and long spacing data are not as reliable as the data at middle
distances. For the short spacing, more deviation is expected because of noise (see the
previous sub-section). For the long spacing receiver, the sensitivity of measurements may
decrease because of the low signal levels.

In the measurements, signals are sampled at a rate of one sample per second, over
a period of 30 seconds and averaged (shown as dots in Fig. 3.4). The magnetic dipole
moments were extracted from the theoretical curves (solid line) such that the coefficient
ArxNrxMry is ~21.7 Am” and ~13.5 Am* for the co-axial and co-planar configurations,

respectively. These calculated values match the coil specifications very well.
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Figure 3.4: Estimation of transmitting and receiving moments: dots show measurements
for co-axial (left) and co-planar (right) coil configurations; and solid line is
the analytical solution with the best calculated moment coefficient.

3.2.5. Primary Bucked Signal

In this section, results are shown for the measurements before the fractures are in
place. At each configuration, two receiver coils are placed inside the tool’s inner shell
(PVC pipe with a nominal size of 3 in. (~8 cm)) in a bucking configuration, at nominal
distances [; and [, from the transmitter coils. The distance [, is tuned to minimize the
magnitude at the lock-in amplifier’s output. This tuning process is repeated for every test
and if there is no other limitation [; and [, are not changed significantly. Once a
minimum is obtained, the coils are fixed in place and the inner shell is inserted into an
outer shell PVC pipe with a nominal size of 4 in. (~10 cm). No adjustments are made for
centralizing the inner shell inside the outer shell. The test is conducted in a closed lab
with a floor area of ~100 m” and a height of ~4 m during the daytime. Surrounding
materials are all made of wood and plastic; metallic targets are at least 3 meters away

both from the transmitter and receiver coils.
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The transmitter coil input current (Fig. 3.5) and primary bucked signal (Fig. 3.6)
are monitored over 10 minutes. Signals are sampled at a rate of one sample for every 5
seconds. No significant drift was observed during this period and the variation in the
primary bucked signal which is normalized with respect to transmitter coil input current
was not more than 1 uV in the co-axial and co-planar configurations and not more than

0.2 uV in the cross-polarized configuration.
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Figure 3.5: The variation in the measured transmitter input current over time; presented
for the co-axial (upper), co-planar (middle) and cross-polarized (lower) coil
configurations before the measurements with fracture models.
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Figure 3.6: The variation in the measured primary bucked signal over time; presented for
the co-axial (upper), co-planar (middle) and cross-polarized (lower) coil
configurations before the measurements with fracture models; the data are
normalized with respect to transmitter coil input current.

3.3. PROTOTYPE TOOL TESTING

In this section, the design of small scale and highly conductive targets, intended to
produce a response close in magnitude to that of realistic field propped fractures, is
explained. The set-ups used in the lab-air and shallow near-surface experiments are

discussed.
3.3.1. In-Air Experiment

The laboratory in-air experiments include primary and total bucked signal

measurement for various targets. To emulate various hydraulic fracture geometries in the
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lab, three sets of propped fracture models are used for the in-air experiments, Fig. 3.7: (a)
circular fractures of three different radii, (b) elliptical fracture of three different aspect

ratios, and (c) circular fractures with five different dip-angles.

0° 21°330

Sare
T//' 61°

v

Figure 3.7: Fracture models used for laboratory experiments: (a) orthogonal fractures of
various areas; (b) orthogonal fractures with various aspect ratios, the major
radius is 20 cm; and (c) fractures of various dips rotated about the x-axis.

Measurements are acquired on a test bench at a height of roughly 1 m above the
ground. The outer shell of the tool is held, by non-conductive (plastic) boxes, above the
test bench (Fig. 3.8 and 3.9). Model targets are sandwiched between acrylic sheets that
enable fixing them in a prescribed orientation and centralized with respect to the outer
shell. After the tuning, the distances between the center of receivers and the center of the
transmitter coil are [; = 0.96 m and [, = 1.21 m for all coil configurations. Throughout
the measurement, the tool is kept stationary and the signal is first measured without
model fractures. A typical response for different configurations of coils is shown in
Section 3.2.5. Then, the fracture model is moved within a range of [-0.4, 0.4] m with
respect to the midpoint between the receiver coils, in 2.5 cm intervals. At each model

target position, signals are sampled at a rate of one sample per second, over a period of
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30 seconds and the mean signal value measured without the fracture is subtracted to

obtain the differential signal.

Figure 3.8: Laboratory experimental setup: an outer shell backbone (horizontal pipe)
containing coils, fracture model inside a holder (middle box), and two outer
shell backbone holders (left and right boxes).

m
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Figure 3.9: Laboratory experimental setup: top picture shows main set-up which allows
moving fracture models across the center of receivers; during the tests, the
surrounding of the tool was kept free of metal; bottom-left picture shows the
plastic box which keeps fracture model in a given orientation; and bottom-
right picture shows centralization of the fracture model with respect to the
outer shell of the tool.

3.3.2. Near Surface Experiment

To evaluate the performance of the tool in a more realistic medium, experiments
were conducted in a shallow subsurface site as well. The field experiment includes a
tuning stage similar to that in the laboratory experiment and uses the magnetic inductance
properties measured in those tests. After the tuning, the distances between the center of
receivers and the center of the transmitter coil are /; =096 m andl, = 1.21 m.

Following the tuning, the tool is used underground, but near the surface, to detect a
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buried target. A single elliptical fracture model was placed at a certain dip-angle. This
simulated fracture model was designed specifically for the near-surface field experiment,

e
o

< 40cm

18.2 cm

< 30cm ——

Figure 3.10: Fracture model used for near surface experiment: left figure is the elliptical
fracture model which is designed to be 37° rotated about the x-axis; right
figure is field taken picture to verify the dip-angle.

For this experiment, a 6 inch PVC pipe of 12 m length (serving as a well) was
buried horizontally at a depth of 1 m below the surface (Fig. 3.11). An aluminum foil
target (Fig. 3.10), sandwiched between acrylic sheets, was placed around and centralized
with respect to the buried pipe at a dip-angle of 37° about the vertical axis (x-axis). While
designed to be placed at the prescribed dip-angle, the positioning was also geometrically
verified using an image taken at the test site. Here, the target is stationary and the tool
(outer shell) 1s moved inside the buried pipe. The tool is lowered into a trench through an
opening at the end of the buried pipe and is pushed such that the midpoint between
receivers moves in the range [-0.5, 0.5] m with respect to the fracture’s center. No
adjustments are made for centralizing the outer shell inside the buried pipe. Data is
recorded at intervals of 5 cm and sampled in the same manner as in the laboratory
experiment. Then, the primary signal (a measurement far away from the fracture model)
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is subtracted to obtain differential signals. The background formation conductivity is

independently measured with an earth/ground tester (Fluke, 2006).

Figure 3.11: Near-surface field-experiment setup illustration: 6” PVC pipe buried
together with the fracture model (Fig. 3.10); the tool is pushed and pulled
inside the well with the plastic string attached from the transmitter coil end;
and all cable connections are attached from the same end.
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Figure 3.12: Near-surface field-experiment setup illustration: Top picture shows the 6”
PVC pipe and fracture model before the hole is covered with soil; bottom-
left picture shows the prototype tool on the surface before logging the well;
and bottom-right picture shows the prototype tool just before it was pushed
into the well.

3.4. RESULTS AND DISCUSSION

In the previous sections, details of a prototype tool, experiment set-ups, fracture
model targets and measurements performed were discussed. In this section, the results of
these experiments are summarized for different coil configurations, fracture parameters,

and surrounding properties in magnitude and phase plots.
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3.4.1. Investigation of Different Model Parameters

The differential signals obtained for the various coil configurations are
summarized in Table 3.2 which lists typical signal levels observed around a fracture
model for each coil configuration (table columns) and for the different parameter of
fractures sets in Fig. 3.7 (table rows). It should be noted that, while the results are time
averaged at each tool position, deviations from the average of up to 10 uV for strong
signals (>100 uV) and 1 uV for weak signals (>10 uV) were observed and that signals

weaker than 0.1 pV were not detectable.

Parameter Co-axial | Co-planar | Cross-polarized
Surface Area | >100 pV >10 pv <lpuVv
Aspect Ratio | >100 pVv >10 pv <lpuVv

Dip Angle >100 pv >100 pv >100 pVv

Table 3.2: Summary of maximum differential signal levels obtained for different fracture
parameters and coil configurations.

In the following subsections, the signal magnitudes are plotted as a function of the
distance between the location of the fracture model and the midpoint of receivers for the
five cases corresponding to the: {co-axial, surface area}, {co-axial, aspect ratio}, {co-
planar, aspect ratio}, {co-axial, dip-angle}, and {cross-polarized, dip-angle}. For each of
the cases, the plots show both simulated (solid line) and the measured (circles) results.
Excellent agreement between the signal magnitudes are observed for all the cases tested.
The maximum error observed was less than 10% with most cases showing less than 1%

€rror.
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3.4.1.1. Circular Fracture Models

Beginning with the co-axial coil configuration, for which the measured signal
levels are the largest (Table 3.2), Fig. 3.13 presents the signals measured for the model
targets in Fig. 3.7(a). This configuration’s sensitivity to the target’s area is evident from
the increase in the signal magnitude with the fracture area; however, fractures of greater

aspect ratio can potentially produce similar signal levels in this coil configuration.
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Figure 3.13: In-air test results for the co-axial (zz) coil configuration and for the fracture
model targets in Fig. 3.7(a). Solid lines mark the simulated results, and red
dots mark the measured signals.

3.4.1.2. Elliptical Fracture Models

Only the co-planar configuration measurements were shown to be sensitive to the
symmetry of a fracture, Yang et al. (2015). Hence, additional information from this
configuration can be used for the determination of the fracture aspect ratio. First, in Fig.

3.14, co-axial signals are shown for the targets of Fig. 3.7(b). As can be seen from the
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plot, the magnitude of signals is strong; however, symmetric fractures of an equivalent
size can potentially produce similar signal levels in this coil configuration. In Fig. 3.15,
co-planar signals are shown for the same target where the signals are much weaker than
those in the co-axial configuration. It is evident that these signals are sensitive to the

aspect ratio of the fractures.
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Figure 3.14: In-air test results for the co-axial (zz) coil configuration and for the fracture
model targets in Fig. 3.7(b). Solid lines mark the simulated results, and red
dots mark the measured signals.
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Figure 3.15: In-air test results for the co-planar (yy) coil configuration and for the fracture
model targets in Fig. 3.7(b). Solid lines mark the simulated results, and red
dots mark the measured signals.

3.4.1.3. Rotated Fracture Models

The response to the fracture’s dip-angle (models are shown in Fig. 3.7-c) is
demonstrated for both co-axial (Fig. 3.16) and cross-polarized configurations (Fig. 3.17).
As the dip-angle increases, the received signals get weaker for the co-axial configuration
and stronger for the cross-polarized configuration. It should be noted that all three

configurations show strong sensitivity to the dip-angle (Table 3.2).
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Figure 3.16: In-air test results for the co-axial (zz) coil configuration and for the fracture
model targets in Fig. 3.7(c). Solid lines mark the simulated results, and red
dots mark the measured signals.
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Figure 3.17: In-air test results for the cross-polarized (zy) coil configuration and for the
fracture model targets in Fig. 3.7(c). Solid lines mark the simulated results,
and red dots mark the measured signals.

3.4.2. Near Surface Field Experiment: Effect of Conductive Background

The signal magnitudes measured in the near-surface field experiment are
presented next. During the measurements, soil conductivity in the range of 15-20 mS/m
was measured (computed signals showed little dependence to the background
conductivity). Only the co-axial configuration was used to produce the magnitude plot in
Fig. 3.18. Once again, good agreement can be observed (<10 % of relative error) between

the numerical and experimental results.
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Figure 3.18: Near-surface buried target test results for the co-axial (zz) coil configuration
and for the fracture model target in Fig. 3.10. Solid lines mark the simulated
results, and red dots mark the measured signals.

3.4.3. Phase Plots

Finally, Fig. 3.19 presents the signals for all in-air lab and near-surface field tests
(simulation — black dots, measurement — red dots) as polar plots. Examination of each of
the sub-figures indicates that, while good agreement between the simulation and
measurements was obtained for the magnitude, there is a phase mismatch between
simulated and measured signals. The mismatch remains roughly constant across all
measurements of a given coil configuration, and it can be attributed to the referencing;
the simulated signals are referenced to the transmitter coil current while the measured
signals are referenced to its voltage. Ideally, this should result in a phase difference of
90°; however, the plots suggest that this mismatch ranges between 92° and 102°,

depending on the coils. This might not be an issue; as Fig. 3.19 shows that, for all studied
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cases, the in-phase (real) components with coil current

(imaginary) components.
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Figure 3.19: Phase plots for the air-tests: (a) co-axial coils with orthogonal fractures of
different areas, (b) co-axial coils with orthogonal fractures of different
aspect ratio, (c) co-planar coils with orthogonal fractures of different aspect
ratio, (d) co-axial coils with different orientation of fractures, (e) cross-
polarized coils with different orientation of fractures, and for the near-
surface test (f) co-axial coils with the orthogonal fracture. Black and red
dots identify the numerical simulations and field measurements,
respectively.

3.4.4. Signal to Noise Ratio

In the previous magnitude plots, results are shown with average values at each
sampling point. In this section, the variation of total signals with respect to their

magnitude is shown for some specified cases (Fig. 3.20).
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Figure 3.20: Signal to noise ratio of air tests: (a) co-axial measurements with 10 cm
radius symmetric and orthogonal fracture model; (b) co-axial measurements
with 20 cm radius symmetric and orthogonal fracture model; (c) co-planar
measurements with 20 cm major and 10 cm minor radius elliptical and
orthogonal fracture model; and (d) cross-polarized measurement with 20 cm
radius and 61° rotated fracture model; the magnitude of total bucked signals
1s shown on the left axis and the variation of magnitude on the right axis.

As can be seen from Fig. 3.20, the variation of total signals is dependent on its

magnitude. As the magnitude of the signal increases, the variation increases as well with

the signal to noise ratio being more than 100 for all coil configurations. The same type of
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plot for the near surface field test is shown in Fig. 3.21 where the signal to noise ratio is
more than 100 again. Based on the results of this section, we will include one percent

noise in the inversion analyses presented in the next chapter.
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Figure 3.21: Signal to noise ratio of near-surface field test: co-axial measurements with
the fracture model shown in Fig. 3.10; the magnitude of total bucked signals
is shown on the left axis and the variation of magnitude on the right axis.

3.5. CONCLUSION

A prototype fracture diagnostics tool, consisting of co-axial, co-planar, and cross-
polarized configurations of transmitter and receiver coils operated at 1 kHz, was built.
Initial tests have been conducted to confirm the component properties and detectability
range. Then, the prototype tool was tested in-air using a specially designed experimental
setup with scaled targets that emulate propped hydraulic fractures. Tests were also
conducted with the target buried underground in a near-surface trench. The measured

results for both in-air and near-surface tests were in excellent agreement with those

76



simulated by the integral equation-based numerical model (average relative differences of
less than 3% with a maximum difference of 10%). This agreement increases the
confidence in the results of existing numerical studies which also cover conditions
beyond those considered in the experiments. The high signal to noise ratios (over 100) of
the measured signals indicate that, indeed, an EM induction tool can be used to extract
the propped length (or area), orientation and height of propped hydraulic fractures in
open-hole applications.

Each pair of transmitters and receivers exhibits sensitivity to different properties
of conductive fractures. The co-axial coil configuration signals are strong (>100 pV) and
highly sensitive to the fracture’s surface area (or length). A combination of signals from
the co-axial and cross-polarized configurations (both >100 uV) can enable estimation of
the fracture’s dip-angle. The co-planar configuration signals, however, are of relatively
lower magnitude (only >10 uV) and, while theoretically are sensitive to the fractures’
aspect ratios, might be too low to be sensed in a realistically noisy environment. While
the design of (x, y)-oriented transmitter coils that can deliver greater power is
challenging, due to geometrical constraints and heating considerations, improved
sensitivity to the aspect ratio may be obtained by modifying the tool’s design and
operating mode, as will be explored in Chapter 5. Further research in Chapter 4 is
dedicated to the development of parametric inversion techniques tailored to such tools.

Lastly, for the largest tested fracture model (circular model with 20 cm radius and
orthogonal orientation), the scattered differential signals are approximately 100 times
stronger than those produced by a circular hydraulic fracture of 1 m radius, 5 mm
thickness (if the coil spacing is 1 meter, it can investigate fractures of ~1 meter radius)
and the effective conductivity of 333 S/m (Zhang et al., 2016). However, the tool is

expected to be operated downhole with a larger power supply, several hundred A - m?
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(Heagy and Oldenburg, 2013) giving rise to greater currents. As a result, in the field,
signal levels for short spacing coil couples are going to be close to those obtained in this

experiment.

3.6. NOMENCLATURE

Symbol definition unit
cross-sectional area m
magnetic field mG
conductance S
magnetic flux density A-m
peak current A
magnetic dipole moment A'm?
number of turns -
induction number

power

resistance

voltage

lock-in amplifier readings

real component of detected signal
imaginary component of detected signal

VUV Z2ZZ—ITOm>

y=
<<

diameter

frequency

the height of a coil
complex number

wave number

length

radius

thickness

orientation of receiver coil
weight factor

orientation of transmitter coils -

I3 <<<<DS:

n
+333 35 3

skin depth m
magnetic permeability H-m
relative magnetic permeability -
free space magnetic permeability H-m
resistivity Qm
conductivity S-m

QE-OC-_‘:'C% < SCH=_ —X—3IT—+w0O LB
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(6]

Sl derived
unit

S<uodITz-am

CGS unit
G

angular frequency

definition

Farad
Tesla
Henry
Hertz
Ohm
Siemens
Volt
Watt

definition
Gauss

Hz

Sl base units

s*A%-m*kg
kg-A-s®
kgm?-s%-A?
1-s
kgm?-s*A?
s> A’ kgm®
kgm?-s>A
kg'm?*-s®

Sl base units
1E-4[kg-A-s°]
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Chapter 4: INVERSION OF EM DATA TO OBTAIN FRACTURE
GEOMETRY AND CONDUCTIVITY

In this chapter, we develop an inversion algorithm for the estimation of fracture
geometry and conductivity. The main goal is to have a time efficient simulation tool
where the same analysis can be carried out with real field data. The knowledge of the
fracture geometry and conductivity will help to improve the efficiency of fracturing
operations, and in the long run, it will help completion engineers to design operations
with the optimum number of stages and clusters. The results presented in this chapter also
provide insight into the resolution obtained with the low frequency induction tool.

We developed a simulated annealing and neighbor-approximation based
stochastic inversion algorithm, and first, examined it with a testing function to tune the
optimization parameters. Then, several cases were run to invert the “measured data” and
appraise the estimation of different fracture parameters such as conductivity, size, dip-
angle, etc. An approximation-based direct inversion technique is also proposed for
orthogonal fractures to minimize the computation time. Lastly, the effect of neighbor
fractures is evaluated, and the inversion algorithm is utilized to recover the fracture
distribution along the well for different stages. In the computations, nominal values are
used for the tool. Our inversion results are shown to be robust and in agreement with the

true values. The hybrid inversion algorithm is shown in the Appendix of this dissertation.

4.1. LITERATURE REVIEW

After logging the well with the induction tool, information on the proppant
distribution in the fracture can be extracted in two different ways. The more practical and
computationally less intensive approach is the parametrization of fractures. Yang et al.

(2016) used circular (or elliptical) fractures to characterize the hydraulic fractures and
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utilized parametric inversion technique where the model parameters are evaluated
independently in each iteration. This technique leads to a small number of model
parameters increasing time efficiency. The other approach is the generation of a
conductivity map which provides information about the secondary fracture branches. In
this case, one challenge is the intensive computational time required for the 3D
volumetric solution of Maxwell’s equations. The other challenge is the solution of the
inherently under-determined problem where the number of model parameters will be
dependent on the resolution requirements. In this chapter, we have selected the first
approach with the main difference from the previously mentioned study (Yang et al.,
2016) being our application of the multidimensional stochastic inversion technique which
is based on a simulated annealing and a neighbor-approximation methods.

Typically, stochastic inversion techniques randomly select a starting point in the
model space and moves are decided based on control parameters. Simulated annealing
(Fouskakis and Draper, 2002; Sen and Stoffa, 1995) uses temperature as a control
parameter for the search direction and jump distance which decreases the randomness of
movements. In this study, we start with multiple models, and we use the neighbor
approximation (Sambridge, 1999) to benefit from the data history and to avoid additional
forward model runs. The tuning parameters are 1) the cooling schedule, 2) the model

population and 3) the number of iterations.

4.1.1. Tensor of Detected Signal

In previous studies, Yang et al. (2015) and Zhang et al. (2016), it was shown that
any electromagnetic induction tool aimed at fully diagnosing hydraulic fractures requires
the use of a tri-axial transmitter and receiver coil system where a 3 X 3 tensor is

measured for the scattered voltage at each sampling point:
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where i is the index of the sampling point. The following model parameters:
conductance, area, aspect ratio (shape), and dip-angle are sensitive to the different coil
orientations. Co-axial measurements (1) are sensitive to the fracture cross-sectional area
until a certain saturation point but cannot differentiate fractures of the same area with
different shapes or dip-angles. The short spacing can detect small fractures but cannot
distinguish large ones. The signals on the long spacing receiver are inherently weak but
can distinguish large fractures. The saturation limits for the short and long coil spacings
were shown to be 10 m* and 1000 m?, respectively. Co-planar measurements (V. or Vy,,)
can differentiate axially symmetric fractures from asymmetric ones, but they were found
to be weak in the previous chapter. Cross-polarized measurements (off-diagonal
components) can quantify fracture dip-angle and become more pronounced as the dip-
angle increases (Yang et al., 2015). For an accurate estimation of all model parameters,
we suggest using a combination of various orientations. In this study, we define an
objective function in such a way that it includes all the signals from different coil

spacings and configurations.

4.2. INVERSION TECHNIQUES

In this chapter, we will show results for a mono-axial transmitter (axis oriented in
the wellbore direction) and tri-axial receiver coils. Two strong signals are obtained from
this transmitter-receiver coupling: co-axial and cross-polarized signals. They are used in

the cost function as follows:

E= (EZZ " Eyz)short n (EZZ n Eyz)long (4.2)
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This cost function combines all four signals effectively and enables a global
search on the fracture parameters. The signal levels in the long coil spacing are inherently
weaker than that of short spacing. Therefore, signals are normalized as follows to get an
equal weight on the cost function for the short and long spacing:

; ~ i 2
AUSCEl,l _ AUSCa,l
Evy = z |< = Fysca,i = ) (4.3)
- AU :
l

uv

The tilde refers to the measured (true or observed) data. Fig. 4.1 shows the error map for
a fracture with 8§ m radius, 100 S/m conductivity and 30° dip-angle calculated with Eq.
4.2 where it is clearly seen that there is a global minimum at the true model parameters.
For all our presentations here, “calculated data” (differential signal without tilde in Eq.
4.3) is generated using coarser surface meshes, a node spacing factor of four (ref. Chapter
2). For the “measured data”, finer surface mesh, a node spacing factor of ten, is used with

an additional one percent random noise.
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Figure 4.1: Error map calculated for the 8 m radius fracture with a thickness of Smm,
conductivity of 100 S/m and dip-angle of 30°: upper plot is the fracture
conductivity vs. fracture radius, and lower plot is the fracture dip-angle vs.
fracture radius.
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4.2.1. Derivative Free Directional Search

The main goal of the inversion algorithm is to minimize the error calculated using
Eq. 4.2, and the work flow is outlined in Fig. 4.2. First, we define the limits for each
min

individual model parameter. The lower bound is defined as m and upper bound

as m™@*, Then the first population of models is randomly generated as follows:
ml — mmin + T, - (mmax _ mmin) (4.4>

where 7y, is the random number generated from the uniform distribution. Errors for the
population are then evaluated, and the production of new parameters for each model in

the population is carried out as follows:

mieW = md T T Amy (4.5)

where T is the control temperature which gradually decreases according to the predefined

schedule:
T = 0.01G-D/N-1) (4.6)

When the iteration number, i is one, T is 1 and approaches 0.01 when i is equal to the
maximum number of iterations which is shown with N in the equation above. The
cooling schedule allows larger jumps at the beginning of the search and smaller jumps
toward the end of the search. As a general rule, a faster cooling schedule may cause the
solution to be stuck in a local minimum. A slower cooling schedule is more likely to find
a global minimum at the cost of increasing the computation time.

To avoid additional forward model runs, due to the one-dimensional search, data
history is used to approximate error to the closest neighbor point. The distance from the

point of interest is calculated with the following equation:

= myll = [((my = m)T - C - (my = ) @)
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Ci; = (mi,max - mi,min)_z (4.8)
The condition of accepting a new point is defined as follows:
E(m"") < E(m°9) or T>r, (4.9)
Here, the temperature (T) is used to decide whether to keep a larger error model or not.
At the beginning of the search, we have a high chance of accepting new models with

larger errors which decreases almost to zero toward the end of the search. Finally, the

algorithm is terminated when the maximum number of iterations is achieved.

randomly generate first set of models

old generation of models
I

produce new parameter for each
model in the generation

estimate error based on history or
calculate it

accept new parameter if conditions
are satisfied

new generation of models

stop if max num. of iter. is achieved

Figure 4.2: Flow diagram of simulated annealing and neighbor approximation based
hybrid inversion algorithm.

To test the model the following equation is used as a testing function:
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. 2
E = (1 — l_[ sign(sinc(ml-))i/ Isinc(ml-)|> (4.10)

i=1
This testing function allows having a different number of model parameters, and Fig. 4.3

shows error plots for a one- and two-dimensional problem domain.
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Figure 4.3: One- and two-dimensional plot of the testing function shown in Eq. 4.10.

The output of the algorithm for the test function is shown in Fig. 4.4. We start the
search with 10 model samples. In the given iteration, the open black circles show errors
for all models and the red filled circle is a model with the minimum error. In all
dimensions, one to four, results converge to the global minima within 200 iterations. For
the inversion analysis on synthetic data, we will use a smaller population and iterations to

lower the computation time.
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Figure 4.4: Inversion results for the test function in one, two, three, and four dimensions:
open circles show errors for all models and red filled circles show a model
with the minimum error in the given iteration.

4.2.2. Approximation Based Linear Regression

As discussed in Chapter 2, the approximation introduced in Eq. 2.36 has a linear
relationship with the conductance. Implementing this equation into Eq. 2.25 and then into
Eq. 1.1, the dependence of the received signal on the conductance for a given location of

the tool will be as follows:

USSa = —jwuoNey Ak G J j VGgr(r,, 1) x EM¢(r) dS’ 4.11)
S
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where n is the receiver number and the differential signal is calculated by subtracting the

two receiver signals. If we change the error function to:

: ~ iy 2
B,y = ) (AUZ™ — AT (4.12)
i

and if we take the derivative with respect to conductance, then we can calculate the

conductance for the given geometry as follows:

_ SCal aAUZS;:al
G = z <AUZS§‘“ /z ) (4.13)
i

Here, i is the sampling point number. This approach will be limited to orthogonal
fractures and can be used to reduce the computation time required for the inversion

analysis.

4.3. HYDRAULIC FRACTURE IMAGING

In this section, the proposed inversion algorithms are applied to single fracture
models, and then an inversion strategy is proposed for use in the presence of neighbor
fractures. For all results, the number of iterations is 100, the population is 5, and the
number of model parameters is either 2 or 3 depending on the fracture under
consideration. The first two model parameters are fracture conductivity and radius. If the
observed data has significant signal levels on the cross-polarized configuration, the model
parameters include dip-angle as well. Gaussian noise with a mean of one percent of the
signal level is added to the “measured data” after calculating them with a node spacing
factor of ten. In the inversion analyses, meshes are coarsened by selecting the node
spacing factor to be four. Typical single- and multi-cluster analyses take 10 minutes and

10 hours, respectively.
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4.3.1. Single Cluster Analysis

The stochastic inversion results for a single fracture inversion are shown in error
figures and box charts. The figures show error values calculated with Eq. 4.2: at the given
iteration number, the open circles show errors for all evaluated models, and the red filled
circle shows a model with the minimum error. The box plots show the statistical
information for the fifty lowest error models. In each box, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the lower and upper adjacent values, and outliers are
shown with the ‘+’ symbol. The approximation based linear regression results are shown
only for orthogonal fractures; lines of conductivity values calculated with Eq. 4.13 for
short and long coil spacings is shown where the intersection point of lines refers to the

estimated result.

4.3.1.1. Circular Fracture

In the first example, the true fracture model is an orthogonal circle with a radius
of 8 m and a conductivity of 100 S/m. Fig. 4.5 shows the error and box plots: errors show
a decreasing trend with the number of iterations, and the whiskers of both box plots cover
the interval which includes the true parameters. The best inversion result (model with the

lowest error) has a radius of 8.08 m and a conductivity of 100 S/m.
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Figure 4.5: Inversion results for a circular and orthogonal fracture: true fracture model
has the radius of 8 m and uniform conductivity of 100 S/m. Left figure
shows a change in the error with the number of iterations: open circles show
errors for all models and red filled circles show a model with the minimum
error in the given iteration; and right figures show calculated conductivity
and radius box plots for the best 50 cases.

Fig. 4.6 shows a comparison of the differential signals calculated for the true and
best inverted models in both short and long coil spacings. As it can be seen in the plots,
the curves are essentially indistinguishable showing an excellent agreement for both real

and imaginary components.
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Figure 4.6: The comparison of true (solid black line) and the best inverted (dashed red
line) differential signals for a circular and orthogonal fracture with uniform
conductivity distribution: true fracture model has the radius of 8 m and
constant conductivity of 100 S/m; differential signals are shown for a co-
axial coil configuration in short (left) and long (right) coil spacings.

Fig. 4.7 shows results for an approximation based linear regression. The short and
long spacing regression lines intersect at a radius of 8.1 m and a conductivity of 100 S/m,

and these results are in a good agreement with the stochastic inversion results.
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Figure 4.7: Approximation based inversion for a circular and orthogonal fracture: true
fracture model has a radius of 8 m and a constant conductivity of 100 S/m;
calculated conductivity values are shown for short (red) and long (blue) coil
spacings.

4.3.1.2. Rotated Fracture

In this example, the true fracture model is a circle with a radius of 8 m, a constant
conductivity of 100 S/m and a dip-angle of 30° (rotated about the vertical axis). Fig. 4.8
shows the error and box plots: errors show the same decreasing trend with the number of
iterations, and the whiskers of all box plots cover the interval which includes the true
parameters. The best inversion result (model with the lowest error) has a radius of 8.09m,

a conductivity of 100S/m and a dip-angle of 30.2°.
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Figure 4.8: Inversion results for a circular and rotated fracture: true fracture model has a
radius of 8 m, a uniform conductivity of 100 S/m and a dip-angle of 30°.
Left figure shows a change in the error with the number of iterations: open
circles show errors for all models and red filled circles show a model with
the minimum error in the given iteration; and right figures show calculated
conductivity, radius and dip-angle box plots for the best 50 cases.

Fig. 4.9 shows a comparison of the differential signals calculated for the true and
best inverted models for both short and long coil spacing including both co-axial and
cross-polarized configurations. As can be seen in the plots, the curves are in good

agreement for both real and imaginary components for all spacings and configurations.
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Figure 4.9: The comparison of true (solid black line) and the best inverted (dashed red
line) differential signals for a circular and rotated fracture with uniform
conductivity distribution: true fracture model has a radius of 8 m, a constant
conductivity of 100 S/m and a dip-angle of 30° differential signals are
shown for co-axial (upper row) and cross-polarized (lower row) coil
configurations in short (left column) and long (right column) coil spacings.

4.3.1.3. Elliptical Fracture

In this example, the true fracture model is an orthogonal ellipse with a major
radius of 8 m, an aspect ratio of 1.5 and a conductivity of 100 S/m. Fig. 4.10 shows the
error and box plots: errors show a decreasing trend with the number of iterations, and the

whiskers of the conductivity box plot cover the interval which includes the true
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parameter. For the box plot of fracture radius, however, whiskers include the effective
radius which is defined as the square root of the product of major and minor radii. The

model with the lowest error is a circle with a radius of 6.46 m and a conductivity of

100S/m.
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Figure 4.10: Inversion results for an elliptical and orthogonal fracture: true fracture model
has a major radius of 8 m, an aspect ratio of 1.5 and a constant conductivity
of 100 S/m. Left figure shows a change in the error with the number of
iterations: open circles show errors for all models and red filled circles show
a model with the minimum error in the given iteration; and right figures
show calculated conductivity and radius box-plots for the best 50 cases.

Fig. 4.11 compares the differential signals calculated for the true and best inverted

models in both short and long coil spacings. It shows very good agreement for both real

and imaginary components.
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Figure 4.11: The comparison of true (solid black line) and the best inverted (dashed red
line) differential signals for an elliptical and orthogonal fracture with
uniform conductivity distribution: the true major radius is 8 m, the aspect
ratio is 1.5 and the conductivity is 100 S/m. Differential signals are shown
for a co-axial coil configuration in short (left) and long (right) coil spacings.

Fig. 4.12 shows results for the approximation based linear regression. The short
and long spacing regression lines intersect at a radius of 6.4 m and a conductivity of 100

S/m, and these results are in a good agreement with the stochastic inversion results.
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Figure 4.12: Approximation based inversion for an elliptical and orthogonal fracture: the
true fracture model has a major radius of 8 m, an aspect ratio of 1.5 and a
constant conductivity of 100 S/m; calculated conductivity values are shown
for short (red) and long (blue) coil spacings.

To see the effect of rotation in the inversion of elliptical fractures, we run the true
model with a major radius of 8 m, an aspect ratio of 1.5, a conductivity of 100 S/m and a
dip-angle of 30° (rotated about the x-axis). Fig. 4.13 shows the error and box plots: errors
show a decreasing trend with the number of iterations, and the whiskers of conductivity
and dip-angle box plots cover the interval which includes the true model parameters. For
the fracture radius box plot, however, whiskers cover the range for an effective radius.
The model with the lowest error is a circle with a radius of 6.47 m, a conductivity of 102

S/m and a dip-angle of 31°.
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Figure 4.13: Inversion results for an elliptical and rotated fracture: the true fracture model
has a major radius of 8 m, an aspect ratio of 1.5, a conductivity of 100 S/m,
and a dip-angle of 30°. Left figure shows a change in the error with the
number of iterations: open circles show errors for all models and red filled
circles show a model with the minimum error in the given iteration; and
right figures show calculated conductivity, radius and dip-angle box plots

for the best 50 cases.

Fig. 4.14 shows the comparison of the differential signals calculated for the true

and best inverted models in both short and long coil spacings including both co-axial and

cross-polarized configurations. It shows very good agreement for both real and imaginary

components for all combinations.
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Figure 4.14: The comparison of true (solid black line) and the best inverted (dashed red
line) differential signals for an elliptical and rotated fracture with uniform
conductivity distribution: the true fracture model has a major radius of 8 m,
an aspect ratio of 1.5, a constant conductivity of 100 S/m, and a dip-angle of
30°; differential signals are shown for co-axial (upper row) and cross-
polarized (lower row) coil configurations in short (left column) and long
(right column) coil spacings.

4.3.1.4. Conductivity Distribution

In this example, the true fracture model is a circle with a radius of 8 m, and its
conductivity decreases linearly in the radial direction (Fig. 4.15); the conductivity is 100

S/m at the wellbore and 0 S/m at the fracture tip.
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Figure 4.15: A fracture model with varying conductivity: conductivity at the wellbore is
100 S/m and 0 S/m at the fracture tip, decreasing linearly.

Fig. 4.16 shows the error and box plots: errors show a decreasing trend with the
number of iterations, and the whiskers of box plots cover the interval which includes the
effective parameters. The model with the lowest error is a circle with a radius of 4.37 m

and a constant conductivity of 85 S/m.
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Figure 4.16: Inversion results for a circular and orthogonal fracture with varying
conductivity: the true fracture model has a radius of 8 m, and the
conductivity at the wellbore is 100 S/m and 0 S/m at the fracture tip,
decreasing linearly. The left figure shows a change in the error with the
number of iterations: open circles show errors for all models and red filled
circles show a model with the minimum error in the given iteration; and
right figures show calculated conductivity and radius box plots for the best
50 cases.

Fig. 4.17 shows a comparison of the differential signals calculated for the true and
best inverted models in both short and long coil spacings. It shows a good agreement for

both real and imaginary components.
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Figure 4.17: The comparison of true (solid black line) and the best inverted (dashed red
line) differential signals for a circular and orthogonal fracture with varying
conductivity: the true fracture model has a radius of 8 m, and the
conductivity at the wellbore is 100 S/m and 0 S/m at the fracture tip,
decreasing linearly. Differential signals are shown for a co-axial coil
configuration in short (left) and long (right) coil spacings.

Fig. 4.18 shows results for the approximation based linear regression. The short
and long spacing regression lines intersect at the radius of 4.5 m and conductivity of 86

S/m, and these results are in a good agreement with the stochastic inversion results.

103



180

160

140

120

100

conductivity [S]

Short Spacing

80

60 f Long Spagin

40

| | . .
0 2 4 6 8 10 12 14 16 18
fracture radius [m]

Figure 4.18: Approximation based inversion for a circular and orthogonal fracture with
varying conductivity: the true fracture model has a radius of 8 m, and the
conductivity at the wellbore is 100 S/m and 0 S/m at the fracture tip,
decreasing linearly; calculated conductivity values are shown for short (red)
and long (blue) coil spacings.

To see the effect of rotation in the inversion of fractures with varying
conductivity, we ran the true circular fracture model with a radius of 8 m and a dip-angle
of 30° (rotated about the x-axis). The conductivity at the wellbore is 100 S/m, and it is
decreasing linearly to 0 S/m at the fracture tips. Fig. 4.19 shows the error and box plots:
errors show a decreasing trend with iteration numbers, and the whiskers of the dip-angle
box plot cover the interval which is very close to the true parameter. For the box plot of
fracture radius and conductivity, however, whiskers cover the range which includes the
effective parameters. The inverted model with the lowest error has a dip-angle of 29°, a

radius of' 4.57 m and a constant conductivity of 84 S/m.
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Figure 4.19: Inversion results for a circular and rotated fracture with varying
conductivity: the true fracture model has a radius of 8§ m and a dip-angle of
30°, and the conductivity at the wellbore is 100 S/m and 0 S/m at the
fracture tip decreasing linearly. The left plot shows a change in the error
with the number of iterations: open circles show errors for all models and
red filled circles show a model with the minimum error in the given
iteration; and right figures show calculated conductivity, radius and dip-

angle box plots for the best 50 cases.

Fig. 4.20 compares the differential signals computed for the true and best inverted

models in both short and long coil spacings with both co-axial and cross-polarized

configurations. The results of both models show very good agreement for both real and

imaginary components.

105



short & co-axial

: N
’———’//—_\ﬁ——__-_-_-_.—__

long & co-axial

10" F

Magnitude of differential signal [uV]
Magnitude of differential signal [uV]

4 -08 -06 04 -02 0 02 04 06 08 1 4 -08 06 04 -02 0 02 04 06 08 1
Distance [m] Distance [m]

short & cross-polarized

long & cross-polarized

Magnitude of differential signal [uV]
Magnitude of differential signal [uV]

4 -08 -06 04 -02 0 02 04 06 08 1 4 -08 -06 04 -02 0 02 04 06 08 1
Distance [m] Distance [m]

Figure 4.20: The comparison of true (solid black line) and the best inverted (dashed red
line) differential signals for a circular and rotated fracture with varying
conductivity: the true fracture model has a radius of 8§ m and a dip-angle of
30°, and the conductivity at the wellbore is 100 S/m and 0 S/m at the
fracture tip, decreasing linearly; differential signals are shown for co-axial
(upper row) and cross-polarized (lower row) coil configurations in short
(left column) and long (right column) coil spacings.

4.3.1.5. Heterogeneous Background Conductivity

All the previous forward/inversion models were run with homogeneous
background (rock) conductivity. In this section, we simulate heterogeneous background
conductivity using the axial hybrid method. Adopting the layering and meshing scheme

shown in Fig. 2.13, the uniform region of the mesh is selected between -1 and 1 m with
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10 cm intervals. The computation domain is truncated at 100 m on both sides with the
grid size ratio of 1.25 in the expanding region. At every grid, in each of the three layers,
we use a randomly selected conductivity between 0 and 1 S/m where the overall mean
conductivity is 0.49 S/m. Fig. 4.21 shows the primary signals for the formation with the
described conductivity properties.
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Figure 4.21: Tool response to the heterogeneous background formation; no-fracture case:
real and imaginary components of primary signals are shown for co-axial
coil configuration in short (left) and long (right) coil spacings.

After introducing a fracture model to the formation with the background
conductivity properties described above, we simulate the tool response and subtract the
non-fracture case response. The true model of the fracture is an orthogonal circle with a
radius of 8 m and a conductivity of 100 S/m. We then run the inversion algorithm with
the background (rock) formation conductivity of 0.49 S/m. Fig. 4.22 shows the error and
box plots: errors show a decreasing trend with the iteration number, and the whiskers of
both box plots cover the intervals which include the true parameters. The model with the

lowest error has a radius of 8.1 m and a conductivity of 99.4 S/m.
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Figure 4.22: Inversion results for a circular and orthogonal fracture in the heterogeneous
formation conductivity: true fracture model has a radius of 8§ m and a
uniform conductivity of 100 S/m. Left plot shows a change in the error with
the number of iterations: open circles show errors for all models and red
filled circles show a model with the minimum error in the given iteration;
and the right figures show calculated conductivity and radius box plots for
the best 50 cases.

Fig. 4.23 compares the differential signals computed for the true and best inverted
models in both short and long coil spacings. The results show good agreement for both

real and imaginary components.
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Figure 4.23: The comparison of true (solid black line) and the best inverted (dashed red
line) differential signals for a circular and orthogonal fracture in a
heterogeneous formation conductivity: true fracture model has the radius of
8 m and uniform conductivity of 100 S/m. Differential signals are shown for
a co-axial coil configuration in short (left) and long (right) coil spacings.
Measurements with and without fracture are subtracted for the true
differential signals; and for the best inverted signals, average formation
conductivity is used in the simulation.

This exercise shows the importance of an accurate subtraction of signals before
and after fracturing. If we repeat the same analyses without the subtraction, the obtained
accuracy is very poor; the result will be a circular fracture with the radius of 2 m and

conductivity of 150 S/m.
4.3.2. Multi-Cluster Analysis

In a typical hydraulic fracturing operation, there are more than 20 stages and
every stage includes 3 to 10 perforation clusters. Each of these fractures will affect the
signals received by the tool. To evaluate this effect, we run many cases varying the
number of fractures. Then, we implement a multi-fracture inversion algorithm to get the

distribution of proppant in each fracture.
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4.3.2.1. Effect of Neighboring Fractures

After completing the single fracture analysis, we ran simulations for a fracturing
stage while varying the number of propped fractures to estimate how the neighboring

fractures affect the signals coming from the fracture of interest. Fig. 4.24 shows the index

number for each fracture.

_____________________________________________

_____

___________________________

Figure 4.24: Wellbore model used for the evaluation of neighbor effects: fractures are
circular and orthogonal with a radius of 10 m and a separation distance of 9
m; fractures are numbered with respect to the fracture of interest (middle

fracture).

Fig. 4.25 plots three different cases: a) one neighboring fracture [-1 0 1], b) two
neighboring fractures [-2 -1 0 1 2], and c) three neighboring fractures [-3 -2 -1 0 1 2 3].

The following plots show in-phase components of the received signals for short and long

coil spacings.
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Figure 4.25: The effect of neighbors on the differential signals recorded in short (upper)

and long (lower) coil spacings: fractures are shown in Fig. 4.24; plots show
differential signals for one (a), two (b) and three (c) neighbors on both sides
of the middle fracture.

In the short spacing receiver, we do not see any significant effect of the

neighboring fractures. In the long spacing receiver, however, the two closest neighbors

are interfering with the signal of interest. The cases with two and three neighbors give

almost the same signals around the fracture of interest (with zero index number). Hence,

in the next section, we include the effect of only the closest two neighboring fractures in

the multi-fracture inversion to minimize the computation time.
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4.3.2.2. Multi-Fracture Inversion

The technique used for the inversion is to first invert the data for each fracture
assuming that it has no neighbors. Then, we use the best inverted parameters as an initial
guess for the inversion with multiple fractures. In this second iterative step, we include
the two closest neighbor fractures on both sides of the fracture of interest (maximum of
five total fractures in each forward model). To demonstrate this procedure we use two

true models shown in Fig. 4.26.

18 m
333S/m 14m
333S/m
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333 S/m 6m 7m
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13m
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Figure 4.26: Two “true” fracture models used for the multi-fracture inversion analysis:
(a) all fractures are orthogonal and (b) third and fourth fractures are tilted.

The differential signals for case (a) are shown in Fig. 4.27. It is not easy to
distinguish the distribution of fracture sizes by visual inspection. First, for each fracture,
we invert the signals in the interval of (-1, 1) m. Second, the results obtained in the
previous step are used as initial guesses for the multi-fracture inversion. We are using

two model parameters, fracture conductivity and size.
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Figure 4.27: Differential signals for the case shown in Fig. 4.26(a): real (black) and
imaginary (red) components are shown for co-axial configurations for short
(left) and long (right) coil spacings.

After the single fracture inversion, we get the following error vs. iteration for each
fracture in case (a). The increase in the error level, as we go from fracture number 1 to 5,

can be related to the effect of neighboring fractures.
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Figure 4.28: Single-fracture inversion results for the case shown in Fig. 4.26(a). A change
in the error with the number of iterations is shown for each fracture
numbered from left to right: open circles show errors for all models and red

filled circles show a model with the minimum error in the given iteration.

The best results for the single fracture inversion (the models with the lowest error)

are shown in Fig. 4.30 — middle figure. The evolution of errors after two iterations in the

multi-fracture inversion is shown in Fig. 4.29. As can be seen in the plots, final errors are

less than the errors in the first step. The final output is shown in Fig. 4.30 — right plot.

The calculated fracture parameters are in a sufficiently good agreement with the true

parameters.
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Figure 4.29: Multi-fracture inversion results after two iterations for the case shown in
Fig. 4.26(a). A change in the error with the number of iterations is shown for
each fracture numbered from left to right: open circles show errors for all
models and red filled circles show a model with the minimum error in the

given iteration.

18m 17.9m
333 S/m 115m M4m 3358/m
340 S/m 367 S/m 9.6m
10m 333 S/m
333S/im
5m 51m 50m
333S/m 332 S/m 333S/m
l im m I 9m
“welloore T T T dvéhbbié'_'_'_l_'_:'_ I |:> -.T_'w'ehbbié'_'_'_'.['_'_'_'_ P
4m 40m 39m
333 S/m 333 S/m 337 S/m
13m 11.7m 134m
333S/m 355 S/m 337 Sim

Figure 4.30: Multi-fracture inversion analysis for the model shown in Fig. 4.26(a): left
figure shows the true model; middle and right figures show the best result
after single- and multi-fracture inversions, respectively.
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The differential signals for case (b) are shown in Fig. 4.31. Again, it is not easy to
distinguish the distribution of fracture sizes by visual inspection. Based on two peaks in
the signal observed in the cross-polarized configuration of short coil spacing (lower-left
plot), we use three model parameters (conductivity, size and dip-angle) for the third and
fourth fractures and two parameters (conductivity and size) for the rest. We apply the
same inversion strategy as in the previous case.
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Figure 4.31: Differential signals for the case shown in Fig. 4.26(b): real (black) and
imaginary (red) components are shown for co-axial (upper row) and cross-
polarized (lower row) configurations for short (left column) and long (right
column) coil spacings.
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After the single fracture inversion, we get the following error vs. iteration for each
fracture in case (b). The high levels of error for all cases can be attributed to the effect of

neighboring fractures.
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Figure 4.32: Single-fracture inversion results for the case shown in Fig. 4.26(b). A
change in the error with the number of iterations is shown for each fracture
numbered from left to right: open circles show errors for all models and red
filled circles show a model with the minimum error in the given iteration.

The best results for the single fracture inversion (the models with the lowest error)
are shown in Fig. 4.34 — middle figure. The evolution of errors after two iterations in the
multi-fracture inversion is shown in Fig. 4.33. As can be seen in the plots, final errors are
much less than the error of the first step. The final output is shown in Fig. 4.34 — right
plot. The calculated fracture parameters are in a sufficiently good agreement with the true

parameters.

117



0 20 40 60 80 100 0 20 40 60 80 100

Number of Iteration

100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80
Number of Iteration

Number of Iteration Number of Iteration

Figure 4.33: Multi-fracture inversion results after two iterations for the case shown in
Fig. 4.26(b). A change in the error with the number of iterations is shown
for each fracture numbered from left to right: open circles show errors for all
models and red filled circles show a model with the minimum error in the

given iteration.

159 m

14m 332 S/m 145m
333 S/m 325 S/m
6m 7m 18m 6.2m 83m 6.0m 63m
333 S/m 333 S/m 333 8/m 331 S/m 354 S/m . 334 S/m 341 Sim 17.9m
l l I I [ 334 S/m
¥ wellbore T "7 7T T wellbore -~ 7T 7T T wellbore ~~~ T TTTT T T
1
N |
5m 49m N 50m
3338 . 335S/m 1'3,

Figure 4.34: Multi-fracture inversion analysis for the model shown in Fig. 4.26(b): left
figure shows the true model; middle and right figures show the best result
after single- and multi-fracture inversions, respectively.
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4.4. CONCLUSIONS

In this chapter, we developed a hybrid stochastic inversion algorithm to process

tri-axial induction data to estimate the geometry and conductivity of hydraulic fractures.

It is shown that this inversion analysis can successfully provide good estimates of

fracture length, conductivity and dip-angle. The approximation based linear regression is

also shown to be a very efficient inversion technique for single orthogonal fractures.

When neighboring fractures are considered in the inversion, the hybrid inversion model

provides excellent results. In all cases, good agreement is obtained between the true and

estimated fracture parameters suggesting that a tri-axial EM tool has excellent potential to

map the proppant distribution in hydraulic fractures. The following conclusions are

obtained from this study:

By using a mono-axial transmitter coil and tri-axial receiver coils, it is possible to
recover the effective properties of hydraulic fractures; two coil configurations (co-
axial and cross-polarized) and two coil spacings (short and long) are essential to
provide the complete description of fracture geometries and conductivities.

For fractures that are assumed to be circular, parameters such as fracture conductivity
and radius were shown to be recovered very accurately. For fractures that are
assumed to be elliptical, we recover the effective radius for a circle which has the
same area as the ellipse. When the proppant concentration varies radially in a fracture
(linearly decreasing conductivities towards the fracture tip), the inverted conductivity
value is approximately equal to the average conductivity of the fracture. In all these
cases, the calculated dip-angle is always close to the true value.

For heterogeneous conductivity rock, an accurate estimate of fracture parameters is
obtained only after the subtraction of the differential signals with and without a

hydraulic fracture. The differential signals without a fracture can be large enough to
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affect the inversion accuracy. This highlights the importance of logging the well
before and after fracturing operations.

For a tool spacing of 18 m, differential signals for the fracture of interest are affected
by two neighboring fractures on each side when 9 m spacing is used for the distance
between fractures. To invert the results for multiple fractures in a time efficient
manner, five fractures should be included in each forward model run. This approach
is shown to provide a very accurate estimation of fracture parameters in the given

stage.
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Chapter 5: DESIGN SPECIFICATIONS AND SIMULATIONS FOR A
FIELD DEPLOYABLE TOOL

The final chapter summarizes a suggested design of the tool and explores its
potential based on the numerical models presented in the previous chapters. The results
presented here provide quantitative insight into the differential signals by evaluating the
tool properties and proppant characteristics. To minimize power requirements and to
investigate large fracture surface areas, we studied the effect of tool operation frequencies
including multi-frequency measurements. In addition, we studied the effect of tool coil
spacing to improve the efficiency of primary field cancellation and suggested a trend-line
for selecting the coil separation distances. Later, we present numerical results for an
inter-well deployment of the tool where a treatment well is monitored by an offset well.
We also showed how proppant settlement can be monitored and how the enhanced
electrical permittivity and magnetic permeability of the proppants can improve the
differential signals. Lastly, the effect of electrical anisotropy of shale rocks in the
measurements is studied. At the end of the chapter, we suggest future possibilities to

improve the tool capabilities.

5.1. LITERATURE REVIEW

In this review section, we provide information on how this tool can be deployed
in the field by providing a summary of engineering reports obtained from E-Spectrum
Technologies Inc. (2016). Fig. 5.1 shows the main two components needed for field
deployment: a surface system and a modular downhole tool. The surface system includes
computer hardware that allows the data to be downloaded and analyzed. For EM signals,
deeper penetration into the rock is generally obtained by using lower frequencies. In

practice, however, lower frequencies require higher power which necessitates a surface
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power supply. Therefore, the surface system also consists of a power source that delivers
currents to the downhole tool. Lastly, considering the depth of reservoirs, it is anticipated
that the power loss will be minimized if DC signals are delivered to the downhole tool

and then converted to AC.

Figure 5.1: Low frequency electromagnetic induction tool consisting of a surface system
and a modular downhole tool.

As shown in Fig. 5.2, in the current suggested deployment, the power supply is
located on the surface, and a wireline cable is used to communicate with the downhole
tool. In the rest of this section, we focus on the design specifications of the downhole tool

that is proposed to be built.
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Figure 5.2: Transmitter sub power delivery system.
122



The modular downhole tool is designed to be deployed as a bottom hole assembly
that consists of a transmitter control and coil sub, a receiver sub and a wired space bar.
The transmitter control sub, which could be composed of a metallic section (the effect of
this metallic section on the detected differential signals has not been numerically
studied), includes the necessary electronics and hardware to communicate with the
surface and the other modules of the downhole tool. It is powered from the surface and
provides AC signals to the transmitter coil sub.

The transmitter coil sub is a tool section with a non-metallic housing which seals
an LC tank shown with a dashed red box in Fig. 5.2. The LC tank is the most important
component of the tool which acts as an energy storage device, and it consists of induction
coils and capacitors. The tank stores energy in the magnetic field of induction coils and
the electric field of capacitors and thus minimizes power demand. A detailed physics of
the tank is presented in Section 5.1.2.

The transmitter sub is connected to three receiver subs (short, intermediate and
long spacing module subs) which are non-metallic tool sections sealing receiver coils and
electronics. They contain a replaceable bucking/receiver coil pair, and the data is stored
in the receiver sub’s logging memory which can be downloaded after tripping out and
disassembling the tool. Each sub also has an Orientation Module (OM) which monitors
the misalignment of the bucking/receiver coil pair with respect to transmitting coils. The
module contains a tri-axial magnetometer and accelerometer providing information on
the coil orientation with respect to the earth’s magnetic and gravitational fields. It enables
the correction of misalignment errors while the data is used in the inversion analyses.

The wired spacer bars are used to obtain the required spacing between
transmitting and receiving coils while electrically and mechanically connecting the

various modules. Lastly, a gamma ray attachment can be added to the tip of the downhole
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tool to determine the tool’s location. This enables an accurate subtraction of the measured
signals before and after fracturing.

The maximum diameter of the tool must be less than 10 cm (4 inches), and the
entire assembled tool is estimated to be about 23 m (76 ft.) long. The non-metallic
sections of the downhole tool (transmitter coil sub, receiver subs, and spacer rods) can be

made of fiberglass or plastic.

5.1.1. Primary Field Cancellation

In this dissertation, we have focused on single frequency analyses which allow us
to use the frequency domain in all the experimental and computational set-ups. As
already mentioned in Section 1.1, in the frequency domain, the primary fields need to be
canceled in co-axial and co-planar configurations (the primary field in cross-polarized
configuration is theoretically zero) to improve the tool’s sensitivity to small variations in
the total magnetic field. The cancellation technique we have used is detailed both in
Chapter 1 and 3. Another approach was implemented in Yu et al. (2016) where a
transmitter coil is utilized as the bucking unit to cancel direct coil coupling in a small area
near the receiving coil without affecting the primary field at other locations. This bucking
coil is in a concentric arrangement with the receiver coil and minimizes incident field
such that the total magnetic flux density at receiver locations can be approximated to the
scattered field. They suggest this approach to have the capabilities of performing in situ
bucking adjustments which can further increase the sensitivity of the tool in the downhole
measurements (Liu et al., 2015).

The implementation of the same electromagnetic induction concept in the time
domain eliminates the need to cancel the primary field where the responses are measured

in the absence of it. Measurements in the time domain, however, are more susceptible to

124



noise which can easily be filtered out in the frequency domain. If wide band analyses are
required, the implementation of time domain methods will be more efficient because the
same analyses in the frequency domain are overwhelming requiring many separate

measurements.

5.1.2. LC Tank

The EM-based approach we are using for the hydraulic fracture monitoring
supports many different types of waveforms: Gaussian, sinusoidal, square, etc. (Palisch et
al., 2016). In this dissertation, we have considered a signal generator which pulses
sinusoidal waves to the LC tank (Fig. 5.3) which is one of the main components of the
tool. The tank circuit, which consists of transmitting coils and capacitors, is an energy
storage device which stores energy in the magnetic field of coils and the electric field of
capacitors. During each cycle, this field energy is circulated between these two
components. In an ideal case, when the DC resistance of its components is negligible, no
energy is lost per cycle, so no further energy needs to be supplied. In a real application,
however, the tank circuit will lose energy in every cycle due to DC resistance, and this
loss must be compensated for by the AC voltage source. The loss can be minimized if the

tank is operated at a resonant frequency defined as:

w = \/T_C (5.1)
where w is the angular frequency, L is the inductance and C is the capacitance of the
tank. It is possible to adjust the capacitance (number of capacitors in parallel, p) to
maintain a required operation frequency for a given inductor (Fig. 5.3). In space limited
tools, however, the addition of more capacitors is not always an easy task. The additional

practical challenge is the temperature constraint of the capacitors.
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Figure 5.3: LC transmitter tank diagram.

For the induction coils used in the tank, the quality factor (Q) is an important
design parameter to determine the efficiency of a coil’s power storage. It is defined by the
ratio of the inductive reactance (X) and the DC resistance (R) as shown below:

Xeoil _ 2nfL

Qeoil = 7= = 5.2
coll Rcoil Rcoil ( )

As is the case for dipole moment, the larger the value of quality factor, the better the
design. It is possible to connect several inductor coils in parallel to decrease the total
resistivity of a coil and to produce higher quality factors. The number of inductor coils in

parallel (n), however, decreases the total inductance (L):

Lk 3
- (53)

where inductance on each coil is calculated as:

— .ucoreAcoil (:Zoil (5 4)

L.
! nh

This is due to mutual inductance. The lower inductivity not only gives a lower quality
factor but it also requires a higher capacitance for the given resonant frequency (Eq. 5.1).

As previously mentioned, this is a mechanical challenge for a tool development.
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In summary, for a low frequency electromagnetic induction tool, coils can be
designed with a thicker gauge wire with fewer turns to reduce the losses and to lower the
driving source power. Another important design consideration for this application is the
use of a ferrite core which acts as a magnetic field multiplier. We get more benefit from a
ferrite core as the length to diameter ratio of the coil increases, and this ratio is very small
for coils oriented orthogonal to the wellbore. Therefore, a coil core oriented in the

wellbore direction (z-oriented transmitter coil) will produce the strongest magnetic field.

5.2. TOOL SPECIFICATIONS

In this application, scattered signal levels are proportional to the frequency and
inversely proportional to the distance between the coils. As we decrease the operation
frequency, the signals get too weak to be detected (in the frequency range of interest
signal levels decrease ~w? as the frequency decreases). Hydraulic fractures, however,
can be large and penetrate deep into the reservoir requiring large investigation areas
which need lower operating frequencies and larger tool spacing. In this section, we
provide optimum tool spacing maps to maximize received signals and to evaluate the
bucking efficiency. Then, the investigation area of the tool is demonstrated by using the
optimized spacing and frequency. The same analysis can be carried out for other
frequencies and spacings with the numerical forward and inversion models provided in
the Appendix. In the last sub-section, we performed a numerical study to appraise the
applicability of the inter-well tool deployment where a transmitter coil is logging a

fracture in a treatment well and observations are made in an offset well.
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5.2.1. Tool Spacing

From the previous chapter on inversion analyses, we know that the calculation of
fracture parameters require responses both from relatively short and long coil spacings.
Therefore, it is very important to have detectable differential signals in all spacings. The
detectability of the signal depends on its absolute and relative values. In this sub-section,
we evaluate the effect of tool aperture on the strength of signals of interest (presented in
absolute and relative level). First, we look at the incident and scattered signals detected
with one receiver coil at different background conductivities. Then, we compare the
incident and scattered signals when the fracture size is changed. Finally, the same

comparison is performed when we include the bucking-receiver coil into the system.
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Figure 5.4: The effect of background conductivity on the incident (left) and scattered
(right) signals: x-axis is the distance between transmitter and receiver coil;
solid and dashed lines show real and imaginary components, respectively;
black and blue lines are for a background formation conductivity of 0.01
S/m and 1 S/m, respectively. The tool is operated at 1 kHz frequency and
1500 A - m? transmitting moment; the cross-sectional area of the receiver
coil is 30 mm? with 600 turns. For the scattered field calculation, fracture is
assumed to be a disc with 30 m radius, 333 S/m conductivity and 5 mm
thickness.

Fig. 5.4 shows the change of incident signals with the change of background
conductivity and transmitter-receiver spacing. The interval selected for the formation
conductivity covers the minimum and maximum electrical conductivities of shale
(Adisoemarta, 1999). For the scattered signals, the receiver is positioned at the fracture
location, and we adjust the distance between the transmitter and the receiver coils.
Obviously, as the distance between coils increases both incident and scattered signals
weaken. An increase in the background conductivity of the formation, however, increases
the real component of incident signals and the imaginary component of scattered signals

keeping the other components the same for most of the transmitter-receiver spacing. Note
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that for a majority of the region that covers the nominal tool spacings, imaginary signals
are stronger than the real signals for incident fields and vice versa for scattered fields.

Fig. 5.5 shows incident and scattered signals for fractures with a radius of 1 m and
20 m, and the background (rock) formation conductivity is 0.333 S/m. As already noted
in Fig. 5.4, there is a phase difference between the dominant components of incident and
scattered signals, however, in all cases, the real component of incident signals is
significantly stronger compared to that of scattered signals. This suggests the importance
of the bucking coil for both short and long coil spacings. For the short spacing receiver,
even signal decomposition will improve the quality of detection and adding the bucking
coil will improve it further. For the long spacing receiver, however, the implementation
of the bucking coil is more vital. Further plots are proposed for the optimum spacing

between the receiver and bucking coil.

130



received signal [uV]

received signal [uV]

107

short qucing (1m)l long spag:ing (18m)

10°
108 ¢
102
105 S
=
T 10!
4 c
10 5
[7)]
©
108 @ o
> 10
o}
(6]
102 o
P 107!
101 F -7
- -
_-
o~ - 2
10 I I I 10 I I I
-1 05 0 05 1 -1 0.5 0 0.5 1
distance [m] distance [m]
short spacing (1m long spacing (18m
o’ . : 103 ; y
108
102
10° S
=
W10 e e
4 c
10 5
(2]
e)
108 o o
2> 10
_____________ 8
102 === — o
107
10"
100 L L L 10.2 L L L
-1 0.5 0 0.5 1 -1 05 0 0.5 1
distance [m] distance [m]

Figure 5.5: Incident (blue) and scattered (black) signals for short (left column) and long

(right column) coil spacings: real (solid lines) and imaginary (dashed lines)
components of signals are shown for the background formation with 0.333
S/m conductivity. The tool is operated at 1 kHz frequency and 1500 A - m?
transmitting moment; the cross-sectional area of the receiver coil is 30 mm?
with 600 turns. For the scattered field calculation, a fracture is assumed to
be a disc with 1 m (upper row) and 20 m (lower row) radius, 333 S/m
conductivity and 5 mm thickness.

To find the optimum bucking and receiver coil distances for the long coil spacing,

we plotted the absolute and relative signal levels for the 30 m radius fracture in Fig. 5.6.
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The y-axis of the plots is the distance between the transmitter and the center of the

receiver couples, and the relative signal is calculated by dividing the secondary signals by

primary signals. Based on these absolute and relative signals, we suggest a trend-line

(shown with a dashed line) to select the distance between coils. The dashed line is the

region where differential signals are strong enough to be detected and their ratio to the

primary signals is sufficiently large.
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Figure 5.6: The primary (top row), differential (middle row) and relative (bottom row)
signals for different transmitter-receiver and receiver-receiver spacings: real
(left column) and imaginary (right column) components of signals are
shown for the background formation with the conductivity of 0.333 S/m. For
the differential and relative signal calculation, the fracture is a disc with 30

m outer radius, 10 cm inner radius, 333 S/m conductivity and 5 mm
thickness.

5.2.2. Depth of Investigation

In this section, we estimate the investigation area of the tool by using the
inversion algorithm developed in the previous chapter. We run multiple realizations by
increasing the radius of fractures and calculating a variation in the inverted fracture
parameters. Fig. 5.7 shows results for the tool with nominal spacings and properties.
After running the forward model for the orthogonal and circular fractures with the node
spacing factor of ten, we added one percent of random noise to the differential signals. A
node spacing factor of four was used in the inversion analysis. There are at least five
realizations for the given radius of a fracture and 300 of the most successful results are
plotted in the figure. The measured variation is calculated by subtracting the true model
parameter from the calculated value. In the runs, the fracture conductivity for the true

model is 100 S/m.
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Figure 5.7:
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Box plots for the inverted vs. actual parameters: calculated variation of
fracture radius (upper) and fracture conductivity (lower) vs. the fracture
radius of the true model. The boxes include 300 of the lowest error results
from 5 different realizations.

134



The results show that once the radius surpasses 40 m, the tool with the nominal
spacing and properties loses resolution. The variation of fracture conductivity, however,
is not increasing for this uniformly distributed conductivity case. To determine fracture
sizes larger than 40 m we can use longer spacings for the tool but we need to make sure
that signals are detectable. One way to increase these signal levels is to deploy a receiver
coil with a higher magnetic dipole moment (not taking into account the noise level in the
field). Another way is to use proppants with further enhanced electromagnetic properties

(see Section 5.3.4).

5.2.3. Inter-well Testing

To diagnose larger fractures, another potential deployment of the tool is the inter-
well monitoring of the treatment well. In this part, we numerically evaluate signal levels
detected with receivers in an observation well while logging a treatment well with a
transmitter coil. The fracture is an orthogonal circle with a radius of 30 m, conductivity
of 333 S/m and thickness of 5 mm. The upper drawing of Fig. 5.8 shows the scheme used
in the simulation, and in the lower graph, secondary (scattered) signals are plotted. Two
separate lines are shown for the transmitter fracture distance: the lower line is the
secondary signals when the transmitter coil is 30 m away from the fracture and the upper
line shows signals when the transmitter coil is at the center of the fracture. The receiver is
in the observation well where its z-coordinate is always the same as that of the fracture.
The tool is operated at 1 kHz frequency and 1500 A - m? transmitting moment; the cross-

sectional area of the receiver coil is 30 mm? with 600 turns.
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Figure 5.8: Inter-well hydraulic fracture monitoring: scattered signals are calculated for a
receiver coil in the observation well and a transmitter coil in the treatment
well (upper drawing). In the plot, upper and lower lines show signals when
the transmitter coil is 0 m and 30 m away from the fracture, respectively.
The fracture is a disc with an outer radius of 30 m, inner radius of 10 cm,
conductivity of 333 S/m and thickness of 5 mm. The background formation
(rock) conductivity is 0.333 S/m. The tool is operated at 1 kHz frequency
and 1500 A-m? transmitting moment; the cross-sectional area of the
receiver coil is 30 mm? with 600 turns.

As it can be seen in the plot (Fig. 5.8), for the transmitter coil at the center of the
fracture (upper line), the scattered signals fall below 1 uV when the observation well is
60 m away from the treatment well. To detect weak signals is practically challenging and

this limits the deployment of the tool for inter-well diagnosis.
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5.2.4. Multi-Frequency Analysis

As shown in Section 4.3.1.4, operating the induction tool at a single frequency
provides a single conductivity value for the model with radially decreasing conductivity.
In this section, a sensitivity study is carried out to investigate if additional constraints on
fracture geometry can be obtained with multi-frequency induction measurements. By
using the integral equation solver a fracture with radially and linearly decreasing
electrical conductivity is simulated at different frequencies, and results are compared to
the signals at a nominal 1 kHz frequency. To obtain the relative signal, the differential
signal at a given frequency is divided by that at 1 kHz. Fig. 5.9 shows real and imaginary

components of these relative signals at short and long coil spacing.
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Figure 5.9: The relative differential signals (normalized with respect to signals at 1 kHz)
at different operation frequencies: the fracture model is orthogonal circle
with a radius of 10 m, and the conductivity at the wellbore is 333 S/m and 0
S/m at the fracture tip, decreasing linearly; real (left column) and imaginary
(right column) differential signals are shown for co-axial coil configurations
in short (upper row) and long (bottom row) coil spacing.

An increase in the operation frequency decreases the investigation area of the
tool, therefore, the signals are not expected to linearly scale with an increase in the
frequency. As shown in Fig. 5.9, indeed, the differential signals do not scale linearly at all
frequencies. The signal at 100 kHz frequency for the short coil spacing and the signals at
10 and 100 kHz frequencies for the long coil spacing can provide additional information

on conductivity distribution.
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5.3. SIMULATING FIELD DEPLOYABLE TOOL

In this section, we numerically investigate the tool’s potential to detect proppant
settling. Later, a numerical study is carried out to see how proppants can be upgraded to

scatter stronger signals.

5.3.1. Proppant Settlement

There has been a great deal of research conducted on the proppant transport in
hydraulic fractures (Blyton et al. 2015). Investigating favorable conditions leading to
efficient proppant delivery to induced fractures without letting them settle has been a
long-standing challenge. Independent proppant monitoring techniques assist in these
studies and improve operational efficiencies. Therefore, in this section, we evaluate the
potential of the induction tool for settlement detection by changing the geometry of
fractures, as shown in Fig. 5.10, and recording the variation in the differential signals. For
all cases, we assume that the injected proppant volume is the same; as the area of fracture
decreases, we linearly increase the conductivity. The surface area of fractures is 201 m?,
162 mz, 101 m? and 67 mz, hence the conductivity is selected as 100 S/m, 124 S/m, 200
S/m and 300 S/m for the fractures from left to right (Fig. 5.10), and the thickness of

fractures i1s 5 mm for all cases.

=16m IX
O o O
| w @

Figure 5.10: Fracture models used in the proppant settlement simulation: models are
orthogonal to the wellbore, and the injected volume of proppant is constant.
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Differential signals for the four different cases of fractures are plotted in Fig. 5.11.
In the computation, the distances for the short spacing receivers are 0.8 m and 1.2 m, and
17.8 m and 18.2 m for the long spacing receivers. The operational frequency is 1 kHz,
and transmitting magnetic dipole moment is 1500 A.m”. The cross-sectional area of

receiver coils is 30 cm?® with 600 turns. The formation (rock) conductivity is 0.333 S/m.
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Figure 5.11: Monitoring proppant settling: fracture models shown in Fig. 5.10 are used to
compute the real (solid line) and imaginary (dashed line) components of
differential signals in short (black) and long (blue) coil spacings.

As the shape of fracture becomes more irregular, differential signals vary from
that of the regular circle response. This proves that there is good potential for the tool to

evaluate proppant settlement.
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5.3.2. Enhanced Electrical Permittivity

Till now, all results are demonstrated for the electrical conductivity of proppants
where both the relative permittivity and magnetic permeability are one. In this sub-
section, we investigate how proppants with enhanced electrical permittivity affect the
differential signals. In the next sub-section, the effect of enhanced magnetic permeability
is studied.

To evaluate the effect of enhanced electrical permittivity, we need to implement
the boundary condition shown in Eq. 2.13. In the equation, shunt admittance is due to two
parallel sheets: a resistive sheet with the admittance ot and a pure reactive sheet (the
right component of the summation). In Fig. 5.12, we plot those components over a wide
frequency range. The fracture conductivity is 333 S/m and thickness is 5 mm. As can be
seen from the plot, in the 1 Hz - 1 MHz range of frequency, the resistive sheet strongly
dominates shunt admittance and consequently surface impedance. As the relative

permittivity of proppants increases the signals of interest will not be affected.

10°

resistive sheet

100°F

1075t €r=10'\ __---_1]

-
—

-
- -
-— -
- -
- -
- -~ & =100
- - r

shunt admittance components [S]

10710 ;ﬁ:j:——”
~ "V pure reactive sheet
10—15 L L
10° 102 10* 108

frequency [Hz]

Figure 5.12: Dependence of shunt admittance (Eq. 2.13) on the resistive (solid line) and
pure reactive (dashed lines) sheet.
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5.3.3. Enhanced Magnetic Permeability

For evaluating the effect of enhanced relative magnetic permeability, we have
used the axial hybrid method and the values are adjusted between 1, 5, 10, 20 and 50. In
the simulation, the fracture has an outer radius of 8 m, inner radius of 10 cm, conductivity
of 333 S/m and thickness of 5 mm, and the background formation (rock) conductivity is
0.333 S/m. The uniform section of meshing ranges from -1 to 1 m with the step sizes of
10 cm (Fig. 2.13). In the expanding mesh section, grid expansion ratio is 1.1, and the
computation domain is truncated at 100 m on both edges. The operation frequency is 1
kHz, and the magnetic dipole moment of transmitter coil is 1500 A.m”. The cross-
sectional area of receiver coil is 30 cmz, and the number of turns on the receiver coil is
600. The distance between the transmitter and the first and second receivers is 0.8 and 1.2
m, respectively. Fig. 5.13 shows real and imaginary components of differential signals for

all relative permeabilities.
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Figure 5.13: The effect of fracture relative magnetic permeability on the differential
signals calculated with co-axial configuration of short coil spacing: relative
magnetic permeability increases in the direction of arrow, and the values are
selected as 1, 5, 10, 20 and 50; black solid line shows real component of
signals for all simulated cases and dashed lines are imaginary components.

It can be seen from the plot that the real part of the differential signal does not
change while increasing the relative permeability; however, imaginary components
increase significantly. A 50 times increase in the relative permeability results in

imaginary differential signals 100 times stronger than the real components.

5.3.4. Effect of Electrical Conductivity Anisotropy in Shale Rocks

In this sub-section, we investigate the possible effect of formation electrical
conductivity anisotropy in induction tool measurements. If we assume that the formation
conductivity is different in the transverse and wellbore directions (note that this might not
be an accurate representation of the anisotropy for horizontal wellbores), the axial hybrid
method can be used to simulate the scenario (Eq. 2.37 and 2.38). We use anisotropic
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conductivities for the background formation in the forward model to obtain the “true
model”. The inversion model is run assuming isotropic conductivity, and the calculation
is repeated twice for transverse and wellbore direction background conductivities. The
results are shown in upper and lower rows of Fig. 5.14. The fracture is 10 m in radius and
333 S/m in conductivity. The transverse and horizontal conductivities are selected to be
0.5 and 0.25 S/m, respectively. The same meshing scheme shown in Section 4.3.1.5 is
used.

As shown in the box plots, the results are accurate for the run that uses the
transverse background conductivity indicating that it has the dominant effect on the
measured signals. The conclusion is the same when we repeat the forward and inversion

runs with reversed transverse and horizontal background conductivities.
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Figure 5.14: The effect of electrical conductivity anisotropy on the inversion of log data:
the upper and lower rows show the inversion results when the transverse and
vertical formation conductivities are selected in the inversion process,
respectively.

5.4. CONCLUSIONS

In this chapter, first, we presented the current design of the induction tool. Then,
we demonstrated the capabilities of the current tool with nominal spacing and properties.
The signal levels for a range of shale rock electrical conductivities are presented and the
improvement made with the bucking coil is evaluated to establish a trend-line to calculate
the distance between the receiver and bucking coil for the given transmitter-receiver

distance. For the investigation area, the resolution of the tool is sufficiently high, up to 40
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m radii. Further improvement can be obtained by sustaining detectable signal levels for
the increased tool spacing. This can be achieved with better coil design, large EM
contrast proppants or both. We also evaluated an inter-well deployment of the tool and
found it practically challenging to detect the signals from the observation well. In the last
sub-section for tool specifications, the potential of multi-frequency analyses in the
recovery of conductivity distribution is demonstrated.

In the second half of the results, we demonstrated the potential of the induction
tool in monitoring proppant settlement. By changing the shapes and keeping the total
injected proppant volume the same, we have shown that the differential signals are
distinguishable. Secondly, to improve the differential signals we can increase the
magnetic permeability of the proppants ignoring related practical challenges. The
differential signals are shown to be indifferent to the enhanced electrical permittivity.
Lastly, the transverse component of background formation conductivity is shown to be

dominating the accuracy of the inversion analyses.

5.5. FUTURE WORK

In this last section, we provide a list of several additional efforts that could be
made to make the tool more efficient:

e The current design of the tool cannot handle in-situ bucking. This is a practical
challenge which can cause a loss of accuracy in the measured signals. The surface
control of the bucking, which is suggested in Yu et al. (2016), can be studied and
incorporated into the current tool.

e Proppants with enhanced magnetic permeability can be used (ignoring practical
limitations) in the field which was shown to further increase the signal levels

compared to the case when only electrical conductivity is the contrast agent.
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The capability of multi frequency analysis can be added to the tool which may
produce more information on a conductivity distribution inside the fracture.
Although this may require only slight changes in the tool itself, significant
changes in the computational study will be necessary. This may require time-
domain analyses for the computation efficiency.

In the inversion study, different shapes of fractures can be parametrized and used
in the simulation to envision capabilities of the tool, especially in investigating
proppant settlement. This will be more meaningful after obtaining field data.
Current inversion analysis will recover information about the main branch of
fractures. They can be extended to the generation of a conductivity map where
secondary branches of fractures can also be monitored. The use of axial hybrid
methods will be less costly because of lower computation dimensions, and the
study can be further extended to three-dimensional numerical solutions where

variable background formation conductivities can be computed.
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Appendix
MOM SOLUTION

This Matlab code simulates a tri-axial induction tool in a 3-D spatial domain, and
a Cartesian coordinate system is used for the computation. To run the program, one needs
three input files, i.e., fracture.txt, operation.txt and sampling.txt. Fracture.txt contains the
specifics of the circular fracture geometry, conductivity and node spacing coefficient on

the edges of ellipses. An example is shown as follows:

0 % fracture location on the z-axis which is the wellbore axis, [m]

1 % fracture radius, it is r_major on the y-axis, [m]

1 % fracture aspect ratio, r_major/r_minor, [-]

0 % dip-angle, rotated about the x-axis which is the vertical axis, [°]
100 100 % linearly decreasing conductivity, values at r well and r_frac, [S/m]
0.005 % fracture thickness, [m]

0.1 % well radius, [m]

10 % node spacing coefficient on the inner and outer radius of ellipse, [-]

Operation.txt contains the specifics of the transmitter/receiver coils and the

background formation (rock) conductivity. An example is shown as follows:

1000 % operation frequency, [Hz]

1500 % magnetic dipole moment, [A.m2]

600 % number of turns on receiver coil, [-]
0.003 % cross-sectional area of receiver coil [m2]
0.333 % background formation conductivity [S/m]

An example of sampling.txt is shown below where the first three columns show
the Cartesian coordinates of transmitter, the second and third triads show the coordinates

of the first and second receivers, respectively:

0 0 -2 0 0 -1.2 0 0 -0.8
0 0 -1.95 0 0 -1.15 0 0 -0.75
0 0 -1.9 0 0 -1.1 0 0 -0.7
0 0 -1.85 0 0 -1.05 0 0 -0.65
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Main function:

clear all; close all; clc
string = strcat(pwd, '\Library\hfd 1m Odeg\'");

timerval = tic;

o

muo = 4*pi*1E-7;

il
epso = 8.854187817*1E-12; % f

opcon = load(strcat(string, 'operation.txt'));
omega = 2*pi*opcon(l); % angular frequency, [rad.Hz]

k1l = sgrt(muo*epso*omega”2-1lj*muo*opcon (5) *omega) ;

geometry (string);

tic; [Zmn,Bmn] = impedance(kl); Tl = toc;
Tmn = 1j*omega*muo*Zmn+Bmn;
tic; Hsca = scattered(kl,Tmn,string); T2 = toc;

Mtr = prod(opcon(2:4));

Vxz = -1j* (muo*omega) "2*Mtr* (Hsca(:,1)) *1leb;
Vyz = -1j* (muo*omega) "2*Mtr* (Hsca(:,2)) *leb6;
Vzz = -1j* (muo*omega) "2*Mtr* (Hsca(:,3)) *leb6;
out = [real (Vxz) imag(Vxz) real (Vyz) imag(Vyz) real (Vzz)

dlmwrite (strcat (string, 'out.dat'),out, 'delimiter',"\t");
T3 = toc(timerVval) ;

fid = fopen(strcat(string, 'info.dat'), 'wt+');

oe

fprintf (fid,
fprintf (fid,

( ! \t %% matrix fill time\n',T1l);

( ]
fprintf (fid, '

( ]

( ]

o° oo

o

fprintf (£id,
fprintf (£id,

o

\t %% total run time\n',6 T3);

fclose (fid) ;

ree space electrical permeability, [H/m]
ree space permittivity, [F/m]

imag (Vzz)]1;

f
d \t\t %% number of unknowns\n',size (Bmn,1));

f \t %% matrix solution time for all points\n',T2);
d \t\t %% number of source points\n',size(Vzz,1));
f
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Incident function calculates Eq. 2.23 and 2.24 in spherical coordinates and

converts them to Cartesian coordinates:

function Ec = Einc(kl,R1,R2)

o\

Given two coordinates: observation (R1) and source (R2)

Es is the electrical field in spherical coordinates

Ec is the electrical field in Cartesian coordinates [Ex,Ey,Ez]
The source is z-oriented

o o

o

global NofD

r(:,1) = R1(:,1)-R2(1,1);
r(:,2) = R1(:,2)-R2(1,2);
r(:,3) = R1(:,3)-R2(1,3);

R = sgrt(sum(r.*r,2));

teta = acosd(r(:,3)./R); % 0<teta<l180
phi = atand(r(:,2)./r(:,1)); % 0<phi<360

vl = r(:,1)<0;
v2 = r(:,2)<0;

phi = phi+v1*180;
phi phi+ (~v1.*v2)*360;

Es = kl*sind(teta)./ (4*pi*R).* (1+1./(13*k1*R)) .*exp (-1j*k1*R);
Ec = [-sind(phi) .*Es cosd(phi).*Es zeros (NofD,1)];

end

Gauss function provides integration points and weight for all triangular elements;

order of Gaussian quadrature is 2:

function [Rn,Wn,Pn] = gauss(R1,R2,R3)

xw=[0.16666666666667 0.16666666666667 0.33333333333333;
0.16666666666667 0.66666666666667 0.33333333333333;
0.66666666666667 0.16666666666667 0.33333333333333];

global NofT
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Pn = size(xw,1l);
Wn = xw(:,3);
Nl = 1-xw(:,2)-xw(:,1);
N2 = xw(:,2);
N3 = xw(:,1);
Rn = zeros (NofT, 3,Pn);
for k = 1:Pn
Rn(:,:,k) = RL*NI1 (k)+R2*N2 (k) +R3*N3 (k) ;
end
end

The geometry function creates nodes for the circles defined with the input
parameters. The outputs also include connectivity and construction maps for the
vectorized calculations. Any mesh generator can be adopted for this job. Details and

structure of global outputs are shown below:

function [] = geometry(string)
% NofV: number of vertices
% NofD: number of edges
% NofT: number of triangles
% TtoV [NofTx3]: vertices of triangle
% VtoR [NofVx3]: x,y,z coordinates of vertex
% TtoD [NofTx4]: edges of triangle, no bndry edge: 4th-column 20r3
$ TtoDl [NofTx6] edge for which triangle is Tp(l:3) && Tm(4:6)
% DtoT [NofDx6] [Tp, Tm, Vp,Vm,Ve,Vw] of edge
% AofT [NofTx1l]: area of triangles
% GofT [NofTx1l]: conductance of triangle
% RofC [NofTx3]: coordinates of triangle's center
$ lofD [NofDx1l]: edge length
% RofCp [NofDx3]: center of edge's positive triangle
% RofCm [NofDx3]: center of edge's minus triangle
% rhocp [NofDx3]: vector to center of edge's positive triangle
% rhocm [NofDx3] vector from center of edge's minus triangle
fid = fopen(strcat(string, 'fracture.txt'));
origin = str2num(strtok (fgetl (fid), 'S"));
r frac = strZ2num(strtok(fgetl(fid),'%'));
aspect = str2num(strtok (fgetl (fid),'s"));
dipang = str2num(strtok (fgetl (fid), 's"));




S _frac = str2num(strtok(fgetl (fid),'s"));
t frac = str2num(strtok(fgetl(fid), 's"'));
r well = str2num(strtok(fgetl (fid),'s"));
lambda = str2num(strtok(fgetl (fid),'%s"));
fclose (fid) ;

end

The impedance function fills the impedance and boundary matrices:

function

[Zmn, Bmn ] impedance (k1)

global VtoR DtoT TtoD TtoDl TtoV NofD NofT

global RofC rhocp rhocm lofD AofT GofT

R1 = VtoR(TtoV(:,1),:);

R2 = VtoR(TtoV (:,2),:);

R3 = VtoR(TtoV (:,3),:);

[Rn,Wn, Pn] = gauss(R1,R2,R3);

Lpn = zeros (NofD, 3, Pn);

Lmn = zeros (NofD, 3,Pn);

Gmn = zeros (NofT,NofT, Pn) ;

for k = 1:Pn
rhop = Rn(DtoT(:,1),:,k)-VtoR(DtoT (:,3),:
rhom = VtoR(DtoT(:,4),:)-Rn(DtoT(:,2),:,k);
Lpn(:,1,k) = lofD.*rhop(:,1)/2;
Lpn(:,2,k) = lofD.*rhop(:,2)/2;
Lpn(:,3,k) = lofD.*rhop(:,3)/2;
Imn(:,1,k) = lofD.*rhom(:,1)/2;
Imn(:,2,k) = lofD.*rhom(:,2)/2;
Imn(:,3,k) = lofD.*rhom(:,3)/2;
Gmn(:,:,k) = greenl (kl,RofC,Rn(:,:,k));

end

Zzmn = zeros (NofD,NofD) ;

for n = 1:NofD
Pp = zeros (NofD,1);
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Pm = zeros (NofD,1);
Ap = zeros (NofD, 3);
Am = zeros (NofD, 3);
for k = 1:Pn
Gpp = Gmn (DtoT(:,1),DtoT(n,1),k);
Gmp = Gmn (DtoT(:,2),DtoT (n,1),k);
Gpm = Gmn (DtoT(:,1),DtoT (n,2),k);
Gmm = Gmn (DtoT (:,2),DtoT(n,2),k);
Pp = Pp+lofD(n) * (Gpp—-Gpm) *Wn (k) ;
Pm = Pm+lofD( n) * (Gmp-Gmm) *Wn (k) ;
Ap(:,1) p(:,1)+(Lpn(n,1,k)*Gpp+Lmn (n, 1, k) *Gpm) *W
Ap(:,2) = Ap(:,2)+(Lpn(n,2,k)*Gpp+Llmn (n, 2, k) *Gpm) *W
Ap(:,3) = Ap(:,3)+(Lpn(n, 3, k) *Gpp+Lmn (n, 3, k) *Gpm) *W
Am(:,1) = Am(:,1)+(Lpn(n,1,k) *Gmp+Lmn (n,1,k) *Gmm) *W
Am(:,2) = Am(:,2)+(Lpn(n,2, k) *Gmp+Lmn (n, 2, k) *Gmm) *W
Am(:,3) = Am(:,3)+(Lpn(n, 3, k) *Gmp+Lmn (n, 3, k) *Gmm) *W
end
Zmn(:,n) = (sum(Ap.*rhocp+Am.*rhocm,2))/2+ (Pm-Pp)/k1"2;
end
Lcpn = zeros (NofD+1,3);
Lcmn = zeros (NofD+1, 3) ;
Lepn (1:NofD,1) = lofD.*rhocp(:,1)/2./.
AofT(DtoT(.,l))./GofT(DtoT(:,l));
Lepn (1:NofD,2) = lofD.*rhocp(:,2)/2./...
AofT (DtoT (:, 1))./GofT(DtoT(:,1));
Lepn (1:NofD,3) = lofD.*rhocp(:,3)/2./...
AofT (DtoT(:,1))./GofT (DtoT(:,1));
Lemn (1:NofD, 1) = lofD.*rhocm(:,1)/2./...
AofT (DtoT(:,2)) ./GofT (DtoT(:,2));
Lcmn (1:NofD,2) = lofD.*rhocm(: )/2./...
AoOfT (DtoT (:, 2 ./GofT (DtoT (:,2));
Lcmn (1:NofD,3) = lofD.*rhocm(:,3)/2./.
AofT(DtoT(.,Z) ) ./GofT(DtoT(:,Z) ) ;
Lrpl = rhocp.* (Lcpn(TtoDl (DtoT (:,1),1),:)+.
Lcemn (TtoD1 (DtoT (:,1),4),:));
Lrp2 = rhocp.* (Lcpn (TtoDl (DtoT (:,1),2),:)+.
Lemn (TtoD1 (DtoT (:,1),5),:));
Lrp3 = rhocp.* (Lcpn (TtoDl (DtoT (:,1),3),:)+.
Lcmn (TtoD1 (DtoT (:,1),6),:));
Lrml = rhocm.* (Lcpn (TtoDl (DtoT (:,2),1),:)+.
Lemn (TtoD1 (DtoT (:,2),4),:));
Lrm2 = rhocm.* (Lcpn (TtoDl (DtoT (:,2),2),:)+.
Lcmn (TtoD1 (DtoT (:,2),5),:));
Lrm3 = rhocm.* (Lcpn (TtoDl (DtoT (:,2),3),:)+.
Lemn (TtoD1 (DtoT (:,2),6),:));
Bmn = spalloc (NofD,NofD+1,5*NofD) ;
Bmn = Bmnt+sparse (l1:NofD,TtoD(DtoT(:,1),1),...
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sum (Lrpl,2) /2,NofD,NofD+1) ;

Bmn = Bmn+sparse (l:NofD, TtoD(DtoT(:,1),2), ...
sum (Lrp2,2)/2,NofD,NofD+1) ;

Bmn = Bmn+sparse (l:NofD, TtoD(DtoT(:,1),3), ...
sum (Lrp3,2)/2,NofD,NofD+1) ;

Bmn = Bmn+sparse (1:NofD, TtoD(DtoT(:,2),1), ...
sum(Lrml,2)/2,NofD,NofD+1) ;

Bmn = Bmn+sparse (l:NofD, TtoD (DtoT(:,2),2), ...
sum(Lrm2,2)/2,NofD,NofD+1) ;

Bmn = Bmn+sparse (1:NofD, TtoD(DtoT(:,2),3), ...
sum (Lrm3,2)/2,NofD,NofD+1) ;

Bmn (:,NofD+1) = [];
display ('impedance and boundary matrix is constructed')
end

function G = greenl (k1,R1,R2)

o

R1 is the observer
R2 is the source point

o

global NofT

R = zeros (NofT);

for j = 1:NofT
r(:,1) = R1l(:,1)-R2(3,1);
]f( 12) = R1(012)_R2(jl2);
r(:,3) = R1(:,3)-R2(3,3);
R(:,J) = sqgrt(sum(r.*r,2));
end

G = exp(-1J*k1*R) ./ (4*pi*R);

end

The scattered function calculates differential magnetic fields for all sampling
points:
function [Hsca] = scattered(kl, Tmn,string)

global VtoR DtoT TtoDl TtoV NofD NofT
global RofCp RofCm rhocp rhocm lofD

R1 = VtoR(TtoV(:,1),:);
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R2 VtoR(TtoV(:,2),:);
R3 = VtoR(TtoV(:,3),:);

[Rn,Wn, Pn] = gauss(R1,R2,R3);

Lpn = zeros (NofD, 3,Pn);
Lmn = zeros (NofD, 3, Pn);

for k = 1:Pn
rhop = Rn(DtoT(:,1),:,k)-VtoR(DtoT (:,3),:);
rhom = VtoR(DtoT(:,4),:)-Rn(DtoT(:,2),:,k);

Lpn(:,1,k) = lofD.*rhop(:,1)/2;
Lpn(:,2,k) = lofD.*rhop(:,2)/2;
Lpn(:,3,k) = lofD.*rhop(:,3)/2;
Imn(:,1,k) = lofD.*rhom(:,1)/2;
Imn(:,2,k) = lofD.*rhom(:,2)/2;
Imn(:,3,k) = lofD.*rhom(:,3)/2;
end
sampling = load(strcat(string, 'sampling.txt'));

RofS = sampling(:,1:3
Rof0Ol = sampling(:,4
7

);
6);
Rof02 = sampling(:, 9)

’

alfa

(sum( (Rof0Ol1-RofS) ."2,2)./sum((Rof0O2-RofS) ."2,2)) .7 (3/2);

Nosp = size(RofS,1);
Hsca = zeros (Nosp,3);

[TLmn, TUmn] = lu(Tmn);
for i = 1:Nosp
Ep = Einc (kl,RofCp,RofS(i,:));
Em = Einc(kl,RofCm,RofS (i, :));
Vm = sum(rhocp.*Ep+rhocm.*Em,2) /2;
In = TUmn\ (TLmn\Vm) ;

Jd = zeros (NofT, 3, Pn);

LIpn = zeros (NofD+1,3,Pn);
LImn = zeros (NofD+1,3,Pn);

for k = 1:Pn
LIpn(l:NofD,1,k) = Lpn(:,1,k).*In;
LIpn(1:NofD,2,k) = Lpn(:,2,k).*In;
LIpn(l:NofD,3,k) = Lpn(:,3,k).*In;
LImn(l:NofD,1,k) = Lmn(:,1,k).*In;




end

end

Jd
Jd =
Jd

GG1
GG2

GlJd =

G2J

end

function GG

% Rl is

LImn (1:NofD,2,k) =
LImn (1:NofD,3,k) =

Lmn(:,2,k).*In;
Lmn(:,3,k).*In;

Jd+LIpn (TtoD1(:,1),
Jd+LIpn(TtoD1l(:,2),:,
Jd+LIpn (TtoD1(:,3),:,

= green2 (kl,Rof01(i,:),Rn);
= green2 (kl,Rof02(i,:),Rn);

permute (sum(cross (GGl,Jd),1),[3 2 1]);
= permute (sum(cross (GG2,Jd),1),[3 2 1]);

= sum(G1J (

= sum(G1lJ(

sum(G1lJ (:
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~
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~
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= green?2 (k1,R1,R2)

the observer; R2 is the source point

i, ) +LImn (TtoD1(:,4), :
:)+LImn (TtoD1(:,5), :
:)+LImn (TtoD1(:,6), :

% GG is the gradient of Green's function

global NofT

Pn = size(R2,3);

GG = zeros (NofT, 3, Pn);

for k = 1:Pn
r(:,1) = R1(1,1)-R2(:,1,k);
r(:,2) = R1(1,2)-R2(:,2,k);
r(:,3) = R1(1,3)-R2(:,3,k);

R = sqgrt(sum(r.*r,2));
G = exp(-1J*k1*R) ./ (4*pi*R);
const = —(1+1j*k1*R).*G./R."2;

GG(:,1,k) = r(:
GG(:,2,k) = r(:
GG(:,3,k) = r(:
end
end

, 1) .*const;
,2) .*const;
,3) .*const;
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Output file info.dat provides information on the computation time (matrix fill
time, matrix solution time for all sampling points and total run time), number of
unknowns and number of source points. The out.dat provides calculated real and
imaginary voltages for all orientations of receiver coil (transmitter coil is z-oriented) and

for all sampling points.

AXIAL HYBRID SOLUTION

This Matlab code simulates the tri-axial induction tool in axially symmetric and
transversely isotropic formations. A cylindrical coordinate system is used for the
computation. To run the program, one needs four input files, i.e., formation.txt,
meshing.txt, operation.txt and sampling.txt. The formation.txt contains the horizontal and
radial boundaries of a layered medium and electrical conductivity and magnetic

permeability of layers. An example is shown as follows:

3,3 % number of horizontal layers, number of radial layers [-]
-0.0025, 0.0025 % z values of horizontal boundaries [m]
0.1, 18 % rho values of radial boundaries for given horizontal layer [m]

0.3,0.3,0.3 % sigma values of radial layers for given horizontal layer [S/m]
0.3, 100, 0.3 % sigma values of radial layers for given horizontal layer [S/m]
0.3,0.3,0.3 % sigma values of radial layers for given horizontal layer [S/m]
1, 1,1 % relative permeability values of radial layers for given horizontal layer [-]
I, 1,1 % relative permeability values of radial layers for given horizontal layer [-]
1, 1,1 % relative permeability values of radial layers for given horizontal layer [-]

The meshing.txt is the input of gridding scheme on the z-axis (horizontal wellbore

axis). An example is shown as follows:

-1 % start of uniform meshing section [m]

1 % end of uniform meshing [m]

0.1 % element size in the middle uniform part of the grid [m]

1.25 % size ratio of two adjacent elements in the expanding part [-]
10.0 % truncation of the domain on both edges [m]
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The operation.txt contains the specifics of the transmitter/receiver coils. An

example is shown as follows:

1000 % operation frequency [Hz]

1500 % magnetic dipole moment [A.m2]

600 % number of turns on receiver coil [-]
0.003 % cross-sectional area of receiver coil [m2]

An example of sampling.txt is shown below:

-2 % first logging point (Tx location) [m]

0 % last logging point (Tx location) [m]

41 % number of logging points [-]

0.8 % distance between transmitter and the first receiver coil [m]
1.2 % distance between transmitter and the second receiver coil [m]

Main function:

clear all; close all; clc

string = strcat(pwd, '\Library\run MM short\');

timerval = tic;

global muo omega Nb

muo = 4*pi*1E-7; $ free space electrical permeability, [H/m]

MMtr = indata (string);

stat = meshing(string);
tic; [Cmat,Lambda] = eigencall (stat); Tl=toc;
tic; [Q,HcOp,JdcOp] = refmatrix(stat,Cmat, Lambda); T2=toc;

tic; [z obsr,Hsca] scattered(string,Cmat, Lambda, Q, HcOp, JcOp) ; T3=toc;
Vzz sca = lj*muo*omega*MMtr*Hsca*le6;

out = [real(Vzz sca) imag(Vzz sca)];

dlmwrite (strcat(string, 'out.dat'),out, 'delimiter','\t");

T4 = toc(timerVval) ;

fid = fopen(strcat(string, 'info.dat'), 'wt'");
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fprintf (fid, '$f \t %% the solution of eigenvalue problem\n',6T1l);
fprintf (fid, '$d \t %% number of basis functions\n',Nb);

fprintf (fid, '$f \t %% calculation of refraction matrix\n',T2);
fprintf (fid, '$f \t %% solution time for all points\n',T3);

fprintf (fid, '$d \t %% number of source points\n',size(sz_sca,l));
fprintf (fid, '$f \t %% total run time\n',6 T4);

fclose (fid) ;

The indata function globally defines input values:

function [Mtr] = indata(string)

global Nz Nr bnd z bnd r sigma sz mur sz omega nord Nord

fid fopen (strcat (string, 'formation.txt"'));

Nzr = str2num(strtok (fgetl (fid), 's"));

o

Nz = Nzr(1l);
Nr = Nzr(2);

number of layers in the wellbore direction
number of layers in the radial direction

o\°

bnd z = str2num(strtok(fgetl(fid), '%'));

bnd r = str2num(strtok(fgetl(fid), 's'));
sigma sz = zeros(Nz,Nr);
mur sz = zeros (Nz,Nr);

for 1 = 1:Nz
sigma sz (i, :) = strZnum(strtok(fgetl(fid),'%s"));
end

for 1 = 1:Nz
mur sz (i,:) = strZnum(strtok(fgetl(fid),'s"));
end

fclose (fid) ;
fid = fopen(strcat(string, 'operation.txt'));
freq = str2num(strtok(fgetl (fid), '’
Mtx = str2num(strtok (fgetl (fid), 'S’

)
Nrx = str2num(strtok (fgetl (fid),'Ss")
Arx str2num(strtok (fgetl (£id), 'S")

fclose (fid) ;
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Mtr = Mtx*Nrx*Arx;
omega = 2*pi*freq;

$ —mmmmm e Fourier series -—-—-—-——-——-—-—-——————————— %
nordmin = 0;

nordmax = 1;

nord = (nordmin:nordmax)';

Nord = length (nord);

end

The meshing function creates grids based on the scheme defined in the
meshing.txt, adds additional grids due to the formation and creates construction vectors

for the vectorized computation:

function [stat] = meshing(string)
global Zglobal dz Nz Nr bnd z Ne Nb Bl B2

fid = fopen(strcat(string, 'meshing.txt"));

zlogl = str2num(strtok (fgetl (fid), '%s"));
zlogN = str2num(strtok(fgetl(fid),'%"));
Dz = str2num(strtok(fgetl (fid),'$"'));
Qexp = str2num(strtok (fgetl (fid), 'S"))
zmax = str2num(strtok (fgetl (fid), 's"))

4

’
’

oo

fclose (fid) ;

zlogl = zlogl-1;
zlogN = zlogN+1;

Zmiddle = (zlogl:Dz:zlogN)';
Nright = ceil (log((zmax—-zlogN) /Dz* (1-1/Qexp)+1)/log(Qexp))+2;

Zright = zeros(Nright,1);

for i = 1:Nright
Zright (1) = zlogN+Dz*sum (power (Qexp, (1:1)));
end
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end

Nleft = ceil (log((zmax+zlogl)/Dz* (1-1/Qexp)+1)/log(Qexp))

Zleft = zeros (Nleft,1);

for 1 = 1:Nleft

Zleft (i) = zlogl-Dz*sum(power (Qexp, (1:1)));
end
Zglobal = [flipud(Zleft)',6Zmiddle',Zright']"';
idx = zeros(Nz-1,1);

for i = 1:Nz-1
if sum(bnd z (i)==Zglobal)

idx (i) = sum(bnd z(i)>Zglobal)+1;
else
idx (i) = sum(bnd z(i)>Zglobal);
Zglobal = [Zglobal(l:idx(i));bnd z(i);...
Zglobal (idx (i)+1l:end)]1;
idx (1) = idx(i)+1;

end
end

dz = Zglobal (2:end)-Zglobal (l:end-1);

o\

Ng = length(Zglobal);
Ne Ng-1;
Nb = 2*(Ne-1);

number of grids
number of elements
number of basis functions

o°

o°

idx = [1;idx;Ng]l;

B1 1:Nb;
B2 = Bl+Nb;

global muo omega sigma sz mur sz

stat.ge zeros (Ne, Nr) ;
stat.gh = zeros (Ne,Nr) ;

for § = 1:Nr
for 1 = 1:Nz
stat.ge (idx (i) :idx (i+1)-1,3) = sigma sz (i,J);
stat.gh(idx (i) :idx(i+1)-1,3J) = mur sz (i,]);
end
end

stat.k2 = lj*omega*muo*stat.qge.*stat.gh;

+2;
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The integral function analytically calculates Eqs. 2.43-2.44 and 2.49-2.52:

function GG

global Ne

ag Zero

if flag
g9
elseif
g9
elseif

g9
end

fl

fl

GG

end

function gg

integral (cx,gxl,gx2, flaqg)

s(Ne,4,4);

gxgx (cx,gxl, gx2) ;
ag ==

gxgxd (cx,gxl,gx2) ;
ag ==

gxdgxd (cx,gxl,gx2) ;

assembly (gqg) ;

gxgx (cx, gqxl, gx2)

global dz

gg(:,1,1) = 13/35*dz.*cx;

gg(:,1,2) = 11/210*gx2.*dz.*dz.*cx;
gg(:lll3) = 9/70*dZ.*CX;

gg(:,1,4) = -13/420*gx2.*dz.*dz.*cx;
gg(:,2,1) = 11/210*gx1.*dz.*dz.*cx;
gg(:,2,2) = 1/105*gxl.*dz.*gx2.*dz.*dz.*cx;
gg(:,2,3) = 13/420*gxl.*dz.*dz.*cx;
gg(:,2,4) = -1/140*gx1.*dz.*gx2.*dz.*dz.*cx;
gg(:,3,1) = 9/70*dz.*cx;

gg(:,3,2) = 13/420*gx2.*dz.*dz.*cx;
gg(:,3,3) = 13/35*dz.*cx;

gg(:,3,4) = -11/210*gx2.*dz.*dz.*cx;
gg(:,4,1) = -13/420*gx1.*dz.*dz.*cx;
gg(:,4,2) = -1/140*gx1.*dz.*gx2.*dz.*dz.*cx;
gg(:,4,3) = -11/210*gx1.*dz.*dz.*cx;
gg(:,4,4) = 1/105*%gx1l.*dz.*gx2.*dz.*dz.*cx;

end

function gg gxgxd (cx, gxl, gx2)
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global dz Ne

gg(:,1,1) = -1/2*cx;

gg(:,1,2) = 1/10*gx2.*dz.*cx;
gg(:,1,3) = 1/2*cx;

gg(:,1,4) = -1/10*gx2.*dz.*cx;
gg(:,2,1) = -1/10*gxl.*dz.*cx;
gg(:,2,2) = zeros(Ne,1);

99 (:,2,3) = 1/10%*qgxl.*dz.*cx;
gg(:,2,4) = -1/60*qx1l.*qx2.*dz.*dz.*cx;
gg(:,3,1) = -1/2*cx;

gg(:,3,2) = -1/10*gx2.*dz.*cx;
gg(:,3,3) = 1/2*cx;

gg(:,3,4) = 1/10*gx2.*dz.*cx;
gg(:,4,1) = 1/10*gxl.*dz.*cx;
gg(:,4,2) = 1/60*gxl.*gx2.*dz.*dz.*cx;
gg(:,4,3) = -1/10*gx1.*dz.*cx;
gg(:,4,4) = zeros(Ne,1l);

end

function gg = gxdgxd(cx,gxl, gx2)

global dz

gg(:,1,1) = 6/5*%cx./dz;

gg(:lllz) = l/lo*QXZ.*CX;

gg(:lll3) = _6/5*CX./dZ;

gg(:,1,4) = 1/10*gx2.*cx;

gg(:lzll) = l/lo*QXI.*CX;

gg(:,2,2) = 2/15*gxl.*gx2.*dz.*cx;
gg(:,2,3) = -1/10*gxl.*cx;
gg(:,2,4) = -1/30*gxl.*gx2.*dz.*cx;
gg(:,3,1) = -6/5*%cx./dz;

gg ( ;3,2) = —l/lo*qXZ.*cx;
gg(:,3,3) = 6/5*cx./dz;

gg(’l3l4) = —l/lo*qXZ.*cx;
gg(:,4,1) = 1/10*gxl.*cx;

gg(:,4,2) = -1/30*gxl.*gx2.*dz.*cx;
gg(:,4,3) = -1/10*gxl.*cx;
gg(:,4,4) = 2/15*gxl.*gx2.*dz.*cx;

end
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function GG = assembly (gg)

global Ne Nb

GG = sparse (Nb,Nb) ;

idxl = 1:2:Nb;
idx2 = 2:2:Nb;

GG = GG+sparse(idxl,idxl,gg(l:Ne-1,3,3)+gg(2:Ne,1,1),Nb,Nb);
GG = GG+sparse (idx1l,idx2,gg(1:Ne-1,3,4)+gg(2:Ne,1,2),Nb,Nb) ;
GG = GG+sparse (idx2,idx1l,gg(1:Ne-1,4,3)+gg(2:Ne,2,1),Nb,Nb) ;
GG = GGt+sparse(idx2,1idx2,gg(l:Ne-1,4,4)+gg(2:Ne,2,2),Nb,Nb) ;

GG = GG+sparse (idxl (2:Ne-1),idx1(1:Ne-2),gg(2:Ne-1,3,1),Nb,Nb) ;
GG = GG+sparse(idxl (2:Ne-1),idx2(1:Ne-2),gg(2:Ne-1,3,2),Nb,Nb) ;

GG = GG+sparse (idxl (1l:Ne-2),idx1(2:Ne-1),gg(2:Ne-1,1,3),Nb,Nb) ;
GG = GG+sparse(idxl (1:Ne-2),idx2(2:Ne-1),gg(2:Ne-1,1,4),Nb,Nb) ;

GG = GG+sparse (idx2 (2:Ne-1),idx1(1:Ne-2),gg(2:Ne-1,4,1),Nb,Nb) ;
GG = GG+sparse (idx2(2:Ne-1),idx2(1:Ne-2),gg(2:Ne-1,4,2),Nb,Nb) ;

GG = GG+sparse (idx2 (1:Ne-2),idx1(2:Ne-1),gg(2:Ne-1,2,3),Nb,Nb) ;
GG = GG+sparse (idx2 (1:Ne-2),idx2(2:Ne-1),gg(2:Ne-1,2,4),Nb,Nb) ;

GG = full (GG) ;

end

The eigencall function calculates eigenvalues and eigenvectors for each radial

layer, and it verifies orthogonality condition shown in Eq. 2.45:

function [Cmat,Lambda] = eigencall (stat)

global Nr Nb Bl B2

Cmat = zeros (2*Nb, 2*Nb, Nr) ;

Lambda = zeros (2*Nb, Nr) ;

=

for 1 = 1:Nr
Ale integral(-1./stat.qge(:,1),stat.qge(:,1),stat.ge(:,1),3);
Alh = integral(-1./stat.gh(:,1),stat.gh(:,1),stat.gh(:,1),3);

A2e = integral(stat.k2(:,1)./...
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stat.qge(:,1),stat.ge(:,1),stat.qge(:,1),1);
A2h = integral(stat.k2(:,1)./...
stat.gh(:,1),stat.gh(:,1),stat.gh(:,1),1);

Be integral(l./stat.qge(:,1),stat.qge(:,1),stat.ge(:,1),1);
Bh = integral(l./stat.gh(:,1),stat.gh(:,1),stat.gh(:,1),1);

Ae = Ale+Ale;
Ah = Alh+A2h;

[CCe,DDe] = eig(Ae,Be, 'vector');
[CCh, DDh] eig (Ah,Bh, 'vector'");

Cmat (B1,B1,1) orthog (CCe, Be) ;

Cmat (B2,B2,1) = orthog(CCh,Bh);
Lambda (B1,1) = sqgrt(DDe) ;
Lambda (B2,1) = sqgrt(DDh);

end

end

function Ceta = orthog(Ceta old, Beta)
global Nb

Ceta = Ceta old;
nonel = transpose (Ceta old) *Beta*Ceta old;
nonel = sqgrt(l./diag(nonel));

for 1 = 1:Nb
Ceta(:,1) = Ceta old(:,1i)*nonel(i);

end

end

The calculation of generalized refraction matrix:

function [Q,HcOp,JcOp] = refmatrix(stat,Cmat,Lambda)

global Nr Nb Bl B2

Plp = zeros (2*Nb,2*Nb,Nr-1) ;
Plm = zeros (2*Nb,2*Nb,Nr-1) ;
P2p = zeros (2*Nb,2*Nb,Nr-1) ;
P2m = zeros (2*Nb,2*Nb,Nr-1) ;

Dhep = zeros (Nb,Nb,Nr-1);
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Dehp

zeros (Nb,Nb,Nr-1) ;

Dhem = zeros (Nb,Nb,Nr-1);
Dehm = zeros (Nb,Nb,Nr-1);

for 1 = 1:Nr-1

pelp =
integral(l./stat.pe(:,1+1),stat.ge(:,1),stat.qge(:,1+1),1);
Plp(B1,B1,1) = transpose(Cmat(Bl,Bl,1)) *pelp*Cmat (B1,B1l,1+1);
phlp =
integral(l./stat.ph(:,1+1),stat.gh(:,1),stat.gh(:,1+1),1);
Plp(B2,B2,1) = transpose(Cmat (B2,B2,1))*phlp*Cmat (B2,B2,1+1);

pelm = integral(l./stat.pe(:,1),stat.ge(:,1+1),stat.qge(:,1),1);

PIm(B1,Bl,1) = transpose(Cmat(Bl1,Bl,1+1)) *pelm*Cmat(B1,B1l,1);
phlm = integral(l./stat.ph(:,1),stat.gh(:,1+1),stat.qh(:,1),1);
PIlm(B2,B2,1) = transpose(Cmat (B2,B2,1+1)) *phlm*Cmat (B2,B2,1);

pe2p = integral(l./stat.pe(:,1),stat.ge(:,1),stat.qge(:,1+1),1);

P2p(B1,Bl,1) = transpose(Cmat(B1l,Bl,1)) *pe2p*Cmat (B1,B1l,1+1);
ph2p = integral(l./stat.ph(:,1),stat.gh(:,1),stat.gh(:,1+1),1);
P2p(B2,B2,1) = transpose(Cmat (B2,B2,1)) *ph2p*Cmat (B2,B2,1+1);
pe2m =

integral(l./stat.pe(:,1+1),stat.ge(:,1+1),stat.ge(:,1),1);
P2m(B1,B1,1) transpose (Cmat (B1,B1l,1+1)) *pe2m*Cmat (B1,B1,1);
ph2m =

integral(l./stat.ph(:,1+1),stat.gh(:,1+1),stat.gh(:,1),1);
P2m(B2,B2,1) transpose (Cmat (B2,B2,1+1)) *ph2m*Cmat (B2,B2,1) ;

dhep =
integral(l./stat.ph(:,1)./stat.qge(:,1+1),stat.gh(:,1),stat.qge(:,1+1),2)

’

Dhep(:,:,1) = transpose(Cmat(B2,B2,1))*dhep*Cmat (B1,B1l,1+1);
dehp =

integral(l./stat.pe(:,1)./stat.gh(:,1+1),stat.qge(:,1),stat.gh(:,1+1),2)
Dehp(:,:,1) = transpose(Cmat(B1,Bl,1))*dehp*Cmat (B2,B2,1+1);
dhem =

integral(l./stat.ph(:,1+1)./stat.ge(:,1),stat.gh(:,1+1),stat.ge(:,1),2)
Dhem(:,:,1) = transpose(Cmat(B2,B2,1+1)) *dhem*Cmat (B1,B1,1);
dehm =

integral(l./stat.pe(:,1+1)./stat.gh(:,1),stat.qge(:,1+1),stat.gh(:,1),2)

’

Dehm(:,:,1) = transpose(Cmat(B1,Bl,1+1)) *dehm*Cmat (B2,B2,1);

end
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Dhe

zeros (Nb, Nb, Nr) ;

Deh = zeros (Nb,Nb,Nr) ;
for 1 = 1:Nr
dhe =
integral(l./stat.ph(:,1)./stat.ge(:,1),stat.gh(:,1),stat.qge(:,1),2);
Dhe(:,:,1) = transpose(Cmat(B2,B2,1))*dhe*Cmat (B1,B1,1);
deh =
integral(l./stat.pe(:,1)./stat.gh(:,1),stat.ge(:,1),stat.qgh(:,1),2);
Deh(:,:,1) = transpose(Cmat(B1,Bl,1))*deh*Cmat (B2,B2,1);
end

display('done with static part')

global muo bnd r omega nord Nord

HcOm = zeros (2*Nb,Nr-1,Nord) ;
JcOm = zeros (2*Nb,Nr-1,Nord) ;
HcOp = zeros (2*Nb,Nr-1,Nord) ;
JcOp = zeros (2*Nb,Nr-1,Nord) ;
Hclm = zeros (2*Nb,Nr-1,Nord) ;
Jclm = zeros (2*Nb,Nr-1,Nord) ;
Hclp = zeros (2*Nb,Nr-1,Nord) ;
Jclp = zeros (2*Nb,Nr-1,Nord) ;
for 1 = 1:Nr-1
Lm = Lambda(:,1+1)*bnd r(l);

Lp = Lambda(:,1)*bnd r(1l);

Am =
Ap

for

end

for

imag (Lm)<0;
imag (Lp)<0;

i = 1:Nord
HeOm(:,1,1)
JcOm(:,1,1) =
JcOm (Am, 1,1i) =
HcOp(:,1,1)
JcOp(:,1,1)

(

JcOp (Ap,1,1)

i = 1:Nord

if 1 ==
Leftl =
Left2 =
Left2 (Am)

= besselh(nord(i),1,Lm,1);

besselj (nord(i),ILm,1).*exp(lj*real (Lm)) ;

JcOm (Am, 1,1)
= besselh(nord(i),1,Lp,1);

= besselj (nord(i),Lp,1l) .*exp(lj*real (Lp));
= JcOp (Ap,1,1) .*exp (-2*imag (Lp (Ap)) ) ;

Left2 (Am)

.*exp (-2*imag (Lm (Am) ) ) ;

besselh (nord(i)-1,1,Lm,1);
besselj (nord(i)-1,Lm, 1) .*exp(lj*real (Im))
.*exp (-2*imag (Lm (Am) ) ) ;
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Left3 besselh (nord(i)-1,1,Lp,1);
Left4 = besselj(nord(i)-1,Lp,1).*exp(lj*real (Lp));

Left4 (Ap) = Leftd (Ap) .*exp(-2*imag (Lp (Ap)));
else

Leftl = HcOm(:,1,i-1);

Left2 = JcOm(:,1,1i-1);

Left3 = HcOp(:,1,1i-1);

Left4 = JcOp(:,1,1i-1);
end
if i == Nord

Rightl = besselh (nord(i)+1,1,Lm,1);

Right2 = besselj (nord(i)+1,Lm,1) .*exp(lj*real (Lm))
Right2 (Am) = Right2 (Am) .*exp (-2*imag(Lm(Am)))
Right3 = besselh (nord(i)+1,1,Lp,1);

Right4 = besselj (nord(i)+1,Lp,1) .*exp(lj*real (Lp));

Right4 (Ap) = Right4 (Ap) .*exp (-2*imag (Lp (Ap)));
else
Rightl = HcOm(:,1,1i+1);
Right2 = JcOm(:,1,1+1);
Right3 = HcOp(:,1,1i+1);
Right4 = JcOp(:,1,1i+1);
end
Hclm(:,1,1) = (Leftl-Rightl)/2;
Jelm(:,1,i) = (Left2-Right2)/2;
Hclp(:,1,1) = (Left3-Right3)/2;
Jclp(:,1,1) = (Left4-Rightd)/2;

end
end

display('done with bessel')

Chipm Hclm./HcOm;
Chimm = Jclm./JcOm;
Chipp Hclp./HcOp;
Chimp Jclp./JcOp;

display('done with Chi')

Yp = zeros (2*Nb,Nr-2,Nord) ;
Ym zeros (2*Nb,Nr-2,Nord) ;

for 1 = 1:Nr-2
L Drho = Lambda(:,1+1)*(bnd r(l+1l)-bnd r(l));

for i = 1:Nord

Yp(:,1,1) = exp(lj*L Drho).* (HcOp(:,1+1,i)./HcOm(:,1,1i));
Ym(:,1,i) = exp(lj*L Drho).*(JcOm(:,1,1)./JcOp(:,1+1,1i));
end
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end

display('done with gamma')

Q = zeros (2*Nb, 2*Nb,Nr-1,Nord) ;

for i = 1:Nord

Tp = zeros (2*Nb,2*Nb,Nr-1) ;
Tm zeros (2*Nb, 2*Nb, Nr-1) ;

Rp = zeros (2*Nb, 2*Nb,Nr-1) ;
Rm zeros (2*Nb, 2*Nb, Nr-1) ;

for 1 = 1:Nr-1

betalpp = zeros (2*Nb, 2*Nb) ;
betalmp zeros (2*Nb, 2*Nb) ;
beta2pm = zeros (2*Nb, 2*Nb) ;

betalmm = zeros (2*Nb, 2*Nb) ;
betalpm = zeros (2*Nb, 2*Nb) ;
betaZ2mp = zeros (2*Nb, 2*Nb) ;

betalpp (B1,B1) 1j*nord(i) /bnd r(l)*Dhe(:,:,1);
betalpp(B2,Bl) = -diag(Chipp(B1l,1,1).*Lambda (B1,1));
betalpp (B1,B2)

1j*omega*muo*diag (Chipp (B2,
betalpp (B2,B2)

,1) .*Lambda (B2,1)) ;
1j*nord(i)/bnd_r(l)*Deh(:,:,l);

=

betalmp (B1,B1)
betalmp (B2,B1)
betalmp (B1,B2)
l1j*omega*muo*diag (Chimp (B2,
betalmp (B2, B2)

1j*nord(i)/bnd_r(l)*Dhe(:,:,l);
-diag (Chimp (B1,1,1i).*Lambda (B1l,1));
,1) .*Lambda (B2,1));
1j*nord(i)/bnd_r(l)*Deh(:,:,l);

=

betaZ2mp (B1,B1)
betaZmp (B2, B1)
P2m(B1,B1,1)*diag(Chimp (B1,
beta2mp (B1,B2)
l1j*omega*muo*P2m(B2,B2,1) *diag (Chimp (B2, 1,1i) .*Lambda (B2,1));
betaZmp (B2,B2) = 1j*nord(i)/bnd r(l)*Dehm(:,:,1);

1j*nord (i) /bnd r(l)*Dhem(:,:,1);

,1) .*Lambda (B1,1));

=

betalpm(B1l,B1)
betalpm(B2,B1)
betalpm(B1,B2)
1j*omega*muo*diag (Chipm (B2,
betalpm(B2,B2)

= lj*nord(i)/bndir(l)*Dhe(:,:,l+1);
-diag(Chipm(B1l,1,1i).*Lambda (B1l,1+1));
,1) .*Lambda (B2, 1+1)) ;

1j*nord (i) /bnd r(l)*Deh(:,:,1+1);

=

betalmm(B1l,B1l) = 1j*nord(i)/bnd r(l)*Dhe(:,:,1+1);
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betalmm (B2,B1)

betalmm (B1l,B2)
lj*omega*muo*diag (Chimm (B2,

betalmm (B2, B2)

-diag (Chimm(B1,1,1i).*Lambda (B1,1+1));

,1) .*Lambda (B2, 1+1)) ;
1j*nord (i) /bnd r(1l)*Deh(:,:,1+1);

=

beta2pm(B1,Bl) = 1j*nord(i)/bnd r(l)*Dhep(:,:,1);

betaZ2pm (B2, B1)
P2p (B1,B1,1)*diag (Chipm(B1,

betal2pm (B1,B2)
l1j*omega*muo*P2p (B2,B2,1) *diag (Chipm(B2,1,1i) .*Lambda (B2,1+1));

,1) .*Lambda (B1,1+1));

=

beta2pm (B2,B2) = lj*nord(i)/bnd_r(l)*Dehp(:,:,l);
betalpp = betalpp*diag(power (Lambda(:,1),-2));
betalmp = betalmp*diag (power (Lambda(:,1),-2));

2)

( ( (:

( ( (:
beta2mp = betaZmp*diag (power (Lambda (:,1), -
betalpm = betalpm*diag (power (Lambda (:

( ( (:

( ( (:

,1+1) ))
betalmm = betalmm*diag (power (Lambda (:,1+1),-2));
beta2pm = betalZpm*diag (power (Lambda (:,1+1),-2));
Tp(:,:,1) = (beta2pm-betalmp*Plp(:,:,1))\ (betalpp-betalmp);
Tm(:,:,1) = (beta2mp-betalpm*Plm(:,:,1))\ (betalmm-betalpm);
Rp(:,:,1) = Plp(:,:,1)*Tp(:,:,1)-eye(2*NDb);
Rm(:,:,1) = Plm(:,:,1)*Tm(:,:,1)-eye(2*NDb);

end
display('done with local matrices')

for 1 = (Nr-1):-1:1

if 1 == Nr-1
Q(:y:,1,1) = Rp(:,:,1);
else
Q1 = diag(Ym(:,1,1))*Q(:,:,1+1,1i)*diag(Yp(:,1,1));
S = (eye(2*Nb)-Rm(:,:,1)*Q1)\Tp(:,:,1);
Q(:,:,1,1) = Rp(:,:,1)+Tm(:,:,1)*Q1*S;
end

end

display('done with generalized matrix')

end
end
The calculation of differential magnetic fields for all sampling points:
function [z obsrvr,Hsca] = scattered(string,Cmat, Lambda,Q,HcOp, JcOp)
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global bnd r mur sz nord Nord Nb B2

fid = fopen(strcat(string, 'sampling.txt'));

Zstart =

Nsamples

Ltrl = str2num(strtok(fgetl (fid),
str2num(strtok (fgetl (fid), 'S’

Ltr2

str2num(strtok (fgetl (fid), '%s"));
Zend = str2num(strtok(fgetl (fid),' )

5
)

str2num(strtok (fgetl (fi

o° Q.

)

~

’

))
))

alfa = (Ltrl/Ltr2)"3;

fclose (fid) ;

rhoa = le-6;

Lb = Lambda(:,1) *bnd r(1l);

La

Aa

Hcap a =
Jcap_a =

Lambda (:,1) *rhoa;

imag (La)<0;

zeros (2*Nb, Nord) ;
zeros (2*Nb, Nord) ;

Q a = zeros (2*Nb, 2*Nb,Nord) ;

for i = 1:Nord
Hcap a(:,1i) = besselh(nord(i),1,La,1);
Jcap_a(:,1i) = besselj(nord(i),La,1l).*exp(lj*real(La));
Jcap_a(Aa,i) = Jcap_a(Aa,i).*exp(-2*imag(La(Aa)));
Yp a = exp(lj*(Lb-La)).* (HcOp(:,1,1)./Hcap a(:,1));
Ym a = exp(lj*(Lb-La)).*(Jcap a(:,1)./JcOp(:,1,1));
Q a(:,:,1) = diag(¥m a)*Q(:,:,1,1)*diag(Yp_a);

end

display('all done before sampling')

zZ_source =

z obsrvl
z_obsrv2

Hscal =
Hsca2 =

for k =

linspace (Zstart, Zend, Nsamples) ';
z_source+Ltrl;
z_source+Ltr2;

zeros (Nsamples, 1) ;
zeros (Nsamples, 1) ;

1:Nsamples
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gh source = sampling(z_source(k),mur sz (1,1));

gh obsrvl = sampling(z_obsrvl(k),mur_sz(l,l));
gh obsrv2 = sampling(z_ obsrv2(k),mur sz (1,1));
for 1 = 1:Nord

bph =

1/43/mur_sz(1l,1)*diag(Hcap_a(B2,1i).*Jcap_a(B2,1i).*Lambda (B2,1)."2)*...
transpose (Cmat (B2,B2,1)) *gh source;

Hsca n 1 =
l/mur_sz(l,l)*gh_obsrvl'*Cmat(BZ,BZ,l)*Q_a(BZ,BZ,i)*bph;
Hsca n 2 =
1/mur_sz(1,1)*gh obsrv2'*Cmat (B2,B2,1)*Q a(B2,B2,1i)*bph;
if 1 ==
Hscal (k,1) = Hscal(k,1)+Hsca n 1;
Hsca2 (k,1) = Hsca2(k,1)+Hsca n 2;
else
Hscal (k,1) = Hscal(k,1l)+2*Hsca n 1;
Hsca2 (k,1) = Hsca2(k,1)+2*Hsca n 2;
end

end
end

Hsca = Hsca2-Hscal*alfa;
z obsrvr = z_source+(Ltr2+Ltrl)/2;

end

function geta = sampling(z_ dash, geta)
% wellbore must be homogeneous
global Zglobal dz Ne Nb
geta = zeros(Nb,1);

for i = 1:Ne
if and(z_dash>=Zglobal (i), z dash<Zglobal (i+1))

L1l = (Zglobal(i+l)—z_dash)/dz(i);
L2 = (z_dash-Zglobal(i))/dz(i);
geta(2*i-3) = -2*L1"3+3*L1"2;
geta(2*i-2) = geta*dz (i)*L1"2*L2;
geta(2*i-1) = -2*L2"3+3*L2"2;
geta(2*i) = -geta*dz (i) *L2"2*L1;

end
end
end

The info.dat is an output file which provides information on the computation time

(solving the generalized eigenvalue problem, refraction matrix fill time, solution time for
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all sampling points and total run time), number of basis functions and number of source
points. Another output file, the out.dat, provides calculated real and imaginary voltages
for the z-oriented receiver coil (transmitter coil is also z-oriented) and for all sampling

points.

SIMULATED ANNEALING / NEIGHBOR APPROXIMATION

The Matlab code inverts tri-axial induction tool data for recovering fracture
parameters: conductivity, radius and dip-angle. To run the program, one needs the input
file of inversion.txt in addition to the information required for the forward runs, i.e., node

spacing, and well radius. An example for inversion.txt is shown below:

100 % number of iterations

5 % number of models in each iteration

3 % number of model parameters

10 % minimum value for fracture conductivity
1 % minimum value for fracture radius

0 % minimum value for fracture dip-angle
500 % maximum value for fracture conductivity
100 % maximum value for fracture radius

80 % maximum value for fracture dip-angle

Main function:

clear all; close all; clc;

string = strcat(pwd, '\Library\hfd 2 8m 30deg\");

indata = load(strcat(string, 'inversion.txt'));

nog = indata(l); % number of generations

now = indata (2); % number of walkers in each generation
nop = indata(3); % number of parameters in each model

m min = indata(4:3+nop);

m max = indata (4+nop:3+2*nop);

% R2 1is saving any model and its energy which evaluated
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R2 = vfsa(string,m min,m max,nog,now,nop);

dlmwrite (strcat (string, '"inv R2.dat'),R2, 'delimiter','\t");

The vfsa function iterates models by randomly selecting and evaluating:

function R2 = vfsa(string,m min,m max,nog, now, nop)
R2 = zeros (nog*now,l+nop) ;

= zeros (nop,now) ;
zeros (nop, now) ;
(
(

zeros (1, now) ;
= zeros (1l,now);

NN
Il

1:now
J) = m min+rand(nop,1l).* (m _max-m min);
= errcall(string,m 1(:,3J));

) = [E_1(3),m_1(:,3)"];

M 8w

R2
end

1(:,
1(3)
(3,

4

for i = 2:nog
T = temperature (i,noqg);
for 3 = l:now
for k = 1l:nop
m 2(:,3) = offspring(m 1(:,3),k,m min,m max,T);
if k < nop

E 2(j) = neighbor(m 2(:,3),R2(1:(i-1)*now,:),...

m min,m max);
else
E 2(j) = errcall(string,m 2(:,3));
R2 ((i-1)*now+j,:) = [E 2(J),m 2(:,3)"'];
end
dE =E_2(3)-E_1(3);
if d E <=0
m 1(k,3)

end
end
[m 1,E 1] = selection(m 1,E 1);

display ([ 'Number of Generation is ' num2str(i)])

174




end

end

The errcall function calculates error based on Eq. 4.2 by comparing each forward

model to the measured data. The MOM solution shown in the Appendix is attached to

this function to evaluate the forward models:

function E

end

errcall (string, param)

G frac = param(1l)*0.005;
r frac = param(2);
dipang = param(3);

muo = 4*pi*1E-7; $ free space electrical permeability, [H/m]
epso = 8.854187817*1E-12; % free space permittivity, [F/m]

opcond = load(strcat(string, 'operation.txt'));

omega = 2*pi*opcond(1l) % angular frequency, [rad.Hz]

Mtr = prod(opcond(2:4));
k1l = sqgrt(muo*epso*omega”2-1j*muo*opcond (5) *omega) ;

geometry(r frac,dipang,string);

[Zmn,Bmn] = impedance (k1,opcond(6)) ;
Tmn = lj*omega*muo*Zmn+Bmn/G_frac;
Hsca = scattered(kl,opcond(7),Tmn, string);

Vhfd = load(strcat(string, 'out.dat'));

Vdsh yz = abs (Vhfd(:,3)+1j*Vhfd(:,4));
Vsca_yz = abs(-1j* (muo*omega) “2*Mtr* (Hsca(:,2)) *1eb6);
Vdsh zz = abs(Vhfd(:,5)+1j*Vhfd(:,6));
Vsca_zz = abs(-1j* (muo*omega) “"2*Mtr* (Hsca (:,3)) *1leb6);

Vdsh = [Vdsh yz; Vdsh zz];
Vsca [Vsca yz; Vsca zz];

E = (Vsca./Vdsh-1)'* (Vsca./Vdsh-1);

The temperature function is a control parameter:
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function T = temperature (i, nog)

To = 1; % initial temperature, popular spec. is 1
Tf = le-2; % final temperature, popular specs. are [0.01 0.1]
T = To*power (Tf/To, (i-1)/ (nog-1));

end

In the given iteration, the exact error value is calculated only once for each model.
The neighbor function uses history of forward models to estimate errors for one-

directional moves.

function energy = neighbor(m,G E,m min,m max)
nop = size(m,1); % number of parameters
nokE = size(G E,1); % number of previous forward runs

mb = G E(:,2:1+nop) ';
distance = zeros(nok,1);

si = m max-m min;
Cm = diag(l./power(si,2)); % dimensionalize parameter space
for 1 = 1:noE

distance (i) = sgrt((m-mb(:,1)) "*Cm* (m-mb(:,1i)));

end

[~,n] = min(distance);
energy = G E(n,1);

end

The offspring function generates new model from a given old model by the

random shift in one dimension:

function [m n] = offspring(m o,k,m min,m max, tmp)

mn = m o; % produced new model

for ntry = 1:100
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dif = rand-0.5;

if dif < 0
sign = -1;

end

if dif >= 0
sign = 1;

end

m t = m o(k)+sign*rand*tmp* (m max (k)-m min(k));

if m t>=m min(k) && m_t<=m max (k)
break;

end

end

if ntry >= 100

error ('could not find search point from cauchy distribution')
end

end

The out.dat is an output file which provides error and model parameters for every

computed forward model.
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