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Packet collisions in wireless networks degrade the throughput and im-

pede the system performance. The collided packets are typically corrupted

and get discarded. Channelization methods avoid collisions through fixed as-

signment of communication resources to the system users, but they do not

take into account the randomness of packet arrivals. Statistical multiplexing

optimally adapts the allocation of resources to the instantaneous traffic de-

mands of the users. However, it is only possible in the downlink wherein the

data streams are managed by one station. Random-access methods mimic

statistical multiplexing by dynamically assigning resources to users. A slot is

wasted if the channel incurs a collision, and the collided packets have to be

retransmitted.

First, we present a cross-layer design for providing multiple access to a shared

wireless link. While retransmissions are controlled by the medium access con-

vii



trol (MAC) layer, this creates sufficient diversity to recover the collided packets

in the physical (PHY) layer. Both the number and identities of the involved

transmitters in a collision are unknown to the receiver. The signal separa-

tion is done blindly using root-MUSIC-like algorithms. We solve the collision

resolution problem in four network-operation modes: synchronous blocking

mode, synchronous non-blocking mode, asynchronous blocking mode and asyn-

chronous non-blocking mode.

Second, we evaluate the decoding performance of the algorithms in block-

fading channels with additive white Gaussian noise. We analytically demon-

strate the effect of signal-to-noise ratio and the number of retransmissions on

the signal separation capability of the proposed methods for a given number

of collided packets.

Third, we evaluate the network throughput and mean packet queueing delay

for the proposed collision resolution algorithms analytically and numerically.

We derive conditions for stability of the queueing network as function of the

mean packet arrival rates.
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Chapter 1

Introduction

The maximum achievable throughput in wireless networks is reduced

by interference. Since the wireless medium is shared, concurrent utilization

of the same network resources leads to packet collisions. The collided mix-

ture is corrupted and thus typically discarded. This results in wasting the

communication resources and degrading the network throughput. In addition,

the discarded packets have to be retransmitted. This incurs additional delay

for the successful communication of both the collided packets and the newly

arrived packets queued at the transmitters. Therefore, multiaccess schemes

are required to manage the channel access, boost the network throughput and

cut down the end-to-end delay.

Modular designs in the medium access control (MAC) and physical (PHY) lay-

ers approach the collision problem from different perspectives. For example,

transmissions could be based on fixed allocation of communication resources in

order to avoid collisions as in time-division multiple access (TDMA), and they

could be contention-based as in ALOHA and rely on the MAC layer function-

ality to retransmit the collided packets [2]. The former schemes are poor in
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bursty data networks while the latter schemes suffer under heavy network load.

PHY approaches like code-division multiple access (CDMA) spreading [3] and

interference alignment [4] [5] rely on signal processing to separate collided sig-

nals but do not exploit the MAC capabilities.

Cross-layer designs for collision resolution consider both the randomness of

data arrival at the transmitters and the multi-reception capability enabled by

signal processing as an attempt to improve the system performance [6]. For ex-

ample, [7] jointly optimizes the MAC and PHY layer by combining interference

alignment for transmit beamforming with opportunistic packet transmission

for interference management but assumes all nodes have multiple antennas.

Two MAC protocols are advised in [8] and [9] for successive interference can-

cellation (SIC). The random access protocol in [8] is only applied to establish

a connection between the nodes and the base station using power domain

multiplexing of preamble transmissions. In [9] messages are exchanged before

data transmission in order to determine if the receiver can support additional

interference from currently inactive nodes and still decode the desired signal

using SIC.

1.1 Network-Assisted Diversity Multiple Access (NDMA)

Network-assisted diversity multiple access (NDMA), first introduced

in [10], is a cross-layer communication protocol that enables shared access to

a communication channel and provides a solution for resolving packet colli-
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sions. In the case of simultaneous transmissions on the same frequency band,

collided data is not discarded but rather stored by the receiver. The receiver

relies on MAC layer functionality and requests packet retransmissions from

the involved transmitters. This creates the necessary diversity to separate the

collided packets using advanced signal processing in the PHY layer. Orthogo-

nal training sequences are appended to the transmitted packets to enable the

identification of the active transmitters. The channel between each transmit-

ter and the receiver is assumed to vary independently over the time slots. The

scheme is extended in [11] to dispersive channels.

The use of orthogonal codes to detect the active transmitters renders the

collision resolution algorithm highly sensitive to any lack of synchronization.

Moreover, the orthogonal sequences scale with the size of the network which

wastes the communication resources. A blind version of NDMA (BNDMA) is

presented in [1]. The number and identity of the involved transmitters in a col-

lision is unknown beforehand to the receiver. Each transmitter issues weighted

replicas of its packet until the packet is acknowledged by the receiver. The

weights encode the signatures of the transmitters, which helps the receiver

identify the set of involved transmitters in a collision. Inspecting the structure

of the collected mixtures of collided packets at the receiver, an analogy is made

in [1] between the problem of active user identification in collision resolution

and the problem of direction of arrival (DoA) estimation in multiple-antenna

communication systems. An Estimation of Signal Parameters via Rotational
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Invariance Technique (ESPRIT)-like method is then suggested for active user

identification and collision resolution.

In this work we present a set of BNDMA schemes for resolving packet collisions.

We distinguish our work from [1] in two respects. First, maintaining the anal-

ogy with the DoA estimation problem, we suggest a root-MUltiple SIgnal Clas-

sification (MUSIC)-like method for resolving collisions. Second, [1] considers

the collision resolution problem in the synchronous blocking mode, whereas we

also support three other network-operation modes: synchronous non-blocking

mode, asynchronous blocking mode and asynchronous non-blocking mode.

1.2 Overview of Related Work

While in NDMA only the nodes involved in a collision have to re-

transmit, in [12] a randomly selected set of network nodes join the collision

resolution interval (CRI). If the packet of a node collides, the node retrans-

mits that packet. Else, it sends what it overhears. Retransmissions occur in

a TDMA fashion. At the end of the CRI the receiver tries to separate the

collided packets based on maximum likelihood. A limitation is that orthogo-

nal sequences are required to detect the collision multiplicity. The cooperative

random scheme is improved in [13] such that nodes have location information

of the other nodes. The scheme is extended in [14] for the multichannel case.

Network-assisted diversity can be combined with spatial diversity as in [15].
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Moreover, it can be combined with other multiple access schemes. For exam-

ple, [16] presents a successive interference cancellation tree-splitting algorithm

for medium access. The tree algorithm is combined with an NDMA source-

separation scheme in [17–19] provided that sufficient retransmissions have been

received at a tree branch. The main limitation of [17–19] is that orthogonal

sequences need to be used in order to identify the active user set in each round

of the tree-splitting algorithm.

In [20], NDMA is viewed as repetition Automatic Repeat reQuest (ARQ) be-

cause of the retransmissions, i.e. the time diversity is provided by repetition

coding. [20] suggests to use incremental redundancy ARQ so that K collided

packets are decoded in less than K slots whenever feasible. However, [20] re-

quires extra control channels for active user identification. No extra channels

are required for our scheme.

In [21], a frequency-domain multipacket receiver that uses single-carrier frequency-

domain equalization (SC-FDE) is proposed for collision resolution. The tech-

nique uses NDMA as the MAC protocol. The performance depends on the

level of correlation of the channel coefficients, and thus it requires uncorre-

lated channels for the different retransmissions or a frequency domain form of

interleaving. Moreover, the channel coefficients need to be estimated in order

to perform the equalization. This is challenging to do in the uplink direction

in presence of collisions.
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In the blind version of NDMA it is required to estimate the number of collided

signals K. We detect K using a rank test. Due to noise, this number might

be under-estimated or over-estimated. Different methods to identify the order

of the mixture of information sources can be found in [22–26].

Below we summarize related work beyond NDMA.

1.2.1 Network Coding

Network coding refers to intelligently mixing signals at network nodes as op-

posed to simple forwarding [27]. The types of codes to apply (linear, ran-

dom,...) and polynomial-time algorithms for encoding and decoding are dis-

cussed for instance in [28–30]. Network coding could be intra-session or inter-

session [31]. The former mixes packets of same sessions (sources) mostly for

reliability, while the latter mixes packets of different sessions as an approach to

increase the network throughput. Network coding could be done in the analog

(physical) domain as in [32] or the digital domain as in [33].

We distinguish our work from network coding approaches that aim at cre-

ating opportunities to reduce the number of data transmissions and increase

the throughput. Examples of such approaches are [32–37]. The main differ-

ence is that they assume the receiver at the time of decoding has knowledge

of a subset of the collided signals, or it knows how the collided mixture is

6



composed of its individual components. We do not assume the receiver has

such network layer information. The mentioned network coding approaches

describe different methods to acquire such knowledge. For instance, in [32]

traffic flow information is provided via control packets. In [33] a node over-

hears and stores the transmissions of its neighbors. It also relies on exchange

of reception reports and educated guessing (as in routing computations) to

learn the neighbor state. The format of a coded packet is modified to include

identifying information of the individual mixed packets and their next hops.

In [34] and [36] an encoding vector is stored in the packet header to help later

in decoding. In [37] transmitters are simply assumed to know when their pack-

ets are overheard by other nodes in the network. It should be noted that these

network coding approaches still require a medium access scheme that could be

TDMA [33], ALOHA [38] [39] or simply our scheme.

On the other hand, network coding could also be used to provide a medium

access and collision resolution scheme as in [38–40]. We again distinguish our

work from theirs. In [38] and [39], a collision represents a linear combina-

tion of packets. The receiver should collect enough combinations to separate

the packets. [38] employs coding over blocks of symbols, while [39] tries to

estimate the number of transmissions that optimizes the network throughput

before quitting a collision resolution interval. In both works it is assumed that

the receiver knows the set of active transmitters in each slot, for instance via

appending a CDMA-encoded preamble to each transmitted packet [39]. In our

7



case the receiver identifies the active transmitters blindly. It should be noted

that the idea of acquiring enough combinations of packets to enable decoding

is also found in [41] although [41] does not coin the term physical network

coding. Extensions of [41] are presented in [40, 42, 43]. A limitation of such

schemes is that they rely on receiving one or more collision-free packets and

thus cannot resolve every collision pattern even at infinite signal-to-noise ratio

(SNR).

The various network coding approaches listed above rely on SIC to subtract

a detected or known signal from a mixture of collided signals before trying

to decode the other signals. It should be noted that SIC is not specific to

network coding [8,9,16,44,45]. However, its main limitation is that it relies on

capture effect, where one collided signal should have significantly higher power

compared to others for successful decoding. Thus, capture effect is random

and cannot always be relied upon [6]. For recovery of collided packets based

on capture effect refer to [46–49].

1.2.2 Zigzag Decoding

Transmitters in 802.11 networks resend their packets when the packets collide.

They do so after waiting for random times. Thus the same collided packets

probably collide again at different offsets. Zigzag decoding introduced in [50]

exploits this misalignment and searches for chunks that are interference-free

in one collided mixture but experience interference in others. The receiver
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subtracts these chunks from the mixtures where they experience interference.

This way it is likely that the receiver obtains new interference-free chunks

which the receiver uses to fully decode the collided packets. Therefore zigzag

decoding depends on the asynchrony of the collisions and combines joint de-

coding and interference cancellation to resolve collisions.

Zigzag decoding requires that the offsets of K packets within K collided mix-

tures are all different. Compared to zigzag decoding, our work does not depend

on the collision pattern but rather applies in both synchronous and asyn-

chronous modes. Moreover, in zigzag decoding an interference-free chunk is

decoded and then processed before it is deducted from other collided mixtures.

In the case the receiver incorrectly decodes a symbol, the error propagates to

the subsequent iterations of the decoding procedure [51]. The decoding errors

also limit the maximum number of collided packets that can be separated [50].

[52] and [53] present two variants of zigzag decoding in satellite or underwater

acoustic sensor networks and in wireless sensor networks respectively. Both

schemes suggest that each packet is augmented with its flipped replica so that

a replica of the same packet is easily identified. Moreover, the channel over the

two replicas is expected to be correlated. Zigzag decoding is then employed

to resolve the collisions. A major drawback of the two schemes is that they

only apply in wireless networks that can afford to augment each transmitted

packet with its replica. Ideally, full throughput should be achieved in absence
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of collisions.

[54] uses zigzag decoding to separate two collided packets from a single trans-

mission. However, it applies zigzag decoding in a cooperative setting in the

sense that the two packets are identical and simply transmitted by two nodes

in the network (for instance a source and a relay).

While zigzag decoding resolves a collision of K packets by K retransmis-

sions, [55] suggests to separate packets in ZigBee [56] using a single trans-

mission. However, the method should be able to discern a number of ampli-

tude levels that grows exponentially with K. Thus the authors in [55] claim

it applies to a maximum of four collided packets. A similar limitation holds

for [57]. The proposed method in [57] falls under asynchronous multiuser de-

tection [58] except that all users have the same signature waveform. It relies

on the symbol misalignment of the collided signals which are extracted via

oversampling and a Viterbi-like algorithm. Channel coding is integrated with

the method in [57] to reduce the bit-error rate [59]. We make no assumptions

about symbol alignment.

1.2.3 Blind Signal Separation

In our work the receiver blindly identifies the set of active transmitters. We

therefore look at blind signal separation schemes used for collision resolution.

We do not consider blind multiuser detection based on known signature wave-
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forms as in [60–63] due to bandwidth expansion caused by spreading.

Collisions are resolved using independent component analysis in [64] in the

synchronous blocking mode. The collision multiplicity K is detected using the

minimum description length (MDL) criterion. The receiver thus requires at

least K + 2 slots to resolve the collision, which is a larger packet delay com-

pared to ours. For signal separation, independent component analysis (ICA)

assumes independence and non-Gaussianity of the mixture components. More-

over, over consecutive time slots the channel tends to be correlated. Thus the

performance of the scheme in [64] drops for slow fading channels [65]. The

channel in [64] is assumed quasi-static, i.e. it is constant during a slot but

varies independently between two slots. This is avoided in our case and in [1]

by controlling the phase of the transmitted signals. A cooperative version

of [64] is presented in [66] and assumes a fully-connected network. Techniques

like the iterative least-squares with projections (ILSP) [67] and iterative least-

squares with SIC [68] could be used instead of ICA and exhibit similar perfor-

mance. ICA is integrated with ALOHA in [69] for tag collision resolution in

multi-antenna radio frequency identification.

In [70–73], users are blindly separated in the sense that no pilot signals are

needed to estimate the mixing matrix and recover the collided signals. In-

stead, the methods separate the users based on the different user delays, car-

rier frequency offsets, pulse shapes and oversampling. The different polyphase
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components are viewed as independent mixtures of the user signals. However,

these methods best apply for two-user separation. Improved error performance

is obtained at the cost of bandwidth expansion.

Sparse signal separation techniques may also apply for collision resolution

whenever the source signals are sparse in a transformed domain like time-

frequency [74]. These techniques are only applicable under the sparsity as-

sumption. This is typical only for particular modulation schemes like fre-

quency hopping.

A semi-blind collision resolution scheme is described in [75]. It is based on

embedding known symbols in the packets. The approach is semi-blind because

the number of embedded symbols is less than training-based approaches. The

receiver is assumed to be equipped with an antenna array and spreading is

employed. We assume single-antenna nodes and no spreading.

1.2.4 Modulation-Induced Cyclostationarity Approaches

The above collision-resolution algorithms either require synchronous transmis-

sions as in [1] or depend on the asynchrony of the received signals for successful

decoding as in [50]. We highlight two approaches in [76] and [77] that resolve

collisions independent of the alignment of the received packets. In both meth-

ods the receiver exploits the cyclostationarity properites exhibited by the base-

band signals at the transmitters. The cyclostationarity is modulation-induced.
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In [76] the transmitted signals are modulated by known amplitude variations

at the symbol rate. In [77] the symbols are modulated by polynomial phase

sequences. Since the modulation is done at the symbol rate there is no band-

width expansion. However, it is a form of color code that the receiver uses to

distinguish among the transmitters.

Both [76] and [77] assume the receiver has an antenna array, while in our case

all nodes have single antennas. In [76] it is assumed that only one signal in the

mixture of collided signals is of interest to the receiver. It is also required that

the receiver either knows or estimates the arrival time of the desired signal.

We do not require knowledge of the arrival times of the desired signals for col-

lision resolution. On the other hand, in [77] the receiver separates the packets

by solving a number of eigenvalue problems that is the size of the codebook

from which the color codes are selected. It is recommended that this number

should be eight times the size of the network population in order to increase

the chance that the collisions may be resolved. Compared to ours, this is

prohibitive complexity since it depends on the network size as opposed to the

multiplicity of the collision. In addition, [77] applies only to binary phase

shift keying (BPSK) modulation, whereas we support higher-order modula-

tion schemes.
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1.3 Network Protocol

In the following chapters we show how collided packets are extracted

from a collected mixture. We only provide a high-level description of the chan-

nel access protocol followed by the network nodes. A detailed design of the

network protocol is beyond the scope of this work. In this section we show

how our collision resolution methods may be potentially incorporated into a

real network protocol. For this purpose, we suggest a modification to the

infrastructure-based IEEE 802.11 MAC protocol.

The basic version of the protocol is based on carrier sense multiple access with

collision avoidance (CSMA/CA). There is an optional mode to avoid hidden

terminals. These two mechanisms are referred to as distributed coordination

function (DCF). We refer to [78] for a summary of the IEEE 802.11 MAC

protocol.

In the basic mode, a node that has a packet to send waits until the channel is

idle for a duration of DCF inter-frame spacing (DIFS). If the channel was pre-

viously busy, the node waits for an additional random time within the range

of a contention window. If more than one node wants to access the channel,

the one whose waiting time ends first gains access while the others wait again

for an idle channel state. Those delayed to the next cycle stop their timers,

wait for an idle state of duration DIFS and then start their counters again as

opposed to selecting a new random waiting time. On the other hand, if the
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timers of more than one node expire simultaneously, a collision occurs. The

contention window doubles (up to a maximum), which is known as exponential

backoff. Then the nodes have to contend again for channel access. Whenever

a node successfully sends a packet to the access point (AP), the AP sends an

acknowledgement (ACK) back. It does so after waiting for an idle channel

state for a duration of short inter-frame spacing (SIFS). SIFS is shorter than

DIFS so that an ACK always has higher priority over data packets.

The hidden terminal problem [79] refers to the situation in which two nodes

are within the range of the AP but not visible to each other. While one node

is active, the other node senses an idle channel state and issues a transmission.

This leads to a collision at the AP, and the collided packets are discarded. The

request-to-send (RTS)/ clear-to-send (CTS) extension of the 802.11 protocol

partially solves the hidden terminal problem. Whenever a node has data to

send, it contends for channel access according to the basic protocol described

above. Upon accessing the channel, the node sends an RTS to the AP. All

nodes that hear the RTS set their net allocation vector (NAV) as specified in

the duration field of the RTS packet. If the AP successfully receives the RTS,

it sends a CTS after SIFS and the recipients adjust their NAVs again. This

way a hidden terminal is notified that the channel is reserved for the duration

in its NAV. The node that gains channel access and the AP exchange data

packets and ACKs. They only have to sense an idle channel state for SIFS.

The exchanged packets carry information that helps to update the NAVs of
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the other nodes. In this mode of the protocol collisions are only possible when

sending RTS packets. This mode results in non-negligible overhead but is use-

ful for delay-sensitive applications.

[80] defines an enhancement of the IEEE 802.11 MAC protocol to include the

collision recovery mechanism described in [1]. [80] assumes the infrastructure

basic service set (BSS) is compact, collisions are synchronous and there are no

hidden terminals. When a collision occurs, each involved node retransmits its

packet after a recovery inter-frame space (RIFS). RIFS is chosen to be longer

than SIFS but shorter than DIFS so that the CRI is not interrupted. The

process repeats until the maximum number of retransmissions is reached or

the AP acknowledges the collided packets.

We modify the IEEE 802.11 MAC protocol to handle collisions. In a BSS, we

assume all nodes are within the range of the AP but might be out of range of

each other. Denote by a round-trip time (RTT) double the maximum prop-

agation delay between two nodes that are visible to each other. Moreover,

collisions at the AP are not necessarily synchronous. In this section we as-

sume the network operates in blocking mode, so a node refrains from sending a

packet to the AP if it detects a busy channel state. All packets have the same

length. Similarly to [80], we define a recovery inter-frame space (RIFS). We

choose RIFS such that SIFS + RTT < RIFS < DIFS. This sets an upper limit

on RTT or equivalently the basic service area (BSA). In the discussion below

16



we also assume RTT is less than double the contention window slot time but

this could be easily removed. We present two example scenarios that illustrate

the enhanced MAC protocol. We also highlight the nonidealities due to the

different propagation delays among the network nodes.

Figure 1.1: Last two collided mixtures collected by the access point. Involved
transmitters TX A and TX B are within the range of each other.

Consider the collision scenario in figure 1.1. Two transmitters TX A and TX

B are visible to the AP and to each other. We show when each node is actively

sending a packet. We also show the channel state as detected by each node.

The channel state is marked as busy whenever a node issues a transmission or

detects the transmissions of other nodes. Suppose the AP sends an ACK at

the end of preceding activity (not shown in the figure). Due to different prop-
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agation delays from the AP to TX A and TX B, the two transmitters receive

the ACK at different times, and the time gap is at most half an RTT. TX A

and TX B seek channel access, so they wait for an idle channel state of DIFS

plus the timeout of their backoff counters. The backoff time in the modified

protocol is optional. In the example of figure 1.1, TX A is closer than TX B to

the AP. Since the contention window slot time is greater than half the RTT, a

collision is possible (though might not be necessary) only if the two counters

are equal, or counter A is greater than counter B by one. In both cases, the

difference between the instants when TX A and TX B issue their packets is

less than half an RTT, and the difference between the instants of arrival of the

packets at the AP is less than one RTT. In figure 1.1, t2 − t1 < 0.5 RTT and

t4 − t3 < RTT. In addition, since the collision involves no hidden terminals,

TX A and TX B detect a busy channel state for at most one RTT after they

stop transmission: t9 − t5 < RTT and t8 − t6 < RTT. TX A and TX B wait

for RIFS = t11 − t5 = t12 − t6. Since RIFS > SIFS + RTT, the channel is

clear for at least SIFS. If no ACK is received, TX A and TX B retransmit

their packets according to a transmission scheme that is defined later. The

process repeats until the AP acknowledges the collided packets or requests to

terminate the current collision resolution interval. Assuming the AP sends an

ACK, the propagation delays to TX A and TX B are different. Thus, TX A

and TX B detect an idle channel state at different instants, and the time gap is

again at most half an RTT: t24− t23 < 0.5 RTT. In figure 1.1 we only show the

last two packets sent by each active transmitter before the collision is resolved.
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Figure 1.2: Last two collided mixtures collected by the access point. Involved
transmitters TX A and TX B are within the range of each other. Involved
transmitter TX C is a hidden node with respect to TX A and TX B.

Figure 1.2 illustrates the same collision scenario as figure 1.1 except for an

additional involved transmitter TX C. TX C is visible to the AP but hidden

from TX A and TX B. It detects an idle channel state and issues a packet

while TX A and TX B are active. The packets collide at the AP, and each

involved transmitter waits for RIFS between two consecutive transmissions.

In the design example of figure 1.2, we select the initial transmission time of

TX C so that TX A and TX B are active when TX C is idle and vice versa. In

this scenario, the two collided mixtures at the AP overlap in time, so the AP

cannot detect the start and end of each mixture: t23−t3 > slot + RTT. (In this

context a slot refers to the duration of a packet and should not be confused
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with a contention window slot time.) In addition, suppose the AP manages to

decode the collided packets and sends an ACK. In this case, the ACK collects

interference from the receive circuitry, and only the currently inactive subset

of TX A, TX B and TX C detects the ACK. Instead, the AP sends a jam

signal once it decodes the packets. From the example of figure 1.1, a group

of visible nodes detect a busy channel state for at most one time slot plus an

RTT. Therefore, the duration of the jam signal should be greater than one

slot plus an RTT so that it is detected by all involved transmitters: t28− t23 >

slot + RTT. TX A, TX B and TX C no longer retransmit their packets once

the jam signal is detected, and an ACK is issued by the AP. The interfer-

ence collected by the jam signal from the receive circuity is irrelevant since

the jam signal carries no useful information. In figure 1.2 we only show the

last two packets sent by each active transmitter before the collision is resolved.

We use random backoff to limit the collision multiplicity K. As pointed out

in [80], the value of K impacts both the complexity of signal processing at the

AP and the achieved throughput. In the extreme case, no backoff timers are

used, which increases the decoding complexity and maximizes the through-

put. The protocol should be further modified to handle channel estimation for

collision resolution under various channel conditions.
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1.4 Contributions

We design a set of methods for resolving packets collisions in multiaccess

communication networks. We focus on the signal processing that enables the

extraction of packets from a collided mixture. The primary contributions of

this work can be summarized as follows:

• We design a set of blind network-assisted diversity multiple access (BNDMA)

schemes for the collision resolution problem. The solutions build on

the root-MUSIC algorithm [81] for direction of arrival estimation using

antenna arrays. We consider the collision resolution problem in four

network-operation modes: synchronous blocking (SB) mode in Chap-

ter 2, synchronous non-blocking (SN) mode in Chapter 3, asynchronous

blocking (AB) mode in Chapter 4 and asynchronous non-blocking (AN)

mode also in Chapter 4. In the asynchronous modes we neither assume

slot nor symbol synchronization.

• We evaluate the noise performance of the decoding scheme under additive

white Gaussian noise in Chapter 2. We carry out a first-order perturba-

tion analysis and derive closed-form expressions for the individual and

joint distributions of the angular perturbations of the roots computed by

root-MUSIC. We consider the SB mode for the analysis but the results

hold true for the other modes. We illustrate the noise-averaging effect as

function of the number of retransmissions N within a collision resolution
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interval and derive the rate of convergence over N of the computed roots

towards their true values.

• We carry out throughput and delay analysis of the collision resolution

algorithm in the SN mode in Chapter 3. [1] presents a queueing analysis

for BNDMA schemes in the SB mode. On contrary to the SB mode,

a naive approach to do the throughput and delay analysis for the SN

mode is exponentially complex in the size of the network. We perform

the analysis recursively in polynomial-order complexity. The analyses

for the AN and the AB modes are similar to the SN and SB modes

respectively.

1.5 Notation and Abbreviations

All vectors −→v are column vectors and have arrow symbols on top. The

transpose of −→v is −→v T and the conjugate transpose of −→v is −→v H . Similar trans-

pose notation is used for matrices. For an L-element vector −→v , −→v [l] is its

lth element, 1 ≤ l ≤ L. The vector holding elements l through h of −→v is

denoted as −→v [l : h], 1 ≤ l ≤ h ≤ L. For a general matrix M of dimensions

R×C, M [r, c] is the element of M at the rth row and cth column, 1 ≤ r ≤ R,

1 ≤ c ≤ C. Moreover, M [rl : rh, cl : ch] is the submatrix of M holding the

elements between rows r1 and rh inclusive and columns cl and ch inclusive,

1 ≤ rl ≤ rh ≤ R, 1 ≤ cl ≤ ch ≤ C. For indexing in matrices, r is a short-hand

notation for r : r, and a single : is used to select all rows or columns. For

instance, M [r, :] is the rth row of M , M [:, c] is the cth column of M , and M [:, :]
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is the entire matrix M . The conjugate of complex value z is z∗.

The table below summarizes the acronyms used in this work.

Table 1.1: List of Abbreviations

ACK ACKnowledgement
ALOHA Additive Links On-line Hawaii Area

AP Access Point
ARQ Automatic Repeat reQuest
AB Asynchronous Blocking
AN Asynchronous Non-blocking

BNDMA Blind Network-assisted Diversity Multiple Access
BPSK Binary Phase Shift Keying
BSA Basic Service Area
BSS Basic Service Set

CDMA Code-Division Multiple Access
CRC Cyclic Redundancy Check
CRI Collision Resolution Interval

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CTS Clear-To-Send
DCF Distributed Coordination Function
DIFS DCF Inter-Frame Spacing
DoA Direction of Arrival

ESPRIT Estimation of Signal Parameters via Rotational Invariance Technique
ICA Independent Component Analysis
ILSP Iterative Least-Squares with Projections
LHS Left-Hand Side
MAC Medium Access Control
MDL Minimum Description Length

M/G/1 Markov arrival process, IID service times with a General CDF, one server
MSE Mean-Squared Error

MUSIC MUltiple SIgnal Classification
NAV Net Allocation Vector

NDMA Network-assisted Diversity Multiple Access



PGF Probability Generating Function
PHY Physical
RHS Reft-Hand Side
RIFS Recovery Inter-Frame Space
RTS Request-To-Send
RTT Round-Trip Time
SB Synchronous Blocking

SC-FDE Single-Carrier Frequency Domain Equalization
SER Symbol Error Rate
SIC Successive Interference Cancellation
SIFS Short Inter-Frame Spacing
SN Synchronous Non-blocking

SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition

TDMA Time-Division Multiple Access
TX Transmitter

1.6 Organization

We present an algorithm to resolve synchronous packet collisions in

Chapter 2 and analyze its noise performance. The method is extended in

Chapter 3 to the non-blocking mode in which an idle transmitter may join the

set of active transmitters and contact the receiver before the current collision is

resolved. A throughput and delay analysis of the non-blocking mode is carried

out. In Chapter 4 we forgo synchronization and support immediate trans-

missions. Concluding remarks and future research directions are presented in

Chapter 5.
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Chapter 2

A Root-MUSIC Method for Resolving

Synchronous Collisions Using Retransmission

Diversity

We present a root-MUSIC type blind network-assisted diversity mul-

tiple access (BNDMA) scheme for collision resolution in block-fading syn-

chronous channels. The scheme relies on weighted retransmissions of the

collided packets, and the active set of transmitters is identified using root-

MUSIC by computing characteristic roots of the transmitters as analogous to

direction-of-arrival (DoA) estimation problems. We also perform a first-order

perturbation analysis of the algorithm. Expressions of the individual and joint

distributions of the noise-induced angular shifts of the computed roots are de-

rived. These expressions are analyzed in relation to the signal-to-noise ratio

and the number of retransmissions made within the collision-resolution inter-

val. Results are verified in simulation.

Perturbation analysis for subspace decomposition in general is examined for

instance in [82–85]. Results on perturbation analysis for MUSIC-type sub-
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space methods do exist in the literature in the context of DoA estimation.

The dependence of performance on the signal-to-noise ratio (SNR), array size

N , number of snapshots P , angular separation of the signals, etc. is studied

numerically in [86–88]. Analytical results for the mean-squared errors (MSEs)

of the DoA estimates are derived in [85], [89–91]. These results give insight

on the effect of the array geometry, model error parameters, array size N , and

the number of snapshots P on the performance of DoA estimation.

In the next section we summarize important properties of the Vandermonde

matrix needed for our solution. Our root-MUSIC BNDMA scheme is incre-

mentally defined in Section 2.2. The set of active transmitters is detected

blindly by solving for the characteristic complex exponentials {rk}k. In Sec-

tion 2.3 we derive first-order approximations of both the individual and the

joint distributions of the angular displacements {∆ωk}k of {rk}k in the com-

plex plane. We prove these shifts are jointly Gaussian and fully characterize

the means and covariances. While in [85] it is shown that the MSE of a DoA

estimate monotonically decreases with the number of sensors N , in Section 2.4

we argue that the MSE decays quadratically in the number of stacked pack-

ets N . Section 2.5 presents numerical results and Section 2.6 concludes the

chapter.

2.1 Vandermonde Matrix
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This section summarizes important properties of the Vandermonde ma-

trix that will be used in the design of the transmission and decoding schemes.

Consider matrix A

A =


1 1 1 . . . 1
α1 α2 α3 . . . αK
α2

1 α2
2 α2

3 . . . α2
K

...
...

... . . .
...

αN−1
1 αN−1

2 αN−1
3 . . . αN−1

K

 (2.1)

A is an N × K Vandermonde matrix where N > K. Each column of A is a

geometric progression. Assuming all {αk}Kk=1 are distinct complex numbers,

any subset of the columns of A is full rank. In addition, since N > K, A

has a non-trivial left null space A⊥. For a Vandermonde matrix A, A⊥ fully

identifies the elements {αk}Kk=1. This is because AH⊥A = 0, so equation

−→
Z HA⊥A

H
⊥
−→
Z = 0 (2.2)

admits roots {αk}Kk=1, where
−→
Z = [1, z, z2, . . . , zN−1]T .

2.2 Root-MUSIC BNDMA

Consider a network of K̃ transmitters and one receiver. All nodes have

single antennas, and all transmissions occur on the same frequency band. The

minimum transmission unit is a packet of P symbols, where P > K̃. A packet

duration is 1 slot = P ×τ , where τ is the symbol duration. Each transmitter k̃
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is characterized by a complex exponential rk̃, and the receiver is aware of this

assignment. Only K transmitters, 1 ≤ K ≤ K̃, have data to send and thus

access the channel. The number and identities of the active transmitters are

unknown to the receiver. Transmissions are synchronized, so all the packets

from the K active transmitters arrive at the receiver at the same instant. Until

the K packets get decoded, all inactive transmitters stay inactive. During this

collision resolution interval (CRI), we assume fading is constant. For ease of

notation, we denote by −→s k the original packet issued by transmitter k scaled

by fading. Once packets {−→s k}Kk=1 are decoded, fading is removed by single-

channel (collision-free) methods. We first describe the transmission scheme.

Then we show how the receiver detects K, identifies the K transmitters and

decodes the received packets.

2.2.1 Transmission Scheme

We follow the transmission scheme of [1]. For the case K = 1 both the trans-

mitter and the receiver detect a contention-free channel (error-detecting code

checking, carrier sensing, etc.). No collision occurs and the packet is decoded

correctly at high SNR. The transmitter does not have to do any retransmis-

sions of the same packet.

On the other hand, figure 2.1 shows the transmission scheme adopted by each

transmitter if K > 1. Each transmitter k sends its packet −→s k. The K pack-

ets arrive at the receiver at time t = 0, i.e. the start of slot n = 1. During
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Figure 2.1: Transmission scheme of K packets that collide synchronously at
the receiver at t = 0.

this slot, the receiver collects packet −→y 1 =
∑K

k=1
−→s k + NP,1 that is corrupted

due to collision, even at high SNR. Na,b is a noise matrix of dimension a× b.

Collision is detected by the receiver and the transmitters.

The receiver will not be able to decode the K packets within a single slot since

K > 1 and all the packets occupy the same frequency band. In this case, each

transmitter k sends a contiguous packet rk×−→s k that will exactly fit within slot

n = 2. During slot n = 2, the receiver collects −→y 2 =
∑K

k=1 rk
−→s k + NP,1. Sup-

pose the receiver fails again in decoding the original K packets {−→s k}Kk=1. The

transmitters continue to send their contiguous transmissions of the weighted

packets. In its nth transmission, transmitter k sends packet rn−1
k
−→s k and the

receiver collects during slot n packet −→y n =
∑K

k=1 r
n−1
k
−→s k + NP,1.
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2.2.2 Detection of K

At the end of each time slot n, the receiver stacks the n already collected

vectors {−→y T
1 ,
−→y T

2 , . . . ,
−→y T

n} vertically into matrix Yn. Note that matrix Yn can

be expressed as

Yn =


−→y T

1−→y T
2

...
−→y T

n

 =


1 1 . . . 1
r1 r2 . . . rK
...

... . . .
...

rn−1
1 rn−1

2 . . . rn−1
K

×

−→s T1

...
−→s TK

+ Nn,P (2.3)

or shortly

Yn = Wn × S + Nn,P (2.4)

We have P > K̃ ≥ K and the packets {−→s k}Kk=1 of the K transmitters are

independent, so rank(S) = K. But S is a K × P -matrix, so rank(Wn ×

S) = rank(Wn). However, Wn holds the coding vectors {−→w k,n}Kk=1 of the K

transmitters as its columns. Since each transmitter k is assigned a different

complex number rk, Wn is a Vandermonde matrix whose rank is K whenever

n > K. From (2.4), if n > K then K is also the rank of Yn in the noiseless

case. In presence of noise, the receiver is still able to detect the actual rank of

Yn at high SNR as that of the noiseless case by thresholding the small singular

values of Yn. Therefore, the receiver builds matrix Yn and checks its true
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(noiseless) rank at the end of every slot n. Once rank(Yn) stops growing with

n, the receiver detects K as

K = rank(Yn) (2.5)

The receiver stops expanding Yn at n = N > K:

YN = WN × S + NN,P (2.6)

2.2.3 Identification of the K Transmitters

At high SNR, YN in (2.6) has a non-trivial left null space of dimension N −K.

Let Û⊥ hold as columns the basis vectors of the left null space of YN . The

receiver computes Û⊥ by performing the singular value decomposition (SVD)

of YN :

YN =
(
[Û‖ Û⊥]

)
Σ̂V̂ H (2.7)

From (2.6), YN and WN have the same left null space in the noiseless case:

ÛH
⊥WN −→

SNR→∞
0 (2.8)

However, WN is a Vandermonde matrix. As discussed in Section 2.1, Û⊥ thus

fully identifies the elements {rk}Kk=1. Therefore, after computing Û⊥ from the

SVD of YN , the receiver solves equation

31



J(z) =
−→
w′HN × Û⊥ÛH

⊥ ×
−→
w′N = 0 (2.9)

for z, where coding vector
−→
w′N is given by

−→
w′N =

[
1, z1, . . . , zN−1

]T
(2.10)

Equation (2.9) yields K unit complex exponentials {rk}Kk=1 that indicate to

the receiver the identity of the K transmitters. On the other hand, in presence

of noise, Û⊥ will not exactly describe the left null space of WN . In this case,

the receiver still computes Û⊥ from YN and solves (2.9). Then the receiver

chooses the K solutions closest to the unit circle and the individual elements

of set {rk̃}K̃k̃=1
to identify the K active transmitters. Optimal methods that

account for the distributions of angular displacements {∆ωk}k of {rk}k derived

in Section 2.3 may also be utilized.

2.2.4 Decoding of the K Packets

Having identified the K complex exponentials {rk}Kk=1, the receiver constructs

the Vandermonde matrix WN as in (2.3). The order of the columns of WN is

unimportant. From (2.6), the matrix of decoded packets is obtained as

Ŝ = (WH
NWN)−1WH

N YN (2.11)
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Matrix WH
NWN is full rank and thus admits an inverse. In the noiseless case Ŝ

is exactly S. The kth row of Ŝ is the decoded packet of the transmitter whose

coding vector is the kth column in constructed matrix WN .

2.2.5 Asymptotic Throughput

As mentioned previously, N−K is the number of columns of Û⊥ which defines

the left null space of YN . Referring to the SVD of Yn in (2.7), these columns

correspond to the N −K singular values of the noise-only subspace. Since K

is fixed in a given communication scenario, the receiver gains better approx-

imation of the noise-only subspace by stacking more packets −→y n to matrix

Yn in order to increase N and consequently rank(Û⊥) = N −K. Lower SNR

requires extra packets −→y n to be collected for the same performance. At high

SNR, N − K ∼ O(1). This implies that the decoding delay N (measured

in slots) is of the order of the number of active transmitters K. During this

time, K distinct packets are correctly decoded. The asymptotic throughput

becomes

lim
K→∞

K

N
= 100% (2.12)

2.3 Perturbation Analysis

Perturbation analysis refers to the effect of observation noise NN,P

in (2.6) on the accuracy of detecting characteristic roots {rk}k or equivalently
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{ωk}k from YN (ωk = ∠rk), which in turn affects the reconstruction of coeffi-

cient matrix WN and the decoding of packets S. We do perturbation analysis

for root-MUSIC in the context of collision resolution, which differs from DoA

estimation in several respects. First, we focus on the noise averaging effect that

is achieved by stacking a large number of packets N in YN , whereas in DoA

estimation the number of sensors N cannot be flexibly varied. Second, we only

consider packet transmissions of fixed symbol size P . In DoA estimation it is

crucial to increase the time-averaging factor P to get better estimates of the

spatial covariance matrix of the antenna array. Third, in (2.7) we decompose

the measurement matrix YN itself. The observation error NN,P is assumed to

follow a complex Gaussian distribution. In DoA estimation it is typical to do

subspace decomposition of the sample covariance matrix computed from YN ,

in which case the approximation error of the covariance matrix is modeled by

a complex Wishart distribution [92], [93].

The signal component of YN in (2.6) can be expressed by SVD as

X = WN × S = U‖ΣsV
H
s + U⊥ΣnV

H
n (2.13)

where U‖ and U⊥ constitute an orthonormal basis for the left singular vectors

of X, Vs and Vn form an orthonormal basis for the right singular vectors, Σs

is a diagonal matrix holding the K non-zero singular values of X, and Σn is a

matrix of (N −K)× (N −K) zeros.
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The SVD of the noisy signal YN in (2.6) can be re-expressed as

YN = X + ∆X = Û‖Σ̂sV̂
H
s + Û⊥Σ̂nV̂

H
n (2.14)

where the perturbation ∆X = NN,P in (2.6) leads to a perturbation of the sin-

gular vectors U‖, U⊥, Vs and Vn and the singular values diag(Σs) and diag(Σn).

In particular, a perturbation of U⊥ leads to a perturbation of the noise sub-

space projection matrix:

P̂Un = Û⊥Û
H
⊥ = PUn + ∆PUn = U⊥U

H
⊥ + ∆PUn (2.15)

This leads to a displacement of the roots {rk}k generated by

−→
w′N(z)H × PUn ×

−→
w′N(z) = 0 (2.16)

for an arbitrary coding vector
−→
w′N(z) =

[
1, z1, . . . , zN−1

]T
, which impacts the

identification of the set of active transmitters.

2.3.1 Perturbation of the Noise Projection Matrix PUn

Referring to [82], for an arbitrary matrix X of SVD as in (2.13), a perturbation

∆X leads to a first-order perturbation ∆U‖ of the form

∆U‖ = U‖R + U⊥U
H
⊥∆XVsΣ

−1
s (2.17)
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where R = D � (UH
‖ ∆XVsΣs + ΣsV

H
s ∆XHU‖) and � is the Hadamard prod-

uct. D is a K × K matrix whose first diagonal elements are zero while the

off-diagonal elements have the form D[k1, k2] = 1/(σ2
k2
−σ2

k1
), 1 ≤ k1 6= k2 ≤ K.

Values {σk}k correspond to the K non-zero singular values of X whose rank

is K.

Define the signal subspace projection matrix as PUs = U‖U
H
‖ . By the orthonor-

mality of the left singular vectors of X we have

PUs + PUn = I (2.18)

Therefore,

∆PUn = −∆PUs = −∆U‖U
H
‖ − U‖∆UH

‖ (2.19)

Substituting (2.17) in (2.19) and noting that RH = −R we have

∆PUn = −PUn∆XX+ −X+H∆XHPUn (2.20)

where

X+ = VsΣ
−1
s UH

‖ (2.21)
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2.3.2 Angular Displacements of the Characteristic Complex Expo-
nentials {rk}k

Denote by dk = 1 and ωk the respective magnitude and angle of characteristic

complex exponential rk of transmitter k, i.e. rk = dk exp(jωk). A coding

vector −→w k of transmitter k is defined as

−→w k =
−→
w′N(rk) = [1, exp(jωk), . . . , exp (j(N − 1)wk)]

T (2.22)

where
−→
w′N(z) is an arbitrary coding vector as in (2.16). By definition of U⊥

in (2.13) we have

−→wH
k PUn

−→w k = 0, 1 ≤ k ≤ K (2.23)

Because of ∆X, perturbed roots {r̂k}k are generated by (2.16) as approxima-

tions for {rk}k. Define

−→w (1)
k =

d
−→
w′

dz
(rk) = [0, exp(jωk), . . . , (N − 1) · exp (j(N − 1)ωk)]

T (2.24)

Referring to [89], (2.16) can be approximated as a first-order perturbed version

of (2.23) as follows:

(−→wH
k − j−→w

(1)
k

H
∆ωk −−→w (1)

k

H
∆rk + h.o.t)× (PUn + ∆PUn)

× (−→w k + j−→w (1)
k ∆ωk +−→w (1)

k ∆rk + h.o.t) = 0 (2.25)
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where h.o.t refers to higher order terms to be neglected in a first-order analy-

sis. (2.25) implies perturbation ∆PUn of noise projection matrix Un expectedly

shifts root rk to new position (1+∆rk) exp(j(ωk+∆ωk)) in the complex plane.

The real and imaginary parts in the left-hand side of (2.25) should be equated

to zero. Unless higher-order terms are considered, ∆rk = 0. Moreover, the

identification of the active set of users depends on the angles of the detected

roots. A first-order approximation of the angular shift ∆ωk is given by

∆ωk =
−→w (1)

k

H
PUn∆XX+−→w k −−→wH

k X
+H∆XHPUn

−→w (1)
k

2j−→w (1)
k

H
PUn

−→w (1)
k

(2.26)

Note that ∆ωk in (2.26) is real-valued.

2.3.3 Individual Distributions of Angular Shifts {∆ωk}k

Recall that ∆X = NN,P has dimensions N × P . We assume noise is in-

dependent for the different packet symbols, so the columns of ∆X are in-

dependent. We assume noise is also independent over the different slot du-

rations, so the entries of each column of ∆X are independent. We finally

assume each entry ∆Xn,p of ∆X is circularly symmetric complex normal

of mean zero E[∆Xn,p] = 0, variance E[∆X∗n,p∆Xn,p] = σ2 and relation

E[∆Xn,p∆Xn,p] = 0. Therefore, we may associate a complex matrix normal

distribution to ∆X:

∆X ∼ CN(0N×P , σ
2IN×N , IP×P ) (2.27)
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The first argument in CN(·, ·, ·) is the mean, the second argument describes

the dependencies among the entries of a single column (covariance matrix),

and the third argument describes dependencies among the different columns.

This is equivalent to

vec(∆X) ∼ CN(0NP , σ
2IP×P ⊗ IN×N) (2.28)

where CN(µ,Γ) is the complex multivariate normal distribution of mean µ and

covariance matrix Γ,

vec(∆X) = [∆X1,1, . . . ,∆XN,1,∆X1,2, . . . ,∆XN,2, . . . ,∆X1,P , . . . ,∆XN,P ]T

(2.29)

and A⊗B is the Kronecker product of two arbitrary matrices A ∈ Cm×n and

B ∈ Cp×q. Define

−→
C H
k =

−→w (1)
k

H
PUn

−→w (1)
k

H
PUn

−→w (1)
k

(2.30)

−→
Dk = X+−→w k (2.31)

Using (2.27),
−→
C H
k ∆X

−→
Dk is distributed as

−→
C H
k ∆X

−→
Dk ∼ CN(0, σ2−→C H

k IN×N
−→
C k,
−→
DH
k IP×P

−→
Dk) (2.32)
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By a transformation as in (2.28),
−→
C H
k ∆X

−→
Dk is a simple complex random

variable of distribution

−→
C H
k ∆X

−→
Dk ∼ CN(0, σ2−→DH

k

−→
Dk

−→
C H
k

−→
C k) (2.33)

Using the fact that PUnP
H
Un

= PUn , we have

−→
C H
k

−→
C k = 1/

(−→w (1)
k

H
PUn

−→w (1)
k

)
(2.34)

Moreover, using (2.21) and V H
s VS = I we have

−→
DH
k

−→
Dk = −→wH

k U‖Σ
−1
s Σ−1

s UH
‖
−→w k (2.35)

Both
−→
C H
k

−→
C k and

−→
DH
k

−→
Dk are real numbers. ∆ωk in (2.26) can be expressed as

∆ωk =

(−→
C H
k ∆X

−→
Dk

)
−
(−→
C H
k ∆X

−→
Dk

)H
2j

= Im
(−→
C H
k ∆X

−→
Dk

)
(2.36)

where Im(z) is the imaginary part of complex variable z. As a first-order

approximation, (2.33) and (2.36) imply that ∆ωk is a real Gaussian scalar

distributed as

∆ωk ∼ N

(
0,
σ2

2
(
−→
DH
k

−→
Dk)(

−→
C H
k

−→
C k)

)
(2.37)
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2.3.4 Joint Distribution of Angular Shifts {∆ωk}k

We now prove that angular shifts {∆ωk}k are jointly Gaussian for a first-

order analysis. Denote by Dk,p the pth element of vector
−→
Dk and by

−−→
∆Xp the

pth column of matrix ∆X, 1 ≤ p ≤ P . Define K arbitrary real coefficients

{αk}Kk=1. Using (2.36), the weighted sum
∑

k αk∆ωk can be expressed as

∑
k

αk∆ωk =
∑
k

αk Im

(∑
p

Dk,p
−→
C H
k

−−→
∆Xp

)

=
∑
p

Im

((∑
k

αkDk,p

−→
C H
k

)
−−→
∆Xp

)
=
∑
p

Im
(−→
β H
p

−−→
∆Xp

)
(2.38)

The second equality in (2.38) follows from the linearity of the imaginary op-

erator. While row vector
−→
β H
p is N -dimensional, it is a weighted sum of only

K vectors Dk,p

−→
C H
k . Moreover, there are P such vectors {

−→
β H
p }p. Therefore,

the problem of selecting K coefficients {αk}k so that all vectors {
−→
β H
p }p are

zero vectors admits NP equations. It is thus overdetermined and admits

no non-trivial solutions for {αk}k almost surely. Since the entries of vec-

tors {
−−→
∆Xp}p are complex Gaussian, and assuming set {αk}k is non-trivial,∑

k αk∆ωk in (2.38) is a weighted sum of real Gaussians and is thus Gaussian-

distributed. Therefore, angular shifts {∆ωk}k in (2.37) are jointly Gaussian.

41



Given that variables {∆ωk}k are jointly Gaussian, the joint distribution is fully

characterized by the mean vector and covariance matrix. All angular shifts

{∆ωk}k have zero mean as in (2.37). For the covariance matrix, we evaluate

E[∆ωk∆ωl] using (2.36):

4E[∆ωk∆ωl] = E[(
−→
C H
k ∆X

−→
Dk)(

−→
C H
l ∆X

−→
D l)

H ]

+ E[(
−→
C H
k ∆X

−→
Dk)

H(
−→
C H
l ∆X

−→
D l)]

− E[(
−→
C H
k ∆X

−→
Dk)

H(
−→
C H
l ∆X

−→
D l)

H ]

− E[(
−→
C H
k ∆X

−→
Dk)(

−→
C H
l ∆X

−→
D l)]

(2.39)

−→
C H
k ∆X

−→
Dk is a weighted sum of the entries of ∆X. These entries are inde-

pendent, have zero mean and are circularly symmetric. Thus, the last two

expectations in (2.39) are zero. By linearity of the expectation we have

4E[∆ωk∆ωl] =
−→
C H
k E[∆X

−→
Dk
−→
DH
l ∆XH ]

−→
C l +

−→
DH
k E[∆XH−→C k

−→
C H
l ∆X]

−→
D l

(2.40)

Note the following:

E[∆X
−→
Dk

−→
DH
l ∆XH ] = E[(

∑
p

Dk,p

−−→
∆Xp)(

∑
p

D∗l,p
−−→
∆XH

p )]

=
∑
p

∑
p′

Dk,pD
∗
l,p′E

[−−→
∆Xp

−−→
∆XH

p′

]
=
∑
p

Dk,pD
∗
l,pσ

2IN×N

= σ2
(−→
DH
l

−→
Dk

)
IN×N

(2.41)
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where the second equality in (2.41) is implied by the linearity of expecta-

tion, while the third equality is obtained by utilizing the distribution of ∆X

in (2.27). Similarly,

E[∆XH−→C k

−→
C H
l ∆X] = σ2

(−→
C H
l

−→
C k

)
IP×P (2.42)

Plugging (2.41) and (2.42) in (2.40) we have

E[∆ωk∆ωl] =
σ2

4

[(−→
DH
l

−→
Dk

)(−→
C H
k

−→
C l

)
+
(−→
DH
k

−→
D l

)(−→
C H
l

−→
C k

)]
=
σ2

2
Re
((−→

DH
l

−→
Dk

)(−→
C H
k

−→
C l

)) (2.43)

where Re(z) is the real part of complex variable z. For the case k = l, note

that (2.43) becomes the variance of ∆ωk as in (2.37). The matrix holding

E[∆ωk∆ωl], 1 ≤ k, l ≤ K in (2.43) defines the first-order approximation of the

covariance matrix of the joint distribution of {∆ωk}k.

2.4 Noise Averaging

We derive an upper bound on the variance of ∆ωk in (2.37). Us-

ing (2.35),

−→
DH
k

−→
Dk =

∣∣Σ−1
s UH

‖
−→w k

∣∣2
2

=
K∑
k′=1

1

σ2
k′

∣∣∣−→U‖Hk′−→w k

∣∣∣2
2

(2.44)
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where |v|2 is the L2 norm of vector (or scalar) v, set {σk}k is the set of K

non-zero singular values of X along the diagonals of Σs, and
−→
U‖k is the kth

column of U‖. By Cauchy-Schwarz inequality, we obtain

−→
DH
k

−→
Dk ≤

K∑
k′=1

1

σ2
k′

∣∣∣−→U‖k′∣∣∣22 |−→w k|
2
2 = N

(
K∑
k′=1

1

σ2
k′

)
(2.45)

where the columns of U‖ have unit norm, and |−→w k|
2
2 = N using (2.22).

Moreover, (2.34) implies

(
−→
C H
k

−→
C k)

−1 =
∣∣∣UH
⊥
−→w (1)

k

∣∣∣2
2

=
∣∣∣UH
⊥
−→u −→w (1)

k

∣∣∣2
2

∣∣∣−→w (1)
k

∣∣∣2
2

(2.46)

where −→u −→w (1)
k

is a unit vector in the direction of −→w (1)
k . Using (2.24),

∣∣∣−→w (1)
k

∣∣∣2
2

= 1 + 22 + · · ·+ (N − 1)2 =
(N − 1)3

3
+

(N − 1)2

2
+

(N − 1)

6
(2.47)

(2.46) becomes

(
−→
C H
k

−→
C k)

−1 ≥
∣∣∣UH
⊥
−→u −→w (1)

k

∣∣∣2
2

(N − 1)3

3
= pN,k

(N − 1)3

3
(2.48)

We now prove by contradiction that pN,k is strictly positive. Assume pN,k = 0.

By definition of pN,k and since spaces U⊥ and U‖ are orthogonal, −→w (1)
k has to

be spanned by the columns of U‖. Let vector −→v hold the first K entries of

44



−→w (1)
k and matrix M hold the first K rows of U‖. M is a K ×K Vandermonde

matrix and is full rank. We therefore have

U‖ ×
(
M−1−→v

)
= −→w (1)

k (2.49)

Denote by−→u H
‖,n the nth row of U‖ and−→w (1)

k [N ] theN th entry of−→w (1)
k . From (2.49),

∣∣∣−→w (1)
k [N ]

∣∣∣
2

=
∣∣−→u H
‖,N ×

(
M−1−→v

)∣∣
2
≤ K ×

∣∣M−1−→v
∣∣
2

(2.50)

The inequality in (2.50) follows from Cauchy-Schwarz relation and the fact

that all entries of U‖ have norm less than unity since the columns of U‖ are or-

thonormal. From (2.24), the left hand side of (2.50) is unbounded as N grows,

while the right hand side of (2.50) is independent of N . This is a contradiction.

Therefore, pN,k in (2.48) is strictly positive. For a fixed number of transmit-

ters K we lower-bound pN,k by a positive constant. Combining (2.37), (2.45)

and (2.48), we obtain an upper limit on the variance of angular shift ∆ωk that

drops for higher signal powers {σk′}k′ relative to the noise power σ2. It also

decays quadratically in the number of observed packets N .

2.5 Numerical Experiments

Consider a network of K̃ = 32 transmitters and one receiver. Consider

a CRI in which only K = 5 transmitters are active. The K̃ transmitters are
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assigned equally-spaced complex exponentials {rk̃}K̃k̃=1
between 0 and π, and

the K transmitters are randomly selected. Each packet is of length P = 1000

symbols, and each symbol is -1 or 1 (no fading). S is thus 5× 1000. We vary

σ2 in (2.27) on a log-scale for an SNR range between -20 dB and 20 dB, where

the SNR is defined as SNR = 10 log10(1/σ2). The simulation is run 500 times

and we compute mean statistics.

Figure 2.2: Variation of the number of correctly detected transmitters out of
K = 5 versus SNR = 10 log10(1/σ2) for N −K = 1, 2, 3 and 5.

In figure 2.2 we check the number of correctly detected transmitters out of

K within the superset of K̃ transmitters. Here we assume that the receiver

correctly detects K using the rank test in Section 2.2.2. The number of cor-

rectly identified active transmitters is checked versus the SNR and the number

of stacked packets N in YN , where N − K ∈ {1, 2, 3, and 5}. As expected,
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the number of correctly identified transmitters increases with the SNR. It also

increases with N as the receiver acquires a more accurate representation of the

noise subspace U⊥. It should be noted that minimum SNR and N values for

correct identification of all active transmitters depend on the collision multi-

plicity K.

Figure 2.3: Variation of symbol error rate (SER) versus SNR = 10 log10(1/σ2)
for N −K = 1, 2, 3 and 5.

We also check the symbol error rate (SER) of the decoded packets assuming

all K active transmitters are correctly identified by the receiver. Figure 2.3

shows that the SER drops for larger SNR and N values. For the sake of ref-

erence, we also plot the SER-versus-SNR curve for a contention-free channel

(as in TDMA). In the latter case, K = 5 packets are sent to the receiver in 5

consecutive time slots. Better performance is obtained with root-MUSIC and
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sufficient noise-averaging (large N) in the case of a collision at the cost of a

longer CRI.

We now verify the theoretical results of Section 2.3 for the individual and joint

distributions of the angular perturbations {∆ωk}k. We also verify the noise-

averaging effect of Section 2.4. Consider two simultaneously active transmit-

ters 1 and 2 of respective characteristic complex exponentials r1 and r2 where

ω1 = ∠r1 = π/4 and ω2 = ∠r2 = 3π/4. Packets −→s 1 and −→s 2 consist of a real

random sequence of ±1s and of length P = 1000. The experiment is repeated

1000 times and mean-statistics are computed.

Figure 2.4: Theoretical and numerical results of the mean squared error
E[∆ω2

1] versus the number of received packets N for two SNR conditions:
SNR = 0dB and SNR = 30dB. K = 2, ω1 = π/4, ω2 = 3π/4.
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In figure 2.4 we plot the MSE for estimating ω1 versus N for two SNR con-

ditions. As expected, the MSE decays for larger values of N (noise-averaging

effect) and higher SNR. Moreover, we compute the theoretical curves us-

ing (2.37). The matching between the theoretical and simulation curves indi-

cates that the first-order perturbation analysis is accurate for predicting the

statistics of ∆ωk.

Figure 2.5: Distribution of (∆ω1 + ∆ω2)/2 for K = 2, N = 7, SNR = 0dB,
ω1 = π/4, ω2 = 3π/4.

Moreover, figure 2.5 shows a histogram of the average of the two angular shifts

∆ω1 and ∆ω2. The plot fairly has a Gaussian bell shape. This is expected

for a weighted sum of jointly Gaussian random variables as we derived in

Section 2.3.4. In addition, for the plot in figure 2.5, the simulated MSE is

1.0679e-05. By computing the covariance matrix of ∆ω1 and ∆ω2 using (2.43),

the theoretical MSE is given by
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E

[(
∆ω1 + ∆ω2

2

)2
]

=
(
0.5 0.5

)
× Cov

(
∆ω1

∆ω2

)
×
(

0.5
0.5

)
= 1.1871e-05

(2.51)

which is of the same order as the simulated MSE.

2.6 Conclusion

A root-MUSIC-like BNDMA scheme for collision resolution is presented

for synchronized transmissions and a block-fading channel. The algorithm

achieves high asymptotic throughput, and its decoding complexity depends

on the number of collided packets. Analytical results on the performance of

the algorithm under various SNR conditions and noise-averaging are derived

and verified in simulations.
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Chapter 3

Non-Blocking Scheme for Blind

Network-Assisted Diversity Multiple Access in

Synchronous Channels

We design a root-MUSIC method for resolving packet collisions in

synchronous packet-switched networks using Blind Network-Assisted Diver-

sity Multiple Access (BNDMA). As opposed to typical BNDMA schemes, the

method operates in non-blocking mode. Idle transmitters at the start of a

collision resolution interval may join the set of active transmitters and contact

the receiver before the end of the interval. A naive queueing analysis of the

proposed scheme is exponentially complex in the size of the network. We carry

out a computationally efficient analysis of the network throughput and queue-

ing delay. We show that the suggested scheme reduces the queueing delay

of the buffered packets at the transmitters without sacrificing the maximum

throughput achieved by standard BNDMA. Further insights are derived from

the numerical experiments.

Throughput analysis of (B)NDMA in the synchronous blocking mode can be
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found in [1, 94–96]. In [94] the BNDMA scheme is also generalized to allow

transmitters with higher data rates to send more than one packet within a

single collision resolution interval (CRI). Analysis for an adaptive version of

NDMA is presented in [97]. The receiver updates its statistics (false alarm

and detection probabilities) based on previously resolved collisions and em-

bedded queueing state information in order to improve the detection of the

active transmitters and prioritize the channel access of heavily loaded users.

This chapter is organized as follows. In the next section we present our root-

MUSIC BNDMA scheme for resolving collisions. In Section 3.2 we derive the

probability distribution of the CRI length which depends on the number of

involved transmitters within a collision and consequently the data arrival rate

at each transmitter. While a naive computation of the probability distribution

is exponentially complex in the network size, we carry out the derivation in

polynomial-order complexity. The derived probability distribution is then used

in Section 3.3 for the queueing analysis. We characterize both the network

throughput and the queueing delay under the proposed scheme. Section 3.4

holds numerical results, and Section 3.5 concludes the chapter.

3.1 Root-MUSIC-Like Collision Resolution Algorithm

A network comprises K̃ transmitters and one receiver, all with single

antennas. The network is packet-switched, and a packet has P symbols (P >
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K̃) and extends over one time slot. Thus, 1 slot = P×τ , where τ is one symbol

duration. Each transmitter k is assigned a unique complex exponential rk that

is known to the receiver. Without loss of generality, transmitter k sends at

most one (raw) packet −→s k within a CRI. Upon collision, retransmissions are

necessary. In its nth transmission of packet −→s k, transmitter k issues packet

r
(n−1)
k
−→s k. A transmitter that is idle upon the start of a CRI may still join the

set of active transmitters during the CRI. At the end of the CRI, K packets

corresponding to K active transmitters are decoded by the receiver, where

1 ≤ K ≤ K̃. The count and identities of the active transmitters during a

CRI are unknown to the receiver beforehand. We assume the transmissions

are synchronized, so a packet fits within the slot boundaries. Moreover, we

assume fading along each channel between a transmitter and the receiver is

constant over a CRI. For ease of notation, we subsume the fading into packets

{−→s k}Kk=1. Once these packets are decoded, fading is removed using single

channel (collision-free) methods. We first illustrate the transmission scheme.

Then we describe how the receiver detects the number and identities of the

active transmitters and decodes the collided packets.

3.1.1 Transmission Scheme

As in [1], transmitter k scales its nth transmission of packet −→s k by r
(n−1)
k .

The main difference is that transmitter k that is idle at the start of a CRI

(t = 0) might still issue its first packet −→s k during slot nk of the CRI (assum-
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ing the latter has not ended yet) and thus −→s k is received at t = (nk − 1)Pτ ,

nk ∈ Z+. For the purpose of clarity, we illustrate the transmission scheme

for a specific communication scenario in figure 3.1. However, the expression of

the collected mixture(s) of packets is presented afterwards for the general case.

Figure 3.1: Transmission scheme of K = 4 transmitters.

Transmitters 1 and 2 initially send their unweighted packets. At t = 0,

the receiver collects −→y 1 = −→s 1 + −→s 2 + NP,1. Due to collision, the receiver

is unable to decode packets −→s 1 and −→s 2. Transmitters 1 and 2 then send

packets r1
−→s 1 and r2

−→s 2 respectively. In addition, transmitter 3 joins the

set of active transmitters. Since this is the first time transmitter 3 sends

its packet, transmitter 3 sends −→s 3. The receiver collects at t = Pτ packet

−→y 2 = r1
−→s 1 + r2

−→s 2 +−→s 3 +NP,1. In the next time slot, transmitter 4 joins the

active set. At t = 2Pτ the receiver collects −→y 3 = r2
1
−→s 1 + r2

2
−→s 2 + r3

−→s 3 +−→s 4.

Notice that all transmitters follow the same transmission algorithm indepen-

dent of the time they join the active set. No more transmitters get involved
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in the scenario of figure 3.1. By the time the receiver manages to decode the

packets, only 4 transmitters are active, i.e. K = 4.

3.1.2 Detection of K

At the end of each time slot n, the receiver stacks the n already collected

vectors {−→y 1,
−→y 2, . . . ,

−→y n} horizontally into matrix Yn. A general expression

for Yn is given by

Yn =
(−→y 1

−→y 2 . . . −→y n

)T
=
(
−→w (n1−1)

1,n
−→w (n2−1)

2,n . . . −→w (nK−1)
K,n

)
×


−→s T1−→s T2

...
−→s TK

+ Nn,P

= Wn × S + Nn,P

(3.1)

In (3.1), nk refers to the slot index in which transmitter k joins the set of active

transmitters in a given communication scenario, i.e. packet of transmitter k

is received for the first time at t = (nk − 1)Pτ . In the example of figure 3.1,

n1 = n2 = 1, n3 = 2 and n4 = 3. Moreover, −→w (nk−1)
k,n is a shifted version of the

coding vector −→w k,n of transmitter k defined as follows

−→w (nk−1)
k,n =

[
0, . . . , 0︸ ︷︷ ︸

(nk−1) zeros

, r0
k, r

1
k, . . . , r

n−nk
k

]T
(3.2)

Notice that (3.1) is a general expression for Yn that applies to all values of n
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even if not all K transmitters have yet joined the active set. It also applies

to an arbitrary value of K. The matrix of shifted coding vectors in (3.1) is

denoted as Wn. In the special case where nk = 1 for 1 ≤ k ≤ K, Wn becomes

a Vandermonde matrix and Yn in (3.1) admits the same structure as [1]. In

the latter case, (3.1) resembles the response of a linear antenna array of N

sensors on which a mixture of K signals impinge at angles of arrival equal to

the arguments of the complex exponentials {rk}Kk=1.

The receiver builds matrix Yn and checks its true (noiseless) rank at the end

of every slot n assuming high SNR. Since matrix S in (3.1) holds random

packets as its rows, it is full rank. Thus, the rank of Yn is the same as that

of Wn. Referring to Appendix A.1, rank(Wn) grows to K and saturates at K

for n ≥ max(K,n1, . . . , nK). Therefore, the receiver detects K by iteratively

collecting packets {−→y n}n and checking the rank of constructed matrix Yn over

index n. K is then the saturating value of rank(Yn) for n large enough. Note

that saturation is only detected when at least n = K+1 packets are collected.

Thus, K packets are decoded by the proposed algorithm within at least K+ 1

slots whenever K is unknown beforehand. At stopping time n = m > K, the

received matrix is

Ym = Wm × S + Nm,P (3.3)
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3.1.3 Identification of the K Transmitters

Since m > K and Wm is full rank, Wm admits a non-trivial left null space

of dimension m − K. Moreover, from (3.3), Ym and Wm have the same left

null space at high SNR. Therefore, the receiver computes the left null space

of Wm by computing that of Ym. Let U⊥ be the matrix whose columns define

the basis of the left null space of Ym. U⊥ may be easily computed from the

singular value decomposition (SVD) of Ym as the m−K left singular vectors

corresponding to the noise-only singular values of Ym. Consider the system of

m− 1 equations

−→
w′(n−1)

m

H

× U⊥UH
⊥ ×

−→
w′(n−1)

m = 0, 1 ≤ n ≤ m− 1 (3.4)

where
−→
w′

(n−1)
m =

[
0, . . . , 0︸ ︷︷ ︸

(n−1) zeros

, 1, z1, . . . , zm−n
]T

. Since U⊥ defines the left null

space of Wm, and by inspecting the columns of Wm in (3.1), note that char-

acteristic complex exponential rk of transmitter k is a solution of equation

n = nk of set (3.4). Therefore, the receiver identifies the K active transmit-

ters by solving the set of equations (3.4) and selecting the K complex solutions

that are closest to the unit circle and the individual elements of set {rk̃}K̃k̃=1
. In

addition to obtaining the kth solution rk, the receiver also recovers shift nk−1

based on the index of the corresponding generating equation in set (3.4). In

the special case where nk = 1 for 1 ≤ k ≤ K (this in enforced in the transmis-

sion scheme of [1]), the receiver needs to solve only the first equation of (3.4).
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This is similar to the root-MUSIC method for DoA estimation.

3.1.4 Decoding of the K Packets

Having obtained {rk}Kk=1 and {(nk−1)}Kk=1, the receiver constructs matrix Wm

according to (3.1). From (3.3), the receiver decodes the matrix of raw packets

S as

Ŝ = ((Wm)HWm)−1(Wm)HYm (3.5)

Referring to Appendix A.1, ((Wm)HWm)−1 exists almost surely. Note that the

ordering of the columns of Wm is unimportant, since a shuffling of the columns

of Wm simply yields an analogous shuffling of the rows of S.

3.2 Probability Distribution of the Collision Resolution
Interval Length

We do throughput and delay analysis for the collision resolution algo-

rithm of Section 3.1. Consider a network of K̃ transmitters. Each transmitter

may send only one packet per CRI according to the transmission scheme of

Section 3.1.1. New packets that become available within a CRI at an already

involved transmitter are buffered in an infinitely long queue at the transmit-

ter, so no packets are dropped. We examine the network in the steady state.
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We do not consider the transient state during the network startup phase, but

we show when the network converges to the steady state. Packets of data are

assumed to arrive at each transmitter according to a Poisson distribution of

mean λ packets/slot. By definition, once the network reaches steady state,

the number of queued packets at a transmitter admits a steady state distribu-

tion. Moreover, there exists a unique probability pe that a transmitter queue

is empty at the start of each CRI in the steady state. This probability is

traffic-dependent, and is common to all transmitters in the symmetric case

(same λ).

We carry out the throughput and delay analysis at two levels. In this section

we take a network-level perspective. We assume there exists a unique sta-

tionary probability pe, and we derive the probability distribution of the CRI

length m for an arbitrary network size K̃ and rate λ. This distribution will

be function of unknown parameter pe. In the next section, we take a single-

node perspective and examine the probability generating function (PGF) of

the number of queued packets at a transmitter given the derived distribution

of the CRI length m within the network. We combine the two perspectives and

show when the queues of the network transmitters converge to steady state, as

well as how to compute pe in the latter case. This completes the description of

the distribution of the CRI length m and the PGF of the number of buffered

packets at a transmitter. We then evaluate the throughput and delay of the

network under the proposed collision resolution scheme.
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For the purpose of computing the distribution of the CRI length in this section,

we follow the following outline. In Section 3.2.1, we introduce the notion of

collision trees. A collision tree TK shows all possible collision patterns that

yield the same CRI length m = K + 1. We compute the probability of such

a CRI length by summing the probabilities of all collision patterns within

the tree. Unfortunately, we show that the number of collision patterns in a

collision tree TK grows exponentially with the number of active transmitters

K. Thus, a brute-force approach to compute the distribution of the CRI length

becomes infeasible for large networks. This motivates Section 3.2.2 in which

we present a polynomial-time recursive solution to compute the distribution

of the CRI length. We again use the notion of collision trees TK , but this time

we introduce the concept of first-level and second-level partitions of TK . We

show that the probabilities associated to a second level partition of a collision

tree TK may be expressed as function of the probabilities associated to the

first-level partitions of collision tree TK−1. This establishes the recursion over

the number of active transmitters K and allows us to compute the probability

of a particular CRI length m in polynomial time.

3.2.1 Brute-force Approach to Compute P (m) in Exponential Time

For a network size K̃, the number of active transmitters within a CRI is

0 ≤ K ≤ K̃. Assume the SNR is high enough so that K packets may be
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decoded within K + 1 slots. The extension of the throughput analysis to the

general case K + w,w ≥ 1 is straightforward. Therefore, given K̃, the CRI

length m is bounded as 1 ≤ m ≤ K̃ + 1. The lower equality corresponds to

the case when the buffers of all the K̃ transmitters are empty at the start of a

CRI. The higher equality corresponds to the case when all K̃ transmitters are

involved in the CRI. As opposed to [1], the probability mass function P (m)

admits no closed form. This is because an inactive transmitter may join a CRI

upon a new packet arrival without waiting for the current CRI termination,

so two CRIs of the same length m may occur for different collision patterns.

Suppose at time instant t0 a CRI has just ended and consider an arbitrary

transmitter TX. The probability that TX has an empty buffer at t0 is pe,

and new packets arrive at TX according to a Poisson distribution of rate λ.

Therefore, the probability that TX is inactive for the next (i−1) slots relative

to instant t and then issues a packet at the ith time slot is given by

pi =

{
1− pe, i = 1

pee
−(i−2)λ(1− e−λ), i ≥ 2

(3.6)

Consider a selection of K̃ −K transmitters. Define qK as the probability that

this particular selection is inactive at least for the next K+1 time slots relative

to t0. Then,

qK = [pee
−Kλ](K̃−K), 0 ≤ K ≤ K̃ (3.7)
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Define

(
a

a1, a2, . . . , aj

)
=

a!

a1!a2! . . . aj!
(3.8)

for natural numbers a, a1, a2, . . . , aj, j ≥ 1 such that a1 + a2 + . . . aj = a and

a! denotes the factorial of a.

Figure 3.2: All collision scenarios in a network of K̃ = 4 transmitters. Collision
resolution interval (CRI) length m is measured in slots.

In a network of K̃ transmitters, a CRI of length m = 1 starts at instant t0 if

all K̃ transmitters have empty buffers. The collision pattern for m = 1 may be

represented by an empty collision tree T0 as shown in figure 3.2. This happens

with probability

P (T0) =

(
K̃

0, K̃ − 0

)
q0 (3.9)
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A CRI of length m = 2 starts at t0 if only one of the K̃ transmitters has a non-

empty buffer at t = 0, and no packets arrive at any of the other transmitters

for the next m−1 = 1 slot. The collision pattern for m = 2 may be represented

by a single-node collision tree T1 in figure 3.2 of height unity corresponding

to a single active transmitter. The value in the node is the index of the slot

relative to t0 during which the active transmitter issues its first packet. A CRI

of m = 2 occurs with probability

P (T1) =

(
K̃

1, K̃ − 1

)
q1

[(
1

1

)
p1

]
(3.10)

A CRI of length m = 3 starts at t0 in two scenarios: two transmitters have

non-empty buffers at t0, or one transmitter has a non-empty buffer at t0 and

one or more packets arrive at another transmitter during the time slot that

starts at t0. In both scenarios all other transmitters have empty buffers up to

at least m−1 = 2 slots following t0. The two collision patterns for m = 3 may

be represented by collision tree T2 in figure 3.2 of height two (corresponding

to two active transmitters) and two paths from the root to the leaves. The left

path describes the first scenario. The right path describes the second scenario.

The values inside the nodes indicate the relative slot indices during which the

active transmitters issue their first packet transmissions. A CRI of m = 3

occurs with probability

P (T2) =

(
K̃

2, K̃ − 2

)
q2

[(
2

2, 0

)
p2

1 +

(
2

1, 1

)
p1p2

]
(3.11)
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Collision tree T3 in figure 3.2 illustrates the five possible scenarios so that a

CRI of length m = 4 starts at t0. These scenarios are represented by the five

distinct paths from the root of T3 to its leaves. An easy way to generate T3 is

to consider an ordered set of three active transmitters {TXα,TXβ,TXγ} and

assume all other transmitters are inactive. The ordering of the active set is

based on the transmission time of the first packet of each transmitter. TXα

should be active in the first time slot after t0 or otherwise a CRI of m = 1

will occur. This generates the topmost level of T3. Given TXα is active in slot

i1 = 1, TXβ should become active in either slots 1 or 2 following t0 or otherwise

a CRI of m = 2 will occur. This generates the second level of T3. Given that

TXα and TXβ are active in the respective slots i1 = 1 and i2, i1 ≤ i2 ≤ 2, TXγ

should become active in slot i3, i2 ≤ i3 ≤ 3 or otherwise a CRI of m = 3 will

occur. This generates the third level of T3. A CRI of m = 4 then occurs with

probability

P (T3) =

(
K̃

3, K̃ − 3

)
q3

[(
3

3, 0, 0

)
p3

1 +

(
3

2, 1, 0

)
p2

1p2

+

(
3

2, 0, 1

)
p2

1p3 +

(
3

1, 2, 0

)
p1p

2
2 +

(
3

1, 1, 1

)
p1p2p3

] (3.12)

It is now straightforward to give a general expression for the probability

of a CRI of arbitrary length m. Inspecting equations (3.9), (3.10), (3.11)

and (3.12), note the following:

• The binomial term outside the brackets counts the possible splits of the

K̃ transmitters given that K transmitters are active.
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• The qK term ensures that the K̃ −K transmitters are actually inactive.

• Each term inside the brackets corresponds to a collision pattern or equiv-

alently a path from the root to a leaf of collision tree TK .

• Each product of pk’s inside the brackets computes the probability of one

collision pattern given an ordered selection of K active transmitters.

• The multinomial terms inside the brackets count the number of such

orderings while splitting the set of K transmitters over the CRI slots.

The probability that a CRI of length m = K+1 slots starts at t0 is then given

by

p(TK) =

(
K̃

K, K̃ −K

)
qK ×

[ ∑
πK∈TK

(
K

c1, c2, . . . , cK

)
pc11 p

c2
2 . . . pcKK

]

=

(
K̃

K, K̃ −K

)
qK

[ ∑
πK∈TK

p(πK)

] (3.13)

where

πK = (i1, i2, . . . , iK) ∈ TK iff


i1 = 1

i1 ≤ i2 ≤ 2
...

iK−1 ≤ iK ≤ K

(3.14)

cl =
K∑
k=1

1{ik == l}, 1 ≤ l ≤ K (3.15)
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and pk, qK and the multinomial terms in (3.13) are defined in (3.6), (3.7)

and (3.8) respectively. 1{·} in (3.15) is the indicator function.

(3.13) admits no closed form. Figure 3.2 shows all possible collision trees TK

for a network of size K̃ = 4. The number of paths in (3.14) is equal to the

number of leaves of TK . The latter is lower-bounded by the number of leaves

of a full binary tree of height K. Therefore, the number of collision patterns

considered when computing P (m = K + 1) in (3.13) grows exponentially in

K.

3.2.2 Recursive Approach to Compute P (m) in Polynomial Time

We now derive a recursive solution to compute P (m) in (3.13). It is useful to

define the following normalization

p̃(TK) =
p(TK)(
K̃

K,K̃−K

)
qK

(3.16)

We first compute p̃(TK) recursively and then use (3.16) to recover p(TK). TK

represents the set of all paths as defined in (3.14). We introduce the following

partition of TK :

TK,k =

{
{πK |πK ∈ TK , ik = 1, ik+1 > 1}, 1 ≤ k < K

{(i1 = 1, i2 = 1, . . . , iK = 1)}, k = K
(3.17)
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This is easily interpreted as splitting collision tree TK at the nodes along its

leftmost path. The partitions of trees T2, T3 and T4 are shown in figure 3.2.

Notice that

{
TK,k ∩ TK,k′ = ∅, 1 ≤ k 6= k′ ≤ K⋃K
k=1 TK,k = TK

(3.18)

so

p̃(TK) =
K∑
k=1

p̃(TK,k) =
K∑
k=1

∑
πK∈TK,k

p̃(πK) (3.19)

where p̃(πK) follows from (3.13) and (3.16). By (3.19), p̃(TK) may be computed

from set {p̃(TK,k)}k. We now define a second-level partition of collision subtree

TK,k:

TK,k,l =



{πK |πK ∈ TK,1, il+1 = 2, il+2 > 2}, k = 1, 1 ≤ l ≤ K − 2

{πK |(i1 = 1, i2 = 2, . . . , iK = 2)}, k = 1, l = K − 1

{πK |πK ∈ TK,k, ik+l−1 ≤ 2, ik+l > 2}, 1 < k ≤ K − 1, 1 ≤ l ≤ K − k
{πK |πK ∈ TK,k, iK = 2}, 1 < k ≤ K − 1, l = K − k + 1

{πK |(i1 = 1, i2 = 1, . . . , iK = 1)}, k = K, l = 1

(3.20)

The partitions of TK,k for K = 4 and 1 ≤ k ≤ K are shown in figure 3.3.

Again

p̃(TK,k) =

min(K−1,K−k+1)∑
l=1

p̃(TK,k,l) =

min(K−1,K−k+1)∑
l=1

∑
πK∈TK,k,l

p̃(πK) (3.21)
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Figure 3.3: Subgrouping of collision patterns corresponding to a collision res-
olution interval (CRI) of length m = 5.

The significance of the partition in (3.20) follows from the theorem below:

Theorem: the number of paths from the root to a leaf in subtrees TK,k,l and

TK−1,l is the same. Select the jth path π
(j)
K from TK,k,l and its counterpart

π
(j)
K−1 from TK−1,l, then the ratio of p̃(π

(j)
K ) to p̃(π

(j)
K−1) is independent of j.

Corollary: p̃(TK,k) =
∑

l p̃(TK,k,l) =
∑

l

∑
πK∈TK,k,l

p̃(πK) =
∑

l νl
∑

πK−1∈TK−1,l
p̃(πK−1) =∑

l νlp̃(TK−1,l). Thus, p̃(TK,k) may be computed recursively from {p̃(TK−1,l)}l.

In particular:
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p̃(TK,k) =


Kp1

∑K−1
l=1

(
l

0,l

)
αlβK−l−1p̃(TK−1,l), k = 1

K
k
p1

∑K−1
l=k−1

(
l

k−1,l−k+1

)
αl−k+1βK−l−1p̃(TK−1,l), 1 < k ≤ K

(3.22)

where

{
α = p2

p1

β = pi+1

pi
, i > 1

(3.23)

and probabilities {pi}, i ≥ 1 are defined in (3.6).

The proofs of the theorem and the corollary follow from examining the struc-

tures of TK,k and TK,k,l defined in (3.14), (3.17) and (3.20). Then we di-

rectly substitute the expressions of {p̃(πK)} in (3.13) into those of p̃(TK,k) and

p̃(TK,k,l) stated in (3.19) and (3.21) respectively. As an illustration, note that

p̃((1, 2, 3, 4) ∈ T4,1,1)

p̃((1, 2, 3) ∈ T3,1)
=

(
4

1,1,1,1

)
p1p2p3p4(

3
1,1,1

)
p1p2p3

= 4p4 = 4p1αβ
2 (3.24)

p̃((1, 2, 3, 3) ∈ T4,1,1)

p̃((1, 2, 2) ∈ T3,1)
=

(
4

1,1,2,0

)
p1p2p

2
3(

3
1,2,0

)
p1p2

2

= 4p3β = 4p1αβ
2 (3.25)

(3.24) and (3.25) imply

p̃(T4,1,1) = 4p1αβ
2p̃(T3,1) (3.26)
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Similarly,

p̃(T4,1,2) = 4p1α
2βp̃(T3,2) (3.27)

p̃(T4,1,3) = 4p1α
3p̃(T3,3) (3.28)

so

p̃(T4,1) = 4p1(αβ2p̃(T3,1) + α2βp̃(T3,2) + α3p̃(T3,3)) (3.29)

which follows (3.22). The recursive solution to compute P (m = K + 1) =

P (TK) is summarized in Algorithm 1.

Algorithm 1

Input: {p̃(TK−1,k)}K−1
k=1

Output: p(TK), {p̃(TK,k)}K−1
k=1

1: Compute {p̃(TK,k)}K−1
k=1 using (3.22)

2: Compute p̃(TK) using (3.19)
3: Compute p(TK) using (3.16)

Base case: (3.9), (3.10) and (3.11)

3.3 Queueing Analysis

Recall that t0 denotes a time instant at which a CRI has just ended and

a new CRI started. Let t1 be the instant at which the new CRI ends. Denote
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by B0 and B1 the number of packets buffered at a particular transmitter k∗

at respective instants t0 and t1. Define the probability generating function

(PGF) of a discrete non-negative random variable X as

GX(z) = E[zX ] =
∞∑
x=0

pX(x)zx, z ∈ C, |z| ≤ 1 (3.30)

where C is the set of complex numbers and pX(x) = P (X = x). In this

section, we evaluate G1(z), the PGF of B1, as function of G0(z), the PGF of

B0. We then equate G1(z) and G0(z) in order to obtain a general PGF of the

number of buffered packets just before the start of a CRI in the network steady

state. This is then used to derive the probability of an empty buffer pe at a

transmitter in the steady state and the network convergence condition. Having

obtained pe, we evaluate the throughput and delay of the network under the

proposed collision resolution scheme.

3.3.1 Notation

Let P (m, i) be the probability of occurrence of two simultaneous events: a

CRI of length m starts at instant t0, and transmitter k∗ gets involved in that

CRI in the ith slot, where 1 ≤ i < m. The lower bound on the slot index

i corresponds to the case when the buffer of transmitter k∗ is non-empty at

instant t0, which happens with probability 1− pe. The upper bound on i is a

strict inequality because it is always the case that a CRI does not terminate at

a given slot if a new transmitter joins the active set during that slot. On the

other hand, let P (m,−1) denote the probability that a CRI of length m starts
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at instant t0, and transmitter k∗ does not get involved throughout the CRI.

Note that probabilities {P (m, i)}m,i and {P (m,−1)}m are joint unconditional

probabilities. In the previous section we showed how to compute {P (m)}m

given pe. The computation of {P (m, i)}m,i and {P (m,−1)}m using {P (m)}m

is described in Appendix A.2.

3.3.2 Number of Buffered Packets at a Transmitter

Define bi as the number of packets that are buffered at transmitter k∗ during

time slot i, 1 ≤ i ≤ m within the CRI that starts at t0. At t0, the number of

packets in the buffer of transmitter k∗ is B0. At t1, this number becomes B1

given by:

B1 =



{bm,1 = B0 + b1 + b2 + · · ·+ bm − 1}m
w.p. P (m, 1), 2 ≤ m ≤ K̃ + 1

{bm,2 = b1 + b2 + · · ·+ bm − 1}m
w.p. P (m, 2), 3 ≤ m ≤ K̃ + 1

{bm,3 = b2 + b3 + · · ·+ bm − 1}m
w.p. P (m, 3), 4 ≤ m ≤ K̃ + 1

...

{bm,K̃ = bm−2 + bm−1 + bm − 1}m
w.p. P (m, K̃), m = K̃ + 1

{bm,−1 = bm}m
w.p. P (m,−1), 1 ≤ m ≤ K̃

(3.31)

In (3.31), the first K̃ sets of expressions correspond to the case in which trans-

mitter k∗ is involved in the CRI. Note that if transmitter k∗ gets involved in
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the ith slot of a CRI, the CRI length m is strictly greater than i. Otherwise,

the CRI’s length exceeds m, or transmitter k∗ gets involved in a CRI of length

m outside that CRI, which is a contradiction. However, for all the first K̃

sets in (3.31), m is at most K̃ + 1 because a maximum of K̃ transmitters may

be active at a time. On the other hand, the last set of expressions in (3.31)

corresponds to the case in which transmitter k∗ is inactive. Given that, the

maximum number of active transmitters is now K̃ − 1, and m is at most K̃ in

this case.

3.3.3 Characterization of the New Packet Arrivals Per Slot

When transmitter k∗ is involved, one packet in its buffer will be successfully

communicated and thus may be safely removed from the buffer at the end

of the CRI. This explains the deduction of one packet in all the first K̃ sets

in (3.31). In the first set of cases, transmitter k∗ gets involved in slot 1 of

the CRI, so B0 > 0. Variables {b1, . . . , bm} are Poisson non-negative. In the

second set of cases, transmitter k∗ gets involved in slot 2 of the CRI, so B0 = 0.

Variable b1 is Poisson positive, while variables {b2, . . . , bm} are Poisson non-

negative. In the third set of cases, transmitter k∗ gets involved in slot 3 of

the CRI, so B0 = b1 = 0. Variable b2 is Poisson positive, while variables

{b3, . . . , bm} are Poisson non-negative. In the K̃th set of cases, transmitter k∗

gets involved in slot K̃, so B0 = b1 = b2 = · · · = bK̃−2 = 0. Variable bK̃−1

is Poisson positive, while variables bK̃ and bK̃+1 are Poisson non-negative. In
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the last set of cases in (3.31), transmitter k∗ is not involved in the CRI, so the

packets that accumulate in the buffer of transmitter k during a CRI of length

m are only those bm packets that arrive in the mth slot of the CRI. Variable

bm is Poisson non-negative.

3.3.4 Probability Generating Function of the Number of Buffered
Packets

By the law of total probability, the PGF of B1 in (3.31) is given by

G1(z) =
K̃∑
i=1

K̃+1∑
m=i+1

E
[
zbm,i

]
P (m, i) +

K̃∑
m=1

E
[
zbm,−1

]
P (m,−1) (3.32)

We now compute the individual PGFs in (3.32). Using (3.31), we have

E
[
zbm,1

]
= z−1E

[
zB0|B0 > 0

]
E
[
zb1+b2+···+bm

]
(3.33)

Note that

G0(z) = E
[
zB0
]

= pe × E
[
z0
]

+ (1− pe)× E
[
zB0|B0 > 0

]
(3.34)

Moreover, b1 + b2 + · · ·+ bm is Poisson of rate mλ, so

E
[
zb1+b2+···+bm

]
= e−mλ(1−z) (3.35)

Substituting (3.34) and (3.35) in (3.33) we get
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E
[
zbm,1

]
= z−1G0(z)− pe

1− pe
e−mλ(1−z) (3.36)

Similarly,

E
[
zbm,i

]
= z−1E

[
zbi−1|bi−1 > 0

]
E
[
zbi+bi+1+···+bm

]
= z−1E

[
zbi−1

]
− P (bi−1 = 0)

1− P (bi−1 = 0)
e−(m−i+1)λ(1−z)

= z−1 e
−λ(1−z) − e−λ

1− e−λ
e−(m−i+1)λ(1−z), 2 ≤ i ≤ K̃

(3.37)

and

E
[
zbm,−1

]
= E

[
zbm
]

= e−λ(1−z) (3.38)

In the steady state, G1(z) = G0(z) = G(z). Substituting (3.36), (3.37)

and (3.38) into (3.32) and equating G1(z) and G0(z) we have

G(z) =

z(1− pe)
(
1− e−λ

)
S1(z)−

(
1− e−λ

)
peS2(z)

+ (1− pe)
(
e−λ(1−z) − e−λ

)
S3(z)

z(1− pe) (1− e−λ)− (1− e−λ)S2(z)
(3.39)

where

S1(z) =
K̃∑
m=1

e−λ(1−z)P (m,−1) (3.40)

S2(z) =
K̃+1∑
m=2

e−mλ(1−z)P (m, 1) (3.41)

75



S3(z) =
K̃∑
i=2

K̃+1∑
m=i+1

e−(m−i+1)λ(1−z)P (m, i) (3.42)

3.3.5 Steady-State Probability pe of an Empty Buffer

In (3.39) the PGF G(z) of the number of packets buffered at a transmitter has

unknown value pe. This represents the probability that a transmitter buffer is

empty at the start of a CRI in the network steady state. G(z) becomes fully

characterized by computing pe since probabilities {P (m, i}i,m and {P (m,−1}m

in (3.40), (3.41) and (3.42) have only one unknown parameter pe. The depen-

dence on pe is described in Section 3.2 and Appendix A.2. To compute pe we

note the following. Using (3.41),

S2(1) =
K̃+1∑
m=2

P (m, 1) = 1− pe (3.43)

This is because a transmitter gets involved in a CRI in the first time slot

with probability 1 − pe, and such a CRI would then have length m in the

range 2 ≤ m ≤ K̃ + 1 since at least one transmitter is active. Moreover,

using (3.40), (3.41) and (3.42),

S1(1) + S3(1) =
K̃∑
m=1

P (m,−1) +
K̃∑
i=2

K̃+1∑
m=i+1

P (m, i)

= 1−
K̃+1∑
m=2

P (m, 1) = 1− S2(1) = pe

(3.44)
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The second equality in (3.44) follows from the fact that the probability of the

set of all outcomes is unity. The third and last equalities follow from (3.43).

Evaluating G(z) in (3.39) at unity,

G(1) = 1 =
(1− pe) (S1(1) + S3(1))− peS2(1)

(1− pe)− S2(1)
=

0

0
(3.45)

Note that G(1) = 1 by definition of a PGF in (3.30). Form (3.45) is indetermi-

nate, so we apply L’Hôpital’s rule once to (3.39) and evaluate the expression

at z = 1. This yields

[S ′1(1)] + [S ′2(1)] +

[
λ

1− e−λ
S3(1) + S ′3(1)

]
= 1− S1(1) (3.46)

which is a polynomial equation in pe. The derivatives in (3.46) are with respect

to z. Since (3.46) may be of degree five or higher in pe depending on the

network size K̃, pe admits no closed form. However, the network buffers

at the transmitters converge to steady state if and only if (3.46) admits a

unique solution for pe in the range zero to unity. The condition is necessary

because (3.46) is derived assuming the existence of steady-state probability pe.

The condition is sufficient because the PGF in (3.39) is unique given pe.

3.3.6 Interpretation of the Network Convergence Condition

Per CRI, a transmitter has one of three states. In state 1, the transmitter

is not involved in the CRI. In this case, new packet arrivals during the CRI
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only occur during the last slot of the CRI and are Poisson of rate λ. The ex-

pected number of newly arriving packets buffered at the transmitter in state

1 during a CRI corresponds to the term in the first bracket in the LHS of (3.46).

In state 2, the transmitter is involved in the CRI starting from the first slot of

the CRI. In this case, new packet arrivals during the CRI may occur through-

out any of the m slots of the CRI and they follow a Poisson distribution of rate

λ. The expected number of newly arriving packets buffered at the transmit-

ter in state 2 during a CRI corresponds to the term in the second bracket in

the LHS of (3.46). Note that this number only represents new packet arrivals

during state 2. It does not count the old packets buffered before the start of

the new CRI and because of which the transmitter gets involved at the very

beginning of the new CRI.

In state 3, the transmitter is involved in the CRI starting from slot i of the

CRI, i > 1. In this case, we distinguish between new packet arrivals within

the CRI that occur during slot i− 1, and those that occur during slots i to m.

The former packet arrivals are Poisson positive as discussed in Section 3.3.3,

while the latter packet arrivals are Poisson non-negative. It is easy to show

that the expected value of a Poisson random variable of rate λ conditioned

on being positive is given by λ/(1 − e−λ). Therefore, the expected number

of newly arriving packets buffered at the transmitter in state 3 during a CRI

corresponds to the two terms in the third bracket in the LHS of (3.46).
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The LHS of (3.46) represents the expected number of new packet arrivals at a

transmitter during a CRI over all the states of the transmitter. Using (3.40),

S1(1) is the probability that a transmitter stays inactive during a CRI (state

1), so the RHS of (3.46) is the probability that a transmitter gets involved

in a CRI. Now we know that a packet may be dropped from the queue of a

transmitter only if the transmitter gets involved in a CRI and issues that packet

(assuming successful communication). Moreover, no two distinct packets may

be issued by one transmitter during a single CRI. Therefore, the RHS of (3.46)

is also the expected number of packets that get transmitted during a CRI and

exit the queue of the transmitter. Thus, the network convergence condition

in (3.46) may unsurprisingly be interpreted as the balance point between the

rate of packet arrival at a transmitter and the rate of packet departure from

the transmitter.

3.3.7 Throughput Analysis

Having solved for pe in (3.46), the probability distribution of the CRI length

{P (m)}m derived in Section 3.2 is now fully defined. Since K distinct packets

under the proposed scheme are decoded in m = K+ 1 time slots, the achieved

throughput is

η(λ) =
K̃∑
k=0

k

k + 1
P (k + 1;λ) (3.47)
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where probabilities {P (m)}m are function of data arrival rate λ. (3.47) is

monotonically increasing in λ and the maximum throughput that may be

achieved is

ηmax = max
λ∗

η(λ∗), λ∗ ∈ {λ|(3.46) admits unique pe ∈ [0, 1]} (3.48)

3.3.8 Delay Analysis

We do the same approximation as [1]. The buffer of a transmitter is modeled

as M/G/1 queue with vacation. The service time denotes the waiting time

mi of a buffered packet at a transmitter while the transmitter is involved in

a CRI. The vacation time denotes the waiting time mn of a buffered packet

at a transmitter while the transmitter is not involved throughout a CRI. The

average delay before a buffered packet is transmitted is approximated as

d(λ) = E[mi] +
λE[m2

i ]

2(1− λE[mi])
+

E[m2
n]

2E[mn]
(3.49)

Since a transmitter in the proposed scheme may join the set of active transmit-

ters within a CRI, the computation of the moments in (3.49) differs from [1].

While a transmitter is not involved in a CRI, a packet waits in the buffer of

that transmitter for at most one slot. Therefore, E[mn] and E[m2
n] can be

approximated as

E[mn] = 0.5 (3.50)
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E[m2
n] = 0.25 (3.51)

On the other hand, waiting time mi at a transmitter depends on the slot

index at which the transmitter gets involved in the CRI. Having solved for

pe in (3.46), probabilities {P (m, i)}m,i may be computed as in Appendix A.2.

Define the normalization factor

F =
K̃∑
i=1

K̃+1∑
m=i+1

P (m, i) (3.52)

We then have

E[mi] =
1

F

K̃∑
i=1

K̃+1∑
m=i+1

(m− i+ 1)P (m, i) (3.53)

E[m2
i ] =

1

F

K̃∑
i=1

K̃+1∑
m=i+1

(m− i+ 1)2P (m, i) (3.54)

3.4 Results

Consider a network of K̃ = 8 transmitters that are assigned equally

spaced complex exponentials {rk̃}8
k̃=1

between 0 and π. A packet has P =

1000 BPSK-modulated symbols. We consider a Gaussian channel of SNR =

10 log10(1/σ2) in the range −20 dB to 20 dB, where σ2 is the variance of noise
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Figure 3.4: Variation of symbol error rate (SER) versus SNR = 10 log10(1/σ2)
for two transmission schemes and different number of stacked packets m. K̃ =
8.

in (3.1). K = 4 transmitters are randomly selected as the active set of trans-

mitters. We assume the receiver correctly applies the rank test of Section 3.1.2

to detect K = 4, so the only errors that may occur are the misidentification of

the K transmitters and the decoding of the K collided packets. We consider

two transmission schemes. The first scheme is that of [1], so those transmitters

that are idle at the start of a CRI may not join the set of active transmitters

before the CRI terminates and the packets are decoded. The second scheme

is that of Section 3.1.1. We refer to the two schemes as tx-old and tx-new

respectively. For the second scheme, the 14 collision patterns represented by

tree T4 in figure 3.2 are randomly selected. We apply the root-MUSIC method

of Sections 3.1.3 and 3.1.4 for the two schemes and record the symbol error

rate (SER) versus the SNR. 40 points are collected on each curve and each
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experiment is repeated 400 times. Figure 3.4 shows that the SER drops for

higher SNR values for both tx-old and tx-new. It also drops for longer CRI

lengths m: more collided mixtures {−→y n}n are stacked in the received matrix of

packets Yn, which expands the noise-only submatrix U⊥ in (3.4) and enhances

noise-averaging. It should be noted that the noise performance for tx-new in

figure 3.4 is better compared to tx-old because less contention occurs on aver-

age per CRI slot for tx-new.

Figure 3.5: Probability mass function of the collision resolution length m for
two data arrival rates λ. K̃ = 16.

We now expand the network size to K̃ = 16 and consider two packet arrival

rates λl = 0.5/(K̃+1) and λh = 0.99/(K̃+1) at the transmitters. We compute

the probability of an empty buffer pe for each rate according to (3.46) and feed

it into the probability mass function P (m) of Section 3.2. Figure 3.5 shows

P (m) for the two rates. As expected, for higher λ values, longer CRI lengths
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become more probable. As a sanity check, each probability mass function in

figure 3.5 should add to unity.

Figure 3.6: Network throughput versus data arrival rate λ for different network
sizes K̃.

Figure 3.6 plots the network throughput η(λ) in (3.47) versus λ for three net-

work sizes K̃ = 8, 16 and 32. As λ increases, η(λ) increases because less time

slots are wasted. In figure 3.6 we only show the range of λ for which (3.46)

admits a solution for pe. Note that at the same rate λ, the expected number of

active transmitters in a CRI increases for larger network sizes K̃. This implies

that the CRI length and consequently the rate of accumulation of packets at

a transmitter queue tend to increase for higher K̃. Thus, the range of values

of λ for which the network converges to steady state is reduced as the network

grows in size. However, for the proposed scheme, notice that the maximum

achieved throughput in figure 3.6 increases with K̃.
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Figure 3.7: Maximum network throughput versus network size K̃ for the orig-
inal scheme [1] and the proposed scheme.

The same observation of figure 3.6 can be made in figure 3.7 where we show the

maximum throughput ηmax in (3.48) versus the network size K̃. In addition,

notice that ηmax of our proposed scheme matches the maximum throughput

of the collision resolution scheme of [1] for all K̃. Thus, ηmax in (3.48) admits

the same closed form expression [1]

ηmax(K̃) =
K̃

K̃ + 1
(3.55)

From (3.55), the maximum stable value of λ for which the network reaches

convergence for the proposed collision resolution algorithm is given by

λmax(K̃) =
ηmax(K̃)

K̃
=

1

K̃ + 1
(3.56)
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Figure 3.8: Packet queueing delay versus data arrival rate λ for the original
scheme [1] and the proposed scheme. K̃ = 16.

On the other hand, we show the derived and simulated curves for the queueing

delay of the proposed algorithm and the algorithm of [1]. The simulations are

run for 1e5 slots of which the queuing delay only in the second half of the

simulation time is considered in order to approximate the network convergence.

The experiment is repeated 20 times. The derived expression of the delay for

the proposed scheme is given in (3.49). As expected, the delay increases for

higher λ values. The derived approximations of the queueing delay for the two

schemes tend to underestimate the simulated delay for high rates λ. However,

for both the derivation and the simulation the proposed scheme reduces the

queueing delay compared to [1].

3.5 Conclusion
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A root-MUSIC method for blind network-assisted diversity multiple

access is designed for synchronous transmissions in non-blocking mode. We

carry out queueing analysis of the proposed scheme and optimize the analysis

for polynomial-order complexity. Both analytical and numerical results for

the network throughput and queueing delay are derived. We show that the

suggested collision resolution algorithm achieves the same peak throughput

as the original BNDMA scheme [1] but cuts down the queueing delay of the

buffered packets at the transmitters.
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Chapter 4

Asynchronous Blind Network-Assisted

Diversity Multiple Access

We present a blind collision resolution algorithm in slow fading chan-

nels based on retransmission diversity. The algorithm neither assumes packet

nor symbol synchronization of the different users and it does not demand

estimates of the arrival times of the collided signals. The proposed scheme

works independently of the relative alignment of the packets, so it can also

resolve synchronous collisions. The decoding complexity does not scale with

the packet size and thus does not burden the receiver. In the blocking mode,

the algorithm achieves high throughputs and low queueing delay similar to

synchronous network division multiple access (NDMA) protocols. In the non-

blocking mode, there is longer queueing delay of the packets before transmis-

sion, but the throughput is still high due to faster accumulation of the buffered

packets at the transmitters.

Section 4.1 presents the system model. In Section 4.2 we solve the collision res-

olution problem in the asynchronous non-blocking mode. The solution does
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not apply to all collision scenarios, so a modified transmission-reception al-

gorithm is presented in Section 4.3. Section 4.4 describes an algorithm for

resolving packet collisions in the asynchronous blocking mode. In Section 4.5

we show numerical results on throughput analysis and decoding performance

of the proposed algorithms. Section 4.6 concludes the chapter.

4.1 System Model

Consider a set of K̃ transmitters and a single receiver in a single-carrier

system. A subset of K transmitters, K ≤ K̃, may contact the receiver during

the same time, on the same frequency and with no use of orthogonal codes.

Moreover, all nodes have single antennas. Still, the receiver manages to listen

to each of the K active transmitters by leveraging the diversity created by

the transmission scheme. The receiver solves this communication problem in

three stages. First, it detects the number of active transmitters K. Second,

it identifies which K-subset of the K̃ transmitters is currently the active set

of transmitters. Third, it decodes the signal of each of the K transmitters.

Although the receiver has to identify the K active transmitters, we assume

the receiver knows the population of K̃ transmitters beforehand. In partic-

ular, each transmitter k̃ of the K̃ transmitters is assigned a unique complex

exponential rk̃ = ej∠rk̃ lying on the unit circle, 0 ≤ ∠rk̃ < π, and the receiver

is aware of this assignment.
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We consider packet-switched networks. Active transmitter k wants to send

packet −→s k to the receiver. A packet has P symbols. A symbol may be real

or complex and its duration is τ . A packet occupies one slot duration, so

1 slot = Pτ , and we impose P � K̃.

We assume there is a reference clock at the receiver that indicates the start of

a time slot. The transmitters are not necessarily synchronized to the receiver,

so packet −→s k of transmitter k may not be totally received within a single time

slot but might partially overlap in time with two consecutive slots. It is thus

unnecessary to define slot boundaries at the receiver. We only do so for two

reasons. First, we derive the collision resolution algorithm for asynchronous

transmissions based on the solution for synchronous collisions, so slotted time

is assumed for analytical convenience. Second, the slotted time formulation

proves that the proposed algorithm in this chapter resolves the synchronous

collisions as a special case. The algorithm thus also applies in a hybrid network

in which only a subset of the transmitters are synchronized to the receiver such

as those in its proximity.

Without loss of generality, we assume the first packet is always received at

t = 0. The receiver identifies whether K = 1 by simply checking the cyclic

redundancy check (CRC) bits of the collected packet. In the case K > 1, the

receiver does not know the arrival times of the individual collided packets. In

the non-blocking network operation mode, it could happen that the receiver
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may not have decoded these packets yet and then another transmitter sends

a packet. In this case K refers to the total number of active transmitters at

the instant of successful decoding. N refers to the collision resolution interval

measured in time slots. Since data availability at the transmitters is random,

so are K and N . The channels between the transmitters and the receiver are

slow fading with respect to N , and there is additive complex Gaussian noise

CN(0, σ2I) of mean 0 and covariance σ2I at the receiver. A collection of p× q

noise samples is denoted as Np,q.

A packet is represented as a vector of symbols, were −→s k is the packet to be

sent by transmitter k, 1 ≤ k ≤ K. During time slot n and whenever at least

one transmitter is active, the receiver collects a vector of symbols

−→y n =
[−→y n[1],−→y n[2], . . . ,−→y n[P ]

]T
(4.1)

The n-time extension of the coding vector of transmitter k̃ is defined as

−→w k̃,n =
[
r0
k̃
, r1
k̃
, . . . , rn−1

k̃

]T
(4.2)

4.2 Asynchronous Non-Blocking Mode

Transmitters that have data to send access the channel without waiting

for an idle channel state. The transmitters are not necessarily synchronized

91



to the receiver, so in general packet −→s k of transmitter k is first received at

tk = ((nk − 1)P + pk)τ , i.e. in time slot nk after pk symbol durations relative

to the slot start time, 1 ≤ nk ≤ N , 0 ≤ pk < P . Shift pk should be a

decimal. We first assume pk ∈ {0, 1, . . . , P − 1} and then extend the solution

to the decimal case. Resolving synchronized collisions (nk = 1, pk = 0)k is

presented in Chapter 2. The algorithm is extended to the case of synchronized

transmissions (nk ≤ N, pk = 0)k in Chapter 3 at the cost of increased decoding

complexity of the order of K. In both settings all transmitters are synchronized

to the receiver. We now consider resolving collisions in the general case (nk ≤

N, pk < P )k. We emphasize that the decoding complexity does not scale with

the packet size P . Otherwise it becomes prohibitive since P could be orders

of magnitude larger than the number of collided packets K or decoding time

N .

4.2.1 Transmission Scheme

All transmitters follow the same transmission scheme as in Chapters 2 and 3.

This is important so that a decoding scheme that blindly resolves asynchronous

collisions perfectly applies to synchronous collisions as a special case. There-

fore, an active transmitter k sends packet −→sk of length P . In case of a collision,

transmitter k sends rk × −→sk , then r2
k ×
−→sk and so on. This persists until the

receiver manages to decode the collided packets.

Figure 4.1 illustrates an example scenario of K = 3 collided signals which we
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(a) Active set of transmitters — TX1 and TX2: aligned, TX3: misaligned

(b) Equivalent active set — all TXs aligned

Figure 4.1: Transmission scheme of K = 3 packets aligned with the start of a
symbol duration

will use to build a decoding algorithm for a general collision setting. Assume

for now there is no fading. In Figure 4.1a, packet −→s 1 arrives at the receiver at

t = 0, which is the start of the first time slot. Unfortunately, packet −→s 3 arrives

within the first slot at t = 2τ and collides with −→s 1. The CRC of the collected

packet is corrupted and the receiver awaits new packet arrivals. At t = Pτ the

second packet r1
−→s 1 of transmitter 1 and the first packet −→s 2 of transmitter 2

are received. Upon its second transmission, packet r3
−→s 3 of transmitter 3 is

received at t = (P + 2)τ . At t = 2Pτ , packets r2
1
−→s 1 and r2

−→s 2 are received,

and so on. Thus, all three transmitters follow the same transmission scheme.
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4.2.2 Expressions of Collected Packets

Denote by −→y n the overall received packet within time slot n. In the example

of Figure 4.1a, whole packet −→s 1 and the first P − 2 symbols of packet −→s 3

contribute to −→y 1. Four signal components (beyond noise) contribute to −→y 2:

whole packets r1
−→s 1 and −→s 2, the last two symbols of packet −→s 3 and the first

P − 2 symbols of packet r3
−→s 3. In a similar manner, four signal components

contribute to −→y 3: r2
1
−→s 1, r2

−→s 2, last two symbols of r3
−→s 3 and first P − 2

symbols of r2
3
−→s 3. This continues to be true for all received packets −→y n, n > 1.

For convenience, we introduce a new piece of notation. For an arbitrary vector

−→v of length L, define

−→v (d) =



[ d zeros︷ ︸︸ ︷
0, . . . , 0,−→v [1], . . . ,−→v [L− d]

]T
, 1 ≤ d ≤ L− 1

−→v , d = 0[−→v [1− d], . . . ,−→v [L], 0, . . . , 0︸ ︷︷ ︸
−d zeros

]T
, 1− L ≤ d ≤ −1

∅ , |d| > L− 1

(4.3)

This is easily illustrated via an example. For instance, if −→v = (a, b, c, d, e)T

then −→v (2) = (0, 0, a, b, c)T , −→v (−3) = (d, e, 0, 0, 0)T , −→v (0) = −→v and −→v (6) is an

empty vector of dimension zero.

Following the discussion above on the signal contribution to collected packets

{−→y n}n and using the notation in (4.3) we have

• −→y 1 = −→s (0)
1 +−→s (2)

3 + NP,1
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• −→y 2 = r1
−→s (0)

1 +−→s (0)
2 +−→s (2−P )

3 + r3
−→s (2)

3 + NP,1

• −→y 3 = r2
1
−→s (0)

1 + r2
−→s (0)

2 + r3
−→s (2−P )

3 + r2
3
−→s (2)

3 + NP,1

and so on. Suppose the receiver collects N = 5 packets {−→y n}5
n=1 and stacks

them in a matrix Y5. Thus,


−→y T

1−→y T
2

...
−→y T

5

 =


1 0 1 0
r1 1 r3 1
r2

1 r2 r2
3 r3

r3
1 r2

2 r3
3 r2

3

r4
1 r3

2 r4
3 r3

3

×

−→s (0)

1

T

−→s (0)
2

T

−→s (2)
3

T

−→s (2−P )
3

T

+ N5,P

Y5 = W5 × S + N5,P

(4.4)

4.2.3 General Expression of Received Matrix of Packets Yn

Recall that packet −→s k of active transmitter k arrives at the receiver at tk =

((nk−1)P +pk)τ . In the example of Figure 4.1a, transmitters 1, 2 and 3 form

the set of active transmitters, where p1 = p2 = 0 and p3 = 2. The expres-

sion of the received matrix of packets in (4.4) suggests an equivalent collision

scenario illustrated in Figure 4.1b. Transmitters 1, 2, 3a and 3b send packets

−→s (0)
1 , −→s (0)

2 , −→s (2)
3 and −→s (2−P )

3 respectively to the receiver. All four packets are

synchronized to the start of a time slot: p1 = p2 = p3a = p4a = 0.

We point out the following pattern. Transmitters 1 and 2 in Figure 4.1a

have synchronized transmissions: p1 = p2 = 0. In the equivalent scenario of

Figure 4.1b, each occupies one column of matrix W5 and one row of matrix S
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in (4.4). On the other hand, p3 6= 0. Transmitter 3 in Figure 4.1a is replaced

by two transmitters in Figure 4.1b. It occupies two columns of W5 and two

rows of S in (4.4). Given this observation, we derive a general expression

for the received matrix of packets Yn. Using (4.2) and the notation in (4.3),

transmitter k’s contribution to the coding matrix Wn in the expression of Yn

is given by

−→w k,n,tk =

{−→w (nk−1)
k,n , pk = 0[−→w (nk−1)
k,n ,−→w (nk)

k,n

]
, pk ∈ {1, . . . , P − 1}

(4.5)

where [·, ·] denotes horizontal stacking. Similarly, transmitter k’s contribution

to the matrix of packets S in the expression of Yn is

−→s k,tk =

{−→s (pk)
k , pk = 0[−→s (pk)
k ,−→s (pk−P )

k

]
, pk ∈ {1, . . . , P − 1}

(4.6)

Yn becomes

Yn =
(−→w 1,n,t1 . . . −→wK,n,tK

)
×


−→s T1,t1

...
−→s TK,tK

+ Nn,P

= Wn × S + Nn,P , 1 ≤ n ≤ N

(4.7)

Notice that (4.4) is an instance of (4.7) for the case K = 3 and n = N = 5.

So far we have assumed no fading. Along the lines of [1], slow fading relative

to the collision resolution time N leads to the scaling and coloring of packets

{−→s k}k. These can be removed by equalizing packets {−→s k}k individually after

S in (4.7) is decoded.
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4.2.4 Decoding of S

Equation (4.7) shows that the received matrix of packets Yn can be expressed

as a coefficient matrix Wn times a matrix of packets S plus a noise matrix,

where the columns of Wn are shifted versions of the coding vectors {−→w k,n}k

in (4.2). This is the same format as the expression of Yn in (3.1) for the case of

synchronized transmissions (nk ≤ N, pk = 0)k. The receiver thus applies the

same decoding algorithm as in Chapter 3 to resolve asynchronous collisions.

Two main differences arise:

• In Chapter 3, the receiver identifies the set of active transmitters by

solving a system of N − 1 independent equations for characteristic roots

{rk}k. In the case of asynchronous collisions, each transmitter k with

pk 6= 0 occupies two columns of Wn as in (4.5). The corresponding root

rk will be duplicate.

• In Chapter 3, the receiver decodes S which holds as its rows packets

{−→s k}k. In the case of asynchronous collisions, each transmitter k with

pk 6= 0 occupies two rows of S holding −→s (pk)
k and −→s (pk−P )

k . The receiver

reconstructs packet −→s k by dropping the leading and trailing zeros of

−→s (pk)
k and −→s (pk−P )

k respectively and then concatenating the resultant

segments.
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4.2.5 Pitfalls of Decoding Algorithm

The above decoding algorithm does not work in all collision scenarios. Suc-

cessful decoding of S in (4.7) depends on the correct construction of coefficient

matrix Wn by the receiver. For the latter task, roots {rk}k and their multiplic-

ities should be correctly detected. We highlight two pitfall scenarios in which

the receiver cannot identify all characteristic roots {rk}k and consequently fails

to decode the collided packets.

4.2.5.1 Pitfall Scenario I

The receiver acquires a non-trivial left null space U⊥ of YN in (4.7). This is

always possible when N > K and at high signal-to-noise ratio (SNR). Let −→u ⊥

be an arbitrary column of the computed basis U⊥. By definition, −→u H
⊥YN =

01,P , where 0n,p is a collection of n × p zeros. At high SNR, we also have

−→u H
⊥WN ≈ 01,P Using (4.5), this implies

−→u H
⊥
−→w k,N,tk ≈ 01,2, pk > 0 (4.8)

for an arbitrary transmitter k with pk > 0. (4.8) is equivalent to

[−→u H
⊥
−→w (nk−1)

k,N ,−→u H
⊥
−→w (nk)

k,N ] ≈ 01,2 (4.9)

Thus,
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[−→u H
⊥
−→w (nk−1)

k,N ,−→u H
⊥ (rk
−→w (nk)

k,N )] ≈ 01,2 (4.10)

which implies

−→u H
⊥ (−→w (nk−1)

k,N − rk−→w (nk)
k,N ) ≈ 0 (4.11)

Using (4.2) and (4.3), (−→w (nk−1)
k,N −rk−→w (nk)

k,N ) is an N×1 vector of all zeros except

for unity at position nk. (4.11) becomes

−→u ⊥[nk] ≈ 0 (4.12)

Since −→u ⊥ is an arbitrary column of U⊥, (4.12) implies that every element in

row nk of U⊥ is almost zero. Let −→w ′N(z) = [1, z, z2, . . . , zN−1]T be a test vector

in z, where z is a complex variable. Then, the (nk − 1)th and nth
k equations

within the set of equations

−→w ′(n)
N

H
U⊥U

H
⊥
−→w ′(n)

N = 0, 0 ≤ n ≤ N − 2 (4.13)

are equivalent. Thus, every solution of any of the two equations is also a

solution of the other. This is true for root z = rk, and this is also true for

every root z = rk′ such that nk′ = nk − 1 or nk′ = nk. Since the set of

equations (4.13) are solved for characteristic complex exponentials {rk}k in

the decoding algorithm, a problem only arises if pk′ = 0. In the latter case,

transmitter k′ occupies a single column of Wn whereas root rk′ is detected as
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a duplicate solution. Thus the receiver fails to construct Wn correctly and the

decoding of S fails.

4.2.5.2 Pitfall Scenario II

Consider an example collision scenario in which the receiver collects matrix Y5

given by:

Y5 =
(−→w 1,5,t1

−→w 2,5,t2
−→w 3,5,t3

)
×

−→s T1,t1−→s T2,t2−→s T3,t3

+ N5,P

=


1 1 0 1 0
r1 r2 1 r3 1
r2

1 r2
2 r2 r2

3 r3

r3
1 r3

2 r2
2 r3

3 r2
3

r4
1 r4

2 r3
2 r4

3 r4
3

×


−→s T1
−→s (P−1)

2

T

−→s (−1)
2

T

−→s (P−1)
3

T

−→s (−1)
3

T

+ N5,P

(4.14)

In this example, transmitters 1, 2 and 3 form the active set. Packet −→s 1 arrives

at the receiver at t1 = 0, while packets −→s 2 and −→s 3 arrive at t2 = t3 = (P−1)τ .

Thus, p1 = 0 and p2 = p3 = P −1. From (4.3) and (4.6), rows 2 and 4 of S are

linearly dependent. A sample basis of the row space of S holds four vectors

−→s T1 , −→s (P−1)
2

T
, −→s (−1)

2

T
and −→s (−1)

3

T
. Y5 in (4.14) can be expressed as

Y5 =


1 1 + α · 1 0 0
r1 r2 + α · r3 1 1
r2

1 r2
2 + α · r2

3 r2 r3

r3
1 r3

2 + α · r3
3 r2

2 r2
3

r4
1 r4

2 + α · r4
3 r3

2 r3
3

×

−→s T1

−→s (P−1)
2

T

−→s (−1)
2

T

−→s (−1)
3

T

+ N5,P (4.15)
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where α = −→s 3[1]/−→s 2[1]. The second column of the coefficient matrix in (4.15)

is no longer a geometric progression. The receiver acquires a non-trivial left

null space U⊥ of Y5, solves (4.13) and finds single roots r1, r2 and r3. For a

successful decoding of S in (4.14), the receiver should find single root r1 and

duplicate roots r2 and r3. This discrepancy occurs and the above decoding

algorithm fails whenever S is not full rank.

We now make a general statement of pitfall scenario II. Denote by Kh the

number of rows of S:

Kh =
K∑
k=1

[1× 1{pk = 0}+ 2× 1{pk > 0}]

= K +
K∑
k=1

1{pk > 0} = K +Ka

(4.16)

1{·} is the indicator function. Let S̆ be a K̆h × P -matrix that holds the

minimum selection of the rows of S that span its row space. Thus,

∃!−→c Ti ∈ CK̆h
∣∣ S[i, :] = −→c Ti S̆, 1 ≤ i ≤ Kh (4.17)

We stack {−→c Ti }i in matrix C ∈ CKh×K̆h . (4.7) becomes

Yn = Wn × C × S̆ + Nn,P

=
(
Wn × C[:, 1] . . . Wn × C[:, K̆h]

)
× S̆ + Nn,P

= W̆n × S̆ + Nn,P

(4.18)
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If S is full rank, C is the identity matrix. Each column k of C has support

||C[:, k]||0 = 1. Thus, each column vector Wn×C[:, k] in (4.18) is a geometric

progression. Therefore, all Kh roots {rk}k (K − Ka single roots and Ka du-

plicate roots) are detected upon solving (4.13). On the other hand, if S is not

full rank, Kh > K̆h, so ∃k′ | ||C[:, k′]||0 > 1. In this case Wn × C[:, k′] is a

linear combination of two or more columns of Wn and thus does not have a

geometric progression format. Define

I = {i | C[i, k] 6= 0 ∧ ||C[:, k]||0 > 1, 1 ≤ i ≤ Kh, 1 ≤ k ≤ K̆h} (4.19)

I holds the indices of the columns of Wn corresponding to roots {rk}k that

cannot be generated by (4.13). In the example of (4.14), I = {2, 4}, so the

second and fourth roots in the solution list [r1, r2, r2, r3, r3] are masked.

4.3 Modified Transmission-Reception Algorithm

The algorithm of the previous section fails to resolve packet collisions

in all collision scenarios. In this section we modify the transmission algorithm

to eliminate pitfall scenario I. Then the reception algorithm is extended to

successfully decode packets in pitfall scenario II.
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4.3.1 Transmission Scheme

To break down the equivalence of an equation pair in set (4.13), U⊥ should

admit no rows of zeros. Therefore, the logical statement “(4.11) =⇒ (4.12)”

should be negated. This is achieved by modifying coding vector −→w k̃,n in (4.2)

or equivalently modifying the transmission scheme. In particular, each active

transmitter k follows the same transmission scheme as before except for an

additional scaling factor β every other transmission. Initially, transmitter k

sends packet −→s k. If retransmissions are necessary, transmitter k sends βrk
−→s k,

then r2
k
−→s k, and so on. Figure 4.2a illustrates the same collision scenario as

figure 4.1a for the new transmission scheme. The equivalent collision scenario

with synchronized transmissions is shown in figure 4.2b. The n-time extension

of the new coding vector of transmitter k̃ is given by

−→w k̃,n,β[n] =

{−→w k̃,n[n], n odd

β ×−→w k̃,n[n], n even
(4.20)

As opposed to (4.11), we choose β2 6= 1 so that −→w (nk−1)
k,N,β [(nk + 1) : N ] is not a

scaled version of −→w (nk)
k,N,β[(nk + 1) : N ]. In addition, |β| = 1 so that the average

transmit power per time slot is constant. Therefore, β = ejθ, θ 6= lπ, l ∈ Z.

4.3.2 Expression of Yn

As in (4.5), define transmitter k’s contribution to the coding matrix Wn,β in

the expression of Yn as
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(a) Active set of transmitters — TX1 and TX2: aligned, TX3: misaligned

(b) Equivalent active set — all TXs aligned

Figure 4.2: Modified transmission scheme of K = 3 packets aligned with the
start of a symbol duration

−→w k,n,tk,β =

{−→w (nk−1)
k,n,β , pk = 0[−→w (nk−1)
k,n,β ,−→w (nk)

k,n,β

]
, pk ∈ {1, . . . , P − 1}

(4.21)

Yn becomes

Yn =
(−→w 1,n,t1,β . . . −→wK,n,tK ,β

)
× S + Nn,P

= Wn,β × S + Nn,P = Wn,β × C × S̆ + Nn,P

= W̆n,β × S̆ + Nn,P

(4.22)

where S, C and S̆ are defined in the previous section.
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4.3.3 Detection of Pitfall Scenario II

We show how the receiver detects linear dependencies among the rows of S

before S is decoded. Referring to Appendix B.1, the rank of Wn,β strictly

increases as more transmitters become active almost surely. Thus, as the

receiver sequentially stacks more packets into matrix Yn over time index n,

the rank of Yn in (4.22) increases from 1 to K̆h and saturates at K̆h at high

SNR. Therefore, the receiver detects rank K̆h of S̆ in N = K̆h + 1 slots. The

receiver computes left null space U⊥ of YN and solves the set of equations

−→w ′(n)
N,β

H
U⊥U

H
⊥
−→w ′(n)

N,β = 0, 0 ≤ n ≤ N − 2 (4.23)

where −→w ′N,β(z) = [1, βz, z2, . . . , β(N−1)%2zN−1]T . Compared to (4.13), test

vector −→w ′N,β in (4.23) accounts for the extra β-factor in the modified trans-

mission scheme.

Denote by K̂h the number of correctly detected roots {rk}k upon solving (4.23).

If S is full rank, all the columns of W̆n,β in (4.22) have the same format as

−→w ′N,β, so K̂h = K̆h (= Kh). On the other hand, if S is not full rank, at least

one column of W̆N,β is a linear combination of two or more columns of WN,β.

Such a column does not have the same format as −→w ′N,β, so K̂h < K̆h (< Kh).

Therefore, the receiver detects pitfall scenario II by comparing the number K̂h

of found solutions {rk}k to the saturated rank value K̆h of YN . In the example

of (4.15), K̂h = 3 < K̆h = 4 (< Kh = 5).
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4.3.4 Identifiability of the K Active Transmitters

We show that the receiver successfully identifies the K active transmitters at

high SNR even when S is not full rank. We first prove the following theorem.

Theorem: A row of S that holds at least P/2 packet symbols cannot be

spanned by the other rows of S and forms a row of S̆.

Proof: Without loss of generality, suppose the first P/2 entries of row 1 of

S are packet symbols (instead of zeros). For notational convenience, P is

assumed even. We prove that row 1 of S cannot be expressed as a linear

combination of the other rows of S almost surely:

P
(
∃−→v
∣∣−→v TS[2 : Kh, :] = S[1, :]

)
. . . L1

= P
(
∃−→v
∣∣−→v TS[2 : Kh, 1 : (Kh − 1)] = S[1, 1 : (Kh − 1)]

)
× P

(−→v TS[2 : Kh, Kh : P ] = S[1, Kh : P ]
∣∣−→v ) . . . L2

≤ P
(−→v TS[2 : Kh, Kh : P ] = S[1, Kh : P ]

∣∣−→v ) . . . L3

≤ P
(−→v TS[2 : Kh, Kh : P/2] = S[1, Kh : P/2]

∣∣−→v ) . . . L4

=

P/2∏
p=Kh

P
(−→v TS[2 : Kh, p] = S[1, p]

∣∣−→v ) . . . L5

≤
P/2∏
p=Kh

1

2B
=

(
1

2

)B(P/2−Kh+1)

. . . L6

≈ 0 . . . L7

(4.24)
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Line 1 of (4.24) denotes the probability that row 1 of S falls in the span of

rows 2 to Kh of S. Using Bayes’ rule in line 2, this is the probability that

the partitions of row 1 of S fall in the span of the corresponding partitions of

rows 2 to Kh of S. In particular, row 1 is partitioned into two groups: entries

1 to Kh − 1, and entries Kh to P . The inequality in line 3 follows from the

fact that a probability is at most unity. The event in line 4 is implied by the

event in line 3, so it is at least as probable. The equality in line 5 follows

from the independence of the random packet symbols. −→v is determined by

a system of linear equations defined in line 2, so −→v TS[2 : Kh, p] in line 5 is

not necessarily a valid symbol. Moreover, symbol S[1, p] is random. It attains

one of 2B values for a modulation scheme of B bits per symbol, B ≥ 1. This

sets the upper probability bound in line 6. Typically, Kh ≤ 2K̃ � P/2, so

this bound is approximately zero. Therefore, row 1 of S is not spanned by the

other rows of S. It is thus a basis vector in matrix S̆. This is true for all rows

of S that hold at least P/2 packet symbols.

Assume row S[i, :] holds at least P/2 packet symbols. By the above theorem,

S[i, :] is also row i′ of S̆. Consider row S[j, :] for some j 6= i. By (4.17),

S[j, :] = −→c j[i′]S̆[i′, :] +

K̆h∑
k=1,k 6=i′

−→c j[k]S̆[k, :] (4.25)

S and S̆ have the same row span. Since row i of S is row i′ of S̆, then the row

span of S excluding its ith row is the same as that of S̆ excluding its i′th row.
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Therefore, ∃−→c ′j such that (4.25) can be expressed as

S[j, :] = −→c j[i′]S[i, :] +

Kh∑
k=1,k 6=i

−→c ′j[k]S[k, :] (4.26)

(4.26) implies −→c j[i′] = 0 or row i of S can be expressed as a linear combination

of the other rows of S. Using the above theorem, the latter result is false

almost surely, so −→c j[i′] = 0 ∀j 6= i. Thus, ||C[:, i′]||0 = 1. Consequently,

column Wn,β × C[:, i′] of W̆n,β admits the same format as −→w ′(n)
N,β in (4.23),

so root rk corresponding to row i of S is successfully detected by (4.23) at

high SNR. This is true for every row of S with P/2 or more packet symbols.

From (4.6), each active transmitter k contributes to S at least one such row.

Thus, for each active transmitter k there is at least one column of W̆n,β of

the same format as −→w ′(n)
N,β. The receiver thus detects all roots {rk}Kk=1 at least

once, so all K active transmitters are identifiable even when pitfall scenario II

occurs.

4.3.5 Decoding of S

We show that the receiver is able to decode S at high SNR even when S is not

full rank. The receiver detects single roots {ri1 , . . . , riA} and duplicate roots

{rj1 , . . . , rjB} where [i1, . . . , iA, j1, . . . , jB] is a permutation of index vector

[1, . . . , K]. Equivalently, the receiver detects columns {−→w
(n′i1

)

i1,n,β
, . . . ,−→w

(n′iA
)

iA,n,β
} ∪

{−→w (nj1
−1)

j1,n,β
, . . . ,−→w (njB

−1)

jB ,n,β
} ∪ {−→w (nj1

)

j1,n,β
, . . . ,−→w (njB

)

jB ,n,β
} of Wn,β upon collecting n ≥
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K̆ + 1 packets and solving (4.23).

K̂h = A + 2B. If K̂h = K̆, n′ia = nia − 1, 1 ≤ a ≤ A as in (4.21). The

receiver fully identifies Wn,β. No additional packets are collected into Yn, so

N ≥ K̆ + 1. S may be decoded as

Ŝ = (WH
N,βWN,β)−1(WN,β)HYN (4.27)

On the other hand, if K̂h < K̆, pitfall scenario II occurred. Since a transmitter

occupies at most two columns of Wn,β there is no ambiguity about column

pair [−→w (njb
−1)

jb,n,β
,−→w (njb

)

jb,n,β
], 1 ≤ b ≤ B. However, by (4.21), for each column

−→w (n′ia )

ia,n,β
, 1 ≤ a ≤ A there are three possibilities:

• n′ia = nia and column −→w (n′ia−1)

ia,n,β
of Wn,β is masked.

• n′ia = nia − 1 and column −→w (n′ia+1)

ia,n,β
of Wn,β is masked.

• n′ia = nia − 1 and no pair column for −→w (n′ia )

ia,n,β
of Wn,β is masked.

A naive approach to decode S is then to test all possible constructions of Wn,β,

decode S according to (4.27) and check the CRCs of the recovered packets.

The correct solution will be detected in O(3A) order of complexity.

Instead, the receiver distinguishes between three types of rows of S in (4.6):

full (holds only symbols), right-aligned (holds zeros followed by symbols) and
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left-aligned (holds symbols followed by zeros). Denote by F, R and L the set

of indices of the three categories respectively. Then (4.22) can be expressed as

a sum of rank-1 matrices plus a noise matrix as follows:

Yn =
∑
kf∈F

Wn,β[:, kf ]S[kf , :] +
∑
kr∈R

Wn,β[:, kr]S[kr, :]

+
∑
kl∈L

Wn,β[:, kl]S[kl, :] + Nn,P (4.28)

Upon the detection of pitfall scenario II, the receiver collects a total of n ≥ 2K

packets into Yn and computes the length-n version of each column within set

{−→w
(n′i1

)

i1,n,β
, . . . ,−→w

(n′iA
)

iA,n,β
} ∪ {−→w (nj1

−1)

j1,n,β
, . . . ,−→w (njB

−1)

jB ,n,β
} ∪ {−→w (nj1

)

j1,n,β
, . . . ,−→w (njB

)

jB ,n,β
} for

the new value of n. Since n ≥ 2K, there exists −→v n,a∗,R and −→v n,a∗,L in Cn such

that

−→v n,a∗,R ⊥ {−→w
(n′ia )

ia,n,β
}Aa=1 ∪ {−→w

(n′ia−1)

ia,n,β
}Aa=1,a6=a∗

∪ {−→w (njb
−1)

jb,n,β
}Bb=1 ∪ {−→w

(njb
−1)

jb,n,β
}Bb=1 (4.29)

−→v n,a∗,L ⊥ {−→w
(n′ia )

ia,n,β
}Aa=1 ∪ {−→w

(n′ia+1)

ia,n,β
}Aa=1,a6=a∗

∪ {−→w (njb
−1)

jb,n,β
}Bb=1 ∪ {−→w

(njb
−1)

jb,n,β
}Bb=1 (4.30)

for each index a∗ ∈ {1, . . . , A}. The receiver finds sample vectors −→v n,a∗,R and

−→v n,a∗,L and computes
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−→v H
n,a∗,RYn =


−→
0 1×P if −→w

(n′ia∗
−1)

ia∗ ,n,β
/∈ {Wn,β[:, kr]}kr∈R

(−→v H
n,a∗,R

−→w
(n′ia∗

−1)

ia∗ ,n,β
)S[ia∗ , :] o.w.

(4.31)

−→v H
n,a∗,LYn =


−→
0 1×P if −→w

(n′ia∗
+1)

ia∗ ,n,β
/∈ {Wn,β[:, kl]}kl∈L

(−→v H
n,a∗,L

−→w
(n′ia∗

+1)

ia∗ ,n,β
)S[ia∗ , :] o.w.

(4.32)

(4.31) and (4.32) follow the expression of Yn in (4.28) and the orthogonality

in (4.29) and (4.30). Therefore, for each column −→w
(n′ia∗

)

ia∗ ,n,β
, 1 ≤ a∗ ≤ A:

• If −→v H
n,a∗,RYn is a right-aligned row vector, column −→w

(n′ia∗
−1)

ia∗ ,n,β
of Wn,β is

masked.

• Else if −→v H
n,a∗,LYn is a left-aligned row vector, column −→w

(n′ia∗
+1)

ia∗ ,n,β
of Wn,β

is masked.

• Else, no pair column for −→w
(n′ia∗

)

ia∗ ,n,β
of Wn,β is masked.

Thus, the receiver resolves the ambiguity about roots {ri1 , . . . , riA} and fully

identifies Wn,β in O(A) order of complexity. The receiver decodes S by (4.27)

for N ≥ 2K. In general, this is larger than the number of packets collected

when S is full rank. However, in the simulations we show that pitfall scenario

II occurs only with low probability.
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4.3.6 Symbol Asynchronization

So far pk is assumed an integer. We now forgo symbol synchronization and let

0 ≤ pk < P . Consider the two transmission schemes described in the previous

sections. Transmissions of weighted versions of the same packet are assumed

to be contiguous. In practice, transmitter k waits for a guard interval after

each transmission of weighted packet −→s k and watches for an acknowledgement

from the receiver. New packets may be sent once the acknowledgement is re-

ceived. Therefore, we may abstract the packet as having P = P ′+G entries of

which P ′ values are actual symbols and G values are zeros. The information

signal extends over P ′τ , and Gτ is the length of the guard interval. The total

slot time is Pτ .

Packet−→s k of transmitter k fits within the slot boundaries if pk < G. Therefore,

each transmitter k with pk < G occupies one column of Wn,β and one row of

S in (4.22). On the other hand, if G ≤ pk < P , transmitter k occupies

two columns of Wn,β and two rows of S. Therefore, the receiver may apply

the same decoding algorithm as above. Since pk is no longer an integer, the

information in packet −→s k of duration Pτ does not necessarily align to a symbol

boundary. Therefore, P ′ + 1 entries of S extending over one or two rows

depict the content of packet −→s k. The receiver recovers the actual P ′ symbols

of packet −→s k by compensating for the fractional symbol delay as in single

channel communication.
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4.4 Asynchronous Blocking Mode

Packet −→s k of transmitter k is first collected by the receiver at tk =

((nk − 1)P + pk)τ . In the blocking mode, nk = 1 for 1 ≤ k ≤ K. If a trans-

mitter has no data to send within the first time slot of a collision resolution

interval, this transmitter may not send a packet to the receiver until the cur-

rently collided packets get decoded. The transmitters follow the transmission

scheme of Section 4.2. For ease of notation, pk is assumed an integer and the

transmissions are contiguous. Define

−→
ξ k =

{
rk
−→s k if pk = 0[−→s k[P − pk + 1 : P ]; rk

−→s k[1 : P − pk]
]

o.w.
(4.33)

where [·; ·] is vertical stacking. Suppose the receiver drops packet −→y 1 from Yn.

We have


−→y T

2
...
−→y T

n

 =
(−→w 1,n−1 . . .

−→wK,n−1

)
×


−→
ξ T

1
...
−→
ξ T
K

+ Nn−1,P , n ≥ 2 (4.34)

This has the same form as synchronous collisions in the blocking mode. Thus,

the receiver applies the decoding scheme of Chapter 2 onto Yn[2 : n, :] in (4.34)

to decode packets {
−→
ξ k}k. Packet −→s k is recovered by detecting its start in

−→
ξ k

using the marking symbol(s) appended to −→s k before transmission. Therefore,
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K packets in the asynchronous blocking mode are decoded inK+2 slots at high

SNR. Compared to synchronous collisions in Chapter 2, only one additional

slot is wasted because −→y 1 is discarded. This is still more efficient compared to

the non-blocking mode of the previous section in which two extra time slots

are needed per transmitter k whenever pk ∈ {1, . . . , P − 1}.

4.5 Results

Figure 4.3: Network throughput versus mean data arrival rate λ for three
network operation modes, K̃ = 20.

Consider a network of K̃ = 20 transmitters and one receiver. Packet

arrivals at each transmitter are modeled by a Poisson distribution of mean

λ. The network is operated in three modes: synchronous non-blocking (SN)

mode of Chapter 3, asynchronous non-blocking (AN) mode of Section 4.3 and
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Figure 4.4: Packet queueing delay versus data arrival rate λ for three network
operation modes, K̃ = 20.

asynchronous blocking (AB) mode of Section 4.4. Define the network through-

put as the average number of packets successfully decoded by the receiver over

time. Figure 4.3 shows the network throughput versus λ for the three oper-

ation modes. Figure 4.4 shows the average queueing delay experienced by a

packet at a transmitter. The SNR is assumed infinite, so the mean time to

decode a set of collided packets only depends on the multiplicity of the colli-

sion. A transmitter buffer is infinitely long, so no packets are dropped. Only

one packet per transmitter is decoded in a single collision resolution interval

(CRI). Initially, the buffers of all transmitters are empty. The network is run

for 5e4 slots before throughput and queueing delay are recorded.

As expected, both throughput and queueing delay are monotonically increas-
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ing in λ. For K collided packets, the CRI length is K + 1 slots for the SN

mode and K + 2 slots for the AB mode. The network throughput for the SN

and AB modes is similar for the whole range of λ in figure 4.3. However, the

queueing delay in the AB mode is slightly higher in figure 4.4 due to the extra

slot per CRI. In a symmetric network of size K̃, the maximum stable value

of λ is 1/(K̃ + 1) in the SN mode and 1/(K̃ + 2) in the AB mode. Beyond

this value, the queueing delay at a transmitter grows arbitrarily large and the

network throughput no more increases.

On the other hand, a longer CRI length is obtained in the AN mode. For

low λ, the network throughput is similar to the SN and AB modes. This is

because the packets exit the buffer of a transmitter in the AN mode at a lower

rate, so the accumulation of the buffered packets is faster. Consequently, the

expected number E[K] of active transmitters or equivalently decoded packets

per CRI is higher in the AN mode, which compensates for the longer CRI

length. However, the maximum stable value of λ is reduced in the AN mode

compared to the SN and AB modes. The network throughput saturates early

for high λ and the queueing delay increases unboundedly.

Figure 4.5 shows the maximum network throughput in the AB mode of Sec-

tion 4.4 versus the network size K̃. This is obtained by increasing mean data

arrival rate λ to its maximum stable value. The maximum throughput in the

simulated network is plotted along with function K̃/(K̃ + 2). The two curves
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Figure 4.5: Maximum network throughput ηmax versus network size K̃ for the
asynchronous blocking mode: ηmax = K̃/(K̃ + 2).

are matching. This result can be derived similarly to the throughput analysis

of the synchronous blocking (SB) mode in [1]. This also shows that the decod-

ing algorithm in the AB mode is asymptotically optimal: K̃/(K̃+ 2)
K̃→∞−−−→ 1.

In Section 4.3.5 we show that a larger number of packets is required to de-

code S in the AN mode when S is not full rank. Figure 4.6 shows the mean

absolute difference between the rank of S and that of a full rank matrix of

the same dimensions. P = 1000, and S is randomly generated 5000 times.

This is repeated for different collision multiplicities in the range 0 ≤ K ≤ 100.

Clearly the mean rank difference increases with K. However, the difference is

less than 0.1 even for 100 collided packets. This shows that the probability of

pitfall scenario II is low.
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Figure 4.6: Absolute difference between rank of packets S and that of a full
rank matrix of same dimensions as S versus the number of collided packets K.

Figure 4.7 plots the symbol error rate (SER) versus the SNR upon decoding a

mixture of K = 3 packets for two modes: the SB mode of Chapter 2 and the

AN mode. The K active transmitters are randomly selected from a network

of K̃ = 8 transmitters. The characteristic complex exponentials {rk̃}K̃k̃=1
are

equally spaced on the upper half of the unit circle. Each packet has P = 1000

BPSK modulated symbols. As expected, the SER drops for higher SNR values

in the two modes. Lower SER is obtained in the AN mode because not all

K transmitters are necessarily active within every slot of the CRI in the non-

blocking mode, thus being less contended. In addition, the SER drops as

more packets are stacked into Yn for the same value of K in the SB and AN

modes. This is due to noise-averaging that results from expanding the noise-
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Figure 4.7: Symbol error rate versus SNR = 10 log10(1/σ2) for K = 3 collided
packets and N collected mixtures of packets in fully synchronous and fully
asynchronous network operation modes, K̃ = 8.

only subspace U⊥ of Yn.

4.6 Conclusion

We presented a blind collision resolution algorithm based on temporal

diversity for slow fading channels. The method supports immediate transmis-

sions in blocking and non-blocking modes. It also perfectly applies to syn-

chronous networks similar to slot-synchronized NDMA protocols. The decod-

ing complexity solely depends on the number of collided packets. Simulation

results show high throughputs at a minimal increase of the queueing delay in

the blocking mode. The stable range of the data arrival rate at a transmitter

is reduced in the non-blocking mode.
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Chapter 5

Conclusion

5.1 Summary

We presented a set of blind network-assisted diversity multiple access

schemes using root-MUSIC-like algorithms. We first considered the collision

resolution problem in the synchronous blocking mode and presented an analy-

sis of the noise performance of the decoding algorithm. Then we extended the

solution to the non-blocking mode in which the active set of transmitters may

expand within the collision resolution interval. A corresponding throughput

and delay analysis was presented. Finally we dismissed slot and symbol syn-

chronization and tackled the collision resolution problem again in the blocking

and non-blocking modes.

5.2 Future Research Directions

In this work we assumed a slow fading channel with additive white

Gaussian noise. On each path from an involved transmitter to the receiver,

fading does not change for the length of the collision resolution interval. One

research direction is to extend the presented algorithms to fast fading channels,

i.e. the channel may vary over consecutive time slots or within one slot. This
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complicates the signal processing techniques used for signal separation. This

also poses a network challenge to estimate the channels within the collision

resolution interval. On a related note, in this work we assumed the involved

transmitters are static. We may have to address channel estimation in a mo-

bile scenario.

Another research direction is to exploit frequency and space diversity along

with temporal diversity. Temporal diversity has the advantage that the num-

ber of retransmissions per collision resolution interval is dynamically adapted

to the number of involved transmitters. However, transmissions on multi-

frequency and space dimensions may yield diversity gains and enhance the

robustness of the proposed algorithms.
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Appendix A

Appendix to Chapter 3

A.1 Rank(Wn)

Denote by θk the angle of complex exponential rk. Let

θk =
kπ

K̃ + 1
+ φk, 1 ≤ k ≤ K̃ (A.1)

where φk is a random variable that is uniformly distributed over [− π
2(K̃+1)

, π
2(K̃+1)

],

and {φk}K̃k=1 are independent. Transmitter k joins the set of active transmit-

ters at tk = (nk − 1)Pτ . Without loss of generality, assume 1 = n1 ≤ n2 ≤

· · · ≤ nK . The columns of Wn are arranged from left to right in non-decreasing

order of {nk}k.

We prove by mathematical induction that

rank (WTk [:, 1 : k]) = k, (A.2)

where Tk = max(k, nk). The proof goes as follows:
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Base case: At n = n1 = 1, the top left 1 × 1 submatrix of W1 is a non-zero

scalar, so rank(W1[:, 1 : 1]) = 1.

Inductive step: Assume rank(WTk−1
[:, 1 : (k − 1)]) = k − 1.

For Tk−1 ≤ n < Tk, the top Tk−1 rows of Wn are matrix WTk−1
, so rank(Wn[:

, 1 : (k − 1)]) = k − 1 by the inductive step.

Let M hold the first k − 1 columns of WTk−1. M has rank k − 1. At n = Tk,

we partition WTk [:, 1 : k] as follows:

WTk [:, 1 : k] =

(
M −→w (nk−1)

k,Tk
[1 : (Tk − 1)]

−→
C T −→w (nk−1)

k,Tk
[Tk]

)
(A.3)

where row vector
−→
C T holds the T th

k element of the shifted coding vectors of

the first k−1 active transmitters:
−→
C T = [−→w (n1−1)

1,Tk
[Tk], . . . ,

−→w (nk−1−1)
k−1,Tk

[Tk]]. Col-

umn WTk [:, k] is simply the shifted coding vector of transmitter k, partitioned

into its first Tk − 1 elements and the last element. The notation in (A.3) fol-

lows (3.2).

Since M in (A.3) is full rank almost surely, WTk [:, 1 : k] will be rank deficient

only if its last column is in the span of the first k − 1 columns, i.e.
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−→w (nk−1)
k,Tk

[Tk] =
(−→
C T ×M †

)
×−→w (nk−1)

k,Tk
[1 : (Tk − 1)]

= −→x T ×−→w (nk−1)
k,Tk

[1 : (Tk − 1)]
(A.4)

where M † = (MHM)−1MH is the left inverse of M (it exists almost surely

since M is full rank almost surely), and xT is a row vector of length Tk −

1. We distinguish between two cases: if nk = Tk, then −→w (nk−1)
k,Tk

[Tk] = 1

and −→w (nk−1)
k,Tk

[1 : (Tk − 1)] is all zeros. In this case (A.4) is always false and

rank (WTk [:, 1 : k]) = k. On the other hand, if nk < Tk, by rearranging (A.4)

we get

[−→x T ,−1]×

[ −→w (nk−1)
k,Tk

[1 : (Tk − 1)]
−→w (nk−1)

k,Tk
[Tk]

]
= [−→x T ,−1]×−→w (nk−1)

k,Tk
= 0 (A.5)

[−→x T ,−1] is the horizontal concatenation of −→x T and −1 while −→w (nk−1)
k,Tk

is the

vertical concatenation of −→w (nk−1)
k,Tk

[1 : (Tk − 1)] and −→w (nk−1)
k,Tk

[Tk]. From (3.2),

−→w (nk−1)
k,Tk

is function of rk. Suppose there are Tk−nk+1 values {rk,j}Tk−nk+1
j=1 of rk

that satisfy (A.5). The corresponding vectors are denoted as {−→w (nk−1),j
k,Tk

}Tk−nk+1
j=1 .

In this case and using (A.5) we have

[−→x T ,−1]×
(
−→w (nk−1),1

k,Tk
. . . −→w (nk−1),Tk−nk+1

k,Tk

)
=
−→
0 T (A.6)

From (3.2), the top nk−1 rows of W ∗, the matrix of vectors {−→w (nk−1),j
k,Tk

}Tk−nk+1
j=1

in (A.6), are all zeros. Therefore, the last Tk − nk + 1 elements of vector

[−→x T ,−1] in (A.6) form a left null vector of the bottom Tk − nk + 1 rows of
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W ∗. However, from (3.2), these Tk − nk + 1 rows are themselves a full rank

Vandermonde matrix of rank Tk − nk + 1. Therefore, the last Tk − nk + 1

elements of row vector [−→x T ,−1] should be zero. However, the last element of

[−→x T ,−1] is −1 6= 0. This is a contradiction. Therefore, it is impossible to find

Tk − nk + 1 values {rk,j}Tk−nk+1
j=1 of rk that satisfy (A.5). Thus, the number

of valid roots rk that satisfy (A.5) is at most Tk − nk which is finite. Since

θk = ∠rk in (A.1) is randomly selected from a continuous range, (A.5) is not

satisfied almost surely. Thus, rank (WTk [:, 1 : k]) = rank(M) + 1 = k almost

surely. This completes the proof by induction.

A.2 Computation of P (m, i)

P (m,−1) denotes the probability that a CRI of length m starts at in-

stant t0, and some particular transmitter k∗ does not get involved throughout

the CRI. The latter event happens with probability pee
−λ(m−1). The probabil-

ity of the former event is that of a CRI of length m assuming the network size

is K̃ − 1. Therefore,

P (m,−1|K̃) =

{
pee
−λ(m−1) × P (m|K̃ − 1), 1 ≤ m ≤ K̃

0, m = K̃ + 1
(A.7)

The dependence on the network size is stated explicitly in (A.7) for clarity.

The computation of P (m|K̃ − 1) is described in Section 3.2.
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P (m, i) denotes the probability that a CRI of length m starts at instant t0,

and transmitter k∗ gets involved in that CRI in the ith slot, where 1 ≤ i < m.

The event that a CRI of length m occurs may be partitioned into three cases:

1. A CRI of length m occurs and transmitter k∗ gets involved in slot i. This

happens with probability P (m, i).

2. A CRI of length m occurs and transmitter k∗ gets involved in some slot

other than slot i. This happens with probability pbm,i.

3. A CRI of length m occurs and transmitter k∗ is not involved at all. This

happens with probability P (m,−1).

Therefore, P (m, i) is given by

P (m, i) =

{
P (m)− P (m,−1)− pbm,i, m > 1, i < m

0, o.w.
(A.8)

P (m) may be computed as in Section 3.2, and P (m,−1) may be computed as

in (A.7). A polynomial-time algorithm to compute pbm,i is presented in the

code below. The derivation of the algorithm is tedious and thus is skipped for

brevity.

f unc t i on pb m i = P m invo lv ed no t a t i (m, i , Kti lde ,
lambda , p i vec , pe )
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%pb m i : p r o b a b i l i t y that a CRI has l ength m and that a
t r an smi t t e r g e t s

%invo lved in the CRI but not at s l o t i
%i : index o f s l o t at which d e s i r e d t r an smi t t e r invo lved
%m: length o f CRI
%lambda : r a t e o f packets per s l o t
%Kt i lde : s i z e o f network
%p i v e c : vec to r ho ld ing p r o b a b i l i t i e s o f equat ion 6
%pe : p r o b a b i l i t y that the b u f f e r o f a t r an sm i t t e r i s

empty be f o r e the s t a r t
%o f a CRI

a s s e r t ( i<m) ; %Otherwise , need not c a l l t h i s func t i on
s i n c e i t i s

%d e f i n i t e l y the case that f o r a CRI o f
l ength m a tx cannot

%get invo lved at i>=m

K = m−1; %nb o f a c t i v e txs

%f i r s t row o f t r e e S t r u c t u r e corre sponds to l a s t l e v e l o f
T K

%next two rows o f t r e e S t r u c t u r e correspond to
penult imate l e v e l o f T K

%. . .
%l a s t K rows o f t r e e S t r u c t u r e correspond to f i r s t l e v e l

o f T k ( the root )
%below memory requirement not nece s sa ry but only assumed

f o r s i m p l i c i t y
t r e e S t r u c t u r e = −1∗ones (K∗(1+K) /2 ,K) ;

t r e e S t r u c t u r e ( 1 , : ) = p i v e c ;
%s c a l i n g below to account f o r the f a c t that one o f the K

t r a n s m i t t e r s
%cannot be as s i gned to s l o t i , which reduces the number

o f o r de r i ng s o f
%the K t r a n s m i t t e r s
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t r e e S t r u c t u r e (1 , i ) = t r e e S t r u c t u r e (1 , i ) ∗(K−1)/ K;

cnt = 1 ;
f o r e = 1 : (K−1) %moving up t r e e T K

temp = sum( t r e e S t r u c t u r e ( cnt :−1:( cnt−e+1) , 1 : ( s i z e (
t r e eS t ruc tu r e , 2 )−(e−1) ) ) , 1 ) ;

temp = cumsum( temp ( end :−1:2) ) ;
temp = temp ( end :−1:1) ;
cnt = cnt +1;
t r e e S t r u c t u r e ( cnt , 1 : l ength ( temp ) ) = temp .∗ p i v e c

( 1 , 1 : l ength ( temp ) ) ;
cnt2 = cnt ;
f o r e2 = 1 : e

cnt = cnt +1;
t r e e S t r u c t u r e ( cnt , 1 : l ength ( temp ) ) = 1/( e2+1)∗

t r e e S t r u c t u r e ( cnt2−e+e2−1 ,1: l ength ( temp ) ) .∗
p i v e c ( 1 , 1 : l ength ( temp ) ) ;

end
i f i <= (K−e )

a = 1 ;
f o r e3 = ( cnt−e ) : cnt

%s c a l i n g below to account f o r the f a c t that
one o f the K t r a n s m i t t e r s

%cannot be as s i gned to s l o t i , which reduces
the number o f o rd e r i n g s o f

%the K t r a n s m i t t e r s
t r e e S t r u c t u r e ( e3 , i ) = t r e e S t r u c t u r e ( e3 , i ) ∗

(K − a ) / (K−(a−1) ) ;
a = a+1;

end
end

end

pb normal ized = sum( t r e e S t r u c t u r e ( ( end−K+1) : end , 1 ) ) ;
pb m i = pb normal ized ∗ nchoosek ( Kti lde −1,K−1) ∗

f a c t o r i a l (K) ∗ pe ˆ( Kti lde−K) ∗ exp(−( Kti lde−K) ∗(m−1)∗
lambda ) ;
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r e turn ;
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Appendix B

Appendix to Chapter 4

B.1 Rank(Wn)

Denote by θk the angle of complex exponential rk. Let

θk =
kπ

K̃ + 1
+ φk, 1 ≤ k ≤ K̃ (B.1)

where φk is a random variable that is uniformly distributed over [− π
2(K̃+1)

, π
2(K̃+1)

],

and {φk}K̃k=1 are independent. Transmitter k joins the set of active transmit-

ters at tk = ((nk − 1)P + pk)τ . Without loss of generality, assume 1 = n1 ≤

n2 ≤ · · · ≤ nK . Column blocks {−→w k,n,tk,β}k of Wn,β are arranged in Wn,β

from left to right in non-decreasing order of {nk}k. Moreover, p1 = 0 and

pk = (tk − t1)%(Pτ). We prove by mathematical induction that

rank (WTk,β[:, 1 : hk]) = hk

rank
(
WTk+1{pk>0},β[:, 1 : (hk + 1{pk > 0})]

)
= hk + 1{pk > 0} (B.2)

where
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hk = k +
k−1∑
k′=1

1{pk′ > 0} = hk−1 + 1{pk−1 > 0}+ 1 (B.3)

1{·} is the indicator function. Tk is defined by the following recurrence relation

T1 = 1

Tk = max (Tk−1 + 1{pk−1 > 0}+ 1, nk)
(B.4)

The proof goes as follows:

Base case: At n = n1 = 1, the top left 1× 1 submatrix of W1,β is a non-zero

scalar, so rank(W1,β[:, 1 : 1]) = 1.

Inductive step: Assume rank(WTk−1,β[:, 1 : hk−1]) = hk−1. Moreover, if

pk−1 > 0, assume rank(WTk−1+1,β[:, 1 : (hk−1 + 1)]) = hk−1 + 1.

For (Tk−1 + 1{pk−1 > 0}) ≤ n < Tk, the top Tk−1 + 1{pk−1 > 0} rows of

Wn,β are matrix WTk−1+1{pk−1>0},β, so rank(Wn,β[:, 1 : hk−1 + 1{pk−1 > 0}]) =

hk−1 + 1{pk−1 > 0} by the inductive step.

Consider Wn,β for n = Tk. Let M hold the first hk−1 +1{pk−1 > 0} columns of

WTk−1,β. M has rank hk−1+1{pk−1 > 0} = hk−1. We partition WTk,β[:, 1 : hk]

as follows:
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WTk,β[:, 1 : hk] =

(
M −→w (nk−1)

k,Tk,β
[1 : (Tk − 1)]

CT
1

−→w (nk−1)
k,Tk,β

[Tk]

)
(B.5)

where CT
1 = [−→w 1,Tk,t1,β[Tk, :], . . . ,

−→w k−1,Tk,tk−1,β[Tk, :]]. Using (4.21), note that

row vector CT
1 has hk−1 + 1{pk−1 > 0} elements.

ColumnWTk,β[:, hk] is spanned by columnsWTk,β[:, 1 : hk−1] for at most Tk−nk

values of rk. The proof is analogous to the synchronous case in Appendix A.1

where we show that column WTk [:, k] is spanned by columns WTk [:, 1 : k − 1]

for only a finite number of values of rk. Since θk = ∠rk in (B.1) is randomly se-

lected from a continuous range, then WTk,β[:, hk] is not spanned by WTk,β[:, 1 :

hk−1] almost surely. Moreover, rank(WTk,β[:, 1 : hk−1]) = rank(M) = hk−1.

Thus, rank(WTk,β[:, 1 : hk]) = hk. This proves the first equality in (B.2).

In the case where pk > 0, let Ω = WTk+1,β[:, 1 : (hk + 1)] and −→ω k = −→w k,Tk+1,β.

Ω can be partitioned as

Ω =

 M −→ω (nk−1)
k [1 : (Tk − 1)] −→ω (nk)

k [1 : (Tk − 1)]

CT
1

−→ω (nk−1)
k [Tk]

−→ω (nk)
k [Tk]

CT
2

−→ω (nk−1)
k [Tk + 1] −→ω (nk)

k [Tk + 1]

 (B.6)

where CT
2 = [−→w 1,Tk+1,t1,β[Tk+1, :], . . . ,−→w k−1,Tk+1,tk−1,β[Tk+1, :]]. Ω has dimen-

sions (Tk + 1) × (hk + 1). Note that WTk,β[:, 1 : hk] in (B.5) is the 2 × 2 top

left subblocks of Ω in (B.6).
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Let D be the 2 × 2 bottom right submatrix of Ω. Let CT
1,2 be the vertical

concatenation of CT
1 and CT

2 in (B.6), so CT
1,2 has dimensions 2 × (hk − 1).

On the other hand, M is a (Tk − 1) × (hk − 1) matrix that has rank hk − 1

almost surely. Let MS be the selection of hk − 1 rows of M that are full rank,

so MS is a square matrix. Denote by −→ω a and −→ω b the corresponding selections

of the elements of column vectors −→ω (nk−1)
k [1 : (Tk − 1)] and −→ω (nk)

k [1 : (Tk − 1)]

respectively. Let −→ω a,b be the horizontal concatenation of −→ω a and −→ω b, so −→ω a,b

is (hk − 1)× 2. Form the matrix

ΩS =

(
MS

−→ω a,b

CT
1,2 D

)
(B.7)

ΩS is thus a selection of hk + 1 rows of Ω and is a square matrix. Since MS is

a square matrix that is invertible almost surely, we can factorize ΩS using the

Schur complement:

ΩS =

(
I 0

CT
1,2M

−1
S I

)
×
(
MS 0
0 ΩS/MS

)
×
(
I M−1

S
−→ω a,b

0 I

)
(B.8)

where

ΩS/MS = D − CT
1,2M

−1
S
−→ω a,b (B.9)

Apply the determinant to both sides of (B.8). We obtain

|ΩS| = |MS| × |ΩS/MS| (B.10)
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Determinant |MS| is non-zero almost surely. Therefore, ΩS is full rank almost

surely if the 2× 2 matrix ΩS/MS is full rank almost surely. Expanding (B.9),

we have

ΩS/MS =

(
D[1, 1]− CT

1 M
−1
S
−→ω a D[1, 2]− CT

1 M
−1
S
−→ω b

D[2, 1]− CT
2 M

−1
S
−→ω a D[2, 2]− CT

2 M
−1
S
−→ω b

)
(B.11)

The elements of D, −→ω a and −→ω b hold exponents of rk. However, from (B.6),

D[1, 1] and D[2, 1] hold higher-order exponents of rk compared to −→ω a. Sim-

ilarly, D[1, 2] and D[2, 2] hold higher-order exponents of rk compared to −→ω b.

Thus, determinant |ΩS/MS| can be expressed as

|ΩS/MS| = |D|+ lower-order exponents of rk (B.12)

Expanding |D| we get

|D| = −→ω (nk−1)
k [Tk]×−→ω (nk)

k [Tk + 1]−−→ω (nk−1)
k [Tk + 1]×−→ω (nk)

k [Tk] (B.13)

From (B.4), Tk ≥ nk. Thus

|D| =


r

2(Tk−nk)
k = 1 if Tk = nk

(β2 − 1) r
2(Tk−nk)
k if Tk > nk, (Tk − nk)%2 = 1

(1− β2) r
2(Tk−nk)
k if Tk > nk, (Tk − nk)%2 = 0

(B.14)

Since β2 6= 1, (B.12) and (B.14) imply that |ΩS/MS| is a non-trivial polynomial

in rk of degree 2(Tk − nk). Thus, |ΩS/MS| = 0 admits at most 2(Tk − nk) unit
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circle roots rk, which is a finite number of solutions. Since θk = ∠rk in (B.1)

is randomly selected from a continuous range,

|ΩS/MS| 6= 0 (B.15)

almost surely. (B.10) and (B.15) imply

|ΩS| 6= 0 (B.16)

Thus, rank(Ω) = rank(ΩS) = rank(MS) + 2 = hk + 1. This proves the second

equality in (B.2) and completes the proof by induction.
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