

Copyright

by

Melissa Mei Yun Lee

2018

The Report Committee for Melissa Mei Yun Lee

Certifies that this is the approved version of the following Report:

Modular Supervisory Controller for Complex Systems

APPROVED BY

SUPERVISING COMMITTEE:

Eric van Oort, Co-Supervisor

Mitch Pryor, Co-Supervisor

Modular Supervisory Controller for Complex Systems

by

Melissa Mei Yun Lee

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2018

 iv

Acknowledgements

I would like to thank my advisors, Dr. Eric van Oort and Dr. Mitch Pryor,

mentors, family, and friends for their unwavering guidance and support.

 v

Abstract

Modular Supervisory Controller for Complex Systems

Melissa Mei Yun Lee, M.S.E.

The University of Texas at Austin, 2018

Supervisors: Eric van Oort, Mitch Pryor

Automation for the oil and gas industry is driven by the need to improve

efficiency, productivity, consistency, and personnel safety, while reducing cost. Fully

automated systems alleviate the physical toll on human operators and allow them to focus

on monitoring unsafe well events and machinery maintenance. Complex systems like

drilling rigs and snubbing units require supervisory controllers that can safely coordinate

equipment and processes, overcome interoperability challenges and allow for functional

scalability without sacrificing safety, security, and consistency of operations. The

primary objective of this report is to explore the feasibility of developing a modular

supervisory controller architecture which addresses these concerns by modifying and

extending existing architectures. Such modifications include the use of non-homogeneous

models in sub-system modules, including discrete event models for control and physics-

based models for collision avoidance, addition of a system compilation module (Meta

Module) to identify simple design errors, and implementation of an algorithm for

synthesis of modules and filters to replace missing sub-systems. This report discusses the

implementation results of the modular supervisory control architecture (modMFSM) on a

 vi

simplified two-machine drilling system for assessment of design practices. Simulations

for three test cases were executed to assess the ability of the controller to correctly

perform error-free operations, detect and react to possible collisions, and adapt to missing

equipment. The report then discusses the possibilities of extending the modMFSM

architecture to control large complex systems such as drilling rigs, using snubbing

operations as an example.

 vii

Table of Contents

List of Tables ... xi

List of Figures ... xii

Chapter 1: Introduction ...1

1.1 Drilling Automation Background ...1

1.2 Supervisory Control Motivation ...2

1.3 Problem Statement & Research Objective..3

Chapter 2: Literature Review ..6

2.1 Supervisory Control in the Oil and Gas Industry ...6

2.2 Supervisory Control Techniques Overview ..8

2.2.1 Finite State Machines ...9

2.2.2 Petri Nets ..10

2.2.3 Markov Models ..11

2.2.4 Selection of DES Models ...12

2.2.5 Modular Approaches Using Finite State Machines12

2.3 Verification and Validation ..16

2.3.1 Compositional Verification ..16

2.3.2 Simulation Testing ...16

2.3.3 Model Checking ...17

2.4 Literature Review Summary ...18

Chapter 3: modMFSM — An Extended Structure of Modular Finite State Machine

(MFSM) System...19

3.1 Modification to TR FSMs in MFSM Structure ..19

 viii

3.2 System Variables ..20

3.3 Multilevel Hierarchy and Module Types ..21

3.3.1 Operator GUI Module ..22

3.3.2 System Coordinator Module ..23

3.3.3 Meta Module ..23

3.3.4 Operation Modules...23

3.3.5 Equipment Controller Modules..24

3.3.6 Equipment Modules ...24

3.3.7 Manual Module ..24

3.3.8 Physics-Based / Algorithm Modules ...26

Chapter 4: Collision Detection..28

4.1 Heuristic Collision Detection ...29

4.2 Bounding Box Collision Detection ...29

4.3 B-Spline Surface Collision Detection ...30

4.4 Dynamic Object Discovery Collision Detection ..30

Chapter 5: Case Study—Simple Conveyor Belt Drilling System32

5.1 Definition of System and Environment ..32

5.1.1 System Components...32

5.1.2 Process Narrative ...34

5.1.3 Assumptions ...36

5.2 Conveyor Belt Drilling System Controller ...36

5.3 Collision Detection and Resolution ..37

5.4 Implementation ...39

 ix

5.5 Simulations ...43

5.5.1 Case 1: Error-Free Operations ...44

5.5.2 Case 2: Forced Collision ..44

5.5.3 Case 3: Missing Conveyor Belt Machine ..44

5.6 Case Study Results Summary ...45

Chapter 6: Extension of modMFSM to Snubbing Operations ..46

6.1 Definition of System and Environment ..46

6.2 Process Narrative ..46

6.3 System Components ...48

6.4 Formal Specification of System Requirements ..50

6.5 System and Environment Assumptions ..51

6.6 Definition of Modular Controller Structure for Snubbing Automation52

6.6.1 Top Level ...53

6.6.2 Middle Level ..54

6.6.3 Low Level ..57

6.6.4 Sub Level ...58

6.7 Collision Detection ...60

6.8 Verification and Validation ..60

6.9 Summary ...62

Chapter 7: Conclusions and Future Work ...63

7.1 Conclusions ...63

7.2 Future Work ..64

 x

Appendices ...65

Appendix A – Snubbing Unit Equipment ...65

Appendix B – Case Study Controller Design ...72

Appendix C – Case Study Simulation Transitions and Code Output72

Appendix D – Process Narrative Flowcharts for Snubbing72

Appendix E – Snubbing Automation Sensors ..73

Appendix F – Snubbing Automation Formal Specifications75

Appendix G – Snubbing Modular Controller Preliminary Designs78

References ..79

 xi

List of Tables

Table 1. System variables and corresponding sensors for bringing new pipe to the

well center. ..49

Table 2. Formal specifications for system requirements in operations for bringing

new pipe to the well center. ..51

Table 3. Sensors necessary for automated snubbing operations.73

Table 4. Formal specifications for system requirements in operations for bringing

new pipe to the well center ...75

 xii

List of Figures

Figure 1. Generic Manual Module template. ..26

Figure 2. Diagram of the conveyor belt drilling system as used in the case study. The

global reference frame is shown in red in the diagram with the y-axis

coming out of the page. ...33

Figure 3. Process narrative flowchart for drilling a block in the simple conveyor belt

drilling system. ..35

Figure 4. Meta Module for the conveyor belt drilling system. ...37

Figure 5. Process narrative flowchart for snubbing / stripping out pipe.47

Figure 6. Comparison of the modules for the conveyor belt drilling system with those

for snubbing operations...53

Figure 7. High-level diagram of interaction between the System Coordinator Module,

Meta Module, and Operation Modules. ..54

Figure 8. High-level view of schematic for the Snubbing New Pipe Operation

Module. (See Appendix G – Snubbing Modular Controller Preliminary

Designs for the full-size diagrams of the completed snubbing operation

modules.) ...57

Figure 9. Manual error intervention module for snubbing operations.58

Figure 10. Catcher’s mitt module in snubbing operations. ...60

Figure 11. Superior mechanized, standalone snubbing unit. ..65

Figure 12. Floor of a workover unit where the yellow elevator is near the floor

(Shengji Group, 2016). ...66

Figure 13. a) Catwalk in action on a Superior snubbing unit (left); b) NOV

Hydraracker (Hsieh & Vigh, 2017) (right). ..67

 xiii

Figure 14. Catcher’s mitt extended and ready to catch the new pipe coming from the

catwalk. ...67

Figure 15. NOV Hydraulic Power Tongs (National Oilwell Varco, 2018a)68

Figure 16. Snubbing jack near maximum height as it snubs out pipe.69

Figure 17. Slips for snubbing operations (Westco International Consulting, Inc,

2017). ..69

Figure 18. Basic snubbing well control equipment stack (Grace, 2003). Annular BOP

not shown. ...71

 1

Chapter 1: Introduction

1.1 DRILLING AUTOMATION BACKGROUND

Automation for industrial applications, such as in the manufacturing and the oil

and gas industries, is driven by the need to improve efficiency, productivity, consistency,

and personnel safety, while reducing cost (Kurz, 2013). In the oil and gas industry, there

is ongoing effort in developing mechanized and semi-automatic rig equipment, and

control systems, supported by high quality instrumentation (Macpherson et al., 2013).

This technology not only allows many routine drilling operations to be remotely operated

from the driller’s cabin rather than manually on the rig floor, thereby improving

personnel safety, but also provides the driller with optimal drilling parameters

suggestions, dysfunction monitoring and alarms, and regulation of drilling parameters

within a safety envelope, increasing consistency of performance and drilling dysfunction

prevention (Macpherson et al., 2013). The advent of commercially available mechanized

and semi-automatic drilling rig systems has initiated a surge of effort to obtain fully

automated rigs, which require supervisory controllers that act in the capacity of the

driller, coordinating rig equipment for execution of drilling activities. Fully automated

rigs alleviate the physical toll on the rig crew and allow them to focus on monitoring

unsafe well events and machinery maintenance, while being taken out of harm’s way.

Due to financial obstacles including hardware acquisition, retraining, and the

extended life-cycle for rigs and rig equipment, automation efforts have been limited.

Commercially available supervisory controllers such as the NOV Operating System

(NOVOS) that allow for fully automated performance of repetitive drilling activities,

such as tripping, drilling, and pipe connections are currently in development (National

Oilwell Varco, 2018b). However, these controllers are limited by their lack in modularity

 2

and ability to accommodate for varying combinations of equipment from multiple

sources. This challenge is a major obstacle for development and implementation of fully

automated drilling rigs (Macpherson et al., 2013).

1.2 SUPERVISORY CONTROL MOTIVATION

The motivation for this research was the need to develop a supervisory controller

architecture for snubbing operations. Snubbing operations are a subset of drilling,

completions, and production operations, and are performed when it is necessary to run

pipe or other tubulars into or out of a pressurized well for activities such as tripping,

underbalanced drilling, milling, fishing, and well control operations (Grace, 2003). The

main benefit of snubbing is the ability to work in a high pressure well without pumping

high weight fluids or mud into the wellbore, reducing the risk of damaging the formation

(Grace, 2003). Snubbing has three main modes of operation: pipe-light, pipe-heavy, and

balance point (Prebeau-Menezes, 2013). Pipe-light operations are needed when the force

of the pressurized well exceeds the weight of the drill string, which includes the drill

pipes, drill collars, various tools, and the drill bit. In pipe-light situations, if downward

force is not constantly applied to the pipe, forces from the well could expel the drill string

from the well (Prebeau-Menezes, 2013). Pipe-heavy operations are performed when the

weight of the drill string exceeds the force of the pressurized well. Balance point

operations are performed to safely transition the well between pipe-light and pipe-heavy

operations when the well force approximately equals the weight of the drill string

(Prebeau-Menezes, 2013).

Snubbing units can either work as a standalone unit, or as a rig-assist unit, which

is an add-on to a drilling rig. Equipment on standalone and rig-assist units are similar

(Prebeau-Menezes, 2013). Appendix A – Snubbing Unit Equipment describes general

 3

equipment found on snubbing units. In a traditional snubbing unit, the snubbing crew

works in a work basket located directly above the wellbore. Working in the work basket

while the well is under high pressure is extremely dangerous, especially during pipe-light

operations, during which an expelled pipe could critically injure the crew in the work

basket (Prebeau-Menezes, 2013).

Superior Energy Services, Inc. has developed mechanized snubbing rigs which

allow for remote-control of snubbing equipment and catwalk from an adjacent rig cabin,

removing crew from the rig floor for routine operations (Superior Energy, 2016).

Appendix D – Process Narrative Flowcharts for Snubbing presents a detailed process

narrative of a Superior mechanized snubbing rig. This state-of-the-art technology has

made significant improvements to snubbing operation safety, and consistency. However,

many of the repetitive operations such as snubbing in/out tubulars, stripping in/out

tubulars, and pipe handling during pipe-light and pipe-heavy operations can be fully

automated by introducing a supervisory controller to send commands and set points to the

mechanized equipment. Using a supervisory controller to implement repetitive operations

not only further improves performance consistency and safety but also frees the snubbing

crew to monitor performance and watch for dysfunctions.

Snubbing operations are closely related to drilling operations. The smaller

operations scope of snubbing and the existence of commercially available, mechanized

snubbing units make snubbing operations a perfect candidate as a platform for developing

and testing a modular supervisory controller for use in the oil and gas industry.

1.3 PROBLEM STATEMENT & RESEARCH OBJECTIVE

In order to automate systems like drilling rigs and snubbing units, there is a need

for a supervisory controller that enables easy integration and safe coordination of

 4

different automation products. There are a variety of approaches to supervisory control,

reviewed in Section 2.2 Supervisory Control Techniques Overview, but for most

individual components such as rig equipment, the well-understood Finite State Machine

(FSM) is sufficient; however, this approach is untenable when considering the

coordination of all equipment. As will be shown below, other supervisory controllers

found in the literature have challenges that need to be addressed prior to application to

drilling automation in the oil and gas domain. Thus, this report will evaluate the

feasibility for use of a modified version of the modular finite state machine architecture

(modMFSM) with modules developed for reconfiguration and environment interaction

abilities through implementation on a simplified conveyor belt drilling system. This

report will then discuss the extension of the modMFSM architecture to drilling

automation with the context of application to snubbing operations. This approach holds

promise to address modularity and scaling issues, as well as allow use of modules

encompassing various model structures, and enable automatic generation of modules and

filters for human intervention when missing equipment.

The hypothesis of this research is stated below:

It is feasible to develop a modular, supervisory controller that allows for modularity,

functional scalability, safe interaction with the environment, and controller

reconfiguration for complex systems with complicated operations, well-defined tasks, and

interdependent equipment.

As shown in the literature review, there is a need for development of a modular

supervisory controller for complex systems, such as drilling rigs. Controllers for these

systems must allow for functional scalability without sacrificing safety, security, and

consistency of operations. As a proof of concept for testing of the modular supervisory

 5

controller, a study of implementation on a simplified conveyor belt drilling system is

performed. In summary, the objectives of the project were to:

1. Develop a supervisory controller architecture, modMFSM, that addresses the

critical concerns described above.

2. Implement the developed solution of a simplified, but representative system.

3. Demonstrate the controller’s ability to detect potential collisions, and

accommodate equipment replacement.

4. Present extension of the controller architecture for implementation for snubbing

operations.

 6

Chapter 2: Literature Review

This section first provides a review of the state-of-the-art supervisory control as

used in the oil and gas industry, after which an overview of supervisory control

techniques is presented.

2.1 SUPERVISORY CONTROL IN THE OIL AND GAS INDUSTRY

Implementation of supervisory control in the upstream oil and gas industry began

with control and monitoring of production activities in oil fields (De, Silin, & Patzek,

2000; Dunham, 1987; Niven, 1971; Wilson, 1971). These supervisory systems were

strictly serial and had slow response times, since “events in the oilfield [do not] occur at

such a rate that requires immediate computer response” (Wilson, 1971). Since the

implementation of these supervisory systems, the role of a real-time control system user

in the oil and gas industry has been “moving away from [manual control in which one] …

actively monitors the state of a system, identifies when there is the need for control input,

and takes the necessary action to ensure process parameters remain where they are

expected to be” toward a role in which one’s “main function is to monitor the automation

and to be ready and able to intervene – to re-take manual control – should problems arise

with the automated systems” (McLeod, 2015).

In the late 1980s, Supervisory Control and Data Acquisition (SCADA) Systems

were developed for monitoring and control of distributed processes where a master

terminal unit (MTU) controls remote terminal units (RTU) that interact directly with the

lower level process controllers (Gaushell & Darlington, 1987; Ito, 1997). The challenges

of SCADA systems are that these systems are best suited for environments with “stable

ambient conditions,” maintaining reliable communication and calibration is often

difficult, and there is sensitivity to power fluctuations (Ito, 1997). In addition to SCADA

 7

systems, development of mechanized rig equipment for teleoperation began to allow

remote control of certain drilling operations away from the rig floor; this mechanization

effort has led to significant progress in development of tele-operated and semi-automatic

operations (Brugman, 1987; Cao & Moralez, 2016; US5988299 A, 1999; C. W. Lee &

Won, 2013; Loeyning, 2017; Schlumberger Limited, 2018; Ugasciny, Chang, &

Hampson, 2016).

Maturation of increasingly sophisticated mechanized and semi-automatic rig

systems spurred interest in development of fully automated drilling rigs. Some of the

major cutting-edge efforts in the industry are detailed in (Ayling, Jenner, & Neffgen,

2003; Calderoni & Cercato, 2015; Huisman, n.d.; Jacobs, 2015; MacGregor, n.d.; Nabors,

2018; Nabors Industries Ltd., 2018; Ornas, 2010; West Group, 2015). The surge of effort

in drilling automation has also led to the development of supervisory control systems for

automatic execution of drilling sub-operations through employment of automata-like

network of states shown in (National Oilwell Varco, 2018b), and Petri nets (Prati,

Farines, & de Queiroz, 2015). Saadallah developed a DES model of a drilling control

system for coordination of drilling equipment and activities as a Petri net (Nejm

Saadallah, 2013). Simulations were done to show the feasibility of this control model to

be implemented for either semi-automatic or fully automatic control of drilling activities.

NOVOS, a commercially available drilling system with controllers for automatic

execution of drilling activities is in the process of being expanded to allow for fully

automatic coordination and execution of drilling activities (National Oilwell Varco,

2018a).

In order to fully automate large systems in complex environments such as those

found in the oil and gas industry, development of supervisory controllers which can

safely coordinate various equipment and processes are critical. Supervisory control

 8

efforts in the oil and gas industry have significantly progressed from automated

monitoring and control of relatively stable processes in oil fields to development of

automated drilling processes, which require significantly quicker responses in more

unpredictable environments. Despite the advancements of supervisory control

development for drilling in the oil and gas industry, many issues remain to be tackled,

including those of modularity, and functional scalability, which motivate the need to

explore the development of a modular supervisory controller architecture for drilling

operations and other systems of similar size and complexity.

2.2 SUPERVISORY CONTROL TECHNIQUES OVERVIEW

Supervisory control is used in applications for which “control and coordination”

are required for “orderly flow of events” (Ramadge & Wonham, 1989). Supervisory

controllers should satisfy safety requirements, enable task planning, allow for functional

scalability, and be verifiable (N. Saadallah, Meling, & Daireaux, 2011). Discrete event

systems (DES) have discrete state spaces that adapt to “abrupt occurrence, at possibly

unknown irregular intervals, of physical events” (Ramadge & Wonham, 1989). DES can

be modeled as untimed, timed, and hybrid systems. Untimed system models are purely

event-driven and do not rely on time information. Timed system models are ones where

timing information is crucial. Hybrid systems “combine time-driven with event-driven

dynamics” (Cassandras & Lafortune, 2011). Recent research on hybrid systems have

applied them for real-time manufacturing operation as in (Saez, Maturana, Barton, &

Tilbury, 2018) and analyzed approaches for inclusion of fault detection and isolation as in

(Khorasgani & Biswas, 2018). The routine operations of the systems considered in this

report are assumed to be event driven with negligible dependence on timing information.

Therefore, only DES control techniques will be explored. Although many different types

 9

of DES models exist, the more common DES models explored in this literature review

are finite state machines (FSMs), Petri nets, and Markov decision processes.

2.2.1 Finite State Machines

A common approach to modeling DES is through the use of finite state machines

(FSMs). Deterministic FSMs are represented by the six-tuple 𝐺 = (𝑋, 𝐸, 𝑓, Γ, x0, 𝑋𝑚),

where

𝑋 = finite set of states

𝐸 = finite set of events

𝑓 = transition function that maps starting states and events to ending states

Γ = active event function to define the events that allow transitions

𝑥0 = initial state

𝑋𝑚 = finite set of marked states

There are two basic variants of FSMs: Moore machines which produce outputs as

a result of the current state, and Mealy machines which produce outputs as a result of the

transition between states (Cassandras & Lafortune, 2011). In order to capture instances

when transition allowance depends on external variables such as time, guards—generally

in the form of if-statements—are added to the transition definitions. Guarded FSMs are

called extended finite state machines (Fowze & Yavuz, 2016). In traditional automata

theory, supervisory controllers control FSM systems by disabling undesired transitions

(Cassandras & Lafortune, 2011)]. In order to ensure desired system behavior, the widely

used software tools, such as SMV and SPIN, among others, can be used for model

checking of FSMs.

 10

FSMs generally display good performance for small and medium scale systems.

FSMs “can immediately access the control pattern for each controllable transition based

on the current encoded state,” and can perform reachability searches, assuring prompt

controller response, which is crucial for systems with strict real-time requirements (Zhu

& Brooks, 2009). However, this quick response has a high computational cost dependent

on the size of the state space. There is potential to mitigate this cost through separation

into sub-systems that limit the search to the state space of the relevant sub-system.

2.2.2 Petri Nets

Using a Petri net is another common approach to modeling DES, and was the

chosen approach in Saadallah’s drilling control system model (Nejm Saadallah, 2013).

Petri nets have also been used for hybrid systems, and modular supervisory control

(Basile, Chiacchio, & Coppola, 2012; J. S. Lee, Zhou, & Hsu, 2007; Lennartson,

Bengtsson, Wigström, & Riazi, 2016; Nishi, Watanabe, & Sakai, 2018; Wu, Zhou, &

Chu, 2008). A Petri net is represented by the tuple 𝑆 = (𝑃, 𝑇, 𝐼, 𝑂, 𝑈), where

𝑃 = finite set of places, which can hold tokens for state-specific requirements

𝑇 = finite set of transitions

𝐼 = finite set of arcs from places to transitions

𝑂 = finite set of arcs from transitions to places

𝑈 = integer vector representing the current marking

The state of the Petri net is shown by its marking, which is a “vector expressing

the number of tokens in each place” (Zhu & Brooks, 2009). Conditions on transitions in

Petri nets can be modeled with predicate / transition Petri nets for meeting conditions

 11

before transitioning (Genrich, 1986). SMV and SPIN cannot be used for model checking

Petri nets directly. Methods exist for translation of Petri nets to language used in the

mainstream formal model checking software like SMV; however, use of finite state

machines would avoid potential errors that could be lost in translation (Szpyrka,

Biernacka, & Biernacki, 2014).

Compared to FSMs, Petri nets have greater modeling power, allow for efficient

real-time control and analysis due to mathematical computation of properties which

employ linear matrix algebra, and allow for automatic handling of concurrent events (Zhu

& Brooks, 2009). “An automaton can always be represented as a Petri net, [but] not all

Petri nets can be represented as finite-state automata; [therefore], Petri nets can represent

a larger class of languages” (Cassandras & Lafortune, 2011). Petri nets also provide more

compact state spaces than FSM, making them better suited to model systems with

repeated structure (Zhu & Brooks, 2009). Additionally, Petri nets are capable of

modeling concurrent models in a simpler format than FSMs; however, more problems are

decidable for FSMs than for Petri nets (Cassandras & Lafortune, 2011). The main trade-

off between FSMs and Petri nets is model richness versus decidability.

2.2.3 Markov Models

Markov models are stochastic models that capture environments with

probabilistic transitions. In order to be modeled by Markov models, the environments

must be proven to obey the Markov property, which states that the value of the next state

depends solely on the current state and not the path history that led to the current state.

Although Markov models are useful for capturing uncertainty, they are data

intensive and require knowledge of transition probabilities, rewards for each state, action,

 12

and observation. They also require “every attribute value combination to be enumerated,”

which can lead to large state spaces for small problems (Cassandra, 1998).

2.2.4 Selection of DES Models

FSMs, Petri nets, and Markov models all have their advantages and

disadvantages. The choice of which approach to use for control of a DES is specific to

the application. Markov models depend heavily on knowledge of the environment that

may not be available for all systems, which would then require learning techniques.

Therefore, Markov models were not used for modeling the type of systems explored in

this paper. In choosing between FSMs and Petri nets, the main point of consideration is in

model richness versus decidability. Since Petri nets can be derived from FSMs should

FSMs prove to be unable to provide the level of model richness necessary for controllers

of the complex systems explored in this paper, FSMs were used in this controller

architecture to allow for better decidability.

2.2.5 Modular Approaches Using Finite State Machines

One of the main disadvantages of modeling systems as FSMs is the tendency for

the state space to grow rapidly for complex systems, which lead to exponential number of

states and processes. However, this state space explosion can be mitigated through

modular controller synthesis by “decomposing the [the system] into simpler

components…[which allows] greater structure and flexibility to be incorporated into the

controller” (Ramadge & Wonham, 1989; Thistle, 1996).

Endsley proposed a particularly promising modular supervisory control

architecture, which, devised for complex manufacturing systems, decomposes the

systems into sub-systems housed in structures called modules which interact with each

 13

other to form a modular supervisory controller (Endsley, 2004). Since input / output finite

automata called trigger / response finite state machines (TR FSMs) are used to model the

subsystems inside the modules, this architecture is called Modular Finite State Machines

(MFSMs). Unlike traditional finite state machine supervisory controllers which block

illegal actions of the plant, the MFSM supervisory controller “forces events to occur” (E.

E. Almeida, Luntz, & Tilbury, 2007). Defined in this section are the major components of

the MFSM architecture.

TR FSMs used in MFSM theory are defined by

FSM = (XFSM, TFSM, RFSM, τFSM, x0FSM
, xdpFSM

, XMFSM
), where

XFSM = finite set of states in the FSM

TFSM = finite set of triggers recognized by the FSM

RFSM = finite set of responses produced by the FSM

τFSM = finite set of transitions between states in the FSM

x0FSM
 = initial state

xdpFSM
 = dump state (state without outgoing transitions)

XMFSM
 = set of marked states (accepting states)

Dump states are generally not shown in the TR FSM diagram unless there exists a

transition to that state.

Unlike in traditional automata theory, the supervisory controller in MFSM theory

is designed to only include desired state transitions rather than disabling actions of the

DES. Therefore, transitions of TR FSMs are defined by τ = (t𝜏, xsτ
, xdτ

, rτ), where

tτ = trigger for transition

 14

xsτ
 = source state of the transition

xdτ
 = destination state of the transition

rτ = [rτ,1, … , rτ,mτ
] = set of responses as a result of the transition

As previously mentioned, TR FSMs in MFSM theory are housed in modules. The

modules communicate with each other through ports on the modules called sockets,

which are defined by, SMi
= (TMi

, RMi
), where

TMi
 = set of triggers that travel in through socket SMi

RMi
 = set of responses that travel out through socket SMi

Therefore, modules can be defined by the TR FSM they house and the sockets

through which they communicate with other modules. A module is defined by M =

(FSM, SM), where

FSM = (XFSM, TFSM, RFSM, τFSM, x0FSM
, xdpFSM

, XMFSM
)

SM = {SM1
, … , SMn

} for n number of sockets

Filters act as the interface between two modules, defining the interaction between

them. Therefore, filters house classical FSMs with no responses. Filters are especially

important in the execution of modular verification because modules that satisfy the

specifications of their filters also satisfy the specifications on their interaction with other

modules. This type of verification for modular systems is similar to contract-based

design, which is commonly used for development of component-based software design

and multi-component cyber-physical systems (Nuzzo, Finn, Iannopollo, & Sangiovanni-

 15

Vincentelli, 2014; Söderberg & Johansson, 2013). Filters are defined by F =

(FSM, SFa
, SFb

), where

FSM = (XFSM, TFSM, RFSM, τFSM, x0FSM
, xdpFSM

, XMFSM
) with RFSM = ∅

SFa
= (TFa

, RFa
) = a socket

SFb
= (TFb

, RFb
) = b socket

Filters sit on pipes that connect the sockets of communicating modules. Pipes are

defined by P = (SPa
, SPb

, FP), where

SPa
= (TPa

, RPa
) = a socket

SPb
= (TPb

, RPb
) = b socket

FP = (FSM, SFa
, SFb

) = filter on pipe

Lastly, a system of modules is defined by S = (MS, FS, PS), where

MS = {M1, … , MnM
} = finite set of modules in the system

FS = {F1, … , FnF
} = finite set of filters in the system

PS = {P1, … , PnP
} = finite set of pipes connecting modules and filters

Although the MFSM architecture uses finite state machines in the modules, the

module-based structure shows potential for individual modules to house different types of

controllers depending on the specific system represented.

 16

2.3 VERIFICATION AND VALIDATION

In order to test the robustness and correctness of the system controlled by the

modMFSM, the system must be validated and verified. Validation proves that the system

has the desired abilities, and verification proves that the system meets the required

specifications and does not violate safety constraints (Zheng, Julien, Kim, & Khurshid,

2017). DES can be verified and validated through “test and simulation, model checking,

and theorem proving” (Allen, Goh, & Tilbury, 2012). For verification and validation of

the modMFSM structure, compositional verification, software testing, and model

checking are considered. These methods complement each other for full testing of the

system as accuracy of the methods separately are limited by the chosen scenarios, and the

defined specifications, respectively (Lipka, Paška, & Potužák, 2014).

2.3.1 Compositional Verification

The compositional verification algorithm for MFSM theory checks that the

controller will not send any module into a “dump” state, proving that there are no

compositional errors, conflicted responses are avoided, and each module satisfies its

corresponding filters (Endsley, 2004).

2.3.2 Simulation Testing

Software testing is a method for validating that the system meets the ability

requirements and works as desired. Definition of the specific scenarios for simulation

“from analytical description is widely recognized in literature” (Lipka et al., 2014).

Unlike model checking, which relies on searching the states of the discrete event system,

simulation testing is less susceptible to scaling issues for large systems. Scenario-based

evaluation also allows assessment of the system’s ability to handle situations that may not

 17

be able to be tested through model checking (e.g. model checking does not force

collisions to test a collision detection algorithm).

2.3.3 Model Checking

Model checking is used to prove adherence to desired system behavior. More

specifically, model checkers search for violation of the specifications by providing

counter-examples (Cassandras & Lafortune, 2011). To mitigate computational

complexity of checking large systems, Hill et al. (R. C. Hill, Cury, de Queiroz, Tilbury,

& Lafortune, 2010) show that “controllability and nonblocking of global systems [can be

proven] through local checking” in hierarchical, modular systems without flattening the

modules into a giant state machine, provided the system structure meets certain

requirements, which are fully defined in (Richard Charles Hill, 2008). Additionally,

through an evaluation of software testing versus software model checking, Beyer and

Lemberger show that model checking can also efficiently identify bugs in the system

(Beyer & Lemberger, 2017).

Desired system behavior can be defined using formal specifications. Three main

categories of formal specifications are:

 Safety Specifications – to avoid illegal behavior.

 Invariant Specifications – to meet requirements specific to the system state.

 Liveness Specifications – to ensure absence of infinite loops, or to guarantee goal

realization (Topcu, 2017).

Although system specifications commonly fall in these three categories, there exist

formal specifications outside these categories.

Linear Temporal Logic (LTL) is a formal language that uses Boolean atomic

propositions to define formal specifications such that discrete event systems can be

 18

checked for fulfillment of desired system behavior. Software tools such as SMV,

NuSMV, and SPIN for checking systems against LTL specifications are well-developed

and widely used (Cassandras & Lafortune, 2011).

Although formal verification and validation is a vital step in proving the

robustness and correctness of the model and software, it is beyond the scope of this

paper, but will be the next step in future research.

2.4 LITERATURE REVIEW SUMMARY

Supervisory controllers for large, complex systems like drilling rigs and snubbing

units require guaranteed safe coordination of equipment and processes. Supervisory

control efforts in the oil and gas industry have made significant progress, but there is still

a need for supervisory controllers that can provide modularity, and functional scalability.

Supervisory controllers of event-driven discrete event systems are commonly

modeled as FSMs, Petri nets, and MDPs. Choosing a model approach depends on the

needs of the application. For large, complex systems like drilling rigs, it is beneficial to

choose a model that can be decomposed into sub-systems, and maximizes decidability.

Therefore, the MFSM architecture—which models large systems as a network of

connected modules, each housing a subsystem modeled by trigger / response finite state

machines—was used as the foundational structure on top of which modifications were

made to meet the requirements for control of complex systems.

 19

Chapter 3: modMFSM — An Extended Structure of Modular Finite

State Machine (MFSM) System

Based on a reading of the literature and best industry practices, this research

extends the modular finite state machine (MFSM) structure developed for reconfigurable

machinery in the manufacturing industry, described in the previous chapter. The extended

controller structure uses various models within modules, including guarded trigger /

response finite state machines, in order to model a hierarchical supervisory control

structure. The developed supervisory control structure (modMFSM) adapts to remote and

on-site manual interventions, new equipment, collisions, and missing equipment. This

section details the modular, supervisory controller architecture design.

3.1 MODIFICATION TO TR FSMS IN MFSM STRUCTURE

Endsley’s MFSM structure uses trigger / response finite state machines (TR

FSMs) in the modules and filters. In the proposed modified structure, transitions are

triggered by events and/or fulfilled guards, or conditions, to respond to changes in system

and environment variables to ensure safety and procedural compliance. The use of guards

for input/output state machines is not a novel concept as shown in (Y. L. Chen & Lin,

2000), and have been applied to MFSMs through implementation of MFSMs as Event-

Condition-Action (ECA) systems (E. E. Almeida et al., 2007; E. T. Almeida, Luntz, &

Tilbury, 2005). In ECA systems, a rule affects transitions such that when an event

happens, if the condition is satisfied, then the actions are performed. Although this

implementation allows for the application of conditions for transitions based on

observations of the environment, the MFSMs as ECA systems restricts the structure of

the MFSMs such that there must be a main module to which peripheral modules are

attached. The peripheral modules are only attached to the main module, and therefore,

 20

cannot communicate with each other. If this ECA system implementation were to be

applied to drilling automation, the main module would control the drilling procedure, and

the peripheral modules would represent the sub-systems and equipment. However, for

drilling automation, this ECA system structure does not suffice as it does not allow event

detection modules, such as collision detection, to interact with equipment in parallel to

the main module that controls the drilling process. Therefore, to relax the structural

requirement of ECA systems, yet implement conditional transitions for MFSMs, guard

conditions are captured by modifying the finite state machine transition definition.

𝜏 = (𝑡𝜏, 𝑐𝜏, 𝑥𝑠𝜏
, 𝑥𝑑𝜏

, 𝑟𝜏)

where

𝑡𝜏 = trigger for transition

𝑐𝜏 = transition condition (e.g. 𝑛𝑑𝑟𝑖𝑙𝑙𝑒𝑑 < 𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑)

𝑥𝑠𝜏
 = source state of the transition

𝑥𝑑𝜏
 = destination state of the transition

𝑟𝜏 = {𝑟𝜏,1, … , 𝑟𝜏,𝑚𝑟
} = sequence of responses as a result of the transition

3.2 SYSTEM VARIABLES

To allow for interaction of the supervisory controller with the environment for the

guard conditions mentioned in the previous section, system variables are introduced to

the MFSM architecture. These system variables are stored in a global database that can

be accessed by all modules and filters in the system. The concept of using system

 21

variables in conjunction with discrete event systems, including finite state machines and

Petri nets, have been implemented previously in (Y. L. Chen & Lin, 2000; Gaudin &

Deussen, 2007; Lennartson et al., 2014; Yang & Gohari, 2005). A particularly relevant

piece of work is the incorporation of system variables with extended finite state machines

in (Teixeira, Malik, Cury, & Queiroz, 2015). Incorporation of system variables in the

modMFSM architecture allows modification of the system variables to be a responsive

action in transitions. Therefore, the final definition of the transitions in the finite state

machines is:

𝜏 = (𝑡𝜏, 𝑐𝜏, 𝑥𝑠𝜏
, 𝑥𝑑𝜏

, 𝑟𝜏, 𝑟𝑠𝑦𝑠)

where

𝑡𝜏 = trigger for transition

𝑐𝜏 = transition condition (e.g. 𝑛𝑑𝑟𝑖𝑙𝑙𝑒𝑑 < 𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑)

𝑥𝑠𝜏
 = source state of the transition

𝑥𝑑𝜏
 = destination state of the transition

𝑟𝜏 = {𝑟𝜏,1, … , 𝑟𝜏,𝑚𝑟
} = set of responses as a result of the transition

𝑟𝑠𝑦𝑠= {𝑟𝑠𝑦𝑠,1, … , 𝑟𝑠𝑦𝑠,𝑚𝑠𝑦𝑠
} = set of modifications to system variables as a result of

the transition

3.3 MULTILEVEL HIERARCHY AND MODULE TYPES

In the modMFSM controller structure, the modules are organized into eight

categories for better understanding of each module’s role in the system, and to allow for

easy categorization of modules into the appropriate levels for hierarchical control, which

 22

is naturally supported by the modularity of the modMFSM structure. Hierarchical

supervisory control has been explored for various discrete event systems, including for

MFSM systems (R. C. Hill et al., 2010; Richard Charles Hill, 2008; Ngo & Seow, 2014).

The modularity of the MFSM structure allows the controller hierarchy to be easily

rearranged to fit the desired system. This hierarchical structure aids in reducing

complexity of the subsystem controllers, and allows for more flexible controller and

equipment modularity.

 For systems similar to drilling rigs and snubbing units, four levels are considered:

 Top Level – This level makes high-level decisions, and contains the Operator

GUI Module, the System Coordinator Module, and the Meta Module.

 Middle Level – This level coordinates sub-systems to reach operational goals, and

contains the Operation Modules. The Operation Modules represent the

operational modes of the system.

 Low Level – This level of modules control the sub-systems directly, and contain

the Equipment Controller Modules, Manual Modules, and Physics-Based /

Algorithm Modules.

 Sub Level – This is the lowest level of the hierarchy, and contains the Equipment

Modules, which interact directly with the machinery.

3.3.1 Operator GUI Module

The Operator GUI Module represents the GUI interface with which the human

operator interacts. The most basic function of the Operator GUI Module is to activate the

system. There is only one Operator GUI Module per system.

 23

3.3.2 System Coordinator Module

The System Coordinator Module coordinates the operational goals for the system,

and triggers the relevant Operational Module.

3.3.3 Meta Module

The Meta Module runs through detection of missing equipment and controllers by

checking for disconnected sockets. If there is missing equipment or controllers, the Meta

Module will automatically synthesize Manual Modules, and corresponding filters,

sockets, and pipes to represent manual operator control of the system as replacements for

missing equipment. This automatic synthesis procedure is in the simplest state, such that

it allows multiple triggers, but only one response. Future research will be needed to

develop an automatic synthesis algorithm that allows for multiple responses. Synthesis of

discrete event systems controllers satisfying formally defined desired system behaviors is

an ongoing and well established area of supervisory control research (Asarin, Maler, &

Pnueli, 1994; Leduc, Dai, & Song, 2009; Malik & Teixeira, 2016; Thistle, 1996).

However, the automatic generation of filters that correctly regulate interaction among

modules has not been developed, but would alleviate the design effort needed and allow

for more efficient controller reconfiguration. In his work, Hill has further investigated the

construction of inter-module filters that satisfy global system properties; however, this

algorithm requires designer input, but shows potential for implementation in a more

sophisticated, automatic filter generation algorithm (Richard Charles Hill, 2008).

3.3.4 Operation Modules

The Operation Modules coordinate the activities of the sub-systems to reach the

operational goal of the system as specified by the System Coordinator Module. Each

Operation Module represents an operational mode of the system. For instance, an

 24

automated drilling rig would have a tripping operational mode and a drilling operational

mode, which would coordinate the running of pipe in and out of a well, and coordinate

drilling the well, respectively. Each of these operational modes would be represented by a

separate operation module to allow for isolated modification of operational procedures

and sub-system involvement.

3.3.5 Equipment Controller Modules

These modules represent the supervisory controllers for sub-systems and

coordinate the equipment activities.

3.3.6 Equipment Modules

This type of module models each piece of equipment, and send commands to the

machinery.

3.3.7 Manual Module

The Manual Module encompasses a simple TR FSM that facilitates the transition

of operations control between the supervisory controller and the human operator. The

Manual Module is designed to be a versatile substitute for modules when a common error

occurs that requires human intervention, or when operation modules, equipment

controller modules, or equipment modules are missing. For instance, when the system

identifies a piece of missing equipment, it creates a Manual Module that accepts triggers

and produces a response as previously done by the missing equipment. Defined below is

the framework for the TR FSM of a generic Manual Module that takes in one trigger and

produces one response:

𝐹𝑀 = (𝑋𝐹𝑀
, 𝑇𝐹𝑀

, 𝑅𝐹𝑀
, 𝜏𝐹𝑀

, 𝑥0𝐹𝑀
, 𝑥𝑑𝑝𝐹𝑀

, 𝑋𝑀𝐹𝑀
)

 25

where

𝑋𝐹𝑀
 = {idle, manual_control}

𝑇𝐹𝑀
= {1.trigger, 2.auto}

𝑅𝐹𝑀
 = {1.response, 2.manual}

𝜏𝐹𝑀
 = {(1.trigger, [], idle, manual_control, [2.manual]), (2.auto, [],

manual_control, idle, [1.response])}

𝑥0𝑀
 = idle

𝑥𝑑𝑝𝑀
 = dump

𝑋𝑀𝑀
 = idle

Defined below and shown in Figure 1 is the generic Manual Module:

𝑀 = (𝐹𝑀, {𝑆𝑀1
, 𝑆𝑀2

, 𝑆𝑀3
, 𝑆𝑀4

})

where

𝐹𝑀 = Described above.

𝑆𝑀1
 = {[1.trigger], [1.done]}

𝑆𝑀2
 = {[2.auto], [2.manual]}

 26

Figure 1. Generic Manual Module template.

3.3.8 Physics-Based / Algorithm Modules

A major advantage to using a module-based structure for building modular

controllers is that the model type inside each module is not required to match the model

types inside other modules as long as interaction requirements are met. For instance, one

equipment module may encompass a trigger / response finite state machine while another

equipment module hosts a Petri net. As long as the interior model is able to render the

appropriate responses for the sockets of the module in order to interact with the other

modules in the system, the choice of the interior model is only dependent on the purpose

of the module.

This is especially useful if the supervisory controller requires physics-based

algorithms for action selection based on environment observation, for instance in the case

of error detection, or collision detection. In order to avoid detected collisions, the

approach to resolution of events created by the collision detection module is to create a

priority queue for these events that would be resolved first when executing the controller.

 27

The use of such physics-based algorithm modules will be explored in the snubbing case

study through the inclusion of collision detection for safe coordination of equipment, as

further described in Chapter 4: Collision Detection. Although collision detection is the

primary focus in this effort, the concept could be useful for other systems in the future.

For example, on a drilling rig, close monitoring of cavings reveal important information

about downhole conditions, which could trigger the need for a change in the operational

conditions. A system is currently under development at the University of Texas at Austin

to detect cavings at the mud shaker that utilizes a cuttings transport model (Han et al.,

2017). This system could be included in a drilling rig modular supervisory controller as a

module similar to a collision detection module.

 28

Chapter 4: Collision Detection

To ensure safe operations, the supervisory controller must coordinate the

subsystems such that the moving machinery never collide. Collision detection has been a

fundamental concept in controls research, and an ongoing investigation topic in robotics,

and computer graphics and simulations. The ideal collision detection system would run in

the background and interrupt the system as necessary to avoid collision. This chapter

discusses the collision detection approaches considered when designing the supervisory

controller for the simplified case study system and for drilling.

In the proposed supervisory control framework, collision detection is

implemented as a physics-based algorithm module, which interacts with the operation

level module and the relevant equipment modules in the relevant subsystem. The

collision detection module interacts with the other modules such that when a potential

collision is detected, it will send commands to stop movement of equipment, store the

current states of the equipment and operation modules, send commands to a collision

resolution module for relocation of equipment to avoid collision, and return the

equipment to the stored current state such that the original process can be resumed.

Out of the many developed collision detection algorithms, three general types of

collision detection algorithms were explored when designing the supervisory controller

for the simplified case study and for drilling:

 Heuristic Collision Detection

 Bounding Boxes Collision Detection

 B-Spline Surface Collision Detection

 29

4.1 HEURISTIC COLLISION DETECTION

The heuristic approach simply restricts the movement of each piece of equipment

dependent on the location of other active equipment. These relationships must be defined

during the design of the model inside the collision detection module prior to

implementation. For instance, in the case of snubbing operations, if the tongs are

extended, then a minimum safe height is defined for the elevator, leaving a margin of

distance before collision with the extended tongs, such that if the elevator reaches this

minimum height, movement is stopped and the tongs moved out of the way before the

elevator is allowed to resume descending. Although this is a relatively simple approach, it

is not flexible to the addition or replacement of equipment. Bounding boxes is a more

adaptive approach.

4.2 BOUNDING BOX COLLISION DETECTION

The widely used bounding box collision detection approach approximates the

volume of each piece of equipment by considering an invisible box surrounding the

equipment. If the bounding boxes of two objects overlap, then there is a possibility of

collision. Common variations of the bounding box approximation are: axis-aligned

bounding box (AABB), spheres, and oriented bounding box (OBB) (Kockara, Halic,

Iqbal, Bayrak, & Rowe, 2007). Bounding box collision detection is another algorithm that

can be included in the collision detection module for snubbing operations, chosen for its

ability to adapt better to general shapes than other algorithms such as simplex-based or

feature-based (Kockara et al., 2007).

For the case study in this report, ABB, where the sides of the rectangular

bounding box align with the principal axis, which allow for accommodation of deforming

objects, was implemented (Jiménez, Thomas, & Torras, 2001). Therefore, various

 30

reference frames were defined to locate and orient the bounding boxes. A global

reference frame was established at a central location. Each piece of equipment had a local

reference frame attached to the center of the piece of equipment, and the equipment’s

bounding box was defined with respect to the local reference frame. All equipment

movement was then calculated with respect to the global reference frame, which allowed

detection of overlapping bounding boxes prior to the occurrence of a collision.

Since calibration of sensors is beyond the scope of the controller design this

method is dependent on the assumption that the local reference frames of the equipment

are properly calibrated with the origin of the global reference frame prior to

commencement of operations.

4.3 B-SPLINE SURFACE COLLISION DETECTION

B-spline surfaces are able to approximate complex shapes more closely than

polyhedral approximations. For B-spline approximations, it is possible to calculate

minimum distance between B-spline surfaces for collision detection (Chang, Choi, Kim,

& Wang, 2011). Although this type of collision detection provides more freedom of

movement for the equipment and is less conservative, it requires knowledge of the

specific geometry of the equipment. Exploration of this level of collision detection is

outside the scope of this project.

4.4 DYNAMIC OBJECT DISCOVERY COLLISION DETECTION

Although the purpose of this supervisory controller is to track the location of the

components of the controlled system, there can still exist components within the system

workspace for which the locations are unknown. This occurs when unmodeled objects

enter the workspace at uncertain times and frequencies. For instance, in a snubbing unit,

 31

there remains a risk of human crew members entering the rig floor at uncertain points

which could lead to collisions. Dynamically discovering objects that move in and out of

the workspace can be performed via various sensors with possible combination with real-

time image processing of cameras monitoring the environment. Dynamic object

recognition and position detection has been extensively explored in robotics (S. Y. Chen,

2012). The idea of using image processing for drilling rig activity recognition is a new

area of research in the oil and gas industry and can be leveraged for dynamic object

discovery collision detection (Hegde, Awan, & Wiemers, 2018). Although this is a

valuable path for exploration in future research efforts, this approach to collision

detection calculation is beyond the scope of this effort.

 32

Chapter 5: Case Study—Simple Conveyor Belt Drilling System

As a proof of concept, the modMFSM controller architecture was applied to a

simple conveyor belt drilling system. The conveyor belt drilling system is formatted to

demonstrate the controller's hierarchical structure, inclusion of physics-based models,

modularity, and automatic generation of manual modules and corresponding filters. This

section describes the simple conveyor belt drilling system, the design of its modular

supervisory controller, and simulations of the implemented controller.

5.1 DEFINITION OF SYSTEM AND ENVIRONMENT

In order to design any controller, a model of the plant system and a thorough

definition of the expected behaviors of the controlled system are necessary. This section

defines the system components, process narrative, and assumptions needed to design a

supervisory controller for a simple conveyor belt drilling system.

5.1.1 System Components

Identification of the hardware needed for automation of all activities is a critical

step for designing a controller for coordination of equipment and processes. The

conveyor belt drilling system contains two pieces of equipment: a drill robot, and a

conveyor belt. Figure 2 presents a diagram of the conveyor belt drilling system.

 33

Figure 2. Diagram of the conveyor belt drilling system as used in the case study. The

global reference frame is shown in red in the diagram with the y-axis

coming out of the page.

Positions of the equipment and blocks to be drilled are relative to a global

reference frame with an origin set at the base of the drill robot with the positive x-axis

extending to the right of the robot, the positive y-axis extending through the front of the

robot, and the positive z-axis extending up through the top of the robot. The drill arm and

drill bit portion of the drill robot extends 0.1 m in the positive y-direction away from the

base. The drill has a fixed x- and y- position, but can move up and down in the z-

direction at 0.025 m/s. Additionally, when turned on, the drill bit rotates at 250 RPM

about the z-axis. The conveyor belt lies 0.1 m in the positive y-direction, parallel to the x-

axis. The conveyor moves blocks at 0.025 m/s in the negative x-direction.

 34

In order to fully automate a system, appropriate sensors are crucial to provide

controllers with feedback from the system and environment in order to best respond to

events. The following sensors exist in the conveyor belt drilling system:

 Position sensor for the drill (positions of the bit can be calculated from the drill

position)

 Linear velocity sensor for the drill

 Rotational velocity sensor for the drill bit

 Position sensor for the blocks

 Linear velocity sensor for the blocks

5.1.2 Process Narrative

A process narrative is the step-by-step action and decision-making procedures for

particular operations. This documentation is essential for a thorough understanding of the

work process in order to build a controller that guides the system through the correct flow

of operations, while maintaining safety. Figure 3 shows the process narrative as a

flowchart for drilling a block using the conveyor belt drilling system. In this flowchart,

the yellow boxes represent a deciding factor for the next action. Although a collision

detection process is not shown on the flowchart, it runs in the background, interrupting

the main process if a collision is detected.

 35

Figure 3. Process narrative flowchart for drilling a block in the simple conveyor belt

drilling system.

 36

5.1.3 Assumptions

Supervisory controllers work in highly dynamic and complex environments.

When designing controllers, it may be necessary to make various assumptions about the

system and environment in order to simplify the control structure to address events that

are most likely to occur. Some of these assumptions may need to be addressed for

improvement on the controller performance. However, work on resolving those

assumptions is out of the scope of this project.

For the simple conveyor belt drilling system case study, the following are

assumed:

 Global positions of each block are given by some sensor.

 The workspace is defined as 𝑥 = [−1.5 𝑚, 1.5 𝑚]. Addition and removal of

blocks from the workspace is assumed to be on an infinite conveyor belt such that

when a block reaches 𝑥 = 1.5 𝑚, it is considered to have left the workspace and a

new block is added at 𝑥 = −1.5 𝑚.

 Velocities of the drill robot and the conveyor belt are maintained at constant set

points. Ramp up and ramp down times are negligible.

 Movement of the drill robot and the conveyor belt has no friction.

 No force or torque control is used for drilling.

 Sensors work in perfect condition without malfunctions or communication loss.

Sensors are perfectly calibrated.

 Humans will not interrupt operations when the supervisory controller is in control.

5.2 CONVEYOR BELT DRILLING SYSTEM CONTROLLER

A 4-tier modMFSM controller was built for the conveyor belt drilling system.

Since this system is only for feasibility proof of concept, a GUI was not built; therefore,

 37

the Operator GUI Module was not used in the controller. Similarly, to minimize

controller complexity for this simple system which only has one operational mode, the

duties of the System Coordinator Module was incorporated into the Meta Module as

shown in Figure 4. The controller includes two Operation Modules for the drilling

process and collision resolution. There are two Equipment Controller Modules, the drill

robot controller, and the conveyor belt controller, which command the drill robot and

conveyor belt Equipment Modules, respectively. Collision detection for the drill robot

and the blocks are included as the sole Physics-Based / Algorithm Module in the

controller. The full design of the supervisory controller for the case study can be found in

Appendix B – Case Study Controller Design.

Figure 4. Meta Module for the conveyor belt drilling system.

5.3 COLLISION DETECTION AND RESOLUTION

The axis-aligned bounding box method was implemented for collision detection

for the drill robot and the blocks in the workspace. The bounding boxes extended 0.025

m past the outermost parts of the components. The bounding box for the drill robot was

split into two boxes: one for the drill arm, and one for the drill bit. The drill bit bounding

 38

box was activated only when the conveyor belt moving to allow the drill bit bounding

box to overlap with the bounding box of a block while raising and lowering the drill

robot, and while drilling. Each block in the workspace had its own bounding box.

A collision was detected if the bounding boxes overlapped. The condition to be

checked is as follows:

(𝐶𝐵. 𝑓𝑠𝑚. 𝑥𝑐𝑢𝑟 == ′𝑚𝑜𝑣𝑖𝑛𝑔′

𝑎𝑛𝑑 (((𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋𝐵 − 𝑋𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
+ 𝐵𝐵𝐷𝑅𝑋

)

𝑜𝑟 𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋_𝐵_𝐷𝑂𝑁𝐸 − 𝑋_𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
+ 𝐵𝐵𝐷𝑅𝑋

))

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑌𝐵 − 𝑌𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑌
+ 𝐵𝐵𝐷𝑅𝑌

)

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑍𝐵 − 𝑍𝐷𝑅𝐶𝐸𝑁𝑇𝐸𝑅
) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑍

+ 𝐵𝐵𝐷𝑅𝑍
))

𝑜𝑟 (𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋𝐵 − 𝑋𝐵𝐼𝑇) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
+ 𝐵𝐵𝐵𝐼𝑇𝑋

)

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑌𝐵 − 𝑌𝐵𝐼𝑇) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑌
+ 𝐵𝐵𝐵𝐼𝑇𝑌

)

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑍𝐵 − 𝑍𝐵𝐼𝑇𝐶𝐸𝑁𝑇𝐸𝑅
) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑍

+ 𝐵𝐵𝐵𝐼𝑇𝑍
))))

𝑜𝑟 (𝐶𝐵. 𝑓𝑠𝑚. 𝑥𝑐𝑢𝑟! = ′𝑚𝑜𝑣𝑖𝑛𝑔′

𝑎𝑛𝑑 ((𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋𝐵 − 𝑋𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
+ 𝐵𝐵𝐷𝑅𝑋

)

𝑜𝑟 𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋𝐵𝐷𝑂𝑁𝐸
− 𝑋𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋

+ 𝐵𝐵𝐷𝑅𝑋
))

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑌𝐵 − 𝑌𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑌
+ 𝐵𝐵𝐷𝑅𝑌

)

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑍𝐵 − 𝑍𝐷𝑅𝐶𝐸𝑁𝑇𝐸𝑅
) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑍

+ 𝐵𝐵𝐷𝑅𝑍
))

where

𝐶𝐵. 𝑓𝑠𝑚. 𝑥𝑐𝑢𝑟 = current state of the Conveyor Belt (CB) Finite State Machine

(FSM)

𝑋𝐵, 𝑌𝐵, 𝑍𝐵 = x, y, and z positions of the blocks

 39

𝑋𝐵𝐷𝑂𝑁𝐸
 = x position of the blocks that have been drilled

𝑋𝐵𝐼𝑇, 𝑌𝐵𝐼𝑇 , 𝑍𝐵𝐼𝑇 = x, y, and z positions of the drill bit

𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
, 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑌

, 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑍
 = length of the bounding box of each block in

the x, y, and z directions

𝐵𝐵𝐷𝑅𝑋
, 𝐵𝐵𝐷𝑅𝑌

, 𝐵𝐵𝐷𝑅𝑍
 = length of the bounding box of the drill robot in the x, y,

and z directions

𝑍𝐷𝑅𝐶𝐸𝑁𝑇𝐸𝑅
 = z position of the center of the drill robot

𝑍𝐵𝐼𝑇𝐶𝐸𝑁𝑇𝐸𝑅
 = z position of the center of the drill bit

5.4 IMPLEMENTATION

The conveyor belt drilling system and controller were implemented in Python

3.6.5 from Anaconda, Inc. Simulations as described in Section 5.5 Simulations were run

on an Intel® Core™ i7-7500U (2.70GHz) processor.

The modMFSM events (triggers and responses), finite state machines, sockets,

modules, filters, pipes, and system of modules were implemented using Python classes.

The event class was created to define each trigger and response event. Each event object

contains the following attributes:

 Name of the event object, stored as a string

 Socket through which the event enters or exits, stored as a socket object

 Event name without the socket prefix, stored as a string

 Finite state machine contained by the module in which the event occurs , stored as

an fsm object

The fsm class defines the finite state machines for the modules and filters. The

attributes of each fsm object are listed below:

 40

 Name of the fsm object, stored as a string

 Finite set of states, stored as a list of strings

 Finite set of trigger events, stored as a list of event objects

 Finite set of response events, stored as a list of event objects

 Finite set of transitions, stored as a tuple of tuples, in which each tuple represents

a transition and contains the trigger event object, transition condition string,

source state string, destination state string, set of response event objects, and set of

system variable changes stored as a tuple of strings

 Initial state, stored as a string

 Dump state, stored as a string

 Marked states, stored as a list of strings

 Current state, stored as a string

 Saved state, stored as a string

The socket class represents the sockets found on the modules. Each socket object

represents each individual socket with the following attributes:

 Name of the socket object, stored as a string

 Finite set of trigger names without the socket prefix, stored as a list of strings

 Finite set of response names without the socket prefix, stored as a list of strings

The modMFSM modules are represented by the module class, for which each

object has the following attributes:

 Name of the module object, stored as a string

 Finite state machine contained in the module, stored as an fsm object

 Finite set of sockets in the module, stored as a list of socket objects

The filters class, which represents the modMFSM filters, is similar in structure to

the module class. Each filters object has the following attributes:

 41

 Name of the filters object, stored as a string

 Finite state machine contained in the filter, stored as an fsm object

 Socket A, stored as a socket object

 Socket B, stored as a socket object

The pipe class defines the modMFSM pipe which connects modules. Each pipe

object has the below attributes:

 Name of the pipe object, stored as a string

 Socket A, stored as a socket object

 Socket B, stored as a socket object

 Filter on the pipe object, stored as a filters object

The last class created for implementation of the modMFSM structure was the

systemOfModules class which defines the system of modules, filters, and pipes that make

up the supervisory controller. Each systemOfModules object includes the following

attributes:

 Name of the systemOfModules object, stored as a string

 Finite set of modules in the system, stored as a list of module objects

 Finite set of filters in the system, stored as a list of filters objects

 Finite set of pipes in the system, stored as a list of pipe objects

System variables were stored globally to allow access for all functions. Changes

to the system variables as a result of transitions were stored in the definition of the

transitions as a set of strings, e.g. the “ CHECK_DONE = ‘True’ ” string indicated that

after the corresponding transition, the variable CHECK_DONE will be set to True. Since

this action was stored as a string, execution of the action was done with Python’s exec

function. Similarly, the conditions for transitions were stored as strings and evaluated

using Python’s eval function. In addition to the system variables, two lists of event

 42

objects were stored globally. These lists were the queues for the event triggers in the

main system operations, and the event triggers for collision detection and collision

resolution, respectively.

In order to allow the collision detection module to interrupt operations in the

event of a possible collision, threading was used to implement two threads: one for the

main operations, and one for the collision detection algorithm. This allowed the collision

detection algorithm to run in the background to check for collisions, and interrupt the

main thread as necessary. The algorithms in both threads are situated inside while loops

that run while the Boolean CONTINUE variable is true. This allows the code to terminate

the threads once a termination condition has been met. It is expected that if more Physics-

Based / Algorithm Modules are added to the modMFSM controller, a new thread would

be implemented for each physics-based module that requires interruption of the main

operations.

The main operations thread runs the transitions of the system. Inside the while

loop of the main operations thread, an if statement around the main operations code

checks if the Boolean COLLISION variable is true, indicating whether there is a potential

collision. The main operations algorithm only runs if COLLISION is false, so that if a

possible collision exists, the controller will suspend motion in the system until the

collision is resolved. If there is no collision, the main operations thread first calls an

update_system function. This function updates the system variables for simulation

purposes. (For implementation of a controller that interacts with a live system, the

update_system function would not be necessary.) After the system variables are updated,

the algorithm checks for transitions that have no trigger event but have been triggered by

a change in system variables, and adds response events to the main operations queue.

After resolving these transitions, the algorithm pops the next event off the main

 43

operations event queue, searches the system for the transition triggered by the event,

updates the relevant finite state machine state, adds response events to the main

operations event queue, and updates relevant system variables as necessary. The

algorithm then returns to the beginning of the while loop code.

The collision detection thread checks for potential collisions in the background

while the main operations thread runs. In order to check for collisions using the most up-

to-date positions and velocities of the equipment, the collision detection thread first calls

the update_system function to update the system variables. Then, the code checks for

collisions per the condition described in Section 5.3 Collision Detection and Resolution.

If a collision is detected, the Boolean COLLISION variable is set to True, the current

state of all modules are saved, motion is suspended, and the collision is resolved per the

collision resolution module. Events from the collision detection and collision resolution

algorithms are stored in a collision event queue to keep them separate from the events of

the main operations. Once the collision has been resolved, the modules are returned to

their saved states, the COLLISION variable is set to False, and main operations are

resumed.

5.5 SIMULATIONS

Preliminary testing of the modular supervisory controller concept feasibility

focused on simulation testing, the following three simulation cases were implemented:

 Error-Free Operations

 Forced Collision

 Missing Conveyor Belt Machine

Since a GUI was not created for the simplified case study system, the Meta

Module initial state was set to be “system_check” and an initial event of ME_2_check

 44

was added to the main operations event queue to simulate a GUI starting the system.

Additionally, a time limit was added to the execution of the code to allow for termination

in case of an infinite loop.

Prior to implementation of the modMFSM structure on a larger, more complex

system for snubbing operations, compositional verification will need to be done, and LTL

system requirements will need to be defined for formal verification via model checking.

The expected transitions and output of the simulation code for the simulation cases can be

found in Appendix C – Case Study Simulation Transitions and Code Output.

5.5.1 Case 1: Error-Free Operations

This simulation case runs the system through error-free operations of drilling

three blocks. "Error-free" here means that the system is expected to follow the process

narrative without collisions or malfunctioning machinery. The Case 1 simulation ran in

89.9 seconds.

5.5.2 Case 2: Forced Collision

This simulation case tests the ability of the collision detection module to identify

a potential collision and interrupt the main operations to resolve the potential collision.

The initial positions of the drill robot and blocks in the workspace were set such that the

bounding boxes of the drill robot arm and a block overlap, forcing a potential collision to

be detected. In Case 2, only one block was to be drilled. The Case 2 simulation ran in

21.2 seconds.

5.5.3 Case 3: Missing Conveyor Belt Machine

The third simulation case tests the ability of the controller to detect disconnected

sockets of a piece of missing equipment and automatically generate manual modules for

 45

replacement. To do so, the code for the conveyor belt related classes were commented

out. For simplicity, manual intervention was simulated by a three second pause and

manipulation of the system variables to give the appearance that a human had added or

removed a block from the workspace. Three blocks were expected to be drilled in Case 3.

The simulation of Case 3 successfully detected the missing conveyor belt, and

created two manual modules: one for the normal operations of the conveyor belt, and one

for the collision detection commands for the conveyor belt. The simulation ran for 45.2

seconds.

5.6 CASE STUDY RESULTS SUMMARY

The successful simulations of the three test cases show promise for feasibility of

the modMFSM controller structure, but a full verification for compositional and formal

correctness is necessary to complete the validation and verification process.

Some observations were of the controller implementation that must be considered

when implementing on a larger, more complex system. Selection of set points for

machinery velocity and bounding box margins are dependent on program run time. The

time between the detection of a potential collision and the collision happening must not

be less than the time needed for the process to halt the moving parts once a potential

collision is detected. Additionally, a forced delay was needed in the main thread to allow

the collision detection thread to run its check before the next action occurs. The duration

of the delay can be optimized depending on the program run time and equipment machine

limits.

 46

Chapter 6: Extension of modMFSM to Snubbing Operations

This section describes the proposed approach for implementation of the modified

modular supervisory controller to snubbing operations.

6.1 DEFINITION OF SYSTEM AND ENVIRONMENT

In order to design any controller, a model of the plant system and a thorough

definition of the expected behaviors of the controlled system are necessary. Section 6.2

Process Narrative defines the process narrative, system components, system

requirements, and environment assumptions for the case of designing a supervisory

controller for snubbing operations. In addition to referencing available literature on

snubbing like Grace (2003) and Prebeau-Menezes (2013), documentation of system and

environment definitions was completed thanks to the permission of Superior Energy

Services, Inc. to visit one of their mechanized snubbing standalone units. With

permission from Superior Energy Services, Inc., information was gathered through:

 Video and photograph recordings of operations

 Manually recorded notes of operations and crew practices

 Interviews with the crew

6.2 PROCESS NARRATIVE

A process narrative is the step-by-step action and decision-making procedures for

particular operations. This documentation is essential for a thorough understanding of the

work process in order to build a controller that guides the system through the correct flow

of operations, while maintaining safety.

For ease of understanding, the snubbing operations process narrative is

represented in a series of flowcharts. Shown below is the flowchart created for the

 47

snubbing out and stripping out process for a mechanized snubbing rig. In this flowchart,

the yellow boxes represent a deciding factor for the next action. The blue boxes indicate

that action requires a procedure represented by its own flowchart in the series, which

shares the name as the action in the blue box. The full series of flowcharts for snubbing

operations can be found in Appendix D – Process Narrative Flowcharts for Snubbing.

Figure 5. Process narrative flowchart for snubbing / stripping out pipe.

 48

6.3 SYSTEM COMPONENTS

Documenting the process narrative also allows for identification of the hardware

needed for automation of all activities, which is a critical step for designing a controller

for coordination of equipment and processes.

Appendices

Appendix A – Snubbing Unit Equipment describes general equipment and

machinery for snubbing units, which exist as both standalone and rig-assist units. For the

purpose of this case study, a mechanized, standalone snubbing unit is considered.

However, the proposed supervisory controller structure is designed to be adaptable to all

types of rigs, accommodating for various equipment combinations.

In order to fully automate a system, appropriate sensors are crucial to provide

controllers with feedback from the system and environment in order to best respond to

events. Table 1 shows the sensors necessary to automate bringing new pipe to the well

center for snubbing operations. From the table, it can be seen that at least twelve sensors

are needed for autonomously bringing new pipe to the well center. A full table of sensors

needed for automating snubbing can be found in Appendix E – Snubbing Automation

Sensors. From left to right, the columns describe the variable observed, whether sensor

hardware exists and its type, suggested sensor hardware if not already available, and the

current sensing method for the variable.

 49

Table 1. System variables and corresponding sensors for bringing new pipe to the well

center.

Variable Sensor Hardware
Suggested

Hardware

Current

Method

Stabbing Plate Alignment None Camera
Visual /

Manual

Well Pressure Casing Pressure Gauge N/A Sensor

Joint Counter None
N/A (Build

into controller)

Visual /

Manual

Height of Pipe for

Connection
Block Position N/A

Sensor

Elevator Position
Visual /

Manual

Elevator Closed on Pipe
Built-In Open/Close

Indicator
N/A

Visual /

Manual

Catwalk Height
Built-In Sensor (Possible

Limit Switch)
N/A Sensor

Elevator Height at Pipe None Camera
Visual /

Manual

Catcher's Mitt

(Extended/Retracted)

Built-In Indicator

(Existence Uncertain)
N/A

Visual /

Manual

Tongs

(Extended/Retracted)

Built-In Indicator - Well

center is set point
N/A Sensor

Pipe in Catcher's Mitt None

Contact or

Proximity

Sensor

Visual /

Manual

Tongs Torque Built-In Torque Sensor N/A Sensor

Pipe End in Catwalk

None
Catwalk

Camera

Visual /

Manual

Pipe in Skate Basket
Visual /

Manual

Tongs Dies Failure Built-In Torque Sensor;

Motor rotation encoder on

pipe

N/A

Sensor

Connection Made
Sensor /

Visual

 50

6.4 FORMAL SPECIFICATION OF SYSTEM REQUIREMENTS

As described in Section 2.3.3 Model Checking, an important step in the design

process of a controller is to specify the desired behavior of the controlled system. Since

linear temporal logic (LTL) specifications work well with finite state machines for model

checking and contract-based design, required system behaviors are defined by LTL

specifications. Table 2 displays LTL specifications for operations for bringing new pipe

to the well center. This specific operational mode focuses primarily on safety

specifications. A table of all formal specifications for snubbing operations can be found

in Appendix F – Snubbing Automation Formal Specifications.

These formal specifications will also be defined through creation of contracts to

specify the dependencies among modules to ensure safe operations. Formal specifications

that are specific to a procedure or equipment modeled inside a module by a finite state

machine will be used for model checking.

 51

Table 2. Formal specifications for system requirements in operations for bringing new

pipe to the well center.

Type Requirement Behavior Linear Temporal Logic

Safety
Snubbing Jack Height <= Maximum
Safe Jack Height

G (Jack_Height < Max_Jack_Safe_Height)

Safety
Snubbing Jack Height >= Minimum
Safe Jack Height

G (Jack_Height > Min_Jack_Safe_Height)

Safety Do not close empty RAMs G (RAM_empty -> RAM_open)

Safety
Do not close slips on a tool or
connection

G (((Jack_Height < Tool_Joint_Max) ^
(Jack_Height > Tool_Joint_Min)) -> Slips_Open)

Safety

If catcher's mitt or tongs extended,
elevator position must be above
safe lower limit, and snubbing jack
must be at the minimum safe jack
height.

G ((Mitt_Extended v Tongs_Extended) ->
((Elevator_Height >= Safe_Lower_Limit) ^
(Jack_Height = Min_Jack_Safe_Height)))

Safety

If elevator position below safe
lower limit or snubbing jack above
safe lower limit, catcher's mitt and
tongs must be retracted.

G (((Elevator_Height < Safe_Lower_Limit) v
(Jack_Height >Min_Jack_Safe_Height)) ->
(!Mitt_Extended ^ !Tongs_Extended))

Safety

If snubbing jack not at safe lower
limit, elevator position must be
above safe lower limit, and catwalk
cannot push up pipe.

G ((Jack_Height > Min_Jack_Safe_Height) ->
((Elevator_Height > Safe_Lower_Limit) ^
(Skate_Basket < Max_Skate_Height)))

Safety
Elevator height should always
remain more than a margin above
the snubbing jack height.

G (Elevator_Height > Jack_Height + Margin)

Safety
If connection made or connection
not broken, catcher's mitt must not
be extended.

G ((Connection_Made v !Connection_Broken) -
> !Mitt_Extended)

6.5 SYSTEM AND ENVIRONMENT ASSUMPTIONS

Supervisory controllers work in highly dynamic and complex environments.

When designing controllers, it may be necessary to make various assumptions about the

system and environment in order to simplify the control structure to address events that

are most likely to occur. Some of these assumptions may need to be addressed for

improvement on the controller performance. However, work on resolving those

assumptions is out of the scope of this project.

 52

For the snubbing case study, the following are assumed:

 Sensors will work in perfect condition without malfunctions or communication

loss.

 Sensors are perfectly calibrated.

 Missing sensors for required variables (e.g. stabbing alignment) exist.

 Snubbing personnel are situationally aware. Should manual control be necessary

at any time, the crew will respond promptly and appropriately.

 Snubbing personnel will not interrupt operations when the supervisory controller

is in control.

As the case study is simulated, new assumptions and restrictions on equipment ability

may need to be added in order to reduce controller complexity and computational effort.

6.6 DEFINITION OF MODULAR CONTROLLER STRUCTURE FOR SNUBBING AUTOMATION

Since the proposed modMFSM structure encompasses controllers in modules that

can represent system or equipment controllers, the MFSM structure naturally allows for

hierarchical control. The modularity of the MFSM structure allows the controller

hierarchy to be easily rearranged to fit the desired system. This hierarchical structure aids

in reducing complexity of the subsystem controllers, and allows for more flexible

controller and equipment modularity.

As shown in Figure 6, the snubbing operations modMFSM supervisory controller

modules are comprised of the same module types as used for the simplified conveyor belt

drilling system controller, albeit with the addition of the Operator GUI Module, and the

System Coordinator Module. For snubbing operations, control is split into four primary

levels as described in Section 3.3 Multilevel Hierarchy and Module Types:

 Top Level

 53

 Middle Level

 Low Level

 Sub Level

 These levels are reviewed in the next subsections with examples from the snubbing

controller.

Figure 6. Comparison of the modules for the conveyor belt drilling system with those for

snubbing operations.

6.6.1 Top Level

The Top Level of control is the highest level of control in the structure and

consists of the Operator GUI Module, the System Coordinator Module that selects the

mode of operation in which the system is currently operation (e.g. Snubbing In Pipe

Heavy (SIPH), Snubbing New Pipe (SNP), etc.), and the Meta Module. Figure 7 shows

how the System Coordinator module interacts with the Meta Module and modules from

the Middle Level of control.

 54

Figure 7. High-level diagram of interaction between the System Coordinator Module,

Meta Module, and Operation Modules.

6.6.2 Middle Level

Like many complex operations, snubbing operations can be divided into sub-

operations, which will be referred to as operation modes, each of which follows different

procedures and requires a different set of equipment. Operation modes are independent of

each other; therefore, only one operation mode is active at a time, which simplifies the

controller by reducing the tracked states to those associated with the processes and

equipment of the active operation mode. The Middle Level of control consists of the

modules which control the procedures of each operation mode, sending commands to the

relevant equipment controllers in its subsystem and reacting to subsystem and

environment events. The following is the definition of the guarded, trigger / response

 55

finite state machine for the Snubbing New Pipe Operation Module (SNP), which controls

bringing new pipe from the racked position to the well center as shown in Figure 8:

𝐹𝑆𝑁𝑃 = (𝑋𝐹𝑆𝑁𝑃
, 𝑇𝐹𝑆𝑁𝑃

, 𝑅𝐹𝑆𝑁𝑃
, 𝜏𝐹𝑆𝑁𝑃

, 𝑥0𝐹𝑆𝑁𝑃
, 𝑥𝑑𝑝𝐹𝑆𝑁𝑃

, 𝑋𝑀𝐹𝑆𝑁𝑃
)

where

𝑋𝐹𝑆𝑁𝑃
 = {inactive, prep_catchers_mitt, prep_tongs, prep_bails, prep_elevator,

new_pipe, grab_pipe, extend_catchers_mitt, extend_tongs, lift_pipe,

pipe_to_catchers_mitt, error, pipe_to_conn_height, check_alignment,

stab_pipe, connection}

𝑇𝐹𝑆𝑁𝑃
= {1.new_pipe, 2.extend_done, 2.retract_done, 3.retract_done,

3.extend_done, 3.open_done, 3.close_done, 3.stop_done,

4.new_pipe_ready, 5.extend_done, 5.retract_done,

5.make_connection_done, 6.error_done, 6.fix_alignment}

𝑅𝐹𝑆𝑁𝑃
 = {1.new_pipe_ready, 2.extend, 2.retract, 3.retract, 3.extend, 3.open,

3.close, 3.raise, 3.lower, 3.stop, 4.new_pipe, 5.extend, 5.retract,

5.make_connection, 6.error_done, 6.align_fixed}

𝜏𝐹𝑆𝑁𝑃
 = {(1.new_pipe, [], inactive, prep_catchers_mitt, [2.retract], []),

(2.retract_done, [], prep_catchers_mitt, prep_tongs, [5.retract] , []),

(5.retract_done, [], prep_tongs, prep_bails, [3.retract] , []),

(3.retract_done, [], prep_bails, prep_elevator, [3.open] , []),

(3.open_done, H_elev==H_elev_pipe, prep_elevator, new_pipe,

[3.stop] , []),

([], H_elev==H_elev_pipe, prep_elevator, new_pipe, [3.stop] , []),

(3.open_done, H_elev<H_elev_pipe, prep_elevator, prep_elevator,

[3.raise] , []),

(3.open_done, H_elev>H_elev_pipe, prep_elevator, prep_elevator,

[3.lower] , []),

(3.stop_done, [], new_pipe, new_pipe, [4.new_pipe] , []),

(4.new_pipe_ready, [], new_pipe, grab_pipe, [3.extend] , []),

(3.extend_done, [], grab_pipe, grab_pipe, [3.close] , []),

(3.close_done, [], grab_pipe, extend_catchers_mitt, [2.extend] , []),

(2.extend_done, [], extend_catchers_mitt, extend_tongs, [5.extend] ,

[]),

(5.extend_done, [], extend_tongs, lift_pipe, [3.raise] , []),

([], H_elev == H_elev_clear_CW, lift_pipe, lift_pipe, [3.stop] , []),

(3.stop_done, [], lift_pipe, lift_pipe, [3.retract] , []),

(3.retract_done, [], lift_pipe, pipe_to_catchers_mitt, [] , []),

 56

([], pipe_catchers_mitt==false, pipe_to_catchers_mitt, error, [6.error] ,

[]),

(6.error_done, error, pipe_to_catchers_mitt, [] , []),

([], pipe_catchers_mitt==true, pipe_to_catchers_mitt,

pipe_to_catchers_mitt, [2.retract] , []),

(2.retract_done, pipe_to_catchers_mitt, check_alignment, [] , []),

([], aligned==false, check_alignment, check_alignment,

[6.fix_alignment] , []),

(6.align_fixed, check_alignment, check_alignment, [] , []),

([], aligned == true && H_elev>H_elev_conn, check_alignment,

pipe_to_conn_height, [3.lower] , []),

([], aligned == true && H_elev<H_elev_conn, check_alignment,

pipe_to_conn_height, [3.raise] , []),

([], aligned == true && H_elev==H_elev_conn, check_alignment,

pipe_to_conn_height, [3.stop] , []),

([], H_elev<H_elev_conn, pipe_to_conn_height, pipe_to_conn_height,

[3.raise] , []),

 ([], stabbed==true && H_elev==H_elev_conn,pipe_to_conn_height,

connection, [3.stop] , []),

(3.stop_done, [], connection, connection, [5.make_connection] , []),

(5.connect_done, [], connection, inactive, [1.new_pipe_ready] , [])}

𝑥0𝐹𝑆𝑁𝑃
 = inactive

𝑥𝑑𝑝𝐹𝑆𝑁𝑃
 = dump

𝑋𝑀𝐹𝑆𝑁𝑃
 = inactive

Defined below is the Operation Module for Snubbing New Pipe:

𝑆𝑁𝑃 = (𝐹𝑆𝑁𝑃 , {𝑆𝐹𝑆𝑁𝑃1
, 𝑆𝐹𝑆𝑁𝑃2

, 𝑆𝐹𝑆𝑁𝑃3
, 𝑆𝐹𝑆𝑁𝑃4

, 𝑆𝐹𝑆𝑁𝑃5
, 𝑆𝐹𝑆𝑁𝑃6

})

where

𝐹𝑆𝑁𝑃 = Described above.

𝑆𝐹𝑆𝑁𝑃1
 = {[1.new_pipe], [1.new_pipe_ready]}

𝑆𝐹𝑆𝑁𝑃2
 = {[2.extend_done, 2.retract_done], [2.extend, 2.retract]}

𝑆𝐹𝑆𝑁𝑃3
 = {[3.retract_done, 3.extend_done, 3.open_done, 3.close_done,

3.stop_done], [3.retract, 3.extend, 3.open, 3.close, 3.raise, 3.lower,

3.stop]}

𝑆𝐹𝑆𝑁𝑃4
 = {[4.new_pipe_ready], [4.new_pipe]}

 57

𝑆𝐹𝑆𝑁𝑃5
 = {[5.extend_done, 5.retract_done, 5.make_connection_done], [5.extend,

5.retract, 5.make_connection]}

𝑆𝐹𝑆𝑁𝑃6
 = {[6.error_done, 6.fix_alignment], [6.error_done, 6.align_fixed]}

Figure 8. High-level view of schematic for the Snubbing New Pipe Operation Module.

(See Appendix G – Snubbing Modular Controller Preliminary Designs for

the full-size diagrams of the completed snubbing operation modules.)

6.6.3 Low Level

The Low Level of controls manages the communication between the Operation

Modules and the sub-systems, which include Equipment Controller Modules, Manual

Modules, and Physics-Based / Algorithm Modules. Defined below are the finite state

machine and module for the manual error intervention, the diagram for which is shown in

Figure 9:

𝐹𝑀 = (𝑋𝐹𝑀
, 𝑇𝐹𝑀

, 𝑅𝐹𝑀
, 𝜏𝐹𝐶𝑀

, 𝑥0𝐹𝑀
, 𝑥𝑑𝑝𝐹𝑀

, 𝑋𝑀𝐹𝑀
)

where

𝑋𝐹𝑀
 = {idle, manual_control}

𝑇𝐹𝑀
= {1.error, 2.auto}

𝑅𝐹𝑀
 = {1.error_done, 2.manual}

𝜏𝐹𝑀
 = {(1.error, [], idle, manual_control, [2.manual] , []),

(2.auto, [], manual_control, idle, [1.error_done] , [])}

𝑥0𝐹𝑀
 = idle

 58

𝑥𝑑𝑝𝐹𝑀
 = dump

𝑋𝑀𝐹𝑀
 = idle

Defined below is the module for the manual error intervention:

𝑀 = (𝐹𝑀, {𝑆𝑀1
})

where

𝐹𝑀 = Described above.

𝑆𝑀1
 = {[1.error, 2.auto], [1.error_done, 1.manual]}

Figure 9. Manual error intervention module for snubbing operations.

6.6.4 Sub Level

The Sub Level of control contains the control modules which are specific to each

piece of equipment. These modules take commands from the Low Level modules and

 59

send the appropriate command to its corresponding equipment. Defined below are the

finite state machine and module for the catcher’s mitt, the diagram for which is shown in

Figure 10:

𝐹𝐶𝑀 = (𝑋𝐹𝐶𝑀
, 𝑇𝐹𝐶𝑀

, 𝑅𝐹𝐶𝑀
, 𝜏𝐹𝐶𝑀

, 𝑥0𝐹𝐶𝑀
, 𝑥𝑑𝑝𝐹𝐶𝑀

, 𝑋𝑀𝐹𝐶𝑀
)

where

𝑋𝐹𝐶𝑀
 = {retracted, extended}

𝑇𝐹𝐶𝑀
= {1.extend, 1.retract}

𝑅𝐹𝐶𝑀
 = {1.extend_done, 1.retract_done}

𝜏𝐹𝐶𝑀
 = {(1.extend, [], retracted, extended, [1.extend_done] , []),

(1.retract, [], retracted, retracted, [1.retract_done] , []),

(1.extend, [], extended, extended, [1.extend_done] , []),

(1.retract, [], extended, retracted, [1.retract_done] , []),

(1.retract, [], retracted, retracted, [1.retract_done] , [])}

𝑥0𝐹𝐶𝑀
 = retracted

𝑥𝑑𝑝𝐹𝐶𝑀
 = dump

𝑋𝑀𝐹𝐶𝑀
 = retracted

Defined below is the equipment module for the catcher’s mitt:

𝐶𝑀 = (𝐹𝐶𝑀, {𝑆𝐶𝑀1
})

where

𝐹𝐶𝑀 = Described above.

𝑆𝐶𝑀1
 = {[1.extend, 1.retract], [1.extend_done, 1.retract_done]}

 60

Figure 10. Catcher’s mitt module in snubbing operations.

6.7 COLLISION DETECTION

Both the heuristics and bounding box methods to collision detection are good

starting approaches to collision detection in snubbing operations. For ABB, the global

reference frame for the bounding boxes will be located at the well center at the rig floor,

as it is a fixed point that is integral to snubbing operations. Each piece of equipment will

have a local reference frame attached to the center of the piece of equipment, and the

equipment’s bounding box will be defined with respect to the local reference frame. As

with the approach in the case study, all equipment movement will be calculated with

respect to the global reference frame, for detection of overlapping bounding boxes prior

to the occurrence of a collision.

6.8 VERIFICATION AND VALIDATION

After the design of the supervisory controller is complete, it is necessary to verify

the correctness of the controlled system model, and test the behavior of the system via

model checking and simulations.

 61

Model checking of the snubbing supervisory controller should be based on a

finalized list of the LTL specifications described in Appendix F – Snubbing Automation

Formal Specifications to verify the controlled system operates safely and behaves as

desired.

The first phase of simulation for evaluation of the snubbing controller

performance will be for error-free snubbing operations with original snubbing equipment.

The second phase of simulation will be to evaluate the ability of the controller to detect

common snubbing errors. The primary error cases which will be explored are as follows:

 End of pipe not caught by catcher’s mitt during operations to transport pipe to and

from the well center.

 Failure of tongs dies.

 Annular BOP leak.

 Overly tight joints while breaking connections.

 Stabbing plate misalignment.

If modifications to the controller design need to be made as a result of simulation

observations, the error-free simulation will be rerun to ensure error-free operations have

not been affected by the modifications. The final phase of simulation is to explore the

case of introducing a new piece of equipment, for instance a gantry robot, to the snubbing

unit. The capabilities of the gantry robot will be assessed to understand if and where

modifications to the current structure must be made before simulation of the error-free

and common error cases are done. Success of the controller feasibility will be evaluated

through its ability to perform the desired operations for all simulations.

 62

6.9 SUMMARY

The proven concept from the case study reflects the feasibility of modMFSM

application to drilling and snubbing operations, as shown in Figure 6, which presents the

modules for snubbing operations and how it compares to those from the conveyor belt

drilling system case study. The system components have been identified, and a process

narrative has been defined for snubbing operations. Preliminary LTL system

specifications have been defined and initial designs of select snubbing operational modes

are to be finalized in future research.

 63

Chapter 7: Conclusions and Future Work

The completed work focused on definition of the extended modular finite state

machine controller (modMFSM) structure, implementation of the modMFSM structure to

a simplified conveyor belt drilling system, definitions of system equipment and

environment for snubbing operations, and preliminary designs for the vending machine

toy problem supervisory controller, found in Appendix G – Snubbing Modular Controller

Preliminary Designs.

7.1 CONCLUSIONS

The contributions of this research to drilling automation supervisory control

research is in providing a feasible framework for supervisory controllers for drilling

operations and its auxiliary operations, while maintaining safe operations, overcoming

the challenges of interoperability, reacting to environment cues, and allowing for easy

modification and functional scalability.

The modMFSM structure allows for the augmentation of the modular finite state

machine structure to adapt to complex systems and their uncertain environments. The

first extension of the modular finite state machine structure is to explore the use of

various models inside modules, specifically the inclusion of guards in the trigger /

response finite state machines for response to changing environment and system

variables.

The modMFSM structure also explores the feasibility of including modules which

encompass physics-based models rather than discrete event models processes or

hardware. In the snubbing case study, collision detection is implemented. Proving the

feasibility of this implementation provides a stepping stone for inclusion of other physics-

 64

based models environment in supervisory control of complex systems, for instance,

allowing for kick detection in drilling or detection of alien objects in manufacturing.

Additionally, the modMFSM framework allows for automatic reconfiguration of

the controller and automatic synthesis of filters and modules to replace missing

equipment. The plug-and-play quality of the controller architecture also allows for easy

incorporation of new equipment with minimal modification of the original controller.

7.2 FUTURE WORK

Future work of this research is to verify the formal correctness of the controlled

simplified system model, and test for compositional correctness. Additionally, robustness

of the system to input order can also be tested using the formal verification procedure

presented and applied to ECA MFSMs by Allen et al. (Allen et al., 2012). After

verification of the simplified system, the next step would be to finalize, validate, and

verify the snubbing supervisory controller.

 65

Appendices

APPENDIX A – SNUBBING UNIT EQUIPMENT

Snubbing units exist as both standalone and rig-assist units. This section discusses

the general machinery used by all snubbing units.

Figure 11. Superior mechanized, standalone snubbing unit.

Similar to drilling operations, snubbing operations require a hoisting device,

called an elevator, to run pipe into and out of the well during pipe-heavy operations. In

snubbing, this process is called stripping. The elevator also raises and lowers pipe when

pipe connections are made or broken. In addition to vertical movement, elevators include

bails that extend and retract to allow for lateral movement of the pipe. While a standalone

snubbing unit contains its own elevator, a rig-assist unit may utilize the elevator that

exists as part of the hoisting system on the host drilling rig.

 66

Figure 12. Floor of a workover unit where the yellow elevator is near the floor (Shengji

Group, 2016).

Pipe is transported between its storage location in vertical or horizontal racks and

the floor of the snubbing unit using pipe handling equipment. A variety of mechanized

pipe handling equipment can be used, including catwalks for horizontal to vertical pipe

handling, and racking systems like NOV’s Hydraracker systems for transportation from

vertical pipe racks. NOV’s Hydraracker systems are able securely position new pipe

ready for a connection to be made with the pipe in the well. However, if the pipe

handling system requires the elevator to assist in bringing the pipe to the well center, a

catcher’s mitt in the snubbing unit is used to catch the new pipe as it is hoisted away from

the pipe handling system and brought toward the well center.

 67

Figure 13. a) Catwalk in action on a Superior snubbing unit (left); b) NOV Hydraracker

(Hsieh & Vigh, 2017) (right).

Figure 14. Catcher’s mitt extended and ready to catch the new pipe coming from the

catwalk.

 68

In order to connect or disconnect pipe as it is run into and out of the well,

equipment such as hydraulically powered tongs apply the required torque to make or

break the pipe-to-pipe connection.

Figure 15. NOV Hydraulic Power Tongs (National Oilwell Varco, 2018a)

In regular drilling operations, a device called slips grip and hold the drill string to

the rig floor, preventing the drill string from falling into the well. For snubbing

operations, slips serve two purposes: 1) hold the drill string stationary, 2) assist in

pushing/pulling the drill string in/out of the well. The slips that hold the drill string

stationary are called stationary slips and are located on the floor of the unit. Two sets of

stationary slips exist, one set for pipe-light operations, and the other set for pipe-heavy

operations. The slips that assist in snubbing the drill string are called the travelling slips.

The travelling slips are located on the hydraulically powered snubbing jack, which moves

the travelling slips vertically, applying the necessary snubbing force to run pipe in and

out of the well. Similar to the stationary slips, the travelling slips also exist in two sets for

pipe-light and pipe-heavy operations.

 69

Figure 16. Snubbing jack near maximum height as it snubs out pipe.

Figure 17. Slips for snubbing operations (Westco International Consulting, Inc, 2017).

 70

Since snubbing operations occur while the well is pressurized, well control

equipment is crucial. The primary components of the basic snubbing well control

equipment stack are: an annular blowout preventer (BOP), two snubbing pipe ram

blowout preventers (BOPs), safety pipe ram BOPs, safety blind ram BOPs, an bleed-off

line, and a pump-in line. BOPs prevent well fluids from uncontrolled travel to surface

and allow the crew to maintain control on the wellbore pressure. The annular BOP, which

sits at the top of the snubbing well control equipment stack, contains a rubber element

that seals around the drill string and adjusts its seal as pipe joints, and tools pass through

it during stripping and snubbing operations. The annular BOP remains closed throughout

the snubbing operations. The snubbing pipe ram BOPs are manufactured to fit either one

pipe diameter or a small range of pipe diameters (Mitchell & Miska, 2011). Therefore,

the pipe ram BOPs seal around the drill pipe only, and can handle higher pressures than

the annular BOP. They generally remain open if the wellbore pressure is below the

working pressure of the annular BOP. However, if the wellbore pressure exceeds the

working pressure of the annular BOP, at least one pipe ram BOP must be closed around

the pipe at all times to ensure a secure pressure barrier as pipe is run into and out of the

well. However, since the pipe ram BOPs can only fit a small range of diameters at most,

special procedures are necessary to pass pipe joints and tools through the pipe ram BOPs.

For snubbing in procedures, the upper pipe ram starts off closed with the lower pipe ram

open. When the joint or tool reaches the upper pipe ram, the lower pipe ram is closed, and

the bleed-off line opened to bleed off the pressure between the rams. The upper pipe ram

is then opened, and the pipe lowered until the joint or tool is at the lower pipe ram. The

upper pipe ram is then closed, and the pump-in line is opened to pressurize the section

between the rams. Once the pressure in that section equals that of the well, the lower pipe

ram is opened, and snubbing operations continue. The reverse procedures are

 71

implemented for snubbing out operations. The safety pipe rams and the safety blind rams

generally remain open during operations and are only closed in case the snubbing rams

malfunction. Although the frac valve is part of the wellhead and not part of the snubbing

stack, it is an integral piece of well control equipment. The frac valve sits below the

snubbing well control equipment stack, and at the top of the wellhead. It remains open

during snubbing operations, and is closed when it is necessary to shut in the well.

Figure 18. Basic snubbing well control equipment stack (Grace, 2003). Annular BOP not

shown.

 72

APPENDIX B – CASE STUDY CONTROLLER DESIGN

The design for the modular supervisory controller for the conveyor belt drilling

system case study can be found in the supplemental file labeled

“Appendix_B_Case_Study_Controller_Design.pdf.”

APPENDIX C – CASE STUDY SIMULATION TRANSITIONS AND CODE OUTPUT

The expected transitions of each simulation case for the conveyor belt drilling

system case study can be found in the supplemental file labeled

“Appendix_C_Case_Study_Expected_Transitions.xlsx.”

The simulation code output for each case can be found in the following

supplemental files: “Appendix_C_Case_1_Simulation_Code_Output.pdf,”

“Appendix_C_Case_2_Simulation_Code_Output.pdf,” and

“Appendix_C_Case_3_Simulation_Code_Output.”

APPENDIX D – PROCESS NARRATIVE FLOWCHARTS FOR SNUBBING

The mechanized snubbing operations are captured in a series of process narrative

flowcharts. These flowcharts can be found in the supplemental file labeled

“Appendix_D_Process_Narrative_Flowcharts_for_Snubbing.pptx.”

 73

APPENDIX E – SNUBBING AUTOMATION SENSORS

Table 3 below presents the system variable necessary for automating snubbing

operations and the status of its corresponding sensor. From the table, it can be seen that at

least eighteen sensors are needed for autonomously bringing new pipe to the well center.

From left to right, the columns describe the variable observed, whether sensor hardware

exists and its type, suggested sensor hardware if not already available, and the current

sensing method for the variable.

Table 3. Sensors necessary for automated snubbing operations.

Variable Sensor Hardware Suggested

Hardware

Current

Method

Stabbing Plate

Alignment

None Camera Visual / Manual

Well Pressure Casing Pressure

Gauge

N/A Sensor

Joint Counter None N/A (Build into

controller)

Visual / Manual

Stripping Bit Depth Block Position N/A Sensor

Height of Pipe for

Connection

Sensor

Elevator Position Visual / Manual

Tripping Speed Sensor

TD/Plug Reached Visual / Manual

Pull Test for Slips Bite

Before Balance Point

None Block Position or

Snubbing Jack

Position

Visual / Manual

Snubbing Bit Depth Snubbing Jack

Position (Existence

Uncertain)

Snubbing Jack

Position

(Existence

Uncertain)

Sensor

Height of Pipe for

Connection

Visual / Manual

Snubbing Jack Position Visual / Manual

Snubbing Jack Speed Visual / Manual

Plug Reached Visual / Manual

Pipe Weight Visual / Manual

Elevator Closed on Pipe Built-In Open/Close

Indicator

N/A Visual / Manual

 74

(Table 3 Continued)

Variable Sensor Hardware Suggested

Hardware

Current

Method

Catwalk Height Built-In Sensor

(Possible Limit

Switch)

N/A Sensor

Elevator Height at Pipe None Camera Visual / Manual

Catcher's Mitt

(Extended/Retracted)

Built-In Indicator

(Existence Uncertain)

N/A Visual / Manual

Tongs

(Extended/Retracted)

Built-In Indicator -

Well center is set

point

N/A Sensor

Pipe in Catcher's Mitt None Contact or

Proximity Sensor

Visual / Manual

Snub Force (Applied) Snub Gauge N/A Sensor

Pressure between RAMs Pressure Gauge N/A Sensor

Tongs Torque Built-In Torque

Sensor

N/A Sensor

Pipe End in Catwalk None Catwalk Camera Visual / Manual

Pipe in Skate Basket Visual / Manual

Tongs Dies Failure Built-In Torque

Sensor;

Motor rotation

encoder on pipe (for

connections)

N/A Sensor

Connection Made Sensor

BHA Reached None Catwalk Camera

(BHA nipple or

flagging pup)

Visual / Manual

Hookload for Pull Test

(~14klbs)

Hookload N/A Sensor / Visual

Slips at Tool or

Connection

None Camera Visual / Manual

Connection Position

Relative to RAMS

None N/A (Calculations) Manual

Buoyant Force None N/A

Friction Force None N/A

 75

APPENDIX F – SNUBBING AUTOMATION FORMAL SPECIFICATIONS

The following table presents the formal specifications for snubbing operations

derived from the process narrative. Modifications are expected to be needed to include

requirements for module-to-module behavior specifications.

Table 4. Formal specifications for system requirements in operations for bringing new

pipe to the well center

Type Requirement

Behavior

Linear Temporal Logic

Liveness Number of pipes in

well will eventually be

desired number of pipes

GF (Num_Pipes_In = Des_Pipes)

Liveness Number of pipes out

well will eventually be

desired number of pipes

GF (Num_Pipes_Out = Des_Pipes)

Invariant Use annular BOP if

P_well < working

pressure of annular

BOP

((P_well < P_BOP_ann_working) -> (Use annular

BOP)) ^ ((P_well >= P_BOP_ann_working) -> (Use

RAMs))

Safety F_snub > F_well +

F_buoyant + F_friction

- W_pipe

G (F_snub > F_well + F_buoyant + F_friction -

W_pipe)

Safety F_snub < Buckling

Force of Pipe

G (F_snub < F_Buckling_Crit/SF)

Safety F_snub < Collapse

Force of Pipe

G (F_snub < F_Collapse_Crit/SF)

Safety F_snub < Burst Force

of Pipe

G (F_snub < F_Burst_Crit/SF)

Safety Snubbing Speed < Snub

Speed Limit

(Surge/Swab)

G (Speed_snub < Speed_snub_max)

Safety Tripping Speed < Trip

Speed Limit

(Surge/Swab)

G (Speed_trip < Speed_trip_max)

Invariant Joints in after Balance

Point < 20 Implies

Elevator Following

(Jts_In_After_Bal_Pt < 20) ->

(Elevator_Following_Trip)

 76

(Table 4 Continued)

Invariant Joints out after Balance

Point < 10 Implies

Elevator Following

(Jts_Out_After_Bal_Pt < 10) ->

(Elevator_Following_Snub)

Invariant In Direction AND Feet

Pipe in Well < Feet In

at Balance Point -

Tolerance Implies SIPL

(Dir_In ^ (Pipe_feet_in < Pipe_at_Bal_Pt + Tol)) ->

(SIPL)

Invariant In Direction AND Feet

Pipe in Well > Feet In

at Balance Point +

Tolerance Implies SIPH

(Dir_In ^ (Pipe_feet_in > Pipe_at_Bal_Pt + Tol)) ->

(SIPH)

Invariant Out Direction AND

Feet Pipe in Well <

Feet In at Balance Point

- Tolerance Implies

SOPL

(Dir_Out ^ (Pipe_feet_in < Pipe_at_Bal_Pt + Tol)) -

> (SOPL)

Invariant Out Direction AND

Feet Pipe in Well >

Feet In at Balance Point

+ Tolerance Implies

SOPH

(Dir_Out ^ (Pipe_feet_in > Pipe_at_Bal_Pt + Tol)) -

> (SOPH)

Safety Snubbing Jack Height

<= Maximum Safe Jack

Height

G (Jack_Height < Max_Jack_Safe_Height)

Safety Snubbing Jack Height

>= Minimum Safe Jack

Height

G (Jack_Height > Min_Jack_Safe_Height)

None Feet Pipe Moved >

Frequency for Filling

Hole with Hydraulic

Fluid Implies Fill Hole

with Hydraulic Fluid

(Pipe_Moved > Freq_Fill_with_Hydraulic_Fluid) ->

X (Fill Hole with Hydraulic Fluid)

Safety Do not close empty

RAMs

G (RAM_empty -> RAM_open)

Safety Do not close slips on a

tool or connection

G (((Jack_Height < Tool_Joint_Max) ^

(Jack_Height > Tool_Joint_Min)) -> Slips_Open)

 77

(Table 4 Continued)

Safety If catcher's mitt or

tongs extended,

elevator position must

be above safe lower

limit, and snubbing jack

must be at the

minimum safe jack

height.

G ((Mitt_Extended v Tongs_Extended) ->

((Elevator_Height >= Safe_Lower_Limit) ^

(Jack_Height = Min_Jack_Safe_Height)))

Safety If elevator position

below safe lower limit

or snubbing jack above

safe lower limit,

catcher's mitt and tongs

must be retracted.

G (((Elevator_Height < Safe_Lower_Limit) v

(Jack_Height >Min_Jack_Safe_Height)) ->

(!Mitt_Extended ^ !Tongs_Extended))

Safety If snubbing jack not at

safe lower limit,

elevator position must

be above safe lower

limit, and catwalk

cannot push up pipe.

G ((Jack_Height > Min_Jack_Safe_Height) ->

((Elevator_Height > Safe_Lower_Limit) ^

(Skate_Basket < Max_Skate_Height)))

Safety Elevator height should

always remain more

than a margin above the

snubbing jack height.

G (Elevator_Height > Jack_Height + Margin)

Safety If connection made or

connection not broken,

catcher's mitt must not

be extended.

G ((Connection_Made v !Connection_Broken) ->

!Mitt_Extended)

 78

APPENDIX G – SNUBBING MODULAR CONTROLLER PRELIMINARY DESIGNS

The preliminary designs of the modular supervisory controller for the following

operation modes are complete:

 Snubbing New Pipe (SNP) – Moves pipe from the pipe rack to the well center.

 Snubbing Rack Pipe (SRP) – Moves pipe from the well center to the pipe rack.

 Snub In Pipe Heavy (SIPH) – Snubs pipe into the well center under pipe-heavy

conditions.

 Trip In Pipe Heavy (TIPH) – Trips pipe into the well center under pipe-heavy

conditions.

These preliminary designs are expected to be modified before error-free

simulation to include collision detection modules. Additionally, modifications may be

made as necessary to accommodate additional assumptions for system simplification. The

completed preliminary designs can be found in the supplemental file labeled

“Appendix_G_Modular_Controller_Preliminary_Designs.pdf.”

 79

References

Allen, L. V., Goh, K. M., & Tilbury, D. M. (2012). Input Order Robustness: Definition,

Verification Procedure, and Examples. IEEE Transactions on Automation Science

and Engineering, 9(1), 3–15. https://doi.org/10.1109/TASE.2011.2163509

Almeida, E. E., Luntz, J. E., & Tilbury, D. M. (2007). Event-condition-action systems for

reconfigurable logic control. IEEE Transactions on Automation Science and

Engineering, 4(2), 167–181. https://doi.org/10.1109/TASE.2006.880857

Almeida, E. T., Luntz, J. E., & Tilbury, D. M. (2005). Modular finite state machines

implemented as event-condition-action systems. IFAC Proceedings Volumes,

38(1), 373–378. https://doi.org/10.3182/20050703-6-CZ-1902.00346

Asarin, E., Maler, O., & Pnueli, A. (1994). Symbolic controller synthesis for discrete and

timed systems. In Hybrid Systems II (pp. 1–20). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/3-540-60472-3_1

Ayling, L. J., Jenner, J. W., & Neffgen, J. M. (2003). Seabed Located Drilling Rig - ITF

Pioneer Project. Presented at the Offshore Technology Conference, Offshore

Technology Conference. https://doi.org/10.4043/15328-MS

Basile, F., Chiacchio, P., & Coppola, J. (2012). A Hybrid Model of Complex Automated

Warehouse Systems—Part I: Modeling and Simulation. IEEE Transactions on

Automation Science and Engineering, 9(4), 640–653.

https://doi.org/10.1109/TASE.2012.2215322

Beyer, D., & Lemberger, T. (2017). Software Verification: Testing vs. Model Checking.

In O. Strichman & R. Tzoref-Brill (Eds.), Hardware and Software: Verification

and Testing (pp. 99–114). Springer International Publishing.

Brugman, J. D. (1987). Automated Pipe Handling: A Fresh Approach. Presented at the

SPE/IADC Drilling Conference, Society of Petroleum Engineers.

https://doi.org/10.2118/16065-MS

Calderoni, A., & Cercato, M. (2015). Drillmec Ahead: A New Generation of Fully

Automated Drilling Rig Forward Designed to Meet Highest HSE Standards and

Drilling Efficiency. Presented at the Offshore Mediterranean Conference and

Exhibition, Offshore Mediterranean Conference. Retrieved from

https://www.onepetro.org/conference-paper/OMC-2015-

459?sort=&start=0&q=drillmec&from_year=&peer_reviewed=&published_betw

een=&fromSearchResults=true&to_year=&rows=10#

Cao, D., & Moralez, N. (2016). Spare Parts Strategy Based on RAM Analysis to Extend

the Life of Drilling Supervisory and Control Systems: A Case Study. Presented at

the IADC/SPE Drilling Conference and Exhibition, Society of Petroleum

Engineers. https://doi.org/10.2118/178759-MS

 80

Cassandra, A. R. (1998). A Survey of POMDP Applications. In Proceedings of the

Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI–97)

(pp. 472– 480).

Cassandras, C. G., & Lafortune, S. (2011). Introduction to discrete event systems. New

York; London: Springer.

Chang, J.-W., Choi, Y.-K., Kim, M.-S., & Wang, W. (2011). Computation of the

minimum distance between two Bézier curves/surfaces. Computers & Graphics,

35(3), 677–684. https://doi.org/10.1016/j.cag.2011.03.025

Chen, S. Y. (2012). Kalman Filter for Robot Vision: A Survey. IEEE Transactions on

Industrial Electronics, 59(11), 4409–4420.

https://doi.org/10.1109/TIE.2011.2162714

Chen, Y. L., & Lin, F. (2000). Modeling of discrete event systems using finite state

machines with parameters. In Proceedings of the 2000. IEEE International

Conference on Control Applications. Conference Proceedings (Cat.

No.00CH37162) (pp. 941–946). https://doi.org/10.1109/CCA.2000.897591

De, A., Silin, D. B., & Patzek, T. W. (2000). Waterflood Surveillance and Supervisory

Control. Presented at the SPE/DOE Improved Oil Recovery Symposium, Society

of Petroleum Engineers. https://doi.org/10.2118/59295-MS

Dunham, C. L. (1987). Supervisory Control of Beam Pumping Wells. Presented at the

SPE Production Operations Symposium, Society of Petroleum Engineers.

https://doi.org/10.2118/16216-MS

Endsley, E. W. (2004). Modular finite state machines for logic control: Theory,

verification and applications to reconfigurable manufacturing systems. University

of Michigan. Retrieved from

https://deepblue.lib.umich.edu/handle/2027.42/124052

Fowze, F., & Yavuz, T. (2016). Specification, verification, and synthesis using extended

state machines with callbacks. In 2016 ACM/IEEE International Conference on

Formal Methods and Models for System Design (MEMOCODE) (pp. 95–104).

https://doi.org/10.1109/MEMCOD.2016.7797752

Gaudin, B., & Deussen, P. H. (2007). Supervisory Control on Concurrent Discrete Event

Systems with Variables. In 2007 American Control Conference (pp. 4274–4279).

https://doi.org/10.1109/ACC.2007.4282808

Gaushell, D. J., & Darlington, H. T. (1987). Supervisory control and data acquisition.

Proceedings of the IEEE, 75(12), 1645–1658.

https://doi.org/10.1109/PROC.1987.13932

Genrich, H. J. (1986). Predicate/Transition Nets. In Petri Nets: Central Models and Their

Properties (pp. 207–247). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-47919-2_9

 81

Grace, R. D. (2003). Blowout and Well Control Handbook - 1st Edition (1st ed.). Gulf

Professional Publishing. Retrieved from https://ebookcentral-proquest-

com.ezproxy.lib.utexas.edu/lib/utxa/detail.action?docID=294007

Han, R., Ashok, P., Pryor, M., van Oort, E., Scott, P., Reese, I., & Hampton, K. (2017).

Real-Time Borehole Condition Monitoring using Novel 3D Cuttings Sensing

Technology. Presented at the SPE/IADC Drilling Conference and Exhibition,

Society of Petroleum Engineers. https://doi.org/10.2118/184718-MS

Hansen, J., & Witte, L. E. (1999). US5988299 A. Retrieved from

http://www.google.com/patents/US5988299

Hegde, C., Awan, O., & Wiemers, T. (2018). Application of Real-time Video Streaming

and Analytics to Breakdown Rig Connection Process. Presented at the Offshore

Technology Conference, Offshore Technology Conference.

https://doi.org/10.4043/28742-MS

Hill, R. C., Cury, J. E. R., de Queiroz, M. H., Tilbury, D. M., & Lafortune, S. (2010).

Multi-level hierarchical interface-based supervisory control. Automatica, 46(7),

1152–1164. https://doi.org/10.1016/j.automatica.2010.04.002

Hill, Richard Charles. (2008). Modular verification and supervisory controller design for

discrete -event systems using abstraction and incremental construction (Ph.D.).

University of Michigan, United States -- Michigan. Retrieved from

https://search.proquest.com/docview/304574278/abstract/4BD5A51ADDFB4C8E

PQ/1

Huisman. (n.d.). LOC 400 Drilling Rig: Huisman Product Brochure. Retrieved from

https://www.huismanequipment.com/documenten/brochure_loc_400_26102015_

mail.pdf

Ito, T. (1997). Emerging Technology-A Portable SCADA System. Presented at the

Annual Technical Meeting, Petroleum Society of Canada.

https://doi.org/10.2118/97-48

Jacobs, T. (2015). Automated Drilling Technologies Showing Promise. Journal of

Petroleum Technology, 67(06), 50–55. https://doi.org/10.2118/0615-0050-JPT

Jiménez, P., Thomas, F., & Torras, C. (2001). 3D collision detection: a survey.

Computers & Graphics, 25(2), 269–285. https://doi.org/10.1016/S0097-

8493(00)00130-8

Khorasgani, H., & Biswas, G. (2018). Structural Fault Detection and Isolation in Hybrid

Systems. IEEE Transactions on Automation Science and Engineering, 15(4),

1585–1599. https://doi.org/10.1109/TASE.2017.2749447

Kockara, S., Halic, T., Iqbal, K., Bayrak, C., & Rowe, R. (2007). Collision detection: A

survey. In 2007 IEEE International Conference on Systems, Man and Cybernetics

(pp. 4046–4051). https://doi.org/10.1109/ICSMC.2007.4414258

 82

Kurz, K. (2013). Possible Implementation of Automated Systems in Drilling Rig Design.

Montanuniversität Leoben.

Leduc, R. J., Dai, P., & Song, R. (2009). Synthesis Method for Hierarchical Interface-

Based Supervisory Control. IEEE Transactions on Automatic Control, 54(7),

1548–1560. https://doi.org/10.1109/TAC.2009.2022101

Lee, C. W., & Won, K. S. W. (2013). Running Casing in Stands with Automate Casing

Drive System - Case Studies. Presented at the International Petroleum

Technology Conference, International Petroleum Technology Conference.

https://doi.org/10.2523/IPTC-16713-MS

Lee, J. S., Zhou, M., & Hsu, P. L. (2007). A Petri-Net Approach to Modular Supervision

With Conflict Resolution for Semiconductor Manufacturing Systems. IEEE

Transactions on Automation Science and Engineering, 4(4), 584–588.

https://doi.org/10.1109/TASE.2007.905995

Lennartson, B., Basile, F., Miremadi, S., Fei, Z., Hosseini, M. N., Fabian, M., &

Åkesson, K. (2014). Supervisory Control for State-Vector Transition Models—A

Unified Approach. IEEE Transactions on Automation Science and Engineering,

11(1), 33–47. https://doi.org/10.1109/TASE.2013.2291115

Lennartson, B., Bengtsson, K., Wigström, O., & Riazi, S. (2016). Modeling and

Optimization of Hybrid Systems for the Tweeting Factory. IEEE Transactions on

Automation Science and Engineering, 13(1), 191–205.

https://doi.org/10.1109/TASE.2015.2480010

Lipka, R., Paška, M., & Potužák, T. (2014). Simulation testing and model checking: a

case study comparing these approaches. In I. Majzik & M. Vieira (Eds.), Software

Engineering for Resilient Systems: 6th International Workshop, SERENE 2014

Budapest, Hungary, October 15-16, 2014 Proceedings (Vol. 8785). Springer

International Publishing. Retrieved from https://link-springer-

com.ezproxy.lib.utexas.edu/chapter/10.1007/978-3-319-12241-0_9

Loeyning, T. (2017). Automated Catwalk Machine for Land Rigs. Presented at the Abu

Dhabi International Petroleum Exhibition & Conference, Society of Petroleum

Engineers. https://doi.org/10.2118/188752-MS

MacGregor, C. (n.d.). The Rig of the Future: Making Every Well Your Best Well.

Retrieved May 4, 2018, from https://www.software.slb.com

Macpherson, J. D., Wardt, D., P, J., Florence, F., Chapman, C., Zamora, M., … Iversen,

F. (2013). Drilling-Systems Automation: Current State, Initiatives, and Potential

Impact. SPE Drilling & Completion, 28(04), 296–308.

https://doi.org/10.2118/166263-PA

Malik, R., & Teixeira, M. (2016). Modular supervisor synthesis for extended finite-state

machines subject to controllability. In 2016 13th International Workshop on

 83

Discrete Event Systems (WODES) (pp. 91–96).

https://doi.org/10.1109/WODES.2016.7497831

McLeod, R. W. (2015). Automation and supervisory control. In Designing for Human

Reliability (pp. 159–169). Boston: Gulf Professional Publishing.

https://doi.org/10.1016/B978-0-12-802421-8.00009-6

Nabors. (2018). Automated Drilling Floor Systems - Automated Tubular and Tool

Handling Equipment. Retrieved May 4, 2018, from

https://www.nabors.com/equipment/automated-floor-systems

Nabors Industries Ltd. (2018). Nabors SmartRig
TM

 drilling systems. Retrieved November

7, 2018, from https://www.nabors.com/rigs/onshore-rigs/nabors-smartrig

National Oilwell Varco. (2018a). NOVOS: Reflexive Drilling System. Retrieved May 4,

2018, from http://www.nov.com/NOVOS.aspx

National Oilwell Varco. (2018b). NOVOS: Step into the rig of the future. Retrieved

February 16, 2018, from

https://www.nov.com/Segments/Rig_Systems/Land/Control_and_Advisory_Syste

ms/Integrated_Drilling_Control_Systems/NOVOS.aspx

Ngo, Q. H., & Seow, K. T. (2014). Command and Control of Discrete-Event Systems:

Towards Online Hierarchical Control Based on Feasible System Decomposition.

IEEE Transactions on Automation Science and Engineering, 11(4), 1218–1228.

https://doi.org/10.1109/TASE.2013.2278975

Nishi, T., Watanabe, Y., & Sakai, M. (2018). An Efficient Deadlock Prevention Policy

for Noncyclic Scheduling of Multicluster Tools. IEEE Transactions on

Automation Science and Engineering, 15(4), 1677–1691.

https://doi.org/10.1109/TASE.2017.2771751

Niven, R. D. (1971). A new era in supervisory control. Journal of Canadian Petroleum

Technology, 10(04). https://doi.org/10.2118/71-04-02

Nuzzo, P., Finn, J. B., Iannopollo, A., & Sangiovanni-Vincentelli, A. L. (2014). Contract-

based design of control protocols for safety-critical cyber-physical systems. In

2014 Design, Automation Test in Europe Conference Exhibition (DATE) (pp. 1–

4). https://doi.org/10.7873/DATE.2014.072

Ornas, J. I. (2010). Closed-Loop Control for Decision-Making Applications in Remote

Operations. Presented at the IADC/SPE Drilling Conference and Exhibition,

Society of Petroleum Engineers. https://doi.org/10.2118/126907-MS

Prati, T. J., Farines, J. M., & de Queiroz, M. H. (2015). Automatic test of safety

specifications for PLC programs in the Oil and Gas Industry. IFAC-

PapersOnLine, 48(6), 27–32. https://doi.org/10.1016/j.ifacol.2015.08.005

Prebeau-Menezes, L. J. (2013). Snubbing Field Operations-Potential Trapped Air and

Explosive Hydrocarbon Mixtures on Surface (PhD Thesis). University of Calgary.

 84

Ramadge, P. J. G., & Wonham, W. M. (1989). The control of discrete event systems.

Proceedings of the IEEE, 77(1), 81–98. https://doi.org/10.1109/5.21072

Saadallah, N., Meling, H., & Daireaux, B. (2011). Modeling a drilling control system, as

a Discrete-Event-System. In 2011 International Conference on Communications,

Computing and Control Applications (CCCA) (pp. 1–5).

https://doi.org/10.1109/CCCA.2011.6031461

Saadallah, Nejm. (2013). Scheduling drilling processes with Petri nets. University of

Stavanger, Faculty of Science and Technology, Stavanger.

Saez, M., Maturana, F. P., Barton, K., & Tilbury, D. M. (2018). Real-Time

Manufacturing Machine and System Performance Monitoring Using Internet of

Things. IEEE Transactions on Automation Science and Engineering, 15(4), 1735–

1748. https://doi.org/10.1109/TASE.2017.2784826

Schlumberger Limited. (2018). OnTrack Integrated Drilling Controls System. Retrieved

November 8, 2018, from https://www.products.slb.com/rig-equipment/cabins-

and-controls/ontrack-integrated-drilling-controls-system

Söderberg, A., & Johansson, R. (2013). Safety contract based design of software

components. In 2013 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW) (pp. 365–370).

https://doi.org/10.1109/ISSREW.2013.6688922

Superior Energy. (2016). Superior Energy - Automated Completion Rigs. Retrieved

February 15, 2018, from https://superiorenergy.com/brands/SPN-well-

services/CATS-automated-completion-rigs/

Szpyrka, M., Biernacka, A., & Biernacki, J. (2014). Methods of Translation of Petri Nets

to NuSMV Language. In Proc. Int. Workshop Concurrency Specification

Program (pp. 245–256). Retrieved from /paper/Methods-of-Translation-of-Petri-

Nets-to-NuSMV-Szpyrka-

Biernacka/9b0b630e101bd44e86b73771adeb3c9dcdfadcbb

Teixeira, M., Malik, R., Cury, J. E. R., & Queiroz, M. H. de. (2015). Supervisory Control

of DES With Extended Finite-State Machines and Variable Abstraction. IEEE

Transactions on Automatic Control, 60(1), 118–129.

https://doi.org/10.1109/TAC.2014.2337411

Thistle, J. G. (1996). Supervisory control of discrete event systems. Mathematical and

Computer Modelling, 23(11), 25–53. https://doi.org/10.1016/0895-

7177(96)00063-5

Topcu, U. (2017). LT Properties. PowerPoint presentation.

Ugasciny, A., Chang, B. T., & Hampson, A. (2016). Cost Reduction on Onshore Rig

Operation with Offline Stand Building System. Presented at the SPE Annual

 85

Technical Conference and Exhibition, Society of Petroleum Engineers.

https://doi.org/10.2118/181292-MS

West Group. (2015, June 25). An Historic Event. Retrieved January 12, 2018, from

http://www.westgroup.no/home/-an-historic-event-

Wilson, N. D. (1971). East Rainbow Supervisory Control System. Journal of Canadian

Petroleum Technology, 10(03). https://doi.org/10.2118/71-03-05

Wu, N., Zhou, M., & Chu, F. (2008). A Petri Net-Based Heuristic Algorithm for

Realizability of Target Refining Schedule for Oil Refinery. IEEE Transactions on

Automation Science and Engineering, 5(4), 661–676.

https://doi.org/10.1109/TASE.2008.916737

Yang, Y., & Gohari, R. (2005). Embedded supervisory control of discrete-event systems.

In IEEE International Conference on Automation Science and Engineering, 2005.

(pp. 410–415). https://doi.org/10.1109/COASE.2005.1506804

Zheng, X., Julien, C., Kim, M., & Khurshid, S. (2017). Perceptions on the State of the Art

in Verification and Validation in Cyber-Physical Systems. IEEE Systems Journal,

11(4), 2614–2627. https://doi.org/10.1109/JSYST.2015.2496293

Zhu, M., & Brooks, R. R. (2009). Comparison of Petri Net and Finite State Machine

Discrete Event Control of Distributed Surveillance Network. International

Journal of Distributed Sensor Networks, 5(5), 480–501.

https://doi.org/10.1080/15501320903048753

