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Abstract 

 

Modular Supervisory Controller for Complex Systems 

 

Melissa Mei Yun Lee, M.S.E. 

The University of Texas at Austin, 2018 

 

Supervisors:  Eric van Oort, Mitch Pryor 

 

Automation for the oil and gas industry is driven by the need to improve 

efficiency, productivity, consistency, and personnel safety, while reducing cost. Fully 

automated systems alleviate the physical toll on human operators and allow them to focus 

on monitoring unsafe well events and machinery maintenance. Complex systems like 

drilling rigs and snubbing units require supervisory controllers that can safely coordinate 

equipment and processes, overcome interoperability challenges and allow for functional 

scalability without sacrificing safety, security, and consistency of operations. The 

primary objective of this report is to explore the feasibility of developing a modular 

supervisory controller architecture which addresses these concerns by modifying and 

extending existing architectures. Such modifications include the use of non-homogeneous 

models in sub-system modules, including discrete event models for control and physics-

based models for collision avoidance, addition of a system compilation module (Meta 

Module) to identify simple design errors, and implementation of an algorithm for 

synthesis of modules and filters to replace missing sub-systems. This report discusses the 

implementation results of the modular supervisory control architecture (modMFSM) on a 
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simplified two-machine drilling system for assessment of design practices. Simulations 

for three test cases were executed to assess the ability of the controller to correctly 

perform error-free operations, detect and react to possible collisions, and adapt to missing 

equipment. The report then discusses the possibilities of extending the modMFSM 

architecture to control large complex systems such as drilling rigs, using snubbing 

operations as an example. 
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Chapter 1:  Introduction 

1.1 DRILLING AUTOMATION BACKGROUND 

Automation for industrial applications, such as in the manufacturing and the oil 

and gas industries, is driven by the need to improve efficiency, productivity, consistency, 

and personnel safety, while reducing cost (Kurz, 2013). In the oil and gas industry, there 

is ongoing effort in developing mechanized and semi-automatic rig equipment, and 

control systems, supported by high quality instrumentation (Macpherson et al., 2013). 

This technology not only allows many routine drilling operations to be remotely operated 

from the driller’s cabin rather than manually on the rig floor, thereby improving 

personnel safety, but also provides the driller with optimal drilling parameters 

suggestions, dysfunction monitoring and alarms, and regulation of drilling parameters 

within a safety envelope, increasing consistency of performance and drilling dysfunction 

prevention (Macpherson et al., 2013). The advent of commercially available mechanized 

and semi-automatic drilling rig systems has initiated a surge of effort to obtain fully 

automated rigs, which require supervisory controllers that act in the capacity of the 

driller, coordinating rig equipment for execution of drilling activities. Fully automated 

rigs alleviate the physical toll on the rig crew and allow them to focus on monitoring 

unsafe well events and machinery maintenance, while being taken out of harm’s way. 

Due to financial obstacles including hardware acquisition, retraining, and the 

extended life-cycle for rigs and rig equipment, automation efforts have been limited. 

Commercially available supervisory controllers such as the NOV Operating System 

(NOVOS) that allow for fully automated performance of repetitive drilling activities, 

such as tripping, drilling, and pipe connections are currently in development (National 

Oilwell Varco, 2018b). However, these controllers are limited by their lack in modularity 
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and ability to accommodate for varying combinations of equipment from multiple 

sources. This challenge is a major obstacle for development and implementation of fully 

automated drilling rigs (Macpherson et al., 2013).  

1.2 SUPERVISORY CONTROL MOTIVATION 

The motivation for this research was the need to develop a supervisory controller 

architecture for snubbing operations. Snubbing operations are a subset of drilling, 

completions, and production operations, and are performed when it is necessary to run 

pipe or other tubulars into or out of a pressurized well for activities such as tripping, 

underbalanced drilling, milling, fishing, and well control operations (Grace, 2003). The 

main benefit of snubbing is the ability to work in a high pressure well without pumping 

high weight fluids or mud into the wellbore, reducing the risk of damaging the formation 

(Grace, 2003). Snubbing has three main modes of operation: pipe-light, pipe-heavy, and 

balance point (Prebeau-Menezes, 2013). Pipe-light operations are needed when the force 

of the pressurized well exceeds the weight of the drill string, which includes the drill 

pipes, drill collars, various tools, and the drill bit. In pipe-light situations, if downward 

force is not constantly applied to the pipe, forces from the well could expel the drill string 

from the well (Prebeau-Menezes, 2013). Pipe-heavy operations are performed when the 

weight of the drill string exceeds the force of the pressurized well. Balance point 

operations are performed to safely transition the well between pipe-light and pipe-heavy 

operations when the well force approximately equals the weight of the drill string 

(Prebeau-Menezes, 2013). 

Snubbing units can either work as a standalone unit, or as a rig-assist unit, which 

is an add-on to a drilling rig. Equipment on standalone and rig-assist units are similar 

(Prebeau-Menezes, 2013). Appendix A – Snubbing Unit Equipment describes general 
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equipment found on snubbing units. In a traditional snubbing unit, the snubbing crew 

works in a work basket located directly above the wellbore. Working in the work basket 

while the well is under high pressure is extremely dangerous, especially during pipe-light 

operations, during which an expelled pipe could critically injure the crew in the work 

basket (Prebeau-Menezes, 2013).  

Superior Energy Services, Inc. has developed mechanized snubbing rigs which 

allow for remote-control of snubbing equipment and catwalk from an adjacent rig cabin, 

removing crew from the rig floor for routine operations (Superior Energy, 2016). 

Appendix D – Process Narrative Flowcharts for Snubbing presents a detailed process 

narrative of a Superior mechanized snubbing rig. This state-of-the-art technology has 

made significant improvements to snubbing operation safety, and consistency. However, 

many of the repetitive operations such as snubbing in/out tubulars, stripping in/out 

tubulars, and pipe handling during pipe-light and pipe-heavy operations can be fully 

automated by introducing a supervisory controller to send commands and set points to the 

mechanized equipment. Using a supervisory controller to implement repetitive operations 

not only further improves performance consistency and safety but also frees the snubbing 

crew to monitor performance and watch for dysfunctions.  

Snubbing operations are closely related to drilling operations. The smaller 

operations scope of snubbing and the existence of commercially available, mechanized 

snubbing units make snubbing operations a perfect candidate as a platform for developing 

and testing a modular supervisory controller for use in the oil and gas industry. 

1.3 PROBLEM STATEMENT & RESEARCH OBJECTIVE 

In order to automate systems like drilling rigs and snubbing units, there is a need 

for a supervisory controller that enables easy integration and safe coordination of 
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different automation products. There are a variety of approaches to supervisory control, 

reviewed in Section 2.2 Supervisory Control Techniques Overview, but for most 

individual components such as rig equipment, the well-understood Finite State Machine 

(FSM) is sufficient; however, this approach is untenable when considering the 

coordination of all equipment. As will be shown below, other supervisory controllers 

found in the literature have challenges that need to be addressed prior to application to 

drilling automation in the oil and gas domain. Thus, this report will evaluate the 

feasibility for use of a modified version of the modular finite state machine architecture 

(modMFSM) with modules developed for reconfiguration and environment interaction 

abilities through implementation on a simplified conveyor belt drilling system. This 

report will then discuss the extension of the modMFSM architecture to drilling 

automation with the context of application to snubbing operations. This approach holds 

promise to address modularity and scaling issues, as well as allow use of modules 

encompassing various model structures, and enable automatic generation of modules and 

filters for human intervention when missing equipment. 

The hypothesis of this research is stated below: 

It is feasible to develop a modular, supervisory controller that allows for modularity, 

functional scalability, safe interaction with the environment, and controller 

reconfiguration for complex systems with complicated operations, well-defined tasks, and 

interdependent equipment. 

As shown in the literature review, there is a need for development of a modular 

supervisory controller for complex systems, such as drilling rigs. Controllers for these 

systems must allow for functional scalability without sacrificing safety, security, and 

consistency of operations. As a proof of concept for testing of the modular supervisory 
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controller, a study of implementation on a simplified conveyor belt drilling system is 

performed. In summary, the objectives of the project were to: 

1. Develop a supervisory controller architecture, modMFSM, that addresses the 

critical concerns described above. 

2. Implement the developed solution of a simplified, but representative system. 

3. Demonstrate the controller’s ability to detect potential collisions, and 

accommodate equipment replacement. 

4. Present extension of the controller architecture for implementation for snubbing 

operations. 
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Chapter 2:  Literature Review 

This section first provides a review of the state-of-the-art supervisory control as 

used in the oil and gas industry, after which an overview of supervisory control 

techniques is presented.  

2.1 SUPERVISORY CONTROL IN THE OIL AND GAS INDUSTRY 

Implementation of supervisory control in the upstream oil and gas industry began 

with control and monitoring of production activities in oil fields (De, Silin, & Patzek, 

2000; Dunham, 1987; Niven, 1971; Wilson, 1971). These supervisory systems were 

strictly serial and had slow response times, since “events in the oilfield [do not] occur at 

such a rate that requires immediate computer response” (Wilson, 1971). Since the 

implementation of these supervisory systems, the role of a real-time control system user 

in the oil and gas industry has been “moving away from [manual control in which one] … 

actively monitors the state of a system, identifies when there is the need for control input, 

and takes the necessary action to ensure process parameters remain where they are 

expected to be” toward a role in which one’s “main function is to monitor the automation 

and to be ready and able to intervene – to re-take manual control – should problems arise 

with the automated systems” (McLeod, 2015). 

In the late 1980s, Supervisory Control and Data Acquisition (SCADA) Systems 

were developed for monitoring and control of distributed processes where a master 

terminal unit (MTU) controls remote terminal units (RTU) that interact directly with the 

lower level process controllers (Gaushell & Darlington, 1987; Ito, 1997). The challenges 

of SCADA systems are that these systems are best suited for environments with “stable 

ambient conditions,” maintaining reliable communication and calibration is often 

difficult, and there is sensitivity to power fluctuations (Ito, 1997). In addition to SCADA 
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systems, development of mechanized rig equipment for teleoperation began to allow 

remote control of certain drilling operations away from the rig floor; this mechanization 

effort has led to significant progress in development of tele-operated and semi-automatic 

operations (Brugman, 1987; Cao & Moralez, 2016; US5988299 A, 1999; C. W. Lee & 

Won, 2013; Loeyning, 2017; Schlumberger Limited, 2018; Ugasciny, Chang, & 

Hampson, 2016). 

Maturation of increasingly sophisticated mechanized and semi-automatic rig 

systems spurred interest in development of fully automated drilling rigs. Some of the 

major cutting-edge efforts in the industry are detailed in (Ayling, Jenner, & Neffgen, 

2003; Calderoni & Cercato, 2015; Huisman, n.d.; Jacobs, 2015; MacGregor, n.d.; Nabors, 

2018; Nabors Industries Ltd., 2018; Ornas, 2010; West Group, 2015). The surge of effort 

in drilling automation has also led to the development of supervisory control systems for 

automatic execution of drilling sub-operations through employment of automata-like 

network of states shown in (National Oilwell Varco, 2018b), and Petri nets (Prati, 

Farines, & de Queiroz, 2015). Saadallah developed a DES model of a drilling control 

system for coordination of drilling equipment and activities as a Petri net (Nejm 

Saadallah, 2013). Simulations were done to show the feasibility of this control model to 

be implemented for either semi-automatic or fully automatic control of drilling activities. 

NOVOS, a commercially available drilling system with controllers for automatic 

execution of drilling activities is in the process of being expanded to allow for fully 

automatic coordination and execution of drilling activities (National Oilwell Varco, 

2018a).  

In order to fully automate large systems in complex environments such as those 

found in the oil and gas industry, development of supervisory controllers which can 

safely coordinate various equipment and processes are critical. Supervisory control 
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efforts in the oil and gas industry have significantly progressed from automated 

monitoring and control of relatively stable processes in oil fields to development of 

automated drilling processes, which require significantly quicker responses in more 

unpredictable environments. Despite the advancements of supervisory control 

development for drilling in the oil and gas industry, many issues remain to be tackled, 

including those of modularity, and functional scalability, which motivate the need to 

explore the development of a modular supervisory controller architecture for drilling 

operations and other systems of similar size and complexity. 

2.2 SUPERVISORY CONTROL TECHNIQUES OVERVIEW 

Supervisory control is used in applications for which “control and coordination” 

are required for “orderly flow of events” (Ramadge & Wonham, 1989). Supervisory 

controllers should satisfy safety requirements, enable task planning, allow for functional 

scalability, and be verifiable (N. Saadallah, Meling, & Daireaux, 2011). Discrete event 

systems (DES) have discrete state spaces that adapt to “abrupt occurrence, at possibly 

unknown irregular intervals, of physical events” (Ramadge & Wonham, 1989). DES can 

be modeled as untimed, timed, and hybrid systems. Untimed system models are purely 

event-driven and do not rely on time information. Timed system models are ones where 

timing information is crucial. Hybrid systems “combine time-driven with event-driven 

dynamics” (Cassandras & Lafortune, 2011). Recent research on hybrid systems have 

applied them for real-time manufacturing operation as in (Saez, Maturana, Barton, & 

Tilbury, 2018) and analyzed approaches for inclusion of fault detection and isolation as in 

(Khorasgani & Biswas, 2018). The routine operations of the systems considered in this 

report are assumed to be event driven with negligible dependence on timing information. 

Therefore, only DES control techniques will be explored. Although many different types 
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of DES models exist, the more common DES models explored in this literature review 

are finite state machines (FSMs), Petri nets, and Markov decision processes. 

2.2.1 Finite State Machines 

A common approach to modeling DES is through the use of finite state machines 

(FSMs). Deterministic FSMs are represented by the six-tuple 𝐺 = (𝑋, 𝐸, 𝑓, Γ, x0, 𝑋𝑚), 

where 
 

𝑋 = finite set of states 

𝐸 = finite set of events 

𝑓 = transition function that maps starting states and events to ending states 

Γ = active event function to define the events that allow transitions 

𝑥0 = initial state 

𝑋𝑚 = finite set of marked states 

 

There are two basic variants of FSMs: Moore machines which produce outputs as 

a result of the current state, and Mealy machines which produce outputs as a result of the 

transition between states (Cassandras & Lafortune, 2011). In order to capture instances 

when transition allowance depends on external variables such as time, guards—generally 

in the form of if-statements—are added to the transition definitions. Guarded FSMs are 

called extended finite state machines (Fowze & Yavuz, 2016). In traditional automata 

theory, supervisory controllers control FSM systems by disabling undesired transitions 

(Cassandras & Lafortune, 2011)]. In order to ensure desired system behavior, the widely 

used software tools, such as SMV and SPIN, among others, can be used for model 

checking of FSMs. 
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FSMs generally display good performance for small and medium scale systems. 

FSMs “can immediately access the control pattern for each controllable transition based 

on the current encoded state,” and can perform reachability searches, assuring prompt 

controller response, which is crucial for systems with strict real-time requirements (Zhu 

& Brooks, 2009). However, this quick response has a high computational cost dependent 

on the size of the state space. There is potential to mitigate this cost through separation 

into sub-systems that limit the search to the state space of the relevant sub-system. 

2.2.2 Petri Nets 

Using a Petri net is another common approach to modeling DES, and was the 

chosen approach in Saadallah’s drilling control system model (Nejm Saadallah, 2013). 

Petri nets have also been used for hybrid systems, and modular supervisory control 

(Basile, Chiacchio, & Coppola, 2012; J. S. Lee, Zhou, & Hsu, 2007; Lennartson, 

Bengtsson, Wigström, & Riazi, 2016; Nishi, Watanabe, & Sakai, 2018; Wu, Zhou, & 

Chu, 2008). A Petri net is represented by the tuple 𝑆 = (𝑃, 𝑇, 𝐼, 𝑂, 𝑈), where 
 

𝑃 = finite set of places, which can hold tokens for state-specific requirements 

𝑇 = finite set of transitions 

𝐼 = finite set of arcs from places to transitions 

𝑂 = finite set of arcs from transitions to places 

𝑈 = integer vector representing the current marking 

 

The state of the Petri net is shown by its marking, which is a “vector expressing 

the number of tokens in each place” (Zhu & Brooks, 2009). Conditions on transitions in 

Petri nets can be modeled with predicate / transition Petri nets for meeting conditions 
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before transitioning (Genrich, 1986). SMV and SPIN cannot be used for model checking 

Petri nets directly. Methods exist for translation of Petri nets to language used in the 

mainstream formal model checking software like SMV; however, use of finite state 

machines would avoid potential errors that could be lost in translation (Szpyrka, 

Biernacka, & Biernacki, 2014).  

Compared to FSMs, Petri nets have greater modeling power, allow for efficient 

real-time control and analysis due to mathematical computation of properties which 

employ linear matrix algebra, and allow for automatic handling of concurrent events (Zhu 

& Brooks, 2009). “An automaton can always be represented as a Petri net, [but] not all 

Petri nets can be represented as finite-state automata; [therefore], Petri nets can represent 

a larger class of languages” (Cassandras & Lafortune, 2011). Petri nets also provide more 

compact state spaces than FSM, making them better suited to model systems with 

repeated structure (Zhu & Brooks, 2009). Additionally, Petri nets are capable of 

modeling concurrent models in a simpler format than FSMs; however, more problems are 

decidable for FSMs than for Petri nets (Cassandras & Lafortune, 2011). The main trade-

off between FSMs and Petri nets is model richness versus decidability. 

2.2.3 Markov Models 

Markov models are stochastic models that capture environments with 

probabilistic transitions. In order to be modeled by Markov models, the environments 

must be proven to obey the Markov property, which states that the value of the next state 

depends solely on the current state and not the path history that led to the current state. 

Although Markov models are useful for capturing uncertainty, they are data 

intensive and require knowledge of transition probabilities, rewards for each state, action, 



 12 

and observation. They also require “every attribute value combination to be enumerated,” 

which can lead to large state spaces for small problems (Cassandra, 1998). 

2.2.4 Selection of DES Models 

FSMs, Petri nets, and Markov models all have their advantages and 

disadvantages. The choice of which approach to use for control of a DES is specific to 

the application.  Markov models depend heavily on knowledge of the environment that 

may not be available for all systems, which would then require learning techniques. 

Therefore, Markov models were not used for modeling the type of systems explored in 

this paper. In choosing between FSMs and Petri nets, the main point of consideration is in 

model richness versus decidability. Since Petri nets can be derived from FSMs should 

FSMs prove to be unable to provide the level of model richness necessary for controllers 

of the complex systems explored in this paper, FSMs were used in this controller 

architecture to allow for better decidability. 

2.2.5 Modular Approaches Using Finite State Machines 

One of the main disadvantages of modeling systems as FSMs is the tendency for 

the state space to grow rapidly for complex systems, which lead to exponential number of 

states and processes. However, this state space explosion can be mitigated through 

modular controller synthesis by “decomposing the [the system] into simpler 

components…[which allows] greater structure and flexibility to be incorporated into the 

controller” (Ramadge & Wonham, 1989; Thistle, 1996).  

Endsley proposed a particularly promising modular supervisory control 

architecture, which, devised for complex manufacturing systems, decomposes the 

systems into sub-systems housed in structures called modules which interact with each 
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other to form a modular supervisory controller (Endsley, 2004). Since input / output finite 

automata called trigger / response finite state machines (TR FSMs) are used to model the 

subsystems inside the modules, this architecture is called Modular Finite State Machines 

(MFSMs). Unlike traditional finite state machine supervisory controllers which block 

illegal actions of the plant, the MFSM supervisory controller “forces events to occur” (E. 

E. Almeida, Luntz, & Tilbury, 2007). Defined in this section are the major components of 

the MFSM architecture. 

TR FSMs used in MFSM theory are defined by 

FSM = (XFSM,  TFSM,  RFSM,  τFSM, x0FSM
,  xdpFSM

,  XMFSM
), where 

 

XFSM = finite set of states in the FSM 

TFSM = finite set of triggers recognized by the FSM 

RFSM = finite set of responses produced by the FSM 

τFSM = finite set of transitions between states in the FSM 

x0FSM
 = initial state 

xdpFSM
 = dump state (state without outgoing transitions) 

XMFSM
 = set of marked states (accepting states) 

 

Dump states are generally not shown in the TR FSM diagram unless there exists a 

transition to that state.  

Unlike in traditional automata theory, the supervisory controller in MFSM theory 

is designed to only include desired state transitions rather than disabling actions of the 

DES. Therefore, transitions of TR FSMs are defined by τ = (t𝜏,  xsτ
,  xdτ

,  rτ), where 

 

tτ = trigger for transition 
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xsτ
 = source state of the transition 

xdτ
 = destination state of the transition 

rτ = [rτ,1, … , rτ,mτ
] = set of responses as a result of the transition 

 

As previously mentioned, TR FSMs in MFSM theory are housed in modules. The 

modules communicate with each other through ports on the modules called sockets, 

which are defined by, SMi
= (TMi

,  RMi
), where 

 

TMi
 = set of triggers that travel in through socket SMi

 

RMi
 = set of responses that travel out through socket SMi

 

 

Therefore, modules can be defined by the TR FSM they house and the sockets 

through which they communicate with other modules. A module is defined by M =

(FSM, SM), where  

 

FSM = (XFSM,  TFSM,  RFSM,  τFSM, x0FSM
,  xdpFSM

,  XMFSM
)  

SM = {SM1
, … ,  SMn

} for n number of sockets  

 

Filters act as the interface between two modules, defining the interaction between 

them. Therefore, filters house classical FSMs with no responses. Filters are especially 

important in the execution of modular verification because modules that satisfy the 

specifications of their filters also satisfy the specifications on their interaction with other 

modules. This type of verification for modular systems is similar to contract-based 

design, which is commonly used for development of component-based software design 

and multi-component cyber-physical systems (Nuzzo, Finn, Iannopollo, & Sangiovanni-
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Vincentelli, 2014; Söderberg & Johansson, 2013). Filters are defined by F =

(FSM,  SFa
,  SFb

), where  

 

FSM = (XFSM,  TFSM,  RFSM,  τFSM, x0FSM
,  xdpFSM

,  XMFSM
) with RFSM = ∅ 

SFa
= (TFa

,  RFa
) = a socket 

SFb
= (TFb

,  RFb
) = b socket   

 

Filters sit on pipes that connect the sockets of communicating modules. Pipes are 

defined by P = (SPa
,  SPb

,  FP), where  

 

SPa
= (TPa

,  RPa
) = a socket 

SPb
= (TPb

,  RPb
) = b socket 

FP = (FSM,  SFa
,  SFb

) = filter on pipe  

 

Lastly, a system of modules is defined by S = (MS, FS, PS), where  

 

MS = {M1, … , MnM
} = finite set of modules in the system 

FS = {F1, … ,  FnF
} = finite set of filters in the system 

PS = {P1, … ,  PnP
} = finite set of pipes connecting modules and filters  

 

Although the MFSM architecture uses finite state machines in the modules, the 

module-based structure shows potential for individual modules to house different types of 

controllers depending on the specific system represented. 
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2.3 VERIFICATION AND VALIDATION 

In order to test the robustness and correctness of the system controlled by the 

modMFSM, the system must be validated and verified. Validation proves that the system 

has the desired abilities, and verification proves that the system meets the required 

specifications and does not violate safety constraints (Zheng, Julien, Kim, & Khurshid, 

2017). DES can be verified and validated through “test and simulation, model checking, 

and theorem proving” (Allen, Goh, & Tilbury, 2012). For verification and validation of 

the modMFSM structure, compositional verification, software testing, and model 

checking are considered. These methods complement each other for full testing of the 

system as accuracy of the methods separately are limited by the chosen scenarios, and the 

defined specifications, respectively (Lipka, Paška, & Potužák, 2014). 

2.3.1 Compositional Verification 

The compositional verification algorithm for MFSM theory checks that the 

controller will not send any module into a “dump” state, proving that there are no 

compositional errors, conflicted responses are avoided, and each module satisfies its 

corresponding filters (Endsley, 2004). 

2.3.2 Simulation Testing 

Software testing is a method for validating that the system meets the ability 

requirements and works as desired. Definition of the specific scenarios for simulation 

“from analytical description is widely recognized in literature” (Lipka et al., 2014). 

Unlike model checking, which relies on searching the states of the discrete event system, 

simulation testing is less susceptible to scaling issues for large systems. Scenario-based 

evaluation also allows assessment of the system’s ability to handle situations that may not 
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be able to be tested through model checking (e.g. model checking does not force 

collisions to test a collision detection algorithm). 

2.3.3 Model Checking 

Model checking is used to prove adherence to desired system behavior. More 

specifically, model checkers search for violation of the specifications by providing 

counter-examples (Cassandras & Lafortune, 2011). To mitigate computational 

complexity of checking large systems, Hill et al. (R. C. Hill, Cury, de Queiroz, Tilbury, 

& Lafortune, 2010) show that “controllability and nonblocking of global systems [can be 

proven] through local checking” in hierarchical, modular systems without flattening the 

modules into a giant state machine, provided the system structure meets certain 

requirements, which are fully defined in (Richard Charles Hill, 2008). Additionally, 

through an evaluation of software testing versus software model checking, Beyer and 

Lemberger show that model checking can also efficiently identify bugs in the system 

(Beyer & Lemberger, 2017).  

Desired system behavior can be defined using formal specifications. Three main 

categories of formal specifications are:  

 Safety Specifications – to avoid illegal behavior. 

 Invariant Specifications – to meet requirements specific to the system state. 

 Liveness Specifications – to ensure absence of infinite loops, or to guarantee goal 

realization (Topcu, 2017). 

Although system specifications commonly fall in these three categories, there exist 

formal specifications outside these categories. 

Linear Temporal Logic (LTL) is a formal language that uses Boolean atomic 

propositions to define formal specifications such that discrete event systems can be 
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checked for fulfillment of desired system behavior. Software tools such as SMV, 

NuSMV, and SPIN for checking systems against LTL specifications are well-developed 

and widely used (Cassandras & Lafortune, 2011). 

Although formal verification and validation is a vital step in proving the 

robustness and correctness of the model and software, it is beyond the scope of this 

paper, but will be the next step in future research. 

2.4 LITERATURE REVIEW SUMMARY 

Supervisory controllers for large, complex systems like drilling rigs and snubbing 

units require guaranteed safe coordination of equipment and processes. Supervisory 

control efforts in the oil and gas industry have made significant progress, but there is still 

a need for supervisory controllers that can provide modularity, and functional scalability.   

Supervisory controllers of event-driven discrete event systems are commonly 

modeled as FSMs, Petri nets, and MDPs. Choosing a model approach depends on the 

needs of the application. For large, complex systems like drilling rigs, it is beneficial to 

choose a model that can be decomposed into sub-systems, and maximizes decidability. 

Therefore, the MFSM architecture—which models large systems as a network of 

connected modules, each housing a subsystem modeled by trigger / response finite state 

machines—was used as the foundational structure on top of which modifications were 

made to meet the requirements for control of complex systems. 
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Chapter 3:  modMFSM — An Extended Structure of Modular Finite 

State Machine (MFSM) System 

Based on a reading of the literature and best industry practices, this research 

extends the modular finite state machine (MFSM) structure developed for reconfigurable 

machinery in the manufacturing industry, described in the previous chapter. The extended 

controller structure uses various models within modules, including guarded trigger / 

response finite state machines, in order to model a hierarchical supervisory control 

structure. The developed supervisory control structure (modMFSM) adapts to remote and 

on-site manual interventions, new equipment, collisions, and missing equipment. This 

section details the modular, supervisory controller architecture design.  

3.1 MODIFICATION TO TR FSMS IN MFSM STRUCTURE 

Endsley’s MFSM structure uses trigger / response finite state machines (TR 

FSMs) in the modules and filters. In the proposed modified structure, transitions are 

triggered by events and/or fulfilled guards, or conditions, to respond to changes in system 

and environment variables to ensure safety and procedural compliance. The use of guards 

for input/output state machines is not a novel concept as shown in (Y. L. Chen & Lin, 

2000), and have been applied to MFSMs through implementation of MFSMs as Event-

Condition-Action (ECA) systems (E. E. Almeida et al., 2007; E. T. Almeida, Luntz, & 

Tilbury, 2005). In ECA systems, a rule affects transitions such that when an event 

happens, if the condition is satisfied, then the actions are performed. Although this 

implementation allows for the application of conditions for transitions based on 

observations of the environment, the MFSMs as ECA systems restricts the structure of 

the MFSMs such that there must be a main module to which peripheral modules are 

attached. The peripheral modules are only attached to the main module, and therefore, 
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cannot communicate with each other. If this ECA system implementation were to be 

applied to drilling automation, the main module would control the drilling procedure, and 

the peripheral modules would represent the sub-systems and equipment. However, for 

drilling automation, this ECA system structure does not suffice as it does not allow event 

detection modules, such as collision detection, to interact with equipment in parallel to 

the main module that controls the drilling process. Therefore, to relax the structural 

requirement of ECA systems, yet implement conditional transitions for MFSMs, guard 

conditions are captured by modifying the finite state machine transition definition.  

 

𝜏 = (𝑡𝜏, 𝑐𝜏, 𝑥𝑠𝜏
, 𝑥𝑑𝜏

, 𝑟𝜏) 

 

where 

 

𝑡𝜏 = trigger for transition 

𝑐𝜏 = transition condition (e.g. 𝑛𝑑𝑟𝑖𝑙𝑙𝑒𝑑  < 𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑) 

𝑥𝑠𝜏
 = source state of the transition 

𝑥𝑑𝜏
 = destination state of the transition 

𝑟𝜏 = {𝑟𝜏,1, … , 𝑟𝜏,𝑚𝑟
} = sequence of responses as a result of the transition 

 

3.2 SYSTEM VARIABLES 

To allow for interaction of the supervisory controller with the environment for the 

guard conditions mentioned in the previous section, system variables are introduced to 

the MFSM architecture. These system variables are stored in a global database that can 

be accessed by all modules and filters in the system. The concept of using system 
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variables in conjunction with discrete event systems, including finite state machines and 

Petri nets, have been implemented previously in (Y. L. Chen & Lin, 2000; Gaudin & 

Deussen, 2007; Lennartson et al., 2014; Yang & Gohari, 2005). A particularly relevant 

piece of work is the incorporation of system variables with extended finite state machines 

in (Teixeira, Malik, Cury, & Queiroz, 2015). Incorporation of system variables in the 

modMFSM architecture allows modification of the system variables to be a responsive 

action in transitions. Therefore, the final definition of the transitions in the finite state 

machines is: 

 

𝜏 = (𝑡𝜏, 𝑐𝜏, 𝑥𝑠𝜏
, 𝑥𝑑𝜏

, 𝑟𝜏, 𝑟𝑠𝑦𝑠) 

 

where 

 

𝑡𝜏 = trigger for transition 

𝑐𝜏 = transition condition (e.g. 𝑛𝑑𝑟𝑖𝑙𝑙𝑒𝑑  < 𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑) 

𝑥𝑠𝜏
 = source state of the transition 

𝑥𝑑𝜏
 = destination state of the transition 

𝑟𝜏 = {𝑟𝜏,1, … , 𝑟𝜏,𝑚𝑟
} = set of responses as a result of the transition 

𝑟𝑠𝑦𝑠= {𝑟𝑠𝑦𝑠,1, … , 𝑟𝑠𝑦𝑠,𝑚𝑠𝑦𝑠
} = set of modifications to system variables as a result of 

the transition 

3.3 MULTILEVEL HIERARCHY AND MODULE TYPES 

In the modMFSM controller structure, the modules are organized into eight 

categories for better understanding of each module’s role in the system, and to allow for 

easy categorization of modules into the appropriate levels for hierarchical control, which 
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is naturally supported by the modularity of the modMFSM structure. Hierarchical 

supervisory control has been explored for various discrete event systems, including for 

MFSM systems (R. C. Hill et al., 2010; Richard Charles Hill, 2008; Ngo & Seow, 2014). 

The modularity of the MFSM structure allows the controller hierarchy to be easily 

rearranged to fit the desired system. This hierarchical structure aids in reducing 

complexity of the subsystem controllers, and allows for more flexible controller and 

equipment modularity. 

 For systems similar to drilling rigs and snubbing units, four levels are considered: 

 Top Level – This level makes high-level decisions, and contains the Operator 

GUI Module, the System Coordinator Module, and the Meta Module. 

 Middle Level – This level coordinates sub-systems to reach operational goals, and 

contains the Operation Modules. The Operation Modules represent the 

operational modes of the system. 

 Low Level – This level of modules control the sub-systems directly, and contain 

the Equipment Controller Modules, Manual Modules, and Physics-Based / 

Algorithm Modules. 

 Sub Level – This is the lowest level of the hierarchy, and contains the Equipment 

Modules, which interact directly with the machinery. 

3.3.1 Operator GUI Module 

The Operator GUI Module represents the GUI interface with which the human 

operator interacts. The most basic function of the Operator GUI Module is to activate the 

system. There is only one Operator GUI Module per system. 
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3.3.2 System Coordinator Module 

The System Coordinator Module coordinates the operational goals for the system, 

and triggers the relevant Operational Module. 

3.3.3 Meta Module 

The Meta Module runs through detection of missing equipment and controllers by 

checking for disconnected sockets. If there is missing equipment or controllers, the Meta 

Module will automatically synthesize Manual Modules, and corresponding filters, 

sockets, and pipes to represent manual operator control of the system as replacements for 

missing equipment. This automatic synthesis procedure is in the simplest state, such that 

it allows multiple triggers, but only one response. Future research will be needed to 

develop an automatic synthesis algorithm that allows for multiple responses. Synthesis of 

discrete event systems controllers satisfying formally defined desired system behaviors is 

an ongoing and well established area of supervisory control research (Asarin, Maler, & 

Pnueli, 1994; Leduc, Dai, & Song, 2009; Malik & Teixeira, 2016; Thistle, 1996). 

However, the automatic generation of filters that correctly regulate interaction among 

modules has not been developed, but would alleviate the design effort needed and allow 

for more efficient controller reconfiguration. In his work, Hill has further investigated the 

construction of inter-module filters that satisfy global system properties; however, this 

algorithm requires designer input, but shows potential for implementation in a more 

sophisticated, automatic filter generation algorithm (Richard Charles Hill, 2008). 

3.3.4 Operation Modules 

The Operation Modules coordinate the activities of the sub-systems to reach the 

operational goal of the system as specified by the System Coordinator Module. Each 

Operation Module represents an operational mode of the system. For instance, an 
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automated drilling rig would have a tripping operational mode and a drilling operational 

mode, which would coordinate the running of pipe in and out of a well, and coordinate 

drilling the well, respectively. Each of these operational modes would be represented by a 

separate operation module to allow for isolated modification of operational procedures 

and sub-system involvement. 

3.3.5 Equipment Controller Modules 

These modules represent the supervisory controllers for sub-systems and 

coordinate the equipment activities. 

3.3.6 Equipment Modules 

This type of module models each piece of equipment, and send commands to the 

machinery. 

3.3.7 Manual Module 

The Manual Module encompasses a simple TR FSM that facilitates the transition 

of operations control between the supervisory controller and the human operator. The 

Manual Module is designed to be a versatile substitute for modules when a common error 

occurs that requires human intervention, or when operation modules, equipment 

controller modules, or equipment modules are missing. For instance, when the system 

identifies a piece of missing equipment, it creates a Manual Module that accepts triggers 

and produces a response as previously done by the missing equipment. Defined below is 

the framework for the TR FSM of a generic Manual Module that takes in one trigger and 

produces one response: 

 

𝐹𝑀 = (𝑋𝐹𝑀
,  𝑇𝐹𝑀

,  𝑅𝐹𝑀
,  𝜏𝐹𝑀

, 𝑥0𝐹𝑀
,  𝑥𝑑𝑝𝐹𝑀

,  𝑋𝑀𝐹𝑀
) 
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where 

 

𝑋𝐹𝑀
 = {idle, manual_control} 

𝑇𝐹𝑀
= {1.trigger, 2.auto} 

𝑅𝐹𝑀
 = {1.response, 2.manual} 

𝜏𝐹𝑀
 = {(1.trigger, [ ], idle, manual_control, [2.manual]), (2.auto, [ ], 

manual_control, idle, [1.response])} 

𝑥0𝑀
 = idle 

𝑥𝑑𝑝𝑀
 = dump 

𝑋𝑀𝑀
 = idle 

 

Defined below and shown in Figure 1 is the generic Manual Module:  

 

𝑀 = (𝐹𝑀, {𝑆𝑀1
, 𝑆𝑀2

, 𝑆𝑀3
, 𝑆𝑀4

}) 

where 

 

𝐹𝑀 = Described above. 

𝑆𝑀1
 = {[1.trigger], [1.done]} 

𝑆𝑀2
 = {[2.auto], [2.manual]} 

 



 26 

 

Figure 1.  Generic Manual Module template. 

3.3.8 Physics-Based / Algorithm Modules 

A major advantage to using a module-based structure for building modular 

controllers is that the model type inside each module is not required to match the model 

types inside other modules as long as interaction requirements are met. For instance, one 

equipment module may encompass a trigger / response finite state machine while another 

equipment module hosts a Petri net. As long as the interior model is able to render the 

appropriate responses for the sockets of the module in order to interact with the other 

modules in the system, the choice of the interior model is only dependent on the purpose 

of the module. 

This is especially useful if the supervisory controller requires physics-based 

algorithms for action selection based on environment observation, for instance in the case 

of error detection, or collision detection. In order to avoid detected collisions, the 

approach to resolution of events created by the collision detection module is to create a 

priority queue for these events that would be resolved first when executing the controller. 
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The use of such physics-based algorithm modules will be explored in the snubbing case 

study through the inclusion of collision detection for safe coordination of equipment, as 

further described in Chapter 4:  Collision Detection. Although collision detection is the 

primary focus in this effort, the concept could be useful for other systems in the future. 

For example, on a drilling rig, close monitoring of cavings reveal important information 

about downhole conditions, which could trigger the need for a change in the operational 

conditions. A system is currently under development at the University of Texas at Austin 

to detect cavings at the mud shaker that utilizes a cuttings transport model (Han et al., 

2017). This system could be included in a drilling rig modular supervisory controller as a 

module similar to a collision detection module. 
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Chapter 4:  Collision Detection 

To ensure safe operations, the supervisory controller must coordinate the 

subsystems such that the moving machinery never collide. Collision detection has been a 

fundamental concept in controls research, and an ongoing investigation topic in robotics, 

and computer graphics and simulations. The ideal collision detection system would run in 

the background and interrupt the system as necessary to avoid collision. This chapter 

discusses the collision detection approaches considered when designing the supervisory 

controller for the simplified case study system and for drilling. 

In the proposed supervisory control framework, collision detection is 

implemented as a physics-based algorithm module, which interacts with the operation 

level module and the relevant equipment modules in the relevant subsystem. The 

collision detection module interacts with the other modules such that when a potential 

collision is detected, it will send commands to stop movement of equipment, store the 

current states of the equipment and operation modules, send commands to a collision 

resolution module for relocation of equipment to avoid collision, and return the 

equipment to the stored current state such that the original process can be resumed.  

Out of the many developed collision detection algorithms, three general types of 

collision detection algorithms were explored when designing the supervisory controller 

for the simplified case study and for drilling: 

 Heuristic Collision Detection 

 Bounding Boxes Collision Detection 

 B-Spline Surface Collision Detection  
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4.1 HEURISTIC COLLISION DETECTION 

The heuristic approach simply restricts the movement of each piece of equipment 

dependent on the location of other active equipment. These relationships must be defined 

during the design of the model inside the collision detection module prior to 

implementation. For instance, in the case of snubbing operations, if the tongs are 

extended, then a minimum safe height is defined for the elevator, leaving a margin of 

distance before collision with the extended tongs, such that if the elevator reaches this 

minimum height, movement is stopped and the tongs moved out of the way before the 

elevator is allowed to resume descending. Although this is a relatively simple approach, it 

is not flexible to the addition or replacement of equipment. Bounding boxes is a more 

adaptive approach. 

4.2 BOUNDING BOX COLLISION DETECTION 

The widely used bounding box collision detection approach approximates the 

volume of each piece of equipment by considering an invisible box surrounding the 

equipment. If the bounding boxes of two objects overlap, then there is a possibility of 

collision. Common variations of the bounding box approximation are: axis-aligned 

bounding box (AABB), spheres, and oriented bounding box (OBB) (Kockara, Halic, 

Iqbal, Bayrak, & Rowe, 2007). Bounding box collision detection is another algorithm that 

can be included in the collision detection module for snubbing operations, chosen for its 

ability to adapt better to general shapes than other algorithms such as simplex-based or 

feature-based (Kockara et al., 2007). 

For the case study in this report, ABB, where the sides of the rectangular 

bounding box align with the principal axis, which allow for accommodation of deforming 

objects, was implemented (Jiménez, Thomas, & Torras, 2001). Therefore, various 
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reference frames were defined to locate and orient the bounding boxes. A global 

reference frame was established at a central location. Each piece of equipment had a local 

reference frame attached to the center of the piece of equipment, and the equipment’s 

bounding box was defined with respect to the local reference frame. All equipment 

movement was then calculated with respect to the global reference frame, which allowed 

detection of overlapping bounding boxes prior to the occurrence of a collision.   

Since calibration of sensors is beyond the scope of the controller design this 

method is dependent on the assumption that the local reference frames of the equipment 

are properly calibrated with the origin of the global reference frame prior to 

commencement of operations. 

4.3 B-SPLINE SURFACE COLLISION DETECTION 

B-spline surfaces are able to approximate complex shapes more closely than 

polyhedral approximations. For B-spline approximations, it is possible to calculate 

minimum distance between B-spline surfaces for collision detection (Chang, Choi, Kim, 

& Wang, 2011). Although this type of collision detection provides more freedom of 

movement for the equipment and is less conservative, it requires knowledge of the 

specific geometry of the equipment. Exploration of this level of collision detection is 

outside the scope of this project. 

4.4 DYNAMIC OBJECT DISCOVERY COLLISION DETECTION 

Although the purpose of this supervisory controller is to track the location of the 

components of the controlled system, there can still exist components within the system 

workspace for which the locations are unknown. This occurs when unmodeled objects 

enter the workspace at uncertain times and frequencies. For instance, in a snubbing unit, 
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there remains a risk of human crew members entering the rig floor at uncertain points 

which could lead to collisions. Dynamically discovering objects that move in and out of 

the workspace can be performed via various sensors with possible combination with real-

time image processing of cameras monitoring the environment. Dynamic object 

recognition and position detection has been extensively explored in robotics (S. Y. Chen, 

2012). The idea of using image processing for drilling rig activity recognition is a new 

area of research in the oil and gas industry and can be leveraged for dynamic object 

discovery collision detection (Hegde, Awan, & Wiemers, 2018). Although this is a 

valuable path for exploration in future research efforts, this approach to collision 

detection calculation is beyond the scope of this effort. 
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Chapter 5:  Case Study—Simple Conveyor Belt Drilling System 

As a proof of concept, the modMFSM controller architecture was applied to a 

simple conveyor belt drilling system. The conveyor belt drilling system is formatted to 

demonstrate the controller's hierarchical structure, inclusion of physics-based models, 

modularity, and automatic generation of manual modules and corresponding filters. This 

section describes the simple conveyor belt drilling system, the design of its modular 

supervisory controller, and simulations of the implemented controller. 

5.1 DEFINITION OF SYSTEM AND ENVIRONMENT 

In order to design any controller, a model of the plant system and a thorough 

definition of the expected behaviors of the controlled system are necessary. This section 

defines the system components, process narrative, and assumptions needed to design a 

supervisory controller for a simple conveyor belt drilling system. 

5.1.1 System Components 

Identification of the hardware needed for automation of all activities is a critical 

step for designing a controller for coordination of equipment and processes. The 

conveyor belt drilling system contains two pieces of equipment: a drill robot, and a 

conveyor belt. Figure 2 presents a diagram of the conveyor belt drilling system. 
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Figure 2.  Diagram of the conveyor belt drilling system as used in the case study. The 

global reference frame is shown in red in the diagram with the y-axis 

coming out of the page.  

Positions of the equipment and blocks to be drilled are relative to a global 

reference frame with an origin set at the base of the drill robot with the positive x-axis 

extending to the right of the robot, the positive y-axis extending through the front of the 

robot, and the positive z-axis extending up through the top of the robot. The drill arm and 

drill bit portion of the drill robot extends 0.1 m in the positive y-direction away from the 

base. The drill has a fixed x- and y- position, but can move up and down in the z-

direction at 0.025 m/s. Additionally, when turned on, the drill bit rotates at 250 RPM 

about the z-axis. The conveyor belt lies 0.1 m in the positive y-direction, parallel to the x-

axis. The conveyor moves blocks at 0.025 m/s in the negative x-direction. 
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In order to fully automate a system, appropriate sensors are crucial to provide 

controllers with feedback from the system and environment in order to best respond to 

events. The following sensors exist in the conveyor belt drilling system: 

 Position sensor for the drill (positions of the bit can be calculated from the drill 

position) 

 Linear velocity sensor for the drill  

 Rotational velocity sensor for the drill bit 

 Position sensor for the blocks 

 Linear velocity sensor for the blocks 

5.1.2 Process Narrative 

A process narrative is the step-by-step action and decision-making procedures for 

particular operations. This documentation is essential for a thorough understanding of the 

work process in order to build a controller that guides the system through the correct flow 

of operations, while maintaining safety. Figure 3 shows the process narrative as a 

flowchart for drilling a block using the conveyor belt drilling system. In this flowchart, 

the yellow boxes represent a deciding factor for the next action. Although a collision 

detection process is not shown on the flowchart, it runs in the background, interrupting 

the main process if a collision is detected.  
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Figure 3.  Process narrative flowchart for drilling a block in the simple conveyor belt 

drilling system. 
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5.1.3 Assumptions 

Supervisory controllers work in highly dynamic and complex environments. 

When designing controllers, it may be necessary to make various assumptions about the 

system and environment in order to simplify the control structure to address events that 

are most likely to occur. Some of these assumptions may need to be addressed for 

improvement on the controller performance. However, work on resolving those 

assumptions is out of the scope of this project.   

For the simple conveyor belt drilling system case study, the following are 

assumed:  

 Global positions of each block are given by some sensor. 

 The workspace is defined as 𝑥 = [−1.5 𝑚, 1.5 𝑚]. Addition and removal of 

blocks from the workspace is assumed to be on an infinite conveyor belt such that 

when a block reaches 𝑥 = 1.5 𝑚, it is considered to have left the workspace and a 

new block is added at 𝑥 = −1.5 𝑚.  

 Velocities of the drill robot and the conveyor belt are maintained at constant set 

points. Ramp up and ramp down times are negligible. 

 Movement of the drill robot and the conveyor belt has no friction. 

 No force or torque control is used for drilling. 

 Sensors work in perfect condition without malfunctions or communication loss. 

Sensors are perfectly calibrated. 

 Humans will not interrupt operations when the supervisory controller is in control. 

5.2 CONVEYOR BELT DRILLING SYSTEM CONTROLLER 

A 4-tier modMFSM controller was built for the conveyor belt drilling system. 

Since this system is only for feasibility proof of concept, a GUI was not built; therefore, 
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the Operator GUI Module was not used in the controller. Similarly, to minimize 

controller complexity for this simple system which only has one operational mode, the 

duties of the System Coordinator Module was incorporated into the Meta Module as 

shown in Figure 4. The controller includes two Operation Modules for the drilling 

process and collision resolution. There are two Equipment Controller Modules, the drill 

robot controller, and the conveyor belt controller, which command the drill robot and 

conveyor belt Equipment Modules, respectively. Collision detection for the drill robot 

and the blocks are included as the sole Physics-Based / Algorithm Module in the 

controller. The full design of the supervisory controller for the case study can be found in 

Appendix B – Case Study Controller Design. 

 

 

Figure 4.  Meta Module for the conveyor belt drilling system. 

5.3 COLLISION DETECTION AND RESOLUTION 

The axis-aligned bounding box method was implemented for collision detection 

for the drill robot and the blocks in the workspace. The bounding boxes extended 0.025 

m past the outermost parts of the components. The bounding box for the drill robot was 

split into two boxes: one for the drill arm, and one for the drill bit. The drill bit bounding 
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box was activated only when the conveyor belt moving to allow the drill bit bounding 

box to overlap with the bounding box of a block while raising and lowering the drill 

robot, and while drilling. Each block in the workspace had its own bounding box. 

A collision was detected if the bounding boxes overlapped. The condition to be 

checked is as follows: 

 

(𝐶𝐵. 𝑓𝑠𝑚. 𝑥𝑐𝑢𝑟 == ′𝑚𝑜𝑣𝑖𝑛𝑔′  

𝑎𝑛𝑑 (((𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋𝐵 − 𝑋𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
+ 𝐵𝐵𝐷𝑅𝑋

)  

𝑜𝑟 𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋_𝐵_𝐷𝑂𝑁𝐸 − 𝑋_𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
+ 𝐵𝐵𝐷𝑅𝑋

)) 

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑌𝐵 − 𝑌𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑌
+ 𝐵𝐵𝐷𝑅𝑌

) 

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑍𝐵 −  𝑍𝐷𝑅𝐶𝐸𝑁𝑇𝐸𝑅
) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑍

+ 𝐵𝐵𝐷𝑅𝑍
))  

𝑜𝑟 (𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋𝐵 − 𝑋𝐵𝐼𝑇) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
+ 𝐵𝐵𝐵𝐼𝑇𝑋

)  

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑌𝐵 − 𝑌𝐵𝐼𝑇) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑌
+ 𝐵𝐵𝐵𝐼𝑇𝑌

) 

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑍𝐵 −  𝑍𝐵𝐼𝑇𝐶𝐸𝑁𝑇𝐸𝑅
) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑍

+ 𝐵𝐵𝐵𝐼𝑇𝑍
))))  

𝑜𝑟 (𝐶𝐵. 𝑓𝑠𝑚. 𝑥𝑐𝑢𝑟! = ′𝑚𝑜𝑣𝑖𝑛𝑔′ 

𝑎𝑛𝑑 ((𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋𝐵 − 𝑋𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
+ 𝐵𝐵𝐷𝑅𝑋

)  

𝑜𝑟 𝑎𝑛𝑦(2 ∗ 𝑎𝑏𝑠(𝑋𝐵𝐷𝑂𝑁𝐸
− 𝑋𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋

+ 𝐵𝐵𝐷𝑅𝑋
))  

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑌𝐵 − 𝑌𝐷𝑅) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑌
+ 𝐵𝐵𝐷𝑅𝑌

)  

𝑎𝑛𝑑 (2 ∗ 𝑎𝑏𝑠(𝑍𝐵 −  𝑍𝐷𝑅𝐶𝐸𝑁𝑇𝐸𝑅
) ≤ 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑍

+ 𝐵𝐵𝐷𝑅𝑍
)) 

 

where 

 

𝐶𝐵. 𝑓𝑠𝑚. 𝑥𝑐𝑢𝑟 = current state of the Conveyor Belt (CB) Finite State Machine 

(FSM) 

𝑋𝐵, 𝑌𝐵, 𝑍𝐵 = x, y, and z positions of the blocks 
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𝑋𝐵𝐷𝑂𝑁𝐸
 = x position of the blocks that have been drilled 

𝑋𝐵𝐼𝑇, 𝑌𝐵𝐼𝑇 , 𝑍𝐵𝐼𝑇 = x, y, and z positions of the drill bit 

𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑋
, 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑌

, 𝐵𝐵𝐵𝐿𝑂𝐶𝐾𝑍
 = length of the bounding box of each block in 

the x, y, and z directions 

𝐵𝐵𝐷𝑅𝑋
, 𝐵𝐵𝐷𝑅𝑌

, 𝐵𝐵𝐷𝑅𝑍
 = length of the bounding box of the drill robot in the x, y, 

and z directions 

𝑍𝐷𝑅𝐶𝐸𝑁𝑇𝐸𝑅
 = z position of the center of the drill robot 

𝑍𝐵𝐼𝑇𝐶𝐸𝑁𝑇𝐸𝑅
 = z position of the center of the drill bit 

 

5.4 IMPLEMENTATION 

The conveyor belt drilling system and controller were implemented in Python 

3.6.5 from Anaconda, Inc. Simulations as described in Section 5.5 Simulations were run 

on an Intel® Core™ i7-7500U (2.70GHz) processor. 

The modMFSM events (triggers and responses), finite state machines, sockets, 

modules, filters, pipes, and system of modules were implemented using Python classes. 

The event class was created to define each trigger and response event. Each event object 

contains the following attributes:  

 Name of the event object, stored as a string 

 Socket through which the event enters or exits, stored as a socket object 

 Event name without the socket prefix, stored as a string 

 Finite state machine contained by the module in which the event occurs , stored as 

an fsm object 

The fsm class defines the finite state machines for the modules and filters. The 

attributes of each fsm object are listed below: 
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 Name of the fsm object, stored as a string 

 Finite set of states, stored as a list of strings 

 Finite set of trigger events, stored as a list of event objects 

 Finite set of response events, stored as a list of event objects 

 Finite set of transitions, stored as a tuple of tuples, in which each tuple represents 

a transition and contains the trigger event object, transition condition string, 

source state string, destination state string, set of response event objects, and set of 

system variable changes stored as a tuple of strings 

 Initial state, stored as a string 

 Dump state, stored as a string 

 Marked states, stored as a list of strings 

 Current state, stored as a string 

 Saved state, stored as a string 

The socket class represents the sockets found on the modules. Each socket object 

represents each individual socket with the following attributes: 

 Name of the socket object, stored as a string 

 Finite set of trigger names without the socket prefix, stored as a list of strings 

 Finite set of response names without the socket prefix, stored as a list of strings 

The modMFSM modules are represented by the module class, for which each 

object has the following attributes: 

 Name of the module object, stored as a string 

 Finite state machine contained in the module, stored as an fsm object 

 Finite set of sockets in the module, stored as a list of socket objects 

The filters class, which represents the modMFSM filters, is similar in structure to 

the module class. Each filters object has the following attributes: 
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 Name of the filters object, stored as a string 

 Finite state machine contained in the filter, stored as an fsm object 

 Socket A, stored as a socket object 

 Socket B, stored as a socket object 

The pipe class defines the modMFSM pipe which connects modules. Each pipe 

object has the below attributes: 

 Name of the pipe object, stored as a string 

 Socket A, stored as a socket object 

 Socket B, stored as a socket object 

 Filter on the pipe object, stored as a filters object 

The last class created for implementation of the modMFSM structure was the 

systemOfModules class which defines the system of modules, filters, and pipes that make 

up the supervisory controller. Each systemOfModules object includes the following 

attributes: 

 Name of the systemOfModules object, stored as a string 

 Finite set of modules in the system, stored as a list of module objects 

 Finite set of filters in the system, stored as a list of filters objects 

 Finite set of pipes in the system, stored as a list of pipe objects 

System variables were stored globally to allow access for all functions. Changes 

to the system variables as a result of transitions were stored in the definition of the 

transitions as a set of strings, e.g. the “ CHECK_DONE = ‘True’ ” string indicated that 

after the corresponding transition, the variable CHECK_DONE will be set to True. Since 

this action was stored as a string, execution of the action was done with Python’s exec 

function. Similarly, the conditions for transitions were stored as strings and evaluated 

using Python’s eval function. In addition to the system variables, two lists of event 
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objects were stored globally. These lists were the queues for the event triggers in the 

main system operations, and the event triggers for collision detection and collision 

resolution, respectively.  

In order to allow the collision detection module to interrupt operations in the 

event of a possible collision, threading was used to implement two threads: one for the 

main operations, and one for the collision detection algorithm. This allowed the collision 

detection algorithm to run in the background to check for collisions, and interrupt the 

main thread as necessary. The algorithms in both threads are situated inside while loops 

that run while the Boolean CONTINUE variable is true. This allows the code to terminate 

the threads once a termination condition has been met. It is expected that if more Physics-

Based / Algorithm Modules are added to the modMFSM controller, a new thread would 

be implemented for each physics-based module that requires interruption of the main 

operations. 

The main operations thread runs the transitions of the system. Inside the while 

loop of the main operations thread, an if statement around the main operations code 

checks if the Boolean COLLISION variable is true, indicating whether there is a potential 

collision. The main operations algorithm only runs if COLLISION is false, so that if a 

possible collision exists, the controller will suspend motion in the system until the 

collision is resolved. If there is no collision, the main operations thread first calls an 

update_system function. This function updates the system variables for simulation 

purposes. (For implementation of a controller that interacts with a live system, the 

update_system function would not be necessary.) After the system variables are updated, 

the algorithm checks for transitions that have no trigger event but have been triggered by 

a change in system variables, and adds response events to the main operations queue. 

After resolving these transitions, the algorithm pops the next event off the main 



 43 

operations event queue, searches the system for the transition triggered by the event, 

updates the relevant finite state machine state, adds response events to the main 

operations event queue, and updates relevant system variables as necessary. The 

algorithm then returns to the beginning of the while loop code. 

The collision detection thread checks for potential collisions in the background 

while the main operations thread runs. In order to check for collisions using the most up-

to-date positions and velocities of the equipment, the collision detection thread first calls 

the update_system function to update the system variables. Then, the code checks for 

collisions per the condition described in Section 5.3 Collision Detection and Resolution. 

If a collision is detected, the Boolean COLLISION variable is set to True, the current 

state of all modules are saved, motion is suspended, and the collision is resolved per the 

collision resolution module. Events from the collision detection and collision resolution 

algorithms are stored in a collision event queue to keep them separate from the events of 

the main operations. Once the collision has been resolved, the modules are returned to 

their saved states, the COLLISION variable is set to False, and main operations are 

resumed. 

5.5 SIMULATIONS 

Preliminary testing of the modular supervisory controller concept feasibility 

focused on simulation testing, the following three simulation cases were implemented: 

 Error-Free Operations 

 Forced Collision 

 Missing Conveyor Belt Machine 

Since a GUI was not created for the simplified case study system, the Meta 

Module initial state was set to be “system_check” and an initial event of ME_2_check 
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was added to the main operations event queue to simulate a GUI starting the system. 

Additionally, a time limit was added to the execution of the code to allow for termination 

in case of an infinite loop. 

Prior to implementation of the modMFSM structure on a larger, more complex 

system for snubbing operations, compositional verification will need to be done, and LTL 

system requirements will need to be defined for formal verification via model checking. 

The expected transitions and output of the simulation code for the simulation cases can be 

found in Appendix C – Case Study Simulation Transitions and Code Output. 

5.5.1 Case 1: Error-Free Operations 

This simulation case runs the system through error-free operations of drilling 

three blocks. "Error-free" here means that the system is expected to follow the process 

narrative without collisions or malfunctioning machinery. The Case 1 simulation ran in 

89.9 seconds.  

5.5.2 Case 2: Forced Collision 

This simulation case tests the ability of the collision detection module to identify 

a potential collision and interrupt the main operations to resolve the potential collision. 

The initial positions of the drill robot and blocks in the workspace were set such that the 

bounding boxes of the drill robot arm and a block overlap, forcing a potential collision to 

be detected. In Case 2, only one block was to be drilled. The Case 2 simulation ran in 

21.2 seconds.  

5.5.3 Case 3: Missing Conveyor Belt Machine 

The third simulation case tests the ability of the controller to detect disconnected 

sockets of a piece of missing equipment and automatically generate manual modules for 
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replacement. To do so, the code for the conveyor belt related classes were commented 

out. For simplicity, manual intervention was simulated by a three second pause and 

manipulation of the system variables to give the appearance that a human had added or 

removed a block from the workspace. Three blocks were expected to be drilled in Case 3. 

The simulation of Case 3 successfully detected the missing conveyor belt, and 

created two manual modules: one for the normal operations of the conveyor belt, and one 

for the collision detection commands for the conveyor belt. The simulation ran for 45.2 

seconds.  

5.6 CASE STUDY RESULTS SUMMARY 

The successful simulations of the three test cases show promise for feasibility of 

the modMFSM controller structure, but a full verification for compositional and formal 

correctness is necessary to complete the validation and verification process.  

Some observations were of the controller implementation that must be considered 

when implementing on a larger, more complex system. Selection of set points for 

machinery velocity and bounding box margins are dependent on program run time. The 

time between the detection of a potential collision and the collision happening must not 

be less than the time needed for the process to halt the moving parts once a potential 

collision is detected. Additionally, a forced delay was needed in the main thread to allow 

the collision detection thread to run its check before the next action occurs. The duration 

of the delay can be optimized depending on the program run time and equipment machine 

limits. 
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Chapter 6:  Extension of modMFSM to Snubbing Operations 

This section describes the proposed approach for implementation of the modified 

modular supervisory controller to snubbing operations. 

6.1 DEFINITION OF SYSTEM AND ENVIRONMENT 

In order to design any controller, a model of the plant system and a thorough 

definition of the expected behaviors of the controlled system are necessary. Section 6.2 

Process Narrative defines the process narrative, system components, system 

requirements, and environment assumptions for the case of designing a supervisory 

controller for snubbing operations. In addition to referencing available literature on 

snubbing like Grace (2003) and Prebeau-Menezes (2013), documentation of system and 

environment definitions was completed thanks to the permission of Superior Energy 

Services, Inc. to visit one of their mechanized snubbing standalone units. With 

permission from Superior Energy Services, Inc., information was gathered through: 

 Video and photograph recordings of operations 

 Manually recorded notes of operations and crew practices 

 Interviews with the crew 

6.2 PROCESS NARRATIVE 

A process narrative is the step-by-step action and decision-making procedures for 

particular operations. This documentation is essential for a thorough understanding of the 

work process in order to build a controller that guides the system through the correct flow 

of operations, while maintaining safety.  

For ease of understanding, the snubbing operations process narrative is 

represented in a series of flowcharts. Shown below is the flowchart created for the 
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snubbing out and stripping out process for a mechanized snubbing rig. In this flowchart, 

the yellow boxes represent a deciding factor for the next action. The blue boxes indicate 

that action requires a procedure represented by its own flowchart in the series, which 

shares the name as the action in the blue box. The full series of flowcharts for snubbing 

operations can be found in Appendix D – Process Narrative Flowcharts for Snubbing. 

 

 

Figure 5.  Process narrative flowchart for snubbing / stripping out pipe. 
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6.3 SYSTEM COMPONENTS 

Documenting the process narrative also allows for identification of the hardware 

needed for automation of all activities, which is a critical step for designing a controller 

for coordination of equipment and processes.  

Appendices 

Appendix A – Snubbing Unit Equipment describes general equipment and 

machinery for snubbing units, which exist as both standalone and rig-assist units. For the 

purpose of this case study, a mechanized, standalone snubbing unit is considered. 

However, the proposed supervisory controller structure is designed to be adaptable to all 

types of rigs, accommodating for various equipment combinations.  

In order to fully automate a system, appropriate sensors are crucial to provide 

controllers with feedback from the system and environment in order to best respond to 

events. Table 1 shows the sensors necessary to automate bringing new pipe to the well 

center for snubbing operations. From the table, it can be seen that at least twelve sensors 

are needed for autonomously bringing new pipe to the well center. A full table of sensors 

needed for automating snubbing can be found in Appendix E – Snubbing Automation 

Sensors. From left to right, the columns describe the variable observed, whether sensor 

hardware exists and its type, suggested sensor hardware if not already available, and the 

current sensing method for the variable. 
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Table 1.  System variables and corresponding sensors for bringing new pipe to the well 

center. 

Variable Sensor Hardware 
Suggested 

Hardware 

Current 

Method 

Stabbing Plate Alignment None Camera 
Visual / 

Manual 

Well Pressure Casing Pressure Gauge N/A Sensor 

Joint Counter None 
N/A (Build 

into controller) 

Visual / 

Manual 

Height of Pipe for 

Connection 
Block Position N/A 

Sensor 

Elevator Position 
Visual / 

Manual 

Elevator Closed on Pipe 
Built-In Open/Close 

Indicator 
N/A 

Visual / 

Manual 

Catwalk Height 
Built-In Sensor (Possible 

Limit Switch) 
N/A Sensor 

Elevator Height at Pipe None Camera 
Visual / 

Manual 

Catcher's Mitt 

(Extended/Retracted) 

Built-In Indicator 

(Existence Uncertain) 
N/A 

Visual / 

Manual 

Tongs 

(Extended/Retracted) 

Built-In Indicator - Well 

center is set point 
N/A Sensor 

Pipe in Catcher's Mitt None 

Contact or 

Proximity 

Sensor 

Visual / 

Manual 

Tongs Torque Built-In Torque Sensor N/A Sensor 

Pipe End in Catwalk 

None 
Catwalk 

Camera 

Visual / 

Manual 

Pipe in Skate Basket 
Visual / 

Manual 

Tongs Dies Failure Built-In Torque Sensor;  

Motor rotation encoder on 

pipe 

N/A 

Sensor 

Connection Made 
Sensor / 

Visual 
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6.4 FORMAL SPECIFICATION OF SYSTEM REQUIREMENTS 

As described in Section 2.3.3 Model Checking, an important step in the design 

process of a controller is to specify the desired behavior of the controlled system. Since 

linear temporal logic (LTL) specifications work well with finite state machines for model 

checking and contract-based design, required system behaviors are defined by LTL 

specifications. Table 2 displays LTL specifications for operations for bringing new pipe 

to the well center. This specific operational mode focuses primarily on safety 

specifications. A table of all formal specifications for snubbing operations can be found 

in Appendix F – Snubbing Automation Formal Specifications.  

These formal specifications will also be defined through creation of contracts to 

specify the dependencies among modules to ensure safe operations. Formal specifications 

that are specific to a procedure or equipment modeled inside a module by a finite state 

machine will be used for model checking. 
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Table 2.  Formal specifications for system requirements in operations for bringing new 

pipe to the well center. 

Type Requirement Behavior Linear Temporal Logic 

Safety 
Snubbing Jack Height <= Maximum 
Safe Jack Height 

G (Jack_Height < Max_Jack_Safe_Height) 

Safety 
Snubbing Jack Height >= Minimum 
Safe Jack Height 

G (Jack_Height > Min_Jack_Safe_Height) 

Safety Do not close empty RAMs G (RAM_empty -> RAM_open) 

Safety 
Do not close slips on a tool or 
connection 

G (((Jack_Height < Tool_Joint_Max) ^ 
(Jack_Height > Tool_Joint_Min)) -> Slips_Open) 

Safety 

If catcher's mitt or tongs extended, 
elevator position must be above 
safe lower limit, and snubbing jack 
must be at the minimum safe jack 
height. 

G ((Mitt_Extended v Tongs_Extended) -> 
((Elevator_Height >= Safe_Lower_Limit) ^ 
(Jack_Height = Min_Jack_Safe_Height))) 

Safety 

If elevator position below safe 
lower limit or snubbing jack above 
safe lower limit, catcher's mitt and 
tongs must be retracted. 

G (((Elevator_Height < Safe_Lower_Limit) v 
(Jack_Height >Min_Jack_Safe_Height)) -> 
(!Mitt_Extended ^ !Tongs_Extended)) 

Safety 

If snubbing jack not at safe lower 
limit, elevator position must be 
above safe lower limit, and catwalk 
cannot push up pipe. 

G ((Jack_Height > Min_Jack_Safe_Height) -> 
((Elevator_Height > Safe_Lower_Limit) ^ 
(Skate_Basket < Max_Skate_Height))) 

Safety 
Elevator height should always 
remain more than a margin above 
the snubbing jack height. 

G (Elevator_Height > Jack_Height + Margin) 

Safety 
If connection made or connection 
not broken, catcher's mitt must not 
be extended. 

G ((Connection_Made v !Connection_Broken) -
> !Mitt_Extended) 

6.5 SYSTEM AND ENVIRONMENT ASSUMPTIONS 

Supervisory controllers work in highly dynamic and complex environments. 

When designing controllers, it may be necessary to make various assumptions about the 

system and environment in order to simplify the control structure to address events that 

are most likely to occur. Some of these assumptions may need to be addressed for 

improvement on the controller performance. However, work on resolving those 

assumptions is out of the scope of this project.  
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For the snubbing case study, the following are assumed: 

 Sensors will work in perfect condition without malfunctions or communication 

loss. 

 Sensors are perfectly calibrated. 

 Missing sensors for required variables (e.g. stabbing alignment) exist.  

 Snubbing personnel are situationally aware. Should manual control be necessary 

at any time, the crew will respond promptly and appropriately. 

 Snubbing personnel will not interrupt operations when the supervisory controller 

is in control. 

As the case study is simulated, new assumptions and restrictions on equipment ability 

may need to be added in order to reduce controller complexity and computational effort. 

6.6 DEFINITION OF MODULAR CONTROLLER STRUCTURE FOR SNUBBING AUTOMATION 

Since the proposed modMFSM structure encompasses controllers in modules that 

can represent system or equipment controllers, the MFSM structure naturally allows for 

hierarchical control. The modularity of the MFSM structure allows the controller 

hierarchy to be easily rearranged to fit the desired system. This hierarchical structure aids 

in reducing complexity of the subsystem controllers, and allows for more flexible 

controller and equipment modularity.  

As shown in Figure 6, the snubbing operations modMFSM supervisory controller 

modules are comprised of the same module types as used for the simplified conveyor belt 

drilling system controller, albeit with the addition of the Operator GUI Module, and the 

System Coordinator Module. For snubbing operations, control is split into four primary 

levels as described in Section 3.3 Multilevel Hierarchy and Module Types: 

 Top Level 
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 Middle Level 

 Low Level  

 Sub Level 

 These levels are reviewed in the next subsections with examples from the snubbing 

controller.  

 

Figure 6.  Comparison of the modules for the conveyor belt drilling system with those for 

snubbing operations. 

6.6.1 Top Level 

The Top Level of control is the highest level of control in the structure and 

consists of the Operator GUI Module, the System Coordinator Module that selects the 

mode of operation in which the system is currently operation (e.g. Snubbing In Pipe 

Heavy (SIPH), Snubbing New Pipe (SNP), etc.), and the Meta Module.  Figure 7 shows 

how the System Coordinator module interacts with the Meta Module and modules from 

the Middle Level of control. 
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Figure 7.  High-level diagram of interaction between the System Coordinator Module, 

Meta Module, and Operation Modules. 

6.6.2 Middle Level 

Like many complex operations, snubbing operations can be divided into sub-

operations, which will be referred to as operation modes, each of which follows different 

procedures and requires a different set of equipment. Operation modes are independent of 

each other; therefore, only one operation mode is active at a time, which simplifies the 

controller by reducing the tracked states to those associated with the processes and 

equipment of the active operation mode. The Middle Level of control consists of the 

modules which control the procedures of each operation mode, sending commands to the 

relevant equipment controllers in its subsystem and reacting to subsystem and 

environment events. The following is the definition of the guarded, trigger / response 
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finite state machine for the Snubbing New Pipe Operation Module (SNP), which controls 

bringing new pipe from the racked position to the well center as shown in Figure 8: 

 

𝐹𝑆𝑁𝑃 = (𝑋𝐹𝑆𝑁𝑃
,  𝑇𝐹𝑆𝑁𝑃

,  𝑅𝐹𝑆𝑁𝑃
,  𝜏𝐹𝑆𝑁𝑃

, 𝑥0𝐹𝑆𝑁𝑃
,  𝑥𝑑𝑝𝐹𝑆𝑁𝑃

,  𝑋𝑀𝐹𝑆𝑁𝑃
) 

 

where 

 

𝑋𝐹𝑆𝑁𝑃
 = {inactive, prep_catchers_mitt, prep_tongs, prep_bails, prep_elevator, 

new_pipe, grab_pipe, extend_catchers_mitt, extend_tongs, lift_pipe, 

pipe_to_catchers_mitt, error, pipe_to_conn_height, check_alignment, 

stab_pipe, connection} 

𝑇𝐹𝑆𝑁𝑃
= {1.new_pipe, 2.extend_done, 2.retract_done, 3.retract_done, 

3.extend_done, 3.open_done, 3.close_done, 3.stop_done, 

4.new_pipe_ready, 5.extend_done, 5.retract_done, 

5.make_connection_done, 6.error_done, 6.fix_alignment} 

𝑅𝐹𝑆𝑁𝑃
 = {1.new_pipe_ready, 2.extend, 2.retract, 3.retract, 3.extend, 3.open, 

3.close, 3.raise, 3.lower, 3.stop, 4.new_pipe, 5.extend, 5.retract, 

5.make_connection, 6.error_done, 6.align_fixed} 

𝜏𝐹𝑆𝑁𝑃
 = {(1.new_pipe, [ ], inactive, prep_catchers_mitt, [2.retract], [ ]), 

(2.retract_done, [ ], prep_catchers_mitt, prep_tongs, [5.retract] , [ ]), 

(5.retract_done, [ ], prep_tongs, prep_bails, [3.retract] , [ ]), 

(3.retract_done, [ ], prep_bails, prep_elevator, [3.open] , [ ]), 

(3.open_done, H_elev==H_elev_pipe, prep_elevator, new_pipe, 

[3.stop] , [ ]), 

([ ], H_elev==H_elev_pipe, prep_elevator, new_pipe, [3.stop] , [ ]), 

(3.open_done, H_elev<H_elev_pipe, prep_elevator, prep_elevator, 

[3.raise] , [ ]), 

(3.open_done, H_elev>H_elev_pipe, prep_elevator, prep_elevator, 

[3.lower] , [ ]), 

(3.stop_done, [ ], new_pipe, new_pipe, [4.new_pipe] , [ ]), 

(4.new_pipe_ready, [ ], new_pipe, grab_pipe, [3.extend] , [ ]), 

(3.extend_done, [ ], grab_pipe, grab_pipe, [3.close] , [ ]),  

(3.close_done, [ ], grab_pipe, extend_catchers_mitt, [2.extend] , [ ]), 

(2.extend_done, [ ], extend_catchers_mitt, extend_tongs, [5.extend] , 

[ ]), 

(5.extend_done, [ ], extend_tongs, lift_pipe, [3.raise] , [ ]),  

([ ], H_elev == H_elev_clear_CW, lift_pipe, lift_pipe, [3.stop] , [ ]), 

(3.stop_done, [ ], lift_pipe, lift_pipe, [3.retract] , [ ]),  

(3.retract_done, [ ], lift_pipe, pipe_to_catchers_mitt, [ ] , [ ]), 
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([ ], pipe_catchers_mitt==false, pipe_to_catchers_mitt, error, [6.error] , 

[ ]), 

(6.error_done, error, pipe_to_catchers_mitt, [ ] , [ ]), 

([ ], pipe_catchers_mitt==true, pipe_to_catchers_mitt, 

pipe_to_catchers_mitt, [2.retract] , [ ]), 

(2.retract_done, pipe_to_catchers_mitt, check_alignment, [ ] , [ ]), 

([ ], aligned==false, check_alignment, check_alignment, 

[6.fix_alignment] , [ ]), 

(6.align_fixed, check_alignment, check_alignment, [ ] , [ ]), 

([ ], aligned == true && H_elev>H_elev_conn, check_alignment, 

pipe_to_conn_height, [3.lower] , [ ]), 

([ ], aligned == true && H_elev<H_elev_conn, check_alignment, 

pipe_to_conn_height, [3.raise] , [ ]), 

([ ], aligned == true && H_elev==H_elev_conn, check_alignment, 

pipe_to_conn_height, [3.stop] , [ ]), 

([ ], H_elev<H_elev_conn, pipe_to_conn_height, pipe_to_conn_height, 

[3.raise] , [ ]), 

 ([ ], stabbed==true && H_elev==H_elev_conn,pipe_to_conn_height, 

connection, [3.stop] , [ ]), 

(3.stop_done, [ ], connection, connection, [5.make_connection] , [ ]), 

(5.connect_done, [ ], connection, inactive, [1.new_pipe_ready] , [ ])} 

𝑥0𝐹𝑆𝑁𝑃
 = inactive 

𝑥𝑑𝑝𝐹𝑆𝑁𝑃
 = dump 

𝑋𝑀𝐹𝑆𝑁𝑃
 = inactive 

 

Defined below is the Operation Module for Snubbing New Pipe:  

 

𝑆𝑁𝑃 = (𝐹𝑆𝑁𝑃 , {𝑆𝐹𝑆𝑁𝑃1
, 𝑆𝐹𝑆𝑁𝑃2

, 𝑆𝐹𝑆𝑁𝑃3
, 𝑆𝐹𝑆𝑁𝑃4

, 𝑆𝐹𝑆𝑁𝑃5
, 𝑆𝐹𝑆𝑁𝑃6

}) 

where 

 

𝐹𝑆𝑁𝑃 = Described above. 

𝑆𝐹𝑆𝑁𝑃1
 = {[1.new_pipe], [1.new_pipe_ready]} 

𝑆𝐹𝑆𝑁𝑃2
 = {[2.extend_done, 2.retract_done], [2.extend, 2.retract]} 

𝑆𝐹𝑆𝑁𝑃3
 = {[3.retract_done, 3.extend_done, 3.open_done, 3.close_done, 

3.stop_done], [3.retract, 3.extend, 3.open, 3.close, 3.raise, 3.lower, 

3.stop]} 

𝑆𝐹𝑆𝑁𝑃4
 = {[4.new_pipe_ready], [4.new_pipe]} 
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𝑆𝐹𝑆𝑁𝑃5
 = {[5.extend_done, 5.retract_done, 5.make_connection_done], [5.extend, 

5.retract, 5.make_connection]} 

𝑆𝐹𝑆𝑁𝑃6
 = {[6.error_done, 6.fix_alignment], [6.error_done, 6.align_fixed]} 

 

 

Figure 8.  High-level view of schematic for the Snubbing New Pipe Operation Module. 

(See Appendix G – Snubbing Modular Controller Preliminary Designs for 

the full-size diagrams of the completed snubbing operation modules.) 

6.6.3 Low Level 

The Low Level of controls manages the communication between the Operation 

Modules and the sub-systems, which include Equipment Controller Modules, Manual 

Modules, and Physics-Based / Algorithm Modules. Defined below are the finite state 

machine and module for the manual error intervention, the diagram for which is shown in 

Figure 9: 

𝐹𝑀 = (𝑋𝐹𝑀
,  𝑇𝐹𝑀

,  𝑅𝐹𝑀
,  𝜏𝐹𝐶𝑀

, 𝑥0𝐹𝑀
,  𝑥𝑑𝑝𝐹𝑀

,  𝑋𝑀𝐹𝑀
) 

 

where 

 

𝑋𝐹𝑀
 = {idle, manual_control} 

𝑇𝐹𝑀
= {1.error, 2.auto} 

𝑅𝐹𝑀
 = {1.error_done, 2.manual} 

𝜏𝐹𝑀
 = {(1.error, [ ], idle, manual_control, [2.manual] , [ ]), 

(2.auto, [ ], manual_control, idle, [1.error_done] , [ ])} 

𝑥0𝐹𝑀
 = idle 
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𝑥𝑑𝑝𝐹𝑀
 = dump 

𝑋𝑀𝐹𝑀
 = idle 

 

Defined below is the module for the manual error intervention:  

 

𝑀 = (𝐹𝑀, {𝑆𝑀1
}) 

where 

 

𝐹𝑀 = Described above. 

𝑆𝑀1
 = {[1.error, 2.auto], [1.error_done, 1.manual]} 

 

 

Figure 9.  Manual error intervention module for snubbing operations. 

6.6.4 Sub Level 

The Sub Level of control contains the control modules which are specific to each 

piece of equipment. These modules take commands from the Low Level modules and 
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send the appropriate command to its corresponding equipment. Defined below are the 

finite state machine and module for the catcher’s mitt, the diagram for which is shown in 

Figure 10: 

 

𝐹𝐶𝑀 = (𝑋𝐹𝐶𝑀
,  𝑇𝐹𝐶𝑀

,  𝑅𝐹𝐶𝑀
,  𝜏𝐹𝐶𝑀

, 𝑥0𝐹𝐶𝑀
,  𝑥𝑑𝑝𝐹𝐶𝑀

,  𝑋𝑀𝐹𝐶𝑀
) 

 

where 

 

𝑋𝐹𝐶𝑀
 = {retracted, extended} 

𝑇𝐹𝐶𝑀
= {1.extend, 1.retract} 

𝑅𝐹𝐶𝑀
 = {1.extend_done, 1.retract_done} 

𝜏𝐹𝐶𝑀
 = {(1.extend, [ ], retracted, extended, [1.extend_done] , [ ]), 

(1.retract, [ ], retracted, retracted, [1.retract_done] , [ ]), 

(1.extend, [ ], extended, extended, [1.extend_done] , [ ]), 

(1.retract, [ ], extended, retracted, [1.retract_done] , [ ]), 

(1.retract, [ ], retracted, retracted, [1.retract_done] , [ ])} 

𝑥0𝐹𝐶𝑀
 = retracted 

𝑥𝑑𝑝𝐹𝐶𝑀
 = dump 

𝑋𝑀𝐹𝐶𝑀
 = retracted 

 

Defined below is the equipment module for the catcher’s mitt:  

 

𝐶𝑀 = (𝐹𝐶𝑀, {𝑆𝐶𝑀1
}) 

where 

 

𝐹𝐶𝑀 = Described above. 

𝑆𝐶𝑀1
 = {[1.extend, 1.retract], [1.extend_done, 1.retract_done]} 
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Figure 10.  Catcher’s mitt module in snubbing operations. 

6.7 COLLISION DETECTION 

Both the heuristics and bounding box methods to collision detection are good 

starting approaches to collision detection in snubbing operations. For ABB, the global 

reference frame for the bounding boxes will be located at the well center at the rig floor, 

as it is a fixed point that is integral to snubbing operations. Each piece of equipment will 

have a local reference frame attached to the center of the piece of equipment, and the 

equipment’s bounding box will be defined with respect to the local reference frame. As 

with the approach in the case study, all equipment movement will be calculated with 

respect to the global reference frame, for detection of overlapping bounding boxes prior 

to the occurrence of a collision.  

6.8 VERIFICATION AND VALIDATION 

After the design of the supervisory controller is complete, it is necessary to verify 

the correctness of the controlled system model, and test the behavior of the system via 

model checking and simulations. 
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Model checking of the snubbing supervisory controller should be based on a 

finalized list of the LTL specifications described in Appendix F – Snubbing Automation 

Formal Specifications to verify the controlled system operates safely and behaves as 

desired. 

The first phase of simulation for evaluation of the snubbing controller 

performance will be for error-free snubbing operations with original snubbing equipment. 

The second phase of simulation will be to evaluate the ability of the controller to detect 

common snubbing errors. The primary error cases which will be explored are as follows: 

 End of pipe not caught by catcher’s mitt during operations to transport pipe to and 

from the well center. 

 Failure of tongs dies. 

 Annular BOP leak. 

 Overly tight joints while breaking connections. 

 Stabbing plate misalignment. 

If modifications to the controller design need to be made as a result of simulation 

observations, the error-free simulation will be rerun to ensure error-free operations have 

not been affected by the modifications. The final phase of simulation is to explore the 

case of introducing a new piece of equipment, for instance a gantry robot, to the snubbing 

unit. The capabilities of the gantry robot will be assessed to understand if and where 

modifications to the current structure must be made before simulation of the error-free 

and common error cases are done. Success of the controller feasibility will be evaluated 

through its ability to perform the desired operations for all simulations. 
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6.9 SUMMARY 

The proven concept from the case study reflects the feasibility of modMFSM 

application to drilling and snubbing operations, as shown in Figure 6, which presents the 

modules for snubbing operations and how it compares to those from the conveyor belt 

drilling system case study. The system components have been identified, and a process 

narrative has been defined for snubbing operations. Preliminary LTL system 

specifications have been defined and initial designs of select snubbing operational modes 

are to be finalized in future research. 

 

  



 63 

Chapter 7:  Conclusions and Future Work 

The completed work focused on definition of the extended modular finite state 

machine controller (modMFSM) structure, implementation of the modMFSM structure to 

a simplified conveyor belt drilling system, definitions of system equipment and 

environment for snubbing operations, and preliminary designs for the vending machine 

toy problem supervisory controller, found in Appendix G – Snubbing Modular Controller 

Preliminary Designs.  

7.1 CONCLUSIONS 

The contributions of this research to drilling automation supervisory control 

research is in providing a feasible framework for supervisory controllers for drilling 

operations and its auxiliary operations, while maintaining safe operations, overcoming 

the challenges of interoperability, reacting to environment cues, and allowing for easy 

modification and functional scalability.  

The modMFSM structure allows for the augmentation of the modular finite state 

machine structure to adapt to complex systems and their uncertain environments. The 

first extension of the modular finite state machine structure is to explore the use of 

various models inside modules, specifically the inclusion of guards in the trigger / 

response finite state machines for response to changing environment and system 

variables. 

The modMFSM structure also explores the feasibility of including modules which 

encompass physics-based models rather than discrete event models processes or 

hardware. In the snubbing case study, collision detection is implemented. Proving the 

feasibility of this implementation provides a stepping stone for inclusion of other physics-
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based models environment in supervisory control of complex systems, for instance, 

allowing for kick detection in drilling or detection of alien objects in manufacturing.  

Additionally, the modMFSM framework allows for automatic reconfiguration of 

the controller and automatic synthesis of filters and modules to replace missing 

equipment. The plug-and-play quality of the controller architecture also allows for easy 

incorporation of new equipment with minimal modification of the original controller.  

7.2 FUTURE WORK 

Future work of this research is to verify the formal correctness of the controlled 

simplified system model, and test for compositional correctness. Additionally, robustness 

of the system to input order can also be tested using the formal verification procedure 

presented and applied to ECA MFSMs by Allen et al. (Allen et al., 2012). After 

verification of the simplified system, the next step would be to finalize, validate, and 

verify the snubbing supervisory controller.  
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Appendices 

APPENDIX A – SNUBBING UNIT EQUIPMENT 

Snubbing units exist as both standalone and rig-assist units. This section discusses 

the general machinery used by all snubbing units. 

 

 

Figure 11.  Superior mechanized, standalone snubbing unit. 

Similar to drilling operations, snubbing operations require a hoisting device, 

called an elevator, to run pipe into and out of the well during pipe-heavy operations. In 

snubbing, this process is called stripping. The elevator also raises and lowers pipe when 

pipe connections are made or broken. In addition to vertical movement, elevators include 

bails that extend and retract to allow for lateral movement of the pipe. While a standalone 

snubbing unit contains its own elevator, a rig-assist unit may utilize the elevator that 

exists as part of the hoisting system on the host drilling rig. 
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Figure 12.  Floor of a workover unit where the yellow elevator is near the floor (Shengji 

Group, 2016). 

Pipe is transported between its storage location in vertical or horizontal racks and 

the floor of the snubbing unit using pipe handling equipment. A variety of mechanized 

pipe handling equipment can be used, including catwalks for horizontal to vertical pipe 

handling, and racking systems like NOV’s Hydraracker systems for transportation from 

vertical pipe racks. NOV’s Hydraracker systems are able securely position new pipe 

ready for a connection to be made with the pipe in the well. However, if the pipe 

handling system requires the elevator to assist in bringing the pipe to the well center, a 

catcher’s mitt in the snubbing unit is used to catch the new pipe as it is hoisted away from 

the pipe handling system and brought toward the well center. 
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Figure 13.  a) Catwalk in action on a Superior snubbing unit (left); b) NOV Hydraracker 

(Hsieh & Vigh, 2017) (right). 

 

 

Figure 14.  Catcher’s mitt extended and ready to catch the new pipe coming from the 

catwalk. 
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In order to connect or disconnect pipe as it is run into and out of the well, 

equipment such as hydraulically powered tongs apply the required torque to make or 

break the pipe-to-pipe connection.  

 

 

Figure 15.  NOV Hydraulic Power Tongs (National Oilwell Varco, 2018a) 

In regular drilling operations, a device called slips grip and hold the drill string to 

the rig floor, preventing the drill string from falling into the well. For snubbing 

operations, slips serve two purposes: 1) hold the drill string stationary, 2) assist in 

pushing/pulling the drill string in/out of the well. The slips that hold the drill string 

stationary are called stationary slips and are located on the floor of the unit. Two sets of 

stationary slips exist, one set for pipe-light operations, and the other set for pipe-heavy 

operations. The slips that assist in snubbing the drill string are called the travelling slips. 

The travelling slips are located on the hydraulically powered snubbing jack, which moves 

the travelling slips vertically, applying the necessary snubbing force to run pipe in and 

out of the well. Similar to the stationary slips, the travelling slips also exist in two sets for 

pipe-light and pipe-heavy operations.  
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Figure 16.  Snubbing jack near maximum height as it snubs out pipe. 

 

Figure 17.  Slips for snubbing operations (Westco International Consulting, Inc, 2017). 
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Since snubbing operations occur while the well is pressurized, well control 

equipment is crucial. The primary components of the basic snubbing well control 

equipment stack are: an annular blowout preventer (BOP), two snubbing pipe ram 

blowout preventers (BOPs), safety pipe ram BOPs, safety blind ram BOPs, an bleed-off 

line, and a pump-in line.  BOPs prevent well fluids from uncontrolled travel to surface 

and allow the crew to maintain control on the wellbore pressure. The annular BOP, which 

sits at the top of the snubbing well control equipment stack, contains a rubber element 

that seals around the drill string and adjusts its seal as pipe joints, and tools pass through 

it during stripping and snubbing operations. The annular BOP remains closed throughout 

the snubbing operations. The snubbing pipe ram BOPs are manufactured to fit either one 

pipe diameter or a small range of pipe diameters (Mitchell & Miska, 2011). Therefore, 

the pipe ram BOPs seal around the drill pipe only, and can handle higher pressures than 

the annular BOP. They generally remain open if the wellbore pressure is below the 

working pressure of the annular BOP. However, if the wellbore pressure exceeds the 

working pressure of the annular BOP, at least one pipe ram BOP must be closed around 

the pipe at all times to ensure a secure pressure barrier as pipe is run into and out of the 

well. However, since the pipe ram BOPs can only fit a small range of diameters at most, 

special procedures are necessary to pass pipe joints and tools through the pipe ram BOPs. 

For snubbing in procedures, the upper pipe ram starts off closed with the lower pipe ram 

open. When the joint or tool reaches the upper pipe ram, the lower pipe ram is closed, and 

the bleed-off line opened to bleed off the pressure between the rams. The upper pipe ram 

is then opened, and the pipe lowered until the joint or tool is at the lower pipe ram. The 

upper pipe ram is then closed, and the pump-in line is opened to pressurize the section 

between the rams. Once the pressure in that section equals that of the well, the lower pipe 

ram is opened, and snubbing operations continue. The reverse procedures are 
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implemented for snubbing out operations. The safety pipe rams and the safety blind rams 

generally remain open during operations and are only closed in case the snubbing rams 

malfunction. Although the frac valve is part of the wellhead and not part of the snubbing 

stack, it is an integral piece of well control equipment. The frac valve sits below the 

snubbing well control equipment stack, and at the top of the wellhead. It remains open 

during snubbing operations, and is closed when it is necessary to shut in the well. 

 

 

Figure 18.  Basic snubbing well control equipment stack (Grace, 2003). Annular BOP not 

shown. 
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APPENDIX B – CASE STUDY CONTROLLER DESIGN  

The design for the modular supervisory controller for the conveyor belt drilling 

system case study can be found in the supplemental file labeled 

“Appendix_B_Case_Study_Controller_Design.pdf.” 

 

APPENDIX C – CASE STUDY SIMULATION TRANSITIONS AND CODE OUTPUT 

The expected transitions of each simulation case for the conveyor belt drilling 

system case study can be found in the supplemental file labeled 

“Appendix_C_Case_Study_Expected_Transitions.xlsx.”  

The simulation code output for each case can be found in the following 

supplemental files: “Appendix_C_Case_1_Simulation_Code_Output.pdf,” 

“Appendix_C_Case_2_Simulation_Code_Output.pdf,” and 

“Appendix_C_Case_3_Simulation_Code_Output.”  

 

APPENDIX D – PROCESS NARRATIVE FLOWCHARTS FOR SNUBBING 

The mechanized snubbing operations are captured in a series of process narrative 

flowcharts. These flowcharts can be found in the supplemental file labeled 

“Appendix_D_Process_Narrative_Flowcharts_for_Snubbing.pptx.” 
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APPENDIX E – SNUBBING AUTOMATION SENSORS 

Table 3 below presents the system variable necessary for automating snubbing 

operations and the status of its corresponding sensor. From the table, it can be seen that at 

least eighteen sensors are needed for autonomously bringing new pipe to the well center.  

From left to right, the columns describe the variable observed, whether sensor hardware 

exists and its type, suggested sensor hardware if not already available, and the current 

sensing method for the variable. 

Table 3.  Sensors necessary for automated snubbing operations. 

Variable Sensor Hardware Suggested 

Hardware 

Current 

Method 

Stabbing Plate 

Alignment 

None Camera Visual / Manual 

Well Pressure Casing Pressure 

Gauge 

N/A Sensor 

Joint Counter None N/A (Build into 

controller) 

Visual / Manual 

Stripping Bit Depth Block Position N/A Sensor 

Height of Pipe for 

Connection 

Sensor 

Elevator Position Visual / Manual 

Tripping Speed Sensor 

TD/Plug Reached Visual / Manual 

Pull Test for Slips Bite 

Before Balance Point 

None Block Position or 

Snubbing Jack 

Position 

Visual / Manual 

Snubbing Bit Depth Snubbing Jack 

Position (Existence 

Uncertain) 

Snubbing Jack 

Position 

(Existence 

Uncertain) 

Sensor 

Height of Pipe for 

Connection 

Visual / Manual 

Snubbing Jack Position Visual / Manual 

Snubbing Jack Speed Visual / Manual 

Plug Reached Visual / Manual 

Pipe Weight Visual / Manual 

Elevator Closed on Pipe Built-In Open/Close 

Indicator 

N/A Visual / Manual 
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(Table 3 Continued) 

 

Variable Sensor Hardware Suggested 

Hardware 

Current 

Method 

Catwalk Height Built-In Sensor 

(Possible Limit 

Switch) 

N/A Sensor 

Elevator Height at Pipe None Camera Visual / Manual 

Catcher's Mitt 

(Extended/Retracted) 

Built-In Indicator 

(Existence Uncertain) 

N/A Visual / Manual 

Tongs 

(Extended/Retracted) 

Built-In Indicator - 

Well center is set 

point 

N/A Sensor 

Pipe in Catcher's Mitt None Contact or 

Proximity Sensor 

Visual / Manual 

Snub Force (Applied) Snub Gauge  N/A Sensor 

Pressure between RAMs Pressure Gauge N/A Sensor 

Tongs Torque Built-In Torque 

Sensor 

N/A Sensor 

Pipe End in Catwalk None Catwalk Camera Visual / Manual 

Pipe in Skate Basket Visual / Manual 

Tongs Dies Failure Built-In Torque 

Sensor;  

Motor rotation 

encoder on pipe (for 

connections) 

N/A Sensor 

Connection Made Sensor 

BHA Reached None Catwalk Camera 

(BHA nipple or 

flagging pup) 

Visual / Manual 

Hookload for Pull Test 

(~14klbs) 

Hookload N/A Sensor / Visual 

Slips at Tool or 

Connection 

None Camera Visual / Manual 

Connection Position 

Relative to RAMS 

None N/A (Calculations) Manual 

Buoyant Force None N/A   

Friction Force None N/A   
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APPENDIX F – SNUBBING AUTOMATION FORMAL SPECIFICATIONS 

The following table presents the formal specifications for snubbing operations 

derived from the process narrative. Modifications are expected to be needed to include 

requirements for module-to-module behavior specifications. 

Table 4.  Formal specifications for system requirements in operations for bringing new 

pipe to the well center 

Type Requirement 

Behavior 

Linear Temporal Logic 

Liveness Number of pipes in 

well will eventually be 

desired number of pipes 

GF (Num_Pipes_In = Des_Pipes) 

Liveness Number of pipes out 

well will eventually be 

desired number of pipes 

GF (Num_Pipes_Out = Des_Pipes) 

Invariant Use annular BOP if 

P_well < working 

pressure of annular 

BOP 

((P_well  < P_BOP_ann_working) -> (Use annular 

BOP)) ^ ((P_well >= P_BOP_ann_working) -> (Use 

RAMs)) 

Safety F_snub > F_well + 

F_buoyant + F_friction 

- W_pipe 

G (F_snub > F_well + F_buoyant + F_friction - 

W_pipe) 

Safety F_snub < Buckling 

Force of Pipe 

G (F_snub < F_Buckling_Crit/SF) 

Safety F_snub < Collapse 

Force of Pipe 

G (F_snub < F_Collapse_Crit/SF) 

Safety F_snub < Burst Force 

of Pipe 

G (F_snub < F_Burst_Crit/SF) 

Safety Snubbing Speed < Snub 

Speed Limit 

(Surge/Swab) 

G (Speed_snub < Speed_snub_max) 

Safety Tripping Speed < Trip 

Speed Limit 

(Surge/Swab) 

G (Speed_trip < Speed_trip_max) 

Invariant Joints in after Balance 

Point < 20 Implies 

Elevator Following 

(Jts_In_After_Bal_Pt < 20) -> 

(Elevator_Following_Trip) 
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(Table 4 Continued) 

 

Invariant Joints out after Balance 

Point < 10 Implies 

Elevator Following 

(Jts_Out_After_Bal_Pt < 10) -> 

(Elevator_Following_Snub) 

Invariant In Direction AND Feet 

Pipe in Well < Feet In 

at Balance Point - 

Tolerance Implies SIPL 

(Dir_In ^ (Pipe_feet_in < Pipe_at_Bal_Pt + Tol)) -> 

(SIPL) 

Invariant In Direction AND Feet 

Pipe in Well > Feet In 

at Balance Point + 

Tolerance Implies SIPH 

(Dir_In ^ (Pipe_feet_in > Pipe_at_Bal_Pt + Tol)) -> 

(SIPH) 

Invariant Out Direction AND 

Feet Pipe in Well < 

Feet In at Balance Point 

- Tolerance Implies 

SOPL 

(Dir_Out ^ (Pipe_feet_in < Pipe_at_Bal_Pt + Tol)) -

> (SOPL) 

Invariant Out Direction AND 

Feet Pipe in Well > 

Feet In at Balance Point 

+ Tolerance Implies 

SOPH 

(Dir_Out ^ (Pipe_feet_in > Pipe_at_Bal_Pt + Tol)) -

> (SOPH) 

Safety Snubbing Jack Height 

<= Maximum Safe Jack 

Height 

G (Jack_Height < Max_Jack_Safe_Height) 

Safety Snubbing Jack Height 

>= Minimum Safe Jack 

Height 

G (Jack_Height > Min_Jack_Safe_Height) 

None Feet Pipe Moved > 

Frequency for Filling 

Hole with Hydraulic 

Fluid Implies Fill Hole 

with Hydraulic Fluid 

(Pipe_Moved > Freq_Fill_with_Hydraulic_Fluid) -> 

X (Fill Hole with Hydraulic Fluid) 

Safety Do not close empty 

RAMs 

G (RAM_empty -> RAM_open) 

Safety Do not close slips on a 

tool or connection 

G (((Jack_Height < Tool_Joint_Max) ^ 

(Jack_Height > Tool_Joint_Min)) -> Slips_Open) 
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(Table 4 Continued) 

 

Safety If catcher's mitt or 

tongs extended, 

elevator position must 

be above safe lower 

limit, and snubbing jack 

must be at the 

minimum safe jack 

height. 

G ((Mitt_Extended v Tongs_Extended) -> 

((Elevator_Height >= Safe_Lower_Limit) ^ 

(Jack_Height = Min_Jack_Safe_Height))) 

Safety If elevator position 

below safe lower limit 

or snubbing jack above 

safe lower limit, 

catcher's mitt and tongs 

must be retracted. 

G (((Elevator_Height < Safe_Lower_Limit) v 

(Jack_Height >Min_Jack_Safe_Height)) -> 

(!Mitt_Extended ^ !Tongs_Extended)) 

Safety If snubbing jack not at 

safe lower limit, 

elevator position must 

be above safe lower 

limit, and catwalk 

cannot push up pipe. 

G ((Jack_Height > Min_Jack_Safe_Height) -> 

((Elevator_Height > Safe_Lower_Limit) ^ 

(Skate_Basket < Max_Skate_Height))) 

Safety Elevator height should 

always remain more 

than a margin above the 

snubbing jack height. 

G (Elevator_Height > Jack_Height + Margin) 

Safety If connection made or 

connection not broken, 

catcher's mitt must not 

be extended. 

G ((Connection_Made v !Connection_Broken) -> 

!Mitt_Extended) 
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APPENDIX G – SNUBBING MODULAR CONTROLLER PRELIMINARY DESIGNS 

The preliminary designs of the modular supervisory controller for the following 

operation modes are complete: 

 Snubbing New Pipe (SNP) – Moves pipe from the pipe rack to the well center. 

 Snubbing Rack Pipe (SRP) – Moves pipe from the well center to the pipe rack. 

 Snub In Pipe Heavy (SIPH) – Snubs pipe into the well center under pipe-heavy 

conditions. 

 Trip In Pipe Heavy (TIPH) – Trips pipe into the well center under pipe-heavy 

conditions. 

These preliminary designs are expected to be modified before error-free 

simulation to include collision detection modules. Additionally, modifications may be 

made as necessary to accommodate additional assumptions for system simplification. The 

completed preliminary designs can be found in the supplemental file labeled 

“Appendix_G_Modular_Controller_Preliminary_Designs.pdf.”  
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