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1 Abstract
Previous investigations have shown that the optimization of extrusion dynamics in .con-

junction with the buildstyle pattern is of paramount importance to increase part quality in

Fused Deposition Modeling (FDM). Recently domain decomposition and space filling

curves have been introduced for slice generation in FDM [1]. The current work focuses

on the implementations of fractal-like buildstyle .patterns using. Simulated Annealing [2,

3], Lin-Kernighan algorithms [4] and Construction Procedures based on Nearest

Neighbor Heuristics [5]. These computational optimization procedures are able to

generate filling patterns that allow the continuous deposition of a single road to fill arbi­

trary shaped domains. The necessary software modules to produce arbitrary three­

dimensional artifacts have been developed and are evaluated with respect to part quality

and build time.

2 Introduction
Today path· generation and optimization problems found in manufacturing processes,

such as FDM, typically aim for solutions that results in the shortest possible cycle time.

On one hand this necessitates the determination of the shortest path. On the other hand,

the manufacturing cycle time will be minimized the higher the speed which cah·be

achieved on the individual path segment~. As a result, variations in traveling speed are

increased whenever. sharp turns are taken, due to the deceleration and acceleration

limitations of<motion control and ••·the manufacturing>equipment.iAllmanufacl11ring

processes are more or less sensitive to these changes in traveling speed but usually

require more advanced control capabilities as· speed variations increase.·· Additional

examples of.processe~ particularly sensitive·to tooltravelingspeedvariations·wouldbe

surface. Both also ·benefit from a non-self-intersecting continuouspath,,,,hich is a must

for the FDM process. The simplest solution to the problem is therefore to apply/hatch
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patterns in Meander-form, which consist of parallel lines only, that fill the desired

domain. However, this approach results in a highly oriented final structure, which can

only be by changing the Meander-orientation in different slices. Some of the problems

caused by this orientation are:

II highly anisotropic parts (Figure 1),

II discontinuous nozzle- or toolpath,

II voids due to minimum curve radii and areas which cannot be reached by

Meander-like patterns and

II patterns of the surface structure/roughness (surface- or microstructure).

A solution to this problem is a path with segments of random orientation, which can

completely cover the domain to be processed and which does not self-intersect. Space

Filling Curves (SFC) such as the Hilbert SFC have been used in the past [1] to build parts

with the FDM process. But until now these processes were limited to highly regular

shaped objects and not applicable for arbitrary boundaries.
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Figure 1: Stress-Strain Diagram for Uni-Directional (En' E22,E33) and Nearest
Neighbor Heuristics (NNH) Tool-Path
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With the introduction of underlying equidistant grids that are able to fill arbitrary

boundaries, it is possible to get a number of nodes in each plane, which must be visited

by the nozzle or tool. The spacing of the grid for the FDM-process is based on the

roadwidth of the deposited material. For the Stratasys FDM 1650 a minimum roadwidth

of 0.508 mmhas been measured. The schedule of the visit must fulfill certain criteria,

which are similar to the definitions for Eulerian and Hamiltonian tours in graph theory

[5]:

1. all nodes have to be visited,

2. no node must be visited more then once,

3. minimal distance between nodes,

4. shortest possible total path length (sum over distances),

5. there may be no intersecting path elements,

6. only vertical and horizontal moves and

7. only in the nodes at the boundary diagonal moves are allowed.

The computational solutions for the problems with the aforementioned requirements are

based on the Traveling Salesman Problem (TSP) [3,5]. The general TSP is not limited to

points on equidistant grids but allows weight factors to discribe the "distances" between

nodes or better criterias. Therefore the TSP is also adressing problems beyond Euclidean

planes or even problems were the distance between AB isnot the same as the distance

from BA (i.e. the distance matrix is not symetric).

3 Solutions for the Traveling Salesman Problem

State of the art solutions to the Traveling Salesman Problem are based on solutions to

optimization problems. After a first random tourthat visits all nodes only once and

allows intersections, the total length (sum of distances) is optimized, using the fact that a

shorter tour· always exists when crossings. are still present [5]. Very simple optimization

algorithms are based on node or edge· insertion algorithms. Better quality algorithms are

based for example on Simulated Annealing or theLin-Kernighan algorithm. Instead of

using random tours at the beginning of optimization algorithms it is also possible to use

heuristics to develop •start up solutions. The described Maze .algorithm is based on

Nearest Neighbor Heuristics and makes use of Rotation Operations.
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3.1·Simple Optimization Algorithms

Node insertion algorithms select nodes whose position in the tour schedule is changed.

TAGi!lPde§<tP~q~a~gl}daJl~t~\)ir.~~0~p§iNPn are chos\)n complete1yxandOmly and
unguided. Edge insertion. functionsar;~si11lilar to the simple ·node in$ertiou function

except, thattwo nodes get selected. Thenthe order of alLpoints in between gets reversed.

And the new edge is inserted in front of another selected node of the remaining tour. For

small problems, this random procedure is able. to achieve optimum solutions. But it also

can happen that the algorithm becomes trapped in local minima. With an increase in

problem size (number of nodes) the improvement in unguided random selection

decreases asymptotically. Therefore all of the better algorithms focus on either guiding

the solution finding process or on solving the problem of local minima.

3.2 Simulated Annealing

The algorithm starts at a high-energy (cost or initial tour) configuration. Then the

simulation chooses random neighboring configurations called Careful Annealing in

physical systems and Simulated Annealing in optimization problems. Ifthe neighboring

configurations result in an improvement in the Energy State (tour length), then the

simulation is updated, in order to achieve the Ground·State or the Optimal Solution [2,3].

Until now this procedure matches the simple optimization algorithm. However by

introducing a probability factor which judges if a configuration is defined as the new state

even if this neighbor is not better then his origin configuration, the algorithm solves the

problem of being trapped in local minima. This probability factor is also continuously

upgraded during iterations [2,3].

Problematic during the use of Simllltaneous Annealing is the number of nodes; even

with long running times there is the possibility that the Optimal Solutions intersect, since

intersections are not optimized. LaarhovenandAa,rts [2]· recommended to run the whole

algorithm as often as there are nodes, in order .to secure an .optimal tour safely. This

increases the. running. time by the number of nodes. When the initial configuration is

constructed by nearest/neighbor heuristics, it is noticed that the annealing < process first

worsens the configuration and cannot.guarantee an optimal solution.



3.3 Lin-Kernighan Algorithm
Lin and Kernighan introduced their improvement heuristic in 1971 [4]. Their obj.ective

was to improve the toolpath of a numerically controlled laser used for cutting holes. In

order to improve the cycle time, their focus was on the positioning of the laser and not on

the cutting process, since the laser was only burning holes with equal diameters. While

Simulated Annealing focused on the problems of trapped situations, Lin and Kernighan

started with guiding the acquisition of neighboring solutions. The main idea was that

since the single distances caused in their sum the total cost or length of each

configuration, ~n optimization algorithm should find better positions fornodes with very

long single distances. Therefore

Lin and Kernighan used guiding

criteria in order to reach an 6
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Figure·2: Total.patblel1gthoverthe numbers of iter­
ation for ~problemwithl0S9711od.es{tensile..bar).

optimal solution. Throughout the

literature the Lin-Kernighan

algorithm is recognized as the

heuristic with the most promising

results. In order to solve the

problem of getting trapped in

local minima and to achieve

better running times, Lin and

Kernighan found the best

solutions by using five nodes

simultaneously in each improve­

ment loop. Similar algorithms are called k-optimizationalgorithms whereby k is the

number of nodes in each loop. The improvement rate or time gain over all other processes

is noticed throughout all problem instances, but similar to all discussed heuristics this

solution rate is highly asymptotic (Figure 2).

3.4 Heuristics for initial configurations
Instead of optimizing a.complete random initial configuration, heuristics can be used. to

find better startup solutions. Both Insertion Heuristics and Nearest Neighbor Heuristics
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Figure 3: Tour consisting of 325 nodes
achieved by Farthest Insertion Heuristic.

Figure 4: A dead end.

have been implemented and evaluated. Since the implementation of Nearest Neighbor

Heuristics fulfill the requirements of non-self intersecting pathelements, an algorithm

using rotation operations has been designed to create complete toolpaths.

3.4.1 Insertion Heuristics

Starting with an initial randomly chosen tour containing only a small amount of nodes,

the final path is obtained by adding new nodes to this tour according to certain criteria.

The starting tour consists of three nodes,

which thus had as a Hamiltonian tour the

minimal possible total path length. The new

nodes were selected either randomly or by

the criteria of maximal (Figure 3) or

minimal distance to the rest of the already

configured nodes. After their selection the

nodes were included in the tour such that

their position was a minimal addition in the

total path length. These heuristics can

create very good initial configurations in

short time, since the running time is O(n),

and they can create or introduce tour solutions that are similar to meanders (thereare long

quasi-parallel sections); however intersections still occur.

3.4.2 Nearest Neighbor Hepristics

In these algorithms a·· single random node is selected and from this starting node, the

entire tour is constructed by adding one new node at a time. The objective for each new

node is that it has.a minimal distance to the current end point

of the tour. For the equidistant grid this means that there are

theoretically four possible connections But there are only up

to three new possibilities, since the last connection reaching

this point cannot be opened or lost. The main problem is that

this algorithm gets trapped in areas, where all of the

surrounding nodes are already part of the tour configuration.
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In other words the last node of the tour has reached a dead end (Figure 4).

The solution for this dead end is to allow the algorithm to connect randomly or guided

to a free node. But the results are not acceptable as

intersections occur in the generated toolpath. However, if

this algorithm is to be used for finding a first initial tour that

will be optimized by another algorithm, the selection of free

nodes in this fashion is tolerable. In fact the quality of the

tour configuration is already so good that the subsequently Figure 5: Rotation

implemented ()ptimization algorithms always lead to longer Operation

total path lengths.

Instead of "jumping" in the tour to another free node, it is also possible to rotate the

connections. The Operations that changed the configuration shown in Figure 4 to the

configuration in Figure 5 were:

1. selecting a node which is already part of the tour configuration,

2. opening its connection with the next node in the tour schedule,

3. turning the scheduled order of points around for those nodes, which were

freed from the tour schedule and

4. connecting the trapped node (circle) from before to the selected node.

With these changes a new tour end is achieved and the Nearest Neighbor Heuristic starts

again. An example in Figure 6 shows

the broad variation in a solution for a

1,300 nodes problem. A simple distance

algorithm guides the selection of nodes

where the connections are being broken

up to the nearest free nodes. And in the

final version, the algorithm allows

diagonal moves at the boundary. On the

Stratasys FDM 1650, several tensile

bars were built, in which the toolpath
Figure 6:.1,3QOnOde toura.chieved

was configured by the Nearest Neighbor through Nearest Neighbor Hem:istic.

Heuristic. One slice of a standard tensile bar includes 10,597 nodes. The subsequently
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conducted Stress-Strain tests revealed a

higher Elastic modulus (Figure 7). The

built parts had a higher density. and their

fracture behavior was close to injection

molted ABS parts. The noticea.blecorner

in the graphs is caused by the start of

delamination in the bars.
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Figure 8: Progress of algorithms overtime.
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Figure 7: Str~$s ..StrainTests ofbars
using Nearest Neighbor Hellristic and
unidirectional bars.
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4 Conclusions
The quality achieved with the new t6ol-

paths measurable in density (amount of

voids) and Elastic modulus proves the

importance of the implementation of the

new buildstyle patterns. Figure 8, a ~ 10000
~

representative 1,300 node task, shows the £-8000
(ij

CPU Time involved for the solution ~
~ 6000

finding. CPU Time has such an impor- i
"" 4000.!!J
>

tance, since for instance in FDM for

every slice the TSP has to be solved.

This makes the Nearest Neighbor

Heuristic approach with the use .- of

rotation operations, as described by Reinelt [5] and Paragraph 304.2., the most feasible

method for generating a toolpath inSolidFreeform Fabrication (SFF).
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