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This dissertation presents the development of an upper-body exoskeleton

and its control framework for robotic rehabilitation of thearm and shoulder after a

neurological disorder such as a stroke. The first step is designing an exoskeleton

hardware that supports natural mobility of the human upper body with a wide range

of motion for enabling most rehabilitation exercises. The exoskeleton is equipped

with torque-controllable actuation units for implementing various robotic rehabili-

tation protocols based on force and impedance behaviors. The control framework

is designed to exhibit a highly backdrivable behavior with agravity compensation

for the robot’s weight and optional gravity support for user’s arm weight to promote

voluntary movements of patients with motor impairments. The control framework

also serves as a ‘substrate’ of other robotic control behaviors for rehabilitation ex-

ercises by superimposing desired force or impedance profiles. A stability analysis

is performed to examine the coupled stability between the robot and human. After

designing the hardware and control, several experiments are carried out to test the
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mobility and dynamic behavior of the robot. Lastly, a human subject study eval-

uates the effectiveness of the robot’s shoulder mechanism and control algorithm

in assisting the coordination around the shoulder. The results show that the robot

induces desirable coordination in the presence of abnormalities at the shoulder.
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Chapter 1

Introduction

1.1 Background
1.1.1 Neuromuscular Disorders and Neural Plasticity

A substantial portion of the world population suffers from neuromuscular

disabilities caused by neurological injuries or diseases such as stroke, traumatic

brain injury (TBI), spinal cord injury (SCI), cerebral palsy (CP), or Parkinson’s dis-

ease (PD), requiring intensive health care services including rehabilitation [20, 46].

For example, strokes as the leading causes of the neuromuscular disabilities affect

around 800,000 people in the United States alone each year [1]. Approximately

80% of all stroke survivors experience some form of upper limb paresis, with only

18% of those gaining full motor recovery within the following year [155, 124, 25].

The forms of upper limb dysfunctions after strokes include control deficits, weak-

ness, abnormal coordination and co-contractions, hyperactivity in reflexes, or de-

layed motor responses [52]. The severity and type of the deficits vary largely across

individuals, depending on the lesion and time after the incidences.

For a few stroke patients, a part of the lost functionality isrecovered sponta-

neously. However, in many cases, rehabilitation intervention is required to achieve

any recovery or to stimulate further improvements. The functional recovery is neu-

rologically explained by the reorganization and remodeling of the neural circuitry
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in the damaged brain. Much evidence confirms that the brain keeps reorganiz-

ing its structure and function in response to the interaction with external stimu-

lation and experiences including repetitive physical training [142, 31, 58]. This

‘programmable’ ability called neural or brain plasticity explains the mechanism

of learning new behaviors and relearning the lost behaviorseven in the damaged

brain and is the underlying principle of rehabilitation [63, 87, 143]. In the damaged

brain, learning and relearning are processed by plasticitymechanisms forming new

connectivity in the neural network such as reinforcement ofthe functionality in

redundant motor neurons and relocation of the function of the damaged part to the

adjoining parts in the brain [11, 126]. Still, principles and mechanisms of the neural

plasticity and motor learning are under vast exploration inneuroscience.

1.1.2 Potential of Robotic Rehabilitation

The goal of rehabilitation intervention is to restore an impaired mobility

by stimulating the brain to encode new skills and remap the motor cortices [45,

107]. The intervention is also important in physical perspectives to prevent para-

lyzed body segments from joint stiffness, soft tissue and muscle contracture, or/and

muscle spasticity, which otherwise would become principalobstacles to recov-

ery [138, 108, 82]. Robotic rehabilitation, which utilizesrobotic devices as a means

of providing intervention, has been attracting a lot of attention from medicine,

neuroscience, and engineering sectors because of the potential of delivering bet-

ter rehabilitation outcome. Many studies have shown that robotic rehabilitation

produces better or, at least, equivalent outcomes comparedto conventional ther-
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apy [117, 79, 92, 10], offering a number of benefits as follows;

• Sophisticated motion and force profiles that are designed based on the prin-

ciples of motor learning and brain plasticity in neuroscience can be precisely

and repetitively applied to rehabilitation exercises.

• Robotic rehabilitation can provide high-intensity, task-oriented functional train-

ings and massed passive range of motion exercises, which arecritical for ef-

fective recovery, at low cost, for a longer duration, and without the physical

labor of therapists.

• Robotic environment can effectively provide augmented feedback to users

such as visual, haptic, and auditory ones that are potentialto enhance motor

learning. Virtual reality, for example, can be integrated into a user interface

to motivate users and offer real-world like circumstances that enhance the

transfer of acquired skills to the actual activities of daily life.

• A rehabilitation robot provides a precise and reliable platform that measure

and evaluate the users’ physical abilities. Quantitative values of motor abil-

ities such as user’s strength, quality of voluntary control, range of motion,

or muscle tone that can be precisely measured by robots will allow clinical

practitioners to accurately diagnose their customers and prescribe more ap-

propriate and individual-specific rehabilitation protocols. Also, the robotic

platform may serve as a data logging system to track the progress of patients

so that the therapeutic exercises can be properly adjusted along their improve-

ments.
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• A robotic platform provides, needless to say, an automated environment where

rehabilitation resources, can be effectively allocated intime and space. A

therapist may be engaged in two or more rehabilitation sessions at a time,

relying on automated exercises by the robots. Also, a portable robotic system

can be delivered to the patient’s place for remote rehabilitation when com-

mute to a hospital is limited.

With these advantages, robotic rehabilitation has a potential to become an important

addition to the conventional rehabilitation to deliver more effective and efficient

practices. The efficacy of robotic rehabilitation, however, is largely determined by

the features of a robotic system and its rehabilitation protocols.

1.1.3 Coordination and Potential of Exoskeleton Robots

Most activities of daily living (ADLs) consist of multi-joint movements,

and coordination of multiple joints plays a key role in controlling such move-

ments [30, 40]. Also, many ADLs exhibit stereotypical interjoint coordination in

the arm and shoulder such as in a reaching motion [80]. Recovering from im-

pairments means restoring the mobility as before the impairments including the

normal coordination. However, conventional therapy focuses more on reinforcing

compensatory movements that accompany alternative coordination in the impaired

limb or alternative movements of the unimpaired side. This is because compen-

satory strategy is a natural reaction to impairments and usually results in quicker

recovery, at least partially, of functional task performance while circumventing the

impairments [75]. A compensatory movement learned during rehabilitation tends
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to continue even after the impaired lesion is recovered and does not stimulate the

damaged neural system, limiting long-term recovery [85, 128]. On the other hand,

recovering an impaired mobility, referred as reacquisition or true recovery, may

take longer to perform functional tasks but benefit long-term recovery with better

outcome [2, 86]. In pursuance of true recovery, regeneration of lost interjoint co-

ordination will be inevitably included in rehabilitation practices and an ability to

control each joint for coordination may facilitate reacquisition of lost skills.

Movements of the upper arm are inherently coordinated with movements of

the shoulder girdle, represented by the scapulohumeral rhythm (SHR). The inherent

coordination in the shoulder affects the anatomical and biomechanical integrity,

preventing impingement, securing a wide range of motion (ROM), and maintaining

an optimal force-length relationship in the shoulder muscle groups [149]. Without

attention to the coordinated motion of the shoulder, joint instability may occur,

resulting in shoulder pain or injuries including irritation and impingement of the

rotator cuff [32, 48]. Also, since the coordinated motion isa key functionality of

the shoulder girdle and is a natural consequence of serial actuation by the muscles

running from the thorax to the humerus via the shoulder girdle, it may be beneficial

to include this coordinated motion in the rehabilitation process of the upper limb

for better clinical results [57].

Two-handed manipulation from a therapist or an assistance from an end-

effector type robot [89] may have difficulties in inducing anintended configuration

of the arm and shoulder or joint torque composition in the multiple joints. A robotic

exoskeleton worn around the upper body is capable of controlling the human joints
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to guide an impaired limb for intended coordinated movements or applying torque

at each joint independently. If an exoskeleton has a shoulder mechanism for full

mobility of the shoulder, the inherent coordination aroundthe shoulder can also

be modulated. However, great caution is needed in designingan exoskeleton to

ensure kinematic compatibility to the human body to preventundesired stresses on

the musculoskeletal system.

1.1.4 Human-Robot Interaction and Requirement for Rehabilitation Robots

Rehabilitation is recognized as a relearning process, and many investigators

have recently emphasized that rehabilitation practices need to incorporate the prin-

ciples of motor learning in designing therapeutic exercises and protocols [18, 75,

68, 156]. While some brain damages disable the capability ofmotor learning, the

significant portion of strokes is believed to preserve the partial or full capability of

motor learning and benefit from the principles [157, 27, 115,131].

A prominent perspective on motor learning suggests that each movement

in learning a motion should be involved in a problem-solvingprocess recruiting

all relevant motor cortex activities as a cognitive processrather than memorizing

the sequence of muscle activation and replaying it [133, 83,26, 75, 47]. A narrow

implication of the perspective on robotic rehabilitation is that robotic assistance may

have to focus on encouraging voluntary effort of participants as much as possible

while movement deficits are minimally assisted in completing a goal. A simple

effortless repetition based on a position control may not besufficient because a

rigid guidance from a position controlled robot discourages voluntary movements of
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patients. In this perspective, allowing a dynamic interaction, which occurs through

force and impedance, between robots and human would be essential to promote

motor learning.

Dynamic interaction with a robot is also beneficial in assisting repetitive

passive exercises. Regardless of motor learning principles, massed repetition is also

essential in rehabilitation, especially for passive rangeof motion (ROM) exercises.

Passive ROM exercises keep flexibility and range of motion, and prevent immobil-

ity, soft tissue and muscle contracture, or cartilage inflammation in the human body

with paralysis, spasticity, muscle tone, or exaggerated stretch reflexes [138, 48].

Without accounting for the unexpected resistances to passive movements, position-

controlled robots could injure subjects or impose an excessive pain because position

control is robust to those ‘disturbances’ and proceeds witha given task regardlessly.

Robots could also lead to over-extension and injuries in a joint at its limit of the

range in passive exercises. While a certain level of resistance from the deficits

needs to be overcome to complete the given passive exercise,forces applied by

robots have to be under ‘surveillance’ all the time, and restricted to a certain level

of values that depends on the physical condition of individuals if necessary.

To maximize voluntary movements of patients, a robot needs to be dynam-

ically transparent as much as possible to let users take overthe task when they

can [53, 76, 78]. Dynamic transparency requires robots to have a good perfor-

mance in force and impedance control, relying on the minimumimpedance that

robots can achieve. In passive exercises, impedance controlled robots can safely

pull the subject’s limbs with a regulative compliance whileexplicitly limiting the
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maximum force. The controllability of force and impedance also enables a variety

of therapeutic paradigms based on neurological hypothesessuch as training with an

error augmentation induced by a force field [111]. Therefore, rehabilitation robots

with force and impedance controllability open up the possibility of developing ad-

vanced rehabilitation exercises based on motor learning principles and provide a

safe environment for human-robot interactions.

1.2 Reviews on State-of-Art Robots for Upper-Body Rehabilita-
tion

1.2.1 Review from Kinematic Perspective

Some existing upper-body exoskeletons support the mobility of the gleno-

humeral joint, excluding that of the shoulder girdle [114, 44, 70, 151, 140]. These

exoskeletons typically attach to the user’s hand or wrist and not to the upper arm,

and missing a connection to the upper arm makes the robots less sensitive to the

kinematic compatibility around the shoulder allowing simplicity in robot design.

Exoskeletons with a connection at the upper arm are beneficial in assisting upper

limb motion with proper coordination at the shoulder but require careful attention

in kinematic design to match with the anatomical structure including the mobility

of the shoulder girdle to minimize undesirable residual force applied to the human

joints.

Some exoskeletons are designed to partially support the mobility of the

shoulder girdle: either elevation-depression [16, 104] orprotraction-retraction [130].

Another design idea is to support shoulder girdle movementseither with passive
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joints [137] or with a combination of passive and active joints [123, 35]. These

systems comply with full mobility of user-driven shoulder girdle movements with

the advantage of self-alignment. The presence of passive joints, however, can limit

active assistance to the shoulder girdle mobility. Also, the robots alone cannot fully

control task-space forces at the end-effector or other locations while the robots worn

by the human can partly control task-space forces using the human body as a lever-

age. The forces applied by the robot can induce reaction forces transferred to the

human skeleton through the passive joints, which may cause undesirable stresses

on the human joints. A 6-DOF end-effector connected to the upper arm also allows

for full mobility of the shoulder [132], but the kinematic chain closed by the human

shoulder can impose undesirable reaction forces on the shoulder joint in rehabilita-

tion applications where usually large forces are required.One exoskeleton design

supports both elevation and protraction with a 2-DOF mechanism that character-

izes the kinematics of the shoulder girdle [5]. However, this idea has only been

presented conceptually, and the proposed shoulder mechanism is bulky, limiting its

extension to a bi-manual design with a wide range of motion.

Most upper-body exoskeletons for rehabilitation including MEDARM are

unilateral, targeting uni-manual therapy. Those systems are interchangeable be-

tween the right and left configuration, enhancing cost effectiveness of the system.

However, bilateral training is considered as an essential part of upper-body rehabil-

itation as positive evidence is discovered [135, 153, 19]. Some designers assume

a bimanual robot can be achieved by a mirror-copying of theiruni-manual robot.

However, a mirror-copying can cause interference problem between the right and

9



left sides of shoulder mechanisms at a high abduction especially when the mecha-

nism has a shoulder girdle mobility.

Some upper-body exoskeletons for rehabilitation are designed to be attached

to fixed frames partially due to relatively large-sized shoulder mechanisms. An ex-

oskeleton with a stand-alone structure and a compact form factor will be beneficial

in installation at clinical facilities and providing remote rehabilitation. Also a stand-

alone structure is expendable for an additional mobility when necessary such as the

torso movement.

1.2.2 Review from Dynamic Perspective

The ability to control force and impedance is essential for providing natural

and safe dynamic interactions between patients and exoskeletons [53, 76, 78] and

for implementing novel therapy interventions.

Several end-effector type devices are capable of high performance of force

and impedance control thanks to low inertial linkages driven by direct-drive motors

equipped with torque sensors [76], but such a configuration is difficult to imple-

ment in an exoskeleton due to its three-dimensional kinematic structure with large

degrees of freedom. Although a cable-driven actuation witha direct-drive or low

gear reduction is one solution [114, 5], friction from complex cable routing and

highly coupled cable tension reduce the quality of force andimpedance control.

Position control-oriented actuation with a force feedbackfrom a rigid force sen-

sor such as a load cell usually uses admittance control scheme; however it exhibits

limited performance in low impedance behaviors [147]. Whenthe force sensors
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are located in an interaction port, the non-collocation issue further limits force con-

trol [34].

A series elastic actuator (SEA) is well known as an actuationconfiguration

that is beneficial for controlling force/torque and impedance behavior [118, 150,

127]. Several rehabilitation robots have adopted SEAs for their actuation and ex-

hibited satisfactory behaviors. To date, however, no full-size upper-body exoskele-

ton robot has adopted SEAs. This may be partly because it is difficult to secure a

wide range of motion in many degrees of freedom structural design with a relatively

larger size of SEA compared to general geared electric motors.

1.3 Goal and Scope of Work

The goal of the work in this dissertation is to develop an upper-body ex-

oskeleton with its control framework that supports naturalcoordination with a wide

range of motion and serves as a substrate for developing advanced robotic reha-

bilitation exercises based on motor learning principles. To achieve the goal, the

exoskeleton is designed to be equipped with an anatomical structure, especially

around the shoulder that supports the full mobility of the upper limb, and a torque-

controllable actuation unit that controls force and impedance delicately. The con-

trol baseline is designed to achieve a minimum impedance behavior to promote

dynamic transparency in user’s voluntary movements. The framework serves as a

platform of other robotic behaviors for advanced exercisesby superimposing de-

sired impedance behaviors while a coupled stability between the robot and human

is guaranteed. Also, a control for assisting the coordination of the shoulder is im-
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plemented in the framework, which can be applied to support other interjoint coor-

dination. The mobility and dynamic behavior were evaluatedto confirm the design

goals, and a human subject study was performed to assess the effectiveness of the

robot’s shoulder mechanism and control algorithm in assisting the coordination in

the shoulder.

1.4 Dissertation Outline

This dissertation presents a bi-manual upper-body exoskeleton, called HAR-

MONY, with an anatomical shoulder mechanism that provides anatural mobility

around the shoulder with a wide range of motion, powered by series elastic actu-

ators. First, the hardware design is described after reviewing the human shoulder

anatomy, followed by a description of a dynamic modeling process. The follow-

ing chapters present the baseline control and stability analysis. The next chapter

shows an experimental evaluation of the exoskeleton in kinematic and dynamic

perspectives. Lastly, a human subject study is described, followed by discussion

and conclusion.
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Chapter 2

Human Shoulder Kinematics for Exoskeleton Design

2.1 Shoulder Biomechanics and Coordinated Motion

The skeletal structure of the shoulder complex consists of the scapula, clav-

icle, and humerus as shown in Fig. 2.1. The humerus articulates with the scapula

via the glenohumeral (GH) joint, and the scapula is connected to the clavicle via

the acromioclavicular (AC) joint. The clavicle is groundedto the thorax via the

sternoclavicular (SC) joint. The clavicle and the scapula form the shoulder girdle,

which is the foundation of the GH joint. Although the scapulothoracic (ST) joint is

not a bony articulation, the scapula slides and rotates withconstraints to the scapu-

lothoracic gliding plane [146], where the scapula floats on muscles. Consequently,

the shoulder girdle connecting the ST, SC and AC joint forms aclosed kinematic

chain and provides a stable base for the GH joint with the aid of muscles and liga-

ments [71]. Note that, from the kinematic point of view, the only bony connection

from the shoulder girdle to the thorax is the connection along the clavicle with the

AC and SC joint.

The shoulder complex is cooperatively actuated by a number of muscle

groups with a variety of insertion points. For the process ofshoulder abduction,

for example, a significant amount of torque on the GH joint to abduct the humerus
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Figure 2.1: Skeletal anatomy of the shoulder complex.

is provided by the rotator cuff and deltoids, which originate from the shoulder girdle

and are inserted into the humeral head and humerus, while therotator cuff secures

the humeral head in the glenoid cavity. Simultaneously, thetrapezius and serratus

anterior, which originate from the thorax and are inserted into the scapula, rotate

the scapula upwards, and the levator scapula and rhomboid assist the upper trapez-

ius in elevating the scapula [36, 57, 41]. Thus, the load fromthe arm transfers to

the shoulder girdle and to the thorax in a cascade via musclesand tendons. This

process underlies the coordinated motion of the shoulder girdle that is strongly

coupled to the motion of the upper arm. Figure 2.2 illustrates an example of a

coordinated motion during shoulder abduction. The coordinated motion is called

the scapulohumeral rhythm (SHR), where the motion of the humerus accompanies

the scapula’s internal-external rotation, downward-upward rotation, and anterior-
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posterior tilt. The SHR is characterized by the ratio of the humeral elevation to the

scapular upward rotation. The ratio was originally believed to be 2:1, but recent

studies show it to be nonlinear and to vary not only across individuals but also by

situations such as a load on the arm [96, 91, 72]. Besides the coupled scapular

upward rotation, protraction-retraction is also coupled with the motion of the arm.

For example, a reaching movement of the arm is accompanied byprotraction of the

scapula [128]. The coordinated motions of the shoulder are essential for shoulder

muscle function and joint stability and significantly affect recovery of upper limb

mobility [29, 42].

The wide range of motion of the upper extremity is partly due to the cou-

pled motion between the humerus and the shoulder girdle. Theglenohumeral (GH)

joint approximates a ball-and-socket joint providing a wide range of motion while

the rhythmic motion of the shoulder girdle further enhancesmobility [116, 42]. For

example, the upward rotation of the scapula, which itself isa result of the rhyth-

mic motion, contributes to the wide range of motion during shoulder abduction

by preventing impingement of tendons on the humeral head to the acromion and

by keeping an optimal muscle force-length relation for the primary humeral eleva-

tors [97].

2.2 Approximation of the Shoulder Girdle Kinematics

Movements of the shoulder girdle result in translational motions of the

glenohumeral (GH) joint such as elevation-depression and protraction-retraction.

For kinematic compatibility of an exoskeleton, the shoulder mechanism of an ex-
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Scapula

Clavicle Center of Rotation

of GH joint

Figure 2.2: An example of the coordinated motions: the shoulder girdle, consisting
of the scapula and clavicle, rotates and elevates in accordance with humeral eleva-
tion. As a result, the center of rotation of the glenohumeral(GH) joint shifts (the
figure is adapted and modified from [145]).

oskeleton needs to follow the translational motion of the GHjoint so that the center

of rotation of the mechanism matches that of the GH joint.

During movements of the shoulder girdle, the scapula exhibits a complex

motion consisting of three-dimensional rotation and translation along the curved

plane while the clavicle performs a pivot motion. We assume that the translational

motion of the GH joint mainly results from the pivot motion ofthe clavicle with re-

spect to the sternoclavicular (SC) joint because the clavicle is the only bony connec-

tion from the GH joint to the thorax. Although the humeral head sits on the glenoid
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of the scapula, the relative motion of the glenoid with respect to the clavicle is small

because the end of the clavicle is attached close to the glenoid through the acromio-

clavicular (AC) joint and the motions of the AC joint are verysmall [84, 129]. If

the clavicle with the sternoclavicular (SC) joint deliversthe majority of translation

of the GH joint, we could design the shoulder girdle mechanism by replicating the

simple kinematic structure of the clavicle.

In case the glenohumeral (GH) joint is translated by a pivot motion of the

clavicle, the trajectory of the translation would be a circular arc. To verify this as-

sumption, we recorded the trajectory of the acromion of a healthy subject, which

is located right above the GH joint, during repetitive shoulder elevation-depression

and protraction-retraction using a motion capture system (PhaseSpace, Inc.). The

markers were attached on the sternum, sternoclavicular (SC) joint, and acromion.

The trajectory of the acromion with respect to the SC joint was fitted to a circle

based on least squares. The results in Figure 2.3 show that the trajectory of the

glenoid falls on a circular arc. Therefore, it is possible totranslate the GH joint by

a link pivoting around the center of rotation of the circulararc, and the shoulder

girdle mechanism can be simplified as a link with two revolutejoints. Although

the clavicle-like shoulder girdle mechanism may not provide all the mobility of the

scapula, the mechanism may promote motor recovery of the scapula by translat-

ing the lateral angle of the scapula. For example, elevatingthe lateral angle area

provides moment and force to cause upward rotation and elevation of the scapula.

The experimental results indicate that the center of rotation of elevation-

depression and protraction-retraction in the shoulder girdle motion shifts away from
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Figure 2.3: The trajectory of the acromion during the right shoulder girdle motion
of a healthy subject: (a) elevation-depression and (b) protraction-retraction. Axes
x, y, and z are aligned with the sagittal, longitudinal, and frontal axis, respectively.

the sternoclavicular (SC) joint. This shift probably occurs when the distance be-

tween the glenohumeral (GH) joint and the SC joint is reducedas muscle contrac-

tion around the shoulder girdle increases during shoulder elevation or protraction.

As a result, the curvature of the trajectory is deformed and causes the shifted center

of the approximated circle. Constraints from ligaments around the SC joint are also

partly responsible for shifting the center of rotation awayfrom the SC joint [84].

The amount of shifting and shortening may vary across individuals by their body

size and flexibility around the shoulder. To support the shifted center of rotation

with the shortened radius, a shoulder girdle mechanism requires an adjustable loca-

tion of the pivot point and a link with an adjustable length.
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The pivot motion of the clavicle, the sternoclavicular motion, consists of

elevation-depression, protraction-retraction, and anterior-posterior axial rotation.

The mobility of anterior-posterior axial rotation of the clavicle can be safely ig-

nored during the design of the shoulder girdle mechanism because the functionality

of anterior-posterior axial rotation widens the range of motion of the glenohumeral

joint but does not add another degree of freedom. For example, during forward

flexion of the humerus, the posterior axial rotation of the clavicle with the posterior

tilt of the scapula opens up the acromion to prevent impingement of tendons of the

rotator cuff, and consequently, the range of motion of the forward flexion becomes

wider. In place of axial rotation of the clavicle, we can design the ball-and-socket

joint itself to provide a sufficiently wide range of motion.
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Chapter 3

Robot Design

Based on the findings on the biomechanics of the human shoulder, the first

goal of this study is to design a kinematic structure that supports natural mobil-

ity and a wide range of motion of the upper body especially around the shoulder.

For kinematic compatibility, a shoulder mechanism must include mobility of the

shoulder girdle as well as that of the glenohumeral joint. HARMONY’s shoulder

kinematics has five main degrees of freedom (DOFs) composed of three DOFs at

the glenohumeral joint and two DOFs at the shoulder girdle.

The design also aims at a bi-manual structure for a bilateraltraining that

enhances rehabilitation results depending on the clinicalstatus of patients [154].

Designing a bi-manual structure requires more than a mirror-copy. Both sides of

shoulder mechanisms must be designed to avoid interferencewith each other during

shoulder abduction. A controller also needs an algorithm toavoid a self-collision

between arms. Also, the design pursues a stand-alone configuration without a large

fixed frame on the floor or wall for extensibility. For example, a reaching movement

of the arm is accompanied by an inclination of the torso in healthy subjects [128].

A stand-alone system can be easily extended to be combined with a back-support

mechanism to generate motion of the torso.
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The final design of the exoskeleton robot consists of a 14 degrees of free-

dom (DOFs) bi-manual structure with five DOFs on each shoulder, one DOF for

each elbow, and one DOF for each forearm, arranged in a stand-alone structure.

The shoulder mechanism is fully actuated by five active joints attached to a kine-

matic structure of a set of revolute joints and a parallelogram, which provides a

good kinematic compatibility and a wide range of motion. Thedesign details are

described in the following subsections.

3.1 Shoulder Mechanism

The glenohumeral (GH) joint can be approximated as a ball-and-socket joint

because the humeral head rotates inside the glenoid fossa ofthe scapula with neg-

ligible translation [148]. A ball-and-socket joint is kinematically equivalent to a

serial chain with three rotational joints whose axes intersect at a single point. When

the serial chain is placed alongside the shoulder, kinematic compatibility requires

that the intersection point of the serial chain co-locates with the center of rotation

(COR) of the GH joint. This constraint is critical for minimizing undesirable joint

stresses that may cause pain or facilitate subluxation of the GH joint.

3.1.1 Shoulder Girdle Mechanism

A scapula-like mechanism, as illustrated in Figure 3.1, could translate the

ball-and-socket mechanism. The scapula-like supporter attached to the outside of

the scapula follows the scapular rotation and translation.However, the scapula-

like supporter requires many degrees of freedom to connect to the ground because
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Figure 3.1: A prototype with a scapula-like shoulder girdlemechanism, which fol-
lows scapular motion well, but requires excessive degrees of freedom to connect
the ground

of the complexity of the motion: three-dimensional rotation and three-dimensional

translation along the curved scapulothoracic gliding plane. In addition, it is difficult

to connect the supporter to the scapular securely because only the posterior surface

of the scapula is exposed and there is little room to connect the mechanism.

The ball-and-socket joint mechanism must follow the translational motion

of the glenohumeral joint induced by the motion of the shoulder girdle to match the

center of rotation of the ball-and-socket mechanism with that of the glenohumeral

joint. A clavicle-like kinematic structure is potentiallya simple solution because

it needs only two revolute joints as shown in Figure 3.2a. Thefirst joint, J1, du-

plicates the shoulder elevation and depression and the second joint,J2, duplicates

the shoulder protraction and retraction. A prototype with the clavicle-like shoul-

der girdle mechanism (Figure 3.2b) was built and tested to validate its kinematic

compatibility. The mechanism provided enhanced mobility along shoulder eleva-
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Figure 3.2: A clavicle-like shoulder girdle mechanism: (a)schematic view of the
mechanism, and (b) a prototype. Kinematic tests with the built prototype revealed
that motion in J2 did not match with protraction and retraction of the shoulder.

tion and depression; however, shoulder protraction and retraction was limited due

to the constraint from the girdle mechanism. This constraint stems from the kine-

matic discrepancy between the shoulder and the mechanism caused by the offset

between the center of rotation of the shoulder and that of themechanism as shown

in Figure 3.2a.J2 may locate above the head to coincide with the axis, but this

configuration restricts the range of motion of bi-manual abduction because of the

collision between jointJ2s at both sides.
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Figure 3.3: A parallelogram shifts a circular arc motion. The input can be consid-
ered as the motor input, point P as the center of the GH joint, and point O as the
center of rotation for protraction and retraction.

3.1.2 Parallelogram in the Girdle Mechanism

To resolve the kinematic discrepancy in protraction and retraction, we devel-

oped a shoulder girdle mechanism equipped with a four-bar parallelogram linkage,

which is capable of shifting circular motions. Figure 3.3 shows the principle of the

shifting with a parallelogram mechanism. The circular motion of point P can be

shifted in any direction depending on the shape of the branchwhile the radius of

the circular motion remains unchanged, which is the same as lengthl of the link

in the parallelogram. If the ball-and-socket joint is connected to the branch, point

P can be considered the center of rotation (COR) of the ball-and-socket joints. By

replacing axisJ2 in Figure 3.2a with the parallelogramJ2 J2′ J2′′ J2′′′ in Fig-

ure 3.4, the whole ball-and-socket mechanism translates sothat the COR of the

ball-and-socket joint follows a circular trajectory with respect to the actual COR of
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Figure 3.4: Schematic view of a shoulder girdle mechanism combined with a par-
allelogram.

the shoulder for protraction and retraction. Consequently, a compact form factor

is maintained; the shoulder girdle mechanism provides bothprotraction-retraction

and elevation-depression with a good kinematic compatibility.

3.2 Ball-and-Socket Joint

For a ball-and-socket joint, many exoskeleton robotic systems have adopted

a serial chain with three revolute joints (Figure 3.5a, b) ortwo revolute joints with

a large circular bearing that encircles the upper arm (Figure 3.5c) [5, 16, 114, 104].

Each configuration has different mechanical characteristics in terms of singularity

and range of motion (ROM). For example, the ROM of shoulder abduction in the

first configuration is limited mainly by a collision between joint J4 and the shoul-
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Figure 3.5: Examples of the serial chains representing motions of ball-and-socket
joint.

der or the head, while the second configuration is limited mainly by a collision

between jointJ3 andJ5. The third configuration (Figure 3.5c) could provide a

larger range of motion for shoulder abduction than the two above but the encir-

cled structure around the upper arm may cause interference with the upper torso

during various arm movements when the upper arm comes closerto the torso. In

all three cases, mechanical singularity occurs when the three axes lie in the same

plane although the arm configuration is different in each case. In Figure 3.5, the

first mechanism approaches singularity at extreme shoulderhorizontal flexion with

shoulder internal rotation that is already out of the range of motion for activities

of daily life (ADL) [94]. Similarly, the second mechanism approaches singularity

at extreme shoulder adduction with shoulder external rotation that also rarely oc-

curs. On the other hand, the third mechanism approaches singularity with shoulder

forward flexion at 90 degrees.
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Figure 3.6: The optimized mechanism for the GH joint in the right shoulder: (a)
isometric view, (b) top view, (c) rear view, and (d) plane definition.

We adopted the first configuration (Figure 3.5a) because of its ability to

provide a wide range of motion. To further enhance the range of motion while

avoiding singularity, three axes are positioned with an acute angle to each other

instead of a perpendicular arrangement (Figure 3.6).

Accordingly, the joint at the top of the shoulder,J4, is aligned to the vertical

axis with an angle outwards and backwards. In addition, axisJ3 is aligned to

the sagittal axisx − x with an angle outwards, so that jointJ4 is leaning toward

the back side of the shoulder during shoulder abduction and avoids collision with

the shoulder or the head. For design simplicity, the orientation of joint J5 at the

default pose with relaxed arms points in the direction of thetransverse axisz − z.
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Figure 3.7: The 3-DOF ball-and-socket joint. An oblique arrangement of jointJ4
provides a clearance with the head during abduction (a), andalso a clearance with
the upper arm during forward flexion (b). The bigger values ofthe anglesa and
b (smallerα andβ in Figure 3.6), the smaller the range of motion of the internal
rotation due to the singularity amongJ3, J4, andJ5 (c). In the case of very large
γ in Figure 3.6 (less margin at angle c), the range of motion of the external rotation
is limited by the interference or singularity between the joint J3 andJ5 (d).
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Anglesα, β andγ are determined based on the shape and volume of the actuators

on the joint, and on the trade-off between a large abduction angle and avoidance of

singularity. Figure 3.7 shows an example of the relationship between those angles,

range of motion and singularity. When angleα andβ are smaller, axisJ4 lies

further outwards and backwards from the shoulder, where more clearance is ensured

betweenJ4 and the shoulder at high abduction angles (Figure 3.7a) and between

J4 and the upper arm at high forward flexion angles (Figure 3.7b). However, a

smaller angle restricts the range of motion of the arm posed in front of the torso

(Figure 3.7c). A larger angle ofγ in Figure 3.6 secures more clearance for axis

J4 during the abduction, but the larger angle limits the range of external rotation

because of the interference or singularity between jointJ3 andJ5 (Figure 3.7d).

With the angles between the axes, the distance between the intersecting point and

each joint also affects the range of motion. Especially, ROMof bilateral abduction

is mainly limited by a collision between both sides ofJ4, which is facilitated by

the increased angle ofJ1 during the coordinated motion of the shoulder girdle

mechanism. ROM of unilateral abduction is mainly limited bythe interference

betweenJ4 and the ipsilateral shoulder. A higher position ofJ4 increases the

angle where the interference in the unilateral abduction occurs, but reduces the

angle where the collision in the bilateral abduction occurs.

The 3D interactions between complex surfaces of the human body, actuator

units, and linkages are impossible to model accurately, making it difficult to use a

numerical optimization technique. So, we used a number of 3D-printed mock-ups

to determine the parameter values for the mechanism that result in a large range of
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(a)

Pulley 1

Pulley 2

(b)

Figure 3.8: A new mechanism for supporting pronation and supination of the fore-
arm: (a) the kinematic diagram, and (b) the prototype of the mechanism.

motion.

3.3 Forearm Mechanism

To support rotational motion along the longitudinal axis inthe body seg-

ment, such as pronation and supination of the forearm, we developed a new mech-

anism with a light and compact structure. In many wearable robots, such rotational

motions are generated by a curved rail bearing [114] surrounding the arm segments.

However, this bearing is generally bulky and heavy, and could possibly restrict the

range of motion of the arm in a situation where the upper arm moves close to the

torso. Figure 3.8 shows our new mechanism that generates thesame motion with a

curved linear bearing. This mechanism consists of a parallelogram and a transmis-

sion that transfers the rotation of the link in the parallelogram to the handle. Pulley

30



1 rotating with the link in the parallelogram drives the timing belt connecting pul-

ley 2. Pulley 2 is grounded via a bearing to the branch extruding from the other

link in the parallelogram. Then, a handle or a wrist mechanism attached to pulley 2

revolutes along a circular path and simultaneously spins about the axis of pulley 2.

The transmission can be either a timing belt, a gear train or an auxiliary parallelo-

gram as long as it delivers the same rotational direction with a 1-to-1 gear reduction

ratio. This mechanism is potentially light and easy to build. Another mechanism

for supporting rotation along longitudinal axis has been presented previously [137]

but the underlying kinematics of our design is distinct resulting in a more compact

structure.

3.4 Final Kinematic Design and Alignment

In the final kinematic design of the shoulder mechanism (Figure 3.9), joints

J3, J4, andJ5 consisting of the ball-and-socket joint are arranged at an oblique

angle to each other, thus increasing the range of motion while avoiding mechani-

cal singularity within the workspace of the upper limb. The ball-and-socket joint

connects the shoulder girdle mechanism, consisting of one revolute jointJ1 and

parallelogramJ2, which translates the ball-and-socket joint along the trajectory

of shoulder protraction-retraction and elevation-depression. The distance between

both sides ofJ1 and length of the link in the parallelogram are adjustable tomatch

shoulder size and radius of the shoulder girdle motion. The upper-arm and forearm

segments are also adjustable for a wide range of subject bodydimensions.

Alignment between the robot and the human body is important since mis-
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Figure 3.9: The final kinematic design of the shoulder mechanism. The three ad-
justment parameters a, b, and c allow to align the center of rotation of theball-and-
socket joint with that of the subject’s glenohumeral joint.

alignment may cause undesirable stress on the subject’s musculoskeletal system.

The center of rotation (COR) of the ball-and-socket joint matches that of the gleno-

humeral joint in terms of three parameters: ‘a’ elevation ofthe shoulder mecha-

nism, ‘b’ distance between both sides ofJ1, and ‘c’ gap between the back and the

shoulder mechanism. Adjustment for parameter ‘a’ and ‘c’ isrelatively straight-

forward if a therapist recognizes the COR of the glenohumeral joint by palpation

and visual observation. The shoulder width is also easily adjustable by fitting the

both-side upper-arm cuff to the body. However, the ratio between the length of par-

allelogram and subject’s shoulder width needs to be investigated through a human
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subject study. For example, around 60% of the distance between the sternoclavicu-

lar and acromioclavicular joints was acceptable for a good kinematic compatibility

throughout a number of individuals in our trials. Using sucha ratio, adjustment

of shoulder width and parallelogram length can be done by one-time measurement

of subject’s shoulder dimension. The adjusting mechanism in the current system

is realized by a sliding mechanism with a lock, but a quick adjustment mechanism

may need to be developed to reduce setup time in the clinical application.

Adjustment process requires to measure subject’s body sizeincluding shoul-

der width and sitting height at the beginning of rehabilitation process. The torso of a

hemiparesis patient is usually lopsided, and both sides shoulders are unleveled. So,

body size measurement needs to be done carefully for hemiparesis patients. The

torso needs to be fixed with respect to the ground of the shoulder mechanism for

alignment, and a harness is required to support the torso to be erected.

3.5 Actuation Type

Rehabilitation robots frequently provide force or impedance-based thera-

peutic trainings such as impedance-based resistant exercises [3] and force field-

based trainings [6, 111]. For example, robots with force control can render an

aquatic therapy-like environment with an active gravity compensation for the weight

of the robot and full or partial weight of users while allowing user-driven free mo-

tions with or without viscous-like resistance [74]. An electrical motor permits qual-

ity of force or torque control with several configurations such as the direct-drive, a

geared motor with a torque sensor, or a series elastic actuator (SEA). The direct-
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drive does not satisfy our design goal because of the requirement for a large-size

motor. A geared motor offers a compact size but usually needsfor force feed-

back through a load-cell or spring. We adopt series elastic actuators (SEAs) to

generate various force and impedance-based therapeutic exercises because SEAs

offer precise and stable force control with robustness to impulsive external distur-

bances [118]. SEAs are also capable of producing a very low impedance [161],

which is essential to encourage user’s voluntary movements.

3.6 Fully Constructed System

Figure 3.11 shows the final CAD design of HARMONY and the constructed

system. The robot is equipped with series elastic actuators(SEAs) at all 14 axes,

linkages with an adjustable length, and four multi-axis force/torque sensors at the

interaction ports of the wrist and upper arm. A wrist cuff andhandle are commonly

grounded at the force/torque sensor in the wrist. A chest harness attached to the

frame is used to support the torso. Each actuator is a compactrotary SEA designed

previously [33] and modified with a torque-type brushless DCmotor (Maxon Mo-

tor, EC Flat series) and a Harmonic Drive (Harmonic Drive LLC, CSD Series).

Specifications including continuous torque of SEA appear inTable 3.1.

The robot is operated by a real-time control system running at Linux patched

with RT-Preempt (Figure 3.12). The customized motor drivers run the motor of the

SEA, communicating with the Linux system via EtherCAT. A server program on the

Linux system manages the EtherCAT communication with all motors and sensors,

and low-level controls such as torque control. The server program runs simultane-
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Figure 3.10: The CAD drawing of the upper body exoskeleton robot worn by a user

ously with a C++ code that contains a high-level control by communicating via a

shared memory interface.

Safety is ensured mechanically by emergency stop buttons for the user and

the operator and by hard stops at every joint. Additional safety features are added at

a software level to limit a range of motion, avoid self-collision, limit joint velocity,

or stop the robot at an excessive interaction force/torque.
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Figure 3.11: The upper body exoskeleton robot

Table 3.1: Specifications of HARMONY.

List Value

Continuous Torque 34.4 Nm @ shoulder

13 Nm @ elbow

1.25 Nm @ wrist

Torque Bandwidth 7 Hz

Backdrivability less than 0.3 Nm @ 0.6 rad/s

Robot Weight 31.2 kg excluding the frame

Control Frequency Up to 2000Hz

36



�������
���	�


���������	
�

�����
��

�	�	��������

������	�

�	�	��������

������	�
�����������	


�
��
��
������

�	������	���	����

�����
����	���

�����������
����


	����������

���

Figure 3.12: The software platform controlling the upper-body exoskeleton. A
GUI interface (Testmanager from EtherLabr) to visualize parameters and a C++
environment is available. A YAML file is used to configure parameters at the start
of the server program.
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Chapter 4

Robot Modeling

In order to develop a control algorithm involving a feed-forward torque that

compensates for the robot dynamics, an inverse dynamic model of the robot needs to

be formulated. We present a methodology for modeling kinematics and dynamics

of the robot that includes the unconventional parallelogram joint and adjustable-

length links. Before the robot modeling, the dynamics of theseries elastic actuator

is first formulated.

4.1 Dynamics of SEA

In an SEA, usually a spring locates between its output shaft and a load so

that the deflection of the spring directly measures output force or torque. However,

the SEA in our robot adopts a flipped configuration in which a spring lies between

and the stator of the motor and the ground as illustrated in Figure 4.1a. This con-

figuration has the advantage of constructing a compact-sized SEA unit [110] and

a compact actuation unit is critical for a large range of motion, avoiding interfer-

ences between actuators and links. In this configuration, the deflection of the spring

does not directly measure the output torque due to the dynamics of the motor unit.

The brushless DC motor with Harmonic Drive is grounded to thebase via the ro-
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Figure 4.1: The flipped configuration of the series elastic actuator: (a) the illustra-
tion of the SEA, (b) the equivalent mechanical system

tary spring and two encoders measure the deflection of the spring and the position

of the output shaft with respect to the ground, respectively. Figure 4.1b shows a

dynamically equivalent mechanical system. The complianceand the mass of the
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stator unit of the SEA is analogous to those of the fulcrum of the level system. At a

static equilibrium, the deflection of the spring directly indicates the output torque,

but movement of the masses in the input and the fulcrum adds a dynamic force to

the torque output.

The deflection of the spring does not directly indicate torque output in the

flipped SEA because of a dynamic force from movement of the motor unit. At a

low frequency, however, the spring torque would approximate the output torque.

To compare the measured torque from the spring deflection andthe actual torque

output, the dynamic equation of the SEA is formulated to calculate the actual torque

output. Dynamics of the rotor and the stator of the motor are as follows:

Jm(θ̈m/s + θ̈s) + Cmθ̇m/s + fhd + τml = τm (4.1)

Jsθ̈s +Kseθs = (N + 1)τml − τm (4.2)

Nτml = τo (4.3)

θm/s = N(θs − θo) (4.4)

whereθs andθo represent the displacement of the stator and output shaft with re-

spect to the ground, respectively andθm/s is the relative displacement of the rotor

with respect to the stator. The rotation of the output of the Harmonic Drive is in the

opposite direction to that of the input. Motor torqueτm delivers a load torqueτml

to the Harmonic Drive, overcoming the acceleration of the rotor with moment of

inertiaJm, dampingCm, and frictionfhd in the Harmonic Drive. The load torque

amplified by gear ratioN is transferred to the outputτo while accelerating the stator

unit Js and deforming the spring with stiffnessKse. When the output shaft is fixed
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(θo = 0), the output torque can be expressed as

τo = −(Jeqθ̈s + Ceqθ̇s + fhd +Kseθs) (4.5)

whereJeq andCeq are the equivalent moment of inertia and damping coefficientfor

the rotor and the stator unit. The negative sign of the torqueis due to the opposite

directional output of the Harmonic Drive. 4.5 indicates that the output torque differs

from the spring torque because of the dynamic force of the motor unit, but the

difference would be negligible when the frequency of the torque command is low.

The difference is shown in Section 6.

4.2 Forward and Inverse Kinematics of the Shoulder Mecha-
nism

The shoulder mechanism contains a parallelogram, which is amulti-link

structure but still provides a motion of one degree of freedom, so that it can be

treated as a joint with one joint variable. However, a parallelogram is not defined as

a joint such as a revolute or prismatic joint in the conventional robotic kinematics;

therefore, we need to define forward and inverse kinematics across the parallelo-

gram. The oblique arrangement of the ball-and-socket jointalso complicates the

calculation of inverse kinematics. To address these problems, we have developed a

methodology that includes attaching frames and performingcoordinate transforma-

tions across the parallelogram and the ball-and-socket joint.

Figure 4.2 shows the coordinate representation of the shoulder mechanism.

For the simplicity of calculation and angle representation, coordinate 2 is placed
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Figure 4.2: The coordinate representation of the kinematics of the shoulder mecha-
nism. The i-th axis (zi−1) is aligned to jointJi and frame 0 is grounded. Axisx2 of
frame 2 locates at the center of rotation of the ball-and-socket joint instead of at the
common normal of axisz1 andz2. Values ofα, β, andγ are 60, 60, and 18 degrees,
respectively.

at the center of the ball-and-socket joint. This is a deviation from the standard

Denavit-Hartenberg (DH) convention with which coordinate2 would be off the

center of rotation of the ball-and-socket joint while the other coordinates follow the

DH convention. In this case, a rotational transformation with respect to axisy2′ by

angleγ is added to transform coordinate 2 to the intermediate coordinate system

of x2′ , y2′, andz2′ , which is attached to the third link of the parallelogram where
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axisz2 is connected. Table 4.1 represents the DH parameters and theintermediate

coordinate transformation for coordinate 2′.

Table 4.1: Denavit-Hartenberg parameters and the rotationfor the intermediate
transformation for coordinate 2.

i ai di αi θi

1 0 0 -90 θ1 (variable)

2′ lp 0 -90 θ2 (variable)

2 rotation with respect toy2′ by γ

3 0 0 -α θ3 (variable)

4 0 0 β θ4 (variable)

5 lh 0 0 θ5 (variable)

Kinematics of a parallelogram is different from that of a revolute joint. Ro-

tation of a parallelogram changes position but not orientation of the following link-

age. Transformation between frames 2 and 1 is as follows:

1P =





1 0 0
0 cα2 −sα2

0 sα2 cα2





2′P +





cθ2 −sθ2 0
sθ2 cθ2 0
0 0 1











lp
0
0







(4.6)

2′P =





cγ 0 sγ

0 1 0
−sγ 0 cγ





2P (4.7)

iP represents the position of point P with respect to coordinate i. Transformation

of the others axes is expressed as

i−1P =





cθi −sθi 0
sθi cθi 0
0 0 1













1 0 0
0 cαi −sαi

0 sαi cαi





iP +







ai
0
di









 (4.8)
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Therefore, the rotational and position transformation from coordinate 5 to 0 can be

expressed as

0
5R = Zθ1Xα1

Xα2
YγZθ3Xα3

Zθ4Xα4
Zθ5Xα5

(4.9)

0P =0
5 R(5P + [lh 0 0]T ) + Zθ1Xα1

Zθ2[lp 0 0]T (4.10)

0
5R is the total rotational matrix from coordinate 5 to 0.Zθi andXθi represent the

rotational matrix with respect tozi andxi by angleθi andαi, respectively. The

intermediate transformation,Yγ, is a rotation matrix with respect toy2′ by angleγ

for the transformation between frame 2 to 2′. 0P and5P are the position vectors

with respect to coordinate 0 and 5, respectively. Note that there is no rotational

transformation by angleθ2 in the total rotational matrix. The rotation by angleθ2

(rotation in the parallelogram) affects only the positional calculation in 4.10.

Inverse kinematics for the shoulder mechanism converts theorigin and the

angle of coordinate 5 into the angles of the joints.

0O5 −
0
5R[lh 0 0]T =0 O2,3,4 = Zθ1Xα1

Zθ2[lp 0 0]T (4.11)

Y T
γ XT

α2
XT

α1
ZT

θ1
0
5R = Zθ3Xα3

Zθ4Xα4
Zθ5Xα5

(4.12)

0O5 and0
5R are the position of the origin and the angle of coordinate 5, respectively

and are the known values for an inverse kinematics problem. The left side of the

4.11 indicates the position of the center of rotation of the ball-and-socket joint (the

origin of coordinate 2, 3, 4) with respect to the fixed frame. Since origin0O2,3,4 is

a known vector,θ1,2 on the right side of the 4.11 can be calculated from the three

equations of the vector components. With the value ofθ1 andθ2 known;θ3 ,θ4, and

θ5 can be calculated by 4.12.
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4.3 Inverse Dynamics
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Figure 4.3: A schematic of kinematic and force recursion in aserial chain

The unconventional arrangement of the parallelogram joints and adjustable-

length links in HARMONY make it difficult to utilize general dynamic libraries.

Instead, in this study we formulate the dynamic model using arecursive Newton-

Euler method with spatial dynamics representation, which provides efficient calcu-

lation suited for a real-time control environment [39]. Theinverse dynamic mod-

eling process consists of kinematic recursion and force recursion described in Fig-

ure 4.3. Kinematics is calculated through forward recursion from the base to the

end-effector of a robot, expressed as

0v̂i =
0v̂i−1 +

0ŝiθ̇i (4.13)

0âi =
0âi−1 +

0 ˙̂siθ̇i +
0ŝiθ̈i (4.14)

where0v̂i, 0âi, and0ŝi are6 × 1 spatial vectors of velocity, acceleration, and joint

axis, respectively. The left superscript of the parametersrefers to the reference

frame, and frame ‘0’ indicates an inertial reference frame.The right subscript is
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link and joint number in ascending order from the base link tothe end-effector

and the hat indicates spatial quantities. Both spatial velocity and acceleration at

the base link are zero in the case of base-grounded robots. Feed-forward torques

are calculated through backward recursion from the end-effector to the base and

expressed as

0f̂i =
0f̂ i+1 +

0Î i
0âi +

0v̂i×̂
0Î i

0v̂i (4.15)

τi =
0ŝi ·̂

0f̂i (4.16)

where0f̂i, 0Îi, and0τi are6× 1 spatial force,6× 6 spatial inertia matrix, and scalar

joint torque or force, respectively. Spatial force is a joint quantity, and an external

force at the end-effector is equivalent to the force at the last virtual joint at the end-

effector as shown in Figure 4.3.̂× and ·̂ express spatial cross and dot product and

details are found in [38].

4.3.1 Jacobian and Static Equilibrium

From 4.13, the spatial velocity of then–th link can be expressed in a matrix

form as

0v̂n =
[

0ŝ1 · · ·
0ŝn

]

{θ̇1 · · · θ̇n}
T (4.17)

0Ĵn =
[

0ŝ1 · · ·
0ŝn

]

(4.18)

and the concatenation of the spatial joint vectors is the Jacobian (0Ĵn) of the trans-

formation between the robot’s joint velocities and the spatial velocity of then–th

link. From the virtual work principle between joint space and task space, the static
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equilibrium between external spatial force0f̂ e applied at then–th link and the joint

torques from ’1’ to ’n’ is given as

τT = 0Ĵn
T
[

03 I3
I3 03

]

0f̂ e (4.19)

or

τi =
0ŝi ·̂

0f̂ e (4.20)

whereτ andτi are the joint torque vector and scalar, andi runs from ’1’ to ’n’.

To apply a desired force or impedance at the interaction portattached on the

n–th link in task space, the velocity of the interaction port needs to be calculated

from the spatial velocity of the link, which is given by 4.13,and the desired force

needs to be converted into the spatial form to be used in 4.20.When point~P is

attached at then–th link and point ~O is the origin of the local reference frame of

the link, the velocity of point~P is given by

0vP = 0vO − ~OP × 0ω (4.21)

0v̂n = [0ω
T 0vo

T
]
T

(4.22)

0vP is the velocity of point~P with respect to the global reference frame.0ω and

0vO are the first and the last three components of spatial velocity 0v̂n of then–th

link, and are the angular velocity of the link and the linear velocity of point ~O with

respect to the global reference frame, respectively.~OP is the vector from point~O

to point ~P with respect to the global reference frame.
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The transformation of an external force or moment into a spatial form is

given by

0fe =
[

0ŝF
0ŝM

]

[F M ]T (4.23)

, where

0ŝF =
[

0ωF
T (

0ρF × 0ωF

)T
]T

(4.24)

0ŝM =
[

~0T 0ωM
T
]T

(4.25)

F and0ŝF are the magnitude of the external force and the spatial vectors that de-

scribe the line of action and the point of application of the external force, respec-

tively. Similarly, M and 0ŝM are the magnitude of the external moment and the

spatial vectors that describe the line of action of the external moment.0ω and0ρ is

the direction vector of the line of action and the location vector of any point on the

line of action.

4.3.2 Spatial Joint Vector of the Parallelogram Joint

Spatial dynamics combines linear and rotational dynamics into one expres-

sion and simplifies overall modeling process and calculation. Spatial joint vector,

which is a key parameter in the modeling process, defines the direction and location

of a given axis, and well defined previously for a rotational and prismatic joint but

not for a parallelogram. Spatial joint vector is derived in the process of describing

spatial velocity of a rigid body, which is originated from screw theory [4]. Spa-

tial velocity of a rigid body is described by its angular velocity and linear velocity

of a point on the rigid body that is instantaneously coincident with the origin of a
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Figure 4.4: Spatial velocity of (a) a rotary joint and (b) prismatic joint.

reference frame, expressed as

0V̂B =

(

0ωB
0µ

B

)

(4.26)

where0v̂B is the spatial velocity of bodyB with respect to frame 0.0ωB

and0µB are the 3×1 vectors of angular velocity and linear velocity of the instant

point on bodyB, respectively.

For example, the spatial velocity of a rotary joint can be expressed as

0V̂B =

(

0ω
0ρ× 0ω

)

θ̇ (4.27)

where0ω and0ρ are the direction and location vectors of the rotational axis with

respect to frame 0 in Figure 4.4a, respectively.θ̇ is the angular velocity of the link

with respect to the rotational axis. The spatial velocity ofa prismatic joint can be

expressed as

0V̂B =

(

0
0ω

)

ṙ (4.28)
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where0 and0ω are the 3×1 zero vector and the direction vector of the linear axis

with respect to frame 0 in Figure 4.4b, respectively.ṙ is the linear velocity of the

link along the sliding axis. In the serial linkage with N links in Figure 4.5, the

spatial velocity of the N-th link is simply a summation of allspatial velocities of

the links as

x0

y0

z0

xN

yN

zN

θ1

θ2
θN

0ωN

0ρN

0ω2

0ρ2

Figure 4.5: An example of a serial chain

0V̂N =

(

0ω1
0ρ

1
× 0ω1

)

θ̇1 +

(

0ω2
0ρ

2
× 0ω2

)

θ̇2 + ...

(

0ωN
0ρ

N
× 0ωN

)

θ̇N (4.29)

where0V̂N is the spatial velocity of N-th link with respect to reference framex0y0z0.

0ωi,
0ρ

i
, and θ̇i are the direction and location vectors of the rotational axis with
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respect to the reference frame, and angular velocity with respect to the rotational

axis of link ‘i’, respectively.

Although a parallelogram is a multi-link mechanism, it actsas a joint with

single degree-of-freedom and the spatial velocity of its moving body can be derived.

Figure 4.6 shows decomposition of the spatial velocity of body B of the parallel-

ogram. The spatial velocity of bodyB can be expressed as a combination of the

spatial velocity of bodyB′ caused by the angular motion in axisa and the spatial

velocity that brings bodyB′ toB induced by the angular motion in axisb, where the

two angular motions are opposite in direction with an identical magnitude. There-

fore, the spatial velocity of the parallelogram can be expressed as

0v̂B =

(

0ωa
0ρa ×

0ωa

)

θ̇ +

(

0ωb
0ρb ×

0ωb

)

(−θ̇) (4.30)

=

(

0
(0ρa −

0ρb)×
0ω

)

θ̇

= 0ŝi θ̇

where0v̂B is the spatial velocity of bodyB with respect to frame 0 and0ωa, 0ρa,

0ωb, 0ρb are the direction and location vectors of axisa andb with respect to frame

0, respectively.̇θ and−θ̇ are the angular velocity in axisa andb, respectively. Since

axesa andb are aligned in the same direction (0ωa = 0ωb) the spatial velocity of

bodyB can be reduced in the form of0ŝiθ̇ in 4.30. Therefore,0ŝi becomes the

spatial joint vector of the parallelogram to be used in the modeling process.
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Figure 4.6: Spatial joint vector for the parallelogram joint.

4.3.3 Spatial Inertia Matrix of an Adjustable-Length Link

HARMONY consists of adjustable-length links for various body sizes. In

non-spatial dynamics, the inertia matrix of an adjustable link with a complex 3D

shape requires a calculation from a CAD software at every link length or compli-

cates dynamic modeling process despite of the parallel axistheorem. However, in

spatial dynamics, the total inertial matrix of an adjustable-length link can be eas-

ily updated at variable length without an extra calculation, utilizing the feature of

spatial inertia matrix that supports arithmetic summationin a common coordinate

frame.

0Îi =
0
i1cX̂

(

i1c Îi1

)

i1c
0 X̂ + 0

i2cX̂
(

i2c Îi2

)

i2c
0 X̂ (4.31)

The6×6 spatial inertia matrix of adjustable-length link ‘i’ (0Îi) with respect
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Figure 4.7: Coordinate systems and location vectors for calculating the spatial in-
ertia matrix of an adjustable-length link

to reference frame ‘0’ is a sum of the spatial inertia matrices of the two consisting

rigid bodies with respect to the same reference frame as shown in 4.31. i1c Îi1 and

i2c Îi2 are the two inertia matrices of the two consisting bodies with respect to each

local frame, ‘i1c’ and ‘i2c’, which are located at each center of mass and parallel to

the local frame of link ‘i’ as shown in Figure. Spatial inertia matrix is transformed

by spatial transformation and its inverse transformation.0
ijcX̂ is for transformation

from frame ‘ijc’ to ‘0’ and expressed as

0
ijcX̂ =

[

0
iR 03×3

(0rijc×) 0
iR

0
iR

]

(4.32)

where0
iR is the rotational matrix from local frame ‘i’ to reference frame ‘0’. 0rijc
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is the location vector of the center of mass of body ‘j’ of link‘i’ with respect to the

reference frame, and calculated as

0rijc =
0 ri +

0
iR

icij (4.33)

where0ri is the location vector of the origin of local frame ‘i’ with respect to the

reference frame.icij is the location vector of the center of mass of body ‘j’ of link

‘i’ with respect to local frame ‘i’ and contains the length value of the adjustable link.

Therefore, by changing the value of the link length inicij, the spatial inertia matrix

of adjustable-length link ‘i’ can accordingly be updated inthe dynamic model.
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Chapter 5

Robot Control Design and Stability Analysis

5.1 Design of Robot Control

5.1.1 Control for Baseline Behavior

Voluntary movements of patients in rehabilitation training are critical to ef-

fectively provoke neuromuscular recovery [99]. To facilitate patient’s voluntary

movement without imposing a physical load to the patients intherapeutic training,

rehabilitation robots need to be highly backdrivable and weightless to the patients

during patient-driving movements. Due to the torque controllability of the SEAs of

HARMONY, the joints in the robot are highly backdrivable when the zero-torque

value is commanded to the each actuator. However, a patient would still carry

all the physical load from the robot dynamics including its weight during patent-

driving free motion unless the robot dynamics is not properly compensated. Also,

a major portion of patients with neuromuscular insults lackthe strength to support

even their own body weight in performing a variety of voluntary motions. Partial or

full supports to their body weight encourage them to move their body voluntarily

with a wider range of motion as do in aquatic therapy [9].

For effective controls during rehabilitation intervention, our plan is to model

the robot dynamics and then compensate for the weight and frictional forces of the
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robot, thus making the robot appear weightless and minimally resistive to the vol-

untary movements of patients. An assistive or resistive force including gravity com-

pensation for the patient body weight, then, can be added to this baseline behavior

without major distortion from the robot dynamics.

Another component of the baseline behavior is the coupling torque for achiev-

ing scapulohumeral rhythm (SHR). In rehabilitation practice for patients with ab-

normal SHR, movements from the robot without a coordinationwith the shoulder

girdle can cause pain, impingement, or injuries on the shoulder. HARMONY’s

mechanism allows for powering of the SHR. We have developed an impedance

controller that calculated the coupling torque for achieving the SHR [66]. Having

the reference angles of the shoulder girdle with respect to the angles of the upper

arm, an impedance controller induces coordinated movements of the shoulder gir-

dle while the movements are compliant to external disturbances such as spasticity

to prevent injuries. Therapists might set the stiffness value in the impedance control

to be small at the beginning of therapy for safety and increase the value depending

on patient’s shoulder condition.

Figure 5.1 shows the control block diagram to achieve baseline behavior of

HARMONY and 5.1 gives the controller terms.

M(θ)θ̈ + C(θ, θ̇)θ̇ + F θ̇ +G(θ) = τ + τI (5.1)

τ = τcomp + τSHR + τtask

τcomp = Ĝ(θ) + f θ̇

τSHR = Ksh(θref − θ)−Dshθ̇
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Figure 5.1: Block diagram of the controller for baseline behavior of HARMONY.
Nonlinear functionFSHR() calculates the reference position (θsh ref ) of the shoulder
girdle mechanism from the angle of the upper arm (θupper arm). FSHR() can be
formulated from a curve fitting of data collected in the exoskeleton worn by healthy
subjects.

whereM(θ), C(θ, θ̇), F , andG(θ) are the inertia matrix, the Coriolis and centrifu-

gal force matrix, joint friction matrix, and the gravitational force vector, respec-

tively. We assume the joint friction is linear viscous damping and can be expressed

as a positive definite diagonal matrix.τ andτI are the command torque and interac-

tion torque between the robot and human, respectively. The interaction torque,τI ,

is the sum of the user-robot interaction forces (Fi) transformed by their correspond-

ing Jacobians (Ji) at the interaction ports (τI =
∑

Ji
TFi). τcomp is a compensatory

torque for gravity and joint friction, and̂G(θ) is the estimated gravitational force

vector. f is a friction compensation matrix of which elements are positive and

smaller than the corresponding elements in the joint friction matrix. τSHR is the

coupling torque that induces a normal scapulohumeral rhythm. Ksh andDsh are
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the spring and damping coefficient matrices, where only the first and second diag-

onal components for the shoulder girdle joints are non-zero. The coupling torque

can be set to zero when a patient does not need the SHR assistance. Assistive or

resistive forces for therapeutic training are added to tasktorqueτtask, which is zero

in the baseline behavior.

At the baseline behavior, a user can perform voluntary movements with min-

imal muscle effort that is just enough to overcome the residual forces including the

inertial forces and remaining frictional forces. In robotic rehabilitation exercises,

movements are usually designed to be slow, where the effect from all dynamic terms

is insignificant compared to that of gravity [56]. The inertia forces of HARMONY

are further diminished because of the series elastic actuators that decouple the ef-

fect of the reflected inertia of the motor rotor [144], which usually produces a major

portion of the inertia forces in a robot rigidly connected tohigh-ratio geared motors.

Compensating more for the residual forces may further enhance the dy-

namic transparency in the baseline control, but may also increase the possibility of

violating stability criteria. Remaining frictional forces after the compensation help

in ensuring the stability of the robot. Inertia compensation can make the robot into a

non-passive system that can jeopardize the coupled stability of the human-robot sys-

tem when, for example, a user introduces a high stiffness by co-contractions [67].

The inertia compensation during user-driven free movements requires for estima-

tion of acceleration introducing additional dynamics thatcan adversely affect the

stability.
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5.1.2 Control of Coordinated Motion

During scapulohumeral rhythmic motion, the kinematic relationship be-

tween the shoulder girdle and the humerus is nonlinear, and varies based on dy-

namic conditions such as a load on the hand. Therefore, the shoulder girdle mech-

anism needs to follow the humeral motion with a variable ratio, while supplying

sufficient force to support the shoulder girdle for the rhythmic motion. The refer-

ence position of the shoulder girdle mechanism is determined by humeral angle.

However, very low impedance may result in insufficient supportive force for the

rhythmic motion, allowing excessive variance in the coupled motion. In contrast,

very high impedance may generate excessive reaction force in case of kinematical

mismatch.

The key idea of the control strategy is to introduce a coupling torque to

the shoulder mechanism so that the angular position of the humerus induces corre-

sponding elevation/depression or protraction/retraction of the shoulder girdle mech-

anism. A simple way of constraining might be to control position of the shoulder

girdle mechanism with respect to the humeral angle. However, with this scheme

even a small amount of kinematic variation in the coordinated motion would cause

an excessive residual force leading to undesirable stresses on the musculoskeletal

system around the shoulder with the risk of injury. On the other hand, low coupling

torque would not be sufficient to induce the coordinated motion because of force

requirement to overcome robot dynamics, including gravityforce.

Coupling torqueτcouple for the rhythmic motion is generated based on elastic

and damping force with respect to the reference trajectory (θsh ref ). The damping
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coefficient (D) for a critical or slightly over damped behavior in the shoulder girdle

mechanism would be preferable for comfortableness withoutvibratory behaviors.

The stiffness (K) of the elastic force is opened to regulation within a limited range

depending on patient’s conditions or clinical progress. While the maximum stiff-

ness value in the controller level is limited to avoid an excessive induced force to a

patient, therapists may set a low value at the beginning and increase it, monitoring

patient’s pain during trial movements of the upper arm. FunctionFSHR defines the

angular relationship of the scapulohumeral rhythm betweenthe angular position of

the robot’s upper arm (θupper arm) and the reference position of the shoulder girdle

mechanism (θsh ref ), we adopt the previous experimental data and modify it for the

exoskeleton to match with a normal scapulohumeral rhythm ofa healthy subject.

5.1.2.1 Angular Position Corresponding to Scapulohumeral Rhythm

To calculate the reference angle of the shoulder girdle mechanism, this re-

search adopts the angular relation between the humerus and the shoulder girdle

during humeral elevation from the previous study [7] with the modification of the

angular representation for our robot and update the coefficients for better comfort-

ableness. The angle of the elevation and depression of the shoulder girdle with

respect to the elevation of the humerus is

βc = 0.0036β2
h + 0.085βh (5.2)

where,βh andβc are the angle of the humerothoracic elevation and the shoulder

girdle elevation in degrees, respectively. Fig. 5.2 shows the conversion between the

angular representation of the scapulohumeral rhythm, and the rotational matrix and
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Figure 5.2: The angular conversion between the humerothoracic elevation and the
position of the robot: (a) humerothoracic elevation, and (b) the position of the shoul-
der girdle with respect to the reference frame.

the angular representation of the robot. The conversion is expressed as

βh = cos−1(0bx5) (5.3)

γh = −sign(0cx5)cos
−1





0ax5
√

1− (0bx5)
2



 (5.4)

0◦ ≤ βh ≤ 170◦, −30◦ ≤ γh ≤ 150◦ where,γh is the angle of the humerothoracic

elevation plane.[0ax5 0bx5
0cx5]

T is the first column of the rotational matrix from

frame 5 to 0 (05R). Once the humeral elevation is identified from the positionof the

robot, the reference angle of the shoulder girdle mechanismis calculated from the

equation 5.2. From the fact that rotation of x-axis (which isinitially coincident to
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Figure 5.3: Scapulohumeral rhythm of the shoulder during abduction. The circu-
lar dots indicate the center of rotation of the glenohumeraljoint before and after
abduction

X0) along the two passes are the same, that isY (θ2)Z(θ1)x = Z(βc)Y (γc)x.

θ1 = βc (5.5)

θ2 = sin−1

(

sin(γc)

cos(θ1)

)

(5.6)

where,γc is and the angle of protraction and retraction of the shoulder girdle. θ1

and θ2 are the reference angles of the shoulder girdle mechanism. The humeral

position with respect to the thorax (humerothoracic elevation) is usually defined by

as shown in Fig. 5.2a.

5.1.3 The Behavior of the Shoulder Mechanism

To evaluate the controller, we first confirmed that the feed-forward torque

with zero-torque command compensated for the majority of the robot’s weight

against gravity in every configuration. This allows the userto feel weightless and
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Figure 5.4: Coordinated motion and coupling torque on the shoulder girdle mecha-
nism during shoulder abduction. A user moves the upper arm ofthe robot without
applying force on any another part. The dotted line is the reference angle of the
shoulder elevation and the solid line is the actual angle of the shoulder elevation.
The heavy line is the coupling torque that induces the coordinate motion

very low resistance to drag the exoskeleton. Then, the coupling torque was added

to constrain the shoulder mechanism to follow the upper-armlink with the given

angular ratio. Fig. 5.3 shows the center of rotation of the glenohumeral joint shift-

ing along with the humerus during shoulder abduction. Sincethe user has a normal

scapulohumeral rhythm, the exoskeleton imposed no constraint to the user allowing

the natural coordinated movements around the shoulder. Theuser reported com-

fortableness in interacting with the exoskeleton.

We measured the angular trajectory and coupling torque of the shoulder gir-
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Figure 5.5: Coordinated motion and coupling torque during shoulder abduction
with external force applied on the shoulder girdle mechanism. A user pushed down
the shoulder girdle mechansim during elevating the upper arm link of the robot.
Once the actual angle (the blue solid line) of the shoulder girdle mechanism is off
from its reference trajectory (the dotted line), the coupling torque (the black heavy
line) increases. The strength of the coupling torque with respect to the offset is open
to be regulated based on patient’s physical condition on theshoulder

dle mechanism while the operator elevated the upper-arm link externally. Only the

coordinated motion during shoulder abduction is considered here. The coupling

torque and the angular trajectory of the shoulder girdle mechanism are shown in

Fig. 5.4. The shoulder mechanism tracks the reference trajectory closely with re-

spect to the angle of the upper-arm link with a nearly zero coupling torque through-

out the elevation. On the other hand, when the operator applied a force to the

shoulder girdle mechanism with one hand while elevating theupper arm link with
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another hand (replicating a situation that user’s shoulderhas an abnormal scapulo-

humeral rhythm with spasticity or abnormal muscle tone in the shoulder girdle), the

shoulder girdle mechanism exerts a gentle force to safely recover the normal coor-

dinated angle as shown in Fig. 5.5. The amount of the couplingtorque with respect

to the angular offset of the shoulder girdle mechansim from the reference angle

can be adjusted by changing the coefficients in the impedancecontroller. During

therapy, a therapist might set a low amount of coupling torque at the beginning and

gradually increase the amount depending on patients’ conditions.

5.2 Stability Analysis
5.2.1 Coupled Stability at the Baseline Control

The coupled stability is fundamental to guarantee the safety in human-robot

interaction systems. Although two subsystems are stable independently, a system

consisting of the two subsystems that are physically coupled at an interacting port

can be unstable. A coupled system is stable if all subsystemsare passive [134].

Therefore, the coupled stability of a human-robot system isguaranteed if the inter-

acting port of the robot behaves passively since the apparent dynamic behavior of

the human limb is equivalent to that of a passive system [54, 24]. To examine pas-

sivity at the baseline control, an energy storage function is formulated as the sum

of the kinematic energy and the shaped potential energy as follows:

V =
1

2
θ̇TMθ̇ +

1

2
θ̃TKshθ̃ (5.7)

whereV , M , andKsh are the energy storage function, the inertia matrix of the

robot, and the stiffness matrix of the impedance control in the SHR assistance, re-
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spectively.θ̇ is joint velocity, and̃θ is the deviation of joint angles from its reference

angles for the SHR assistance control, where only the first and second joint angles

are used in the calculation. Having the control law as 5.1 with the assumption of

G(θ) ≃ Ĝ(θ), the time derivative of the storage function at the baselinebehavior is

expressed as follows;

V̇ = ẋT
I FI − θ̇T ((F − f) +Dsh) θ̇ (5.8)

whereFI andẋI are the vector of the forces and velocities at the interaction ports.

Power between the human(ẋT
I FI) and the robot flows through the two interaction

ports at each arm, and the combination of two subsystems withthe dual ports for

passivity formalism appears in the next section. Equation 5.8 shows a passive map-

ping from human forceFI to velocity ẋI at the interaction ports because(F − f)

andDsh are positive definite matrices.

Once the robot is shown to be passive, the stability of the robot alone can be

easily examined by having 5.7 as a Lyapunov candidate function and taking null of

the human input. The time derivative of the function (V̇ = −θ̇T ((F − f) +Dsh) θ̇)

is negative semi-definite, and the invariant set theorem with the radially unbounded

Lyapunov function shows the robot with the baseline controlto be globally asymp-

totically stable with the invariant set whereθ̇ = 0 with all θ [134].

In practice, although the robot is controlled to be passive,the actual behav-

ior may not be strictly passive, rather ‘nearly’ passive dueto non-ideal factors such

as actuator dynamics, model uncertainty, or time-delayed sensing and controlling.

Such a nearly passive system can be destabilized when coupled with a rigid environ-
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Figure 5.6: Input-output connectivity of two multi-body articulated subsystems in-
teracting with each other at two ports. For example, subsystems ‘A’ and ‘B’ are the
arms of the human and robot, and ports ‘p1’ and ‘p2’ are the physical connections
in the cuffs at the upper arm and the wrist, respectively.

ment which is usually referred to the worst case [22]. However, the soft actuators

on HARMONY increase the coupled stability margin because the combined stiff-

ness in contact with a rigid environment is bounded by the compliance in the series

elastic actuator [64, 125].

5.2.2 Proof of Passivity

5.2.2.1 Passivity Formalism with a Dual-Port Interaction

Since each robot arm is attached to the human arm through two interacting

ports at the upper arm and the wrist, passivity formalism forsuch dual port system

is described here based on energy conservation [134]. We assume that the robot and

human have a rigid connection. Although the connection at the interaction port, in

reality, is compliant due to the flesh and cuffs, the assumption of rigid connection

67



is valid for the proof of passivity of the human-robot coupled system [54] because

the compliance in the interacting port can be safely assumedpassive so omitting it

makes the coupled stability analysis to be more conservative. Figure 5.6 shows the

input-output connectivity of two subsystems interacting with each other at two ports

in feedback combination. Power balances of subsystemsA andB are expressed as,

V̇A = θ̇TAτA − gA (5.9)

V̇B = θ̇TBτB − gB (5.10)

whereV̇A and V̇B are the time derivatives of stored energy of subsystemsA and

B, where the storage functions are positive.θ̇ andτ with subscriptions are the joint

velocity and torque vectors of the corresponding subsystems, and the multiplication

of two vectors indicates external power input to each subsystem.gA andgB are pos-

itive scalar functions indicating internal power generation. The joint torque vectors

are the sum of two interaction forces transformed by corresponding Jacobians.

τA = AJ
T

p1
AF p1 +

AJ
T

p2
AF p2 (5.11)

τB = BJ
T

p1
BF p1 +

BJ
T

p2
BF p2 (5.12)

SJpi is the Jacobian of subsystem‘S ′ at port ‘pi′. SF pi is the force applied to

subsystem‘S ′ from interaction port‘pi′, having action-reaction pairs as,

AF p1 = −BF p1 (5.13)

AF p2 = −BF p2 (5.14)
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The velocities of the ports are commonly shared by two subsystems, converting to

joint velocities of two subsystems separately as,

ẋp1 = AJp1θ̇A = BJp1θ̇B (5.15)

ẋp2 = AJp2θ̇A = BJp2θ̇B (5.16)

Using 5.11-5.16, the sum of power balances of the two subsystems that the coupled

system is shown to be dissipative as follows,

V̇A + V̇B = θ̇TAτA + θ̇TBτB − (gA + gB)

=
(

AJ
+

p1ẋp1

)T
AJ

T

p1
AF p1 +

(

AJ
+

p2ẋp2

)T
AJ

T

p2
AF p2

+
(

BJ
+

p1ẋp1

)T
BJ

T

p1
BF p1 +

(

BJ
+

p2ẋp2

)T
BJ

T

p2
BF p2

− (gA + gB)

= ẋT
p1

AF p1 + ẋT
p2

AF p2 + ẋT
p1

BF p1 + ẋT
p2

BF p2

− (gA + gB)

= − (gA + gB) (5.17)

whereJ+ indicates the pseudoinverse ((JTJ)−1JT ) of each Jacobian. Having only

the dissipative terms, the feedback combination of the two subsystems interacting

with each other at the two ports holds for passivity formalism.

5.2.2.2 Passivity of the Baseline Behavior

To show that the robot with the baseline control is passive with respect to

the power input by a user through the interaction ports, the time derivative of the
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energy storage function in Equation (5.7) of the robot is derived.

V̇ = θ̇TMθ̈ + 1
2
θ̇TṀ θ̇ + θ̇TKshθ (5.18)

Applying the robot dynamics equation and control law in Equation (5.1) to Equation

(5.18) yields

V̇ = θ̇T
(

τ + τI − Cθ̇ − F θ̇ −G(θ)
)

+
1

2
θ̇TṀ θ̇ + θ̇TKshθ

= θ̇T τI − θ̇T ((F − f) +Dsh) θ̇ +
1

2
θ̇T (Ṁ − 2C)θ̇ (5.19)

SinceṀ − 2C is skew-symmetric [109], we have

V̇ = θ̇T τI − θ̇T ((F − f) +Dsh) θ̇ (5.20)

Applying the Jacobians at the ports yields

V̇ = ẋT
I FI − θ̇T ((F − f) +Dsh) θ̇

, where

ẋI =
[

ẋT
p1 ẋ

T
p2

]

FI =

[

Fp1

Fp2

]

ẋpi andFpi represent the velocity and force at interacting port‘pi′.

70



Chapter 6

Experiments with Robot

6.1 Evaluation of HARMONY

We present experimental procedure and results from two setsof experiments

with HARMONY: i) first to test and quantify the range of motionof all the DOFs

and test the kinematic compatibility around the shoulder, and ii) second to test dy-

namic performances of the robot. During both experiments, the baseline control

was implemented.

6.1.1 Range of Motion

In order to quantify the range of motion, a user was asked to move the robot

throughout its full possible range. The robot was connectedto the user through the

handle and the cuff at the upper arm. The cuff was securely connected to the up-

per arm at two points so that the robot followed the rotation and translation of the

upper arm including the shoulder girdle motion. Figure 6.1 shows several poses at

the limits of the range of motion. Figure 6.2 shows the range of three-dimensional

workspace of the left arm. The outer cloud of dots indicates the locations of the

center of the wrist measured by robot’s position sensors during user-driven free

movements. The inner small cloud of dots around the shouldershows the loca-

tions of the center of rotation of the ball-and-socket jointtranslated by shoulder
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protraction-retraction and elevation-depression duringthe free movements. The

workspace covers almost the full range of motion necessary for activities of daily

living, promising a sufficient range of motion in therapeutic training.

Table 6.1 compares the range of motion of our robot with the mean values

of the maximum range of motions of activities of daily living(ADLs) reported

in [94]. The range of motion of the abduction is lower than that of ADLs due to

Table 6.1: Comparison between the measured range of motions(ROMs) of the robot
and those of activities of daily living (ADLs) reported in [94]. The value in the
parentheses in abduction indicates the ROM of abduction with external rotation. In
the case of external and internal rotation of the humerus, the maximum ROMs differ
in accordance to arm configuration. The ROM of elbow flexion also moderately
varies depending on the length of the forearm link. Values are in degrees.

Motion ROM of Robot ROM of ADLs

Abduction 118 (170) 131

Adduction 60 54.4

Forward flexion 160 130.5

Extension 45 50.5

External rotation 79 (62) 75.5

Internal rotation 80 (48) 61.7

Elbow flexion 150 (145) 148.1

Pro/supination 172 166.5

the interference betweenJ5 and the head; however, the abduction with external

rotation offers a larger range of motion as does the human shoulder. The novel

forearm mechanism also provides a range of motion sufficientfor pronation and

supination. The two joints of the shoulder girdle mechanismhave the range of
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motion of 50◦ degrees in elevation,5◦ in depression,20◦ in protraction, and45◦

in retraction. The range of motion of each joint is restricted by a mechanical hard

stop for safety. During the bimanual operation, the range ofmotion of abduction

in the absence of external rotation slightly decreases due to the interference of the

shoulder mechanism itself (Figure 6.1c) but other shouldermotions maintain their

wide range of motion unless both arms interfere each other.

The shoulder girdle mechanism was tested in various movements of the up-

per arm, including an independent shoulder girdle motion and a coordinated rhyth-

mic motion. Figure 6.4 and 6.5 show the translated location of the ball socket

joint during motions of the shoulder girdle mechanism. The mechanism follows

protraction and retraction during forward flexion such as a reaching motion and a

drive motion of rowing exercises (Figure 6.4), and follows elevation and depression

(Figure 6.5).

6.1.2 Kinematic Compatibility Test

To evaluate the kinematic compatibility of the shoulder mechanism of HAR-

MONY, parasitic residual force and torque at the upper-arm interaction port were

measured during humerothoracic elevation. The upper-arm cuff is connected to the

robot’s bicep via a multi-axis force/torque sensor (ATI Industrial Automation, Mini

45), and the cuff is securely connected to the upper part and lower part of the human

bicep with two stiff rings consisting of inelastic straps and rigid semicircular shells

covered by leathers. The stiff cuff is less comfortable but provides a strict envi-

ronment for evaluating the kinematic compatibility. The scapulohumeral assistance
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was turned off to measure the parasitic forces only from the kinematic discrepancy.

Force and torque were measured at several discrete positions during a user-driven

humerothoracic elevation along the plane of elevation around at70◦ from the frontal

plane while the torso was fixed. Both shoulder protraction and elevation occur dur-

ing the elevation along the plane of elevation that deviatesfrom the frontal plane.

The experiment was performed for two cases: i) the shoulder girdle mechanism was

free to move as designed, and ii) the shoulder girdle mechanism was locked, and

for each case five trials were conducted.

Figure 6.6 shows the measured forces and torques in the two cases. The

forces and torques with the full mobility in the shoulder mechanism remain very

low during the elevation. The low values confirm the kinematic compatibility of

the shoulder mechanism. In contrast, in the case of the fixed girdle mechanism the

forces keep increasing and it was impossible to raise the armabove80◦.

The low values of residual effects during shoulder elevation indicate a high

kinematic compatibility. The residual forces are partly originated from imperfect

backdriveability and errors in gravity compensation.

6.1.3 Joint-Space Torque Responses

A preliminary torque controller adopts PD control based on the feedback

from the deflection of the spring. The torque output at several low frequencies are

shown in Figure 6.7 in the time domain. A chirp signal was fed into the torque com-

mand, and the frequency response was estimated from the output torque measured

by the deflection of the spring. Figure 6.8 shows the Bode plotof the torque output,
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where the solid line is the torque measured by the spring and the dotted line is the

actual torque estimated from Equation (4.5). The difference between the measured

torque and the actual torque is unnoticeable at a low frequency so that the torque

measured by the spring can be considered as the torque output. The magnitude of

the output torque is almost equal to that of the command up to around 10 rad/s, and

resonance occurs around 45 rad/s (7 Hz).

The SEA exhibits minimum impedance behaviors when the desired torque

is set to zero in the torque controller. The minimum impedance indicates the back-

driveability of the robot when a user moves the robot. To measure the minimum

impedance at zero-torque command, a user was asked to rotatethe output shaft

of the SEA with various velocity. The input motion and the torque output of the

SEA were measured while the velocity and acceleration of theposition input were

calculated in the post process, using a high-order midpointderivative after filtering.

The results show that the resistive torque during the backdriving movements

remains less than 0.4 N·m and even smaller when a friction compensation is applied.

Figure 6.9 shows the torque output according to the motion input from the user in

the time domain. To further reduce the resistive torque, while maintaining stability,

a part of viscous frictional torque was positively fed back to the command input

of the actuator. Figure 6.10 shows the backdriveability improved by the friction

compensation. The joint velocity was conditioned using a first order filter to reduce

the noise from the derivative of the quantized position data.
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6.1.4 Task-Space Force and Impedance Responses

To evaluate the performance of force and impedance control of the overall

system, the robot was commanded to produce task-space forces and impedances

at the interaction port located at the middle of the wrist. The last joint for the

pronation-supination of the wrist was locked leaving the arm to possess six degrees

of freedom. A multi-axis force/torque load cell (ATI Inc., Nano 25) attached to the

conjunction of the end-effector and the forearm link measured the forces while the

joint position sensors with the kinematic model measured the position and velocity

of the interaction port. Figure 6.11 shows the robot configuration and the task-space

coordinate system used in the experiments.

To measure force responses, reference forces were given to the command

input while the end-effector was fixed to the ground. Figure 6.12 shows step force

responses measured by the load cell at the wrist. The force outputs were filtered by

a moving average with 10 Hz cutoff frequency. The rise time ofthe step response

in each direction was around 22-24 ms for the rise from 0 to 100%. The maximum

steady-state errors were around 10% at the commanded input of 5 N and 13% at the

commanded input of 10 N. A force gauge (OMEGA, DFG55) was usedto measure

the steady state errors and to offset the forces measured by the load cell because

the measurement by the load cell exhibited drifts and creeps. Figure 6.13 shows

sinusoidal force responses. The time delay of the sinusoidal response was around

0.1 seconds leading to 18 degrees of phase shift at 0.5 Hz input. The maximum

amplitude error was around 13% for the commanded amplitude of 8 N.

To evaluate impedance responses, reference forces corresponding to the po-
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sition and velocity of the interaction port were given to thecommand input, and the

interaction port was pulled along straight trajectories inthe Z-direction.

The interaction port exhibits a minimum impedance behavior(see Extension

1) as an indication of backdriveability when the desired task-space force at the

port is set to zero. Figure 6.14 shows an example of the backdriveability of the

interaction port in the task space when a user slowly pulls the port back and forth.

The resistive force was around 1-2 N with the peak value of around 2.5 N at the

moment when the direction of the movement was reversed.

A spring-like behavior at the interaction port was implemented where the

resistive force was proportional to the travel distance of the port from a reference

point. The relationship between the force and the position with respect to the refer-

ence point exhibits close to linearity, and the effective stiffness values are estimated

through a linear regression and exhibit around 11% error or less as shown (Fig-

ure 6.15).

A damping-like behavior was implemented where the resistive force at the

interaction port was proportional to the velocity of the port. The commanded damp-

ing coefficient was set to 100 N·s/m and a user pulled the interaction port back and

forth in the Z-direction. The result in Figure 6.16 shows that the forces are corre-

lated to the velocity with the coefficient of 0.96 and the effective damping coeffi-

cient exhibits around 5% error.

A trajectory control based on impedance was implemented forthe interac-

tion port to follow a linear trajectory back and forth repeatedly. The result shows
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that the interaction port follows the trajectory with a small deviation while allowing

compliant behaviors to external disturbances as shown in Figure 6.17.

Overall, the commanded task-space force and impedance behaviors were

well reproduced across the six DOFs without a major distortion, promising vari-

ous desired dynamic behaviors for rehabilitation exercises to be designed. Despite

of some nonlinearities in the impedance responses, the usercould clearly feel the

intended spring-like and damping-like behaviors. The errors in the task-space re-

sponses mainly originate from the gravity compensation with uncertainty in the

model. In the damping-like behaviors, other factors such asinertial forces of the

robot, actuator dynamics, remaining joint frictions also contribute to the errors.

The high-frequency noises in the data of the task-space experiment are mainly from

the loadcell-type force sensor electromagnetically excited by the motors on but not

from the robot’s behaviors, and users feel smooth reactive forces during the inter-

action with the robot.
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(a) (b)

(c)

Figure 6.1: Examples of the range of motion of the exoskeleton: (a) maximum
abduction without external rotation. The range becomes larger with an external
rotation, (b) maximum forward flexion, (c) maximum bilateral abduction without
external rotation where the range of motion is smaller than that of unilateral abduc-
tion because of the interference caused by the shoulder girdle mechanism. In all
cases, humerothoracic elevation accompanies shoulder elevation.
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(a)

(b) (c)

Figure 6.2: 3D workspace of the end-effector (center of the wrist) measured by
the robot’s position sensors during free motion by a user wearing the robot in the
baseline mode: (a) front view, (b) top view, and (c) side view. The inner small
point-cloud indicates the range of motion of glenohumeral joint translation.
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Figure 6.3: Example of a bi-manual operation
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Figure 6.4: Coordinated protraction and retraction of the shoulder mechanism dur-
ing a typical forward and backward arm motion
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Figure 6.5: Independent depression and elevation of the shoulder showing that the
mechanism follows the motion seamlessly.
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humerothoracic elevation.
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Figure 6.12: Task-space step force responses with the rise from 5 to 10 N. (a), (b),
and (c) are the step responses at the interaction port of the wrist in the X, Y, and
Z-direction in the task space, respectively.
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Figure 6.13: Task-space sinusoidal force responses. The frequency of the reference
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Chapter 7

Human Subject Experiment

7.1 Goal

Exoskeleton type rehabilitation robots intend to control each joint of the hu-

man body to correctly assist coordinated movements, expecting better therapeutic

outcomes [90, 98]. However, so far, there is limited discussion on how to provide

active assistance to the coordinated movements involving scapulohumeral rhythm

around the shoulder in rehabilitation robotics studies. Wehave developed an upper-

body exoskeleton that can actively support the full mobility of the shoulder and

control algorithm that assists the coordinated motion around the shoulder. To con-

firm the benefits of the assistance, a human subject study has been conducted.

This chapter presents a study whose goal is to evaluate how the shoulder

mechanism with its control strategy affects the coordinated movements in the hu-

man shoulder. We compare the biomechanics around the shoulder before and after

the robot assistance in the presence of an abnormality. The result of this study

will demonstrate the potential of the robot in correcting abnormal scapulohumeral

rhythm (SHR).
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7.2 Method

In this study, we simulate abnormalities in the healthy shoulder inspired by

common pathology in stroke patients, namely, flaccidity andspasticity. The simu-

lated abnormalities are not necessarily consistent with the stereotypical patterns of

the pathology but are rather used to introduce an alterationin the biomechanics of

the shoulder analogous to the abnormal patterns. The biomechanics of the shoulder

before and after the robot assistance in terms of kinematicsand muscle activities

are compared to each other to verify whether the robot corrects the simulated ab-

normalities as intended.

7.2.1 Simulated Abnormality of the Shoulder

7.2.1.1 Overview of Common Pathologies of the Shoulder in Strokes

The majority of post-stoke patients with hemiplegia experience flaccid paral-

ysis on the shoulder complex at early stages and spasticity at later stages, resulting

in limited mobility, shoulder pain, and an abnormal SHR [101, 59, 21].

Flaccidity is characterized by the lack of voluntary muscleactivation and

therefore, with the loss of voluntary mobility at the affected side, the shoulder also

loses its inherent coordinated motion and frequently exhibits subluxation by grav-

ity pull. Passive range exercises in the early stage are known to prevent immobility

and soft tissue contracture [82]. However, careless handling with disregard for co-

ordinated shoulder movements such as in an overhead pulley exercise may cause

impingement, rotator cuff rupture, or nerve injuries [103,61]. During the humeral

elevation, the upward rotation and posterior tilt of the scapula and the external rota-
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tion of the humerus prevents the impingement of the supraspinatus or the long head

biceps brachii between the undersurface of the acromion andthe greater tubercle of

the humeral head.

After a short period of flaccidity, spasticity usually develops with shoulder

pain and an abnormal muscle tone around the shoulder. The muscle tone inter-

feres with the coordinated motion around the shoulder including SHR and further

increases a risk of impingement or nerve injuries if improper manipulation is per-

formed during rehabilitation exercises. The muscle tone around the shoulder fre-

quently induces retracted-depressed shoulder girdle and humeral adduction-internal

rotation [138, 108].

7.2.1.2 An Abnormality Inspired by Flaccidity in the Shoulder: Passive Ele-
vation

It would be difficult to suppress or change the kinematics of the normal SHR

in an intact shoulder during a user-active motion, where a human subject voluntar-

ily moves, because the highly activated muscles around the shoulder that overcome

gravity forces from the arm and shoulder weight are difficultto constrain. Contrar-

ily, if the arm is passively manipulated while the subject fully relaxes, the muscle

groups around the shoulder would minimally engage in the coordinated motion so

that an external force can alter the response of the shouldergirdle during humeral

movements. The relaxed arm and shoulder may not capture the entire characteris-

tics of paralysis but may provide an analogous environment for the robot assistance

to change the posture of the shoulder girdle because the internal forces generated
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Figure 7.1: Passive elevation by a overhead pulley with robot assistance

by muscle activation stay low, and only a small resistance topassive stretches of

muscles and tendons remains. The velocity of passive movements needs to be slow

enough not to generate any stretch reflexes.

While passive ROM exercises are recognized as an essential intervention to

prevent immobility or soft tissue and muscle contracture, careless handling must be

avoided as it may cause shoulder pain or injuries. Overhead pulley exercises are

known to be undesirable since they can cause shoulder pain, impingement, or even

rotator cuff injuries due to ignorance of the support to shoulder coordination [103].

We assume that the totally relaxed shoulder in a healthy subject during over-

head pulley exercises is analogous to the flaccid shoulder ina way that no signif-

icant muscle activity engages in the manipulation of the coordination around the

shoulder. We investigate the ability of the robot to change the coordination of a
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flaccid shoulder by comparing shoulder girdle movements during an overhead ex-

ercise with conventional overhead pulley and during the overhead pulley exercise

with the SHR assistance from HARMONY.

The SHR assistant is tuned to increase the SHR ratio comparedto the one

during the passive elevation by the overhead pulley. We confirmed that the in-

creased elevation of the shoulder girdle during the humeralelevation did not impose

any pain or constraint to the healthy shoulder. We may expectthat the increased

shoulder girdle elevation would relieve the pressure between the undersurface of

the acromion process and the humeral head. However, this study focuses on testing

whether SHR is altered by the robot assistance during the overhead pulley exercise.

We postulate a hypothesis as follows;

Hypothesis (H1): The elevation of the GH joint with the assistance of HAR-

MONY is higher than that with the overhead exercise pulley (P<0.05).

In the experiment, we apply two different SHR ratios to examine whether

the degree of the SHR changes by the robot can be even regulated.

Figure 7.1 shows the experimental setup for the overhead pulley exercise.

While the subject is asked to fully relax, an operator pulls up the subject’s hand

using an overhead pulley, where the handle is securely connected to the subject’s

hand by a gripping glove (Active Hands, Ltd.) so that the handand forearm can

also be totally relaxed.
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7.2.1.3 An Abnormality Inspired by Spasticity in the Shoulder: Active Ele-
vation

Muscle tone during spasticity phases is partly responsiblefor the abnor-

mal coordination around the shoulder. The force by the muscle tone constrains

the shoulder girdle in several stereotypical patterns including the one that pulls the

shoulder girdle to be retracted and depressed. If a constraining force that is similar

to the one from the muscle tone acts on a healthy shoulder, thecoordination of the

shoulder may exhibit an abnormality in either kinematics ormuscle activities that

resembles a part of the abnormality in the spastic shoulders. Once an abnormality

is introduced, by measuring whether the robot recovers the altered biomechanics

of the shoulder, we may assess the potential of the robot to assist the rehabilita-

tion for the shoulder with muscle tone. However, any excessive constraints on the

activated shoulder would impose undesirable stresses and must be avoided in the

experiment for the safety of human subjects. The constraints have to allow the in-

herent coordinated movements while applying the least necessary force to change

the biomechanics of the shoulder coordination. In this experiment, differences in

kinematics and muscle activation are investigated during active elevation with and

without the constraints, and the robot assistance in the presence of the constraints.

Also, we do not include the effect of spasticity, which is velocity-dependent resis-

tance to passive stretch.

We adopted kinesiology tapes such as Kinesio TapingR© and applied it to

a healthy subject to constrain the shoulder against protraction and elevation. The

direction, tension, and number of layers of the taping were decided based on trial
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and error to effectively constrain the shoulder girdle to beretracted and depressed

at rest. Two groups of tapes were applied in vertical and horizontal manner. The

subjects were asked to maintain the posture of retracted anddepressed shoulder

during taping. The origin of the vertical tapes starts from the frontal surface of the

shoulder and covers the acromion and lateral end of the clavicle across the acromio-

clavicular joint. While the tension of the tape is kept at almost its maximum, the

insertion points of the vertical tapes ran from the middle ofthoracic spine to the

lumbar. The vertically applied tapes provide pull-down forces that induce shoul-

der depression and some of shoulder retraction. The horizontally applied tapes that

starts from the upper rib cage under the armpit and ends at theother armpit run-

ning over the inferior angle of the scapula provide more constraints for shoulder

retraction. Figure 7.2 shows an example of a shoulder constrained by the taping,

and the effect of constraining forces that pull down and backthe shoulder girdle.

Also, the maximum range of motion in abduction and forward flexion are reduced

by the tapes, implying a change in the coordination which is being investigated in

the experiment.

With a healthy subject with taping, the purpose of the experiment is to eval-

uate whether the biomechanics of the shoulder is changed or not, and if changed,

to check if the robot assistance recovers the altered biomechanics. We postulate

hypotheses as follows;

Hypothesis 2 (H1): the constraint by the tape imposes a difference in the

kinematics or muscle activities of the shoulder during active elevation compared to

those during active elevation without any constraint (P<0.05).
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Figure 7.2: The shoulder constrained by kinesiology tapes.

Hypothesis 3 (H1): There is a difference in kinematics or muscles activities

between during active elevation without any constraint andduring active elevation

with the constraints and the robot assistance (P<0.05).

The first hypothesis verifies whether the constraint by the tape introduces

an abnormality in the shoulder biomechanics. The second hypothesis evaluates

whether the SHR assistance from the robot properly recoversthe altered kinematics

or muscle activities. Here ‘recover’ means that there are nomeaningful differences

in both kinematics and muscle activities between the baseline active elevation and

the active elevation with the constraint and the robot assistance.

7.2.2 Participants

11 healthy adults (age: 23± 3.5, range: 19.7-30.2, five females, nine right-

handed) with no history of injuries or neurological disorders in the shoulder par-

ticipated in the study. The experimental procedure was approved by the Internal
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Figure 7.3: The shoulder constrained by taping and an activearm elevation with the
SHR assistance by the robot.

Review Board (IRB) organized by the Office of Research Support in The Univer-

sity of Texas at Austin, and the participants provided written informed consent that

was reviewed by the board.

7.2.3 Experiment Protocols

7.2.3.1 Protocol for Passive Elevation

In the passive elevation case, three conditions were applied: a baseline pas-

sive elevation and passive elevations with two conditions of the robot assistance.

For the baseline passive elevation, an operator elevated the arm of the participants

using an overhead pully while the participants were asked torelax their arm and

shoulder as much as possible. The participants were seated upright, and the oper-

ator pulled up subjects left hand, which was securely attached to the handle of the

overhead pulley. The range of elevation was from around 20 degrees to around 120
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degrees of upper arm elevation angle along the plane of elevation that was devi-

ated from the frontal plane by 45 degrees. The upper arm was externally rotated

(in lateral rotation) while the forearm was kept vertical tothe ground at all time

during the elevation. The speed of elevation was maintainedvery low (around 10

seconds to the maximum elevation) to suppress any velocity-related effects from

muscle stretch of the participants. In the case of the robot assistance, while the sub-

jects were connected to the robot in the baseline control with the SHR assistance,

the operator pulled up the robot handle that was securely connected the subject’s

hand, using the overhead pulley in the same way of the previous case to preserve

the experiment condition except the shoulder assistance from the robot. Two ra-

tios between the humeral angle and the shoulder girdle anglein the SHR assistance

were applied to confirm whether the SHR assistance could regulate the shoulder

coordination with different SHR ratio values in the controller. The three conditions

for passive elevation are as follows:

• Condition 1: passive elevation by an overhead pulley.

• Condition 2: passive elevation by an overhead pulley in the presence of the

SHR assistance with a relatively high SHR ratio (C1) from therobot.

• Condition 3: passive elevation by an overhead pulley in the presence of the

SHR assistance with a relatively low SHR ratio (C2) from the robot.
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7.2.3.2 Protocol for Active Elevation

In the active elevation experiment, three conditions were applied: a baseline

active elevation, an active elevation with a constraint on the shoulder girdle, and

an active elevation with the SHR assistance from the robot inthe presence of the

constraint on the shoulder girdle. For the baseline active elevation, while seated

upright, the participants were asked to elevate their arm along the plane of elevation

that was deviated from the frontal plane by 45 degrees. The range of elevation was

from around 20 degrees to around 120 degrees of upper arm elevation angle. The

participants were asked to maintain the forearm vertical tothe ground at all time

during the elevation to keep the upper arm in lateral rotation. After applying kine-

siology tapes to the shoulder girdle, the elevation was proceeded as in the baseline

active elevation except an reduced range of elevation. To minimize any risk of pain

or injury around shoulder by the constraint, the participants were asked to elevate

their arm only in the range where they did not feel any discomfort or pain. The same

procedure was applied to the elevation with the tape appliedand the SHR assistance

by the robot. The three conditions for active elevation are as follows:

• Condition 1: active elevation.

• Condition 2: active elevation in the presence of the constraint from the kine-

siology tape on the shoulder girdle.

• Condition 3: active elevation in the presence of the constraint and the SHR

assistance from the robot.
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7.2.4 Measurement

We measured kinematic and EMG data around the shoulder. In the passive

elevation experiment, the kinematic data was used to compare the shoulder coor-

dination in the three conditions while EMG data was used to confirm that there

was not a prominent muscle activation during the passive elevation. In the active

elevation experiment, both the kinematic and EMG data were used to compare the

shoulder biomechanics in the three conditions.

To measure the kinematics around the shoulder, a motion capture system

(Phasespace Inc., Impulse X2) was used with three landmarksat the upper sternum

(between the two sternoclavicular joints), acromion process, and olecranon (at the

point where the extension line of the humerus meet at 90 degrees of elbow flexion).

We assume that the line from the upper sternum to a point belowthe acromion pro-

cess represents the position of the shoulder girdle and the line from the point under

the acromion process to the olecranon represents the position of the humerus. The

point under the acromion process was assumed to be the centerof glenohumeral

joint since the point was selected in a way that the defined humeral length was

minimally changed during the humeral elevation. Figure 7.4shows the angle rep-

resentations of the humeral and shoulder elevation.θ1 indicates the angle between

the humeral line and the global vertical line with respect tothe humeral elevation

plane.θ1 represents the angle between the shoulder girdle line and the global hor-

izontal line with respect to the frontal plane of the body. The coordination around

the shoulder was defined as the ratio betweenθ1 andθ1.

An EMG data acquisition system (Delsys Inc., Trigno Wireless EMG) mea-
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Figure 7.4: Angle measurement from a Motion Capture System.θ1 andθ2 represent
the humeral elevation angle and shoulder girdle elevation angle, respectively.

sured muscle activation at the upper and middle trapezius, anterior and middle del-

toid, pectoralis major, and serratus anterior (Figure 7.5). EMG signals were filtered

by a fifth order low-pass Butterworth filter at 5 Hz and normalized using an MVC

method. In the analysis, only two data groups at the upper trapezius and anterior

deltoid were used since only the upper trapezius, anterior and middle deltoid were

evidently activated during humeral elevation, and the anterior deltoid exhibited sim-

ilar patterns with the middle deltoid with higher activation levels.

Synchronization between the motion capture data and EMG data was en-

sured in the post process using a spike signal that was generated by a brief voluntary

movement prior to every measurement.
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Figure 7.5: EMG sensors attached on a participant.

7.2.5 Dependent Variables and Data Analysis

The goal of this experiment was to compare the kinematics andmuscle ac-

tivation before and after the robot assistance to the shoulder coordination with sim-

ulated abnormalities. To statistically compare the results, we took one dependent

variable for each case. For the kinematics, we adopted a meanslope of the curve

of the shoulder elevation (θ2) with respect to the humeral elevation (θ1). The mean

slope was calculated from the data points at every 10 degreesfrom 40 degrees to

100 degrees in humeral elevation angle.

For the dependent variable in muscle activation, we mapped the time-base

EMG data to an EMG curve with respect to the humeral elevationangle and adopted

an integration value of the EMG curve with respect to the humeral elevation, analo-

gizing work done by force and displacement. The range of the integration was

between 40 to 100 degrees of humeral elevation angle.
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Figure 7.6: Averages and standard deviations of the shoulder kinematics in the three
groups of passive elevation for all subjects

The one-way repeated measure analysis of variance (ANOVA) was used for

the comparison of each pair when all the data groups of the three conditions fall

in normality. The one-way repeated measure ANOVA and Wilcoxon signed-rank

test were complementarily applied when at least one of the data groups of the three

conditions does not follow normality. Outliers are maintained as long as they are

not from measurement error. The significance level was 0.05 for all the cases.
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Figure 7.7: Box plots and statistical analysis results of the shoulder kinematics in
the three groups of passive elevation by an overhead pulley

7.3 Result

In the passive elevation experiment, the shoulder kinematics was meaning-

fully changed by the robot assistance compared to the baseline passive elevation.

111



0

5

10

15

20

25

30

30 40 50 60 70 80 90 100 110

S
ho

ul
d

er
 G

ir
d

le
 E

le
va

tio
n 

(d
eg

)

Humeral Elevation (deg)

%&'()*+( ,-.*/( 0)(/&.*1+

0)(/&.*1+ 2*.3 41+'.5&*+.'

6171. ,''*'.&+-(

Figure 7.8: Averages and standard deviations of the shoulder kinematics in the three
groups of active elevation

The averaged slope of the shoulder coordination at each condition showed an in-

creasing trend (Figure 7.6), where the shoulder girdle positions of the participants

were firstly averaged at each humeral position and then, the dots were connected.

C1 indicates a higher rhythmic ratio than C2 in the SHR assistance. For statisti-

cal comparison, the mean slope of each participant at each condition was calcu-

lated first and the variances of all the slopes were analyzed.The result showed

significant differences in the shoulder kinematics of the three conditions (F(1.250,

12.497)=48.084, P<0.0005, pairwise P values in Figure 7.7). Two outliers in the

group of the robot assistance with C1 were included in the anlaysis since they were
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Figure 7.9: Box plots and statistical analysis results of the shoulder kinematics in
the three groups of active elevation

not extreme and all the three data groups including the outliers followed a normal

distribution. The sphericity assumption was violated, andthe one-way repeated

measures ANOVA was adjusted according to Greenhouse-Geisser.
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Figure 7.10: Box plots and statistical analysis results of the muscle efforts of the
upper trapezius in the three groups of active elevation. Theupper pairwise P values
from the one-way repeated measures ANOVA and the lower from the Wilcoxon
signed-rank test.

In the shoulder coordination of the active elevation case, the result showed

that there was a significance difference between the constraint and the robot assis-
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Figure 7.11: Box plots and statistical analysis results of the muscle efforts of the
anterior deltoid in the three groups of active elevation. The upper pairwise P values
from the one-way repeated measures ANOVA and the lower from the Wilcoxon
signed-rank test.

tance case while the constraint did not induce a statisticalsignificance in the slope of

the shoulder kinematics (the one-way repeated measures ANOVA, F(2, 20)=4.668,
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P=0.022, pairwise P values appears in Figure 7.9). Despite the insignificance, still,

there was a tendency of reduction in the slope by the constraint. The averaged

shoulder kinematics at each condition are shown in Figure 7.8. Regardless of the

results of the slope, the constraint induced an offset in theshoulder coordination

downward and the robot assistance recovered the offset as appeared in Figure 7.8.

In the muscle activation of the upper trapezius, there were two extreme out-

liers. The two outliers were due to the higher muscle activation than their MVC.

The first outlier that showed around 120% of activation level was included in the

analysis without modification. On the other hand, in the second outlier, the MVC

exhibited a significantly lower value than other subjects’ MVC in the upper trapez-

ius leading around 300% of muscle activation level. Considering the MVC practice

where the subject pushed against rigidly constraint environment while carrying the

subject’s own arm weight compared to the active elevation that carried only the

subject’s own arm weight, we suspected that there was a measurement error in the

MVC. We conducted statistical analysis with and without modification on the sec-

ond outlier. In the modification, the MVC of the second outlier was replaced by the

average of the same gender’s MVCs in the upper trapezius.

With the modified outlier, there was a significant differencein the mus-

cle activation of the upper trapezius between the constraint and robot assistance

case both in the ANOVA and non-parametric methods (pairwiseP values in Fig-

ure 7.10). Without any modification, the non-parametric method delivered the same

result while the ANOVA exhibited insignificance. The constraint did not induce a

significant abnormality in the muscle activation compared to the baseline active
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elevation. The one-way repeated measures ANOVA (with the modified outlier,

F(1.332, 13.319)=7.308, P=0.013, pairwise P values appears in Figure 7.10) and

non-parametric analysis (Wilcoxon signed-rank test) werecomplementarily used

because the data violated the assumption of normality and had the extreme outliers.

The sphericity assumption was violated, and the ANOVA was adjusted according

to Greenhouse-Geisser. An extreme outlier was defined as onemore than three

box-lengths from the edge of the box in the boxplot.

The muscle activation of the anterior deltoid was not significantly changed

by the constraint or the robot assistance. The one-way repeated measures ANOVA

(F(2, 20)=2.076, P=0.152, pairwise P values appears in Figure 7.11) and non-

parametric analysis (Wilcoxon signed-rank test) were complementarily used be-

cause the data violated the assumption of normality, and thestatistical results were

the same.

7.4 Discussion

The statistical result of the passive elevation experimentshowed that the

robot could significantly change the shoulder coordinationduring passive humeral

elevation. The result suggests that the robot may be able to assist a paralyzed shoul-

der to achieve a proper coordination during robot-driven passive exercises. The

robot may provide passive ROM exercises in wide ranges with aproper coordina-

tion around the shoulder, which would reduce a risk of injuries or pain caused by

mal-coordination in the shoulder including impingement.

The limitation of the experiment is that the shoulder coordination that we
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define can be different from scapulohumeral rhythm. Scapulohumeral rhythm is

defined as the ratio between the humeral elevation versus theupward rotation of

the scapula, while the shoulder coordination in this study is defined as the ratio

between the humeral elevation versus the upward rotation ofthe line that runs from

the SC to GH joint. This is partly due to the limited access to the surface above the

scapula where the visibility of the markers on the surface tothe cameras is limited

by the blockage of the robot worn around the body. Also, the motion data from the

markers on the surface above the scapula are usually unreliable because of artifacts

from large skin movements with respect to the scapula [62]. We may still presume

the angle of the line represents the scapulohumeral rhythm.This is because the

elevation of the lateral angle of the scapula (elevation of the shoulder around the

acromion and AC joint) more than the elevation in the superior angle of the scapula

indicates the upward rotation of the scapula and no major elevation of the superior

angle was observed during the shoulder elevation. Therefore, the changes in the

angle of the line by the external engagements can be reasonable representation of

the changes in scapulohumeral rhythm in a certain degree.

In the active elevation experiment, the robot assistance increased the mus-

cle activation in the upper trapezius and scapulohumeral rhythm compared to the

constraint case. There was a tendency of reduction both in the kinematics and up-

per trapezius activation by the constraint from the kinesiology taping compared to

the baseline active elevation; however, the constraint induced limited abnormal-

ity in both the kinematics and muscle activation in statistically meaningful ways.

Although an abnormality was not sufficiently introduced, the results imply that in
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patient-active elevation the robot might be able to positively affect the shoulder with

an abnormality by neuromuscular disorders.

The reason the kinematics did not exhibit significant differences by the con-

straint might be that the highly activated muscle around theshoulder to overcome

gravity restricted the influence of the constraining forcesby the tapes. As we were

concerned for the comfort of the subjects during the experiment, the forces from

the constraint may not have been strong enough to change the kinematics of the

activated shoulder. However, the robot assistance was enough to change the scapu-

lohumeral rhythm and muscle activation of the upper trapezius while counteracting

the effect of the activated muscles and constraints. Despite of the statistical in-

significance, there was a tendency of reduction both in the kinematics and muscle

activation by the constraint. Also, there were no significant differences between

the baseline active elevation and robot assistance case. From these facts, the robot

might be considered to be capable of restoring the kinematics and muscle activa-

tion induced by the constraint to match those in the baselineelevation. On the other

hand, the shoulder elevator, the anterior deltoid, was not significantly changed by

any condition. This might be because the constraining forces applied only to the

shoulder girdle proximally after the glenohumeral joint.

7.5 Conclusion

In this chapter, we evaluated the effects of HARMONY and its control algo-

rithm on the shoulder coordination. Inspired by the flaccidity and spasticity of the

hemiplegic shoulder after stroke, we simulated abnormalities in healthy subjects
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during passive and active humeral elevation. In the passiveelevation experiment

that simulated the situation of an overhead pulley exercisewith a flaccid shoulder,

the robot effectively changed the shoulder coordination, implying an advantage of

the robot in passive ROM exercises accompanying an assistedcoordination. In the

active elevation experiment, the robot assistance increased scapulohumeral rhythm

and muscle activation of the shoulder girdle elevator (upper trapezius) implying an

effectiveness of the robot on correcting an abnormal muscleactivation pattern and

shoulder coordination. In conclusion, we confirmed the capability of the robot in

affecting the shoulder coordination during arm movements.Further investigation is

necessary for examining the efficacy of the robot in positively affecting dyskinesia

of the shoulder including the hemiplegic shoulder of a stroke subject.
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Chapter 8

Discussion and Future Work

The work here was to develop an upper-body exoskeleton, called HAR-

MONY, with the goal of promoting the efficacy of robotic rehabilitation. HAR-

MONY supports the natural mobility of the upper body with kinematic compati-

bility and a wide range of motion. The robot also provides a minimal impedance

behavior that promotes participant’s voluntary movementswhile serving as a sub-

strate for developing various robotic rehabilitation exercises based on force and

impedance behaviors. The shoulder mechanism, one of the keychallenges in de-

signing an upper-body exoskeleton, was designed to offer ananatomical mobil-

ity with five DOFs. The experimental results showed that HARMONY supported

a wide range of motion with a good kinematic compatibility, implying that al-

most all types of movements for therapeutic exercises couldbe implemented in

the robot. The dynamic performance tests verified that the robot exhibits a very low

impedance with well-commanded spatial force and impedancebehaviors. With a

gravity support to patient’s arm weight, the minimum impedance will promote the

chance of voluntary movements from the patient that is a key value in maximizing

relearning. Also, a variety of force and impedance-based exercises can be super-

imposed to the baseline status without a major distortion from the robot dynamics.

The stability analysis proved that the robot would remain stable in interacting with
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the human body, serving as a critical criterion for safety ofthe exoskeleton. In

the human subject experiments, the control for assisting the coordination of the

shoulder induced desirable changes in the shoulder coordination in the presence

of abnormalities. The experimental results suggest that the robot could shape the

shoulder coordination and guide arm movements with a propercoordination in the

hemiplegic shoulder with a flaccidity or spasticity. The SHRassistance is expected

to reduce the risk of injuries that would be from a mal-coordinated arm traction, so

that a large dose of passive exercises can be safely performed. The control scheme

of the SHR assistance control can be easily extended to an assistance for other in-

terjoint coordination.

Nevertheless, there are several mechanical and control aspects of the robot

system that can be improved. For example, the robot body segments can be de-

signed to be lighter. The torque and power of the electrical motor are limited due

to the restricted space at the multi-DOF linkage structure with a wide ROM re-

quirement. A higher power-to-weight ratio that can be achieved by reducing the

weight will increase the ability to deal with variable demands including carrying a

large load. From the control perspective, the joint-level torque response could be

refined, for example, by taking into account the overall dynamics of the SEA unit

and using a full-state feedback, which leads to better spatial force and impedance

performances.

The robot is also missing the hand and wrist mobility. Most functional tasks

of the upper limb recruit the functionality in the hand and wrist. Limited functional

recovery after robotic rehabilitation, despite of improved motor control in the arm
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and shoulder, may be partly due to the absence of the rehabilitation in the hand and

wrist, as pointed out in the previous review studies [117, 92]. Inversely, without

recovery at the arm and shoulder, functional recovery may also be limited because

most functional tasks require the hand as an end-effector tobe correctly placed or

moved in task space by the arm and shoulder. The right question would be whether a

concurrent functional training coordinated from the shoulder to fingers is necessary

or not. If so, the robot would need to incorporate a module forthe hand and wrist

mobility. The correlation between the proximal and distal movements in functional

recovery of upper limb remains uncertain and needs to be further investigated [79].

So far, this research is limited in showing any evidence thatthe advanced

features equipped in the system will enhance motor recovery. Rather, the results

here show that the exoskeleton may serve as a research platform for long-term

clinical studies that are designed to prove or confirm contemporary neurological

findings in motor learning and their effectiveness for rehabilitation. The advances

of HARMONY in kinematic and dynamic features will allow us todesign a va-

riety of experimental environments to investigate the issues on voluntary effort,

type of assistant forces, massed repetition versus variable task practice, context

interference, explicit versus implicit learning, augmented feedback, or coordina-

tion that have been extensively discussed in neurological studies and rehabilitation

research [75, 10, 133, 92, 68, 50, 157, 115, 83, 26, 11]. To date, many robotic

rehabilitation protocols have followed a massed repetition paradigm, but its effec-

tiveness has been doubted, especially in retention and in exhibiting functional re-

covery [117, 92]. By incorporating implications from the findings in motor learning
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and neural plasticity, we will be able to develop rehabilitation protocols in HAR-

MONY that maximize motor recovery after neurological injuries.

While the development of an effective protocol for motor recovery requires

further investigation, HARMONY with the current control framework can be di-

rectly applied to passive range of motion (ROM) exercises. For example, we have

conducted a preclinical test of HARMONY with a stroke patient for passive mobil-

ity exercises. The study focused on evaluating the eligibility of impedance-based

robot-guided passive exercises and therapist-guided passive exercises with the help

of HARMONY for gravity support to the patient’s weight. The participant was a

middle-aged male with a right hemispheric stroke (two yearssince the occurrence).

The subject had severely impaired mobility at the left arm and shoulder with spas-

ticity and muscle tone. The exercises consisted of several movements of the arm and

shoulder with the coordination at the shoulder. The controlalgorithm was based on

the baseline control with an additional gravity support forthe patient’s arm weight

and impedance-based trajectory control. The session was held for one hour, four

days a week, lasting three weeks in total. The study was not investigating any

long-term effect of the exercises to draw any data-based conclusions. However, we

observed an increased voluntary mobility under the gravitysupport mode, and the

inferior subluxation was significantly reduced due to the gravity support while in

the robot. The patient also reported comfort during robot-assisted movements with-

out any pain around the joints. The participating physicianand therapist also con-

firmed that muscle tone and spasticity were reduced after thepassive exercises, and

the scapula exhibited right coordination during humeral motions with HARMONY
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through palpation. Toward the end of the 3-weeks session, itwas confirmed that

the patient started to use unused muscle group (the triceps)and exhibited much less

compensatory torso movements during the resistive exercises. With these positive

results, this preclinical test has convinced us that HARMONY was able to provide

a safe and effective passive exercises, and the gravity support with the baseline

control that exhibited a minimal impedance could enhance voluntary movements in

the impaired arm during the assistance. Although the results were confirmed based

on short-term observation, we believe that some of these positive effects of HAR-

MONY may transfer to long-term efficacy leading better recovery, which will be

investigated in the future.

HARMONY has the potential to serve as an assessment platformthat eval-

uates motor impairments of patients. Many of commonly used assessment pro-

tocols such as Fugl-Meyer test (FM) and Chedoke-McMaster Stroke Assessment

Scale consist of discrete index scales and rely on the subjective judgment of clin-

ical practitioners. HARMONY can precisely and consistently measure and record

movement qualities, ranges of motion, and forces applied byusers both in joint and

work space. Using the measurement capability of HARMONY, wemay be able to

develop an assessment protocol that can thoroughly diagnose motor abilities. The

new protocol may provide a better insight to motor impairments allowing for clini-

cal practitioners to prescribe user-specific exercises andtraining goals.
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Chapter 9

Conclusion

This dissertation presented upper-body exoskeleton HARMONY with its

kinematic design, modeling and control, kinematic and dynamic performances, and

human subject study.

In this document, several critical issues on designing and controlling an

upper-body exoskeleton have been discussed, which may helprehabilitation robotics

community in developing next generation exoskeletons. Theresults of the kine-

matic and dynamic performance tests confirmed that HARMONY was designed to

meet the design goals in mobility and physical interaction characteristics. The hu-

man subject experiments showed the capability of the robot in assisting shoulder

coordination which was stressed as the main feature.

By utilizing the advanced features including natural mobility and dynamic

behavior, HARMONY would serve as a research platform for developing control

strategies for upper-body robotic rehabilitation based onneurological principles and

investigating their clinical significances. Eventually, HARMONY is expected to

provide advanced rehabilitation practices that further motor recovery after neuro-

muscular injuries.
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