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Modeling and Analyzing Device-to-Device Content

Distribution in Cellular Networks

by

Derya Malak

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2017



To Mediha and Ahmet Haşim.
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Hani bazı açılmaz sanılan kapıları omuzladık
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Kayayı Delen İncir (1982) – Turgut Uyar

My mother, Mediha, has always been my teacher. Her guidance has

made me the person I am today. If I could become half as kind, patient, sincere

and dedicated as her, that would be good enough for me. My father, Ahmet
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Device-to-device (D2D) communication is a promising approach to op-

timize the utilization of air interface resources in 5G networks, since it al-

lows decentralized proximity-based communication. To obtain caching gains

through D2D, mobile nodes must possess content that other mobiles want.

Thus, devising intelligent cache placement techniques are essential for D2D.

The goal of this dissertation is to provide randomized spatial models for con-

tent distribution in cellular networks by capturing the locality of the content,

and additionally, to provide dynamic content placement algorithms exploiting

the node configurations.

First, a randomized content caching scheme for D2D networks in the

cellular context is proposed. Modeling the locations of the devices as a ho-

mogeneous Poisson Point Process (PPP), the probability of successful con-

tent delivery in the presence of interference and noise is derived. With some

ix



idealized modeling aspects, i.e., given that (i) only a fraction of users to be

randomly scheduled at a given time, and (ii) the request distribution does not

change over time, it has been shown that the performance of caching can be

optimized by smoothing out the request distribution, where the smoothness of

the caching distribution is mainly determined by the path loss exponent, and

holds under Rayleigh, Ricean and Nakagami fading models.

Second, to take the randomized caching model a step further, a spatially

correlated content caching scenario is contemplated. Inspired by the Matérn

hard-core point process of type II, which is a first-order pairwise interaction

model, D2D nodes caching the same file are never closer to each other than the

exclusion radius. The exclusion radius plays the role of a substitute for caching

probability. The optimal exclusion radii that maximize the hit probability

can be determined by using the request distribution and cache memory size.

Unlike independent content placement, which is oblivious to the geographic

locations of the nodes, the new strategy can be effective for proximity-based

communication even when the cache size is small.

Third, an auction-aided Matérn carrier sense multiple access (CSMA)

policy that considers the joint analysis of scheduling and caching is studied.

The auction scheme is distributed. Given a cache configuration, i.e., the set of

cached files in each user at a given snapshot, each D2D receiver determines the

value of its request, by bidding on the set of potential transmitters in its com-

munication range. The values of the receiver bids are reported to the potential

transmitter, which computes the cumulated sum of these variables taken on

x



all users in its cell. The potential transmitter then reports the value of the bid

sum to other potential transmitters in its contention range. Given the accumu-

lated bids of all potential transmitters, the contention range and the medium

access probability, a fraction of the potential transmitters are jointly sched-

uled, determined by the auction policy, in order to optimize the throughput.

Later, a Gibbs sampling-based cache update strategy is proposed to iteratively

optimize the hit rate by taking the scheduling scheme into account.

In this dissertation, a variety of distributed algorithms for D2D content

caching are proposed. Our results indicate that the geographic locality and

the network parameters have a significant role in determining and optimizing

the placement strategy. Exploiting the user interactions and spatial diversity,

and incentivizing cooperation among D2D nodes are crucial in realizing the

full potential of caching. Furthermore, from a network point of view, the

scheduling and the caching phases are closely linked to each other. Hence,

understanding the interaction between these two phases helps develop novel

dynamic caching strategies capturing the temporal and spatial locality of the

demand.
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Chapter 1

Introduction

Wireless networks are experiencing exploding demand for data services

driven by the proliferation of smart devices. Forecasts indicate that cellular

networks may need to support a sevenfold increase in capacity from 2016 to

2021. Currently more than half of all wireless data bits are video. By the end

of the decade, video is expected to consume 78 percent of wireless bandwidth

[1]. Driven by this insatiable demand for wireless capacity, different technolo-

gies, such as ultra-high density heterogeneous base station (BS) deployments,

and directly communicating data from one device to device (D2D) to another

without traversing the network [2], have come to the forefront as candidates

for the next (5th) generation of wireless networks.

D2D communication is a promising technique for enabling proximity-

based applications involving discovering and communicating with nearby de-

vices. It has the advantage of a limited investment requirement, since the

increasing density of users, and increasing capacity of the handheld devices

provide high amounts of data being stored locally, and enable the likelihood

of finding the desired content locally instead of accessing the BS. D2D also

provides increased offloading from the heavily loaded cellular network, which

1



is justifiable as memory costs continue to plummet, and machine learning ap-

proaches are expected to provide an accurate prediction of the demand by

facilitating the features extracted from query prefetching history, hence elimi-

nating the need for using large number of resources [3,4]. In addition to these,

content caching is indispensable to D2D because D2D without caching does

not exploit how to effectively distribute popular content and is futile.

Caching of popular content at various nodes in the network is a well

known technique to optimize the utilization of air-interface resources in cellular

networks, and increase content access speed and availability [5]. D2D commu-

nications will be an important component of the 5th and 6th generations of

wireless networks to meet the growing demand for local wireless services [6].

D2D communication and several use cases are being actively standardized by

3GPP to allow device discovery, decentralized file sharing and public safety

applications [7–10]. There are many different mobile applications for con-

tent caching and routing that enable smartphones to connect via Bluetooth or

through their Wi-Fi interfaces such as Inmobly, Amazon CloudFront, CacheFly

Content Distribution Network (CDN) and FireChat [11], [12]. These projects

aim to develop technology to create direct connections between cellular phones

without the need of a mobile phone operator.

D2D communication intriguing since it allows increased spatial reuse

and possibly very high rate communication without increased network infras-

tructure or new spectrum, but is only viable when the mobile users have con-

tent that other nearby users want [13], which allows short-range communica-

2



tion which is independent of the network infrastructure. Therefore, intelligent

caching of popular files is indispensable for D2D to be successful. By caching

content directly on the devices, and by exploiting D2D communication, the

devices themselves can form an effective CDN.

Rest of the chapter is split into several parts. In Section 1.1, the related

work on D2D in the cellular context is discussed. In Section 1.2, an overview of

content distribution using D2D caching in wireless networks is given. In Section

1.3, we summarize the network model. In Section 1.4, we discuss different

coverage models and their applicability for different network scenarios. In

Section 1.6, we describe how to optimize the cache hit probability, and discuss

possible approaches to optimize the performance of D2D caching. In Section

1.8, we briefly discuss the key contributions of this dissertation, and in Sect.

1.9, we outline the organization of the dissertation.

1.1 D2D in the Cellular Context

Hybrid networks consisting of both infrastructure-based and ad hoc

networks, a more general concept of D2D-enabled cellular networks, have been

widely studied in [14–22]. D2D communications in cellular networks have been

proposed for relaying purposes to improve the coverage and throughput perfor-

mance [14–16, 19]. D2D communication has also been studied in the context

of Peer-to-Peer (P2P) networking [21, 22], and is a potential efficient com-

ponent to reduce energy consumption in public safety systems [23]. Energy

efficient and user friendly device discovery schemes, resource management for
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D2D communication as an overlay or underlay to a cellular network, and D2D

mode selection are detailed in [24]. For a detailed survey on D2D communica-

tion and an extensive study on integrated cellular and D2D communications,

readers are referred to [24,25].

Unlike general ad hoc networks, D2D can benefit from cellular infras-

tructure (e.g., network coordinated device discovery, synchronization and en-

hanced security), and can operate on licensed bands, which makes resource

allocation more tractable and reliable [26,27]. Spectrum sharing for D2D com-

munication in cellular networks is studied in [28]. A framework for providing

the optimal resource partitions between D2D and cellular networks, which

allows for time-frequency resources to be either shared or orthogonally parti-

tioned between the two networks, are investigated in [26]. Optimal spectrum

partition and mode selection in D2D overlaid cellular networks are studied in

[29]. A optimization framework for a D2D-enabled downlink cellular network,

in which D2D links use a frequency band orthogonal to the cellular users, is

developed in [30], in order to determine when the potential D2D users transmit

directly, and when they fall back to the cellular mode is proposed.

D2D scheduling and CDNs have been widely studied in [6, 31–33], and

caching is utilized to improve the spectral efficiency in D2D wireless network

in [13, 34, 35]. Proactive caching has been proposed in [36–41] so that the

requests can be tracked, learnt, and predicted ahead of time. Furthermore,

with demand shaping and pricing-based models [42–45], the network traffic is

smoothed out over time in order to minimize the data delivery costs. Content
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dissemination in social networks is explored in [46]. A Transfer learning (TL)

approach, which lies in extracting collaborative social behavior information

from the source domain to aid in the learning in the target domain, is proposed

to learn and transfer the rich contextual information to estimate the large-scale

file popularity matrix. Game theory models have also been studied in [47–49]

to determine the social optima for data caching models. A profile matching

model for proximity-based mobile social networks for user selection has been

proposed in [50]. Given the social relations collected by the Evolved Node B

(eNB), the traffic offloading process in D2D communication has been optimized

in [51].

1.2 An Overview of Content Caching Approaches

Content caching has received significant attention as a means of im-

proving the throughput and latency of networks without requiring additional

bandwidth or other technological improvements. Video caching appears par-

ticularly profitable and plausible compared to other types of content [41], and

is perfectly suited to D2D networks for offloading traffic from congested cellular

networks.

Research to date on content caching has been mainly focused on two

different perspectives. In one line of work, given the delivery scheme, the con-

tent placement is optimized by exploiting the statistics of the demands and

making popular content available locally, as in [52], [53]. Alternatively, the

objective is to optimize the delivery phase given the cache contents and for
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known demand distribution [54], [55]. In another line of research, researchers

have aimed to understand the fundamental limits of caching gain with no co-

operation. Gain of coded multicasting [56], information theoretic scaling laws

for throughput and number of D2D connections, and collaboration distance

[57], have been investigated.

Alternatively, as in the current dissertation, there are several studies

focusing on decentralized caching algorithms that have optimized the caching

distribution to maximize the cache hit probability, using deterministic or ran-

dom caching as in [58], [57] given a BS-user topology. FemtoCaching replaces

backhaul capacity with storage capacity at the small cell access points, i.e.,

helpers, and the optimum way of assigning files to the helpers is analyzed

in [59] to minimize the delay. Despite the ongoing research, we still lack a

through understanding of the spatial correlations and geographical locality of

the demand.

We next detail the D2D network model we utilize in the current disser-

tation.

1.3 D2D Network Model

We consider a spatial D2D-enabled cellular network setting in which

both the D2D user and BS locations are modeled by a Poisson point process

(PPP) Φ. Users have limited communication range and finite storage. The

D2D users are served by each other if the desired content is cached at a user

within its radio range: this is called a hit. Otherwise, they are served by
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Figure 1.1: Illustration of the nearest BS association in which both the D2D user
(square) and BS (diamond) locations are modeled by a Poisson point process (PPP).

the cellular network BS, which is what D2D communication aims to avoid.

An example D2D device to BS association model is illustrated in Fig. 1.1,

where each D2D is associated with the nearest BS. For clarity, the D2D device

associations are not shown.

The associations between the D2D devices depend on their mutual in-

terests and proximity. We next discuss different possible models we can exploit

for modeling those interactions.

1.4 Coverage Models

Consider a given realization φ = {xi} ⊂ R2 of the PPP transmitter

process Φ. Different coverage models can be used to model the performance

of D2D communications. For example, as detailed in [60], three practical

7



coverage models: (i) the signal-to-interference-plus-noise ratio (SINR) model,

(ii) the Boolean model, and (iii) the overlaid network model with orthogonal

resources (bandwidth).

The SINR model is well suited to interference-limited networks to de-

scribe the coverage quality. The SINR at the reception, SINR(xi), when user

o at the origin is connected to BS xi ∈ Φ and is defined as

SINR(xi) =
Si/l(ri)

σ2 + I − Si/l(ri)
, (1.1)

where Si is the shadowing experienced between the typical user and the BS

at xi. The parameter ri = |xi| is the distance of xi from o, and l(r) = r−α is

the path loss function, with exponent α > 2, and the constant σ2 is the noise

power, I = P
∑

xi∈Φ Si/l(ri) is the total received power from the network. The

typical user is covered when SINR(xi) > T , where T is the threshold.

The coverage number N(T ) indicates how many BSs cover the typical

user simultaneously and is denoted by the random variable

N(T ) =
∑
xi∈Φ

1[SINR(xi) > T ]. (1.2)

The Boolean model (BM) is tractable for the noise-limited regime [60],

where the interference is small compared to the noise [61, Ch. 3]. Specifically,

given a transmit power P , if we only consider path loss, no fading and no inter-

ference, the received signal at the boundary should be larger than a threshold

to guarantee coverage, i.e., Pr−α ≥ T , yielding r ≤ RD2D = (P/T )α. Hence,

D2D users can only communicate within a finite range, which we call the D2D
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radius, denoted by RD2D, and the coverage area of the BM is determined by a

fixed communication radius. A file request is fulfilled by the D2D users within

RD2D if one has the file; else the D2D user is served by a BS.

In overlaid networks, the coverage distribution is the convolution of the

coverage probability distributions of the individual networks given that they

are independent. Interested readers can refer to [60] for further details.

1.5 Caching Distribution

Given storage size N , same for all nodes, let Ymi be the indicator ran-

dom variable that takes the value 1 if file m is available in the cache located

at xi ∈ Φ and 0 otherwise. Thus, the storage constraint is given as

M∑
m=1

Ymi ≤ N, xi ∈ Φ, (1.3)

i.e., Ymi ’s are inherently dependent. Optimal content placement is a binary

problem where the cache placement satisfies (1.3). However, the optimization

of the cache hit problem given this constraint is combinatorial and is NP-hard.

The caching probability of file m in cache i is given by pc(m,xi) =

P(Ymi = 1). For tractability reasons, we take the expectation of this relation

and obtain our relaxed cache placement constraint

M∑
m=1

pc(m,xi) ≤ N, xi ∈ Φ. (1.4)

Later, we show in Chapters 2 and 3 that there are feasible solutions to the

relaxed problem filling up all the cache slots.
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1.6 Cache Hit Probability

A key objective is to maximize the cache hit probability, which is the

probability that a given D2D node can find a desired file at another node’s

cache within its communication range. Intuitively, given a finite amount of

storage at each node, popular content should be seeded into the network in

a way that maximizes the hit probability that a given D2D device can find a

desired file – selected at random according to a request distribution – within

its radio range. We explore this problem quantitatively in this dissertation

by considering different spatial content models and deriving, optimizing and

comparing the hit probabilities for each of them.

The cache hit probability is expressed as follows:

PHit = 1−
M∑
m=1

pr(m)
∞∑
k=0

P(N(T ) = k) PMiss(m, k), (1.5)

where P(N = k) is the coverage distribution, i.e., the probability that k trans-

mitters (caches) cover the typical receiver. The parameter pr(m) models the

request or demand distribution, and PMiss(m, k) is the probability that k caches

cover a receiver, and none has file m, i.e., the probability of cache miss. Cache

misses occur due to limited communication range and finite storage constraint.

We next briefly discuss different components of caching, and how to

develop independent or distributed placement techniques, in order to opti-

mize the cache hit probability by maximizing (1.5) subject to the probabilistic

placement constraint given in (1.4).
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1.6.1 Demand Traffic Models

Assume that there are M total files in the network, where all files have

the same size, and each user has the same cache size N < M . Depending

on its cache state, each user makes requests for new files based on a general

popularity distribution over the set of the files. The popularity of such requests

is modeled by the Zipf distribution, which has probability mass function (pmf)

pr(i) =
1

iγr

/ M∑
m=1

1

mγr
, i = 1, . . . ,M, (1.6)

where γr is the Zipf exponent that determines the skewness of the distribution.

The distribution is shown in Fig. 1.2. The demand profile is Independent

Reference Model (IRM), i.e., the standard synthetic traffic model in which the

request distribution does not change over time. If the objective is to maximize

the average cache hit probability of the PPP model, it is sufficient to consider

a snapshot of the network, in which the D2D user realization is given and

requests are independent and identically distributed (i.i.d.) over the space.

Extensions to also incorporate the temporal correlation of real traffic

traces can be done by exploiting models like the Shot-Noise Model (SNM)

[62]. This overcomes the limitations of the IRM by explicitly accounting for

the temporal locality in requests for contents. However, in that case, the

problem under study will have an additional dimension to optimize over, and

to do so, online learning algorithms should be developed to both learn the

demand and optimize the spatial placement.
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Figure 1.2: Zipf(γr) popularity distribution with respect to file index i for different
values of γr.

In reality, the spatial-temporal distribution of demand should be cap-

tured accurately to pave the way for effectively placing content in devices.

Video caching and pre-fetching appears particularly profitable and plausible

versus other types of content [41], and is perfectly suited to D2D networks

for offloading traffic from congested cellular networks. Popularity of videos

has strong spatial-temporal correlation. Video has several interesting charac-

teristics. For example, large files, consumed at a near constant rate over a

fairly long time. A few key portals, Netflix, Youtube, Hulu, Facebook, etc,

serve most of it. Some videos are often shared locally or via social network.

Deployment characteristics and densities of BSs in urban and rural regions

can be very different. Furthermore, users might be clustered in hotspot zones,

such as coffee shops, restaurants, airports, stadium and campus. Therefore, to

optimize the performance of wireless caching, the spatial and temporal vari-

ation of demand profile and the impact of BS or cache locations should be
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accurately modeled.

1.6.2 Spatial Cache Placement

Cache placement can be implemented in an independent manner or in

a correlated way. Independent caching is a probabilistic placement model, in

which the caches do not cooperate, and the files are independently placed in

the cache memories of different nodes according to the same distribution [60],

[63], and [52]. Special cases of this model include caching most popular content

and geographic content placement (GCP) in [60]. However, it is not usually

optimal to cache files independently. In network scenarios, better approaches

can be implemented by developing cooperative, i.e., spatially correlated, cache

placement strategies rather than independently placing the files, which can

improve the cache hit rate. However, it is not trivial to design a joint place-

ment distribution over the geographic domain. One of the contributions of

this dissertation is that we have devised a spatially correlated probabilistic

placement policy, in which the D2D caches are loaded in a distributed manner

via additional marks attached to them without accounting for any cost, in a

timescale that is much shorter than the time over which the device locations

are predicted.

An example D2D enabled cellular network scenario that considers the

possible interactions between the D2D users and the BS, where coverage is

modeled by the Boolean model, is illustrated in Fig. 1.3, in which each D2D

device has a cache size of N = 2. Different content types are denoted by
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Figure 1.3: An illustration of spatial content placement for a D2D enabled cellular
network model.

distinct shapes. If the content is available in a cache, then the corresponding

shape is filled, and vice versa. The parameters RD2D and Rcell denote the ranges

for D2D and cellular communications, respectively. If the devices are within

range, they can obtain the desired contents from each other. Otherwise, the

BS serves the requests.

1.7 Spatial-Temporal Dynamics

The local demand profile of receivers change over time. To develop an

efficient caching algorithm, it is required to estimate the popularity profile,

then optimize the caching strategy, i.e., the admission and extinction policies,

in order to maximize the cache hit probability and balance the load at the

same time.
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From a temporal perspective, prefetching and proactive caching [37]

have been shown to provide significant caching gains. From a geographic

perspective, distributed solutions are required for scalability and to improve

different utility metrics. For example, a node (cache) can decide what to store

and when to update its configuration based on the side information, i.e., con-

tent availabilities, of its nearest neighbors. File insertion (or similarly eviction)

rate should be determined according to (i) the popularity profile of the file,

(ii) the cache configurations of the neighbors, and (iii) the amount of storage.

There are well-known models to model the short-range interactions. Dynami-

cal models, such as Gibbs point processes (GPPs) [64, Ch. 5.5], Ising-Glauber

models [65], and mean-field approximation as an effective field that represents

a substitute for the local interactions between cache states [66] can be uti-

lized. Exploiting those, spatial-temporal models that reach an equilibrium

state within a specified time can be designed.

1.7.1 Modeling and Algorithmic Challenges

To capture the impact of (i) the temporal variations and correlation of

content requests, models like the SNM should be exploited, in order to account

for the temporal locality in requests for contents and correctly predict the per

file popularities and the overall request distribution, and (ii) the geographic

locality of content can be tailored to provide file selection diversity to users

in order not to under or over-cache a file in a given area, and captured to

estimate the future spatial request distribution, and build a local empirical
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Figure 1.4: Dynamic caching algorithm.

request distribution based on the local demand behavior, and determine what

files to cache where.

In Fig. 1.4, we give an outline for a spatial-temporal algorithm that

captures the interactions between users, compares with the extrinsic demand

dynamics, in order to devise a caching algorithm that can reach to an equilib-

rium state (solution) within a desired duration. In Chapter 4 of this disserta-

tion, adapted from this outline, we propose a dynamic caching model capturing

neighboring interactions in order to maximize the cache hit probability.

1.7.2 Testing Theory with Data Set

We will use proprietary data on movie requests and ratings over time.

Although our current data has no geographic information, there are empirical
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Figure 1.5: Proprietary data on movie requests (left), and the Zipf distribution
approximation on movie requests (right).

models to predict the relationship between the traffic density and the spatial

distribution of base stations [67]. Zipf distribution is a good approximation

for modeling the static (IRM) demand, but no longer valid when demand dis-

tribution changes over time. Demand distribution can have a high variation

over time, which can be seen from Fig. 1.5 (left). Some files are requested

at a lower rate but their popularities do not fade away over time. On the

other hand, some files have instantaneous popularity and their popularities

fade away quickly. Therefore, it is important to estimate the variation of

popularity over time. A minimum mean square error (MMSE) estimator for

approximating the proprietary data in Fig. 1.5 with the Zipf distribution is

given is Fig. 1.5 (right). As can be seen, the Zipf distribution does not give a

good approximation for the variation of demand distribution over short time

intervals. In Fig. 1.6, the linear regression between the data and popular-

ity distribution (both in logarithmic scale) is illustrated to demonstrate the
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accuracy of Zipf approximation for long time intervals.

1.8 Contributions

This dissertation focuses on the analysis and design of content aggre-

gation and caching approaches for the D2D networks in the cellular context.

Specifically, we study optimal content caching strategies to maximize the den-

sity of successful receptions as a function of the coverage distribution in D2D

networks, propose to investigate a caching model for D2D by incorporating

the spatial, or geographic, and spatial-temporal characteristics and network

dynamics, and analyze an energy efficient multi-hop data aggregation model

for MTC uplink, and propose a delay-sensitive RA scheme. The following are
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the contributions of my dissertation.

Optimizing Density of Successful Receptions with D2D Caching:

In this dissertation, we use results from stochastic geometry to derive the prob-

ability of successful content delivery in the presence of interference and noise.

We employ a general transmission strategy where multiple files are cached at

the users and different files can be transmitted simultaneously throughout the

network. We then formulate an optimization problem, and find the caching

distribution that maximizes the density of successful receptions (DSR) under

a simple transmission strategy where a single file is transmitted at a time

throughout the network. We model file requests by a Zipf distribution with

exponent γr, which results in an optimal caching distribution that is also a

Zipf distribution with exponent γc, which is related to γr through a simple

expression involving the path loss exponent. We also develop strategies to

optimize content caching for the more general case with multiple files, and

bound the DSR for that scenario.

Spatially Correlated Caching for D2D Communications: We

study optimal geographic content placement for device-to-device (D2D) net-

works in which each file’s popularity follows the Zipf distribution. The loca-

tions of the D2D users (caches) are modeled by a Poisson point process (PPP)

and have limited communication range and finite storage. We initially propose

a spatially exchangeable content placement technique to prioritize the caches

for content placement. We demonstrate that exchangeable placement actu-

ally performs worse than the baseline independent content placement. Later,
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inspired by the Matérn hard-core (type II) point process that captures pair-

wise interactions between nodes, we devise a novel spatially correlated caching

strategy called hard-core placement (HCP) such that the D2D nodes caching

the same file are never closer to each other than the exclusion radius. The ex-

clusion radius plays the role of a substitute for caching probability. We derive

and optimize the exclusion radii to maximize the hit probability, which is the

probability that a given D2D node can find a desired file at another node’s

cache within its communication range. Contrasting it with independent con-

tent placement, which is used in most prior work, our analysis shows that our

HCP strategy often yields a significantly higher cache hit probability. We fur-

ther demonstrate that the HCP strategy is effective for small cache sizes and

a small communication radius, which are likely conditions for D2D.

A Distributed Auction Policy for User Association in D2D

Caching Networks: Unlike the randomized content caching models, which

do not capture the network dynamics and spatial characteristics of D2D net-

works, next, in Chapter 4, we contemplate a more sophisticated caching model

to achieve desirable hit rates by jointly determining how to cache the files

and schedule the transmissions in D2D networks. We propose a distributed

bidding-aided Matérn carrier sense multiple access (CSMA) policy for device-

to-device (D2D) content distribution. The network is composed of D2D re-

ceivers and potential D2D transmitters, i.e., transmitters are turned on or

off by the scheduling algorithm. Each D2D receiver determines the value of

its request, by bidding on the set of potential transmitters in its communi-
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cation range. Given a medium access probability, a fraction of the potential

transmitters are jointly scheduled, i.e., turned on, determined by the auction

policy. The bidding-aided scheduling algorithm exploits (i) the local demand

distribution, (ii) spatial distribution of D2D node locations, and (iii) the cache

configurations of the potential transmitters. We contrast the performance of

the bidding-aided CSMA policy with other well-known CSMA schemes that

do not take into account (i)-(iii), demonstrate that our algorithm achieves

a higher spectral efficiency in terms of the number of bits transmitted per

unit time per unit bandwidth per user. The gain becomes even more visible

under randomized configurations and requests rather than more skewed place-

ment configurations and deterministic demand distributions. Incorporating

the Gibbs sampling method for cache updates into the scheduling policy, we

later aim to iteratively maximize the cache hit rate.

1.9 Organization

The contributions of the dissertation are covered in Chapters 2 through

4. Chapter 2 proposes a new probabilistic content caching model that max-

imizes the density of successful receptions in D2D networking. Chapter 3

discusses a spatially correlated caching model for D2D. Chapter 4 focuses a

spatial-temporal content caching model for D2D communications that jointly

considers the optimization of user associations and content placement by incor-

porating the cache dynamics and geographic characteristics of D2D users. The

dissertation is concluded in Chapter 5 and the proposed research is outlined.
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Chapter 2

Optimizing Content Caching to Maximize the

Density of Successful Receptions in D2D

Networking

Wireless networks are experiencing a well-known ever-rising demand for

enhanced high rate data services, in particular wireless video, which is forecast

to consume over three-fourths of wireless bandwidth by 2021 [1]. Non-real-time

video in particular is expected to comprise half of this amount [68], and com-

prises large files that can be cached in the network. Meanwhile, preliminary

D2D techniques have been standardized by 3GPP to allow decentralized file

sharing and public safety applications [10]. D2D is intriguing since it allows

increased spatial reuse and possibly very high rate communication without

increased network infrastructure or new spectrum, but is only viable when the

mobile users have content that other nearby users want. Thus, it is clear that

smart content caching is essential for D2D1.

Caching popular content is a well known technique to reduce resource

usage, and increase content access speed and availability [5]. Infrastructure-

1This chapter has been published in [69], [70], [52]. I am the primary author of these
works. Coauthor Dr. Mazin Al-Shalash has provided many valuable discussions and insights
to this work, and Dr. Jeffrey G. Andrews is my supervisor.
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based caching can reduce delay and when done at the network edge, also

reduce the impact on the backhaul network, which in many cases is the bottle-

neck in wireless networks [59]. However, this type of caching does not reduce

the demand on spectral resources. To gain spectral reuse and increase the

area spectral efficiency, the content must be cached on wireless devices them-

selves, which allows short-range communication which is independent of the

network infrastructure. D2D communication can enable proximity-based ap-

plications involving discovering and communicating with nearby devices [28].

Synchronized distributed network architectures for D2D communications are

designed, e.g., FlashLinQ [6] and ITLinQ [34], and caching is shown to pro-

vide increased spectral reuse in D2D-enabled networks [13]. Although order

optimal solutions for optimal content placement is known under certain chan-

nel conditions [71–73], it is not known how to best cache content in a D2D

network. Intuitively, popular content should be seeded into the users’ limited

storage resources in a way that maximizes the probability that a given D2D

device can find a desired file within its radio range. Exploring this problem

quantitively is the goal of this chapter.

2.1 Related Work

Different aspects of D2D content distribution are studied. Scalability in

ad hoc networks is considered [74], where decentralized algorithms for message

forwarding are proposed by considering a Zipf product form model for message

preferences. Throughput scaling laws with caching have been widely studied
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[56,57,75]. Optimal collaboration distance, Zipf distribution for content reuse,

best achievable scaling for the expected number of active D2D interference-

free collaboration pairs for different Zipf exponents is studied [76]. With a

heuristic choice (Zipf) of caching distribution for Zipf distributed requests,

the optimal collaboration distance [58] and the Zipf exponent to maximize

number of D2D links are determined [75]. However, in general, the caching

pmf is not necessarily same as the request pmf. This brings us to the one of

the main objectives in this chapter, which is to find the best caching pmf that

achieves the best density of successful receptions (DSR) in D2D networks.

Under the classical protocol model of ad hoc networks [77], for a grid

network model, with fixed cache size M , as the number of users n and the

number of files m become large with nM � m, the order optimal2 caching

distribution is studied and the per-node throughput is shown to behave as

Θ(M/m) [71, 78]. The network diameter is shown to scale as
√
n for a multi-

hop scenario [72]. It is shown that local multi-hop yields per-node throughput

scaling as Θ(
√
M/m) [73].

Spatial caching for a client requesting a large file that is stored at the

caches with limited storage, is studied [79]. Using Poisson point process (PPP)

to model the user locations, optimal geographic content placement and outage

in wireless networks are studied [60]. The probability that the typical user

finds the content in one of its nearby base stations (BS)s is optimized using

2The order optimality in [71, 78] is in the sense of a throughput-outage tradeoff due to
simple model used.
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the distribution of the number of BSs simultaneously covering a user [80]. Per-

formance of randomized caching in D2D networks from a DSR maximization

perspective has not been studied, which we study in this chapter.

Although the work conducted in [75,76] focused on the optimal caching

distribution to maximize the average number of connections, the system model

was overly simplistic. They assumed a cellular network where each BS serves

the users in a square cell. The cell is divided into small clusters. D2D commu-

nications are allowed within each cluster. To avoid intra-cluster interference,

only one transmitter-receiver pair per cluster is allowed, and it does not intro-

duce interference for other clusters. In this chapter, we aim to overcome these

serious limitations using a more realistic D2D network model that captures

the simultaneous transmissions where there is no restriction in the number of

D2D pairs.

2.2 Contributions

This chapter develops optimal content caching strategies that aim to

maximize the average density of successful receptions so as to address the

demands of D2D receivers. The contributions are as follows.

Physical channel modeling using PPP. We introduce the network

model in Sect. 2.3, in which the locations of the D2D users are modeled

as a homogeneous PPP. Different from the grid-based model in [71, 78], we

consider the actual physical channel model. PPP modeling makes our anal-

ysis tractable because unlike the cluster-based model in [58], where only a
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pair of users are allowed to communicate in a square region, we require no

constraint on the link distance and allow a random number of simultaneous

transmissions. All analysis is for a typical mobile node which is permissible

in a homogeneous PPP by Slivnyak’s theorem [64]. The interference due to

simultaneously active transmitters, noise and the small-scale Rayleigh fading

are incorporated into the analysis. Any transmission is successful as long as

the Signal-to-Interference-plus-Noise Ratio (SINR) is above a threshold.

Density of successful receptions (DSR). We propose a new file

caching strategy exploiting stochastic geometry and the results of [81], and we

introduce the concept of the density of successful receptions (DSR). Although

in this chapter, we do not investigate the throughput-outage tradeoff as in

[71,78], the DSR is closely related to the outage probability, obtained through

the scaling of the coverage, i.e., the complement of the outage probability, with

the number of receivers per unit area.

Maximizing the DSR for the sequential multi-file model. We

study a randomized transmission model for D2D users with storage size 1 in

Sect. 2.3. We propose techniques for randomized content caching based on the

possible ways of prioritizing different files. In Sect. 2.4, we start with a baseline

model with single file to determine the optimal fractions of transmitters γ1 and

receivers γ2 in the D2D network model with PPP distributed user locations that

maximizes the DSR. In Sect. 2.5, we consider the more general sequential

multi-file transmission scenario, where we investigate the maximum DSR in

terms of the optimal fractions of γ1 and γ2 derived in Sect. 2.4, to determine
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Figure 2.1: A randomized caching model, in which the placement distribution is
independent and identical over the spatial domain.

the DSR, and optimize the caching pmf based on the randomized model.

Small-scale fading DSR results. We formulate an optimization

problem in Sect. 2.5.1 to find the best caching distribution that maximizes the

DSR under a simple transmission strategy where single file is transmitted at a

time throughout the network, assuming user demands are modeled by a Zipf

distribution with exponent γr. This scheme yields a certain fraction of users

to be active at a time based on the distribution of the requests. In Sect. 2.5.2,

we optimize the DSR of users for the multi-file setup, where the small-scale

fading is Rayleigh distributed. We consider several special cases correspond-

ing to 1) small but non-zero noise, 2) arbitrary noise and 3) an approximation

for arbitrary noise allowing the path loss exponent α = 4. For case 1), we

show that the optimal caching strategy also has a Zipf distribution but with

exponent γc = γr
α/2+1

where α > 2. For case 2), we show that the same result
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holds based on an approximation of the SINR coverage justified numerically in

Sect. 2.5.2. This relation implies that γc is smaller than γr, i.e., the caching

distribution should be more uniform compared to the request distribution, yet

more popular files should be cached at a higher number of D2D users. For case

3), we obtain a distribution similar to Benford’s law (detailed in Sect. 2.5.2)

that optimizes the caching pmf. We also extend our results to the “general

request distributions”, and show that cases 1) and 2) are also valid for Ricean

and Nakagami fading distributions in Sect. 2.5.2.

In general, the optimal DSR and the optimal caching distribution might

not be tractable. Therefore, assuming the request and caching probabilities

are known a priori, we weight the caching pmf to provide iterative techniques

to optimize the DSR under different settings. We propose caching strategies

that consider maximizing the DSR of the least desired file and of all files as

detailed in Sect. 2.6.2.

Maximizing the DSR for the simultaneous multi-file model. In

Sect. 2.7, we extend our study to the simultaneous transmissions of different

files and define popularity-based and global strategies. The popularity-based

strategy is in favor of the transmission of popular files and discards unpopular

files. On the other hand, the global strategy schedules all the files simulta-

neously, which leads to lower coverage than the sequential model does. Opti-

mization of the DSR in these cases is very intricate compared to the case of

sequential modeling. Therefore, we numerically compare the proposed caching

models in Sect. 2.7, and observe that the optimal solutions become skewed
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towards the most popular content in the network. Thus, we infer that under

different models, the optimal caching distribution may not be a Zipf distribu-

tion as also found in [71–73].

Insights. Our results show that the optimal caching strategy exhibits

less locality of the reference (abbreviated as locality) compared to the input

stream of requests, i.e., the demand distribution3. We also analyze the special

case of α = 4 using a tight approximation for standard Gaussian Q-function.

Using this approach we show that the optimal caching distribution can be

approximated by Benford’s law, which is a special bounded case of Zipf’s law

[84]. In Sect. 2.8, we validate that both Zipf distribution and Benford’s law

have very similar distributional characteristics, further validating the general-

ity of the results. For the multiple file case, we extend our results by finding

lower and upper bounds for the DSR in Sect. 2.6. Simulations show that the

bounds are very accurate approximations for particular γr values.

2.3 System Model

We consider a mobile network model in which D2D users are spatially

distributed as a homogeneous PPP Φ of density λ, where a randomly selected

user can transmit or receive information. In the multiple file scenario, the

3The performance of demand-driven caching depends on the locality exhibited by the
stream of requests. The more skewed the popularity pmf, (i) the stronger the locality and
the smaller the miss rate of the cache[82], and (ii) good cache replacement strategies are
expected to produce an output stream of requests exhibiting less locality than the input
stream of requests [83]. In [82], authors showed that (i) and (ii) hold for caches operating
under random on-demand replacement algorithms.
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randomized caching model we propose is shown in Fig. 2.1. The model can

be summarized as follows. At any time slot, only a fraction of the D2D users

scheduled. Any user transmits with probability γ1 and receives with proba-

bility γ2 = 1 − γ1 independently of other users. Each user has a cache with

storage size 1. If it is selected as a receiver at a time slot, it draws a sample

from the request distribution pr(·), which is assumed to be Zipf distributed. If

it is selected as transmitter at a time slot, it draws a sample from the caching

distribution pc(·). The selection of request distribution and the optimization

of caching distribution will be detailed in Sect. 2.5. At any time slot, each

receiver is scheduled based on closest transmitter association.

A system model for the D2D content distribution network with multiple

files is illustrated in Fig. 2.2. For illustration purposes, different types are

separated on the plot. However, transmissions of different files can occur

simultaneously. For multiple file case, different from the single file case, where

the D2D content distribution network is like a downlink cellular network since

nearest transmitter has the content, a farther transmitter is often the one with

the file required by the receiver.

General models for the multi-cell SINR using stochastic geometry were

developed in [81], where the downlink coverage probability was derived as:

pcov(T, λ, α) , P[SINR > T] = πλ

∫ ∞
0

e−πλrβ(T,α)−µTσ2rα/2 dr, (2.1)

where β(T, α) = 2(µT)
2
α

α
E
[
g

2
α (Γ(−2/α, µTg)− Γ(−2/α))

]
. The expectation is

with respect to the interference power distribution g, the transmit power is
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Figure 2.2: System model for D2D users with multiple files. Each receiver is asso-
ciated to its closest transmitter that contains the requested file, where TX(k) and
RX(k) denote the set of transmitters and receivers corresponding to file k.

1/µ, and Signal-to-Noise Ratio (SNR) is defined at a distance of r = 1 and is

SNR = 1/(µσ2). A summary of the symbol definitions and important network

parameters are given in Table 2.1.

Definition 1. Density of successful receptions (DSR). The performance
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of a randomly chosen receiver is determined by its SINR coverage. For the

homogeneous PPP Φ with density λ, let γ1 fraction of all users be the trans-

mitter process Φt, and γ2 fraction of users be the receiver process Φr, where

0 < γ1, γ2 < 1. The coverage probability of a randomly chosen receiver is

pcov(T, λγ1, α), which is the same for all receivers, and the total average num-

ber of receivers is proportional to the density λγ2. Hence, the DSR, which

denotes the mean number of successful receptions per unit area, equals

DSR = λγ2 pcov(T, λγ1, α) (2.2)

= λγ2

(
πλγ1

∫ ∞
0

e−πλγ1rβ(T,α)−µTσ2rα/2 dr
)
,

where pcov(T, λγ1, α) is obtained by combining (2.1) with the thinning prop-

erty of the PPP, i.e., Φt, which is obtained through the thinning of Φ, is a

homogeneous PPP with density λγ1 [61, Ch. 1].

We consider the generalized file caching problem in PPP networks where

every user randomly requests or caches some files based on the availabilities.

Our goal is to maximize the DSR in (2.2) for single file and multiple files. We

discuss the details of our optimization problem in Sects. 2.4 and 2.5.

2.4 DSR For a Single File

We first assume that there is a single file in the network. The single

file case is the baseline model for the more general multi-file model presented

in Sect. 2.5. Sampled uniformly at random from the PPP Φ, a fraction γ1 of

the users form the process Φt of the users possessing the file, and a fraction
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γ2 of the users form the process Φr of the users who want the same file. The

receivers communicate with the nearest transmitter while all other transmit-

ters act as interferers, and each transmitter can serve multiple receivers. A

receiver is in coverage when its SINR from its nearest transmitter is larger than

some threshold T. Given the total density of receivers is given by λγ2, and

each receiver is successfully covered with probability pcov(T, λγ1, α), the DSR,

i.e., DSR, is given by their product. In the single file scenario, since there is

only 1 file being transmitted in the network, there is no caching pmf. Our

objective in this section is to determine the optimal fractions of transmitters

γ1 and receivers γ2 in the PPP network that maximizes the DSR. In Sect.

2.5, we consider the multiple file transmission scenario, where we use the op-

timal fractions of transmitters and receivers γ1 and γ2, respectively, derived

in this section, to determine the DSR, and optimize the caching pmf based

on the randomized model outlined in Sect. 2.3. We formulate the following

optimization problem to determine γ1 and γ2:

∗
DSR = max

γ1>0, γ2>0
λγ2 pcov(T, λγ1, α)

s.t. γ1 + γ2 = a, 0 < a ≤ 1,

(2.3)

where pcov(T, λγ1, α) is the coverage probability of a typical user, and a ≤ 1

is the total fraction of transmitting and receiving users in a PPP network Φ

with density λ.

Lemma 1. The fraction of transmitters should be less than that of receivers,

i.e., the solution of (5.12) satisfies the following relation: γ1 < a/2 < γ2 <

a ≤ 1.
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Symbol Definition

T; α > 2 SINR threshold; Path loss exponent

γ1; γ2 Fraction of transmitting users; fraction of receiving users

Φ Homogeneous PPP of all D2D users

Φt; Φr PPP transmitter process; PPP receiver process

λ; λt Intensity of Φ; intensity of Φt

µ−1; σ2 The constant transmit power; Noise variance

g ∼ exp(µ) Interference power distribution

γr; γc Zipf request parameter; Zipf caching parameter

M ; 1 Size of the file catalog; storage size of any user

pr(·); pc(·) Popularity pmf; caching pmf

pcov(T, λ, α) Coverage probability for the sequential transmission model

Pcov(T, λ, α) Coverage probability for the general transmission model

β(T, α) A function of interference in the exponent of pcov

FB(·) The pmf of the Benford’s distribution

DSR Density of successful receptions

DSRS;DSRP;DSRG Sequential; popularity-based; global model DSR

Q-function The tail probability of the standard normal distribution

Θ(·); o(·) Big O notation; Little-o notation

Table 2.1: Notation for Chapter 2.

Proof. See Appendix A in [52].

Lemma 2. The maximum DSR for arbitrary noise and α = 4 is given by

∗
DSR =

λ(a− γ1)(
1
γ1

[
1
γ1
− 1

a−γ1

]
2µTσ2

(πλ)2β(T,4)
+ β(T, 4)

) .
Proof. See Appendix B in [52].

Corollary 1. Low SNR case, α = 4. As σ2 →∞, the coverage can be approx-

imated as pcov(T, λ, α) = P[SINR > T] ≈ P[SNR > T] = πλ
∫∞

0
e−πλr−µTσ2rα/2 dr.
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Hence, the maximum DSR is given as

∗
DSR = λ(a− γ1)

/( 1

γ1

[
1

γ1

− 1

a− γ1

]
2µTσ2

(πλ)2
+ 1
)
, (2.4)

where optimal γ1 satisfies
a−3aγ1+3γ2

1

γ3
1(a−γ1)

= (πλ)2

4µTσ2 .

Corollary 2. No noise (degenerative) case. For no noise, pcov(T, λ, α) =

β(T, α)−1. Maximum DSR for single file for 0 < a ≤ 1, Rayleigh fading, no

noise, and α > 2 is DSR∗ = max
γ1>0

λ(a − γ1) 1
β(T,α)

=
λ(a−γ∗1 )

β(T,α)
, obtained for the

optimal value of γ1, i.e., γ∗1 = ε > 0 so that there is one transmitter4.

Next, we consider the low noise approximation of the success probabil-

ity that is more easily computable than the constant noise power expression

and more accurate than the no noise approximation for σ2 = 0. Using the

expansion exp(−x) = 1− x+ o(x) for σ2 6= 0 as x→ 0, the term pcov(T, λ, α)

for small but non-zero noise case can be calculated after an integration by

parts of (2.1) as follows

pcov(T, λ, α) =
1

β(T, α)
− µTσ2 (λπ)−

α
2

β(T, α)
α
2

+1
Γ
(

1 +
α

2

)
+ o

(
σ2
)
.

Lemma 3. The maximum DSR for a single file for a = 1, Rayleigh fading,

small noise is equal to

∗
DSR =

λα

β(T, α)

[
1

α
− (γ∗1 − 1)

α + γ∗1(2− α)
o(σ2)

]
.

4In the no noise case the single file result is trivial. In multiple file case, there will be
interference due to the simultaneous transmissions of multiple files, which will be discussed
in Sect. 2.5.
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Proof. See Appendix C in [52].

For α = 4, there is a closed form expression for β(T, 4) as follows:

β(T, 4) = 1 +
√

T arctan(
√

T), which we use for the derivation of Lemma 4.

Lemma 4. The maximum DSR for small but non-zero noise and α = 4 is

∗
DSR =

2λ(a− γ1)

(1 +
√

T arctan(
√

T))

[
1− µTσ2a

µTσ2(2a− γ1) + o(σ2)

]
+ o(σ2). (2.5)

Proof. See Appendix D in [52].

Discussion. In Fig. 2.3 (a), we illustrate the relation between DSR∗

and SNR for T = SNR /2, λ=0.1. To simplify the notation, we assume that

γ1 + γ2 = 1 and let γ = γ1 and γ∗1 = γopt. As SNR increases for T = SNR /2,

the DSR decreases and γopt decreases. Note that the solid lines denote the

simulation results for the PPP model. In Fig. 2.3 (b), the variation of DSR∗

with respect to T for SNR = 10, λ=0.1 is shown. The coverage pcov(T, λγ1, α)

is monotonically decreasing in T and a concave increasing function of γ1. For

increasing T, the value of DSR becomes very small, and to maximize the

DSR, a higher fraction of the users should be transmitters (i.e., higher γ1) to

compensate the outage. For low T , to maximize the DSR, the fraction of the

receivers γ2 should be higher. Therefore, as T decreases, the DSR increases

and becomes right-skewed, but γopt decreases only slightly, which is negligible5.

5This follows from the separability assumption of pcov(T, λγ1, α) in λγ1 and T , thus
insensitivity of the DSR maximization problem to the value of T , which is further detailed
in Assumption 1 of Sect. 2.5.2, and verified in Appendix F in [52]
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Figure 2.3: DSR for single file versus γ with respect to SNR, T and λ. (a) DSR,
T = SNR /2, λ=0.1, where the dashed curves correspond to the respective Monte
Carlo simulations, (b) DSR, SNR = 20, λ=0.1, and (c) DSR, SNR = .1, T = .05.
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Thus, we conclude that γopt is largely invariant to T and mainly determined by

SNR. In Fig. 2.3 (c), we show the variation of DSR∗ with λ. The DSR increases

with λ. On the other hand, γopt decreases as the density of users increases and

transmissions from increased number of users cause high interference.

Although the single file case is trivial in the sense that it boils down

to the optimization of the fractions of the transmitters and receivers that

maximizes the DSR, it is the baseline model for the multiple file case where

the main objective is to determine the optimal caching distribution over the

set of files. We discuss the multiple file setup next.

2.5 Density of Successful Receptions of the Sequential
Serving Model with Multiple Files

We determine the optimal caching distribution for the transmitters to

maximize the DSR for the sequential serving-based strategy, in which one type

of file is transmitted at a time. Later, in Sect. 2.7, we study the general case,

where the transmissions of different files can take place simultaneously.

File Popularity Distribution. To model the file popularity in a gen-

eral PPP network, we use Zipf distribution for pr, which is commonly used in

the literature [76]. Then, the popularity of file i is given by pr(i) = 1
iγr

/ M∑
j=1

1
jγr

,

for i = 1, . . . ,M , where γr is the Zipf exponent and there are M files in total.

The demand distribution pr ∼Zipf(γr) is the same for all receivers of the PPP

model.
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2.5.1 Sequential Serving-based Model

In this model, only the set of transmitters having a specific file transmits

simultaneously. Hence, this is the special case where only one file is transmitted

at a time network-wide. This is illustrated in Fig. 2.1 in Sect. 2.3. If a user

is selected as a receiver at a time slot, it draws a sample from the request

distribution pr(·), which is known. If any user is randomly selected as the

transmitter at a time slot with probability γ1, it draws a sample from the

caching distribution pc(·), which is not known yet. At any time slot, each

receiver is scheduled based on closest transmitter association. According to

this model, since file i is available at each transmitter with pc(i), using the

thinning property of the PPP [61, Ch. 1], the probability of coverage for file i

is

pcov(T, λtpc(i), α) = πλtpc(i)

∫ ∞
0

e−πλtpc(i)rβ(T,α)−µTσ2rα/2 dr, (2.6)

where λt = λγ1 is the total density of the transmitting users.

Given that the requests are modeled by the Zipf distribution, our ob-

jective is to maximize the DSR of users for the sequential serving-based model,

denoted by DSRS for a PPP model with density λ:

max
pc

DSRS

s.t.
M∑
i=1

pc(i) = 1

pr(i) =
1

iγr

/ M∑
j=1

1

jγr
, i = 1, . . . ,M,

(2.7)
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where DSRS = λγ2

M∑
i=1

pr(i) pcov(T, λγ1pc(i), α), the first constraint is the total

probability law for the caching distribution, and the second constraint is the

demand distribution modeled as Zipf with exponent γr, and γ2 = 1− γ1, and

M is the number of files.

Note that pcov(T, λγ1pc(i), α) in (2.7) is obtained for a sequential trans-

mission or scheduling model and it is same as the formulation given in (2.1)

which follows from Theorem 1 of [81]. This model can be generalized to dif-

ferent scheduling schemes. For example, in Sect. 2.7, we introduce a more

general model where multiple files are simultaneously transmitted, and obtain

a coverage expression Pcov(T, ·, α) that is different from pcov(T, ·, α) in (2.7),

which is detailed in Theorem 2 of Sect. 2.7.

Similar to the optimal fractions of the transmitter and receiver pro-

cesses calculated in Sect. 2.4 for the single file case, optimal values of γ1 and

γ2 = 1 − γ1 for multi-file case can be found by taking the derivative of (2.7)

with respect to γ1, which yields the following expression:

M∑
i=1

λpr(i)pc(i)
{∫ ∞

0

[ 1

γ1

− 1

1− γ1

− πλpc(i)β(T, α)r
]

e−πλγ1pc(i)rβ(T,α)−µTσ2r
α
2 dr

}
= 0, (2.8)

where optimal value of γ1 and the pmf pc(·) are coupled. Therefore, we first

solve (2.7) by optimizing the pmf pc(·) and then, determine the γ1 value that

satisfies (2.8).

We now investigate different special network scenarios where significant
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simplification is possible.

2.5.2 Rayleigh Fading DSR Results

We optimize the DSR of users for the multi-file setup, where interfer-

ence fading power follows an exponential distribution with g ∼ exp(µ). We

consider several special cases corresponding to 1) small but non-zero noise, 2)

arbitrary noise and 3) an approximation for arbitrary noise allowing the path

loss exponent α = 4. We find the optimal caching distribution corresponding

to each scenario.

Lemma 5. Small but non-zero noise, α > 2. The optimal caching dis-

tribution is pc(i) = 1
iγc

/ M∑
j=1

1
jγc
, i = 1, . . . ,M , which is also Zipf distributed,

where γc = γr
α/2+1

is the Zipf exponent for the caching pmf.

Proof. See Appendix E in [52].

Assuming α > 2, the caching pmf exponent satisfies γc <
γr
2

, which

implies that the optimal caching pmf that maximizes the DSR has a more uni-

form distribution exhibiting less locality of reference compared to the request

distribution that is more skewed towards the most popular files.

Assumption 1. Separability of coverage distribution. For Rayleigh,

Ricean and Nakagami small-scale fading distributions, the function β(T, α)α/2

can be approximated as a linear function of T as shown in Fig. 2.4. This
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relation6 greatly simplifies the analysis of the optimization problem in (2.7).

Lemma 6. Arbitrary Noise, α > 2. For arbitrary noise, from Assump-

tion 1, the optimal caching distribution pc(·) can be approximated as a Zipf

distribution given by

pc(i) ≈
1

iγc

/ M∑
j=1

1

jγc
, i = 1, . . . ,M, (2.9)

where γc = γr
α/2+1

< γr
2

is the Zipf exponent for the caching pmf assuming

α > 2.

Proof. See Appendix A.1.

Interestingly, this result is the same as Rayleigh fading with small but

non-zero noise model developed in Sect. 2.5.2, which follows from the mono-

tonic transformation [85] caused by increasing the noise power σ2 in (2.6).

According to the pmf given in (2.9), the optimal caching strategy exhibits less

locality of reference than the input stream of requests. Therefore, it is a good

caching strategy, which will be further verified in Sect. 2.8. Lemma 6 sug-

gests that files with higher popularity should be cached less frequently than

the demand for this file, and unpopular files should be cached more frequently

than the demand for the file. However, high popularity files should be still

6Although the expression β(T, α)α/2/T is not analytically tractable, we can approximate
β(T, α)α/2 as a linear function of T because the lower incomplete Gamma function has
light-tailed characteristics. Since the channel power distribution -which is exponential due
to Rayleigh fading- is also light tailed, we can expect to observe such a linear approximation
in our numerical results.
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cached at more locations compared to the low popularity files. The path loss

evens out the file popularities and the caching distribution should be more

uniform compared to the request distribution. The sequential transmission

model shows that for a Zipf request distribution with exponent γr, which is

skewed towards the most popular files, the optimal caching pmf should be also

Zipf distributed with the relation γc <
γr
2

for α > 2, implying that the caching

pmf is more uniform than the request pmf.

The next result generalizes Lemma 6 to any request distribution pr(·)

rather than the Zipf distribution, and is derived from Appendix F in [52] using

the separability of coverage from Assumption 1.

Theorem 1. For arbitrary noise, if the small-scale fading is Rayleigh, Nak-

agami or Ricean distributed, from Assumption 1, for a general request pmf,

pr(·), the optimal caching pmf is approximated as

pc(i) ≈
pr(i)

1
(α/2+1)

M∑
j=1

pr(j)
1

(α/2+1)

, i = 1, . . . ,M. (2.10)

From (2.10), it is required to flatten the request pmf to optimize the

caching performance. Examples include the case of uniform demands, where

the optimal caching distribution should be also uniform, and Geometric(p)

request distribution, for which the caching distribution satisfies Geometric(q),

where q = 1 − (1 − p)
1

(α/2+1) . In the case of Zipf demands, we can derive the

same result as in Lemma 6. These example distributions are summarized in

Table 2.2.
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Popularity Distribution Caching Distribution

Uniform Uniform

Geometric(p) Geometric(q), q = 1− (1− p)
1

(α/2+1)

Zipf(γr) Zipf(γc), γc = γr
α/2+1

Table 2.2: Relation between the example popularity distributions and their corre-
sponding optimal caching distributions for Chapter 2.
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Lemma 7. An Approximation for Arbitrary Noise with α = 4. For a

total number of files M and arbitrary noise with α = 4, the optimal caching

pmf is

pc(i) = ai + b log
(i+ 1

i

)
, i = 1, . . . ,M, (2.11)

where b =

√
µTσ2γr

πλtβ(T,4)
, ai = 1

M
+ b

M

M∑
j=1

log
(

j
i+1

)
, and the pmf is valid only if

b ≤ [M log(M)− log(M !)]−1.

Proof. See Appendix G in [52].

The distribution pc(·) in (2.11) of Lemma 7 is a variety of Benford’s

law [84], which is a special bounded case of Zipf’s law. Benford’s law refers

to the frequency distribution of digits in many real-life sources of data and is

characterized by the pmf FB(i) = log10

(
i+1
i

)
, i ∈ {1, . . . , 9}. In distributed

caching problems, the number of files, M , is generally much greater than 9.

Therefore, we generalize the law as FB(i) = logM+1

(
i+1
i

)
, i ∈ {1, . . . ,M}. The

result in (2.11) has a very similar form as the Benford law with shift parameter

ai for file i and a scaling parameter b, as determined in Lemma 7.

2.6 Bounds on the DSR and Different Caching Strate-
gies

The analysis of the DSR becomes intractable for the multiple file case

when the caching pdf does not have a simple form. Therefore, we derive a

lower and upper bound to characterize the DSR for the sequential serving

model and provide two different caching strategies to maximize DSRS.

45



2.6.1 Bounds on DSRS

We provide a lower and upper bound for DSRS, the DSR of the se-

quential serving-based transmission model with multiple files. We discussed

the optimal file caching problem for multiple file scenarios in [69]. Here, we

compare our solution to the several bounds and other caching strategies.

2.6.1.1 Upper Bound (UB)

Using the concavity of pcov(T, λtpc(i), α) in pc(i), a UB is found as

M∑
i=1

pr(i) pcov(T, λtpc(i), α) (a)
< pcov

(
T, λt

M∑
i=1

pr(i)pc(i), α
)

(b)
≤ pcov(T, λtpr(1), α), (2.12)

where (a) follows from Jensen’s inequality, and (b) follows from the assumption

pr(1) > pr(i) for 1 < i ≤ M that yields
∑M

i=1 pr(i)pc(i) < pr(1)
∑M

i=1 pc(i) =

pr(1), where pr(1) =
(∑M

j=1 j
−γr
)−1

.

2.6.1.2 Lower Bound (LB)

Using the fact that given pr(·) is Zipf distributed, the optimal pc(·)

also has Zipf distribution as proven in Lemma 6 as a solution of the DSRS

maximization problem in (2.7). As a result, any distribution that is not skewed

towards the most popular files will yield a suboptimal DSRS. Hence a uniform

caching distribution performs worse than the Zipf law, and a LB is found as

M∑
i=1

pr(i) pcov(T, λtpc(i), α) >
M∑
i=1

pr(i) pcov

(
T,

λt
M
,α
)
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= pcov

(
T,

λt
M
,α

)
. (2.13)

2.6.2 Caching Strategies with Multiple Files

We propose two optimization formulations to maximize DSRS in the

presence of multiple files, where the request and caching probabilities are

known a priori because in general the optimal DSRS and the optimal caching

distribution is not tractable. The first strategy, where we maximize the DSR

for the least popular file, favors the least desired file, i.e., the file with the

lowest popularity, to prevent from fading away in the network. Therefore,

we introduce the variables 0 ≤ ρi ≤ 1 for files i ∈ {1, · · · ,M} to weight the

caching pmf pc(·). The second strategy aims to maximize the DSR of all files

by optimizing the fraction ρi’s of the users for each file type. We assume the

caching distribution is given. Then, we provide iterative techniques to solve

the problems presented in this section.

2.6.2.1 Maximum DSR of the Least Desired File

Our motivation behind maximizing the DSR of the least desired file is

to prevent the files with low popularity from fading away in the network.

Lemma 8. The caching probability of each file is weighted by ρi < 1 so

that the total fraction of transmissions for all files, denoted by ξ satisfies

ξ =
∑M

i=1 ρipc(i) ≤ 1. Given η = max
i, ρi=1

pr(i)pc(i) = pr(j)pc(j) for some j,

the optimal solution is given by ρi = 1{i≥j} + η
pr(i)pc(i)

1{1≤i<j}.
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Proof. See Appendix H in [52].

2.6.2.2 Maximum DSR of All Files

We maximize the DSR for all files without any prioritization.

Lemma 9. The optimal solution to maximize the DSR for all files is given by

ρi = 1 for all i.

Proof. See Appendix I in [52].

As well as maximizing the DSR for the sequential model, one might

wish to select a file with a particular request probability, and use D2D to

distribute this file and all files with higher probability or simultaneously cache

all files using D2D as detailed in Sect. 2.7. In the next section, we describe the

simultaneous transmission of multiple files, and derive expressions for SINR

distribution and DSR.

2.7 Simultaneous Transmissions of Different Files

We consider the multiple file case, where a typical receiver requires a

specific set of files, and the set of its transmitter candidates are the ones that

contain any of the requested files. Each receiver gets the file from the closest

transmitter candidate. The rest of the active transmitters that do not have

the files requested are the interferers. We provide a detailed analysis for the

SINR coverage next.
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Assume that each receiver has a state, determined by the set of files it

requests. For a receiver in state j, the set of requested files is fr(j). Let the

tagged receiver be y ∈ Φr and in state j, and Φt(j) be the set of transmitters

that a receiver in state j can get data from. Hence, the set of transmitter

candidates for user in state j is the superposition given by Φt(j) =
∑

i∈fr(j) Φt,i,

where Φt,i is the set of transmitters containing file i. Let λj be the density of

Φt(j), where λj = λtpj = λγ1pj. The rest of the transmitters, i.e.,
∑

i/∈fr(j) Φt,i,

is an independent process with density λt − λj = λt(1− pj) = λγ1(1− pj).

The sum pj =
∑

i∈fr(j) pc(i) gives the probability that the user has

at least one of the files requested by any receiver in state j. Hence, the

density of the transmitter candidates λj for a receiver in state j equals the

product of λγ1 and
∑

i∈fr(j) pc(i), i.e., λj = λtpj = λγ1

∑
i∈fr(j) pc(i). Using

the nearest neighbor distribution of the typical receiver in state j, the distance

to its nearest transmitter is distributed as Rayleigh(σj) ∼ r
σ2
j

exp
(
− r2

2σ2
j

)
, for

σj = 1√
2πλj

and r ≥ 0.

We assume that all users experience Rayleigh fading with mean 1, and

constant transmit power of 1/µ. Assuming user y is at o, in state j and is

a receiver, and x is the tagged transmitter denoted by bo, and the distance

between them is r, then the SINR at user y is SINRj = hr−α

σ2+Ir(j)
, where h is the

channel gain parameter between x and y, σ2 is the white Gaussian noise, and

Ir(j) is the total interference at node y in state j, and given by the following

expression: Ir(j) =
∑

z∈Φt\bo gzr
−α
z =

∑
z∈Φt(j)\bo gzr

−α
z +

∑
z∈Φt\Φt(j) gzr

−α
z ,

where gz is the channel gain from the interferer z and the receiver y, rz is the
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interferer z to receiver distance, on RHS, the first term is the interference due

to the set of transmitters that has the files requested by the receiver, and the

second term is the interference due to the rest of the transmitters that do not

have any of the desired files by the receiver. The total interference depends on

the transmission scheme. Compared to the nearest user association [81], it is

hard to characterize the interference in dynamic caching models with different

association techniques.

Theorem 2. The probability of coverage of a typical user conditioned on being

at state j is given by7

Pcov(T, λj, α) = πλj

∫ ∞
0

e−πλjv(1−ρ2(T,α))

× e−πλtv(ρ1(T,α)+ρ2(T,α))e−Tσ2vα/2 dv, (2.14)

where

ρ1(T, α) = T2/α

∫ ∞
T−2/α

1

1 + uα/2
du,

ρ2(T, α) = T2/α

∫ T−2/α

0

1

1 + uα/2
du.

Proof. See Appendix J in [52].

We now consider the special case of the path loss exponent α = 4,

which is more tractable.

7The definition of Pcov(T, λj , α) here is different from the definition of the classical down-
link coverage probability pcov(T, λ, α) given in (2.1) due to the possibility of simultaneous
transmissions of different file types.
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Corollary 3. The probability of coverage of a typical user conditioned on being

at state j for the special case of α = 4 and µ = 1 is given by

Pcov(T, λj, 4) = πλtpj

√
π

Tσ2
e
H(T,λt,pj)2

2 Q
(
H(T, λt, pj)

)
, (2.15)

where we let

H(T, λt, pj) =
( pj√

T
− pj tan−1

(
1√
T

)
+
π

2

) πλt√
2σ2

.

Proof. See Appendix K in [52].

Since the term
√

T tan−1
(

1√
T

)
is increasing in T and converges to 1

in the limit as T goes to infinity, H(T, λt, ·) is increasing in pj, and positive.

Furthermore, Pcov(T, λj, α) is monotonically increasing in pj. This observation

is essential in the characterization of the DSR under different user criteria.

We consider two different strategies for the simultaneous transmission of

multiple files, namely popularity-based and global models, which differ mainly

in the set of files cached at the transmitters.

2.7.1 Popularity-based DSR

In this approach, a set of files corresponding to the most popular ones

in the network is cached simultaneously at all transmitters. We define DSRP,

which stands for the DSR of the popularity-based approach, and is calculated

over the set of most popular files as

DSRP = λγ2

∑
k∈K

pr(k)Pcov(T, ξl, α), (2.16)
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where K is the set of the K most popular files, and ξl = λγ1

∑
i∈L pc(i), where

L is a set corresponding to the most popular K files cached at the transmitters

among the set of available files in the caches.

Consider the special case of (2.16), where only the most popular file in

the network is cached at all the transmitters if available, i.e., |K| = 1, which

modifies (2.16) as

DSRP = λγ2pr(k)Pcov(T, λγ1pc(k), α)

(a)
= λγ2pr(k) pcov(T, λγ1pc(k), α),

where (a) follows from the fact that for |K| = 1, the coverage probability

becomes same as the sequential serving-based model in Sect. 2.5, and the

most popular file index k can be found from the demand distribution and

is given by k = arg max
i∈{1,...,M}

pr(i), and hence the corresponding density of the

transmitters is λγ1pc(k), where pr(k) ≥ pr(l) for all l = 1, . . . ,M .

2.7.2 Global DSR

Global DSR is defined as the average performance of all users in the

network, which is determined by the spatial characteristics of file distributions

and the coverage of a typical user. The DSR function in our model is state

dependent since the coverage probability of a user is determined according to

the files requested by the user. The expected global DSR is given as follows:

DSRG = λγ2

M∑
i=1

pr(i)Pcov(T, γ1λpc(i), α). (2.17)
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A Discussion on the Various Transmission Models. Popularity-

based transmission and global model in this section do not depend on the cache

states. Instead, they both depend on the global file popularity distributions,

and have similar characteristics as given in (2.16) and (2.17). It is intuitive to

observe that the optimal caching distributions in both models follow similar
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trends as the request distribution. Sequential serving-based model in Sect.

2.5.1 boils down to the scenario characterized in [81] where only a subset of

transmitters and their candidate receivers are active simultaneously. Hence,

this model mitigates interference and provides higher coverage than the other

models. However, since the DSR is a weighted function of the file transmit

pmf pc(·), the DSR of the model is reduced.

Now, we present some numerical results on the general transmission

models discussed and present results related to the popularity-based DSR,

global DSR and sequential DSR.

State dependent coverage probability. We illustrate the SINR

coverage probability for varying pj for a fixed fraction of transmitters (γ1 =

0.4) in Fig. 2.5. The coverage probability is state dependent8 and for the

receiver in state j, the density of transmitters is given by λj = λpj where pj =

γ1

∑
i∈fr(j)

pc(i). If the requested files are available in the set of transmitters, then

the receiver has higher coverage. Therefore, for higher fraction of transmitters

γ1, the coverage probability is higher.

Caching performance of the proposed transmission models.

The optimal caching strategies that maximize the caching problems of Sect.

2.7 given in (2.16) and (2.17) are not necessarily Zipf distributed. However,

without the Zipf distribution assumption, the optimization formulations be-

come intractable since pcov(T, λj, α) in (2.14) is nonlinear in the density of the

8The receiver’s state refers to the collection of files it requests.
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users. Therefore, for simulation purposes, we find the optimal Zipf caching

exponents that maximize the proposed functions.

DSR comparison. We investigate the variation of the sequential model

DSRS with respect to the caching parameter γc. From Fig. 2.6, we observe

that γc increases with the request distribution parameter γr, assuming both

distributions are Zipf. In Figs. 2.7 and 2.8, we illustrate the variation of the

popularity-based model DSRP and the global model DSRG with γc. In both

figures, it is clearly seen that as the requests become more skewed (higher γr),

the DSR increases. It also increases with γc, which implies that the optimal

caching distribution should also be skewed towards the highly popular files.

2.8 Numerical Results and Discussion

We evaluate the optimal caching distributions that maximize the DSR.

The simulation results are based on Sects. 2.5 and 2.6. We consider a general

PPP network model with Rayleigh fading distribution with µ = 1 and α = 4

for small and general noise solutions. The requests are modeled by Zipf(γr).

Benford versus Zipf distributions. In Figs. 2.9 and 2.10, we il-

lustrate the trend of optimal Zipf caching distribution and the Benford law

developed in Sect. 2.5 for different numbers of total files. As seen from Fig.

2.9, these two distributions have similar characteristics. However, as γr in-

creases, the range of M for which Benford caching distribution in (2.11) and

Zipf laws are comparable becomes narrower. For γr > 0.3, it is not practical

to approximate the Benford law with a Zipf distribution. In fact, as described
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in Sect. 2.5, as the noise level decreases, i.e., b =
√
µTσ2γr/(πλtβ(T, 4))

drops, the optimal caching strategy converges to Zipf distribution. As seen in

Fig. 2.10, for small noise, i.e., for high SNR, these laws behave similarly for

relatively high γr values compared to the general noise case.

We now compare the DSR of the sequential serving model for various

γr based on the optimal solutions that are also Zipf distributed, as derived

in Sect. 2.5, and the lower and upper bounds obtained in Sect. 2.6. The

numerical solutions are obtained by calculating the DSR of various (random)

caching pmfs and picking the best one that achieves the highest DSR.

Zipf caching with γc = γr
(α/2+1)

is a good approximation to max-

imize the DSR. In Fig. 2.11, we compare the performances of different

caching strategies for a Zipf request distribution with parameter γr = 0.5 and

SNR = 1. The Zipf caching distribution with parameter γr/3 is very close to

the optimal solution evaluated numerically that is also very close to the sim-
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ple lower bound derived in (2.13). Furthermore, Benford distribution has very

similar characteristics as the optimal caching distribution solution. There is a

huge gap between the UB and the no noise in terms of the DSR, and the DSR

for the no noise case is the highest among all for all SNR or T values.

LB and UB get closer together as the SNR increases. In Fig.

2.12, we compare the performance of the caching distributions for a Zipf re-

quest pmf with parameter γr = 0.5 and SNR = 10. At high SNR, the UB

and LB are closer. Still, the numerical solution and the Zipf caching pmf with

parameter γr/3 give similar densities of successful communication, which is

very close to the lower bound because for that choice of γr, the request distri-

bution converges to a uniform distribution. Benford caching distribution does

not perform as well as the Zipf caching distribution, and is even worse than

the LB. In Fig. 2.13, where γr = 2 and SNR = 1, the Zipf caching pmf with

parameter γr/3 does not have the same performance as the optimal solution

evaluated numerically. Benford distribution has also similar performance as

the Zipf caching pmf. In Fig. 2.14, we also show that Zipf caching pmf and

Benford distributions have similar performance as the numerical solution for

γr = 2 and SNR = 10.

Transmit Diversity. In the sequential serving model, where only one

file is transmitted at a time network-wide, as discussed in Sect. 2.5, using a

transmitter diversity scheme will improve the DSR. For the second scenario

presented in Sect. 2.7, in which different files are transmitted simultaneously,

a similar diversity scheme can be applied instead of treating the other trans-
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Figure 2.11: Bounds and approxima-
tions to the optimal DSRS for M = 10,
SNR = 1, λ = 1, Zipf request pmf with
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Figure 2.12: Bounds and approxima-
tions to the optimal DSRS for M = 10,
SNR = 10, λ = 1, Zipf request pmf with
γr = 0.5.

mitters as interferers. Diversity combining techniques include the maximal-

ratio combining (e.g., of the k closest transmitters [80]), where the received

signals are weighted with respect to their SINR and then summed, equal-gain

combining, where all the received signals are summed coherently, i.e., the shot-

noise model [61, Ch. 2], and the selection combining, which is based on the

strongest D2D user association, in which the received signal power (e.g., from

the k strongest users [80]) is considered.

Although diversity can decrease the outage probability, how to achieve

this in practice is a critical issue. Diversity would seem to require synchroniza-

tion of all transmitting devices at the physical layer unless higher layer coding

is used, which might not be very practical for content distribution. Assuming

full synchronization provides an upper bound on what could be achieved, due

to space constraints, we leave such analysis to future work.
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Figure 2.13: Bounds and approxima-
tions to the optimal DSRS for M = 10,
SNR = 1, λ = 1, Zipf request pmf with
γr = 2.
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Figure 2.14: Bounds and approxima-
tions to the optimal DSRS for M = 10,
SNR = 10, λ = 1, Zipf request pmf with
γr = 2.

2.9 Summary

Content distribution using direct D2D communications is a promising

approach for optimizing the utilization of air-interface resources in 5G net-

work. This work is the first attempt to derive closed form expressions for the

optimal content caching distribution and the optimal caching strategies pro-

viding maximum DSR in terms of the optimal fractions of transmitters and

receivers in a D2D network by using a homogeneous PPP model with realistic

noise, interference and Rayleigh fading. We derive the SINR coverage for dif-

ferent transmission strategies in D2D networks with some idealized modeling

aspects, i.e., simultaneous scheduling of the users containing the same type of

files and Zipf distributed content caching assumption for the general multi-file

transmissions. Our results for the sequential transmission model show that the

optimal caching pmf can also be modeled using the Zipf law and its exponent
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γc is related to γr through a simple expression involving the path loss expo-

nent: γc = γr
(α/2+1)

. The optimal content placement for more general demand

profiles under Rayleigh, Ricean and Nakagami fading distributions suggests to

flatten the request distribution to optimize the caching performance.

The limitations of the model can be overcome by investigating the

optimal caching distributions that maximize the DSR for the more general

transmission settings incorporating the transmit diversity, and developing in-

telligent scheduling techniques, which are left as future work. The dynamic

settings capturing the changes in the file popularities over time and the interfer-

ence caused by simultaneous transmissions should also be considered. Future

issues include the minimization of backhaul transmissions and BS overhead to

optimize resource utilization through D2D collaboration. Future work could

also include the design of distributed caching strategies to maximize the hit

probability for users by using an SINR coverage model or a distance-based

coverage process given the limited range of D2D.
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Chapter 3

Spatially Correlated Content Caching for

Device-to-Device Communications

D2D communication is a promising technique for enabling proximity-

based applications and increased offloading from the heavily loaded cellular

network, and is being actively standardized by 3GPP [10]. The efficacy of

D2D caching networks relies on users possessing content that a nearby user

wants. Therefore, intelligent caching of popular files is critical for D2D to be

successful1. Caching has been shown to provide increased spectral reuse and

throughput gain in D2D-enabled networks [13], and the optimal way to cache

content is studied from different perspectives, e.g. using probabilistic place-

ment [60], maximizing cache-aided spatial throughput [88], but several aspects

of optimal caching exploiting spatial correlations for network settings have not

been explored. Intuitively, given a finite amount of storage at each node, pop-

ular content should be seeded into the network in a way that maximizes the hit

probability that a given D2D device can find a desired file – selected at random

according to a request distribution – within its radio range. We explore this

1This chapter has been published in [86], [87]. I am the primary author of these works.
Coauthor Dr. Mazin Al-Shalash has provided many valuable discussions and insights to this
work, and Dr. Jeffrey G. Andrews is my supervisor.
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problem quantitatively in this chapter by considering different spatial content

models and deriving, optimizing and comparing the hit probabilities for each

of them.

Content caching has received significant attention as a means of im-

proving the throughput and latency of networks without requiring additional

bandwidth or other technological improvements. Video caching appears par-

ticularly profitable and plausible compared to other types of content [1], [41],

and is perfectly suited to D2D networks for offloading traffic from congested

cellular networks.

3.1 Related Work and Motivation

Research to date on content caching has been mainly focused on two

different perspectives. On one hand, researchers have attempted to understand

the fundamental limits of caching gain. The gain offered by local caching and

broadcasting is characterized in the landmark paper [56]. Although this work

does not deal with D2D communications and the caches cannot cooperate, it

provides the first attempt to characterize the gain offered by local caching.

Scaling of the number of active D2D links and optimal collaboration distance

with D2D caching are studied in [57], [76]. Combining random independent

caching with short-range D2D communications can significantly improve the

throughput [71]. Capacity scaling laws in wireless ad hoc networks are in-

vestigated in [77], featuring short link distances, and cooperative schemes for

order optimal throughput scaling is proposed in [89]. Capacity scaling laws
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for single [71], [56] and multi-hop caching networks [73] are also investigated.

Physical layer caching is studied in [90] to mitigate the interference, and in

[91] to achieve linear capacity scaling. Finite-length analysis of random caching

schemes that achieve multiplicative caching gain is presented in [92], [93].

Alternatively, as in the current chapter, there are several studies focus-

ing on decentralized caching algorithms that have optimized the caching dis-

tribution to maximize the cache hit probability, using deterministic or random

caching as in [58], [57] given a base station (BS)-user topology. FemtoCaching

replaces backhaul capacity with storage capacity at the small cell access points,

i.e., helpers, and the optimum way of assigning files to the helpers is analyzed

in [59] to minimize the delay. There are also geographic placement models

focusing on finding the cache locally such as [60], in which the cache hit prob-

ability is maximized for SINR, Boolean and overlaid network coverage models,

and [52], in which the density of successful receptions is maximized using prob-

abilistic placement. Although most of these strategies suggest that the caching

distribution should be skewed towards the most popular content and exploit

the diversity of content, and it is not usually optimal to cache just the most

popular files, as pointed out in [57], [76]. Further, as this chapter will show,

unlike the probabilistic policies, where the files are independently placed in

the cache memories of different nodes according to the same distribution [60],

[63], and [52]; it is not usually optimal to cache files independently. For larger

transmission range and higher network density, we will quantify and see that

the hit-maximizing caching strategy can be increasingly skewed away from
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independently caching the popular files.

Recent studies also address problems at the intersection of the hit prob-

ability and the spatial throughput. The spatial throughput in D2D networks

is optimized by suitably adjusting the proportion of active devices in [94]. Ex-

ploiting stochastic geometry, a Poisson cluster model is proposed in [95] and

the area spectral efficiency is maximized assuming that the desired content is

available inside the same cluster as the typical device. Some of the existing

work focuses on mitigating excessive interference to maximize the throughput

or capacity, as in [91], [13], [90]. Employing probabilistic caching, cache-aided

throughput, which measures the density of successfully served requests by lo-

cal device caches, is investigated in [88]. The optimal caching probabilities

obtained by cache-aided throughput optimization provide throughput gain,

particularly in dense user environments compared with the cache-hit-optimal

case.

Challenges for the adoption of caching for wireless access networks also

include making timely estimates of varying content popularity [96]. Cache

update algorithms exploiting the temporal locality of the content have been

well studied [97]. Inspired from the Least Recently Used (LRU) replacement

principle, a multi-coverage caching policy at the edge-nodes is proposed in

[98], where caches are updated in a way that provides content diversity to

users who are covered by more than one node. Although [98] combines the

temporal and spatial aspects of caching and approaches the performance of

centralized policies, it is restricted to the LRU principle.

64



3.2 Contributions and A High Level Summary

We consider a spatial D2D network setting in which the D2D user lo-

cations are modeled by a Poisson point process (PPP), and users have limited

communication range and finite storage. The D2D users are served by each

other if the desired content is cached at a user within its radio range: this is

called a hit. Otherwise, they are served by the cellular network base station,

which is what D2D communication aims to avoid.

We concentrate exclusively on the content placement phase in the above

setting in order to maximize the cache hit probability via exploiting the spatial

diversity. We do not focus on the transmission phase that incorporates the

path loss, fading or interference. The coverage process of the proposed scheme

is represented by a Boolean model (BM). The BM is tractable for the noise-

limited regime [60], where the interference is small compared to the noise. The

coverage area of the BM is determined by a fixed communication radius, as

will be detailed in Sect. 3.3.

Spatial caching, pairwise interactions and Matérn hard-core-

inspired placement. We introduce a spatial content distribution model for

a D2D network, and describe the cache hit probability maximization problem

in Sect. 3.3. Our aim is to extend the independent content placement strat-

egy, also known as geographic content placement (GCP) [60], where there is no

spatial correlation in placement, which we discuss in Sect. 3.4. We propose a

spatially exchangeable content placement technique to prioritize the caches for

content placement, which is detailed in Sect. 3.5. Exchangeable placement ac-
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tually performs worse than the baseline independent content placement. Next,

exploiting the Matérn hard-core (MHC) models, we propose novel spatially cor-

related cache placement strategies that enable spatial diversity to maximize

the D2D cache hit probability. In Sect. 3.6, we detail the MHC placement and

analyze two different MHC placement strategies: (i) HCP-A that can provide

a significantly higher cache hit probability than the GCP scheme in the small

cache size regime and (ii) HCP-B that has a higher hit probability than GCP

for short ranges.

The key differences from the independent placement model.

The device locations follow the PPP distribution, which provides a random

deployment instead of a fixed pattern, and hence it is possible to have cache

clusters and isolated caches [81], and the content placement distribution is

optimized accordingly. Unlike the independent placement model, where the

cache placement distribution is independent and identically distributed (i.i.d.)

over the spatial domain, the MHC model captures the pairwise interactions

between the D2D nodes and yields a negatively correlated placement. The

caches storing a particular file are never closer to each other than some given

distance, called the exclusion radius, meaning that neighboring users are not

likely to cache redundant content. Hence, the radius of exclusion plays the

role of a substitute for caching probability.

Comparisons and design insights. Sect. 3.7 provides a simulation

study to compare the performance between the different content placement

strategies. Independent content placement does not exploit D2D interactions
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at the network level, and our results show that geographic placement should

exploit locality of content, which is possible through negatively correlated

placement. For short range communication and small cache sizes, HCP is

preferred, and when the network intensity is fixed, the cache hit rate gain

of the HCP model over the GCP and caching most popular content schemes

can reach up to 37% and 50%, respectively when the communication range is

improved, as demonstrated in Sect. 3.7.

3.3 System Model and Problem Formulation

The locations of the D2D users are modeled by a PPP Φ with density

λt as in [28]. We assume that there are M total files in the network, where

all files have the same size, and each user has the same cache size N < M .

Depending on its cache state, each user makes requests for new files based on

a general popularity distribution over the set of the files. The popularity of

such requests is modeled by the Zipf distribution, which has probability mass

function (pmf) pr(n) = 1
nγr
/
∑M

m=1
1

mγr
, for n = 1, . . . ,M , where γr is the

Zipf exponent that determines the skewness of the distribution. The demand

profile is Independent Reference Model (IRM), i.e., the standard synthetic

traffic model in which the request distribution does not change over time. Our

objective is to maximize the average cache hit probability performance of the

proposed caching model. Therefore, it is sufficient to consider a snapshot of the
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network2, in which the D2D user realization is given and requests are i.i.d. over

the space. We devise a spatially correlated probabilistic placement policy, in

which the D2D caches are loaded in a distributed manner via additional marks

attached to them without accounting for any cost, in a timescale that is much

shorter than the time over which the locations are predicted, as will be detailed

in Sect. 3.6.

Consider a given realization φ = {xi} ⊂ R2 of the PPP Φ. The coverage

process of the proposed model can be represented by a Boolean model (BM)

[61, Ch. 3]. Specifically, given a transmit power P , if we only consider path

loss (with exponent α), no fading and no interference, the received signal

at the boundary should be larger than a threshold to guarantee coverage,

i.e., Pr−α ≥ T , yielding r ≤ RD2D = (P/T )α. Hence, D2D users can only

communicate within a finite range, which we call the D2D radius, denoted by

RD2D. A file request is fulfilled by the D2D users within RD2D if one has the

file; else the D2D user is served by a BS.

The BM is driven by the independently marked PPP on R2 Φ̃ =∑
i δ(xi,Bi(RD2D)), whose points xi’s denote the germs, and on disc-shaped grains

Bi(RD2D) – a closed ball of fixed radius RD2D centered at xi – that model the

2Extension of the model to also incorporate the temporal correlation of real traffic traces
can be done by exploiting models like the Shot-Noise Model (SNM). This overcomes the
limitations of the IRM by explicitly accounting for the temporal locality in requests for
contents [62]. However, in that case, the problem under study will have an additional
dimension to optimize over, and to do so, online learning algorithms should be developed
to both learn the demand and optimize the spatial placement. The study of the temporal
dynamics of the request distribution and the content transmission phase is left as future
work.
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coverage regions of germs. The BM is a tractable model for the noise-limited

regime [60]. The coverage process of the D2D transmitters driven by the BM is

given by the union VBM =
⋃
i (xi +B0(RD2D)) [61, Ch. 3]. For the interference-

limited regime, there is no notion of communication radius, and the analysis

of the coverage becomes more involved. SINR coverage models as in [60] can

be exploited to determine the distribution of the coverage number, i.e., the

number of D2D users covering the typical receiver. However, this is beyond

the scope of the current chapter.

To characterize the successful transmission probability, one needs to

know the number of users that a typical node can connect to, i.e., the cov-

erage number. Exploiting the properties of the PPP, the distribution of

the number of transmitters covering the typical receiver is given by NP ∼

Poisson(λt πR2
D2D). Therefore,

P(NP = k) = e−λt πR2
D2D

(λt πR2
D2D)k

k!
, k ≥ 0. (3.1)

3.3.1 Cache Hit Probability

Assume that the cache placement at the D2D users is done in a depen-

dent manner. Given NP = k transmitters cover the typical receiver, let Ymi be

the indicator random variable that takes the value 1 if file m is available in the

cache located at xi ∈ φ and 0 otherwise. Thus, the caching probability of file

m in cache i is given by pc,X(m,xi) = P(Ymi = 1). Optimal content placement

is a binary problem where the cache placement constraint
∑M

m=1 Ymi ≤ N is

satisfied for all xi ∈ φ, i.e., Ymi ’s are inherently dependent. However, the

69



original problem is combinatorial and is NP-hard. For tractability reasons, we

take the expectation of this relation and obtain our relaxed cache placement

constraint:
∑M

m=1 pc,X(m,xi) ≤ N . Later, we show there are feasible solutions

to the relaxed problem filling up all the cache slots.

The maximum average total cache hit probability, i.e., the probability

that the typical user finds the content in one of the D2D users it is covered by,

for a content placement strategy X can be evaluated by solving the following

optimization formulation:

max
pc,X

PHit,X

s.t.
M∑
m=1

pc,X(m,xi) ≤ N, xi ∈ Φ,
(3.2)

where the hit probability is given by the following expression:

PHit,X = 1−
M∑
m=1

pr(m)
∞∑
k=0

P(NX = k) PMiss,X(m, k), (3.3)

where P(NX = k) is the probability that k transmitters (caches) cover the

typical receiver, and PMiss,X(m, k) is the probability that k caches cover a

receiver, and none has file m.

We propose different strategies to serve the D2D requests that maximize

the cache hit probability. Assuming a transmitter receives one request at a

time and multiple transmitters can potentially serve a request, the selection

of an active transmitter depends on the caching strategy. A summary of the

symbol definitions and important network parameters are given in Table 4.1.
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3.3.2 Repulsive Content Placement Design

Optimizing the marginal distribution for content caching by decoupling

the caches of D2D users in a spatial network scenario is not sufficient to opti-

mize the joint performance of the caching. The performance can be improved

by developing spatially correlated content placement strategies that exploit

the spatial distribution of the D2D nodes, as we propose in this chapter.

Negatively correlated spatial placement corresponds to a distance-dependent

thinning of the transmitter process so that neighboring users are less likely to

have matching contents. This kind of approach is promising from an aver-

age cache hit rate optimization perspective. Therefore, we mainly focus on

negatively dependent or repulsive content placement strategies.

We next define negative dependence for a collection of random vari-

ables.

Definition 2. Random variables Y1, . . . , Yk, k ≥ 2, are said to be negatively

dependent, if for any numbers y1, . . . , yk ∈ R, we have that [99]

P
(⋂k

i=1
Yi ≤ yi

)
≤
∏k

i=1
P(Yi ≤ yi),

P
(⋂k

i=1
Yi > yi

)
≤
∏k

i=1
P(Yi > yi).

Next, in Prop. 1, we state the benefit of negatively correlated place-

ment, which is the basis of future spatially correlated policies including our

proposed policy in the current chapter.

71



Proposition 1. Negatively dependent content placement provides a higher av-

erage cache hit probability than the independent placement strategies.

Proof. See Appendix A in [87].

In the remainder of this chapter, we first discuss the independent con-

tent placement model in Sect. 3.4, which is a special case of the geographic

content placement (GCP) problem using the Boolean model first proposed in

[60].

We then ask the following question: Given the coverage number k

and file m, how large cache hit rates can we achieve, i.e., how small can

PMiss,N(m, k) ≤ P(Ym = 0)k get for a spatial content placement setting, or

what is the best negatively dependent content placement strategy? To answer

that, we consider a negatively dependent content placement strategy inspired

from the Matérn hard-core processes MHC (type II), which we call as the

hard-core content placement (HCP). We detail the HCP model in Sect. 3.6.

3.4 Independent Content Placement Design

Independent cache placement design is the baseline model where the

files are cached at the D2D users identically and independently of each other.

Let pc,I(m) = pc(m,xi) = P(Ym = 1) be the caching probability of file m in

any cache, which is the same at all points xi ∈ φ.

The maximum average total cache hit probability, i.e., the probability

that the typical user finds the content in one of the D2D users it is covered by,
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Symbol Definition

General System Model Parameters

Baseline PPP with transmitter density λt Φ

A realization of the PPP φ = {xi} ⊂ R2

D2D communication radius RD2D

closed ball centered at xi with radius RD2D Bi(RD2D)

The coverage process of the D2D transmitters driven by the BM VBM =
⋃
i

(xi +B0(RD2D))

File request distribution; Zipf request exponent pr(·) ∼ Zipf(γr); γr

Caching probability of file m in cache i pc,X(m,xi)

Density of receivers; density of D2D users λr; λt

Number of D2D users covering a receiver under strategy X NX

Hit probability for placement strategy X PHit,X

Miss probability of file m given k users cover the

typical receiver for placement strategy X PMiss,X(m, k)

Total number of files; cache size M ;N < M

Independent Content Placement Design

The caching distribution for

independent placement pc,I(m)

geographic content placement (GCP) strategy in [60] pc,G(m)

caching most popular content (MPC) pc,MPC(m) = 1m≤N

Hard-Core Content Placement (HCP) Design

HCP-A model constructed from the underlying PPP Φ ΦM

Exclusion radius of file m for the HCP-A model rm

The density of the HCP-A model for file m λHCP-A(m)

The number of neighboring transmitters in B0(rm) Cm ∼ Poisson(C̄m)

C̄m = λt πr
2
m

The number of transmitters containing file m in B0(RD2D) C̃m

2k dimensional bounded region [0, D]2k Dk = [0, D]2k

The cache miss region given there exists k nodes Vk = [0, D]2k\[0,RD2D]2k

Second-order product density for file m ρ
(2)
m (r)

Table 3.1: Notation for Chapter 3.
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can be evaluated by solving

max
pc,I

PHit,I

s.t.
M∑
m=1

pc,I(m) ≤ N,
(3.4)

and PMiss,I(m, k) = (1− pc,I(m))k, which is related to PHit,I through the PHit,X

expression in (3.3).

First, we consider the following trivial case of independent placement,

which is clearly suboptimal.

Proposition 2. Caching most popular content MPC. The baseline so-

lution is to store the most popular files only. Letting Ym = 1m≤N , i.e.,

pc,MPC(m) = 1m≤N , the miss probability is PMiss,MPC(m, k) = 1N<m≤M for all

m when k ≥ 1, and PMiss,MPC(m, k) = 1 when k = 0. Hence, the average cache

hit probability for the MPC scheme is PHit,MPC = P(NX ≥ 1)
∑N

m=1 pr(m).

The independent cache design problem in this chapter is a special case of

the geographic content placement (GCP) problem using the Boolean model as

proposed in [60]. The optimal solution of the GCP problem [60] is characterized

by Theorem 3.

Theorem 3. Geographic Content Placement (GCP) [60, Theorem 1].

The optimal caching distribution for the independent placement strategy is
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given as follows

p*
c,G(m) =


1, µ∗ < pr(m)P(NP = 1)

1
λt πR2

D2D
log
(
pr(m)λt πR2

D2D

µ∗

)
, pr(m)P(NP = 1) ≤ µ∗ ≤ pr(m)E[NP ],

0, µ∗ > pr(m)E[NP ]

(3.5)

where P(NP = 1) = e−λt πR2
D2D(λt πR2

D2D), E[NP ] = λt πR2
D2D. The placement

probabilities satisfy

pr(j)
M∑
m=1

P(NP = m)m(1− p*
c,G(j))m−1 = µ∗, j ∈ {1, . . . ,M}. (3.6)

The optimal variable µ∗ satisfies the equality
∑M

m=1 p*
c,G(m) = N .

Thus, the optimal value of the average cache hit probability for the GCP

model is given by

PHit,G =
M∑
m=1

pr(m)[1− exp (−λt p*
c,G(m)πR2

D2D)]. (3.7)

Proof. It follows from the use of the Lagrangian relaxation method [60, The-

orem 1]. The solution is found numerically using the bisection method.

Throughout the chapter we use the terms independent cache placement

and GCP interchangeably.

A Linear Approximation to Independent Cache Design. Given

that each cache can store N < M files3, our objective is to determine the

number of files L that should be stored in the cache with probability 1, and

3Swapping the contents within a cache does not change cache’s state.
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the maximum number of distinct files K that can be stored as a function of

the design parameters, e.g., RD2D, λt and N . We uniquely determine (L,K)

that approximate the optimal content placement pmf in (3.5).

Proposition 3. A linear approximation to GCP. The following linear

content placement model approximates (3.5):

pLin
c,G(m) = min

{
1,
(

1− m− L
K − L

)+}
, (3.8)

where y+ = max{y, 0} and the pair (L,K) can be determined using (B.1) and

(B.3).

Proof. See Appendix B.1.

We next demonstrate that this linear model is a good approximation.

We compare the optimal solution p*
c,G(m) (3.5) and our linear approximation

(3.8) pLin
c,G
∗
(m) in Fig. 3.1, and observe that our linear solution is indeed a good

approximation of the optimal solution. Keeping γr constant, by increasing

RD2D, we expect to see a more diverse set of requests from the user, L to

decrease and K to increase. The converse is also true. When we keep RD2D

fixed, and increase γr, since the requests become more skewed towards the most

popular files, the optimal strategy for the user is to store the most popular

files in its cache. Keeping RD2D and γr fixed, and increasing λ has a similar

effect as increasing RD2D, as illustrated. From these plots, although it is clear

that independent placement favors the most popular contents, it is not always

optimal to cache the most popular contents everywhere.
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Figure 3.1: Optimal cache placement (independently at each user) with more fo-
cused content popularity.

Next, in Sect. 3.5, we consider a simple spatially dependent content

placement strategy that is inspired from exchangeability.

3.5 Spatially Exchangeable Content Placement Design

From a user’s perspective, the exact location of cached content is not

important as long as it is available within RD2D. This is illustrated in Fig.

3.2 by an example with two equivalent models. In both models, the number

of caches having any content type is the same. However, the locations where
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the content is cached are different. More generally, from the typical user’s

perspective, any finite permutation of any content type among the caches

within RD2D of the user is equivalent.

Consider a spatially exchangeable cache model defined as follows. For

an ordered set of n transmitters covering a typical receiver with desired content

m, the binary sequence Ym1 , . . . , Ymn denotes the availability of the content in

the respective caches: Ymi takes the value 1 if file m is available in cache i and

0 otherwise. The sequence {Ymi} is exchangeable in the spatial domain.

Definition 3. An exchangeable sequence Y1, Y2, . . . , Yn of random vari-

ables is such that for any finite permutation r of the indices 1, 2, . . . , n, the

joint probability distribution of the permuted sequence Yr(1), Yr(2), . . . , Yr(n) is

the same as the joint distribution of the original sequence [100].

A theoretical description of exchangeability is given now.

Theorem 4. de Finetti’s theorem. A binary sequence Y1, . . . , Yn, . . . is

exchangeable if and only if there exists a distribution function F on [0, 1] such

that for all n p(y1, . . . , yn) =
∫ 1

0
θtn(1− θ)n−tn dF (θ), where p(y1, . . . , yn) =

P(Y1 = y1, . . . , Yn = yn) is the joint pmf and tn =
n∑
i=1

yi. It further holds that F

is the distribution function of the limiting frequency, i.e., if X = lim
n→∞

∑
i

Yi/n

a.s., then P(X ≤ x) = F (x) and by conditioning with X = θ, we obtain

P(Y1 = y1, . . . , Yn = yn|X = θ) = θtn(1− θ)n−tn . (3.9)

Future samples behave like earlier samples, meaning formally that any

order (of a finite number of samples) is equally likely. This formalizes the
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notion of the future being predictable on the basis of past experience. To give

more intuition on exchangeability, we next give an example.

Example 1. Sampling Without Replacement [101]. Fix the number

transmitters n covering a receiver with desired content m, and consider any

permutation Yr(m1), . . . , Yr(mn). Conditionally place the content to cache: P(Yr(mk) =

0|Yr(m1) = 0, . . . Yr(mk−1) = 0) = k
k+1

for 1 ≤ k ≤ n. Hence, the miss probability

for file m given k caches cover a receiver is PMiss,E(m, k) = 1
2
× 2

3
× . . .× k

k+1
=

1
k+1

. In this example, the limiting random variables are uniformly distributed

on [0, 1], i.e., Xm ∼ Fm = U [0, 1] for m ∈ {1, . . . ,M}. Hence, (3.11) gives

the same result for PMiss,E(m, k).

The formulation to maximize the cache hit for an exchangeable place-

ment strategy becomes

max
fXm

PHit,E

s.t.
M∑
m=1

E[Xm] ≤ N,∫ 1

0

dFXm(θ) = 1, m ∈ {1, . . . ,M}.

(3.10)

The constraints are such that the distribution functions FXm form ∈ {1, . . . ,M}

are on [0, 1], and E[Xm] =
∫ 1

0
θfXm(θ) dθ is the probability a cache contains

file m and each cache contains N files in total on average.

From Theorem 4, the average cache miss probability PMiss,E(m, k) is

given by

PMiss,E(m, k) =

∫ 1

0

(1− θ)kfXm(θ) dθ = E[(1−Xm)k], (3.11)
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Figure 3.2: Exchangeable cache placement with two equivalent models, where the
same set and multiplicity of files are permuted among the caches within RD2D of the
randomly located user.

which is related to PHit,E through (3.3). Hence, PHit,E in (3.10) is equal to

PHit,E =
M∑
m=1

pr(m)

∫ 1

0

[
1−

∞∑
k=0

P(Nt = k)(1− θ)k
]
fXm(θ) dθ

= 1−
M∑
m=1

pr(m)E[e−λt πR2
D2DXm ]. (3.12)

Proposition 4. Any exchangeable content placement strategy is worse than

independent placement in terms of the average cache hit probability.

Proof. Using the convexity of exponential function, we rewrite (3.12) as

PHit,E = 1−
M∑
m=1

pr(m)E
[
e−λt πR2

D2DXm
]

≤ 1−
M∑
m=1

pr(m)e−λt πR2
D2DE[Xm]. (3.13)
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Hence, the hit probability of the exchangeable placement model is lower than

the hit probability of the independent placement, for which pc(m) = E[Xm] is

the placement probability.

The next result generalizes Proposition 4 to any kind of coverage dis-

tribution P(Nt = ·).

Lemma 10. Given any coverage distribution, which include the Boolean model

and the Signal-to-Interference-and-Noise-Ratio (SINR) model or any other cov-

erage model, the exchangeable placement strategy always performs worse than

the independent placement strategy.

Proof. Let Xm’s be the limiting random variables for the exchangeable model.

From (3.11), PMiss,E(m, k) = P(
⋂k
m=1{Ym = 0}) = E[(1 − Xm)k], and from

exchangeability, the distribution function of Xm, i.e., FXm is on [0, 1]. From

the convexity of (1 − Xm)k for k ∈ Z≥0, PMiss,E(m, k) ≥ (1 − E[Xm)])k. The

hit probability for the exchangeable model is bounded by

PHit,E ≤ 1−
M∑
m=1

pr(m)
∞∑
k=0

P(Nt = k)(1− E[Xm])k,

where E[Xm] = P(Ym = 1) denotes the caching probability of file m for the

independent placement model, which gives a higher average hit probability

than the exchangeable strategy.

We showed that spatially exchangeable placement yields a positively

correlated spatial distribution of content, and is suboptimal in terms of the
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cache hit probability compared to independent placement. However, as the

coverage number [80] –the number of transmitters simultaneously covering a

user– increases, the performance of exchangeable placement approaches the

performance of independent placement.

A wide class of random processes exhibit exchangeability, which in-

clude combinatorial stochastic processes, Markov chains, coalescent processes,

Poisson-Dirichlet processes, Erdős-Rényi graphs, the Chinese restaurant pro-

cess, and a large collection of statistical mechanical systems on complete

graphs. Interested reader can refer to [100] and [102] for further examples.

3.6 Hard-Core Content Placement Design

We next consider the hard-core regime, which provides useful insights

for the development of spatial content placement for the regime relevant to

D2D communications. Matérn’s hard-core (MHC) model is a spatial point

process whose points are never closer to each other than some given distance.

We provide two different spatially correlated content placement models both

inspired from the Matérn hard-core (MHC) (type II): (i) HCP-A which is an

optimized placement model to maximize the average total cache hit probabil-

ity in (3.2), and (ii) HCP-B which has the same marginal content placement

probability as the GCP model in [60], and is sufficient for achieving a higher

cache hit probability than the GCP model.
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3.6.1 Hard-Core Placement Model I (HCP-A)

We propose a content placement approach to pick a subset of trans-

mitters based on some exclusion by exploiting the spatial properties of MHC

(type II) model, which we call HCP-A. This type of MHC model is constructed

from the underlying PPP Φ modeling the locations of the D2D user caches by

removing certain nodes of Φ depending on the positions of the neighboring

nodes and additional marks attached to those nodes [61, Ch. 2.1]. Each trans-

mitter of the BM VBM is assigned a uniformly (i.i.d.) distributed mark U [0, 1].

A node x ∈ Φ is selected if it has the lowest mark among all the points in

Bx(R), given exclusion radius R. A realization of the MHC point process ΦM

is illustrated in Fig. 3.3.

The HCP-A placement model is motivated from the MHC model and

implemented as follows. For each file type, there is a distinct exclusion radius

(rm for file m) instead of having a fixed exclusion radius R, and the exclusion

radii are determined by the underlying file popularity distribution. Given a

realization φ of the underlying PPP modeling the locations of the transmitters

with intensity λt, we sort the file indices in order of decreasing popularity. For

given file index m and radius rm, we implement the steps (a)-(d) described in

Fig. 3.3 to determine the set of selected transmitters to place file m. For the

same realization φ, we implement this procedure for all files. Once a cache is

selected N times, then it is full, and no more file can be placed even if it is

selected. The objective is to determine the file radii to optimize the placement.

Definition 4. Configuration probability. The probability density function
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Figure 3.3: MHC point process realization for a given exclusion radius R: (a) Begin
with a realization of PPP, φ. (b) Associate a uniformly distributed mark U [0, 1] to
each point of φ independently. (c) A node x ∈ φ is selected if it has the lowest mark
inside Bx(R). (d) Set of selected points for a given realization of the PPP.

(pdf) of the MHC point process ΦM with exactly k points in a bounded region

D = [0, D]2 ∈ R2 that denotes the set retained caches that contain file m is
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given by f : R2k → [0,∞) [64, Ch. 5.5] so that

fm(ϕ) =

{
am, if sϕ(rm) = 0,

0, otherwise.
(3.14)

which is also known as the configuration probability, i.e., the probability that the

hard-core model ΦM takes the realization ϕ. In the above, ϕ = {x1, . . . , xk} ⊂

D denotes the set of k points, am is a normalizing constant and sϕ(r) is the

number of inter-point distances in ϕ that are equal or less than r. This yields

a uniform distribution4 of a subset of k points with inter-point distances at

least rm in D.

We optimize the exclusion radii to maximize the total hit probability.

The exclusion radius of a particular file rm depends on the file popularity in

the network, transmitter density and the cache size and satisfies rm < RD2D.

Otherwise, once rm exceeds RD2D, as holes would start to open up in the cov-

erage for that content, the hit probability for file m would suffer. We consider

the following cases: (i) if the file is extremely popular, then many transmitters

should simultaneously cache the file, yielding a small exclusion radius, and

(ii) if the file is not very popular, then fewer (or zero) transmitters would be

sufficient for caching the file, yielding a larger exclusion radius. Therefore,

intuitively, we expect the exclusion radius to decrease with increasing file pop-

ularity. Our analysis also supports this conclusion that the exclusion radius is

4The pdf of the retained process (3.14) is a scaled version of the pdf of the PPP Φ in
which there is no point within the exclusion range of the typical cache. This yields a uniform
distribution of k points in D, i.e., f(ϕ) = a, where a is a normalizing constant.
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inversely related to the file popularity, i.e., the most popular files are stored in

a high number of caches with higher marginal probabilities unlike the files with

low popularity that are stored with lower marginals, and with larger exclusion

radius.

By the Slivnyak Theorem, the Palm distribution of the PPP Φ seen

from its typical point (cache) located at 0 corresponds to the law of Φ ∪ {0}

under the original distribution [61, Ch. 1.4]. Since the typical node (which

is at the origin) of Φ has Cm neighbors distributed as Cm ∼ Poisson(C̄m)

with C̄m = λt πr
2
m, given the exclusion radius rm for file m of the HCP-A

model, and the file may be placed at most at only one cache within this

circular region. Hence, the probability of a typical D2D transmitter to get the

minimum mark in its neighborhood to qualify to cache file m, equivalently,

the caching probability of file m at a typical transmitter is

pc,HCP-A(m) = E
[ 1

1 + Cm

]
=

1− exp(−C̄m)

C̄m
. (3.15)

From (3.15), we can easily observe that there is a one-to-one relationship be-

tween rm and pc,HCP-A(m). The inverse relationship between rm and pc,HCP-A(m)

can be seen by taking the following limits:

lim
rm→0

pc,HCP-A(m) = 1, lim
rm→∞

pc,HCP-A(m) = 0, (3.16)

which implies that the popular files have small rm, hence are cached more

frequently, and unpopular files have larger exclusion radii, and are stored at

fewer locations.
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We denote the density of the HCP-A model for file m by

λHCP-A(m) =
[1− exp(−C̄m)]

πr2
m

= pc,HCP-A(m)λt . (3.17)

Let C̃m be the number of transmitters containing file m within a circular region

of radius RD2D. At most one transmitter is allowed to contain a file within the

exclusion radius. Therefore, when rm ≥ RD2D, we have C̃m ∈ {0, 1}, and when

rm < RD2D, we have C̃m ∈ {0, 1, 2, · · · }.

Proposition 5. The MHC placement is a negatively dependent placement tech-

nique.

Proof. See Appendix B in [87].

As the file popularity increases, the exclusion radius gets smaller. Hence,

the average number of transmitters within the exclusion region, i.e., C̄∗m, de-

creases, and the chance of having at least one transmitter caching that file

within RD2D increases, i.e., P(C̃m ≥ 1) > P(C̃n ≥ 1) for m < n. This yields a

higher pc,HCP-A(·) for more popular files from (3.15). If the demand distribution

is uniform over the network, then each file has the same caching probability,

i.e., pc,HCP-A(m) is the same for all m, yielding the same rm for all m, which is

intuitive. When the demand distribution is skewed towards the more popular

files, then λHCP-A(m) scales with the request popularity and rm is inversely

proportional to pr(m), i.e., less popular files will end up being stored in fewer

locations, and popular files will be guaranteed to be available over a larger

geographic area, which is intuitive.
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In the HCP-A model, using the pdf in (3.14) that denotes the configu-

ration of the retained transmitters, the miss probability of file m given k users

cover a typical receiver is

PMiss,MA(m, k) =

∫
· · ·
∫
Vk
fm(x1, . . . , xk) dx1 . . . dxk, (3.18)

where the region Vk characterizes the cache miss region given there exists k

D2D nodes, i.e., it is the 2k dimensional region denoted by Vk = [0, D]2k\[0,RD2D]2k.

The maximum hit probability for the HCP-A model is given by the

solution of
max

pc,HCP-A(m)
PHit,HCP-A

s.t.
M∑
m=1

pc,HCP-A(m) ≤ N,
(3.19)

and PMiss,MA(m, k) is given in (3.18), which is related to PHit,HCP-A through

the PHit,X expression given in (3.3) of the original optimization formulation in

(3.2).

Proposition 6. The average cache hit probability for the HCP-A model is

PHit,HCP-A =
M∑
m=1

pr(m)P(C̃m > 0|rm), (3.20)

where the term P(C̃m > 0|rm) is essential in determining the cache hit proba-

bility and given as

P(C̃m > 0|rm)

{
≥ 1− exp(−λHCP-A(m)πR2

D2D), rm < RD2D,

= λHCP-A(m)πR2
D2D, rm ≥ RD2D .

(3.21)

Proof. See Appendix B.2.
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The optimal solution of the HCP-A model in (3.19) is characterized by

Theorem 5.

Theorem 5. Hard-Core Content Placement (HCP). The optimal caching

distribution for the HCP model is given as follows

p*
c,HCP-A(m) =

{
λt
−1W (cpr(m)), m ≤ mc,

λt
−1 cpr(m), m > mc,

(3.22)

where W is the Lambert function, and mc = arg max
m∈{1,··· ,M}

{rm|rm < RD2D}, and

the relation

mc∑
m=1

W (cpr(m))− cpr(m) = N λt−c (3.23)

can be used to determined the value of c. Hence, we determine λ*
HCP-A(m) and

the optimal value of the exclusion radius, i.e., r∗m, from (3.23) as a function

of the request pmf pr(m), cache size N and the transmitter density λt.

Proof. See Appendix D in [87].

Consider a ball centered at origin and of radius D, i.e., B0(D), with

D � maxm{rm}, let the number of users in B0(D) be Poisson with P(NP (D) =

k) = e−C̄D (C̄D)k

k!
, where C̄D = λt πD

2 is the average number of transmitters

within B0(D). Due to the limited storage capacity of the caches, the mean

total number of files that can be cached in B0(D) is upper bounded by NC̄D.

To determine the average number of users containing a desired file type in

region B0(D), we use the second-order product density of the MHC process

ΦM , which is defined next.
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Definition 5. Second-order product density [64, Ch. 5.4]. For a sta-

tionary point process ΦM , the second-order product density is the joint proba-

bility that there are two points of ΦM at locations x and y in the infinitesimal

volumes dx and dy, and given by

ρ(2)
m (r) =


λ2
HCP-A(m), r ≥ 2rm

2Vrm(r)[1− e−λt πr2
m ]− 2πr2

m[1− e−λt Vrm (r)]

πr2
mVrm(r)[Vrm(r)− πr2

m]
, rm < r < 2rm,

0, r ≤ rm

(3.24)

where λ−2
t ρ

(2)
m (r) is the two-point Palm probability that two points of Φ sep-

arated by distance r are both retained to store file m [64, Ch. 5.4], and

Vrm(r) = 2πr2
m − 2r2

m cos−1
(

r
2rm

)
+ r
√
r2
m − r2

4
is the area of the union of

two circles with radius rm and separated by distance r. Pairwise correlations

between the points separated by r > rm are modeled using the second-order

product density –ρ
(2)
m (r) for file m– of the MHC process.

Using the Campbell’s theorem [61, Ch. 1.4], we deduce that the average

number of transmitters of the stationary point process ΦM –conditioned on

there being a point at the origin but not counting it– contained in the ball

B0(RD2D) is given by

E!◦

[ ∑
x∈ΦM

1(x ∈ B0(RD2D))

]
= λt

−1

∫
B0(RD2D)

ρ(2)
m (x) dx. (3.25)

An upper bound on the probability that a user requesting file m is

covered is given by the following expression:

P(C̃m ≥ 1|rm < RD2D)
(a)

≤ E[C̃m|rm < RD2D]
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(b)
= 1− exp(−λ*

HCP-A(m)πR2
D2D)

+ λt
−1

∫
B0(RD2D)

ρ(2)
m (x)dx, (3.26)

where (a) follows from using Markov inequality, and (b) from using (3.25), to

deduce the average number of caches that stores file m in B0(RD2D).

Proposition 7. The maximum cache hit probability for the HCP-A model is

approximated by the following lower and upper bounds:

PLB
Hit,HCP-A =

mc∑
m=1

pr(m)[1− e−λ*
HCP-A(m)πR2

D2D ]

+
M∑

m=mc +1

pr(m)λ*
HCP-A(m)πR2

D2D,

PUB
Hit,HCP-A = PLB

Hit,HCP-A +
mc∑
m=1

pr(m)λt
−1

∫ RD2D

r∗m

ρ(2)
m (x)dx, (3.27)

where C̄∗m = λt π(r∗m)2 with r∗m denoting the optimal value of the radius rm,

and λ*
HCP-A(m) follows from (3.17).

Proof. See Appendix E in [87].

To compare the performance of the GCP and the HCP models in terms

of their average cache hit probabilities, we next consider an example.

Example 2. Cache hit rate comparison for GCP and HCP. Consider a

simple caching scenario with M = 2 files and a cache size of N = 1, and the

request distribution satisfies pr(1) = 2/3 and pr(2) = 1/3. Let λt π = 1 and

assume RD2D is given.
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• In the GCP model, from Theorem 3, given the product λt πR2
D2D, the values

of P(NP = 1), E[NP ] can be computed. Checking the conditions in (3.5),

the optimal value of µ, and p*
c,G(1) and p*

c,G(2) can be determined. Thus,

from (3.7), the optimal cache hit probability for the GCP model becomes

P*
Hit,G =

∑2
m=1 pr(m)[1− exp(− p*

c,G(m)λt πR2
D2D)].

• In the HCP model, from (3.17), we have λHCP-A(m) = [1−exp(−C̄m)]
πr2
m

= pc,HCP-A(m)λt

for m = 1, 2. Using the cache constraint,
∑2

m=1 λHCP-A(m) = λt. Thus, from

(3.20), the cache hit probability for the GCP model becomes PHit,HCP-A =

2/3P(C̃1 > 0|r1)+1/3P(C̃2 > 0|r2), where from (3.21), we compute P(C̃m >

0|rm) using the lower bound in Prop. 7.

The optimal values P*
Hit,G, PLB*

Hit,HCP-A for different RD2D are tabulated in Table

3.2, where the results for the HCP model are obtained by optimizing PLB
Hit,HCP-A

in (3.27) of Proposition 7. For RD2D high, as the lower bound of the HCP

model is very close to P*
Hit,G, both models perform similarly. However, for

small RD2D, the HCP model outperforms (with a cache hit rate gain up to

25% using the lower bound) because it can exploit the spatial diversity.

Ideally, when a cache placement strategy is applied, the files need to

be placed at a cache in a way that all the cache slots are occupied. In the

GCP model in [60], authors propose a probabilistic placement policy to fill

the caches. However, in the case of HCP-A placement, due to the random

assignment of the marks in each cache independently for distinct files, it is not

guaranteed that all the caches are full in the HCP-A approach, which causes
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RD2D µ∗ p*
c,G(1, 2) P*

Hit,G r∗1 , r
∗
2 λ*

HCP-A(1, 2) PLB*
Hit,HCP-A√

0.5 0.1836 1, 0 0.2623 0.7071, 1.7117 0.2813, 0.0370 0.3140√
0.75 0.2430 0.9621, 0.0379 0.352 0.866, 1.4283 0.2428, 0.0756 0.4407

1 .28592 0.8466, 0.1534 0.4282 1, 1.257 0.201, 0.1174 0.5438√
2 0.3468 0.6733, 0.3267 0.6532 0.8718, 1.4178 0.2411, 0.0772 0.6818√
3 0.3156 0.6155, 0.3845 0.7896 1.0149, 1.2410 0.1961, 0.1222 0.7896√
10 0.0318 0.5347, 0.4653 0.9936 1.0909, 1.1576 0.1704, 0.1479 0.9936

10 9.0926e−21 0.5035, 0.4965 1 1.1225, 1.1225 0.1592, 0.1592 1

Table 3.2: Numerical results in Chapter 3 for Example 2, with M = 2, N = 1 and
pr(1) = 2/3 pr(2) = 1/3.

underutilization of the caches as detailed next.

Proposition 8. Cache underutilization. The HCP placement model causes

underutilization of the caches, i.e., on average, the fraction of the D2D nodes

of Φ that contain N distinct files is always less than 1. This can be formally

stated as follows:

1

NE[NP ]

M∑
m=1

E[C̃m] ≤ 1, (3.28)

where E[NP ] = λt πR2
D2D.

Proof. See Appendix F in [87].

The storage size N and the exclusion radius rm have an inverse rela-

tionship. As N drops, because it is not possible to cache the files at all the

transmitters, the exclusion radius should increase to bring more spatial diver-

sity into the model. From the storage constraint in (3.19), as N drops, rm
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increases (rm →∞ as N → 0). Hence, a typical receiver won’t be able to find

its requested files within its range. When N increases sufficiently, rm can be

made smaller so that more files can be cached at the same transmitter (rm → 0

as N → ∞). Hence, the typical receiver will most likely have the requested

files within its range.

Proposition 9. A sufficient condition for the HCP-A placement model.

The HCP-A performs better than the independent placement model (GCP) [60]

in terms of hit probability if the following condition is satisfied:

λHCP-A(m) ≥


λt p*

c,G(m), rm < RD2D,

1− exp(−λt p*
c,G(m)πR2

D2D)

πR2
D2D

, rm ≥ RD2D,
(3.29)

where p*
c,G(m) is the optimal caching distribution for the GCP.

Proof. See Appendix B.3.

In the regime where rm is chosen to satisfy the inequality in (3.29), for

all m, the HCP-A placement model performs better than independent place-

ment, and the volume fraction occupied by the transmitters caching file m, i.e.,

the proportion of space covered by the union
⋃
xi∈ΦM

(xi +B0(RD2D)) pertain-

ing to file m, is lower bounded by λHCP-A(m)
λt

≥ 1−e−λt p*
c,G(m)πR2

D2D

λt
. When the

selection of λHCP-A(m) does not satisfy (3.29), the volume fraction pertaining

to the caches storing file m is upper bounded by λHCP-A(m)
λt

< p*
c,G(m).

From (3.29), the density parameter λHCP-A(m) decreases with RD2D,

hence, the exclusion radius rm increases with RD2D, which is intuitive because
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as the number of transmitters within the communication range increases a

smaller fraction of them should cache the desired content. The exclusion ra-

dius decreases with popularity, i.e., rm decreases as pr(m) increases. It also

decreases with λt and the cache size N .

We consider two regimes of caching controlled by the cache size N ,

which determines the optimal cache placement solutions for the independent

and HCP-A placement models. The spatial diversity of the content is captured

by the optimal placement distribution for given N . As N increases, content

diversity per cache increases and less spatial diversity is required. Therefore,

when N is sufficiently large, independent placement is better than HCP-A

placement. For the HCP-A placement model, the exclusion radii decrease with

the file popularity. However, for small N , a higher exclusion radii are required

for all files, which will increase the spatial diversity. Therefore, in the regime

where N is small, for sufficiently large RD2D, HCP-A placement performs better

than independent placement (GCP).

We next detail another MHC-based model called HCP-B and provide

sufficient conditions for achieving a higher cache hit probability than the GCP

model of [60].

3.6.2 Hard-Core Placement Model II (HCP-B)

In this section, we propose a new MHC-inspired placement model called

HCP-B. We seek a spatially correlated content caching model that improves

the performance of the independent placement model of Sect. 3.4 based on
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the GCP problem in [60] using the same marginal caching probabilities, i.e.,

on average the fraction of the users containing a file is equal to its optimal

placement probability of the GCP model.

Different from the HCP-A model in Sect. 3.6.1, where we maximize the

average cache hit probability given the finite cache storage constraint, in this

section we optimize the exclusion radii using the caching distribution in (3.5)

of the GCP model in Theorem 3, and provide sufficient conditions so that the

HCP-B model is at least as good as the GCP scheme of [60].

The proposed content placement model is slightly different from the

MHC point process transmission model with fixed radius. Instead, for each

file type, there exists a different exclusion radius. For each file type, a circular

exclusion region is created around each active transmitter to prevent all the

transmitters located in a circular region from caching a particular content

simultaneously. The exclusion radii are determined by the file popularity,

which is detailed next.

The critical exclusion radius should be inversely proportional to the

popularity of the requests, which is mainly determined by the skewness pa-

rameter γr. As γr increases, the distribution becomes more skewed and higher

variability is observed in the exclusion radii of different files.

In Fig. 3.4, we illustrate the trend of the MHC process for different

exclusion radii R. Each node is associated a uniformly distributed mark U [0, 1]

independently. Node xi ∈ φ is selected if it has the lowest mark in Bi(R). As
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(a) Baseline PPP (b) MHC, R=1

(c) MHC, R=5 (d) MHC, R=10

Figure 3.4: MHC versus the exclusion radii R. (a) Begin with a realization of PPP,
φ. Set of selected points (denoted by plus sign) for a given realization of the PPP
for an exclusion radius of (b) R = 1, (c) R = 5 and (d) R = 10.

97



the exclusion radius R increases, the intensity of the retained nodes, i.e., λMHC

of HCP-B process, decreases.

Proposition 10. The exclusion radius for content m for the HCP-B model is

given as

r∗m =

√
1

λtπ
W
(
−

exp(−1/ p*
c,G(m))

p*
c,G(m)

)
+

1

λtπ p*
c,G(m)

, n ∈ Z, (3.30)

where p*
c,G(·) is the optimal caching distribution for GCP and W is the Lambert

function.

Proof. See Appendix H in [87].

From Prop. 10, given the same marginal caching distributions for the

GCP and the HCP-A models, the relation (3.30) guarantees the HCP-A model

to outperform the independent content placement model in terms of the aver-

age cache hit rate performance.

Using the second order properties of the hard-core models, the variance

of the HCP model is approximated by [64, Ch. 4.5]

VarHCP-A ' λHCP-A +2π

∫ ∞
0

(
ρ(2)(r)− λ2

HCP-A

)
rdr.

Hence, using (3.24) the variance of the MHC model for file m can be approxi-

mated as

VarHCP-A(m) ' λHCP-A(m)− 4λHCP-A(m)[1− exp(−λt πr
2
m)]

+ 2π

∫ 2rm

rm

ρ(2)
m (r)rdr. (3.31)
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Note that rm decreases, and λHCP-A(m) and ρ
(2)
m (r) increase with popu-

larity. Therefore, we can observe that there is a higher variability for popular

files, which means that popular files are placed more randomly than unpopular

files, and for unpopular files the placement distribution becomes more regular.

This implies that randomized caching is in fact good for popular files, and

more deterministic placement techniques are required for unpopular files.

3.7 Numerical Comparison of Different Content Place-
ment Models

We showed that the HCP techniques detailed in Sect. 3.6 yield nega-

tively correlated placement, and can provide a higher cache hit than indepen-

dent placement (GCP). In this section, we verify our analytical expressions

and provide a performance comparison between the GCP of [60], summarized

in Sect. 3.4, and the HCP of Sect. 3.6 by contrasting the average cache hit

rates, as discussed in Sect. 3.3. For tractability, in our simulations we assume

M = 2 and N = 1. The D2D nodes form realizations of a PPP Φ over the

region [−10, 10]2 with an intensity λt per unit area. We assume there is a

typical receiver at the origin which samples a request from the distribution

satisfying pr(1) = 2/3 and pr(2) = 1/3. To compute the average cache hit

probability performance of different models, we run 105 iterations, where at

each iteration, we consider a realization φ of PPP Φ.

Cache hit rate with respect to λt. We illustrate the cache hit

probability trends of the MPC policy, the GCP model in [60], and the HCP-A
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and HCP-B placement models together with the bounds for the HCP-A model

with respect to the intensity λt for RD2D = 10 in Fig. 3.5. It has already been

numerically demonstrated in Fig. 3 of [60] that the hit probability of GCP

outperforms MPC policy, especially for low SINR thresholds, corresponding to

large RD2D values. Therefore, we use GCP as benchmark for the comparison.

The lower and upper bounds for the hit probability of the HCP-A placement

in (3.27) of Prop. 7 is also shown. Compared to the GCP model in [60], the

HCP-A and HCP-B placement models provide higher cache hit probabilities,

which we demonstrate next. From Fig. 3.5, we observe that the average cache

hit probability for all cases improves with λt, GCP improves with increasing

λt, and the performance gap between the HCP models and the GCP is higher

at high λt. The respective cache hit gains of the HCP-B and HCP-A models

over GCP can be up to 30% and 37%, and the gain of HCP-A over MPC is 50%

for this particular example.

Cache hit rate with respect to RD2D. The numerical comparison

for the GCP and the HCP-A models for varying RD2D and fixed λt in Exam-

ple 2 is tabulated in Table 3.2. Now, we illustrate the dependence of the

average cache hit probability of different cache placement models on the com-

munication radius RD2D in Fig. 3.6. The lower and upper bounds for the hit

probability of the HCP-A placement in (3.27) of Prop. 7 is also shown. For

high RD2D, both models perform similarly. However, when RD2D is small, HCP

performs better because it exploits the spatial diversity of the D2D caches.

For small RD2D, feasible for the D2D regime, MHC-inspired approaches are a
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Figure 3.5: Maximum cache hit probabilities of the MPC, GCP and HCP model for
varying D2D node intensity λt.

better alternative5.

Cache utilization ratio. As discussed in Proposition 8, the HCP

placement model causes underutilization of the caches. We numerically inves-

tigate the cache utilization ratio for the HCP-A sufficient condition given in

Prop. 9, which is shown in Fig. 3.7. As RD2D increases, the utilization drops

because there will be more D2D caches around the typical receiver and hence,

the required number of cache slots decreases. For small λt, the values taken

by λHCP-A(m) are small that yields a low utilization ratio when RD2D is large,

5One disadvantage of the HCP-B model is that the excluded files’ cache space is not
reused, which can be resolved by jointly assigning marks. Therefore, we need to vectorize
the marks to jointly determine the set of cached files and to avoid the problems caused
by cache underutilization or overuse. The calculation of the cache underutilization or the
overuse probability is left as future work.
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Figure 3.7: The cache underutilization (follows from Prop. 9 of Chapter 3).

which follows from (3.29). However, the utilization can be improved by jointly

determining the values of λHCP-A(m) and RD2D.
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Cache size. The performance of the independent and the HCP models

is mainly determined by the cache size. Hence, the analysis boils down to

finding the critical cache size that determines which model outperforms the

other in terms of the hit probability under or above the critical size. In Fig. 3.8,

we show the trend of the optimal exclusion radius rm of the HCP-B model with

respect to the caching pmf pc,X(m). As we expect from (3.29), the exclusion

radius rm decays with the popularity and the cache size N . Note that the HCP

model compensates the small cache size at the cost of communication radius.

Refinement to soft-core models. The thinning leading to the MHC

process can be refined such that higher intensities λHCP-A are possible [64, Ch.

5.4], at the price of more complicated algorithms [103] and [104]. For refine-

ment of the hard-core models, models based on Gibbs point processes (GPPs)
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with repulsive potentials can be developed to generate soft-core6 placement

models [61, Ch. 18]. The study of soft-core models inspired from GPPs, and

the maximum caching gain due to the spreading of content in geographic set-

tings is left as future work.

3.8 Summary

We proposed spatially correlated content caching models to maximize

the hit probability by incorporating strategies to enable spatial diversity, e.g.,

spatially exchangeable cache model, and hard-core placement strategies that

capture the pairwise interactions to enable spatial diversity.

Our findings on spatial content caching suggest that the following design

insights should enable more efficient caching models for D2D-enabled wireless

networks:

Repulsive cache placement. Negatively correlated content place-

ment rather than independent placement is required to maximize the cache hit

probability. Due to the isotropy of the PPP process, we contemplate a rotation

invariant caching model. To satisfy negative spatial correlation, geographical

separation of the content within the neighborhood of a typical receiver is re-

quired. Thus, in caching protocol design, it is important to incorporate an

exclusion region around each cache, such that nodes in this region are not

allowed to cache simultaneously. We show that high cache hit rates in a PPP

6In the case of a soft-core point process, thinning is stronger the closer point pairs of the
initial PPP are, but any pair distance still has non-vanishing probability.
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network can be achieved through a MHC-inspired placement model.

Towards soft-core placement models. We analyzed the HCP model,

where the exclusions are determined by the hard-core radii. Future studies in-

clude more general solutions inspired from the GPP or Ising models capturing

the pairwise interactions using soft-core potentials. The shape and scale of the

potential should be determined accordingly. The pairwise potential function is

promising because it can characterize the spatial and temporal dynamics of the

file popularities at different geographic locations adaptively. Hence, the soft-

core placement incorporating pairwise correlations can be exploited to improve

the cache hit rate. This can can pave the way for the development of spatial

cache placement and eviction policies to decide what content to discard, when

to discard the content and where (to which neighbor) to relay the content,

and provide practical design insights into how to adapt to geographical and

temporal changes without compromising the accuracy.

Possible extensions also include hierarchical models for content delivery

[97], multi-hop routing to improve the hit probability, distributed scheduling

and content caching with bursty arrivals and delay constraints, and smoothing

the cellular traffic by minimizing the peak-to-average traffic ratio with D2D

transmissions.
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Chapter 4

Resource Allocation for Content Caching in

D2D-Enabled Cellular Networks

Content caching is the key enabling design technique for offloading from

the cellular infrastructure to decentralized device-to-device (D2D) communi-

cation. Caching aims to maximize the probability that the desired content can

be found in a nearby device, i.e., the local hit rate. Due to potentially high

density of devices, novel ways of scheduling concurrent D2D transmissions are

required in order to avoid interference and optimize the caching performance1.

Power control is an effective approach to handle interference. Different

power control algorithms to either optimize resource utilization for D2D have

been proposed in [107], or to maximize the coverage probability of the cellular

link as detailed in [108]. Interference analysis in carrier sense multiple access

(CSMA) wireless networks is implemented in [109]. A synchronous P2P sig-

naling and a concomitant scheduling protocol is designed in [6] that enables

efficient channel aware spatial resource allocation and achieves significant gains

over a CSMA system.

1This chapter will be published in [105], [106]. I am the primary author of these works.
Coauthor Dr. Mazin Al-Shalash has provided many valuable discussions and insights to this
work, and Dr. Jeffrey G. Andrews is my supervisor.
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Distributed solutions have been proposed for scalability and to improve

different utility metrics. For example, a Gibbs sampling approach for schedul-

ing to minimize the total interference and the delay is proposed in [110], and to

learn how to optimize the placement to maximize the cache hit rate of cellular

networks is analyzed in [111]. Femtocaching using small cell access points, i.e.,

helpers, to minimize total delay is studied in [59].

Content placement and delivery should be jointly designed to maximize

the offloading gain of D2D caching [112]. Fair traffic association is required

to balance the total load among the nodes. When the traffic demand and the

location of caches are regular enough, the strategy of selecting the nearest cache

can actually be close to optimal, as demonstrated in [113]. If the locations are

not regular, load balancing can result in a maximum load of order Θ(log log n),

where n is the number of servers and requests, as shown in [114]. This is an

exponential improvement in a maximum load compared to the scheme which

assigns each request to the nearest available replica. Our distributed solution

is motivated from load balancing in the context of caching, which also captures

the local demand popularity and cache configurations, unlike prior work.

We consider a spatial caching network in which the D2D receivers and

the potential transmitters are uniformly distributed. We assume the content

placement configuration of the potential transmitters as given. For this system

model, we propose a totally distributed scheduling policy for the potential

transmitter process by capturing the local demand profile of the receivers, the

spatial distribution and the availabilities of the transmitters, with the objective
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of maximizing the spectral efficiency.

Our model is an auction-based dynamic scheduling policy in which

each receiver bids on the set of potential transmitters in its communication

range. A fraction of the transmitters are jointly scheduled based on an on-off

scheduling strategy given a medium access probability (MAP). The scheduling

is not done uniformly at random, rather it depends on the cache configurations.

The proposed solution captures (i) the cache configurations, (ii) the signal-to-

interference-and-noise-ratio (SINR) coverage probability conditioned on the

potential transmitter process, and (iii) the file popularity via the distribution

of the local requests. We demonstrate the performance of our model for a given

configuration in terms of the average rate per user under independent reference

model (IRM) traffic, then test its robustness under different popularity profiles.

4.1 System Model

We envision a D2D caching network model in which the locations of

the receiver process Φr and the potential transmitter process Φ are assumed

to form a realization of two independent homogeneous two-dimensional spatial

Poisson point process (PPPs) with densities λr and λt, respectively.

We assume that the catalog size of the network isM and M = {1, . . . ,M}

denotes the set of files. Each transmitter has a cache of finite size N < M .

Each receiver makes a file request based on a general popularity distribution

over the set of the files. The document requests are modeled according to

the Independent Reference Model (IRM), and the popularity distribution is
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modeled by the pmf pr(n), n ∈M.

We have the following additional assumptions in the model.

• Consider a snapshot of the set of D2D nodes at a tagged time slot where

a subset of the potential transmitters Φ simultaneously access the channel

given a MAP pA.

• The cache configuration is given, i.e., at a given snapshot the set of cached

files is revealed to the users.

• Each receiver makes a request for one file randomly sampled from pr, and

can associate with any transmitter within its communication range.

• A transmission is successful only if the received SINR is above the threshold

T , given that the potential transmitter is on and it caches the desired file.

High level summary. Each receiver is allowed to communicate with

any potential transmitter in its communication range and needs to choose a

link. Receiver u is associated with potential transmitter x, estimates the link

SINR, and bids on x if the desired content is available in x’s cache. The values

of the receiver bids are reported to potential transmitter x, and x computes

the cumulated sum of these variables taken on all users in its cell. The po-

tential transmitter x then reports the value of the bid sum to other potential

transmitters in its contention range. Given the accumulated bids of all po-
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tential transmitters, the exclusion (or contention) range2 and the MAP, the

algorithm determines the set of active transmitters.

Let Φ̃ = {(x,mx,Px)} be an independently marked PPP with intensity

λt, where i) Φ = {x} denotes the locations of potential transmitters, ii) {mx}

are the marks of Φ̃, and iii) Px = (P y
x : y) denotes the virtual power emitted

by node x to node y provided it is authorized by the MAC mechanism. The

random variables Px are i.i.d., exponential with mean µ−1.

Definition 6. Neighborhoods. The neighborhood system on Φ is the family

N = {N(x)}x∈Φ of subsets of Φ such that for all x ∈ Φ, we have x /∈ N(x),

and z ∈ N(x) =⇒ x ∈ N(z). The subset N(x) is called the neighborhood of

node x.

For x ∈ Φ, let the neighbors of node x be

N(x) = {(y,my,Py) ∈ Φ̃ : P x
y /l(|x− y|) ≥ P0, y 6= x}, (4.1)

i.e., the nodes in its contention domain. If we only consider path loss and no

fading, the received signal at the boundary should be larger than the threshold,

equivalent to D = (µP0)−1/α for a fixed transmit power of µ−1. Thus, P x
y /l(|x−

y|) ≥ P0 will be equivalent to y ∈ Bx(D), where Bx(D) is a ball centered at x

with contention radius D.

2If a transmitter has other transmitters in its contention domain, its channel capacity
will be a fraction of the medium capacity due to sharing of resources.

110



Symbol Definition

PPP distributed D2D receivers; potential transmitters Φr; Φ

Medium access probability; set of active transmitters pA; Φt

Density of receivers; density of potential transmitters λr; λt

Intensity of the set of active transmitters λ = pA λt

Signal-to-Noise-Ratio (SNR) at the receiver σ−2

Signal-to-Interference-and-Noise-Ratio (SINR) threshold T

Ball centered at node x with radius R Bx(R)

D2D radius; exclusion radius for the Matérn CSMA RD2D; D

File request distribution pr ∼ Zipf(γr)

Total number of files; cache size; set of all files M ;N ; M

File requested by u ∈ Φr; cache config. of x ∈ Φ cu; Cx

Path loss exponent; power law path loss function α; l(r) = r−α

Accumulated bid of transmitter x Bφ(x)

A realization of the point process Φ with K nodes φ

Voronoi cell of x with respect to the point measure φt Vx(φt)

M ×K binary matrix denoting the cache states b

jth column of b b:,j , xj ∈ φ
Indicator of availability of file m in cache xj ∈ φ bm,j = 1

Set of all feasible cache states B

On-off powers of potential transmitters Pj = 1xj∈φt

A configuration with set of devices φ and a cache state matrix b zzz({Pj ,bj})
Cache hit rate averaged over the set of requests given a configuration zzz RHit(zzz)

Table 4.1: Notation for Chapter 4.

The medium access indicators {ex}x are additional dependent marks of

the points of Φ as follows:

ex = 1
(
∀y∈N(x)mx < my

)
. (4.2)

The set of transmitters retained by CSMA as a non-independent thin-
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ning of the PPP Φ, and denoted by

Φt = {x ∈ Φ|ex = 1}. (4.3)

The probability of medium access of a typical node equals pA = E0[ex], where

E0 is the expectation with respect to Φ’s Palm probability P0; i.e., P0(Φ({0}) ≥

1) = 1 [61, Ch. 4].

Next, by incorporating the SINR coverage characteristics in a realis-

tic D2D network setting with contention prevention provided by the MHC-II

model, we envisage a bidding-aided scheduling policy in Sect. 4.2.

4.2 Bidding-Aided Policy for User Associations

Using the potential transmitter model just described, the potential re-

ceived SINR of a receiver located at u covered by x ∈ Φ is expressed as

SINRx,u =
Pxul(|x− u|)

σ2 +
∑

z∈Φ\{x} Pzul(|z − u|)
, (4.4)

where r = |x− u| is the distance between the potential transmitter located at

x ∈ Φ and the receiver u, and for a fixed path loss exponent α, l(r) = r−α under

OPL3 [61, Ch. 2.3], and r and rz = |z−u|, z ∈ Φ denote the distance between

the potential transmitter and the receiver, and the interferers and the receiver,

respectively, and σ2 is the noise power at the receiver side. Similarly, {Pzu}z∈Φ

are random variables that denote the on-off powers of potential transmitters,

i.e.,

Pzu =

{
1, z ∈ Φt

0, z ∈ Φ\Φt

,
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where Φt is a repulsive point process that models the retained process of trans-

mitters. The procedure to decide the set of retained and silent transmitters

will be detailed in this section.

We develop a bidding-based user association algorithm such that re-

ceivers are associated in a way to maximize the “local cache hit probability”.

We introduce an on-off distributed scheduling method with coordination be-

tween the neighboring transmitters for the D2D caching framework3. For a

fixed probability of medium access4, the bidding algorithm determines which

links to activate by capturing the matchings between the availability of the

caches and the local demand.

Each receiver u ∈ Φr bids on the potential transmitters x ∈ Φ in its

range RD2D based on their virtual SINR coverage probability characteristics.

Each x ∈ Φ accumulates bids from all receivers. Because the local demand and

the coverage characteristics will be similar, the transmitters located at similar

geographic locations collect similar bids. Upon the assignment of the bids of

all the potential transmitters, x ∈ Φ is scheduled if it has the highest bid inside

a circular exclusion region Bx(D). Hence, the process of retained transmitters

Φt will be obtained as a dependent thinning of Φ, in contrast with the Matérn

hard-core (MHC) model where the potential transmitters are assigned i.i.d.

marks. We next discuss the technical details of the bidding approach.

3On-off scheduling requires the CSI knowledge about the direct link between the trans-
mitter and its corresponding receiver [108]. We only consider long term CSI (ignore fading).

4Only a certain fraction of transmitters is to be activated to control interference and
provide the D2D users with high spectral efficiency.
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4.2.1 Accumulated Bid of a Potential Transmitter

For given realizations φ of Φ, and φr of Φr, the total bid collected at a

potential transmitter x ∈ φ is determined using the following expression:

Bφ(x) =
∑

u∈Ux
pxr (cu)P(SINRx,u > T ), x ∈ φ, (4.5)

where for the general coverage model with noise and interference, we denote

by

Ux = {u ∈ φr ∩Bx(RD2D)|x ∈ φ, cu ∈ Cx} (4.6)

is the set of receivers that bid on the potential transmitter x.

Note that (4.5) is a weighted sum of the virtual SINR coverage distri-

butions of the set of receivers inside the coverage region with radius RD2D of

the potential transmitter x. The parameter cu (sampled i.i.d. from pr) denotes

the index of the file requested by receiver u, and Cx denotes the set of files

available in the cache of transmitter x ∈ Φ, i.e., the cache configuration of x.

The local request distribution observed at x ∈ φ, i.e., the request distribution

conditioned on the cache configuration of x ∈ φ, is given as

pxr (m) = |Ux(m)|/|Ux|, x ∈ φ, m ∈ Cx, (4.7)

where

|Ux(m)| =
∑

u∈φr∩Bx(RD2D)
1(cu = m)1(m ∈ Cx), x ∈ φ

|Ux| =
∑

u∈φr∩Bx(RD2D)|x∈φ
1(cu ∈ Cx) (4.8)
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are the number of receivers in the coverage of x that request file m ∈ Cx, and

the cardinality of the set of users associated to x ∈ φ, respectively.

The bidding formulation in (4.5) captures the

• cache availability through the conditioning on the set Ux,

• SINR coverage conditioned on the potential transmitter process φ, and

• file popularity through the local request distribution pxr as defined in (4.7).

Using this bidding formulation, we analyze the bidding algorithm in Sect. 4.2.2

to determine the set of retained transmitters φt. We illustrate the bidding

algorithm in Fig. 4.1.

Consider the network setup in Fig. 4.1-(a) with the set of potential

transmitters and receivers. In Fig. 4.1-(b), we show the interactions between

the potential transmitter centered at origin, where the solid (dashed) circle

shows the communication (exclusion) range. A receiver can bid on the poten-

tial transmitter only if it is in the communication range. Fig. 4.1-(c) shows the

system-level interactions that might overlap depending on the potential trans-

mitter locations. Fig.4.1-(d) shows the set of retained transmitters selected

based on the bidding algorithm.

Similar to a hard-core process, φt has an exclusion radius of D possibly

different from the communication radius RD2D that will be determined in Sect.

4.2.3.
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Figure 4.1: A visualization of the bidding algorithm on the receiver and the poten-
tial transmitter processes.

The cardinality of receivers that bid on x ∈ φ, i.e., |Ux|, is distributed

as Poisson(λxrπR2
D2D), where the intensity of receivers that bid on transmitter

x is given by λxr = λr
∑

m∈Cx pr(m). Hence, the average number of receivers

associated to x ∈ φt is given by E[|Ux|] = λxrπR2
D2D, and the distribution of

|Ux| satisfies

P(|Ux| = n) = exp (−λxrπR2
D2D)

(λxrπR2
D2D)n

n!
. (4.9)

The rest of this section is mainly devoted to the special case of the ho-

mogenous PPP approximation for the bidding algorithm and its distributional
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characteristics. Note that this does not imply that the thinning of Φ is done

independently. We will detail how the results will differ for various bidding

models in Sect. 4.3.

4.2.2 Analysis of Bidding with Homogeneous PPP Transmitters

The process of transmitters Φt arranged according to some homoge-

neous PPP of intensity λ = pA λt in the Euclidean plane. For the general SINR

regime, the probability of coverage of a typical randomly located receiver in the

general cellular network model, where the transmitters are arranged according

to some homogeneous PPP is evaluated in [81]. The coverage probability of

a user u (assuming that the user is associated to the nearest transmitter) is

given as

P[SINR > T ] = e−µTσ
2/l(r)LIr(µT/l(r)), (4.10)

where r denotes the distance from the receiver to the serving transmitter, and

LIr(s) is the Laplace transform of the interference and is given by

LIr(s) = exp
(
− πλ

∫ ∞
r2

1

1 + µs−1tα/2
dt
)
.

Hence, we can compute LIr(µT/l(r)) as

LIr(µT/l(r))
(a)
= exp

(
− πλρ(T, α)r2

)
, (4.11)

where (a) follows from employing a change of variables z = t/(T 2/αr2), where

ρ(T, α) = T 2/α
∫∞
T−2/α

1
1+zα/2

dz,
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Cumulated bid (4.5) of potential transmitter x ∈ φ can be rewritten

using the SINR distribution given in (4.10) as

Bφ(x) =
∑
u∈Ux

pxr (cu)e
−µTσ2/l(rxu)LIrxu (µT/l(rxu)),

=
∑
u∈Ux

pxr (cu) exp
(
−µTσ2/l(rxu)− πλρ(T, α)r2

xu

)
(a)
=
∑
u∈Ux

pxr (cu)
(
1− µTσ2/l(rxu)− πλρ(T, α)r2

xu

)
, (4.12)

where rxu = |x − u|, and (a) is required for analytical tractability. The total

bid expression in (4.12) is a random variable as a function of the local request

distribution pxr (cu) of u ∈ Ux. Conditioning on the value of |Ux|, u ∈ Ux are

independently and uniformly distributed in the ball Bx(RD2D).

The spatial distribution of the bids can be calculated using a similar

approach to the one proposed in [115]. In Theorem 6, we give the moment-

generating function (MGF) of Bφ(x), which fully characterizes the bid distri-

bution.

Theorem 6. The MGF of the cumulated bid of transmitter x, i.e., Bφ(x)

expression in (4.12), is given as

MBφ(x)(t) = exp
(
λxrπR2

D2D(a(t)− 1)
)
, (4.13)

where a(t) is given by

a(t) =
1

R2
D2D

∫ R2
D2D

0

exp
(
tpxr (cu)

(
1− γ/l(v1/2)− βv

))
dv, (4.14)

where the parameters are given as γ = µTσ2 and β = πλρ(T, α).
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Proof. See Appendix C.1.

Two special cases of Theorem 6, i.e., the noise-limited regime, I → 0,

and the interference-limited regime, σ2 → 0, can be obtained by evaluating

the integral in (4.14) and incorporating the different SINR regimes in (4.12),

which are given next.

Corollary 4. The bid distribution for the noise-limited regime is characterized

by (4.13), where a(t) is given as

a(t) =
etpxr (cu)

R2
D2D

2/α

(tpxr (cu)γ)
2
α

[
Γ

(
2

α

)
− Γ

(
2

α
,
tpxr (cu)γ

l(RD2D)

)]
, I → 0. (4.15)

Corollary 5. The bid distribution for the interference-limited regime is char-

acterized by (4.13), where a(t) is given as

a(t) =
etpxr (cu)

R2
D2D

1

tpxr (cu)β
[1− e−tpxr (cu)βR2

D2D ], σ2 → 0. (4.16)

The bid-based approach can be generalized using more general pro-

cesses. Some other examples include non-homogeneous PPP approximation

for MHC models [116], or a modified MHC model [117], or a more general

non-homogeneous PPP approximation for the Matérn CSMA [61, Ch. 18.5].

In this section, we only discussed the bidding algorithm under the PPP ap-

proximation. In Sect. 4.3, we also discuss the non-homogeneous models for

the bidding algorithm.
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4.2.3 Communication Range versus Exclusion Range

Given a contention-based model, the interference measured at the typ-

ical point depends on the range of the contention domain. Hence, the range at

which the communication is successful, i.e., SINR ≥ T , is determined by the

exclusion radius. Using the SINR expression in (4.4), we rewrite the SINR for

noise-limited and interference-limited regimes as follows:

SINR =

{
hl(r)/σ2, I → 0

hl(r)/Ī, σ2 → 0,
(4.17)

where h is the exponential channel gain with parameter µ. The communication

range is defined by RD2D such that r ≤ RD2D =⇒ SINR ≥ T .

Using (4.17), and neglecting the small scale Rayleigh fading variabil-

ity, it is easy to note that in the noise-limited regime, there is a one-to-one

mapping between T and RD2D. Unlike the noise-limited regime, RD2D for the

interference-limited regime is variable. To ease the analysis in the interference-

limited regime, we approximate the interference I by its mean Ī. Hence, one

can derive the communication range

RD2D =

{
(µTσ2)−1/α, I → 0,

(µT Ī)−1/α, σ2 → 0,

respectively for the noise- and interference-limited regimes.

We benefit from a very useful approximation to characterize Ī, which

is first suggested in [116]. The excess interference ratio (EIR) as defined in

[116] is the mean interference measured at the typical point of a stationary

hard-core point process of intensity λ with minimum distance D relative to
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the mean interference in a Poisson process of intensity λ(r) = λ1[D,∞)(r).

Their analysis shows that the excess interference ratio for Matérn processes

of type II (MHC-II) never exceeds 1 dB. Thus, using a modified path loss law

l̃(r) = l(r)1r>D, the mean interference is approximated as

Ī ≈ λ

∫
R2

l̃(|y|)dy = 2πλ

∫ ∞
D

r−α+1 dr =
2πλ

α− 2
D2−α,

using which RD2D can be approximated as a function of the exclusion radius

D as the interference varies.

In addition to the homogeneous PPP model, there are different methods

of estimating the SINR for the thinned transmitter process. For example,

exploiting the non-homogeneous PPP model, the intensity of the transmitters

becomes Λ(x) = λt k(x) [61, Ch. 18.5], where k(x) is the two-point Palm

probability that two points of Φ separated by distance r are both retained

[64, Ch. 5.4]. Another approach is to utilize the modified Matérn hard-core

model proposed in [117]. Technical discussions of these models will be given

next.

4.3 Generalized Bidding Models

In this section, we consider more general bidding algorithms using dif-

ferent spatial distributions to model the locations of active transmitters.

For the analytical approximations, we exploit the special case of the

Matérn hard-core type-II (MHC-II) process, where {mx} are i.i.d. marks over
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x ∈ Φ, uniformly distributed on [0, 1]. The first-order and second-order mo-

ment characteristics of the MHC-II process are given as follows.

Definition 7. The intensity of active transmitters of the MHC-II model ΦM

equals

λMHC = pAλt =
1− exp(−N̄)

πD2
, (4.18)

where pA is the probability of medium access and N̄ = λt πD
2 is the expected

number of neighbors of the typical node.

The second-order product density of the MHC-II process ΦM is given by

[64, Ch. 5.4], [116] as

ρ(2)(r) = λt
2k(r)

=


λ2
MHC, r ≥ 2D

2VD(r)[1−exp(−λt πD2)]−2πD2[1−exp(−λt VD(r))]
πD2VD(r)[VD(r)−πD2]

, D < r < 2D

0, r < D

,

(4.19)

where k(r) is the two-point Palm probability that two points of Φ separated by

distance r are both retained [64, Ch. 5.4], and VD(r) = 2πD2−2D2 cos−1
(
r

2D

)
+

r
√
D2 − r2

4
denotes the area of the union of two circles having radius D and

separated by distance r.

4.3.1 Non-Homogeneous PPP Approximation for MHC

Using the first- and second-order statistics of the MHC model given

in (4.18) and (4.19), respectively, we can approximate the MHC with a non-
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homogeneous PPP model. In that case, the intensity of the transmitters be-

comes Λ(x) = λt k(x) [118, Ch. 18.5], where k(x) is given in (4.19). Hence,

the Laplace transform of the interference for the non-homogeneous PPP can

be given as

LNppp

Ir
(s) = exp

(
− λt

∫ ∞
0

∫ 2π

0

τk(τ)

1 + T−1l(r)/l(v)
dθdτ

)
, (4.20)

where v =
√
D2 + r2 − 2Dr cos(θ) as can be seen from Fig. 4.2.

Non-Homogeneous PPP-based Bidding Algorithm. Using the

first- and second-order statistics of the MHC model to approximate it by a

non-homogeneous PPP and using its Laplace transform given in (4.20), and

letting sxu = µT/l(rxu), we can derive the accumulated bid Bφ given in (4.5)

of potential transmitter x ∈ φ as follows:

B
Nppp
φ =

∑
u∈Ux

pxr (cu)e
−µTσ2/l(rxu) LNppp

Irxu
(µT/l(rxu))

≥
∑
u∈Ux

pxr (cu)

(
1− µTσ2

l(rxu)
− λt

∫ ∞
0

∫ 2π

0

τk(τ)

1 + T−1l(rxu)/l(vxu)
dθdτ

)
,

(4.21)

where rxu = |x−u| is the distance from the receiver u to the serving transmitter

x.

4.3.2 A Modified MHC Model

A modified MHC point process for modeling transmitters is proposed

in [117], where transmitters are never closer than some given distance D. The

modified MHC can be considered as an approximated grid model, where each
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Figure 4.2: Illustration of the coverage area of TX located at 0. The receiver is
located at a distance r from the TX. The shortest distance between receiving users
and interfering TXs is denoted by v.

transmitter has a coverage radius RD2D and other interfering transmitters are

randomly deployed outside the coverage area. The users are located according

to a stationary point process which is independent of Φ, and each user is

associated with its closest transmitter.

The proposed model in [117] approximates the point process of the

transmitters to three joint processes, illustrated in Fig. 4.2.

• Each user is in the coverage area of a transmitter, denoted by TX 0 (i.e.,

there exists one transmitter whose distance from the user is less than RD2D);

• Outside the circle whose center is TX 0 and radius is D, denoted by B0(D),

the other transmitters are deployed as a homogeneous PPP Φr1 with inten-

sity λt;
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• In the ring area whose center is TX 0 with inner radius D and outer radius

D + dD, where dD → 0, the transmitters are deployed as a PPP Φr2 with

intensity
λt×(πD2−πR2

D2D)

2πDdD
. To make the density of transmitters uniform, we

have πR2
D2D λt = 1 and thus RD2D =

√
1
π λt

. Therefore, the intensity in the

ring area should be
D2/R2

D2D−1

2πDdD
.

Given the distance r between the serving transmitter and the user, the

Laplace transforms of Ir,1 and Ir,2, which denote the interference from regions

outside B0(D) and the ring area, respectively, are given as

LMhc
Ir,1

(s) = exp
(∫ 2π

0

∫ ∞
v

−λt τ

1 + µs−1/l(τ)
dτdθ

)
, (4.22)

LMhc
Ir,2

(s) = exp
( 1

2π

∫ 2π

0

−(D2/R2
D2D−1)

1 + µs−1/l(v)
dθ
)
, (4.23)

where v =
√
D2 + r2 − 2Dr cos(θ). We denote their product by LMhc

Ir
(s) =

LMhc
Ir,1

(s)LMhc
Ir,2

(s).

Thus, the SINR coverage probability for a randomly selected user is

given as

P[SINR > T ] = e−µTσ
2rα LMhc

Ir (s), (4.24)

where s = µTrα. To calculate the coverage probability averaged over the

distribution of the distance between the transmitter and the user, (4.24) needs

to be multiplied by fMhc
R (r), which denotes the conditional distribution of the

distance from receiver to the serving transmitter given that r < RD2D, i.e.,

given there is at least one transmitter in the coverage of the receiver, and then
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integrated. Hence, the distance distribution is given as

fMhc
R (r) =

2π λt re
−λt πr2

1− e−λt πR2
D2D

, 0 ≤ r ≤ RD2D . (4.25)

A Modified Hard-Core Model-based Bidding Algorithm. The

modified hard-core model proposed in [117] captures the repulsion between

the transmitters at the cost of some additional computational effort. Hence,

we can develop a better bidding algorithm exploiting the modified hard-core

approach.

Using a similar approach as in (4.12), and letting sxu = µT/l(rxu), we

can derive the accumulated bid Bφ given in (4.5) of potential transmitter x ∈ φ

as follows:

BMhc
φ =

∑
u∈Ux

pxr (cu)e
−µTσ2/l(rxu) LMhc

Iru
(sxu)

≥
∑
u∈Ux

pxr (cu)

(
1− µTσ2

l(rxu)
− λt

2

∫ 2π

0

v2
xuρ
(
T l
(vxu
rxu

)
, α
)

dθ

− 1

2π

∫ 2π

0

( D
RD2D

)2 − 1

1 + T−1l
(
rxu
vxu

)dθ

 , (4.26)

where rxu = |x−u| is the distance from the receiver u to the serving transmitter

x, and vxu =
√
D2 + r2

xu − 2Drxu cos(θ).

4.3.3 Non-homogeneous PPP approximation for the Matérn CSMA

Conditional on the event 0 ∈ ΦM, and using the non-homogeneous PPP

approximation with intensity λt h for the law of ΦM \0 given in [118, Ch. 18.5],
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i.e., letting x = 0 so that |z| = r in (4.4), the probability that a transmitter

covers its receiver is given as

P[SINR > T ]

≈ exp
(
− sσ2 − λt

∫
R+

∫ 2π

0

τh(τ, P0)

1 + µ/(l(
√
τ 2 + r2 − 2rτ cos(θ))s)

dθdτ
)
,

(4.27)

where s = µT/l(r), and the function h is defined in [118, Cor. 18.4.3] as

h(r, P0) =

2
c(r,P0)−N̄

(
pA − 1−e−c(r,P0)

c(r,P0)

)
(1− e−P0µ/l(r))

pA − e−P0µ/l(r)
(

1−e−N̄

N̄2 − exp(−N̄)

N̄

) , (4.28)

where N̄ = λt πD
2, the detection threshold P0 satisfies D = (µP0)−1/α, the

medium access probability is given by pA = 1−e−N̄

N̄
, and the function c(r, P0) is

given as follows:

c(r, P0)

= 2N̄−λt

∫
R+

∫ 2π

0

exp
(
−P0µ

(
l−1(τ) + l−1

(√
τ 2 + r2 − 2rτ cos(θ)

)))
τdθdτ.

In the above, (4.28) denotes given there are two links in the network and one

link is active the conditional probability that these links are both active.

The MHC-II model assigns each transmitter a uniformly distributed

and i.i.d., and can capture the repulsion among the transmitters, but it has

limitations due to (i) no use of the SINR coverage to assign marks and (ii)

selection of a user randomly in this area. Therefore, it fails to capture the

attraction between the transmitter and receiver pairs in a content caching

scenario. This motivates us to use approaches similar to Gibbs fields.
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Exploiting the coverage model for the presented in Sect. 4.3.3, the

Bφ for the non-homogeneous PPP approximation model can be derived in a

similar manner as the other models.

In Sects. 4.2 and 4.3, we have considered general bidding algorithms

and provided a distributed auction scheme. Next, in Sect. 4.4, we discuss

how to model the process of retained transmitters through on-off scheduling

exploiting the auction-based policy.

4.4 Process of Retained Transmitters

Let {mx} be random variables (marks) over x ∈ Φ that are i.i.d. and

uniformly distributed on [0, 1]. Consider the following scheduling policies:

Random selection. In this model, each transmitter is randomly activated

with probability pA, where there is no exclusion region around the transmitters.

This case is equivalent to assigning marks {mx} to x ∈ Φ̃. Thus, the medium

access indicator of node x is

eRx = 1 (mx < pA) . (4.29)

Matérn CSMA. In the case of MHC thinning, the potential transmitters

x ∈ Φ̃ are assigned marks {mx}, and a transmitter is retained if it has the

“lowest mark” or “highest mark” within the exclusion region. Hence, we have

eMx = 1
(
∀y∈N(x)mx < my

)
, (4.30)
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where the parameter D is determined using the first-order characteristics pAλt.

Bidding-aided Matérn CSMA. Consider the following bidding-aided Matérn

CSMA thinning model, where instead of assigning i.i.d. and uniformly dis-

tributed marks {mx} on [0, 1] to each of x ∈ Φ̃, we compare the cumulated bid

values {Bφ(x)}x and retain the transmitters that have the highest bid value

within the exclusion region. Hence, we have

eBx = 1
(
∀y∈N(x) Bφ(x) > Bφ(y)

)
, (4.31)

where Bφ can be determined using either of the models in (4.11) for hom.

PPP, (4.20) for non-hom PPP, (4.22), (4.23) for modified MHC model, (4.27)

for Matérn CSMA, and the exclusion range parameter D is determined using

(4.18) given a MAP pA.

Bid ordering. In this scheme, given a realization φ of Φ with cardinality

|φ| = N , bids are sorted in descending order. The sorted bid vector is given

as Bφ,S = sortx∈Φ(Bφ(x)). For a given probability of medium access pA, node

x is retained if its bid rank is at most bpANc. The medium access indicator is

given as

eOx = 1 (Bφ(x) ≥ Bφ,S(bpANc)) . (4.32)

Spectral Efficiency. Spectral efficiency gives the number of bits trans-

mitted per unit time per unit bandwidth. For tractability, we assume that each

129



transmitter allocates equal time-frequency resources to its users, i.e., each user

gets rate proportional to the spectral efficiency of its downlink channel from

the serving transmitter. For total effective bandwidth W Hz, the average

downlink rate in bits/sec of a typical user is

E[R|N > 0] = E
[
W

Ñ
log2(1 + SINR)1SINR≥T

]
, (4.33)

where N is the number of users served by the tagged transmitter. The distri-

bution of N (for the PPP BS setting) is characterized in [119]. Given there is

at least one user associated to the tagged transmitter, which occurs with prob-

ability P(N > 0) = 1−exp(−Λr), where Λr = λrπR2
D2D is the average number

of receivers in the communication range of the transmitter, the conditional

probability of having N = k receivers is given as

P(Ñ = k) =
Λk
r exp(−Λr)

k!(1− exp(−Λr))
.

We can derive the average spectral efficiency as

E[R|N > 0] = P[SINR > T ]

∫
r≥0

P
(
SINR > 2

rÑ
W − 1

)
dr.

We obtain a simple upper bound under the following assumptions: (i)

each receiver is associated to the nearest transmitter, (ii) the nearest trans-

mitter is active and within the communication range RD2D, and (iii) there is

only one interferer z ∈ Φ\{x} at a distance Dz from the typical receiver such

that ‖z − x‖ ≥ D.

SINR =
h/l(r)

σ2 + gz/l(Dz)
, (4.34)
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where the distribution of r, i.e., fMod
R (r), is given by (4.25). An upper bound

for the Laplace transform of the interference is hence given as

LIr(s) ≤ E[e−sgρD
−α
z ] =

µ

µ+ sρD−αz
=

1

1 + T (r/Dz)α
. (4.35)

Hence, an upper bound on the spectral efficiency can be derived as

RUB =
λt pA
λr

M∑
m=1

pr(m)E [W log2(1 + SINR)1SINR≥T |bm,j = 1, ∀xj ∈ φt],(4.36)

where the distribution of SINR is derived assuming nearest transmitter asso-

ciation and the nearest active transmitter has the desired file.

This section has mainly focused on how to model the process of re-

tained transmitters and on the calculation of the spectral efficiency. Later,

in Sect. 4.6, we will provide a performance comparison between the bidding-

aided CSMA policy and the other popular algorithms summarized above (Sect.

4.4) in terms of their spectral efficiencies as defined in (4.33). Next, we detail

an online cache update scheme for the process of retained transmitters.

4.5 Online Cache Update Model using Gibbs Sampler

In this section, we propose a cache update scheme depending on the

configuration, determined by the cache state, i.e., whether or not the desired

content is available in the cache, and the medium access indicator, i.e., whether

or not the device is transmitting.

The Gibbs sampling approach has been proposed to optimize different

objectives like channel selection and user association as in [110], and hit prob-

ability as in [111], where the authors only focus on the caching problem given
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the set of active nodes. Different from [111], we combine the on-off schedul-

ing problem with the cache placement problem. For a given on-off scheduling

realization, we propose an online cache update rule, which in turn determines

the on-off scheduling exploiting the bidding algorithm in Sect. 4.2.

4.5.1 Cache Hit Rate Maximization given On-Off Scheduling

Consider the finite set φ = {xj}, which is a realization of the point

process Φ with K nodes (sites). We consider the random field on the finite

set φ called the phase space, and denoted as ζ = {0, 1} × b, where {0, 1}

is the medium access indicator and b, a binary vector of size M such that∑M
m=1 bm = N , denotes the cache state. A random field on φ with phases in ζ is

a collection Z = {Z(x)}x∈φ of random variables with values in ζ [120, Ch. 7.1].

It can be regarded as a random variable taking its values in the configuration

space ζφ. A configuration zzz ∈ ζφ is of the form zzz = (zzz(x), x ∈ φ), where

zzz(x) ∈ ζ for all x ∈ φ. For a given configuration zzz and a given subset A ⊂ φ,

zzz(A) = (zzz(x), x ∈ A) (4.37)

denotes the restriction of zzz to A. If φ\A denotes the complement of A in φ,

then zzz = (zzz(A), zzz(φ\A)). For fixed x ∈ φ, zzz = (zzz(x), zzz(φ\{x})).

Given a medium access probability of pA, the set φt ⊂ φ denotes the

set of active devices for the current realization, i.e., Pj = 1 if and only if

xj ∈ φt and vice versa, i.e., φt = {xj ∈ φ : Pj = 1}. Denote the cache states

by b, which is a M × K binary matrix, i.e., bm,j = 1 if file m is available in
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cache j ∈ {1, . . . , K}. The cache constraint is
∑M

m=1 bm,j ≤ N for a given

cache constraint. Denote the set of all feasible cache states by B. Therefore,

a configuration zzz ∈ ζφ is of the form zzz = (zzz({Pj,bj}), j = 1, . . . , K), where

zzz({Pj,bj}) ∈ {0, 1}×b:,j for all xj ∈ φ, where b:,j is the jth column of the cache

state matrix b ∈ B. Therefore, the state space cardinality is |ζφ| =
( |φ|
|φt |

)(
M
N

)|φ|
.

Given a configuration zzz with set of active devices φt and a cache state

matrix b ∈ B, the cache hit rate averaged over the requests is given as

RHit(zzz) =
∑
xj∈φ

∑
u∈φr∩Vxj (φt(zzz))

1(SINRxj ,u(zzz) ≥ T )1(bcu,j = 1), zzz ∈ ζφ, (4.38)

where φt is a subset such that φt ∈ {Φt} = {Φt : {Xi ∈ Φ : E0[e0] = pA}} with

a slight abuse of notation, where ex and Φt are given in Sect. 4.1, respectively

in (4.2) and in (4.3). Thus, {Φt} denotes the set of configurations of transmit-

ters that satisfy E0[e0] = pA for any possible marking configuration. The term

Vxj(φt(zzz)) denotes the Voronoi cell of xj with respect to φt(zzz) under configu-

ration zzz, and is given by Vxj(φt(zzz)) = {y ∈ R2 : |y−xj| < inf
xi∈φt zzz, xi 6=xj

|y−xi|}.

The term SINRxj ,u(zzz) denotes the SINR of u ∈ φr assuming that the user is

associated to the nearest active transmitter of the process φt(zzz). Hence, if

u ∈ Vxj(φt(zzz)), then SINRxj ,u(zzz) = 0 if and only if Pj = 0.

We seek to design a randomized iterative cache update rule to find an

optimal scheme that achieves

max
zzz∈ζφ

RHit(zzz), (4.39)

133



where RHit(zzz) is given in (4.38). This is a combinatorial optimization problem

and difficult to solve for large networks [110]. We next detail how to solve

(4.39) using the Gibbs sampler.

4.5.2 The Gibbs Sampler

A Gibbs field Z is a Markov random field with respect to the neighbor-

hood system N because for all sites (nodes) x ∈ φ the random variables Z(x)

and Z(φ\Ñx), where Ñx = Nx ∪ {x}, are independent given Z(Nx) [120, Ch.

7.2, Theorem 2.1].

A Gibbs potential on ζφ relative to the neighborhood system N is a

collection {VC}C⊂φ of functions VC : ζφ → R∪{+∞} such that (i) VC = 0 if C

is not a clique5, and (ii) for all zzz,zzz′ ∈ ζφ and all C ⊂ φ, (zzz(C) = zzz′(C)) =⇒

(VC(zzz) = VC(zzz′)). The function VC depends only on the phases at the sites

inside the subset C.

The energy function E : ζφ → R∪{+∞}, associates a real number E(zzz)

to each configuration. When E derives from the potential V , it can be written

as

E(zzz) =
∑

C
VC(zzz). (4.40)

The local energy at node x of configuration zzz is given by Ex(zzz) = Ex(zzz(x), zzz(φ\{x})) =∑
C3x VC(zzz), where the notation

∑
C3x means that the sum extends over the

sets C that contain the node x.

5A subset C ⊂ S with more than one element is called a clique of the graph (S,N) if
and only if any two distinct sites of C are mutual neighbors [120, Ch. 7.1].
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The probability distribution

πβ(zzz) =
1

Zβ
e−βE(zzz), zzz ∈ ζφ (4.41)

is called a Gibbs distribution, where β is the inverse temperature parameter,

E(zzz) is the energy of configuration zzz, and Zβ is the normalizing constant,

called the partition function. If the energy function is given as in (4.40), then

it is possible to find one of the states that minimizes the energy function by

using a Gibbs sampler. Note that πβ(zzz) in (4.41) (i) favors the configurations

with small energy, and (ii) arises as the stationary probability distribution of a

Markov random field [120, Ch. 7.6]. If one can identify an irreducible aperiodic

MC {Zt}t≥0 with state space ζφ and stationary distribution (4.41), then for

any initial distribution, the total variation distance6 satisfies lim
t→∞

dTV(P(Zt =

·), π) = 0, i.e., its distribution at a large time n will be close to π, and one will

therefore have simulated π.

The Gibbs sampler is a procedure where each node updates its own

state according to the conditional distribution, called the local specification,

which will be given in (4.43). The local specification only depends on the

state of the neighbors of node xj. Hence, the Gibbs sampler is a distributed

procedure. The local specification also takes care of the “bidding algorithm”

discussed in Sect. 4.2 via the on-off transmit powers. In practice, the up-

dated nodes are not chosen at random, but instead in a well determined order

6The total variation distance between two probability distributions µ and ν on Ω is
defined by dTV(µ, ν) = ||µ− ν||TV = max

A⊂Ω
|µ(A)− π(A)| [121, Ch. 4.1].
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s(x1), s(x2), . . . , s(xK), where {s(xj)}1≤j≤K is an enumeration of all the nodes

of φ, called the scanning policy. The nodes are visited in this order periodically

[120, Ch. 7.6].

Defining the energy function as E(zzz) = −RHit(zzz) for given configuration

zzz ∈ ζφ, we obtain

πβ(zzz) = P (Z(φ) = zzz) =
eβ RHit(zzz)∑

zzz′∈ζφ
eβ RHit(zzz′)

, zzz ∈ ζφ. (4.42)

Using the Gibbs sampler procedure, we can demonstrate that the tran-

sitions to states of smaller local energy, i.e., higher cache hit rate, are favored

compared to states of higher energy, i.e., lower cache hit rate. Hence, we

can find an optimal state that achieves (4.39). The performance of the Gibbs

sampler can be improved by “annealing”, i.e., a slow increase of β. When

β increases to ∞ with time t > 0 like log(1 + t), we get convergence to a

collection of states of minimal global energy [110].

The local specification of the Gibbs distribution at node xj ∈ φ is the

function πjβ : ζφ → [0, 1] defined by [120, Theorem 2.1]

πjβ(zzz) = P (Z(xj) = zzz(xj)|Z(φ\{xj}) = zzz(φ\{xj}))
(a)
=

πβ(zzz)∑
z′∈ζ πβ(z′, zzz(φ\{xj}))

(b)
=

e
−
∑
C3xj

VC(zzz)∑
z′∈ζ e

−
∑
C3xj

VC(z′,zzz(φ\{xj}))

(c)
=

e
β
∑
n∈N(xj) RHitn(zzz)∑

z′∈ζ e
β
∑
n∈N(xj) RHitn(z′,zzz(φ\{xj}))

, xj ∈ φ, zzz ∈ ζφ, (4.43)
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where (a) follows from the definition of conditional probability, (b) from (4.41)

and that if C is a clique and x is not in C, then VC(z′, zzz(φ\{x})) = VC(zzz) and is

independent of z′ ∈ ζ, and (c) from using (4.41). This denotes the conditional

distribution of the network configuration conditioned on the restriction7 of

configuration zzz to all devices except xj ∈ φ, under the joint distribution πβ(zzz).

Furthermore, the cache hit rate provided by device n is given as

RHitn(zzz) =
∑

u∈φr∩Vxn (φt(zzz))

1(SINRxn,u(zzz) ≥ T )1(bcu,n = 1), xn ∈ φ, zzz ∈ ζφ,

(4.44)

and RHitn(z′, zzz(φ\{xj})) denotes the cache hit rate provided by device n under

configuration z′ ∈ ζ conditioned on the restriction of the configuration zzz to all

devices except xj ∈ φ:

RHitn(z′, zzz(φ\{xj}))

=
∑

u∈φr∩Vxn (φt(zzz))

1(SINRxn,u(zzz) ≥ T )1(bcu,n = 1), xn ∈ φ, z′ ∈ ζ. (4.45)

A finite state irreducible aperiodic MC has a unique stationary dis-

tribution πβ on a finite state space ζφ, and regardless of the initial state, as

t→∞, the distribution of the chain converges to πβ. Let P and P denote the

transition matrix and the collection of all probability distributions on ζφ of an

ergodic MC, respectively. Next, we investigate how large t should get so that

the distribution of the chain is close to πβ.

7This can be obtained by deleting the jth column of b ∈ B and deleting Pj .
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Definition 8. Mixing time [121, Ch. 4.5]. The mixing time tmix(ε) is

defined as the smallest time such that for any starting state Z0 with distribution

µ, the distribution of the state Zt at time t is within total variation distance ε

of π:

tmix(ε) , tmix(1/4) = min{t : dTV(µP t, πβ) ≤ 1/4}. (4.46)

Proposition 11. The mixing time can be upper bounded as

tmix ≤
0.5 log(4χ2(µ, π))

log((1− e−Lβ∆)−1)
, (4.47)

where the terms χ2(µ, π) =
∑
i∈ζφ

(µ(i)−π(i))2

π(i)
, where µ being the distribution for

the starting state, and the parameters δx = sup{RHit(zzz)−RHit(zzz
′) ; zzz(φ\{x}) =

zzz′(φ\{x})}, and ∆ = sup
x∈φ

δx follow from [120, Ch. 7.6], and L is the period

such that the nodes of φ are visited in an order periodically.

Proof. The final result can be obtained using similar techniques as in [120, Ch.

7.6].

4.5.3 Cache Admission and Extinction Policy

The cache admission (or content insertion) and the cache extinction

(or content ejection) policies are implemented exploiting the Gibbs sampling

approach outlined in Sect. 4.5.2, determined by the local specification given in

(4.43). The cache admission policy is based on the local demand that cannot

be served by a D2D transmitter node. Once a local demand is not served by

the set of transmitters that cover it, a file is inserted, i.e., acquired from the
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BS8, based on the conditional distribution rule in (4.43). To create space for

the inserted file, a file is evicted from the cache. This can be done by selecting

at random or discarding the least recently used (LRU) items first.

Consider a given configuration z ∈ ζφ such that z = (z({Pi,bi}), xi ∈

φ), with the realization of active D2D transmitters denoted by φt = {xi ∈ φ :

Pi = 1} and b ∈ B.

Assume that the scanning policy picks the potential transmitter node

xj ∈ φ. Assume that there exists xi ∈ φt such that xi ∈ N(xj) when |N(xj)| 6=

0. The cache update rule for node xj is determined by (4.43). Upon the

request of file m ∈ {1, . . . ,M}, depending on the current state of xj, one of

the following events occur:

1. xj is scheduled, i.e., xj ∈ φt:

(i) When the desired file is available, bm,j = 1, it is transmitted. No cache

update is required.

(ii) Desired file is not available in xj ∪N(xj). In this case, since xj trans-

mits and the desired file is not available, a cache update is required.

The update rule is determined by πjβ(z).

2. xj is not scheduled, i.e., xj /∈ φt:

8Similarly, if the demand is not served, the file can also be acquired from the neighboring
D2D transmitters. This is left as future work.
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(i) At most either of bm,i or bm,j is one. In this case, either the desired

file is available but not transmitted, or the desired file is available in a

neighbor who transmits, or desired file is not available in xj ∪N(xj).

No update is required.

(ii) When bm,i = bm,j = 1, a cache update in xj is required to prevent

the redundancy of caching the same file in N(xj). The update rule is

given by the local specification πjβ(z).

In the cases of 1)(ii) and 2)(ii), a cache update in xj is required. For the case

when |N(xj)| = 0, the update rule for xj is oblivious to the other nodes. The

scenarios 1)(i), 1)(ii), 2)(i) will still be valid.

The main focus of this section was to provide a Gibbs sampler-based

update scheme for caches in order to iteratively maximize the cache hit rate

given a scheduling configuration. Next, in Sect. 4.6, by incorporating the

different models in Sect. 4.4 for the set of retained transmitters, we provide an

evaluation in terms of the spectral efficiency in the units of bits/sec/Hz/User

and the evolution of the cache hit rate under different bidding algorithms as

proposed in Sects. 4.2 and 4.3.

4.6 Performance Evaluation

We consider a realization φ of PPP Φ over the region S = [−5, 5]2 with

an intensity of λt = 3 per unit area. The catalog size is M = 100 files and

each potential transmitter x ∈ φ can store up to N = 10 files. We consider
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Figure 4.3: Spectral efficiency comparison of the bidding-aided CSMA model with
other scheduling policies: skewed cache configurations and requests.

an IRM traffic scenario, where the popularity of requests is modeled by the

Zipf distribution, which has pmf pr(n) = 1
nγr

/∑M
m=1

1
mγr

, for n ∈ M, where

γr ∈ (0, 1) the Zipf exponent that determines the skewness of the distribution.

File requests are generated over S according to a time and space homogeneous

PPP with intensity λr = 3 requests per unit time per unit area, and file requests

are uniform and independent over the space, and any new request can be for

m ∈M with probability pr(m). The rest of the network parameters are chosen

as follows. Path loss exponent is α = 4, SINR threshold is T = 0.01, σ−2 = .1,

and the fading parameter is µ = 1.

Next, we consider the homogeneous PPP model of Sect. 4.2, and the

non-homogeneous PPP, modified hard-core model, and a non-homogeneous

PPP approximation for the Matérn CSMA, as detailed in Sect. 4.3. Then, we
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Figure 4.4: Spectral efficiency comparison of the bidding-aided CSMA model with
other scheduling policies: randomized cache configurations and requests.

illustrate the performance of different scheduling algorithms as a function of

the MAP pA. In Fig. 4.3, we have a skewed placement configuration pc ∼

Zipf(2.5) and pr ∼ Zipf(5). In Fig. 4.4, we have pc ∼ Zipf(0) and pr ∼

Zipf(0.1). We also compare against the analytical upper bound in (4.36) for

the low contention regime of CSMA. The bidding algorithm provides higher

throughputs than random selection and uniform marking. For skewed place-

ment, the spectral efficiency performance is very close to the upper bound for

the low contention regime.

For cache placement, the medium access probability is fixed to be pA =

0.45. The catalog size is M = 3 and the cache size is N = 1. We compare the

performance of the LRU, in which the least recently used item is discarded,

and the online cache update model using Gibbs sampler as detailed in Sect.
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4.5.

In order to get convergence to a collection of states with minimal global

energy, i.e., maximal cache hit rate, we use the annealed Gibbs sampler9, where

the inverse temperature parameter β slowly increases over time following the

relation β = β0 log(1 + t), where β0 = 10.

We compare the performance of the LRU scheme and the Gibbs sampler

in terms of their cache hit probabilities in Fig. 4.5. Starting with a totally

randomized initial configuration of the caches over the set of files in the cat-

alog, and a Zipf distributed request distribution with γr = 0.1 with density

λr = 0.3, caches are updated over time, where the nodes are visited in an

order periodically. At each iteration of both algorithms, if the selected cache

is scheduled, it is updated only if it does not contain the desired file from any

of the receivers in its communication range. We observe that both algorithms

can behave similarly under random scheduling of the potential transmitters.

However, when the transmitters are scheduled according to the bidding algo-

rithm detailed in Sects. 4.2 and 4.3, the Gibbs sampler, unlike the LRU model,

captures the local interactions among the nodes to optimize the cache hit rate,

hence provides a better average hit rate.

9The plain sampler can also be developed, in which β is fixed, and the state updates are
not randomized but always chosen to minimize the local energy, i.e., it is a greedy algorithm.
The plain sampler minimizes the local energy observed for each transition, only converges
to a random state distributed according to the Gibbs distribution, and can get blocked in
a local minimum (of the energy). Its speed of convergence is geometric. The plain sampler
hence trades the long-term efficiency for the speed of convergence [110].
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4.7 Summary

We developed a bidding-aided distributed scheduling policy for D2D

users by capturing the local demand profile, the spatial distribution and the

configurations of the transmitters, with the objective of maximizing the spec-

tral efficiency in the units of bits/sec/Hz/User. We demonstrated and con-

trasted the performance of our bidding-aided algorithm with other well-known

CSMA policies. The key takeaways include that rather than solely balancing

the traffic according to the locations of caches, exploiting the cache configura-

tions and local demand distribution, higher throughput gains can be achieved,

and our approach provides new insights into designing dynamic bidding-aided

caching algorithms. Possible directions include the extension of the schedul-
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ing algorithm to develop dynamic caching algorithms that capture the network

configuration in order to achieve higher throughput scaling gains with caching.
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Chapter 5

Conclusion

5.1 Summary

In this dissertation, we focused on the modeling and the analysis of

device-to-device (D2D) content aggregation and distribution (caching) in the

context of cellular networks. Intuitively, the optimal placement of content into

the caches should not be spatially independent, since if the file is already cached

nearby, it is less useful to cache the file again. We proposed randomized D2D

content distribution schemes that capture the actual physical channel model

in Chapter 2, which is different from the grid-based model in [71], [78]. We

incorporated the interference due to simultaneously active transmitters, noise

and the small-scale Rayleigh fading into the analysis such that any transmis-

sion is successful as long as SINR is above a threshold. Contrasting with the

probabilistic policies, where the files are independently placed in the cache

memories of different nodes according to the same distribution [60], [52], and

[63], or other approaches that do not consider network-level interactions, our

approach in Chapter 3 and Chapter 4 i) captures the spatial, or geographic,

correlation of the nodes, to bring spatial diversity in order to increase the

hit probability, ii) is distributed and scalable, hence, will pave the way for

the design of D2D content distribution systems, and iii) captures the spatial-
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temporal interactions among devices via bidding. The contributions of this

dissertation are summarized next.

In Chapter 2, we developed a spatially independent and randomized

D2D content caching model. We derived the probability of successful content

delivery in the presence of interference and noise [69], [70], [52], in which the

locations of the D2D caches are modeled by a PPP. We computed the caching

distribution that maximizes the density of successful receptions (DSR) under

a simple transmission strategy where a single file is transmitted at a time

throughout the network. For Zipf distributed request profile, the optimal

caching distribution is also modeled using the Zipf law and the caching ex-

ponent linearly scales with the request exponent, and inversely proportional

to the path loss exponent, which leads to the smoothing effect. Similarly, for

more general demand profiles under Rayleigh, Ricean and Nakagami small-

scale fading distributions, it is required to flatten the request distribution to

optimize the caching performance.

In Chapter 3, we studied optimal geographic content placement for D2D

networks in which the locations of the D2D caches are modeled by a PPP and

have limited communication range. Inspired by the Matérn hard-core (type II)

point process, we devised a novel spatially correlated strategy called hard-core

placement (HCP) such that the D2D nodes caching the same file are never

closer to each other than the exclusion radius. The exclusion radius plays the

role of a substitute for caching probability. We optimized the exclusion radii

to maximize the cache hit probability. Contrasting it with the independent
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content placement, our HCP strategy often yields a significantly higher cache

hit probability. We demonstrated that the HCP strategy is effective for small

cache sizes and a small communication radius, which are likely conditions for

D2D.

In Chapter 4, we proposed a distributed bidding-aided Matérn carrier

sense multiple access (CSMA) policy for a D2D content distribution network

with D2D receivers and “potential” D2D transmitters, i.e., transmitters are

turned on or off by the scheduling algorithm. Each D2D receiver determines

the value of its request, by bidding on the set of potential transmitters in its

communication range. Given a medium access probability, a fraction of the

potential transmitters are turned on, determined jointly by the auction policy

and the power control scheme. We contrasted the performance of the bidding-

aided CSMA policy with other well-known CSMA schemes, demonstrated that

our algorithm achieves a higher spectral efficiency in terms of the number of

bits transmitted per unit time per unit bandwidth per user. The gain becomes

even more visible under randomized configurations and requests rather than

more skewed placement configurations and deterministic demand distributions.

Later, we considered a Gibbs sampling approach for cache updates in order to

iteratively maximize the cache hit rate. The update scheme depends on the

cache configuration, i.e., whether or not the desired content is available in the

cache, and the on-off scheduling algorithm.
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5.2 Future Research Directions

A future research objective is to determine how to best allocate the

resources under varying traffic, i.e., to balance the busy-hour and average-hour

wireless network traffic, through smart content caching techniques, using tools

from stochastic processes, wireless communications and networks, stochastic

geometry and optimization. Our second objective is to characterize the effect

of different transmit diversity and receiver combining techniques on content

caching, and study the gain of the cache hit rate through diversity. We next

discuss the proposed directions.

5.2.1 Duality of Scheduling and Caching and Model Validation

Others aim to develop a novel spatial-temporal content caching model

for D2D communications under renewal traffic to capture how the spatial di-

versity of the content can be incorporated to improve the caching performance.

To the best of our knowledge, the current research efforts lack a thor-

ough understanding of the connections between content caching and scheduling

in the cellular context. On one hand, with content caching, the content should

be spread over the network in order to maximize the cache hit rate, and on the

other hand, with scheduling, the objective is to bring the content in proximity

to the user in order to maximize the throughput . Therefore, content caching

and scheduling problems are in fact closely associated with each other. We

will jointly consider these problems, and extend the caching model detailed in

Chapter 4.
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For a given scheduling algorithm, e.g., the game-theoretic auction model

proposed in Chapter 4, and given a realization of cache configuration, the goal

is to decide how to update the placement of the content by incorporating the

SINR coverage characteristics of the network into caching. As future work, our

goal is to model the pairwise interactions among the nodes using the Gibbs

point processes (GPPs) that can model more general interactions rather than

the HCP model proposed in Chapter 3, which only considered the first-order

interactions. We are interested in the regimes for which the Gibbs model

provides a higher cache hit probability than other popular models [60], [87].

Content caching exploiting pairwise interactions. GPPs are mathe-

matical models of particle interactions in statistical mechanics, and are char-

acterized by a potential function, modeling the interactions –e.g., attraction or

repulsion– among nodes. They are good models for patterns with some degree

of regularity, i.e., more regular than MHC processes, or for moderate cluster-

ing, but can be deficient in cases of strong clustering [64, Ch. 5.5]. Special

cases are the Ising model [122], Markov point processes, spatial birth-and-

death processes, cluster processes such as the Neyman-Scott processes, and

repulsive processes such as the Strauss model and hard-core processes [64, Ch.

5.5].

The GPP brings a strategy for the placement of nodes, and the content

placement is done at the existing nodes generated by the GPP. Consider a

GPP ΦG of distribution P on [N,NG] with exactly k points in a bounded
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region D = [0, D]2 ∈ R2 [64, Ch. 5.5]. Assume that the distribution of the

point process is given by a probability density function f : R2k → [0,∞) so

that

P (ΦG ∈ Y ) =

∫
· · ·
∫

{x1,··· ,xk}∈Y

f(x1, . . . , xk) dx1 . . . dxk, Y ∈ NG,k(D), (5.1)

where NG,k(D) denotes the trace of NG on the set of all point processes

with k points in D. Because point processes are an unordered set of points,

f(x1, . . . , xk) does not depend on the order of the arguments, and is given by

f(x1, . . . , xk) =
exp (−E(x1, . . . , xk))

Z
, (5.2)

where the function E : R2k → R ∪ {∞} is called the energy function, which

does not depend on the order of the arguments, and Z is a normalization

constant, which is called the configurational partition function. These terms

come from statistical mechanics [64, Ch. 5.5].

Pair potential function. The energy function E is frequently chosen as

E(x1, . . . , xk) = β
∑∑
1≤i<j≤k

θ(‖xi − xj‖), (5.3)

where θ : [0,∞) → (−∞,∞] is the pair potential, and β = T−1 is called the

inverse temperature [64, Ch. 5.5].

The pair potential characterizes the GPP of density f constructed as

above. A typical example is shown in Fig. 5.1. Potential θ(r) shown in the

figure is infinite for r ≤ R, i.e., the inter-node distance can never be less than
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Figure 5.1: A typical pair potential, the result of superposition of attractive and
repulsive forces.

R. Therefore, the point process is in fact a hard-core model. For r > R,

θ(r) = exp
(

r
r−R

)
− 100 exp

(
− r

2
−R

)
. Since θ(r) is large when r is slightly

larger than R, such inter-point distances exist with a low probability. Inter-

node distances for which θ(r) takes its minimum, i.e., the inter-point distances

close to R1, should occur relatively frequently.

GPP-inspired placement design. A caching network modeled by a Gibbs

distribution might not require centralized coordination since it captures the

pairwise interactions among the nodes in a distributed manner. Although

it is hard to characterize GPPs in their most generic form to optimize the

performance of caching, in this section we formulate the general hit probability

maximization problem for the GPPs.
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The cache hit probability for the GPP-inspired placement is given by

PHit,G = 1−
M∑
m=1

pr(m)
∞∑
k=0

P(NG(T ) = k)PMiss,G(m, k), (5.4)

where P(NG = k) is the coverage distribution, i.e., the probability that k

transmitters (caches) cover the typical receiver. The parameter pr(m) models

the request or demand distribution, and PMiss,G(m, k) is the probability that

k caches cover a receiver, and none has file m, i.e., the probability of cache

miss, and it is given as

PMiss,G(m, k) =

∫
· · ·
∫
Vk
fm(x1, . . . , xk) dx1 . . . dxk. (5.5)

Given k transmitters, the probability that content m is cached at a

transmitter is equal to fm(x1, . . . , xk) for a realization with k transmitters. The

expression ENG [fm(x1, . . . , xNG)] denotes the average of the distribution over all

realizations of the GPP. Therefore, the average placement probability of file m

in a cache is given by ENG [fm(x1, . . . , xNG)] ≤ 1. Since there are at most N files

to be stored in each cache, the cache constraint
∑M

m=1 ENG [fm(x1, . . . , xNG)] ≤

N follows. The region Vk characterizes the cache miss region given there exists

k nodes, i.e., it is the 2k dimensional region [0, D]2k\[0, RD2D]2k.

The modeling and algorithmic challenges in designing optimal caching

strategies include capturing the impact of i) the temporal locality of content to

estimate how the popularity changes over time and infer the request distribu-

tion, which might be non-stationary, and ii) the geographic locality of content

to provide diversity to users who have potential to get the desired content from
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more than one user. Using tools from stochastic geometry, queueing theory,

and optimization, our objective is to design efficient caching algorithms incor-

porating the spatial and temporal dynamics in cellular networks, and develop

practical use cases for content caching and incentives for its realization.

We will use proprietary data on movie requests and ratings over time

(see Fig. 1.5 in Chapter 1) for testing recent theoretical results and algorithms

in this dissertation, and also developing and comparing some algorithms that

use real data on request distributions over time. Predicting the popularity

profile of users through machine learning algorithms, we will run adaptive

caching algorithms, similar to the Gibbs sampling approach as proposed in

Chapter 4, to demonstrate gains from what we have been doing theory on, and

investigate practical use cases for the initial theoretical results we obtained.

5.2.2 Content Caching using Diversity Combining Techniques

A possible direction is to extend the randomized caching model in

Chapter 2 by incorporating diversity combining techniques to improve the

quality of received signal. The cache hit rate can be improved by using dif-

ferent transmit diversity and receiver combining techniques. We first propose

to analyze the effect of (i) the transmit diversity for equal-gain combining and

selection combining, and (ii) the receiver diversity using chase combining.

Shot noise (Equal-gain combining). Using the mobile network model in

Chapter 2, in which D2D users are spatially distributed as a homogeneous PPP
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Φ of density λ, the distribution function of the shot noise from its Laplace

transform can be derived via the Plancherel-Parseval Theorem [61, Ch. 2].

Defining I =
∑

i∈Φ gi ‖xi‖
−α, where xi and gi are the distance and the channel

power gain of the D2D transmitter i, the Laplace functional of the shot noise

LI(z) equals

LI(z) = E

[
exp

(
−z
∑
i∈Φ

giRi
−α

)]

= E

[∏
i∈Φ

e−zgiRi
−α

]
(a)
= EΦ

[∏
i∈Φ

Eg
[
e−zgRi

−α
]]

(b)
= exp

(
−2πλγ1pc(i)

∫ ∞
0

(
1− Eg

[
exp(−zgv−α)

])
vdv

)
,

where (a) follows from the iid distribution of gi and its further independence

from the point process Φ, and (b) follows from the probability generating

functional (PGFL) [64] of the PPP.

With the assumption of Rayleigh fading, i.e., g ∼ exp(µ), we can

rewrite Eg[exp(−zgv−α)] as

Eg[exp(−zgv−α)] =

∫ ∞
0

e−zgv
−α
µe−µgdg =

1

µ−1zv−α + 1
.

Thus,

LI(z) = exp
(
−2πλγ1pc(j)

∫∞
0

1
1+µz−1vα

vdv
)

= exp
(
−πλγ1pc(j)

∫∞
0

1
1+µz−1yα/2

dy
)
.
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Given the Laplace transform pairs f(t)
LT←→ F (z), using the prop-

erty df(t)
dt

LT←→ zF (z) − f(0−), the Laplace transform associated with the

complementary cumulative distribution function (CCDF) of the shot noise is

L̄I(z) = 1/z−LI(z)/z. Hence, the CCDF of the shot noise is given by [123] as

P(I > t) =
2eat

π

∫ ∞
0

Re(L̄I(a+ iu)) cos(ut) du,

where t = Tσ2 and Re(z) is the real part of z and z = a is any vertical

line contour, i.e., is real valued, and it should be selected such that L̄I(z) =

L̄I(a+ iu) has no singularities on or to the right of it. Letting a = 0, we derive

P(I > t) as follows:

P(I > t) =
2

π

∫ ∞
0

Re

(
exp

(
log
( i
u

)
−πλγ1pc(j)

∫ ∞
0

1

1 + µ(iu)−1yα/2
dy
))

cos(ut) du,

where i is the imaginary unit. Although this expression can be numerically

solved to determine the optimal caching distribution, and through some ap-

proximations, we are able to show that the optimal caching distribution can

be approximated by a Zipf distribution, the analysis is not very tractable.

We next consider another approach, which is practical to implement

and tractable.

Strongest signal (Selection combining). Consider the association to the

strongest user, in which, the coverage pcov(T, λγ1pc(j), α) is bounded by

pcov(T, λγ1pc(j), α) = P
(

max
x∈Φ

SINR(x) > T

)

156



= E

[
1

(⋃
x∈Φ

SINR(x) > T

)]
(a)

≤ E

[∑
x∈Φ

1(SINR(x) > T)

]

= E

[∑
x∈Φ

1(hx ‖x‖−α > T(Ix + σ2))

]
(b)
= E

[∑
x∈Φ

P(hx > T(Ix + σ2) ‖x‖α)

]
(c)
= λγ1pc(j)

∫
x∈R2

EIx
[
e−µT(Ix+σ2)‖x‖α

]
dx

(d)
= 2πλγ1pc(j)

∫ ∞
0

LIr(µTrα)e−µTσ2rαrdr,

where (a) follows from the union bound, Ix =
∑

y∈Φ\x gy ‖y‖
−α is the interfer-

ence received by the typical user when it is connected to the user located at

x, and (b) from that since the channel power of the direct link is independent

of everything else, we can take the expectation hx inside, and (c) from the

Rayleigh fading assumption with hx ∼ exp(µ) and Campbell-Mecke Theorem

[64], and (d) from the definition of the Laplace transform and converting the

integral from Cartesian into polar coordinates. This upper bound is shown to

be tight in [124]. Hence, it is reasonable to approximate the coverage using

this upper bound. For this model, the Laplace transform of interference equals

LI(s) = EIx
[
e−sI

]
= EI

[
e−s

∑
y∈Φ gy‖y‖

−α
]

= exp

(
−πλγ1pc(j)

∫ ∞
0

1

1 + s−1µvα/2
dv

)
, (5.6)

which follows from the fact that channel powers are independent of the users

locations, employing the PGFL of PPP [64], and a change of variables.
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Thus, we can upper bound the coverage probability as follows:

pcov(T, λγ1pc(j), α) ≤ 2πλγ1pc(j)

∫ ∞
0

LIr(µTrα)e−µTσ2rαrdr

(a)
= πλγ1pc(j)

∫ ∞
0

e
−πλγ1pc(j)

∫∞
0

1

1+T−1( vr )α/2
dv−µTσ2rα/2

dr

(b)
=
πλγ1pc(j)

h(α)T
2
α

∫ ∞
0

e−πλγ1pc(j)v−µ[ 1
h(α) ]σ2vα/2 dv, (5.7)

where (a) follows from (5.6) and a change of variables, and (b) follows from

a simple change of variables,
∫

1
1+xa

dx = x2F1

(
1, 1

a
; 1 + 1

a
;−xa

)
, and letting

h(α) = lim
x→∞

x2F1

(
1, 2

α
; 1 + 2

α
;−xα/2

)
, where 2F1 is the Gauss hypergeometric

function. Note that in the original formulation where there is no diversity,

by employing a change of variables v = rβ(T, α), we can rewrite (2.1) in

Definition 2.1 as in (A.6) in Appendix A.1. From Assumption 1, the ratio

T
β(T,α)α/2

is fixed for a given α, i.e., is a function of α only. We note that in

the case of the above proposed model, the coverage probability expression in

(5.7) is in the same form as the original model in (A.6). Hence, for diversity

with selection combining, we expect to get a similar optimal solution as in the

original model without capturing the diversity.

A different diversity combining technique we contemplate is a retrans-

mission based strategy, in which the D2D receiver uses maximum-ratio com-

bining to combine the received bits with the same bits from previous trans-

missions. This technique is known as Chase combining.

Receiver diversity (Chase combining). Given a caching application with

a delay constraint T , we propose a simple retransmission-based strategy.
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Consider a caching model in which randomly arriving devices transmit

their payload to a receiver, where the device locations are assumed to form

realization of a homogeneous two-dimensional spatial PPP. Given a fixed

latency constraint per device, we propose a slotted ALOHA (SA) scheme with

multiple frequency bins, in which the slot duration and the number of bins are

adjustable, i.e., a frame of duration T , determined by the delay constraint, is

segmented into M slots with equal length. The bandwidth W is also evenly

partitioned into B subbands. In addition, our SA scheme has memory. The

payload can be transmitted in multiple retransmission attempts by selecting

one bin at random at each attempt, where the resulted SNR of each attempt

is combined at the receiver. To prevent decoding failure, i.e., outage, the

payload needs to be transmitted in multiple attempts by selecting one bin at

random at each attempt, where the resulted SNR of each transmission attempt

is combined at the receiver at the origin.

We assume the content placement distribution of the transmitters is

i.i.d, i.e., the files are independently placed in the cache memories of different

nodes according to the same distribution. We denote this distribution by pc

and the request distribution by pr. At each time slot, the receiver is associated

with the nearest transmitter that has the desired content.

The aggregate process of transmitters from the original transmissions

and due to the failed transmission attempts are assumed to occur at the be-

ginning of each slot. In the example of Fig. 5.2, a system model for M = 4

retransmissions and B = 3 bins is shown. A device arriving during sub-slot
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Figure 5.2: An illustration of the retransmission process. The packet success and
failure events are highlighted for M = 4.

1 has until sub-slot 4 to transmit. Another device arriving during sub-slot 2

has until sub-slot 5 to transmit. This emphasizes the fact that devices can

arrive during each sub-slot. On the same plot, an illustration of the proposed

retransmission process with packet success and failure events are also given.

An outage occurs when the user fails to receive the desired content

by a deadline, corresponding to M consecutive attempts, i.e., a decoding error

occurs if SINR across multiple transmissions is below the threshold T . A device

fails on mth attempt if the SINR in that attempt, i.e., SINR(Km), is below the

threshold T . Given a target SINR outage rate δ per device, outage occurs

if more than a certain number of users share the same resources. Given M ,
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denote the set of retransmission indices by M = {1, . . . ,M}, and the average

aggregate device arrival rate per slot by λM , which is the sum of the rates of

the original arrivals per slot, i.e., λ, and the arrivals occurring as a result of

failed transmissions up to a maximum of M consecutive attempts.

We define Pout to be the probability of outage on the mth attempt for

a given SINR threshold T , which is given as

PFail(m) = P[SINR1 < Γ, SINR2 < Γ, . . . , SINRm < Γ]. (5.8)

Chase combining is used to aggregate the received signals across multi-

ple transmissions, resulting in maximal ratio combining of the desired signal.

For tractability, we assume there are no errors or delay in the feedback, so

there is immediate retransmission on the next sub-slot after a failure. There-

fore, our scheme gives an upper bound on the best achievable performance

given a target outage rate.

Our objective is to characterize the performance in terms of the max-

imum hit rate that can be achieved for a fixed maximum delay for a given

number of resource symbols.

Definition 9. Chase combiner. If M > 1, a device is allowed to retransmit

if the preceding one fails, for a total of M transmissions. In general, if the

received signal vector during transmission i = 1, . . . ,M is ri = ais + ni, where

s ∈ Cn is the desired signal, ai is the complex amplitude, and ni is an n-

dimensional complex Gaussian noise vector with zero mean and covariance
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σ2
i In, then the SNR at the output of the chase combiner1 is [125](

M∑
i=1

|ai|2
)2/ M∑

i=1

|ai|2σ2
i . (5.9)

We assume that the encoded blocklength n symbols is sufficiently large

that we can exploit the Shannon limit to characterize the performance. The

Shannon capacity as a function of the SINR is expressed as C(SINR) = log2(1+

SINR). For different number of retransmission attempts, we will investigate

the performance for both no fading and Rayleigh fading cases.

Given maximum number of retransmission attempts M , let ui(m) ∼

Poisson
(
λM
M

)
be the number of arrivals2 at the specified sub-slot where i ≤ t

is the time slot index, m is the retransmission attempt number, and λM is the

aggregate arrival rate per slot with up to M total transmissions, and is given

by

λM = λ

[
1 +

M−1∑
m=1

PFail(m)

]
. (5.10)

For ease of notation, the number of arrivals on the mth attempt is

denoted by km, and the set of arrivals up to including mth attempt is denoted

by Km := {k1, . . . , km}.

1It follows from maximum-ratio combining of the signal powers at the receiver as a result
of M transmission attempts given that SNR per user is ρ for all transmission attempts
i = 1, . . . ,M and users, and the noise power is computed by treating interference as noise.
The details of the proof are omitted. Interested reader can refer to [125].

2For tractability, we inherently have the Poisson distribution assumption for the com-
posite arrival process. From [126] and [127], this assumption is justifiable when the number
of retransmissions is not too large.
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For the case of small scale Rayleigh fading with parameter µ = 1, let km

arrivals choose a given resource bin, with SNR ρ per user3, during transmission

m ∈ M. Using (5.9) and incorporating the channel power distributions, and

from Prop. 9, the chase combiner output SINR from (5.9) as a result of m ∈M

transmission is [125]

SINR(KM)
(a)
=

ρ
( ∑
m∈M

hm

)2

∑
m∈M

hm (1 + Ikm)

(b)
=

M2ρhM
M +

∑
m∈M

Ikm
, (5.11)

where hm, gi,m ∼ exp(µ), m ∈ M are independent and identically distributed

(i.i.d.) channel power distributions of the desired device and the interferers, re-

spectively, where im ∈ {1, . . . , km−1} is the interferer index at retransmission

attempt m, (a) follows from letting Ikm =
∑km−1

i=1 ρgim denote the total inter-

ference seen at transmission attempt m, and (b) is based on the assumption

that hM is unchanged within a time slot4.

We mathematically write the hit rate –as characterized by Poisson ar-

rival rate– optimization problem as

RHit = max
B,M∈Z+

1− PFail(M)

s.t. PFail(M) ≤ δ, Γ = 2
L
n − 1,

C(SINR(Km)) ≥ L

n
, m ∈M, n ≤ TW

MB
,

(5.12)

3Assuming perfect channel inversion power control such that the average received SNR
per device is fixed, the locations of the devices do not play a role in the system performance.
This assumption can be relaxed using fractional or no power control.

4We use the Rayleigh block fading model [128] in which the power fading coefficients
remain static over each time slot, and are temporally (and spatially) independent with
exponential distribution of mean µ = 1.
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where PFail(M) is given in (5.8), and C(SINR(Km)) is the Shannon capacity as

a function of the Chase combiner output SINR given in (5.11) conditioned on

the set of arrivals Km.

The probability of failure PFail(M) can be computed as a function of

λM using a similar methodology as in Theorem 2 of Chapter 2 as

PFail = PFail(T, λM , pc, pr, α). (5.13)

From (5.10), we can observe that λM is also a function of PFail(m)’s, where

m ∈ {1, . . . ,M}. Therefore, to optimize the performance to compute the

maximum cache hit rate, it is required to solve a fixed point equation that

comes from (5.10) and (5.13) and determine the values of B and M under low

SNR and high SNR regimes for optimization of resources.

As discussed in this dissertation, content caching has been studied using

different tools ranging from stochastic geometry to game theory. However,

these models have certain limitations. It is hard to model the geographical

locality of the content, the request distributions might be non-stationary, and

the SINR coverage of the network varies due to locality of the content. Despite

previous research efforts, to the best of our knowledge, there has been no

study focusing on the investigation of the spatial-temporal dynamics of content

caching with realistic interference and fading models in the context of cellular

networks.

We propose to build a Matlab simulator to test and compare these

caching algorithms on increasingly large networks and file sets (may require
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developing new, more efficient suboptimal algorithms). Test recent theoretical

results covered in Chapters 2, 3, 4, including other well known caching models

and approaches. We hope and expect that doing the above will lead to insights

and new, improved caching algorithms, and accompanying theoretical models

and analysis.

Our broad objective is to analyze and design cellular networks in order

to optimize the performance of caching, and best support broadband data and

short packets for the development of future 5G networks with heterogeneous

QoS constraints.
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Appendix A

Appendix to Chapter 2

A.1 Proof of Lemma 6

We investigate the general solution of (2.7). Using the Lagrange mul-

tiplier method [129], we define

Λ(pc, η) =
∑M

i=1
λtpr(i) pcov(T, λtpc(i), α) + η

(∑M

i=1
pc(i)− 1

)
.

The partial derivatives of Λ(pc, η) with respect to pc(i) for i = 1, . . . ,M give

M equations.

∂Λ(pc, η)

∂pc(i)
= λtpr(i)

∂ pcov(T, λtpc(i), α)

∂pc(i)
+ η

= λtpr(i)

∂
[
πλtpc(i)

∞∫
0

e−πλtpc(i)rβ(T,α)−µTσ2rα/2 dr
]

∂pc(i)
+ η

= λtpr(i)
[
πλt

∫ ∞
0

e−πλtpc(i)rβ(T,α)−µTσ2rα/2 dr

− (πλt)
2β(T, α)pc(i)

∫ ∞
0

e−πλtpc(i)rβ(T,α)−µTσ2rα/2r dr
]

+ η. (A.1)

To maximize Λ(pc, η), equate the RHS of (A.1) to 0 and obtain∫ ∞
0

[1− πλtβ(T, α)pc(i)r]e
−πλtpc(i)rβ(T,α)−µTσ2rα/2 dr = − η

pr(i)πλ2
t

. (A.2)

The partial derivative ∂pcov(T,λtpc(i),α)
∂λt

is given as

∂pcov(T, λtpc(i), α)

∂λt
= πpc(i)

∫ ∞
0

e−πλtpc(i)rβ(T,α)−µTσ2rα/2 dr
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− (πpc(i))
2β(T, α)λt

∫ ∞
0

e−πλtpc(i)rβ(T,α)−µTσ2rα/2r dr

=
pc(i)

λt

∂ pcov(T, λtpc(i), α)

∂pc(i)
. (A.3)

Combining the relations (A.2) and (A.3) results in ∂ pcov(T,λtpc(i),α)
∂λt

= −η pc(i)

λ2
t pr(i)

.

Using the definition of pcov(T, λtpc(i), α), we note that pcov(T, λtpc(i), α) =

pcov(T (pc(j)/pc(i))
α/2 , λtpc(j), α). Taking the derivative of this expression

with respect to λt, we have

∂ pcov(T, λtpc(j), α)

∂λt
=−η pc(j)

λ2
tpr(j)

=
∂ pcov(T, λtpc(i), α)

∂λt

pr(i)/pc(i)

pr(j)/pc(j)
. (A.4)

We can rewrite (A.4) using the expression for pcov(T, λtpc(i), α) as follows

=
∂ pcov(T

(
pc(j)
pc(i)

)α/2
, λtpc(j), α)

∂λt

pr(i)/pc(i)

pr(j)/pc(j)
. (A.5)

Next, by employing a change of variables v = rβ(T, α), we can rewrite

(2.1) in Definition 2.1 as

pcov(T, λt, α) =
πλt

β(T, α)

∫ ∞
0

e
−πλtv−µ

[
T

β(T,α)
α
2

]
σ2v

α
2

dv. (A.6)

We investigate the relation between β(T, α)α/2 and T in Fig. 2.4, for practical

α and µ values, and observe the linear dependence, where the slope is mainly

determined by α, and changes only slightly by varying µ. Based on these

simulations, since β(T, α)α/2/T is invariant to T and using the relation in

(A.6), it is reasonable to write pcov(T, λtpc(j), α) as a separable function which

is the form f(λtpc(j), α)g(T). By taking its derivative with respect to λt, we

can then rewrite (A.5) as

g(T) = g
(

T
(pc(j)
pc(i)

)α/2)pc(j)
pc(i)

(j
i

)γr
. (A.7)
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Taking the derivative of both sides with respect to T, we obtain

dg(T)

dT
=
(pc(j)
pc(i)

)α/2dg(T)

dT

pc(j)

pc(i)

(j
i

)γr
,

implying that pc(j)/pc(i) = (i/j)
γr

α/2+1 . Then, pc(·) is also Zipf(γc) distributed

with parameter γc = γr
α/2+1

.
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Appendix B

Appendix to Chapter 3

B.1 Proof of Proposition 3

We evaluate L and K by approximating pLin
c,Gc

(m) using the expression

p*
c,G(m) in (3.5). Incorporating the finite cache size constraint to (3.8) and

solving
M∑
m=1

pLin
c,G(m) = N , we obtain:

K + L− 1 = 2N. (B.1)

Using the optimal cache placement probabilities for independent place-

ment as given in (3.5) and the relation pr(m)
pr(K)

= (K/m)γr , we have

pLin
c,G(m)

pLin
c (n)

≈ pc,G(m)

pc,G(n)
=

log
(
λt πR2

D2D

µ∗

)
− log

(
M∑
i=1

1
iγr

)
− γr log(m)

log
(
λt πR2

D2D

µ∗

)
− log

(
M∑
i=1

1
iγr

)
− γr log(n)

, L < m, n < K,

(B.2)

which yields the following approximation for K:

K ≈ 1

γr
log
(λt πR2

D2D

µ∗

)
− 1

γr
log
( M∑
i=1

1

iγr

)
. (B.3)

Using the boundary conditions in (3.5), the optimal value µ∗ is such

that pr(L + 1)P(NP = 1) ≤ µ∗ ≤ pr(K − 1)E[NP ]. Equivalently, pr(L +

1)λt πR2
D2De

−λt πR2
D2D ≤ µ∗ ≤ pr(K − 1)λt πR2

D2D. We determine the best pair

(L,K), given the relations (B.1) and (B.3) and the optimal value µ∗.
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B.2 Proof of Proposition 6

We first consider the case rm ≥ RD2D, where the user can be covered

by at most one transmitter that has file m. The probability that the user

is covered is given by the probability that there exists a transmitter of the

HCP-A process of file m at the origin as determined by [61, Ch. 2.1]

P(C̃m = 1|rm ≥ RD2D) = E[C̃m|rm ≥ RD2D]

= λHCP-A(m)πR2
D2D

= [1− e−C̄m ]
(RD2D

rm

)2

. (B.4)

For the case where rm < RD2D, we can estimate P(C̃m ≥ 1|rm < RD2D) using

the second-order product density of the MHC model. However, we use a

simpler approximation for tractability. The probability that a transmitter is

eliminated in the HCP-A with exclusion radius rm is equal to 1− λHCP-A(m)
λt

. For

the case of rm < RD2D, let the number of points in B(rm) from the original

PPP satisfy Φ(B0(RD2D)) = k. Since HCP-A is negatively correlated, from

Definition 2, we can exploit the PPP approximation for the MHC in [130]

to calculate the following upper bound for the probability that k points are

eliminated in HCP-A ΦM :

P(k points eliminated in ΦM given exclusion radius = rm|NP = k)

≤
(

1− λHCP-A(m)

λt

)k
. (B.5)

Using (B.5), the void probability of the HCP-A is approximated as

P(C̃m = 0|rm < RD2D) ≤
∞∑
k=0

P(NP = k)
(

1− λHCP-A(m)

λt

)k
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= exp (−λHCP-A(m)πR2
D2D). (B.6)

The relations (B.4) and (B.6) yield the final result.

B.3 Proof of Proposition 9

Using the hit probabilities given in (3.4) and (3.19), respectively for

the independent and HCP-A content placements, a necessary condition for the

HCP-A to perform better than the optimal independent placement model in

[60] in terms of hit probability is given by

PHit,HCP-A =
M∑
m=1

pr(m)P(C̃m ≥ 1|rm)

≥ PHit,G =
M∑
m=1

pr(m)[1− exp(−λt p*
c,G(m)πR2

D2D)]. (B.7)

A sufficient condition for (B.7) to be valid is given by P(C̃m ≥ 1|rm) ≥ 1 −

exp (−λt p*
c,G(m)πR2

D2D). For files with very high popularity, from (B.6):

P(C̃m ≥ 1|rm < RD2D) ≥ 1− exp(−λHCP-A(m)πR2
D2D)

≥ 1− exp(−λt p*
c,G(m)πR2

D2D). (B.8)

For files with very low popularity, rm tends to be very high, i.e., rm ≥ RD2D,

and from (B.4),

P(C̃m = 1|rm ≥ RD2D) = λHCP-A(m)πR2
D2D

≥ 1− exp(−λt p*
c,G(m)πR2

D2D). (B.9)

Solving (B.8) and (B.9), the final result is obtained.
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The following relation is established from (B.8) and (B.9):

M∑
m=1

λHCP-A(m) ≥
mc∑
m=1

λt p*
c,G(m) +

M∑
m=mc +1

1−exp(−λt p*
c,G(m)πR2

D2D)

πR2
D2D

, (B.10)

where using 1− e−x ≤ x for x ≥ 0, the RHS of (B.10) can be shown to satisfy:

≤
mc∑
m=1

λt p*
c,G(m) +

M∑
m=mc +1

λt p*
c,G(m) = λt

M∑
m=1

p*
c,G(m) = N λt .

For a feasible cache placement strategy, we also require that
∑M

m=1 λHCP-A(m) ≤

N λt. Hence, it is possible to set λHCP-A(m)’s as in (3.29) and satisfy the fea-

sible placement condition.
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Appendix C

Appendix to Chapter 4

C.1 Proof of Theorem 6

Letting f(rxu) = pxr (cu) exp (−γ/l(rxu)− βr2
xu) = pxr (cu) (1− γl(rxu)− βr2

xu),

where γ = µTσ2 and β = πλρ(T, α), the MGF of Bφ(x), i.e., MBφ(x)(t) =

E[etBφ(x)], is given as follows:

MBφ(x)(t) = E|Ux|
[
E
[

exp
(
tBφ(x)

)∣∣∣|Ux|
]]

= E|Ux|
[
E
[

exp
(
t

|Ux|∑
u=1

f(rxu)
)∣∣∣|Ux|

]]
= E|Ux|

[
E
[ |Ux|∏
u=1

exp (tf(rxu))
∣∣∣|Ux|

]]
(a)
= E|Ux|

[
E
[

exp (tf(rxu))
]|Ux|]

, (C.1)

where (a) is due to that conditional on having |Ux| receivers in Bx(RD2D), via

Poisson property, u’s are i.i.d. in Bx(RD2D).

Letting a(t) = E
[

exp (tf(rxu))
]
, we have

a(t)
(a)
=

1

πR2
D2D

∫
u∈Bx(RD2D)

exp (tf(|x− u|)) du

=
2

R2
D2D

∫ RD2D

0

exp (tf(r)) rdr
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(b)
=

1

R2
D2D

∫ R2
D2D

0

exp
(
tpxr (cu)

(
1− γ/l(v1/2)− βv

))
dv, (C.2)

where (a) is due to that u’s are i.i.d. and uniformly distributed insideBx(RD2D),

and (b) is obtained by employing a change of variables v = r2. Therefore,

MBφ(x)(t) = E|Ux|
[
a(t)|Ux|

]
,

where we used a similar approach to the definition of the MGF of the Poisson

distribution, which yields E[et|Ux|] = exp(λxrπR2
D2D(et − 1)), where |Ux| ∼

Poisson(λxrπR2
D2D). We can obtain the final result by using the fact that

pxr (cu)’s are i.i.d. and a(t) does not depend on Ux.
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