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Abstract 

 

Traffic Signal Control Using Queueing Theory 

 

Hao Liu, M.S.Stat. 

The University of Texas at Austin, 2018 

 

Supervisor:  John Hasenbein 

Co-Supervisor:  Randy Machemehl 

 

Traffic signal control has drawn considerable attention in the literatures thanks to 

its ability to improve the mobility of urban networks. Queueing models are capable of 

capturing performance or effectiveness of a queueing system. In this report, SOCPs 

(second order cone program) are proposed based on different queueing models as pre-timed 

signal control techniques to minimize total travel delay. Stochastic programs are developed 

in order to handle the uncertainties in the arrival rates. In addition, the superiority of the 

proposed model over Webster’s model has been validated in a microscopic traffic 

simulation software named CORSIM.  
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Chapter 1: Introduction 

Congestion existing in urban traffic networks is becoming increasingly significant, 

especially in some metropolises, because of the increase in car ownership. It has given rise 

to significantly negative impacts, such as reducing mobility, wasting time and fuel energy 

and causing air pollution. A variety of techniques used to mitigate the congestion have been 

proposed, such as road pricing, access restriction and dedicated bus lanes. In addition to 

these methods, traffic signal control may be the most cost-effective method to alleviate 

congestion thanks to its ability to respond to a myriad of traffic scenarios. Based on its 

working principle, traffic signal control techniques can be divided into two groups: pre-

timed control and traffic-actuated control, also referred as adaptive signal control or real-

time control. In pre-timed control, the optimal solution is a set of optimal signal timing 

plans for a certain number of predetermined time periods in one day. The optimal signal 

timing, including cycle length, splits and phase order, is derived based on historical traffic 

data. On the other hand, traffic-actuated signal control utilizes the prevailing traffic 

conditions, which can be captured by combining advanced sensors and prediction 

methodology, to provide the optimal signal timing in real-time. Thanks to its flexibility to 

accommodate varying traffic demands, adaptive signal control is considered superior to 

pre-timed control. 

In traffic signal control research, minimization of the total vehicle control delay, an 

indicator representing the delay caused by the signal, is one of the most commonly used 

objective functions. In addition, other objective functions, such as minimization of person 

delay [1] and balancing queue lengths [2], have also been investigated. Different traffic 

delay models have been proposed in past decades. Dion et al. [3] compared the delay 

estimates from four classes of models: deterministic queueing models [4], [5], shock wave 
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delay models [6]–[8], steady-state stochastic delay models [9]–[12] and time-dependent 

stochastic delay models [13]–[16]. They showed that at a pre-timed intersection, the 

estimates from these models are similar when the traffic demand is low, and the differences 

increase when the traffic demand approaches saturation flow.  

Many traffic signal control methodologies have been published, some of which 

have been put into practice such as SCOOT [17] and SCATS [18]. Although these systems 

have been regarded as adaptive signal control, they do not execute optimization programs 

based on the current and forecasted traffic conditions. Instead, the idea was to choose the 

best timing plan from a preset timing plan set. Real adaptive signal control programs 

usually employ the information provided by sensors such as inductive-loop detectors and 

cameras to predict the traffic demand in a time horizon, then utilize optimization models 

to acquire the optimal signal plan in the same time horizon, which is called a rolling horizon 

scheme. To reduce the computational complexity, dynamic programming was used in the 

methods of DYPIC [19], OPAC [20], PRODYN [21]. An exhaustive comparison between 

these programs can be found in [22]. Head [23] proposed a model to predict the traffic flow 

at an intersection based on the triggering time of the upstream node detectors and upstream 

signal settings. The distance between the intersections and the upstream detectors 

determines the prediction time horizon, which is highly related to practicability. Taking the 

advantage of this prediction model, Mirchandani and Head [24] developed a real-time 

traffic signal control system, RHODES, in which a dynamic program model [25] was used 

to perform the optimization. Unlike most of the control methodology in which the 

minimum and the maximum are fixed parameters, Zheng and Recker [26] proposed a 

rolling horizon algorithm with a time-variant horizon length to optimize four basic 

parameters: phase sequence, minimum green, unit extension and maximum green time. In 
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their model, a feedback mechanism for the optimization parameters exists to adjust signal 

timing to up-to-date traffic volume.  

Queueing models have been used in the field of traffic signal design in past decades. 

Webster [9] proposed analytical expressions for queues and delays at traffic intersections 

assuming the arrivals are Poisson processes. After that, Miller [27] and Newell [10] 

proposed models to calculate the queue length at the end of green phases at an intersection 

with fixed signal timing. Mirchandani and Zou [28] modeled the intersection as a M/G/1 

system and proposed a numerical algorithm to compute the long-run average delays and 

optimal phase splits under a exhaustive service policy. They claimed it is adaptive signal 

control while they only considered a general arrival rate instead of the prevailing traffic 

condition. Osorio and Bierlaire [29] proposed an analytical M/M/c/k queueing network 

model that can capture the evolution and the effect of congestion in this network. By 

employing this model in a simulation-based optimization framework, Osorio et al. [30], 

[31] proposed algorithms to optimize the signals at a network level.  

Although traffic signal control has drawn considerable attention and queueing 

theory has been used to model traffic flow, to the best of our knowledge, relatively little 

research utilizing analytical queueing models in signal optimal research has been 

conducted. In this report, different queueing models based on corresponding assumptions 

will be used to develop signal optimization models and the solution will be tested in the 

traffic micro simulator called CORSIM. In addition, uncertainty in the arrival process will 

be considered in the model.  

The rest of this report is organized as follows. In the second chapter, basic 

knowledge of traffic flow theory and queueing models is introduced. In the third chapter, 

traffic flow by queueing models, in the base of which we propose optimization models, is 
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modeled. Then, the solutions of these models are tested in a micro traffic simulator in the 

fourth chapter. Finally, conclusions are drawn, and future research is discussed.  
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Chapter 2: Background 

TRAFFIC SIGNAL DESIGN 

The objective of traffic signal design is to ensure safe and efficient service for the 

traffic at an intersection. Phasing is the fundamental method by which a traffic signal serves 

the vehicles. The definition of phase varies across the literatures. In this report, the 

definition in [32] is used: a phase is defined as a controller timing unit associated with the 

control of one or more movements. Figure 1 shows a signal design pattern called the 

standard ring-and-barrier signal design. In each cycle, eight phases are served at this 

intersection. The horizontal axis indicates time, and two non-conflict phases activated at 

the same time are served simultaneously. For example, phase 1 and phase 2 are served at 

the same time, and the corresponding phase time is represented by . Phase 3 allows 

two non-conflict movements while phase 1 allows one. It is noteworthy that these two 

phases do not have to be terminated at the same time. In this report, we only consider the 

case in which any two non-conflict phases in the same stage start and end at the same time, 

and we call this period a stage. To ensure the safety of the signal switch, a new stage has 

to wait a period composed of a yellow time and an all-red time for clearing the vehicles in 

the middle of the intersection before it begins to be served. More general knowledge about 

traffic signal design can be found in [32].   

  

Figure 1: Standard ring-and-barrier signal design.  

!!g1
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Queue length, number of stops and traffic delay are three essential measures of 

effectiveness when a traffic signal design is evaluated, and traffic delay is the most 

commonly used. Specifically, traffic delay can be classified as: stopped time delay, time-

in-queue delay and control delay. Stopped time delay indicates the interval between the 

time a vehicle stops to wait for the green signal and time it begins to accelerate after the 

signal turns green. The time-in-queue represents the time from a vehicle joining a queue to 

its departure across the stop line. In general, the control delay illustrates the delay caused 

by a control device, such as a traffic signal and a stop sign. It is approximately equal to the 

sum of the time-queue-delay and delays resulting from deceleration and acceleration. The 

measure of effectiveness used in this report is system time rate in queueing theory, which 

is similar as stopped time delay, and it will be explained in the Chapter 3.  

All of the components of a traffic signal, such as cycle length, phase pattern, phase 

sequence, phase time, lost time, even minimum and maximum green time, can be optimized 

in a traffic signal design program. For simplicity, only the phase time is optimized in this 

report.  

QUEUEING THEORY MODELS 

Queues are an unavoidable phenomenon in reality, and queueing theory plays a 

critical role in managing systems, such as factories and call centers. The customer arrival 

process and service time is almost stochastic, and the queueing system is modeled as a 

stochastic process in queueing theory. The key aspects used to describe a queue are as 

follows: 

1. The arrival process. In queueing models, instead of giving the probability of 

arrival number, the distribution of interarrival time is always given. The common symbols 

to denote the interarrival time distribution are as follows: M for exponential (the arrival 
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process is a Poisson process), G for general, D for deterministic, Ek for Erlang with k 

phases.  

2. The service times. The service times of customers are assumed to be i.i.d. 

(independent and identical distribution). The notation for the service times is the same as 

the arrival process.  

3. The number of servers. In queueing theory, the number of servers determines the 

number of customers that can be served simultaneously. In traffic theory, because it 

represents the number of vehicles which can go through the intersection at the same time, 

it is equal to the number of lanes designed for the movements. The notation c is used to 

denote the server number. 

4. The holding capacity. This is the maximal number of vehicles that a queue can 

accommodate. For a traffic queue, it can be approximated as the division of street length 

by the saturation vehicle space headway. The notation K is used to denote the queue 

capacity.  

5. The service policy. The service policy represents the sequence in which the 

customers are served given their arrival order. For example, FIFO (first in first out) means 

the first arrived customer is served firstly when the server is available while LIFO (last in 

first out) policy gives the priority to the customer who is the last one joining the queue.  

A queue can be fully described by these five parameters. For example, an M/M/c/K 

represents a queue with Poisson arrival process, exponential service time, c servers and a 

capacity of K. The last letter is usually omitted if the capacity is assumed to be infinity. In 

most cases, given these parameters above, the number of customers in a queue can be 

modeled as stochastic process. The common performance measures are long-run average 

number in the system, system time, waiting time and queue length. In the following, the 

expression of these measures of different queue models will be derived.  
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M/M/1 queue 

In the M/M/1 model, we assume that the arrival process is Poisson with an arrival 

rate of , the service time is exponentially distributed with a rate of , and there is one 

server in the system and the capacity is infinity. Then, the number of the customers in the 

system can be modeled as a CTMC (continuous time Markov chain). The corresponding 

rate diagram is shown in Figure 2. This CTMC is a special case of birth-death process with 

uniform birth rates and uniform death rates. 

 

Figure 2: Rate diagram of M/M/1 queue. 

The detailed balance equations are, 

   (1) 

  
where  is the stationary probability that i customers are in the system.  

The stationary probability distribution is a geometric distribution, 
   (2) 

where  is called utilization of the server, which indicates the fraction of time 

the server is busy. 

λ µ

!!

µp1 = λp0
µp2 = λp1
...
pi

i=0

∞

∑ =1

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

!pi

!!pi = (1− ρ)ρ
i

ρ = λ
µ



 9 

Performance metrics including the average number of customers in the system L, 

average system time W, waiting time d, queue length Q can be obtained based on (2). All 

of these metrics are average values in the long run.  

   (3) 

Little’s Law: The long run average number of customers in a stationary system is 

equal to the long-term average effective arrival rate  multiplied by the average time  

that a customer spend in the system, 

 .  (4) 

According to Little’s Law, 

 
.
  (5) 

The waiting time, 

 
.
  (6) 

Again, according to Little’s Law, the queue length, the number of customers waiting 

in the line, is expressed as, 

 
.
  (7) 

M/G/1 queue 

M/G/1 models assume the service time has a general distribution and the average 

service time . In this case, the number of customers in the system is not a CTMC. 

However, an embedded DTMC (discrete time Markov chain) can be modeled as, 
   (8) 

!!
L= ipi

i=0

∞

∑ = i(1− ρ)ρ i

i=0

∞

∑ = ρ
1− ρ

λ !W

!L= λW

!!
W = L

λ
= 1
µ −λ

!!
d =W − 1

µ
= ρ
µ −λ

!!
Q = λd = ρ2

1− ρ

!!
E(s)= 1

µ

!!Qi =Q(ti ), i =1,2,3...



 10 

where  represents the departure time of the ith customer and  indicates 

the number of customers in the system at . 

Following the definition (8), 
   (9) 

where  and ’s are i.i.d random variables representing the 

number of arrival customers in service time .  

For simplicity, the process of deriving  is omitted in this report. The 

performance metrics of the M/G/1 queueing model are given by the Pollaczek-Khinchine 

formula, 

   (10) 

   (11) 

   (12) 

   (13) 

 where  is the variance of service time. 

M/D/1 queue 

The M/D/1 queue is a special case of M/G/1 queue in which the service time is 

assumed to be constant, which implies . Therefore, substituting  

into (10)-(13), the performance metrics of the M/D/1 queueing model can be obtained.  
  

!ti !!Q(ti )

!ti

!!Qn+1 =Qn −1+δn + An+1

!!δn = I Qn =0{ } !Ai

!!Sn+1

!L

!!
L= ρ + ρ2 +λ2Var(s)

2(1− ρ)

!!
W = L

λ
= 1
µ
+ ρ +λµVar(s)

2(µ −λ)

!!
d =W − 1

µ
= ρ +λµVar(s)

2(µ −λ)

!!
Q = λd = λρ +λ2µVar(s)

2(µ −λ)
!!Var(s)

!!Var(s)=0 !!Var(s)=0
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Chapter 3: Methodology 

In this chapter, the traffic flow at a signalized intersection is modeled based on three 

queueing models introduced in chapter 2. Then, optimization models, considering both 

deterministic arrival rates and random arrival rates, are proposed to optimize the signal 

timing. In this report, the focus is only put on one isolated intersection with a phase design 

shown in Figure 1, which means coordination among intersections is not considered.  

MODELS WITH DETERMINISTIC ARRIVAL RATE 

M/M/1 queueing model  

In this section, each phase in Figure 1 is modeled as an M/M/1 queue, which implies 

the following assumption are made: 

1. Arrival processes of these eight queues are independent Poisson processes with 

known rates; 

2. Service times of these queues, which are queue discharge headways, are 

described by exponential distributions; 

3. Each queue can only occupy one lane, i.e. the number of servers for each queue 

is equal to 1; 

4. The street is long enough to accommodate infinitely long queues; 

5. The moving time of a vehicle before it joins the queue is not considered; 

6. The arrival rate is less than the service rate, which implies the no-spillover 

condition. 

The notations used in this section are defined as follows: 
: saturation flow of queue i (vehicles per hour); 

: cycle length (s); 

!Si

!C
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: green time for queue i (s); 

: lost time, which is the sum of start-up lost time and clearance lost time, the sum 

of all-red and yellow time; 
: arrival rate of queue i (vehicles per hour); 

: service rate of queue i (vehicles per hour), which is equal to the reciprocal of 

time headway; 

: set of indices of queues (phases); 

N: cardinality of set I. 

The service rate of queue i is approximated as the product of the saturation flow of 

queue i and the fraction of its green time, 

   (14) 

The total system time rate, which is equal to the rate of total time spent in the queue, 

is the objective function, 

   (15) 

It turns out that this objective function is equivalent to the sum of average number 

of vehicles in the long run over all of the queues. 

From (5), the signal control problem at an isolated intersection can be modeled as,  

  (16) 

    

!gi

!l

!λi

!µi

!I

!
µi = Si

gi
C

!!
f = lim

t→∞

λitWi

ti∈I
∑ = λiWi

i∈I
∑

!!
min f =

λi
µi −λii∈I

∑

!!

s.t . µi = Si
gi
C
, ∀i∈I

gi
i∈I
∑ =C − l

µi ≥ λi , ∀i∈I

(17.a) 

 (17.b) 

(17.c) 
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The decision variables are green times and the service rates of the queues. The 

second constraint ensures time conservation, and the third constraint represents the stability 

condition.  
Although the objective is not a linear function of ’s, the Hessian matrix (18) of 

the objective function is a positive semidefinite diagonal matrix, which implies this 
function is convex in ’s. In addition, the constraints are linear, implying that this 

optimization problem is a convex problem.  

 

.

 (18) 

 This convex program can be solved analytically through the method of Lagrange 

multipliers. Let the new objective function be, 

 
.
  (19) 

Set the partial derivatives to zero, 

 

.

  (20) 
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!!
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Si
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⎪



 14 

By solving the equation set (20), the optimal solution can be obtained as, 

   (21) 

This solution has a similar form as the optimal solution to the problem of 

minimizing the total queue length in an open Jackson network under budget constraint.  

M/G/1 queueing model  

Although it is reasonable to assume that the arrival processes at an intersection are 

Poisson processes, the service time is not very likely to be exponentially distributed. In 

fact, a constant service time of 2 seconds is commonly used in traffic theory. In addition, 

because each queue is served under the alternation of red and green lights, the service rate 

changes between a deterministic value and infinity. Therefore, a general distribution for 

the service time, leading to M/G/1 models, is more appropriate in this case. By replacing 

M/M/1 models with M/G/1 models in (16), while the constraints stay the same, the 

optimization program is converted to, 

    (22) 

!!

β * = −
C

λi
Sii∈I

∑
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⎪
⎪
⎪
⎪
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∑
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where  is the server utilization of queue i, and  is the variance of 

service time of queue i.  

Like the objective function (16), the Hessian matrix of (22) is a diagonal matrix 

with elements of,  

.

(23) 

Therefore, this optimization problem is also convex. However, it is challenging to 
derive an analytical solution. By inserting additional variables ’s and ’s, (22) can be 

transformed to, 

 

.

  (24) 

Because  and  are increasing with , and the objective 

function is minimized, the equalities  and  hold in the 

optimal solution, implying the equivalence between models (22) and (24). 

(24) is equivalent to a SDP (semidefinite program) as, 

!
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   (25) 

where “ ” means  is a semidefinite positive matrix. Therefore,  

 

.

  (26) 

Because the product of the eigenvalues of this  matrix is equal to the 
determinant of the matrix, and the sum of the eigenvalues is equal to the trace , 

the semidefinite condition is equivalent to the determinant being positive, which indicates 

the first equivalence in (26). Therefore, (24) is equivalent to (26). 

Further, (24) can be converted to an SOCP (second-order cone program) by 

transforming the hyperbolic constraints in (24) to hyperbolic constraints given the 

following equivalence, which will not be proved in this report for simplicity, 

 
.
  (27) 

Based on (27), the model (24) is equivalent to, 
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   (28) 

where  is the standard deviation of the service time. The solver called 

MOSEK will be employed to solve this SOCP in Matlab.  

M/D/1 queueing model 

In traffic flow theory, it is reasonable to assume the discharge headway is a 

constant, which requires an M/D/1 queueing model instead of an M/G/1 model. The only 

change needed to be made in the M/D/1 queueing model from the M/G/1 model is to 
remove the variation term ’s. The solution between these models will be compared 

in the next chapter, but the model itself is not shown for brevity.  

MODELS WITH RANDOM ARRIVAL RATES 

The previous section shows that the optimal signal timing is highly dependent on 

the arrival rates of the upstream queues. However, in most cases, the forecast has 

uncertainty, and this uncertainty may have a significant impact on the traffic. In this 

section, stochastic programming models are proposed to investigate the effect of 

!!

min ρi +τ i +βi
i∈I
∑

s.t . (17)
2 λi
ρi − µi 2

≤ ρi + µi , ∀i∈I

2ρi
2τ i −1+ ρi 2

≤2τ i +1− ρi , ∀i∈I

2λσ (Si )
2βi −1+ ρi 2

≤2βi +1− ρi , ∀i∈I

τ i ≥0, βi ≥0, ∀i∈I

!!σ (Si )

!!Var(Si )
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uncertainty in the arrival rates. All of the models in this section are based on the M/M/1 

model.  

In this section, the expected value of total queue lengths in the long term at an 

intersection is chosen as the risk measure and the distribution of arrival rates are assumed 

known.  

Discrete arrival rate 

First, let us consider the case in which the arrival rates are discrete and the 

distribution is, 
  and    (29) 

where  is the support of . Then, the stochastic optimization problem can be 

modeled as, 

   (30) 

    

This model can be transformed to an SOCP expressed as, 

  

(32)  

!!pij = P(λi = j), ∀i∈I , j∈Λi

!!
pij

j∈Λi

∑ =1, ∀i∈I

!Λi !λi

!!
min pij

λij
µi −λij

⎛

⎝
⎜

⎞

⎠
⎟

j∈Λi

∑
i∈I
∑

!!

s.t . µi = Si
gi
C
, ∀i∈I

gi
i∈I
∑ =C − l

µi ≥ λij , ∀i∈I , j∈Λi

!!

min pijβij
j∈Λi

∑
i∈I
∑

s.t .
2 λij

βij − µi +λij
≤ βij + µi −λij ∀i∈I , j∈Λi

(31)

(31.a) 

(31.b) 

(31.c) 
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Continuous arrival rate 

Assume the arrival rates are continuously distributed, and the joint distribution is 

given, then the signal control problem can be modeled as, 

   (33) 

where  is the arrival rate vector,  is the support set, and  is the joint 

distribution of the arrival rates. In most cases, it is challenging to solve the stochastic 

program with a continuously distributed random coefficient. However, Monte Carlo 

methods can be utilized to obtain an approximate solution as follows. First, a large number, 

N, of arrival rates are sampled from the given distribution; then, (33) can be approximated 

as, 

   (34) 

This model can also be solved by converting it to an SOCP. 
  

!! 

min f (
!
λ)( λi

µi −λi
)d
!
λ

Ξ
∫

i∈I
∑

s.t . (31)

 
!
λ Ξ !! f (

!
λ)

!!

min 1
N

λik
µi −λiki∈I

∑
k∈[N ]
∑

s.t . µi = Si
gi
C
, ∀i∈I

gi
i∈I
∑ =C − l

µi ≥ λik , ∀i∈I ,k∈[N]
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Chapter 4 Results 

CORSIM is a widely used microscopic traffic simulator, in which the behavior of 

every driver-vehicle unit is simulated, and it is an appropriate option to test the performance 

of the models proposed in Chapter 3.  

Webster [9] proposed a model to determine the green splits, 

   (35) 

where  is the critical saturation level of stage i, which is the maximum traffic 

 ratio among the phases belonging to stage i. For example, in Figure 1, 

. The Highway Capacity Manual [4] proposed another model 

allocating the green time to ensure all stages have the same critical v/c ratio. Although 

these two methods have different interpretations, they result in the same solutions.  

The performance, in terms of travel delay at an intersection, between Webster’s 

model and the proposed models in Chapter 3 will be compared through CORSIM. 

CORSIM MODEL CALIBRATION  

Figure 3 shows the network used in this chapter. Node 2 is the signalized 

intersection, and it has four upstream links. Each of the links consists of one only-turn-left 

lane and another lane allowing right turns and through movements. The phase set shown 

in Figure 1 is used.  

!!
gi =

α i

α i
i∈I
∑ (C − l)

!α i

!!λ /S

!!α1 =max λ1 /S1 , λ2 /S2{ }
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Figure 3: Network schematic. 

A preset cycle length of 90 seconds is chosen, and the yellow time and all red time 

during each signal change are both equal to 1 second. The mean startup delay in each link 

is 0, so the effective green time in each cycle is 82 seconds. The discharge headway is 2 

seconds. In addition, by running preliminary cases with oversaturated volume, the 

saturation flows of left-turn movement and right-turn and through movement are obtained 

as 1487 vph (number of vehicles per hour) and 1600 vph, separately. The total simulation 

time is 2 hours.   

COMPARISON 

In this section, the signal timing from both Webster’s models and the proposed 

models corresponding to various arrival rate scenarios are acquired, and the total travel 

delay at node 2 is employed as the performance measure. The scenarios of arrival rates are 

listed in Table 1.  
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Scenario # Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8 

1 100 100 200 200 300 300 400 400 

2 100 450 100 450 250 250 250 250 

3 50 250 50 250 250 250 250 250 

4 50 250 50 250 200 200 200 200 

Table 1: Arrival rate (vph) scenarios. 

Although 8 phases exist in the signal setting shown in Figure 1, Webster’s model 

only considers one of the movements, which is the critical movement, for each stage. On 

the other hand, the models proposed in Chapter 3 involve all of the queues, which should 

be beneficial for signal control. It is noteworthy that, in this section, the proposed models 

with uncertainties in the arrival rates are not tested because it is challenging to do Monte 

Carlo simulation in CORSIM. However, it could be realized through an external 

application, known as CORSIM run-time extension (RTE), that can interface directly with 

CORSIM. Table 2 shows the comparison of the green time splits between these models. 

The M/G/1 queueing model is not tested because it is challenging to consider the 

uncertainty of service time in CORSIM. Table 2 indicates that the M/M/1 model and M/D/1 

model lead to the same optimal signal timing under all of the scenarios. It is noteworthy 

that the optimal solutions of these two models are close to each other, but they are not 

exactly the same. However, because CORSIM only accepts integer number of green times, 

the values in Table 2 are rounded from the originally optimal solutions. Although the 

objective functions of these two models are different, the constraints are the same. The 

difference between these two objective functions may not have a significant effect on the 

optimal solution. 
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 Scenario 1 Scenario 2 

 Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3 Stage 4 

Webster 8 15 25 34 27 26 15 14 

M/M/1 10 17 25 30 27 26 15 14 

M/D/1 10 17 25 30 27 26 15 14 

 Scenario 3 Scenario 4 

 Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3 Stage 4 

Webster 21 20 21 20 24 22 19 17 

M/M/1 20 19 22 21 22 21 20 19 

M/D/1 20 19 22 21 22 21 20 19 

Table 2: Green time splits (seconds). 

Table 3 shows the total travel delay corresponding to the signals in table 2. Because 

CORSIM assigns random seeds to each simulation, 10 runs are executed for each signal 

scenario, and the average value of total travel delay of each scenario are shown in Table 3. 

In addition, paired t-test is used to demonstrate if the difference between total travel delay 

from these models is statistically significant.  

Because the M/M/1 model and M/D/1 model lead to the same signal timing, we do 

not differentiate between these two models, and they are referred to as the proposed model 

in the following. In the first scenario, the arrival rates of the two queues belonging to the 

same stage are balanced, which means the difference between them is small enough to be 

ignored. In this case, Webster’s models and the proposed model obtain very similar result. 

Although the proposed model reduces the total travel delay by 0.72%, this improvement is 

not significant. In the second scenario, they result in the same signal timing. The overall 

arrival rate in this scenario is approximately equal to the overall capacity; the constraints 
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(17) force the proposed model assign green time based on the ratio of critical saturation 

level, which is the basic idea of Webster’s model. Therefore, the comparison of scenario 2 

is not displayed in Table 3. In the last two scenarios, the overall traffic at this intersection 

is under saturated, and the arrival rates are unbalanced. Because the proposed model 

considers all of the queues instead of only critical movements, its signal has better 

performance than Webster’s. In addition, the superiority becomes more significant as the 

gap between arrival rates within the same stage becomes larger. The average total travel 

delays of 10 runs decrease by 1.27% and 2.21% in the third and fourth scenario, 

respectively, and the difference in both cases are statistically significant.  

 Scenario 1 Scenario 3 Scenario 4 

Run number Webster M/M/1 Webster M/M/1 Webster M/M/1 

1 2214.999 2228.444 1844.999 1807.761 1584.437 1545.703 

2 2157.976 2139.926 1875.224 1851.501 1543.274 1508.049 

3 2280.037 2299.473 1988.212 1967.244 1687.787 1632.241 

4 2305.139 2311.303 1850.603 1829.366 1622.747 1602.856 

5 2214.841 2135.963 1840.319 1805.057 1538.202 1505.074 

6 2242.86 2215.965 1838.638 1836.232 1657.556 1595.244 

7 2201.7 2177.81 1854.431 1813.702 1562.244 1532.208 

8 2321.544 2278.658 1932.402 1883.756 1632.877 1582.416 

9 2189.262 2224.607 1818.72 1821.469 1582.436 1551.334 

10 2247.271 2202.265 1892.322 1882.412 1568.969 1571.831 

Reduction(%) 0.72   1.27   2.21  

p-value 0.1779   0.0017   0.0002  

Table 3: Total travel delay (minutes) comparison by paired t-test. 
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Chapter 5: Conclusion 

In this report, we proposed pre-timed optimization models using queueing theory 

to optimize the signal setting at an isolated intersection. All of these models can be 

converted to SOCPs (second-order cone program) which can be solved efficiently. Three 

optimization models are derived based on an M/M/1 model, M/G/1 model and M/D/1 

model, respectively with deterministic arrival rates. In addition, the performance of these 

models is compared to Webster’s method by simulation using CORSIM. It shows that the 

total travel delay from the proposed models is approximately equal to that from Webster’s 

when the arrival phase rates within the same stage are balanced or the overall arrival rate 

reaches the overall capacity. However, the proposed models demonstrate their superiority 

over Webster’s model when the balance is violated, and this superiority increases 

significantly with the gap of the arrival rates. In addition, stochastic programming models 

are proposed to consider the uncertainties in the arrival rates. Although it is challenging to 

simulate, the importance of taking the uncertainty into consideration cannot be 

underestimated.  

We are interested in the following future research directions: 

(1). Adaptive signal control has inspired considerable interest in transportation 

research because of its ability to adjust the signal timely based on the prevailing traffic 

conditions. Extending the proposed models to adaptive signal control models is necessary 

to improve their utility.   

(2). On the other hand, intersections in a network are correlated with each other, 

and it is essential to develop a network level model to investigate the effect of their 

correlation on the signal control.  
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(3). Moreover, the capacities of queues are assumed to be infinity so that we do not 

need to worry about the blocking effect. This assumption limits the ability of the proposed 

models when the traffic is oversaturated. Therefore, queue capacities should be introduced 

into the future models.   
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