A Set of Experiments on Steel Balls Under Extension :

A Slide Show

By

John G. Sclater Department of Geological Sciences and Institute for Geophysics, The University of Texas at Austin P.O. Box 7909

Austin, Tx 78713-7909
\&
Sean T. Boerner Mobil Exploration and Producing Services, Inc.
P.O. Box 650232

Dallas, Tx 75265-0232

The experiments were carried out at the Bureau of Economic Geology, The University of Texas at Austin.

Institute for Geophysics
Tech Report No. 105

September 1990

INTRODUCTION

Boerner, (1989) carried out the original set of experiments on steel balls under extension for his Master's Thesis at the University of Texas at Austin. These experiments initially consisted of an examination of the dilation and then faulting of steel balls of uniform size in an apparatus one row thick where he could vary the number of layers. This apparatus approximated the behavior of steel balls in two dimensions. By modifying the apparatus to increase the number of rows he completed a similar set of experiments in the three dimensions. For these experiments, which were meant to be analogues of the behaviour of sand in sand boxes, he varied the size of the balls. Boerner (1989) describes each experiment in detail. Boerner and Sclater (in preparation) are about to submit a summary of these experiments including an explanation of the main findings to the Journal of Geophysical Research.

The experiments have generated interest among applied mechanicists interested in understanding the physical principles governing the behavior of aggregates and among geologists studying the application of experiments on cohesionless materials, such as sand, to extension by normal faulting of soft sediments and continental crust.

We present, with this set of slides, an overview of the experiments carried out by Boerner (1989) and some slides illustrating different packing geometries. The slides give a more detailed picture of the deformation than is presented in Boerner and Sclater (in preparation) and, hence, extend the documentation for this paper. We present the slides of the experiments in roughly the same order as Boerner (1989). The relevent slides start with diagrams and a picture of the two dimensional apparatus which are followed by a series of snapshots at specific times
of the relevant two dimensional experiments. They finish with a diagram of the three dimensional apparatus followed by snapshots of the three dimensional experiments. Each experiment commences with a title slide which includes the run number for ease of comparison with the figures in Boerner (1989) and Boerner and Sclater (in preparation). Each snapshot within an individual run is defined by a β value, where β equals the ratio of the length of the model at the time of the snapshot to the original length of the model. We believe that the differences etween Run \#36 and Run \#38 which were identical in setup can be attributed ot the effects of using balls where the paint had not completely dried in Run \#36. The slides terminate with some photographs of ping pong balls used by Boerner and Sclater (in preparation) to examine possible geometries for close packed steel balls.

REFERENCES

Boerner, S.T., Experimental investigation of packed speres under extension : application to sand box experiments, M.A. thesis, The University of Texas at Austin, pp 244, 1989.
Boerner, S.T., and J.G. Sclater, The deformation under extension of assemblies of steel balls in contact: application to sandbox models, (in preparation for submission to The Journal of Geophysical Research).

SLIDE CONTENT OF SLIDES

NUMBER

1	Title
2	Affiliations
3	Definition β
4	Side View - 2D Apparatus
5	Front View - 2D Apparatus
6	Photo - 2D Apparatus
7	Title: Basic 2D Experiment - Run \#8
8	$\beta=1.00$
9	$\beta=1.10$
10	$\beta=1.15$
11	$\beta=1.19$
12	$\beta=1.24$
13	$\beta=1.28$
14	Title: Basic 2D Experiment - Run \#9
15	$\beta=1.00$
16	$\beta=1.10$
17	$\beta=1.15$
18	$\beta=1.19$
19	$\beta=1.22$
20	Title: Dilation, Fault Blocks, Bridging - Run \#10
21	$\beta=1.00 \quad-11 \mathrm{hr} 36 \mathrm{~min} 07 \mathrm{sec}$.
22	$\beta=1.09 \quad-12 \mathrm{hr} .27 \mathrm{~min} 00 \mathrm{sec}$.
23	$\beta=1.09 \quad-12 \mathrm{hr} 27 \mathrm{~min} 59 \mathrm{sec}$.
24	$\beta=1.11 \quad-12 \mathrm{hr} 38 \mathrm{~min} 00 \mathrm{sec}$.

| 25 | $\beta=1.11 \quad-12$ hr 38 min 39 sec. |
| :--- | :--- | :--- |
| 26 | Title: Varying Number of Layers |
| 27 | $\beta=1.15 \quad-$ Run \#14 |
| 28 | $\beta=1.16 \quad-$ Run \#12 |
| 29 | $\beta=1.16 \quad-$ Run \#08 |
| 30 | $\beta=1.18 \quad-$ Run \#13 |
| 31 | Title: Parallel Faults, Crosscutting Faults, Blocks - Run \#13 |
| 32 | $\beta=1.00$ |
| 33 | $\beta=1.05$ |
| 34 | $\beta=1.08$ |
| 35 | $\beta=1.13$ |
| 36 | $\beta=1.16$ |
| 37 | $\beta=1.21$ |
| 38 | $\beta=1.26$ |
| 39 | Title: Rotation of Balls During Faulting - Run \#21 |
| 40 | $\beta=1.00$ |
| 41 | $\beta=1.09$ |
| 42 | $\beta=1.16$ |
| 43 | $\beta=1.19$ |
| 44 | $\beta=1.22$ |
| 45 | $\beta=1.32$ |
| 46 | $\beta=1.35$ |
| 47 | $\beta=1.36$ |
| 48 | $\beta=1.45$ |
| 49 | $3 D$ |
| 50 | Title: $3-$ Apparatus - Side and Top View |
| 51 | $\beta=1.00$ |
| 52 | $\beta=1.08$ |

53	$\beta=1.18$
54	$\beta=1.28$
55	$\beta=1.46$
56	Released
57	Title: 3-D Single Sized Balls 5/16" - Run \#24
58	$\beta=1.00$
59	$\beta=1.08$
60	$\beta=1.21$
61	$\beta=1.25$
62	$\beta=1.28$
63	$\beta=1.38$
64	$\beta=1.47$
65	Released
66	Title: 3-D Single-Sized Balls 1/8" - Run \#37
67	$\beta=1.00$
68	$\beta=1.08$
69	$\beta=1.17$
70	$\beta=1.26$
71	$\beta=1.36$
72	$\beta=1.46$
73	Title: Two Different Sizes - Top Lock Bottom In Place - Run \#18
74	$\beta=1.00$
75	$\beta=1.11$
76	$\beta=1.14$
77	$\beta=1.24$
78	$\beta=1.35$
79	$\beta=1.51$

80 Title: Two Different Sizes - Top Lock Bottom in Place Run \#31
81
$\beta=1.00$
82
$\beta=1.05$
83
$\beta=1.08$
84
$\beta=1.17$
85
$\beta=1.21$
$\beta=1.27$
$\beta=1.45$

88

89
90
91
92
93
94
95
96
97
98

Title: Plan View-Sideways Motion, Dropping Faults, Curved Faults - Run \#30
$\beta=1.00 \quad$ Plan
$\beta=1.00 \quad$ Side
$\beta=1.08 \quad$ Plan
$\beta=1.08 \quad$ Side
$\beta=1.19 \quad$ Plan
$\beta=1.19 \quad$ Side
$\beta=1.23 \quad$ Plan
$\beta=1.23 \quad$ Side
$\beta=1.38 \quad$ Plan
$\beta=1.38 \quad$ Perspective view
Title: Plan View - Cross Packing - Run \#28
$\beta=1.00 \quad$ Plan
$\beta=1.00 \quad$ Side
$\beta=1.27 \quad$ Plan
$\beta=1.27 \quad$ Side
Title: Three Sizes, $\pm 25 \%$ Range, Random Packing - Run \#19 $\beta=1.00$

110 Title: Three Sizes, $\pm 25 \%$ Range, Distributed (1/4:1/2:1/4), Random Packing - Run \#25
$\beta=1.00$
$\beta=1.19$
Title: Three Sizes, $\pm 6 \%$ Range, Distributed (1/4:1/2:1/4) Closely Packed - Run \#32
$\beta=1.00$
$\beta=1.17$
Title: Three Sizes, $\pm 6 \%$ Range, Distributed (1/4:1/2:1/4) Locked in Place By Upper Layer - Run \#33
$\beta=1.00$
$\beta=1.17$
Title: Three Sizes, $\pm 6 \%$ Range, Distributed (1/4:1/2:1/4) Locked in Place by Upper Layers- Run \#34
$\beta=1.00$
$\beta=1.18$
Title: Three Sizes, $\pm 6 \%$ Range, Distributed (1/4:1/2:1/4)
$1 / 8^{\prime \prime}$ balls over sheet, Locked in place by upper layers of 5/16" balls-Run \#36
$\beta=1.00$
$\beta=1.09$
$125 \quad \beta=1.18$
$126 \quad \beta=1.21$
$127 \quad \beta=1.24$

128
129
130
131
$\beta=1.27$
$\beta=1.31$
$\beta=1.34$
$\beta=1.41$
Title: Same as 36 (Paint Dried)-Run \#38
$\beta=1.00$
$\beta=1.09$
$\beta=1.18$
$\beta=1.27$
$\beta=1.37$
Title: Ping Pong Ball Models of Structures
Basic Close-Packed Hexagonal
Close-Packed Hexagonal Before and After Separation Planes of Failure for Face-Centered Cubic Packing Close-Packed Hexagonal Before Separation
Close-Packed Hexagonal After Separation

A SET OF EXPERIMENTS

ON STEEL BALLS

UNDER EXTENSION: A SLIDE SHOW

JOHN G. SCLATER

AND

SEAN T. BOERNER

In Affiliation With

The Department of Geological Sciences
The Institute for Geophysics
and
The Bureau of Economic Geology
The University of Texas at Austin

MEASUREMENT OF EXTENSION
$=$ Length at Time of Snapshot Initial Length

FRONT

VIEW
2D APPARATUS

Run \#8

22 Layers

2D Close-Packed Hexagonal
$13.4 \mathrm{~cm} / \mathrm{hr}$
$\beta=1.00,1.10,1.15,1.19,1.24,1.28$

BASIC 2D EXPERIMENT

Run \#9

22 Layers
2D Close-Packed Hexagonal
$4.2 \mathrm{~cm} / \mathrm{hr}$

$$
\beta=1.00,1.10,1.15,1.19 .1 .22
$$

dilation, FAULT BLOCKS, BRIDGING

Run \#10

22 Layers
2D Close-Packed Hexagonal
$10.5 \mathrm{~cm} / \mathrm{hr}$
$m e=11: 36: 07,12: 27: 00,12: 27: 59,12: 38: 00,12: 38: 39$

$$
\beta=1.00,1.09,1.09,1.11,1.11
$$

 , , , , , , , , , , , , , ,, ,

 15, No,

 Beberereberemone

\square

 Bexsinion.

 M.
 …ingman.

$!$
4新 ? ?

1月1H1111

.

 cerececerce.

 Cacraccoccu

$\frac{2}{2}$

Cor $15 \mathrm{~K}, \mathrm{CA} \times \mathrm{S} 6 \mathrm{~N}$

 cescescesce,

VARYING THE NUMBER OF LAYERS

Run \#14, 12, 8, 13

5, 11, 22, and 34 Layers
2D Close-Packed Hexagonal

$$
10.8-13.4 \mathrm{~cm} / \mathrm{hr}
$$

$1.15 \leq \beta<1.18$

Run \#13

34 Layers
2D Close-Packed Hexagonal
$11.4 \mathrm{~cm} / \mathrm{hr}$

$$
B=1.00,1.05,1.08,1.13,1.16,1.21,1.24
$$

Run \#21

5 Layers 1" Balls
2D Close-Packed Hexagonal

$$
7.4 \mathrm{~cm} / \mathrm{hr}
$$

$\beta=1.00,1.09,1.16,1.19,1.22,1.32,1.35,1.36,1.45$.aso

. 3 .
$\sqrt{6}$
1

3D EXPERIMENT, SINGLE-SIZED BALLS

Run \#23

14. Layers, 1/4" Balls

Attempted 3D Close-Packed Hexagonal

$$
7.0 \mathrm{~cm} / \mathrm{hr}
$$

$\beta=1.00,1.08,1.18,1.28,1.46$, released ${ }^{103055}$

 50,
 veren $\ldots, 0,0,0,0,0 \cdot 1 \cdot 0 \cdot 0 \cdot 1$

3D EXPERIMENT, SINGLE-SIZED BALLS

Run \#24

14 Layers, 5/16" Balls

3D Close-Packed Hexagonal
$7.1 \mathrm{~cm} / \mathrm{hr}$
$=1.00,1.08,1.21,1.25,1.28,1,38,1.47$, released

1
 4

-

\square = 18 (4)

3D EXPERIMENT, SINGLE-SIZED BALL'S

Run \#37

21 Layers, 1/8" Balls

3D Close-Packed Hexagonal
$7.2 \mathrm{~cm} / \mathrm{hr}$
$\beta=1.00, \quad 1.08, \quad 1.17, \quad 1.26,1.36,1.46$

 cepeper, frpcercopcop
 ceperfer.

 -2. Cecsere
 $40 \cdot 1$, $\overline{7}$ coccccco $10000000000006010 \cdot 1$

 w. Sos, 0 , TV 5 chir
 H wow

 0

\square

TWO DIFFERENT SIZES, TOP LOCK BOTTOM IN PLACE

Run \#18
14 Layers, 1/4" Topped By
7 Layers 5/16" Balls
Attempted 3D Close-Packed Hexagonal
$7.1 \mathrm{~cm} / \mathrm{hr}$
$\beta=1.00, \quad 1.11, \quad 1.14,1.24,1.35, \quad 1.51$

TWO DIFFERENT SIZES, TOP LOCK BOTTOM IN PLAC
Run \#31
14 Layers Of 1/4" Balls Topped By 7 Layers 5/16" Balls, Attempted 3D Close-Packed Hexagonal $6.7 \mathrm{~cm} / \mathrm{hr}$

$$
\beta=1.00,1.05,1.08,1.17,1.21,1.27,1.45
$$

 28
10 2080

$1000 \rightarrow 000001000$ $, \cdots, \ldots, \ldots, \ldots \ldots$
 properpor, R,

3D Close-Packed Hexagonal
With Rows Perpendicular
To Direction Of Extension
6.7. cm/hr
$\beta=1.00, \quad 1.08, \quad 1.19, \quad 1.23, \quad 1.38$

Run \#28
7 Layers
1/4" Balls
3D Close-Packed Hexagonal
Rows Parallel To Direction Of Extension $6.1 \mathrm{~cm} / \mathrm{hr}$
$\beta=1.00 .1 .27$

的,

 inoworototetetitytuty

 ais ox

3

~21 Layers
3/16", 1/4", 5/16" Balls
Equally Distributed, Random Packing

$$
\begin{gathered}
7.2 \mathrm{~cm} / \mathrm{hr} \\
\beta=1.00 .1 .18
\end{gathered}
$$

Run \#22

7 Major Layers
3/16", 1/4", 5/16" Balls
Equally Distributed, Each Major Layer

- 3/4" Thick, Random Packing
$7.3 \mathrm{~cm} / \mathrm{hr}$

$$
\beta=1.00,1.19
$$

3/16", 1/4", 5/16" Balls
Distributed (1/4 : 1/2 : 1/4) Random Packing

$$
\begin{gathered}
7.2 \mathrm{~cm} / \mathrm{hr} \\
\beta=1.00 .1 .19
\end{gathered}
$$

THREE SIZES, $\pm 6 \%$ RANGE, NORMALLY DISTRIBUTED, CLOSELY PACKED

Run \#32
14 Layers
7/32", 15/64", 1/4" Balls,
Distributed (1/4 : 1/2 : 1/4)
Attempted 3D Close-Packed Hexagonal
$6.9 \mathrm{~cm} / \mathrm{hr}$

$$
B=1.00 .1 .17
$$

\square

THREE SIZES, $\pm 6 \%$ RANGE, NORMALLY DISTRIBUTED, TOPPED BY UPPER LAYER

Run \#33
14 Layers
7/32", 15/64", 1/4" Balls Distributed (1/4 : 1/2 : 1/4)
Topped by 7 Layers of $5 / 16^{\prime \prime}$ balls Attempted 3D Close-Packed Hexagonal $6.7 \mathrm{~cm} / \mathrm{hr}$ $R-10 n 117$

$$
\text { Distributed }(1 / 4: 1 / 2: 1 / 4)
$$

Topped By 7 Layers Of 15/64" Balls
Attempted 3D Close-Packed Hexagonal

$$
\begin{gathered}
7.1 \mathrm{~cm} / \mathrm{hr} \\
\beta=1.00 .1 .18
\end{gathered}
$$

7 Layers 1/8". Balls In 3D Close-Packed Hexagonal On Bottom, 7 Layers 7/32", 15/64", 1/4" Balls Distributed (1/4: 1/2: 1/4) Attempted 3D Close-Packed Hexagonal Above, Topped By 7 Layers of $5 / 16^{\prime \prime}$ Balls In An Attempted 3D Close-Packed Hexagonal,
$8.0 \mathrm{~cm} / \mathrm{hr}$

$$
\beta=1.00,1.09,1.18,1.21,1.24,1.27,1.31,1.34,1.41
$$

एक्य

 E.00.

 hemerimworexy

(ancenYY, प्र分 W
\rightarrow
 \rightarrow

THREE SIZES, SAME AS 36, (PAINT DRIED

Run \#38

7 Layers 1/8" Balls In 3D Close-Packed Hexagonal On Bottom,
7 Layers 7/32", 15/64", 1/4" Balls Distributed (1/4: 1/2: 1/4) Attempted $3 L$ Close-Packed Hexagonal Above,
Topped By 7 Layers of $5 / 16^{\prime \prime}$ Balls in An Attempted 3D Close-Packed Hexagonal,
$7.8 \mathrm{~cm} / \mathrm{hr}$

$$
\beta=1.00,1.09,1.18,1.27,1.37
$$

PING PONG BALL MODELS

OF STRUCTURES

BASIC CLOSE-PACKED HEXAGONAL ARRANGEMENT
CLOSE-PACKED HEXAGONAL ARRAY BEFORE AND AFTER SEPARATION ALONG PLANE OF FAILURE.

PLANES OF FAILURE FOR FACE-CENTERED CUBIC WHEN HEXAGONAL PLANE IS HORIZONTAL
5. ACTUAL PHOTOS OF CLOSE-PACKED HEXAGONAL ARRAY USED FOR DIAGRAM IN BOERNER AND SCLATER (IN PREPARATION).

