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Converter  

by  
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SUPERVISOR: Nan Sun 

 

                Time-to-digital converters (TDCs) are key elements for the digitization of timing 

information in modern mixed-signal circuits such as digital PLLs, DLLs, ADCs, and on-

chip jitter-monitoring circuits. Especially, high-resolution TDCs are increasingly 

employed in on-chip timing tests, such as jitter and clock skew measurements, as advanced 

fabrication technologies allow fine on-chip time resolutions. Its main purpose is to quantize 

the time interval of a pulse signal or the time interval between the rising edges of two clock 

signals. Similarly to ADCs, the performance of TDCs are also primarily characterized by 

Resolution, Sampling Rate, FOM, SNDR, Dynamic Range and DNL/INL.  

 

This work proposes and demonstrates 2nd order noise shaping Asynchronous SAR ADC 

based TDC architecture with highest resolution of 0.25 ps among current state of art 

designs with respect to post-layout simulation results. This circuit is a combination of low 

power/High Resolution 2nd Order Noise Shaped Asynchronous SAR ADC backend with 

simple Time to Amplitude converter (TAC) front-end and is implemented in 40nm CMOS 

technology. Additionally, special emphasis is given on the discussion on various current 

state of art TDC architectures. 
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Chapter 1: Time to Digital Converters 

1.1 Introduction 

Traditionally, time-to-digital converters (TDCs) have mostly been used in digital storage 

oscilloscopes, logic analyzers, high-energy particle physics and positron emission 

tomography (PET) [1,2] applications as a time interval measurement device which converts 

input time interval into a digital output code. Recently however, TDCs have become 

increasingly more important with the advent of digitally assisted analog and mixed-signal 

circuits such as Digital PLL/DLLs [3–11] and time-domain Analog-to-Digital Converters 

(ADCs) [12–16]. In these applications, TDCs are used as a phase detector or a quantizer 

with respect to time, and serves as a core block that determines the overall performance. 

Therefore, in order to achieve high performance mixed-signal circuits, a high-resolution 

and high-speed TDC is required.  

 

1.2 Background & Motivation 

 

Recently, high-resolution TDCs have gained in popularity due to their increasing 

implementation in digital PLLs, ADCs, jitter measurement, oscilloscopes and time-of-

flight measurement units. In this report, a low resolution TDC is designed in the context of 

digital PLLs which are briefly discussed in this section. 

 

A phase-locked loop (PLL) is widely used in communication systems. It can be used for 

clock generation, clock recovery from data signals, clock distribution and also as a 

frequency synthesizer. PLLs can be broadly classified into three types – Analog PLL, 

Digital PLL and All Digital PLL (ADPLL). 
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Traditionally, majority of analog PLLs are based on the charge-pump PLL topology. As 

shown in Fig. 1.1, the output clock of the voltage controlled oscillator (VCO) is divided by 

integer N or fractional N. The divided clock is compared with reference clock. The phase 

error (the time difference) between the edges of the two clocks will be detected by the 

Phase/Frequency Detector (PFD) and it will generate either an UP or a Down (DN) pulse 

proportional to the detected time difference. That UP or DN pulse will control the on/off 

of current source 𝐼1 and 𝐼2. In the loop filter, current flow will be converted to a VCO 

tuning voltage which will control the frequency of 𝐹𝑜𝑢𝑡and thus closing the loop. The 

frequency of 𝐹𝑜𝑢𝑡 shall be Multiplication Factor (MF) times the frequency of 𝐹𝑟𝑒𝑓when the 

loop is stable and settled. Since decades of research, different types and orders of analog 

PLLs have been analyzed and procedures for their design have been developed [17]. 

Second-order analog PLLs have also been analyzed and implemented by Hein and Scott 

[18] and Gardner [19]. But all analog PLLs suffer from limitations of analog loop filter 

such as large output resistance & mismatch (between up –down current sources) of charge 

pump, leaky and large area capacitors and additionally complexity of VCO design. 

 

Figure 1.1: Architecture of Analog PLLs [47] 
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Past several years has seen proliferation of digital phase-locked loops (DPLL) for RF and 

high-performance frequency synthesis due to their clear benefits of flexibility, 

reconfigurability, transfer function precision, settling speed, frequency modulation 

capability, eliminating the noise-susceptible analog control for a VCO, the inherent noise 

immunity of digital circuits and amenability to integration with digital baseband and 

application processors [20-22]. When implemented in nanoscale CMOS, the DPLL also 

exhibits advantages of better performance, lower power consumption, lower area and cost 

over the traditional analog intensive charge-pump PLL.   

 

Figure 1.2: Architecture of Digital PLLs [23,47] 

 

As shown in the Fig. 1.2, a digital filter is used in place of a traditional RC loop analog 

filter, which has the benefits of removing the need for large loop filter capacitance and 

analog components such as charge pumps. However, there is now a need of TDC to achieve 

digital encoding of the phase error between reference and divider output, and a digitally-

controlled oscillator (DCO) to allow interfacing to the digital loop filter. While there has 

been much progress on achieving high performance DCO circuits, the development of high 

performance TDC circuits is currently an active research topic in the mixed-signal circuit 

community. Resolution, linearity, and conversion range of TDC have been major factors 

limiting the performance of fractional-N synthesizer DPLL. 



 

4 
 

 

Figure 1.3: Analysis of Nosie Sources – DPLL [23] 

 

The three noise sources for digital PLLs are contributed from TDC 𝑡𝑞[𝑘] (Quantization 

noise) which is low pass filtered with a DC gain of 2πn and cutoff frequency 𝑓𝑜- PLL 

Bandwidth in Fig. 1.3, DCO’s phase noise which is high-pass filtered with a DC gain of 1 

and lastly  noise from Fractional N (modulators of fractional N divider or integer 

N dividers) [23]. The dominating noise sources that affect the performance are from DCO 

and TDC based on the bandwidth of the PLL as in Fig. 1.3. As shown in Fig. 1.4(a), when 

the PLL bandwidth is narrow, the noise associated with the third-order ∆Σ modulator and 

TDC is so low that its impact on the performance of synthesizer is insignificant. For high 

performance applications like GSM which necessitates high bandwidth PLL at system 

level, TDC quantization noise is dominating evident from the phase noise of frequency 

synthesizer. As illustrated in Fig. 1.4(b), both the TDC and divider quantization noises 
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cannot meet the GSM-level requirement. The GSM level requirement can be met by high 

resolution TDCs. 

 

(a)                                                                (b) 

Figure 1.4: Output Phase noise of Synthesizer (a) Low Bandwidth (b) High bandwidth [23] 

 

At the DPLL output, the power spectral density contributed by the TDC quantization noise 

within the PLL bandwidth can be expressed as 

𝑆 𝑇𝐷𝐶 = 
(2𝜋)2

12
 (

 ∆𝑡𝑑𝑒𝑙

𝑇𝐷𝐶𝑂
)

2 1

𝑓𝑅𝐸𝐹 
 

Where 𝑡𝑑𝑒𝑙 denotes the quantization time error of the TDC, 𝑇𝐷𝐶𝑂  is the period of the DCO 

oscillation, and 𝑓𝑅𝐸𝐹  is the frequency of the reference clock [24]. Obviously, a higher 

resolution TDC results in a lower in-band PLL noise and thus low jitter DPLLs. This 

defines one of the prime motivations for pushing towards low resolution and high linearity 

TDCs. 

 

1.3 Performance Characterization of TDC 

 

            Functionally, TDCs are very similar to ADCs except that instead of quantizing 

continuous voltages, these designs are used to quantize continuous time intervals. Hence, 

all performance metrics characterizing the step function of ADCs (e.g., offset and gain 

error, differential and integral nonlinearity (DNL, INL)) can also be applied for TDC. The 
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smallest time interval that can be digitized in a TDC is the resolution of the TDC. The 

dynamic range of a TDC is the maximum time interval that can be measured without any 

saturation effects. The conversion time or the latency, respectively, describes how long it 

takes after a start or stop signal before the measurement result is available. The dead time 

is the minimum time between two successive time digitization operations before a new 

operation can be started.  

 

The noise performance of a TDC is usually described by the single shot precision: If a 

constant time interval is measured repeatedly, the digital output values vary with a standard 

deviation that is called single shot precision. The area and power consumption of several 

TDCs can be compared by adopting the established ADC figures of merit, namely 𝐹𝑂𝑀𝑃 =

𝑃

𝑓𝑐𝑜𝑛𝑣
2𝐸𝑁𝑂𝐵 for the power and for the area 𝐹𝑂𝑀𝐴 =

𝐴

𝑓𝑐𝑜𝑛𝑣
2𝐸𝑁𝑂𝐵,  𝑃  where is the power 

consumption, 𝑓𝑐𝑜𝑛𝑣 the conversion rate of TDC, 𝐴 the area, and ENOB the effective 

number of bits. Further, the process of time digitization should be linear across the dynamic 

range of the operation. In RF frequency synthesizers, a high resolution, wide range TDC 

with zero dead-time is desired. 

 

In the following sections, a comparative discussion among various TDC architectures is 

made with respect to these performance parameters. It can be observed from the following 

discussion that most of the TDC architectures resemble ADC architectures. 

 

1.3.1 Modelling of TDC  

 

The mathematical model of TDC [23] is shown in Fig. 1.5. Phase error is converted to time 

error by scale factor of T/2π. TDC introduces quantization error - 𝑡𝑞[𝑘] and its gain is set 

by average delay per step - 𝑡𝑑𝑒𝑙 
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Figure 1.5: Mathematical modelling of TDC [23] 

 

1.4 Comparative study of TDC architectures 

 

Similar to ADCs, existing architectures of TDCs can be divided into several categories as 

discussed in detail below: Flash, Pipeline, Interpolation, Oversampling, Stochastic and 

Successive approximation Register (SAR) TDCs. 

 

1.4.1 Vernier delay line based TDCs 

TDCs research began with delay line based TDCs which counterparts to Flash ADCs. They 

use inverters or buffers to generate quantization level, as shown in Fig. 1.6(a). Although a 

delay-line TDC achieves the highest conversion rate among other TDCs, its time resolution 

is limited by the CMOS gate-delay. In order to achieve finer time resolution, Vernier 

structure [25] can be adopted which is shown in Fig. 1.6(b). The converter is realized 

starting from two delay lines formed by stages with a delay of 𝜏1 and 𝜏2 so that 𝜏1- 𝜏2 = ∆, 

where ∆ is the TDC resolution. he two lines are connected to a series of flip-flops which 

stores a 1 or a 0 depending if the rising edge of the reference arrives before or after that of 

the signal in Fig. 1.6(b). Actually, the signal edge, which lags a reference edge by n∆ at the 

input of TDC, will be lined up with it after n stages producing a thermometric code at the 

flip-flop outputs in Fig. 1.6(b). In practice, such kind of TDC works as traditional flash 

ADC where the delay lines creates a set of time references like resistor/capacitive DAC 

and the flip-flops are used as time comparators.   
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(a) 

 

(b) 

Figure 1.6: (a) Delay line based TDC (b) Classic Vernier Based TDC [25] 

 

It can be observed that, the dynamic range (𝑡𝐷𝑅 = 𝑛(𝜏1- 𝜏2)) is dependent on no of stages  

which results in large power and long conversion time. This can be resolved by 

architectures such as cyclic Vernier delay line [26] because the dynamic range was simply 

expanded by the extra counter bits. The resolution has been most limiting factor of this 

architecture, as it directly depends on the delay of the device which is in turn prone to 

mismatch and process variations. Hence, this architecture necessitates intensive calibration 

techniques and there by increases power and area.  

 

 Also the random variations of the delay elements, caused by the device mismatch, due to 

the process parameter variation, are a source of DNL. This is accumulative as the signal 
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propagates along the delay line. Additionally, the setup time and metastability rate of the 

sampling D flip-flops can cause errors in the time measurement in the same way 

comparator metastability limits least significant bit (LSB) resolution of a typical flash ADC 

architecture. 

 

Several modified linear Vernier architectures proposed in literature try to increase 

resolution and/or reduce power consumption by interpolation techniques [27] or by 

exploiting the periodicity of the input signals. The high resolution of Vernier TDCs was 

also achieved by variants like 2D, 3D plane/cyclic vernier architectures [28- 30]. However 

in all cases, the number of stages grows exponentially with the number of bits which 

increases design/ calibration complexity and with it, the jitter noise and the sensitivity to 

mismatches increase, thereby limiting the linearity. 

 

1.4.2 Pipeline TDCs 

Resolution is improved by two-step coarse-fine TDCs. Initially, Pipeline TDC began with 

two-step TDCs as shown below with coarse stage implemented by single delay chain 

followed by Fine stage using Vernier delay chain [31]. This is followed by the two-step 

architecture in which, the input time signal is quantized by a coarse TDC and the residue 

which is amplified by a Time Amplifier (TA), is again quantized by a coarse TDC, as 

shown in Fig. 1.7 [32]. Due to the gain of the TA, the overall time resolution of TDC is 

increased. Also, as the coarse TDCs are usually made by delay-line TDCs, it achieves high 

conversion rate. The time-amplification scheme is implemented by metastability of D-Flip 

flop as shown in the Fig. 1.8. Metastability leads to progressively slower output transitions 

as setup time on latch is encroached upon. However, the downside of this scheme is that it 

suffers from uncertainties of gain due to nonlinearity and PVT variations. 

 



 

10 
 

 

Figure 1.7: Two step TDC using time-amplification [23] 

 

 

Figure 1.8: Implementation of Time amplification [23] 

Although the range for these architectures is larger than what would be achieved for a 

single-step TDC using the same resolution improvement techniques, the fundamental range 

versus size tradeoff does not improve compared with the simple delay chain TDC discussed 

earlier. Pipeline TDCs are demonstrated with relatively high throughput of above 100 

MS/s, but their resolutions exceed only few ps.  Hence there has been a lot of progress in 

Pipeline TDCs pushing resolution, Dynamic range and linearity by implementing 

synchronous and asynchronous multi-step architectures using 1.5 – 2.5 bit MDACs 

(Multiplying Digital-to-Analog Converters) [33-34] as shown in the Fig. 1.9. In Fig. 1.9(a), 

synchronous pipeline TDC consists of three 2.5 bit MDAC stages, Time register for 
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storage, time amplifier and calibration circuits.  In Fig. 1.9(b), Asynchronous pipelined 

TDC consists of ten 1.5-bit time-domain MDAC stages, a time amplifier, gain calibration 

block, a pseudo random bits generator (PRBG), and a backend digital background 

calibration block for residue error correction in seven MSB stages.  

 

These circuits necessitate time amplifiers and time registers for storage which also increase 

overall design complexity. Though these architectures can achieve low resolution, they 

tend to be very power-hungry, area intensive and require additional calibration circuitries 

due to the inaccuracy and PVT vulnerability of the time amplifier or time register. 

 

Figure 1.9: (a) Synchronous pipelined ADC – 2.5 bit/stage [33] (b) Architecture of the 

proposed 10-b asynchronous pipelined TDC [34]  

1.4.3 Interpolation TDCs 

Another technique to enhance TDC resolution beyond gate-delay is to interpolate between 

the input and output signals of a digital gate. Fig. 1.10 illustrates this concept using a 

resistive divider, where the undriven nodes are taken to be the average of the delay element 

input and output signals and in Fig. 1.11, digital -gates acts as sub-delay elements to 

produce averaging effect [37]. The operation of averaging creates a new intermediate signal 

with a transition that effectively divides the gate-delay into two smaller intervals. All of 

the new signals must be registered appropriately, which increases the TDC size, but a cyclic 

architecture can be utilized to mitigate this issue [36]. However, achieving a significant 
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improvement in resolution requires more than two delay elements to be connected in 

parallel, which significantly increases the complexity of the multiplexer. It can be observed 

that the improvement in resolution is practically limited by the non-linear impedances of 

the delay elements during the switching transients.  

 

Figure 1.10: Analog interpolating TDC for creating transitions with sub-gate-delay 

spacing [36] 

 

Figure 1.11: Digital technique for creating transitions with sub-gate-delay spacing [37] 

 

The local passive time interpolation technique [36] with minimum latency and minimum 

dead-time with a resolution of 4.7ps proves to be the attractive design but still its resolution 

is highly limited by PVT variations and necessitates calibration intensive design. Also the 

area and power proportionally increases with range.  
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1.4.4 Oversampling TDCs 

 

Noise shaping is another method for reducing the in-band TDC quantization noise 

contribution in a DPLL. This type of TDC uses a gated ring-oscillator (GRO) [37] instead 

of a delay line which results in accumulation of the quantization errors across successive 

measurements. The relatively large quantization error is therefore shaped in frequency as 

in a first order modulator, assessed from the equation below. 

 

e[k] = Phase Error[k] + q[k] – q[k-1] 
 

This quantization noise is largely pushed towards higher frequencies, where it is suppressed 

by the low-pass filter in the DPLL. In Fig. 1.12 a simple GRO based noise shaping TDC is 

demonstrated by enabling ring oscillator only during measurement intervals and the states 

of oscillator are holded between measurements. Averaging these errors results in first order 

noise shaping and thus improves resolution. 

 

 
Figure 1.12: Demonstration of 1st order Noise Shaping using GRO [38] 

 

Based on the premises above, several variants of  noise shaping TDCs like multipath GRO, 

2D GRO, 1-1-1 MASH  (Multistage noise shaping) and 1-1 MASH 2D GRO [38-41] are 

implemented to achieve high resolution and performance. However the limitations of this 

architecture are low signal bandwidth, resolution limited by Over Sampling Ratio (OSR), 



 

14 
 

degradation of noise shaping performance due to mismatch among the stages and higher 

power-area consumption. 

 

1.4.5 Stochastic TDCs 

 

Besides the aforementioned architectures, other popular TDCs are such as stochastic TDCs, 

SAR TDCs and Cyclic TDCs. Stochastic TDCs [42-43] are based on stochastic properties 

of the arbiters. Each arbiter from the set, given the same input signals, 𝑓𝑅𝐸𝐹  and 𝑓𝐷𝐼𝑉, will 

react differently because they exhibit finite random mismatches resulting from Gaussian 

distribution of process variations and this results in accumulation of transfer function. 

Hence, the statistical variation becomes the effective time resolution of TDC. Even though 

resolution would be high, the linear region of the transfer function is inherently short. Due 

to this the detectable range is limited and the performance is heavily dependent on the 

technology used. 

 

1.5 Current State of Art 

 

After the brief discussion of various architectures, a Table 1.1 summarizes the comparison 

of current state of art TDC architectures based on the lowest resolution. Based on this, the 

target specifications are framed. 
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Table 1.1: Comparison of state-of-the-art TDC architectures 

 [28] [44] [45] [35] [38] [43] [46] 

Technology 65nm 

CMOS 

65nm 

CMOS 

35nm CMOS 130nm 

CMOS 

130nm CMOS Fin FET 

14nm 

65nm 

CMOS 

Supply 1.2 V 0.9 V 3.3 V 1.3 V 1.5 V 0.6 V 1.0 V 

Bits 7 12 12 11 11 10 10 

Resolution 4.8 ps 0.63 ps 1.22 0.63 ps 1 ps 1.17 ps 0.83 ps 

Sampling 

Rate (Ms/s) 

50 10 100 65 50 100 40 

FOM 

(pJ/conv) 

1.14 0.1 0.65 1.26 0.2 0.025 0.72 

Area (𝒎𝒎𝟐) 0.067 0.011 4.45 0.32 1 0.036 0.06 

Type Vernier Cyclic Interpolation 

 (hybrid – 

Cyclic-SAR ) 

Pipeline Oversampling Stochastic SAR 

 

1.5.1 Target Specifications 

 

The key performance metrics that we will pursue for this design are high resolution and 

high linearity in the TDC time-to-digital mapping characteristic, and low power and low 

area in its implementation. Based on the comparative study of current state of art 

architectures the following performance metrics are targeted which concludes the highest 

resolution of TDC ever achieved. 

Resolution: 0.25 ps 

Sampling rate: 100Ms/s 

Linearity – (SNDR): 80dB 

ENOB > 12 bits 

The design is implemented in 40nm CMOS technology with a supply voltage of 1.1V. 
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Chapter 2: 2nd order Noise Shaped Asynchronous SAR TDC  

2.1 Background 

Before describing architecture/design details, an initial discussion of a SAR based TDC 

[46] architecture from which the current design is inspired is discussed briefly in this 

section. This design is based on TAC (Time to Amplitude Converter) followed by an ADC.  

The conceptual block diagram is shown in Fig. 2.1 where time interval is translated to 

charges on a capacitor using a charge pump and then the charges are quantized by an ADC. 

From a simplified equation: 𝑡𝑟𝑒𝑠 = 𝐶𝑉𝐿𝑆𝐵/𝐼, the time resolution can be boosted by 

increasing the current, reducing the capacitance, or enhancing the ADC’s resolution. The 

capacitance C is total capacitance of one differential side of the Digital-to-Analog (DAC) 

array of SAR ADC. The performance achieved from this topology is listed in Table - 1.  

 

Figure 2.1: Charge pump based SAR TDC Architecture [46] 

 



 

17 
 

The following are the downsides of this architecture: 

 The use of charge pump as main element for TAC results in nonlinearity of TAC, 

the static power consumption due to the constantly turned on current sources and 

lastly the thermal noise and mismatches from the current source causes undesired 

harmonics.  

 Also the resolution is dependent on increasing the current I, which is not viable 

solution considering already higher power consumption of 2.47mW from 1 V 

supply.  

 An important thing to observe is, the down scaling of C (decreasing C for improving 

resolution) is contrary with the up scaling of SAR ADC (increasing Capacitance 

for enhancing 𝑉𝑙𝑠𝑏).  

 Additionally, this design involves charge-pump whose elimination was one of the 

motives behind Digital PLLs.  

Hence, from the above discussion it’s clear that, in this architecture there’s no further room 

for improvement of resolution besides the aforementioned limitations. 

 

 
Figure 2.2: Proposed TDC Architecture 

 

In the proposed architecture in Fig. 2.2, the TAC is implemented using simple RC charging 

/discharging circuit which eliminates charge pump and thus its issues. Since the maximum 
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phase that needs to be detected will be only few hundreds of pico seconds, from the Taylor 

series expansion, the RC time to voltage conversion will be quite linear. The TAC circuit 

implementation and analysis is described in detail in the further sections. As the resistances 

are made of poly, the area is also comparatively less. The mismatch due to process 

variations will result in static offset and doesn’t affect the linearity, unlike the mismatch in 

current-sources of charge pump that result in nonlinearity. 

 

2.2 Motivation – Noise Shaping Asynchronous SAR ADC 
 

The choice of ADC plays a crucial role in the design. A flash ADC is capable of extremely 

high speed with low resolution. To increase its dynamic range, the comparators increase 

exponentially and hence significant power, area and calibration are involved. A pipeline 

ADC features high resolution and high speed. However, the amplifiers consume much 

power, and designing a high gain op-amp becomes tough with recent technologies. A delta-

sigma ADC faces the similar situation due to its integrators, although it achieves extremely 

high resolution [47]. And also the conversion speed will be low. Asynchronous SAR ADC 

is chosen due to its several advantages for the proposed TDC. First, unlike other types of 

ADCs, it only contains one Capacitive DAC shared between both TAC RC circuit, 

sampling and quantization, as well as one comparator. Thus, a compact structure is 

available. Since, its asynchronous in nature, there is no directional tradeoff between power 

and speed in this topology and a need of external clock/source unlike Synchronous 

architecture. By using metal-oxide-metal (MOM) capacitors and a dynamic comparator, it 

squeezes power and area consumptions to be low with enough sampling rate for DPLLs.  

 

However, for the extension of resolution beyond 10 bit, capacitance of binary DAC array 

increases exponentially by two and since majority of power and area consumption in any 

SAR ADC is attributed to DAC array, this increases power consumption and also chip area. 

Moreover, as capacitance is increased the conversion from time to analog voltage is also 

affected. Hence, the resolution is increased further by around 3 bits by 2nd order noise 

shaping and oversampling. The passive noise shaping is achieved by charge transfer 
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mechanism, eliminates the need for power-consuming OTAs for integration. This 2nd order 

noise shaped asynchronous SAR hybrid architecture is discussed in detail in further 

sections. ADC architecture is implemented in fully-differential configuration that benefits 

from improved common-mode noise rejection, doubling of the signal voltage range, 

reduction of even order harmonic distortion and thus improves ENOB. 

 

2.2.1 Design Calculations 

 

The circuit is implemented in 40nm CMOS technology and with supply voltage of 1.1V. 

For simplicity, calculations are evaluated for the targeted range of 200 ps. The maximum 

OSR for 2nd order noise shaping is 8. The 13 bit ADC is achieved by the combination of 

10 bit Asynchronous SAR ADC and 3 bits Noise shaping.  

Target SNDR from entire ADC = 6N + 1.76 = 80 dB 

SNDR from 10 bit SAR ADC > 61.76 dB 

𝑉𝐿𝑆𝐵 =  
𝑉𝐹𝑆

2𝑁  = 
2.2

213 = 0.26 mV  

 

Noise associated with the switch is sampled by the capacitor and this contribution is known 

as 
𝑘𝑇

𝐶
 noise. This thermal noise from the capacitive DAC array should not limit the SNDR 

of the 12 bit ADC. Hence from the calculations below, the lower limit of total capacitance 

is evaluated which is 0.84 pF.  

 

𝐾𝑇

𝐶
 <  

∆2

12
 => C > 12KT ( 

2𝑁

𝑉𝐹𝑆
 )2  ≈ 0.84 pF 

 

For an 10-bit SAR ADC, the total DAC array capacitance of one differential side is 

assumed to be 1 pF for simplicity based on DAC switching technique, No of Bits, SNDR 

required (KT/C noise calculations mentioned above), power consumption, speed and 

smallest available CRT – MOM unit capacitance (1.515 fF). 
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Figure 2.3: RC charging - 𝑉𝑜𝑢𝑡𝑅𝐶 vs time  

 

 

Figure 2.4: 𝑉𝑜𝑢𝑡𝑅𝐶 vs time – INL/DNL analysis 
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The choice of RC decides the range, linearity and resolution of TAC. Hence a brief 

mathematical analysis is done in Matlab. The RC values are swept from 2.5x10−10 to 

8x10−9 by a multiplicative ratio of 2. The voltage and DNL-INL plots for Taylor 

expansions of uncompensated values are shown in the Fig. 2.4. It can observed that, as RC 

value decrease the quantization step scaling becomes non-uniform which increases non-

linearity though it provides sufficient voltage to be detected is illustrated in Fig. 2.3. But 

as RC value increases, the corresponding voltage for resolution - 0.25ps will be too small 

to detect by 13 bit ADC and also area for either R /C increases.  Hence for an optimum 

performance for TAC’s Dynamic range and resolution, an RC of 1x10−9 is chosen. 

 

𝑡𝑟𝑎𝑛𝑔𝑒 = 200𝑝𝑠 ( signal swing ∶  −99𝑝𝑠 𝑡𝑜 99 𝑝𝑠) 

C= 1pF   RC = 1x10−9  => R=1 KΩ 

 

From simulations of ideal RC switching circuit for TAC front end in Fig. 2.5, the upper 

limit of range 𝑡 𝑚𝑎𝑥 - 100ps corresponds to a voltage of 100 mV. By Taylor series and also 

from above mathematical analysis of RC, assuming linear slope for time to voltage scaling 

from RC charging/discharging, resolution − t LSB of 0.25 ps corresponds to a voltage of 

0.25 mV which is approximately equal to 𝑉𝐿𝑆𝐵 and hence can be detected by 13-bit ADC. 

Thus, from these design calculations equipped with simulations, design parameters R and 

C are approximately evaluated. 

𝑡 𝑚𝑎𝑥 − 100 𝑝𝑠 →  𝑉𝑅𝐶  ~  100 mV 

𝑡 𝐿𝑆𝐵 − 0.25 𝑝𝑠 →  𝑉𝑅𝐶  ~    0.25 mV ~ 𝑉𝐿𝑆𝐵 
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Figure 2.5: TAC’s RC switching circuit – Ideal 

 
As the target range of 200 ps in time domain approximately corresponds to 200 mV in 

voltage domain. Hence the output signal swing of TAC (𝑉𝑠𝑤𝑖𝑛𝑔_𝑇𝐴𝐶
) that needs to be 

detected is 200 mV. This obviates the need of two comparison cycles (2 MSB bits are fixed 

across the range of 200 mV) for SAR ADC, as the ADC is designed for a signal swing of 

2.2 V (+1.1 - -1.1) due to the power supply being 1.1 V. From the calculations below, the 

reduction of comparison cycles by two result in a voltage swing of 550mV that can be 

detected by ADC. This limit is reasonably above output signal swing of TAC. 

𝑽𝒔𝒘𝒊𝒏𝒈_𝑨𝑫𝑪

𝟐𝑵𝒐 𝒐𝒇 𝑪𝑴𝑷 𝒄𝒚𝒄𝒍𝒆𝒔
  =  

𝟐.𝟐 𝑽

𝟐𝟐
  = 550 mV >  𝑽𝒔𝒘𝒊𝒏𝒈_𝑻𝑨𝑪 ≈  ±100mV 

 

This also results in increment in 20 dB of SNDR ( 
𝑉𝑠𝑤𝑖𝑛𝑔_𝐴𝐷𝐶

𝑉𝑠𝑤𝑖𝑛𝑔_𝑇𝐴𝐶
=  

2.2

0.2 
 = 10 ~ 20𝑑𝐵) due to 

gain compensation of range from time domain to voltage domain. Thus the target SNDR 

is reduced from 80dB to 60dB. 
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2.3 Time to Amplitude Conversion (TAC) Front End 
 

The Time to Analog Conversion Front end briefly consists of two parts whose circuit 

analysis and implementation is discussed in detail in this section. 

1. PFD – for generation of UP, DN and PH signals 

2. RC switching circuit – responsible for conversion of time domain to voltage domain 

 

2.3.1 Circuit Implementation & Analysis 

 

The PFD (Phase-Frequency Detector), can detect both phase and frequency differences 

between two periodic signals and generates them as UP and Down (DN) signals whose 

pulse width is proportional to phase difference [48]. The circuit implementation of PFD is 

shown in Fig. 2.6 and the timing diagram for clock signal A leading B is presented in Fig. 

2.7. The mismatches between capacitive loading of UP and DN signals will result in offset 

and hence this issue necessitates symmetric NAND and NOR gates at the output. Any kind 

of mismatches between UP and DN pulse generators due to layout or PVT variations 

appears as a static offset in time domain which can be resolved during calibration. The D 

Flip Flop is implemented by two cross-coupled RS latches. Latch 1 and Latch 2 respond to 

the rising edges of CK and Reset respectively. The UP, DN and PH signals generated from 

CK1 phase leading CK2 are demonstrated in Fig. 2.7. The PH signal that represents the 

summation of UP and DN pulses acts as a trigger for the Asynchronous SAR operation 

which is discussed in further sections. 
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Figure 2.6: PFD Circuit Implementation 

 

 

Figure 2.7: Signal Operation of PFD [47] 

 

The circuit implementation of TAC’s RC switching circuit is shown in Fig. 2.8 and 

simulation results for INA leading INB are shown in Fig. 2.9.  The UP signal is responsible 

for charging the positive differential side (top plate) of DAC capacitor array (TOPp) and 

discharging the negative differential side of DAC capacitor array (TOPm). On the contrary, 
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DN signal is responsible for charging TOPm and discharging TOPp. Thus the input RC 

sampling is implemented differentially to obviate even order harmonics and thus improves 

linearity. The resistance is chosen to be 1K Ω, implemented using poly without salicide, 

large enough to dominate the non-linear resistance of switches in series. The capacitance 

is realized from binary weighted DAC array which is approximately 1.02 pF. A pair of 

NMOS reset switches connected between TOPp and TOPm aids in neutralizing any 

residual charges differentially and thus improves linearity. These switches are arranged in 

parallel and of opposite polarity so as to provide symmetrical parasitic capacitances (Cgs 

and Cgd) on either sides. During Reset operation, the TOPp and TOPm are charged to 

common-mode voltage ( VCM =  
VDD

2
 ) which is the bias point for the input transistors of 

comparator. The bottom plate of the capacitors are connected to DAC switching array for 

ASAR binary operation. The output of TAC front end TOPp and TOPm are connected to 

the comparator of the ADC. The sizes of the switches are listed in Table 2.1. 

 

Figure 2.8: TAC’s RC switching Circuit 
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Table 2.1: Sizing of Switches 

Transistors Size   (W/L) Comments 

M1, M3 16u/40n PMOS switch to VDD is in RC charging path and hence its 

parsitic capacitance should be small enough 

M2, M4 8u/40n NMOS switch to gnd is in RC discharging path and hence its 

parsitic capcitance should be small enough. Also its resistance 

and capacitance should be similar to PMOS switch to eliminate 

mismatch between charging/discharging – hence half its size 

M5,M6 1u/40n Reset NMOS switch to VCM – parasitic capacitance does’nt 

interfere – hence smaller size 

M8,M9 8u/40n Reset switches – parasitic capacitance results in coupling 

between TOPp & TOPm – leads to non-linearity (harmonics) 

Hence larger size – total width 16u 

 

 

Figure 2.9: Signal and Timing diagram of TAC 
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2.3.2 Observations 

 

Three observations can be made from the above simulation results of output signals 

1. It is evident from Fig. 2.9 that when both UP and DN are high there is resultant 

discharging of TOPp and charging of TOPm due to both paths on. Nevertheless, 

this results in overall small reduction of differential output (TOPp - TOPm) which 

can be compensated by multiplying gain while mapping digital values to time 

domain without affecting the performance. 

2. Also the parasitic capacitances referred at terminals TOPp/ TOPm constituted by 

inputs of comparator, switch array and reset switches result in overestimation of 

voltage outputs of TAC due to formation of capacitor divider. However, since these 

non-linear parasitic capacitances are negligibly small compared to DAC 

capacitance, the linearity is not affected.  Any kind of gain error can be 

compensated through calibration. 

3.  It can be observed that during reset operation, the differential outputs doesn’t settle 

exactly to VCM = 550mV but this can be appeared only as offset as differentially 

both the values TOPp and TOPm are identical to 548.5 mV. This is achieved by the 

pair of reset switches (M8, M9). 

 

2.3.3 Test Bench Evaluation 

 

Similar to ADC, the performance parameters of TDC such as SNDR, resolution and 

sampling rate are evaluated by a sinusoidal signal but with respect to time-domain. Two 

clock signals INA and INB of frequency 100 MHz (Sampling rate) are phase modulated 

such that their difference in delays (INA-INB) forms Sinusoidal signal of peak to peak 

amplitude 200ps which represents range. This functionality for generating phase 

modulated clock signals is accomplished by Verilog AMS model – PM generator. It is 

observed that the SNDR of PM generator is limited by the step of transient analysis during 

simulations i.e., if the step size = 0.1ps, range = 200ps, total no of points = 
200 ps

0.1
 = 2000 
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≈ 11 bits → SNDR ≈ 68 dB. Hence, choice of step size for transient analysis plays a 

crucial role for TDC evaluation. Similarly, for DNL-INL test, a ramp signal in time domain 

is generated by linear increment of delay of 0.25 ps between clock signals INA and INB. 

 

2.3.4 Simulation Results 

 

The DNL- INL plots for uncompensated and compensated TAC output voltages is shown 

in the Fig. 2.10. The plot corresponds to time domain ramp signal with step of 1 ps and 

range of 100ps but later normalized to 0.25 ps. The uncompensated values represent 

differential voltage output of TAC (VoutTAC = TOPp − TOPm)  and RC compensated 

values represent TAC output reverse mapped to time domain from equation below. Gain 

in this equation represents the attenuation of VoutTAC  when both UP and DN signals are 

high as discussed earlier. It is evident from the plots (Fig.2.10), that linearity is improved 

after RC compensation. DNL corresponds to 0.1364/-0.1534 LSB and INL corresponds to 

0.04235/-0.1825. 

tRC_compensated = RC × log(1 −
VoutTAC

Vdd × Gain
) 
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Figure 2.10: INL and DNL plots for TAC  

 

The output spectrum of TAC both RC compensated and uncompensated is shown in Fig. 

2.11. The spectrum represents 256 point Fast Fourier Transform (FFT) of the differential 

output voltage of TAC for a sampling rate of 100 MHz and an input frequency of 

300

256
 MHz for time-domain sinusoidal signal step size of transient simulation is set to be 0.2 
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ps. The SNDR is 63.75 dB ~ 10 bits represents 1024 points which is much greater than 

t range

tres
 = 

200 ps

0.25 ps
 = 800. The 3rd and 5th order harmonics are low enough not to impact the 

linearity. It can be observed that the SNDR represents 10 bits which is limited by the step 

size of 0.2 ps used ( 
200 ps

0.2 ps
 = 1000). However, the targeted performance of 0.25 ps from 

TAC is achieved. 

 

 

Figure 2.11: Output Spectrum for transistor level PFD 

 

2.4 Noise Shaping Asynchronous SAR ADC backend 

 

Before the discussion of entire noise shaping backend, an initial background of ASAR 

ADC is presented which aids in understanding of complete architecture and especially 

helps to appreciate the timing diagram. The 2nd order noise shaping ASAR ADC backend 

was primarily designed by Dr. Wenjuan Guo. 
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2.4.1 Asynchronous SAR ADC 

 

2.4.1.1 Background 

 

Successive approximation register (SAR) charge redistribution ADCs are known for their 

outstanding power efficiency as well as good technology scaling characteristics. However, 

since SAR ADCs use a serial conversion algorithm, their low power advantage 

significantly deteriorates at high sampling frequencies around 100 Ms/s. 

 

As the name suggests, SAR ADCs convert an analog input to its digital equivalent by a 

series of successive approximation steps, usually using a binary search algorithm. A simple 

block diagram representing this process is shown in Fig. 2.12. The DAC output voltage is 

compared to the input signal and the result of this comparison is fed back to the DAC, 

thereby closing the successive approximation loop. The control logic is designed to 

perform a feedback subtraction and brings the DAC voltage closer to the analog input with 

every comparison (see Fig. 2.12). As a result, the converter’s resolution depends on the 

number of successive approximation cycles (serial operation). In addition, the resolution is 

primarily limited by the sensitivity of the comparison block, electronic noise and the 

accuracy of the DAC. 

 
 

Figure 2.12: Operation of Conventional SAR ADC  
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2.4.1.2 Principle & Operation of Asynchronous SAR ADC 

 

The concept of ASAR charge redistribution architecture was first introduced in [48]. It 

aims to eliminate the conversion speed constraint of a conventional synchronous SAR 

ADC, which relies on an internal clock to divide the time into DAC settling and comparison 

cycles from MSB to LSB. Since every clock cycle must account worst comparison time 

and clock jitter as in Fig. 2.13, the conversion speed is highly limited by design especially 

the comparator. As the input difference becomes increasingly small, the comparison time 

increases and hence the worst comparison time occurs for lowest possible input voltage - 

LSB/2.  Instead of a synchronous clock driving the ADC, if timing is driven by VALID 

signal from comparator which represents that end of comparison, reduction in overall 

comparison time can be achieved as in Fig. 2.13. This also eliminates the necessity of 

internal high speed clock and thus reduces power consumption. However, a global clock is 

required for sampling which in this design can be incorporated by PH signal that represents 

summation of UP & DN signal. 

 

 

Figure 2.13: Synchronous vs Asynchronous SAR conversion [48] 
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2.4.2 Sequences of Operation – TDC 

 

A detailed flow chart is presented in Fig. 2.14 and corresponding timing diagram in Fig. 

2.15 aids in comprehension of operation of TDC. The PH signal which is generated from 

PFD block acts as a sampling clock and serves as a trigger for timing logic of noise shaping 

ADC backend. PH pulse enables the STOP_CMP comparator that acts as a pulse for ASAR 

ADC operation. When STOP_CMP is low, the comparator is enabled. PH pulse also 

enables STOP_CLK, which acts as trigger for ASAR logic block. Additionally, PH pulse 

enables STOP_NS which further enables Noise Shaping sub circuit. STOP_CMP when 

low generates LATCH signals for eight cycles with a period that can be tuned through 𝑣𝑏𝑖𝑎𝑠 

for delay cell as shown in Fig. 2.16. LATCH is the control signal for the dynamic 

comparator. During each cycle which is triggered by Latch clock signal, a VALID signal 

is generated by the comparator marking the end of comparison and respective clk<n> signal 

is generated. These clk <n> pulses along with comparator output bits (cntrl<8:1>) acts as 

control signals for the DAC switching circuit. After DAC switching, a certain delay is 

allowed for DAC to settle for the charge redistribution. Then again another comparison 

cycle which involves same sequence of steps is performed. When clk <8> goes high, it 

marks the end of ASAR operation and disables STOP_CMP (goes high). When 

STOP_CMP is high and STOP_NS is low, the NS_CLK pulses (3 cycles) are triggered 

which act as control signal for sequence of Noise Shaping operations. NS_CLK triggers 

NS <0> during which residual voltage Vres on the capacitor is captured and later NS <1> 

is triggered during which effective 1st order passive integration is performed. When NS<0> 

goes low, RESET is enabled to clear the voltage on the DAC capacitance array to VCM 

and reset the sequence generator. Additionally, STOP_CLK is also enabled which makes 

the asynchronous logic block inactive and the digital output bits are stored onto the latches. 

When NS <1> goes low which marks the end of 1st order noise shaping cycle, NS <2> is 

triggered. NS<2> clk cycle is responsible for effective 2nd order passive integration. Reset 

and NS<2> goes low simultaneously and this marks the end of TDC operation. 
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Figure 2.14: Flow chart for sequences of operation - TDC 
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Figure 2.15: Timing Diagram of TDC 

 

2.4.3 Asynchronous SAR ADC – Circuit Implementation & Analysis 

 

The given design parameters dictate high speed of 100Ms/s, low power and an ENOB of 

at least 10-bits which necessitates an 11-bit fully differential Asynchronous SAR 

architecture. 

 

 The proposed converter combines a variety of design techniques: (1) judicious 

optimization of DAC settling with variable DAC switching circuit and optimized SAR 

logic with asynchronous timing, (2) a comparator designed for the optimum tradeoff 

between its settling time, noise & input capacitance, and (3) a symmetrically switched DAC 

using top-plate sampling and small unit MOM capacitance of 1.79 fF.   

 

The ASAR architecture is presented in the Fig. 2.16 and the flow chart for sequences of 

operations is illustrated in Fig. 2.17. When STOP_CMP goes low, latch signal are 
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generated with period controlled by bias voltage (Vbp) in delay cell as in Fig. 2.16. This 

latch signals acts as control signals for the dynamic comparator. The end of the comparison 

is marked by the VALID signal generated from a skew NAND gate to avoid metastability 

issues. The Valid signal triggers the sequencer to generate clk <n> signals that keep track 

of comparison cycles. Based on the control signals generated from asynchronous logic, the 

capacitors of DAC is switched between Vrefp (= VDD) and ground. A delay buffer is 

allowed for the DAC to settle for the charge redistribution and then the comparison is again 

triggered. Thus the cycle continues until clk <8> goes high which marks the end of ASAR 

operation. Each of these blocks are discussed detail in further sections. 

 

 

Figure 2.16: Asynchronous SAR architecture 
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Figure 2.17: Sequences of operation – ASAR ADC 

 

2.4.3.1 DAC Array – Circuit Implementation 

 

Majority of power consumption in any ASAR ADC is attributed to DAC array and ASAR 

logic. Hence, keeping low power metric and high speed into consideration, various low 

power DAC switching techniques are also analysed, as shown in Table 2.2. Bidirectional 

switching Technique emerges to be a best fit for the given architecture as it achieves 4X 

capacitance reduction over conventional technique, 95% power reduction, simplicity in 

switching logic and moderately constant common mode voltage that relaxes the comparator 

design. In addition, this switching method improves the settling speed of the DAC capacitor 

network and therefore the sampling rate. 
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Table 2.2: Comparison of DAC Switching Techniques 

Topology Power 
Variation 

in 𝑽𝑪𝑴 

Capacitance 

Reduction 

Complexity in 

Switching 

Logic 

Conventional None None None Simple 

𝑉𝐶𝑀 based 75% None 2X Moderate 

Split Capacitor 56% High 2X Moderate 

Monotonic 81% High 2X Complex 

Bidirectional 95% Moderate 4X Complex 

 

 

Figure 2.18: Bidirectional Switching for 3-bit SAR ADC with bottom plate sampling [50] 

 

Fig. 2.18 illustrates the operation of the Bidirectional switching for 3-bit SAR ADC 

facilitated with bottom plate sampling [48-49]. At the sampling phase, the top plates of the 

capacitors are charged to output voltage of TAC via RC switching circuit. The PH pulse 

represents sampling clock. The comparator directly performs the first comparison without 

switching any capacitor. According to the comparator output, the MSB capacitor is 

switched to ground and the other capacitor (on the lower side) remains unchanged and vice 

versa. The ADC repeats this procedure until the LSB is decided i.e., for about eight latch 

cycles. 
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Figure 2.19: Binary weighted DAC capacitance array with redundancy 

 

The binary weighted DAC capacitive array is implemented using MOM capacitors due to 

the advantages of high density and non-special process, comparing with metal insulator-

metal (MIM) capacitors. Furthermore, attributed to the finger-type structure, a MOM 

capacitor is easy to be scaled like a CMOS transistor. The unit MOM capacitance consists 

of 6 horizontal and vertical fingers, M4 as bottom metal layer and M6 as top metal layer 

due to lesser parasitics associated with higher metal layers and minimum possible 

capacitance available in 40 nm technology with these metal layers constitutes to the unit 

capacitance of 1.7195 fF which is quite low. Hence, it necessitates the comparator and 

switching array to have low capacitance in order to avoid degradation in SNDR due to 

capacitive loading.  

 

The trend in decreasing capacitor size is constrained by thermal noise and capacitor 

mismatch due to layout and parasitic capacitance. The total capacitance of the Binary DAC 

array is 2N−1 times the unit capacitance (i.e., 0.931 fF), as shown in Fig. 2.19. The 

relaxation of two MSB bits among 10 bits can be explained by reduced range of voltage 

that needs to be detected mapped from time domain range of 200 ps to voltage domain of 

200 mV discussed in section 2.2.1. Hence, the MSB capacitors 256C and 128C are 

combined to form 384C for the simplicity of layout and connected to VCM which further 

reduces the impact of VCM  variations due to bidirectional switching. Moreover, the latch 

cycles are reduced from ten to eight as the last two MSB bits are fixed. 
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The linearity of a SAR ADC system is limited by the DAC capacitor mismatch. This issue 

is resolved by common centroid layout the whole 8-bit DAC array (from C to 64C) as in 

Fig. 2.20. The whole DAC is divided into two segments, MSB DAC (from 8C to 64C) and 

the LSB DAC (C to 4C). The layout consists of an array of 8 vertical and 17 horizontal 

unit MOM capacitors. Dummy cells, represented as D in the floorplan, are placed for better 

matching since they reduce the impact of edge effects on capacitor mismatch. They are 

connected to ground to ensure the same parasitic capacitances. The highest metal M6 is 

used for connections of the capacitor’s top plates on which input is sampled since higher 

metal layer has lower associated parasitics while a lower metal M4 is used to connect the 

bottom plates. From parasitic extraction of the capacitor values in Table, it is evident that 

for MSB capacitors BOT 6 & BOT 7, the error is greater than 
1

4
 LSB which might impact 

linearity. It can be observed that, LSB capacitors and MSB capacitors relatively match well 

among the banks. The variation between LSB capacitors and MSB capacitors is larger and 

accumulative as MSB capacitance increases. The error induced by the LSB DAC capacitor 

mismatch is much less than the quantization and hence is negligible. Thus, we only need 

to calibrate the last 3 MSB DAC capacitor’s mismatch (64C to 16C). The MSB DAC 

incorporates a redundant capacitor (8C) whose value is equal to the summation of all the 

capacitors in the LSB DAC. This capacitor provides a sufficient redundancy required by 

the calibration. It also facilitates the sampling of the input signals. 
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Figure 2.20: Floorplan of DAC capacitor array 

 

Table 2.3: Parasitic Extracted (PEX) capacitances from layout 

Capacitor PEX Value Ratio ( 
𝐁𝐎𝐓 𝐍

𝐁𝐎𝐓 𝟎
 ) Error (LSB) 

BOT 0 1.75065 fF 1 0 

BOT 1 3.50285 fF 2.00088 0.00088 

BOT 2 7.00839 fF 4.0033 0.0033 

BOT 3 14.0797 fF 8.0425 0.0425 

BOT 4 14.0797 fF 8.0425 0.0425 

BOT 5 28.1593 fF 16.085 0.085 

BOT 6 56.318 fF 32.169 0.169 

BOT 7 112.566 fF 64.2995 0.2995 

 

2.4.3.2 DAC Switching Circuit 

 

With conventional switching scheme, the DAC settling time is limited by the MSB 

capacitor. As switch size is increased (to decrease Ron – Lower settling time), the increase 

in nonlinear parasitic capacitances of the switch significantly affect SNDR. Hence, to avoid 
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this limitation, variable switches of similar ratios are used for the binary capacitor array as 

shown in Fig. 2.21(a). The switching logic resembles a simple inverter as shown in Fig. 

2.21(b). The transistor sizes of the switching array is presented in Table 2.4. As the width 

is increases, the driving strength of switching logic also increases to support increased 

capacitive load. 

 

 

(a)                                                            (b) 

Figure 2.21: (a) DAC switching array – ASAR ADC (b) DAC switch Implementation 

 

Table 2.4: Sizing of DAC switching array 

Switch PMOS - M1 (W/L) NMOS - M2 (W/L) 

1 300n/40n 150n/40n 

2 300n/40n 150n/40n 

3 600n/40n 300n/40n 

4 1.2u/40n 600n/40n 

5 1.2u/40n 600n/40n 

6 2.4u/40n 1.2u/40n 

7 4.8u/40n 2.4u/40n 

8 9.6u/40n 4.8u/40n 
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2.4.3.3 Sequencer - Implementation 

 

To avoid using an external high-frequency clock generator for SAR operation, the proposed 

ADC uses an asynchronous control circuit to internally generate the necessary clock 

signals. Fig. 2.22 shows a schematic of sequence generator for Asynchronous SAR ADC 

and a timing diagram of the asynchronous control logic. The valid signal from the 

comparator triggers the sequencer. Clk1-Clk8 represent the sequence of 8 comparison 

cycles as shown in Fig. 2.23 and serve as control signals for DAC switching. 

 

 

Figure 2.22: Sequencer circuit implementation 

 

Figure 2.23: Timing diagram of Asynchronous SAR ADC 
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2.4.4 Noise Shaping 

 

Though this section briefly discusses the 2nd order passive Noise Shaping technique, it can 

be understood in more detail from chapter - 2 of [51]. The performance of SAR architecture 

is limited by comparator noise, DAC mismatch, settling errors and 
KT

C
 noise. These issues 

can be resolved by using noise shaping techniques for DAC’s residual voltages after 

asynchronous SAR operation. Noise-shaping is conventionally implemented by using FIR 

filter and IIR filter, as shown in Fig. 2.24 [52]. FIR filter is based on two capacitor banks 

which are used to sample the residue voltages where as IIR filters are based on Operational 

amplifier (opamp) that acts as an active integrator to realize noise shaping function. This 

is not an attractive technique as the FIR filter not only introduces extra noise but also 

increases the ADC’s area and power consumption. In addition, opamp based integrator is 

hard to scale and its design becomes difficult with technology and supply voltage scaling 

[53].  

 

Figure 2.24: Conventional Noise Shaping Architecture [53] 

 

Hence a fully passive noise shaping is employed to solve the issues of comparator noise, 

DAC mismatch and settling error. The noise-shaping technique presented provides a means 

to enhance the resolution of SAR ADCs without a significant modification to the basic 

SAR ADC structure. Additionally, this passive implementation has high power efficiency 

and is compatible with low voltage operation and CMOS technology scaling as it largely 

consists of digital circuits.  
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Figure 2.25: 2nd order passive Noise Shaping Architecture and Timing 

 

This 2nd order passive-noise shaping technique implemented from [54-55].  After the end 

of ASAR operation, the residue voltage left on the top-plate of capacitive DAC has all the 

ADC error information, including quantization noise, comparator noise, and DAC 

mismatch and settling error. To realize 1st-order noise shaping, the key is to integrate the 

residual voltage Vres and feed it back to the comparator input before next noise shaping 

conversion begins. During NS<0> cycle, C2 = 
C

3
 is merged with the DAC capacitor, C1 = 

C and at the end of NS<0> cycle, C2 will carry 0.75Vres. This is followed NS<1> cycle, 

where C2  dumps its charge onto another capacitor, C3  = C, effectively realizing a passive 

1st order integration resulting in voltage 𝑉𝑖𝑛𝑡1 which is connected to 4X comparator input 

path. This is further followed by NS<1> cycle, where C3 dumps its charge onto another 

capacitor, C4  = C, effectively realizing a passive 2nd order integration resulting in voltage 

𝑉𝑖𝑛𝑡2 which is connected to 16X comparator input path.  The comparator has 3- inputs paths 
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sized so as to provide relative gain among Vres , Vint1  and Vint2 respectively to compensate 

for the attenuation of Vres due to passive integration only a fraction of Vres. From the timing 

diagram in Fig. 2.25, RESET is enabled and comparator is disabled (STOP_CMP goes 

high) after NS<0> goes low which marks the acquisition of 0.75Vres. Also as NS<0> goes 

high, the output bits [7:0] of comparator that are stored in strong-arm latch array as in Fig. 

2.16 are processed to output latch for digital output bits D[7:0] – Fig. 2.25. This signifies 

that Noise shaping cycles doesn’t consume additional time and happen simultaneously with 

Output Latch and RESET operation of TDC.  

 

2.4.5 Simulation results of ADC Backend 

 

The timing signals generated from the transistor level implementation of the backend is 

shown in Fig, 2.26.  

 

Figure 2.26: Timing signals for the simulations of TDC 
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The output spectrum of ASAR backend both RC compensated is shown in Fig. 2.27. The 

spectrum represents 256 point FFT of the digital output at a sampling rate of 100 MHz and 

an input frequency of 
300

256
 MHz for voltage domain sinusoidal signal. The SNDR is 80.35 

dB for an Oversampling ratio (OSR) of 8 as in Fig. 2.28 corresponds to an ENOB of 13.1 

bits. The 3rd and 5th order harmonics are low enough not to impact the linearity. These 

simulation results are for full scale range of ADC - 2.2 V, i.e. 10 latch cycles for ASAR 

architecture and MSB capacitors (256C & 128C) are connected to BOT 8 and BOT 9 

resulting in 2 extra MSB bits.   

 

 

Figure 2.27: Output Spectrum of ADC Backend 
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Figure 2.28: SNDR vs OSR 

 

The DNL- INL plots for uncompensated and compensated digital output is shown in the 

Fig. 2.29. This simulations are run for ideal TAC frontend followed by ASAR ADC 

backend. The plot corresponds to time domain ramp signal with step of 0.25 ps and range 

of 100ps. The uncompensated values represent differential voltage output of TDC and RC 

compensated values represent TDC output reverse mapped to time domain from equation 

as described in section - . DNL corresponds to 0.1377/-0.1317 LSB and INL corresponds 

to 0.1641/-0.1472. 
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Figure 2.29: INL/DNL plots for Asynchronous SAR ADC with ideal TAC 

 

2.5 Performance Evaluation of TDC 

 

This section presents the simulation results of TDC. The output spectrum with noise and 

without noise is shown in Fig. 2.30. The spectrum represents 256 point FFT of the 

differential output voltage of TAC for a sampling rate of 100 MHz and an input frequency 

of 
300

256
 MHz for time domain sinusoidal signal with peak-peak amplitude of 200ps. The 

SNDR from TDC with noise enabled and without noise enabled after an OSR of 8 is 58.78 
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from Fig. 2.31 which is further incremented by 20dB to compensate for input voltage range 

reduction from 2.2 V to 200 mV.  Hence, the overall SNDR of TDC with noise enabled 

and without noise enabled is 78.78 dB and 84.14 dB respectively.  After thermal noise is 

enabled, the SNDR drops from 84.14 dB to 78.78.dB by 6 dB. This corresponds to 𝜎𝑛𝑜𝑖𝑠𝑒 of 

around 0.176 mV, which is smaller than target 0.25 mV (LSB). Hence the target 

performance of 0.25 ps resolution is achieved.  

 

 

Figure 2.30: Output Spectrum TDC with noise enabled and without noise enabled 

 

 

Figure 2.31: SNDR vs OSR with noise & without noise 
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The total power consumption of TDC is 0.32 mW which corresponds to an FOM of only 

12.5 fJ/conv. The power breakdown with respect to various blocks is illustrated in Fig. 

2.32. NS_TriCMP represents 3-path input comparator and capacitors for noise shaping and 

it consumes highest power due to large size input path transistors for gain compensation. 

 

Figure 2.32: Power Breakdown of TDC 

 

Though the targeted range of 200ps is achieved, the dynamic range can go beyond 200ps 

until the TDC is saturated. Theoretically, an approximate limit on range is evaluated. Due 

to reduction of 2 MSB cycles, range detectable by ADC backend is reduced from 2.2 V to 

550 mV (Vswing_ADC) which corresponds to t max − 250 𝑝𝑠 (Vswing_TAC ≈  ±250mV). Thus, 

theoretically the range might go beyond 200 ps until 500 ps, though this not yet tested. The 

bandwidth of TDC represents the maximum input signal frequency (in time-domain) as in 

rate of change in the phase error. It can also be termed as conversion rate. For this ADC, 
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since ASAR conversion rate is more than sampling rate, the bandwidth is determined by 

noise shaping i.e., 
fs

2∗OSR
 = 6.25 MHz. 

Table 2.5: Performance Metrics 

Technology 40 nm CMOS 

Supply 1.1 V 

Bits 13 

SNDR 84.14 dB 

Resolution 0.25 ps 

Sampling Rate  100 Ms/s 

Conversion Rate 6.25 Ms/s 

FOM  12.5 fJ/conv 

Type SAR 

 

2.6  Key Aspects - Post Layout 

 

Some key considerations are made during and after layout especially for processing post 

simulation data. 

 For layout, symmetry was ensured between the positive and negative differential 

side of TAC in order to reduce the offset or any gain error. Though, any kind of 

mismatch can be resolved by digital calibration or offset cancellation techniques. 

 DAC mismatch errors can result in non-linearity for the TDC. This was resolved 

by iterated common centroid layout for the CRT-MOM capacitor array until the 

variations among parasitic extracted values are less than 
∆

4
 as discussed in section -

.However, digital calibration is employed to account for any post layout 

mismatches especially between MSB capacitors (BOT 7, BOT 6 & BOT 5) and 

LSB capacitors – unit capacitances. 

 Though a resolution of 0.25 ps is achieved by schematic and even post layout, 𝜎𝑟𝑒𝑠 

should be less than 0.25 ps over PVT variations. This can be accomplished by 
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dynamic offset cancellation techniques at the TAC front end and foreground 

calibration for a DAC mismatch variations. 

 It’s observed that for post layout simulations, the sampling rate was reduced from 

100 MHz to roughly 50-60 MHz due to increased loading of parasitic capacitances. 

Resolution and range are not affected. This is not a big deal with respect to high 

bandwidth PLL applications like frequency synthesizer as the divider ratio can be 

modulated to produce sufficiently high frequencies. 

 

Based on brief discussions throughout this report, an approximate comparative study 

of the popular current state of art TDC architectures and the proposed design is 

presented qualitatively in the Table 2.6. 

 

Table 2.6: Qualitative summary of various TDCs including proposed work 

Architecture Vernier Pipeline Interpolating Oversampling Cyclic Stochastic This 

work 

Resolution medium high low medium high low highest 

Range medium  medium high high medium medium medium 

Speed medium high high low low high medium 

Power medium high medium medium low medium low 

Scaling 

Compatibility 

high medium medium low high high high 

Area medium high high high low medium low 
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Chapter 3: Conclusion 

This report presents the design and development of highest resolution TDC among the 

current state of art architectures with reasonable dynamic range of 200 ps and maybe also 

beyond. This report started with an initial background and motivation behind high 

resolution TDCs. A brief overview of current popular TDC architectures and their 

limitations are presented and a comparative study with respect to resolution in particular 

among the best performances of these architectures is made. A brief discussion of [46] is 

made from which the 2nd order Noise Shaping ASAR based TDC architecture is inspired. 

This TAC + 2nd Order Noise shaped ASAR architecture is implemented in 40nm CMOS 

technology and achieves a resolution of 0.25 ps, a dynamic range of 200ps and FOM of 

only 8 fJ/conv. Various key aspects for layout and calibration techniques for post layout 

are briefly discussed.  The limitation of this design is tradeoff among resolution and range 

which is ubiquitous among most of the architectures discussed. This can be addressed by 

digitally configurable DAC capacitor array. This technique brings in the flexibility of 

increasing dynamic range at the expense of resolution by adding more MSB capacitors – 

bits. Thus, apart from high bandwidth PLLs this architecture has unbounded possibilities 

of applications with respect to particle physics, PET , digital oscilloscopes , time domain 

ADCs etc., as high dynamic range and as well as resolution can be achieved. 
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