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Abstract 

 

Importance of a northern Gulf of Mexico spring transition as inferred 
from marine fish biochronologies 

 

Matthew Paul Dzaugis, M.S. Marine Sci. 

The University of Texas at Austin, 2016 

 

Supervisor:  Bryan A. Black 

	  

Linkages between climate variability and productivity and functioning of marine 

ecosystems have thus far remained poorly described in the Gulf of Mexico, in large part 

due to a lack of time series that are of sufficient length to generate robust relationships. 

Multidecadal biochronologies were generated from otolith growth-increment widths of 

red snapper (Lutjanus campechanus), gray snapper (L. griseus), black drum (Pogonia 

cromis), and king mackerel (Scomberomorus cavalla) all collected from the Gulf of 

Mexico. Synchronous growth patterns were evident between red snapper, gray snapper, 

and black drum, which were all significantly (p < 0.05) correlated to each other, but not 

with king mackerel. The growth pattern shared by the snapper and drum species was 

associated with anomalously warm sea surface temperature, southeast wind stress and 

high sea level pressure in the western Atlantic, all during the early spring months.  These 

data suggest that an early transition from a winter climate pattern to a summer climate 
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pattern is favorable to fish growth in the northern Gulf of Mexico.  In contrast, king 

mackerel significantly (p < 0.01) and negatively correlated to the Atlantic Multidecadal 

Oscillation (AMO), consistent with a growing body of evidence as to AMOs ecological 

relevance in this region. Overall, the results of this study point to the importance of a 

spring transition for the resident coastal species in the northern Gulf of Mexico as well as 

the importance of life history and geography to climate-biology relationships, as 

underscored by the coupling of mackerel with the AMO.	  
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Introduction  

The Gulf of Mexico is the ninth largest body of water in the world, supports one 

third of the fisheries production in the continental United States, and accounts for more 

than one billion dollars in seafood annually (Karnauskas et al. 2013). However, fisheries 

catch and production can vary considerably over annual to decadal time scales, and the 

causes of these fluctuations remain poorly understood. Yet despite its economic and 

ecological importance, it is among the least studied U.S. Large Marine Ecosystems with 

respect to biological impacts of climate variability, climate change, human activity, and 

their interactions (Karnauskas et al. 2013, 2015). Disentangling these effects remains a 

priority but is complicated by the fact that several of these fisheries have been, or 

currently are overfished (Shepard et al. 2010, Cowan et al. 2010, Karnauskas et al. 2013). 

In the most comprehensive ecosystem-level analysis to date, which involved a 

synthesis of long-term time series of physical and often shorter biological datasets, 

Karnauskas et al. (2013) identified the Atlantic Multidecadal Oscillation (AMO) as a key 

climate driver in the Gulf of Mexico. The AMO index is the leading empirical orthogonal 

function of SST anomalies from 0o to 60oN in the Atlantic basin, and is characterized by 

alternations between warm and cool phases every 30 to 40 years (Delworth and Mann 

2000). The AMO is linked to Gulf of Mexico water temperature, depth of the mixed 

layer, hurricane activity, and precipitation in the Mississippi River basin (Karnauskas et 

al. 2015). These climate factors help govern stratification, plankton production, 

eutrophication, and development of hypoxia in the Gulf of Mexico, with indirect effects 
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on upper trophic levels, and ultimately, the economies of coastal communities 

(Karnauskas et al. 2015).  

Perhaps the greatest obstacle to assessing climate-biology relationships in the 

Gulf of Mexico is the absence of long, annually resolved time series. Existing biological 

time series extend at most through the 1980s and largely involve fisheries catch data, 

which can be biased toward regulations and effort and do not capture high-frequency, 

interannual variability (Karnauskas et al. 2013).  In an attempt to better connect biology 

to climate, a dendrochronology (tree-ring analysis) approach is increasingly applied to 

growth-increment widths in fish otoliths (Rountrey et al. 2014, Stocks et al. 2014, 

Doubleday et al. 2015, Ong et al. 2015). The biochronologies developed have annual 

resolution, are exactly dated, can span multiple decades (Black et al. 2005), and reflect 

population-wide fish condition, as measured in one example as mean anomaly in the 

length-weight relationship (Black et al. 2013, Rountrey et al. 2014). Given their exact 

placement in time, these chronologies can be readily integrated with instrumental climate 

records to quantify growth responses to climate variability and change (Morrongiello et 

al. 2012). Target fish species for this approach include long-lived species or those with 

archival collections to ensure that the resulting chronologies capture as much of the 

historical range of variability as possible, including extreme events (Black et al. 2005).  

In the northern Gulf of Mexico, otolith biochronologies have been developed for 

red snapper (Lutjanus campechanus), caught off the coast of Louisiana, and gray snapper 

(Lutjanus griseus), caught off the coast of Florida (Black et al. 2011). The growth-

increment chronologies spanned 30 years and were significantly correlated with one 
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another, indicating that some overarching variable influences their growth (Black et al. 

2011). Climate-growth analysis of these initial chronologies suggests sea surface 

temperature (SST) and wind speed and direction in the spring partially drive red and gray 

snapper growth (Black et al. 2011). Indeed, climate of the Gulf of Mexico has been 

categorized into distinct winter and summer patterns (Morey 2003). During the boreal 

summer, the Inter Tropical Convergence Zone (ITCZ) is at its most northern extent and 

coincides with persistently high atmospheric pressure in the western Atlantic (Bermuda 

High), resulting in predominantly southeasterly winds across the Gulf of Mexico and the 

Caribbean (Morey 2003, Poore et al. 2003). In contrast, winter winds are variable but 

dominated by north and northwesterly flows coinciding with the passage of cold fronts 

(Morey 2003). 

The initial red and gray snapper chronologies appear to respond to the timing of 

this apparent transitioning from winter to summer climate pattern. We hypothesized that 

the timing of this climate transitioning is a general phenomenon and is important to the 

growth of fish over the entire northern Gulf of Mexico. Additionally, we considered the 

AMO in influencing fish growth, as it appears to be prominent in other indicators from 

the Gulf of Mexico basin. Testing this hypothesis required a more inclusive analysis 

across a range of fish species that captured a diversity of life histories, habitats, and 

locations. Red snapper (Lutjanus campechanus), gray snapper (Lutjanus griseus), king 

mackerel (Scomberomorus cavalla), and black drum (Pogonias cromis) were chosen as 

study species as they meet this criteria and have an added benefit of being commercially 

and recreationally important fisheries (Figure 1). The results of this study add to the 
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growth body of work that considers the impacts of climate of fish growth and is 

applicable to management strategies for these species.  

  



 5 

Methods 

STUDY SPECIES AND SAMPLE COLLECTION 
Juvenile red snapper inhabit low reefs and rocky substrate, while juvenile gray 

snapper inhabit mangrove channels and seagrass beds (Moran 1988, Flaherty et al. 2013). 

Adults of both species co-occur and are often found over rocky substrates and offshore 

oil rigs (Moran 1988, Flaherty et al. 2013). Red snapper shift their diet from zooplankton, 

mysid shrimp, and squid as juveniles to benthic fish and crustaceans as adults (Wells et 

al. 2008). Juvenile gray snapper consume mostly small, non-decapod crustaceans in 

mangrove habitats then switch to larger crustaceans, in particular shrimp, and small fish 

after moving to reef habitats as adults (Moran 1988, Hettler 1989). Black drum are 

demersal, estuarine fish that rarely move between estuaries and consume primarily 

crustaceans, mollusks, and shrimp (Sutter et al. 1986). King mackerel are pelagic fish that 

migrate between the Florida Keys/ southeast Florida, Texas/ Louisiana, and Mexico 

(Fable Jr. et al. 1987), but have a limited environmental range of 20-26oC and 32-36 psu, 

generally stay in water less than 150 m deep, and are piscivorous throughout their life 

(Finucane et al. 1990, Wall et al. 2009). The king mackerel chronology is the first 

biochronology developed for a migratory species, as all previous studies have focused on 

species that have limited movements. 

All four species have associated fisheries, and commercial landings data were 

obtained from the NMFS Annual Landings Query database (https://www.st.nmfs.noaa 

.gov/st1/commercial/landings/annual_landings.html). Red snapper continues to be one of 

the most fished and economically important species in the Gulf of Mexico, providing 
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over 2,500 metric tons in commercial landings in 2014 despite past periods of overfishing 

(Cowan et al. 2010). Recreational fishing pressure for gray snapper has increased 

(Gericke et al. 2013) due to catch restrictions on red snapper and an increase in gray 

snapper abundance over the past 40 years.  Recreational landings are now nearly 900 

metric tons per year and commercial landings are over 130 metric tons per year (NMFS 

personal communication). The commercial black drum fishery has remained relatively 

consistent over the past two decades and landings have fluctuated around 2,200 metric 

tons per year. Commercial king mackerel landings in the Gulf of Mexico were 

consistently around 500 metric tons per year over the past two decades, but spiked by 

350% in 2014 (NMFS annual landings query).  

Master chronologies were developed from 76 black drum otoliths (collected 1994-

2009), 26 TX red snapper otoliths (collected 2010-2013), and 35 king mackerel otoliths 

(collected 1990-2011). Otoliths used in this study were obtained from archival collections 

from a variety of sources. The NOAA National Marine Fisheries Service Panama City 

Laboratory (Panama City, FL) provided otoliths from red snapper collected from the 

Texas coast (TX red snapper) and king mackerel. Grid locations were available for red 

snapper but were not available for king mackerel, so exact collection locations of these 

specimens are unknown. The Louisiana Department of Wildlife and Fisheries (Baton 

Rouge, LA via NOAA Southeast Fisheries Science Center) provided black drum otoliths 

from the Louisiana coast. One red snapper chronology and one gray snapper chronology 

were previously developed by Black et al. (2011) from samples collected from the 
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Louisiana coast and Florida coast, respectively, and are subsequently referred to as LA 

red snapper and FL gray snapper (Figure 1). 

CHRONOLOGY DEVELOPMENT 
Sagittal otoliths were embedded in epoxy and then thin-sectioned to 0.4 mm 

through the transverse plane with a low speed, diamond black saw (Isomet, 

[manufacturer]). Sections were mounted on a slide using Crystalbond then polished using 

12- and 8-μm lapping film. In order to develop a reliable and accurate chronology, only 

those otoliths that had well-defined growth-increment boundaries and were sufficiently 

long lived were retained. Black drum, red snapper, and gray snapper otoliths aged less 

than 20 years old were discarded. King mackerel are not as long lived as the other species 

so otoliths aged 10 years old and greater were retained. Each otolith was photographed 

with a Leica DFC295 3.1 megapixel digital camera attached to a Leica M125 dissecting 

microscope. Black drum, TX red snapper, and king mackerel otoliths were photographed 

with transmitted light at 40x, 50x, and 50x magnification, respectively. All otolith 

growth-increment analyses were performed on the dorsal side of the sulcal groove.  

To ensure that no otolith increments were missed or falsely identified, all 

individuals in were visually crossdated. The ability to crossdate individual time series 

depends on three conditions: 1) growth-increments are added annually, 2) increment 

width is correlated with some environmental variable, and 3) the climatic variable 

fluctuates through time (Fritts 1976). Under these conditions, environmental variability 

will induce a synchronous growth pattern or “bar code” among all individuals from a 

given region and species.  Crossdating is the process of comparing these synchronous 
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growth patterns beginning at the marginal growth-increment formed the known year of 

capture, dating back to the center of each otolith (Black et al. 2005). If one increment was 

accidentally missed or falsely added, the growth pattern beginning at that point would be 

offset by one year in that individual relative to the other individuals of the same species 

and region, indicating the error (Black et al. 2005). Growth patterns were never forced on 

these samples. If a pattern appeared to be offset in an individual, a correction was made 

only if the error could be confirmed upon visual inspection of the otolith.   

Once visual crossdating was completed, growth-increment widths were measured 

using ImagePro Premier software (v. 7.4, Media Cybernetics, Silver Spring, MD).  

Growth-increment widths were measured continuously along a transect perpendicular to 

the axis of growth, starting at the marginal growth-increment and ending as close to the 

core as possible. One year of growth was measured starting at the distal side of the 

previous year’s opaque zone to the distal side of the current year’s opaque zone.  

Crossdating was statistically verified using the program COFECHA (Holmes 

1983, Grissino-Mayer 2001), which has been used in a variety of marine fish and bivalve 

species (Black et al. 2005, Matta et al. 2010, Gillanders et al. 2012). Each set of 

measurements was fit with a cubic spline that had a 50% frequency response of 15 years 

after which each measurement was divided by the value predicted. This spline detrending 

removes low-frequency variability, thereby isolating high frequency, year-to-year 

variability, and standardizes all measurements to a time series mean. Next, each 

detrended set of measurements was correlated with the mean of all others, which was 

reported as the interseries correlation. This program does not provide precise criteria for 
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accepting or rejecting a crossdated time series and was used in conjunction with visual 

crossdating (Grissino-Mayer 2001). Additionally, COFECHA calculated mean sensitivity 

as an index of high frequency variability. Mean sensitivity ranges from 0 to 2, with the 

value 0 indicating increments of the same width and the value 1 indicating a pair of 

increments in which one has a width of zero (locally absent) (Fritts 1976). 

Once crossdating was completed, the original measurement time series were 

detrended to remove age-related growth declines and then converted to ring-width indices 

(RWI), such that a value >1 represented above-average growth while a value <1 

represented below-average growth for a given year. This process is independent of 

crossdating verification in COFECHA. For the TX red snapper otolith-increment series, 

negative exponential curves were fit to each measurement time series and observed 

values were divided by predicted values to remove the age-related growth declines while 

preserving all variability with a frequency less the length of the measurement chronology. 

All detrended increment measurements were subsequently averaged using a biweight 

robust mean to form a master chronology (Cook 1985).  This is the same detrending used 

to generate the LA red snapper chronology and the gray snapper chronology, and all 

analysis was performed using the program ARSTAN (Black et al. 2011, Cook 1985).   

The king mackerel and black drum increment series were detrended using a 

different approach. For each species, all increment widths were grouped by age of 

formation, and the mean increment width was calculated for each age group. Each 

growth-increment width was then divided by the age-specific mean to remove age-related 

growth declines. Standardized (detrended) growth-increments were rearranged back into 
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chronological order and averaged by calendar year of formation to yield the master 

chronology. This method better preserved low-frequency variability for species with 

short life spans, especially in situations in which there were archival collections. LA red 

snapper and FL gray snapper chronologies were used from Black et al. (2011). 

 The expressed population signal (EPS) statistic was used to assess the quality of 

each chronology by comparing how well the sample represents the theoretical population 

from which it was drawn (Wigley et al. 1984). EPS is a function of correlation among 

individual samples and number of replicates.  Although there is no level of significance 

associated with EPS, a value greater than 0.85 is considered adequate and only those 

portions of the chronologies that exceeded this value were retained (Speer 2010). This 

corresponded to a minimum sample depth of approximately 20 increment measurements 

per year for TX red snapper and black drum. EPS could not be calculated for mackerel; 

their short lifespan precluded attempts to calculate correlations among measurement time 

series, which is part of the EPS calculation.  Thus, the chronology for Atlantic mackerel 

was limited to portions with 20 measurements per calendar year with the exception of 

1994-1999 during which the minimum sample depth was decreased to 15 measurements 

per calendar year. Principal components analysis (PCA) was used to extract the dominant 

patterns of variability in growth-increment widths shared by all master chronologies. 

PCA was calculated over the shared interval where all chronologies had an EPS of > 0.85 

or sample depth > 15 for mackerel. 
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CLIMATE-BIOLOGY RELATIONSHIP 
Northern Gulf of Mexico SST, wind stress, and SLP were chosen as primary 

climate drivers based of the initial results presented by Black et al. (2011). Wind stress 

and SLP data were obtained from NOAA-CIRES 20th Century Reanalysis V2c 2 x 2 

degree dataset (http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html), 

and SST data were obtained from Hadley HadISST 1.1 1 x 1 degree dataset 

(http://hadobs.metoffice.gov.uk/hadisst). SST, U wind stress (west to east), and V wind 

stress (south to north) used for correlations with the chronologies and were averaged over 

the northern Gulf of Mexico, targeting the shelf region < 180 m deep (Figure 1). SLP data 

spanned the region of the Bermuda High (27oN to 37oN and 85oW to 65oW). Mississippi 

River discharge at Tarbert Landing (river mile 306.3) as obtained through US Army 

Corps of Engineers was also included (http://rivergages.mvr.usace.army.mil/ 

WaterControl/new/layout.cfm). 

Climate during a single month can greatly influence an entire year of fish growth, 

so each chronology was correlated with monthly averaged climate values. Climate values 

from the previous year were also examined to test for any lagged relationships. 

Therefore, 24 variables were considered for U wind stress, V wind stress, SST, SLP, and 

Mississippi River discharge. Significant correlations (P < 0.05) between climate variables 

and fish chronologies were retained for further analysis. 

SEASONAL CLIMATE PATTERNS: QUANTIFYING THE SPRING TRANSITION 
Previous analyses indicated that Gulf of Mexico climate can be characterized by 

distinct summer and winter patterns (Morey 2003). We attempted to quantify, more 
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clearly, the transition between these two seasonal patterns and whether this “spring 

transition” index is detectable in fish chronologies. All climate data spanning 1900-2011 

were arranged into four separate matrices (U wind, V wind, SST, SLP) of 12 months x 

111 years. Each column for every matrix was standardized to a mean of 0 and standard 

deviation of 1. One composite matrix was created for principal components analysis, 

climatePCA, which contained U wind stress, V wind stress, and SLP (3 variables; 12 

months each x 111 years). SST has higher autocorrelation than the other three variables 

due to the high specific heat capacity of water; as such SST was entered into a separate 

PCA. Loadings were examined for seasonal patterns. 

In a subsequent analysis, March SST, SLP, V wind stress, and U wind stress were 

entered into principal components regression with the first principal component of fish 

(PC1fish) in order to help summarize climate-growth relationships during the month most 

closely associated with the spring transition (March). Principal components regression 

was used to derive uncorrelated (orthogonal) variables that better met the assumptions of 

multiple linear regression from this suite of collinear variables. The Durban-Watson 

(DW) statistic was used to test for autocorrelation in the regression residuals. 

Additionally, mean values of gridded SST, winds, and SLP were calculated for the four 

years with the highest, and then the years with the four lowest, values of PC1fish. 

Differences between mean climate values for high and low growth years were tested 

using a Student’s t-test. Lastly, correlation coefficients were computed between each 

chronology and the monthly and mean Atlantic Multidecadal Oscillation (AMO) and 

multivariate El Nino-Southern Oscillation (ENSO) indices obtained from the National 
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Oceanic and Atmoshperic Administration’s Earth System Research Laboratory 

(http://www.esrl.noaa.gov/psd/data/climateindices). 
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Results 

CHRONOLOGY DEVELOPMENT 
All species had good otolith clarity, although black drum and king mackerel had 

better defined increment boundaries than TX red snapper. Of the 43 TX red snapper 

otoliths of sufficient age only 26 were used to develop the final chronology due to the 

prevalence of diffuse increment boundaries or distortion in the otoliths. Fifty-five out of 

83 king mackerel otoliths were used and the rest discarded due to distorted or diffuse 

increment boundaries. More than 800 black drum otoliths were available collected from 

1994 to 2009. A random sample of 15 otoliths was taken from each collection year and 

78 of these 90 otoliths were suitable for chronology development. Otoliths were 

discarded if they could not be visually crossdated, however less than 5 otoliths per 

species were discarded.  

Among otoliths measured, growth was synchronous within each species as 

indicated by high interseries correlations (Figure 1, Table 1). There was also synchrony 

among species; chronologies were particularly synchronous across the coastal/reef 

species (snappers and black drum) collected in the northern Gulf of Mexico as shown by 

the high correlations coefficients (Figure 1, Table 2). In contrast, the king mackerel 

chronology was not significantly correlated with any of the other fish chronologies (Table 

2). However, when the strong low-frequency signal (change in mean value over time 

shown in Figure 1f) was removed, the mackerel chronology was significantly correlated 

with the black drum and TX red snapper chronologies (Table 2). 
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PCA was used to extract the dominant pattern(s) of variation among the five fish 

chronologies. The 17-year interval 1986-2002 was used in the PCA, as all chronologies 

had sufficient sample depth and EPS > 0.85 over this time span. The first PC (PC1fish) 

explained 61.9% of the variability, and the resident coastal/reef species (gray snapper, red 

snapper, and black drum) had the highest loadings (Figure 1g). PC2fish explained 21.2% 

of the variability and had highest loadings for king mackerel (Figure 1g). Scores on 

PC2fish were linearly related to the king mackerel growth chronology (r2 = 0.81; P < 

0.001). In order to simplify interpretation of the data, the king mackerel chronology was 

used in place of PC2fish for the remaining analysis.  

CLIMATE-BIOLOGY RELATIONSHIP 
March SST, August U wind stress, March V wind stress were positively 

correlated with PC1fish, while March U wind stress was significantly negatively correlated 

with PC1fish (P < 0.05; Figure 2). Thus, good growth was associated with warm SST and 

winds from the south and east during March, while poor growth was associated with cool 

SST in March and winds from the north and west. In August, favorable growth is 

associated with winds from the north (Figure 2). SST was most highly correlated with 

PC1fish generally within 2o of the coast in the northern Gulf of Mexico (Figure 3a), and U 

wind stress and V wind stress had a broader area of high correlation that spanned the land 

and sea (data not shown). Mississippi River discharge was not significantly correlated 

with any of the chronologies.  

The principal components analysis of March SST, V wind, U wind, and SLP 

included SLP because it had the highest correlation of any month with PC1fish, even 
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though the correlation was not significant (r = -0.43, P = 0.081; Figure 1). The first and 

second PC of March climate (PC1MC, PC2MC) explained 50.1% and 29.0% of the 

variability, respectively.  Scores on these two PCs were entered into a stepwise linear 

regression with PC1fish. Only PC1MC was retained and the regression explained 51.2% of 

the variability in PC1fish (P = 0.001; DW = 1.9, P = 0.6) (Figure 2).    

The king mackerel chronology used in place of PC2fish was negatively correlated 

with SST in the north central Gulf of Mexico (25oN - 30oN x 93oW - 85oW) from 

February through May and in December, with peak correlation in April (Figure 3b). The 

high-frequency variability of king mackerel, although significantly correlated with each 

of the other chronologies, was not significantly correlated with any climate variables. 

However, the king mackerel chronology was significantly correlated with every month of 

the AMO monthly index, and with the annual mean (R2 = 0.42; P < 0.002; Figure 3c). 

The mean annual AMO index was significantly correlated with SST in the southeastern 

Gulf of Mexico and western Caribbean Sea from May to September, with the strongest 

correlations in August (Figure 3d).  

Lastly, March wind stress, SST, and SLP were averaged over the years of highest 

(1986, 1990, 1999, 2000) and lowest (1989, 1993, 1996, 1998) scores on PC1fish (Figure 

4). March in years of good growth (high PC1fish values) was characterized by higher SLP 

in the area of the Bermuda High, winds from the southeast and east-southeast, and 

warmer than average SST in the coastal zone 1.2oC (t-test, P = 0.082) (Figure 4 a, c). 

Conversely, cooler SST and winds from the north and northwest characterized years of 

poor growth (low PC1fish values) (Figure 4 b, d). 
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SEASONAL CLIMATE PATTERNS: THE SPRING TRANSITION 

The first 12 principal components of PCAclimate had eigenvalues greater than one. 

Each component was examined for seasonal patterns and correlations with PC1fish and the 

king mackerel chronology. PC1climate explained 10.2% of the variability in the climate 

data, with highest loadings with March (Figure 5). PC1climate explained (r2 =) 35.8% (P = 

0.011) of the variability in PC1fish, but was not correlated with king mackerel (Table 3). 

Neither PC1fish nor king mackerel were significantly correlated with any other 

components, so those components were not examined further.  

The first four principal components of SST had eigenvalues greater than one. 

Each of these components had some seasonal patterns in their loadings. PC1SST (26.8% of 

variance) contained a somewhat seasonal pattern with high loadings in the summer and 

minimum loadings in the winter. PC2SST (21.2% of variance) was significantly correlated 

with PC1climate (R = 0.47, P < 0.001) and had a seasonal pattern similar to PC1climate, 

characterized by high loadings in March (Figure 5b). Neither PC1SST nor PC2SST were 

significantly related to PC1fish or the king mackerel chronology. 
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Discussion 

CHRONOLOGY DEVELOPMENT 

 
Annually resolved, multidecadal chronologies could be developed for each 

species considered in this study. Mean interseries correlations were similar to other 

marine fish growth chronologies developed for Pacific species, such as rockfish (Sebastes 

spp., 0.54-0.65; Black 2009) and yellowfin sole (Limanda aspera, 0.66; Matta et al. 

2010), but values for each species were greater than those of chronologies developed for 

Australian species, such as western blue groper (Achoerodus gouldii, 0.112; Rountrey et 

al. 2014) and black bream (Acanthopagrus butcheriin, 0.13; Doubleday et al. 2015).  

Each of the mean sensitivity values were low compared to yellowfin sole (0.26; Matta et 

al. 2010), northern rock sole (Lepidopsetta polyxystra, 0.23; Matta et al. 2010), and 

Alaska plaice (Pleuronectes quadrituberculatus, 0.24; Matta et al. 2010) but similar to 

Pacific rockfish (0.15-0.20; Black 2009). The comparatively low interseries correlation of 

the king mackerel chronology is likely due to the young age (~10 years old) of many of 

the fish that were used for chronology development combined with a relatively low 

sample depth between the years of 1994 and 1999. Moreover, large mackerel may stay in 

the northern part of the Gulf, near Louisiana and eastern Texas, throughout the year, 

while smaller individuals migrate to the southeast near the Florida Keys or to the south to 

the Bay of Campeche during the winter (Fable et al. 1987, Wall et al. 2009). These 

migration behaviors could have produced lower levels of synchrony among individuals. 

Finally, the short-lived mackerel are prone to sporadic correlations (positive and 
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negative) with one another, which could also have reduced their overall interseries 

correlation.  Notably, mackerel otolith increments had very well defined boundaries, so 

their interpretation was reliable. 

 Two different detrending techniques were used to generate chronologies, and 

these could have some effect on retention of low-frequency variability. The first 

approach, applied to red and gray snapper, was to fit each growth-increment time series 

with a separate negative exponential function and then divide each observed increment 

width by the predicted value.  This approach removed any trends longer than the 

measurement time series, a phenomenon known in dendrochronology as the “segment-

length curse” (Cook et al. 1995).  Given that the measurement time series averaged 22 

years, decadal-scale processes should be preserved.  If a major low-frequency pattern 

comparable to that observed in mackerel were present, at least some of it should have 

been preserved.  In contrast, king mackerel and black drum were each detrended using a 

single negative exponential function that best fit the average, sample-wide age-related 

growth decline. Had these samples been collected at the same time and been 

approximately the same age, the results would be similar to those using individual 

negative exponential curves. Instead, fish from both species had been collected across 

decades, which allowed us to preserve low-frequency variability even in the short-lived 

mackerel. The long-term trends in mackerel were almost certainly unique to this 

chronology given that the relatively long-lived black drum to which regional curve 

standardization (RCS) detrending was applied did not show low-frequency variability.  

Thus, the absence of long-term trends in the majority of chronologies is probably not an 
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artifact of detrending technique. Once the low-frequency variability was removed from 

the mackerel chronology, correlation with the other species improved, which 

corroborated dating accuracy.   

CLIMATE-BIOLOGY RELATIONSHIP 

 
Distinct winter and summer climate patterns have been described previously in 

the northern Gulf of Mexico. During the summer, the Bermuda High is strong, which 

results in persistent south and southeasterly winds across the Gulf of Mexico and the 

Caribbean Sea (Morey 2003). Winter is dominated by the passage of cold fronts that 

result in north and northwesterly winds (Morey 2003). Spring is thus highly variable 

within and between years and can be defined by the timing of the transition between 

these two dominant climate patterns. The strong loadings for March and April in PC1climate 

and PC2SST corroborate the observation that these months have the highest coefficients of 

variability. Overall, principal component scores for PC1climate and PC2SST can be 

considered spring transition indices, capturing whether the shift from winter to summer 

climate has occurred relatively late or early in the year.   

The biochronology results from the present study suggest that when the spring 

transition occurs early (during or before March), fish growth is enhanced, and when it 

occurs late (after March), fish growth is reduced. The mechanisms behind why an early 

or late spring transition may be important to fish growth cannot be described with this 

dataset. However, the corresponding pattern of growth variability imprinted in the fish 

chronologies may be due to indirect effects on food quality or quantity and/or direct 
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physiological effects, extending the growing season. For example, in the North Atlantic, 

early stratification leads to greater phytoplankton abundance (Sharples et al. 2006) and 

high survival of juvenile northern shrimp (Pandalus borealis), an important food source 

for fish (Ouellet et al. 2010).  

In the northern Gulf of Mexico, primary production is strongly influenced by 

riverine nutrient input, the transport of which varies with respect to season (Chen et al. 

2000, Morey 2003, Karnauskas et al. 2013). During summer months, dominant winds 

favor a stratified layer of low salinity water that extends across the entire shelf (Morey 

2003).  By contrast, winter winds limit nutrient-rich freshwaters to the shallow coastal 

zone (Morey 2003). The broader distribution of fresh water and its stimulation of primary 

production could partially explain enhanced growth in upper-trophic level fish such as 

snapper. It would also explain the low correlation with Mississippi River discharge; 

where total river inflow is less important to these fish than wind-driven advection.  

From a physiological perspective, experiencing optimal growing temperatures for 

a longer period of time will increase total annual growth (Brown et al. 2004), and the 

effects of an early onset of summer conditions likely involve a combination of these 

factors. Indeed, across a range of ectotherms faster growth rates in are supported by both 

higher temperatures and increased food quality and quantity (Berrigan and Charnov 1994, 

Angilletta et al. 2004).  

LOW FREQUENCY TRENDS 
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The king mackerel chronology was the only chronology to contain a strong low 

frequency signal. Why this low frequency trend was present in mackerel and not the other 

chronologies is unclear. A similar decrease in growth rate from historic (1986-1992) to 

contemporary (2006-2007) mackerel has been attributed to density-dependent response to 

overfishing (Shepard et al. 2010). The king mackerel fishery was considered overfished 

from the early 1980s to 1996 when individuals would likely be growing faster because of 

the absence of competition, and this could contribute to the observed patterns in the 

chronology (Shepard et al. 2010).  

Low-frequency trends could also be due to the pelagic, migratory life history of 

king mackerel, which none of the other species in this study exhibit. King mackerel 

migrate to the southern Gulf of Mexico for the winter where SST variability is dominated 

by a low frequency signal with a ~60-year cycle that is consistent with the AMO (Yáñez-

Arancibia and Day 2004, Monte-Luna 2015). This contrasts with the northern Gulf of 

Mexico, which is dominated by high frequency SST variability (Yáñez-Arancibia and 

Day 2004, Monte-Luna 2015). The AMO influences SST in the Gulf of Mexico through a 

connection with the Atlantic Meridional Overturning Circulation (AMOC) and the Loop 

Current (Karnauska et al. 2015, Muller-Karger et al. 2015). The present study found SST 

in the southern Gulf of Mexico to have the highest correlations with the mean AMO 

index for June through October, with particularly high correlations in August. However, 

SST directly south of the Yucatan Channel remains highly correlated with the AMO 

throughout the year. Also, king mackerel show a strong negative correlation with each of 

the monthly AMO indices, but the strongest correlations occur the winter, the same 
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months king mackerel are present in the southern Gulf of Mexico. Years in which the 

AMO is in a positive phase coincide with poor mackerel growth, whereas growth is high 

in years when the AMO is in a negative phase.  

The king mackerel chronology spans about one half of an AMO cycle, so it is 

impossible to determine if the AMO is the main cause of low frequency variability in the 

chronology. However, catch data for other mobile pelagic predators, such as bonito, 

permit, and jacks, show a similar negative correlation with the AMO (Karnauskas at al. 

2015). From a bottom up perspective, primary production in the southern Gulf of Mexico 

peaks in the winter when the mixed layer is deepest, allowing for the greatest influx of 

nutrients (Muller-Karger et al. 2015). Anomalously warm winter SST or low winds in the 

southeastern Gulf of Mexico are associated with reduced winter upwelling, which results 

in decreased primary productivity (Muller-Karger et al. 2015) and may ultimately reduce 

mackerel growth.  

Several other factors in the northern Gulf of Mexico may underlie the strong 

correlation between king mackerel and AMO. Hypoxia and temperature increase during 

positive phases of the AMO (Karnauskas et al. 2015). Hypoxia restricts habitat quality 

for pelagic planktivorours fishes, an effect that is exacerbated by warm temperatures and 

eutrophication, thus increasing mortality and reducing physiological condition (Zhang et 

al. 2014). Such an effect has been found for bay anchovy (Anchoa mitchilli) and Gulf 

menhaden (Brevoortia patronus), both of which are prey of king mackerel (Finucane et 

al. 1990). Anomalously warm temperatures could reduce growth and physiological 

performance of these forage species (Pörtner and Knust 2007). King mackerel have a 
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narrow thermal optimum (20oC-26oC) that could be more readily exceeded during 

positive AMO phases, compelling mackerel to move into less favorable feeding grounds 

or live in sub-optimal conditions. Indeed, 24 of 36 fish stocks examined along the U.S. 

northeast coast had statistically significant poleward or depth shifts in abundance in 

association with the positive phase of the AMO (Nye et al. 2009). 
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Conclusion 

 
The group of chronologies developed here point to the importance to fish growth 

of the timing of the transition from a winter climate pattern to a summer climate pattern, 

especially for resident coastal species from the northern Gulf of Mexico. However, life 

history and geography may be important, especially given the dramatically different 

pattern observed for king mackerel and its apparent coupling with the AMO. Especially 

notable is the fact that an early shift to warm conditions is favorable for the resident 

northern species, while a warm phase of the AMO is associated with poor growth for the 

pelagic, migratory mackerel. These findings underscore the fact that mechanisms of 

climate forcing and imprints of response in the otolith can be highly complex.  

A number of environmental changes are underway in the Gulf and they may 

become increasingly important. The Gulf of Mexico has warmed approximately 0.6oC in 

the past 20 years, corresponding to changes in community composition over the past 30 

years (Fodrie et al. 2010, Muller-Karger et al. 2015). Many tropical fish species have 

already expanded into the north, including gray snapper, and a key question is how these 

species impact the local ecology and fisheries production (Gericke et al. 2013). 

Eutrophication and dead zones as well as continued human exploitation of fisheries are 

also important influences. Otolith chronologies do not reflect population size, recruitment 

levels, or reproductive success but are most likely associated with body condition and fat 

reserves (Black 2013). However, chronologies provide a uniquely long and annually 

resolved history of growth by which to evaluate environmental effects. In this case, the 



 26 

chronologies suggest the importance of a spring transition in the northern Gulf of 

Mexico, and they support a growing body of evidence on the relevance of AMO to this 

region.
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Tables and Figures 

 

 

 

Figure 1. (a) Collection locations of species used in chronology development. Colors 
coincide with species codes in (c). Climate data were extracted from the northern Gulf of 
Mexico, the area contained above the dashed lines extending from TX to FL. Note: king 
mackerel were fishery-dependent collections and the exact location of capture in the 
northern Gulf is unknown. (b) Ring-width index (RWI; black line) and 95% confidence 
intervals (gray lines) for Louisiana black drum (LABD), Texas red snapper (TXRS), 
Louisiana red snapper (LARS), Florida gray snapper (FLGS), and king mackerel (KMK). 
(c) Principal component loadings for biochronologies of five Gulf of Mexico fish species.  
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Table 1. Interseries correlation and mean sensitivity for LA black drum, TX red snapper, 
and king mackerel chronologies. LA red snapper and FL gray snapper values taken from 
Black et al. (2011). 

Species Interseries correlation Mean sensitivity 

LA black drum 0.54 0.18 

TX red snapper 0.54 0.18 

King mackerel 0.43 0.17 

LA red snapper 0.54 0.13 

FL gray snapper 0.76 0.18 
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Table 2. Pearson correlation coefficients between all of the chronologies developed in the 
Gulf of Mexico. Significant (Bonferonni corrected) correlations are bold. 

 

 

LA red 
snapper 

LA black 
drum 

TX red 
snapper 

King 
mackerel 

King mackerel 
(High freq) 

FL gray snapper 0.76 0.62  0.72  0.20  0.48  
LA red snapper 

 
0.55  0.73  0.04  0.52  

LA black drum 
  

0.63  0.43  0.56  
TX red snapper    0.19  0.57  
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Figure 2. (a) Correlation coefficients between PC1fish and mean monthly SST, SLP, V 
wind stress, and U wind stress data. * indicates P < 0.05. (b) PC1MC, PC1fish, and mean 
monthly SST, SLP, V wind stress, and U wind stress data for the month of March. All 
data in (b) were standardized to a mean of zero and standard deviation of one. 
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Figure 3. Correlation of (a) PC1fish and gridded March SST, (b) king mackerel and 
gridded April SST, and (c) mean annual AMO index and gridded August SST. (d) Time 
series of the AMO index and king mackerel chronology. Both are standardized (mean = 
0, standard deviation = 1) and king mackerel data are inverted to show synchrony. 
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Figure 4. Average March climate conditions expressed as (a, b) SLP anomalies and (c, d) 
SST and wind stress. The four highest years are shown in (a) and (c). The four lowest 
years are shown in (b) and (d). 
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Figure 5. Principal component loadings between (a) PC1climate and monthly SLP, U wind 
stress, and V wind stress data used to generate the principal component and (b) PC1SST 
and PC2SST and the monthly SST data used to generate the principal component. (c) 
Scores on PC1climate and PC2SST. PC2SST is inverted to show synchrony.    
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Table 3. Pearson correlation coefficients between PC1Climate and all chronologies 
developed for the Gulf of Mexico. Significant correlations are bold.  

Species Correlation 
GS 0.61 
RS 0.50 
LABD 0.50 
TXRS 0.58 
KMK -0.097 
PC1fish 0.60 
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