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For the valuation and implementation of renewable energy investments, the issue

of providing private investors with a financial incentive to accelerate their investment is

frequently a critical component. We apply this principle to the Chinese context. This

paper focuses on using the binomial model to compute the required subsidy that would

incentivize investors to optimal immediate exercise of the American-style option embedded

in the operation of the projects for Chinese renewable energy investments. In addition, this

paper also aims at contrasting the binomial model with the more-laborious Monte-Carlo

simulation previously used to evaluate the proper subsidy. By using the same data but a

different method, and reducing the number of uncertain factors to one, it is suggested these

two methods have similar outcomes but the binomial method requires substantially less

computation and is more self-explanatory. This paper thus provides government with an

easy-to-implement alternative way to compute the required subsidy.
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Chapter 1

Introduction

Due to rapid economic growth, energy issues, such as air pollution, which are

caused by increasing energy demands, have become a priority in China’s agenda. China

has become the world’s largest energy consumer and greenhouse gas emitter, and IEA (In-

ternational Energy Agency) predicts that the primary energy demands will double from

2005 to 2030. However, China’s energy structure for the supply sector has relied heavily

on fossil fuels, especially coal, which may result in issues of pollution, unsustainability, cli-

mate change, and declining energy security. China is trying to diversify its energy supply

from traditional energy resources, such as fossil fuels, to new energy resources, including

nuclear power and renewable energy, such as hydro, wind and solar power. China also

promised in the Paris Agreement that it will peak its carbon emissions and reduce its car-

bon intensity by 60-65% of the 2005 level by 2030. There is an aggressive forecast that

says China could achieve a renewable energy share of 60% and 86% renewable electricity

by 2050 (Yang et al., 2016). China has implemented several measures to reach its goals, in-

cluding a national carbon cap-and-trade program, a green dispatch policy, and a cap on coal

consumption as part of its 13th Five-Year Plan for 2016 to 2020 (NRDC, 2017). Besides,

China has made efforts for electricity market reform, including launching carbon market,

issuing green certificates and setting provincial renewable energy quotas. As the world’s

largest clean energy investor, China has reach to 132.6 billion dollars in clean energy in-
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vestment (BNEF, 2018) and also plans to increase the installed capacity of wind and solar

power to around 200 GW and 150 GW respectively by 2020. These ambitious targets bring

huge business opportunities to renewable energy investors, manufacturers and developers

(Mariyana, 2015).

The subsidy is believed by public to be one of the main drivers in renewable energy

development. External incentives are needed for compensating the high pay back period

and different kinds of risks - technical, business, legal and policy - for renewable energy

projects (Gatzert and Kosub, 2016), thus driving the renewable energy investment. There

are different types of renewable energy subsidies around the world, such as feed-in tariff

(FIT), rebate, renewable energy credit (REC) and premiums. In China, the FIT is mainly

used. There are several previous studies about valuing subsidies policies, and most of them

mainly used the quantitive analysis method, cost-benefit analysis method and net present

value (NPV)(Zhang, 2017). M.M. Zhang, D.Q. Zhou, P. Zhou, H.T. Chen (2017) used

the financial instrument- real options method to figure out what is the optimal level of

subsidy for renewable energy investors in China, what are the effects of relevant factors on

subsidy, and how should the government adjust policies to attract more renewable energy

investments by paying less subsidy.

There are several ways to solve the real options. Zhang et al. used the least squared

Monte Carlo (LSM) method to value embedded real options and solve the model. Instead,

we used the binomial model which requires less computation and is easier to implement.

Besides, we also focus on methods and results comparison. This paper is now organized

as follows. Section 2 introduces the real options method and summarizes past research re-

garding the application of it in energy sections. Section 3 presents the data source. Section
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4 presents the details of valuation model and the derivation of the parameters. Section 5

presents the calculation and analysis of results. Section 6 summarizes the outcomes of this

research.
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Chapter 2

Research Method and Literature Review

2.1 Real Options Method

Real options method accounts for both pure cost and opportunity cost, which are

caused by future uncertainties (Zhang, 2017). Compared to the NPV method which only

captures the value of a project at a specific time and within a specific period, the real

options method incorporates the value of flexibility to respond to the changes in the market

environment. This method is an advanced valuation technique that enables investors to

take advantage of market opportunities, and at the same time avoiding or reducing losses

if future conditions evolve adversely (Pringles et al., 2015). Here is a simple example,

assume the NPV of a solar project is $1000, which only accounts for the value of the project

today. Due to electricity price fluctuations, the investor can choose to start the project when

the electricity price is higher, thus bringing in more revenue. This flexibility brings extra

value to the project, so that might end up higher than $1000 using the real options method.

The valuation approach of real options has become important in modern financial theory,

combining as it does the powerful tools of option-valuation with the critically important

issues of valuation and hedging of real assets (Ronn, 2004). In an efficient market, spot

and forward energy prices are set by agents acting legally in a competitive marketplace.

The power of option theory applied to this arena permits the optimization and valuation of

the flexibilities embedded in the operation of energy projects owners (Ronn, 2004). In this
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way, competitive markets deliver the desirable triad of optimal resource allocation due to

efficient price-signaling, proper assessment and mitigation of risk and the informativeness

of competitive price-discovery (Ronn, 2004).

There have been several important papers that applied real options method to the

oil field. McDonald and Siegel (1986) and Paddock et al. (1988) studied the optimal

timing of investment where the benefits from the project and the investment cost follow

continuous-time stochastic processes, and extended the financial theory to a real asset -

offshore petroleum. Schwartz (1997) and Schwartz and Smith (2000) addressed the imper-

ative issue of sources of uncertainty in the oil futures markets, and applied the model to

some hypothetical oil-related assets. Litzenberger and Rabinowitz (1995) emphasized the

normal backwardation in oil futures contracts as an incentive for oil producers to extract

oil. 1 Besides, there are several studies using the real options method in the renewable

energy investment area. Fleten et al. (2016) compared real options and net present value

methods in green electricity investments. Boomsma et al. (2012) adopted a real options

approach to analyze investment timing and capacity choice for renewable energy projects

under FIT and renewable certificate trading support schemes. Pringles et al. (2014) valued

power transmission investments by stochastic simulation using the real options method.

Yang et al. (2007) evaluated the power investment options with uncertainty in climate pol-

icy. Fernandes et al. (2011) reviewed current state of the application of the real options

approach in renewables and non-renewables.

1When the cross-sectional forward curve is downward-sloping — i.e., distant futures prices are lower than
those of futures contracts closer to maturity — then the forward curve is said to be in backwardation.
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2.2 Different Option Pricing Method

After identifying real options embedded in the projects, we need to know the option

types and value it using the proper method. There are two types of options, American style

and European style. The difference is that the American style option can be exercised

at any time prior to and including its maturity but the European style option can only

be exercised at its maturity. Since investors can operate the project anytime before the

maturity, the option we talk about is identified as the American style option. There are

many different methods to come up with the estimate of European option values using

the same underlying stochastic method - Geometric Brownian Motion (GBM). The most

popular methods includes Black-Scholes, binomial model, Monte Carlo simulation. There

have been studies that prove Monte Carlo results converge to Blacks-Scholes and binomial

model results also converge to Black Scholes for European style option (Hon, 2012). We

can conclude that these methods should produce the exact same values ignoring numerical

issues. Although Monte Carlo and binomial values should be the same, binomial value

converges more quickly.

For pricing American style option, a number of Monte Carlo simulation-based ap-

proaches have been proposed in the past decades (Jia, 2009). However, there are several

deficiencies when applying the Ordinary Least Squares (OLS) regression method in Monte

Carlo simulation for the American style option. When the number of simulation paths is

small, when the number of functions in the approximation scheme is large, when European

option prices are included in the approximation scheme, and when the number of exer-

cise opportunities is large, the OLS in Monte Carlo simulation will have poor performance

(Tompaidis and Yang, 2005). Based on these research, an alternative way - the binomial
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method is introduced in our article to eliminate the weakness of the Monte Carlo method.

Since computational time will increase exponentially if we have many stochastic factors

when using the binomial model, we reduce uncertainties into a one-factor model.
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Chapter 3

Data Source

The data we used (Table 3.1 and Table 3.2) was replicated from Zhang et al. (2017)

for the ability to compare results for different methods. With the same inputs, we compare

different methods. They used three uncertainty factors and the Monte Carlo method, and we

reduce uncertainties into a one-factor model and use the binomial model. In this case, we

need to closely adhere to their data in order to make the results comparable. The parameters

and data are for the solar power plant in China.
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Table 3.1: Main Uncertain Factors

Parameters Variables Initial Value Drift Rate Volatility Source
Market Price of Electricity S0 0.43 RMB/kWh 0.02 0.02 NDRC; Zhou et al.,

2014; Zhang et al.,
2016

CO2 Price p0 0.12RMB/kWh 0.02 0.03 Zhu and Fan, 2011;
Zhang et al., 2016; In-
sley, 2002

Unit Investment Cost k0 12000 RMB/kW -0.06 0.04 Zhang et al., 2016;
Zhang et al., 2013;
Insley, 2002; CPIA,
2013

Table 3.2: Other Parameters Used In the Model

Parameters Variables Value Source
Unit Operation and Maintenance Cost uomc 0.2 RMB/kWh Zhang et al., 2017
Unit Generating Capacity ugc 1500 kWh Zhang et al., 2016
The Rate of Corporate Income Tax τ 25% Government Law, 2013
The Rate of Value-added Tax π 8.25% Government Law, 2007
Magnitude of Installed Capacity IC 1 kW Zhang et al., 2017
Discount Rate r 8% Zhang et al., 2016
Annual Decline Rate of the Unit Generating Capacity N/A 2% Zhang et al., 2016
Lifetime of Power Generation Project N/A 25 years Zhang et al., 2017

9



Chapter 4

Valuation Model

4.1 Model Description

We use DerivaGem software and Excel to build our model.

Consider the application of real options methodology,

C =C (V, K, r, σ , T, N) . (4.1)

In eq. (4.1),

C = Value of American-style call option on a futures contract

V = After-tax value of the project, including electricity generation, subsidy

and carbon credits

K = Investment Cost of the project

r = Riskfree rate, r = 8%

σ = Embedded volatility of project value

T = Time to maturity (length of option, 16 years)

N = No. of Time Steps in valuation (N ≤ 500 in DerivaGem software; if

you’d like to see the binomial model itself, N ≤ 10. In our calculation,

N = 200)
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To implement this model, we need to determine the values of the futures prices (out

to 16 yrs.) and the corresponding volatility for these maturities.

4.2 Electricity Production Value P0

To begin, we need to come up with the electricity production value P0, which is the

risk-neutral expected present value of 25 years’ production,1 considering 2% drift rate in

electricity price. Unlike in the Monte Carlo method, in the binomial model method, we use

the summation of value instead of cash flow to calculate the present value of electricity.

Since the future price is the risk-neutral forecast of the spot price, which indicates F =

E∗ (St) . Let S be the spot price of electricity at time t: S0 = 0.43 RMB/kWh. With drift

rate µS = 2%, we have E∗ (St) = S0 exp{.02 t} .

First, we calculate the value of electricity production every year from year 1 to

year 25, which is installed capacity multiplid by unit generating capacity multiplied by the

difference between spot price of electricity at time t and unit operation and maintenance

cost, and then discount them back to today and sum up all the present values. The value of

the production is taxed for income tax, but the operating and maintenance cost is exempted

from income tax and only taxed for the value-add tax, which splits the equation into two

parts. When calculating value for every year, we considered the annual decline of unit

generating capacity, and it turns out the annual expected rate of increase in power prices

(2%) exactly offsets the magnitude annual decreased production (also 2%) of value-added

1We assume all expectations in our analysis are risk-neutral. It is only with respect to the risk-neutral
distribution that prices today are the discounted present values using the risk free rate. Zhang et al. (2017)
are silent on the distinction between risk-neutral and physical expectations. Because their analysis would
otherwise be incorrect, we are assuming they refer to risk-neutral expectations.
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tax part. Then the value of expected electricity production P0 is given by 2

P0 = E∗
[
(1− τ)

25

∑
t=1

IC ugc (St−uomc) exp{−.02 t}
(1+ r)t

−π

25

∑
t=1

IC ugc St exp{−.02 t}
(1+ r)t

]

= (1− τ) IC ugc
25

∑
t=1

S0 exp{.02 t}exp{−.02 t}−uomc exp{−.02 t}
(1+ r)t

−πIC ugc
25

∑
t=1

S0 exp{.02 t}exp{−.02 t}
(1+ r)t

= (1− τ) IC ugc

[
25

∑
t=1

S0

(1+ r)t −uomc
25

∑
t=1

exp{−.02 t}
(1+ r)t

]

−πIC ugc
25

∑
t=1

S0

(1+ r)t

= (1− τ) IC ugc

(
S0

1
r

[
1− 1

(1+ r)25

]
−uomc

25

∑
t=1

1
(1+ r+0.02)t

)

−πIC ugcS0
1
r

[
1− 1

(1+ r)25

]

= IC ugcS0
1
r

[
1− 1

(1+ r)25

]
(1− τ−π)

− IC ugc (1− τ)uomc
1

r+0.02

[
1− 1

(1.02+ r)25

]
(4.2)

Similarly, the price of CO2 is p0 = 0.12 RMB/kW, multiplied by installed capacity

and unit generating capacity, we can get value of carbon credit for year t without consider-

ing any drift rates. The annual expected rate of increase in carbon prices (2%) also offsets

2There are two proximations in the calculation: exp{.02 t} ∼= (1+0.02)t and (1+ t)t (1+0.02)t ∼=
(1+ r+0.02)t .
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the magnitude annual decreased production (2%). Then we discount all 25 years’ values to

today. Let V0 (Credit) represent the present value of CO2 credits at time 0, calculating as

an annuity,

V0 (Credit) = IC ugc p0
1
r

[
1− 1

(1+ r)25

]
. (4.3)

The exercise price today if there is no option to wait is k0 = 12000 RMB/kW, con-

sidering T years to maturity and annual decreased investment cost (-6%), exercise price

today is KT

KT = k0 exp{−.06T} (4.4)

4.3 Project Value V and Volatility σ

In this section, we derive V and the magnitude of σ . V is the total value of the

project today when the embedded option is T years to maturity, which contains subsidy,

electricity production value and carbon credits.

To begin, if D is the required subsidy,

V = D+P0 +V0 (Credit) (4.5)

Note that V only captures the value of every component as of today, and joint volatility

for V reflects every volatility component, and V will evolve from the given value today.3

Now, we need to figure out σ which captures the joint effect of different factors, taking

differences yields

dV = dD+dP0 +dV0 (Credit) (4.6)

3Under Black-Scholes, the risk-neutral process is
dS
S

= r dt +σ dz.
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and since D is a const. (i.e., dD≡ 0),

dV
V

=
P0

V
dP0

P0
+

V0 (Credit)
V

dV0 (Credit)
V0 (Credit)

. (4.7)

The second aspect we need to derive is the σ to apply in the call-option formula (4.1). We

obtain that by recognizing (4.7) and (4.4). Assuming zero correlations throughout,4 in the

equation below, and because there are linear relationships between P0 and S0, V0 (Credit)

and p0, K and kt , we recognize σ

(
dP0

P0

)
=σ

(
dS0

S0

)
= 2% , σ

[
dV0 (Credit)
V0 (Credit)

]
=σ

(
d p0

p0

)
=

3% , and σ

(
dK
K

)
= σ

(
dk
k

)
= 4% :

σ
2
(

dV
V
− dK

K

)
= σ

2
(

dV
V

)
+σ

2
(

dK
K

)
=

(
P0

V

)2

σ
2
(

dP0

P0

)
+

[
V0 (Credit)

V

]2

σ
2
[

dV0 (Credit)
V0 (Credit)

]
+σ

2
(

dK
K

)
(4.8)

That means in the application of the American call-option formula C (·) :

1. V changes according to (4.5), which is driven by changing value of D; KT changes

according to (4.4)

2. The volatility is given by the square-root of (4.8)

3. In our case, the early exercise of an American-style option under risk-neutral expec-

tations is not determined by stock’s expected return; instead, all we need to know for

optimal early exercise is the volatility of the asset and how much in-the-money we

are.

4This zero-correlation assumption repeats what the authors did in their article, but we suspect it is empir-
ically counterfactual.
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4. Recalling that D is part of V in (4.5), apply the American option-formula for T = 1

through T = 16 and find DT for each date that satisfies the two equivalent conditions

for early-exercise. The first one is :

V −KT =C (V, KT , r, σ , T, N) (4.9)

which indicates early exercise occurs when the difference between project value and

exercise value is equal to option’s intrinsic value, which also means that the option’

s time value has vanished. An equivalent condition is: ∆ = 1.0. The ∆ is a ratio

comparing the change in the price of an asset, to the corresponding change in the

price of its derivative, which in our case, is the price of its option. For an American-

style option, the ∆ increases and reaches 1.0 at the early-exercise threshold value.

When the option is sufficiently deep in-the-money, the ∆ stays at 1.0. This means

that if the project increases in price by $1, the price of the option embedded in it

will rise by $1, all else being equal. Only when the difference between the VT and

KT is equal to call option value and at the same time ∆ reaches 1.0, the investor

would exercise today, otherwise they are better to wait. ∆ value can be found in the

DerivaGem software (Figure 4.1).

That will provide us D1 through D16. The subsidy that incentivizes investors to

optimal immediate exercise of the option is the maximum value of all subsidies. It is also

the minimum subsidy the government should pay, in order to cover the largest subsidy the

investors need and encourage them to do a project today. Then the final equation is

D = max
T
{D1, . . . , D16} . (4.10)
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Figure 4.1: Early Exercise Condition
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Chapter 5

Result Analysis

To begin, calculate P0 from (4.2), and V0 (Credit) from (4.3)

P0 = IC ugcS0
1
r

[
1− 1

(1+ r)25

]
(1− τ−π)

− IC ugc (1− τ)uomc
1

r+0.02

[
1− 1

(1.02+ r)25

]
= 2554

For V0 (Credit),

V0 (Credit) = IC ugc p0
1
r

[
1− 1

(1+ r)25

]

= 1×1500×0.12× 1
.08

[
1− 1

(1+ .08)25

]
= 1921

For option valuation, we need inputs of future price, strike price, volatility, risk-free

rate and time to expiration. The subsidy is determined iteratively, by solving (4.9) and let

∆ = 1.0 which is the conditions for early exercise. The risk-free rate and time to expiration

are known from Table 3.2, the strike price is equal to K, and the option’s future price is

equal to VT , the volatility is the joint volatility for subsidy, market price of electricity and

carbon credit as shown in (4.8), number of steps N is 200. First, as the subsidy value is
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included in the VT , we fix the subsidy at some value, compute VT and the volatility, and

then iterate to compute the subsidy at which the early-exercise occurs. Then feed that back

into the volatility calculation and see if the process converges.

Taking T = 1 as an example,

K1 = 12000× exp(−0.06×1) = 11301

V1 = D+P0 +V0 (Credit) = D+2554+1921 = D+4475

In order to let V1 at least as large as K1, D should at least be 6826. Assume D = 6830, then

V1 = 11305, and put V1 = 11305 into the equation (4.8),

σ1 =

√(
P0

V1

)2

σ2
(

dP0

P0

)
+

[
V0 (Credit)

V1

]2

σ2
[

dV0 (Credit)
V0 (Credit)

]
+σ2

(
dK
K

)
= 4.06%

Through the iteration process, try larger D until V1−K1 = option value and ∆= 1, producing

the threshold value and that is when the investor would exercise today. Besides, whenever

V1 changes, σ will be automatically changed. When the early exercise condition is met,

V1 = 12061, and thus D1 = 7586.

Another example of T = 16,

K16 = 12000× exp(−0.06×16) = 4595

V16 = D+P0 +V0 (Credit) = D+4475

In order to let V16 at least as large as K16, D should at least be 120. Assume D = 120, then

18



V16 = 4595, and put V16 = 4595 into the equation,

σ16 =

√(
P0

V16

)2

σ2
(

dP0

P0

)
+

[
V0 (Credit)

V16

]2

σ2
[

dV0 (Credit)
V0 (Credit)

]
+σ2

(
dK
K

)
= 4.34%

Repeat the iteration process, try larger D until V16−K16 = option value and ∆ = 1, and that

will be the threshold value. When the early exercise condition is met, V16 = 5134, and thus

D16 = 659. Using the same approach, we can get all subsidy from T = 1 to T = 16, and

the optimal subsidy level is found through equation (4.10).

For the purpose of comparing results, just as original authors do, we also have two

scenarios, one with carbon credit existing and one without. For the one without carbon

credits, we just need to put V0 (Credit) = 0 in the model, and the VT and σ will be automat-

ically changed. Everything else remains constant in the model. The results for those two

scenarios are shown in Table 5.1.

We can see a volatility (σ) versus strike price (K) trade off between T = 1 and

T = 16: As the total volatility embedded in the option is
√

σ2 T , with T = 1, K equals

11301 which is high but total volatility is only
√

σ2 T =
√

σ2 1= σ ; with T = 16, K equals

4595 which is low but total volatility is
√

σ2 T =
√

σ2 16= 4σ . With the current numerical

values, the strike price K has greater impact. Which means that the lower strike price

reduces the European-option value more than high volatility increases it, so the subsidy to

induce immediate exercise can be lower.

There has been a purported proof that if the maturity of the option is longer, the

option is more valuable, thus the subsidy needed for early exercise is larger. If that is the

case, we only need to calculate the subsidy for the option that has the longest maturity if we

19



Table 5.1: DerivaGem Results of Subsidy
T Strike Price (K) With Carbon Credit Without Carbon Credit
16 4595 659 2560
15 4879 969 2872
14 5181 1299 3202
13 5501 1648 3553
12 5841 2019 3924
11 6202 2411 4318
10 6586 2827 4735
9 6993 3267 5175
8 7425 3732 5641
7 7885 4223 6133
6 8372 4740 6651
5 8890 5282 7194
4 9440 5849 7761
3 10023 6434 8348
2 10643 7026 8941
1 11301 7586 9502

want to find the maximum subsidy. However, that proof does not always hold. We know

from European options on futures that the partial derivative of the call option value with

respect to T is ambiguous. It can be positive or negative depending on whether the option

is in- or out-of-the-money. Since we can represent the American-style option as European

option plus the early exercise premium, the American option is likely to inherit many of

properties of the European option. Thus, we need to calculate all D from T = 1 to T = 16

in order to find the optimal subsidy.

Given the cost input assumptions on technology costs and commodity prices, Table

5.2 shows the amount of money that an investor would need to make an investment today.

With carbon trading, the investors need 7586 RMB/kW and without carbon trading, they

need 9502 RMB/kW. Taking the number of steps up to a maximum of 500 will increase
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accuracy, but only decrease the subsidy from 7586 RMB/kW to 7579 RMB/kW.

Table 5.2: Results Comparison
Cases Monte Carlo -Zhang et al Binomial Model -Our article

Without Carbon Trading 8073.3 9502
With Carbon Trading 7072.3 7586

Regarding the higher value of the difference that occurs between the with carbon

trading case and without carbon trading case, here are our analysis and some implications:

There is consistency of our two estimates, taking T = 1 as an example,

Starting from Dwith = 7586, and with V0 (Credit) = 1921, we have

V −K1 =C(V = D+4475,T = 1,σwith = 0.0405)

which is satisfied by Dwith = 7586. Now, for the same T = 1,

V −K1 =C(V = D+2554,T = 1,σwithout = 0.0403 < σwith)

If we kept σ at σwith, then we have the result

V −K1 =C(V = D+2554,T = 1,σwith = 0.0405)

which implies that

D = 7586+1921 = 9507

However, since σwithout < σwith, Dwithout should be somewhat less than 9507, which it is,

9502.

The possible two implications of the analysis are: a) If our V0 (Credit) value 1921

is correct, then the value difference in their analysis, which is 1001, cannot be correct. b)

If V0 (Credit) = 1001, then our computation of V0 (Credit) might be wrong.
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Chapter 6

Conclusion

In this paper, we take the advantages of the binomial model to implement subsidy

valuation in Chinese renewable energy investment. This paper provides Chinese govern-

ment with references of subsidy setting and provides Chinese energy investors with refer-

ences to choose the timing of operating a project. In the energy investment area, the real

options method has been proved to be an effective way to reflect the true value of energy

projects. Due to the unforeseeable price fluctuations for oil, natural gas, and electricity,

energy investors can take advantages of the flexibility on the timing of operating a project,

which is also recognized as an option embedded in a project, thus bringing extra value

to a project. In other words, the traditional NPV method is not proper anymore because

it fails to account for future uncertainties. For renewable energy development, setting a

subsidy level is a hard and important. By using the real option method, the true value of

the project can be known and the subsidy will be more accurate. For option pricing, the

binomial model is more efficient and simple than Monte Carlo method. For the American

style option, the Monte Carlo simulation requires laborious Longstaff-Schwartz model. In

contrast, the binomial model merely calls for implementation of a binomial lattice, and

some of this software is freely accessible in models such as DerivaGem. This paper can

also be extended to other countries for future analysis by adjusting tax rate and the data for

three main parameters.
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Figure A.1: DerivaGem Display
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