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Abstract 

Pre-injection reservoir characterization for CO2 storage in the inner 
continental shelf of the Texas Gulf of Mexico 

Reinaldo Jose Sabbagh, M.S.Geo.Sci. 

The University of Texas at Austin, 2017 

Supervisor:  Timothy Meckel 

The injection of CO2 into the subsurface (carbon capture and storage; CCS) is the 

most viable approach to significantly reduce industrial emissions of greenhouse gasses to 

the atmosphere. The inner continental shelf of the northern Gulf of Mexico has incredible 

potential for CO2 storage. This study quantitatively evaluates the CO2 storage capacity of 

the Lower Miocene brine-filled sandstones in the inner continental shelf of the Texas Gulf 

of Mexico using 3D seismic and well log data. The first part of this work investigates the 

relationship between elastic properties and reservoir properties (e.g., porosity, mineralogy, 

and pore fluid) of the Lower Miocene section using rock physics modeling and 

simultaneous seismic inversion. The elastic properties are related to porosity, mineralogy 

and pore fluid using rock physics models. These rock physics transforms are then applied 

to the seismically derived elastic properties to estimate the porosity and lithology away 

from the wells. The porosity and lithology distribution derived using this quantitative 

method can be interpreted to predict the best areas for CO2 storage in the inner continental 

shelf of the Texas Gulf of Mexico. The second part of this work studies the effect that CO2 
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has on the elastic properties of the Lower Miocene rocks using fluid substitution, amplitude 

variation with angle (AVA), and statistical classification to determine the ability of the 

seismic method to successfully monitor CO2 injected into the subsurface. The velocities 

and density well logs were modeled with different fluid saturations. To characterize the 

seismic properties corresponding to these different fluid saturations, the AVA responses 

and probability density functions were calculated and used for statistical classification. The 

AVA modeling shows a high sensitivity to CO2 due to the soft clastic framework of the 

Lower Miocene sandstones. The statistical classification successfully discriminates 

between brine and CO2 saturation using Vp/Vs and P-impedance. These results shows that 

the Lower Miocene sandstones have the capacity to host CO2, and that the CO2 injected in 

these rocks is likely to be successfully monitored using seismic methods.  
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Chapter 1: Introduction 

 

1.1 INTRODUCTION 

The injection of CO2 into the subsurface (carbon capture and storage; CCS) is the 

most viable approach to significantly reduce industrial emissions of greenhouse gasses to 

the atmosphere. The CO2 is injected mainly in saline formations or depleted oil and gas 

reservoirs. The intended storage reservoirs require favorable geologic properties such as 

high porosity and permeability, high seal capacity, and an effective trapping mechanism. 

The intended storage reservoir is usually below 2600 feet where the pressure and 

temperature of the reservoir change the phase of the CO2 from gaseous to liquid. This is 

known as the supercritical phase where the CO2 behaves as a fluid with low density, fairly 

low water solubility, and low viscosity (Friedman, 2007).  

For CCS to be effective, the CO2 should be monitored during and after injection to 

guarantee that it is safely retained underground. Among the monitoring methods for CO2, 

the seismic methods provide the volumetric coverage needed to understand the distribution 

of CO2 in the subsurface (McKenna et al.; 2003; Lumley, 2010; Sava, 2013). Seismic 

methods have been used for monitoring CO2 sequestration in different geological scenarios 

through time-lapse applications. Time-lapse seismic methods attempt to quantify the 

difference in the seismic response before and after the injection of CO2 (Lumley, 2010; 

Dvorkin et al., 2014).  

Many successful CO2 storage projects exist around the world. One of earliest 

industrial projects solely for CO2 storage is the Sleipner Field in the North Sea, where the 

CO2 is being injected into the Utsira Sand, a major regional saline aquifer (Chadwick et al., 

2005). An extensive seismic monitoring program has been carried out over the injection 
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area for more than ten years. Four 3D seismic surveys were acquired for time-lapse analysis 

of injected CO2 (Bickle et al., 2007). The effect of the CO2 on the seismic data is evident. 

The CO2 plume is imaged on the seismic data as a prominent multi-tier feature, comprising 

a number of bright sub-horizontal reflections, growing with time (Arts et al., 2008).  

Gassmann fluid substitution was used at Sleipner to estimate the velocities in the Utsira 

sand with different saturations of CO2, obtaining a decrease in P-wave velocity (Vp) when 

the saturation of CO2 increases (Chadwick et al., 2005). In many ways, the subsurface 

conditions of Utsira Sand are ideal for seismic monitoring: a brine-saturated, high porosity 

(>30%) and permeability (multi-Darcy), and relatively homogeneous clastic injection 

interval at relatively shallow depths. Other projects have grater challenges for imaging CO2 

injected into the subsurface.  

The Otway project in Australia, for example, does not present favorable conditions 

for the application of time-lapse monitoring techniques. This project is the first 

demonstration of geological storage of CO2 in Australia, and consisted of the injection of 

66,000 tones of 80/20% CO2-CH4 mixture into a depleted gas reservoir (Waarre Formation) 

at a depth of approximately 2000 meters at the Naylor Field. The CO2-CH4 mixture injected 

into the depleted gas reservoir produces subtle changes in the 4D seismic response difficult 

to detect. To address these challenges, Urosevic et al. (2011) implemented a monitoring 

program combining 3D vertical seismic profile (VSP) with 3D seismic data to increase the 

sensitivity of the time-lapse seismic analysis. Despite the challenges, subtle seismic 

anomalies were detected after injection of small quantities of CO2-CH4 mixture, and 

seismic modeling suggested that the prolonged injection is unlikely to produce detectable 

difference in time-lapse seismic analysis.   

The in situ fluid in the pore space of the intended reservoir for CO2 has significant 

impact on the applicability of time-lapse techniques for seismic monitoring, as seen in the 
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Otway project in Australia. In the Weyburn Field in Saskatchewan, Canada, within the 

Williston Basin CO2 is injected for enhanced oil recovery (EOR) in a fractured carbonate 

reservoir. The carbonate reservoir is at a depth of approximately 1450 meters (White, 

2009b). Rock physics and seismic modeling suggested a decrease of 3-6% of Vp when CO2 

replaced a mixture of oil and brine (Terrell et al., 2002; Meadows, 2013; White 2013b). In 

the case, of CO2 replacing only brine the Vp changes 9-10% (White et al., 2004). This 

sensitivity to saturation of CO2 makes time-lapse images good at mapping the movement 

of the injected CO2 in the reservoir, but accurate volume estimation is difficult (Ma et al., 

2009; White, 2009).   

Other reservoir properties besides pore fluid can affect the efficiency of seismic 

methods to monitor injected CO2 into the subsurface. In the Cranfield Field in Mississippi, 

CO2 is injected into the cemented sandstones of the Tuscaloosa Formation, the depth of the 

reservoir is about 3020 to 3200 meters. Rock physics and seismic modeling suggested that 

due to the cement content in the sandstones of the Tuscaloosa Formation the seismic 

response presents small variability to different saturations of CO2 difficult to detect in the 

seismic data (Carter and Spikes, 2013). However, statistical classification showed that 

elastic properties such as P-impedance and Vp/Vs are sensitive to CO2 saturation, and 

lateral and time-dependent changes of these elastic properties permit the estimation of 

porosity and fluid saturation within the reservoir (Carter, 2014).  

These various projects have demonstrated the valuable use of seismic methods in 

in CO2 storage and EOR, with examples of successful monitoring of CO2 injected into the 

subsurface. Seismic methods are equally essential for the characterization of a potential 

storage reservoir, determining the reservoir properties, and estimating its capacity. 

Different quantitative methods have been used to successfully estimate reservoir properties 

from seismic data, linking elastic parameters and reservoir properties. The work of Dvorkin 
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and Alkahater (2004), Dvorkin et al. (2004), Saltzer et al. (2005), and Bachrach (2006) are 

examples of the sequential workflow using seismic inversion followed by rock physics 

methods to estimate reservoir properties such as porosity, pore fluid and clay content. 

Seismic inversion is a commonly used technique that may help to map elastic properties 

like P-impedance, S-impedance, and density in the subsurface. However, the fundamental 

objective is to map reservoir properties such as porosity, clay content, and pore fluid. The 

rock physics models described by Mavko et al. (2009), Avseth et al., (2005), and Dvorkin 

et al., (2014) provide the quantitative link between elastic properties and reservoir 

properties.  

 As one of the most prolific hydrocarbon provinces and most heavily explored basin 

in the world, the Gulf of Mexico has incredible potential for CO2 storage and EOR. The 

Miocene section of Texas Gulf of Mexico exhibits thick sand intervals with high porosity 

and permeability, effective trapping mechanism, and regional seals. To date, most of the 

offshore CCS research in the Gulf of Mexico has focused on subsurface storage capacity 

and reservoir flow simulations (Wallace, 2013), and structural aspects related to seal 

integrity (Nicholson, 2012; Osmond, 2016). These investigations have not identified any 

major geologic barriers to conducting large-scale CCS, so work continues to identify the 

regional and local capacity of the Miocene section, as well as identify specific sites suitable 

for near-term storage project development.  

This study quantitatively evaluates the CO2 storage capability of the Lower 

Miocene brine-filled sandstones in the inner continental shelf of the Texas Gulf of Mexico 

using 3D seismic and well log data. The first part of this work investigates the relationship 

between elastic properties and reservoir properties (e.g., porosity, mineralogy, and pore 

fluid) of the Lower Miocene section using rock physics modeling and simultaneous seismic 

inversion. The elastic properties are related to porosity, mineralogy and pore fluid using 
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rock physics models. These rock physics transforms are then applied to the seismically 

derived elastic properties to estimate the porosity and lithology away from the wells. The 

porosity and lithology distribution derived using this quantitative method can be interpreted 

to predict the best areas for CO2 storage in the inner continental shelf of the Texas Gulf of 

Mexico. The second part of this work studies the effect that CO2 has on the elastic 

properties of the Lower Miocene rocks using fluid substitution, amplitude variation with 

angle (AVA), and statistical classification to determine the ability of the seismic method 

to successfully monitor CO2 injected into the subsurface. The velocities and density well 

logs were modeled with different fluid saturations. To characterize the seismic properties 

corresponding to these different fluid saturations, the AVA responses and probability 

density functions were calculated and used for statistical classification. The AVA modeling 

shows a high sensitivity to CO2 due to the soft clastic framework of the Lower Miocene 

sandstones. The statistical classification successfully discriminates between brine and CO2 

saturation using Vp/Vs and P-impedance. These results shows that the Lower Miocene 

sandstone have the capacity to host CO2, and that the CO2 injected in these rocks is likely 

to be successfully monitored using seismic methods.  

 

1.2 THESIS OUTLINE 

Chapter 2 introduces the study area and the data used in this thesis. In this chapter, 

the stratigraphic and structural framework on the offshore areas of the Texas Gulf of 

Mexico are reviewed. Chapter 2 also describes the dataset. The data includes a 3D post-

stack seismic volume, three partial angle stack volumes, and well log data from three wells.  

Chapter 3 presents a quantitative method to estimate reservoir properties useful to 

characterize potential reservoirs for CO2 storage. This method uses rock physics modeling 
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and seismic inversion to estimate porosity and lithology of the Lower Miocene section. 

First, a rock physics model is used to link elastic properties to porosity and mineralogy. 

Later, in this chapter is shown how a combination of elastic properties (Vp/Vs and P-

impedance) can be used to map the spatial distribution sand and shales and calculate the 

porosity across the study area.  

Chapter 4 examines how the elastic properties of the Lower Miocene sandstones 

are affected by different saturations of CO2. This is done combining rock physics modeling, 

fluid substitution, amplitude variation with angle (AVA) modeling, and statistical 

classification. The results from this chapter show that due to the high porosity and soft 

frame of the sandstones the injected CO2 significantly affects the elastic properties of the 

rock. In addition, using AVA modeling and statistical classification was identified that P-

impedance and Vp/Vs are the elastic parameters that best discriminate between the 

different saturations of CO2.  

Chapter 5 discusses the overall conclusions drawn from the previous chapters and 

makes recommendations for future work.  
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Chapter 2: Study Area and Dataset  

 

This chapter introduces the study area and the data used in this thesis. First, the 

geologic background of the Northern Gulf of Mexico is described, emphasizing the 

stratigraphic and structural framework of the Miocene section. Then, the available data that 

were used in this study is presented. The focus of this work is the Lower Miocene section 

in the near offshore areas of the Texas Gulf of Mexico. The available data include a 3D 

post-stack seismic volume, three partial angle-stacks and well logs from three different 

wells within the area covered by the seismic data.  

 

2.1 GEOLOGIC BACKGROUND  

2.1.1 Stratigraphic Framework 

The formation of the Gulf of Mexico basin began during the Mesozoic breakup of 

Pangea, by an episode of crustal extension and sea-floor spreading where the North 

American Plate began separating from the South American and the African Plate (Salvador, 

1987; Sawyer et al., 1991; Buffler and Thomas, 1994). During the middle Jurassic initial 

breakup created a shallow basin (Galloway, 2001), where flooding alternated with periods 

of evaporation to produce widespread salt deposits (Louann Salt) (Salvador, 1987; Dobson 

and Buffler, 1997). The late Jurassic is characterized by seafloor spreading in the central 

Gulf of Mexico (Pilger, 1978; Hall et al., 1982; Buffler, 1989; Buffler and Sawyer, 1985; 

Sawyer et al., 1991). Deep water sediments were deposited on the newly formed oceanic 

crust, while shallow to deep water shelf environments were established on the broad areas 

of the adjacent transitional crust. (Buffler and Sawyer, 1985; Buffler 1991). 
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During the early Cretaceous, the Gulf of Mexico basin began to subside due to 

cooling of the lithosphere (Bluffer and Sawyer. 1985), and transgression onto the stable 

basin margin developed a carbonate platform around the periphery of the basin (Buffler 

and Sawyer, 1985; Winker and Buffler, 1988; Mcfarlan and Menes, 1991). Carbonate 

production ceased as rapid basinwide flooding drowned the early Cretaceous margin 

(Faust, 1990; Salvador, 1991).  

The Laramide uplift that began in the Central and Southern Rocky Mountains and 

spread progressively south to the Sierra Madre Oriental of northern Mexico, during the 

Early Cretaceous and Early Eocene, provided a tremendous supply of clastic sediment into 

the Gulf of Mexico (Winker, 1982; Galloway, 2005b). This uplift resulted in a massive 

deposition of clastic sediments in the Gulf of Mexico, the high sediment volume 

accumulation rates caused the progradation of the continental margin by tens of kilometers 

(Galloway et al., 2000). Clastic deposition continued throughout the Oligocene followed 

by a large transgression that resulted in the deposition of the Anahuac Shale, marking the 

beginning of the Miocene interval. 

Miocene basin fill is defined by three depositional episodes (Figure 2.1; Lower 

Miocene, Middle Miocene and Upper Miocene), and is characterized by extensive 

continental margin progradation (Figure 2.2) (Galloway, 2008). These depositional 

episodes are divided by extensive marine shale wedges that formed during a base-level rise 

that serve as markers for establishing a regional biostratigraphic correlation (Morton et 

al.,1988) 

The Lower Miocene succession consists of an 8 Ma depositional episode that has 

been subdivided into two units, the Lower Miocene 1 (LM 1) and the Lower Miocene 2 

(LM 2). These two units are separated by a regional transgressive shale containing 

Marginulina ascensionensis (Marg. A) fauna (Galloway, 2008). The Lower Miocene 1 
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corresponds to the Oakville sandstones of the shallow subsurface (inland) and to the 

dominantly progradational deposits at depth (offshore). The Lower Miocene 2 consist of 

the dominantly agraddational fluvial and retragradtioinal coastal deposits (Galloway et al., 

1986). The Lower Miocene deposits are capped by the Amphistenia shale and the 

associated maximum flooding surface, which is named for the Amphistegina chipolensis 

(Amph. B) faunal top. The middle Miocene sequence records a relatively brief (ca. 3 m.y) 

period of deposition (Galloway, 2008) and corresponds to progradational deposits that 

record the advancement of the shelf margin. The Middle Miocene progradatinal deposits 

are capped by the regionally extensive Textularina stapperi (Text W) marine shale.  

The upper Miocene depositional episode records a long period (6Ma) of relative 

paleo-geographic stability and high sediment supply when the Paleo-Mississippi and 

Paleo-Tennessee systems dominated the sediment input forming a fluvial dominated delta 

system that prograded onto the slope. In the central gulf margin offlap occurred and the 

shelf edge advanced 40-90 Km (Figure 2.2) (Galloway, 2008). The upper Miocene episode 

terminated with regional marine flooding associated with the last occurrence of benthic 

foraminifer Robulus E and/or Bigenerina A. 
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Figure 2.1: Generalized Cenozoic stratigraphic succession and architecture of the 
Northern Gulf of Mexico Basin. The Miocene deposits; Lower Miocene, 
Middle Miocene and Upper Miocene are highlighted by the red box. 
Modified from Galloway (2008).  
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Figure 2.2: Mesozoic and Cenozoic shelf margins of principal depositional episodes in 
the Northern Gulf of Mexico. Showing the shelf margins progradation 
during the evolution of the basin. The Lower Miocene (LM), Middle 
Miocene (MM), and Upper Miocene (UM) are represented by the cyan lines. 
From Galloway (2008) 

2.1.2 Structural framework 

Miocene and post Miocene structural features are products of reactivation of older 

structures or contemporaneous structures initiated or accelerated by continental margin 

progradation (Winker, 1982; Winker and Edwards, 1983). These structures are manifested 

as large regional growth faults and as shale diapirs and shale ridges formed by vertical 

extrusion of highly mobile shelf-slope mudstones. The normal faults and shale ridges are 

generally orientated northeast-southeast that is closely the same orientation of the lower 

and middle Upper Miocene shelf margins. 

Reactivated structures were initiated by shelf margin progradation and sedimentary 

loading during the earlier Cenozoic depositional cycles, and extensive deep and shallow 

salt diapirs that extend throughout the Houston salt basin. Salt diapirs of the inner and 
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middle shelf in the High Island and Galveston areas were likely mobilized by Miocene 

slope progradation. Reactivated faults typically have high angle and low expansion ratios; 

nevertheless, stratigraphic offset of younger sediments can be substantial (Galloway et al., 

1986). 

As is typical of actively prograding, terrigenous divergent margins (Winker and 

Edwards, 1983) and particularly in the Cenozoic Gulf coast continental margin (Jackson 

and Galloway, 1984), the lower Miocene deposits that built out beyond the underlying Frio 

continental platform initiated large-scale growth faulting and deep-seated sediment 

extrusion and uplift. The over-steepened gradient and low sediment strength create slope 

instabilities that promote detachment and downward rotation of huge fault blocks. Faults 

have down to the basin displacement that cause abrupt increase of stratigraphic thickness 

on the downthrown side (Galloway, 2008). 

Figure 2.3 shows a strike-orientated seismic cross-section within the study area. 

The stratigraphic units interpreted in this figure are the Upper Miocene (UM), Middle 

Miocene (MM), the regional transgressive Amphistenia shale, Lower Miocene 1 (LM1) 

and Lower Miocene 2 (LM2) with the Marginulina shale that separates these two units. 

The stratigraphic units deposited during the Miocene are highly affected by the normal 

faulting in the area. These can affect the potential of CO2 storage in the area, where the 

faults can create migration pathways, where the CO2 can leak. However, these structures 

can provide structural traps that could be used for CO2 storage. 
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Figure 2.3:  Strike–oriented seismic cross-section interpreted showing the structural style of the study are and the stratigraphic 
units. The interpreted units include the Upper Miocene (UM), Middle Miocene (MM), Amph. B shale, Lower 
Miocene 2 (LM2; focus of this study as a intended reservoir for CO2 storage), Marg. A shale, and Lower Miocene 
1 (LM1) 
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2.2 DATASET 

The dataset used in this study is comprised of a 3D post-stack seismic volume, three 

partial angle-stack volumes (near-angle stack, mid-angle stack, and far-angle stack), and 

three wells (referred as well OCS 511, well OCS 518, and well OCS G6142). The seismic 

and well data is located in the coastal area of the Texas Gulf of Mexico (Figure 2.4). 

 

 

Figure 2.4: Map of the study area showing the location of the 3D seismic data and the 
location of the wells used in this study. The red box represents the area 
covered by the 3D seismic data and the circles the location of the wells.  
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2.2.1 Post-stack seismic data 

The 3D post-stack seismic data cover a total area of 1206.60 mi2, with an inline 

range from 5000-8700 and a crossline range from 5000-7200 spaced 110 ft. Figure 2.5 

shows the amplitude spectrum of the 3D seismic data; the dominant frequency of the survey 

is 25 Hz range. Assuming an average P-wave velocity (Vp) of 2.7 km/s, the wavelength 

would be about 108 meters. Therefore, the vertical resolution of the seismic data, one fourth 

of the wavelength, is about 27 meters. Because the well data is displayed in feet, our 

seismic resolution in feet would be about 88 feet.  

 

 

Figure 2.5: Amplitude spectrum of the 3D seismic data showing a dominant frequency 
between 18 to 25 Hz. The vertical axis is amplitude, and the horizontal axis 
is frequency in Hertz (Hz). 

2.2.2 Partial angle stacks seismic data 

The three partial angle-stack volumes (near, mid, and far) have the same geometry 

as described above for the 3D post-stack seismic data. The near angle stack volume is 

generated with angles between 0 to 14 degrees, the mid angle stack with angles from 14 to 

27 degrees, and the far angle stack is generated with angles from 27 to 45 degrees. 

Frequency	(Hz)	 
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2.2.3 Well log data  

Logs from well OCS 511, well OCS 518 and well OCS G6142 in the coastal areas 

of the Texas Gulf of Mexico were used in this study. The relative location of each well 

within the seismic volume is shown in Figure 2.4. Table 2.1 shows the logs available at 

each well and Figures 2.6, 2.7, and 2.8 shows the logs of each well in the Lower Miocene 

section, where the black line in each figure represent the top of the Lower Miocene 2 

(LM2).  

 

Well\Logs GR ILD NPHI Density Vp Vs 

OCS 518 X X X X X  

OCS 511 X X X X X X 

OCS G6142 X X  X X  

Table 2.1:  Logs available for each well  
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Figure 2.6: Well logs from well OCS 518. From left to right the well logs are gamma 
ray (GR), neutron porosity (NPHI), bulk density, and P-wave velocity. The 
horizontal black lines represent the top of the Lower Miocene 2 (LM2) 
sandstones.  
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Figure 2.7: Well logs from well OCS 511. From left to right the well logs are gamma 
ray (GR), deep resistivity (ILD), neutron porosity (NPHI), bulk density, P-
wave velocity and S-wave velocity. The black line represents the top of the 
Lower Miocene 2 (LM2) sandstones.  
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Figure 2.8: Well logs from well OCS G6142. From left to right the well logs are gamma 
ray (GR), deep resisitivity (ILD), bulk density, and P-wave velocity. The 
black lines represent the top of the Lower Miocene 2 (LM2).  
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Chapter 3: Porosity estimation using rock physics models and seismic 
inversion 

 

3.1 INTRODUCTION  

The intended reservoirs for CO2 storage require favorable geologic properties such 

as high porosity and permeability, high seal capacity, and an effective trapping mechanism. 

Different quantitative methods have been used to successfully estimate reservoir properties 

such as porosity, mineralogy, and pore fluid from seismic data. These quantitative methods 

can be used for the characterization of potential storage reservoir, and estimating its 

capacity. Seismic inversion is a commonly used technique that may help to map elastic 

properties like P-impedance, S-impedance, and density in the subsurface. However, the 

fundamental objective is to map reservoir properties such as porosity, clay content, and 

pore fluid. Using rock physics models the elastic properties can be related to porosity, 

mineralogy, and pore fluid. In principle, such transforms can be applied to the seismically 

derived elastic properties to determine the rock properties in the subsurface. 

The work of Dvorkin and Alkahater (2004), Dvorkin et al. (2004), Saltzer et al. 

(2005), Bachrach (2006) are examples of the sequential workflow using seismic inversion 

followed by rock physics modeling to estimate reservoir properties. Dvorkin and Alkahater 

(2004) used rock physics to map pore fluid and porosity from seismic data. Showing that 

combining model-based rock physics analysis with seismic data it is possible to 

discriminate gas-saturated intervals from liquid-saturated intervals using P-wave data. 

Saltzer et al. (2005) used successfully a cascaded seismic and rock physics inversion 

workflow to estimate porosity and volume concentration of shale. The workflow consisted 

in two steps: (1) a simultaneous inversion of angle-stacks to obtain P-impedance and S-
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impedance, (2) the next step is to convert the impedances derived from the first step to 

lithology and porosity values using a rock physics model.  

This chapter combines rock physics modeling and simultaneous seismic inversion 

to estimate the porosity and lithology of the Lower Miocene section in the inner continental 

shelf of the Texas Gulf of Mexico, which are at a depth between 5500 and 6200 feet. Using 

well log data, the soft-sand model (Dvorkin and Nur, 1996) is calibrated to link the elastic 

properties of the Lower Miocene section to the rock properties. Then, a pre-stack seismic 

inversion is performed to obtain elastic properties of the subsurface from the seismic data. 

The goal of this chapter is to apply the rock physics transforms, calibrated with the well 

log data, to the seismic-impedance inversion data to map lithology and porosity. The scales 

of the seismic data are much larger than the scale of the well log data. To address this issue, 

the well log data are upscaled using the Backus (1962) average, and then the rock physics 

transforms are applied to the seismically derived elastic properties to calculate the porosity 

and predict the lithology away from the wells in the Lower Miocene section.  The results 

appear to be accurate when compared to well log data.  

 

3.2 METHODOLOGY 

The methods used in this chapter integrate rock physics modeling and simultaneous 

seismic inversion. The main steps used in this chapter are (1) select a rock physics model 

and calibrate the rock physics model with well log data, (2) discriminate between sand and 

shales combining Vp/Vs and P-impedance, (3) upscale the well log data to the seismic 

scale, (4) perform pre-stack seismic inversion, and (5) use Ip-porosity equations to derive 

porosity from the seismic inversion. 
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For this study the three partial-angle stacks (near, mid, and far) were used with the 

geophysical logs from the wells OCS 511, OCS 518, and OCS G6142. The well OCS 511 

and OCS 518 were used in the rock physics modeling and as training data for the 

simultaneous seismic inversion, while well OCS G6142 was used as a test well.  

3.2.1 Rock Physics Model 

Rock physics models are used to characterize, understand, and quantify the impact 

of specific reservoir properties (e.g., lithology, porosity, pore fluids, clay content) on the 

elastic properties. Example of different rock physics models are described by Mavko et al. 

(2009), Avseth et al. (2005), and Dvorkin et al. (2014). These different rock physics models 

can be based on theoretical models or in empirical relations, and may describe different 

geologic scenarios. Therefore, it is important to take into account the geologic nature of 

the sediments when selecting a rock physics model.  

For this study, the soft sand model (Dvorkin and Nur, 1996) was used. The soft 

sand model (or friable sand model) can be used to calculate the elastic moduli of well-

sorted and poorly-sorted soft sands. The starting point of the model is to calculate the elastic 

moduli of a well sorted, high porosity sand using the Hertz-Mindlin contact theory 

(Mindlin, 1949). The Hertz- Mindlin contact theory (Mindlin, 1949) can be use to describe 

the properties of precompacted granular rocks, and gives the following expressions for the 

effective bulk and shear moduli of a dry, dense, random pack of identical spherical grains 

subject to hydrostatic pressure P: 
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where +,	is the critical porosity, C is the coordination number, . and 1 are the 

mineral shear modulus and Poisson’s ration.  

The effective elastic moduli of sand with porosities between 0 and critical porosity 

are interpolated using the lower Hashin–Shtrikman bound. The effective moduli (Keff and 

.eff) are calculated using the following expressions: 
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To construct the rock physics models was assumed, for simplicity that the only 

minerals present in the rock are clay and quartz. To compute the effective mineral moduli 

for a mixture of clay and quartz the Voigt-Reuss-Hill average is used (Mavko et al. 2009).  

For wells OCS 518 and OCS G6142, no S-wave velocity curves are available. To 

calculate the S-wave velocity for these wells, the Castagna et al. (1985) mudrock equation 

was used:  
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VN = 0.862VP − 1.172	. (3.5) 

 

3.2.1.1 Rock physics model calibration to well log data  

The next step is to validate the applicability of the model selected by calibrating the 

rock physics model with the well log data. Using the measured velocity and density at the 

well, and the total porosity calculated from the density log using the following formula:  

 
ϕ =

ρT − ρU
ρT −	ρ;

	, (3.6) 

where VW is the density of the fluid in the pore space, VX is the bulk density 

measured at the well, and VY	is the density of the matrix.  

The P-impedance in the Lower Miocene 2 (LM2) interval is plotted versus the 

porosity in Figure 3.1 for well OCS 518 and Figure 3.2 for well OCS 511. It is color-coded 

by gamma ray value. The P-impedance-porosity curves drawn from the soft sand model 

(section 3.2.1) are superimposed with the data points. These theoretical curves from the 

soft sand model are calculated for 100% water saturation, and constant clay content at 25% 

increments. The high-porosity end member used was the critical porosity for sandstone of 

39%. The mineral and fluid properties used are from Table 3.1.  
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Fluid/Mineral Bulk Modulus (GPa) Shear Modulus (GPa) Density(g/cc) 

Quartz 37 44 2.65 

Clay 25 9 2.55 

Brine 2.73 0 1.033 

CO2 0.0871 0 0.691 

Table 3.1: Fluid and mineral properties used in rock physics modeling and fluid 
substitution analysis. The elastic properties of the fluids are obtained using 
the Batzle-Wang equation. The elastic properties of the minerals used are 
from Mavko et al. (2009).   

The soft sand model curves for P-impedance and porosity calculated for different 

clay content and 100% brine saturation accurately match the data for wells OCS 518 and 

OCS 511 in Figure 3.1 and Figure 3.2, which shows the utility of the model selected here. 

The model based impedance-porosity curves drawn for pure quartz sand and sand with 

25% clay bound the sand data points. Model based impedance-porosity curves are also 

drawn for rock with 50%, 75%, and 100% clay content. Most of the shale data lies between 

the 50% and 75% clay content curves, which means that the shale is not pure clay.  

The selection of the rock physics model is based on the geological nature of the 

Lower Miocene 2 (LM2) section in the upper Texas Gulf of Mexico. The match between 

the well log data and the rock physics model demonstrates the consistency of the geological 

setting and the soft sand model (Figures 3.1 and 3.2). From Figures 3.1 and 3.2 can be 

observed that both porosity and clay content (gamma ray) affect the P-impedance. At a 

constant percentage of clay (gamma ray), low porosity corresponds to a large P-impedance, 

whereas at a fixed porosity increased percentage of clay (hotter colors) correspond to lower 

P-impedance. 
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Figure 3.1: P-impedance plotted versus porosity for the Lower Miocene 2 (LM2) 
section of log data from well OCS 518. The data are color coded by gamma 
ray. The black curves are from the soft sand model, each drawn for a fixed 
clay content starting at 0% and ending at 100% clay, increasing 25% the 
clay content.  
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Figure 3.2: P-Impedance plotted versus porosity for the Lower Miocene 2 (LM2) 
section of log data from well OCS 511. The data are color coded by gamma 
ray. The black curves are from the soft sand model, each drawn for a fixed 
clay content starting at 0% and ending at 100% clay, increasing 25% the 
clay content.  

3.2.2 Lithology discrimination and porosity estimation 

Figure 3.3 shows the plot of Vp/Vs vs P-impedance for well OCS 518, color-coded 

by gamma ray. The well data displayed shows that the sand and shales do not overlap, 

which means, that the sands and shales can be identified by using a combination of P-

impedance and Vp/Vs. To make this identification, a cut-off line was drawn below the 

shale domain that is represented in Figure 3.3 by the black line. The corresponding equation 

is:  

 

Z[ Z\ = 0.0047][' − 0.16][ + 2.8. (3.7) 
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Figure 3.3: Vp/Vs plotted versus P-Impedance of the Lower Miocene section of log data 
from well OCS 518. The data are color coded by gamma ray. The black 
curve represents the cut off line between sands and shales.  

If Z[ Z\ < 0.0047][' − 0.16][ + 2.8, then the domain is sand. If 

Z[ Z\ <0.0047][' − 0.16][ + 2.8, then the rock is shale. 

After discriminating between sands and shale using P-impedance and Vp/Vs, the 

porosity of the sands and shales can be estimated using the Ip-porosity transform from the 

rock physics model (section 3.2.1; Figs. 3.1 and 3.2). The plot of the Ip versus porosity in 

Figures 3.1 and Figure 3.2 indicates that the sand data (cooler colors) lies between the 0% 

clay and 25% clay line and that the shale data point (hotter colors) lies between the 50% 

and 75% clay content curves. Thus, the Ip- porosity transform for 15% clay was used to 

predict porosity from P-impedance, 65% clay line was used to predict the porosity in the 

shaley zones. The equation used to calculate the porosity for the sands is: 
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+ = 0.0052]_' − 0.1346]_ + 0.9067. (3.8) 

 

The equation used to estimate the porosity in the shaley zones is:  

 

+ = 0.0084]_' − 0.19]_ + 1.   (3.9) 

 

3.2.3 Upscaling  

The shale-sand cut off criterion and the rock physics models are reasonably 

consistent with the log data. Due to the differences between the log-scale and seismic-scale 

the rock physics transforms should not be directly applied to the seismic data. In order to 

address this issue, the Backus (1962) average is applied to upscale the elastic moduli, and 

the arithmetic mean to upscale the bulk density and porosity; to evaluate if the rock physics 

transforms and cut off criterion are applicable at the seismic scale.  The P-impedance at 

seismic scale is calculated from the upscaled moduli and density. The length of the window 

used is comparable with the seismic wavelength, approximately ¼ of the seismic 

wavelength, approximately 88 feet (Chapter 2; section 2.2.1) 

 

Effective Density and Porosity:  

The arithmetic mean of the porosity and density from the log data within the 

previously stated window are calculated using the following formulas (Rasolovoahangy, 

2002):  

 

V = 	 3
`

Va`
ab3 	,      (3.10) 
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+ =	 3
`

+a`
ab3  ,  (3.11) 

 

where +a and Va are the porosity and density at depth i, V	and + are the porosity 

and bulk density within the specified window, and n is the window size.  

Effective Bulk and Shear Moduli:  

To average the bulk and shear moduli within a given window using the Backus 

average.  
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where ca are individual consecutive elastic modulus readings and <M> is the 

upscaled elastic modulus.  

3.2.3.1 Upscaled results for the rock physics modeling  

Figure 4.4 shows the crossplot of Vp/Vs and P-impedance upscaled at the seismic 

scale, color coded by gamma ray. The black dots represent the log data from the Lower 

Miocene 2 (LM2) section and the black line is the cutoff line for sands and shale given by 

equation 3.7 from Figure 3.3. Figure 3.5 shows the crossplot of the P-impedance and the 

porosity from well OCS 518, superimposed on the clay lines given by the soft sand model. 

The actual log values from the Lower Miocene section are in black, whereas the upscale 

values are color coded by gamma ray value. These figures demonstrate that the elastic 

properties of the upscaled log data can be characterized by the soft sand model, and proves 
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the possibility of discriminating between sands and shale, and estimate porosity from 

seismic data.  

 

 

Figure 3.4:   Vp/Vs plotted versus P-Impedance of the Lower Miocene section of the 
upscaled data from well OCS518 at the seismic scale. The data are color 
coded by gamma ray. The black curve represents the cut off line between 
sands and shales. The black dots represent the data from the well (compare 
with Figure 3.3). 
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Figure 3.5: P-Impedance plotted versus porosity of the Lower Miocene section of the 
upscaled data from well OCS518 at the seismic scale. The data are color 
coded by gamma ray. The black curve represents the cut off line between 
sands and shales. The black dots represent the data from the well (compare 
with Figure 3.1) 

3.2.4 Seismic inversion  

To generate the P-impedance, S-impedance and density volumes, a simultaneous 

model-based inversion was performed using the Hampson-RussellÓ software. The 

algorithm used to perform the inversion assumes a linearized approximation for 

reflectivity, angle dependent reflectivity (Aki and Richards, 2002), and linear relationships 

among the logarithms of P-Impedance, S-Impedance, and density (Hampson et al., 2005). 

For this study, three partial angle-stacks were available; near angle-stack (angles up to 14 

degrees), mid angle-stack (angles from 14 to 27 degrees), and far angle-stack (angles from 

27 to 45 degrees). Figure 3.6 shows three different panels with each partial angle-stack. 



 49 

The P-impedance log from wells OCS 518 and OCS G6142 are superimposed with the 

seismic data. The well OCS 518 was used in the well tie and as the training well for the 

model-based inversion, and the well OCS G6142 is the test well for the model-based 

inversion. A reasonable match between the inversion volumes and measured values in well 

OCS G6142 will be a good indication of the quality of the inversion results.  

 

 

 



 50 
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Figure 3.6:  Arbitrary line connecting two wells in the study area of the three partial 
stacks available for this study. The upper panel shows the arbitrary line for 
the near partial stack with angles up to 14 degrees. The middle panel is the 
partial stacks of angles between 14 and 27 degrees. The lower panel is the 
arbitrary line of the far stack with angles from 27 to 45 degrees. The P 
impedance log is superimposed in all three sections for wells OCS 6142 and 
for well OCS 518. 

Figure 3.7 shows the inversion analysis at well OCS 518 including from left to right 

the results for P-impedance, S-impedance, density and Vp/Vs. The black line represents 

the initial model, the blue line is the measured value at the well, and the red line is the 

inversion results at the well. Figure 3.7 also shows the wavelet group used in the inversion 

and the synthetic traces generated from the inverted model.  
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Figure 3.7: Inversion analysis window at well OCS 518, showing from left to right the 
inversion results for P-impedance, S-impedance, density, and Vp/Vs. The 
initial model is represented in black, the measured value at the well in blue, 
and the red is the inversion result at well OCS 518. The next panel is the 
wavelet group (blue) used in the inversion analysis and the synthetics 
seismic traces generated from the inverted model.  

Figure 3.8 shows an arbitrary line through well OCS 518 and well OCS G6142 in 

three inverted volumes: P-impedance, S-impedance, and density respectively. The wells 

are superimposed showing the measured property obtain from the well logs, with the same 

color scale. It is important to highlight that the well OCS G6142 (right side) was not used 

in the seismic inversion and is used as a test well. The inversion results reasonably match 

the measured well data at the training well (OCS 518) and at the test well (OCS G6142) in 

the Lower Miocene section.  

 



 53 
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Figure 3.8: Inversion results. Arbitrary line through both wells in all three inverted 
volumes in time color coded by the inverted property the three partial stacks 
available for this study. The upper panel shows the arbitrary line for the P-
impedance. The middle panel is the S-impedance. The lower panel is the 
density volume. The values of each property at well OCS 511 and well OCS 
G6142 are superimposed in all three sections with the horizons interpreted 
in the seismic of the Amph. B shale and the Lower Miocene section.  

 

3.3 Application of rock physics model to inversion results  

In the previous sections (Section 3.2.3.1) was demonstrated that the elastic 

properties obtained from the seismic inversion can be used discriminate lithology and 

estimate porosity. Through the combination of the seismically derived Vp/Vs and P-

impedance volumes, the sands and shales were delineated using the cut off line described 

by equation 3.7. Then, the porosity was estimated using equation 3.8 for sands and 3.9 for 

shales.  

3.3.1 RESULTS 

Using the properties obtained from the pre-stack seismic inversion (P impedance 

and Vp/Vs; Fig. 3.8) and the equations obtained from the rock physics models (eq. 3.7, 3.8, 

and 3.9), the lithologies and porosity can be broadly in the seismic data (Figure 3.9). Figure 

3.9 shows an arbitrary line with the lithologies obtained from the rock physics model, and 

the porosity estimated by using the Ip-porosity transforms represented by equation 3.8 for 

sand intervals and equation 3.9 for the shaley zones. The wells OCS G6142 and OCS 518 

are superimposed showing the sand and shales interval and the porosity at both wells.  
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Figure 3.9: Arbitrary line showing the lithology and porosity estimated using the 
inversion results and the rock physics models. In the upper figure the yellow 
color represents the sands and the blue color the shales. In the lower figure 
the color represents the porosity obtained from the Ip-porosity transform 
from the rock physics models. The red lines in the upper figure and the 
black lines in the lower figure represents the top and base of the Amph. B 
shale and the Lower Miocene 2 (LM2).  

The lithology and porosity results within the Lower Miocene 2 (LM2) interval 

match the measured data at the well. The well on the right (Figure 3.9), the OCS G6142 is 

a test well that was not used in the inversion. The sands delineated from the seismic data 

around well OCS G6242 shows to be thicker than the observed measures from the wells 
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(Figure 3.9). The reason is that the upscaled P-Impedance and Vp/Vs are not sensitive to 

the thin layers of shales that can be seen at the well log resolution. This means that some 

shaley zones are classified as sands and the porosity in these areas can be overestimated.  

 

3.4 DISCUSSIONS AND CONCLUSIONS 

Obtaining the porosity and lithology of the reservoir from elastic properties is 

relevant to several applications. Regarding CCS, it can be used to select more appropriate 

zones for CO2 storage, calculate the capacity for intended reservoirs, and for flow 

simulation of future CO2 injected.  This work shows how to select and calibrate a rock 

physics model with well log data and also establish if this rock physics model can be used 

at the seismic scale.  

The main intention of this work was to determine the effectiveness of workflows 

and methodologies that have been successfully applied in the oil and gas industry for 

characterizing reservoirs for CO2 storage. In this work is demonstrated that this 

methodology can be used to obtain volumetrically continuous estimates of reservoir 

properties. Although not undertaking as part of the thesis research, these results could be 

the used for storage capacity estimation and CO2 migration simulation, which might be 

preferable to extrapolating these properties from wells into statistically generated volumes. 
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Chapter 4: Sensitivity analysis of Lower Miocene sandstones to CO2 
saturation in the inner continental shelf of the Texas Gulf of Mexico.  

 

4.1 INTRODUCTION  

For CCS to be effective, the CO2 should be monitored during and after injection to 

guarantee that it is safely retained underground. Among the monitoring methods for CO2, 

the seismic methods provide the volumetric coverage needed to understand the spatial 

distribution of CO2 in the subsurface (McKenna et al.; 2003; Lumley, 2010; Sava, 2013). 

Seismic methods have been used for monitoring CO2 sequestration in different geological 

scenarios through time-lapse applications. Time-lapse seismic methods attempt to quantify 

the difference in the seismic response before and after the injection of CO2 (Lumley, 2010; 

Dvorkin et al., 2014).  

The stratigraphy of the Gulf of Mexico has a great potential for CO2 storage. The 

basin has many extensive and thick sandstone reservoirs with high porosity (~ 30%) and 

high permeability (>1 darcy), thick regional shale intervals (seals), structural deformation 

from salt tectonism and growth faulting that has created numerous effective traps, 

(Nicholson, 2012; Osmond, 2016), and proximity to multiple point sources of high CO2 

emissions along the Texas coast (Wallace, 2013). Despite the potential of the basin for CO2 

storage, few studies have focused on understanding how injected CO2 could affect the 

elastic properties of the saline aquifers that could be used for storage, and quantify the 

ability of the seismic methods to monitor the migration of the CO2 into the formation 

This chapter assesses the sensitivity of seismic P-wave velocities and PP reflectivity 

on CO2 saturation that might result from injection and migration. The approach uses well 

log data and integrates rock physics modeling, fluid substitution, amplitude variation with 
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angle (AVA), and statistical classification to discriminate between brine and CO2 saturated 

zones in sandstone reservoirs of the Miocene Age. The rock physics modeling relates the 

reservoir properties (porosity, lithology, clay content) to elastic properties. Fluid 

substitution is done using Gassmann equations to calculate the elastic properties of the 

reservoir with CO2 at different saturations using different fluid mixing theories. AVA 

analysis is done assuming a two-layer model, where the shale is used as a cap-rock with an 

underlying sandstone. The properties of the underlying sandstone (Vp, Vs, and density) 

were varied according to the fluid substitution modeling. The angle-dependent reflectivity 

depends on both the elastic properties of the sandstone and the properties of the overlying 

shale. The objective of the statistical classification is to discriminate pore fluid based on 

elastic properties. In this case, Vp/Vs and P-Impedance are the elastic properties that have 

the higher success rate discriminating between brine and CO2.  

The well log data from OCS 511 was used for this study. The well is located in the 

High Island Area (Figure 4.1). The following data were available for an interval of interest: 

P-wave velocity and S-wave velocity from sonic (Vp and VS), density (rho), volume 

concentration of shale (Vsh), water saturation (Sw), and effective porosity (phi).  The well 

logs cover the intended reservoir sands from the Lower Miocene 2 (LM2) and the overlying 

shale (Amph.B) above the reservoir (Figure 4.2). Figure 4.3 shows the Vp-porosity 

crossplot for the Lower Miocene 2 (LM2) sandstones, colored coded by depth. The upper 

and lower Hashin-Strickman bound are also plotted represented by the blue and red lines, 

respectively. As can be seen the average porosity of the sandstone is close to 30%, and the 

sandstone data points are close to the lower Hashin-Strickman bound. 
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Figure 4.1: Location of the well OCS 511 in the area of study.  
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Figure 4.2: Gamma ray, deep resistivity, neutron porosity, compressional and shear 
velocity logs of the OCS 511 well. The black lines the top of the overlying 
shale (Amph. B) and the top and base of the Lower Miocene sandstone layer 
used in this study.  
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Figure 4.3:  Porosity-velocity plot for the Lower Miocene sands. The blue and orange 
lines indicate the Hashin-Shtrikman upper and lower bound, respectively. 
The color bar indicates the depth of each point.  

 

4.2 METHODOLOGY  

4.2.1 Rock Physics Modeling 

Previous work done on well log data from the inner continental shelf of the Texas 

Gulf of Mexico used showed that the soft sand model (Dvorkin and Nur, 1996) accurately 

matched well the data from the Lower Miocene 2 (LM2) section (Chapter 3; section 3.2.1).  

In Chapter 3 a single composition of clay and quartz was used for the soft sand model to 

represent Lower Miocene section in the rock physics modeling. That assumption was 

selected for simplicity. However, in this chapter because the analysis will focus on the 
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upper sand layer seen in well OCS 511 (Figure 4.1) the rock physics modeling is applied 

in more detail; selecting a more specific mineral composition of the sand. According to 

Dutton et al (2012) the Lower Miocene sandstones in the Upper Texas area of the Gulf of 

Mexico is dominantly composed of quartz, feldspar and the main reason for the loss of 

porosity is burial compaction. Table 4.1 shows the properties of the mineral and fluid used 

in the rock physics modeling. A description of the soft sand model can be found in Chapter 

3. 

 

Fluid / Mineral Bulk Modulus (GPa) Shear Modulus (GPa) Density (g/cc) 

Quartz 37 44 2.65 

Feldspar 75.6 25.6 2.63 

Clay 25 9 2.55 

Brine 2.73 0 1.033 

CO2 0.0871 0 0.691 

Table 4.1: Fluid and mineral properties used in rock physics modeling and fluid 
substitution analysis. The elastic properties of the fluids are obtained using 
the Batzle-Wang equation. The elastic properties of the minerals used are 
from Mavko et al. (2009).   

 

4.2.2 Fluid Substitution 

Fluid substitution calculations are a valuable tool for modeling various fluid 

scenarios. They are used to understand and predict how the saturation of different fluids in 

the pore space affect may affect the elastic properties of the rock. If the initial elastic 

properties of the sequestering formation (P and S-wave velocities, bulk density, porosity, 
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bulk modulus of the mineral) and the pore fluid properties (bulk modulus and density) at 

reservoir conditions, as well as the fluid saturation, Gassmann (1951) theory predicts the 

resulting effective bulk modulus, Ksat of the saturated rock using the following equations: 

 
!\fg

!h − !\fg
=

!ijk
!h −	!ijk

+	
!Wl

ϕ(!h − !Wl)
, (4.1) 

 

.\fg = 	.ijk, (4.2) 

 

where Kdry is the effective bulk modulus of the dry rock, Ksat is the bulk modulus of 

the rock with pore fluid, K0 is the bulk modulus of the mineral of the rock, Kfl is the effective 

bulk modulus of the pore fluid, and ϕ is the porosity of the rock, .\fg is the shear modulus 

of the rock with pore fluid, .ijk is the shear modulus of the dry rock. The application of 

Gassmann’s equation is based on the assumptions that the rock is isotropic with a 

homogenous mineral modulus, and pore pressure is equilibrated in the pore space 

(Gassmann, 1951). 

To calculate !\fg of a rock saturated with a particular fluid, first we need to 

calculate the dry-bulk modulus of the rock Kdry using eq. 4.3. Then we calculate the bulk 

modulus of the rock saturated using eq. 4.4.  

 

!ijk =
!\fg(ϕ!h !Wl + 1 − 	ϕ) −	!h

(ϕ !ijk) (1 !h −	1 !Wl) + (1 !h)(1 !h − 1 !ijk)
 (4.3) 

 

!\fg =
ϕ(1 !h −	1 !Wl) +	1 !h − 1 !ijk				

(ϕ !ijk) (1 !h −	1 !Wl) + (1 !h)(1 !h − 1 !ijk)
	. (4.4) 
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The effective bulk modulus of the mineral matrix is calculated with the Voigt – 

Reuss – Hill average that is the average between the Voigt upper bound and the Reuss 

Lower bound (Mavko et al., 2009). The moduli for the minerals used is shown in Table 

4.1. The effective modulus of a mixture of fluids can be calculated using the Voigt upper 

bound or the Reuss lower bound (Figure 4.4). The Voigt upper bound represents a patchy 

saturation and it is an arithmetic average of the moduli of the two fluids, while the Reuss 

is the harmonic average of the fluid moduli lower bound and represents homogenous 

saturation. The Voigt bound represents the stiffer way of mixing two fluids. On the other 

hand, the Reuss bound represents the softest way of mixing two fluids. 

 The properties of the CO2 change drastically with temperature and pressure. To 

calculate the elastic properties of the CO2 at reservoir conditions the Batzle-Wang 

equations are used. Table 4.2 shows the bulk modulus for the mixture of brine and CO2 at 

different parentages at a temperature of 56 degrees Celsius and pore pressure of 18MPa. 

These percentages include 0, 20, 40, 60, 80, and 100% CO2 saturation, with brine 

composing the complementary percent. 
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Figure 4.4:  Bulk modulus of variable mixture between CO2 and brine, with different 
water saturations (Sw). The blue line represents the Voigt bound (arithmetic 
average) and the red line represents the Reuss bound (harmonic average). 

 

 

Bound \ Bulk Modulus (GPa) 20% CO2 40% CO2 60% CO2 80% CO2 100% CO2 

Voigt 2.2070 1.6729 1.1443 0.6157 0.0871 

Reuss 0.3863 0.2079 0.1422 0.1081 0.0871 

Table 4.2:  Bulk Modulus and density for different percentages of CO2 and Brine used 
in fluid substitution  
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4.2.3 AVA Modeling 

Amplitude variation with angle (AVA) analysis of seismic reflections exploit 

changes of seismic amplitude as a function of the angle of incidence in order to detect 

changes in reservoir properties. The Zoeppritz (1919) equations, shown below, describe 

how the reflection coefficient changes as a function of the angle of incidence for a two-

layer model.  

 

 

 

To do the AVA modeling each layer needs a value of p-wave and s-wave velocity, 

and density. For this study, the values used were taken from well logs (sonic and density 

logs). When using a single value of Vp, Vs and density for each layer, the AVA modeling 

result is a single curve of PP reflectivity for the shale-sandstone interface. This single curve 

does not account for the intrinsic geologic variability of each layer and the interface 

between the two layers. To account for the possible lateral variability of each layer Monte 

Carlo simulation is used to assess uncertainties in seismic signature related to the natural 

variability within each layer. It is important to make sure that the Monte Carlo simulation 

preserves the distributions and the Vp-Vs and Vp-density correlations of the original data 

(Avseth, 2005). The histograms of the elastic properties computed with the log data were 

compared with the equivalent histograms calculated with the Monte Carlo data values. 
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Figure 4.5 reveals that initial Vp, Vs, and density distributions for the overlying shale are 

preserved after Monte Carlo simulations.  

 

 

Figure 4.5:  Histograms of Vp, Vs, and density from well log data (top) and Monte Carlo 
Simulation (Bottom) for the overlying shale.  

 

Five hundred reflectivity simulations were calculated from the Monte Carlo 

simulated properties for the overlying shale and the reservoir sandstone for each different 

fluid composition (0, 20, 40, 60, 80, and 100% CO2) for the two different fluid mixing 
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methods (Voigt and Reuss). The reflectivity simulation was calculated using Zoeppritz 

equation with angle of incidence from 0 to 30 degrees.  

 

4.2.4 Classification  

The goal is to evaluate if we can use seismic attributes, for example, P-impedance 

and Vp/Vs to discriminate and classify between different fluids (CO2 and Brine) in the pore 

space. To do this, crossplots were constructed for Vp/Vs and P-impedance for the different 

classes (e.g., 0, 20, 40, 60, 80, and 100% CO2), using the velocities and densities obtained 

from the fluid substitution (Figure 4.6). Then, the bivariate PDFs were computed for each 

class and using the Mahalanobis distance to data was classified. Using the derived PDFs 

of seismic attributes, feasibility evaluations are made about which set of seismic attributes 

contains the most information for the problem (Bosch, 2010). Figure 4.7 illustrates the 

concept of classification where we have two classes and two elastic properties, z1 and z2, 

representing for example Vp/Vs and P-impedance. The bivariate PDFs for each class are 

represented in green and orange contours. The classification is applied point-by-point, 

where each point is classified to a certain class according to the minimum Mahalanobis 

distance to each cluster (Duda and Hart, 1973; Fukunaga, 1990). 

 



 69 

 

Figure 4.6: Crosplots of Vp/Vs versus P-Impedance for the different classes (20%, 40%, 
60%, 80%, and 100% CO2) calculated with the Reuss bound and the brine 
saturated sand. The blue points represent the 0% CO2, yellow 20%, green 
40%, red 60%, magenta 80%, and cyan 100% CO2. 
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Figure 4.7: Crossplot of properties z1 and z1 for two classes to illustrates the concept of 
classification. The orange and green contours represent the bivariate pdfs for 
each class. The classification scheme is applied to each point, and it is 
classified to a certain class according to the minimum Mahalanobis distance 
each to each cluster(orange or green).  

 

The Mahalanobis distance is defined as:  

 

c' = (m − .a)n (m − .a)	
?3

	
, (4.5) 

 

where m is the sample feature vector (measured attribute), .a are the vectors of the 

attribute means for the different classed, and S is the covariance matrix of the training data. 

The uncertainty in predicting the pore fluid from elastic properties will be directly 

linked to the degree of overlap between the ranges of values (Doyen, 2007), and because 

of the overlap among the different classes the classification will not be perfect. To compute 

the classification success, the elements of the classification confusion matrix are estimated. 
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The diagonal elements of the matrix are the success rate for each class, while the off-

diagonal elements are probabilities of misclassification (Avseth, 2005). The parameter that 

shows the highest success to discriminate between brine and CO2 was Vp/Vs as a function 

of P-Impedance. Each fluid composition was compared against each other for both patchy 

saturation and homogeneous saturation.  

 

4.3 RESULTS 

4.3.1 Rock physics Modeling 

The results from the rock physics modeling can be seen in Figure 4.8. The blue, 

green, red and black are modeled using the uncemented sand model varying the 

concentration of the different mineral components of the rock and fluid. The blue, green, 

and red curves are the sands saturated with brine, and the black curve was modeled with a 

70% gas saturation. Table 4.1 shows the values of the moduli used for the minerals and 

fluids. 
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Figure 4.8: Vp versus porosity from the Lower Miocene sandstone. The color represents 
the depth of each point. The blue, green, red, and black lines represent the 
uncemented sand model with different components increasing the clay 
content. The in situ fluid model in the blue, green, and red curve are water, 
whereas the in situ fluid used in the black curve is gas.  

 

The rock physics modeling is useful to establish relationships between reservoir 

properties and seismic properties. Using rock physics models, the effect of clay content on 

the p-wave velocity and porosity can be identified, and it helps to correlate the mineral 

composition of the rock and the mineral moduli that are needed for the fluid substitution. 
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4.3.2 Fluid Substitution  

Figure 4.9 shows the velocities obtained from fluid substitution using Gassmann 

equations with different fluid in the pore space. The red, yellow, purple, green, cyan, and 

magenta lines show the velocities modeled with 0, 20, 40, 60, 80, and 100% CO2 saturation, 

respectively. The blue line represents the measured velocity from the well logs. The upper 

part of the sandstone is saturated with gas, and the curve overlaps with the modeled 

velocities for 100% CO2 saturation, from 5867 ft the in-situ fluid is water, and the curve 

overlaps with the 100% brine curve. The left panel in Figure 4.9 shows the p-wave velocity 

modeled using the Voigt upper bound for the bulk modulus for the different fluid 

compositions. The Voigt bound represents the patchy saturation model. The middle panel 

in Figure 4.9 shows the p-wave velocity using the Reuss lower bound for the fluid moduli. 

The Reuss average implies that just a few percent of CO2 injected in the pores can 

significantly lower the P-wave velocity of the sequestering formation. The right panel in 

Figure 4.9 shows the s-wave velocity. The slight change in the velocity is due to the change 

in bulk density for the different saturations of CO2.  
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Figure 4.9:  A) Shows p-wave velocities for the LM2 sandstone with different saturation 
of CO2, where the bulk fluid modulus is calculated from the Voigt average 
B) shows the same as in A, but the fluid moduli were calculated with the 
Reuss average. C) Shows the s-wave velocity. The red, yellow, purple 
green, cyan and magenta curves represent the 0, 20, 40, 60, 80, 100% CO2, 
respectively. The panel A shows a constant spacing because the Voigt 
average is linear. Panel B shows a big separation between the curves with 
100% brine and CO2, indicating that a low concentration of CO2 changes the 
moduli significantly.  

 

The bulk moduli of the fluid have an important role in the velocity results obtained 

from the fluid substitution. When considering the Reuss average to determine the bulk 

modulus of the fluid mixture, the p-wave velocity of the rocks significantly drops with CO2 
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saturations of 20%. For saturations between 20% and 100% the velocity decreases a small 

percent. When the bulk modulus of the fluid is calculated using the Voigt bound (the patchy 

case), the velocities decreases in a linear trend when the CO2 saturation increases.  

 

4.3.3 AVA MODELING 

Figures 4.10 and 4.11 show the reflection coefficients calculated using the 

Zoeppritz equations for angles between 0 and 30 degrees. Five hundred simulations were 

computed for different saturations of CO2. Figure 4.10 shows the angle-dependent 

reflectivity using the Voigt bound. The black line in each case represents the mean curve 

for each case. Figure 4.11 shows the reflectivity using the Reuss bound.  

In Figure 4.10 and 4.11 the mean curve for 0% CO2 shows a reflectivity close to 0. 

This indicates that the contrast in impedance between the overlying shale and the sandstone 

fully saturated with brine is barely noticeable, but when the saturation of CO2 in the pore 

space increases the contrast in impedance, generating a more negative reflection. One 

important aspect shown in Figure 4.11 is that a small concentration of CO2 in the pore 

space creates a considerable change in PP reflectivity, when the fluid is mixed using the 

Reuss bound. This makes it difficult to differentiate changes in the reflection coefficient 

when the CO2 saturation increases above 20%.  
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Figure 4.10:  Angle dependent reflectivity for the overlying shale and the Lower Miocene 
2 (LM2) sandstone. The x axes are the reflection coefficient and the y axes 
are the incident angle from 0 to 30 degrees. The black line in each panel 
represent the average reflectivity for each class. The blue line is the for 0% 
CO2, yellow 20% CO2, green 40% CO2, red 60% CO2, magenta 80% CO2 
and cyan 100% CO2 for patchy saturation  
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Figure 4.11.  Angle dependent reflectivity for the overlying Amph.B shale and the LM2 
sandstone. The x axes are the reflection coefficient and the y axes are the 
incidence angle from 0 to 30 degrees. The black line in each panel represent 
the average reflectivity for each class. The blue line is the for 0% CO2, 
yellow 20% CO2, green 40% CO2, red 60% CO2, magenta 80% CO2 and 
cyan 100% CO2 for homogenous saturation. The reflectivity is highly 
affected by low concentration of CO2, which makes it difficult to see 
differences in the reflection coefficient when the CO2 saturation increases 
above 20%.   

The variation in the AVA responses due to fluid composition is evident. This 

variation in the AVA response can be explain by the soft frame of the rock. The soft frame 

of the rock increases the sensitivity of the rock to the elastic properties if the fluid in the 

pore space. The Lower Miocene sandstones are rocks with high porosity, at relative shallow 

depth and low pressure. Under these conditions significant variation in the PP reflectivity 

is expected when the pore fluid changes.  
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4.3.4 CLASSIFICATION  

Vp/Vs as function of P-impedance is the combination of properties that resulted in 

the highest classification success. Tables 4.3 and 4.4 show the classification confusion 

matrix for each facies for the two different fluid mixture theories. Figures 4.12 and 4.13 

show the bivariate PDFs for the 0% CO2 and the other different classes (20%, 40%, 60%, 

80%, and 100%) for the patchy model and the uniform saturation. The blue contours in 

each figure represent the 0% CO2, the yellow, green, red, magenta, and cyan represent 20%, 

40%, 60%, 80%, and 100% CO2.  

Figure 4.12 shows the plot of Vp/Vs – P-impedance bivariate PDFs for the patchy 

saturation model comparing the 0% CO2 saturation (blue contours) with different 

saturations of CO2 (20%, 40%, 60%, 80%, and 100%). The 0% CO2 and 20% CO2 PDFs 

overlap significantly but when the CO2 saturation increases the overlap between the PDFs 

decreases. Table 4.3 shows the classification confusion matrix for the patchy saturation 

model, the elements of the principal diagonal of the matrix are the classification success of 

each class. For saturations between 40% and 80% CO2 the classification success is low. 

For 40% CO2 saturation the success rate is 0.39, which mean that only 39% of the data is 

being classified correctly, 25% is being classified incorrectly as 20% CO2, and 23% of the 

data is being classified as 60% CO2. In the case 80% CO2 saturation the success rate is 

0.384, and 22% of the data is wrongly classified as 60% CO2 and 31% of the data is 

incorrectly classified as 100% CO2.  

In the case of the homogenous saturation model Figure 4.13 shows a good 

separation between the 0% CO2 (blue contours) and the different classes. When the PDFs 

of the 20%, 40%, 60%, 80%, and 100% CO2 are compared to each other in Figure 4.14 

they overlap significantly. The elements of the principal diagonal of the confusion matrix 
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for the homogenous saturation model shown in Table 4.4 show low classification success 

for CO2 saturation between 20% and 100%.  

 

 

Figure 4.12: Bivariate PDFs for the 0% CO2 and the other different classes (20%, 40%, 
60%, 80%, and 100%) for patchy saturation. The blue contours in each 
figure represent the 0% CO2, the yellow, green, red, magenta, and cyan 
represent 20%, 40%, 60%, 80%, and 100% CO2. 
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Table 4.3:  Confusion classification matrix for minimum Mahalanobis distance. The 
fluid properties were calculated using the Voigt average. The diagonal 
shows the success rate for the classification of each class. Showing a good 
overall classification  

 

 

True\Predicted 0% CO2 20% CO2 40% CO2 60% CO2 80% CO2 100% CO2 

0% CO2 0.840 0.068 0.056 0.036 0 0 

20% CO2 0.072 0.692 0.200 0.036 0 0 

40% CO2 0.078 0.250 0.390 0.234 0.048 0 

60% CO2 0.040 0.010 0.196 0.520 0.210 0.024 

80% CO2 0.004 0.004 0.070 0.224 0.384 0.314 

100% CO2 0 0 0.008 0.056 0.206 0.730 
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Figure 4.13:  Bivariate PDFs for the 0% CO2 and the other different classes (20%, 40%, 
60%, 80%, and 100%) for uniform saturation. The blue contours in each 
figure represent the 0% CO2, the yellow, green, red, magenta, and cyan 
represent 20%, 40%, 60%, 80%, and 100% CO2. 
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Figure 4.14: Bivariate PDFs for the classes (20%, 40%, 60%, 80%, and 100%) for 
uniform saturation. The yellow, green, red, magenta, and cyan contour 
represent 20%, 40%, 60%, 80%, and 100% CO2, respectively. The overlap 
shows the uncertainty in discriminate between different CO2 saturations, 
when the fluid properties were calculated using the Reuss average (uniform 
saturation)  
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True\Predicted 0% CO2 20% CO2 40% CO2 60% CO2 80% CO2 100% CO2 

0% CO2 0.976 0.024 0 0 0 0 

20% CO2 0.026 0.554 0.106 0.104 0.104 0.106 

40% CO2 0.006 0.370 0.104 0.164 0.132 0.224 

60% CO2 0.006 0.328 0.094 0.122 0.142 0.308 

80% CO2 0.004 0.288 0.094 0.112 0.138 0.364 

100% CO2 0.0120 0.230 0.094 0.134 0.158 0.372 

Table 4.4: Confusion classification matrix for minimum Mahalanobis distance. The 
fluid properties were calculated using the Reuss average. The diagonal 
shows the success rate for the classification of each class. 

The overall results from the classification show that using Vp/Vs and P-Impedance 

could be possible to distinguish between brine and CO2, but obtaining the CO2 saturation 

from these properties will be difficult. When comparing the results from the two mixing 

fluid theories, the uncertainty using the homogenous saturation model is much higher than 

using the patchy saturation model. This uncertainty is due to the overlapping of the PDFs, 

(Figure 4.14) making difficult to distinguish between CO2 saturations.  

 

4.4 CONCLUSION  

This study showed the sensitivity of the elastic properties of the sandstone 

reservoirs of the Lower Miocene 2 stratigraphic interval to changes in variable CO2 

saturations. Using well log data, the AVA modeling and the classification using Vp/Vs and 

P-Impedance showed good results. The AVA modeling is reliable when examining the 

fluid substitution in the LM2 sandstone reservoirs. The soft frame of the rock makes the 

rock sensitive to the increases in CO2 saturation when compared to brine. This indicates 
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the likely ability of the seismic methods to monitor injection and movement of CO2 in this 

rock in the future.  

The type of saturation of the CO2 after injection has a great impact on the ability of 

the seismic methods to differentiate the amount of CO2 in the pore space. In the case of 

homogenous saturation, it will be extremely difficult to differentiate between 20% of CO2 

or 80% CO2. This is because the compressibility of the fluid for homogenous CO2 

saturations higher than 20% is small. This creates small changes in the elastic properties of 

the rock that will not be easy to observe with seismic data.  

The mineral composition of the rock will hardly affect its sensitivity to CO2. The 

increase or decrease of feldspar or clay will not cause a significant change in the bulk 

modulus of the dry rock. The depth and pressure will play a more important role in the 

sensitivity to CO2 of Lower Miocene sands in other parts of the northern Gulf of Mexico. 

The increase of effective pressure will make the frame of the rock stiffer reducing its 

sensitivity to changes in CO2 volumes.  
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Chapter 5: Conclusions and Future Work  

5.1 CONCLUSIONS 

This study quantitatively evaluates the CO2 storage capability of the Lower 

Miocene brine-filled sandstones in the inner continental shelf of the Texas Gulf of Mexico 

using 3D seismic and well log data. This study has demonstrated the application of 

quantitative methods to: (1) estimate reservoir properties to characterize intended CO2 

reservoirs, and (2) understand the effect of injected CO2 on the elastic properties of the 

Lower Miocene sandstones.  

In Chapter 3, the quantitative method applied successfully estimated the reservoir 

properties that has the greater impact in the characterization of intended CO2 reservoirs. 

The rock physics modeling described the relationship between elastic properties and 

porosity and mineralogy using the soft sand model. From the simultaneous seismic 

inversion P-impedance, S-impedance, and density volumes were obtained. Then using rock 

physics transforms on the seismically derived elastic properties, the porosity and lithology 

were estimated. The main intention of this work was to determine the effectiveness of 

workflows and methodologies that have been successfully applied in the oil and gas 

industry for characterizing reservoirs for CO2 storage. Although not undertaken as part of 

the thesis research, these results could be the used for storage capacity estimation and CO2 

migration simulation.  

Chapter 4 studied the sensitivity of the Lower Miocene sandstones to changes in 

CO2 saturation. The AVA response showed that the seismic response is sensitive to the 

pore fluid. The noticeable changes in the seismic amplitude when the CO2 replaces brine 

in the pores space is due to the soft frame and high porosity of the sandstones. Statistical 

classification showed that a combination of P-impedance and Vp/Vs is the best way to 

successfully differentiate between brine and injected CO2. The high sensitivity to CO2 of 
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the seismic response in the Lower Miocene section makes the applicability of seismic 

methods likely to be successful in monitoring future injected CO2.  

The main contribution of this work is providing a workflow that could be used in 

the inner continental shelf of the Gulf of Mexico to better characterize reservoir properties 

and find the more appropriates zones to storage CO2. The workflow used not only takes 

into the account the reservoir properties but also the impact of CO2 in the elastic properties 

to successfully monitor the future injected CO2. In general, the Lower Miocene section in 

the offshore areas of the Texas Gulf of Mexico show favorable properties for CO2 storage. 

The high porosity of the sands implied a high capacity of CO2 storage, and the high 

sensitivity to CO2 saturation indicates future CO2 injected is likely to be successfully 

monitored by using seismic methods.  

  

5.2 FUTURE WORK 

In this work a quantitative method was used to estimate reservoir properties. The 

workflow includes rock physics modeling and simultaneous seismic inversion. Accounting 

only for rock types and fluids sampled at the wells can lead to biased predictions of 

reservoir properties. Future work could be done integrating geological information into the 

workflow. Accounting for the geological model could improve the quantitative estimation 

of rock properties from inverted seismic data. Also the integration of petrophysical models 

into the workflow could help to estimate other reservoir properties. Using petrophysical 

models that relate porosity and clay content, could help improve the characterization of the 

intended CO2 reservoirs, making possible the estimation of the clay content within 

reservoir.  
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Regarding the sensitivity analyses some assumptions were made in this study. One 

of them was that the pore pressure does not change before and after the injection of CO2 

for the AVA modeling. The change of pore pressure during the injection of CO2 could 

affect the impedance of the reservoir. Taking into account these changes in pressure during 

the injection of CO2 could help to improve the accuracy and the validity of the results.  This 

work also assumed that the injected CO2 replaces only brine. In the case of CO2 replacing 

hydrocarbon or a combination of hydrocarbon and brine, the change in elastic properties 

might not be large enough to be detected using seismic methods. Further modeling should 

be done to account for different in situ fluids within the reservoir.  

This study focused on the characterization of the Lower Miocene sandstone to study 

whether or not could be used as a reservoir for CO2 storage. The results from this study 

could be used in additional analysis; the estimated porosity volume could be used to 

calculate the storage capacity of CO2 of the Lower Miocene section and CO2 migration 

simulation, which may be preferable to extrapolating these properties from wells into 

statistically generated volumes.  
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